Sample records for interference-based optical image

  1. Aberration measurement of projection optics in lithographic tools based on two-beam interference theory.

    PubMed

    Ma, Mingying; Wang, Xiangzhao; Wang, Fan

    2006-11-10

    The degradation of image quality caused by aberrations of projection optics in lithographic tools is a serious problem in optical lithography. We propose what we believe to be a novel technique for measuring aberrations of projection optics based on two-beam interference theory. By utilizing the partial coherent imaging theory, a novel model that accurately characterizes the relative image displacement of a fine grating pattern to a large pattern induced by aberrations is derived. Both even and odd aberrations are extracted independently from the relative image displacements of the printed patterns by two-beam interference imaging of the zeroth and positive first orders. The simulation results show that by using this technique we can measure the aberrations present in the lithographic tool with higher accuracy.

  2. LED-based interference-reflection microscopy combined with optical tweezers for quantitative three-dimensional microtubule imaging.

    PubMed

    Simmert, Steve; Abdosamadi, Mohammad Kazem; Hermsdorf, Gero; Schäffer, Erik

    2018-05-28

    Optical tweezers combined with various microscopy techniques are a versatile tool for single-molecule force spectroscopy. However, some combinations may compromise measurements. Here, we combined optical tweezers with total-internal-reflection-fluorescence (TIRF) and interference-reflection microscopy (IRM). Using a light-emitting diode (LED) for IRM illumination, we show that single microtubules can be imaged with high contrast. Furthermore, we converted the IRM interference pattern of an upward bent microtubule to its three-dimensional (3D) profile calibrated against the optical tweezers and evanescent TIRF field. In general, LED-based IRM is a powerful method for high-contrast 3D microscopy.

  3. Ultrathin Nonlinear Metasurface for Optical Image Encoding.

    PubMed

    Walter, Felicitas; Li, Guixin; Meier, Cedrik; Zhang, Shuang; Zentgraf, Thomas

    2017-05-10

    Security of optical information is of great importance in modern society. Many cryptography techniques based on classical and quantum optics have been widely explored in the linear optical regime. Nonlinear optical encryption in which encoding and decoding involve nonlinear frequency conversions represents a new strategy for securing optical information. Here, we demonstrate that an ultrathin nonlinear photonic metasurface, consisting of meta-atoms with 3-fold rotational symmetry, can be used to hide optical images under illumination with a fundamental wave. However, the hidden image can be read out from second harmonic generation (SHG) waves. This is achieved by controlling the destructive and constructive interferences of SHG waves from two neighboring meta-atoms. In addition, we apply this concept to obtain gray scale SHG imaging. Nonlinear metasurfaces based on space variant optical interference open new avenues for multilevel image encryption, anticounterfeiting, and background free image reconstruction.

  4. Optical Layout Analysis of Polarization Interference Imaging Spectrometer by Jones Calculus in View of both Optical Throughput and Interference Fringe Visibility

    NASA Astrophysics Data System (ADS)

    Zhang, Xuanni; Zhang, Chunmin

    2013-01-01

    A polarization interference imaging spectrometer based on Savart polariscope was presented. Its optical throughput was analyzed by Jones calculus. The throughput expression was given, and clearly showed that the optical throughput mainly depended on the intensity of incident light, transmissivity, refractive index and the layout of optical system. The simulation and analysis gave the optimum layout in view of both optical throughput and interference fringe visibility, and verified that the layout of our former design was optimum. The simulation showed that a small deviation from the optimum layout influenced interference fringe visibility little for the optimum one, but influenced severely for others, so a small deviation is admissible in the optimum, and this can mitigate the manufacture difficulty. These results pave the way for further research and engineering design.

  5. Bi-dimensional empirical mode decomposition based fringe-like pattern suppression in polarization interference imaging spectrometer

    NASA Astrophysics Data System (ADS)

    Ren, Wenyi; Cao, Qizhi; Wu, Dan; Jiang, Jiangang; Yang, Guoan; Xie, Yingge; Wang, Guodong; Zhang, Sheqi

    2018-01-01

    Many observers using interference imaging spectrometer were plagued by the fringe-like pattern(FP) that occurs for optical wavelengths in red and near-infrared region. It brings us more difficulties in the data processing such as the spectrum calibration, information retrieval, and so on. An adaptive method based on the bi-dimensional empirical mode decomposition was developed to suppress the nonlinear FP in polarization interference imaging spectrometer. The FP and corrected interferogram were separated effectively. Meanwhile, the stripes introduced by CCD mosaic was suppressed. The nonlinear interferogram background removal and the spectrum distortion correction were implemented as well. It provides us an alternative method to adaptively suppress the nonlinear FP without prior experimental data and knowledge. This approach potentially is a powerful tool in the fields of Fourier transform spectroscopy, holographic imaging, optical measurement based on moire fringe, etc.

  6. Fiber-Optic Surface Temperature Sensor Based on Modal Interference.

    PubMed

    Musin, Frédéric; Mégret, Patrice; Wuilpart, Marc

    2016-07-28

    Spatially-integrated surface temperature sensing is highly useful when it comes to controlling processes, detecting hazardous conditions or monitoring the health and safety of equipment and people. Fiber-optic sensing based on modal interference has shown great sensitivity to temperature variation, by means of cost-effective image-processing of few-mode interference patterns. New developments in the field of sensor configuration, as described in this paper, include an innovative cooling and heating phase discrimination functionality and more precise measurements, based entirely on the image processing of interference patterns. The proposed technique was applied to the measurement of the integrated surface temperature of a hollow cylinder and compared with a conventional measurement system, consisting of an infrared camera and precision temperature probe. As a result, the optical technique is in line with the reference system. Compared with conventional surface temperature probes, the optical technique has the following advantages: low heat capacity temperature measurement errors, easier spatial deployment, and replacement of multiple angle infrared camera shooting and the continuous monitoring of surfaces that are not visually accessible.

  7. Quantitative DIC microscopy using an off-axis self-interference approach.

    PubMed

    Fu, Dan; Oh, Seungeun; Choi, Wonshik; Yamauchi, Toyohiko; Dorn, August; Yaqoob, Zahid; Dasari, Ramachandra R; Feld, Michael S

    2010-07-15

    Traditional Normarski differential interference contrast (DIC) microscopy is a very powerful method for imaging nonstained biological samples. However, one of its major limitations is the nonquantitative nature of the imaging. To overcome this problem, we developed a quantitative DIC microscopy method based on off-axis sample self-interference. The digital holography algorithm is applied to obtain quantitative phase gradients in orthogonal directions, which leads to a quantitative phase image through a spiral integration of the phase gradients. This method is practically simple to implement on any standard microscope without stringent requirements on polarization optics. Optical sectioning can be obtained through enlarged illumination NA.

  8. Leakage radiation interference microscopy.

    PubMed

    Descrovi, Emiliano; Barakat, Elsie; Angelini, Angelo; Munzert, Peter; De Leo, Natascia; Boarino, Luca; Giorgis, Fabrizio; Herzig, Hans Peter

    2013-09-01

    We present a proof of principle for a new imaging technique combining leakage radiation microscopy with high-resolution interference microscopy. By using oil immersion optics it is demonstrated that amplitude and phase can be retrieved from optical fields, which are evanescent in air. This technique is illustratively applied for mapping a surface mode propagating onto a planar dielectric multilayer on a thin glass substrate. The surface mode propagation constant estimated after Fourier transformation of the measured complex field is well matched with an independent measurement based on back focal plane imaging.

  9. FIVQ algorithm for interference hyper-spectral image compression

    NASA Astrophysics Data System (ADS)

    Wen, Jia; Ma, Caiwen; Zhao, Junsuo

    2014-07-01

    Based on the improved vector quantization (IVQ) algorithm [1] which was proposed in 2012, this paper proposes a further improved vector quantization (FIVQ) algorithm for LASIS (Large Aperture Static Imaging Spectrometer) interference hyper-spectral image compression. To get better image quality, IVQ algorithm takes both the mean values and the VQ indices as the encoding rules. Although IVQ algorithm can improve both the bit rate and the image quality, it still can be further improved in order to get much lower bit rate for the LASIS interference pattern with the special optical characteristics based on the pushing and sweeping in LASIS imaging principle. In the proposed algorithm FIVQ, the neighborhood of the encoding blocks of the interference pattern image, which are using the mean value rules, will be checked whether they have the same mean value as the current processing block. Experiments show the proposed algorithm FIVQ can get lower bit rate compared to that of the IVQ algorithm for the LASIS interference hyper-spectral sequences.

  10. Study of image reconstruction for terahertz indirect holography with quasi-optics receiver.

    PubMed

    Gao, Xiang; Li, Chao; Fang, Guangyou

    2013-06-01

    In this paper, an indirect holographic image reconstruction algorithm was studied for terahertz imaging with a quasi-optics receiver. Based on the combination of the reciprocity principle and modified quasi-optics theory, analytical expressions of the received spatial power distribution and its spectrum are obtained for the interference pattern of target wave and reference wave. These results clearly give the quantitative relationship between imaging quality and the parameters of a Gaussian beam, which provides a good criterion for terahertz quasi-optics transceivers design in terahertz off-axis holographic imagers. To validate the effectiveness of the proposed analysis method, some imaging results with a 0.3 THz prototype system are shown based on electromagnetic simulation.

  11. Edge detection based on computational ghost imaging with structured illuminations

    NASA Astrophysics Data System (ADS)

    Yuan, Sheng; Xiang, Dong; Liu, Xuemei; Zhou, Xin; Bing, Pibin

    2018-03-01

    Edge detection is one of the most important tools to recognize the features of an object. In this paper, we propose an optical edge detection method based on computational ghost imaging (CGI) with structured illuminations which are generated by an interference system. The structured intensity patterns are designed to make the edge of an object be directly imaged from detected data in CGI. This edge detection method can extract the boundaries for both binary and grayscale objects in any direction at one time. We also numerically test the influence of distance deviations in the interference system on edge extraction, i.e., the tolerance of the optical edge detection system to distance deviation. Hopefully, it may provide a guideline for scholars to build an experimental system.

  12. Quantitative phase imaging of living cells with a swept laser source

    NASA Astrophysics Data System (ADS)

    Chen, Shichao; Zhu, Yizheng

    2016-03-01

    Digital holographic phase microscopy is a well-established quantitative phase imaging technique. However, interference artifacts from inside the system, typically induced by elements whose optical thickness are within the source coherence length, limit the imaging quality as well as sensitivity. In this paper, a swept laser source based technique is presented. Spectra acquired at a number of wavelengths, after Fourier Transform, can be used to identify the sources of the interference artifacts. With proper tuning of the optical pathlength difference between sample and reference arms, it is possible to avoid these artifacts and achieve sensitivity below 0.3nm. Performance of the proposed technique is examined in live cell imaging.

  13. Wavefront sensorless adaptive optics ophthalmoscopy in the human eye

    PubMed Central

    Hofer, Heidi; Sredar, Nripun; Queener, Hope; Li, Chaohong; Porter, Jason

    2011-01-01

    Wavefront sensor noise and fidelity place a fundamental limit on achievable image quality in current adaptive optics ophthalmoscopes. Additionally, the wavefront sensor ‘beacon’ can interfere with visual experiments. We demonstrate real-time (25 Hz), wavefront sensorless adaptive optics imaging in the living human eye with image quality rivaling that of wavefront sensor based control in the same system. A stochastic parallel gradient descent algorithm directly optimized the mean intensity in retinal image frames acquired with a confocal adaptive optics scanning laser ophthalmoscope (AOSLO). When imaging through natural, undilated pupils, both control methods resulted in comparable mean image intensities. However, when imaging through dilated pupils, image intensity was generally higher following wavefront sensor-based control. Despite the typically reduced intensity, image contrast was higher, on average, with sensorless control. Wavefront sensorless control is a viable option for imaging the living human eye and future refinements of this technique may result in even greater optical gains. PMID:21934779

  14. Generation of phase edge singularities by coplanar three-beam interference and their detection.

    PubMed

    Patorski, Krzysztof; Sluzewski, Lukasz; Trusiak, Maciej; Pokorski, Krzysztof

    2017-02-06

    In recent years singular optics has gained considerable attention in science and technology. Up to now optical vortices (phase point dislocations) have been of main interest. This paper presents the first general analysis of formation of phase edge singularities by coplanar three-beam interference. They can be generated, for example, by three-slit interference or self-imaging in the Fresnel diffraction field of a sinusoidal grating. We derive a general condition for the ratio of amplitudes of interfering beams resulting in phase edge dislocations, lateral separation of dislocations depends on this ratio as well. Analytically derived properties are corroborated by numerical and experimental studies. We develop a simple, robust, common path optical self-imaging configuration aided by a coherent tilted reference wave and spatial filtering. Finally, we propose an automatic fringe pattern analysis technique for detecting phase edge dislocations, based on the continuous wavelet transform. Presented studies open new possibilities for developing grating based sensing techniques for precision metrology of very small phase differences.

  15. Imaging of acoustic fields using optical feedback interferometry.

    PubMed

    Bertling, Karl; Perchoux, Julien; Taimre, Thomas; Malkin, Robert; Robert, Daniel; Rakić, Aleksandar D; Bosch, Thierry

    2014-12-01

    This study introduces optical feedback interferometry as a simple and effective technique for the two-dimensional visualisation of acoustic fields. We present imaging results for several pressure distributions including those for progressive waves, standing waves, as well as the diffraction and interference patterns of the acoustic waves. The proposed solution has the distinct advantage of extreme optical simplicity and robustness thus opening the way to a low cost acoustic field imaging system based on mass produced laser diodes.

  16. An interference-based optical authentication scheme using two phase-only masks with different diffraction distances

    NASA Astrophysics Data System (ADS)

    Lu, Dajiang; He, Wenqi; Liao, Meihua; Peng, Xiang

    2017-02-01

    A new method to eliminate the security risk of the well-known interference-based optical cryptosystem is proposed. In this method, which is suitable for security authentication application, two phase-only masks are separately placed at different distances from the output plane, where a certification image (public image) can be obtained. To further increase the security and flexibility of this authentication system, we employ one more validation image (secret image), which can be observed at another output plane, for confirming the identity of the user. Only if the two correct masks are properly settled at their positions one could obtain two significant images. Besides, even if the legal users exchange their masks (keys), the authentication process will fail and the authentication results will not reveal any information. Numerical simulations are performed to demonstrate the validity and security of the proposed method.

  17. Temporal overlap estimation based on interference spectrum in CARS microscopy

    NASA Astrophysics Data System (ADS)

    Zhang, Yongning; Jiang, Junfeng; Liu, Kun; Huang, Can; Wang, Shuang; Zhang, Xuezhi; Liu, Tiegen

    2018-01-01

    Coherent Anti-Stokes Raman Scattering (CARS) microscopy has attracted lots of attention because of the advantages, such as noninvasive, label-free, chemical specificity, intrinsic three-dimension spatial resolution and so on. However, the temporal overlap of pump and Stokes has not been solved owing to the ultrafast optical pulse used in CARS microscopy. We combine interference spectrum of residual pump in Stokes path and nonlinear Schrodinger equation (NLSE) to realize the temporal overlap of pump pulse and Stokes pulse. At first, based on the interference spectrum of pump pulse and residual pump in Stokes path, the optical delay is defined when optical path difference between pump path and Stokes path is zero. Then the relative optical delay between Stokes pulse and residual pump in PCF can be calculated by NLSE. According to the spectrum interference and NLSE, temporal overlap of pump pulse and Stokes pulse will be realized easily and the imaging speed will be improved in CARS microscopy.

  18. High-contrast fluorescence imaging based on the polarization dependence of the fluorescence enhancement using an optical interference mirror slide.

    PubMed

    Yasuda, Mitsuru; Akimoto, Takuo

    2015-01-01

    High-contrast fluorescence imaging using an optical interference mirror (OIM) slide that enhances the fluorescence from a fluorophore located on top of the OIM surface is reported. To enhance the fluorescence and reduce the background light of the OIM, transverse-electric-polarized excitation light was used as incident light, and the transverse-magnetic-polarized fluorescence signal was detected. As a result, an approximate 100-fold improvement in the signal-to-noise ratio was achieved through a 13-fold enhancement of the fluorescence signal and an 8-fold reduction of the background light.

  19. Optical configuration with fixed transverse magnification for self-interference incoherent digital holography.

    PubMed

    Imbe, Masatoshi

    2018-03-20

    The optical configuration proposed in this paper consists of a 4-f optical setup with the wavefront modulation device on the Fourier plane, such as a concave mirror and a spatial light modulator. The transverse magnification of reconstructed images with the proposed configuration is independent of locations of an object and an image sensor; therefore, reconstructed images of object(s) at different distances can be scaled with a fixed transverse magnification. It is yielded based on Fourier optics and mathematically verified with the optical matrix method. Numerical simulation results and experimental results are also given to confirm the fixity of the reconstructed images.

  20. Analysis and design of the ultraviolet warning optical system based on interference imaging

    NASA Astrophysics Data System (ADS)

    Wang, Wen-cong; Hu, Hui-jun; Jin, Dong-dong; Chu, Xin-bo; Shi, Yu-feng; Song, Juan; Liu, Jin-sheng; Xiao, Ting; Shao, Si-pei

    2017-10-01

    Ultraviolet warning technology is one of the important methods for missile warning. It provides a very effective way to detect the target for missile approaching alarm. With the development of modern technology, especially the development of information technology at high speed, the ultraviolet early warning system plays an increasingly important role. Compared to infrared warning, the ultraviolet warning has high efficiency and low false alarm rate. In the modern warfare, how to detect the threats earlier, prevent and reduce the attack of precision-guided missile has become a new challenge of missile warning technology. Because the ultraviolet warning technology has high environmental adaptability, the low false alarm rate, small volume and other advantages, in the military field applications it has been developed rapidly. For the ultraviolet warning system, the optimal working waveband is 250 nm 280 nm (Solar Blind UV) due to the strong absorption of ozone layer. According to current application demands for solar blind ultraviolet detection and warning, this paper proposes ultraviolet warning optical system based on interference imaging, which covers solar blind ultraviolet (250nm-280nm) and dual field. This structure includes a primary optical system, an ultraviolet reflector array, an ultraviolet imaging system and an ultraviolet interference imaging system. It makes use of an ultraviolet beam-splitter to achieve the separation of two optical systems. According to the detector and the corresponding application needs of two visual field of the optical system, the calculation and optical system design were completed. After the design, the MTF of the two optical system is more than 0.8@39lp/mm.A single pixel energy concentration is greater than 80%.

  1. Computational adaptive optics for broadband interferometric tomography of tissues and cells

    NASA Astrophysics Data System (ADS)

    Adie, Steven G.; Mulligan, Jeffrey A.

    2016-03-01

    Adaptive optics (AO) can shape aberrated optical wavefronts to physically restore the constructive interference needed for high-resolution imaging. With access to the complex optical field, however, many functions of optical hardware can be achieved computationally, including focusing and the compensation of optical aberrations to restore the constructive interference required for diffraction-limited imaging performance. Holography, which employs interferometric detection of the complex optical field, was developed based on this connection between hardware and computational image formation, although this link has only recently been exploited for 3D tomographic imaging in scattering biological tissues. This talk will present the underlying imaging science behind computational image formation with optical coherence tomography (OCT) -- a beam-scanned version of broadband digital holography. Analogous to hardware AO (HAO), we demonstrate computational adaptive optics (CAO) and optimization of the computed pupil correction in 'sensorless mode' (Zernike polynomial corrections with feedback from image metrics) or with the use of 'guide-stars' in the sample. We discuss the concept of an 'isotomic volume' as the volumetric extension of the 'isoplanatic patch' introduced in astronomical AO. Recent CAO results and ongoing work is highlighted to point to the potential biomedical impact of computed broadband interferometric tomography. We also discuss the advantages and disadvantages of HAO vs. CAO for the effective shaping of optical wavefronts, and highlight opportunities for hybrid approaches that synergistically combine the unique advantages of hardware and computational methods for rapid volumetric tomography with cellular resolution.

  2. Apparatus, system, and method for laser-induced breakdown spectroscopy

    DOEpatents

    Effenberger, Jr., Andrew J; Scott, Jill R; McJunkin, Timothy R

    2014-11-18

    In laser-induced breakdown spectroscopy (LIBS), an apparatus includes a pulsed laser configured to generate a pulsed laser signal toward a sample, a constructive interference object and an optical element, each located in a path of light from the sample. The constructive interference object is configured to generate constructive interference patterns of the light. The optical element is configured to disperse the light. A LIBS system includes a first and a second optical element, and a data acquisition module. The data acquisition module is configured to determine an isotope measurement based, at least in part, on light received by an image sensor from the first and second optical elements. A method for performing LIBS includes generating a pulsed laser on a sample to generate light from a plasma, generating constructive interference patterns of the light, and dispersing the light into a plurality of wavelengths.

  3. Study the effects of varying interference upon the optical properties of turbid samples using NIR spatial light modulation

    NASA Astrophysics Data System (ADS)

    Shaul, Oren; Fanrazi-Kahana, Michal; Meitav, Omri; Pinhasi, Gad A.; Abookasis, David

    2018-03-01

    Optical properties of biological tissues are valuable diagnostic parameters which can provide necessary information regarding tissue state during disease pathogenesis and therapy. However, different sources of interference, such as temperature changes may modify these properties, introducing confounding factors and artifacts to data, consequently skewing their interpretation and misinforming clinical decision-making. In the current study, we apply spatial light modulation, a type of diffuse reflectance hyperspectral imaging technique, to monitor the variation in optical properties of highly scattering turbid media in the presence varying levels of the following sources of interference: scattering concentration, temperature, and pressure. Spatial near-infrared (NIR) light modulation is a wide-field, non-contact emerging optical imaging platform capable of separating the effects of tissue scattering from those of absorption, thereby accurately estimating both parameters. With this technique, periodic NIR illumination patterns at alternately low and high spatial frequencies, at six discrete wavelengths between 690 to 970 nm, were sequentially projected upon the medium while a CCD camera collects the diffusely reflected light. Data analysis based assumptions is then performed off-line to recover the medium's optical properties. We conducted a series of experiments demonstrating the changes in absorption and reduced scattering coefficients of commercially available fresh milk and chicken breast tissue under different interference conditions. In addition, information on the refractive index was study under increased pressure. This work demonstrates the utility of NIR spatial light modulation to detect varying sources of interference upon the optical properties of biological samples.

  4. Optical image encryption using chaos-based compressed sensing and phase-shifting interference in fractional wavelet domain

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Wang, Ying; Wang, Jun; Wang, Qiong-Hua

    2018-02-01

    In this paper, a novel optical image encryption system combining compressed sensing with phase-shifting interference in fractional wavelet domain is proposed. To improve the encryption efficiency, the volume data of original image are decreased by compressed sensing. Then the compacted image is encoded through double random phase encoding in asymmetric fractional wavelet domain. In the encryption system, three pseudo-random sequences, generated by three-dimensional chaos map, are used as the measurement matrix of compressed sensing and two random-phase masks in the asymmetric fractional wavelet transform. It not only simplifies the keys to storage and transmission, but also enhances our cryptosystem nonlinearity to resist some common attacks. Further, holograms make our cryptosystem be immune to noises and occlusion attacks, which are obtained by two-step-only quadrature phase-shifting interference. And the compression and encryption can be achieved in the final result simultaneously. Numerical experiments have verified the security and validity of the proposed algorithm.

  5. Encryption of QR code and grayscale image in interference-based scheme with high quality retrieval and silhouette problem removal

    NASA Astrophysics Data System (ADS)

    Qin, Yi; Wang, Hongjuan; Wang, Zhipeng; Gong, Qiong; Wang, Danchen

    2016-09-01

    In optical interference-based encryption (IBE) scheme, the currently available methods have to employ the iterative algorithms in order to encrypt two images and retrieve cross-talk free decrypted images. In this paper, we shall show that this goal can be achieved via an analytical process if one of the two images is QR code. For decryption, the QR code is decrypted in the conventional architecture and the decryption has a noisy appearance. Nevertheless, the robustness of QR code against noise enables the accurate acquisition of its content from the noisy retrieval, as a result of which the primary QR code can be exactly regenerated. Thereafter, a novel optical architecture is proposed to recover the grayscale image by aid of the QR code. In addition, the proposal has totally eliminated the silhouette problem existing in the previous IBE schemes, and its effectiveness and feasibility have been demonstrated by numerical simulations.

  6. Weak scratch detection and defect classification methods for a large-aperture optical element

    NASA Astrophysics Data System (ADS)

    Tao, Xian; Xu, De; Zhang, Zheng-Tao; Zhang, Feng; Liu, Xi-Long; Zhang, Da-Peng

    2017-03-01

    Surface defects on optics cause optic failure and heavy loss to the optical system. Therefore, surface defects on optics must be carefully inspected. This paper proposes a coarse-to-fine detection strategy of weak scratches in complicated dark-field images. First, all possible scratches are detected based on bionic vision. Then, each possible scratch is precisely positioned and connected to a complete scratch by the LSD and a priori knowledge. Finally, multiple scratches with various types can be detected in dark-field images. To classify defects and pollutants, a classification method based on GIST features is proposed. This paper uses many real dark-field images as experimental images. The results show that this method can detect multiple types of weak scratches in complex images and that the defects can be correctly distinguished with interference. This method satisfies the real-time and accurate detection requirements of surface defects.

  7. AOSLO: from benchtop to clinic

    NASA Astrophysics Data System (ADS)

    Zhang, Yuhua; Poonja, Siddharth; Roorda, Austin

    2006-08-01

    We present a clinically deployable adaptive optics scanning laser ophthalmoscope (AOSLO) that features micro-electro-mechanical (MEMS) deformable mirror (DM) based adaptive optics (AO) and low coherent light sources. With the miniaturized optical aperture of a μDMS-Multi TM MEMS DM (Boston Micromachines Corporation, Watertown, MA), we were able to develop a compact and robust AOSLO optical system that occupies a 50 cm X 50 cm area on a mobile optical table. We introduced low coherent light sources, which are superluminescent laser diodes (SLD) at 680 nm with 9 nm bandwidth and 840 nm with 50 nm bandwidth, in confocal scanning ophthalmoscopy to eliminate interference artifacts in the images. We selected a photo multiplier tube (PMT) for photon signal detection and designed low noise video signal conditioning circuits. We employed an acoustic-optical (AOM) spatial light modulator to modulate the light beam so that we could avoid unnecessary exposure to the retina or project a specific stimulus pattern onto the retina. The MEMS DM based AO system demonstrated robust performance. The use of low coherent light sources effectively mitigated the interference artifacts in the images and yielded high-fidelity retinal images of contiguous cone mosaic. We imaged patients with inherited retinal degenerations including cone-rod dystrophy (CRD) and retinitis pigmentosa (RP). We have produced high-fidelity, real-time, microscopic views of the living human retina for healthy and diseased eyes.

  8. Laser interference fringe tomography: a novel 3D imaging technique for pathology

    NASA Astrophysics Data System (ADS)

    Kazemzadeh, Farnoud; Haylock, Thomas M.; Chifman, Lev M.; Hajian, Arsen R.; Behr, Bradford B.; Cenko, Andrew T.; Meade, Jeff T.; Hendrikse, Jan

    2011-03-01

    Laser interference fringe tomography (LIFT) is within the class of optical imaging devices designed for in vivo and ex vivo medical imaging applications. LIFT is a very simple and cost-effective three-dimensional imaging device with performance rivaling some of the leading three-dimensional imaging devices used for histology. Like optical coherence tomography (OCT), it measures the reflectivity as a function of depth within a sample and is capable of producing three-dimensional images from optically scattering media. LIFT has the potential capability to produce high spectral resolution, full-color images. The optical design of LIFT along with the planned iterations for improvements and miniaturization are presented and discussed in addition to the theoretical concepts and preliminary imaging results of the device.

  9. Image recombination transform algorithm for superresolution structured illumination microscopy

    PubMed Central

    Zhou, Xing; Lei, Ming; Dan, Dan; Yao, Baoli; Yang, Yanlong; Qian, Jia; Chen, Guangde; Bianco, Piero R.

    2016-01-01

    Abstract. Structured illumination microscopy (SIM) is an attractive choice for fast superresolution imaging. The generation of structured illumination patterns made by interference of laser beams is broadly employed to obtain high modulation depth of patterns, while the polarizations of the laser beams must be elaborately controlled to guarantee the high contrast of interference intensity, which brings a more complex configuration for the polarization control. The emerging pattern projection strategy is much more compact, but the modulation depth of patterns is deteriorated by the optical transfer function of the optical system, especially in high spatial frequency near the diffraction limit. Therefore, the traditional superresolution reconstruction algorithm for interference-based SIM will suffer from many artifacts in the case of projection-based SIM that possesses a low modulation depth. Here, we propose an alternative reconstruction algorithm based on image recombination transform, which provides an alternative solution to address this problem even in a weak modulation depth. We demonstrated the effectiveness of this algorithm in the multicolor superresolution imaging of bovine pulmonary arterial endothelial cells in our developed projection-based SIM system, which applies a computer controlled digital micromirror device for fast fringe generation and multicolor light-emitting diodes for illumination. The merit of the system incorporated with the proposed algorithm allows for a low excitation intensity fluorescence imaging even less than 1  W/cm2, which is beneficial for the long-term, in vivo superresolved imaging of live cells and tissues. PMID:27653935

  10. Wafer defect detection by a polarization-insensitive external differential interference contrast module.

    PubMed

    Nativ, Amit; Feldman, Haim; Shaked, Natan T

    2018-05-01

    We present a system that is based on a new external, polarization-insensitive differential interference contrast (DIC) module specifically adapted for detecting defects in semiconductor wafers. We obtained defect signal enhancement relative to the surrounding wafer pattern when compared with bright-field imaging. The new DIC module proposed is based on a shearing interferometer that connects externally at the output port of an optical microscope and enables imaging thin samples, such as wafer defects. This module does not require polarization optics (such as Wollaston or Nomarski prisms) and is insensitive to polarization, unlike traditional DIC techniques. In addition, it provides full control of the DIC shear and orientation, which allows obtaining a differential phase image directly on the camera (with no further digital processing) while enhancing defect detection capabilities, even if the size of the defect is smaller than the resolution limit. Our technique has the potential of future integration into semiconductor production lines.

  11. Analysis of the Sagnac interference imaging spectrometer with a variable optical path difference

    NASA Astrophysics Data System (ADS)

    Ai, Jingjing; Gao, Peng; Hu, Xiaochen; Zhang, Chunmin; Wang, Xia

    2018-03-01

    The Sagnac interference imaging spectrometer with a variable optical path difference (OPD) is proposed in this paper, which employs two wedge prisms coupled with a modified Sagnac interferometer, and produces a variable OPD through the moving wedge prism. Compared with the conventional imaging spectrometer, the Sagnac interference imaging spectrometer shows its advantages of miniaturization and insensitive to the non-uniform variation of the moving speed and the environment vibration. The exact expression of the OPD as a function of different parameters is derived, and the influences of the moving displacement, wedge angle and acute angles on the OPD are analyzed and discussed within the scope of engineering design. This study provides an important theoretical and practical guidance for the engineering of the Sagnac interference imaging spectrometer.

  12. Optical multiple-image hiding based on interference and grating modulation

    NASA Astrophysics Data System (ADS)

    He, Wenqi; Peng, Xiang; Meng, Xiangfeng

    2012-07-01

    We present a method for multiple-image hiding on the basis of interference-based encryption architecture and grating modulation. By using a modified phase retrieval algorithm, we can separately hide a number of secret images into one arbitrarily preselected host image associated with a set of phase-only masks (POMs), which are regarded as secret keys. Thereafter, a grating modulation operation is introduced to multiplex and store the different POMs into a single key mask, which is then assigned to the authorized users in privacy. For recovery, after an appropriate demultiplexing process, one can reconstruct the distributions of all the secret keys and then recover the corresponding hidden images with suppressed crosstalk. Computer simulation results are presented to validate the feasibility of our approach.

  13. Optical multichannel room temperature magnetic field imaging system for clinical application

    PubMed Central

    Lembke, G.; Erné, S. N.; Nowak, H.; Menhorn, B.; Pasquarelli, A.

    2014-01-01

    Optically pumped magnetometers (OPM) are a very promising alternative to the superconducting quantum interference devices (SQUIDs) used nowadays for Magnetic Field Imaging (MFI), a new method of diagnosis based on the measurement of the magnetic field of the human heart. We present a first measurement combining a multichannel OPM-sensor with an existing MFI-system resulting in a fully functional room temperature MFI-system. PMID:24688820

  14. Wavefront division digital holography

    NASA Astrophysics Data System (ADS)

    Zhang, Wenhui; Cao, Liangcai; Li, Rujia; Zhang, Hua; Zhang, Hao; Jiang, Qiang; Jin, Guofan

    2018-05-01

    Digital holography (DH), mostly Mach-Zehnder configuration based, belongs to non-common path amplitude splitting interference imaging whose stability and fringe contrast are environmental sensitive. This paper presents a wavefront division DH configuration with both high stability and high-contrast fringes benefitting from quasi common path wavefront-splitting interference. In our proposal, two spherical waves with similar curvature coming from the same wavefront are used, which makes full use of the physical sampling capacity of the detectors. The interference fringe spacing can be adjusted flexibly for both in-line and off-axis mode due to the independent modulation to these two waves. Only a few optical elements, including the mirror-beam splitter interference component, are used without strict alignments, which makes it robust and easy-to-implement. The proposed wavefront division DH promotes interference imaging physics into the practical and miniaturized a step forward. The feasibility of this method is proved by the imaging of a resolution target and a water flea.

  15. Edge detection based on adaptive threshold b-spline wavelet for optical sub-aperture measuring

    NASA Astrophysics Data System (ADS)

    Zhang, Shiqi; Hui, Mei; Liu, Ming; Zhao, Zhu; Dong, Liquan; Liu, Xiaohua; Zhao, Yuejin

    2015-08-01

    In the research of optical synthetic aperture imaging system, phase congruency is the main problem and it is necessary to detect sub-aperture phase. The edge of the sub-aperture system is more complex than that in the traditional optical imaging system. And with the existence of steep slope for large-aperture optical component, interference fringe may be quite dense when interference imaging. Deep phase gradient may cause a loss of phase information. Therefore, it's urgent to search for an efficient edge detection method. Wavelet analysis as a powerful tool is widely used in the fields of image processing. Based on its properties of multi-scale transform, edge region is detected with high precision in small scale. Longing with the increase of scale, noise is reduced in contrary. So it has a certain suppression effect on noise. Otherwise, adaptive threshold method which sets different thresholds in various regions can detect edge points from noise. Firstly, fringe pattern is obtained and cubic b-spline wavelet is adopted as the smoothing function. After the multi-scale wavelet decomposition of the whole image, we figure out the local modulus maxima in gradient directions. However, it also contains noise, and thus adaptive threshold method is used to select the modulus maxima. The point which greater than threshold value is boundary point. Finally, we use corrosion and expansion deal with the resulting image to get the consecutive boundary of image.

  16. Pupil-segmentation-based adaptive optics for microscopy

    NASA Astrophysics Data System (ADS)

    Ji, Na; Milkie, Daniel E.; Betzig, Eric

    2011-03-01

    Inhomogeneous optical properties of biological samples make it difficult to obtain diffraction-limited resolution in depth. Correcting the sample-induced optical aberrations needs adaptive optics (AO). However, the direct wavefront-sensing approach commonly used in astronomy is not suitable for most biological samples due to their strong scattering of light. We developed an image-based AO approach that is insensitive to sample scattering. By comparing images of the sample taken with different segments of the pupil illuminated, local tilt in the wavefront is measured from image shift. The aberrated wavefront is then obtained either by measuring the local phase directly using interference or with phase reconstruction algorithms similar to those used in astronomical AO. We implemented this pupil-segmentation-based approach in a two-photon fluorescence microscope and demonstrated that diffraction-limited resolution can be recovered from nonbiological and biological samples.

  17. Image restoration method based on Hilbert transform for full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha

    2008-01-01

    A full-field optical coherence tomography (FF-OCT) system utilizing a simple but novel image restoration method suitable for a high-speed system is demonstrated. An en-face image is retrieved from only two phase-shifted interference fringe images through using the mathematical Hilbert transform. With a thermal light source, a high-resolution FF-OCT system having axial and transverse resolutions of 1 and 2.2 μm, respectively, was implemented. The feasibility of the proposed scheme is confirmed by presenting the obtained en-face images of biological samples such as a piece of garlic and a gold beetle. The proposed method is robust to the error in the amount of the phase shift and does not leave residual fringes. The use of just two interference images and the strong immunity to phase errors provide great advantages in the imaging speed and the system design flexibility of a high-speed high-resolution FF-OCT system.

  18. Measurement of curvature and temperature using multimode interference devices

    NASA Astrophysics Data System (ADS)

    Guzman-Sepulveda, J. R.; Aguilar-Soto, J. G.; Torres-Cisneros, M.; Ibarra-Manzano, O. G.; May-Arrioja, D. A.

    2011-09-01

    In this paper we propose the fabrication, implementation, and testing of a novel fiber optic sensor based on Multimode Interference (MMI) effects for independent measurement of curvature and temperature. The development of fiber based MMI devices is relatively new and since they exhibit a band-pass filter response they can be used in different applications. The operating mechanism of our sensor is based on the self-imaging phenomena that occur in multimode fibers (MMF), which is related to the interference of the propagating modes and their accumulated phase. We demonstrate that the peak wavelength shifts with temperature variations as a result of changes in the accumulated phase through thermo-optics effects, while the intensity of the peak wavelength is reduced as the curvature increases since we start to loss higher order modes. In this way both measurements are obtained independently with a single fiber device. Compared to other fiber-optic sensors, our sensor features an extremely simple structure and fabrication process, and hence cost effectiveness.

  19. Development of a PET/OMRI combined system for simultaneous imaging of positron and free radical probes for small animals.

    PubMed

    Yamamoto, Seiichi; Watabe, Tadashi; Ikeda, Hayato; Kanai, Yasukazu; Ichikawa, Kazuhiro; Nakao, Motonao; Kato, Katsuhiko; Hatazawa, Jun

    2016-10-01

    Positron emission tomography (PET) has high sensitivity for imaging radioactive tracer distributions in subjects. However, it is not possible to image free radical distribution in a subject by PET. Since free radicals are quite reactive, they are related to many diseases, including but not limited to cancer, inflammation, strokes, and heart disease. The Overhauser enhanced magnetic resonance imaging (OMRI) is so far the only method that images free radical distribution in vivo. By combining PET and OMRI, a new hybrid imaging modality might be developed that can simultaneously image the radioactive tracer and free radical distributions. For this purpose, the authors developed a PET/OMRI combined system for small animals. The developed PET/OMRI system used an optical fiber-based PET system combined with a permanent magnet-based OMRI system. The optical fiber-based PET system uses flexible optical fiber bundles. Eight optical fiber-based block detectors were arranged in a 56 mm diameter ring to form a PET system. The LGSO blocks were located inside the field-of-view (FOV) of the OMRI, and the position sensitive photomultiplier tubes were positioned behind the OMRI to minimize the interference between the PET and the OMRI. The OMRI system used a 0.0165 T permanent magnet. The system has an electron spin resonance coil to enhance the MRI signal using the Overhauser effect to image the free radical in the FOV of the PET/OMRI system. The spatial resolution and sensitivity of the optical fiber-based PET system were 1.2 mm FWHM and 1.2% at the central FOV, respectively. The OMRI system imaged the distribution of a nitroxyl radical (NXR) solution. The interference between PET and OMRI was small. Simultaneous imaging of the positron radiotracer and the NXR solution was successfully conducted with the developed PET/OMRI system for phantom and small animal studies. The authors developed a PET/OMRI combined system with the potential to provide interesting new results in molecular imaging research, such as in vivo molecular and free radical distributions.

  20. Optical cryptography topology based on a three-dimensional particle-like distribution and diffractive imaging.

    PubMed

    Chen, Wen; Chen, Xudong

    2011-05-09

    In recent years, coherent diffractive imaging has been considered as a promising alternative for information retrieval instead of conventional interference methods. Coherent diffractive imaging using the X-ray light source has opened up a new research perspective for the measurement of non-crystalline and biological specimens, and can achieve unprecedentedly high resolutions. In this paper, we show how a three-dimensional (3D) particle-like distribution and coherent diffractive imaging can be applied for a study of optical cryptography. An optical multiple-random-phase-mask encoding approach is used, and the plaintext is considered as a series of particles distributed in a 3D space. A topology concept is also introduced into the proposed optical cryptosystem. During image decryption, a retrieval algorithm is developed to extract the plaintext from the ciphertexts. In addition, security and advantages of the proposed optical cryptography topology are also analyzed. © 2011 Optical Society of America

  1. High-Sensitivity Fiber-Optic Ultrasound Sensors for Medical Imaging Applications

    PubMed Central

    Wen, H.; Wiesler, D.G.; Tveten, A.; Danver, B.; Dandridge, A.

    2010-01-01

    This paper presents several designs of high-sensitivity, compact fiber-optic ultrasound sensors that may be used for medical imaging applications. These sensors translate ultrasonic pulses into strains in single-mode optical fibers, which are measured with fiber-based laser interferometers at high precision. The sensors are simpler and less expensive to make than piezoelectric sensors, and are not susceptible to electromagnetic interference. It is possible to make focal sensors with these designs, and several schemes are discussed. Because of the minimum bending radius of optical fibers, the designs are suitable for single element sensors rather than for arrays. PMID:9691368

  2. Microfabricated optically pumped magnetometer arrays for biomedical imaging

    NASA Astrophysics Data System (ADS)

    Perry, A. R.; Sheng, D.; Krzyzewski, S. P.; Geller, S.; Knappe, S.

    2017-02-01

    Optically-pumped magnetometers have demonstrated magnetic field measurements as precise as the best superconducting quantum interference device magnetometers. Our group develops miniature alkali atom-based magnetic sensors using microfabrication technology. Our sensors do not require cryogenic cooling, and can be positioned very close to the sample, making these sensors an attractive option for development in the medical community. We will present our latest chip-scale optically-pumped gradiometer developed for array applications to image magnetic fields from the brain noninvasively. These developments should lead to improved spatial resolution, and potentially sensitive measurements in unshielded environments.

  3. Design and fabrication of multimode interference couplers based on digital micro-mirror system

    NASA Astrophysics Data System (ADS)

    Wu, Sumei; He, Xingdao; Shen, Chenbo

    2008-03-01

    Multimode interference (MMI) couplers, based on the self-imaging effect (SIE), are accepted popularly in integrated optics. According to the importance of MMI devices, in this paper, we present a novel method to design and fabricate MMI couplers. A technology of maskless lithography to make MMI couplers based on a smart digital micro-mirror device (DMD) system is proposed. A 1×4 MMI device is designed as an example, which shows the present method is efficient and cost-effective.

  4. Method and apparatus for optical Doppler tomographic imaging of fluid flow velocity in highly scattering media

    DOEpatents

    Nelson, John Stuart; Milner, Thomas Edward; Chen, Zhongping

    1999-01-01

    Optical Doppler tomography permits imaging of fluid flow velocity in highly scattering media. The tomography system combines Doppler velocimetry with high spatial resolution of partially coherent optical interferometry to measure fluid flow velocity at discrete spatial locations. Noninvasive in vivo imaging of blood flow dynamics and tissue structures with high spatial resolutions of the order of 2 to 10 microns is achieved in biological systems. The backscattered interference signals derived from the interferometer may be analyzed either through power spectrum determination to obtain the position and velocity of each particle in the fluid flow sample at each pixel, or the interference spectral density may be analyzed at each frequency in the spectrum to obtain the positions and velocities of the particles in a cross-section to which the interference spectral density corresponds. The realized resolutions of optical Doppler tomography allows noninvasive in vivo imaging of both blood microcirculation and tissue structure surrounding the vessel which has significance for biomedical research and clinical applications.

  5. Holographic techniques for cellular fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Kim, Myung K.

    2017-04-01

    We have constructed a prototype instrument for holographic fluorescence microscopy (HFM) based on self-interference incoherent digital holography (SIDH) and demonstrate novel imaging capabilities such as differential 3D fluorescence microscopy and optical sectioning by compressive sensing.

  6. The research and development of the adaptive optics in ophthalmology

    NASA Astrophysics Data System (ADS)

    Wu, Chuhan; Zhang, Xiaofang; Chen, Weilin

    2015-08-01

    Recently the combination of adaptive optics and ophthalmology has made great progress and become highly effective. The retina disease is diagnosed by retina imaging technique based on scanning optical system, so the scanning of eye requires optical system characterized by great ability of anti-moving and optical aberration correction. The adaptive optics possesses high level of adaptability and is available for real time imaging, which meets the requirement of medical retina detection with accurate images. Now the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are widely used, which are the core techniques in the area of medical retina detection. Based on the above techniques, in China, a few adaptive optics systems used for eye medical scanning have been designed by some researchers from The Institute of Optics And Electronics of CAS(The Chinese Academy of Sciences); some foreign research institutions have adopted other methods to eliminate the interference of eye moving and optical aberration; there are many relevant patents at home and abroad. In this paper, the principles and relevant technique details of the Scanning Laser Ophthalmoscope and the Optical Coherence Tomography are described. And the recent development and progress of adaptive optics in the field of eye retina imaging are analyzed and summarized.

  7. In vitro imaging of ophthalmic tissue by digital interference holography

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Kay, Christine N.; Kim, Myung K.; Richards, David W.

    2010-01-01

    We used digital interference holography (DIH) for in vitro imaging of human optic nerve head and retina. Samples of peripheral retina, macula, and optic nerve head from two formaldehyde-preserved human eyes were dissected and mounted onto slides. Holograms were captured by a monochrome CCD camera (Sony XC-ST50, with 780 × 640 pixels and pixel size of ∼9 µm). Light source was a solid-state pumped dye laser with tunable wavelength range of 560-605 nm. Using about 50 wavelengths in this band, holograms were obtained and numerically reconstructed using custom software based on NI LabView. Tomographic images were produced by superposition of holograms. Holograms of all tissue samples were obtained with a signal-to-noise ratio of approximately 50 dB. Optic nerve head characteristics (shape, diameter, cup depth, and cup width) were quantified with a few micron resolution (4.06-4.8 µm). Multiple layers were distinguishable in cross-sectional images of the macula. To our knowledge, this is the first report of DIH use to image human macular and optic nerve tissue. DIH has the potential to become a useful tool for researchers and clinicians in the diagnosis and treatment of many ocular diseases, including glaucoma and a variety of macular diseases.

  8. Focus detection by shearing interference of vortex beams for non-imaging systems.

    PubMed

    Li, Xiongfeng; Zhan, Shichao; Liang, Yiyong

    2018-02-10

    In focus detection of non-imaging systems, the common image-based methods are not available. Also, interference techniques are seldom used because only the degree with hardly any direction of defocus can be derived from the fringe spacing. In this paper, we propose a vortex-beam-based shearing interference system to do focus detection for a focused laser direct-writing system, where a vortex beam is already involved. Both simulated and experimental results show that fork-like features are added in the interference patterns due to the existence of an optical vortex, which makes it possible to distinguish the degree and direction of defocus simultaneously. The theoretical fringe spacing and resolution of this method are derived. A resolution of 0.79 μm can be achieved under the experimental combination of parameters, and it can be further improved with the help of the image processing algorithm and closed-loop controlling in the future. Finally, the influence of incomplete collimation and the wedge angle of the shear plate is discussed. This focus detection approach is extremely appropriate for those non-imaging systems containing one or more focused vortex beams.

  9. Digital holography applications in ophthalmology, biometry, and optical trapping characterization

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana Camelia

    This dissertation combines various holographic techniques with application on the two- and three-dimensional imaging of ophthalmic tissue, fingerprints, and microsphere samples with micrometer resolution. Digital interference holography (DIH) uses scanned wavelengths to synthesize short-coherence interference tomographic images. We used DIH for in vitro imaging of human optic nerve head and retina. Tomographic images were produced by superposition of holograms. Holograms were obtained with a signal-to-noise ratio of approximately 50 dB. Optic nerve head characteristics (shape, diameter, cup depth, and cup width) were quantified with a few micron resolution (4.06--4.8mum). Multiple layers were distinguishable in cross-sectional images of the macula. To our knowledge, this is the first report of DIH use to image human macular and optic nerve tissue. Holographic phase microscopy is used to produce images of thin film patterns left by latent fingerprints. Two or more holographic phase images with different wavelengths are combined for optical phase unwrapping of images of patent prints. We demonstrated digital interference holography images of a plastic print, and latent prints. These demonstrations point to significant contributions to biometry by using digital interference holography to identify and quantify Level 1 (pattern), Level 2 (minutia points), and Level 3 (pores and ridge contours). Quantitative studies of physical and biological processes and precise non-contact manipulation of nanometer/micrometer trapped objects can be effectuated with nanometer accuracy due to the development of optical tweezers. A three-dimensional gradient trap is produced at the focus position of a high NA microscope objective. Particles are trapped axially and laterally due to the gradient force. The particle is confined in a potential well and the trap acts as a harmonic spring. The elastic constant or the stiffness along any axis is determined from the particle displacements in time along each specific axis. Thus, we report the sensing of small particles using optical trapping in combination with the digital Gabor holography to calibrate the optical force and the position and of the copolymer microsphere in the x, y, z direction with nm precision.

  10. Real-time micro-vibration multi-spot synchronous measurement within a region based on heterodyne interference

    NASA Astrophysics Data System (ADS)

    Lan, Ma; Xiao, Wen; Chen, Zonghui; Hao, Hongliang; Pan, Feng

    2018-01-01

    Real-time micro-vibration measurement is widely used in engineering applications. It is very difficult for traditional optical detection methods to achieve real-time need in a relatively high frequency and multi-spot synchronous measurement of a region at the same time,especially at the nanoscale. Based on the method of heterodyne interference, an experimental system of real-time measurement of micro - vibration is constructed to satisfy the demand in engineering applications. The vibration response signal is measured by combing optical heterodyne interferometry and a high-speed CMOS-DVR image acquisition system. Then, by extracting and processing multiple pixels at the same time, four digital demodulation technique are implemented to simultaneously acquire the vibrating velocity of the target from the recorded sequences of images. Different kinds of demodulation algorithms are analyzed and the results show that these four demodulation algorithms are suitable for different interference signals. Both autocorrelation algorithm and cross-correlation algorithm meet the needs of real-time measurements. The autocorrelation algorithm demodulates the frequency more accurately, while the cross-correlation algorithm is more accurate in solving the amplitude.

  11. Weak beacon detection for air-to-ground optical wireless link establishment.

    PubMed

    Han, Yaoqiang; Dang, Anhong; Tang, Junxiong; Guo, Hong

    2010-02-01

    In an air-to-ground free-space optical communication system, strong background interference seriously affects the beacon detection, which makes it difficult to establish the optical link. In this paper, we propose a correlation beacon detection scheme under strong background interference conditions. As opposed to traditional beacon detection schemes, the beacon is modulated by an m-sequence at the transmitting terminal with a digital differential matched filter (DDMF) array introduced at the receiving end to detect the modulated beacon. This scheme is capable of suppressing both strong interference and noise by correlation reception of the received image sequence. In addition, the DDMF array enables each pixel of the image sensor to have its own DDMF of the same structure to process its received image sequence in parallel, thus it makes fast beacon detection possible. Theoretical analysis and an outdoor experiment have been demonstrated and show that the proposed scheme can realize fast and effective beacon detection under strong background interference conditions. Consequently, the required beacon transmission power can also be reduced dramatically.

  12. Transfer and conversion of images based on EIT in atom vapor.

    PubMed

    Cao, Mingtao; Zhang, Liyun; Yu, Ya; Ye, Fengjuan; Wei, Dong; Guo, Wenge; Zhang, Shougang; Gao, Hong; Li, Fuli

    2014-05-01

    Transfer and conversion of images between different wavelengths or polarization has significant applications in optical communication and quantum information processing. We demonstrated the transfer of images based on electromagnetically induced transparency (EIT) in a rubidium vapor cell. In experiments, a 2D image generated by a spatial light modulator is used as a coupling field, and a plane wave served as a signal field. We found that the image carried by coupling field could be transferred to that carried by signal field, and the spatial patterns of transferred image are much better than that of the initial image. It also could be much smaller than that determined by the diffraction limit of the optical system. We also studied the subdiffraction propagation for the transferred image. Our results may have applications in quantum interference lithography and coherent Raman spectroscopy.

  13. Image formation of thick three-dimensional objects in differential-interference-contrast microscopy.

    PubMed

    Trattner, Sigal; Kashdan, Eugene; Feigin, Micha; Sochen, Nir

    2014-05-01

    The differential-interference-contrast (DIC) microscope is of widespread use in life sciences as it enables noninvasive visualization of transparent objects. The goal of this work is to model the image formation process of thick three-dimensional objects in DIC microscopy. The model is based on the principles of electromagnetic wave propagation and scattering. It simulates light propagation through the components of the DIC microscope to the image plane using a combined geometrical and physical optics approach and replicates the DIC image of the illuminated object. The model is evaluated by comparing simulated images of three-dimensional spherical objects with the recorded images of polystyrene microspheres. Our computer simulations confirm that the model captures the major DIC image characteristics of the simulated object, and it is sensitive to the defocusing effects.

  14. Discussion and a new method of optical cryptosystem based on interference

    NASA Astrophysics Data System (ADS)

    Lu, Dajiang; He, Wenqi; Liao, Meihua; Peng, Xiang

    2017-02-01

    A discussion and an objective security analysis of the well-known optical image encryption based on interference are presented in this paper. A new method is also proposed to eliminate the security risk of the original cryptosystem. For a possible practical application, we expand this new method into a hierarchical authentication scheme. In this authentication system, with a pre-generated and fixed random phase lock, different target images indicating different authentication levels are analytically encoded into corresponding phase-only masks (phase keys) and amplitude-only masks (amplitude keys). For the authentication process, a legal user can obtain a specified target image at the output plane if his/her phase key, and amplitude key, which should be settled close against the fixed internal phase lock, are respectively illuminated by two coherent beams. By comparing the target image with all the standard certification images in the database, the system can thus verify the user's legality even his/her identity level. Moreover, in despite of the internal phase lock of this system being fixed, the crosstalk between different pairs of keys held by different users is low. Theoretical analysis and numerical simulation are both provided to demonstrate the validity of this method.

  15. Ultrasonic power measurement system based on acousto-optic interaction.

    PubMed

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  16. Ultrasonic power measurement system based on acousto-optic interaction

    NASA Astrophysics Data System (ADS)

    He, Liping; Zhu, Fulong; Chen, Yanming; Duan, Ke; Lin, Xinxin; Pan, Yongjun; Tao, Jiaquan

    2016-05-01

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of optical devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.

  17. The usability of the optical parametric amplification of light for high-angular-resolution imaging and fast astrometry

    NASA Astrophysics Data System (ADS)

    Kurek, A. R.; Stachowski, A.; Banaszek, K.; Pollo, A.

    2018-05-01

    High-angular-resolution imaging is crucial for many applications in modern astronomy and astrophysics. The fundamental diffraction limit constrains the resolving power of both ground-based and spaceborne telescopes. The recent idea of a quantum telescope based on the optical parametric amplification (OPA) of light aims to bypass this limit for the imaging of extended sources by an order of magnitude or more. We present an updated scheme of an OPA-based device and a more accurate model of the signal amplification by such a device. The semiclassical model that we present predicts that the noise in such a system will form so-called light speckles as a result of light interference in the optical path. Based on this model, we analysed the efficiency of OPA in increasing the angular resolution of the imaging of extended targets and the precise localization of a distant point source. According to our new model, OPA offers a gain in resolved imaging in comparison to classical optics. For a given time-span, we found that OPA can be more efficient in localizing a single distant point source than classical telescopes.

  18. Multiple beam interference confocal microscopy: a tool for morphological investigation of living cells and tissues

    NASA Astrophysics Data System (ADS)

    Joshi, Narahari V.; Medina, Honorio

    2000-05-01

    Multiple beam interference system is used in conjunction with a conventional scanning confocal microscope to examine the morphology and construction of 3D images of Histolytic Ameba and parasite Candida Albicans. The present combination permits to adjoin advantages of both systems, namely the vertical high contrast and optical sectioning. The interference pattern obtained from a multiple internal reflection of a simple, sandwiched between the glass plate and the cover plate, was focussed on an objective of a scanning confocal microscope. According to optical path differences, morphological details were revealed. The combined features, namely improved resolution in z axis, originated from the interference pattern and the optical sectioning of the confocal scanning system, enhance the resolution and contrast dramatically. These features permitted to obtain unprecedented images of Histolytic Ameba and parasite Candida Albicans. Because of the improved contrast, several details like double wall structure of candida, internal structure of ameba are clearly visible.

  19. Nomarski differential interference contrast microscopy for surface slope measurements: an examination of techniques

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J.S.; Gordon, R.L.; Lessor, D.L.

    1981-08-01

    Alternate measurement and data analysis procedures are discussed and compared for the application of reflective Nomarski differential interference contrast microscopy for the determination of surface slopes. The discussion includes the interpretation of a previously reported iterative procedure using the results of a detailed optical model and the presentation of a new procedure based on measured image intensity extrema. Surface slope determinations from these procedures are presented and compared with results from a previously reported curve fit analysis of image intensity data. The accuracy and advantages of the different procedures are discussed.

  20. Fiber-optic polarization diversity detection for rotary probe optical coherence tomography.

    PubMed

    Lee, Anthony M D; Pahlevaninezhad, Hamid; Yang, Victor X D; Lam, Stephen; MacAulay, Calum; Lane, Pierre

    2014-06-15

    We report a polarization diversity detection scheme for optical coherence tomography with a new, custom, miniaturized fiber coupler with single mode (SM) fiber inputs and polarization maintaining (PM) fiber outputs. The SM fiber inputs obviate matching the optical lengths of the X and Y OCT polarization channels prior to interference and the PM fiber outputs ensure defined X and Y axes after interference. Advantages for this scheme include easier alignment, lower cost, and easier miniaturization compared to designs with free-space bulk optical components. We demonstrate the utility of the detection system to mitigate the effects of rapidly changing polarization states when imaging with rotating fiber optic probes in Intralipid suspension and during in vivo imaging of human airways.

  1. Computer-generated holograms and diffraction gratings in optical security applications

    NASA Astrophysics Data System (ADS)

    Stepien, Pawel J.

    2000-04-01

    The term 'computer generated hologram' (CGH) describes a diffractive structure strictly calculated and recorded to diffract light in a desired way. The CGH surface profile is a result of the wavefront calculation rather than of interference. CGHs are able to form 2D and 3D images. Optically, variable devices (OVDs) composed of diffractive gratings are often used in security applications. There are various types of optically and digitally recorded gratings in security applications. Grating based OVDs are used to record bright 2D images with limited range of cinematic effects. These effects result form various orientations or densities of recorded gratings. It is difficult to record high quality OVDs of 3D objects using gratings. Stereo grams and analogue rainbow holograms offer 3D imaging, but they are darker and have lower resolution than grating OVDs. CGH based OVDs contains unlimited range of cinematic effects and high quality 3D images. Images recorded using CGHs are usually more noisy than grating based OVDs, because of numerical inaccuracies in CGH calculation and mastering. CGH based OVDs enable smooth integration of hidden and machine- readable features within an OVD design.

  2. Statistical analysis of polarization interference images of biological fluids polycrystalline films in the tasks of optical anisotropy weak changes differentiation

    NASA Astrophysics Data System (ADS)

    Ushenko, Yu. O.; Dubolazov, O. V.; Ushenko, V. O.; Zhytaryuk, V. G.; Prydiy, O. G.; Pavlyukovich, N.; Pavlyukovich, O.

    2018-01-01

    In this paper, we present the results of a statistical analysis of polarization-interference images of optically thin histological sections of biological tissues and polycrystalline films of biological fluids of human organs. A new analytical parameter is introduced-the local contrast of the interference pattern in the plane of a polarizationinhomogeneous microscopic image of a biological preparation. The coordinate distributions of the given parameter and the sets of statistical moments of the first-fourth order that characterize these distributions are determined. On this basis, the differentiation of degenerative-dystrophic changes in the myocardium and the polycrystalline structure of the synovial fluid of the human knee with different pathologies is realized.

  3. High-speed polarization sensitive optical coherence tomography for retinal diagnostics

    NASA Astrophysics Data System (ADS)

    Yin, Biwei; Wang, Bingqing; Vemishetty, Kalyanramu; Nagle, Jim; Liu, Shuang; Wang, Tianyi; Rylander, Henry G., III; Milner, Thomas E.

    2012-01-01

    We report design and construction of an FPGA-based high-speed swept-source polarization-sensitive optical coherence tomography (SS-PS-OCT) system for clinical retinal imaging. Clinical application of the SS-PS-OCT system is accurate measurement and display of thickness, phase retardation and birefringence maps of the retinal nerve fiber layer (RNFL) in human subjects for early detection of glaucoma. The FPGA-based SS-PS-OCT system provides three incident polarization states on the eye and uses a bulk-optic polarization sensitive balanced detection module to record two orthogonal interference fringe signals. Interference fringe signals and relative phase retardation between two orthogonal polarization states are used to obtain Stokes vectors of light returning from each RNFL depth. We implement a Levenberg-Marquardt algorithm on a Field Programmable Gate Array (FPGA) to compute accurate phase retardation and birefringence maps. For each retinal scan, a three-state Levenberg-Marquardt nonlinear algorithm is applied to 360 clusters each consisting of 100 A-scans to determine accurate maps of phase retardation and birefringence in less than 1 second after patient measurement allowing real-time clinical imaging-a speedup of more than 300 times over previous implementations. We report application of the FPGA-based SS-PS-OCT system for real-time clinical imaging of patients enrolled in a clinical study at the Eye Institute of Austin and Duke Eye Center.

  4. Full-field optical coherence tomography image restoration based on Hilbert transformation

    NASA Astrophysics Data System (ADS)

    Na, Jihoon; Choi, Woo June; Choi, Eun Seo; Ryu, Seon Young; Lee, Byeong Ha

    2007-02-01

    We propose the envelope detection method that is based on Hilbert transform for image restoration in full-filed optical coherence tomography (FF-OCT). The FF-OCT system presenting a high-axial resolution of 0.9 μm was implemented with a Kohler illuminator based on Linnik interferometer configuration. A 250 W customized quartz tungsten halogen lamp was used as a broadband light source and a CCD camera was used as a 2-dimentional detector array. The proposed image restoration method for FF-OCT requires only single phase-shifting. By using both the original and the phase-shifted images, we could remove the offset and the background signals from the interference fringe images. The desired coherent envelope image was obtained by applying Hilbert transform. With the proposed image restoration method, we demonstrate en-face imaging performance of the implemented FF-OCT system by presenting a tilted mirror surface, an integrated circuit chip, and a piece of onion epithelium.

  5. Multi-Probe SPM using Interference Patterns for a Parallel Nano Imaging

    NASA Astrophysics Data System (ADS)

    Koyama, Hirotaka; Oohira, Fumikazu; Hosogi, Maho; Hashiguchi, Gen

    This paper proposes a new composition of the multi-probe using optical interference patterns for a parallel nano imaging in a large area scanning. We achieved large-scale integration with 50,000 probes fabricated with MEMS technology, and measured the optical interference patterns with CCD, which was difficult in a conventional single scanning probe. In this research, the multi-probes are made of Si3N4 by MEMS process, and, the multi-probes are joined with a Pyrex glass by an anodic bonding. We designed, fabricated, and evaluated the characteristics of the probe. In addition, we changed the probe shape to decrease the warpage of the Si3N4 probe. We used the supercritical drying to avoid stiction of the Si3N4 probe with the glass surface and fabricated 4 types of the probe shapes without stiction. We took some interference patterns by CCD and measured the position of them. We calculate the probe height using the interference displacement and compared the result with the theoretical deflection curve. As a result, these interference patterns matched the theoretical deflection curve. We found that this multi-probe chip using interference patterns is effective in measurement for a parallel nano imaging.

  6. Inkjet printing of TiO2/AlOOH heterostructures for the formation of interference color images with high optical visibility

    PubMed Central

    Yakovlev, Aleksandr V.; Milichko, Valentin A.; Pidko, Evgeny A.; Vinogradov, Vladimir V.; Vinogradov, Alexandr V.

    2016-01-01

    This paper describes a practical approach for the fabrication of highly visible interference color images using sol-gel ink technique and a common desktop inkjet printer. We show the potential of titania-boehmite inks for the production of optical heterostructures on various surfaces, which after drying on air produce optical solid layers with low and high refractive index. The optical properties of the surface heterostructures were adjusted following the principles of antireflection coating resulting in the enhancement of the interference color optical visibility of the prints by as much as 32%. Finally, the presented technique was optimized following the insights into the mechanisms of the drop-surface interactions and the drop-on-surface coalescence to make it suitable for the production of even thickness coatings suitable for printing at a large scale. We propose that the technology described herein is a promising new green and sustainable approach for color printing. PMID:27848979

  7. On the influence of lipid-induced optical anisotropy for the bioimaging of exo- or endocytosis with interference microscopic imaging.

    PubMed

    Marques, D; Miranda, A; Silva, A G; Munro, P R T; DE Beule, P A A

    2018-05-01

    Some implementations of interference microscopy imaging use digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index maps of weakly scattering, semi-transparent objects, frequently encountered in biological investigations. Reconstruction occurs through application of the object scattering potential which assumes an isotropic refractive index throughout the object. Here, we demonstrate that this assumption can in some circumstances be invalid for biological imaging due to the presence of lipid-induced optical anisotropy. We show that the nanoscale organization of lipids in the observation of cellular endocytosis with polarized light induces a significant change in far-field scattering. We obtain this result by presenting a general solution to Maxwell's equations describing light scattering of core-shell particles near an isotropic substrate covered with an anisotropic thin film. This solution is based on an extension of the Bobbert-Vlieger solution for particle scattering near a substrate delivering an exact solution to the scattering problem in the near field as well as far field. By applying this solution to study light scattering by a lipid vesicle near a lipid bilayer, whereby the lipids are represented through a biaxial optical model, we conclude through ellipsometry concepts that effective amounts of lipid-induced optical anisotropy significantly alter far-field optical scattering in respect to an equivalent optical model that neglects the presence of optical anisotropy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  8. Analysis of Tyman green detection system based on polarization interference

    NASA Astrophysics Data System (ADS)

    Huang, Yaolin; Wang, Min; Shao, Xiaoping; Kou, Yuanfeng

    2018-02-01

    The optical surface deviation of the lens can directly affect the quality of the optical system.In order to effectively and accurately detect the surface shape, an optical surface on-line detection system based on polarization interference technology is designed and developed. The system is based on Tyman-Green interference optical path, join the polarization interference measuring technology. Based on the theoretical derivation of the optical path and the ZEMAX software simulation, the experimental optical path is constructed. The parallel light is used to detect the concave lens. The parallel light is used as the light source, the size of the polarization splitting prism, detection radius of curvature, the relations between and among the size of the lens aperture, a detection range is given.

  9. Diffraction-limited real-time terahertz imaging by optical frequency up-conversion in a DAST crystal.

    PubMed

    Fan, Shuzhen; Qi, Feng; Notake, Takashi; Nawata, Kouji; Takida, Yuma; Matsukawa, Takeshi; Minamide, Hiroaki

    2015-03-23

    Real-time terahertz (THz) wave imaging has wide applications in areas such as security, industry, biology, medicine, pharmacy, and the arts. This report describes real-time room-temperature THz imaging by nonlinear optical frequency up-conversion in an organic 4-dimethylamino-N'-methyl-4'-stilbazolium tosylate (DAST) crystal, with high resolution reaching the diffraction limit. THz-wave images were converted to the near infrared region and then captured using an InGaAs camera in a tandem imaging system. The resolution of the imaging system was analyzed. Diffraction and interference of THz wave were observed in the experiments. Videos are supplied to show the interference pattern variation that occurs with sample moving and tilting.

  10. Acquiring 3-D information about thick objects from differential interference contrast images using texture extraction

    NASA Astrophysics Data System (ADS)

    Sierra, Heidy; Brooks, Dana; Dimarzio, Charles

    2010-07-01

    The extraction of 3-D morphological information about thick objects is explored in this work. We extract this information from 3-D differential interference contrast (DIC) images by applying a texture detection method. Texture extraction methods have been successfully used in different applications to study biological samples. A 3-D texture image is obtained by applying a local entropy-based texture extraction method. The use of this method to detect regions of blastocyst mouse embryos that are used in assisted reproduction techniques such as in vitro fertilization is presented as an example. Results demonstrate the potential of using texture detection methods to improve morphological analysis of thick samples, which is relevant to many biomedical and biological studies. Fluorescence and optical quadrature microscope phase images are used for validation.

  11. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    NASA Astrophysics Data System (ADS)

    Jünger, Felix; Olshausen, Philipp V.; Rohrbach, Alexander

    2016-07-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes.

  12. Fast, label-free super-resolution live-cell imaging using rotating coherent scattering (ROCS) microscopy

    PubMed Central

    Jünger, Felix; Olshausen, Philipp v.; Rohrbach, Alexander

    2016-01-01

    Living cells are highly dynamic systems with cellular structures being often below the optical resolution limit. Super-resolution microscopes, usually based on fluorescence cell labelling, are usually too slow to resolve small, dynamic structures. We present a label-free microscopy technique, which can generate thousands of super-resolved, high contrast images at a frame rate of 100 Hertz and without any post-processing. The technique is based on oblique sample illumination with coherent light, an approach believed to be not applicable in life sciences because of too many interference artefacts. However, by circulating an incident laser beam by 360° during one image acquisition, relevant image information is amplified. By combining total internal reflection illumination with dark-field detection, structures as small as 150 nm become separable through local destructive interferences. The technique images local changes in refractive index through scattered laser light and is applied to living mouse macrophages and helical bacteria revealing unexpected dynamic processes. PMID:27465033

  13. Accurate cell counts in live mouse embryos using optical quadrature and differential interference contrast microscopy

    NASA Astrophysics Data System (ADS)

    Warger, William C., II; Newmark, Judith A.; Zhao, Bing; Warner, Carol M.; DiMarzio, Charles A.

    2006-02-01

    Present imaging techniques used in in vitro fertilization (IVF) clinics are unable to produce accurate cell counts in developing embryos past the eight-cell stage. We have developed a method that has produced accurate cell counts in live mouse embryos ranging from 13-25 cells by combining Differential Interference Contrast (DIC) and Optical Quadrature Microscopy. Optical Quadrature Microscopy is an interferometric imaging modality that measures the amplitude and phase of the signal beam that travels through the embryo. The phase is transformed into an image of optical path length difference, which is used to determine the maximum optical path length deviation of a single cell. DIC microscopy gives distinct cell boundaries for cells within the focal plane when other cells do not lie in the path to the objective. Fitting an ellipse to the boundary of a single cell in the DIC image and combining it with the maximum optical path length deviation of a single cell creates an ellipsoidal model cell of optical path length deviation. Subtracting the model cell from the Optical Quadrature image will either show the optical path length deviation of the culture medium or reveal another cell underneath. Once all the boundaries are used in the DIC image, the subtracted Optical Quadrature image is analyzed to determine the cell boundaries of the remaining cells. The final cell count is produced when no more cells can be subtracted. We have produced exact cell counts on 5 samples, which have been validated by Epi-Fluorescence images of Hoechst stained nuclei.

  14. Fizeau simultaneous phase-shifting interferometry based on extended source

    NASA Astrophysics Data System (ADS)

    Wang, Shanshan; Zhu, Qiudong; Hou, Yinlong; Cao, Zheng

    2016-09-01

    Coaxial Fizeau simultaneous phase-shifting interferometer plays an important role in many fields for its characteristics of long optical path, miniaturization, and elimination of reference surface high-frequency error. Based on the matching of coherence between extended source and interferometer, orthogonal polarization reference wave and measurement wave can be obtained by Fizeau interferometry with Michelson interferometer preposed. Through matching spatial coherence length between preposed interferometer and primary interferometer, high contrast interference fringes can be obtained and additional interference fringes can be eliminated. Thus, the problem of separation of measurement and reference surface in the common optical path Fizeau interferometer is solved. Numerical simulation and principle experiment is conducted to verify the feasibility of extended source interferometer. Simulation platform is established by using the communication technique of DDE (dynamic data exchange) to connect Zemax and Matlab. The modeling of the extended source interferometer is realized by using Zemax. Matlab codes are programmed to automatically rectify the field parameters of the optical system and conveniently calculate the visibility of interference fringes. Combined with the simulation, the experimental platform of the extended source interferometer is established. After experimental research on the influence law of scattering screen granularity to interference fringes, the granularity of scattering screen is determined. Based on the simulation platform and experimental platform, the impacts on phase measurement accuracy of the imaging system aberration and collimation system aberration of the interferometer are analyzed. Compared the visibility relation curves between experimental measurement and simulation result, the experimental result is in line with the theoretical result.

  15. 2ND International Workshop on Adaptive Optics for Industry and Medicine.

    DTIC Science & Technology

    2000-02-08

    The spots are well-separated, and there are only very weak interference peaks between adjacent spots, so identification of the spots is easy and...for transmission through an interference filter, a polarizing filter, the SLM, and a 12 mm diameter aperture to mask the active area in the SLM. A... interfere greatly with the visibility of the primary image. However, as the SLM power increases so does the contrast of the secondary images and

  16. Uniformly thinned optical fibers produced via HF etching with spectral and microscopic verification.

    PubMed

    Bal, Harpreet K; Brodzeli, Zourab; Dragomir, Nicoleta M; Collins, Stephen F; Sidiroglou, Fotios

    2012-05-01

    A method for producing uniformly thinned (etched) optical fibers is described, which can also be employed to etch optical fibers containing a Bragg grating (FBG) uniformly for evanescent-field-based sensing and other applications. Through a simple modification of this method, the fabrication of phase-shifted FBGs based on uneven etching is also shown. The critical role of how a fiber is secured is shown, and the success of the method is illustrated, by differential interference contrast microscopy images of uniformly etched FBGs. An etched FBG sensor for the monitoring of the refractive index of different glycerin solutions is demonstrated.

  17. Quantitative orientation-independent differential interference contrast (DIC) microscopy

    NASA Astrophysics Data System (ADS)

    Shribak, Michael; LaFountain, James; Biggs, David; Inoué, Shinya

    2007-02-01

    We describe a new DIC technique, which records phase gradients within microscopic specimens independently of their orientation. The proposed system allows the generation of images representing the distribution of dry mass (optical path difference) in the specimen. Unlike in other forms of interference microscopes, this approach does not require a narrow illuminating cone. The orientation-independent differential interference contrast (OI-DIC) system can also be combined with orientation-independent polarization (OI-Pol) measurements to yield two complementary images: one showing dry mass distribution (which is proportional to refractive index) and the other showing distribution of birefringence (due to structural or internal anisotropy). With a model specimen used for this work -- living spermatocytes from the crane fly, Nephrotoma suturalis --- the OI-DIC image clearly reveals the detailed shape of the chromosomes while the polarization image quantitatively depicts the distribution of the birefringent microtubules in the spindle, both without any need for staining or other modifications of the cell. We present examples of a pseudo-color combined image incorporating both orientation-independent DIC and polarization images of a spermatocyte at diakinesis and metaphase of meiosis I. Those images provide clear evidence that the proposed technique can reveal fine architecture and molecular organization in live cells without perturbation associated with staining or fluorescent labeling. The phase image was obtained using optics having a numerical aperture 1.4, thus achieving a level of resolution never before achieved with any interference microscope.

  18. Method and apparatus for removing unwanted reflections from an interferometer

    NASA Technical Reports Server (NTRS)

    Steimle, Lawrence J. (Inventor); Thiessen, David L. (Inventor)

    1994-01-01

    A device for eliminating unwanted reflections from refractive optical elements in an optical system is provided. The device operates to prevent desired multiple fringe patterns from being obscured by reflections from refractive elements positioned in proximity to a focal plane of the system. The problem occurs when an optical beam is projected into, and reflected back out of, the optical system. Surfaces of the refractive elements reflect portions of the beam which interfere with portions of the beam which are transmitted through the refractive elements. Interference between the reflected and transmitted portions of the beam produce multiple fringe sets which tend to obscure desired interference fringes. With the refractive optical element in close proximity to the focal plane of the system, the undesired reflected light reflects at an angle 180 degrees opposite from the desired transmitted beam. The device exploits the 180-degree offset, or rotational shear, of the undesired reflected light by providing an optical stop for blocking one-half of the cross-section of the test beam. By blocking one-half of the test beam, the undesired offset beam is blocked, while the returning transmitted beam passes into the optical system unaffected. An image is thereby produced from only the desired transmitted beam. In one configuration, the blocking device includes a semicircular aperture which is caused to rotate about the axis of the test beam. By rotating, all portions of the test beam are cyclically projected into the optical system to thereby produce a complete test image. The rotating optical stop is preferably caused to rotate rapidly to eliminate flicker in the resulting image.

  19. Pixel level optical-transfer-function design based on the surface-wave-interferometry aperture

    PubMed Central

    Zheng, Guoan; Wang, Yingmin; Yang, Changhuei

    2010-01-01

    The design of optical transfer function (OTF) is of significant importance for optical information processing in various imaging and vision systems. Typically, OTF design relies on sophisticated bulk optical arrangement in the light path of the optical systems. In this letter, we demonstrate a surface-wave-interferometry aperture (SWIA) that can be directly incorporated onto optical sensors to accomplish OTF design on the pixel level. The whole aperture design is based on the bull’s eye structure. It composes of a central hole (diameter of 300 nm) and periodic groove (period of 560 nm) on a 340 nm thick gold layer. We show, with both simulation and experiment, that different types of optical transfer functions (notch, highpass and lowpass filter) can be achieved by manipulating the interference between the direct transmission of the central hole and the surface wave (SW) component induced from the periodic groove. Pixel level OTF design provides a low-cost, ultra robust, highly compact method for numerous applications such as optofluidic microscopy, wavefront detection, darkfield imaging, and computational photography. PMID:20721038

  20. A 4-channel coil array interconnection by analog direct modulation optical link for 1.5-T MRI.

    PubMed

    Yuan, Jing; Wei, Juan; Shen, Gary X

    2008-10-01

    Optical glass fiber shows great advantages over coaxial cables in terms of electromagnetic interference, thus, it should be considered a potential alternative for magnetic resonance imaging (MRI) receive coil interconnection, especially for a large number coil array at high field. In this paper, we propose a 4-channel analog direct modulation optical link for a 1.5-T MRI coil array interconnection. First, a general direct modulated optical link is compared to an external modulated optical link. And then the link performances of the proposed direct modulated optical link, including power gain, frequency response, and dynamic range, are analyzed and measured. Phantom and in vivo head images obtained using this optical link are demonstrated for comparison with those obtained by cable connections. The signal-to-noise (SNR) analysis shows that the optical link achieves 6%-8% SNR a improvement over coaxial cables by elimination of electrical interference between cables during MR signal transmission.

  1. Mapping optical path length and image enhancement using quantitative orientation-independent differential interference contrast microscopy

    PubMed Central

    Shribak, Michael; Larkin, Kieran G.; Biggs, David

    2017-01-01

    Abstract. We describe the principles of using orientation-independent differential interference contrast (OI-DIC) microscopy for mapping optical path length (OPL). Computation of the scalar two-dimensional OPL map is based on an experimentally received map of the OPL gradient vector field. Two methods of contrast enhancement for the OPL image, which reveal hardly visible structures and organelles, are presented. The results obtained can be used for reconstruction of a volume image. We have confirmed that a standard research grade light microscope equipped with the OI-DIC and 100×/1.3 NA objective lens, which was not specially selected for minimum wavefront and polarization aberrations, provides OPL noise level of ∼0.5  nm and lateral resolution if ∼300  nm at a wavelength of 546 nm. The new technology is the next step in the development of the DIC microscopy. It can replace standard DIC prisms on existing commercial microscope systems without modification. This will allow biological researchers that already have microscopy setups to expand the performance of their systems. PMID:28060991

  2. Transportable and vibration-free full-field low-coherent quantitative phase microscope

    NASA Astrophysics Data System (ADS)

    Yamauchi, Toyohiko; Yamada, Hidenao; Goto, Kentaro; Matsui, Hisayuki; Yasuhiko, Osamu; Ueda, Yukio

    2018-02-01

    We developed a transportable Linnik-type full-field low-coherent quantitative phase microscope that is able to compensate for optical path length (OPL) disturbance due to environmental mechanical noises. Though two-beam interferometers such as Linnik ones suffer from unstable OPL difference, we overcame this problem with a mechanical feedback system based on digital signal-processing that controls the OPL difference in sub-nanometer resolution precisely with a feedback bandwidth of 4 kHz. The developed setup has a footprint of 200 mm by 200 mm, a height of 500 mm, and a weight of 4.5 kilograms. In the transmission imaging mode, cells were cultured on a reflection-enhanced glass-bottom dish, and we obtained interference images sequentially while performing stepwise quarter-wavelength phase-shifting. Real-time image processing, including retrieval of the unwrapped phase from interference images and its background correction, along with the acquisition of interference images, was performed on a laptop computer. Emulation of the phase contrast (PhC) images and the differential interference contrast (DIC) images was also performed in real time. Moreover, our setup was applied for full-field cell membrane imaging in the reflection mode, where the cells were cultured on an anti-reflection (AR)-coated glass-bottom dish. The phase and intensity of the light reflected by the membrane revealed the outer shape of the cells independent of the refractive index. In this paper, we show imaging results on cultured cells in both transmission and reflection modes.

  3. The optical design of a far infrared imaging FTS for SPICA

    NASA Astrophysics Data System (ADS)

    Pastor, Carmen; Zuluaga, Pablo; Jellema, Willem; González Fernández, Luis Miguel; Belenguer, Tomas; Torres Redondo, Josefina; Kooijman, Peter Paul; Najarro, Francisco; Eggens, Martin; Roelfsema, Peter; Nakagawa, Takao

    2014-08-01

    This paper describes the optical design of the far infrared imaging spectrometer for the JAXA's SPICA mission. The SAFARI instrument, is a cryogenic imaging Fourier transform spectrometer (iFTS), designed to perform backgroundlimited spectroscopic and photometric imaging in the band 34-210 μm. The all-reflective optical system is highly modular and consists of three main modules; input optics module, interferometer module (FTS) and camera bay optics. A special study has been dedicated to the spectroscopic performance of the instrument, in which the spectral response and interference of the instrument have been modeled, as the FTS mechanism scans over the total desired OPD range.

  4. Performance comparison of optical interference cancellation system architectures.

    PubMed

    Lu, Maddie; Chang, Matt; Deng, Yanhua; Prucnal, Paul R

    2013-04-10

    The performance of three optics-based interference cancellation systems are compared and contrasted with each other, and with traditional electronic techniques for interference cancellation. The comparison is based on a set of common performance metrics that we have developed for this purpose. It is shown that thorough evaluation of our optical approaches takes into account the traditional notions of depth of cancellation and dynamic range, along with notions of link loss and uniformity of cancellation. Our evaluation shows that our use of optical components affords performance that surpasses traditional electronic approaches, and that the optimal choice for an optical interference canceller requires taking into account the performance metrics discussed in this paper.

  5. Visual stimulus presentation using fiber optics in the MRI scanner.

    PubMed

    Huang, Ruey-Song; Sereno, Martin I

    2008-03-30

    Imaging the neural basis of visuomotor actions using fMRI is a topic of increasing interest in the field of cognitive neuroscience. One challenge is to present realistic three-dimensional (3-D) stimuli in the subject's peripersonal space inside the MRI scanner. The stimulus generating apparatus must be compatible with strong magnetic fields and must not interfere with image acquisition. Virtual 3-D stimuli can be generated with a stereo image pair projected onto screens or via binocular goggles. Here, we describe designs and implementations for automatically presenting physical 3-D stimuli (point-light targets) in peripersonal and near-face space using fiber optics in the MRI scanner. The feasibility of fiber-optic based displays was demonstrated in two experiments. The first presented a point-light array along a slanted surface near the body, and the second presented multiple point-light targets around the face. Stimuli were presented using phase-encoded paradigms in both experiments. The results suggest that fiber-optic based displays can be a complementary approach for visual stimulus presentation in the MRI scanner.

  6. Applied Optics Golden Anniversary commemorative reviews: introduction.

    PubMed

    Mait, Joseph N; Mendez, Eugenio; Peyghambarian, Nasser; Poon, T-C

    2013-01-01

    Applied Optics presents three special issues to end its retrospective of Applied Optics' 50 years. The special issues are interference, interferometry, and phase; imaging, optical processing, and telecommunications; and polarization and scattering. The issues, which contain 19 commemorative reviews from some of the journal's luminaries, are summarized.

  7. Wavelength Scanning with a Tilting Interference Filter for Glow-Discharge Elemental Imaging.

    PubMed

    Storey, Andrew P; Ray, Steven J; Hoffmann, Volker; Voronov, Maxim; Engelhard, Carsten; Buscher, Wolfgang; Hieftje, Gary M

    2017-06-01

    Glow discharges have long been used for depth profiling and bulk analysis of solid samples. In addition, over the past decade, several methods of obtaining lateral surface elemental distributions have been introduced, each with its own strengths and weaknesses. Challenges for each of these techniques are acceptable optical throughput and added instrumental complexity. Here, these problems are addressed with a tilting-filter instrument. A pulsed glow discharge is coupled to an optical system comprising an adjustable-angle tilting filter, collimating and imaging lenses, and a gated, intensified charge-coupled device (CCD) camera, which together provide surface elemental mapping of solid samples. The tilting-filter spectrometer is instrumentally simpler, produces less image distortion, and achieves higher optical throughput than a monochromator-based instrument, but has a much more limited tunable spectral range and poorer spectral resolution. As a result, the tilting-filter spectrometer is limited to single-element or two-element determinations, and only when the target spectral lines fall within an appropriate spectral range and can be spectrally discerned. Spectral interferences that result from heterogeneous impurities can be flagged and overcome by observing the spatially resolved signal response across the available tunable spectral range. The instrument has been characterized and evaluated for the spatially resolved analysis of glow-discharge emission from selected but representative samples.

  8. Imaging patients with glaucoma using spectral-domain optical coherence tomography and optical microangiography

    NASA Astrophysics Data System (ADS)

    Auyeung, Kris; Auyeung, Kelsey; Kono, Rei; Chen, Chieh-Li; Zhang, Qinqin; Wang, Ruikang K.

    2015-03-01

    In ophthalmology, a reliable means of diagnosing glaucoma in its early stages is still an open issue. Past efforts, including forays into fluorescent angiography (FA) and early optical coherence tomography (OCT) systems, to develop a potential biomarker for the disease have been explored. However, this development has been hindered by the inability of the current techniques to provide useful depth and microvasculature information of the optic nerve head (ONH), which have been debated as possible hallmarks of glaucoma progression. We reasoned that a system incorporating a spectral-domain OCT (SD-OCT) based Optical Microangiography (OMAG) system, could allow an effective, non-invasive methodology to evaluate effects on microvasculature by glaucoma. SD-OCT follows the principle of light reflection and interference to produce detailed cross-sectional and 3D images of the eye. OMAG produces imaging contrasts via endogenous light scattering from moving particles, allowing for 3D image productions of dynamic blood perfusion at capillary-level resolution. The purpose of this study was to investigate the optic cup perfusion (flow) differences in glaucomatous and normal eyes. Images from three normal and five glaucomatous subjects were analyzed our OCT based OMAG system for blood perfusion and structural images, allowing for comparisons. Preliminary results from blood flow analysis revealed reduced blood perfusion within the whole-depth region encompassing the Lamina Cribrosa in glaucomatous cases as compared to normal ones. We conclude that our OCT-OMAG system may provide promise and viability for glaucoma screening.

  9. Chip-based wide field-of-view nanoscopy

    NASA Astrophysics Data System (ADS)

    Diekmann, Robin; Helle, Øystein I.; Øie, Cristina I.; McCourt, Peter; Huser, Thomas R.; Schüttpelz, Mark; Ahluwalia, Balpreet S.

    2017-04-01

    Present optical nanoscopy techniques use a complex microscope for imaging and a simple glass slide to hold the sample. Here, we demonstrate the inverse: the use of a complex, but mass-producible optical chip, which hosts the sample and provides a waveguide for the illumination source, and a standard low-cost microscope to acquire super-resolved images via two different approaches. Waveguides composed of a material with high refractive-index contrast provide a strong evanescent field that is used for single-molecule switching and fluorescence excitation, thus enabling chip-based single-molecule localization microscopy. Additionally, multimode interference patterns induce spatial fluorescence intensity variations that enable fluctuation-based super-resolution imaging. As chip-based nanoscopy separates the illumination and detection light paths, total-internal-reflection fluorescence excitation is possible over a large field of view, with up to 0.5 mm × 0.5 mm being demonstrated. Using multicolour chip-based nanoscopy, we visualize fenestrations in liver sinusoidal endothelial cells.

  10. White-light optical vortex coronagraph

    NASA Astrophysics Data System (ADS)

    Kanburapa, Prachyathit

    An optical vortex is characterized by a dark core of destructive interference in a light beam. One of the methods commonly employed to create an optical vortex is by using a computer-generated hologram. A vortex hologram pattern is computed from the interference pattern between a reference plane wave and a vortex wave, resulting in a forked grating pattern. In astronomy, an optical vortex coronagraph is one of the most promising high contrast imaging techniques for the direct imaging of extra-solar planets. Direct imaging of extra-solar planets is a challenging task since the brightness of the parent star is extremely high compared to its orbiting planets. The on-axis light from the parent star gets diffracted in the coronagraph, forming a "ring of fire" pattern, whereas the slightly off-axis light from the planet remains intact. Lyot stop can then be used to block the ring of fire pattern, thus allowing only the planetary light to get through to the imaging camera. Contrast enhancements of 106 or more are possible, provided the vortex lens (spiral phase plate) has exceptional optical quality. By using a vortex hologram with a 4 microm pitch, and an f/300 focusing lens, we were able to demonstrate the creation of a "ring of fire" using a white light emitting diode as a source. A dispersion compensating linear diffraction grating of 4 microm pitch was used to bring the rings together to form a single white light ring of fire. To our knowledge, this is the first time a vortex hologram based OVC has been demonstrated, resulting in a well-formed white light ring of fire. Experimental results show measured power contrast of 1/515 when HeNe laser source was used as a light source and 1/77 when using a white light emitting diode.

  11. Optical biosensors.

    PubMed

    Damborský, Pavel; Švitel, Juraj; Katrlík, Jaroslav

    2016-06-30

    Optical biosensors represent the most common type of biosensor. Here we provide a brief classification, a description of underlying principles of operation and their bioanalytical applications. The main focus is placed on the most widely used optical biosensors which are surface plasmon resonance (SPR)-based biosensors including SPR imaging and localized SPR. In addition, other optical biosensor systems are described, such as evanescent wave fluorescence and bioluminescent optical fibre biosensors, as well as interferometric, ellipsometric and reflectometric interference spectroscopy and surface-enhanced Raman scattering biosensors. The optical biosensors discussed here allow the sensitive and selective detection of a wide range of analytes including viruses, toxins, drugs, antibodies, tumour biomarkers and tumour cells. © 2016 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  12. Coherent noise reduction in digital holographic microscopy by averaging multiple holograms recorded with a multimode laser.

    PubMed

    Pan, Feng; Yang, Lizhi; Xiao, Wen

    2017-09-04

    In digital holographic microscopy (DHM), it is undesirable to observe coherent noise in the reconstructed images. The sources of the noise are mainly the parasitic interference fringes caused by multiple reflections and the speckle pattern caused by the optical scattering on the object surface. Here we propose a noise reduction approach in DHM by averaging multiple holograms recorded with a multimode laser. Based on the periodicity of the temporal coherence of a multimode semiconductor laser, we acquire a series of holograms by changing the optical path length difference between the reference beam and object beam. Because of the use of low coherence light, we can remove the parasitic interference fringes caused by multiple reflections in the holograms. In addition, the coherent noise patterns change in this process due to the different optical paths. Therefore, the coherent noise can be reduced by averaging the multiple reconstructions with uncorrelated noise patterns. Several experiments have been carried out to validate the effectiveness of the proposed approach for coherent noise reduction in DHM. It is shown a remarkable improvement both in amplitude imaging quality and phase measurement accuracy.

  13. Ship detection in optical remote sensing images based on deep convolutional neural networks

    NASA Astrophysics Data System (ADS)

    Yao, Yuan; Jiang, Zhiguo; Zhang, Haopeng; Zhao, Danpei; Cai, Bowen

    2017-10-01

    Automatic ship detection in optical remote sensing images has attracted wide attention for its broad applications. Major challenges for this task include the interference of cloud, wave, wake, and the high computational expenses. We propose a fast and robust ship detection algorithm to solve these issues. The framework for ship detection is designed based on deep convolutional neural networks (CNNs), which provide the accurate locations of ship targets in an efficient way. First, the deep CNN is designed to extract features. Then, a region proposal network (RPN) is applied to discriminate ship targets and regress the detection bounding boxes, in which the anchors are designed by intrinsic shape of ship targets. Experimental results on numerous panchromatic images demonstrate that, in comparison with other state-of-the-art ship detection methods, our method is more efficient and achieves higher detection accuracy and more precise bounding boxes in different complex backgrounds.

  14. Achromatic shearing phase sensor for generating images indicative of measure(s) of alignment between segments of a segmented telescope's mirrors

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip (Inventor); Walker, Chanda Bartlett (Inventor)

    2006-01-01

    An achromatic shearing phase sensor generates an image indicative of at least one measure of alignment between two segments of a segmented telescope's mirrors. An optical grating receives at least a portion of irradiance originating at the segmented telescope in the form of a collimated beam and the collimated beam into a plurality of diffraction orders. Focusing optics separate and focus the diffraction orders. Filtering optics then filter the diffraction orders to generate a resultant set of diffraction orders that are modified. Imaging optics combine portions of the resultant set of diffraction orders to generate an interference pattern that is ultimately imaged by an imager.

  15. Modified Lagrange invariants and their role in determining transverse and axial imaging resolutions of self-interference incoherent holographic systems.

    PubMed

    Rosen, Joseph; Kelner, Roy

    2014-11-17

    The Lagrange invariant is a well-known law for optical imaging systems formulated in the frame of ray optics. In this study, we reformulate this law in terms of wave optics and relate it to the resolution limits of various imaging systems. Furthermore, this modified Lagrange invariant is generalized for imaging along the z axis, resulting with the axial Lagrange invariant which can be used to analyze the axial resolution of various imaging systems. To demonstrate the effectiveness of the theory, analysis of the lateral and the axial imaging resolutions is provided for Fresnel incoherent correlation holography (FINCH) systems.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    He, Liping; Zhu, Fulong, E-mail: zhufulong@hust.edu.cn; Duan, Ke

    Ultrasonic waves are widely used, with applications including the medical, military, and chemical fields. However, there are currently no effective methods for ultrasonic power measurement. Previously, ultrasonic power measurement has been reliant on mechanical methods such as hydrophones and radiation force balances. This paper deals with ultrasonic power measurement based on an unconventional method: acousto-optic interaction. Compared with mechanical methods, the optical method has a greater ability to resist interference and also has reduced environmental requirements. Therefore, this paper begins with an experimental determination of the acoustic power in water contained in a glass tank using a set of opticalmore » devices. Because the light intensity of the diffraction image generated by acousto-optic interaction contains the required ultrasonic power information, specific software was written to extract the light intensity information from the image through a combination of filtering, binarization, contour extraction, and other image processing operations. The power value can then be obtained rapidly by processing the diffraction image using a computer. The results of this work show that the optical method offers advantages that include accuracy, speed, and a noncontact measurement method.« less

  17. High bandwidth all-optical 3×3 switch based on multimode interference structures

    NASA Astrophysics Data System (ADS)

    Le, Duy-Tien; Truong, Cao-Dung; Le, Trung-Thanh

    2017-03-01

    A high bandwidth all-optical 3×3 switch based on general interference multimode interference (GI-MMI) structure is proposed in this study. Two 3×3 multimode interference couplers are cascaded to realize an all-optical switch operating at both wavelengths of 1550 nm and 1310 nm. Two nonlinear directional couplers at two outer-arms of the structure are used as all-optical phase shifters to achieve all switching states and to control the switching states. Analytical expressions for switching operation using the transfer matrix method are presented. The beam propagation method (BPM) is used to design and optimize the whole structure. The optimal design of the all-optical phase shifters and 3×3 MMI couplers are carried out to reduce the switching power and loss.

  18. Control and near-field detection of surface plasmon interference patterns.

    PubMed

    Dvořák, Petr; Neuman, Tomáš; Břínek, Lukáš; Šamořil, Tomáš; Kalousek, Radek; Dub, Petr; Varga, Peter; Šikola, Tomáš

    2013-06-12

    The tailoring of electromagnetic near-field properties is the central task in the field of nanophotonics. In addition to 2D optics for optical nanocircuits, confined and enhanced electric fields are utilized in detection and sensing, photovoltaics, spatially localized spectroscopy (nanoimaging), as well as in nanolithography and nanomanipulation. For practical purposes, it is necessary to develop easy-to-use methods for controlling the electromagnetic near-field distribution. By imaging optical near-fields using a scanning near-field optical microscope, we demonstrate that surface plasmon polaritons propagating from slits along the metal-dielectric interface form tunable interference patterns. We present a simple way how to control the resulting interference patterns both by variation of the angle between two slits and, for a fixed slit geometry, by a proper combination of laser beam polarization and inhomogeneous far-field illumination of the structure. Thus the modulation period of interference patterns has become adjustable and new variable patterns consisting of stripelike and dotlike motifs have been achieved, respectively.

  19. Live cell refractometry based on non-SPR microparticle sensor.

    PubMed

    Liu, Chang; Chen, David D Y; Yu, Lirong; Luo, Yong

    2013-06-01

    Unlike the nanoparticles with surface plasmon resonance, the optical response of polystyrene microparticles (PSMPs) is insensitive to the chemical components of the surrounding medium under the wavelength-dependent differential interference contrast microscopy. This fact is exploited for the measurement of the refractive index of cytoplasm in this study. PSMPs of 400 nm in diameter were loaded into the cell to contact cytoplasm seamlessly, and the refractive index information of cytoplasm could be extracted by differential interference contrast microscopy operated at 420 nm illumination wavelength through the contrast analysis of PSMPs images. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Optical transmission testing based on asynchronous sampling techniques

    NASA Astrophysics Data System (ADS)

    Mrozek, T.; Perlicki, K.; Wilczewski, G.

    2016-09-01

    This paper presents a method of analysis of images obtained with the Asynchronous Delay Tap Sampling technique, which is used for simultaneous monitoring of a number of phenomena in the physical layer of an optical network. This method allows visualization of results in a form of an optical signal's waveform (characteristics depicting phase portraits). Depending on a specific phenomenon being observed (i.e.: chromatic dispersion, polarization mode dispersion and ASE noise), the shape of the waveform changes. Herein presented original waveforms were acquired utilizing the OptSim 4.0 simulation package. After specific simulation testing, the obtained numerical data was transformed into an image form, that was further subjected to the analysis using authors' custom algorithms. These algorithms utilize various pixel operations and creation of reports each image might be characterized with. Each individual report shows the number of black pixels being present in the specific image segment. Afterwards, generated reports are compared with each other, across the original-impaired relationship. The differential report is created which consists of a "binary key" that shows the increase in the number of pixels in each particular segment. The ultimate aim of this work is to find the correlation between the generated binary keys and the analyzed common phenomenon being observed, allowing identification of the type of interference occurring. In the further course of the work it is evitable to determine their respective values. The presented work delivers the first objective - the ability to recognize interference.

  1. 3D Display Using Conjugated Multiband Bandpass Filters

    NASA Technical Reports Server (NTRS)

    Bae, Youngsam; White, Victor E.; Shcheglov, Kirill

    2012-01-01

    Stereoscopic display techniques are based on the principle of displaying two views, with a slightly different perspective, in such a way that the left eye views only by the left eye, and the right eye views only by the right eye. However, one of the major challenges in optical devices is crosstalk between the two channels. Crosstalk is due to the optical devices not completely blocking the wrong-side image, so the left eye sees a little bit of the right image and the right eye sees a little bit of the left image. This results in eyestrain and headaches. A pair of interference filters worn as an optical device can solve the problem. The device consists of a pair of multiband bandpass filters that are conjugated. The term "conjugated" describes the passband regions of one filter not overlapping with those of the other, but the regions are interdigitated. Along with the glasses, a 3D display produces colors composed of primary colors (basis for producing colors) having the spectral bands the same as the passbands of the filters. More specifically, the primary colors producing one viewpoint will be made up of the passbands of one filter, and those of the other viewpoint will be made up of the passbands of the conjugated filter. Thus, the primary colors of one filter would be seen by the eye that has the matching multiband filter. The inherent characteristic of the interference filter will allow little or no transmission of the wrong side of the stereoscopic images.

  2. [Research on Spectral Polarization Imaging System Based on Static Modulation].

    PubMed

    Zhao, Hai-bo; Li, Huan; Lin, Xu-ling; Wang, Zheng

    2015-04-01

    The main disadvantages of traditional spectral polarization imaging system are: complex structure, with moving parts, low throughput. A novel method of spectral polarization imaging system is discussed, which is based on static polarization intensity modulation combined with Savart polariscope interference imaging. The imaging system can obtain real-time information of spectral and four Stokes polarization messages. Compared with the conventional methods, the advantages of the imaging system are compactness, low mass and no moving parts, no electrical control, no slit and big throughput. The system structure and the basic theory are introduced. The experimental system is established in the laboratory. The experimental system consists of reimaging optics, polarization intensity module, interference imaging module, and CCD data collecting and processing module. The spectral range is visible and near-infrared (480-950 nm). The white board and the plane toy are imaged by using the experimental system. The ability of obtaining spectral polarization imaging information is verified. The calibration system of static polarization modulation is set up. The statistical error of polarization degree detection is less than 5%. The validity and feasibility of the basic principle is proved by the experimental result. The spectral polarization data captured by the system can be applied to object identification, object classification and remote sensing detection.

  3. Doppler imaging with dual-detection full-range frequency domain optical coherence tomography

    PubMed Central

    Meemon, Panomsak; Lee, Kye-Sung; Rolland, Jannick P.

    2010-01-01

    Most of full-range techniques for Frequency Domain Optical Coherence Tomography (FD-OCT) reported to date utilize the phase relation between consecutive axial lines to reconstruct a complex interference signal and hence may exhibit degradation in either mirror image suppression performance or detectable velocity dynamic range or both when monitoring a moving sample such as flow activity. We have previously reported a technique of mirror image removal by simultaneous detection of the quadrature components of a complex spectral interference called a Dual-Detection Frequency Domain OCT (DD-FD-OCT) [Opt. Lett. 35, 1058-1060 (2010)]. The technique enables full range imaging without any loss of acquisition speed and is intrinsically less sensitive to phase errors generated by involuntary movements of the subject. In this paper, we demonstrate the application of the DD-FD-OCT to a phase-resolved Doppler imaging without degradation in either mirror image suppression performance or detectable velocity dynamic range that were observed in other full-range Doppler methods. In order to accommodate for Doppler imaging, we have developed a fiber-based DD-FD-OCT that more efficiently utilizes the source power compared with the previous free-space DD-FD-OCT. In addition, the velocity sensitivity of the phase-resolved DD-FD-OCT was investigated, and the relation between the measured Doppler phase shift and set flow velocity of a flow phantom was verified. Finally, we demonstrate the Doppler imaging using the DD-FD-OCT in a biological sample. PMID:21258488

  4. Self-interference fluorescence microscopy with three-phase detection for depth-resolved confocal epi-fluorescence imaging.

    PubMed

    Braaf, Boy; de Boer, Johannes F

    2017-03-20

    Three-dimensional confocal fluorescence imaging of in vivo tissues is challenging due to sample motion and limited imaging speeds. In this paper a novel method is therefore presented for scanning confocal epi-fluorescence microscopy with instantaneous depth-sensing based on self-interference fluorescence microscopy (SIFM). A tabletop epi-fluorescence SIFM setup was constructed with an annular phase plate in the emission path to create a spectral self-interference signal that is phase-dependent on the axial position of a fluorescent sample. A Mach-Zehnder interferometer based on a 3 × 3 fiber-coupler was developed for a sensitive phase analysis of the SIFM signal with three photon-counter detectors instead of a spectrometer. The Mach-Zehnder interferometer created three intensity signals that alternately oscillated as a function of the SIFM spectral phase and therefore encoded directly for the axial sample position. Controlled axial translation of fluorescent microsphere layers showed a linear dependence of the SIFM spectral phase with sample depth over axial image ranges of 500 µm and 80 µm (3.9 × Rayleigh range) for 4 × and 10 × microscope objectives respectively. In addition, SIFM was in good agreement with optical coherence tomography depth measurements on a sample with indocyanine green dye filled capillaries placed at multiple depths. High-resolution SIFM imaging applications are demonstrated for fluorescence angiography on a dye-filled capillary blood vessel phantom and for autofluorescence imaging on an ex vivo fly eye.

  5. A short-range optical wireless transmission method based on LED

    NASA Astrophysics Data System (ADS)

    Miao, Meiyuan; Chen, Ailin; Zhu, Mingxing; Li, Ping; Gao, Yingming; Zou, Nianyu

    2016-10-01

    As to electromagnetic wave interfere and only one to one transmission problem of Bluetooth, a short-range LED optical wireless transmission method is proposed to be complementary technology in this paper. Furthermore achieved image transmission through this method. The system makes C52 to be the mater controller, transmitter got data from terminals by USB and sends modulated signals with LED. Optical signal is detected by PD, through amplified, filtered with shaping wave from, and demodulated on receiver. Then send to terminals like PC and reverted back to original image. Analysis the performance from peak power and average power, power consumption of transmitter, relationship of bit error rate and modulation mode, and influence of ambient light, respectively. The results shows that image can be received accurately which uses this method. The most distant transmission distance can get to 1m with transmitter LED source of 1w, and the transfer rate is 14.4Kbit/s with OOK modulation mode on stabilization system, the ambient light effect little to LED transmission system in normal light environment. The method is a convenient to carry LED wireless short range transmission for mobile transmission equipment as a supplement of Bluetooth short-range transmission for its ISM band interfere, and the analysis method in this paper can be a reference for other similar systems. It also proves the system is feasibility for next study.

  6. Visibility-Based Hypothesis Testing Using Higher-Order Optical Interference

    NASA Astrophysics Data System (ADS)

    Jachura, Michał; Jarzyna, Marcin; Lipka, Michał; Wasilewski, Wojciech; Banaszek, Konrad

    2018-03-01

    Many quantum information protocols rely on optical interference to compare data sets with efficiency or security unattainable by classical means. Standard implementations exploit first-order coherence between signals whose preparation requires a shared phase reference. Here, we analyze and experimentally demonstrate the binary discrimination of visibility hypotheses based on higher-order interference for optical signals with a random relative phase. This provides a robust protocol implementation primitive when a phase lock is unavailable or impractical. With the primitive cost quantified by the total detected optical energy, optimal operation is typically reached in the few-photon regime.

  7. Implementation of random contact hole design with CPL mask by using IML technology

    NASA Astrophysics Data System (ADS)

    Hsu, Michael; Van Den Broeke, Doug; Hsu, Stephen; Chen, J. Fung; Shi, Xuelong; Corcoran, Noel; Yu, Linda

    2005-11-01

    The contact hole imaging is a very challenge task for the optical lithography process during IC manufacturing. Lots of RETs were proposed to improve the contrast of small opening hole. Scattering Bar (SB) OPC, together with optimized illumination, is no doubt one of the critical enablers for low k1 contact imaging. In this study, an effective model-based SB OPC based on IML technology is implemented for contact layer at 90nm, 65nm, and 45nm nodes. For our full-chip implementation flow, the first step is to determine the critical design area and then to proceed with NA and illumination optimization. Then, we selected the best NA in combination with optimum illumination via a Diffraction Optical Element (DOE). With optimized illumination, it is now possible to construct an interference map for the full-chip mask pattern. Utilizing the interference map, the model-based SB OPC is performed. Next, model OPC can be applied with the presence of SB for the entire chip. It is important to note that, for patterning at k1 near 0.35 or below, it may be necessary to include 3D mask effects with a high NA OPC model. With enhanced DOF by IML and immersion process, the low k1 production worthy contact process is feasible.

  8. Birefringence imaging in biological tissue using polarization sensitive optical coherent tomography

    DOEpatents

    De Boer, Johannes F.; Milner, Thomas E.; Nelson, J. Stuart

    2001-01-01

    Employing a low coherence Michelson interferometer, two dimensional images of optical birefringence in turbid samples as a function of depth are measured. Polarization sensitive detection of the signal formed by interference of backscattered light from the sample and a mirror or reference plane in the reference arm which defines a reference optical path length, give the optical phase delay between light propagating along the fast and slow axes of the birefringence sample. Images showing the change in birefringence in response to irradiation of the sample are produced as an example of the detection apparatus and methodology. The technique allow rapid, noncontact investigation of tissue or sample diagnostic imaging for various medical or materials procedures.

  9. [Research of dual-photoelastic-modulator-based beat frequency modulation and Fourier-Bessel transform imaging spectrometer].

    PubMed

    Wang, Zhi-Bin; Zhang, Rui; Wang, Yao-Li; Huang, Yan-Fei; Chen, You-Hua; Wang, Li-Fu; Yang, Qiang

    2014-02-01

    As the existing photoelastic-modulator(PEM) modulating frequency in the tens of kHz to hundreds of kHz between, leading to frequency of modulated interference signal is higher, so ordinary array detector cannot effectively caprure interference signal..A new beat frequency modulation method based on dual-photoelastic-modulator (Dual-PEM) and Fourier-Bessel transform is proposed as an key component of dual-photoelastic-modulator-based imaging spectrometer (Dual-PEM-IS) combined with charge coupled device (CCD). The dual-PEM are operated as an electro-optic circular retardance modulator, Operating the PEMs at slightly different resonant frequencies w1 and w2 respectively, generates a differential signal at a much lower heterodyne frequency that modulates the incident light. This method not only retains the advantages of the existing PEM, but also the frequency of modulated photocurrent decreased by 2-3 orders of magnitude (10-500 Hz) and can be detected by common array detector, and the incident light spectra can be obtained by Fourier-Bessel transform of low frequency component in the modulated signal. The method makes the PEM has the dual capability of imaging and spectral measurement. The basic principle is introduced, the basic equations is derived, and the feasibility is verified through the corresponding numerical simulation and experiment. This method has' potential applications in imaging spectrometer technology, and analysis of the effect of deviation of the optical path difference. This work provides the necessary theoretical basis for remote sensing of new Dual-PEM-IS and for engineering implementation of spectra inversion.

  10. STEM/EELS Imaging of Magnetic Hybridization in Symmetric and Symmetry-Broken Plasmon Oligomer Dimers and All-Magnetic Fano Interference

    DOE PAGES

    Cherqui, Charles; Wu, Yueying; Li, Guoliang; ...

    2016-09-27

    Negative-index metamaterials composed of magnetic plasmon oligomers are actively being investigated for their potential role in optical cloaking, superlensing, and nanolithography applications. A significant improvement to their practicality lies in the ability to function at multiple distinct wavelengths in the visible part of spectrum. Here we utilize the nanometer spatial-resolving power of electron energy-loss spectroscopy to conclusively demonstrate hybridization of magnetic plasmons in oligomer dimers that can achieve this goal. We also show that breaking the dimer’s symmetry can induce all-magnetic Fano interferences based solely on the interplay of bright and dark magnetic modes, allowing us to further tailor themore » system’s optical responses. These features are engineered through the design of the oligomer’s underlying nanoparticle elements as elongated Ag nanodisks with spectrally isolated long-axis plasmon resonances. The resulting magnetic plasmon oligomers and their hybridized assemblies establish a new design paradigm for optical metamaterials with rich functionality.« less

  11. Full color natural light holographic camera.

    PubMed

    Kim, Myung K

    2013-04-22

    Full-color, three-dimensional images of objects under incoherent illumination are obtained by a digital holography technique. Based on self-interference of two beam-split copies of the object's optical field with differential curvatures, the apparatus consists of a beam-splitter, a few mirrors and lenses, a piezo-actuator, and a color camera. No lasers or other special illuminations are used for recording or reconstruction. Color holographic images of daylight-illuminated outdoor scenes and a halogen lamp-illuminated toy figure are obtained. From a recorded hologram, images can be calculated, or numerically focused, at any distances for viewing.

  12. Acousto-optical tunable filter for combined wideband, spectral, and optical coherence microscopy.

    PubMed

    Machikhin, Alexander S; Pozhar, Vitold E; Viskovatykh, Alexander V; Burmak, Ludmila I

    2015-09-01

    A multimodal technique for inspection of microscopic objects by means of wideband optical microscopy, spectral microscopy, and optical coherence microscopy is described, implemented, and tested. The key feature is the spectral selection of light in the output arm of an interferometer with use of the specialized imaging acousto-optical tunable filter. In this filter, two interfering optical beams are diffracted via the same ultrasound wave without destruction of interference image structure. The basic requirements for the acousto-optical tunable filter are defined, and mathematical formulas for calculation of its parameters are derived. Theoretical estimation of the achievable accuracy of the 3D image reconstruction is presented and experimental proofs are given. It is demonstrated that spectral imaging can also be accompanied by measurement of the quantitative reflectance spectra. Examples of inspection of optically transparent and nontransparent samples demonstrate the applicability of the technique.

  13. Experiment research on inertia-aided adaptive electronic image stabilization of optical stable platform

    NASA Astrophysics Data System (ADS)

    Lu, Xiaodong; Wu, Tianze; Zhou, Jun; Zhao, Bin; Ma, Xiaoyuan; Tang, Xiucheng

    2016-03-01

    An electronic image stabilization method compounded with inertia information, which can compensate the coupling interference caused by the pitch-yaw movement of the optical stable platform system, has been proposed in this paper. Firstly the mechanisms of coning rotation and lever-arm translation of line of sight (LOS) are analyzed during the stabilization process under moving carriers, and the mathematical model which describes the relationship between LOS rotation angle and platform attitude angle are derived. Then the image spin angle caused by coning rotation is estimated by using inertia information. Furthermore, an adaptive block matching method, which based on image edge and angular point, is proposed to smooth the jitter created by the lever-arm translation. This method optimizes the matching process and strategies. Finally, the results of hardware-in-the-loop simulation verified the effectiveness and real-time performance of the proposed method.

  14. Analysis of task-evoked systemic interference in fNIRS measurements: insights from fMRI.

    PubMed

    Erdoğan, Sinem B; Yücel, Meryem A; Akın, Ata

    2014-02-15

    Functional near infrared spectroscopy (fNIRS) is a promising method for monitoring cerebral hemodynamics with a wide range of clinical applications. fNIRS signals are contaminated with systemic physiological interferences from both the brain and superficial tissues, resulting in a poor estimation of the task related neuronal activation. In this study, we use the anatomical resolution of functional magnetic resonance imaging (fMRI) to extract scalp and brain vascular signals separately and construct an optically weighted spatial average of the fMRI blood oxygen level-dependent (BOLD) signal for characterizing the scalp signal contribution to fNIRS measurements. We introduce an extended superficial signal regression (ESSR) method for canceling physiology-based systemic interference where the effects of cerebral and superficial systemic interference are treated separately. We apply and validate our method on the optically weighted BOLD signals, which are obtained by projecting the fMRI image onto optical measurement space by use of the optical forward problem. The performance of ESSR method in removing physiological artifacts is compared to i) a global signal regression (GSR) method and ii) a superficial signal regression (SSR) method. The retrieved signals from each method are compared with the neural signals that represent the 'ground truth' brain activation cleaned from cerebral systemic fluctuations. We report significant improvements in the recovery of task induced neural activation with the ESSR method when compared to the other two methods as reflected in the Pearson R(2) coefficient and mean square error (MSE) metrics (two tailed paired t-tests, p<0.05). The signal quality is enhanced most when ESSR method is applied with higher spatial localization, lower inter-trial variability, a clear canonical waveform and higher contrast-to-noise (CNR) improvement (60%). Our findings suggest that, during a cognitive task i) superficial scalp signal contribution to fNIRS signals varies significantly among different regions on the forehead and ii) using an average scalp measurement together with a local measure of superficial hemodynamics better accounts for the systemic interference inherent in the brain as well as superficial scalp tissue. We conclude that maximizing the overlap between the optical pathlength of superficial and deeper penetration measurements is of crucial importance for accurate recovery of the evoked hemodynamic response in fNIRS recordings. © 2013 Elsevier Inc. All rights reserved.

  15. Electrochemical imaging of cells and tissues

    PubMed Central

    Lin, Tzu-En; Rapino, Stefania; Girault, Hubert H.

    2018-01-01

    The technological and experimental progress in electrochemical imaging of biological specimens is discussed with a view on potential applications for skin cancer diagnostics, reproductive medicine and microbial testing. The electrochemical analysis of single cell activity inside cell cultures, 3D cellular aggregates and microtissues is based on the selective detection of electroactive species involved in biological functions. Electrochemical imaging strategies, based on nano/micrometric probes scanning over the sample and sensor array chips, respectively, can be made sensitive and selective without being affected by optical interference as many other microscopy techniques. The recent developments in microfabrication, electronics and cell culturing/tissue engineering have evolved in affordable and fast-sampling electrochemical imaging platforms. We believe that the topics discussed herein demonstrate the applicability of electrochemical imaging devices in many areas related to cellular functions. PMID:29899947

  16. Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics.

    PubMed

    Amos, W B; Reichelt, S; Cattermole, D M; Laufer, J

    2003-05-01

    In this paper, differential phase imaging (DPC) with transmitted light is implemented by adding a suitable detection system to a standard commercially available scanning confocal microscope. DPC, a long-established method in scanning optical microscopy, depends on detecting the intensity difference between opposite halves or quadrants of a split photodiode detector placed in an aperture plane. Here, DPC is compared with scanned differential interference contrast (DIC) using a variety of biological specimens and objective lenses of high numerical aperture. While DPC and DIC images are generally similar, DPC seems to have a greater depth of field. DPC has several advantages over DIC. These include low cost (no polarizing or strain-free optics are required), absence of a double scanning spot, electronically variable direction of shading and the ability to image specimens in plastic dishes where birefringence prevents the use of DIC. DPC is also here found to need 20 times less laser power at the specimen than DIC.

  17. The design of the CMOS wireless bar code scanner applying optical system based on ZigBee

    NASA Astrophysics Data System (ADS)

    Chen, Yuelin; Peng, Jian

    2008-03-01

    The traditional bar code scanner is influenced by the length of data line, but the farthest distance of the wireless bar code scanner of wireless communication is generally between 30m and 100m on the market. By rebuilding the traditional CCD optical bar code scanner, a CMOS code scanner is designed based on the ZigBee to meet the demands of market. The scan system consists of the CMOS image sensor and embedded chip S3C2401X, when the two dimensional bar code is read, the results show the inaccurate and wrong code bar, resulted from image defile, disturber, reads image condition badness, signal interference, unstable system voltage. So we put forward the method which uses the matrix evaluation and Read-Solomon arithmetic to solve them. In order to construct the whole wireless optics of bar code system and to ensure its ability of transmitting bar code image signals digitally with long distances, ZigBee is used to transmit data to the base station, and this module is designed based on image acquisition system, and at last the wireless transmitting/receiving CC2430 module circuit linking chart is established. And by transplanting the embedded RTOS system LINUX to the MCU, an applying wireless CMOS optics bar code scanner and multi-task system is constructed. Finally, performance of communication is tested by evaluation software Smart RF. In broad space, every ZIGBEE node can realize 50m transmission with high reliability. When adding more ZigBee nodes, the transmission distance can be several thousands of meters long.

  18. Examples of Current and Future Uses of Neural-Net Image Processing for Aerospace Applications

    NASA Technical Reports Server (NTRS)

    Decker, Arthur J.

    2004-01-01

    Feed forward artificial neural networks are very convenient for performing correlated interpolation of pairs of complex noisy data sets as well as detecting small changes in image data. Image-to-image, image-to-variable and image-to-index applications have been tested at Glenn. Early demonstration applications are summarized including image-directed alignment of optics, tomography, flow-visualization control of wind-tunnel operations and structural-model-trained neural networks. A practical application is reviewed that employs neural-net detection of structural damage from interference fringe patterns. Both sensor-based and optics-only calibration procedures are available for this technique. These accomplishments have generated the knowledge necessary to suggest some other applications for NASA and Government programs. A tomography application is discussed to support Glenn's Icing Research tomography effort. The self-regularizing capability of a neural net is shown to predict the expected performance of the tomography geometry and to augment fast data processing. Other potential applications involve the quantum technologies. It may be possible to use a neural net as an image-to-image controller of an optical tweezers being used for diagnostics of isolated nano structures. The image-to-image transformation properties also offer the potential for simulating quantum computing. Computer resources are detailed for implementing the black box calibration features of the neural nets.

  19. Holographic fabrication of 3D photonic crystals through interference of multi-beams with 4 + 1, 5 + 1 and 6 + 1 configurations.

    PubMed

    George, D; Lutkenhaus, J; Lowell, D; Moazzezi, M; Adewole, M; Philipose, U; Zhang, H; Poole, Z L; Chen, K P; Lin, Y

    2014-09-22

    In this paper, we are able to fabricate 3D photonic crystals or quasi-crystals through single beam and single optical element based holographic lithography. The reflective optical elements are used to generate multiple side beams with s-polarization and one central beam with circular polarization which in turn are used for interference based holographic lithography without the need of any other bulk optics. These optical elements have been used to fabricate 3D photonic crystals with 4, 5 or 6-fold symmetry. A good agreement has been observed between fabricated holographic structures and simulated interference patterns.

  20. Cell Membrane Tracking in Living Brain Tissue Using Differential Interference Contrast Microscopy.

    PubMed

    Lee, John; Kolb, Ilya; Forest, Craig R; Rozell, Christopher J

    2018-04-01

    Differential interference contrast (DIC) microscopy is widely used for observing unstained biological samples that are otherwise optically transparent. Combining this optical technique with machine vision could enable the automation of many life science experiments; however, identifying relevant features under DIC is challenging. In particular, precise tracking of cell boundaries in a thick ( ) slice of tissue has not previously been accomplished. We present a novel deconvolution algorithm that achieves the state-of-the-art performance at identifying and tracking these membrane locations. Our proposed algorithm is formulated as a regularized least squares optimization that incorporates a filtering mechanism to handle organic tissue interference and a robust edge-sparsity regularizer that integrates dynamic edge tracking capabilities. As a secondary contribution, this paper also describes new community infrastructure in the form of a MATLAB toolbox for accurately simulating DIC microscopy images of in vitro brain slices. Building on existing DIC optics modeling, our simulation framework additionally contributes an accurate representation of interference from organic tissue, neuronal cell-shapes, and tissue motion due to the action of the pipette. This simulator allows us to better understand the image statistics (to improve algorithms), as well as quantitatively test cell segmentation and tracking algorithms in scenarios, where ground truth data is fully known.

  1. Measurement technique for in situ characterizing aberrations of projection optics in lithographic tools.

    PubMed

    Wang, Fan; Wang, Xiangzhao; Ma, Mingying

    2006-08-20

    As the feature size decreases, degradation of image quality caused by wavefront aberrations of projection optics in lithographic tools has become a serious problem in the low-k1 process. We propose a novel measurement technique for in situ characterizing aberrations of projection optics in lithographic tools. Considering the impact of the partial coherence illumination, we introduce a novel algorithm that accurately describes the pattern displacement and focus shift induced by aberrations. Employing the algorithm, the measurement condition is extended from three-beam interference to two-, three-, and hybrid-beam interferences. The experiments are performed to measure the aberrations of projection optics in an ArF scanner.

  2. [Optic mixing of colours in Seurat's painting].

    PubMed

    Cernea, Paul

    2002-01-01

    Georges Seurat is the initiator and master of the divisionism. He founds the neoimpressionism current that tries to reproduce the nature exclusively through coloured vibration. Seurat applies the colours in small touches uniformly distributed on the canvas; the colours merge if they are looked by a certain distance, through optical interference. When the spectator approaches from the picture, the special frequency decreases, the optical merging does not appear and the onlooker looks a lot of coloured spots. When the spectator moves away from the picture, the optical interference appears and the clarity of the image becomes perfectly. This current opened the way of the future's modern painting performed by Cézanne, Renoir, Van Gogh.

  3. Three-dimensional displacement measurement of image point by point-diffraction interferometry

    NASA Astrophysics Data System (ADS)

    He, Xiao; Chen, Lingfeng; Meng, Xiaojie; Yu, Lei

    2018-01-01

    This paper presents a method for measuring the three-dimensional (3-D) displacement of an image point based on point-diffraction interferometry. An object Point-light-source (PLS) interferes with a fixed PLS and its interferograms are captured by an exit pupil. When the image point of the object PLS is slightly shifted to a new position, the wavefront of the image PLS changes. And its interferograms also change. Processing these figures (captured before and after the movement), the wavefront difference of the image PLS can be obtained and it contains the information of three-dimensional (3-D) displacement of the image PLS. However, the information of its three-dimensional (3-D) displacement cannot be calculated until the distance between the image PLS and the exit pupil is calibrated. Therefore, we use a plane-parallel-plate with a known refractive index and thickness to determine this distance, which is based on the Snell's law for small angle of incidence. Thus, since the distance between the exit pupil and the image PLS is a known quantity, the 3-D displacement of the image PLS can be simultaneously calculated through two interference measurements. Preliminary experimental results indicate that its relative error is below 0.3%. With the ability to accurately locate an image point (whatever it is real or virtual), a fiber point-light-source can act as the reticle by itself in optical measurement.

  4. All-optical universal logic gates on nonlinear multimode interference coupler using tunable input intensity

    NASA Astrophysics Data System (ADS)

    Tajaldini, Mehdi; Jafri, Mohd Zubir Mat

    2015-04-01

    The theory of Nonlinear Modal Propagation Analysis Method (NMPA) have shown significant features of nonlinear multimode interference (MMI) coupler with compact dimension and when launched near the threshold of nonlinearity. Moreover, NMPA have the potential to allow studying the nonlinear MMI based the modal interference to explorer the phenomenon that what happen due to the natural of multimode region. Proposal of all-optical switch based NMPA has approved its capability to achieving the all-optical gates. All-optical gates have attracted increasing attention due to their practical utility in all-optical signal processing networks and systems. Nonlinear multimode interference devices could apply as universal all-optical gates due to significant features that NMPA introduce them. In this Paper, we present a novel Ultra-compact MMI coupler based on NMPA method in low intensity compared to last reports either as a novel design method and potential application for optical NAND, NOR as universal gates on single structure for Boolean logic signal processing devices and optimize their application via studding the contrast ratio between ON and OFF as a function of output width. We have applied NMPA for several applications so that the miniaturization in low nonlinear intensities is their main purpose.

  5. Nanoscale cellular imaging with scanning angle interference microscopy.

    PubMed

    DuFort, Christopher; Paszek, Matthew

    2014-01-01

    Fluorescence microscopy is among the most widely utilized tools in cell and molecular biology due to its ability to noninvasively obtain time-resolved images of live cells with molecule-specific contrast. In this chapter, we describe a simple high-resolution technique, scanning angle interference microscopy (SAIM), for the imaging and localization of fluorescent molecules with nanometer precision along the optical axis. In SAIM, samples above a reflective surface are sequentially scanned with an excitation laser at varying angles of incidence. Interference patterns generated between the incident and reflected lights result in an emission intensity that depends on the height of a fluorophore above the silicon surface and the angle of the incident radiation. The measured fluorescence intensities are then fit to an optical model to localize the labeled molecules along the z-axis with 5-10 nm precision and diffraction-limited lateral resolution. SAIM is easily implemented on widely available commercial total internal reflection fluorescence microscopes, offering potential for widespread use in cell biology. Here, we describe the setup of SAIM and its application for imaging cellular structures near (<1 μm) the sample substrate. © 2014 Elsevier Inc. All rights reserved.

  6. Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis.

    PubMed

    Herrera-Piad, Luis A; Haus, Joseph W; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M; Estudillo-Ayala, Julian M; Lopez-Dieguez, Yanelis; Rojas-Laguna, Roberto

    2017-10-20

    A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material.

  7. Magnetic Field Sensing Based on Bi-Tapered Optical Fibers Using Spectral Phase Analysis

    PubMed Central

    Herrera-Piad, Luis A.; Jauregui-Vazquez, Daniel; Sierra-Hernandez, Juan M.; Lopez-Dieguez, Yanelis

    2017-01-01

    A compact, magnetic field sensor system based on a short, bi-tapered optical fiber (BTOF) span lying on a magnetic tape was designed, fabricated, and characterized. We monitored the transmission spectrum from a broadband light source, which displayed a strong interference signal. After data collection, we applied a phase analysis of the interference optical spectrum. We here report the results on two fabricated, BTOFs with different interference spectrum characteristics; we analyzed the signal based on the interference between a high-order modal component and the core fiber mode. The sensor exhibited a linear response for magnetic field increments, and we achieved a phase sensitivity of around 0.28 rad/mT. The sensing setup presented remote sensing operation and low-cost transducer magnetic material. PMID:29053570

  8. Optically Remote Noncontact Heart Rates Sensing Technique

    NASA Astrophysics Data System (ADS)

    Thongkongoum, W.; Boonduang, S.; Limsuwan, P.

    2017-09-01

    Heart rate monitoring via optically remote noncontact technique was reported in this research. A green laser (5 mW, 532±10 nm) was projected onto the left carotid artery. The reflected laser light on the screen carried the deviation of the interference patterns. The interference patterns were recorded by the digital camera. The recorded videos of the interference patterns were frame by frame analysed by 2 standard digital image processing (DIP) techniques, block matching (BM) and optical flow (OF) techniques. The region of interest (ROI) pixels within the interference patterns were analysed for periodically changes of the interference patterns due to the heart pumping action. Both results of BM and OF techniques were compared with the reference medical heart rate monitoring device by which a contact measurement using pulse transit technique. The results obtained from BM technique was 74.67 bpm (beats per minute) and OF technique was 75.95 bpm. Those results when compared with the reference value of 75.43±1 bpm, the errors were found to be 1.01% and 0.69%, respectively.

  9. Automated interference tools of the All-Russian Research Institute for Optical and Physical Measurements

    NASA Astrophysics Data System (ADS)

    Vishnyakov, G. N.; Levin, G. G.; Minaev, V. L.

    2017-09-01

    A review of advanced equipment for automated interference measurements developed at the All-Russian Research Institute for Optical and Physical Measurements is given. Three types of interference microscopes based on the Linnik, Twyman-Green, and Fizeau interferometers with the use of the phase stepping method are presented.

  10. Ultrafast Microscopy of Spin-Momentum-Locked Surface Plasmon Polaritons.

    PubMed

    Dai, Yanan; Dąbrowski, Maciej; Apkarian, Vartkess A; Petek, Hrvoje

    2018-06-26

    Using two-photon photoemission electron microscopy (2P-PEEM) we image the polarization dependence of coupling and propagation of surface plasmon polaritons (SPPs) launched from edges of a triangular, micrometer size, single-crystalline Ag crystal by linearly or circularly polarized light. 2P-PEEM records interferences between the optical excitation field and SPPs it creates with nanofemto space-time resolution. Both the linearly and circularly polarized femtosecond light pulses excite spatially asymmetric 2PP yield distributions, which are imaged. We attribute the asymmetry for linearly polarized light to the relative alignments of the laser polarization and triangle edges, which affect the efficiency of excitation of the longitudinal component of the SPP field. For circular polarization, the asymmetry is caused by matching of the spin angular momenta (SAM) of light and the transverse SAM of SPPs. Moreover, we show that the interference patterns recorded in the 2P-PEEM images are cast by phase shifts and amplitudes for coupling of light into the longitudinal and transverse components of SPP fields. While the interference patterns depend on the excitation polarization, nanofemto movies show that the phase and group velocities of SPPs are independent of SAM of light in time-reversal invariant media. Simulations of the wave interference reproduce the polarization and spin-dependent coupling of optical pulses into SPPs.

  11. Spatial coherence effect on layer thickness determination in narrowband full-field optical coherence tomography.

    PubMed

    Safrani, Avner; Abdulhalim, Ibrahim

    2011-06-20

    Longitudinal spatial coherence (LSC) is determined by the spatial frequency content of an optical beam. The use of lenses with a high numerical aperture (NA) in full-field optical coherence tomography and a narrowband light source makes the LSC length much shorter than the temporal coherence length, hence suggesting that high-resolution 3D images of biological and multilayered samples can be obtained based on the low LSC. A simplified model is derived, supported by experimental results, which describes the expected interference output signal of multilayered samples when high-NA lenses are used together with a narrowband light source. An expression for the correction factor for the layer thickness determination is found valid for high-NA objectives. Additionally, the method was applied to a strongly scattering layer, demonstrating the potential of this method for high-resolution imaging of scattering media.

  12. Hyperspectral Raman imaging of bone growth and regrowth chemistry

    NASA Astrophysics Data System (ADS)

    Pezzuti, Jerilyn A.; Morris, Michael D.; Bonadio, Jeffrey F.; Goldstein, Steven A.

    1998-06-01

    Hyperspectral Raman microscopic imaging of carbonated hydroxyapatite (HAP) is used to follow the chemistry of bone growth and regrowth. Deep red excitation is employed to minimize protein fluorescence interference. A passive line generator based on Powell lens optics and a motorized translation stage provide the imaging capabilities. Raman image contrast is generated from several lines of the HAP Raman spectrum, primarily the PO4-3. Factor analysis is used to minimize the integration time needed for acceptable contrast and to explore the chemical species within the bone. Bone age is visualized as variations in image intensity. High definition, high resolution images of newly formed bone and mature bone are compared qualitatively. The technique is currently under evaluation for study of experimental therapies for fracture repair.

  13. A direct modulated optical link for MRI RF receive coil interconnection.

    PubMed

    Yuan, Jing; Wei, Juan; Shen, G X

    2007-11-01

    Optical glass fiber is a promising alternative to traditional coaxial cables for MRI RF receive coil interconnection to avoid any crosstalk and electromagnetic interference between multiple channels. A direct modulated optical link is proposed for MRI coil interconnection in this paper. The link performances of power gain, frequency response and dynamic range are measured. Phantom and in vivo human head images have been demonstrated by the connection of this direct modulated optical link to a head coil on a 0.3T MRI scanner for the first time. Comparable image qualities to coaxial cable link verify the feasibility of using the optical link for imaging with minor modification on the existing scanners. This optical link could also be easily extended for multi-channel array interconnections at high field of 1.5 T.

  14. Thin film interference optics for imaging the O II 834-A airglow

    NASA Technical Reports Server (NTRS)

    Seely, John F.; Hunter, William R.

    1991-01-01

    Normal incidence thin film interference mirrors and filters have been designed to image the O II 834-A airglow. It is shown that MgF2 is a useful spacer material for this wavelength region. The mirrors consist of thin layers of MgF2 in combination with other materials that are chosen to reflect efficiently in a narrow band centered at 834 A. Peak reflectance of 60 percent can be obtained with a passband 200 A wide. Al/MgF2/Si and Al/MgF2/SiC interference coatings have been designed to reflect 834 A and to absorb the intense H I 1216 A airglow. An In/MgF2/In interference filter is designed to transmit 834 A and attenuate 1216 A radiation. Interference photocathode coatings for rejecting 1216 A radiation are also discussed.

  15. Laser interference microscopy: a novel approach to the visualization of structural changes in myelin during the propagation of nerve impulses

    NASA Astrophysics Data System (ADS)

    Yusipovich, A. I.; Cherkashin, A. A.; Verdiyan, E. E.; Sogomonyan, I. A.; Maksimov, G. V.

    2016-08-01

    We used 3D phase images obtained by laser interference microscopy (LIM) for ex vivo evaluation of changes in the structure of myelin during repetitive stimulation. In this work we propose a simple model of myelinated nerve fiber (mNF), which describes phase images as a result of different geometry and membrane-to-cytoplasm ratio in various regions, particularly, the internode and paranodal-nodal-paranodal region, including the node of Ranvier. Application of this model provides clear interpretation of the phase images and also demonstrates that repetitive action potentials are accompanied by structural changes in myelin in the internode and cytoplasmic modification in the node of Ranvier. The first 20 min of stimulation did not induce significant changes in the measured parameters, but then the optical path difference at the periphery of mNF and at the node of Ranvier declined reversibly. We believe that our model is also applicable to other modifications of interference and non-interference imaging.

  16. Nonlinear-Optical Correction of Aberrations in Imaging Telescopes Based on a Diffraction Structure on the Primary Mirror

    DTIC Science & Technology

    1998-01-01

    48 f) Metal and semiconductor thin- film systems ................ 48 3.3.2. Methods of formation of interference field for recording the hologram...in others - dynamic holograms [27,29,30,33] based either on photorefractive crystals [27,33], or on liquid -crystal spatial light modulators (SLM...variations of the primary mirror’s curvature, which can be caused, e.g., by thermal effects or by inaccuracy in adjustment of the elastic thin- film mirror

  17. Imaging of single retinal ganglion cell with differential interference contrast microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Oh, Juyeong; Kim, Yu Jeong; Kim, Chul-Ki; Lee, Taik Jin; Seo, Mina; Lee, Seok; Woo, Deok Ha; Jun, Seong Chan; Park, Ki-Ho; Kim, Seok Hwan; Kim, Jae Hun

    2017-02-01

    Glaucoma is a progressive optic neuropathy, characterized by the selective loss of retinal ganglion cells (RGCs). Therefore, monitoring the change of number or morphology of RGC is essential for the early detection as well as investigation of pathophysiology of glaucoma. Since RGC layer is transparent and hyporeflective, the direct optical visualization of RGCs has not been successful so far. Therefore, glaucoma evaluation mostly depends on indirect diagnostic methods such as the evaluation of optic disc morphology or retinal nerve fiber layer thickness measurement by optical coherence tomography. We have previously demonstrated single photoreceptor cell imaging with differential interference contrast (DIC) microscopy. Herein, we successfully visualized single RGC using DIC microscopy. Since RGC layer is much less reflective than photoreceptor layer, various techniques including the control of light wavelength and bandwidth using a tunable band pass filter were adopted to reduce the chromatic aberration in z-axis for higher and clearer resolution. To verify that the imaged cells were the RGCs, the flat-mounted retina of Sprague-Dawley rat, in which the RGCs were retrogradely labeled with fluorescence, was observed by both fluorescence and DIC microscopies for direct comparison. We have confirmed that the cell images obtained by fluorescence microscopy were perfectly matched with cell images by DIC microscopy. As conclusion, we have visualized single RGC with DIC microscopy, and confirmed with fluorescence microscopy.

  18. Wavelength scanning digital interference holography for high-resolution ophthalmic imaging

    NASA Astrophysics Data System (ADS)

    Potcoava, Mariana C.; Kim, M. K.; Kay, Christine N.

    2009-02-01

    An improved digital interference holography (DIH) technique suitable for fundus images is proposed. This technique incorporates a dispersion compensation algorithm to compensate for the unknown axial length of the eye. Using this instrument we acquired successfully tomographic fundus images in human eye with narrow axial resolution less than 5μm. The optic nerve head together with the surrounding retinal vasculature were constructed. We were able to quantify a depth of 84μm between the retinal fiber and the retinal pigmented epithelium layers. DIH provides high resolution 3D information which could potentially aid in guiding glaucoma diagnosis and treatment.

  19. Optical sensor in planar configuration based on multimode interference

    NASA Astrophysics Data System (ADS)

    Blahut, Marek

    2017-08-01

    In the paper a numerical analysis of optical sensors based on multimode interference in planar one-dimensional step-index configuration is presented. The structure consists in single-mode input and output waveguides and multimode waveguide which guide only few modes. Material parameters discussed refer to a SU8 polymer waveguide on SiO2 substrate. The optical system described will be designed to the analysis of biological substances.

  20. Numerical simulation and experimental verification of extended source interferometer

    NASA Astrophysics Data System (ADS)

    Hou, Yinlong; Li, Lin; Wang, Shanshan; Wang, Xiao; Zang, Haijun; Zhu, Qiudong

    2013-12-01

    Extended source interferometer, compared with the classical point source interferometer, can suppress coherent noise of environment and system, decrease dust scattering effects and reduce high-frequency error of reference surface. Numerical simulation and experimental verification of extended source interferometer are discussed in this paper. In order to provide guidance for the experiment, the modeling of the extended source interferometer is realized by using optical design software Zemax. Matlab codes are programmed to rectify the field parameters of the optical system automatically and get a series of interferometric data conveniently. The communication technique of DDE (Dynamic Data Exchange) was used to connect Zemax and Matlab. Then the visibility of interference fringes can be calculated through adding the collected interferometric data. Combined with the simulation, the experimental platform of the extended source interferometer was established, which consists of an extended source, interference cavity and image collection system. The decrease of high-frequency error of reference surface and coherent noise of the environment is verified. The relation between the spatial coherence and the size, shape, intensity distribution of the extended source is also verified through the analysis of the visibility of interference fringes. The simulation result is in line with the result given by real extended source interferometer. Simulation result shows that the model can simulate the actual optical interference of the extended source interferometer quite well. Therefore, the simulation platform can be used to guide the experiment of interferometer which is based on various extended sources.

  1. Affibody Molecules for In vivo Characterization of HER2-Positive Tumors by Near-Infrared Imaging

    PubMed Central

    Lee, Sang Bong; Hassan, Moinuddin; Fisher, Robert; Chertov, Oleg; Chernomordik, Victor; Kramer-Marek, Gabriela; Gandjbakhche, Amir; Capala, Jacek

    2012-01-01

    Purpose HER2 overexpression has been associated with a poor prognosis and resistance to therapy in breast cancer patients. We are developing molecular probes for in vivo quantitative imaging of HER2 receptors using near-infrared optical imaging. The goal is to provide probes that will minimally interfere with the studied system, i.e., whose binding does not interfere with the binding of the therapeutic agents, and whose effect on the target cells is minimal. Experimental Design We used three different types of HER2-specific Affibody molecules [monomer ZHER2:342, dimer (ZHER2:477)2, and albumin-binding domain-fused-(ZHER2:342)2] as targeting agents, and labeled them with Alexa Fluor dyes. Trastuzumab was also conjugated, using commercially available kits, as a standard control. The resulting conjugates were characterized in vitro by toxicity assays, Biacore affinity measurements, flow cytometry, and confocal microscopy. Semi-uantitative in vivo near-infrared optical imaging studies were carried out using mice with subcutaneous xenografts of HER2-positive tumors. Results The HER2-specific Affibody molecules were not toxic to HER2-overexpressing cells and their binding to HER2 did interfere with neither binding nor effectives of trastuzumab. The binding affinities and specificities of the Affibody-Alexa Fluor fluorescent conjugates to HER2 were unchanged or minimally affected by the modifications. Pharmacokinetics and biodistribution studies showed the albumin-binding domain-fused-(ZHER2:342)2-Alexa Fluor 750 conjugate to be an optimal probe for optical imaging of HER2 in vivo. Conclusion Our results suggest that Affibody-Alexa Fluor conjugates may be used as a specific near-infrared probe for the non-invasive semi-quantitative imaging of HER2 expression in vivo. PMID:18559604

  2. Fiber-Optic Linear Displacement Sensor Based On Matched Interference Filters

    NASA Astrophysics Data System (ADS)

    Fuhr, Peter L.; Feener, Heidi C.; Spillman, William B.

    1990-02-01

    A fiber optic linear displacement sensor has been developed in which a pair of matched interference filters are used to encode linear position on a broadband optical signal as relative intensity variations. As the filters are displaced, the optical beam illuminates varying amounts of each filter. Determination of the relative intensities at each filter pairs' passband is based on measurements acquired with matching filters and photodetectors. Source power variation induced errors are minimized by basing determination of linear position on signal Visibility. A theoretical prediction of the sensor's performance is developed and compared with experiments performed in the near IR spectral region using large core multimode optical fiber.

  3. High-brightness laser imaging with tunable speckle reduction enabled by electroactive micro-optic diffusers.

    PubMed

    Farrokhi, Hamid; Rohith, Thazhe Madam; Boonruangkan, Jeeranan; Han, Seunghwoi; Kim, Hyunwoong; Kim, Seung-Woo; Kim, Young-Jin

    2017-11-10

    High coherence of lasers is desirable in high-speed, high-resolution, and wide-field imaging. However, it also causes unavoidable background speckle noise thus degrades the image quality in traditional microscopy and more significantly in interferometric quantitative phase imaging (QPI). QPI utilizes optical interference for high-precision measurement of the optical properties where the speckle can severely distort the information. To overcome this, we demonstrated a light source system having a wide tunability in the spatial coherence over 43% by controlling the illumination angle, scatterer's size, and the rotational speed of an electroactive-polymer rotational micro-optic diffuser. Spatially random phase modulation was implemented for the lower speckle imaging with over a 50% speckle reduction without a significant degradation in the temporal coherence. Our coherence control technique will provide a unique solution for a low-speckle, full-field, and coherent imaging in optically scattering media in the fields of healthcare sciences, material sciences and high-precision engineering.

  4. A novel 1050nm handheld OCT imaging system for pediatric retinoblastoma patients: technology development and clinical study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nadiarnykh, Oleg; Moll, Annette C.; de Boer, Johannes F.

    2016-03-01

    We demonstrate a novel optical coherence tomography system specifically developed and validated for clinical imaging of retinoblastoma tumors in pediatric patients. The existing treatment options for this malignant tumor of the retina aim at reduction of tumor (re)growth risks, and vision preservation. The choice of optimal treatment strongly depends on skilled and detailed clinical assessment. Due to the limitations of the existing real-time diagnostic tools the patients at risk are periodically monitored with retinal imaging to confirm the absence of new tumor seedings. Three-dimensional visualization of tissue layer and microvasculature at improved axial and lateral resolution of interference-based OCT imaging provides sensitivity for detection of vital tumor tissue concurrent with local treatment. Our METC-approved system accommodates for the range of optical parameters of infants' eyes, and uses the 1050nm wavelength to access the deeper choroid layers of retina. The prototype is designed for patients in supine position under general anesthesia, where ergonomic handheld module is connected to fiber-based optical setup via umbilical cord. The system conforms to clinical safety requirements, including fully isolated low-voltage electric circuit. Focusing is performed with a mechanically tunable lens, where resolution is 6 µm axially, and varies with focusing at 10-18µm laterally. We will present optical design, performance limitations, and results of the ongoing clinical study, including the increased OCT diagnostic sensitivity in three dimensions in comparison with the established clinical imaging modalities. We will discuss images of early, active, and treated tumors, as well as follow-up on patients after local and systemic treatments.

  5. Interference data correction methods for lunar observation with a large-aperture static imaging spectrometer.

    PubMed

    Zhang, Geng; Wang, Shuang; Li, Libo; Hu, Xiuqing; Hu, Bingliang

    2016-11-01

    The lunar spectrum has been used in radiometric calibration and sensor stability monitoring for spaceborne optical sensors. A ground-based large-aperture static image spectrometer (LASIS) can be used to acquire the lunar spectral image for lunar radiance model improvement when the moon orbits over its viewing field. The lunar orbiting behavior is not consistent with the desired scanning speed and direction of LASIS. To correctly extract interferograms from the obtained data, a translation correction method based on image correlation is proposed. This method registers the frames to a reference frame to reduce accumulative errors. Furthermore, we propose a circle-matching-based approach to achieve even higher accuracy during observation of the full moon. To demonstrate the effectiveness of our approaches, experiments are run on true lunar observation data. The results show that the proposed approaches outperform the state-of-the-art methods.

  6. Surface profiling interferometer

    DOEpatents

    Takacs, Peter Z.; Qian, Shi-Nan

    1989-01-01

    The design of a long-trace surface profiler for the non-contact measurement of surface profile, slope error and curvature on cylindrical synchrotron radiation (SR) mirrors. The optical system is based upon the concept of a pencil-beam interferometer with an inherent large depth-of-field. The key feature of the optical system is the zero-path-difference beam splitter, which separates the laser beam into two colinear, variable-separation probe beams. A linear array detector is used to record the interference fringe in the image, and analysis of the fringe location as a function of scan position allows one to reconstruct the surface profile. The optical head is mounted on an air bearing slide with the capability to measure long aspheric optics, typical of those encountered in SR applications. A novel feature of the optical system is the use of a transverse "outrigger" beam which provides information on the relative alignment of the scan axis to the cylinder optic symmetry axis.

  7. In Situ Identification of Nanoparticle Structural Information Using Optical Microscopy.

    PubMed

    Culver, Kayla S B; Liu, Tingting; Hryn, Alexander J; Fang, Ning; Odom, Teri W

    2018-05-11

    Diffraction-limited optical microscopy lacks the resolution to characterize directly nanoscale features of single nanoparticles. This paper describes how surprisingly rich structural features of small gold nanostars can be identified using differential interference contrast (DIC) microscopy. First, we established a library of structure-property relationships between nanoparticle shape and DIC optical image and then validated the correlation with electrodynamic simulations and electron microscopy. We found that DIC image patterns of single nanostars could be differentiated between 2D and 3D geometries. Also, DIC images could elucidate the symmetry properties and orientation of nanoparticles. Finally, we demonstrated how this wide-field optical technique can be used for in situ characterization of single nanoparticles rotating at a glass-water interface.

  8. An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Sang, Jun; Alam, Mohammad S.

    2013-03-01

    An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.

  9. Optical fibres in pre-detector signal processing

    NASA Astrophysics Data System (ADS)

    Flinn, A. R.

    The basic form of conventional electro-optic sensors is described. The main drawback of these sensors is their inability to deal with the background radiation which usually accompanies the signal. This 'clutter' limits the sensors performance long before other noise such as 'shot' noise. Pre-detector signal processing using the complex amplitude of the light is introduced as a means to discriminate between the signal and 'clutter'. Further improvements to predetector signal processors can be made by the inclusion of optical fibres allowing radiation to be used with greater efficiency and enabling certain signal processing tasks to be carried out with an ease unequalled by any other method. The theory of optical waveguides and their application in sensors, interferometers, and signal processors is reviewed. Geometrical aspects of the formation of linear and circular interference fringes are described along with temporal and spatial coherence theory and their relationship to Michelson's visibility function. The requirements for efficient coupling of a source into singlemode and multimode fibres are given. We describe interference experiments between beams of light emitted from a few metres of two or more, singlemode or multimode, optical fibres. Fresnel's equation is used to obtain expressions for Fresnel and Fraunhofer diffraction patterns which enable electro-optic (E-0) sensors to be analysed by Fourier optics. Image formation is considered when the aperture plane of an E-0 sensor is illuminated with partially coherent light. This allows sensors to be designed using optical transfer functions which are sensitive to the spatial coherence of the illuminating light. Spatial coherence sensors which use gratings as aperture plane reticles are discussed. By using fibre arrays, spatial coherence processing enables E-0 sensors to discriminate between a spatially coherent source and an incoherent background. The sensors enable the position and wavelength of the source to be determined. Experiments are described which use optical fibre arrays as masks for correlation with spatial distributions of light in image planes of E-0 sensors. Correlations between laser light from different points in a scene is investigated by interfering the light emitted from an array of fibres, placed in the image plane of a sensor, with each other. Temporal signal processing experiments show that the visibility of interference fringes gives information about path differences in a scene or through an optical system. Most E-0 sensors employ wavelength filtering of the detected radiation to improve their discrimination and this is shown to be less selective than temporal coherence filtering which is sensitive to spectral bandwidth. Experiments using fibre interferometers to discriminate between red and blue laser light by their bandwidths are described. In most cases the path difference need only be a few tens of centimetres. We consider spatial and temporal coherence in fibres. We show that high visibility interference fringes can be produced by red and blue laser light transmitted through over 100 metres of singlemode or multimode fibre. The effect of detector size, relative to speckle size, is considered for fringes produced by multimode fibres. The effect of dispersion on the coherence of the light emitted from fibres is considered in terms of correlation and interference between modes. We describe experiments using a spatial light modulator called SIGHT-MOD. The device is used in various systems as a fibre optic switch and as a programmable aperture plane reticle. The contrast of the device is measured using red and green, HeNe, sources. Fourier transform images of patterns on the SIGHT-MOD are obtained and used to demonstrate the geometrical manipulation of images using 2D fibre arrays. Correlation of Fourier transform images of the SIGHT-MOD with 2D fibre arrays is demonstrated.

  10. A novel design measuring method based on linearly polarized laser interference

    NASA Astrophysics Data System (ADS)

    Cao, Yanbo; Ai, Hua; Zhao, Nan

    2013-09-01

    The interferometric method is widely used in the precision measurement, including the surface quality of the large-aperture mirror. The laser interference technology has been developing rapidly as the laser sources become more and more mature and reliable. We adopted the laser diode as the source for the sake of the short coherent wavelength of it for the optical path difference of the system is quite shorter as several wavelengths, and the power of laser diode is sufficient for measurement and safe to human eye. The 673nm linearly laser was selected and we construct a novel form of interferometric system as we called `Closed Loop', comprised of polarizing optical components, such as polarizing prism and quartz wave plate, the light from the source split by which into measuring beam and referencing beam, they've both reflected by the measuring mirror, after the two beams transforming into circular polarization and spinning in the opposite directions we induced the polarized light synchronous phase shift interference technology to get the detecting fringes, which transfers the phase shifting in time domain to space, so that we did not need to consider the precise-controlled shift of optical path difference, which will introduce the disturbance of the air current and vibration. We got the interference fringes from four different CCD cameras well-alignment, and the fringes are shifted into four different phases of 0, π/2, π, and 3π/2 in time. After obtaining the images from the CCD cameras, we need to align the interference fringes pixel to pixel from different CCD cameras, and synthesis the rough morphology, after getting rid of systematic error, we could calculate the surface accuracy of the measuring mirror. This novel design detecting method could be applied into measuring the optical system aberration, and it would develop into the setup of the portable structural interferometer and widely used in different measuring circumstances.

  11. Emerging optical nanoscopy techniques

    PubMed Central

    Montgomery, Paul C; Leong-Hoi, Audrey

    2015-01-01

    To face the challenges of modern health care, new imaging techniques with subcellular resolution or detection over wide fields are required. Far field optical nanoscopy presents many new solutions, providing high resolution or detection at high speed. We present a new classification scheme to help appreciate the growing number of optical nanoscopy techniques. We underline an important distinction between superresolution techniques that provide improved resolving power and nanodetection techniques for characterizing unresolved nanostructures. Some of the emerging techniques within these two categories are highlighted with applications in biophysics and medicine. Recent techniques employing wider angle imaging by digital holography and scattering lens microscopy allow superresolution to be achieved for subcellular and even in vivo, imaging without labeling. Nanodetection techniques are divided into four subcategories using contrast, phase, deconvolution, and nanomarkers. Contrast enhancement is illustrated by means of a polarized light-based technique and with strobed phase-contrast microscopy to reveal nanostructures. Very high sensitivity phase measurement using interference microscopy is shown to provide nanometric surface roughness measurement or to reveal internal nanometric structures. Finally, the use of nanomarkers is illustrated with stochastic fluorescence microscopy for mapping intracellular structures. We also present some of the future perspectives of optical nanoscopy. PMID:26491270

  12. Fiber optic probes for laser light scattering: Ground based evaluation for micgrogravity flight experimentation. Integrated coherent imaging fiber optic systems for laser light scattering and other applications

    NASA Technical Reports Server (NTRS)

    Dhadwal, Harbans Singh

    1994-01-01

    The research work presented in this report has established a new class of backscatter fiber optics probes for remote dynamic light scattering capability over a range of scattering angles from 94 degrees to 175 degrees. The fiber optic probes provide remote access to scattering systems, and can be utilized in either a noninvasive or invasive configuration. The fiber optics create an interference free data channel to inaccessible and harsh environments. Results from several studies of concentrated suspension, microemulsions, and protein systems are presented. The second part of the report describes the development of a new technology of wavefront processing within the optical fiber, that is, integrated fiber optics. Results have been very encouraging and the technology promises to have significant impact on the development of fiber optic sensors in a variety of fields ranging from environmental monitoring to optical recording, from biomedical sensing to photolithography.

  13. New experimental diffractive-optical data on E.Land's Retinex mechanism in human color vision: Part II

    NASA Astrophysics Data System (ADS)

    Lauinger, N.

    2007-09-01

    A better understanding of the color constancy mechanism in human color vision [7] can be reached through analyses of photometric data of all illuminants and patches (Mondrians or other visible objects) involved in visual experiments. In Part I [3] and in [4, 5 and 6] the integration in the human eye of the geometrical-optical imaging hardware and the diffractive-optical hardware has been described and illustrated (Fig.1). This combined hardware represents the main topic of the NAMIROS research project (nano- and micro- 3D gratings for optical sensors) [8] promoted and coordinated by Corrsys 3D Sensors AG. The hardware relevant to (photopic) human color vision can be described as a diffractive or interference-optical correlator transforming incident light into diffractive-optical RGB data and relating local RGB onto global RGB data in the near-field behind the 'inverted' human retina. The relative differences at local/global RGB interference-optical contrasts are available to photoreceptors (cones and rods) only after this optical pre-processing.

  14. A fast and high-sensitive dual-wavelength diffuse optical tomography system using digital lock-in photon-counting technique

    NASA Astrophysics Data System (ADS)

    Chen, Weiting; Yi, Xi; Zhao, Huijuan; Gao, Feng

    2014-09-01

    We presented a novel dual-wavelength diffuse optical imaging system which can perform 2-D or 3-D imaging fast and high-sensitively for monitoring the dynamic change of optical parameters. A newly proposed lock-in photon-counting detection method was adopted for week optical signal collection, which brought in excellent property as well as simplified geometry. Fundamental principles of the lock-in photon-counting detection were elaborately demonstrated, and the feasibility was strictly verified by the linearity experiment. Systemic performance of the prototype set up was experimentally accessed, including stray light rejection and inherent interference. Results showed that the system possessed superior anti-interference capability (under 0.58% in darkroom) compared with traditional photon-counting detection, and the crosstalk between two wavelengths was lower than 2.28%. For comprehensive assessment, 2-D phantom experiments towards relatively large dimension model (diameter of 4cm) were conducted. Different absorption targets were imaged to investigate detection sensitivity. Reconstruction image under all conditions was exciting, with a desirable SNR. Study on image quality v.s. integration time put forward a new method for accessing higher SNR with the sacrifice of measuring speed. In summary, the newly developed system showed great potential in promoting detection sensitivity as well as measuring speed. This will make substantial progress in dynamically tracking the blood concentration distribution in many clinical areas, such as small animal disease modeling, human brain activity research and thick tissues (for example, breast) diagnosis.

  15. Interference graph-based dynamic frequency reuse in optical attocell networks

    NASA Astrophysics Data System (ADS)

    Liu, Huanlin; Xia, Peijie; Chen, Yong; Wu, Lan

    2017-11-01

    Indoor optical attocell network may achieve higher capacity than radio frequency (RF) or Infrared (IR)-based wireless systems. It is proposed as a special type of visible light communication (VLC) system using Light Emitting Diodes (LEDs). However, the system spectral efficiency may be severely degraded owing to the inter-cell interference (ICI), particularly for dense deployment scenarios. To address these issues, we construct the spectral interference graph for indoor optical attocell network, and propose the Dynamic Frequency Reuse (DFR) and Weighted Dynamic Frequency Reuse (W-DFR) algorithms to decrease ICI and improve the spectral efficiency performance. The interference graph makes LEDs can transmit data without interference and select the minimum sub-bands needed for frequency reuse. Then, DFR algorithm reuses the system frequency equally across service-providing cells to mitigate spectrum interference. While W-DFR algorithm can reuse the system frequency by using the bandwidth weight (BW), which is defined based on the number of service users. Numerical results show that both of the proposed schemes can effectively improve the average spectral efficiency (ASE) of the system. Additionally, improvement of the user data rate is also obtained by analyzing its cumulative distribution function (CDF).

  16. Three-dimensional imaging of micro-specimen by optical scanning holography

    NASA Astrophysics Data System (ADS)

    Liu, Jung-Ping; Tsou, Cheng-Hao

    2017-04-01

    Optical scanning holography (OSH) is a scanning-type digital holographic technique. In OSH, a heterodyne interference pattern is generated to raster scan the object. OSH can be operated in the incoherent mode and thus is able to record a fluorescence hologram. In addition, resolution of the OSH is proportional to the density of the interference pattern. Here we use a high-NA microscope objective to generate a dynamic Fresnel zone plate to record a hologram of micro-specimen. The achieved transverse resolution and longitudinal resolution are 0.78μm and 3.1μm, respectively.

  17. Image Reconstruction from Data Collected with an Imaging Interferometer

    NASA Astrophysics Data System (ADS)

    DeSantis, Z. J.; Thurman, S. T.; Hix, T. T.; Ogden, C. E.

    The intensity distribution of an incoherent source and the spatial coherence function at some distance away are related by a Fourier transform, via the Van Cittert-Zernike theorem. Imaging interferometers measure the spatial coherence of light propagated from the incoherently illuminated object by combining light from spatially separated points to measure interference fringes. The contrast and phase of the fringe are the amplitude and phase of a Fourier component of the source’s intensity distribution. The Fiber-Coupled Interferometer (FCI) testbed is a visible light, lab-based imaging interferometer designed to test aspects of an envisioned ground-based interferometer for imaging geosynchronous satellites. The front half of the FCI testbed consists of the scene projection optics, which includes an incoherently backlit scene, located at the focus of a 1 m aperture f/100 telescope. The projected light was collected by the back half of the FCI testbed. The collection optics consisted of three 11 mm aperture fiber-coupled telescopes. Light in the fibers was combined pairwise and dispersed onto a sensor to measure the interference fringe as a function of wavelength, which produces a radial spoke of measurements in the Fourier domain. The visibility function was sampled throughout the Fourier domain by recording fringe data at many different scene rotations and collection telescope separations. Our image reconstruction algorithm successfully produced images for the three scenes we tested: asymmetric pair of pinholes, U.S. Air Force resolution bar target, and satellite scene. The bar target reconstruction shows detail and resolution near the predicted resolution limit. This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA). The views, opinions and/or findings expressed are those of the author(s) and should not be interpreted as reflecting the official views or policies of the Department of Defense or the U.S. Government.

  18. Lock-In Imaging System for Detecting Disturbances in Fluid

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang Hyouk (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor); Dimarcantonio, Albert L. (Inventor)

    2014-01-01

    A lock-in imaging system is configured for detecting a disturbance in air. The system includes an airplane, an interferometer, and a telescopic imaging camera. The airplane includes a fuselage and a pair of wings. The airplane is configured for flight in air. The interferometer is operatively disposed on the airplane and configured for producing an interference pattern by splitting a beam of light into two beams along two paths and recombining the two beams at a junction point in a front flight path of the airplane during flight. The telescopic imaging camera is configured for capturing an image of the beams at the junction point. The telescopic imaging camera is configured for detecting the disturbance in air in an optical path, based on an index of refraction of the image, as detected at the junction point.

  19. Comparison of two structured illumination techniques based on different 3D illumination patterns

    NASA Astrophysics Data System (ADS)

    Shabani, H.; Patwary, N.; Doblas, A.; Saavedra, G.; Preza, C.

    2017-02-01

    Manipulating the excitation pattern in optical microscopy has led to several super-resolution techniques. Among different patterns, the lateral sinusoidal excitation was used for the first demonstration of structured illumination microscopy (SIM), which provides the fastest SIM acquisition system (based on the number of raw images required) compared to the multi-spot illumination approach. Moreover, 3D patterns that include lateral and axial variations in the illumination have attracted more attention recently as they address resolution enhancement in three dimensions. A threewave (3W) interference technique based on coherent illumination has already been shown to provide super-resolution and optical sectioning in 3D-SIM. In this paper, we investigate a novel tunable technique that creates a 3D pattern from a set of multiple incoherently illuminated parallel slits that act as light sources for a Fresnel biprism. This setup is able to modulate the illumination pattern in the object space both axially and laterally with adjustable modulation frequencies. The 3D forward model for the new system is developed here to consider the effect of the axial modulation due to the 3D patterned illumination. The performance of 3D-SIM based on 3W interference and the tunable system are investigated in simulation and compared based on two different criteria. First, restored images obtained for both 3D-SIM systems using a generalized Wiener filter are compared to determine the effect of the illumination pattern on the reconstruction. Second, the effective frequency response of both systems is studied to determine the axial and lateral resolution enhancement that is obtained in each case.

  20. Enhancement of the resolution of full-field optical coherence tomography by using a colour image sensor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalyanov, A L; Lychagov, V V; Smirnov, I V

    2013-08-31

    The influence of white balance in a colour image detector on the resolution of a full-field optical coherence tomograph (FFOCT) is studied. The change in the interference pulse width depending on the white balance tuning is estimated in the cases of a thermal radiation source (incandescent lamp) and a white light emitting diode. It is shown that by tuning white balance of the detector in a certain range, the FFOCT resolution can be increased by 20 % as compared to the resolution, attained with the use of a monochrome detector. (optical coherence tomography)

  1. Development of Nomarski microscopy for quantitative determination of surface topography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hartman, J. S.; Gordon, R. L.; Lessor, D. L.

    1979-01-01

    The use of Nomarski differential interference contrast (DIC) microscopy has been extended to provide nondestructive, quantitative analysis of a sample's surface topography. Theoretical modeling has determined the dependence of the image intensity on the microscope's optical components, the sample's optical properties, and the sample's surface orientation relative to the microscope. Results include expressions to allow the inversion of image intensity data to determine sample surface slopes. A commercial Nomarski system has been modified and characterized to allow the evaluation of the optical model. Data have been recorded with smooth, planar samples that verify the theoretical predictions.

  2. Image grating metrology using phase-stepping interferometry in scanning beam interference lithography

    NASA Astrophysics Data System (ADS)

    Li, Minkang; Zhou, Changhe; Wei, Chunlong; Jia, Wei; Lu, Yancong; Xiang, Changcheng; Xiang, XianSong

    2016-10-01

    Large-sized gratings are essential optical elements in laser fusion and space astronomy facilities. Scanning beam interference lithography is an effective method to fabricate large-sized gratings. To minimize the nonlinear phase written into the photo-resist, the image grating must be measured to adjust the left and right beams to interfere at their waists. In this paper, we propose a new method to conduct wavefront metrology based on phase-stepping interferometry. Firstly, a transmission grating is used to combine the two beams to form an interferogram which is recorded by a charge coupled device(CCD). Phase steps are introduced by moving the grating with a linear stage monitored by a laser interferometer. A series of interferograms are recorded as the displacement is measured by the laser interferometer. Secondly, to eliminate the tilt and piston error during the phase stepping, the iterative least square phase shift method is implemented to obtain the wrapped phase. Thirdly, we use the discrete cosine transform least square method to unwrap the phase map. Experiment results indicate that the measured wavefront has a nonlinear phase around 0.05 λ@404.7nm. Finally, as the image grating is acquired, we simulate the print-error written into the photo-resist.

  3. Imaging, Sensing, And Communication Through Highly Scattering Complex Media

    DTIC Science & Technology

    2015-11-24

    lithography systems create the essential components of our computers and smartphones, which themselves contain ever more advanced optical systems that...the phase coherence of the light, scattered waves that arrive by ‘different paths’ through the sample show interference . Depending on the detailed...positions of the random scatterers, this interference is constructive at some positions and destructive at others. The result is a characteristic

  4. Cell segmentation in phase contrast microscopy images via semi-supervised classification over optics-related features.

    PubMed

    Su, Hang; Yin, Zhaozheng; Huh, Seungil; Kanade, Takeo

    2013-10-01

    Phase-contrast microscopy is one of the most common and convenient imaging modalities to observe long-term multi-cellular processes, which generates images by the interference of lights passing through transparent specimens and background medium with different retarded phases. Despite many years of study, computer-aided phase contrast microscopy analysis on cell behavior is challenged by image qualities and artifacts caused by phase contrast optics. Addressing the unsolved challenges, the authors propose (1) a phase contrast microscopy image restoration method that produces phase retardation features, which are intrinsic features of phase contrast microscopy, and (2) a semi-supervised learning based algorithm for cell segmentation, which is a fundamental task for various cell behavior analysis. Specifically, the image formation process of phase contrast microscopy images is first computationally modeled with a dictionary of diffraction patterns; as a result, each pixel of a phase contrast microscopy image is represented by a linear combination of the bases, which we call phase retardation features. Images are then partitioned into phase-homogeneous atoms by clustering neighboring pixels with similar phase retardation features. Consequently, cell segmentation is performed via a semi-supervised classification technique over the phase-homogeneous atoms. Experiments demonstrate that the proposed approach produces quality segmentation of individual cells and outperforms previous approaches. Copyright © 2013 Elsevier B.V. All rights reserved.

  5. A real-time 3D range image sensor based on a novel tip-tilt-piston micromirror and dual frequency phase shifting

    NASA Astrophysics Data System (ADS)

    Skotheim, Øystein; Schumann-Olsen, Henrik; Thorstensen, Jostein; Kim, Anna N.; Lacolle, Matthieu; Haugholt, Karl-Henrik; Bakke, Thor

    2015-03-01

    Structured light is a robust and accurate method for 3D range imaging in which one or more light patterns are projected onto the scene and observed with an off-axis camera. Commercial sensors typically utilize DMD- or LCD-based LED projectors, which produce good results but have a number of drawbacks, e.g. limited speed, limited depth of focus, large sensitivity to ambient light and somewhat low light efficiency. We present a 3D imaging system based on a laser light source and a novel tip-tilt-piston micro-mirror. Optical interference is utilized to create sinusoidal fringe patterns. The setup allows fast and easy control of both the frequency and the phase of the fringe patterns by altering the axes of the micro-mirror. For 3D reconstruction we have adapted a Dual Frequency Phase Shifting method which gives robust range measurements with sub-millimeter accuracy. The use of interference for generating sine patterns provides high light efficiency and good focusing properties. The use of a laser and a bandpass filter allows easy removal of ambient light. The fast response of the micro-mirror in combination with a high-speed camera and real-time processing on the GPU allows highly accurate 3D range image acquisition at video rates.

  6. Design and Analysis of an Optical Interface Message Processor

    DTIC Science & Technology

    1993-03-01

    Device 16 2.2.15 Microchannel Spatial Light Modulator (MSLM) 16 2.2.16 Si/PLST Modulator 16 2.2.17 Deformable Mirror Device ( DMD ) 17 2.2.18 Charged...wavelength of UV light, ’n this process, is the minimum image which can be developed. X-Ray lithography wil’ reduce the image size to the 1000 Angstrom...resonance of laser wavelength. This is due to a change in the index of refraction which results in an optical path allowing constructive interference

  7. A novel 1050nm handheld OCT imaging system for pediatric retinoblastoma patients: translation from laboratory bench to clinical study (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nadiarnykh, Oleg; Moll, Annette C.; de Boer, Johannes F.

    2016-03-01

    We demonstrate a novel optical coherence tomography system specifically developed and validated for clinical imaging of retinoblastoma tumors in pediatric patients. The existing treatment options for this malignant tumor of the retina aim at reduction of tumor (re)growth risks, and vision preservation. The choice of optimal treatment strongly depends on skilled and detailed clinical assessment. Currently, the patients at risk are periodically monitored with retinal imaging for possible morphological changes over time, and new tumor seedings, as the existing real-time diagnostic tools are limited. Three-dimensional visualization of tissue layer and microvasculature at improved axial and lateral resolution of interference-based OCT imaging provides sensitivity for detection of vital tumor tissue concurrent with local treatment. Our METC-approved system accommodates for the range of optical parameters of infants' eyes, and uses the 1050nm wavelength to access the deeper choroid layers of retina. The prototype is designed for patients in supine position under general anesthesia, where ergonomic handheld module is connected to fiber-based optical setup via umbilical cord. The system conforms to clinical safety requirements, including fully isolated low-voltage electric circuit. Focusing is performed with a mechanically tunable lens, where resolution is 6 µm axially, and varies with focusing at 10-18µm laterally. We will present optical design, performance limitations, and results of the ongoing clinical study, including the increased OCT diagnostic sensitivity in three dimensions in comparison with the established clinical imaging modalities. We will discuss images of early, active, and treated tumors, as well as follow-up on patients after local and systemic treatments.

  8. Optical phased arrays with evanescently-coupled antennas

    DOEpatents

    Sun, Jie; Watts, Michael R; Yaacobi, Ami; Timurdogan, Erman

    2015-03-24

    An optical phased array formed of a large number of nanophotonic antenna elements can be used to project complex images into the far field. These nanophotonic phased arrays, including the nanophotonic antenna elements and waveguides, can be formed on a single chip of silicon using complementary metal-oxide-semiconductor (CMOS) processes. Directional couplers evanescently couple light from the waveguides to the nanophotonic antenna elements, which emit the light as beams with phases and amplitudes selected so that the emitted beams interfere in the far field to produce the desired pattern. In some cases, each antenna in the phased array may be optically coupled to a corresponding variable delay line, such as a thermo-optically tuned waveguide or a liquid-filled cell, which can be used to vary the phase of the antenna's output (and the resulting far-field interference pattern).

  9. Microscopy with spatial filtering for sorting particles and monitoring subcellular morphology

    NASA Astrophysics Data System (ADS)

    Zheng, Jing-Yi; Qian, Zhen; Pasternack, Robert M.; Boustany, Nada N.

    2009-02-01

    Optical scatter imaging (OSI) was developed to non-invasively track real-time changes in particle morphology with submicron sensitivity in situ without exogenous labeling, cell fixing, or organelle isolation. For spherical particles, the intensity ratio of wide-to-narrow angle scatter (OSIR, Optical Scatter Image Ratio) was shown to decrease monotonically with diameter and agree with Mie theory. In living cells, we recently reported this technique is able to detect mitochondrial morphological alterations, which were mediated by the Bcl-xL transmembrane domain, and could not be observed by fluorescence or differential interference contrast images. Here we further extend the ability of morphology assessment by adopting a digital micromirror device (DMD) for Fourier filtering. When placed in the Fourier plane the DMD can be used to select scattering intensities at desired combination of scattering angles. We designed an optical filter bank consisting of Gabor-like filters with various scales and rotations based on Gabor filters, which have been widely used for localization of spatial and frequency information in digital images and texture analysis. Using a model system consisting of mixtures of polystyrene spheres and bacteria, we show how this system can be used to sort particles on a microscopic slide based on their size, orientation and aspect ratio. We are currently applying this technique to characterize the morphology of subcellular organelles to help understand fundamental biological processes.

  10. A method of camera calibration in the measurement process with reference mark for approaching observation space target

    NASA Astrophysics Data System (ADS)

    Zhang, Hua; Zeng, Luan

    2017-11-01

    Binocular stereoscopic vision can be used for space-based space targets near observation. In order to solve the problem that the traditional binocular vision system cannot work normally after interference, an online calibration method of binocular stereo measuring camera with self-reference is proposed. The method uses an auxiliary optical imaging device to insert the image of the standard reference object into the edge of the main optical path and image with the target on the same focal plane, which is equivalent to a standard reference in the binocular imaging optical system; When the position of the system and the imaging device parameters are disturbed, the image of the standard reference will change accordingly in the imaging plane, and the position of the standard reference object does not change. The camera's external parameters can be re-calibrated by the visual relationship of the standard reference object. The experimental results show that the maximum mean square error of the same object can be reduced from the original 72.88mm to 1.65mm when the right camera is deflected by 0.4 degrees and the left camera is high and low with 0.2° rotation. This method can realize the online calibration of binocular stereoscopic vision measurement system, which can effectively improve the anti - jamming ability of the system.

  11. Laser interference effect evaluation method based on character of laser-spot and image feature

    NASA Astrophysics Data System (ADS)

    Tang, Jianfeng; Luo, Xiaolin; Wu, Lingxia

    2016-10-01

    Evaluating the laser interference effect to CCD objectively and accurately has great research value. Starting from the change of the image's feature before and after interference, meanwhile, considering the influence of the laser-spot distribution character on the masking degree of the image feature information, a laser interference effect evaluation method based on character of laser-spot and image feature was proposed. It reflected the laser-spot distribution character using the distance between the center of the laser-spot and center of the target. It reflected the change of the global image feature using the changes of image's sparse coefficient matrix, which was obtained by the SSIM-inspired orthogonal matching pursuit (OMP) sparse coding algorithm. What's more, the assessment method reflected the change of the local image feature using the changes of the image's edge sharpness, which could be obtained by the change of the image's gradient magnitude. Taken together, the laser interference effect can be evaluated accurately. In terms of the laser interference experiment results, the proposed method shows good rationality and feasibility under the disturbing condition of different laser powers, and it can also overcome the inaccuracy caused by the change of the laser-spot position, realizing the evaluation of the laser interference effect objectively and accurately.

  12. Bacterial cell identification in differential interference contrast microscopy images.

    PubMed

    Obara, Boguslaw; Roberts, Mark A J; Armitage, Judith P; Grau, Vicente

    2013-04-23

    Microscopy image segmentation lays the foundation for shape analysis, motion tracking, and classification of biological objects. Despite its importance, automated segmentation remains challenging for several widely used non-fluorescence, interference-based microscopy imaging modalities. For example in differential interference contrast microscopy which plays an important role in modern bacterial cell biology. Therefore, new revolutions in the field require the development of tools, technologies and work-flows to extract and exploit information from interference-based imaging data so as to achieve new fundamental biological insights and understanding. We have developed and evaluated a high-throughput image analysis and processing approach to detect and characterize bacterial cells and chemotaxis proteins. Its performance was evaluated using differential interference contrast and fluorescence microscopy images of Rhodobacter sphaeroides. Results demonstrate that the proposed approach provides a fast and robust method for detection and analysis of spatial relationship between bacterial cells and their chemotaxis proteins.

  13. Continuous-wave terahertz digital holography by use of a pyroelectric array camera.

    PubMed

    Ding, Sheng-Hui; Li, Qi; Li, Yun-Da; Wang, Qi

    2011-06-01

    Terahertz (THz) digital holography is realized based on a 2.52 THz far-IR gas laser and a commercial 124 × 124 pyroelectric array camera. Off-axis THz holograms are obtained by recording interference patterns between light passing through the sample and the reference wave. A numerical reconstruction process is performed to obtain the field distribution at the object surface. Different targets were imaged to test the system's imaging capability. Compared with THz focal plane images, the image quality of the reconstructed images are improved a lot. The results show that the system's imaging resolution can reach at least 0.4 mm. The system also has the potential for real-time imaging application. This study confirms that digital holography is a promising technique for real-time, high-resolution THz imaging, which has extensive application prospects. © 2011 Optical Society of America

  14. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting.

    PubMed

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-09-01

    Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics.

  15. Nondestructive measurement of an optical fiber refractive-index profile by a transmitted-light differential interference contact microscope.

    PubMed

    Liu, Zhongyao; Dong, Xiaoman; Chen, Qianghua; Yin, Chunyong; Xu, Yuxian; Zheng, Yingjun

    2004-03-01

    A novel transmitted-light differential interference contrast (DIC) system is used for nondestructive measurement of the refractive-index profile (RIP) of an optical fiber. By means of this system the phase of a measured light beam can be modulated with an analyzer, and the phase distribution of a fiber is obtained by calculation of the various interference patterns. The measurement theory and structure and some typical applications of this system are demonstrated. The results of measuring RIPs in graded-index fiber are presented. Both the experimental results and theoretical analysis show that the system takes the advantage of high index resolution and of sufficient measurement accuracy for measuring the refractive index of the optical fiber. The system has strong ability to overcome environmental disturbance because of its common-path design. Moreover, one can use the system to measure the RIP along the fiber axis and acquire an image of the three-dimensional RIP of the fiber.

  16. Interference-free optical detection for Raman spectroscopy

    NASA Technical Reports Server (NTRS)

    Fischer, David G (Inventor); Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor)

    2012-01-01

    An architecture for spontaneous Raman scattering (SRS) that utilizes a frame-transfer charge-coupled device (CCD) sensor operating in a subframe burst gating mode to realize time-resolved combustion diagnostics is disclosed. The technique permits all-electronic optical gating with microsecond shutter speeds (<5 .mu.s), without compromising optical throughput or image fidelity. When used in conjunction with a pair of orthogonally-polarized excitation lasers, the technique measures time-resolved vibrational Raman scattering that is minimally contaminated by problematic optical background noise.

  17. Multispectral optical tweezers for molecular diagnostics of single biological cells

    NASA Astrophysics Data System (ADS)

    Butler, Corey; Fardad, Shima; Sincore, Alex; Vangheluwe, Marie; Baudelet, Matthieu; Richardson, Martin

    2012-03-01

    Optical trapping of single biological cells has become an established technique for controlling and studying fundamental behavior of single cells with their environment without having "many-body" interference. The development of such an instrument for optical diagnostics (including Raman and fluorescence for molecular diagnostics) via laser spectroscopy with either the "trapping" beam or secondary beams is still in progress. This paper shows the development of modular multi-spectral imaging optical tweezers combining Raman and Fluorescence diagnostics of biological cells.

  18. X-ray shearing interferometer

    DOEpatents

    Koch, Jeffrey A [Livermore, CA

    2003-07-08

    An x-ray interferometer for analyzing high density plasmas and optically opaque materials includes a point-like x-ray source for providing a broadband x-ray source. The x-rays are directed through a target material and then are reflected by a high-quality ellipsoidally-bent imaging crystal to a diffraction grating disposed at 1.times. magnification. A spherically-bent imaging crystal is employed when the x-rays that are incident on the crystal surface are normal to that surface. The diffraction grating produces multiple beams which interfere with one another to produce an interference pattern which contains information about the target. A detector is disposed at the position of the image of the target produced by the interfering beams.

  19. Interference in astronomical speckle patterns

    NASA Technical Reports Server (NTRS)

    Breckinridge, J. B.

    1976-01-01

    Astronomical speckle patterns are examined in an atmospheric-optics context in order to determine what kind of image quality is to be expected from several different imaging techniques. The model used to describe the instantaneous complex field distribution across the pupil of a large telescope regards the pupil as a deep phase grating with a periodicity given by the size of the cell of uniform phase or the refractive index structure function. This model is used along with an empirical formula derived purely from the physical appearance of the speckle patterns to discuss the orders of interference in astronomical speckle patterns.

  20. Analog CMOS design for optical coherence tomography signal detection and processing.

    PubMed

    Xu, Wei; Mathine, David L; Barton, Jennifer K

    2008-02-01

    A CMOS circuit was designed and fabricated for optical coherence tomography (OCT) signal detection and processing. The circuit includes a photoreceiver, differential gain stage and lock-in amplifier based demodulator. The photoreceiver consists of a CMOS photodetector and low noise differential transimpedance amplifier which converts the optical interference signal into a voltage. The differential gain stage further amplifies the signal. The in-phase and quadrature channels of the lock-in amplifier each include an analog mixer and switched-capacitor low-pass filter with an external mixer reference signal. The interferogram envelope and phase can be extracted with this configuration, enabling Doppler OCT measurements. A sensitivity of -80 dB is achieved with faithful reproduction of the interferometric signal envelope. A sample image of finger tip is presented.

  1. Electronic heterodyne recording of interference patterns

    NASA Technical Reports Server (NTRS)

    Merat, F. L.; Claspy, P. C.

    1979-01-01

    An electronic heterodyne technique is being investigated for video (i.e., television rate and format) recording of interference patterns. In the heterodyne technique electro-optic modulation is used to introduce a sinusoidal phase shift between the beams of an interferometer. For phase modulation frequencies between 0.1 and 15 MHz an image dissector camera may be used to scan the resulting temporally modulated interference pattern. Heterodyne detection of the camera output is used to selectively record the interference pattern. An advantage of such synchronous recording is that it permits recording of low-contrast fringes in high ambient light conditions. The application of this technique to the recording of holograms is discussed.

  2. [Spatial domain display for interference image dataset].

    PubMed

    Wang, Cai-Ling; Li, Yu-Shan; Liu, Xue-Bin; Hu, Bing-Liang; Jing, Juan-Juan; Wen, Jia

    2011-11-01

    The requirements of imaging interferometer visualization is imminent for the user of image interpretation and information extraction. However, the conventional researches on visualization only focus on the spectral image dataset in spectral domain. Hence, the quick show of interference spectral image dataset display is one of the nodes in interference image processing. The conventional visualization of interference dataset chooses classical spectral image dataset display method after Fourier transformation. In the present paper, the problem of quick view of interferometer imager in image domain is addressed and the algorithm is proposed which simplifies the matter. The Fourier transformation is an obstacle since its computation time is very large and the complexion would be even deteriorated with the size of dataset increasing. The algorithm proposed, named interference weighted envelopes, makes the dataset divorced from transformation. The authors choose three interference weighted envelopes respectively based on the Fourier transformation, features of interference data and human visual system. After comparing the proposed with the conventional methods, the results show the huge difference in display time.

  3. Silicon-on-insulator multimode-interference waveguide-based arrayed optical tweezers (SMART) for two-dimensional microparticle trapping and manipulation.

    PubMed

    Lei, Ting; Poon, Andrew W

    2013-01-28

    We demonstrate two-dimensional optical trapping and manipulation of 1 μm and 2.2 μm polystyrene particles in an 18 μm-thick fluidic cell at a wavelength of 1565 nm using the recently proposed Silicon-on-insulator Multimode-interference (MMI) waveguide-based ARrayed optical Tweezers (SMART) technique. The key component is a 100 μm square-core silicon waveguide with mm length. By tuning the fiber-coupling position at the MMI waveguide input facet, we demonstrate various patterns of arrayed optical tweezers that enable optical trapping and manipulation of particles. We numerically simulate the physical mechanisms involved in the arrayed trap, including the optical force, the heat transfer and the thermal-induced microfluidic flow.

  4. Multibeam interferometric illumination as the primary source of resolution in optical microscopy

    NASA Astrophysics Data System (ADS)

    Ryu, J.; Hong, S. S.; Horn, B. K. P.; Freeman, D. M.; Mermelstein, M. S.

    2006-04-01

    High-resolution images of a fluorescent target were obtained using a low-resolution optical detector by illuminating the target with interference patterns produced with 31 coherent beams. The beams were arranged in a cone with 78° half angle to produce illumination patterns consistent with a numerical aperture of 0.98. High-resolution images were constructed from low-resolution images taken with 930 different illumination patterns. Results for optical detectors with numerical apertures of 0.1 and 0.2 were similar, demonstrating that the resolution is primarily determined by the illuminator and not by the low-resolution detector. Furthermore, the long working distance, large depth of field, and large field of view of the low-resolution detector are preserved.

  5. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Byoungho; Kim, Myung K.

    2015-03-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: wavefront sensor, wavefront corrector and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, e.g., lenslet arrays for sensing or multi-acuator deformable mirrors for correcting. We have previously introduced an alternate approach to adaptive optics based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile is possible not only with the conventional coherent type of digital holography, but also with a new type of digital holography using incoherent light: self-interference incoherent digital holography (SIDH). The SIDH generates complex - i.e. amplitude plus phase - hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using a guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. The adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  6. Simple interrogator for optical fiber-based white light Fabry-Perot interferometers.

    PubMed

    Yu, Zhihao; Tian, Zhipeng; Wang, Anbo

    2017-02-15

    In this Letter, we present the design of a simple signal interrogator for optical fiber-based white light Fabry-Perot (F-P) interferometers. With the hardware being composed of only a flat fused silica wafer and a CCD camera, this interrogator translates the spectral interference into a spatial interference pattern, and then demodulates the F-P cavity length with the use of a relatively simple demodulation algorithm. The concept is demonstrated experimentally in a fiber optic sensor with a sapphire wafer as the F-P cavity.

  7. Educational Software for Interference and Optical Diffraction Analysis in Fresnel and Fraunhofer Regions Based on MATLAB GUIs and the FDTD Method

    ERIC Educational Resources Information Center

    Frances, J.; Perez-Molina, M.; Bleda, S.; Fernandez, E.; Neipp, C.; Belendez, A.

    2012-01-01

    Interference and diffraction of light are elementary topics in optics. The aim of the work presented here is to develop an accurate and cheap optical-system simulation software that provides a virtual laboratory for studying the effects of propagation in both time and space for the near- and far-field regions. In laboratory sessions, this software…

  8. Latitudinal Variations In Vertical Cloud Structure Of Jupiter As Determined By Ground- based Observation With Multispectral Imaging

    NASA Astrophysics Data System (ADS)

    Sato, T.; Kasaba, Y.; Takahashi, Y.; Murata, I.; Uno, T.; Tokimasa, N.; Sakamoto, M.

    2008-12-01

    We conducted ground-based observation of Jupiter with the liquid crystal tunable filter (LCTF) and EM-CCD camera in two methane absorption bands (700-757nm, 872-950nm at 3 nm step: total of 47 wavelengths) to derive detailed Jupiter's vertical cloud structure. The 2-meter reflector telescope at Nishi-Harima astronomical observatory in Japan was used for our observation on 26-30 May, 2008. After a series of image processing (composition of high quality images in each wavelength and geometry calibration), we converted observed intensity to absolute reflectivity at each pixel using standard star. As a result, we acquired Jupiter's data cubes with high-spatial resolution (about 1") and narrow band imaging (typically 7nm) in each methane absorption band by superimposing 30 Jupiter's images obtained in short exposure time (50 ms per one image). These data sets enable us to probe different altitudes of Jupiter from 100 mbar down to 1bar level with higher vertical resolution than using convectional interference filters. To interpret observed center-limb profiles, we developed radiative transfer code based on layer adding doubling algorithm to treat multiple scattering of solar light theoretically and extracted information on aerosol altitudes and optical properties using two-cloud model. First, we fit 5 different profiles simultaneously in continuum data (745-757 nm) to retrieve information on optical thickness of haze and single scattering albedo of cloud. Second, we fit 15 different profiles around 727nm methane absorption band and 13 different profiles around 890 nm methane absorption band to retrieve information on the aerosol altitude location and optical thickness of cloud. In this presentation, we present the results of these modeling simulations and discuss the latitudinal variations of Jupiter's vertical cloud structure.

  9. A development optical course based on optical fiber white light interference

    NASA Astrophysics Data System (ADS)

    Jiang, Haili; Sun, Qiuhua; Zhao, Yancheng; Li, Qingbo

    2017-08-01

    The Michelson interferometer is a very important instrument in optical part for college physics teaching. But most students only know the instrument itself and don't know how to use it in practical engineering problems. A case about optical fiber white light interference based on engineering practice was introduced in the optical teaching of college physics and then designed a development course of university physical optics part. This system based on low-coherence white light interferometric technology can be used to measure distribution strain or temperature. It also could be used in the case of temperature compensation mode.This teaching design can use the knowledge transfer rule to enable students to apply the basic knowledge in the university physics to the new knowledge domain, which can promote the students' ability of using scientific methods to solve complex engineering problems.

  10. A hybrid scanning force and light microscope for surface imaging and three-dimensional optical sectioning in differential interference contrast.

    PubMed

    Stemmer, A

    1995-04-01

    The design of a scanned-cantilever-type force microscope is presented which is fully integrated into an inverted high-resolution video-enhanced light microscope. This set-up allows us to acquire thin optical sections in differential interference contrast (DIC) or polarization while the force microscope is in place. Such a hybrid microscope provides a unique platform to study how cell surface properties determine, or are affected by, the three-dimensional dynamic organization inside the living cell. The hybrid microscope presented in this paper has proven reliable and versatile for biological applications. It is the only instrument that can image a specimen by force microscopy and high-power DIC without having either to translate the specimen or to remove the force microscope. Adaptation of the design features could greatly enhance the suitability of other force microscopes for biological work.

  11. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light.

    PubMed

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-07-14

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon's internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities.

  12. Accessing High Spatial Resolution in Astronomy Using Interference Methods

    NASA Astrophysics Data System (ADS)

    Carbonel, Cyril; Grasset, Sébastien; Maysonnave, Jean

    2018-04-01

    In astronomy, methods such as direct imaging or interferometry-based techniques (Michelson stellar interferometry for example) are used for observations. A particular advantage of interferometry is that it permits greater spatial resolution compared to direct imaging with a single telescope, which is limited by diffraction owing to the aperture of the instrument as shown by Rueckner et al. in a lecture demonstration. The focus of this paper, addressed to teachers and/or students in high schools and universities, is to easily underline both an application of interferometry in astronomy and stress its interest for resolution. To this end very simple optical experiments are presented to explain all the concepts. We show how an interference pattern resulting from the combined signals of two telescopes allows us to measure the distance between two stars with a resolution beyond the diffraction limit. Finally this work emphasizes the breathtaking resolution obtained in state-of-the-art instruments such as the VLTi (Very Large Telescope interferometer).

  13. Method of optical coherence tomography with parallel depth-resolved signal reception and fibre-optic phase modulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morozov, A N; Turchin, I V

    2013-12-31

    The method of optical coherence tomography with the scheme of parallel reception of the interference signal (P-OCT) is developed on the basis of spatial paralleling of the reference wave by means of a phase diffraction grating producing the appropriate time delay in the Mach–Zehnder interferometer. The absence of mechanical variation of the optical path difference in the interferometer essentially reduces the time required for 2D imaging of the object internal structure, as compared to the classical OCT that uses the time-domain method of the image construction, the sensitivity and the dynamic range being comparable in both approaches. For the resultingmore » field of the interfering object and reference waves an analytical expression is derived that allows the calculation of the autocorrelation function in the plane of photodetectors. For the first time a method of linear phase modulation by 2π is proposed for P-OCT systems, which allows the use of compact high-frequency (a few hundred kHz) piezoelectric cell-based modulators. For the demonstration of the P-OCT method an experimental setup was created, using which the images of the inner structure of biological objects at the depth up to 1 mm with the axial spatial resolution of 12 μm were obtained. (optical coherence tomography)« less

  14. Stray light calibration of the Dawn Framing Camera

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Sierks, Holger; Nathues, Andreas; Richards, Michael; Gutierrez-Marques, Pablo

    2013-10-01

    Sensitive imaging systems with high dynamic range onboard spacecrafts are susceptible to ghost and stray-light effects. During the design phase, the Dawn Framing Camera was laid out and optimized to minimize those unwanted, parasitic effects. However, the requirement of low distortion to the optical design and use of a front-lit focal plane array induced an additional stray light component. This paper presents the ground-based and in-flight procedures characterizing the stray-light artifacts. The in-flight test used the Sun as the stray light source, at different angles of incidence. The spacecraft was commanded to point predefined solar elongation positions, and long exposure images were recorded. The PSNIT function was calculated by the known illumination and the ground based calibration information. In the ground based calibration, several extended and point sources were used with long exposure times in dedicated imaging setups. The tests revealed that the major contribution to the stray light is coming from the ghost reflections between the focal plan array and the band pass interference filters. Various laboratory experiments and computer modeling simulations were carried out to quantify the amount of this effect, including the analysis of the diffractive reflection pattern generated by the imaging sensor. The accurate characterization of the detector reflection pattern is the key to successfully predict the intensity distribution of the ghost image. Based on the results, and the properties of the optical system, a novel correction method is applied in the image processing pipeline. The effect of this correction procedure is also demonstrated with the first images of asteroid Vesta.

  15. Design, fabrication and testing of hierarchical micro-optical structures and systems

    NASA Astrophysics Data System (ADS)

    Cannistra, Aaron Thomas

    Micro-optical systems are becoming essential components in imaging, sensing, communications, computing, and other applications. Optically based designs are replacing electronic, chemical and mechanical systems for a variety of reasons, including low power consumption, reduced maintenance, and faster operation. However, as the number and variety of applications increases, micro-optical system designs are becoming smaller, more integrated, and more complicated. Micro and nano-optical systems found in nature, such as the imaging systems found in many insects and crustaceans, can have highly integrated optical structures that vary in size by orders of magnitude. These systems incorporate components such as compound lenses, anti-reflective lens surface structuring, spectral filters, and polarization selective elements. For animals, these hybrid optical systems capable of many optical functions in a compact package have been repeatedly selected during the evolutionary process. Understanding the advantages of these designs gives motivation for synthetic optical systems with comparable functionality. However, alternative fabrication methods that deviate from conventional processes are needed to create such systems. Further complicating the issue, the resulting device geometry may not be readily compatible with existing measurement techniques. This dissertation explores several nontraditional fabrication techniques for optical components with hierarchical geometries and measurement techniques to evaluate performance of such components. A micro-transfer molding process is found to produce high-fidelity micro-optical structures and is used to fabricate a spectral filter on a curved surface. By using a custom measurement setup we demonstrate that the spectral filter retains functionality despite the nontraditional geometry. A compound lens is fabricated using similar fabrication techniques and the imaging performance is analyzed. A spray coating technique for photoresist application to curved surfaces combined with interference lithography is also investigated. Using this technique, we generate polarizers on curved surfaces and measure their performance. This work furthers an understanding of how combining multiple optical components affects the performance of each component, the final integrated devices, and leads towards realization of biomimetically inspired imaging systems.

  16. FDTD based model of ISOCT imaging for validation of nanoscale sensitivity (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Eid, Aya; Zhang, Di; Yi, Ji; Backman, Vadim

    2017-02-01

    Many of the earliest structural changes associated with neoplasia occur on the micro and nanometer scale, and thus appear histologically normal. Our group has established Inverse Spectroscopic OCT (ISOCT), a spectral based technique to extract nanoscale sensitive metrics derived from the OCT signal. Thus, there is a need to model light transport through relatively large volumes (< 50 um^3) of media with nanoscale level resolution. Finite Difference Time Domain (FDTD) is an iterative approach which directly solves Maxwell's equations to robustly estimate the electric and magnetic fields propagating through a sample. The sample's refractive index for every spatial voxel and wavelength are specified upon a grid with voxel sizes on the order of λ/20, making it an ideal modelling technique for nanoscale structure analysis. Here, we utilize the FDTD technique to validate the nanoscale sensing ability of ISOCT. The use of FDTD for OCT modelling requires three components: calculating the source beam as it propagates through the optical system, computing the sample's scattered field using FDTD, and finally propagating the scattered field back through the optical system. The principles of Fourier optics are employed to focus this interference field through a 4f optical system and onto the detector. Three-dimensional numerical samples are generated from a given refractive index correlation function with known parameters, and subsequent OCT images and mass density correlation function metrics are computed. We show that while the resolvability of the OCT image remains diffraction limited, spectral analysis allows nanoscale sensitive metrics to be extracted.

  17. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise.

    PubMed

    Brezinski, M E

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II.

  18. Photonic sensors review recent progress of fiber sensing technologies in Tianjin University

    NASA Astrophysics Data System (ADS)

    Liu, Tiegen; Liu, Kun; Jiang, Junfeng; Li, Enbang; Zhang, Hongxia; Jia, Dagong; Zhang, Yimo

    2011-03-01

    The up to date progress of fiber sensing technologies in Tianjin University are proposed in this paper. Fiber-optic temperature sensor based on the interference of selective higher-order modes in circular optical fiber is developed. Parallel demodulation for extrinsic Fabry-Perot interferometer (EFPI) and fiber Bragg grating (FBG) sensors is realized based on white light interference. Gas concentration detection is realized based on intra-cavity fiber laser spectroscopy. Polarization maintaining fiber (PMF) is used for distributed position or displacement sensing. Based on the before work and results, we gained National Basic Research Program of China on optical fiber sensing technology and will develop further investigation in this area.

  19. Coherent gradient sensing method and system for measuring surface curvature

    NASA Technical Reports Server (NTRS)

    Rosakis, Ares J. (Inventor); Moore, Jr., Nicholas R. (Inventor); Singh, Ramen P. (Inventor); Kolawa, Elizabeth (Inventor)

    2000-01-01

    A system and method for determining a curvature of a specularly reflective surface based on optical interference. Two optical gratings are used to produce a spatial displacement in an interference field of two different diffraction components produced by one grating from different diffraction components produced by another grating. Thus, the curvature of the surface can be determined.

  20. OPTOELECTRONICS, FIBER OPTICS, AND OTHER ASPECTS OF QUANTUM ELECTRONICS: Interference-threshold storage of optical data

    NASA Astrophysics Data System (ADS)

    Efimkov, V. F.; Zubarev, I. G.; Kolobrodov, V. V.; Sobolev, V. B.

    1989-08-01

    A method for the determination of the spatial characteristics of a laser beam is proposed and implemented. This method is based on the interaction of an interference field of two laser beams, which are spatially similar to the one being investigated, with a light-sensitive material characterized by a sensitivity threshold.

  1. Holographic fluorescence microscopy with incoherent digital holographic adaptive optics

    NASA Astrophysics Data System (ADS)

    Jang, Changwon; Kim, Jonghyun; Clark, David C.; Lee, Seungjae; Lee, Byoungho; Kim, Myung K.

    2015-11-01

    Introduction of adaptive optics technology into astronomy and ophthalmology has made great contributions in these fields, allowing one to recover images blurred by atmospheric turbulence or aberrations of the eye. Similar adaptive optics improvement in microscopic imaging is also of interest to researchers using various techniques. Current technology of adaptive optics typically contains three key elements: a wavefront sensor, wavefront corrector, and controller. These hardware elements tend to be bulky, expensive, and limited in resolution, involving, for example, lenslet arrays for sensing or multiactuator deformable mirrors for correcting. We have previously introduced an alternate approach based on unique capabilities of digital holography, namely direct access to the phase profile of an optical field and the ability to numerically manipulate the phase profile. We have also demonstrated that direct access and compensation of the phase profile are possible not only with conventional coherent digital holography, but also with a new type of digital holography using incoherent light: self­interference incoherent digital holography (SIDH). The SIDH generates a complex-i.e., amplitude plus phase-hologram from one or several interferograms acquired with incoherent light, such as LEDs, lamps, sunlight, or fluorescence. The complex point spread function can be measured using guide star illumination and it allows deterministic deconvolution of the full-field image. We present experimental demonstration of aberration compensation in holographic fluorescence microscopy using SIDH. Adaptive optics by SIDH provides new tools for improved cellular fluorescence microscopy through intact tissue layers or other types of aberrant media.

  2. Long working distance incoherent interference microscope

    DOEpatents

    Sinclair, Michael B [Albuquerque, NM; De Boer, Maarten P [Albuquerque, NM

    2006-04-25

    A full-field imaging, long working distance, incoherent interference microscope suitable for three-dimensional imaging and metrology of MEMS devices and test structures on a standard microelectronics probe station. A long working distance greater than 10 mm allows standard probes or probe cards to be used. This enables nanometer-scale 3-dimensional height profiles of MEMS test structures to be acquired across an entire wafer while being actively probed, and, optionally, through a transparent window. An optically identical pair of sample and reference arm objectives is not required, which reduces the overall system cost, and also the cost and time required to change sample magnifications. Using a LED source, high magnification (e.g., 50.times.) can be obtained having excellent image quality, straight fringes, and high fringe contrast.

  3. Evaluation method based on the image correlation for laser jamming image

    NASA Astrophysics Data System (ADS)

    Che, Jinxi; Li, Zhongmin; Gao, Bo

    2013-09-01

    The jamming effectiveness evaluation of infrared imaging system is an important part of electro-optical countermeasure. The infrared imaging devices in the military are widely used in the searching, tracking and guidance and so many other fields. At the same time, with the continuous development of laser technology, research of laser interference and damage effect developed continuously, laser has been used to disturbing the infrared imaging device. Therefore, the effect evaluation of the infrared imaging system by laser has become a meaningful problem to be solved. The information that the infrared imaging system ultimately present to the user is an image, so the evaluation on jamming effect can be made from the point of assessment of image quality. The image contains two aspects of the information, the light amplitude and light phase, so the image correlation can accurately perform the difference between the original image and disturbed image. In the paper, the evaluation method of digital image correlation, the assessment method of image quality based on Fourier transform, the estimate method of image quality based on error statistic and the evaluation method of based on peak signal noise ratio are analysed. In addition, the advantages and disadvantages of these methods are analysed. Moreover, the infrared disturbing images of the experiment result, in which the thermal infrared imager was interfered by laser, were analysed by using these methods. The results show that the methods can better reflect the jamming effects of the infrared imaging system by laser. Furthermore, there is good consistence between evaluation results by using the methods and the results of subjective visual evaluation. And it also provides well repeatability and convenient quantitative analysis. The feasibility of the methods to evaluate the jamming effect was proved. It has some extent reference value for the studying and developing on electro-optical countermeasures equipments and effectiveness evaluation.

  4. Modeling and Observations of Phase-Mask Trapezoidal Profiles with Grating-Fiber Image Reproduction

    NASA Technical Reports Server (NTRS)

    Lyons, Donald R.; Lindesay, James V.; Lee, Hyung R.; Ndlela, Zolili U.; Thompso, Erica J.

    2000-01-01

    We report on an investigation of the trapezoidal design and fabrication defects in phase masks used to produce Bragg reflection gratings in optical fibers. We used a direct visualization technique to examine the nonuniformity of the interference patterns generated by several phase masks. Fringe patterns from the phase masks are compared with the analogous patterns resulting from two-beam interference. Atomic force microscope imaging of the actual phase gratings that give rise to anomalous fringe patterns is used to determine input parameters for a general theoretical model. Phase masks with pitches of 0.566 and 1.059 microns are modeled and investigated.

  5. Operation of a separated-type x-ray interferometer for phase-contrast x-ray imaging

    NASA Astrophysics Data System (ADS)

    Yoneyama, Akio; Momose, Atsushi; Seya, Eiichi; Hirano, Keiichi; Takeda, Tohoru; Itai, Yuji

    1999-12-01

    Aiming at large-area phase-contrast x-ray imaging, a separated-type x-ray interferometer system was designed and developed to produce 25×20 mm interference patterns. The skew-symmetric optical system was adopted because of the feasibility of alignment. The rotation between the separated crystal blocks was controlled within a drift of 0.06 nrad using a feedback positioning system. This interferometer generated a 25×15 mm interference pattern with 0.07 nm synchrotron x-rays. A slice of a rabbit's kidney was observed, and its tubular structure could be revealed in a measured phase map.

  6. Automated Photoreceptor Cell Identification on Nonconfocal Adaptive Optics Images Using Multiscale Circular Voting

    PubMed Central

    Liu, Jianfei; Jung, HaeWon; Dubra, Alfredo; Tam, Johnny

    2017-01-01

    Purpose Adaptive optics scanning light ophthalmoscopy (AOSLO) has enabled quantification of the photoreceptor mosaic in the living human eye using metrics such as cell density and average spacing. These rely on the identification of individual cells. Here, we demonstrate a novel approach for computer-aided identification of cone photoreceptors on nonconfocal split detection AOSLO images. Methods Algorithms for identification of cone photoreceptors were developed, based on multiscale circular voting (MSCV) in combination with a priori knowledge that split detection images resemble Nomarski differential interference contrast images, in which dark and bright regions are present on the two sides of each cell. The proposed algorithm locates dark and bright region pairs, iteratively refining the identification across multiple scales. Identification accuracy was assessed in data from 10 subjects by comparing automated identifications with manual labeling, followed by computation of density and spacing metrics for comparison to histology and published data. Results There was good agreement between manual and automated cone identifications with overall recall, precision, and F1 score of 92.9%, 90.8%, and 91.8%, respectively. On average, computed density and spacing values using automated identification were within 10.7% and 11.2% of the expected histology values across eccentricities ranging from 0.5 to 6.2 mm. There was no statistically significant difference between MSCV-based and histology-based density measurements (P = 0.96, Kolmogorov-Smirnov 2-sample test). Conclusions MSCV can accurately detect cone photoreceptors on split detection images across a range of eccentricities, enabling quick, objective estimation of photoreceptor mosaic metrics, which will be important for future clinical trials utilizing adaptive optics. PMID:28873173

  7. Imaging C. elegans embryos using an epifluorescent microscope and open source software.

    PubMed

    Verbrugghe, Koen J C; Chan, Raymond C

    2011-03-24

    Cellular processes, such as chromosome assembly, segregation and cytokinesis,are inherently dynamic. Time-lapse imaging of living cells, using fluorescent-labeled reporter proteins or differential interference contrast (DIC) microscopy, allows for the examination of the temporal progression of these dynamic events which is otherwise inferred from analysis of fixed samples(1,2). Moreover, the study of the developmental regulations of cellular processes necessitates conducting time-lapse experiments on an intact organism during development. The Caenorhabiditis elegans embryo is light-transparent and has a rapid, invariant developmental program with a known cell lineage(3), thus providing an ideal experiment model for studying questions in cell biology(4,5)and development(6-9). C. elegans is amendable to genetic manipulation by forward genetics (based on random mutagenesis(10,11)) and reverse genetics to target specific genes (based on RNAi-mediated interference and targeted mutagenesis(12-15)). In addition, transgenic animals can be readily created to express fluorescently tagged proteins or reporters(16,17). These traits combine to make it easy to identify the genetic pathways regulating fundamental cellular and developmental processes in vivo(18-21). In this protocol we present methods for live imaging of C. elegans embryos using DIC optics or GFP fluorescence on a compound epifluorescent microscope. We demonstrate the ease with which readily available microscopes, typically used for fixed sample imaging, can also be applied for time-lapse analysis using open-source software to automate the imaging process.

  8. Optical Linear Algebra for Computational Light Transport

    NASA Astrophysics Data System (ADS)

    O'Toole, Matthew

    Active illumination refers to optical techniques that use controllable lights and cameras to analyze the way light propagates through the world. These techniques confer many unique imaging capabilities (e.g. high-precision 3D scanning, image-based relighting, imaging through scattering media), but at a significant cost; they often require long acquisition and processing times, rely on predictive models for light transport, and cease to function when exposed to bright ambient sunlight. We develop a mathematical framework for describing and analyzing such imaging techniques. This framework is deeply rooted in numerical linear algebra, and models the transfer of radiant energy through an unknown environment with the so-called light transport matrix. Performing active illumination on a scene equates to applying a numerical operator on this unknown matrix. The brute-force approach to active illumination follows a two-step procedure: (1) optically measure the light transport matrix and (2) evaluate the matrix operator numerically. This approach is infeasible in general, because the light transport matrix is often much too large to measure, store, and analyze directly. Using principles from optical linear algebra, we evaluate these matrix operators in the optical domain, without ever measuring the light transport matrix in the first place. Specifically, we explore numerical algorithms that can be implemented partially or fully with programmable optics. These optical algorithms provide solutions to many longstanding problems in computer vision and graphics, including the ability to (1) photo-realistically change the illumination conditions of a given photo with only a handful of measurements, (2) accurately capture the 3D shape of objects in the presence of complex transport properties and strong ambient illumination, and (3) overcome the multipath interference problem associated with time-of-flight cameras. Most importantly, we introduce an all-new imaging regime---optical probing---that provides unprecedented control over which light paths contribute to a photo.

  9. Two-Photon Ghost Image and Interference-Diffraction

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Sergienko, A. V.; Pittman, T. B.; Strekalov, D. V.; Klyshko, D. N.

    1996-01-01

    One of the most surprising consequences of quantum mechanics is entanglement of two or more distance particles. The two-particle entangled state was mathematically formulated by Schrodinger. Based on this unusual quantum behavior, EPR defined their 'physical reality' and then asked the question: 'Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?' One may not appreciate EPR's criterion of physical reality and insist that 'no elementary quantum phenomenon is a phenomenon until it is a recorded phenomenon'. Optical spontaneous parametric down conversion (SPDC) is the most effective mechanism to generate an EPR type entangled two-photon state. In SPDC, an optical beam, called the pump, is incident on a birefringent crystal. The pump is intense enough so that nonlinear effects lead to the conversion of pump photons into pairs of photons, historically called signal and idler. Technically, the SPDC is said to be type-1 or type-2, depending on whether the signal and idler beams have parallel or orthogonal polarization. The SPDC conversion efficiency is typically on the order of 10(exp -9) to 10(exp -11), depending on the SPDC nonlinear material. The signal and idler intensities are extremely low, only single photon detection devices can register them. The quantum entanglement nature of SPDC has been demonstrated in EPR-Bohm experiments and Bell's inequality measurements. The following two experiments were recently performed in our laboratory, which are more closely related to the original 1935 EPR gedankenezperiment. The first experiment is a two-photon optical imaging type experiment, which has been named 'ghost image' by the physics community. The signal and idler beams of SPDC are sent in different directions, so that the detection of the signal and idler photons can be performed by two distant photon counting detectors. An aperture object (mask) is placed in front of the signal photon detector and illuminated by the signal beam through a convex lens. Surprisingly, an image of this aperture is observed in the idler beam, by scanning the idler photon detector in the transverse plane of the idler beam, if we are sure that the idler photon detector 'catches' the 'twin brother' of the signal, which can be easily performed by a coincidence measurement. This effect is even more striking when we found that the object-lens-image relationship satisfies the Gaussian thin lens equation. The second experiment demonstrates two-photon 'ghost' interference-diffraction. The experimental set up is similar to the image experiment, except that rather than a lens and an aperture it is a Young's double-slit (or a single-slit) inserted into the path of the signal beam. We could not find any interference (or diffraction) pattern behind the slit. Surprisingly, an interference (or diffraction) pattern is observed when scanning the detector in the idler beam, if we are sure that the idler photon detector 'catches' the 'twin brother' of the signal.

  10. Arbitrary-ratio power splitter based on nonlinear multimode interference coupler

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tajaldini, Mehdi; Young Researchers and Elite Club, Baft Branch, Islamic Azad University, Baft; Jafri, Mohd Zubir Mat

    2015-04-24

    We propose an ultra-compact multimode interference (MMI) power splitter based on nonlinear effects from simulations using nonlinear modal propagation analysis (NMPA) cooperation with finite difference Method (FDM) to access free choice of splitting ratio. Conventional multimode interference power splitter could only obtain a few discrete ratios. The power splitting ratio may be adjusted continuously while the input set power is varying by a tunable laser. In fact, using an ultra- compact MMI with a simple structure that is launched by a tunable nonlinear input fulfills the problem of arbitrary-ratio in integrated photonics circuits. Silicon on insulator (SOI) is used asmore » the offered material due to the high contrast refractive index and Centro symmetric properties. The high-resolution images at the end of the multimode waveguide in the simulated power splitter have a high power balance, whereas access to a free choice of splitting ratio is not possible under the linear regime in the proposed length range except changes in the dimension for any ratio. The compact dimensions and ideal performance of the device are established according to optimized parameters. The proposed regime can be extended to the design of M×N arbitrary power splitters ratio for programmable logic devices in all optical digital signal processing. The results of this study indicate that nonlinear modal propagation analysis solves the miniaturization problem for all-optical devices based on MMI couplers to achieve multiple functions in a compact planar integrated circuit and also overcomes the limitations of previously proposed methods for nonlinear MMI.« less

  11. Full field vertical scanning in short coherence digital holographic microscope.

    PubMed

    Monemahghdoust, Zahra; Montfort, Frederic; Cuche, Etienne; Emery, Yves; Depeursinge, Christian; Moser, Christophe

    2013-05-20

    In Digital holography Microscopes (DHM) implemented in the so-called "off axis" configuration, the object and reference wave fronts are not co-planar but form an angle of a few degrees. This results into two main drawbacks. First, the contrast of the interference is not uniform spatially when the light source has low coherence. The interference contrast is optimal along a line, but decreases when moving away from it, resulting in a lower image quality. Second, the non-coplanarity between the coherence plane of both wavefronts impacts the coherence vertical scanning measurement mode: when the optical path difference between the signal and the reference beam is changed, the region of maximum interference contrast shifts laterally in the plane of the objective. This results in more complex calculations to extract the topography of the sample and requires scanning over a much larger vertical range, leading to a longer measurement time. We have previously shown that by placing a volume diffractive optical element (VDOE) in the reference arm, the wavefront can be made coplanar with the object wavefront and the image plane of the microscope objective, resulting in a uniform and optimal interferogram. In this paper, we demonstrate a vertical scanning speed improvement by an order of magnitude. Noise in the phase and intensity images caused by scattering and non-uniform diffraction in the VDOE is analyzed quantitatively. Five VDOEs were fabricated with an identical procedure. We observe that VDOEs introduce a small intensity non-uniformity in the reference beam which results in a 20% noise increase in the extracted phase image as compared to the noise in extracted phase image when the VDOE is removed. However, the VDOE has no impact on the temporal noise measured from extracted phase images.

  12. Real-time Fluorescence Image-Guided Oncologic Surgery

    PubMed Central

    Mondal, Suman B.; Gao, Shengkui; Zhu, Nan; Liang, Rongguang; Gruev, Viktor; Achilefu, Samuel

    2014-01-01

    Medical imaging plays a critical role in cancer diagnosis and planning. Many of these patients rely on surgical intervention for curative outcomes. This requires a careful identification of the primary and microscopic tumors, and the complete removal of cancer. Although there have been efforts to adapt traditional imaging modalities for intraoperative image guidance, they suffer from several constraints such as large hardware footprint, high operation cost, and disruption of the surgical workflow. Because of the ease of image acquisition, relatively low cost devices and intuitive operation, optical imaging methods have received tremendous interests for use in real-time image-guided surgery. To improve imaging depth under low interference by tissue autofluorescence, many of these applications utilize light in the near-infra red (NIR) wavelengths, which is invisible to human eyes. With the availability of a wide selection of tumor-avid contrast agents, advancements in imaging sensors, electronic and optical designs, surgeons are able to combine different attributes of NIR optical imaging techniques to improve treatment outcomes. The emergence of diverse commercial and experimental image guidance systems, which are in various stages of clinical translation, attests to the potential high impact of intraoperative optical imaging methods to improve speed of oncologic surgery with high accuracy and minimal margin positivity. PMID:25287689

  13. Design issues for directional coupler- and MMI-based optical microring resonator filters on InP

    NASA Astrophysics Data System (ADS)

    Themistos, Christos; Kalli, Kyriacos; Komodromos, Michalis; Rajarajan, Muttukrishnan; Rahman, B. M. A.; Grattan, Kenneth T. V.

    2004-08-01

    The characterization and optimization of optical microring resonator-based optical filters on deeply etched GaInAsP-Inp waveguides, using the finite element-based beam propagation approach is presented here. Design issues for directional coupler- and multimode interference coupler-based devices, such as field evolution, optical power, phase, fabrication tolerance and wavelength dependence have been investigated.

  14. Hypervelocity Impact: Proceedings of the 1992 Symposium Held in Austin, Texas on 17-19 November 1992

    DTIC Science & Technology

    1993-10-01

    constructive and destructive wave interaction that produces interference fringes on the holographic plate. If the object moves more than a fraction of a...wavelength during the duration of the laser exposure these interference fringes are lost and with it the holographic image of the object. However there...interest, it is possible to use magnification optics such as microscope objectives or lithography lenses between the holographic plate and the impact

  15. Plasmonic computing of spatial differentiation

    NASA Astrophysics Data System (ADS)

    Zhu, Tengfeng; Zhou, Yihan; Lou, Yijie; Ye, Hui; Qiu, Min; Ruan, Zhichao; Fan, Shanhui

    2017-05-01

    Optical analog computing offers high-throughput low-power-consumption operation for specialized computational tasks. Traditionally, optical analog computing in the spatial domain uses a bulky system of lenses and filters. Recent developments in metamaterials enable the miniaturization of such computing elements down to a subwavelength scale. However, the required metamaterial consists of a complex array of meta-atoms, and direct demonstration of image processing is challenging. Here, we show that the interference effects associated with surface plasmon excitations at a single metal-dielectric interface can perform spatial differentiation. And we experimentally demonstrate edge detection of an image without any Fourier lens. This work points to a simple yet powerful mechanism for optical analog computing at the nanoscale.

  16. Ground-based multi-station spectroscopic imaging with ALIS. - Scientific highlights, project status and future prospects

    NASA Astrophysics Data System (ADS)

    Brändström; Gustavsson, Björn; Pellinen-Wannberg, Asta; Sandahl, Ingrid; Sergienko, Tima; Steen, Ake

    2005-08-01

    The Auroral Large Imaging System (ALIS) was first proposed at the ESA-PAC meeting in Lahnstein 1989. The first spectroscopic imaging station was operational in 1994, and since then up to six stations have been in simultaneous operation. Each station has a scientific-grade CCD-detector and a filter-wheel for narrow-band interference-filters with six positions. The field-of-view is around 70°. Each imager is mounted in a positioning system, enabling imaging of a common volume from several sites. This enables triangulation and tomography. Raw data from ALIS is freely available at ("http://alis.irf.se") and ALIS is open for scientific colaboration. ALIS made the first unambiguous observations of Radio-induced optical emissions at high latitudes, and the detection of water in a Leonid meteor-trail. Both rockets and satellite coordination are considered for future observations with ALIS.

  17. Fluorescence lifetime imaging of optically levitated aerosol: a technique to quantitatively map the viscosity of suspended aerosol particles.

    PubMed

    Fitzgerald, C; Hosny, N A; Tong, H; Seville, P C; Gallimore, P J; Davidson, N M; Athanasiadis, A; Botchway, S W; Ward, A D; Kalberer, M; Kuimova, M K; Pope, F D

    2016-08-21

    We describe a technique to measure the viscosity of stably levitated single micron-sized aerosol particles. Particle levitation allows the aerosol phase to be probed in the absence of potentially artefact-causing surfaces. To achieve this feat, we combined two laser based techniques: optical trapping for aerosol particle levitation, using a counter-propagating laser beam configuration, and fluorescent lifetime imaging microscopy (FLIM) of molecular rotors for the measurement of viscosity within the particle. Unlike other techniques used to measure aerosol particle viscosity, this allows for the non-destructive probing of viscosity of aerosol particles without interference from surfaces. The well-described viscosity of sucrose aerosol, under a range of relative humidity conditions, is used to validate the technique. Furthermore we investigate a pharmaceutically-relevant mixture of sodium chloride and salbutamol sulphate under humidities representative of in vivo drug inhalation. Finally, we provide a methodology for incorporating molecular rotors into already levitated particles, thereby making the FLIM/optical trapping technique applicable to real world aerosol systems, such as atmospheric aerosols and those generated by pharmaceutical inhalers.

  18. Aberration correction in wide-field fluorescence microscopy by segmented-pupil image interferometry.

    PubMed

    Scrimgeour, Jan; Curtis, Jennifer E

    2012-06-18

    We present a new technique for the correction of optical aberrations in wide-field fluorescence microscopy. Segmented-Pupil Image Interferometry (SPII) uses a liquid crystal spatial light modulator placed in the microscope's pupil plane to split the wavefront originating from a fluorescent object into an array of individual beams. Distortion of the wavefront arising from either system or sample aberrations results in displacement of the images formed from the individual pupil segments. Analysis of image registration allows for the local tilt in the wavefront at each segment to be corrected with respect to a central reference. A second correction step optimizes the image intensity by adjusting the relative phase of each pupil segment through image interferometry. This ensures that constructive interference between all segments is achieved at the image plane. Improvements in image quality are observed when Segmented-Pupil Image Interferometry is applied to correct aberrations arising from the microscope's optical path.

  19. Visualizing individual microtubules by bright field microscopy

    NASA Astrophysics Data System (ADS)

    Gutiérrez-Medina, Braulio; Block, Steven M.

    2010-11-01

    Microtubules are slender (˜25 nm diameter), filamentous polymers involved in cellular structure and organization. Individual microtubules have been visualized via fluorescence imaging of dye-labeled tubulin subunits and by video-enhanced, differential interference-contrast microscopy of unlabeled polymers using sensitive CCD cameras. We demonstrate the imaging of unstained microtubules using a microscope with conventional bright field optics in conjunction with a webcam-type camera and a light-emitting diode illuminator. The light scattered by microtubules is image-processed to remove the background, reduce noise, and enhance contrast. The setup is based on a commercial microscope with a minimal set of inexpensive components, suitable for implementation in a student laboratory. We show how this approach can be used in a demonstration motility assay, tracking the gliding motions of microtubules driven by the motor protein kinesin.

  20. Path-separated electron interferometry in a scanning transmission electron microscope

    NASA Astrophysics Data System (ADS)

    Yasin, Fehmi S.; Harvey, Tyler R.; Chess, Jordan J.; Pierce, Jordan S.; McMorran, Benjamin J.

    2018-05-01

    We report a path-separated electron interferometer within a scanning transmission electron microscope. In this setup, we use a nanofabricated grating as an amplitude-division beamsplitter to prepare multiple spatially separated, coherent electron probe beams. We achieve path separations of 30 nm. We pass the  +1 diffraction order probe through amorphous carbon while passing the 0th and  ‑1 orders through vacuum. The probes are then made to interfere via imaging optics, and we observe an interference pattern at the CCD detector with up to 39.7% fringe visibility. We show preliminary experimental results in which the interference pattern was recorded during a 1D scan of the diffracted probes across a test phase object. These results qualitatively agree with a modeled interference predicted by an independent measurement of the specimen thickness. This experimental design can potentially be applied to phase contrast imaging and fundamental physics experiments, such as an exploration of electron wave packet coherence length.

  1. Synthetic-lattice enabled all-optical devices based on orbital angular momentum of light

    PubMed Central

    Luo, Xi-Wang; Zhou, Xingxiang; Xu, Jin-Shi; Li, Chuan-Feng; Guo, Guang-Can; Zhang, Chuanwei; Zhou, Zheng-Wei

    2017-01-01

    All-optical photonic devices are crucial for many important photonic technologies and applications, ranging from optical communication to quantum information processing. Conventional design of all-optical devices is based on photon propagation and interference in real space, which may rely on large numbers of optical elements, and the requirement of precise control makes this approach challenging. Here we propose an unconventional route for engineering all-optical devices using the photon’s internal degrees of freedom, which form photonic crystals in such synthetic dimensions for photon propagation and interference. We demonstrate this design concept by showing how important optical devices such as quantum memory and optical filters can be realized using synthetic orbital angular momentum (OAM) lattices in degenerate cavities. The design route utilizing synthetic photonic lattices may significantly reduce the requirement for numerous optical elements and their fine tuning in conventional design, paving the way for realistic all-optical photonic devices with novel functionalities. PMID:28706215

  2. Wide field of view common-path lateral-shearing digital holographic interference microscope.

    PubMed

    Vora, Priyanka; Trivedi, Vismay; Mahajan, Swapnil; Patel, Nimit; Joglekar, Mugdha; Chhaniwal, Vani; Moradi, Ali-Reza; Javidi, Bahram; Anand, Arun

    2017-12-01

    Quantitative three-dimensional (3-D) imaging of living cells provides important information about the cell morphology and its time variation. Off-axis, digital holographic interference microscopy is an ideal tool for 3-D imaging, parameter extraction, and classification of living cells. Two-beam digital holographic microscopes, which are usually employed, provide high-quality 3-D images of micro-objects, albeit with lower temporal stability. Common-path digital holographic geometries, in which the reference beam is derived from the object beam, provide higher temporal stability along with high-quality 3-D images. Self-referencing geometry is the simplest of the common-path techniques, in which a portion of the object beam itself acts as the reference, leading to compact setups using fewer optical elements. However, it has reduced field of view, and the reference may contain object information. Here, we describe the development of a common-path digital holographic microscope, employing a shearing plate and converting one of the beams into a separate reference by employing a pin-hole. The setup is as compact as self-referencing geometry, while providing field of view as wide as that of a two-beam microscope. The microscope is tested by imaging and quantifying the morphology and dynamics of human erythrocytes. (2017) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  3. Synchromodal optical in vivo imaging employing microlens array optics: a complete framework

    NASA Astrophysics Data System (ADS)

    Peter, Joerg

    2013-03-01

    A complete mathematical framework for preclinical optical imaging (OI) support comprising bioluminescence imaging (BLI), fluorescence surface imaging (FSI) and fluorescence optical tomography (FOT) is presented in which optical data is acquired by means of a microlens array (MLA) based light detector (MLA-D). The MLA-D has been developed to enable unique OI, especially in synchromodal operation with secondary imaging modalities (SIM) such as positron emission tomography (PET) or magnetic resonance imaging (MRI). An MLA-D consists of a (large-area) photon sensor array, a matched MLA for field-of-view definition, and a septum mask of specific geometry made of anodized aluminum that is positioned between the sensor and the MLA to suppresses light cross-talk and to shield the sensor's radiofrequency interference signal (essential when used inside an MRI system). The software framework, while freely parameterizable for any MLA-D, is tailored towards an OI prototype system for preclinical SIM application comprising a multitude of cylindrically assembled, gantry-mounted, simultaneously operating MLA-D's. Besides the MLA-D specificity, the framework incorporates excitation and illumination light-source declarations of large-field and point geometry to facilitate multispectral FSI and FOT as well as three-dimensional object recognition. When used in synchromodal operation, reconstructed tomographic SIM volume data can be used for co-modal image fusion and also as a prior for estimating the imaged object's 3D surface by means of gradient vector flow. Superimposed planar (without object prior) or surface-aligned inverse mapping can be performed to estimate and to fuse the emission light map with the boundary of the imaged object. Triangulation and subsequent optical reconstruction (FOT) or constrained flow estimation (BLI), both including the possibility of SIM priors, can be performed to estimate the internal three-dimensional emission light distribution. The framework is susceptible to a number of variables controlling convergence and computational speed. Utilization and performance is illustrated on experimentally acquired data employing the OI prototype system in stand-alone operation, and when integrated into an unmodified preclinical PET system performing synchromodal BLI-PET in vivo imaging.

  4. Fiber Optic Temperature Sensor Based on Multimode Interference Effects

    NASA Astrophysics Data System (ADS)

    Aguilar-Soto, J. G.; Antonio-Lopez, J. E.; Sanchez-Mondragon, J. J.; May-Arrioja, D. A.

    2011-01-01

    A novel fiber optic temperature sensor based on multimode interference was designed, fabricated and tested. The sensor is very simple and inexpensive since we only need to splice a section of multimode fiber between two single mode fibers. Using this device a sensing range of 25°C to 375°C is demonstrated. We should also highlight that due to the pass-band filter response of MMI devices, multiplexing is rather simple by just changing the length of the multimode section.

  5. Interference Phenomenon with Mobile Displays

    ERIC Educational Resources Information Center

    Trantham, Kenneth

    2015-01-01

    A simple experiment is presented in which the spacing and geometric pattern of pixels in mobile displays is measured. The technique is based on optical constructive interference. While the experiment is another opportunity to demonstrate wave interference from a grating-like structure, this can also be used to demonstrate concepts of solid state…

  6. Speckle-based three-dimensional velocity measurement using spatial filtering velocimetry.

    PubMed

    Iversen, Theis F Q; Jakobsen, Michael L; Hanson, Steen G

    2011-04-10

    We present an optical method for measuring the real-time three-dimensional (3D) translational velocity of a diffusely scattering rigid object observed through an imaging system. The method is based on a combination of the motion of random speckle patterns and regular fringe patterns. The speckle pattern is formed in the observation plane of the imaging system due to reflection from an area of the object illuminated by a coherent light source. The speckle pattern translates in response to in-plane translation of the object, and the presence of an angular offset reference wave coinciding with the speckle pattern in the observation plane gives rise to interference, resulting in a fringe pattern that translates in response to the out-of-plane translation of the object. Numerical calculations are performed to evaluate the dynamic properties of the intensity distribution and the response of realistic spatial filters designed to measure the three components of the object's translational velocity. Furthermore, experimental data are presented that demonstrate full 3D velocity measurement. © 2011 Optical Society of America

  7. An integrated instrumental setup for the combination of atomic force microscopy with optical spectroscopy.

    PubMed

    Owen, R J; Heyes, C D; Knebel, D; Röcker, C; Nienhaus, G U

    2006-07-01

    In recent years, the study of single biomolecules using fluorescence microscopy and atomic force microscopy (AFM) techniques has resulted in a plethora of new information regarding the physics underlying these complex biological systems. It is especially advantageous to be able to measure the optical, topographical, and mechanical properties of single molecules simultaneously. Here an AFM is used that is especially designed for integration with an inverted optical microscope and that has a near-infrared light source (850 nm) to eliminate interference between the optical experiment and the AFM operation. The Tip Assisted Optics (TAO) system consists of an additional 100 x 100-microm(2) X-Y scanner for the sample, which can be independently and simultaneously used with the AFM scanner. This allows the offset to be removed between the confocal optical image obtained with the sample scanner and the simultaneously acquired AFM topography image. The tip can be positioned exactly into the optical focus while the user can still navigate within the AFM image for imaging or manipulation of the sample. Thus the tip-enhancement effect can be maximized and it becomes possible to perform single molecule manipulation experiments within the focus of a confocal optical image. Here this is applied to simultaneous measurement of single quantum dot fluorescence and topography with high spatial resolution. (c) 2006 Wiley Periodicals, Inc.

  8. Integrated-optic current sensors with a multimode interference waveguide device.

    PubMed

    Kim, Sung-Moon; Chu, Woo-Sung; Kim, Sang-Guk; Oh, Min-Cheol

    2016-04-04

    Optical current sensors based on polarization-rotated reflection interferometry are demonstrated using polymeric integrated optics and various functional optical waveguide devices. Interferometric sensors normally require bias feedback control for maintaining the operating point, which increases the cost. In order to resolve this constraint of feedback control, a multimode interference (MMI) waveguide device is integrated onto the current-sensor optical chip in this work. From the multiple outputs of the MMI, a 90° phase-shifted transfer function is obtained. Using passive quadrature demodulation, we demonstrate that the sensor could maintain the output signal regardless of the drift in the operating bias-point.

  9. Tailoring double Fano profiles with plasmon-assisted quantum interference in hybrid exciton-plasmon system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Dongxing; Wu, Jiarui; Gu, Ying, E-mail: ygu@pku.edu.cn

    2014-09-15

    We propose tailoring of the double Fano profiles via plasmon-assisted quantum interference in a hybrid exciton-plasmon system. Tailoring is performed by the interference between two exciton channels interacting with a common localized surface plasmon. Using an applied field of low intensity, the absorption spectrum of the hybrid system reveals a double Fano lineshape with four peaks. For relatively large field intensity, a broad flat window in the absorption spectrum appears which results from the destructive interference between excitons. Because of strong constructive interference, this window vanishes as intensity is further increased. We have designed a nanometer bandpass optical filter formore » visible light based on tailoring of the optical spectrum. This study provides a platform for quantum interference that may have potential applications in ultracompact tunable quantum devices.« less

  10. A high-resolution multimode digital microscope system.

    PubMed

    Salmon, Edward D; Shaw, Sidney L; Waters, Jennifer C; Waterman-Storer, Clare M; Maddox, Paul S; Yeh, Elaine; Bloom, Kerry

    2013-01-01

    This chapter describes the development of a high-resolution, multimode digital imaging system based on a wide-field epifluorescent and transmitted light microscope, and a cooled charge-coupled device (CCD) camera. The three main parts of this imaging system are Nikon FXA microscope, Hamamatsu C4880 cooled CCD camera, and MetaMorph digital imaging system. This chapter presents various design criteria for the instrument and describes the major features of the microscope components-the cooled CCD camera and the MetaMorph digital imaging system. The Nikon FXA upright microscope can produce high resolution images for both epifluorescent and transmitted light illumination without switching the objective or moving the specimen. The functional aspects of the microscope set-up can be considered in terms of the imaging optics, the epi-illumination optics, the transillumination optics, the focus control, and the vibration isolation table. This instrument is somewhat specialized for microtubule and mitosis studies, and it is also applicable to a variety of problems in cellular imaging, including tracking proteins fused to the green fluorescent protein in live cells. The instrument is also valuable for correlating the assembly dynamics of individual cytoplasmic microtubules (labeled by conjugating X-rhodamine to tubulin) with the dynamics of membranes of the endoplasmic reticulum (labeled with DiOC6) and the dynamics of the cell cortex (by differential interference contrast) in migrating vertebrate epithelial cells. This imaging system also plays an important role in the analysis of mitotic mutants in the powerful yeast genetic system Saccharomyces cerevisiae. Copyright © 1998 Elsevier Inc. All rights reserved.

  11. Acoustic imaging microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-10-17

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  12. PET and NIR Optical Imaging Using Self-Illuminating 64Cu-Doped Chelator-Free Gold Nanoclusters

    PubMed Central

    Hu, Hao; Huang, Peng; Weiss, Orit Jacobson; Yan, Xuefeng; Yue, Xuyi; Zhang, Molly Gu; Tang, Yuxia; Nie, Liming; Ma, Ying; Niu, Gang; Wu, Kaichun; Chen, Xiaoyuan

    2014-01-01

    Self-illuminating fluorescence imaging without autofluorescence background interference has recently aroused more research interests in molecular imaging. Currently, only a few self-illuminating probes were developed, based mainly on toxic quantum dots such as CdSe, CdTe. Herein, we report a novel design of nontoxic self-illuminating gold nanocluster (64Cu-doped AuNCs) for dual-modality positron emission tomography (PET) and near-infrared (NIR) fluorescence imaging based on Cerenkov resonance energy transfer (CRET). PET radionuclide 64Cu was introduced by a chelator-free doping method, which played dual roles as the energy donor and the PET imaging source. Meanwhile, AuNCs acted as the energy acceptor for NIR fluorescence imaging. 64Cu-doped AuNCs exhibited efficient CRET-NIR and PET imaging both in vitro and in vivo. In a U87MG glioblastoma xenograft model, 64Cu-doped AuNCs showed high tumor uptake (14.9%ID/g at 18 h) and produced satisfactory tumor self-illuminating NIR images in the absence of external excitation. This self-illuminating nanocluster with non-toxicity and good biocompatibility can be employed as a novel imaging contrast agent for biomedical applications, especially for molecular imaging. PMID:25224367

  13. PET and NIR optical imaging using self-illuminating (64)Cu-doped chelator-free gold nanoclusters.

    PubMed

    Hu, Hao; Huang, Peng; Weiss, Orit Jacobson; Yan, Xuefeng; Yue, Xuyi; Zhang, Molly Gu; Tang, Yuxia; Nie, Liming; Ma, Ying; Niu, Gang; Wu, Kaichun; Chen, Xiaoyuan

    2014-12-01

    Self-illuminating fluorescence imaging without autofluorescence background interference has recently aroused more research interests in molecular imaging. Currently, only a few self-illuminating probes were developed, based mainly on toxic quantum dots such as CdSe, CdTe. Herein, we report a novel design of nontoxic self-illuminating gold nanocluster ((64)Cu-doped AuNCs) for dual-modality positron emission tomography (PET) and near-infrared (NIR) fluorescence imaging based on Cerenkov resonance energy transfer (CRET). PET radionuclide (64)Cu was introduced by a chelator-free doping method, which played dual roles as the energy donor and the PET imaging source. Meanwhile, AuNCs acted as the energy acceptor for NIR fluorescence imaging. (64)Cu-doped AuNCs exhibited efficient CRET-NIR and PET imaging both in vitro and in vivo. In a U87MG glioblastoma xenograft model, (64)Cu-doped AuNCs showed high tumor uptake (14.9 %ID/g at 18 h) and produced satisfactory tumor self-illuminating NIR images in the absence of external excitation. This self-illuminating nanocluster with non-toxicity and good biocompatibility can be employed as a novel imaging contrast agent for biomedical applications, especially for molecular imaging. Published by Elsevier Ltd.

  14. Optical coherence tomography as an accurate inspection and quality evaluation technique in paper industry

    NASA Astrophysics Data System (ADS)

    Prykäri, Tuukka; Czajkowski, Jakub; Alarousu, Erkki; Myllylä, Risto

    2010-05-01

    Optical coherence tomography (OCT), a technique for the noninvasive imaging of turbid media, based on low-coherence interferometry, was originally developed for the imaging of biological tissues. Since the development of the technique, most of its applications have been related to the area of biomedicine. However, from early stages, the vertical resolution of the technique has already been improved to a submicron scale. This enables new possibilities and applications. This article presents the possible applications of OCT in paper industry, where submicron or at least a resolution close to one micron is required. This requirement comes from the layered structure of paper products, where layer thickness may vary from single microns to tens of micrometers. This is especially similar to the case with high-quality paper products, where several different coating layers are used to obtain a smooth surface structure and a high gloss. In this study, we demonstrate that optical coherence tomography can be used to measure and evaluate the quality of the coating layer of a premium glossy photopaper. In addition, we show that for some paper products, it is possible to measure across the entire thickness range of a paper sheet. Furthermore, we suggest that in addition to topography and tomography images of objects, it is possible to obtain information similar to gloss by tracking the magnitude of individual interference signals in optical coherence tomography.

  15. A phaseonium magnetometer: A new optical magnetometer based on index enhanced media

    NASA Technical Reports Server (NTRS)

    Scully, Marlan O.; Fleischauer, Michael; Graf, Martin

    1993-01-01

    An optical magnetometer based on quantum coherence and interference effects in atoms is proposed. The sensitivity of this device is potentially superior to the present state-of-the-art devices. Optimum operating conditions are derived, and a comparison to standard optical pumping magnetometers is made.

  16. Polarization microscopy by use of digital holography: application to optical-fiber birefringence measurements.

    PubMed

    Colomb, Tristan; Dürr, Florian; Cuche, Etienne; Marquet, Pierre; Limberger, Hans G; Salathé, René-Paul; Depeursinge, Christian

    2005-07-20

    We present a digital holographic microscope that permits one to image polarization state. This technique results from the coupling of digital holographic microscopy and polarization digital holography. The interference between two orthogonally polarized reference waves and the wave transmitted by a microscopic sample, magnified by a microscope objective, is recorded on a CCD camera. The off-axis geometry permits one to reconstruct separately from this single hologram two wavefronts that are used to image the object-wave Jones vector. We applied this technique to image the birefringence of a bent fiber. To evaluate the precision of the phase-difference measurement, the birefringence induced by internal stress in an optical fiber is measured and compared to the birefringence profile captured by a standard method, which had been developed to obtain high-resolution birefringence profiles of optical fibers.

  17. Shear wave speed recovery using moving interference patterns obtained in sonoelastography experiments.

    PubMed

    McLaughlin, Joyce; Renzi, Daniel; Parker, Kevin; Wu, Zhe

    2007-04-01

    Two new experiments were created to characterize the elasticity of soft tissue using sonoelastography. In both experiments the spectral variance image displayed on a GE LOGIC 700 ultrasound machine shows a moving interference pattern that travels at a very small fraction of the shear wave speed. The goal of this paper is to devise and test algorithms to calculate the speed of the moving interference pattern using the arrival times of these same patterns. A geometric optics expansion is used to obtain Eikonal equations relating the moving interference pattern arrival times to the moving interference pattern speed and then to the shear wave speed. A cross-correlation procedure is employed to find the arrival times; and an inverse Eikonal solver called the level curve method computes the speed of the interference pattern. The algorithm is tested on data from a phantom experiment performed at the University of Rochester Center for Biomedical Ultrasound.

  18. Establishing Information Security Systems via Optical Imaging

    DTIC Science & Technology

    2015-08-11

    SLM, spatial light modulator; BSC, non - polarizing beam splitter cube; CCD, charge-coupled device. In computational ghost imaging, a series of...Laser Object Computer Fig. 5. A schematic setup for the proposed method using holography: BSC, Beam splitter cube; CCD, Charge-coupled device. The...interference between reference and object beams . (a) (e) (d) (c) (b) Distribution Code A: Approved for public release, distribution is unlimited

  19. Low cost label-free live cell imaging for biological samples

    NASA Astrophysics Data System (ADS)

    Seniya, C.; Towers, C. E.; Towers, D. P.

    2017-02-01

    This paper reports the progress to develop a practical phase measuring microscope offering new capabilities in terms of phase measurement accuracy and quantification of cell:cell interactions over the longer term. A novel, low cost phase interference microscope for imaging live cells (label-free) is described. The method combines the Zernike phase contrast approach with a dual mirror design to enable phase modulation between the scattered and un-scattered optical fields. Two designs are proposed and demonstrated, one of which retains the common path nature of Zernike's original microscopy concept. In both setups the phase shift is simple to control via a piezoelectric driven mirror in the back focal plane of the imaging system. The approach is significantly cheaper to implement than those based on spatial light modulators (SLM) at approximately 20% of the cost. A quantitative assessment of the performance of a set of phase shifting algorithms is also presented, specifically with regard to broad bandwidth illumination in phase contrast microscopy. The simulation results show that the phase measurement accuracy is strongly dependent on the algorithm selected and the optical path difference in the sample.

  20. Towards an Imaging Mid-Infrared Heterodyne Spectrometer

    NASA Technical Reports Server (NTRS)

    Hewagama, T.; Aslam, S.; Jones, H.; Kostiuk, T.; Villanueva, G.; Roman, P.; Shaw, G. B.; Livengood, T.; Allen, J. E.

    2012-01-01

    We are developing a concept for a compact, low-mass, low-power, mid-infrared (MIR; 5- 12 microns) imaging heterodyne spectrometer that incorporates fiber optic coupling, Quantum Cascade Laser (QCL) local oscillator, photomixer array, and Radio Frequency Software Defined Readout (RFSDR) for spectral analysis. Planetary Decadal Surveys have highlighted the need for miniaturized, robust, low-mass, and minimal power remote sensing technologies for flight missions. The drive for miniaturization of remote sensing spectroscopy and radiometry techniques has been a continuing process. The advent of MIR fibers, and MEMS techniques for producing waveguides has proven to be an important recent advancement for miniaturization of infrared spectrometers. In conjunction with well-established photonics techniques, the miniaturization of spectrometers is transitioning from classic free space optical systems to waveguide/fiber-based structures for light transport and producing interference effects. By their very nature, these new devices are compact and lightweight. Mercury-Cadmium-Telluride (MCT) and Quantum Well Infrared Photodiodes (QWIP) arrays for heterodyne applications are also being developed. Bulky electronics is another barrier that precluded the extension of heterodyne systems into imaging applications, and our RFSDR will address this aspect.

  1. LASER BIOLOGY: Peculiarities of studying an isolated neuron by the method of laser interference microscopy

    NASA Astrophysics Data System (ADS)

    Yusipovich, Alexander I.; Novikov, Sergey M.; Kazakova, Tatiana A.; Erokhova, Liudmila A.; Brazhe, Nadezda A.; Lazarev, Grigory L.; Maksimov, Georgy V.

    2006-09-01

    Actual aspects of using a new method of laser interference microscopy (LIM) for studying nerve cells are discussed. The peculiarities of the LIM display of neurons are demonstrated by the example of isolated neurons of a pond snail Lymnaea stagnalis. A comparative analysis of the images of the cell and subcellular structures of a neuron obtained by the methods of interference microscopy, optical transmission microscopy, and confocal microscopy is performed. Various aspects of the application of LIM for studying the lateral dimensions and internal structure of the cytoplasm and organelles of a neuron in cytology and cell physiology are discussed.

  2. Optical magnetic imaging of living cells

    PubMed Central

    Le Sage, D.; Arai, K.; Glenn, D. R.; DeVience, S. J.; Pham, L. M.; Rahn-Lee, L.; Lukin, M. D.; Yacoby, A.; Komeili, A.; Walsworth, R. L.

    2013-01-01

    Magnetic imaging is a powerful tool for probing biological and physical systems. However, existing techniques either have poor spatial resolution compared to optical microscopy and are hence not generally applicable to imaging of sub-cellular structure (e.g., magnetic resonance imaging [MRI]1), or entail operating conditions that preclude application to living biological samples while providing sub-micron resolution (e.g., scanning superconducting quantum interference device [SQUID] microscopy2, electron holography3, and magnetic resonance force microscopy [MRFM]4). Here we demonstrate magnetic imaging of living cells (magnetotactic bacteria) under ambient laboratory conditions and with sub-cellular spatial resolution (400 nm), using an optically-detected magnetic field imaging array consisting of a nanoscale layer of nitrogen-vacancy (NV) colour centres implanted at the surface of a diamond chip. With the bacteria placed on the diamond surface, we optically probe the NV quantum spin states and rapidly reconstruct images of the vector components of the magnetic field created by chains of magnetic nanoparticles (magnetosomes) produced in the bacteria, and spatially correlate these magnetic field maps with optical images acquired in the same apparatus. Wide-field sCMOS acquisition allows parallel optical and magnetic imaging of multiple cells in a population with sub-micron resolution and >100 micron field-of-view. Scanning electron microscope (SEM) images of the bacteria confirm that the correlated optical and magnetic images can be used to locate and characterize the magnetosomes in each bacterium. The results provide a new capability for imaging bio-magnetic structures in living cells under ambient conditions with high spatial resolution, and will enable the mapping of a wide range of magnetic signals within cells and cellular networks5, 6. PMID:23619694

  3. Can the RUVIS reflected UV imaging system visualize fingerprint corrosion on brass cartridge casings postfiring?

    PubMed

    Leintz, Rachel; Bond, John W

    2013-05-01

    Comparisons are made between the visualization of fingerprint corrosion ridge detail on fired brass cartridge casings, where fingerprint sweat was deposited prefiring, using both ultraviolet (UV) and visible (natural daylight) light sources. A reflected ultraviolet imaging system (RUVIS), normally used for visualizing latent fingerprint sweat deposits, is compared with optical interference and digital color mapping of visible light, the latter using apparatus constructed to easily enable selection of the optimum viewing angle. Results show that reflected UV, with a monochromatic UV source of 254 nm, was unable to visualize fingerprint ridge detail on any of 12 casings analyzed, whereas optical interference and digital color mapping using natural daylight yielded ridge detail on three casings. Reasons for the lack of success with RUVIS are discussed in terms of the variation in thickness of the thin film of metal oxide corrosion and absorption wavelengths for the corrosion products of brass. © 2013 American Academy of Forensic Sciences.

  4. High performace silicon 2x2 optical switch based on a thermo-optically tunable multimode interference coupler and efficient electrodes.

    PubMed

    Rosa, Álvaro; Gutiérrez, Ana; Brimont, Antoine; Griol, Amadeu; Sanchis, Pablo

    2016-01-11

    Optical switches based on tunable multimode interference (MMI) couplers can simultaneously reduce the footprint and increase the tolerance against fabrication deviations. Here, a compact 2x2 silicon switch based on a thermo-optically tunable MMI structure with a footprint of only 0.005 mm(2) is proposed and demonstrated. The MMI structure has been optimized using a silica trench acting as a thermal isolator without introducing any substantial loss penalty or crosstalk degradation. Furthermore, the electrodes performance have significantly been improved via engineering the heater geometry and using two metallization steps. Thereby, a drastic power consumption reduction of around 90% has been demonstrated yielding to values as low as 24.9 mW. Furthermore, very fast switching times of only 1.19 µs have also been achieved.

  5. Quantitative phase measurement for wafer-level optics

    NASA Astrophysics Data System (ADS)

    Qu, Weijuan; Wen, Yongfu; Wang, Zhaomin; Yang, Fang; Huang, Lei; Zuo, Chao

    2015-07-01

    Wafer-level-optics now is widely used in smart phone camera, mobile video conferencing or in medical equipment that require tiny cameras. Extracting quantitative phase information has received increased interest in order to quantify the quality of manufactured wafer-level-optics, detect defective devices before packaging, and provide feedback for manufacturing process control, all at the wafer-level for high-throughput microfabrication. We demonstrate two phase imaging methods, digital holographic microscopy (DHM) and Transport-of-Intensity Equation (TIE) to measure the phase of the wafer-level lenses. DHM is a laser-based interferometric method based on interference of two wavefronts. It can perform a phase measurement in a single shot. While a minimum of two measurements of the spatial intensity of the optical wave in closely spaced planes perpendicular to the direction of propagation are needed to do the direct phase retrieval by solving a second-order differential equation, i.e., with a non-iterative deterministic algorithm from intensity measurements using the Transport-of-Intensity Equation (TIE). But TIE is a non-interferometric method, thus can be applied to partial-coherence light. We demonstrated the capability and disability for the two phase measurement methods for wafer-level optics inspection.

  6. Fan-beam scanning laser optical computed tomography for large volume dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, K. H.; Battista, J. J.; Jordan, K. J.

    2017-05-01

    A prototype scanning-laser fan beam optical CT scanner is reported which is capable of high resolution, large volume dosimetry with reasonable scan time. An acylindrical, asymmetric aquarium design is presented which serves to 1) generate parallel-beam scan geometry, 2) focus light towards a small acceptance angle detector, and 3) avoid interference fringe-related artifacts. Preliminary experiments with uniform solution phantoms (11 and 15 cm diameter) and finger phantoms (13.5 mm diameter FEP tubing) demonstrate that the design allows accurate optical CT imaging, with optical CT measurements agreeing within 3% of independent Beer-Lambert law calculations.

  7. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    DOE PAGES

    Piazza, L.; Lummen, T. T. A.; Quiñonez, E.; ...

    2015-03-02

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinducedmore » near-field is imaged synchronously with its spatial interference pattern. In conclusion, this methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits.« less

  8. Simultaneous observation of the quantization and the interference pattern of a plasmonic near-field

    PubMed Central

    Piazza, L; Lummen, T.T.A.; Quiñonez, E; Murooka, Y; Reed, B.W.; Barwick, B; Carbone, F

    2015-01-01

    Surface plasmon polaritons can confine electromagnetic fields in subwavelength spaces and are of interest for photonics, optical data storage devices and biosensing applications. In analogy to photons, they exhibit wave–particle duality, whose different aspects have recently been observed in separate tailored experiments. Here we demonstrate the ability of ultrafast transmission electron microscopy to simultaneously image both the spatial interference and the quantization of such confined plasmonic fields. Our experiments are accomplished by spatiotemporally overlapping electron and light pulses on a single nanowire suspended on a graphene film. The resulting energy exchange between single electrons and the quanta of the photoinduced near-field is imaged synchronously with its spatial interference pattern. This methodology enables the control and visualization of plasmonic fields at the nanoscale, providing a promising tool for understanding the fundamental properties of confined electromagnetic fields and the development of advanced photonic circuits. PMID:25728197

  9. A Quantum Field Approach for Advancing Optical Coherence Tomography Part I: First Order Correlations, Single Photon Interference, and Quantum Noise

    PubMed Central

    Brezinski, ME

    2018-01-01

    Optical coherence tomography has become an important imaging technology in cardiology and ophthalmology, with other applications under investigations. Major advances in optical coherence tomography (OCT) imaging are likely to occur through a quantum field approach to the technology. In this paper, which is the first part in a series on the topic, the quantum basis of OCT first order correlations is expressed in terms of full field quantization. Specifically first order correlations are treated as the linear sum of single photon interferences along indistinguishable paths. Photons and the electromagnetic (EM) field are described in terms of quantum harmonic oscillators. While the author feels the study of quantum second order correlations will lead to greater paradigm shifts in the field, addressed in part II, advances from the study of quantum first order correlations are given. In particular, ranging errors are discussed (with remedies) from vacuum fluctuations through the detector port, photon counting errors, and position probability amplitude uncertainty. In addition, the principles of quantum field theory and first order correlations are needed for studying second order correlations in part II. PMID:29863177

  10. Near-field optical technique applied for investigation of the characteristics of polymer fiber and waveguide structures.

    PubMed

    Ming, Hai; Tang, Lin; Sun, Xiaohong; Zhang, Jiangying; Wang, Pei; Lu, Yonghua; Bai, Ming; Guo, Yang; Xie, Aifang; Zhang, Zebo

    2004-01-01

    This article summarizes the near-field optical technique applied for investigating the characteristics of polymer fiber and waveguide structures. The near-field optical technique is used to analyze multimode interference structures of fiber. The localized fluctuation of the transmission caused by fractal cluster is carried out in Nd3+- and Eu3+-doped polymer fiber and film by means of a scanning near-field optical microscopy. The near-field optical spectrum of Nd3+-doped polymer fiber is investigated. The topography and near-field intensity images of Azo-polymer liquid crystal film for waveguide are obtained simultaneously.

  11. The phase interrogation method for optical fiber sensor by analyzing the fork interference pattern

    NASA Astrophysics Data System (ADS)

    Lv, Riqing; Qiu, Liqiang; Hu, Haifeng; Meng, Lu; Zhang, Yong

    2018-02-01

    The phase interrogation method for optical fiber sensor is proposed based on the fork interference pattern between the orbital angular momentum beam and plane wave. The variation of interference pattern with phase difference between the two light beams is investigated to realize the phase interrogation. By employing principal component analysis method, the features of the interference pattern can be extracted. Moreover, the experimental system is designed to verify the theoretical analysis, as well as feasibility of phase interrogation. In this work, the Mach-Zehnder interferometer was employed to convert the strain applied on sensing fiber to the phase difference between the reference and measuring paths. This interrogation method is also applicable for the measurements of other physical parameters, which can produce the phase delay in optical fiber. The performance of the system can be further improved by employing highlysensitive materials and fiber structures.

  12. Interferometric imaging using Si3N4 photonic integrated circuits for a SPIDER imager.

    PubMed

    Su, Tiehui; Liu, Guangyao; Badham, Katherine E; Thurman, Samuel T; Kendrick, Richard L; Duncan, Alan; Wuchenich, Danielle; Ogden, Chad; Chriqui, Guy; Feng, Shaoqi; Chun, Jaeyi; Lai, Weicheng; Yoo, S J B

    2018-05-14

    This paper reports design, fabrication, and experimental demonstration of a silicon nitride photonic integrated circuit (PIC). The PIC is capable of conducting one-dimensional interferometric imaging with twelve baselines near λ = 1100-1600 nm. The PIC consists of twelve waveguide pairs, each leading to a multi-mode interferometer (MMI) that forms broadband interference fringes or each corresponding pair of the waveguides. Then an 18 channel arrayed waveguide grating (AWG) separates the combined signal into 18 signals of different wavelengths. A total of 103 sets of fringes are collected by the detector array at the output of the PIC. We keep the optical path difference (OPD) of each interferometer baseline to within 1 µm to maximize the visibility of the interference measurement. We also constructed a testbed to utilize the PIC for two-dimension complex visibility measurement with various targets. The experiment shows reconstructed images in good agreement with theoretical predictions.

  13. Label-free tomographic reconstruction of optically thick structures using GLIM (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Kandel, Mikhail E.; Kouzehgarani, Ghazal N.; Ngyuen, Tan H.; Gillette, Martha U.; Popescu, Gabriel

    2017-02-01

    Although the contrast generated in transmitted light microscopy is due to the elastic scattering of light, multiple scattering scrambles the image and reduces overall visibility. To image both thin and thick samples, we turn to gradient light interference microscopy (GLIM) to simultaneously measure morphological parameters such as cell mass, volume, and surfaces as they change through time. Because GLIM combines multiple intensity images corresponding to controlled phase offsets between laterally sheared beams, incoherent contributions from multiple scattering are implicitly cancelled during the phase reconstruction procedure. As the interfering beams traverse near identical paths, they remain comparable in power and interfere with optimal contrast. This key property lets us obtain tomographic parameters from wide field z-scans after simple numerical processing. Here we show our results on reconstructing tomograms of bovine embryos, characterizing the time-lapse growth of HeLa cells in 3D, and preliminary results on imaging much larger specimen such as brain slices.

  14. Imaging birefringent crystals using micro optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Sharma, Gargi; Singh, Kanwarpal; Gardecki, Joseph A.; Tearney, Guillermo J.

    2017-02-01

    Background: Uric acid crystals have recently been identified as a possible therapeutic target for coronary artery disease. Being subcellular in size, it is difficult to identify these crystals in situ. Micro optical coherence tomography (Micro-OCT) allows one to image subcellular structures with 1-micron resolution. Even though Micro-OCT should be capable of resolving urate crystals, it's difficult to differentiate these structures from other scattering particles within tissue. In this work we developed a novel polarization sensitive micro OCT (ps-Micro-OCT) system for identification of uric acid crystals. Methods: A spectrometer based ps-Micro-OCT system was developed using a broadband light source. The broadband input light was divided into reference and sample signals using a beam splitter. The reference signal was further divided into two polarized signals with different polarization states. Reflected reference and sample signals were combined and sent to a spectrometer that recorded the interference signal. Results: To test the performance of system, a mirror was used as sample and a quarter wave-plate was placed in the sample path. The measured quarter wave-plate angle values matched closely to actual angle values. Next we prepared uric acid crystals in our lab and imaged them using this system.We were able to image and identify these crystals based on polarization measurements. Conclusion: In this work we imaged and identified uric acid crystals using a newly developed ps-Micro-OCT system. The proposed technique will enable imaging uric acid crystals in coronary artery.

  15. Simultaneous acquisition of multislice PET and MR images: initial results with a MR-compatible PET scanner.

    PubMed

    Catana, Ciprian; Wu, Yibao; Judenhofer, Martin S; Qi, Jinyi; Pichler, Bernd J; Cherry, Simon R

    2006-12-01

    PET and MRI are powerful imaging techniques that are largely complementary in the information they provide. We have designed and built a MR-compatible PET scanner based on avalanche photodiode technology that allows simultaneous acquisition of PET and MR images in small animals. The PET scanner insert uses magnetic field-insensitive, position-sensitive avalanche photodiode (PSAPD) detectors coupled, via short lengths of optical fibers, to arrays of lutetium oxyorthosilicate (LSO) scintillator crystals. The optical fibers are used to minimize electromagnetic interference between the radiofrequency and gradient coils and the PET detector system. The PET detector module components and the complete PET insert assembly are described. PET data were acquired with and without MR sequences running, and detector flood histograms were compared with the ones generated from the data acquired outside the magnet. A uniform MR phantom was also imaged to assess the effect of the PET detector on the MR data acquisition. Simultaneous PET and MRI studies of a mouse were performed ex vivo. PSAPDs can be successfully used to read out large numbers of scintillator crystals coupled through optical fibers with acceptable performance in terms of energy and timing resolution and crystal identification. The PSAPD-LSO detector performs well in the 7-T magnet, and no visible artifacts are detected in the MR images using standard pulse sequences. The first images from the complete system have been successfully acquired and reconstructed, demonstrating that simultaneous PET and MRI studies are feasible and opening up interesting possibilities for dual-modality molecular imaging studies.

  16. Differential phase optical coherence probe for depth-resolved detection of photothermal response in tissue.

    PubMed

    Telenkov, Sergey A; Dave, Digant P; Sethuraman, Shriram; Akkin, Taner; Milner, Thomas E

    2004-01-07

    We describe a differential phase low-coherence interferometric probe for non-invasive, quantitative imaging of photothermal phenomena in biological materials. Our detection method utilizes principles of optical coherence tomography with differential phase measurement of interference fringe signals. A dual-channel optical low-coherence probe is used to analyse laser-induced thermoelastic and thermorefractive effects in tissue with micrometre axial resolution and nanometre sensitivity. We demonstrate an application of the technique using tissue phantoms and ex-vivo tissue specimens of rodent dorsal skin.

  17. Two-dimensional tracking of a motile micro-organism allowing high-resolution observation with various imaging techniques

    NASA Astrophysics Data System (ADS)

    Oku, H.; Ogawa, N.; Ishikawa, M.; Hashimoto, K.

    2005-03-01

    In this article, a micro-organism tracking system using a high-speed vision system is reported. This system two dimensionally tracks a freely swimming micro-organism within the field of an optical microscope by moving a chamber of target micro-organisms based on high-speed visual feedback. The system we developed could track a paramecium using various imaging techniques, including bright-field illumination, dark-field illumination, and differential interference contrast, at magnifications of 5 times and 20 times. A maximum tracking duration of 300s was demonstrated. Also, the system could track an object with a velocity of up to 35 000μm/s (175diameters/s), which is significantly faster than swimming micro-organisms.

  18. Phase-shifting point diffraction interferometer

    DOEpatents

    Medecki, H.

    1998-11-10

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams. 8 figs.

  19. Phase-shifting point diffraction interferometer

    DOEpatents

    Medecki, Hector

    1998-01-01

    Disclosed is a point diffraction interferometer for evaluating the quality of a test optic. In operation, the point diffraction interferometer includes a source of radiation, the test optic, a beam divider, a reference wave pinhole located at an image plane downstream from the test optic, and a detector for detecting an interference pattern produced between a reference wave emitted by the pinhole and a test wave emitted from the test optic. The beam divider produces separate reference and test beams which focus at different laterally separated positions on the image plane. The reference wave pinhole is placed at a region of high intensity (e.g., the focal point) for the reference beam. This allows reference wave to be produced at a relatively high intensity. Also, the beam divider may include elements for phase shifting one or both of the reference and test beams.

  20. Miniaturized optical wavelength sensors

    NASA Astrophysics Data System (ADS)

    Kung, Helen Ling-Ning

    Recently semiconductor processing technology has been applied to the miniaturization of optical wavelength sensors. Compact sensors enable new applications such as integrated diode-laser wavelength monitors and frequency lockers, portable chemical and biological detection, and portable and adaptive hyperspectral imaging arrays. Small sensing systems have trade-offs between resolution, operating range, throughput, multiplexing and complexity. We have developed a new wavelength sensing architecture that balances these parameters for applications involving hyperspectral imaging spectrometer arrays. In this thesis we discuss and demonstrate two new wavelength-sensing architectures whose single-pixel designs can easily be extended into spectrometer arrays. The first class of devices is based on sampling a standing wave. These devices are based on measuring the wavelength-dependent period of optical standing waves formed by the interference of forward and reflected waves at a mirror. We fabricated two different devices based on this principle. The first device is a wavelength monitor, which measures the wavelength and power of a monochromatic source. The second device is a spectrometer that can also act as a selective spectral coherence sensor. The spectrometer contains a large displacement piston-motion MEMS mirror and a thin GaAs photodiode flip-chip bonded to a quartz substrate. The performance of this spectrometer is similar to that of a Michelson in resolution, operating range, throughput and multiplexing but with the added advantages of fewer components and one-dimensional architecture. The second class of devices is based on the Talbot self-imaging effect. The Talbot effect occurs when a periodic object is illuminated with a spatially coherent wave. Periodically spaced self-images are formed behind the object. The spacing of the self-images is proportional to wavelength of the incident light. We discuss and demonstrate how this effect can be used for spectroscopy. In the conclusion we compare these two new miniaturized spectrometer architectures to existing miniaturized spectrometers. We believe that the combination of miniaturized wavelength sensors and smart processing should facilitate the development real-time, adaptive and portable sensing systems.

  1. Improved recovery of the hemodynamic response in Diffuse Optical Imaging using short optode separations and state-space modeling

    PubMed Central

    Gagnon, Louis; Perdue, Katherine; Greve, Douglas N.; Goldenholz, Daniel; Kaskhedikar, Gayatri; Boas, David A.

    2011-01-01

    Diffuse Optical Imaging (DOI) allows the recovery of the hemodynamic response associated with evoked brain activity. The signal is contaminated with systemic physiological interference which occurs in the superficial layers of the head as well as in the brain tissue. The back-reflection geometry of the measurement makes the DOI signal strongly contaminated by systemic interference occurring in the superficial layers. A recent development has been the use of signals from small source-detector separation (1 cm) optodes as regressors. Since those additional measurements are mainly sensitive to superficial layers in adult humans, they help in removing the systemic interference present in longer separation measurements (3 cm). Encouraged by those findings, we developed a dynamic estimation procedure to remove global interference using small optode separations and to estimate simultaneously the hemodynamic response. The algorithm was tested by recovering a simulated synthetic hemodynamic response added over baseline DOI data acquired from 6 human subjects at rest. The performance of the algorithm was quantified by the Pearson R2 coefficient and the mean square error (MSE) between the recovered and the simulated hemodynamic responses. Our dynamic estimator was also compared with a static estimator and the traditional adaptive filtering method. We observed a significant improvement (two-tailed paired t-test, p < 0.05) in both HbO and HbR recovery using our Kalman filter dynamic estimator compared to the traditional adaptive filter, the static estimator and the standard GLM technique. PMID:21385616

  2. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry.

    PubMed

    Farinas, J; Verkman, A S

    1996-12-01

    The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers.

  3. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film

    NASA Astrophysics Data System (ADS)

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-01

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  4. Ultra-Sensitive Strain Sensor Based on Flexible Poly(vinylidene fluoride) Piezoelectric Film.

    PubMed

    Lu, Kai; Huang, Wen; Guo, Junxiong; Gong, Tianxun; Wei, Xiongbang; Lu, Bing-Wei; Liu, Si-Yi; Yu, Bin

    2018-03-14

    A flexible 4 × 4 sensor array with 16 micro-scale capacitive units has been demonstrated based on flexible piezoelectric poly(vinylidene fluoride) (PVDF) film. The piezoelectricity and surface morphology of the PVDF were examined by optical imaging and piezoresponse force microscopy (PFM). The PFM shows phase contrast, indicating clear interface between the PVDF and electrode. The electro-mechanical properties show that the sensor exhibits excellent output response and an ultra-high signal-to-noise ratio. The output voltage and the applied pressure possess linear relationship with a slope of 12 mV/kPa. The hold-and-release output characteristics recover in less than 2.5 μs, demonstrating outstanding electro-mechanical response. Additionally, signal interference between the adjacent arrays has been investigated via theoretical simulation. The results show the interference reduces with decreasing pressure at a rate of 0.028 mV/kPa, highly scalable with electrode size and becoming insignificant for pressure level under 178 kPa.

  5. Interference-Assisted Techniques for Transmission and Multiple Access in Optical Communications

    NASA Astrophysics Data System (ADS)

    Guan, Xun

    Optical communications can be in wired or wireless form. Fiber optics communication (FOC) connects transmitters and receivers with optical fiber. Benefiting from its high bandwidth, low cost per volume and stability, it gains a significant market share in long-haul networks, access networks and data centers. Meanwhile, optical wireless communication (OWC) is also emerging as a crucial player in the communication market. In OWC, free-space optical communication (FSO) and visible light communication (VLC) are being studied and commercially deployed extensively. Interference is a common phenomenon in multi-user communication systems. In both FOC and OWC, interference has long been treated as a detrimental effect. However, it could also be beneficial to system applications. The effort of harnessing interference has spurred numerous innovations. Interesting examples are physical-layer network coding (PNC) and non-orthogonal multiple access (NOMA). The first part of this thesis in on the topic of PNC. PNC was firstly proposed in wireless communication to improve the throughput of a two-way relay network (TWRN). As a variation of network coding (NC), PNC turns the common channel interference (CCI) as a natural network coding operation. In this thesis, PNC is introduced into optical communication. Three schemes are proposed in different scenarios. Firstly, PNC is applied to a coherent optical orthogonal frequency division multiplexing (CO-OFDM) system so as to improve the throughput of the multicast network. The optical signal to noise ratio (OSNR) penalty is quite low. Secondly, we investigate the application of PNC in an OFDM passive optical network (OFDM-PON) supporting heterogeneous services. It is found that only minor receiver power penalties are observed to realize PNC-based virtual private networks (VPN), both in the wired service part and the wireless service part in an OFDM-PON with heterogeneous services. Thirdly, we innovate relay-based visible light communication (VLC) by adopting PNC, with a newly proposed phase-aligning method. PNC could improve the throughput at the bottlenecking relay node in a VLC system, and the proposed phase aligning method can improve the BER performance. The second part of this thesis discusses another interference-assisted technology in communication, that is, non-orthogonal multiple access (NOMA). NOMA multiplexes signals from multiple users in another dimension: power domain, with a non-orthogonal multiplexing in other dimensions such as time, frequency and code. Three schemes are proposed in this part. The first and the second schemes both realize NOMA in VLC, with different multiuser detection (MUD) techniques and a proposed phase pre-distortion method. Although both can decrease the system BER compared to conventional NOMA, the scheme using joint detection (JD) outperforms the one using successive interference cancellation (SIC). The third scheme investigated in this part is a combination of NOMA and a multicarrier precoding (MP) technology based on an orthogonal circulant transform matrix (OCT). This combination can avoid the complicated adaptive bit loading or electronic equalization, making NOMA more attractive in a practical system.

  6. Diffractive centrosymmetric 3D-transmission phase gratings positioned at the image plane of optical systems transform lightlike 4D-WORLD as tunable resonators into spectral metrics...

    NASA Astrophysics Data System (ADS)

    Lauinger, Norbert

    1999-08-01

    Diffractive 3D phase gratings of spherical scatterers dense in hexagonal packing geometry represent adaptively tunable 4D-spatiotemporal filters with trichromatic resonance in visible spectrum. They are described in the (lambda) - chromatic and the reciprocal (nu) -aspects by reciprocal geometric translations of the lightlike Pythagoras theorem, and by the direction cosine for double cones. The most elementary resonance condition in the lightlike Pythagoras theorem is given by the transformation of the grating constants gx, gy, gz of the hexagonal 3D grating to (lambda) h1h2h3 equals (lambda) 111 with cos (alpha) equals 0.5. Through normalization of the chromaticity in the von Laue-interferences to (lambda) 111, the (nu) (lambda) equals (lambda) h1h2h3/(lambda) 111-factor of phase velocity becomes the crucial resonance factor, the 'regulating device' of the spatiotemporal interaction between 3D grating and light, space and time. In the reciprocal space equal/unequal weights and times in spectral metrics result at positions of interference maxima defined by hyperbolas and circles. A database becomes built up by optical interference for trichromatic image preprocessing, motion detection in vector space, multiple range data analysis, patchwide multiple correlations in the spatial frequency spectrum, etc.

  7. Transverse correlations in triphoton entanglement: Geometrical and physical optics

    NASA Astrophysics Data System (ADS)

    Wen, Jianming; Xu, P.; Rubin, Morton H.; Shih, Yanhua

    2007-08-01

    The transverse correlation of triphoton entanglement generated within a single crystal is analyzed. Among many interesting features of the transverse correlation, they arise from the spectral function F of the triphoton state produced in the parametric processes. One consequence of transverse effects of entangled states is quantum imaging, which is theoretically studied in photon counting measurements. Klyshko’s two-photon advanced-wave picture is found to be applicable to the multiphoton entanglement with some modifications. We found that in the two-photon coincidence counting measurement by using triphoton entanglement, although the Gaussian thin lens equation (GTLE) holds, the imaging shown in coincidences is obscure and has a poor quality. This is because of tracing the remaining transverse modes in the untouched beam. In the triphoton imaging experiments, two kinds of cases have been examined. For the case that only one object with one thin lens is placed in the system, we found that the GTLE holds as expected in the triphoton coincidences and the effective distance between the lens and imaging plane is the parallel combination of two distances between the lens and two detectors weighted by wavelengths, which behaves as the parallel combination of resistors in the electromagnetism theory. Only in this case, a point-point correspondence for forming an image is well-accomplished. However, when two objects or two lenses are inserted in the system, though the GTLEs are well-satisfied, in general a point-point correspondence for imaging cannot be established. Under certain conditions, two blurred images may be observed in the coincidence counts. We have also studied the ghost interference-diffraction experiments by using double slits as apertures in triphoton entanglement. It was found that when two double slits are used in two optical beams, the interference-diffraction patterns show unusual features compared with the two-photon case. This unusual behavior is a destructive interference between two amplitudes for two photons crossing two double slits.

  8. Imaging and sizing of single DNA molecules on a mobile phone.

    PubMed

    Wei, Qingshan; Luo, Wei; Chiang, Samuel; Kappel, Tara; Mejia, Crystal; Tseng, Derek; Chan, Raymond Yan Lok; Yan, Eddie; Qi, Hangfei; Shabbir, Faizan; Ozkan, Haydar; Feng, Steve; Ozcan, Aydogan

    2014-12-23

    DNA imaging techniques using optical microscopy have found numerous applications in biology, chemistry and physics and are based on relatively expensive, bulky and complicated set-ups that limit their use to advanced laboratory settings. Here we demonstrate imaging and length quantification of single molecule DNA strands using a compact, lightweight and cost-effective fluorescence microscope installed on a mobile phone. In addition to an optomechanical attachment that creates a high contrast dark-field imaging setup using an external lens, thin-film interference filters, a miniature dovetail stage and a laser-diode for oblique-angle excitation, we also created a computational framework and a mobile phone application connected to a server back-end for measurement of the lengths of individual DNA molecules that are labeled and stretched using disposable chips. Using this mobile phone platform, we imaged single DNA molecules of various lengths to demonstrate a sizing accuracy of <1 kilobase-pairs (kbp) for 10 kbp and longer DNA samples imaged over a field-of-view of ∼2 mm2.

  9. Light-driven transformable optical agent with adaptive functions for boosting cancer surgery outcomes.

    PubMed

    Qi, Ji; Chen, Chao; Zhang, Xiaoyan; Hu, Xianglong; Ji, Shenglu; Kwok, Ryan T K; Lam, Jacky W Y; Ding, Dan; Tang, Ben Zhong

    2018-05-10

    Fluorescence and photoacoustic imaging have different advantages in cancer diagnosis; however, combining effects in one agent normally requires a trade-off as the mechanisms interfere. Here, based on rational molecular design, we introduce a smart organic nanoparticle whose absorbed excitation energy can be photo-switched to the pathway of thermal deactivation for photoacoustic imaging, or to allow opposed routes for fluorescence imaging and photodynamic therapy. The molecule is made of a dithienylethene (DTE) core with two surrounding 2-(1-(4-(1,2,2-triphenylvinyl)phenyl)ethylidene)malononitrile (TPECM) units (DTE-TPECM). The photosensitive molecule changes from a ring-closed, for photoacoustic imaging, to a ring-opened state for fluorescence and photodynamic effects upon an external light trigger. The nanoparticles' photoacoustic and fluorescence imaging properties demonstrate the advantage of the switch. The use of the nanoparticles improves the outcomes of in vivo cancer surgery using preoperative photoacoustic imaging and intraoperative fluorescent visualization/photodynamic therapy of residual tumours to ensure total tumour removal.

  10. Highly Efficient Photothermal Semiconductor Nanocomposites for Photothermal Imaging of Latent Fingerprints.

    PubMed

    Cui, Jiabin; Xu, Suying; Guo, Chang; Jiang, Rui; James, Tony D; Wang, Leyu

    2015-11-17

    Optical imaging of latent fingerprints (LFPs) has been widely used in forensic science and for antiterrorist applications, but it suffers from interference from autofluorescence and the substrates background color. Cu7S4 nanoparticles (NPs), with excellent photothermal properties, were synthesized using a new strategy and then fabricated into amphiphilic nanocomposites (NCs) via polymerization of allyl mercaptan coated on Cu7S4 NPs to offer good affinities toward LFPs. Here, we develop a facile and versatile photothermal LFP imaging method based on the high photothermal conversion efficiency (52.92%, 808 nm) of Cu7S4 NCs, indicating its effectiveness for imaging LFPs left on different substrates (with various background colors), which will be extremely useful for crime scene investigations. Furthermore, by fabricating Cu7S4-CdSe@ZnS NCs, a fluorescent-photothermal dual-mode imaging strategy was used to detect trinitrotoluene (TNT) in LFPs while still maintaining a complete photothermal image of LFP.

  11. Modeling of the laser device for the stress therapy

    NASA Astrophysics Data System (ADS)

    Matveev, Nikolai V.; Shcheglov, Sergey A.; Romanova, Galina E.; Koneva, Ð.¢atiana A.

    2017-05-01

    Recently there is a great interest to the drug-free methods of treatment of various diseases. For example, audiovisual therapy is used for the stress therapy. The main destination of the method is the health care and well-being. Visual content in the given case is formed when laser radiation is passing through the optical mediums and elements. The therapy effect is achieved owing to the color varying and complicated structure of the picture which is produced by the refraction, dispersion effects, diffraction and interference. As the laser source we use three laser sources with wavelengths of 445 nm, 520 nm and 640 nm and the optical power up to 1 W. The beam is guided to the optical element which is responsible for the final image of the dome surface. The dynamic image can be achieved by the rotating of the optical element when the laser beam is static or by scanning the surface of the element. Previous research has shown that the complexity of the image connected to the therapy effect. The image was chosen experimentally in practice. The evaluation was performed using the fractal dimension calculation for the produced image. In this work we model the optical image on the surface formed by the laser sources together with the optical elements. Modeling is performed in two stages. On the first stage we perform the simple modeling taking into account simple geometrical effects and specify the optical models of the sources.

  12. Optical multi-species gas monitoring sensor and system

    NASA Technical Reports Server (NTRS)

    Korman, Valentin (Inventor); Polzin, Kurt A. (Inventor)

    2012-01-01

    The system includes at least one light source generating light energy having a corresponding wavelength. The system's sensor is based on an optical interferometer that receives light energy from each light source. The interferometer includes a free-space optical path disposed in an environment of interest. The system's sensor includes an optical device disposed in the optical path that causes light energy of a first selected wavelength to continue traversing the optical path whereas light energy of at least one second selected wavelength is directed away from the optical path. The interferometer generates an interference between the light energy of the first selected wavelength so-traversing the optical path with the light energy at the corresponding wavelength incident on the optical interferometer. A first optical detector detects the interference. At least one second detector detects the light energy at the at least one second selected wavelength directed away from the optical path.

  13. Optical interference coatings for optics and photonics [Invited].

    PubMed

    Lee, Cheng-Chung

    2013-01-01

    Optical interference coatings play as an important role in the progress in optics and photonics. In this article we give a minireview of the evolution of optical interference coatings from the theory, the design, to the manufacture. Some interesting but challenging topics for the future are also discussed.

  14. Ultra high frequency imaging acoustic microscope

    DOEpatents

    Deason, Vance A.; Telschow, Kenneth L.

    2006-05-23

    An imaging system includes: an object wavefront source and an optical microscope objective all positioned to direct an object wavefront onto an area of a vibrating subject surface encompassed by a field of view of the microscope objective, and to direct a modulated object wavefront reflected from the encompassed surface area through a photorefractive material; and a reference wavefront source and at least one phase modulator all positioned to direct a reference wavefront through the phase modulator and to direct a modulated reference wavefront from the phase modulator through the photorefractive material to interfere with the modulated object wavefront. The photorefractive material has a composition and a position such that interference of the modulated object wavefront and modulated reference wavefront occurs within the photorefractive material, providing a full-field, real-time image signal of the encompassed surface area.

  15. Differences between time domain and Fourier domain optical coherence tomography in imaging tissues.

    PubMed

    Gao, W; Wu, X

    2017-11-01

    It has been numerously demonstrated that both time domain and Fourier domain optical coherence tomography (OCT) can generate high-resolution depth-resolved images of living tissues and cells. In this work, we compare the common points and differences between two methods when the continuous and random properties of live tissue are taken into account. It is found that when relationships that exist between the scattered light and tissue structures are taken into account, spectral interference measurements in Fourier domain OCT (FDOCT) is more advantageous than interference fringe envelope measurements in time domain OCT (TDOCT) in the cases where continuous property of tissue is taken into account. It is also demonstrated that when random property of tissue is taken into account FDOCT measures the Fourier transform of the spatial correlation function of the refractive index and speckle phenomena will limit the effective limiting imaging resolution in both TDOCT and FDOCT. Finally, the effective limiting resolution of both TDOCT and FDOCT are given which can be used to estimate the effective limiting resolution in various practical applications. © 2017 The Authors Journal of Microscopy © 2017 Royal Microscopical Society.

  16. Development of an add-on kit for scanning confocal microscopy (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Guo, Kaikai; Zheng, Guoan

    2017-03-01

    Scanning confocal microscopy is a standard choice for many fluorescence imaging applications in basic biomedical research. It is able to produce optically sectioned images and provide acquisition versatility to address many samples and application demands. However, scanning a focused point across the specimen limits the speed of image acquisition. As a result, scanning confocal microscope only works well with stationary samples. Researchers have performed parallel confocal scanning using digital-micromirror-device (DMD), which was used to project a scanning multi-point pattern across the sample. The DMD based parallel confocal systems increase the imaging speed while maintaining the optical sectioning ability. In this paper, we report the development of an add-on kit for high-speed and low-cost confocal microscopy. By adapting this add-on kit to an existing regular microscope, one can convert it into a confocal microscope without significant hardware modifications. Compared with current DMD-based implementations, the reported approach is able to recover multiple layers along the z axis simultaneously. It may find applications in wafer inspection and 3D metrology of semiconductor circuit. The dissemination of the proposed add-on kit under $1000 budget could also lead to new types of experimental designs for biological research labs, e.g., cytology analysis in cell culture experiments, genetic studies on multicellular organisms, pharmaceutical drug profiling, RNA interference studies, investigation of microbial communities in environmental systems, and etc.

  17. Adaptive optics for array telescopes using piston-and-tilt wave-front sensing

    NASA Technical Reports Server (NTRS)

    Wizinowich, P.; Mcleod, B.; Lloyd-Yhart, M.; Angel, J. R. P.; Colucci, D.; Dekany, R.; Mccarthy, D.; Wittman, D.; Scott-Fleming, I.

    1992-01-01

    A near-infrared adaptive optics system operating at about 50 Hz has been used to control phase errors adaptively between two mirrors of the Multiple Mirror Telescope by stabilizing the position of the interference fringe in the combined unresolved far-field image. The resultant integrated images have angular resolutions of better than 0.1 arcsec and fringe contrasts of more than 0.6. Measurements of wave-front tilt have confirmed the wavelength independence of image motion. These results show that interferometric sensing of phase errors, when combined with a system for sensing the wave-front tilt of the individual telescopes, will provide a means of achieving a stable diffraction-limited focus with segmented telescopes or arrays of telescopes.

  18. High-speed low-power photonic transistor devices based on optically-controlled gain or absorption to affect optical interference.

    PubMed

    Huang, Yingyan; Ho, Seng-Tiong

    2008-10-13

    We show that a photonic transistor device can be realized via the manipulation of optical interference by optically controlled gain or absorption in novel ways, resulting in efficient transistor signal gain and switching action. Exemplary devices illustrate two complementary device types with high operating speed, microm size, microW switching power, and switching gain. They can act in tandem to provide a wide variety of operations including wavelength conversion, pulse regeneration, and logical operations. These devices could have a Transistor Figure-of-Merits >10(5) times higher than current chi((3)) approaches and are highly attractive.

  19. Spatial mode filters realized with multimode interference couplers

    NASA Astrophysics Data System (ADS)

    Leuthold, J.; Hess, R.; Eckner, J.; Besse, P. A.; Melchior, H.

    1996-06-01

    Spatial mode filters based on multimode interference couplers (MMI's) that offer the possibility of splitting off antisymmetric from symmetric modes are presented, and realizations of these filters in InGaAsP / InP are demonstrated. Measured suppression of the antisymmetric first-order modes at the output for the symmetric mode is better than 18 dB. Such MMI's are useful for monolithically integrating mode filters with all-optical devices, which are controlled through an antisymmetric first-order mode. The filtering out of optical control signals is necessary for cascading all-optical devices. Another application is the improvement of on-off ratios in optical switches.

  20. A new interferential multispectral image compression algorithm based on adaptive classification and curve-fitting

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Yan; Li, Yun-Song; Liu, Kai; Wu, Cheng-Ke

    2008-08-01

    A novel compression algorithm for interferential multispectral images based on adaptive classification and curve-fitting is proposed. The image is first partitioned adaptively into major-interference region and minor-interference region. Different approximating functions are then constructed for two kinds of regions respectively. For the major interference region, some typical interferential curves are selected to predict other curves. These typical curves are then processed by curve-fitting method. For the minor interference region, the data of each interferential curve are independently approximated. Finally the approximating errors of two regions are entropy coded. The experimental results show that, compared with JPEG2000, the proposed algorithm not only decreases the average output bit-rate by about 0.2 bit/pixel for lossless compression, but also improves the reconstructed images and reduces the spectral distortion greatly, especially at high bit-rate for lossy compression.

  1. Classical and quantum non-linear optical applications using the Mach-Zehnder interferometer

    NASA Astrophysics Data System (ADS)

    Prescod, Andru

    Mach Zehnder (MZ) modulators are widely employed in a variety of applications, such as optical communications, optical imaging, metrology and encryption. In this dissertation, we explore two non-linear MZ applications; one classified as classical and one as quantum, in which the Mach Zehnder interferometer is used. In the first application, a classical non-linear application, we introduce and study a new electro-optic highly linear (e.g., >130 dB) modulator configuration. This modulator makes use of a phase modulator (PM) in one arm of the MZ interferometer (MZI) and a ring resonator (RR) located on the other arm. The modulator performance is obtained through the control of a combination of internal and external parameters. These parameters include the RR-coupling ratio (internal parameter); the RF power split ratio and the RF phase bias (external parameters). Results show the unique and superior features, such as high linearity (SFDR˜133 dB), modulation bandwidth extension (as much as 70%) over the previously proposed and demonstrated Resonator-Assisted Mach Zehnder (RAMZ) design. Furthermore the proposed electro-optic modulator of this dissertation also provides an inherent SFDR compensation capability, even in cases where a significant waveguide optical loss exists. This design also shows potential for increased flexibility, practicality and ease of use. In the second application, a quantum non-linear application, we experimentally demonstrate quantum optical coherence tomography (QOCT) using a type II non-linear crystal (periodically-poled potassium titanyl phosphate (KTiOPO4) or PPKTP). There have been several publications discussing the merits and disadvantages of QOCT compared to OCT and other imaging techniques. First, we discuss the issues and solutions for increasing the efficiency of the quantum entangled photons. Second, we use a free space QOCT experiment to generate a high flux of these quantum entangled photons in two orthogonal polarizations, by parametric down-conversion. Third, by ensuring that these down-converted photons have the same frequency, spatial-temporal mode, and the same polarization when they interfere at a beam splitter, quantum interference should occur. Quantum interference of these entangled photons enables high resolution probing of dispersive samples.

  2. Quantum interference in plasmonic circuits.

    PubMed

    Heeres, Reinier W; Kouwenhoven, Leo P; Zwiller, Valery

    2013-10-01

    Surface plasmon polaritons (plasmons) are a combination of light and a collective oscillation of the free electron plasma at metal/dielectric interfaces. This interaction allows subwavelength confinement of light beyond the diffraction limit inherent to dielectric structures. As a result, the intensity of the electromagnetic field is enhanced, with the possibility to increase the strength of the optical interactions between waveguides, light sources and detectors. Plasmons maintain non-classical photon statistics and preserve entanglement upon transmission through thin, patterned metallic films or weakly confining waveguides. For quantum applications, it is essential that plasmons behave as indistinguishable quantum particles. Here we report on a quantum interference experiment in a nanoscale plasmonic circuit consisting of an on-chip plasmon beamsplitter with integrated superconducting single-photon detectors to allow efficient single plasmon detection. We demonstrate a quantum-mechanical interaction between pairs of indistinguishable surface plasmons by observing Hong-Ou-Mandel (HOM) interference, a hallmark non-classical interference effect that is the basis of linear optics-based quantum computation. Our work shows that it is feasible to shrink quantum optical experiments to the nanoscale and offers a promising route towards subwavelength quantum optical networks.

  3. Optically controlled switch-mode current-source amplifiers for on-coil implementation in high field parallel transmission

    PubMed Central

    Gudino, Natalia; Duan, Qi; de Zwart, Jacco A; Murphy-Boesch, Joe; Dodd, Stephen J; Merkle, Hellmut; van Gelderen, Peter; Duyn, Jeff H

    2015-01-01

    Purpose We tested the feasibility of implementing parallel transmission (pTX) for high field MRI using a radiofrequency (RF) amplifier design to be located on or in the immediate vicinity of a RF transmit coil. Method We designed a current-source switch-mode amplifier based on miniaturized, non-magnetic electronics. Optical RF carrier and envelope signals to control the amplifier were derived, through a custom-built interface, from the RF source accessible in the scanner control. Amplifier performance was tested by benchtop measurements as well as with imaging at 7 T (300 MHz) and 11.7 T (500 MHz). The ability to perform pTX was evaluated by measuring inter-channel coupling and phase adjustment in a 2-channel setup. Results The amplifier delivered in excess of 44 W RF power and caused minimal interference with MRI. The interface derived accurate optical control signals with carrier frequencies ranging from 64 to 750 MHz. Decoupling better than 14 dB was obtained between 2 coil loops separated by only 1 cm. Application to MRI was demonstrated by acquiring artifact-free images at 7 T and 11.7 T. Conclusion An optically controlled miniaturized RF amplifier for on-coil implementation at high field is demonstrated that should facilitate implementation of high-density pTX arrays. PMID:26256671

  4. Illumination analysis of LAPAN's IR micro bolometer

    NASA Astrophysics Data System (ADS)

    Bustanul, A.; Irwan, P.; Andi M., T.

    2016-10-01

    We have since 2 years ago been doing a research in term of an IR Micrometer Bolometer which aims to fulfill our office, LAPAN, desire to put it as one of payloads into LAPAN's next micro satellite project, either at LAPAN A4 or at LAPAN A5. Due to the lack of experience on the subject, everything had been initiated by spectral radiance analysis adjusted by catastrophes sources in Indonesia, mainly wild fire (forest fire) and active volcano. Based on the result of the appropriate spectral radiance wavelength, 3.8 - 4 μm, and field of view (FOV), we, then, went through the further analysis, optical analysis. Focusing in illumination matter, the process was done by using Zemax software. Optical pass Interference and Stray light were two things that become our concern throughout the work. They could also be an evaluation of the performance optimization of illumination analysis of our optical design. The results, graphs, show that our design performance is close diffraction limited and the image blur of the geometrical produced by Lapan's IR Micro Bolometer lenses is in the pixel area range. Therefore, our optical design performance is relatively good and will produce image with high quality. In this paper, the Illumination analysis and process of LAPAN's Infra Red (IR) Micro Bolometer is presented.

  5. Cell volume and plasma membrane osmotic water permeability in epithelial cell layers measured by interferometry.

    PubMed Central

    Farinas, J; Verkman, A S

    1996-01-01

    The development of strategies to measure plasma membrane osmotic water permeability (Pf) in epithelial cells has been motivated by the identification of a family of molecular water channels. A general approach utilizing interferometry to measure cell shape and volume was developed and applied to measure Pf in cell layers. The method is based on the cell volume dependence of optical path length (OPL) for a light beam passing through the cell. The small changes in OPL were measured by interferometry. A mathematical model was developed to relate the interference signal to cell volume changes for cells of arbitrary shape and size. To validate the model, a Mach-Zehnder interference microscope was used to image OPL in an Madin Darby Canine Kidney (MDCK) cell layer and to reconstruct the three-dimensional cell shape (OPL resolution < lambda/25). As predicted by the model, a doubling of cell volume resulted in a change in OPL that was proportional to the difference in refractive indices between water and the extracellular medium. The time course of relative cell volume in response to an osmotic gradient was computed from serial interference images. To measure cell volume without microscopy and image analysis, a Mach-Zehnder interferometer was constructed in which one of two interfering laser beams passed through a flow chamber containing the cell layer. The interference signal in response to an osmotic gradient was analyzed to quantify the time course of relative cell volume. The calculated MDCK cell plasma membrane Pf of 6.1 x 10(-4) cm/s at 24 degrees C agreed with that obtained by interference microscopy and by a total internal reflection fluorescence method. Interferometry was also applied to measure the apical plasma membrane water permeability of intact toad urinary bladder; Pf increased fivefold after forskolin stimulation to 0.04 cm/s at 23 degrees C. These results establish and validate the application of interferometry to quantify cell volume and osmotic water permeability in cell layers. Images FIGURE 1 FIGURE 2 FIGURE 3 FIGURE 4 FIGURE 6 PMID:8968620

  6. Dynamic optical arbitrary waveform shaping based on cascaded optical modulators of single FBG.

    PubMed

    Chen, Jingyuan; Li, Peili

    2015-08-10

    A dynamic optical arbitrary waveform generation (O-AWG) with amplitude and phase independently controlled in optical modulators of single fiber Bragg Grating (FBG) has been proposed. This novel scheme consists of several optical modulators. In the optical modulator (O-MOD), a uniform FBG is used to filter spectral component of the input signal. The amplitude is controlled by fiber stretcher (FS) in Mach-Zehnder interference (MZI) structure through interference of two MZI arms. The phase is manipulated via the second FS in the optical modulator. This scheme is investigated by simulation. Consequently, optical pulse trains with different waveforms as well as pulse trains with nonuniform pulse intensity, pulse spacing and pulse width within each period are obtained through FSs adjustment to alter the phase shifts of signal in each O-MOD.

  7. A novel image watermarking method based on singular value decomposition and digital holography

    NASA Astrophysics Data System (ADS)

    Cai, Zhishan

    2016-10-01

    According to the information optics theory, a novel watermarking method based on Fourier-transformed digital holography and singular value decomposition (SVD) is proposed in this paper. First of all, a watermark image is converted to a digital hologram using the Fourier transform. After that, the original image is divided into many non-overlapping blocks. All the blocks and the hologram are decomposed using SVD. The singular value components of the hologram are then embedded into the singular value components of each block using an addition principle. Finally, SVD inverse transformation is carried out on the blocks and hologram to generate the watermarked image. The watermark information embedded in each block is extracted at first when the watermark is extracted. After that, an averaging operation is carried out on the extracted information to generate the final watermark information. Finally, the algorithm is simulated. Furthermore, to test the encrypted image's resistance performance against attacks, various attack tests are carried out. The results show that the proposed algorithm has very good robustness against noise interference, image cut, compression, brightness stretching, etc. In particular, when the image is rotated by a large angle, the watermark information can still be extracted correctly.

  8. Numerical techniques for high-throughput reflectance interference biosensing

    NASA Astrophysics Data System (ADS)

    Sevenler, Derin; Ünlü, M. Selim

    2016-06-01

    We have developed a robust and rapid computational method for processing the raw spectral data collected from thin film optical interference biosensors. We have applied this method to Interference Reflectance Imaging Sensor (IRIS) measurements and observed a 10,000 fold improvement in processing time, unlocking a variety of clinical and scientific applications. Interference biosensors have advantages over similar technologies in certain applications, for example highly multiplexed measurements of molecular kinetics. However, processing raw IRIS data into useful measurements has been prohibitively time consuming for high-throughput studies. Here we describe the implementation of a lookup table (LUT) technique that provides accurate results in far less time than naive methods. We also discuss an additional benefit that the LUT method can be used with a wider range of interference layer thickness and experimental configurations that are incompatible with methods that require fitting the spectral response.

  9. Peculiarities of studying an isolated neuron by the method of laser interference microscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yusipovich, Alexander I; Kazakova, Tatiana A; Erokhova, Liudmila A

    2006-09-30

    Actual aspects of using a new method of laser interference microscopy (LIM) for studying nerve cells are discussed. The peculiarities of the LIM display of neurons are demonstrated by the example of isolated neurons of a pond snail Lymnaea stagnalis. A comparative analysis of the images of the cell and subcellular structures of a neuron obtained by the methods of interference microscopy, optical transmission microscopy, and confocal microscopy is performed. Various aspects of the application of LIM for studying the lateral dimensions and internal structure of the cytoplasm and organelles of a neuron in cytology and cell physiology are discussed.more » (laser biology)« less

  10. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes.

    PubMed

    Ishmukhametov, Robert R; Russell, Aidan N; Wheeler, Richard J; Nord, Ashley L; Berry, Richard M

    2016-02-08

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  11. A Simple low-cost device enables four epi-illumination techniques on standard light microscopes

    NASA Astrophysics Data System (ADS)

    Ishmukhametov, Robert R.; Russell, Aidan N.; Wheeler, Richard J.; Nord, Ashley L.; Berry, Richard M.

    2016-02-01

    Back-scattering darkfield (BSDF), epi-fluorescence (EF), interference reflection contrast (IRC), and darkfield surface reflection (DFSR) are advanced but expensive light microscopy techniques with limited availability. Here we show a simple optical design that combines these four techniques in a simple low-cost miniature epi-illuminator, which inserts into the differential interference-contrast (DIC) slider bay of a commercial microscope, without further additions required. We demonstrate with this device: 1) BSDF-based detection of Malarial parasites inside unstained human erythrocytes; 2) EF imaging with and without dichroic components, including detection of DAPI-stained Leishmania parasite without using excitation or emission filters; 3) RIC of black lipid membranes and other thin films, and 4) DFSR of patterned opaque and transparent surfaces. We believe that our design can expand the functionality of commercial bright field microscopes, provide easy field detection of parasites and be of interest to many users of light microscopy.

  12. High-Throughput Light Sheet Microscopy for the Automated Live Imaging of Larval Zebrafish

    NASA Astrophysics Data System (ADS)

    Baker, Ryan; Logan, Savannah; Dudley, Christopher; Parthasarathy, Raghuveer

    The zebrafish is a model organism with a variety of useful properties; it is small and optically transparent, it reproduces quickly, it is a vertebrate, and there are a large variety of transgenic animals available. Because of these properties, the zebrafish is well suited to study using a variety of optical technologies including light sheet fluorescence microscopy (LSFM), which provides high-resolution three-dimensional imaging over large fields of view. Research progress, however, is often not limited by optical techniques but instead by the number of samples one can examine over the course of an experiment, which in the case of light sheet imaging has so far been severely limited. Here we present an integrated fluidic circuit and microscope which provides rapid, automated imaging of zebrafish using several imaging modes, including LSFM, Hyperspectral Imaging, and Differential Interference Contrast Microscopy. Using this system, we show that we can increase our imaging throughput by a factor of 10 compared to previous techniques. We also show preliminary results visualizing zebrafish immune response, which is sensitive to gut microbiota composition, and which shows a strong variability between individuals that highlights the utility of high throughput imaging. National Science Foundation, Award No. DBI-1427957.

  13. Optical Absorption Spectra of Nuclear Filters Modified by Deposition of Silver Nano- and Microparticles

    NASA Astrophysics Data System (ADS)

    Smolyanskii, A. S.; Kozlova, N. V.; Zheltova, A. V.; Aksyutina, A. S.; Shvedov, A. S.; Lakeev, S. G.

    2015-07-01

    Light scattering and interference patterns are studied in the optical absorption spectra of nuclear filters based on polyethylene terephthalate fi lms modifi ed by dry aerosol deposition of silver nano- and microparticles. Surface plasmon polaritons and localized plasmons formed by the passage of light through porous silver films are found to have an effect on the diffraction and interference modes. The thickness of silver nano- and microparticle coatings on the surface of the nuclear fi lters was determined from the shift in the interference patterns in the optical absorption spectra of the modified nuclear filters relative to the original nuclear filters. A correlation was found between the estimated coating thickness and the average surface roughness of the nuclear filters modified by layers of silver nano- and microparticles.

  14. Experimental teaching and training system based on volume holographic storage

    NASA Astrophysics Data System (ADS)

    Jiang, Zhuqing; Wang, Zhe; Sun, Chan; Cui, Yutong; Wan, Yuhong; Zou, Rufei

    2017-08-01

    The experiment of volume holographic storage for teaching and training the practical ability of senior students in Applied Physics is introduced. The students can learn to use advanced optoelectronic devices and the automatic control means via this experiment, and further understand the theoretical knowledge of optical information processing and photonics disciplines that have been studied in some courses. In the experiment, multiplexing holographic recording and readout is based on Bragg selectivity of volume holographic grating, in which Bragg diffraction angle is dependent on grating-recording angel. By using different interference angle between reference and object beams, the holograms can be recorded into photorefractive crystal, and then the object images can be read out from these holograms via angular addressing by using the original reference beam. In this system, the experimental data acquisition and the control of the optoelectronic devices, such as the shutter on-off, image loaded in SLM and image acquisition of a CCD sensor, are automatically realized by using LabVIEW programming.

  15. Diffracting aperture based differential phase contrast for scanning X-ray microscopy.

    PubMed

    Kaulich, Burkhard; Polack, Francois; Neuhaeusler, Ulrich; Susini, Jean; di Fabrizio, Enzo; Wilhein, Thomas

    2002-10-07

    It is demonstrated that in a zone plate based scanning X-ray microscope, used to image low absorbing, heterogeneous matter at a mesoscopic scale, differential phase contrast (DPC) can be implemented without adding any additional optical component to the normal scheme of the microscope. The DPC mode is simply generated by an appropriate positioning and alignment of microscope apertures. Diffraction from the apertures produces a wave front with a non-uniform intensity. The signal recorded by a pinhole photo diode located in the intensity gradient is highly sensitive to phase changes introduced by the specimen to be recorded. The feasibility of this novel DPC technique was proven with the scanning X-ray microscope at the ID21 beamline of the European Synchrotron Radiation facility (ESRF) operated at 6 keV photon energy. We observe a differential phase contrast, similar to Nomarski's differential interference contrast for the light microscope, which results in a tremendous increase in image contrast of up to 20 % when imaging low absorbing specimen.

  16. Contrast matching of line gratings obtained with NXE3XXX and EUV- interference lithography

    NASA Astrophysics Data System (ADS)

    Tasdemir, Zuhal; Mochi, Iacopo; Olvera, Karen Garrido; Meeuwissen, Marieke; Yildirim, Oktay; Custers, Rolf; Hoefnagels, Rik; Rispens, Gijsbert; Fallica, Roberto; Vockenhuber, Michaela; Ekinci, Yasin

    2017-10-01

    Extreme UV lithography (EUVL) has gained considerable attention for several decades as a potential technology for the semiconductor industry and it is now close to being adopted in high-volume manufacturing. At Paul Scherrer Institute (PSI), we have focused our attention on EUV resist performance issues by testing available high-performance EUV resists in the framework of a joint collaboration with ASML. For this purpose, we use the grating-based EUV-IL setup installed at the Swiss Light Source (SLS) at PSI, in which a coherent beam with 13.5 nm wavelength is used to produce a periodic aerial image with virtually 100% contrast and large depth of focus. Interference lithography is a relatively simple technique and it does not require many optical components, therefore the unintended flare is minimized and the aerial image is well-defined sinusoidal pattern. For the collaborative work between PSI and ASML, exposures are being performed on the EUV-IL exposure tool at PSI. For better quantitative comparison to the NXE scanner results, it is targeted to determine the actual NILS of the EUV-IL exposure tool at PSI. Ultimately, any resist-related metrology must be aligned and compared with the performance of EUV scanners. Moreover, EUV-IL is a powerful method for evaluating the resist performance and a resist which performs well with EUV-IL, shows, in general, also good performance with NXE scanners. However, a quantitative prediction of the performance based on EUV-IL measurements has not been possible due to the differences in aerial image formation. In this work, we aim to study the performance of EUV resists with different aerial images. For this purpose, after the real interference pattern exposure, we overlay a flat field exposure to emulate different levels of contrast. Finally, the results are compared with data obtained from EUV scanner. This study will enable not only match the data obtained from EUV- IL at PSI with the performance of NXE scanners, but also a better understanding of resist fundamentals by studying the effects of the aerial image on resist performance by changing the aerial image contrast in a controlled manner using EUV-IL.

  17. Crackle template based metallic mesh with highly homogeneous light transmission for high-performance transparent EMI shielding

    PubMed Central

    Han, Yu; Lin, Jie; Liu, Yuxuan; Fu, Hao; Ma, Yuan; Jin, Peng; Tan, Jiubin

    2016-01-01

    Our daily electromagnetic environment is becoming increasingly complex with the rapid development of consumer electronics and wireless communication technologies, which in turn necessitates the development of electromagnetic interference (EMI) shielding, especially for transparent components. We engineered a transparent EMI shielding film with crack-template based metallic mesh (CT-MM) that shows highly homogeneous light transmission and strong microwave shielding efficacy. The CT-MM film is fabricated using a cost-effective lift-off method based on a crackle template. It achieves a shielding effectiveness of ~26 dB, optical transmittance of ~91% and negligible impact on optical imaging performance. Moreover, high–quality CT-MM film is demonstrated on a large–calibre spherical surface. These excellent properties of CT-MM film, together with its advantages of facile large-area fabrication and scalability in processing on multi-shaped substrates, make CT-MM a powerful technology for transparent EMI shielding in practical applications. PMID:27151578

  18. Zadoff-Chu sequence-based hitless ranging scheme for OFDMA-PON configured 5G fronthaul uplinks

    NASA Astrophysics Data System (ADS)

    Reza, Ahmed Galib; Rhee, June-Koo Kevin

    2017-05-01

    A Zadoff-Chu (ZC) sequence-based low-complexity hitless upstream time synchronization scheme is proposed for an orthogonal frequency division multiple access passive optical network configured cloud radio access network fronthaul. The algorithm is based on gradual loading of the ZC sequences, where the phase discontinuity due to the cyclic prefix is alleviated by a frequency domain phase precoder, eliminating the requirements of guard bands to mitigate intersymbol interference and inter-carrier interference. Simulation results for uncontrolled-wavelength asynchronous transmissions from four concurrent transmitting optical network units are presented to demonstrate the effectiveness of the proposed scheme.

  19. Metal Nanostructures for Detection and Imaging Enhancements

    DTIC Science & Technology

    2011-01-03

    source spectrum, is delivered into a pig adipose sample. OCT is a widely used optical imaging technique for the diagnoses of many diseases [27-29...mainly caused by the enhanced near-field constructive interference effect in the forward direction through the mixture of LSP resonance and Fabry ...directions. Here, one can see the oscillatory behavior of the reference curve due to the Fabry -Perot effect in the vertical direction. When an Au or Ag

  20. Fiber Optic-Based Refractive Index Sensing at INESC Porto

    PubMed Central

    Jorge, Pedro A. S.; Silva, Susana O.; Gouveia, Carlos; Tafulo, Paula; Coelho, Luis; Caldas, Paulo; Viegas, Diana; Rego, Gaspar; Baptista, José M.; Santos, José L.; Frazão, Orlando

    2012-01-01

    A review of refractive index measurement based on different types of optical fiber sensor configurations and techniques is presented. It addresses the main developments in the area, with particular focus on results obtained at INESC Porto, Portugal. The optical fiber sensing structures studied include those based on Bragg and long period gratings, on micro-interferometers, on plasmonic effects in fibers and on multimode interference in a large spectrum of standard and microstructured optical fibers. PMID:22969405

  1. Influence of Fano interference and incoherent processes on optical bistability in a four-level quantum dot nanostructure

    NASA Astrophysics Data System (ADS)

    Seyyed, Hossein Asadpour; G, Solookinejad; M, Panahi; E Ahmadi, Sangachin

    2016-03-01

    Role of Fano interference and incoherent pumping field on optical bistability in a four-level designed InGaN/GaN quantum dot nanostructure embedded in a unidirectional ring cavity are analyzed. It is found that intensity threshold of optical bistability can be manipulated by Fano interference. It is shown that incoherent pumping fields make the threshold of optical bistability behave differently by Fano interference. Moreover, in the presence of Fano interference the medium becomes phase-dependent. Therefore, the relative phase of applied fields can affect the behaviors of optical bistability and intensity threshold can be controlled easily.

  2. Lens-free imaging of magnetic particles in DNA assays.

    PubMed

    Colle, Frederik; Vercruysse, Dries; Peeters, Sara; Liu, Chengxun; Stakenborg, Tim; Lagae, Liesbet; Del-Favero, Jurgen

    2013-11-07

    We present a novel opto-magnetic system for the fast and sensitive detection of nucleic acids. The system is based on a lens-free imaging approach resulting in a compact and cheap optical readout of surface hybridized DNA fragments. In our system magnetic particles are attracted towards the detection surface thereby completing the labeling step in less than 1 min. An optimized surface functionalization combined with magnetic manipulation was used to remove all nonspecifically bound magnetic particles from the detection surface. A lens-free image of the specifically bound magnetic particles on the detection surface was recorded by a CMOS imager. This recorded interference pattern was reconstructed in software, to represent the particle image at the focal distance, using little computational power. As a result we were able to detect DNA concentrations down to 10 pM with single particle sensitivity. The possibility of integrated sample preparation by manipulation of magnetic particles, combined with the cheap and highly compact lens-free detection makes our system an ideal candidate for point-of-care diagnostic applications.

  3. SPECIAL ISSUE ON OPTICAL PROCESSING OF INFORMATION: Optical signal-processing systems based on anisotropic media

    NASA Astrophysics Data System (ADS)

    Kiyashko, B. V.

    1995-10-01

    Partially coherent optical systems for signal processing are considered. The transfer functions are formed in these systems by interference of polarised light transmitted by an anisotropic medium. It is shown that such systems can perform various integral transformations of both optical and electric signals, in particular, two-dimensional Fourier and Fresnel transformations, as well as spectral analysis of weak light sources. It is demonstrated that such systems have the highest luminosity and vibration immunity among the systems with interference formation of transfer functions. An experimental investigation is reported of the application of these systems in the processing of signals from a linear hydroacoustic antenna array, and in measurements of the optical spectrum and of the intrinsic noise.

  4. Integrated quantum photonic sensor based on Hong-Ou-Mandel interference.

    PubMed

    Basiri-Esfahani, Sahar; Myers, Casey R; Armin, Ardalan; Combes, Joshua; Milburn, Gerard J

    2015-06-15

    Photonic-crystal-based integrated optical systems have been used for a broad range of sensing applications with great success. This has been motivated by several advantages such as high sensitivity, miniaturization, remote sensing, selectivity and stability. Many photonic crystal sensors have been proposed with various fabrication designs that result in improved optical properties. In parallel, integrated optical systems are being pursued as a platform for photonic quantum information processing using linear optics and Fock states. Here we propose a novel integrated Fock state optical sensor architecture that can be used for force, refractive index and possibly local temperature detection. In this scheme, two coupled cavities behave as an "effective beam splitter". The sensor works based on fourth order interference (the Hong-Ou-Mandel effect) and requires a sequence of single photon pulses and consequently has low pulse power. Changes in the parameter to be measured induce variations in the effective beam splitter reflectivity and result in changes to the visibility of interference. We demonstrate this generic scheme in coupled L3 photonic crystal cavities as an example and find that this system, which only relies on photon coincidence detection and does not need any spectral resolution, can estimate forces as small as 10(-7) Newtons and can measure one part per million change in refractive index using a very low input power of 10(-10)W. Thus linear optical quantum photonic architectures can achieve comparable sensor performance to semiclassical devices.

  5. Wavelet transform: fundamentals, applications, and implementation using acousto-optic correlators

    NASA Astrophysics Data System (ADS)

    DeCusatis, Casimer M.; Koay, J.; Litynski, Daniel M.; Das, Pankaj K.

    1995-10-01

    In recent years there has been a great deal of interest in the use of wavelets to supplement or replace conventional Fourier transform signal processing. This paper provides a review of wavelet transforms for signal processing applications, and discusses several emerging applications which benefit from the advantages of wavelets. The wavelet transform can be implemented as an acousto-optic correlator; perfect reconstruction of digital signals may also be achieved using acousto-optic finite impulse response filter banks. Acousto-optic image correlators are discussed as a potential implementation of the wavelet transform, since a 1D wavelet filter bank may be encoded as a 2D image. We discuss applications of the wavelet transform including nondestructive testing of materials, biomedical applications in the analysis of EEG signals, and interference excision in spread spectrum communication systems. Computer simulations and experimental results for these applications are also provided.

  6. Computational Phase Imaging for Biomedical Applications

    NASA Astrophysics Data System (ADS)

    Nguyen, Tan Huu

    When a sample is illuminated by an imaging field, its fingerprints are left on the amplitude and the phase of the emerging wave. Capturing the information of the wavefront grants us a deeper understanding of the optical properties of the sample, and of the light-matter interaction. While the amplitude information has been intensively studied, the use of the phase information has been less common. Because all detectors are sensitive to intensity, not phase, wavefront measurements are significantly more challenging. Deploying optical interferometry to measure phase through phase-intensity conversion, quantitative phase imaging (QPI) has recently gained tremendous success in material and life sciences. The first topic of this dissertation describes our effort to develop a new QPI setup, named transmission Spatial Light Interference Microscopy (tSLIM), that uses the twisted nematic liquid-crystal (TNLC) modulators. Compared to the established SLIM technique, tSLIM is much less expensive to build than its predecessor (SLIM) while maintaining significant performance. The tSLIM system uses parallel aligned liquid-crystal (PANLC) modulators, has a slightly smaller signal-to-noise Ratio (SNR), and a more complicated model for the image formation. However, such complexity is well addressed by computing. Most importantly, tSLIM uses TNLC modulators that are popular in display LCDs. Therefore, the total cost of the system is significantly reduced. Alongside developing new imaging modalities, we also improved current QPI imaging systems. In practice, an incident field to the sample is rarely perfectly spatially coherent, i.e., plane wave. It is generally partially coherent; i.e., it comprises of many incoherent plane waves coming from multiple directions. This illumination yields artifacts in the phase measurement results, e.g., halo and phase-underestimation. One solution is using a very bright source, e.g., a laser, which can be spatially filtered very well. However, the laser comes at the expense of speckles, which degrades image quality. Therefore, solutions purely based on physical modeling and computations to remove these artifacts, using white-light illumination, are highly desirable. Here, using physical optics, we develop a theoretical model that accurately explains the effects of partial coherence on image information and phase information. The model is further combined with numerical processing to suppress the artifacts, and recover the correct phase information. The third topic is devoted to applying QPI to clinical applications. Traditionally, stained tissues are used in prostate cancer diagnosis instead. The reason is that tissue samples used in diagnosis are nearly transparent under bright field inspection if unstained. Contrast-enhanced microscopy techniques, e.g., phase contrast microscopy (PC) and differential interference contrast microscopy (DIC), can render visibility of the untagged samples with high throughput. However, since these methods are intensity-based, the contrast of acquired images varies significantly from one imaging facility to another, preventing them from being used in diagnosis. Inheriting the merits of PC, SLIM produces phase maps, which measure the refractive index of label-free samples. However, the maps measured by SLIM are not affected by variation in imaging conditions, e.g., illumination, magnification, etc., allowing consistent imaging results when using SLIM across different clinical institutions. Here, we combine SLIM images with machine learning for automatic diagnosis results for prostate cancer. We focus on two diagnosis problems of automatic Gleason grading and cancer vs. non-cancer diagnosis. Finally, we introduce a new imaging modality, named Gradient Light Interference Microscopy (GLIM), which is able to image through optically thick samples using low spatial coherence illumination. The key benefit of GLIM comes from a large numerical aperture of the condenser, which is 0.55 NA, about five times higher than that in SLIM. GLIM has an excellent depth sectioning when recording three-dimensional information of the susceptibility of the sample. We also introduce a model for the image formation of GLIM with an implication that a simple filtering step in the transverse dimension can dramatically improve the sectioning in the axial dimension. With GLIM, one can measure accurately the surface area, volume, and dry mass of a variety of biological samples, ranging from cells that are about tens of microns thick to bovine embryos that are hundreds of microns thick.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen Jihuan; Zhao Jiarong; Huang Xuguang

    A simple fiber-optic sensor based on Fabry-Perot interference for refractive index measurement of optical glass is investigated both theoretically and experimentally. A broadband light source is coupled into an extrinsic fiber Fabry-Perot cavity formed by the surfaces of a sensing fiber end and the measured sample. The interference signals from the cavity are reflected back into the same fiber. The refractive index of the sample can be obtained by measuring the contrast of the interference fringes. The experimental data meet with the theoretical values very well. The proposed technique is a new method for glass refractive index measurement with amore » simple, solid, and compact structure.« less

  8. Construction of an Optical Fiber Strain Gauge

    NASA Astrophysics Data System (ADS)

    Sulaiman, Najwa

    This project is focused on the construction of an optical fiber strain gauge that is based on a strain gauge described by Butter and Hocker. Our gauge is designed to generate an interference pattern from the signals carried on two bare single-mode fibers that are fastened to an aluminum cantilever. When the cantilever experiences flexural stress, the interference pattern should change. By observing this change, it is possible to determine the strain experienced by the cantilever. I describe the design and construction of our optical fiber strain gauge as well as the characterization of different parts of the apparatus.

  9. Apparatus and method for creating a photonic densely-accumulated ray-point

    NASA Technical Reports Server (NTRS)

    Park, Yeonjoon (Inventor); Choi, Sang H. (Inventor); King, Glen C. (Inventor); Elliott, James R. (Inventor)

    2012-01-01

    An optical apparatus includes an optical diffraction device configured for diffracting a predetermined wavelength of incident light onto adjacent optical focal points, and a photon detector for detecting a spectral characteristic of the predetermined wavelength. One of the optical focal points is a constructive interference point and the other optical focal point is a destructive interference point. The diffraction device, which may be a micro-zone plate (MZP) of micro-ring gratings or an optical lens, generates a constructive ray point using phase-contrasting of the destructive interference point. The ray point is located between adjacent optical focal points. A method of generating a densely-accumulated ray point includes directing incident light onto the optical diffraction device, diffracting the selected wavelength onto the constructive interference focal point and the destructive interference focal point, and generating the densely-accumulated ray point in a narrow region.

  10. Method and apparatus for white-light dispersed-fringe interferometric measurement of corneal topography

    NASA Technical Reports Server (NTRS)

    Hochberg, Eric B. (Inventor); Baroth, Edmund C. (Inventor)

    1994-01-01

    An novel interferometric apparatus and method for measuring the topography of aspheric surfaces, without requiring any form of scanning or phase shifting. The apparatus and method of the present invention utilize a white-light interferometer, such as a white-light Twyman-Green interferometer, combined with a means for dispersing a polychromatic interference pattern, using a fiber-optic bundle and a disperser such as a prism for determining the monochromatic spectral intensities of the polychromatic interference pattern which intensities uniquely define the optical path differences or OPD between the surface under test and a reference surface such as a reference sphere. Consequently, the present invention comprises a snapshot approach to measuring aspheric surface topographies such as the human cornea, thereby obviating vibration sensitive scanning which would otherwise reduce the accuracy of the measurement. The invention utilizes a polychromatic interference pattern in the pupil image plane, which is dispersed on a point-wise basis, by using a special area-to-line fiber-optic manifold, onto a CCD or other type detector comprising a plurality of columns of pixels. Each such column is dedicated to a single point of the fringe pattern for enabling determination of the spectral content of the pattern. The auto-correlation of the dispersed spectrum of the fringe pattern is uniquely characteristic of a particular optical path difference between the surface under test and a reference surface.

  11. AFM imaging of natural optical structures

    NASA Astrophysics Data System (ADS)

    Dallaeva, Dinara; Tománek, Pavel; Prokopyeva, Elena; Kaspar, Pavel; Grmela, Lubomír.; Škarvada, Pavel

    2015-01-01

    The colors of some living organisms assosiated with the surface structure. Irridesence butterfly wings is an example of such coloration. Optical effects such as interference, diffraction, polarization are responsible for physical colors appearance. Alongside with amazing beauty this structure represent interest for design of optical devices. Here we report the results of morphology investigation by atomic force microscopy. The difference in surface structure of black and blue wings areas is clearly observed. It explains the angle dependence of the wing blue color, since these micrometer and sub-micrometer quasiperiodical structures could control the light propagation, absorption and reflection.

  12. High-resolution interference-monochromator for hard X-rays.

    PubMed

    Tsai, Yi-Wei; Chang, Ying-Yi; Wu, Yu-Hsin; Lee, Kun-Yuan; Liu, Shih-Lun; Chang, Shih-Lin

    2016-12-26

    An X-ray interference-monochromator combining a Fabry-Perot resonator (FPR) and a double-crystal monochromator (DCM) is proposed and realized for obtaining single-mode X-rays with 3.45 meV energy resolution. The monochromator is based on the generation of cavity interference fringes from a FPR and single-mode selection of the transmission spectrum by a DCM of a nearly backward symmetric reflection geometry. The energy of the monochromator can be tuned within 2500 meV(= ΔE) by temperature control of the FPR and the DCM crystals in the range of ΔT = 70 K at room temperature. The diffraction geometry and small size of the optical components used make the interference-monochromator very easy to be adapted in modern synchrotron beamlines and X-ray optics applications.

  13. Topography and refractometry of sperm cells using spatial light interference microscopy.

    PubMed

    Liu, Lina; Kandel, Mikhail E; Rubessa, Marcello; Schreiber, Sierra; Wheeler, Mathew B; Popescu, Gabriel

    2018-02-01

    Characterization of spermatozoon viability is a common test in treating infertility. Recently, it has been shown that label-free, phase-sensitive imaging can provide a valuable alternative for this type of assay. We employ spatial light interference microscopy (SLIM) to perform high-accuracy single-cell phase imaging and decouple the average thickness and refractive index information for the population. This procedure was enabled by quantitative-phase imaging cells on media of two different refractive indices and using a numerical tool to remove the curvature from the cell tails. This way, we achieved ensemble averaging of topography and refractometry of 100 cells in each of the two groups. The results show that the thickness profile of the cell tail goes down to 150 nm and the refractive index can reach values of 1.6 close to the head. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  14. Method for detection of dental caries and periodontal disease using optical imaging

    DOEpatents

    Nathel, Howard; Kinney, John H.; Otis, Linda L.

    1996-01-01

    A method for detecting the presence of active and inactive caries in teeth and diagnosing periodontal disease uses non-ionizing radiation with techniques for reducing interference from scattered light. A beam of non-ionizing radiation is divided into sample and reference beams. The region to be examined is illuminated by the sample beam, and reflected or transmitted radiation from the sample is recombined with the reference beam to form an interference pattern on a detector. The length of the reference beam path is adjustable, allowing the operator to select the reflected or transmitted sample photons that recombine with the reference photons. Thus radiation scattered by the dental or periodontal tissue can be prevented from obscuring the interference pattern. A series of interference patterns may be generated and interpreted to locate dental caries and periodontal tissue interfaces.

  15. Compound simulator IR radiation characteristics test and calibration

    NASA Astrophysics Data System (ADS)

    Li, Yanhong; Zhang, Li; Li, Fan; Tian, Yi; Yang, Yang; Li, Zhuo; Shi, Rui

    2015-10-01

    The Hardware-in-the-loop simulation can establish the target/interference physical radiation and interception of product flight process in the testing room. In particular, the simulation of environment is more difficult for high radiation energy and complicated interference model. Here the development in IR scene generation produced by a fiber array imaging transducer with circumferential lamp spot sources is introduced. The IR simulation capability includes effective simulation of aircraft signatures and point-source IR countermeasures. Two point-sources as interference can move in two-dimension random directions. For simulation the process of interference release, the radiation and motion characteristic is tested. Through the zero calibration for optical axis of simulator, the radiation can be well projected to the product detector. The test and calibration results show the new type compound simulator can be used in the hardware-in-the-loop simulation trial.

  16. Analysis of multimode fiber bundles for endoscopic spectral-domain optical coherence tomography

    PubMed Central

    Risi, Matthew D.; Makhlouf, Houssine; Rouse, Andrew R.; Gmitro, Arthur F.

    2016-01-01

    A theoretical analysis of the use of a fiber bundle in spectral-domain optical coherence tomography (OCT) systems is presented. The fiber bundle enables a flexible endoscopic design and provides fast, parallelized acquisition of the OCT data. However, the multimode characteristic of the fibers in the fiber bundle affects the depth sensitivity of the imaging system. A description of light interference in a multimode fiber is presented along with numerical simulations and experimental studies to illustrate the theoretical analysis. PMID:25967012

  17. Diffractive Optic Fluid Shear Stress Sensor

    NASA Technical Reports Server (NTRS)

    Wilson, D.; Scalf, J.; Forouhar, S.; Muller, R.; Taugwalder, F.; Gharib, M.; Fourguette, D.; Modarress, D.

    2000-01-01

    Light scattering off particles flowing through a two-slit interference pattern can be used to measure the shear stress of the fluid. We have designed and fabricated a miniature diffractive optic sensor based on this principle.

  18. Birefringence of single and bundled microtubules.

    PubMed

    Oldenbourg, R; Salmon, E D; Tran, P T

    1998-01-01

    We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses.

  19. Birefringence of single and bundled microtubules.

    PubMed Central

    Oldenbourg, R; Salmon, E D; Tran, P T

    1998-01-01

    We have measured the birefringence of microtubules (MTs) and of MT-based macromolecular assemblies in vitro and in living cells by using the new Pol-Scope. A single microtubule in aqueous suspension and imaged with a numerical aperture of 1.4 had a peak retardance of 0.07 nm. The peak retardance of a small bundle increased linearly with the number of MTs in the bundle. Axonemes (prepared from sea urchin sperm) had a peak retardance 20 times higher than that of single MTs, in accordance with the nine doublets and two singlets arrangement of parallel MTs in the axoneme. Measured filament retardance decreased when the filament was defocused or the numerical aperture of the imaging system was decreased. However, the retardance "area," which we defined as the image retardance integrated along a line perpendicular to the filament axis, proved to be independent of focus and of numerical aperture. These results are in good agreement with a theory that we developed for measuring retardances with imaging optics. Our theoretical concept is based on Wiener's theory of mixed dielectrics, which is well established for nonimaging applications. We extend its use to imaging systems by considering the coherence region defined by the optical set-up. Light scattered from within that region interferes coherently in the image point. The presence of a filament in the coherence region leads to a polarization dependent scattering cross section and to a finite retardance measured in the image point. Similar to resolution measurements, the linear dimension of the coherence region for retardance measurements is on the order lambda/(2 NA), where lambda is the wavelength of light and NA is the numerical aperture of the illumination and imaging lenses. PMID:9449366

  20. Atomic Bose-Hubbard Systems with Single-Particle Control

    NASA Astrophysics Data System (ADS)

    Preiss, Philipp Moritz

    Experiments with ultracold atoms in optical lattices provide outstanding opportunities to realize exotic quantum states due to a high degree of tunability and control. In this thesis, I present experiments that extend this control from global parameters to the level of individual particles. Using a quantum gas microscope for 87Rb, we have developed a single-site addressing scheme based on digital amplitude holograms. The system self-corrects for aberrations in the imaging setup and creates arbitrary beam profiles. We are thus able to shape optical potentials on the scale of single lattice sites and control the dynamics of individual atoms. We study the role of quantum statistics and interactions in the Bose-Hubbard model on the fundamental level of two particles. Bosonic quantum statistics are apparent in the Hong-Ou-Mandel interference of massive particles, which we observe in tailored double-well potentials. These underlying statistics, in combination with tunable repulsive interactions, dominate the dynamics in single- and two-particle quantum walks. We observe highly coherent position-space Bloch oscillations, bosonic bunching in Hanbury Brown-Twiss interference and the fermionization of strongly interacting bosons. Many-body states of indistinguishable quantum particles are characterized by large-scale spatial entanglement, which is difficult to detect in itinerant systems. Here, we extend the concept of Hong-Ou-Mandel interference from individual particles to many-body states to directly quantify entanglement entropy. We perform collective measurements on two copies of a quantum state and detect entanglement entropy through many-body interference. We measure the second order Renyi entropy in small Bose-Hubbard systems and detect the buildup of spatial entanglement across the superfluid-insulator transition. Our experiments open new opportunities for the single-particle-resolved preparation and characterization of many-body quantum states.

  1. [Research on improving spectrum resolution of optimized Wollaston prism array].

    PubMed

    Zhang, Peng; Wang, Jian-Rong; Zhang, Guo-Chen; Hou, Wen

    2011-11-01

    In order to not affect the image quality of interference fringes on the basis of the structure by increasing the structure angle of Wollaston prism to improve spectrum resolution, the authors optimized the structure of Wollaston prism. Calculating the function of the splitting angle and the structure angle, analysis indicated that taking the isosceles triangle prism with the same nature of the second wedge-shaped prism after the Wollaston prism, which makes the o and e light parallel to the optical axis, and alpha=0 degrees, the imaging interference fringes are no longer affected by changes in the splitting angle. Several optimized Wollaston prisms were made as an array to improve the spectral resolution. Experiments used traditional and optimized Wollaston prism array to detect the spectrum of the 980 nm laser. Experimental data showed that using optimized Wollaston prism array gets a clearer contrast of interference fringes, and the spectral data with Fourier transform are more accurate with DSP.

  2. Mapping Winter Wheat with Multi-Temporal SAR and Optical Images in an Urban Agricultural Region

    PubMed Central

    Zhou, Tao; Pan, Jianjun; Zhang, Peiyu; Wei, Shanbao; Han, Tao

    2017-01-01

    Winter wheat is the second largest food crop in China. It is important to obtain reliable winter wheat acreage to guarantee the food security for the most populous country in the world. This paper focuses on assessing the feasibility of in-season winter wheat mapping and investigating potential classification improvement by using SAR (Synthetic Aperture Radar) images, optical images, and the integration of both types of data in urban agricultural regions with complex planting structures in Southern China. Both SAR (Sentinel-1A) and optical (Landsat-8) data were acquired, and classification using different combinations of Sentinel-1A-derived information and optical images was performed using a support vector machine (SVM) and a random forest (RF) method. The interference coherence and texture images were obtained and used to assess the effect of adding them to the backscatter intensity images on the classification accuracy. The results showed that the use of four Sentinel-1A images acquired before the jointing period of winter wheat can provide satisfactory winter wheat classification accuracy, with an F1 measure of 87.89%. The combination of SAR and optical images for winter wheat mapping achieved the best F1 measure–up to 98.06%. The SVM was superior to RF in terms of the overall accuracy and the kappa coefficient, and was faster than RF, while the RF classifier was slightly better than SVM in terms of the F1 measure. In addition, the classification accuracy can be effectively improved by adding the texture and coherence images to the backscatter intensity data. PMID:28587066

  3. Dynamic quantitative phase images of pond life, insect wings, and in vitro cell cultures

    NASA Astrophysics Data System (ADS)

    Creath, Katherine

    2010-08-01

    This paper presents images and data of live biological samples taken with a novel Linnik interference microscope. The specially designed optical system enables instantaneous and 3D video measurements of dynamic motions within and among live cells without the need for contrast agents. This "label-free", vibration insensitive imaging system enables measurement of biological objects in reflection using harmless light levels with current magnifications of 10X (NA 0.3) and 20X (NA 0.5) and wavelengths of 660 nm and 785 nm over fields of view from several hundred microns up to a millimeter. At the core of the instrument is a phasemeasurement camera (PMC) enabling simultaneous measurement of multiple interference patterns utilizing a pixelated phase mask taking advantage of the polarization properties of light. Utilizing this technology enables the creation of phase image movies in real time at video rates so that dynamic motions and volumetric changes can be tracked. Objects are placed on a reflective surface in liquid under a coverslip. Phase values are converted to optical thickness data enabling volumetric, motion and morphological studies. Data from a number of different mud puddle organisms such as paramecium, flagellates and rotifers will be presented, as will measurements of flying ant wings and cultures of human breast cancer cells. These data highlight examples of monitoring different biological processes and motions. The live presentation features 4D phase movies of these examples.

  4. WebTOP: A 3D Interactive System for Teaching and Learning Optics

    ERIC Educational Resources Information Center

    Mzoughi, Taha; Herring, S. Davis; Foley, John T.; Morris, Matthew J.; Gilbert, Peter J.

    2007-01-01

    WebTOP is a three-dimensional, Web-based, interactive computer graphics system that helps instructors teach and students learn about waves and optics. Current subject areas include waves, geometrical optics, reflection and refraction, polarization, interference, diffraction, lasers, and scattering. Some of the topics covered are suited for…

  5. Single-pulse interference caused by temporal reflection at moving refractive-index boundaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    Here, we show numerically and analytically that temporal reflections from a moving refractive-index boundary act as an analog of Lloyd’s mirror, allowing a single pulse to produce interference fringes in time as it propagates inside a dispersive medium. This interference can be viewed as the pulse interfering with a virtual pulse that is identical to the first, except for a π-phase shift. Furthermore, if a second moving refractive-index boundary is added to create the analog of an optical waveguide, a single pulse can be self-imaged or made to produce two or more pulses by adjusting the propagation length in amore » process similar to the Talbot effect.« less

  6. Single-pulse interference caused by temporal reflection at moving refractive-index boundaries

    DOE PAGES

    Plansinis, Brent W.; Donaldson, William R.; Agrawal, Govind P.

    2017-09-29

    Here, we show numerically and analytically that temporal reflections from a moving refractive-index boundary act as an analog of Lloyd’s mirror, allowing a single pulse to produce interference fringes in time as it propagates inside a dispersive medium. This interference can be viewed as the pulse interfering with a virtual pulse that is identical to the first, except for a π-phase shift. Furthermore, if a second moving refractive-index boundary is added to create the analog of an optical waveguide, a single pulse can be self-imaged or made to produce two or more pulses by adjusting the propagation length in amore » process similar to the Talbot effect.« less

  7. Dynamic light scattering microscopy

    NASA Astrophysics Data System (ADS)

    Dzakpasu, Rhonda

    An optical microscope technique, dynamic light scattering microscopy (DLSM) that images dynamically scattered light fluctuation decay rates is introduced. Using physical optics we show theoretically that within the optical resolution of the microscope, relative motions between scattering centers are sufficient to produce significant phase variations resulting in interference intensity fluctuations in the image plane. The time scale for these intensity fluctuations is predicted. The spatial coherence distance defining the average distance between constructive and destructive interference in the image plane is calculated and compared with the pixel size. We experimentally tested DLSM on polystyrene latex nanospheres and living macrophage cells. In order to record these rapid fluctuations, on a slow progressive scan CCD camera, we used a thin laser line of illumination on the sample such that only a single column of pixels in the CCD camera is illuminated. This allowed the use of the rate of the column-by-column readout transfer process as the acquisition rate of the camera. This manipulation increased the data acquisition rate by at least an order of magnitude in comparison to conventional CCD cameras rates defined by frames/s. Analysis of the observed fluctuations provides information regarding the rates of motion of the scattering centers. These rates, acquired from each position on the sample are used to create a spatial map of the fluctuation decay rates. Our experiments show that with this technique, we are able to achieve a good signal-to-noise ratio and can monitor fast intensity fluctuations, on the order of milliseconds. DLSM appears to provide dynamic information about fast motions within cells at a sub-optical resolution scale and provides a new kind of spatial contrast.

  8. Optical coherence tomography - principles and applications

    NASA Astrophysics Data System (ADS)

    Fercher, A. F.; Drexler, W.; Hitzenberger, C. K.; Lasser, T.

    2003-02-01

    There have been three basic approaches to optical tomography since the early 1980s: diffraction tomography, diffuse optical tomography and optical coherence tomography (OCT). Optical techniques are of particular importance in the medical field, because these techniques promise to be safe and cheap and, in addition, offer a therapeutic potential. Advances in OCT technology have made it possible to apply OCT in a wide variety of applications but medical applications are still dominating. Specific advantages of OCT are its high depth and transversal resolution, the fact, that its depth resolution is decoupled from transverse resolution, high probing depth in scattering media, contact-free and non-invasive operation, and the possibility to create various function dependent image contrasting methods. This report presents the principles of OCT and the state of important OCT applications. OCT synthesises cross-sectional images from a series of laterally adjacent depth-scans. At present OCT is used in three different fields of optical imaging, in macroscopic imaging of structures which can be seen by the naked eye or using weak magnifications, in microscopic imaging using magnifications up to the classical limit of microscopic resolution and in endoscopic imaging, using low and medium magnification. First, OCT techniques, like the reflectometry technique and the dual beam technique were based on time-domain low coherence interferometry depth-scans. Later, Fourier-domain techniques have been developed and led to new imaging schemes. Recently developed parallel OCT schemes eliminate the need for lateral scanning and, therefore, dramatically increase the imaging rate. These schemes use CCD cameras and CMOS detector arrays as photodetectors. Video-rate three-dimensional OCT pictures have been obtained. Modifying interference microscopy techniques has led to high-resolution optical coherence microscopy that achieved sub-micrometre resolution. This report is concluded with a short presentation of important OCT applications. Ophthalmology is, due to the transparent ocular structures, still the main field of OCT application. The first commercial instrument too has been introduced for ophthalmic diagnostics (Carl Zeiss Meditec AG). Advances in using near-infrared light, however, opened the path for OCT imaging in strongly scattering tissues. Today, optical in vivo biopsy is one of the most challenging fields of OCT application. High resolution, high penetration depth, and its potential for functional imaging attribute to OCT an optical biopsy quality, which can be used to assess tissue and cell function and morphology in situ. OCT can already clarify the relevant architectural tissue morphology. For many diseases, however, including cancer in its early stages, higher resolution is necessary. New broad-bandwidth light sources, like photonic crystal fibres and superfluorescent fibre sources, and new contrasting techniques, give access to new sample properties and unmatched sensitivity and resolution.

  9. Over-the-air in-band full-duplex system with hybrid RF optical and baseband digital self-interference cancellation

    NASA Astrophysics Data System (ADS)

    Zhang, Yunhao; Li, Longsheng; Bi, Meihua; Xiao, Shilin

    2017-12-01

    In this paper, we propose a hybrid analog optical self-interference cancellation (OSIC) and baseband digital SIC (DSIC) system for over-the-air in-band full-duplex (IBFD) wireless communication. Analog OSIC system is based on optical delay line, electro-absorption modulation lasers (EMLs) and balanced photodetector (BPD), which has the properties of high adjusting precision and broad processing bandwidth. With the help of baseband DSIC, the cancellation depth limitation of OSIC can be mitigated so as to achieve deeper total SIC depth. Experimental results show about 20-dB depth by OSIC and 10-dB more depth by DSIC over 1GHz broad baseband, so that the signal of interest (SOI) overlapped by wideband self-interference (SI) signal is better recovered compared to the IBFD system with OSIC or DSIC only. The hybrid of OSIC and DSIC takes advantages of the merits of optical devices and digital processors to achieve deep cancellation depth over broad bandwidth.

  10. Low-loss multimode interference couplers for terahertz waves

    NASA Astrophysics Data System (ADS)

    Themistos, Christos; Kalli, Kyriacos; Komodromos, Michael; Markides, Christos; Quadir, Anita; Rahman, B. M. Azizur; Grattan, Kenneth T. V.

    2012-04-01

    The terahertz (THz) frequency region of the electromagnetic spectrum is located between the traditional microwave spectrum and the optical frequencies, and offers a significant scientific and technological potential in many fields, such as in sensing, in imaging and in spectroscopy. Waveguiding in this intermediate spectral region is a major challenge. Amongst the various THz waveguides suggested, metal-clad plasmonic waveguides and specifically hollow core structures, coated with insulating material are the most promising low-loss waveguides used in both active and passive devices. Optical power splitters are important components in the design of optoelectronic systems and optical communication networks such as Mach-Zehnder Interferometric switches, polarization splitter and polarization scramblers. Several designs for the implementation of the 3dB power splitters have been proposed in the past, such as the directional coupler-based approach, the Y-junction-based devices and the MMI-based approach. In the present paper a novel MMI-based 3dB THz wave splitter is implemented using Gold/polystyrene (PS) coated hollow glass rectangular waveguides. The H-field FEM based full-vector formulation is used here to calculate the complex propagation characteristics of the waveguide structure and the finite element beam propagation method (FE-BPM) and finite difference time domain (FDTD) approach to demonstrate the performance of the proposed 3dB splitter.

  11. Processing of fetal heart rate through non-invasive adaptive system based on recursive least squares algorithm

    NASA Astrophysics Data System (ADS)

    Fajkus, Marcel; Nedoma, Jan; Martinek, Radek; Vasinek, Vladimir

    2017-10-01

    In this article, we describe an innovative non-invasive method of Fetal Phonocardiography (fPCG) using fiber-optic sensors and adaptive algorithm for the measurement of fetal heart rate (fHR). Conventional PCG is based on a noninvasive scanning of acoustic signals by means of a microphone placed on the thorax. As for fPCG, the microphone is placed on the maternal abdomen. Our solution is based on patent pending non-invasive scanning of acoustic signals by means of a fiber-optic interferometer. Fiber-optic sensors are resistant to technical artifacts such as electromagnetic interferences (EMI), thus they can be used in situations where it is impossible to use conventional EFM methods, e.g. during Magnetic Resonance Imaging (MRI) examination or in case of delivery in water. The adaptive evaluation system is based on Recursive least squares (RLS) algorithm. Based on real measurements provided on five volunteers with their written consent, we created a simplified dynamic signal model of a distribution of heartbeat sounds (HS) through the human body. Our created model allows us to verification of the proposed adaptive system RLS algorithm. The functionality of the proposed non-invasive adaptive system was verified by objective parameters such as Sensitivity (S+) and Signal to Noise Ratio (SNR).

  12. Low-loss interference filter arrays made by plasma-assisted reactive magnetron sputtering (PARMS) for high-performance multispectral imaging

    NASA Astrophysics Data System (ADS)

    Broßmann, Jan; Best, Thorsten; Bauer, Thomas; Jakobs, Stefan; Eisenhammer, Thomas

    2016-10-01

    Optical remote sensing of the earth from air and space typically utilizes several channels in the visible and near infrared spectrum. Thin-film optical interference filters, mostly of narrow bandpass type, are applied to select these channels. The filters are arranged in filter wheels, arrays of discrete stripe filters mounted in frames, or patterned arrays on a monolithic substrate. Such multi-channel filter assemblies can be mounted close to the detector, which allows a compact and lightweight camera design. Recent progress in image resolution and sensor sensitivity requires improvements of the optical filter performance. Higher demands placed on blocking in the UV and NIR and in between the spectral channels, in-band transmission and filter edge steepness as well as scattering lead to more complex filter coatings with thicknesses in the range of 10 - 25μm. Technological limits of the conventionally used ion-assisted evaporation process (IAD) can be overcome only by more precise and higher-energetic coating technologies like plasma-assisted reactive magnetron sputtering (PARMS) in combination with optical broadband monitoring. Optics Balzers has developed a photolithographic patterning process for coating thicknesses up to 15μm that is fully compatible with the advanced PARMS coating technology. This provides the possibility of depositing multiple complex high-performance filters on a monolithic substrate. We present an overview of the performance of recently developed filters with improved spectral performance designed for both monolithic filter-arrays and stripe filters mounted in frames. The pros and cons as well as the resulting limits of the filter designs for both configurations are discussed.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sabau, Adrian S; Chen, Jian; Jones, Jonaaron F.

    The increasing use of Carbon Fiber Polymer Composite (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin in the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg - T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90o plaques. The effect of laser fluence, scanning speed, and wavelength was investigated to remove resin without an excessive damage of the fibers. In addition, resin ablation duemore » to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on the surface morphology.« less

  14. Versatile quantitative phase imaging system applied to high-speed, low noise and multimodal imaging (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Federici, Antoine; Aknoun, Sherazade; Savatier, Julien; Wattellier, Benoit F.

    2017-02-01

    Quadriwave lateral shearing interferometry (QWLSI) is a well-established quantitative phase imaging (QPI) technique based on the analysis of interference patterns of four diffraction orders by an optical grating set in front of an array detector [1]. As a QPI modality, this is a non-invasive imaging technique which allow to measure the optical path difference (OPD) of semi-transparent samples. We present a system enabling QWLSI with high-performance sCMOS cameras [2] and apply it to perform high-speed imaging, low noise as well as multimodal imaging. This modified QWLSI system contains a versatile optomechanical device which images the optical grating near the detector plane. Such a device is coupled with any kind of camera by varying its magnification. In this paper, we study the use of a sCMOS Zyla5.5 camera from Andor along with our modified QWLSI system. We will present high-speed live cell imaging, up to 200Hz frame rate, in order to follow intracellular fast motions while measuring the quantitative phase information. The structural and density information extracted from the OPD signal is complementary to the specific and localized fluorescence signal [2]. In addition, QPI detects cells even when the fluorophore is not expressed. This is very useful to follow a protein expression with time. The 10 µm spatial pixel resolution of our modified QWLSI associated to the high sensitivity of the Zyla5.5 enabling to perform high quality fluorescence imaging, we have carried out multimodal imaging revealing fine structures cells, like actin filaments, merged with the morphological information of the phase. References [1]. P. Bon, G. Maucort, B. Wattellier, and S. Monneret, "Quadriwave lateral shearing interferometry for quantitative phase microscopy of living cells," Opt. Express, vol. 17, pp. 13080-13094, 2009. [2] P. Bon, S. Lécart, E. Fort and S. Lévêque-Fort, "Fast label-free cytoskeletal network imaging in living mammalian cells," Biophysical journal, 106(8), pp. 1588-1595, 2014

  15. Optical interference probe of biofilm hydrology: label-free characterization of the dynamic hydration behavior of native biofilms

    NASA Astrophysics Data System (ADS)

    McDonough, Richard T.; Zheng, Hewen; Alila, Mercy A.; Goodisman, Jerry; Chaiken, Joseph

    2017-03-01

    Biofilm produced by Escherichia coli (E. coli) or Pseudomonas aeruginosa (P. aeruginosa) on quartz or polystyrene is removed from the culture medium and drained. Observed optical interference fringes indicate the presence of a layer of uniform thickness with refractive index different from air-dried biofilm. Fringe wavelengths indicate that layer optical thickness is <20 μm or 1 to 2 orders of magnitude thinner than the biofilm as measured by confocal Raman microscopy or fluorescence imaging of the bacteria. Raman shows that films have an alginate-like carbohydrate composition. Fringe amplitudes indicate that the refractive index of the interfering layer is higher than dry alginate. Drying and rehydration nondestructively thins and restores the interfering layer. The strength of the 1451-nm near infrared water absorption varies in unison with thickness. Absorption and layer thickness are proportional for films with different bacteria, substrates, and growth conditions. Formation of the interfering layer is general, possibly depending more on the chemical nature of alginate-like materials than bacterial processes. Films grown during the exponential growth phase produce no observable interference fringes, indicating requirements for layer formation are not met, possibly reflecting bacterial activities at that stage. The interfering layer might provide a protective environment for bacteria when water is scarce.

  16. Navigating surgical fluorescence cameras using near-infrared optical tracking.

    PubMed

    van Oosterom, Matthias; den Houting, David; van de Velde, Cornelis; van Leeuwen, Fijs

    2018-05-01

    Fluorescence guidance facilitates real-time intraoperative visualization of the tissue of interest. However, due to attenuation, the application of fluorescence guidance is restricted to superficial lesions. To overcome this shortcoming, we have previously applied three-dimensional surgical navigation to position the fluorescence camera in reach of the superficial fluorescent signal. Unfortunately, in open surgery, the near-infrared (NIR) optical tracking system (OTS) used for navigation also induced an interference during NIR fluorescence imaging. In an attempt to support future implementation of navigated fluorescence cameras, different aspects of this interference were characterized and solutions were sought after. Two commercial fluorescence cameras for open surgery were studied in (surgical) phantom and human tissue setups using two different NIR OTSs and one OTS simulating light-emitting diode setup. Following the outcome of these measurements, OTS settings were optimized. Measurements indicated the OTS interference was caused by: (1) spectral overlap between the OTS light and camera, (2) OTS light intensity, (3) OTS duty cycle, (4) OTS frequency, (5) fluorescence camera frequency, and (6) fluorescence camera sensitivity. By optimizing points 2 to 4, navigation of fluorescence cameras during open surgery could be facilitated. Optimization of the OTS and camera compatibility can be used to support navigated fluorescence guidance concepts. (2018) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE).

  17. Fluorescent Imaging of Single Nanoparticles and Viruses on a Smart Phone

    PubMed Central

    Wei, Qingshan; Qi, Hangfei; Luo, Wei; Tseng, Derek; Ki, So Jung; Wan, Zhe; Göröcs, Zoltán; Bentolila, Laurent A.; Wu, Ting-Ting; Sun, Ren; Ozcan, Aydogan

    2014-01-01

    Optical imaging of nanoscale objects, whether it is based on scattering or fluorescence, is a challenging task due to reduced detection signal-to-noise ratio and contrast at subwavelength dimensions. Here, we report a field-portable fluorescence microscopy platform installed on a smart phone for imaging of individual nanoparticles as well as viruses using a lightweight and compact opto-mechanical attachment to the existing camera module of the cell phone. This hand-held fluorescent imaging device utilizes (i) a compact 450 nm laser diode that creates oblique excitation on the sample plane with an incidence angle of ~75°, (ii) a long-pass thin-film interference filter to reject the scattered excitation light, (iii) an external lens creating 2× optical magnification, and (iv) a translation stage for focus adjustment. We tested the imaging performance of this smart-phone-enabled microscopy platform by detecting isolated 100 nm fluorescent particles as well as individual human cytomegaloviruses that are fluorescently labeled. The size of each detected nano-object on the cell phone platform was validated using scanning electron microscopy images of the same samples. This field-portable fluorescence microscopy attachment to the cell phone, weighing only ~186 g, could be used for specific and sensitive imaging of subwavelength objects including various bacteria and viruses and, therefore, could provide a valuable platform for the practice of nanotechnology in field settings and for conducting viral load measurements and other biomedical tests even in remote and resource-limited environments. PMID:24016065

  18. Delivery of ultrashort spatially focused pulses through a multimode fiber

    NASA Astrophysics Data System (ADS)

    Morales-Delgado, Edgar E.; Papadopoulos, Ioannis N.; Farahi, Salma; Psaltis, Demetri; Moser, Christophe

    2015-08-01

    Multimode optical fibers potentially allow the transmission of larger amounts of information than their single mode counterparts because of their high number of supported modes. However, propagation of a light pulse through a multimode fiber suffers from spatial distortions due to the superposition of the various exited modes and from time broadening due to modal dispersion. We present a method based on digital phase conjugation to selectively excite in a multimode fiber specific optical fiber modes that follow similar optical paths as they travel through the fiber. The excited modes interfere constructively at the fiber output generating an ultrashort spatially focused pulse. The excitation of a limited number of modes following similar optical paths limits modal dispersion, allowing the transmission of the ultrashort pulse. We have experimentally demonstrated the delivery of a focused spot of pulse width equal to 500 fs through a 30 cm, 200 micrometer core step index multimode fiber. The results of this study show that two-photon imaging capability can be added to ultra-thin lensless endoscopy using commercial multimode fibers.

  19. Delivery of an ultrashort spatially focused pulse to the other end of a multimode fiber using digital phase conjugation

    NASA Astrophysics Data System (ADS)

    Morales Delgado, Edgar E.; Papadopoulos, Ioannis N.; Farahi, Salma; Psaltis, Demetri; Moser, Christophe

    2015-03-01

    Multimode optical fibers potentially allow the transmission of larger amounts of information than their single mode counterparts because of their high number of supported modes. However, propagation of a light pulse through a multimode fiber suffers from spatial distortions due to the superposition of the various exited modes and from time broadening due to modal dispersion. We present a method based on digital phase conjugation to selectively excite in a multimode fiber specific optical fiber modes that follow similar optical paths as they travel through the fiber. The excited modes interfere constructively at the fiber output generating an ultrashort spatially focused pulse. The excitation of a limited number of modes following similar optical paths limits modal dispersion, allowing the transmission of the ultrashort pulse. We have experimentally demonstrated the delivery of a focused spot of pulse width equal to 500 fs through a 30 cm, 200 micrometer core step-index multimode fiber. The results of this study show that two-photon imaging capability can be added to ultra-thin lensless endoscopy using commercial multimode fibers.

  20. Adaptive optics and interferometry

    NASA Technical Reports Server (NTRS)

    Beichman, Charles A.; Ridgway, Stephen

    1991-01-01

    Adaptive optics and interferometry, two techniques that will improve the limiting resolution of optical and infrared observations by factors of tens or even thousands, are discussed. The real-time adjustment of optical surfaces to compensate for wavefront distortions will improve image quality and increase sensitivity. The phased operation of multiple telescopes separated by large distances will make it possible to achieve very high angular resolution and precise positional measurements. Infrared and optical interferometers that will manipulate light beams and measure interference directly are considered. Angular resolutions of single telescopes will be limited to around 10 milliarcseconds even using the adaptive optics techniques. Interferometry would surpass this limit by a factor of 100 or more. Future telescope arrays with 100-m baselines (resolution of 2.5 milliarcseconds at a 1-micron wavelength) are also discussed.

  1. Applications of quantitative time lapse holographic imaging to the development of complex pharmaceutical nano formulations

    NASA Astrophysics Data System (ADS)

    Luther, Ed; Mendes, Livia; Pan, Jiayi; Costa, Daniel; Sarisozen, Can; Torchilin, Vladimir

    2018-02-01

    We rely on in vitro cellular cultures to evaluate the effects of the components of multifunctional nano-based formulations under development. We employ an incubator-adapted, label-free holographic imaging cytometer HoloMonitor M4® (Phase Holographic Imaging, Lund, Sweden) to obtain multi-day time-lapse sequences at 5- minute intervals. An automated stage allows hand-free acquisition of multiple fields of view. Our system is based on the Mach-Zehnder interferometry principle to create interference patterns which are deconvolved to produce images of the optical thickness of the field of view. These images are automatically segmented resulting in a full complement of quantitative morphological features, such as optical volume, thickness, and area amongst many others. Precise XY cell locations and the time of acquisition are also recorded. Visualization is best achieved by novel 4-Dimensional plots, where XY position is plotted overtime time (Z-directions) and cell-thickness is coded as color or gray scale brightness. Fundamental events of interest, i.e., cells undergoing mitosis or mitotic dysfunction, cell death, cell-to-cell interactions, motility are discernable. We use both 2D and 3D models of the tumor microenvironment. We report our new analysis method to track feature changes over time based on a 4-sample version of the Kolmogorov-Smirnov test. Feature A is compared to Control A, and Feature B is compared to Control B to give a 2D probability plot of the feature changes over time. As a result, we efficiently obtain vectors quantifying feature changes over time in various sample conditions, i.e., changing compound concentrations or multi-compound combinations.

  2. Distributed optical fiber vibration sensing using phase-generated carrier demodulation algorithm

    NASA Astrophysics Data System (ADS)

    Yu, Zhihua; Zhang, Qi; Zhang, Mingyu; Dai, Haolong; Zhang, Jingjing; Liu, Li; Zhang, Lijun; Jin, Xing; Wang, Gaifang; Qi, Guang

    2018-05-01

    A novel optical fiber-distributed vibration-sensing system is proposed, which is based on self-interference of Rayleigh backscattering with phase-generated carrier (PGC) demodulation algorithm. Pulsed lights are sent into the sensing fiber and the Rayleigh backscattering light from a certain position along the sensing fiber would interfere through an unbalanced Michelson interferometry to generate the interference light. An improved PGC demodulation algorithm is carried out to recover the phase information of the interference signal, which carries the sensing information. Three vibration events were applied simultaneously to different positions over 2000 m sensing fiber and demodulated correctly. The spatial resolution is 10 m, and the noise level of the Φ-OTDR system we proposed is about 10-3 rad/\\surd {Hz}, and the signal-to-noise ratio is about 30.34 dB.

  3. Displacement sensing based on modal interference in polymer optical fibers with partially applied strain

    NASA Astrophysics Data System (ADS)

    Mizuno, Yosuke; Hagiwara, Sonoko; Kawa, Tomohito; Lee, Heeyoung; Nakamura, Kentaro

    2018-05-01

    Strain sensing based on modal interference in multimode fibers (MMFs) has been extensively studied, but no experimental or theoretical reports have been given as to how the system works when strain is applied not to the whole MMF but only to part of the MMF. Here, using a perfluorinated graded-index polymer optical fiber as the MMF, we investigate the strain sensing characteristics of this type of sensor when strain is partially applied to fiber sections with different lengths. The strain sensitivity dependence on the length of the strained section reveals that this strain sensor actually behaves as a displacement sensor.

  4. Aberration control in 4Pi nanoscopy: definitions, properties, and applications (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Hao, Xiang; Allgeyer, Edward S.; Velasco, Mary Grace M.; Booth, Martin J.; Bewersdorf, Joerg

    2016-03-01

    The development of fluorescence microscopy, which allows live-cell imaging with high labeling specificity, has made the visualization of cellular architecture routine. However, for centuries, the spatial resolution of optical microscopy was fundamentally limited by diffraction. The past two decades have seen a revolution in far-field optical nanoscopy (or "super-resolution" microscopy). The best 3D resolution is achieved by optical nanoscopes like the isoSTED or the iPALM/4Pi-SMS, which utilize two opposing objective lenses in a coherent manner. These system are, however, also more complex and the required interference conditions demand precise aberration control. Our research involves developing novel adaptive optics techniques that enable high spatial and temporal resolution imaging for biological applications. In this talk, we will discuss how adaptive optics can enhance dual-objective lens nanoscopes. We will demonstrate how adaptive optics devices provide unprecedented freedom to manipulate the light field in isoSTED nanoscopy, allow to realize automatic beam alignment, suppress the inherent side-lobes of the point-spread function, and dynamically compensate for sample-induced aberrations. We will present both the theoretical groundwork and the experimental confirmations.

  5. Interferometry-based free space communication and information processing

    NASA Astrophysics Data System (ADS)

    Arain, Muzammil Arshad

    This dissertation studies, analyzes, and experimentally demonstrates the innovative use of interference phenomenon in the field of opto-electronic information processing and optical communications. A number of optical systems using interferometric techniques both in the optical and the electronic domains has been demonstrated in the filed of signal transmission and processing, optical metrology, defense, and physical sensors. Specifically it has been shown that the interference of waves in the form of holography can be exploited to realize a novel optical scanner called Code Multiplexed Optical Scanner (C-MOS). The C-MOS features large aperture, wide scan angles, 3-D beam control, no moving parts, and high beam scanning resolution. A C-MOS based free space optical transceiver for bi-directional communication has also been experimentally demonstrated. For high speed, large bandwidth, and high frequency operation, an optically implemented reconfigurable RF transversal filter design is presented that implements wide range of filtering algorithms. A number of techniques using heterodyne interferometry via acousto-optic device for optical path length measurements have been described. Finally, a whole new class of interferometric sensors for optical metrology and sensing applications is presented. A non-traditional interferometric output signal processing scheme has been developed. Applications include, for example, temperature sensors for harsh environments for a wide temperature range from room temperature to 1000°C.

  6. Design of a compact static Fourier transform spectrometer in integrated optics based on a leaky loop structure.

    PubMed

    Martin, Bruno; Morand, Alain; Benech, Pierre; Leblond, Gregory; Blaize, Sylvain; Lerondel, Gilles; Royer, Pascal; Kern, Pierre; Le Coarer, Etienne

    2009-01-15

    A compact static Fourier transform spectrometer for integrated optics is proposed. It is based on a plane leaky loop structure combined with a plane waveguide. The interference pattern produced in the loop structure leaks outside of it and is guided in the plane waveguide to the photodetector array. This configuration allows one to control the shape of the field pattern at the end of the plane waveguide. A large fringe pattern with a high interference fringe contrast is obtained. A two-dimensional model based on an aperiodic Fourier modal method is used to modelize the coupling between the bent and the plane waveguides, completed with the Helmholtz-Kirchhoff propagation. This concept gives access to plan and compact spectrometers requiring only a single low-cost realization process step. The simulation has been done to realize a spectrometer in glass integrated optics (Deltalambda=6.1 nm at 1500 nm).

  7. Method for detection of dental caries and periodontal disease using optical imaging

    DOEpatents

    Nathel, H.; Kinney, J.H.; Otis, L.L.

    1996-10-29

    A method is disclosed for detecting the presence of active and inactive caries in teeth and diagnosing periodontal disease uses non-ionizing radiation with techniques for reducing interference from scattered light. A beam of non-ionizing radiation is divided into sample and reference beams. The region to be examined is illuminated by the sample beam, and reflected or transmitted radiation from the sample is recombined with the reference beam to form an interference pattern on a detector. The length of the reference beam path is adjustable, allowing the operator to select the reflected or transmitted sample photons that recombine with the reference photons. Thus radiation scattered by the dental or periodontal tissue can be prevented from obscuring the interference pattern. A series of interference patterns may be generated and interpreted to locate dental caries and periodontal tissue interfaces. 7 figs.

  8. A Sea-Sky Line Detection Method for Unmanned Surface Vehicles Based on Gradient Saliency.

    PubMed

    Wang, Bo; Su, Yumin; Wan, Lei

    2016-04-15

    Special features in real marine environments such as cloud clutter, sea glint and weather conditions always result in various kinds of interference in optical images, which make it very difficult for unmanned surface vehicles (USVs) to detect the sea-sky line (SSL) accurately. To solve this problem a saliency-based SSL detection method is proposed. Through the computation of gradient saliency the line features of SSL are enhanced effectively, while other interference factors are relatively suppressed, and line support regions are obtained by a region growing method on gradient orientation. The SSL identification is achieved according to region contrast, line segment length and orientation features, and optimal state estimation of SSL detection is implemented by introducing a cubature Kalman filter (CKF). In the end, the proposed method is tested on a benchmark dataset from the "XL" USV in a real marine environment, and the experimental results demonstrate that the proposed method is significantly superior to other state-of-the-art methods in terms of accuracy rate and real-time performance, and its accuracy and stability are effectively improved by the CKF.

  9. An information theory of image gathering

    NASA Technical Reports Server (NTRS)

    Fales, Carl L.; Huck, Friedrich O.

    1991-01-01

    Shannon's mathematical theory of communication is extended to image gathering. Expressions are obtained for the total information that is received with a single image-gathering channel and with parallel channels. It is concluded that the aliased signal components carry information even though these components interfere with the within-passband components in conventional image gathering and restoration, thereby degrading the fidelity and visual quality of the restored image. An examination of the expression for minimum mean-square-error, or Wiener-matrix, restoration from parallel image-gathering channels reveals a method for unscrambling the within-passband and aliased signal components to restore spatial frequencies beyond the sampling passband out to the spatial frequency response cutoff of the optical aperture.

  10. Basic optics of effect materials.

    PubMed

    Jones, Steven A

    2010-01-01

    Effect materials derive their color and effect primarily from thin-film interference. Effect materials have evolved over the decades from simple guanine crystals to the complex multilayer optical structures of today. The development of new complex effect materials requires an understanding of the optics of effect materials. Such an understanding would also benefit the cosmetic formulator as these new effect materials are introduced. The root of this understanding begins with basic optics. This paper covers the nature of light, interference of waves, thin-film interference, color from interference, and color travel.

  11. Beam Splitter For Welding-Torch Vision System

    NASA Technical Reports Server (NTRS)

    Gilbert, Jeffrey L.

    1991-01-01

    Compact welding torch equipped with along-the-torch vision system includes cubic beam splitter to direct preview light on weldment and to reflect light coming from welding scene for imaging. Beam splitter integral with torch; requires no external mounting brackets. Rugged and withstands vibrations and wide range of temperatures. Commercially available, reasonably priced, comes in variety of sizes and optical qualities with antireflection and interference-filter coatings on desired faces. Can provide 50 percent transmission and 50 percent reflection of incident light to exhibit minimal ghosting of image.

  12. Illusion induced overlapped optics.

    PubMed

    Zang, XiaoFei; Shi, Cheng; Li, Zhou; Chen, Lin; Cai, Bin; Zhu, YiMing; Zhu, HaiBin

    2014-01-13

    The traditional transformation-based cloak seems like it can only hide objects by bending the incident electromagnetic waves around the hidden region. In this paper, we prove that invisible cloaks can be applied to realize the overlapped optics. No matter how many in-phase point sources are located in the hidden region, all of them can overlap each other (this can be considered as illusion effect), leading to the perfect optical interference effect. In addition, a singular parameter-independent cloak is also designed to obtain quasi-overlapped optics. Even more amazing of overlapped optics is that if N identical separated in-phase point sources covered with the illusion media, the total power outside the transformation region is N2I0 (not NI0) (I0 is the power of just one point source, and N is the number point sources), which seems violating the law of conservation of energy. A theoretical model based on interference effect is proposed to interpret the total power of these two kinds of overlapped optics effects. Our investigation may have wide applications in high power coherent laser beams, and multiple laser diodes, and so on.

  13. Optical filters for wavelength selection in fluorescence instrumentation.

    PubMed

    Erdogan, Turan

    2011-04-01

    Fluorescence imaging and analysis techniques have become ubiquitous in life science research, and they are poised to play an equally vital role in in vitro diagnostics (IVD) in the future. Optical filters are crucial for nearly all fluorescence microscopes and instruments, not only to provide the obvious function of spectral control, but also to ensure the highest possible detection sensitivity and imaging resolution. Filters make it possible for the sample to "see" light within only the absorption band, and the detector to "see" light within only the emission band. Without filters, the detector would not be able to distinguish the desired fluorescence from scattered excitation light and autofluorescence from the sample, substrate, and other optics in the system. Today the vast majority of fluorescence instruments, including the widely popular fluorescence microscope, use thin-film interference filters to control the spectra of the excitation and emission light. Hence, this unit emphasizes thin-film filters. After briefly introducing different types of thin-film filters and how they are made, the unit describes in detail different optical filter configurations in fluorescence instruments, including both single-color and multicolor imaging systems. Several key properties of thin-film filters, which can significantly affect optical system performance, are then described. In the final section, tunable optical filters are also addressed in a relative comparison.

  14. Novel methods for matter interferometry with nanosized objects

    NASA Astrophysics Data System (ADS)

    Arndt, Markus

    2005-05-01

    We discuss the current status and prospects for novel experimental methods for coherence^1,2 and decoherence^3 experiments with large molecules. Quantum interferometry with nanosized objects is interesting for the exploration of the quantum-classical transition. The same experimental setup is also promising for metrology applications and molecular nanolithography. Our coherence experiments with macromolecules employ a Talbot-Lau interferometer. We discuss some modifications to this scheme, which are required to extend it to particles with masses in excess of several thousand mass units. In particular, the detection in all previous interference experiments with large clusters and molecules, was based on either laser ionization^1 (e.g. Fullerenes) or electron impact ionization^2 (e.g. Porphyrins etc.). However, most ionization schemes run into efficiency limits when the mass and complexity of the target particle increases. Here we present experimental results for an interference detector which is truly scalable, i.e. one which will even improve with increasing particle size and complexity. ``Mechanically magnified fluorescence imaging'' (MMFI), combines the high spatial resolution, which is intrinsic to Talbot Lau interferometry with the high detection efficiency of fluorophores adsorbed onto a substrate. In the Talbot Lau setup a molecular interference pattern is revealed by scanning the 3^rd grating across the molecular beam^1. The number of transmitted molecules is a function of the relative position between the mask and the molecular density pattern. Both the particle interference pattern and the mechanical mask structure may be far smaller than any optical resolution limit. After mechanical magnification by an arbitrary factor, in our case a factor 5000, the interference pattern can still be inspected in fluorescence microscopy. The fluorescent molecules are collected on a surface which is scanned collinearly and synchronously behind the 3rd grating. The resulting image of the interference pattern is by far large enough to be easily seen by the unaided eye. High contrast interference fringes could be recorded with dyes molecules. ^1B. Brezger et al. , Phys. Rev. Lett. 88, 100404 (2002). ^2L. Hackermüller et al. Phys. Rev. Lett 91, 90408 (2003). ^3L. Hackermüller et al. Nature 427, 711 (2004).

  15. Differential optical absorption spectrometer for measurement of tropospheric pollutants

    NASA Astrophysics Data System (ADS)

    Evangelisti, F.; Baroncelli, A.; Bonasoni, P.; Giovanelli, G.; Ravegnani, F.

    1995-05-01

    Our institute has recently developed a differential optical absorption spectrometry system called the gas analyzer spectrometer correlating optical absorption differences (GASCOAD), which features as a detector a linear image sensor that uses an artificial light source for long-path tropospheric-pollution monitoring. The GASCOAD, its method of eliminating interference from background sky light, and subsequent spectral analysis are reported and discussed. The spectrometer was used from 7 to 22 February 1993 in Milan, a heavily polluted metropolitan area, to measure the concentrations of SO2, NO2, O3, and HNO2 averaged over a 1.7-km horizontal light path. The findings are reported and briefly discussed.

  16. Photorefractive detection of tagged photons in ultrasound modulated optical tomography of thick biological tissues.

    PubMed

    Ramaz, F; Forget, B; Atlan, M; Boccara, A C; Gross, M; Delaye, P; Roosen, G

    2004-11-01

    We present a new and simple method to obtain ultrasound modulated optical tomography images in thick biological tissues with the use of a photorefractive crystal. The technique offers the advantage of spatially adapting the output speckle wavefront by analysing the signal diffracted by the interference pattern between this output field and a reference beam, recorded inside the photorefractive crystal. Averaging out due to random phases of the speckle grains vanishes, and we can use a fast single photodetector to measure the ultrasound modulated optical contrast. This technique offers a promising way to make direct measurements within the decorrelation time scale of living tissues.

  17. Do radio frequencies of medical instruments common in the operating room interfere with near-infrared spectroscopy signals?

    NASA Astrophysics Data System (ADS)

    Shadgan, Babak; Molavi, Behnam; Reid, W. D.; Dumont, Guy; Macnab, Andrew J.

    2010-02-01

    Background: Medical and diagnostic applications of near infrared spectroscopy (NIRS) are increasing, especially in operating rooms (OR). Since NIRS is an optical technique, radio frequency (RF) interference from other instruments is unlikely to affect the raw optical data, however, NIRS data processing and signal output could be affected. Methods: We investigated the potential for three common OR instruments: an electrical cautery, an orthopaedic drill and an imaging system, to generate electromagnetic interference (EMI) that could potentially influence NIRS signals. The time of onset and duration of every operation of each device was recorded during surgery. To remove the effects of slow changing physiological variables, we first used a lowpass filter and then selected 2 windows with variable lengths around the moment of device onset. For each instant, variances (energy) and means of the signals in the 2 windows were compared. Results: Twenty patients were studied during ankle surgery. Analysis shows no statistically significant difference in the means and variance of the NIRS signals (p < 0.01) during operation of any of the three devices for all surgeries. Conclusion: This method confirms the instruments evaluated caused no significant interference. NIRS can potentially be used without EMI in clinical environments such as the OR.

  18. Super Resolution and Interference Suppression Technique applied to SHARAD Radar Data

    NASA Astrophysics Data System (ADS)

    Raguso, M. C.; Mastrogiuseppe, M.; Seu, R.; Piazzo, L.

    2017-12-01

    We will present a super resolution and interference suppression technique applied to the data acquired by the SHAllow RADar (SHARAD) on board the NASA's 2005 Mars Reconnaissance Orbiter (MRO) mission, currently operating around Mars [1]. The algorithms allow to improve the range resolution roughly by a factor of 3 and the Signal to Noise Ratio (SNR) by a several decibels. Range compression algorithms usually adopt conventional Fourier transform techniques, which are limited in the resolution by the transmitted signal bandwidth, analogous to the Rayleigh's criterion in optics. In this work, we investigate a super resolution method based on autoregressive models and linear prediction techniques [2]. Starting from the estimation of the linear prediction coefficients from the spectral data, the algorithm performs the radar bandwidth extrapolation (BWE), thereby improving the range resolution of the pulse-compressed coherent radar data. Moreover, the EMIs (ElectroMagnetic Interferences) are detected and the spectra is interpolated in order to reconstruct an interference free spectrum, thereby improving the SNR. The algorithm can be applied to the single complex look image after synthetic aperture processing (SAR). We apply the proposed algorithm to simulated as well as to real radar data. We will demonstrate the effective enhancement on vertical resolution with respect to the classical spectral estimator. We will show that the imaging of the subsurface layered structures observed in radargrams is improved, allowing additional insights for the scientific community in the interpretation of the SHARAD radar data, which will help to further our understanding of the formation and evolution of known geological features on Mars. References: [1] Seu et al. 2007, Science, 2007, 317, 1715-1718 [2] K.M. Cuomo, "A Bandwidth Extrapolation Technique for Improved Range Resolution of Coherent Radar Data", Project Report CJP-60, Revision 1, MIT Lincoln Laboratory (4 Dec. 1992).

  19. Reduction of parasitic interferences in digital holographic microscopy by numerically decreased coherence length

    NASA Astrophysics Data System (ADS)

    Kosmeier, S.; Langehanenberg, P.; von Bally, G.; Kemper, B.

    2012-01-01

    Due to the large coherence length of laser light, optical path length (OPL) resolution in laser based digital holographic microscopy suffers from parasitic interferences caused by multiple reflections within the experimental setup. Use of partially coherent light reduces this drawback but requires precise and stable matching of object and reference arm's OPLs and limits the spatial frequency of the interference pattern in off-axis holography. Here, we investigate if the noise properties of spectrally broadened light sources can be generated numerically. Therefore, holograms are coherently captured at different laser wavelengths and the corresponding reconstructed wave fields are numerically superimposed utilizing variable weightings. Gaussian and rectangular spectral shapes of the so synthesized field are analyzed with respect to the resulting noise level, which is quantified in OPL distributions of a reflective test target. Utilizing a Gaussian weighting, the noise level is found to be similar to the one obtained with the partially coherent light of a superluminescent diode. With a rectangular shaped synthesized spectrum, noise is reduced more efficient than with a Gaussian one. The applicability of the method in label-free cell analysis is demonstrated by quantitative phase contrast images obtained from living cancer cells.

  20. Line edge roughness (LER) mitigation studies specific to interference-like lithography

    NASA Astrophysics Data System (ADS)

    Baylav, Burak; Estroff, Andrew; Xie, Peng; Smith, Bruce W.

    2013-04-01

    Line edge roughness (LER) is a common problem to most lithography approaches and is seen as the main resolution limiter for advanced technology nodes1. There are several contributors to LER such as chemical/optical shot noise, random nature of acid diffusion, development process, and concentration of acid generator/base quencher. Since interference-like lithography (IL) is used to define one directional gridded patterns, some LER mitigation approaches specific to IL-like imaging can be explored. Two methods investigated in this work for this goal are (i) translational image averaging along the line direction and (ii) pupil plane filtering. Experiments regarding the former were performed on both interferometric and projection lithography systems. Projection lithography experiments showed a small amount of reduction in low/mid frequency LER value for image averaged cases at pitch of 150 nm (193 nm illumination, 0.93 NA) with less change for smaller pitches. Aerial image smearing did not significantly increase LER since it was directional. Simulation showed less than 1% reduction in NILS (compared to a static, smooth mask equivalent) with ideal alignment. In addition, description of pupil plane filtering on the transfer of mask roughness is given. When astigmatism-like aberrations were introduced in the pupil, transfer of mask roughness is decreased at best focus. It is important to exclude main diffraction orders from the filtering to prevent contrast and NILS loss. These ideas can be valuable as projection lithography approaches to conditions similar to IL (e.g. strong RET methods).

  1. Removing interference-based effects from the infrared transflectance spectra of thin films on metallic substrates: a fast and wave optics conform solution.

    PubMed

    Mayerhöfer, Thomas G; Pahlow, Susanne; Hübner, Uwe; Popp, Jürgen

    2018-06-25

    A hybrid formalism combining elements from Kramers-Kronig based analyses and dispersion analysis was developed, which allows removing interference-based effects in the infrared spectra of layers on highly reflecting substrates. In order to enable a highly convenient application, the correction procedure is fully automatized and usually requires less than a minute with non-optimized software on a typical office PC. The formalism was tested with both synthetic and experimental spectra of poly(methyl methacrylate) on gold. The results confirmed the usefulness of the formalism: apparent peak ratios as well as the interference fringes in the original spectra were successfully corrected. Accordingly, the introduced formalism makes it possible to use inexpensive and robust highly reflecting substrates for routine infrared spectroscopic investigations of layers or films the thickness of which is limited by the imperative that reflectance absorbance must be smaller than about 1. For thicker films the formalism is still useful, but requires estimates for the optical constants.

  2. Optical encryption of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography

    NASA Astrophysics Data System (ADS)

    Wang, Ying; Liu, Qi; Wang, Jun; Wang, Qiong-Hua

    2018-03-01

    We present an optical encryption method of multiple three-dimensional objects based on multiple interferences and single-pixel digital holography. By modifying the Mach–Zehnder interferometer, the interference of the multiple objects beams and the one reference beam is used to simultaneously encrypt multiple objects into a ciphertext. During decryption, each three-dimensional object can be decrypted independently without having to decrypt other objects. Since the single-pixel digital holography based on compressive sensing theory is introduced, the encrypted data of this method is effectively reduced. In addition, recording fewer encrypted data can greatly reduce the bandwidth of network transmission. Moreover, the compressive sensing essentially serves as a secret key that makes an intruder attack invalid, which means that the system is more secure than the conventional encryption method. Simulation results demonstrate the feasibility of the proposed method and show that the system has good security performance. Project supported by the National Natural Science Foundation of China (Grant Nos. 61405130 and 61320106015).

  3. Effect of Number of Zones on Subjective Vision in Concentric Bifocal Optics.

    PubMed

    Legras, Richard; Rio, David

    2015-11-01

    To evaluate the influence of the number of concentric zones of a center-near bifocal optics on the subjective quality of vision. Twenty-two subjects scored with a five-item continuous grading scale the quality of vision of calculated images (i.e., three high-contrast 20/50 letters) viewed through their best sphero-cylindrical correction and a 3-mm pupil to limit the impact of their aberrations. Through-focus images were calculated from -4 to +2 diopters (D), each 0.25 D, in the presence of center-near bifocal optics (Add 2.5 D) varying by their number of concentric zones (from 2 to 20). To compare the results obtained with these profiles, we calculated the area under the (through-focus) curve (AUC) higher than 2 out of 5 (i.e., limit between a poor and a fair image quality, considered as the limit of acceptability). This value was normalized by the naked eye condition and divided into distance, intermediate, and near AUC. The results showed large interindividual variations. Distance AUC remained quite similar whatever the profile, near AUC decreased with the number of concentric zones, and intermediate AUC rose with the number of concentric zones. With 10 and 20 concentric zones, diffraction phenomenon induced constructive interferences at intermediate proximities and destructive interferences at distance and near proximities. To balance distance, intermediate, and near quality of vision, a number of zones between 8 and 10 should be chosen. If the subject does not need intermediate quality of vision, then a profile with two to five zones should be favored.

  4. Analytical expressions for the nonlinear interference in dispersion managed transmission coherent optical systems

    NASA Astrophysics Data System (ADS)

    Qiao, Yaojun; Li, Ming; Yang, Qiuhong; Xu, Yanfei; Ji, Yuefeng

    2015-01-01

    Closed-form expressions of nonlinear interference of dense wavelength-division-multiplexed (WDM) systems with dispersion managed transmission (DMT) are derived. We carry out a simulative validation by addressing an ample and significant set of the Nyquist-WDM systems based on polarization multiplexed quadrature phase-shift keying (PM-QPSK) subcarriers at a baud rate of 32 Gbaud per channel. Simulation results show the simple closed-form analytical expressions can provide an effective tool for the quick and accurate prediction of system performance in DMT coherent optical systems.

  5. Sedimentation Velocity Analysis of Large Oligomeric Chromatin Complexes Using Interference Detection.

    PubMed

    Rogge, Ryan A; Hansen, Jeffrey C

    2015-01-01

    Sedimentation velocity experiments measure the transport of molecules in solution under centrifugal force. Here, we describe a method for monitoring the sedimentation of very large biological molecular assemblies using the interference optical systems of the analytical ultracentrifuge. The mass, partial-specific volume, and shape of macromolecules in solution affect their sedimentation rates as reflected in the sedimentation coefficient. The sedimentation coefficient is obtained by measuring the solute concentration as a function of radial distance during centrifugation. Monitoring the concentration can be accomplished using interference optics, absorbance optics, or the fluorescence detection system, each with inherent advantages. The interference optical system captures data much faster than these other optical systems, allowing for sedimentation velocity analysis of extremely large macromolecular complexes that sediment rapidly at very low rotor speeds. Supramolecular oligomeric complexes produced by self-association of 12-mer chromatin fibers are used to illustrate the advantages of the interference optics. Using interference optics, we show that chromatin fibers self-associate at physiological divalent salt concentrations to form structures that sediment between 10,000 and 350,000S. The method for characterizing chromatin oligomers described in this chapter will be generally useful for characterization of any biological structures that are too large to be studied by the absorbance optical system. © 2015 Elsevier Inc. All rights reserved.

  6. A compact thermo-optical multimode-interference silicon-based 1 × 4 nano-photonic switch.

    PubMed

    Zhou, Haifeng; Song, Junfeng; Chee, Edward K S; Li, Chao; Zhang, Huijuan; Lo, Guoqiang

    2013-09-09

    An ultra-compact multimode-interference (MMI)-based 1 × 4 nano-photonic switch is demonstrated by employing silicon thermo-optical effect on SOI platform. The device performance is systematically characterized by comprehensively investigating the constituent building blocks, including 1 × 4 power splitter, 4 × 4 MMI coupler and groove-isolated thermo-optical heaters. An instructive model is established to statistically estimate the required power consumption and investigate the influence of the power imbalance of the 4 × 4 MMI coupler on the switching performance. At the designed wavelength of 1550 nm, the average insertion loss of different switching states is 1.7 dB, and the transmission imbalance is 1.05 dB. The worst extinction ratio and crosstalk of all the output ports reach 11.48 dB and -11.38 dB, respectively.

  7. Free space and waveguide Talbot effect: phase relations and planar light circuit applications

    NASA Astrophysics Data System (ADS)

    Nikkhah, H.; Zheng, Q.; Hasan, I.; Abdul-Majid, S.; Hall, T. J.

    2012-10-01

    Optical fields that are periodic in the transverse plane self-image periodically as they propagate along the optical axis: a phenomenon known as the Talbot effect. A transfer matrix may be defined that relates the amplitude and phase of point sources placed on a particular grid at the input to their respective multiple images at an image plane. The free-space Talbot effect may be mapped to the waveguide Talbot effect. Applying this mapping to the transfer matrix enables the prediction of the phase and amplitude relations between the ports of a Multimode Interference (MMI) coupler- a planar waveguide device. The transfer matrix approach has not previously been applied to the free-space case and its mapping to the waveguide case provides greater clarity and physical insight into the phase relationships than previous treatments. The paper first introduces the underlying physics of the Talbot effect in free space with emphasis on the positions along the optical axis at which images occur; their multiplicity; and their relative phase relations determined by the Gauss Quadratic Sum of number theory. The analysis is then adapted to predict the phase relationships between the ports of an MMI. These phase relationships are critical to planar light circuit (PLC) applications such as 90° optical hybrids for coherent optical receiver front-ends, external optical I-Q modulators for coherent optical transmitters; and optical phased array switches. These applications are illustrated by results obtained from devices that have been fabricated and tested by the PTLab in Si micro-photonic integration platforms.

  8. Planar Diffractive Lenses: Fundamentals, Functionalities, and Applications.

    PubMed

    Huang, Kun; Qin, Fei; Liu, Hong; Ye, Huapeng; Qiu, Cheng-Wei; Hong, Minghui; Luk'yanchuk, Boris; Teng, Jinghua

    2018-06-01

    Traditional objective lenses in modern microscopy, based on the refraction of light, are restricted by the Rayleigh diffraction limit. The existing methods to overcome this limit can be categorized into near-field (e.g., scanning near-field optical microscopy, superlens, microsphere lens) and far-field (e.g., stimulated emission depletion microscopy, photoactivated localization microscopy, stochastic optical reconstruction microscopy) approaches. However, they either operate in the challenging near-field mode or there is the need to label samples in biology. Recently, through manipulation of the diffraction of light with binary masks or gradient metasurfaces, some miniaturized and planar lenses have been reported with intriguing functionalities such as ultrahigh numerical aperture, large depth of focus, and subdiffraction-limit focusing in far-field, which provides a viable solution for the label-free superresolution imaging. Here, the recent advances in planar diffractive lenses (PDLs) are reviewed from a united theoretical account on diffraction-based focusing optics, and the underlying physics of nanofocusing via constructive or destructive interference is revealed. Various approaches of realizing PDLs are introduced in terms of their unique performances and interpreted by using optical aberration theory. Furthermore, a detailed tutorial about applying these planar lenses in nanoimaging is provided, followed by an outlook regarding future development toward practical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Modeling channel interference in an orbital angular momentum-multiplexed laser link

    NASA Astrophysics Data System (ADS)

    Anguita, Jaime A.; Neifeld, Mark A.; Vasic, Bane V.

    2009-08-01

    We study the effects of optical turbulence on the energy crosstalk among constituent orbital angular momentum (OAM) states in a vortex-based multi-channel laser communication link and determine channel interference in terms of turbulence strength and OAM state separation. We characterize the channel interference as a function of C2n and transmit OAM state, and propose probability models to predict the random fluctuations in the received signals for such architecture. Simulations indicate that turbulence-induced channel interference is mutually correlated across receive channels.

  10. Application of an optical interferometer for measuring the surface contour of micro-components

    NASA Astrophysics Data System (ADS)

    Wang, S. H.; Tay, C. J.

    2006-04-01

    The application of an optical interferometric system using a Mireau objective to measure the surface profile of micro-components is described. The proposed system produces a uniform monochromatic illumination over the test area and introduces an interference fringe pattern localized near the test surface. Both the interference fringes and the 2D image of the test surface can be focused by an infinity microscope system consisting of a Mireau objective and a tube lens. A piezoelectric transducer (PZT) attached to the Mireau objective can move precisely along the optical axis of the objective. This enables the implementation of phase-shifting interferometry without changing the focus of a CCD sensor as the combination of the Mireau objective and the tube lens provides a depth of focus which is deep in comparison to the phase-shifting step. Experimental results from surface profilometry of the protrusion/undercut of a polished fibre within an optical connector and of the curved surface of a micromirror demonstrate that features in the order of nanometres are measurable. Measurements on standard blocks also show that the accuracy of the proposed system is comparable to an existing commercial white-light interferometer and a stylus profilometer.

  11. A method of reducing background fluctuation in tunable diode laser absorption spectroscopy

    NASA Astrophysics Data System (ADS)

    Yang, Rendi; Dong, Xiaozhou; Bi, Yunfeng; Lv, Tieliang

    2018-03-01

    Optical interference fringe is the main factor that leads to background fluctuation in gas concentration detection based on tunable diode laser absorption spectroscopy. The interference fringes are generated by multiple reflections or scatterings upon optical surfaces in optical path and make the background signal present an approximated sinusoidal oscillation. To reduce the fluctuation of the background, a method that combines dual tone modulation (DTM) with vibration reflector (VR) is proposed in this paper. The combination of DTM and VR can make the unwanted periodic interference fringes to be averaged out and the effectiveness of the method in reducing background fluctuation has been verified by simulation and real experiments in this paper. In the detection system based on the proposed method, the standard deviation (STD) value of the background signal is decreased to 0.0924 parts per million (ppm), which is reduced by a factor of 16 compared with that of wavelength modulation spectroscopy. The STD value of 0.0924 ppm corresponds to the absorption of 4 . 328 × 10-6Hz - 1 / 2 (with effective optical path length of 4 m and integral time of 0.1 s). Moreover, the proposed method presents a better stable performance in reducing background fluctuation in long time experiments.

  12. Adaptive focus for deep tissue using diffuse backscatter

    NASA Astrophysics Data System (ADS)

    Kress, Jeremy; Pourrezaei, Kambiz

    2014-02-01

    A system integrating high density diffuse optical imaging with adaptive optics using MEMS for deep tissue interaction is presented. In this system, a laser source is scanned over a high density fiber bundle using Digital Micromirror Device (DMD) and channeled to a tissue phantom. Backscatter is then collected from the tissue phantom by a high density fiber array of different fiber type and channeled to CMOS sensor for image acquisition. Intensity focus is directly verified using a second CMOS sensor which measures intensity transmitted though the tissue phantom. A set of training patterns are displayed on the DMD and backscatter is numerically fit to the transmission intensity. After the training patterns are displayed, adaptive focus is performed using only the backscatter and fitting functions. Additionally, tissue reconstruction and prediction of interference focusing by photoacoustic and optical tomographic methods is discussed. Finally, potential NIR applications such as in-vivo adaptive neural photostimulation and cancer targeting are discussed.

  13. Multimodal optical workstation for simultaneous linear, nonlinear microscopy and nanomanipulation: upgrading a commercial confocal inverted microscope.

    PubMed

    Mathew, Manoj; Santos, Susana I C O; Zalvidea, Dobryna; Loza-Alvarez, Pablo

    2009-07-01

    In this work we propose and build a multimodal optical workstation that extends a commercially available confocal microscope (Nikon Confocal C1-Si) to include nonlinear/multiphoton microscopy and optical manipulation/stimulation tools such as nanosurgery. The setup allows both subsystems (confocal and nonlinear) to work independently and simultaneously. The workstation enables, for instance, nanosurgery along with simultaneous confocal and brightfield imaging. The nonlinear microscopy capabilities are added around the commercial confocal microscope by exploiting all the flexibility offered by this microscope and without need for any mechanical or electronic modification of the confocal microscope systems. As an example, the standard differential interference contrast condenser and diascopic detector in the confocal microscope are readily used as a forward detection mount for second harmonic generation imaging. The various capabilities of this workstation, as applied directly to biology, are demonstrated using the model organism Caenorhabditis elegans.

  14. Surface Modification of Carbon Fiber Polymer Composites after Laser Structuring

    NASA Astrophysics Data System (ADS)

    Sabau, Adrian S.; Chen, Jian; Jones, Jonaaron F.; Hackett, Alexandra; Jellison, Gerald D.; Daniel, Claus; Warren, David; Rehkopf, Jackie D.

    The increasing use of Carbon Fiber-reinforced Polymer matrix Composites (CFPC) as a lightweight material in automotive and aerospace industries requires the control of surface morphology. In this study, the composites surface was prepared by ablating the resin on the top fiber layer of the composite using an Nd:YAG laser. The CFPC specimens with T700S carbon fiber and Prepreg — T83 resin (epoxy) were supplied by Plasan Carbon Composites, Inc. as 4 ply thick, 0/90° plaques. The effect of laser fluence, scanning speed, and wavelength was investigated on the removal rate of the resin without an excessive damage of the fibers. In addition, resin ablation due to the power variation created by a laser interference technique is presented. Optical property measurements, optical micrographs, 3D imaging, and high-resolution optical profiler images were used to study the effect of the laser processing on surface morphology.

  15. Intelligent Sensors for Atomization Processing of Molten Metals and Alloys

    DTIC Science & Technology

    1988-06-01

    20ff. 12. Hirleman, Dan E. Particle Sizing by Optical , Nonimaging Techniques. Liquid Particle Size Measurement Techniques, ASTM, 1984, pp. 35ff. 13...sensors are based on electric, electromagnetic or optical principles, the latter being most developed in fields obviously related to atomization. Optical ...beams to observe various interference, diffraction, and heterodyning effects, and to observe, with high signal-to-noise ratio, even weak optical

  16. Dynamic measurements of flowing cells labeled by gold nanoparticles using full-field photothermal interferometric imaging

    NASA Astrophysics Data System (ADS)

    Turko, Nir A.; Roitshtain, Darina; Blum, Omry; Kemper, Björn; Shaked, Natan T.

    2017-06-01

    We present highly dynamic photothermal interferometric phase microscopy for quantitative, selective contrast imaging of live cells during flow. Gold nanoparticles can be biofunctionalized to bind to specific cells, and stimulated for local temperature increase due to plasmon resonance, causing a rapid change of the optical phase. These phase changes can be recorded by interferometric phase microscopy and analyzed to form an image of the binding sites of the nanoparticles in the cells, gaining molecular specificity. Since the nanoparticle excitation frequency might overlap with the sample dynamics frequencies, photothermal phase imaging was performed on stationary or slowly dynamic samples. Furthermore, the computational analysis of the photothermal signals is time consuming. This makes photothermal imaging unsuitable for applications requiring dynamic imaging or real-time analysis, such as analyzing and sorting cells during fast flow. To overcome these drawbacks, we utilized an external interferometric module and developed new algorithms, based on discrete Fourier transform variants, enabling fast analysis of photothermal signals in highly dynamic live cells. Due to the self-interference module, the cells are imaged with and without excitation in video-rate, effectively increasing signal-to-noise ratio. Our approach holds potential for using photothermal cell imaging and depletion in flow cytometry.

  17. [Development of a near-infrared fluorescence imaging system based on fluorescence properties of methylene blue].

    PubMed

    Huang, Lu-Mao; DU, Pei-Yan; Chen, Lan; Zhang, Sa; Zhou, Di-Fu; Chen, Chun-Lin; Xin, Xue-Gang

    2018-04-20

    To develop a near-infrared fluorescence imaging system based on the fluorescence properties of methylene blue. According to the optical properties of methylene blue, we used a custom-made specific LED light source and an interference filter, a CCD camera and other relevant components to construct the near-infrared fluorescence imaging system. We tested the signal-to-background ratio (SBR) of this imaging system for detecting methylene blue under different experimental conditions and analyzed the SBR in urine samples collected from 15 Wistar rats with intravenous injection of methylene blue at the doses of 0, 1.4, 1.6, 1.8, or 2.0 0 mg/kg methylene blue. The SBR of this imaging system for detecting methylene blue was affected by the concentration of methylene blue and the distance from the sample (P<0.05). In the urine samples from Wistar rats, the SBR varied with the the injection dose, and the rats injected with 1.6 mg/kg methylene blue showed the highest SBR (8.71∓0.20) in the urine (P<0.05). This near-infrared fluorescence imaging system is useful for fluorescence detection of methylene blue and can be used for real-time recognition of ureters during abdominal surgery.

  18. Compressive sensing sectional imaging for single-shot in-line self-interference incoherent holography

    NASA Astrophysics Data System (ADS)

    Weng, Jiawen; Clark, David C.; Kim, Myung K.

    2016-05-01

    A numerical reconstruction method based on compressive sensing (CS) for self-interference incoherent digital holography (SIDH) is proposed to achieve sectional imaging by single-shot in-line self-interference incoherent hologram. The sensing operator is built up based on the physical mechanism of SIDH according to CS theory, and a recovery algorithm is employed for image restoration. Numerical simulation and experimental studies employing LEDs as discrete point-sources and resolution targets as extended sources are performed to demonstrate the feasibility and validity of the method. The intensity distribution and the axial resolution along the propagation direction of SIDH by angular spectrum method (ASM) and by CS are discussed. The analysis result shows that compared to ASM the reconstruction by CS can improve the axial resolution of SIDH, and achieve sectional imaging. The proposed method may be useful to 3D analysis of dynamic systems.

  19. The 64 Mpixel wide field imager for the Wendelstein 2m telescope: design and calibration

    NASA Astrophysics Data System (ADS)

    Kosyra, Ralf; Gössl, Claus; Hopp, Ulrich; Lang-Bardl, Florian; Riffeser, Arno; Bender, Ralf; Seitz, Stella

    2014-11-01

    The Wendelstein Observatory of Ludwig Maximilians University of Munich has recently been upgraded with a modern 2m robotic telescope. One Nasmyth port of the telescope has been equipped with a wide-field corrector which preserves the excellent image quality (<0.8 " median seeing) of the site (Hopp et al. 2008) over a field of view of 0.7 degrees diameter. The available field is imaged by an optical imager (WWFI, the Wendelstein Wide Field Imager) built around a customized 2×2 mosaic of 4 k×4 k 15 μm e2v CCDs from Spectral Instruments. This paper provides an overview of the design and the WWFI's performance. We summarize the system mechanics (including a structural analysis), the electronics (and its electromagnetic interference (EMI) protection) and the control software. We discuss in detail detector system parameters, i.e. gain and readout noise, quantum efficiency as well as charge transfer efficiency (CTE) and persistent charges. First on sky tests yield overall good predictability of system throughput based on lab measurements.

  20. Surface chemistry and morphology in single particle optical imaging

    NASA Astrophysics Data System (ADS)

    Ekiz-Kanik, Fulya; Sevenler, Derin Deniz; Ünlü, Neşe Lortlar; Chiari, Marcella; Ünlü, M. Selim

    2017-05-01

    Biological nanoparticles such as viruses and exosomes are important biomarkers for a range of medical conditions, from infectious diseases to cancer. Biological sensors that detect whole viruses and exosomes with high specificity, yet without additional labeling, are promising because they reduce the complexity of sample preparation and may improve measurement quality by retaining information about nanoscale physical structure of the bio-nanoparticle (BNP). Towards this end, a variety of BNP biosensor technologies have been developed, several of which are capable of enumerating the precise number of detected viruses or exosomes and analyzing physical properties of each individual particle. Optical imaging techniques are promising candidates among broad range of label-free nanoparticle detectors. These imaging BNP sensors detect the binding of single nanoparticles on a flat surface functionalized with a specific capture molecule or an array of multiplexed capture probes. The functionalization step confers all molecular specificity for the sensor's target but can introduce an unforeseen problem; a rough and inhomogeneous surface coating can be a source of noise, as these sensors detect small local changes in optical refractive index. In this paper, we review several optical technologies for label-free BNP detectors with a focus on imaging systems. We compare the surface-imaging methods including dark-field, surface plasmon resonance imaging and interference reflectance imaging. We discuss the importance of ensuring consistently uniform and smooth surface coatings of capture molecules for these types of biosensors and finally summarize several methods that have been developed towards addressing this challenge.

  1. Computational imaging of sperm locomotion.

    PubMed

    Daloglu, Mustafa Ugur; Ozcan, Aydogan

    2017-08-01

    Not only essential for scientific research, but also in the analysis of male fertility and for animal husbandry, sperm tracking and characterization techniques have been greatly benefiting from computational imaging. Digital image sensors, in combination with optical microscopy tools and powerful computers, have enabled the use of advanced detection and tracking algorithms that automatically map sperm trajectories and calculate various motility parameters across large data sets. Computational techniques are driving the field even further, facilitating the development of unconventional sperm imaging and tracking methods that do not rely on standard optical microscopes and objective lenses, which limit the field of view and volume of the semen sample that can be imaged. As an example, a holographic on-chip sperm imaging platform, only composed of a light-emitting diode and an opto-electronic image sensor, has emerged as a high-throughput, low-cost and portable alternative to lens-based traditional sperm imaging and tracking methods. In this approach, the sample is placed very close to the image sensor chip, which captures lensfree holograms generated by the interference of the background illumination with the light scattered from sperm cells. These holographic patterns are then digitally processed to extract both the amplitude and phase information of the spermatozoa, effectively replacing the microscope objective lens with computation. This platform has further enabled high-throughput 3D imaging of spermatozoa with submicron 3D positioning accuracy in large sample volumes, revealing various rare locomotion patterns. We believe that computational chip-scale sperm imaging and 3D tracking techniques will find numerous opportunities in both sperm related research and commercial applications. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. HOMER: the Holographic Optical Microscope for Education and Research

    NASA Astrophysics Data System (ADS)

    Luviano, Anali

    Holography was invented in 1948 by Dennis Gabor and has undergone major advancements since the 2000s leading to the development of commercial digital holographic microscopes (DHM). This noninvasive form of microscopy produces a three-dimensional (3-D) digital model of a sample without altering or destroying the sample, thus allowing the same sample to be studied multiple times. HOMER-the Holographic Optical Microscope for Education and Research-produces a 3-D image from a two-dimensional (2-D) interference pattern captured by a camera that is then put through reconstruction software. This 2-D pattern is created when a reference wave interacts with the sample to produce a secondary wave that interferes with the unaltered part of the reference wave. I constructed HOMER to be an efficient, portable in-line DHM using inexpensive material and free reconstruction software. HOMER uses three different-colored LEDs as light sources. I am testing the performance of HOMER with the goal of producing tri-color images of samples. I'm using small basic biological samples to test the effectiveness of HOMER and plan to transition to complex cellular and biological specimens as I pursue my interest in biophysics. Norwich University.

  3. Caustics and Caustic-Interference in Measurements of Contact Angle and Flow Visualization Through Laser Shadowgraphy

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Zhang, Neng-Li

    2002-01-01

    As one of the basic elements of the shadowgraphy optical system, the image of the far field from the droplet implicates plentiful information on the droplet profile. An analysis of caustics by wave theory shows that a droplet with a cylindrically symmetric Gaussian-hill-type profile produces a circular directional caustic in far field, which arises from the singularities (inflection line on the surface). The sessile liquid droplets, which profiles are restricted by surface tension, usually have a 'protruding foot' where the surface inflects. Simple geometrical optics indicates that the circular caustic stemming from the surface inflection at the protruding-foot takes the shape of the outmost ring on the image of the far field. It is the diameter of the outmost ring that is used as one of the key parameters in the measurements of contact angle through the laser shadowgraphic method. Different surface characteristics of the droplets produce different type of caustics, and therefore, the shape of the caustics can be used to determine the surface property of the sessile droplets. The present paper describes the measurement method of contact angIe using the circular caustics and the estimation of the protruding-foot height through the caustic interference.

  4. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI.

    PubMed

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J; Grant, Alexander M; Chang, Chen-Ming; Glover, Gary; Levin, Craig S

    2015-05-07

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.

  5. Prototype positron emission tomography insert with electro-optical signal transmission for simultaneous operation with MRI

    NASA Astrophysics Data System (ADS)

    Olcott, Peter; Kim, Ealgoo; Hong, Keyjo; Lee, Brian J.; Grant, Alexander M.; Chang, Chen-Ming; Glover, Gary; Levin, Craig S.

    2015-05-01

    The simultaneous acquisition of PET and MRI data shows promise to provide powerful capabilities to study disease processes in human subjects, guide the development of novel treatments, and monitor therapy response and disease progression. A brain-size PET detector ring insert for an MRI system is being developed that, if successful, can be inserted into any existing MRI system to enable simultaneous PET and MRI images of the brain to be acquired without mutual interference. The PET insert uses electro-optical coupling to relay all the signals from the PET detectors out of the MRI system using analog modulated lasers coupled to fiber optics. Because the fibers use light instead of electrical signals, the PET detector can be electrically decoupled from the MRI making it partially transmissive to the RF field of the MRI. The SiPM devices and low power lasers were powered using non-magnetic MRI compatible batteries. Also, the number of laser-fiber channels in the system was reduced using techniques adapted from the field of compressed sensing. Using the fact that incoming PET data is sparse in time and space, electronic circuits implementing constant weight codes uniquely encode the detector signals in order to reduce the number of electro-optical readout channels by 8-fold. Two out of a total of sixteen electro-optical detector modules have been built and tested with the entire RF-shielded detector gantry for the PET ring insert. The two detectors have been tested outside and inside of a 3T MRI system to study mutual interference effects and simultaneous performance with MRI. Preliminary results show that the PET insert is feasible for high resolution simultaneous PET/MRI imaging for applications in the brain.

  6. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon-Gallium-Nitride Slot Waveguide Structures.

    PubMed

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-06-25

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)-gallium nitride (GaN) slot waveguide structure is presented-to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530-1565 nm) into four output ports with low insertion losses (0.07 dB).

  7. An optical liquid level sensor based on core-offset fusion splicing method using polarization-maintaining fiber

    NASA Astrophysics Data System (ADS)

    Lou, Weimin; Chen, Debao; Shen, Changyu; Lu, Yanfang; Liu, Huanan; Wei, Jian

    2016-01-01

    A simple liquid level sensor using a small piece of hydrofluoric acid (HF) etched polarization maintaining fiber (PMF), with SMF-PMF-SMF fiber structure based on Mach- Zehnder interference (MZI) mechanism is proposed. The core-offset fusion splicing method induced cladding modes interfere with the core mode. Moreover, the changing liquid level would influence the optical path difference of the MZI since the effective refractive indices of the air and the liquid is different. Both the variations of the wavelength shifts and power intensity attenuation corresponding to the liquid level can be obtained with a sensitivity of 0.4956nm/mm and 0.2204dB/mm, respectively.

  8. Measurement of the accumulation of water ice on optical components in cryogenic vacuum environments

    NASA Astrophysics Data System (ADS)

    Moeller, Trevor M.; Montgomery Smith, L.; Collins, Frank G.; Labello, Jesse M.; Rogers, James P.; Lowry, Heard S.; Crider, Dustin H.

    2012-11-01

    Standard vacuum practices mitigate the presence of water vapor and contamination inside cryogenic vacuum chambers. However, anomalies can occur in the facility that can cause the accumulation of amorphous water ice on optics and test articles. Under certain conditions, the amorphous ice on optical components shatters, which leads to a reduction in signal or failure of the component. An experiment was performed to study and measure the deposition of water (H2O) ice on optical surfaces under high-vacuum cryogenic conditions. Water was introduced into a cryogenic vacuum chamber, via a hydrated molecular sieve zeolite, through an effusion cell and impinged upon a quartz-crystal microbalance (QCM) and first-surface gold-plated mirror. A laser and photodiode setup, external to the vacuum chamber, monitored the multiple-beam interference reflectance of the ice-mirror configuration while the QCM measured the mass deposition. Data indicates that water ice, under these conditions, accumulates as a thin film on optical surfaces to thicknesses over 45 microns and can be detected and measured by nonintrusive optical methods which are based upon multiple-beam interference phenomena. The QCM validated the interference measurements. This experiment established proof-of-concept for a miniature system for monitoring ice accumulation within the chamber.

  9. Invited Review Article: Pump-probe microscopy.

    PubMed

    Fischer, Martin C; Wilson, Jesse W; Robles, Francisco E; Warren, Warren S

    2016-03-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.

  10. Tunable optical coherence tomography in the infrared range using visible photons

    NASA Astrophysics Data System (ADS)

    Paterova, Anna V.; Yang, Hongzhi; An, Chengwu; Kalashnikov, Dmitry A.; Krivitsky, Leonid A.

    2018-04-01

    Optical coherence tomography (OCT) is an appealing technique for bio-imaging, medicine, and material analysis. For many applications, OCT in mid- and far-infrared (IR) leads to significantly more accurate results. Reported mid-IR OCT systems require light sources and photodetectors which operate in mid-IR range. These devices are expensive and need cryogenic cooling. Here, we report a proof-of-concept demonstration of a wavelength tunable IR OCT technique with detection of only visible range photons. Our method is based on the nonlinear interference of frequency correlated photon pairs. The nonlinear crystal, introduced in the Michelson-type interferometer, generates photon pairs with one photon in the visible and another in the IR range. The intensity of detected visible photons depends on the phase and loss of IR photons, which interact with the sample under study. This enables us to characterize sample properties and perform imaging in the IR range by detecting visible photons. The technique possesses broad wavelength tunability and yields a fair axial and lateral resolution, which can be tailored to the specific application. The work contributes to the development of versatile 3D imaging and material characterization systems working in a broad range of IR wavelengths, which do not require the use of IR-range light sources and photodetectors.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, Martin C., E-mail: Martin.Fischer@duke.edu; Wilson, Jesse W.; Robles, Francisco E.

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulsesmore » offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications.« less

  12. Invited Review Article: Pump-probe microscopy

    PubMed Central

    Wilson, Jesse W.; Robles, Francisco E.; Warren, Warren S.

    2016-01-01

    Multiphoton microscopy has rapidly gained popularity in biomedical imaging and materials science because of its ability to provide three-dimensional images at high spatial and temporal resolution even in optically scattering environments. Currently the majority of commercial and home-built devices are based on two-photon fluorescence and harmonic generation contrast. These two contrast mechanisms are relatively easy to measure but can access only a limited range of endogenous targets. Recent developments in fast laser pulse generation, pulse shaping, and detection technology have made accessible a wide range of optical contrasts that utilize multiple pulses of different colors. Molecular excitation with multiple pulses offers a large number of adjustable parameters. For example, in two-pulse pump-probe microscopy, one can vary the wavelength of each excitation pulse, the detection wavelength, the timing between the excitation pulses, and the detection gating window after excitation. Such a large parameter space can provide much greater molecular specificity than existing single-color techniques and allow for structural and functional imaging without the need for exogenous dyes and labels, which might interfere with the system under study. In this review, we provide a tutorial overview, covering principles of pump-probe microscopy and experimental setup, challenges associated with signal detection and data processing, and an overview of applications. PMID:27036751

  13. Self-spectral calibration for spectral domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Zhang, Xianling; Gao, Wanrong; Bian, Haiyi; Chen, Chaoliang; Liao, Jiuling

    2013-06-01

    A different real-time self-wavelength calibration method for spectral domain optical coherence tomography is presented in which interference spectra measured from two arbitrary points on the tissue surface are used for calibration. The method takes advantages of two favorable conditions of optical coherence tomography (OCT) signal. First, the signal back-scattered from the tissue surface is generally much stronger than that from positions in the tissue interior, so the spectral component of the surface interference could be extracted from the measured spectrum. Second, the tissue surface is not a plane and a phase difference exists between the light reflected from two different points on the surface. Compared with the zero-crossing automatic method, the introduced method has the advantage of removing the error due to dispersion mismatch or the common phase error. The method is tested experimentally to demonstrate the improved signal-to-noise ratio, higher axial resolution, and slower sensitivity degradation with depth when compared to the use of the zero-crossing method and applied to two-dimensional cross-sectional images of human finger skin.

  14. Glow discharge sources for atomic and molecular analyses

    NASA Astrophysics Data System (ADS)

    Storey, Andrew Patrick

    Two types of glow discharges were used and characterized for chemical analysis. The flowing atmospheric pressure afterglow (FAPA) source, based on a helium glow discharge (GD), was utilized to analyze samples with molecular mass spectrometry. A second GD, operated at reduced pressure in argon, was employed to map the elemental composition of a solid surface with novel optical detection systems, enabling new applications and perspectives for GD emission spectrometry. Like many plasma-based ambient desorption-ionization sources being used around the world, the FAPA requires a supply of helium to operate effectively. With increased pressures on global helium supply and pricing, the use of an interrupted stream of helium for analysis was explored for vapor and solid samples. In addition to the mass spectra generated by the FAPA source, schlieren imaging and infrared thermography were employed to map the behavior of the source and its surroundings under the altered conditions. Additionally, a new annular microplasma variation of the FAPA source was developed and characterized. A spectroscopic imaging system that utilized an adjustable-tilt interference filter was used to map the elemental composition of a sample surface by glow discharge emission spectroscopy. This apparatus was compared to other GD imaging techniques for mapping elemental surface composition. The wide bandpass filter resulted in significant spectral interferences that could be partially overcome with chemometric data processing. Because time-resolved GD emission spectroscopy can provide fine depth-profiling measurements, a natural extension of GD imaging would be its application to three-dimensional characterization of samples. However, the simultaneous cathodic sputtering that occur across the sample results in a sampling process that is not completely predictable. These issues are frequently encountered when laterally varied samples are explored with glow discharge imaging techniques. These insights are described with respect to their consequences for both imaging and conventional GD spectroscopic techniques.

  15. Imaging and control of interfering wave packets in a dissociating molecule.

    PubMed

    Skovsen, Esben; Machholm, Mette; Ejdrup, Tine; Thøgersen, Jan; Stapelfeldt, Henrik

    2002-09-23

    Using two identical 110 femtosecond (fs) optical pulses separated by 310 fs, we launch two dissociative wave packets in I2. We measure the square of the wave function as a function of both the internuclear separation, /Psi(R)/(2), and of the internuclear velocity, /Psi(v(R))/(2), by ionizing the dissociating molecule with an intense 20 fs probe pulse. Strong interference is observed in both /Psi(R)/(2) and in /Psi(v(R))/(2). The interference, and therefore the shape of the wave function, is controlled through the phase difference between the two dissociation pulses in good agreement with calculations.

  16. Design of the optical system for FSO access

    NASA Astrophysics Data System (ADS)

    Xu, Xiaojing; Yuan, Xiuhua; Huang, Dexiu

    2002-08-01

    Free space optics (FSO) is attractive for the 'last mile' communication in recent years for many combining advantages of fiber communication and other wireless technologies. FSO can provide high data rate with low power consumption, high immunity to interference, convenient deployment and flexibility. Optical system is an important section in the FSO transceiver terminal. In this paper the design of optical system based on a single Galileo telescope for both transmit and receive is proposed, and a polarization beam splitter is adopted to apart the receiving light from transmitting light. The configuration can avoid interference from the retroreflecting light of the ocular effectively. Some factors that affect the performance of the optical system are analyzed, such as the geometrical spreading loss and the loss increment according to pointing error and telescope maladjustment. Power budget shows that the system can satisfy the need of access for 1km in the light fog, and 2km in the thin fog.

  17. Blood interference in fiber-optical based fluorescence guided resection of glioma using 5-aminolevulinic acid

    NASA Astrophysics Data System (ADS)

    Haj-Hosseini, Neda; Lowndes, Shannely; Salerud, Göran; Wårdell, Karin

    2011-03-01

    Fluorescence guidance in brain tumor resection is performed intra-operatively where bleeding is included. When using fiber-optical probes, the transmission of light to and from the tissue is totally or partially blocked if a small amount of blood appears in front of the probe. Sometimes even after rinsing with saline, the remnant blood cells on the optical probe head, disturb the measurements. In such a case, the corresponding spectrum cannot be reliably quantified and is therefore discarded. The optimal case would be to calculate and take out the blood effect systematically from the collected signals. However, the first step is to study the pattern of blood interference in the fluorescence spectrum. In this study, a fiber-optical based fluorescence spectroscopy system with a laser excitation light of 405 nm (1.4 J/cm2) was used during fluorescence guided brain tumor resection using 5-aminolevulinic acid (5-ALA). The blood interference pattern in the fluorescence spectrum collected from the brain was studied in two patients. The operation situation was modeled in the laboratory by placing blood drops from the finger tip on the skin of forearm and the data was compared to the brain in vivo measurements. Additionally, a theoretical model was developed to simulate the blood interference pattern on the skin autofluorescence. The blood affects the collected fluorescence intensity and leaves traces of oxy and deoxy-hemoglobin absorption peaks. According to the developed theoretical model, the autofluorescence signal is considered to be totally blocked by an approximately 500 μm thick blood layer.

  18. Dynamical measurements of motion behavior of free fluorescent sphere using the wide field temporal focusing microscopy with astigmatism method (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lien, Chi-Hsiang; Lin, Chun-Yu; Chen, Shean-Jen; Chien, Fan-Ching

    2017-02-01

    A three-dimensional (3D) single fluorescent particle tracking strategy based on temporal focusing multiphoton excitation microscopy (TFMPEM) combined with astigmatism imaging is proposed for delivering nanoscale-level axial information that reveals 3D trajectories of single fluorospheres in the axially-resolved multiphoton excitation volume without z-axis scanning. It provides the dynamical ability by measuring the diffusion coefficient of fluorospheres in glycerol solutions with a position standard deviation of 14 nm and 21 nm in the lateral and axial direction and a frame rate of 100 Hz. Moreover, the optical trapping force based on the TFMPEM is minimized to avoid the interference in the tracing measurements compared to that in the spatial focusing MPE approaches. Therefore, we presented a three dimensional single particle tracking strategy to overcome the limitation of the time resolution of the multiphoton imaging using fast frame rate of TFMPEM, and provide three dimensional locations of multiple particles using an astigmatism method.

  19. Calculation and Study of Graphene Conductivity Based on Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Feng, Xiaodong; Hu, Min; Zhou, Jun; Liu, Shenggang

    2017-07-01

    Based on terahertz time-domain spectroscopy system and two-dimensional scanning control system, terahertz transmission and reflection intensity mapping images on a graphene film are obtained, respectively. Then, graphene conductivity mapping images in the frequency range 0.5 to 2.5 THz are acquired according to the calculation formula. The conductivity of graphene at some typical regions is fitted by Drude-Smith formula to quantitatively compare the transmission and reflection measurements. The results show that terahertz reflection spectroscopy has a higher signal-to-noise ratio with less interference of impurities on the back of substrates. The effect of a red laser excitation on the graphene conductivity by terahertz time-domain transmission spectroscopy is also studied. The results show that the graphene conductivity in the excitation region is enhanced while that in the adjacent area is weakened which indicates carriers transport in graphene under laser excitation. This paper can make great contribution to the study on graphene electrical and optical properties in the terahertz regime and help design graphene terahertz devices.

  20. Optical aberrations, retinal image quality and eye growth: Experimentation and modeling

    NASA Astrophysics Data System (ADS)

    Tian, Yibin

    2007-12-01

    Retinal image quality is important for normal eye growth. Optical aberrations are of interest for two reasons: first, they degrade retinal images; second, they might provide some cues to defocus. Higher than normal ocular aberrations have been previously associated with human myopia. However, these studies were cross-sectional in design, and only reported aberrations in terms of root mean square (RMS) errors of Zernike coefficients, a poor metric of optical quality. This dissertation presents results from investigations of ocular optical aberrations, retinal image quality and eye growth in chicks and humans. A number of techniques were utilized, including Shack-Hartmann aberrometry, high-frequency A-scan ultrasonography, ciliary nerve section (CNX), photorefractive keratectomy (PRK) as well as computer simulations and modeling. A technique to extract light scatter information from Shack-Hartmann images was also developed. The main findings of the dissertation are summarized below. In young chicks, most ocular aberrations decreased with growth in both normal and CNX eyes, and there were diurnal fluctuations in some aberrations. Modeling suggested active reduction in higher order aberrations (HOAs) during early development. Although CNX eyes manifested greater than normal HOAs, they showed near normal growth. Retinal image degradation varied greatly among individual eyes post-PRK in young chicks. Including light scatter information into analyses of retinal image quality better estimated the latter. Albino eyes showed more severe retinal image degradation than normal eyes, due to increased optical aberrations and light scatter, but their growth was similar to those of normal eyes, implying that they are relatively insensitive to retina image quality. Although the above results questioned the influence of optical aberrations on early ocular growth, some optical quality metrics, derived from optical aberrations data, could predict how much the eyes of young chicks subsequently elongated. The performance of some focus measures was very poor when non-defocus aberrations exceeded a certain level; presumably, these non-defocus aberrations might interfere with the eye's ability to interpret defocus. In anisomyopic human adults, more myopic eyes had larger anterior and vitreous chambers, greater astigmatism, and more positive spherical aberration. However, compared to isometropes, only interocular differences in spherical equivalent refractive errors were significantly increased.

  1. Design of a Pressure Sensor Based on Optical Fiber Bragg Grating Lateral Deformation

    PubMed Central

    Urban, Frantisek; Kadlec, Jaroslav; Vlach, Radek; Kuchta, Radek

    2010-01-01

    This paper describes steps involved in the design and realization of a new type of pressure sensor based on the optical fiber Bragg grating. A traditional pressure sensor has very limited usage in heavy industrial environments, particularly in explosive or electromagnetically noisy environments. Utilization of optics in these environments eliminates all surrounding influences. An initial motivation for our development was the research, experimental validation, and realization of a complex smart pressure sensor based on the optical principle. The main benefit of this solution consists of increasing sensitivity, resistance to electromagnetic interference, dimensions, and potential increased accuracy. PMID:22163521

  2. Adaptive optics full-field OCT: a resolution almost insensitive to aberrations (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Xiao, Peng; Fink, Mathias; Boccara, A. Claude

    2016-03-01

    A Full-Field OCT (FFOCT) setup coupled to a compact transmissive liquid crystal spatial light modulator (LCSLM) is used to induce or correct aberrations and simulate eye examinations. To reduce the system complexity, strict pupil conjugation was abandoned. During our work on quantifying the effect of geometrical aberrations on FFOCT images, we found that the image resolution is almost insensitive to aberrations. Indeed if the object channel PSF is distorted, its interference with the reference channel conserves the main feature of an unperturbed PSF with only a reduction of the signal level. This unique behavior is specific to the use of a spatially incoherent illumination. Based on this, the FFOCT image intensity was used as the metric for our wavefront sensorless correction. Aberration correction was first conducted on an USAF resolution target with the LSCLM as both aberration generator and corrector. A random aberration mask was induced, and the low-order Zernike Modes were corrected sequentially according to the intensity metric function optimization. A Ficus leaf and a fixed mouse brain tissue slice were also imaged to demonstrate the correction of sample self-induced wavefront distortions. After optimization, more structured information appears for the leaf imaging. And the high-signal fiber-like myelin fiber structures were resolved much more clearly after the whole correction process for mouse brain imaging. Our experiment shows the potential of this compact AO-FFOCT system for aberration correction imaging. This preliminary approach that simulates eyes aberrations correction also opens the path to a simple implementation of FFOCT adaptive optics for retinal examinations.

  3. Thin film-based optically variable security devices: From passive to active

    NASA Astrophysics Data System (ADS)

    Baloukas, Bill

    Counterfeiting costs the world economy billions of dollars every year. Aside from financial losses, counterfeiting also poses a great threat to the public's safety, for example through the existence of counterfeit passports (terrorism), pharmaceutical products (health hazards) and even airplane parts (safety issues). Optical security devices (OSDs) have therefore played a critical role in the fight against counterfeiting. It is the aim of the present thesis to show that through the use of metamerism and electrochromic materials, new types of active security devices with interesting features can be created; indeed, most present-day devices are passive in nature. I first demonstrate that the addition of metamerism in the design of interference filters can result in innovative features. Different structures which can be used in transmission and/or in reflection are designed, fabricated, and evaluated. The first structures which are presented here are based on a combination of two different metameric interference filters. Possessing widely different transmission spectra, these filters also offer different angular color shifts and, as a result, offer an opportunity of creating hidden image effects. Despite their interesting properties, such metameric devices are shown to be highly illuminant and observer sensitive; that is the color match is lost under most observation conditions. These issues are solved by a simpler structure based on the juxtaposition of an interference filter and a non-iridescent colored material. Throughout this study, I present the design approach, analyze the filters' sensitivity to deposition errors, and evaluate the performance of prototype devices prepared by dual ion beam sputtering. Following my work on passive metameric systems, I then propose to go one step further by implementing an active component using an electrochromic material. This novel concept, which is based on the joint use of a metameric filter and electrochromic device, offers the possibility of creating various surprising optical effects. Such a system is obviously more challenging to duplicate due to its complexity, but also adds a second level of authentication accessible to specialized personnel. By designing a metameric filter which matches either the bleached or colored state of an electrochromic device, I show that one can generate two hidden image effects: one which appears when the structure is tilted, and the other one which disappears when the electrochromic material is colored under an applied potential. In this specific study, I present an example of a filter that is metameric with the colored state of a tungsten-oxide-based Deb-type electrochromic device. A hybrid device such as presented in the previous study is clearly interesting from a prototype point of view. Unfortunately, having to design and fabricate two individual components would make such a security feature very expensive. Consequently, my goal was to combine both the color shift and electrochromic color change into a single structure. The following study thus demonstrates, that by designing and fabricating an interference filter based on dense and porous WO3, this goal can be achieved. Finally, a second method of fabricating electrochromic interference filters is proposed which results in a significant decrease in the total numbers of layers of the filters. Replacing the porous WO3 films by a WO 3/SiO2 composite allows for much lower refractive indices to be obtained thus resulting in a larger index contrast (0.61 versus 0.22 in the previous study). In this study, I first explore the physical and electrochromic properties of WO3/SiO2 mixtures. I then combine high and low index films in tandem configurations to observe the bleaching/ coloration dynamics. To account for the poor performance of the ITO|Composite|WO 3 film configuration, I also present an explanation based on the differences in electron diffusion coefficients of the films. I conclude this study with the demonstration of an 11 layer electrochromic interference filter based on the alternation of pure WO3 and (WO3)0.17(SiO 2)0.83 films (with a blue to purple angular color shift) as well as a short discussion on some possible solutions for the observed limitations. (Abstract shortened by UMI.).

  4. Coherent double-color interference microscope for traceable optical surface metrology

    NASA Astrophysics Data System (ADS)

    Malinovski, I.; França, R. S.; Bessa, M. S.; Silva, C. R.; Couceiro, I. B.

    2016-06-01

    Interference microscopy is an important field of dimensional surface metrology because it provides direct traceability of the measurements to the SI base unit definition of the metre. With a typical measurement range from micrometres to nanometres interference microscopy (IM) covers the gap between classic metrology and nanometrology, providing continuous transfer of dimensional metrology into new areas of nanoscience and nanotechnology. Therefore IM is considered to be an indispensable tool for traceable transfer of the metre unit to different instruments. We report here the metrological study of an absolute Linnik interference microscope (IM) based on two frequency stabilized lasers. The design permits the flexible use of both lasers for measurements depending on the demand of the concrete measurement task. By principle of operation IM is combination of imaging and phase-shifting interferometry (PSI). The traceability is provided by the wavelength reference, that is, a He-Ne 633 nm stabilized laser. The second laser source, that is, a Blue-Green 488 nm grating stabilized laser diode, is used for improvements of resolution, and also for resolving integer fringe discontinuities on sharp features of the surface. The IM was optimized for surface height metrology. We have performed the study of the systematic effects of the measurements. This study allowed us to improve the hardware and software of IM and to find corrections for main systematic errors. The IM is purposed for 1D to 3D height metrology and surface topography in an extended range from nanometres to micrometres. The advantages and disadvantages of the design and developed methods are discussed.

  5. Topography of hidden objects using THz digital holography with multi-beam interferences.

    PubMed

    Valzania, Lorenzo; Zolliker, Peter; Hack, Erwin

    2017-05-15

    We present a method for the separation of the signal scattered from an object hidden behind a THz-transparent sample in the framework of THz digital holography in reflection. It combines three images of different interference patterns to retrieve the amplitude and phase distribution of the object beam. Comparison of simulated with experimental images obtained from a metallic resolution target behind a Teflon plate demonstrates that the interference patterns can be described in the simple form of three-beam interference. Holographic reconstructions after the application of the method show a considerable improvement compared to standard reconstructions exclusively based on Fourier transform phase retrieval.

  6. Interferometric architectures based All-Optical logic design methods and their implementations

    NASA Astrophysics Data System (ADS)

    Singh, Karamdeep; Kaur, Gurmeet

    2015-06-01

    All-Optical Signal Processing is an emerging technology which can avoid costly Optical-electronic-optical (O-E-O) conversions which are usually compulsory in traditional Electronic Signal Processing systems, thus greatly enhancing operating bit rate with some added advantages such as electro-magnetic interference immunity and low power consumption etc. In order to implement complex signal processing tasks All-Optical logic gates are required as backbone elements. This review describes the advances in the field of All-Optical logic design methods based on interferometric architectures such as Mach-Zehnder Interferometer (MZI), Sagnac Interferometers and Ultrafast Non-Linear Interferometer (UNI). All-Optical logic implementations for realization of arithmetic and signal processing applications based on each interferometric arrangement are also presented in a categorized manner.

  7. Topological study of nanomaterials using surface-enhanced ellipsometric contrast microscopy (SEEC)

    NASA Astrophysics Data System (ADS)

    Muckenhirn, Sylvain

    2016-03-01

    Innovations in nanotechnology are empowering scientists to deepen their understanding of physical, chemical and biological mechanisms. Powerful and precise characterization systems are essential to meet researchers' requirements. SEEC (Surface Enhanced Ellipsometric Contrast) microscopy is an innovative advanced optical technique based on ellipsometric and interference fringes of Fizeau principles. This technique offers live and label-free topographic imaging of organic, inorganic and biological samples with high Z resolution (down to 0.1nm thickness), and enhanced X-Y detection limit (down to 1.5nm width). This technique has been successfully applied to the study of nanometric films and structures, biological layers, and nano-objects. We applied SEEC technology to different applications explored below.

  8. Determination of lunar ilmentite abundances from remotely sensed data

    NASA Technical Reports Server (NTRS)

    Johnson, J. R.; Larson, S. M.; Singer, Robert B.

    1990-01-01

    The mapping of ilmenite on the surface of the moon is a necessary precursor to the investigation of prospective lunar base sites. Telescopic observations of the moon using a variety of narrow bandpass optical interference filters are being performed as a preliminary means of achieving this goal. Specifically, ratios of images obtained using filters centered at 0.40 and 0.56 microns provide quantitative estimates of TiO2 abundances. Analysis of preliminary distribution maps of TiO2 concentrations allows identification of specific high-Ti areas. Investigations of these areas using slit spectra in the range 0.03 to 0.85 microns are underway to search for discrete spectral signatures attributable to ilmenite.

  9. Robotic intrafractional US guidance for liver SABR: System design, beam avoidance, and clinical imaging.

    PubMed

    Schlosser, Jeffrey; Gong, Ren Hui; Bruder, Ralf; Schweikard, Achim; Jang, Sungjune; Henrie, John; Kamaya, Aya; Koong, Albert; Chang, Daniel T; Hristov, Dimitre

    2016-11-01

    To present a system for robotic 4D ultrasound (US) imaging concurrent with radiotherapy beam delivery and estimate the proportion of liver stereotactic ablative body radiotherapy (SABR) cases in which robotic US image guidance can be deployed without interfering with clinically used VMAT beam configurations. The image guidance hardware comprises a 4D US machine, an optical tracking system for measuring US probe pose, and a custom-designed robot for acquiring hands-free US volumes. In software, a simulation environment incorporating the LINAC, couch, planning CT, and robotic US guidance hardware was developed. Placement of the robotic US hardware was guided by a target visibility map rendered on the CT surface by using the planning CT to simulate US propagation. The visibility map was validated in a prostate phantom and evaluated in patients by capturing live US from imaging positions suggested by the visibility map. In 20 liver SABR patients treated with VMAT, the simulation environment was used to virtually place the robotic hardware and US probe. Imaging targets were either planning target volumes (PTVs, range 5.9-679.5 ml) or gross tumor volumes (GTVs, range 0.9-343.4 ml). Presence or absence of mechanical interference with LINAC, couch, and patient body as well as interferences with treated beams was recorded. For PTV targets, robotic US guidance without mechanical interference was possible in 80% of the cases and guidance without beam interference was possible in 60% of the cases. For the smaller GTV targets, these proportions were 95% and 85%, respectively. GTV size (1/20), elongated shape (1/20), and depth (1/20) were the main factors limiting the availability of noninterfering imaging positions. The robotic US imaging system was deployed in two liver SABR patients during CT simulation with successful acquisition of 4D US sequences in different imaging positions. This study indicates that for VMAT liver SABR, robotic US imaging of a relevant internal target may be possible in 85% of the cases while using treatment plans currently deployed in the clinic. With beam replanning to account for the presence of robotic US guidance, intrafractional US may be an option for 95% of the liver SABR cases.

  10. Beam shaping optics to enhance performance of interferometry techniques in grating manufacture

    NASA Astrophysics Data System (ADS)

    Laskin, Alexander; Laskin, Vadim; Ostrun, Aleksei

    2018-02-01

    Improving of industrial holographic and interferometry techniques is of great importance in interference lithography, computer-generated holography, holographic data storage, interferometry recording of Bragg gratings as well as gratings of various types in semiconductor industry. Performance of mentioned techniques is essentially enhanced by providing a light beam with flat phase front and flat-top irradiance distribution. Therefore, transformation of Gaussian distribution of a TEM00 laser to flat-top (top hat, uniform) distribution is an important optical task. There are different refractive and diffractive beam shaping approaches used in laser industrial and scientific applications, but only few of them are capable to fulfil the optimum conditions for beam quality demanding holography and interferometry. As a solution it is suggested to apply refractive field mapping beam shaping optics πShaper, which operational principle presumes almost lossless transformation of Gaussian to flat-top beam with flatness of output wavefront, conserving of beam consistency, providing collimated low divergent output beam, high transmittance, extended depth of field, negligible wave aberration, and achromatic design provides capability to work with several lasers with different wavelengths simultaneously. High optical quality of resulting flat-top beam allows applying additional optical components to build various imaging optical systems for variation of beam size and shape to fulfil requirements of a particular application. This paper will describe design basics of refractive beam shapers and optical layouts of their applying in holography and laser interference lithography. Examples of real implementations and experimental results will be presented as well.

  11. Phase shifting interferometry based on a vibration sensor - feasibility study on elimination of the depth degeneracy

    NASA Astrophysics Data System (ADS)

    Lee, Seung Seok; Kim, Ju Ha; Choi, Eun Seo

    2017-04-01

    We proposed novel phase-shifting interferometry using a fiber-optic vibration sensor. The Doppler shift in the coiled fiber caused by vibrations can be used to detect the vibrations by using a fiber-optic interferometer. The principle can be applied to induce phase shifts. While applying vibrations to the coiled fiber at various vibration frequencies, we recorded the variations in the interference fringes. The interference fringe moved to longer wavelengths when a vibration frequency was increased from 38.00 to 38.40 kHz. Phase variations of 3.59 rad/kHz were obtained. The ability to accurately control the phase by using the vibrations in the coiled fiber was demonstrated by the elimination of the depth degeneracy using the complex signal generated by the phase-shifted interference fringes. Using vibrations to control phase shifting can be an acceptable alternative to conventional methods and can be applied to resolve the depth ambiguity in Fourier domain optical coherence tomography.

  12. Interferometric detection of nanoparticles

    NASA Astrophysics Data System (ADS)

    Hayrapetyan, Karen

    Interferometric surfaces enhance light scattering from nanoparticles through constructive interference of partial scattered waves. By placing the nanoparticles on interferometric surfaces tuned to a special surface phase interferometric condition, the particles are detectable in the dilute limit through interferometric image contrast in a heterodyne light scattering configuration, or through diffraction in a homodyne scattering configuration. The interferometric enhancement has applications for imaging and diffractive biosensors. We present a modified model based on Double Interaction (DI) to explore bead-based detection mechanisms using imaging, scanning and diffraction. The application goal of this work is to explore the trade-offs between the sensitivity and throughput among various detection methods. Experimentally we use thermal oxide on silicon to establish and control surface interferometric conditions. Surface-captured gold beads are detected using Molecular Interferometric Imaging (MI2) and Spinning-Disc Interferometry (SDI). Double-resonant enhancement of light scattering leads to high-contrast detection of 100 nm radius gold nanoparticles on an interferometric surface. The double-resonance condition is achieved when resonance (or anti-resonance) from an asymmetric Fabry-Perot substrate coincides with the Mie resonance of the gold nanoparticle. The double-resonance condition is observed experimentally using molecular interferometric imaging (MI2). An invisibility condition is identified for which the gold nanoparticles are optically cloaked by the interferometric surface.

  13. Optical coherence tomography of dental structures

    NASA Astrophysics Data System (ADS)

    Baumgartner, Angela; Hitzenberger, Christoph K.; Dichtl, Sabine; Sattmann, Harald; Moritz, Andreas; Sperr, Wolfgang; Fercher, Adolf F.

    1998-04-01

    In the past ten years Partial Coherence Interferometry (PCI) and Optical Coherence Tomography (OCT) have been successfully developed for high precision biometry and tomography of biological tissues. OCT employs the partial coherence properties of a superluminescent diode and the Doppler principle yielding resolution and precision figures of the order of a few microns. Presently, the main application fields of this technique are biometry and imaging of ocular structures in vivo, as well as its clinical use in dermatology and endoscopic applications. This well established length measuring and imaging technique has now been applied to dentistry. First in vitro OCT images of the cemento (dentine) enamel junction of extracted sound and decayed human teeth have been recorded. These images distinguish dentine and enamel structures that are important for assessing enamel thickness and diagnosing caries. Individual optical A-Scans show that the penetration depth into enamel is considerably larger than into dentine. First polarization sensitive OCT recordings show localized changes of the polarization state of the light backscattered by dental material. Two-dimensional maps of the magnitude of the interference intensity and of the total phase difference between two orthogonal polarization states as a function of depth can reveal important structural information.

  14. Plasmonic EIT-like switching in bright-dark-bright plasmon resonators.

    PubMed

    Chen, Junxue; Wang, Pei; Chen, Chuncong; Lu, Yonghua; Ming, Hai; Zhan, Qiwen

    2011-03-28

    In this paper we report the study of the electromagnetically induced transparency (EIT)-like transmission in the bright-dark-bright plasmon resonators. It is demonstrated that the interferences between the dark plasmons excited by two bright plasmon resonators can be controlled by the incident light polarization. The constructive interference strengthens the coupling between the bright and dark resonators, leading to a more prominent EIT-like transparency window of the metamaterial. In contrary, destructive interference suppresses the coupling between the bright and dark resonators, destroying the interference pathway that forms the EIT-like transmission. Based on this observation, the plasmonic EIT switching can be realized by changing the polarization of incident light. This phenomenon may find applications in optical switching and plasmon-based information processing.

  15. Impact and vibration detection in composite materials by using intermodal interference in multimode optical fibers

    NASA Astrophysics Data System (ADS)

    Malki, Abdelrafik; Gafsi, Rachid; Michel, Laurent; Labarrère, Michel; Lecoy, Pierre

    1996-09-01

    An optical fiber sensor based on the intermodal interference principle is integrated in a composite material to detect impacts and vibrations. Six fibers are integrated at the top of a carbon/epoxy composite panel so as to form a grid into the structure. Spectral and temporal responses to impacts and acoustic vibrations of the sensor are compared with a piezoelectric accelerometer. The tests proved the facility of integration and the high sensitivity of the device. The location of impacts is performed with this arrangement by measuring the arrival times of the front waves to the fibers.

  16. Microwave Photonic Filters for Interference Cancellation and Adaptive Beamforming

    NASA Astrophysics Data System (ADS)

    Chang, John

    Wireless communication has experienced an explosion of growth, especially in the past half- decade, due to the ubiquity of wireless devices, such as tablets, WiFi-enabled devices, and especially smartphones. Proliferation of smartphones with powerful processors and graphic chips have given an increasing amount of people the ability to access anything from anywhere. Unfortunately, this ease of access has greatly increased mobile wireless bandwidth and have begun to stress carrier networks and spectra. Wireless interference cancellation will play a big role alongside the popularity of wire- less communication. In this thesis, we will investigate optical signal processing methods for wireless interference cancellation methods. Optics provide the perfect backdrop for interference cancellation. Mobile wireless data is already aggregated and transported through fiber backhaul networks in practice. By sandwiching the signal processing stage between the receiver and the fiber backhaul, processing can easily be done locally in one location. Further, optics offers the advantages of being instantaneously broadband and size, weight, and power (SWAP). We are primarily concerned with two methods for interference cancellation, based on microwave photonic filters, in this thesis. The first application is for a co-channel situation, in which a transmitter and receiver are co-located and transmitting at the same frequency. A novel analog optical technique extended for multipath interference cancellation of broadband signals is proposed and experimentally demonstrated in this thesis. The proposed architecture was able to achieve a maximum of 40 dB of cancellation over 200 MHz and 50 dB of cancellation over 10 MHz. The broadband nature of the cancellation, along with its depth, demonstrates both the precision of the optical components and the validity of the architecture. Next, we are interested in a scenario with dynamically changing interference, which requires an adaptive photonic beamformer. The solution is two-part. A novel highly-scalable photonic beamformer is first proposed and experimentally verified. A "blind" search algorithm called the guided accelerated random search (GARS) algorithm is then shown. A maximum cancellation of 37 dB is achieved within 50 iterations, a real-world time of 1-3 seconds, while the presence of a signal of interest (SOI) is maintained.

  17. Real time en face Fourier-domain optical coherence tomography with direct hardware frequency demodulation

    PubMed Central

    Biedermann, Benjamin R.; Wieser, Wolfgang; Eigenwillig, Christoph M.; Palte, Gesa; Adler, Desmond C.; Srinivasan, Vivek J.; Fujimoto, James G.; Huber, Robert

    2009-01-01

    We demonstrate en face swept source optical coherence tomography (ss-OCT) without requiring a Fourier transformation step. The electronic optical coherence tomography (OCT) interference signal from a k-space linear Fourier domain mode-locked laser is mixed with an adjustable local oscillator, yielding the analytic reflectance signal from one image depth for each frequency sweep of the laser. Furthermore, a method for arbitrarily shaping the spectral intensity profile of the laser is presented, without requiring the step of numerical apodization. In combination, these two techniques enable sampling of the in-phase and quadrature signal with a slow analog-to-digital converter and allow for real-time display of en face projections even for highest axial scan rates. Image data generated with this technique is compared to en face images extracted from a three-dimensional OCT data set. This technique can allow for real-time visualization of arbitrarily oriented en face planes for the purpose of alignment, registration, or operator-guided survey scans while simultaneously maintaining the full capability of high-speed volumetric ss-OCT functionality. PMID:18978919

  18. Application of differential interference contrast with inverted microscopes to the in vitro perfused nephron.

    PubMed

    Horster, M; Gundlach, H

    1979-12-01

    The study of in vitro perfused individual nephron segments requires a microscope which provides: (1) easy access to the specimen for measurement of cellular solute flux and voltage; (2) an image with high resolution and contrast; (3) optical sectioning of the object at different levels; and (4) rapid recording of the morphological phenomena. This paper describes an example of commercially available apparatus meeting the above requirements, and illustrates its efficiency. The microscope is of the inverted type (Zeiss IM 35) equipped with differential-interference-contrast (DIC) with a long working distance, and an automatically controlled camera system. The microscopic image exhibits cellular and intercellular details in the unstained transporting mammalian nephron segments despite their tubular structure and great thickness and makes obvious function-structure correlations (e.g. cell volume changes); luminal and contraluminal cell borders are well resolved for controlled microelectrode impalement.

  19. Thin-film thickness measurement method based on the reflection interference spectrum

    NASA Astrophysics Data System (ADS)

    Jiang, Li Na; Feng, Gao; Shu, Zhang

    2012-09-01

    A method is introduced to measure the thin-film thickness, refractive index and other optical constants. When a beam of white light shines on the surface of the sample film, the reflected lights of the upper and the lower surface of the thin-film will interfere with each other and reflectivity of the film will fluctuate with light wavelength. The reflection interference spectrum is analyzed with software according to the database, while the thickness and refractive index of the thin-film is measured.

  20. Imaging of sub-wavelength structures radiating coherently near microspheres

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maslov, Alexey V., E-mail: avmaslov@yandex.ru; Astratov, Vasily N., E-mail: astratov@uncc.edu

    2016-02-01

    Using a two-dimensional model, we show that the optical images of a sub-wavelength object depend strongly on the excitation of its electromagnetic modes. There exist modes that enable the resolution of the object features smaller than the classical diffraction limit, in particular, due to the destructive interference. We propose to use such modes for super-resolution of resonant structures such as coupled cavities, metal dimers, or bowties. A dielectric microsphere in contact with the object forms its magnified image in a wide range of the virtual image plane positions. It is also suggested that the resonances may significantly affect the resolutionmore » quantification in recent experimental studies.« less

  1. Temporal focusing microscopy combined with three-dimensional structured illumination

    NASA Astrophysics Data System (ADS)

    Isobe, Keisuke; Toda, Keisuke; Song, Qiyuan; Kannari, Fumihiko; Kawano, Hiroyuki; Miyawaki, Atsushi; Midorikawa, Katsumi

    2017-05-01

    Temporal focusing microscopy provides the optical sectioning capability in wide-field two-photon fluorescence imaging. Here, we demonstrate temporal focusing microscopy combined with three-dimensional structured illumination, which enables us to enhance the three-dimensional spatial resolution and reject the background fluorescence. Experimentally, the periodic pattern of the illumination was produced not only in the lateral direction but also in the axial direction by the interference between three temporal focusing pulses, which were easily generated using a digital micromirror device. The lateral resolution and optical sectioning capability were successfully enhanced by factors of 1.6 and 3.6, respectively, compared with those of temporal focusing microscopy. In the two-photon fluorescence imaging of a tissue-like phantom, the out-of-focus background fluorescence and the scattered background fluorescence could also be rejected.

  2. Compact component for integrated quantum optic processing

    PubMed Central

    Sahu, Partha Pratim

    2015-01-01

    Quantum interference is indispensable to derive integrated quantum optic technologies (1–2). For further progress in large scale integration of quantum optic circuit, we have introduced first time two mode interference (TMI) coupler as an ultra compact component. The quantum interference varying with coupling length corresponding to the coupling ratio is studied and the larger HOM dip with peak visibility ~0.963 ± 0.009 is found at half coupling length of TMI coupler. Our results also demonstrate complex quantum interference with high fabrication tolerance and quantum visibility in TMI coupler. PMID:26584759

  3. Hand-Held Color Meters Based on Interference Filters

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Fleurial, Jean-Pierre; Caillat, Thierry; Chen, Gang; Yang, Rong Gui

    2004-01-01

    Small, inexpensive, hand-held optoelectronic color-measuring devices based on metal-film/dielectric-film interference filters are undergoing development. These color meters could be suitable for use in a variety of applications in which there are requirements to quantify or match colors for aesthetic purposes but there is no need for the high spectral resolution of scientific-grade spectrometers. Such applications typically occur in the paint, printing, and cosmetic industries, for example. The figure schematically depicts a color meter of this type being used to measure the color of a sample in terms of the spectrum of light reflected from the sample. Light from a white source (for example, a white light-emitting diode) passes through a collimating lens to the sample. Another lens collects some of the light reflected from the sample and focuses the light onto the input end of optical fiber. Light emerging from the output end of the optical fiber illuminates an array of photodetectors covered with metal/dielectric-film interference filters like those described in Metal/Dielectric-film Interference Color Filters (NPO-20217), NASA Tech Briefs, Vol. 23, No. 2 (February 1999), page 70. Typically, these are wide-band-pass filters, as shown at the bottom of the figure. The photodetector array need not be of any particular design: it could be something as simple as an assembly containing several photodiodes or something as elaborate as an active-pixel sensor or other imaging device. What is essential is that each of the photodetectors or each of several groups of photodetectors is covered with a metal/dielectric-film filter of a different color. In most applications, it would be desirable to have at least three different filters, each for a spectral band that contains one of the three primary additive red, green, and blue colors. In some applications, it may be necessary to have more than three different color filters in order to characterize subtle differences in color (or in the sensation of color) that cannot be characterized with sufficient precision by use of the primary colors alone.

  4. Toward Optical Sensors: Review and Applications

    NASA Astrophysics Data System (ADS)

    Sabri, Naseer; Aljunid, S. A.; Salim, M. S.; Ahmad, R. B.; Kamaruddin, R.

    2013-04-01

    Recent advances in fiber optics (FOs) and the numerous advantages of light over electronic systems have boosted the utility and demand for optical sensors in various military, industry and social fields. Environmental and atmospheric monitoring, earth and space sciences, industrial chemical processing and biotechnology, law enforcement, digital imaging, scanning, and printing are exemplars of them. The ubiquity of photonic technologies could drive down prices which reduced the cost of optical fibers and lasers. Fiber optic sensors (FOSs) offer a wide spectrum of advantages over traditional sensing systems, such as small size and longer lifetime. Immunity to electromagnetic interference, amenability to multiplexing, and high sensitivity make FOs the sensor technology of choice in several fields, including the healthcare and aerospace sectors. FOSs show reliable and rigid sensing tasks over conventional electrical and electronic sensors. This paper presents an executive review of optical fiber sensors and the most beneficial applications.

  5. Research on ground-based LWIR hyperspectral imaging remote gas detection

    NASA Astrophysics Data System (ADS)

    Yang, Zhixiong; Yu, Chunchao; Zheng, Weijian; Lei, Zhenggang; Yan, Min; Yuan, Xiaochun; Zhang, Peizhong

    2015-10-01

    The new progress of ground-based long-wave infrared remote sensing is presented, which describes the windowing spatial and temporal modulation Fourier spectroscopy imaging in details. The prototype forms the interference fringes based on the corner-cube of spatial modulation of Michelson interferometer, using cooled long-wave infrared photovoltaic staring FPA (focal plane array) detector. The LWIR hyperspectral imaging is achieved by the process of collection, reorganization, correction, apodization, FFT etc. from data cube. Noise equivalent sensor response (NESR), which is the sensitivity index of CHIPED-1 LWIR hyperspectral imaging prototype, can reach 5.6×10-8W/(cm-1.sr.cm2) at single sampling. Hyperspectral imaging is used in the field of organic gas VOC infrared detection. Relative to wide band infrared imaging, it has some advantages. Such as, it has high sensitivity, the strong anti-interference ability, identify the variety, and so on.

  6. Sensitivity enhancement in swept-source optical coherence tomography by parametric balanced detector and amplifier

    PubMed Central

    Kang, Jiqiang; Wei, Xiaoming; Li, Bowen; Wang, Xie; Yu, Luoqin; Tan, Sisi; Jinata, Chandra; Wong, Kenneth K. Y.

    2016-01-01

    We proposed a sensitivity enhancement method of the interference-based signal detection approach and applied it on a swept-source optical coherence tomography (SS-OCT) system through all-fiber optical parametric amplifier (FOPA) and parametric balanced detector (BD). The parametric BD was realized by combining the signal and phase conjugated idler band that was newly-generated through FOPA, and specifically by superimposing these two bands at a photodetector. The sensitivity enhancement by FOPA and parametric BD in SS-OCT were demonstrated experimentally. The results show that SS-OCT with FOPA and SS-OCT with parametric BD can provide more than 9 dB and 12 dB sensitivity improvement, respectively, when compared with the conventional SS-OCT in a spectral bandwidth spanning over 76 nm. To further verify and elaborate their sensitivity enhancement, a bio-sample imaging experiment was conducted on loach eyes by conventional SS-OCT setup, SS-OCT with FOPA and parametric BD at different illumination power levels. All these results proved that using FOPA and parametric BD could improve the sensitivity significantly in SS-OCT systems. PMID:27446655

  7. Interference-free ultrasound imaging during HIFU therapy, using software tools

    NASA Technical Reports Server (NTRS)

    Vaezy, Shahram (Inventor); Held, Robert (Inventor); Sikdar, Siddhartha (Inventor); Managuli, Ravi (Inventor); Zderic, Vesna (Inventor)

    2010-01-01

    Disclosed herein is a method for obtaining a composite interference-free ultrasound image when non-imaging ultrasound waves would otherwise interfere with ultrasound imaging. A conventional ultrasound imaging system is used to collect frames of ultrasound image data in the presence of non-imaging ultrasound waves, such as high-intensity focused ultrasound (HIFU). The frames are directed to a processor that analyzes the frames to identify portions of the frame that are interference-free. Interference-free portions of a plurality of different ultrasound image frames are combined to generate a single composite interference-free ultrasound image that is displayed to a user. In this approach, a frequency of the non-imaging ultrasound waves is offset relative to a frequency of the ultrasound imaging waves, such that the interference introduced by the non-imaging ultrasound waves appears in a different portion of the frames.

  8. Fiber-optic proximity sensor

    NASA Technical Reports Server (NTRS)

    Bejczy, A. K.; Hermann, W. A.; Primus, H. C.

    1980-01-01

    Proximity sensor for mechanical hand of remote manipulator incorporates fiber optics to conduct signals between light source and light detector. Fiber optics are not prone to noise from electromagnetic interference and radio-frequency interference as are sensors using long electrical cables.

  9. Integrated femtosecond stimulated Raman scattering and two-photon fluorescence imaging of subcellular lipid and vesicular structures

    NASA Astrophysics Data System (ADS)

    Li, Xuesong; Lam, Wen Jiun; Cao, Zhe; Hao, Yan; Sun, Qiqi; He, Sicong; Mak, Ho Yi; Qu, Jianan Y.

    2015-11-01

    The primary goal of this study is to demonstrate that stimulated Raman scattering (SRS) as a new imaging modality can be integrated into a femtosecond (fs) nonlinear optical (NLO) microscope system. The fs sources of high pulse peak power are routinely used in multimodal nonlinear microscopy to enable efficient excitation of multiple NLO signals. However, with fs excitations, the SRS imaging of subcellular lipid and vesicular structures encounters significant interference from proteins due to poor spectral resolution and a lack of chemical specificity, respectively. We developed a unique NLO microscope of fs excitation that enables rapid acquisition of SRS and multiple two-photon excited fluorescence (TPEF) signals. In the in vivo imaging of transgenic C. elegans animals, we discovered that by cross-filtering false positive lipid signals based on the TPEF signals from tryptophan-bearing endogenous proteins and lysosome-related organelles, the imaging system produced highly accurate assignment of SRS signals to lipid. Furthermore, we demonstrated that the multimodal NLO microscope system could sequentially image lipid structure/content and organelles, such as mitochondria, lysosomes, and the endoplasmic reticulum, which are intricately linked to lipid metabolism.

  10. Intensity correlation imaging with sunlight-like source

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Tang, Zhiguo; Zheng, Huaibin; Chen, Hui; Yuan, Yuan; Liu, Jinbin; Liu, Yanyan; Xu, Zhuo

    2018-05-01

    We show a method of intensity correlation imaging of targets illuminated by a sunlight-like source both theoretically and experimentally. With a Faraday anomalous dispersion optical filter (FADOF), we have modulated the coherence time of a thermal source up to 0.167 ns. And we carried out measurements of temporal and spatial correlations, respectively, with an intensity interferometer setup. By skillfully using the even Fourier fitting on the very sparse sampling data, the images of targets are successfully reconstructed from the low signal-noise-ratio(SNR) interference pattern by applying an iterative phase retrieval algorithm. The resulting imaging quality is as well as the one obtained by the theoretical fitting. The realization of such a case will bring this technique closer to geostationary satellite imaging illuminated by sunlight.

  11. General interference law for nonstationary, separable optical fields.

    PubMed

    Manea, Vladimir

    2009-09-01

    An approach to the theory of partial coherence for nonstationary optical fields is presented. Starting with a spectral representation, a favorable decomposition of the optical signals is discussed that supports a natural extension of the mathematical formalism. The coherence functions are redefined, but still as temporal correlation functions, allowing the obtaining of a more general form of the interference law for partially coherent optical signals. The general theory is applied in some relevant particular cases of nonstationary interference, namely, with quasi-monochromatic beams of different frequencies and with phase-modulated quasi-monochromatic beams of similar frequency spectra. All the results of the general treatment are reducible to the ones given in the literature for the case of stationary interference.

  12. Target-in-the-loop remote sensing of laser beam and atmospheric turbulence characteristics.

    PubMed

    Vorontsov, Mikhail A; Lachinova, Svetlana L; Majumdar, Arun K

    2016-07-01

    A new target-in-the-loop (TIL) atmospheric sensing concept for in situ remote measurements of major laser beam characteristics and atmospheric turbulence parameters is proposed and analyzed numerically. The technique is based on utilization of an integral relationship between complex amplitudes of the counterpropagating optical waves known as overlapping integral or interference metric, whose value is preserved along the propagation path. It is shown that the interference metric can be directly measured using the proposed TIL sensing system composed of a single-mode fiber-based optical transceiver and a remotely located retro-target. The measured signal allows retrieval of key beam and atmospheric turbulence characteristics including scintillation index and the path-integrated refractive index structure parameter.

  13. A Photonic 1 × 4 Power Splitter Based on Multimode Interference in Silicon–Gallium-Nitride Slot Waveguide Structures

    PubMed Central

    Malka, Dror; Danan, Yossef; Ramon, Yehonatan; Zalevsky, Zeev

    2016-01-01

    In this paper, a design for a 1 × 4 optical power splitter based on the multimode interference (MMI) coupler in a silicon (Si)–gallium nitride (GaN) slot waveguide structure is presented—to our knowledge, for the first time. Si and GaN were found as suitable materials for the slot waveguide structure. Numerical optimizations were carried out on the device parameters using the full vectorial-beam propagation method (FV-BPM). Simulation results show that the proposed device can be useful to divide optical signal energy uniformly in the C-band range (1530–1565 nm) into four output ports with low insertion losses (0.07 dB). PMID:28773638

  14. Miniature fiber Fabry-Perot sensors based on fusion splicing

    NASA Astrophysics Data System (ADS)

    Zhu, Jia-li; Wang, Ming; Yang, Chun-di; Wang, Ting-ting

    2013-03-01

    Fiber-optic Fabry-Perot (F-P) sensors are widely investigated because they have several advantages over conventional sensors, such as immunity to electromagnetic interference, ability to operate under bad environments, high sensitivity and the potential for multiplexing. A new method to fabricate micro-cavity Fabry-Perot interferometer is introduced, which is fusion splicing a section of conventional single-mode fiber (SMF) and a section of hollow core or solid core photonic crystal fiber (PCF) together to form a micro-cavity at the splice joint. The technology of fusion splicing is discussed, and two miniature optical fiber sensors based on Fabry-Perot interference using fusion splicing are presented. The two sensors are completely made of fused silica, and have good high-temperature capability.

  15. Interferometric pump-probe characterization of the nonlocal response of optically transparent ion implanted polymers

    NASA Astrophysics Data System (ADS)

    Stefanov, Ivan L.; Hadjichristov, Georgi B.

    2012-03-01

    Optical interferometric technique is applied to characterize the nonlocal response of optically transparent ion implanted polymers. The thermal nonlinearity of the ion-modified material in the near-surface region is induced by continuous wave (cw) laser irradiation at a relatively low intensity. The interferometry approach is demonstrated for a subsurface layer of a thickness of about 100 nm formed in bulk polymethylmethacrylate (PMMA) by implantation with silicon ions at an energy of 50 keV and fluence in the range 1014-1017 cm-2. The laser-induced thermooptic effect in this layer is finely probed by interferometric imaging. The interference phase distribution in the plane of the ion implanted layer is indicative for the thermal nonlinearity of the near-surface region of ion implanted optically transparent polymeric materials.

  16. A Fabry-Perot Interferometry Based MRI-Compatible Miniature Uniaxial Force Sensor for Percutaneous Needle Placement

    PubMed Central

    Shang, Weijian; Su, Hao; Li, Gang; Furlong, Cosme; Fischer, Gregory S.

    2014-01-01

    Robot-assisted surgical procedures, taking advantage of the high soft tissue contrast and real-time imaging of magnetic resonance imaging (MRI), are developing rapidly. However, it is crucial to maintain tactile force feedback in MRI-guided needle-based procedures. This paper presents a Fabry-Perot interference (FPI) based system of an MRI-compatible fiber optic sensor which has been integrated into a piezoelectrically actuated robot for prostate cancer biopsy and brachytherapy in 3T MRI scanner. The opto-electronic sensing system design was minimized to fit inside an MRI-compatible robot controller enclosure. A flexure mechanism was designed that integrates the FPI sensor fiber for measuring needle insertion force, and finite element analysis was performed for optimizing the correct force-deformation relationship. The compact, low-cost FPI sensing system was integrated into the robot and calibration was conducted. The root mean square (RMS) error of the calibration among the range of 0–10 Newton was 0.318 Newton comparing to the theoretical model which has been proven sufficient for robot control and teleoperation. PMID:25126153

  17. Referenceless Phase Holography for 3D Imaging

    NASA Astrophysics Data System (ADS)

    Kreis, Thomas

    2017-12-01

    Referenceless phase holography generates the full (amplitude and phase) optical field if intensity and phase of this field are given as numerical data. It is based on the interference of two pure phase fields which are produced by reflection of two mutually coherent plane waves at two phase modulating spatial light modulators of the liquid crystal on silicon type. Thus any optical field of any real or artificial 3D scene can be displayed. This means that referenceless phase holography is a promising method for future 3D imaging, e. g. in 3D television. The paper introduces the theory of the method and presents three possible interferometer arrangements, for the first time the Mach-Zehnder and the grating interferometer adapted to this application. The possibilities and problems in calculating the diffraction fields of given 3D scenes are worked out, the best choice and modifications of the algorithms are given. Several novelty experimental examples are given proving the 3D cues depth of field, occlusion and parallax. The benefits and advantages over other holographic approaches are pointed out, open problems and necessary technological developments as well as possibilities and future prospects are discussed.

  18. Utilization of coincidence criteria in absolute length measurements by optical interferometry in vacuum and air

    NASA Astrophysics Data System (ADS)

    Schödel, R.

    2015-08-01

    Traceability of length measurements to the international system of units (SI) can be realized by using optical interferometry making use of well-known frequencies of monochromatic light sources mentioned in the Mise en Pratique for the realization of the metre. At some national metrology institutes, such as Physikalisch-Technische Bundesanstalt (PTB) in Germany, the absolute length of prismatic bodies (e.g. gauge blocks) is realized by so-called gauge-block interference comparators. At PTB, a number of such imaging phase-stepping interference comparators exist, including specialized vacuum interference comparators, each equipped with three highly stabilized laser light sources. The length of a material measure is expressed as a multiple of each wavelength. The large number of integer interference orders can be extracted by the method of exact fractions in which the coincidence of the lengths resulting from the different wavelengths is utilized as a criterion. The unambiguous extraction of the integer interference orders is an essential prerequisite for correct length measurements. This paper critically discusses coincidence criteria and their validity for three modes of absolute length measurements: 1) measurements under vacuum in which the wavelengths can be identified with the vacuum wavelengths, 2) measurements under air in which the air refractive index is obtained from environmental parameters using an empirical equation, and 3) measurements under air in which the air refractive index is obtained interferometrically by utilizing a vacuum cell placed along the measurement pathway. For case 3), which corresponds to PTB’s Kösters-Comparator for long gauge blocks, the unambiguous determination of integer interference orders related to the air refractive index could be improved by about a factor of ten when an ‘overall dispersion value,’ suggested in this paper, is used as coincidence criterion.

  19. Transverse correlation in entangled photons and light-matter interaction

    NASA Astrophysics Data System (ADS)

    Wen, Jianming

    In recent years, quantum entanglement has attracted much attention, because its unique properties provide potential applications, which could not be achieved using conventional techniques, such as quantum computing, quantum imaging and lithography. To realize these advancements, one has to obtain an entanglement-generation source, thoroughly master its physical properties, and fully understand the light-matter interaction. This dissertation is an attempt to address such issues as stated above. Conventionally, paired photons are created from spontaneous parametric down-conversion (SPDC). It is known that the transverse correlation in biphotons may improve the visibility and resolution in quantum imaging and lithography. In this thesis, we described an alternative biphoton source---Raman-EIT (electromagnetically induced transparency) generator, and emphasize on its geometrical and optical properties. We found that to utilize the transverse effects in paired Stokes-anti-Stokes, it is necessary to make the product of the EIT window times the group delay much greater than unity. To gain further insight into quantum imaging and lithography, we studied the transverse correlation in triphoton entanglement theoretically. We found that in the two-image process, the quality of images is determined by the optical path-lengths, even though the Gaussian thin lens equations are satisfied. The ghost interference-diffraction patterns of double slits show one more fold interference, which is essentially different from the biphoton case. Klyshko's advanced-wave model is still applicable, with some modifications. We also generalized the transverse correlation to the case of multi-photon entangled states. To implement quantum computing, one key element is quantum memory. In this thesis, we have theoretically explored the feasibility of such a memory by using nonclassical SPDC light in an EIT system at the single-photon level. We found that both the quantum coherence of SPDC and atomic coherence of EIT can survive after interacting within a vapor cell. Due to the inherent mismatch of magnitude between the spectral bandwidth of SPDC and the very narrow transmission width of EIT, the coincidence counts of the two-photon interference is reduced to one pair per second, which is barely doable in the current experimental situation.

  20. A FBG pulse wave demodulation method based on PCF modal interference filter

    NASA Astrophysics Data System (ADS)

    Zhang, Cheng; Xu, Shan; Shen, Ziqi; Zhao, Junfa; Miao, Changyun; Bai, Hua

    2016-10-01

    Fiber optic sensor embedded in textiles has been a new direction of researching smart wearable technology. Pulse signal which is generated by heart beat contains vast amounts of physio-pathological information about the cardiovascular system. Therefore, the research for textile-based fiber optic sensor which can detect pulse wave has far-reaching effects on early discovery and timely treatment of cardiovascular diseases. A novel wavelength demodulation method based on photonic crystal fiber (PCF) modal interference filter is proposed for the purpose of developing FBG pulse wave sensing system embedded in smart clothing. The mechanism of the PCF modal interference and the principle of wavelength demodulation based on In-line Mach-Zehnder interferometer (In-line MZI) are analyzed in theory. The fabricated PCF modal interferometer has the advantages of good repeatability and low temperature sensitivity of 3.5pm/°C from 25°C to 60°C. The designed demodulation system can achieve linear demodulation in the range of 2nm, with the wavelength resolution of 2.2pm and the wavelength sensitivity of 0.055nm-1. The actual experiments' result indicates that the pulse wave can be well detected by this demodulation method, which is in accordance with the commercial demodulation instrument (SM130) and more sensitive than the traditional piezoelectric pulse sensor. This demodulation method provides important references for the research of smart clothing based on fiber grating sensor embedded in textiles and accelerates the developments of wearable fiber optic sensors technology.

  1. Space-based optical image encryption.

    PubMed

    Chen, Wen; Chen, Xudong

    2010-12-20

    In this paper, we propose a new method based on a three-dimensional (3D) space-based strategy for the optical image encryption. The two-dimensional (2D) processing of a plaintext in the conventional optical encryption methods is extended to a 3D space-based processing. Each pixel of the plaintext is considered as one particle in the proposed space-based optical image encryption, and the diffraction of all particles forms an object wave in the phase-shifting digital holography. The effectiveness and advantages of the proposed method are demonstrated by numerical results. The proposed method can provide a new optical encryption strategy instead of the conventional 2D processing, and may open up a new research perspective for the optical image encryption.

  2. Fiber-optic fluorescence imaging

    PubMed Central

    Flusberg, Benjamin A; Cocker, Eric D; Piyawattanametha, Wibool; Jung, Juergen C; Cheung, Eunice L M; Schnitzer, Mark J

    2010-01-01

    Optical fibers guide light between separate locations and enable new types of fluorescence imaging. Fiber-optic fluorescence imaging systems include portable handheld microscopes, flexible endoscopes well suited for imaging within hollow tissue cavities and microendoscopes that allow minimally invasive high-resolution imaging deep within tissue. A challenge in the creation of such devices is the design and integration of miniaturized optical and mechanical components. Until recently, fiber-based fluorescence imaging was mainly limited to epifluorescence and scanning confocal modalities. Two new classes of photonic crystal fiber facilitate ultrashort pulse delivery for fiber-optic two-photon fluorescence imaging. An upcoming generation of fluorescence imaging devices will be based on microfabricated device components. PMID:16299479

  3. A fiber-optic interferometer based on non-adiabatic fiber taper and long-period fiber grating for simultaneous measurement of magnetic field and temperature

    NASA Astrophysics Data System (ADS)

    Kang, Shouxin; Zhang, Hao; Liu, Bo; Lin, Wei; Zhang, Ning; Miao, Yinping

    2016-01-01

    A dual-parameter sensor based on a fiber-optic interferometer consisting of a non-adiabatic fiber taper and a long-period fiber grating (LPFG) integrated with magnetic nanoparticle fluids has been proposed and experimentally demonstrated. Due to the Mach-Zehnder interference induced by the concatenation of the fiber taper and long-period grating, an interferometric spectrum could be acquired within the transmission resonance spectral envelope of the LPFG. Thanks to different magnetic field and temperature sensitivities of difference interference dips, simultaneous measurement of the magnetic field intensity and environmental temperature could be achieved. Moreover, due to the variation in coupling coefficients of the fiber taper and the LPFG in response to the change of the applied magnetic field intensity, some of the interference dips would exhibit opposite magnetic-field-intensity-dependent transmission loss variation behavior. Magnetic field intensity and temperature sensitivities of 0.017 31 dB Oe-1 and 0.0315 dB K-1, and -0.024 55 dB Oe-1 and -0.056 28 dB K-1 were experimentally acquired for the experimentally monitored interference dips.

  4. Carbon nanotube based respiratory gated micro-CT imaging of a murine model of lung tumors with optical imaging correlation

    NASA Astrophysics Data System (ADS)

    Burk, Laurel M.; Lee, Yueh Z.; Heathcote, Samuel; Wang, Ko-han; Kim, William Y.; Lu, Jianping; Zhou, Otto

    2011-03-01

    Current optical imaging techniques can successfully measure tumor load in murine models of lung carcinoma but lack structural detail. We demonstrate that respiratory gated micro-CT imaging of such models gives information about structure and correlates with tumor load measurements by optical methods. Four mice with multifocal, Kras-induced tumors expressing firefly luciferase were imaged against four controls using both optical imaging and respiratory gated micro-CT. CT images of anesthetized animals were acquired with a custom CNT-based system using 30 ms x-ray pulses during peak inspiration; respiration motion was tracked with a pressure sensor beneath each animal's abdomen. Optical imaging based on the Luc+ signal correlating with tumor load was performed on a Xenogen IVIS Kinetix. Micro-CT images were post-processed using Osirix, measuring lung volume with region growing. Diameters of the largest three tumors were measured. Relationships between tumor size, lung volumes, and optical signal were compared. CT images and optical signals were obtained for all animals at two time points. In all lobes of the Kras+ mice in all images, tumors were visible; the smallest to be readily identified measured approximately 300 microns diameter. CT-derived tumor volumes and optical signals related linearly, with r=0.94 for all animals. When derived for only tumor bearing animals, r=0.3. The trend of each individual animal's optical signal tracked correctly based on the CT volumes. Interestingly, lung volumes also correlated positively with optical imaging data and tumor volume burden, suggesting active remodeling.

  5. Ultrasound-Mediated Biophotonic Imaging: A Review of Acousto-Optical Tomography and Photo-Acoustic Tomography

    PubMed Central

    Wang, Lihong V.

    2004-01-01

    This article reviews two types of ultrasound-mediated biophotonic imaging–acousto-optical tomography (AOT, also called ultrasound-modulated optical tomography) and photo-acoustic tomography (PAT, also called opto-acoustic or thermo-acoustic tomography)–both of which are based on non-ionizing optical and ultrasonic waves. The goal of these technologies is to combine the contrast advantage of the optical properties and the resolution advantage of ultrasound. In these two technologies, the imaging contrast is based primarily on the optical properties of biological tissues, and the imaging resolution is based primarily on the ultrasonic waves that either are provided externally or produced internally, within the biological tissues. In fact, ultrasonic mediation overcomes both the resolution disadvantage of pure optical imaging in thick tissues and the contrast and speckle disadvantages of pure ultrasonic imaging. In our discussion of AOT, the relationship between modulation depth and acoustic amplitude is clarified. Potential clinical applications of ultrasound-mediated biophotonic imaging include early cancer detection, functional imaging, and molecular imaging. PMID:15096709

  6. Coherent Population Trapping and Optical Ramsey Interference for Compact Rubidium Clock Development

    NASA Astrophysics Data System (ADS)

    Warren, Zachary Aron

    Coherent population trapping (CPT) and optical Ramsey interference provide new avenues for developing compact, high-performance atomic clocks. In this work, I have studied the fundamental aspects of CPT and optical Ramsey interference for Raman clock development. This thesis research is composed of two parts: theoretical and experimental studies. The theoretical component of the research was initially based on pre-existing atomic models of a three-level ?-type system in which the phenomena of CPT and Ramsey interference are formed. This model served as a starting point for studying basic characteristics of CPT and Ramsey interference such as power dependence of CPT, effects of average detuning, and ground-state decoherence on linewidth, which directly impact the performance of the Raman clock. The basic three-level model was also used to model pulsed CPT excitation and measure light shift in Ramsey interference which imposes a fundamental limit on the long-term frequency stability of the Raman clock. The theoretical calculations illustrate reduction (or suppression) of light shift in Ramsey interference as an important advantage over CPT for Raman clock development. To make the model more accurate than an ideal three-level system, I developed a comprehensive atomic model using density-matrix equations including all sixteen Zeeman sublevels in the D1 manifold of 87Rb atoms in a vapor medium. The multi-level atomic model has been used for investigating characteristics of CPT and Ramsey interference under different optical excitation schemes pertaining to the polarization states of the frequency-modulated CPT beam in a Raman clock. It is also used to study the effects of axial and traverse magnetic fields on the contrast of CPT and Ramsey interference. More importantly, the multi-level atomic model is also used to accurately calculate light shift in Ramsey interference in the D1 manifold of 87Rb atoms by taking into account all possible off-resonant excitations and the ground-state decoherence among the Zeeman sublevels. Light shift suppression in Ramsey interference with pulse saturation is also found to be evident in this comprehensive model. In the experimental component of the research, I designed a prototype of the Raman clock using a small (2 cm in length), buffer-gas filled, and isotopically pure 87Rb cell. A fiber-coupled waveguide electro-optic modulator was used to generate the frequency-modulated CPT beam for the experiments. The experimental setup was operated either by continuous excitation or pulsed excitation for experimentally characterizing CPT and Ramsey interference under different experimental conditions and for testing different optical excitation schemes which were investigated theoretically. Several iterations of the clock physics package were developed in order to attain better frequency stability performance in the Raman clock. The experimental work also provided a basis to develop a new repeated-query technique for producing an ultra-narrow linewidth central fringe with a high S/N ratio, and suppressing the side fringes in Ramsey interference. The above described research was carried out keeping in mind compact, high-performance clock development, which relies on technologies that can be miniaturized. Vapor cell based atomic clocks are ideal candidates for compact clock technology. The CPT phenomenon, observed by Raman excitation in a vapor medium, is a promising candidate for compact, high-performance Raman clock development. However, atom-field interaction involved in a vapor medium is often more complex than other media such as cold atom or atomic beam. It is difficult to model this interaction in order to predict its influence on CPT characteristics and, hence, the performance of the Raman clock. This dissertation addresses one such problem by developing a comprehensive atomic model to investigate light shift and modification of light shift in the Raman clock, particularly with pulsed excitation. It demonstrates a clear possibility of reducing (or suppressing) the light shift associated with Ramsey interference in a vapor medium for achieving higher frequency stability in the Raman clock. Additionally, theoretical comparisons of various optical excitation techniques have been calculated to demonstrate the relative strengths and weaknesses of different schemes for Raman clock development. (Abstract shortened by ProQuest.).

  7. High temporal and spatial resolution studies of bone cells using real-time confocal reflection microscopy.

    PubMed

    Boyde, A; Vesely, P; Gray, C; Jones, S J

    1994-01-01

    Chick and rat bone-derived cells were mounted in sealed coverslip-covered chambers; individual osteoclasts (but also osteoblasts) were selected and studied at 37 degrees C using three different types of high-speed scanning confocal microscopes: (1) A Noran Tandem Scanning Microscope (TSM) was used with a low light level, cooled CCD camera for image transfer to a Noran TN8502 frame store-based image analysing computer to make time lapse movie sequences using 0.1 s exposure periods, thus losing some of the advantage of the high frame rate of the TSM. Rapid focus adjustment using computer controlled piezo drivers permitted two or more focus planes to be imaged sequentially: thus (with additional light-source shuttering) the reflection confocal image could be alternated with the phase contrast image at a different focus. Individual cells were followed for up to 5 days, suggesting no significant irradiation problem. (2) Exceptional temporal and spatial resolution is available in video rate laser confocal scanning microscopes (VRCSLMs). We used the Noran Odyssey unitary beam VRCSLM with an argon ion laser at 488 nm and acousto-optic deflection (AOD) on the line axis: this instrument is truly and adjustably confocal in the reflection mode. (3) We also used the Lasertec 1LM11 line scan instrument, with an He-Ne laser at 633 nm, and AOD for the frame scan. We discuss the technical problems and merits of the different approaches. The VRCSLMs documented rapid, real-time oscillatory motion: all the methods used show rapid net movement of organelles within bone cells. The interference reflection mode gives particularly strong contrasts in confocal instruments. Phase contrast and other interference methods used in the microscopy of living cells can be used simultaneously in the TSM.

  8. Imaging of tumor hypermetabolism with near-infrared fluorescence contrast agents

    NASA Astrophysics Data System (ADS)

    Chen, Yu; Zheng, Gang; Zhang, Zhihong; Blessington, Dana; Intes, Xavier; Achilefu, Samuel I.; Chance, Britton

    2004-08-01

    We have developed a high sensitivity near-infrared (NIR) optical imaging system for non-invasive cancer detection through molecular labeled fluorescent contrast agents. Near-infrared (NIR) imaging can probe tissue deeply thus possess the potential for non-invasively detection of breast or lymph node cancer. Recent developments in molecular beacons can selectively label various pre-cancer/cancer signatures and provide high tumor to background contrast. To increase the sensitivity in detecting fluorescent photons and the accuracy of localization, phase cancellation (in- and anti-phase) device is employed. This frequency-domain system utilizes the interference-like pattern of diffuse photon density wave to achieve high detection sensitivity and localization accuracy for the fluorescent heterogeneity embedded inside the scattering media. The opto-electronic system consists of the laser sources, fiber optics, interference filter to select the fluorescent photons and the high sensitivity photon detector (photomultiplier tube). The source-detector pair scans the tissue surface in multiple directions and the two-dimensional localization image can be obtained using goniometric reconstruction. In vivo measurements with tumor-bearing mouse model using the novel Cypate-mono-2-deoxy-glucose (Cypate-2-D-Glucosamide) fluorescent contrast agent, which targets the enhanced tumor glycolysis, demonstrated the feasibility on detection of 2 cm deep subsurface tumor in the tissue-like medium, with a localization accuracy within 2 ~ 3 mm. This instrument has the potential for tumor diagnosis and imaging, and the accuracy of the localization suggests that this system could help to guide the clinical fine-needle biopsy. This portable device would be complementary to X-ray mammogram and provide add-on information on early diagnosis and localization of early breast tumor.

  9. Double-layer interlaced nested multi-ring array metallic mesh for high-performance transparent electromagnetic interference shielding.

    PubMed

    Wang, Heyan; Lu, Zhengang; Liu, Yeshu; Tan, Jiubin; Ma, Limin; Lin, Shen

    2017-04-15

    We report a nested multi-ring array metallic mesh (NMA-MM) that shows a highly uniform diffraction pattern theoretically and experimentally. Then a high-performance transparent electromagnetic interference (EMI) shielding structure is constituted by the double-layer interlaced NMA-MMs separated by transparent quartz-glass substrate. Experimental results show that double-layer interlaced NMA-MM structure exhibits a shielding effectiveness (SE) of over 27 dB in the Ku-band, with a maximal SE of 37 dB at 12 GHz, normalized optical transmittance of 90%, and minimal image quality degradation due to the interlaced arrangement. It thus shows great potential for practical applications in transparent EMI shielding devices.

  10. Quantitative contrast-enhanced optical coherence tomography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winetraub, Yonatan; SoRelle, Elliott D.; Bio-X Program, Stanford University, 299 Campus Drive, Stanford, California 94305

    2016-01-11

    We have developed a model to accurately quantify the signals produced by exogenous scattering agents used for contrast-enhanced Optical Coherence Tomography (OCT). This model predicts distinct concentration-dependent signal trends that arise from the underlying physics of OCT detection. Accordingly, we show that real scattering particles can be described as simplified ideal scatterers with modified scattering intensity and concentration. The relation between OCT signal and particle concentration is approximately linear at concentrations lower than 0.8 particle per imaging voxel. However, at higher concentrations, interference effects cause signal to increase with a square root dependence on the number of particles within amore » voxel. Finally, high particle concentrations cause enough light attenuation to saturate the detected signal. Predictions were validated by comparison with measured OCT signals from gold nanorods (GNRs) prepared in water at concentrations ranging over five orders of magnitude (50 fM to 5 nM). In addition, we validated that our model accurately predicts the signal responses of GNRs in highly heterogeneous scattering environments including whole blood and living animals. By enabling particle quantification, this work provides a valuable tool for current and future contrast-enhanced in vivo OCT studies. More generally, the model described herein may inform the interpretation of detected signals in modalities that rely on coherence-based detection or are susceptible to interference effects.« less

  11. A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI

    PubMed Central

    Chen, Wei; Wang, Weiping; Li, Qun; Chang, Qiang; Hou, Hongtao

    2016-01-01

    Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD) technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning. PMID:27007379

  12. A Crowd-Sourcing Indoor Localization Algorithm via Optical Camera on a Smartphone Assisted by Wi-Fi Fingerprint RSSI.

    PubMed

    Chen, Wei; Wang, Weiping; Li, Qun; Chang, Qiang; Hou, Hongtao

    2016-03-19

    Indoor positioning based on existing Wi-Fi fingerprints is becoming more and more common. Unfortunately, the Wi-Fi fingerprint is susceptible to multiple path interferences, signal attenuation, and environmental changes, which leads to low accuracy. Meanwhile, with the recent advances in charge-coupled device (CCD) technologies and the processing speed of smartphones, indoor positioning using the optical camera on a smartphone has become an attractive research topic; however, the major challenge is its high computational complexity; as a result, real-time positioning cannot be achieved. In this paper we introduce a crowd-sourcing indoor localization algorithm via an optical camera and orientation sensor on a smartphone to address these issues. First, we use Wi-Fi fingerprint based on the K Weighted Nearest Neighbor (KWNN) algorithm to make a coarse estimation. Second, we adopt a mean-weighted exponent algorithm to fuse optical image features and orientation sensor data as well as KWNN in the smartphone to refine the result. Furthermore, a crowd-sourcing approach is utilized to update and supplement the positioning database. We perform several experiments comparing our approach with other positioning algorithms on a common smartphone to evaluate the performance of the proposed sensor-calibrated algorithm, and the results demonstrate that the proposed algorithm could significantly improve accuracy, stability, and applicability of positioning.

  13. On-axis programmable microscope using liquid crystal spatial light modulator

    NASA Astrophysics Data System (ADS)

    García-Martínez, Pascuala; Martínez, José Luís.; Moreno, Ignacio

    2017-06-01

    Spatial light modulators (SLM) are currently used in many applications in optical microscopy and imaging. One of the most promising methods is the use of liquid crystal displays (LCD) as programmable phase diffractive optical elements (DOE) placed in the Fourier plane giving access to the spatial frequencies which can be phased shifted individually, allowing to emulate a wealth of contrast enhancing methods for both amplitude and phase samples. We use phase and polarization modulation of LCD to implement an on-axis microscope optical system. The LCD used are Hamamatsu liquid crystal on silicon (LCOS) SLM free of flicker, thus showing a full profit of the SLM space bandwidth, as opposed to optical systems in the literature forced to work off-axis due to the strong zero-order component. Taking benefits of the phase modulation of the LCOS we have implemented different microscopic imaging operations, such as high-pass and low-pass filtering in parallel using programmable blazed gratings. Moreover, we are able to control polarization modulation to display two orthogonal linear state of polarization images than can be subtracted or added by changing the period of the blazed grating. In that sense, Differential Interference Contrast (DIC) microscopy can be easily done by generating two images exploiting the polarization splitting properties when a blazed grating is displayed in the SLM. Biological microscopy samples are also used.

  14. Single slice US-MRI registration for neurosurgical MRI-guided US

    NASA Astrophysics Data System (ADS)

    Pardasani, Utsav; Baxter, John S. H.; Peters, Terry M.; Khan, Ali R.

    2016-03-01

    Image-based ultrasound to magnetic resonance image (US-MRI) registration can be an invaluable tool in image-guided neuronavigation systems. State-of-the-art commercial and research systems utilize image-based registration to assist in functions such as brain-shift correction, image fusion, and probe calibration. Since traditional US-MRI registration techniques use reconstructed US volumes or a series of tracked US slices, the functionality of this approach can be compromised by the limitations of optical or magnetic tracking systems in the neurosurgical operating room. These drawbacks include ergonomic issues, line-of-sight/magnetic interference, and maintenance of the sterile field. For those seeking a US vendor-agnostic system, these issues are compounded with the challenge of instrumenting the probe without permanent modification and calibrating the probe face to the tracking tool. To address these challenges, this paper explores the feasibility of a real-time US-MRI volume registration in a small virtual craniotomy site using a single slice. We employ the Linear Correlation of Linear Combination (LC2) similarity metric in its patch-based form on data from MNI's Brain Images for Tumour Evaluation (BITE) dataset as a PyCUDA enabled Python module in Slicer. By retaining the original orientation information, we are able to improve on the poses using this approach. To further assist the challenge of US-MRI registration, we also present the BOXLC2 metric which demonstrates a speed improvement to LC2, while retaining a similar accuracy in this context.

  15. Portal imaging with flat-panel detector and CCD camera

    NASA Astrophysics Data System (ADS)

    Roehrig, Hans; Tang, Chuankun; Cheng, Chee-Wai; Dallas, William J.

    1997-07-01

    This paper provides a comparison of imaging parameters of two portal imaging systems at 6 MV: a flat panel detector and a CCD-camera based portal imaging system. Measurements were made of the signal and noise and consequently of signal-to-noise per pixel as a function of the exposure. Both systems have a linear response with respect to exposure, and the noise is proportional to the square-root of the exposure, indicating photon-noise limitation. The flat-panel detector has a signal- to-noise ratio, which is higher than that observed wit the CCD-camera based portal imaging system. This is expected because most portal imaging systems using optical coupling with a lens exhibit severe quantum-sinks. The paper also presents data on the screen's photon gain (the number of light-photons per interacting x-ray photon), as well as on the magnitude of the Swank-noise, (which describes fluctuation in the screen's photon gain). Images of a Las Vegas-type aluminum contrast detail phantom, located at the ISO-Center, were generated at an exposure of 1 MU. The CCD-camera based system permits detection of aluminum-holes of 0.01194 cm diameter and 0.228 mm depth while the flat-panel detector permits detection of aluminum holes of 0.01194 cm diameter and 0.1626 mm depth, indicating a better signal-to-noise ratio. Rank order filtering was applied to the raw images from the CCD-based system in order to remove the direct hits. These are camera responses to scattered x-ray photons which interact directly with the CCD of the CCD-camera and generate 'salt and pepper type noise,' which interferes severely with attempts to determine accurate estimates of the image noise.

  16. Highly Stretchable and Transparent Electromagnetic Interference Shielding Film Based on Silver Nanowire Percolation Network for Wearable Electronics Applications.

    PubMed

    Jung, Jinwook; Lee, Habeom; Ha, Inho; Cho, Hyunmin; Kim, Kyun Kyu; Kwon, Jinhyeong; Won, Phillip; Hong, Sukjoon; Ko, Seung Hwan

    2017-12-27

    Future electronics are expected to develop into wearable forms, and an adequate stretchability is required for the forthcoming wearable electronics considering various motions occurring in human body. Along with stretchability, transparency can increase both the functionality and esthetic features in future wearable electronics. In this study, we demonstrate, for the first time, a highly stretchable and transparent electromagnetic interference shielding layer for wearable electronic applications with silver nanowire percolation network on elastic poly(dimethylsiloxane) substrate. The proposed stretchable and transparent electromagnetic interference shielding layer shows a high electromagnetic wave shielding effectiveness even under a high tensile strain condition. It is expected for the silver nanowire percolation network-based electromagnetic interference shielding layer to be beyond the conventional electromagnetic interference shielding materials and to broaden its application range to various fields that require optical transparency or nonplanar surface environment, such as biological system, human skin, and wearable electronics.

  17. THESEUS: A wavelength division multiplexed/microwave subcarrier multiplexed optical network, its ATM switch applications and device requirements

    NASA Astrophysics Data System (ADS)

    Xin, Wei

    1997-10-01

    A Terabit Hybrid Electro-optical /underline[Se]lf- routing Ultrafast Switch (THESEUS) has been proposed. It is a self-routing wavelength division multiplexed (WDM) / microwave subcarrier multiplexed (SCM) asynchronous transfer mode (ATM) switch for the multirate ATM networks. It has potential to be extended to a large ATM switch as 1000 x 1000 without internal blocking. Among the advantages of the hybrid implementation are flexibility in service upgrade, relaxed tolerances on optical filtering, protocol simplification and less processing overhead. For a small ATM switch, the subcarrier can be used as output buffers to solve output contention. A mathematical analysis was conducted to evaluate different buffer configurations. A testbed has been successfully constructed. Multirate binary data streams have been switched through the testbed and error free reception ([<]10-9 bit error rate) has been achieved. A simple, intuitive theoretical model has been developed to describe the heterodyne optical beat interference. A new concept of interference time and interference length has been introduced. An experimental confirmation has been conducted. The experimental results match the model very well. It shows that a large portion of optical bandwidth is wasted due to the beat interference. Based on the model, several improvement approaches have been proposed. The photo-generated carrier lifetime of silicon germanium has been measured using time-resolved reflectivity measurement. Via oxygen ion implantation, the carrier lifetime has been reduced to as short as 1 ps, corresponding to 1 THz of photodetector bandwidth. It has also been shown that copper dopants act as recombination centers in the silicon germanium.

  18. Survey of computer vision technology for UVA navigation

    NASA Astrophysics Data System (ADS)

    Xie, Bo; Fan, Xiang; Li, Sijian

    2017-11-01

    Navigation based on computer version technology, which has the characteristics of strong independence, high precision and is not susceptible to electrical interference, has attracted more and more attention in the filed of UAV navigation research. Early navigation project based on computer version technology mainly applied to autonomous ground robot. In recent years, the visual navigation system is widely applied to unmanned machine, deep space detector and underwater robot. That further stimulate the research of integrated navigation algorithm based on computer version technology. In China, with many types of UAV development and two lunar exploration, the three phase of the project started, there has been significant progress in the study of visual navigation. The paper expounds the development of navigation based on computer version technology in the filed of UAV navigation research and draw a conclusion that visual navigation is mainly applied to three aspects as follows.(1) Acquisition of UAV navigation parameters. The parameters, including UAV attitude, position and velocity information could be got according to the relationship between the images from sensors and carrier's attitude, the relationship between instant matching images and the reference images and the relationship between carrier's velocity and characteristics of sequential images.(2) Autonomous obstacle avoidance. There are many ways to achieve obstacle avoidance in UAV navigation. The methods based on computer version technology ,including feature matching, template matching, image frames and so on, are mainly introduced. (3) The target tracking, positioning. Using the obtained images, UAV position is calculated by using optical flow method, MeanShift algorithm, CamShift algorithm, Kalman filtering and particle filter algotithm. The paper expounds three kinds of mainstream visual system. (1) High speed visual system. It uses parallel structure, with which image detection and processing are carried out at high speed. The system is applied to rapid response system. (2) The visual system of distributed network. There are several discrete image data acquisition sensor in different locations, which transmit image data to the node processor to increase the sampling rate. (3) The visual system combined with observer. The system combines image sensors with the external observers to make up for lack of visual equipment. To some degree, these systems overcome lacks of the early visual system, including low frequency, low processing efficiency and strong noise. In the end, the difficulties of navigation based on computer version technology in practical application are briefly discussed. (1) Due to the huge workload of image operation , the real-time performance of the system is poor. (2) Due to the large environmental impact , the anti-interference ability of the system is poor.(3) Due to the ability to work in a particular environment, the system has poor adaptability.

  19. Single-particle imaging for biosensor applications

    NASA Astrophysics Data System (ADS)

    Yorulmaz, Mustafa; Isil, Cagatay; Seymour, Elif; Yurdakul, Celalettin; Solmaz, Berkan; Koc, Aykut; Ünlü, M. Selim

    2017-10-01

    Current state-of-the-art technology for in-vitro diagnostics employ laboratory tests such as ELISA that consists of a multi-step test procedure and give results in analog format. Results of these tests are interpreted by the color change in a set of diluted samples in a multi-well plate. However, detection of the minute changes in the color poses challenges and can lead to false interpretations. Instead, a technique that allows individual counting of specific binding events would be useful to overcome such challenges. Digital imaging has been applied recently for diagnostics applications. SPR is one of the techniques allowing quantitative measurements. However, the limit of detection in this technique is on the order of nM. The current required detection limit, which is already achieved with the analog techniques, is around pM. Optical techniques that are simple to implement and can offer better sensitivities have great potential to be used in medical diagnostics. Interference Microscopy is one of the tools that have been investigated over years in optics field. More of the studies have been performed in confocal geometry and each individual nanoparticle was observed separately. Here, we achieve wide-field imaging of individual nanoparticles in a large field-of-view ( 166 μm × 250 μm) on a micro-array based sensor chip in fraction of a second. We tested the sensitivity of our technique on dielectric nanoparticles because they exhibit optical properties similar to viruses and cells. We can detect non-resonant dielectric polystyrene nanoparticles of 100 nm. Moreover, we perform post-processing applications to further enhance visibility.

  20. Intensity-based fibre-optic sensing system using contrast modulation of subcarrier interference pattern

    NASA Technical Reports Server (NTRS)

    Adamovsky, G.; Sherer, T. N.; Maitland, D. J.

    1989-01-01

    A novel technique to compensate for unwanted intensity losses in a fiber-optic sensing system is described. The technique involves a continuous sinusoidal modulation of the light source intensity at radio frequencies and an intensity sensor placed in an unbalanced interferometer. The system shows high sensitivity and stability.

  1. Diagnosis of breast cancer biopsies using quantitative phase imaging

    NASA Astrophysics Data System (ADS)

    Majeed, Hassaan; Kandel, Mikhail E.; Han, Kevin; Luo, Zelun; Macias, Virgilia; Tangella, Krishnarao; Balla, Andre; Popescu, Gabriel

    2015-03-01

    The standard practice in the histopathology of breast cancers is to examine a hematoxylin and eosin (H&E) stained tissue biopsy under a microscope. The pathologist looks at certain morphological features, visible under the stain, to diagnose whether a tumor is benign or malignant. This determination is made based on qualitative inspection making it subject to investigator bias. Furthermore, since this method requires a microscopic examination by the pathologist it suffers from low throughput. A quantitative, label-free and high throughput method for detection of these morphological features from images of tissue biopsies is, hence, highly desirable as it would assist the pathologist in making a quicker and more accurate diagnosis of cancers. We present here preliminary results showing the potential of using quantitative phase imaging for breast cancer screening and help with differential diagnosis. We generated optical path length maps of unstained breast tissue biopsies using Spatial Light Interference Microscopy (SLIM). As a first step towards diagnosis based on quantitative phase imaging, we carried out a qualitative evaluation of the imaging resolution and contrast of our label-free phase images. These images were shown to two pathologists who marked the tumors present in tissue as either benign or malignant. This diagnosis was then compared against the diagnosis of the two pathologists on H&E stained tissue images and the number of agreements were counted. In our experiment, the agreement between SLIM and H&E based diagnosis was measured to be 88%. Our preliminary results demonstrate the potential and promise of SLIM for a push in the future towards quantitative, label-free and high throughput diagnosis.

  2. Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings.

    PubMed

    Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B

    2018-04-06

    Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO 2 ) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.

  3. Nanoscale imaging of photocurrent enhancement by resonator array photovoltaic coatings

    NASA Astrophysics Data System (ADS)

    Ha, Dongheon; Yoon, Yohan; Zhitenev, Nikolai B.

    2018-04-01

    Nanoscale surface patterning commonly used to increase absorption of solar cells can adversely impact the open-circuit voltage due to increased surface area and recombination. Here, we demonstrate absorptivity and photocurrent enhancement using silicon dioxide (SiO2) nanosphere arrays on a gallium arsenide (GaAs) solar cell that do not require direct surface patterning. Due to the combined effects of thin-film interference and whispering gallery-like resonances within nanosphere arrays, there is more than 20% enhancement in both absorptivity and photocurrent. To determine the effect of the resonance coupling between nanospheres, we perform a scanning photocurrent microscopy based on a near-field scanning optical microscopy measurement and find a substantial local photocurrent enhancement. The nanosphere-based antireflection coating (ARC), made by the Meyer rod rolling technique, is a scalable and a room-temperature process; and, can replace the conventional thin-film-based ARCs requiring expensive high-temperature vacuum deposition.

  4. New approach for identifying the zero-order fringe in variable wavelength interferometry

    NASA Astrophysics Data System (ADS)

    Galas, Jacek; Litwin, Dariusz; Daszkiewicz, Marek

    2016-12-01

    The family of VAWI techniques (for transmitted and reflected light) is especially efficient for characterizing objects, when in the interference system the optical path difference exceeds a few wavelengths. The classical approach that consists in measuring the deflection of interference fringes fails because of strong edge effects. Broken continuity of interference fringes prevents from correct identification of the zero order fringe, which leads to significant errors. The family of these methods has been proposed originally by Professor Pluta in the 1980s but that time image processing facilities and computers were hardly available. Automated devices unfold a completely new approach to the classical measurement procedures. The Institute team has taken that new opportunity and transformed the technique into fully automated measurement devices offering commercial readiness of industry-grade quality. The method itself has been modified and new solutions and algorithms simultaneously have extended the field of application. This has concerned both construction aspects of the systems and software development in context of creating computerized instruments. The VAWI collection of instruments constitutes now the core of the Institute commercial offer. It is now practically applicable in industrial environment for measuring textile and optical fibers, strips of thin films, testing of wave plates and nonlinear affects in different materials. This paper describes new algorithms for identifying the zero order fringe, which increases the performance of the system as a whole and presents some examples of measurements of optical elements.

  5. EPR experiment and 2-photon interferometry: Report of a 2-photon interference experiment

    NASA Technical Reports Server (NTRS)

    Shih, Y. H.; Rubin, M. H.; Sergienko, A. V.

    1992-01-01

    After a very brief review of the historical Einstein, Podolsky, and Rosen (EPR) experiments, a new two-photon interference type EPR experiment is reported. A two-photon state was generated by optical parametric down conversion. Pairs of light quanta with degenerate frequency but divergent directions of propagation were sent to two independent Michelson interferometers. First and second order interference effectors were studied. Different than other reports, we observed that the second order interference visibility vanished when the optical path difference of the interferometers were much less than the coherence length of the pumping laser beam. However, we also observed that the second order interference behaved differently depending on whether the interferometers were set at equal or different optical path differences.

  6. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation

    PubMed Central

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-01-01

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity. PMID:26184201

  7. Fiber Optic Fabry-Perot Current Sensor Integrated with Magnetic Fluid Using a Fiber Bragg Grating Demodulation.

    PubMed

    Xia, Ji; Wang, Qi; Liu, Xu; Luo, Hong

    2015-07-09

    An optical fiber current sensor based on Fabry-Perot interferometer using a fiber Bragg grating demodulation is proposed. Magnetic fluid is used as a sensitive medium in fiber optical Fabry-Perot (F-P) cavity for the optical characteristic of magnetic-controlled refractive index. A Fiber Bragg grating (FBG) is connected after the F-P interferometer which is used to reflect the optical power at the Bragg wavelength of the interference transmission spectrum. The corresponding reflective power of the FBG will change with different external current intensity, due to the shift on the interference spectrum of the F-P interferometer. The sensing probe has the advantages of convenient measurement for its demodulation, low cost and high current measurement accuracy on account of its sensing structure. Experimental results show that an optimal sensitivity of 0.8522 nw/A and measurement resolution of 0.001 A is obtained with a FBG at 1550 nm with 99% reflectivity.

  8. Broadband Phase Retrieval for Image-Based Wavefront Sensing

    NASA Technical Reports Server (NTRS)

    Dean, Bruce H.

    2007-01-01

    A focus-diverse phase-retrieval algorithm has been shown to perform adequately for the purpose of image-based wavefront sensing when (1) broadband light (typically spanning the visible spectrum) is used in forming the images by use of an optical system under test and (2) the assumption of monochromaticity is applied to the broadband image data. Heretofore, it had been assumed that in order to obtain adequate performance, it is necessary to use narrowband or monochromatic light. Some background information, including definitions of terms and a brief description of pertinent aspects of image-based phase retrieval, is prerequisite to a meaningful summary of the present development. Phase retrieval is a general term used in optics to denote estimation of optical imperfections or aberrations of an optical system under test. The term image-based wavefront sensing refers to a general class of algorithms that recover optical phase information, and phase-retrieval algorithms constitute a subset of this class. In phase retrieval, one utilizes the measured response of the optical system under test to produce a phase estimate. The optical response of the system is defined as the image of a point-source object, which could be a star or a laboratory point source. The phase-retrieval problem is characterized as image-based in the sense that a charge-coupled-device camera, preferably of scientific imaging quality, is used to collect image data where the optical system would normally form an image. In a variant of phase retrieval, denoted phase-diverse phase retrieval [which can include focus-diverse phase retrieval (in which various defocus planes are used)], an additional known aberration (or an equivalent diversity function) is superimposed as an aid in estimating unknown aberrations by use of an image-based wavefront-sensing algorithm. Image-based phase-retrieval differs from such other wavefront-sensing methods, such as interferometry, shearing interferometry, curvature wavefront sensing, and Shack-Hartmann sensing, all of which entail disadvantages in comparison with image-based methods. The main disadvantages of these non-image based methods are complexity of test equipment and the need for a wavefront reference.

  9. Interference Mitigation Effects on Synthetic Aperture Radar Coherent Data Products

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musgrove, Cameron

    2014-05-01

    For synthetic aperture radar image products interference can degrade the quality of the images while techniques to mitigate the interference also reduce the image quality. Usually the radar system designer will try to balance the amount of mitigation for the amount of interference to optimize the image quality. This may work well for many situations, but coherent data products derived from the image products are more sensitive than the human eye to distortions caused by interference and mitigation of interference. This dissertation examines the e ect that interference and mitigation of interference has upon coherent data products. An improvement tomore » the standard notch mitigation is introduced, called the equalization notch. Other methods are suggested to mitigation interference while improving the quality of coherent data products over existing methods.« less

  10. Dual-scanning optical coherence elastography for rapid imaging of two tissue volumes (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Fang, Qi; Frewer, Luke; Wijesinghe, Philip; Hamzah, Juliana; Ganss, Ruth; Allen, Wes M.; Sampson, David D.; Curatolo, Andrea; Kennedy, Brendan F.

    2017-02-01

    In many applications of optical coherence elastography (OCE), it is necessary to rapidly acquire images in vivo, or within intraoperative timeframes, over fields-of-view far greater than can be achieved in one OCT image acquisition. For example, tumour margin assessment in breast cancer requires acquisition over linear dimensions of 4-5 centimetres in under 20 minutes. However, the majority of existing techniques are not compatible with these requirements, which may present a hurdle to the effective translation of OCE. To increase throughput, we have designed and developed an OCE system that simultaneously captures two 3D elastograms from opposite sides of a sample. The optical system comprises two interferometers: a common-path interferometer on one side of the sample and a dual-arm interferometer on the other side. This optical system is combined with scanning mechanisms and compression loading techniques to realize dual-scanning OCE. The optical signals scattered from two volumes are simultaneously detected on a single spectrometer by depth-encoding the interference signal from each interferometer. To demonstrate dual-scanning OCE, we performed measurements on tissue-mimicking phantoms containing rigid inclusions and freshly isolated samples of murine hepatocellular carcinoma, highlighting the use of this technique to visualise 3D tumour stiffness. These findings indicate that our technique holds promise for in vivo and intraoperative applications.

  11. Fabry-Perot enhanced Faraday rotation in graphene.

    PubMed

    Ubrig, Nicolas; Crassee, Iris; Levallois, Julien; Nedoliuk, Ievgeniia O; Fromm, Felix; Kaiser, Michl; Seyller, Thomas; Kuzmenko, Alexey B

    2013-10-21

    We demonstrate that giant Faraday rotation in graphene in the terahertz range due to the cyclotron resonance is further increased by constructive Fabry-Perot interference in the supporting substrate. Simultaneously, an enhanced total transmission is achieved, making this effect doubly advantageous for graphene-based magneto-optical applications. As an example, we present far-infrared spectra of epitaxial multilayer graphene grown on the C-face of 6H-SiC, where the interference fringes are spectrally resolved and a Faraday rotation up to 0.15 radians (9°) is attained. Further, we discuss and compare other ways to increase the Faraday rotation using the principle of an optical cavity.

  12. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system

    PubMed Central

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-01-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5×10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (∼650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1–2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1–2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms. PMID:18697559

  13. Three-dimensional fluorescence-enhanced optical tomography using a hand-held probe based imaging system.

    PubMed

    Ge, Jiajia; Zhu, Banghe; Regalado, Steven; Godavarty, Anuradha

    2008-07-01

    Hand-held based optical imaging systems are a recent development towards diagnostic imaging of breast cancer. To date, all the hand-held based optical imagers are used to perform only surface mapping and target localization, but are not capable of demonstrating tomographic imaging. Herein, a novel hand-held probe based optical imager is developed towards three-dimensional (3-D) optical tomography studies. The unique features of this optical imager, which primarily consists of a hand-held probe and an intensified charge coupled device detector, are its ability to; (i) image large tissue areas (5 x 10 sq. cm) in a single scan, (ii) perform simultaneous multiple point illumination and collection, thus reducing the overall imaging time; and (iii) adapt to varying tissue curvatures, from a flexible probe head design. Experimental studies are performed in the frequency domain on large slab phantoms (approximately 650 ml) using fluorescence target(s) under perfect uptake (1:0) contrast ratios, and varying target depths (1-2 cm) and X-Y locations. The effect of implementing simultaneous over sequential multiple point illumination towards 3-D tomography is experimentally demonstrated. The feasibility of 3-D optical tomography studies has been demonstrated for the first time using a hand-held based optical imager. Preliminary fluorescence-enhanced optical tomography studies are able to reconstruct 0.45 ml target(s) located at different target depths (1-2 cm). However, the depth recovery was limited as the actual target depth increased, since only reflectance measurements were acquired. Extensive tomography studies are currently carried out to determine the resolution and performance limits of the imager on flat and curved phantoms.

  14. Controlling quantum interference in phase space with amplitude.

    PubMed

    Xue, Yinghong; Li, Tingyu; Kasai, Katsuyuki; Okada-Shudo, Yoshiko; Watanabe, Masayoshi; Zhang, Yun

    2017-05-23

    We experimentally show a quantum interference in phase space by interrogating photon number probabilities (n = 2, 3, and 4) of a displaced squeezed state, which is generated by an optical parametric amplifier and whose displacement is controlled by amplitude of injected coherent light. It is found that the probabilities exhibit oscillations of interference effect depending upon the amplitude of the controlling light field. This phenomenon is attributed to quantum interference in phase space and indicates the capability of controlling quantum interference using amplitude. This remarkably contrasts with the oscillations of interference effects being usually controlled by relative phase in classical optics.

  15. OPTICAL PROCESSING OF INFORMATION: Potential applications of quasi-cw partially coherent radiation in optical data recording and processing

    NASA Astrophysics Data System (ADS)

    Volkov, L. V.; Larkin, A. I.

    1994-04-01

    Theoretical and experimental investigations are reported of the potential applications of quasi-cw partially coherent radiation in optical systems based on diffraction—interference principles. It is shown that the spectral characteristics of quasi-cw radiation influence the data-handling capabilities of a holographic correlator and of a partially coherent holographic system for data acquisition. Relevant experimental results are reported.

  16. Steganographic optical image encryption system based on reversible data hiding and double random phase encoding

    NASA Astrophysics Data System (ADS)

    Chuang, Cheng-Hung; Chen, Yen-Lin

    2013-02-01

    This study presents a steganographic optical image encryption system based on reversible data hiding and double random phase encoding (DRPE) techniques. Conventional optical image encryption systems can securely transmit valuable images using an encryption method for possible application in optical transmission systems. The steganographic optical image encryption system based on the DRPE technique has been investigated to hide secret data in encrypted images. However, the DRPE techniques vulnerable to attacks and many of the data hiding methods in the DRPE system can distort the decrypted images. The proposed system, based on reversible data hiding, uses a JBIG2 compression scheme to achieve lossless decrypted image quality and perform a prior encryption process. Thus, the DRPE technique enables a more secured optical encryption process. The proposed method extracts and compresses the bit planes of the original image using the lossless JBIG2 technique. The secret data are embedded in the remaining storage space. The RSA algorithm can cipher the compressed binary bits and secret data for advanced security. Experimental results show that the proposed system achieves a high data embedding capacity and lossless reconstruction of the original images.

  17. Plasmon-Assisted Selective and Super-Resolving Excitation of Individual Quantum Emitters on a Metal Nanowire.

    PubMed

    Li, Qiang; Pan, Deng; Wei, Hong; Xu, Hongxing

    2018-03-14

    Hybrid systems composed of multiple quantum emitters coupled with plasmonic waveguides are promising building blocks for future integrated quantum nanophotonic circuits. The techniques that can super-resolve and selectively excite contiguous quantum emitters in a diffraction-limited area are of great importance for studying the plasmon-mediated interaction between quantum emitters and manipulating the single plasmon generation and propagation in plasmonic circuits. Here we show that multiple quantum dots coupled with a silver nanowire can be controllably excited by tuning the interference field of surface plasmons on the nanowire. Because of the period of the interference pattern is much smaller than the diffraction limit, we demonstrate the selective excitation of two quantum dots separated by a distance as short as 100 nm. We also numerically demonstrate a new kind of super-resolution imaging method that combines the tunable surface plasmon interference pattern on the NW with the structured illumination microscopy technique. Our work provides a novel high-resolution optical excitation and imaging method for the coupled systems of multiple quantum emitters and plasmonic waveguides, which adds a new tool for studying and manipulating single quantum emitters and single plasmons for quantum plasmonic circuitry applications.

  18. Interference of conically scattered light in surface plasmon resonance.

    PubMed

    Webster, Aaron; Vollmer, Frank

    2013-02-01

    Surface plasmon polaritons on thin metal films are a well studied phenomena when excited using prism coupled geometries such as the Kretschmann attenuated total reflection configuration. Here we describe a novel interference pattern in the conically scattered light emanating from such a configuration when illuminated by a focused beam. We observe conditions indicating only self-interference of scattered surface plasmon polaritions without any contributions from specular reflection. The spatial evolution of this field is described in the context of Fourier optics and has applications in highly sensitive surface plasmon based biosensing.

  19. Digital Optical Circuit Technology.

    DTIC Science & Technology

    1985-03-01

    ordinateurs ct des syst~mcs de diffusion de donn’es qui soient I la fois numcriques, entierement optiques. tres rapides etI I’abri des interferences et des...F.A.Hopf SESSION 11 - OPTICAL LOGIC PROSPECTS FOR PARALLEL NONLINEAR OPTICAL SIGNAL PROCESSING USING GaAs ETALONS AND ZnS INTERFERENCE FILTERS by...talks 1, 8, and 9) interference filters for room-temperature parallel processing. If one imposes a maximum heat load of 100 W/cm 2 , consistent with

  20. PRECISE ANGLE MONITOR BASED ON THE CONCEPT OF PENCIL-BEAM INTERFEROMETRY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    QIAN,S.; TAKACS,P.

    2000-07-30

    The precise angle monitoring is a very important metrology task for research, development and industrial applications. Autocollimator is one of the most powerful and widely applied instruments for small angle monitoring, which is based on the principle of geometric optics. In this paper the authors introduce a new precise angle monitoring system, Pencil-beam Angle Monitor (PAM), base on pencil beam interferometry. Its principle of operation is a combination of physical and geometrical optics. The angle calculation method is similar to the autocollimator. However, the autocollimator creates a cross image but the precise pencil-beam angle monitoring system produces an interference fringemore » on the focal plane. The advantages of the PAM are: high angular sensitivity, long-term stability character making angle monitoring over long time periods possible, high measurement accuracy in the order of sub-microradian, simultaneous measurement ability in two perpendicular directions or on two different objects, dynamic measurement possibility, insensitive to the vibration and air turbulence, automatic display, storage and analysis by use of the computer, small beam diameter making the alignment extremely easy and longer test distance. Some test examples are presented.« less

  1. IQ imbalance tolerable parallel-channel DMT transmission for coherent optical OFDMA access network

    NASA Astrophysics Data System (ADS)

    Jung, Sang-Min; Mun, Kyoung-Hak; Jung, Sun-Young; Han, Sang-Kook

    2016-12-01

    Phase diversity of coherent optical communication provides spectrally efficient higher-order modulation for optical communications. However, in-phase/quadrature (IQ) imbalance in coherent optical communication degrades transmission performance by introducing unwanted signal distortions. In a coherent optical orthogonal frequency division multiple access (OFDMA) passive optical network (PON), IQ imbalance-induced signal distortions degrade transmission performance by interferences of mirror subcarriers, inter-symbol interference (ISI), and inter-channel interference (ICI). We propose parallel-channel discrete multitone (DMT) transmission to mitigate transceiver IQ imbalance-induced signal distortions in coherent orthogonal frequency division multiplexing (OFDM) transmissions. We experimentally demonstrate the effectiveness of parallel-channel DMT transmission compared with that of OFDM transmission in the presence of IQ imbalance.

  2. Advanced Wide-Field Interferometric Microscopy for Nanoparticle Sensing and Characterization

    NASA Astrophysics Data System (ADS)

    Avci, Oguzhan

    Nanoparticles have a key role in today's biotechnological research owing to the rapid advancement of nanotechnology. While metallic, polymer, and semiconductor based artificial nanoparticles are widely used as labels or targeted drug delivery agents, labeled and label-free detection of natural nanoparticles promise new ways for viral diagnostics and therapeutic applications. The increasing impact of nanoparticles in bio- and nano-technology necessitates the development of advanced tools for their accurate detection and characterization. Optical microscopy techniques have been an essential part of research for visualizing micron-scale particles. However, when it comes to the visualization of individual nano-scale particles, they have shown inadequate success due to the resolution and visibility limitations. Interferometric microscopy techniques have gained significant attention for providing means to overcome the nanoparticle visibility issue that is often the limiting factor in the imaging techniques based solely on the scattered light. In this dissertation, we develop a rigorous physical model to simulate the single nanoparticle optical response in a common-path wide-field interferometric microscopy (WIM) system. While the fundamental elements of the model can be used to analyze nanoparticle response in any generic wide-field imaging systems, we focus on imaging with a layered substrate (common-path interferometer) where specular reflection of illumination provides the reference light for interferometry. A robust physical model is quintessential in realizing the full potential of an optical system, and throughout this dissertation, we make use of it to benchmark our experimental findings, investigate the utility of various optical configurations, reconstruct weakly scattering nanoparticle images, as well as to characterize and discriminate interferometric nanoparticle responses. This study investigates the integration of advanced optical schemes in WIM with two main goals in mind: (i) increasing the visibility of low-index nanoscale particles via pupil function engineering, pushing the limit of sensitivity; (ii) improving the resolution of sub-diffraction-limited, low-index particle images in WIM via reconstruction strategies for shape and orientation information. We successfully demonstrate an overall ten-fold improvement in the visibility of the low-index sub-wavelength nanoparticles as well as up to two-fold extended spatial resolution of the interference-enhanced nanoparticle images. We also systematically examine the key factors that determine the signal in WIM. These factors include the particle type, size, layered substrate design, defocus and nanoparticle polarizability. We use the physical model to demonstrate how these factors determine the signal levels, and demonstrate how the layered substrate can be designed to optimize the overall signal, while defocus scan can be used to maximize it, as well as its signature can be utilized for particle discrimination purposes for both dielectric particles and resonant metallic particles. We introduce a machine learning based particle characterization algorithm that relies on supervised learning from model. The particle characterization is limited to discrimination based on nanosphere size and type in the scope of this dissertation.

  3. Application of the hydroxyl tagging velocimetry to direct-connect supersonic combustor experiment

    NASA Astrophysics Data System (ADS)

    Ye, Jingfeng; Li, Guohua; Shao, Jun; Hu, Zhiyun; Zhao, Xinyan; Song, WenYan

    2017-05-01

    For the purpose of measuring the flow velocity in a scramjet test model, an special designed measurement system was established, including the strong vibration suppression, optical transport consideration, the movable device etc. The interference of the strong vibration to the velocity measurements was avoided by two ICCD cameras capturing the reference tag lines image and moved tag lines image together during an experiment. According to the tag lines image feature, data processing including correlation algorithm, data fitting by a Gauss function were used respectively to extract the positions of the reference tag lines and the moved tag lines. The velocity measurements were carried out at the isolation section and the cavity section. The results showed that the well SNR could be achieved in the H2/air combustion heating flow, but in the kerosene fuel combustion flow, the measurements images might be interfered by the strong OH background from the chemical reaction, and the signal intensity could be reduced due to the tag laser attenuation through the absorption by kerosene vapor. But when the combustor model was run at a low chemical equivalent, the interference could be suppressed to an accepted level.

  4. Using flatbed scanners in the undergraduate optics laboratory—An example of frugal science

    NASA Astrophysics Data System (ADS)

    Koopman, Thomas; Gopal, Venkatesh

    2017-05-01

    We describe the use of a low-cost commercial flatbed scanner in the undergraduate teaching laboratory to image large (˜25 cm) interference and diffraction patterns in two dimensions. Such scanners usually have an 8-bit linear photosensor array that can scan large areas (˜28 cm × 22 cm) at very high spatial resolutions (≥100 Megapixels), which makes them versatile large-format imaging devices. We describe how the scanner can be used to image interference and diffraction from rectangular single-slit, double-slit, and circular apertures. The experiments are very simple to setup and require no specialized components besides a small laser and a flatbed scanner. Due to the presence of Automatic Gain Control in the scanner, which we were not able to override, we were unable to get an excellent fit to the data. Interestingly, we found that the less-than-ideal data were actually pedagogically superior as it forced the students to think about the process of data acquisition in much greater detail instead of simply performing the experiment mechanically.

  5. Nanowire humidity optical sensor system based on fast Fourier transform technique

    NASA Astrophysics Data System (ADS)

    Rota-Rodrigo, S.; Pérez-Herrera, R.; Lopez-Aldaba, A.; López Bautista, M. C.; Esteban, O.; López-Amo, M.

    2015-09-01

    In this paper, a new sensor system for relative humidity measurements based on its interaction with the evanescent field of a nanowire is presented. The interrogation of the sensing head is carried out by monitoring the fast Fourier transform phase variations of one of the nanowire interference frequencies. This method is independent of the signal amplitude and also avoids the necessity of tracking the wavelength evolution in the spectrum, which can be a handicap when there are multiple interference frequency components with different sensitivities. The sensor is operated within a wide humidity range (20%-70% relative humidity) with a maximum sensitivity achieved of 0.14rad/% relative humidity. Finally, due to the system uses an optical interrogator as unique active element, the system presents a cost-effective feature.

  6. piscope - A Python based software package for the analysis of volcanic SO2 emissions using UV SO2 cameras

    NASA Astrophysics Data System (ADS)

    Gliss, Jonas; Stebel, Kerstin; Kylling, Arve; Solvejg Dinger, Anna; Sihler, Holger; Sudbø, Aasmund

    2017-04-01

    UV SO2 cameras have become a common method for monitoring SO2 emission rates from volcanoes. Scattered solar UV radiation is measured in two wavelength windows, typically around 310 nm and 330 nm (distinct / weak SO2 absorption) using interference filters. The data analysis comprises the retrieval of plume background intensities (to calculate plume optical densities), the camera calibration (to convert optical densities into SO2 column densities) and the retrieval of gas velocities within the plume as well as the retrieval of plume distances. SO2 emission rates are then typically retrieved along a projected plume cross section, for instance a straight line perpendicular to the plume propagation direction. Today, for most of the required analysis steps, several alternatives exist due to ongoing developments and improvements related to the measurement technique. We present piscope, a cross platform, open source software toolbox for the analysis of UV SO2 camera data. The code is written in the Python programming language and emerged from the idea of a common analysis platform incorporating a selection of the most prevalent methods found in literature. piscope includes several routines for plume background retrievals, routines for cell and DOAS based camera calibration including two individual methods to identify the DOAS field of view (shape and position) within the camera images. Gas velocities can be retrieved either based on an optical flow analysis or using signal cross correlation. A correction for signal dilution (due to atmospheric scattering) can be performed based on topographic features in the images. The latter requires distance retrievals to the topographic features used for the correction. These distances can be retrieved automatically on a pixel base using intersections of individual pixel viewing directions with the local topography. The main features of piscope are presented based on dataset recorded at Mt. Etna, Italy in September 2015.

  7. Thin-film optical pass band filters based on new photo-lithographic process for CaSSIS FPA detector on Exomars TGO mission: development, integration, and test

    NASA Astrophysics Data System (ADS)

    Gambicorti, L.; Piazza, D.; Gerber, M.; Pommerol, A.; Roloff, V.; Ziethe, R.; Zimmermann, C.; Da Deppo, V.; Cremonese, G.; Ficai Veltroni, I.; Marinai, M.; Di Carmine, E.; Bauer, T.; Moebius, P.; Thomas, N.

    2016-08-01

    A new technique based on photolithographic processes of thin-film optical pass band coatings on a monolithic substrate has been applied to the filters of the Focal Plane Assembly (FPA) of the Colour and Stereo Surface Imaging System (CaSSIS) that will fly onboard of the ExoMars Trace Gas Orbiter to be launched in March 2016 by ESA. The FPA including is one of the spare components of the Simbio-Sys instrument of the Italian Space Agency (ASI) that will fly on ESA's Bepi Colombo mission to Mercury. The detector, developed by Raytheon Vision Systems, is a 2kx2k hybrid Si-PIN array with a 10 μm pixel. The detector is housed within a block and has filters deposited directly on the entrance window. The window is a 1 mm thick monolithic plate of fused silica. The Filter Strip Assembly (FSA) is produced by Optics Balzers Jena GmbH and integrated on the focal plane by Leonardo-Finmeccanica SpA (under TAS-I responsibility). It is based on dielectric multilayer interference coatings, 4 colour bands selected with average in-band transmission greater than 95 percent within wavelength range (400-1100 nm), giving multispectral images on the same detector and thus allows CaSSIS to operate in push-frame mode. The Field of View (FOV) of each colour band on the detector is surrounded by a mask of low reflective chromium (LRC), which also provides with the straylight suppression required (an out-of-band transmission of less than 10-5/nm). The mask has been shown to deal effectively with cross-talk from multiple reflections between the detector surface and the filter. This paper shows the manufacturing and optical properties of the FSA filters and the FPA preliminary on-ground calibration results.

  8. Correlative imaging across microscopy platforms using the fast and accurate relocation of microscopic experimental regions (FARMER) method

    NASA Astrophysics Data System (ADS)

    Huynh, Toan; Daddysman, Matthew K.; Bao, Ying; Selewa, Alan; Kuznetsov, Andrey; Philipson, Louis H.; Scherer, Norbert F.

    2017-05-01

    Imaging specific regions of interest (ROIs) of nanomaterials or biological samples with different imaging modalities (e.g., light and electron microscopy) or at subsequent time points (e.g., before and after off-microscope procedures) requires relocating the ROIs. Unfortunately, relocation is typically difficult and very time consuming to achieve. Previously developed techniques involve the fabrication of arrays of features, the procedures for which are complex, and the added features can interfere with imaging the ROIs. We report the Fast and Accurate Relocation of Microscopic Experimental Regions (FARMER) method, which only requires determining the coordinates of 3 (or more) conspicuous reference points (REFs) and employs an algorithm based on geometric operators to relocate ROIs in subsequent imaging sessions. The 3 REFs can be quickly added to various regions of a sample using simple tools (e.g., permanent markers or conductive pens) and do not interfere with the ROIs. The coordinates of the REFs and the ROIs are obtained in the first imaging session (on a particular microscope platform) using an accurate and precise encoded motorized stage. In subsequent imaging sessions, the FARMER algorithm finds the new coordinates of the ROIs (on the same or different platforms), using the coordinates of the manually located REFs and the previously recorded coordinates. FARMER is convenient, fast (3-15 min/session, at least 10-fold faster than manual searches), accurate (4.4 μm average error on a microscope with a 100x objective), and precise (almost all errors are <8 μm), even with deliberate rotating and tilting of the sample well beyond normal repositioning accuracy. We demonstrate this versatility by imaging and re-imaging a diverse set of samples and imaging methods: live mammalian cells at different time points; fixed bacterial cells on two microscopes with different imaging modalities; and nanostructures on optical and electron microscopes. FARMER can be readily adapted to any imaging system with an encoded motorized stage and can facilitate multi-session and multi-platform imaging experiments in biology, materials science, photonics, and nanoscience.

  9. Comparison between ray-tracing and physical optics for the computation of light absorption in capillaries--the influence of diffraction and interference.

    PubMed

    Qin, Yuan; Michalowski, Andreas; Weber, Rudolf; Yang, Sen; Graf, Thomas; Ni, Xiaowu

    2012-11-19

    Ray-tracing is the commonly used technique to calculate the absorption of light in laser deep-penetration welding or drilling. Since new lasers with high brilliance enable small capillaries with high aspect ratios, diffraction might become important. To examine the applicability of the ray-tracing method, we studied the total absorptance and the absorbed intensity of polarized beams in several capillary geometries. The ray-tracing results are compared with more sophisticated simulations based on physical optics. The comparison shows that the simple ray-tracing is applicable to calculate the total absorptance in triangular grooves and in conical capillaries but not in rectangular grooves. To calculate the distribution of the absorbed intensity ray-tracing fails due to the neglected interference, diffraction, and the effects of beam propagation in the capillaries with sub-wavelength diameter. If diffraction is avoided e.g. with beams smaller than the entrance pupil of the capillary or with very shallow capillaries, the distribution of the absorbed intensity calculated by ray-tracing corresponds to the local average of the interference pattern found by physical optics.

  10. Nondestructive and in situ determination of graphene layers using optical fiber Fabry-Perot interference

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Peng, Xiaobin; Liu, Qianwen; Gan, Xin; Lv, Ruitao; Fan, Shangchun

    2017-02-01

    Thickness measurement plays an important role for characterizing optomechanical behaviors of graphene. From the view of graphene-based Fabry-Perot (F-P) sensors, a simple, nondestructive and in situ method of determining the thickness of nanothick graphene membranes was demonstrated by using optical fiber F-P interference. Few-layer/multilayer graphene sheets were suspendedly adhered onto the endface of a ferrule with a 125 µm inner diameter by van der Waals interactions to construct micro F-P cavities. Along with the Fresnel’s law and complex index of refraction of the membrane working as a light reflector of an F-P interferometer, the optical reflectivity of graphene was modeled to investigate the effects of light wavelength and temperature. Then the average thickness of graphene membranes were extracted by F-P interference demodulation, and yielded a very strong cross-correlation coefficient of 99.95% with the experimental results observed by Raman spectrum and atomic force microscope. The method could be further extended for determining the number of layers of other 2D materials.

  11. A review of snapshot multidimensional optical imaging: measuring photon tags in parallel

    PubMed Central

    Gao, Liang; Wang, Lihong V.

    2015-01-01

    Multidimensional optical imaging has seen remarkable growth in the past decade. Rather than measuring only the two-dimensional spatial distribution of light, as in conventional photography, multidimensional optical imaging captures light in up to nine dimensions, providing unprecedented information about incident photons’ spatial coordinates, emittance angles, wavelength, time, and polarization. Multidimensional optical imaging can be accomplished either by scanning or parallel acquisition. Compared with scanning-based imagers, parallel acquisition—also dubbed snapshot imaging—has a prominent advantage in maximizing optical throughput, particularly when measuring a datacube of high dimensions. Here, we first categorize snapshot multidimensional imagers based on their acquisition and image reconstruction strategies, then highlight the snapshot advantage in the context of optical throughput, and finally we discuss their state-of-the-art implementations and applications. PMID:27134340

  12. Looped back fiber mode for reduction of false alarm in leak detection using distributed optical fiber sensor.

    PubMed

    Chelliah, Pandian; Murgesan, Kasinathan; Samvel, Sosamma; Chelamchala, Babu Rao; Tammana, Jayakumar; Nagarajan, Murali; Raj, Baldev

    2010-07-10

    Optical-fiber-based sensors have inherent advantages, such as immunity to electromagnetic interference, compared to the conventional sensors. Distributed optical fiber sensor (DOFS) systems, such as Raman and Brillouin distributed temperature sensors are used for leak detection. The inherent noise of fiber-based systems leads to occasional false alarms. In this paper, a methodology is proposed to overcome this. This uses a looped back fiber mode in DOFS and voting logic is employed to considerably reduce the false alarm rate.

  13. A novel design of optical CDMA system based on TCM and FFH

    NASA Astrophysics Data System (ADS)

    Fang, Jun-Bin; Xu, Zhi-Hai; Huang, Hong-bin; Zheng, Liming; Chen, Shun-er; Liu, Wei-ping

    2005-02-01

    For the application in Passive Optical Network (PON), a novel design of OCDMA system scheme is proposed in this paper. There are two key components included in this scheme: a new kind of OCDMA encoder/decoder system based on TCM and FFH and an improved Optical Line Terminal (OLT) receiving system with improved anti-interference performance by the use of Long Period Fiber Grating (LPFG). In the encoder/decoder system, Trellis Coded Modulation (TCM) encoder is applied in front of the FFH modulator. Original signal firstly is encoded through TCM encoder, and then the redundant code out of the TCM encoder will be mapped into one of the FFH modulation signal subsets for transmission. On the receiver (decoder) side, transmitting signal is demodulated through FFH and decoded by trellis decoder. Owing to the fact that high coding gain can be acquired by TCM without adding transmitting band and reducing transmitting speed, TCM is utilized to ameliorate bit error performance and reduce multi-user interference. In the OLT receiving system, EDFA and LPFG are placed in front of decoder to get excellent gain flatness on a large bandwidth, and Optical Hard Limiter (OHL) is also deployed to improve detection performance, through which the anti-interference performance of receiving system can be greatly enhanced. At the same time, some software is used to simulate the system performance for further analysis and authentication. The related work in this paper provides a valuable reference to the research.

  14. A multimodal imaging platform with integrated simultaneous photoacoustic microscopy, optical coherence tomography, optical Doppler tomography and fluorescence microscopy

    NASA Astrophysics Data System (ADS)

    Dadkhah, Arash; Zhou, Jun; Yeasmin, Nusrat; Jiao, Shuliang

    2018-02-01

    Various optical imaging modalities with different optical contrast mechanisms have been developed over the past years. Although most of these imaging techniques are being used in many biomedical applications and researches, integration of these techniques will allow researchers to reach the full potential of these technologies. Nevertheless, combining different imaging techniques is always challenging due to the difference in optical and hardware requirements for different imaging systems. Here, we developed a multimodal optical imaging system with the capability of providing comprehensive structural, functional and molecular information of living tissue in micrometer scale. This imaging system integrates photoacoustic microscopy (PAM), optical coherence tomography (OCT), optical Doppler tomography (ODT) and fluorescence microscopy in one platform. Optical-resolution PAM (OR-PAM) provides absorption-based imaging of biological tissues. Spectral domain OCT is able to provide structural information based on the scattering property of biological sample with no need for exogenous contrast agents. In addition, ODT is a functional extension of OCT with the capability of measurement and visualization of blood flow based on the Doppler effect. Fluorescence microscopy allows to reveal molecular information of biological tissue using autofluoresce or exogenous fluorophores. In-vivo as well as ex-vivo imaging studies demonstrated the capability of our multimodal imaging system to provide comprehensive microscopic information on biological tissues. Integrating all the aforementioned imaging modalities for simultaneous multimodal imaging has promising potential for preclinical research and clinical practice in the near future.

  15. Fiber-Optic Distribution Of Pulsed Power To Multiple Sensors

    NASA Technical Reports Server (NTRS)

    Kirkham, Harold

    1996-01-01

    Optoelectronic systems designed according to time-sharing scheme distribute optical power to multiple integrated-circuit-based sensors in fiber-optic networks. Networks combine flexibility of electronic sensing circuits with advantage of electrical isolation afforded by use of optical fibers instead of electrical conductors to transmit both signals and power. Fiber optics resist corrosion and immune to electromagnetic interference. Sensor networks of this type useful in variety of applications; for example, in monitoring strains in aircraft, buildings, and bridges, and in monitoring and controlling shapes of flexible structures.

  16. Diffractive-optical correlators: chances to make optical image preprocessing as intelligent as human vision

    NASA Astrophysics Data System (ADS)

    Lauinger, Norbert

    2004-10-01

    The human eye is a good model for the engineering of optical correlators. Three prominent intelligent functionalities in human vision could in the near future become realized by a new diffractive-optical hardware design of optical imaging sensors: (1) Illuminant-adaptive RGB-based color Vision, (2) Monocular 3D Vision based on RGB data processing, (3) Patchwise fourier-optical Object-Classification and Identification. The hardware design of the human eye has specific diffractive-optical elements (DOE's) in aperture and in image space and seems to execute the three jobs at -- or not far behind -- the loci of the images of objects.

  17. High temperature fiber sensor using the interference effect within a suspended core microstructured optical fiber

    NASA Astrophysics Data System (ADS)

    Nguyen, Linh V.; Warren-Smith, Stephen C.; Ebendorff-Heidepriem, Heike; Monro, Tanya M.

    2016-04-01

    We report a high temperature fiber sensor based on the multimode interference effect within a suspended core microstructured optical fiber (SCF). By splicing a short section of SCF with a lead-in single-mode fiber (SMF), the sensor head was formed. A complex interference pattern was obtained in the reflection spectrum as the result of the multiple excited modes in the SCF. The complexity of the interference indicates that there are more than two dominantly excited modes in the SCF, as resolved by Fast Fourier Transform (FFT) analysis of the interference. The proposed sensor was subjected to temperature variation from 20°C to 1100°C. The fringe of the filtered spectrum red-shifted linearly with respect to temperature varying between 20°C and 1100°C, with similar temperature sensitivity for increasing and decreasing temperature. Phase monitoring was used for an extended temperature experiment (80 hours) in which the sensor was subjected to several different temperature variation conditions namely (i) step-wise increase/decrease with 100°C steps between 20°C and 1100°C, (ii) dwelling overnight at 400°C, (iii) free fall from 1100°C to 132°C, and (iv) continuous increase of temperature from 132°C to 1100°C. Our approach serves as a simple and cost-effective alternative to the better-known high temperature fiber sensors such as the fiber Bragg grating (FBG) in sapphire fibers or regenerated FBG in photosensitive optical fibers.

  18. Refractive-index-sensing fiber comb using intracavity multi-mode interference fiber sensor

    NASA Astrophysics Data System (ADS)

    Oe, Ryo; Minamikawa, Takeo; Taue, Shuji; Fukano, Hideki; Nakajima, Yoshiaki; Minoshima, Kaoru; Yasui, Takeshi

    2018-02-01

    Refractive index measurement is important for evaluation of liquid materials, optical components, and bio sensing. One promising approach for such measurement is use of optical fiber sensors such as surface plasmonic resonance or multi-mode interference (MMI), which measure the change of optical spectrum resulting from the refractive index change. However, the precision of refractive index measurement is limited by the performance of optical spectrum analyzer. If such the refractive index measurement can be performed in radio frequency (RF) region in place of optical region, the measurement precision will be further improved by the frequency-standard-based RF measurement. To this end, we focus on the disturbance-to-RF conversion in a fiber optical frequency comb (OFC) cavity. Since frequency spacing frep of OFC depends on an optical cavity length nL, frep sensitively reflects the external disturbance interacted with nL. Although we previously demonstrated the precise strain measurement based on the frep measurement, the measurable physical quantity is limited to strain or temperature, which directly interacts with the fiber cavity itself. If a functional fiber sensor can be installed into the fiber OFC cavity, the measurable physical quantity will be largely expanded. In this paper, we introduce a MMI fiber sensor into a ring-type fiber OFC cavity for refractive index measurement. We confirmed the refractive-index-dependent frep shift.

  19. Interferometric angle monitor

    NASA Technical Reports Server (NTRS)

    Minott, P. O. (Inventor)

    1983-01-01

    Two mutually coherent light beams formed from a single monochromatic light source were directed to a reflecting surface of a rotatable object. They were reflected into an imaging optical lens having a focal plane optically at infinity. A series of interference fringes were formed in the focal plane which were translated linearly in response to angular rotation of the object. Photodetectors were located adjacent the focal plane to detect the fringe translation and output a signal in response to the translation. The signal was fed to a signal processor which was adapted to count the number of fringes detected and develop a measure of the angular rotation and direction of the object.

  20. A Retina-Like Dual Band Organic Photosensor Array for Filter-Free Near-Infrared-to-Memory Operations.

    PubMed

    Wang, Hanlin; Liu, Hongtao; Zhao, Qiang; Ni, Zhenjie; Zou, Ye; Yang, Jie; Wang, Lifeng; Sun, Yanqiu; Guo, Yunlong; Hu, Wenping; Liu, Yunqi

    2017-08-01

    Human eyes use retina photoreceptor cells to absorb and distinguish photons from different wavelengths to construct an image. Mimicry of such a process and extension of its spectral response into the near-infrared (NIR) is indispensable for night surveillance, retinal prosthetics, and medical imaging applications. Currently, NIR organic photosensors demand optical filters to reduce visible interference, thus making filter-free and anti-visible NIR imaging a challenging task. To solve this limitation, a filter-free and conformal, retina-inspired NIR organic photosensor is presented. Featuring an integration of photosensing and floating-gate memory modules, the device possesses an acute color distinguishing capability. In general, the retina-like photosensor transduces NIR (850 nm) into nonvolatile memory and acts as a dynamic photoswitch under green light (550 nm). In doing this, a filter-free but color-distinguishing photosensor is demonstrated that selectively converts NIR optical signals into nonvolatile memory. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Top