Arif, Amina; Rashid, Naeem; Aslam, Farheen; Mahmood, Nasir; Akhtar, Muhammad
2016-03-01
Human interferon α-2b and Escherichia coli methionine amino peptidase genes were cloned independently as well as bicistronically in expression plasmid pET-21a (+). Production of human interferon α-2b was comparable to that of E. coli methionine amino peptidase when these genes were expressed independently in E. coli BL21-CodonPlus (DE3)-RIL. However, human interferon α-2b was produced in a much less amount whereas there was no difference in the production of methionine amino peptidase when the encoding genes were expressed bicistronically. It is important to note that human interferon α-2b was the first gene in order, after the promoter and E. coli methionine amino peptidase was the next with a linker sequence of 27 nucleotides between them.
The Jak-STAT pathway stimulated by interferon alpha or interferon beta.
Horvath, Curt M
2004-11-23
Type I interferons, such as interferon alpha and interferon beta (IFN-alpha and beta), signal through a Janus kinase (Jak) to signal transduction and activator of transcription (STAT) pathway to stimulate gene expression. In response to ligand binding, the receptors dimerize, Jaks phosphorylate STAT1 and STAT2, which then dimerize and interact with a third transcriptional regulator IFN regulatory factor 9 (IRF9) to stimulate gene expression. IFN-alpha is the main innate antiviral cytokine and is essential for effective immune response to viral infection. The animation shows activation of STAT-responsive gene expression in response to type I IFNs.
Quakkelaar, Esther D.; Redeker, Anke; Haddad, Elias K.; Harari, Alexandre; McCaughey, Stella Mayo; Duhen, Thomas; Filali-Mouhim, Abdelali; Goulet, Jean-Philippe; Loof, Nikki M.; Ossendorp, Ferry; Perdiguero, Beatriz; Heinen, Paul; Gomez, Carmen E.; Kibler, Karen V.; Koelle, David M.; Sékaly, Rafick P.; Sallusto, Federica; Lanzavecchia, Antonio; Pantaleo, Giuseppe; Esteban, Mariano; Tartaglia, Jim; Jacobs, Bertram L.; Melief, Cornelis J. M.
2011-01-01
Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines. PMID:21347234
ALIZADEH, ASH A.; BOHEN, SEAN P.; LOSSOS, CHEN; MARTINEZ-CLIMENT, JOSE A.; RAMOS, JUAN CARLOS; CUBEDO-GIL, ELENA; HARRINGTON, WILLIAM J.; LOSSOS, IZIDORE S.
2014-01-01
Adult T-cell leukemia–lymphoma (ATLL) is an HTLV-1-associated lymphoproliferative malignancy that is frequently fatal. We compared gene expression profiles (GEPs) of leukemic specimens from nine patients with ATLL at the time of diagnosis and immediately after combination therapy with zidovudine (AZT) and interferon α (IFNα). GEPs were also related to genetic aberrations determined by comparative genomic hybridization. We identified several genes anomalously over-expressed in the ATLL leukemic cells at the mRNA level, including LYN, CSPG2, and LMO2, and confirmed LMO2 expression in ATLL cells at the protein level. In vivo AZT–IFNα therapy evoked a marked induction of interferon-induced genes accompanied by repression of cell-cycle regulated genes, including those encoding ribosomal proteins. Remarkably, patients not responding to AZT–IFNα differed most from responding patients in lower expression of these same IFN-responsive genes, as well as components of the antigen processing and presentation apparatus. Demonstration of specific gene expression signatures associated with response to AZT–IFNα therapy may provide novel insights into the mechanisms of action in ATLL. PMID:20370541
Sindarovska, Y R; Gerasymenko, I M; Sheludko, Y V; Olevinskaya, Z M; Spivak, N Y; Kuchuk, N V
2010-01-01
Human interferon alpha2b gene was transiently expressed in Nicotiana excelsior plants. Fusion with N. plumbaginifolia calreticulin signal peptide for improved apoplast targeting and carrying out the expression under optimized conditions resulted in maximal interferon activity of 3.2 x 10(3) IU/g fresh weight (FW) with an average of 2.1 +/- 0.8 x 10(3) IU/g FW. It proves that N. excelsior is a suitable host for Agrobacterium-mediated transient expression of genes encoding physiologically active human proteins. The transient expression conditions optimized for GFP marker protein were confirmed to be preferable for hIFN alpha2b.
Meta-Analysis Identifies NF-κB as a Therapeutic Target in Renal Cancer
Peri, Suraj; Devarajan, Karthik; Yang, Dong-Hua; Knudson, Alfred G.; Balachandran, Siddharth
2013-01-01
Objective To determine the expression patterns of NF-κB regulators and target genes in clear cell renal cell carcinoma (ccRCC), their correlation with von Hippel Lindau (VHL) mutational status, and their association with survival outcomes. Methods Meta-analyses were carried out on published ccRCC gene expression datasets by RankProd, a non-parametric statistical method. DEGs with a False Discovery Rate of < 0.05 by this method were considered significant, and intersected with a curated list of NF-κB regulators and targets to determine the nature and extent of NF-κB deregulation in ccRCC. Results A highly-disproportionate fraction (~40%; p < 0.001) of NF-κB regulators and target genes were found to be up-regulated in ccRCC, indicative of elevated NF-κB activity in this cancer. A subset of these genes, comprising a key NF-κB regulator (IKBKB) and established mediators of the NF-κB cell-survival and pro-inflammatory responses (MMP9, PSMB9, and SOD2), correlated with higher relative risk, poorer prognosis, and reduced overall patient survival. Surprisingly, levels of several interferon regulatory factors (IRFs) and interferon target genes were also elevated in ccRCC, indicating that an ‘interferon signature’ may represent a novel feature of this disease. Loss of VHL gene expression correlated strongly with the appearance of NF-κB- and interferon gene signatures in both familial and sporadic cases of ccRCC. As NF-κB controls expression of key interferon signaling nodes, our results suggest a causal link between VHL loss, elevated NF-κB activity, and the appearance of an interferon signature during ccRCC tumorigenesis. Conclusions These findings identify NF-κB and interferon signatures as clinical features of ccRCC, provide strong rationale for the incorporation of NF-κB inhibitors and/or and the exploitation of interferon signaling in the treatment of ccRCC, and supply new NF-κB targets for potential therapeutic intervention in this currently-incurable malignancy. PMID:24116146
Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Karen E.; Song, Byeongwoon; Knipe, David M.
2008-05-10
Host cells respond to viral infection by many mechanisms, including the production of type I interferons which act in a paracrine and autocrine manner to induce the expression of antiviral interferon-stimulated genes (ISGs). Viruses have evolved means to inhibit interferon signaling to avoid induction of the innate immune response. Herpes simplex virus 1 (HSV-1) has several mechanisms to inhibit type I interferon production, the activities of ISGs, and the interferon signaling pathway itself. We report that the inhibition of the Jak/STAT pathway by HSV-1 requires viral gene expression and that viral immediate-early protein ICP27 plays a role in downregulating STAT-1more » phosphorylation and in preventing the accumulation of STAT-1 in the nucleus. We also show that expression of ICP27 by transfection causes an inhibition of IFN-induced STAT-1 nuclear accumulation. Therefore, ICP27 is necessary and sufficient for at least some of the effects of HSV infection on STAT-1.« less
Janfeshan, Sahar; Yaghobi, Ramin; Eidi, Akram; Karimi, Mohammad Hossein; Geramizadeh, Bita; Malekhosseini, Seyed Ali; Kafilzadeh, Farshid
2017-12-01
Hepatitis B virus, which mainly affects normal liver function, leads to severe acute and chronic hepatitis, resulting in cirrhosis and hepatocellular carcinoma, but can be safely treated after liver transplant. Evaluation of determinative biomarkers may facilitate more effective treatment of posttransplant rejection. Therefore, we investigated interferon regulatory factor 1 expression in hepatitis B virus-infected liver transplant patients with and without previous rejection compared with controls. Hepatitis B virus-infected liver recipients were divided into those with (20 patients) and without a rejection (26 patients), confirmed by pathologic analyses in those who had a rejection. In addition, a healthy control group composed of 13 individuals was included. Expression levels of interferon regulatory factor 1 were evaluated during 3 follow-ups after transplant using an in-house comparative SYBR green real-time polymerase chain reaction method. Statistical analyses were performed with SPSS software (SPSS: An IBM Company, version 16.0, IBM Corporation, Armonk, NY, USA). Modifications of interferon regulatory factor 1 gene expression levels in patient groups with and without rejection were not significant between days 1, 4, and 7 after liver transplant. Interferon regulatory factor 1 mRNA expression levels were down-regulated in patients without rejection versus patients with rejection, although not significantly at day 1 (P = .234) and day 4 (P = .302) but significantly at day 7 (P = .004) after liver transplant. Down-regulation of interferon regulatory factor 1 gene expression in hepatitis B virus patients without rejection emphasized counteraction between hepatitis B virus replication and interferon regulatory factor 1 production. On the other hand, interferon regulatory factor 1 gene overexpression in patients with rejection may result in inflammatory reactions and ischemic-reperfusion injury. Therefore, a better understanding of the association between interferon regulatory factor 1 and hepatitis B virus pathogenesis in a larger population with longer follow-up is needed.
Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong
2015-01-01
Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5-20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.
Bowick, Gavin C; Airo, Adriana M; Bente, Dennis A
2012-06-19
Crimean Congo hemorrhagic fever (CCHF) is a tick-borne hemorrhagic zoonosis associated with high mortality. Pathogenesis studies and the development of vaccines and antivirals against CCHF have been severely hampered by the lack of suitable animal model. We recently developed and characterized a mature mouse model for CCHF using mice carrying STAT1 knockout (KO). Given the importance of interferons in controlling viral infections, we investigated the expression of interferon pathway-associated genes in KO and wild-type (WT) mice challenged with CCHF virus. We expected that the absence of the STAT1 protein would result in minimal expression of IFN-related genes. Surprisingly, the KO mice showed high levels of IFN-stimulated gene expression, beginning on day 2 post-infection, while in WT mice challenged with virus the same genes were expressed at similar levels on day 1. We conclude that CCHF virus induces similar type I IFN responses in STAT1 KO and WT mice, but the delayed response in the KO mice permits rapid viral dissemination and fatal illness.
Type I interferons modulate methotrexate resistance in gestational trophoblastic neoplasia.
Elias, Kevin M; Harvey, Richard A; Hasselblatt, Kathleen T; Seckl, Michael J; Berkowitz, Ross S
2017-06-01
Resistance to methotrexate is a leading clinical problem in gestational trophoblastic neoplasia (GTN), but there are limited laboratory models for this condition. We created isogenic trophoblastic cell lines resistant to methotrexate and compared these to the parent cell lines using gene expression microarrays and qRT-PCR followed by mechanistic studies using recombinant cytokines, pathway inhibitors, and patient sera. Gene expression microarrays and focused analysis by qRT-PCR revealed methotrexate led to type I interferon upregulation, in particular interferon alpha 2 (IFNA2), and methotrexate resistance was associated with chronic low level increases in type I interferon expression. Recombinant IFNA2 imparted chemosensitive choriocarcinoma cells with partial resistance to methotrexate, while chemoresistant choriocarcinoma cells were uniquely sensitive to fludarabine, a STAT1 inhibitor. In pre-treatment patient sera, IFNA2 levels correlated with subsequent resistance to methotrexate chemotherapy. Methotrexate resistance is influenced by type I interferon signaling with prognostic and therapeutic implications for treating women with GTN. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Younossi, Zobair M; Baranova, Ancha; Afendy, Arian; Collantes, Rochelle; Stepanova, Maria; Manyam, Ganiraju; Bakshi, Anita; Sigua, Christopher L; Chan, Joanne P; Iverson, Ayuko A; Santini, Christopher D; Chang, Sheng-Yung P
2009-03-01
Responsiveness to hepatitis C virus (HCV) therapy depends on viral and host factors. Our aim was to assess sustained virologic response (SVR)-associated early gene expression in patients with HCV receiving pegylated interferon-alpha2a (PEG-IFN-alpha2a) or PEG-IFN-alpha2b and ribavirin with the duration based on genotypes. Blood samples were collected into PAXgene tubes prior to treatment as well as 1, 7, 28, and 56 days after treatment. From the peripheral blood cells, total RNA was extracted, quantified, and used for one-step reverse transcription polymerase chain reaction to profile 154 messenger RNAs. Expression levels of messenger RNAs were normalized with six "housekeeping" genes and a reference RNA. Multiple regression and stepwise selection were performed to assess differences in gene expression at different time points, and predictive performance was evaluated for each model. A total of 68 patients were enrolled in the study and treated with combination therapy. The results of gene expression showed that SVR could be predicted by the gene expression of signal transducer and activator of transcription-6 (STAT-6) and suppressor of cytokine signaling-1 in the pretreatment samples. After 24 hours, SVR was predicted by the expression of interferon-dependent genes, and this dependence continued to be prominent throughout the treatment. Early gene expression during anti-HCV therapy may elucidate important molecular pathways that may be influencing the probability of achieving virologic response.
Expression of biologically active human interferon alpha 2 in aloe vera
USDA-ARS?s Scientific Manuscript database
We have developed a system for transgenic expression of proteins in Aloe Vera. Using this approach we have generated plants expressing the human gene interferon alpha 2, IFNa2. IFNa2 is a small secreted cytokine that plays a vital role in regulating the body’s immune response to viral infections a...
Perot, Brieuc P; Boussier, Jeremy; Yatim, Nader; Rossman, Jeremy S; Ingersoll, Molly A; Albert, Matthew L
2018-05-10
Influenza A virus (IAV) infection perturbs metabolic pathways such as autophagy, a stress-induced catabolic pathway that crosstalks with cellular inflammatory responses. However, the impact of autophagy perturbation on IAV gene expression or host cell responses remains disputed. Discrepant results may be a reflection of in vivo studies using cell-specific autophagy-related (Atg) gene-deficient mouse strains, which do not delineate modification of developmental programmes from more proximal effects on inflammatory response. In vitro experiments can be confounded by gene expression divergence in wild-type cultivated cell lines, as compared to those experiencing long-term absence of autophagy. With the goal to investigate cellular processes within cells that are competent or incompetent for autophagy, we generated a novel experimental cell line in which autophagy can be restored by ATG5 protein stabilization in an otherwise Atg5-deficient background. We confirmed that IAV induced autophagosome formation and p62 accumulation in infected cells and demonstrated that perturbation of autophagy did not impact viral infection or replication in ATG5-stablized cells. Notably, the induction of interferon-stimulated genes (ISGs) by IAV was diminished when cells were autophagy competent. We further demonstrated that, in the absence of ATG5, IAV-induced interferon-β (IFN-β) expression was increased as compared to levels in autophagy-competent lines, a mechanism that was independent of IAV non-structural protein 1. In sum, we report that induction of autophagy by IAV infection reduces ISG expression in infected cells by limiting IFN-β expression, which may benefit viral replication and spread.
Nogueira, Marcelle Almeida de Sousa; Gavioli, Camila Fátima Biancardi; Pereira, Nátalli Zanete; de Carvalho, Gabriel Costa; Domingues, Rosana; Aoki, Valéria; Sato, Maria Notomi
2015-04-01
Lichen planus (LP) is a common inflammatory skin disease of unknown etiology. Reports of a common transactivation of quiescent human endogenous retroviruses (HERVs) support the connection of viruses to the disease. HERVs are ancient retroviral sequences in the human genome and their transcription is often deregulated in cancer and autoimmune diseases. We explored the transcriptional activity of HERV sequences as well as the antiviral restriction factor and interferon-inducible genes in the skin from LP patients and healthy control (HC) donors. The study included 13 skin biopsies from patients with LP and 12 controls. Real-time PCR assay identified significant decrease in the HERV-K gag and env mRNA expression levels in LP subjects, when compared to control group. The expressions of HERV-K18 and HERV-W env were also inhibited in the skin of LP patients. We observed a strong correlation between HERV-K gag with other HERV sequences, regardless the down-modulation of transcripts levels in LP group. In contrast, a significant up-regulation of the cytidine deaminase APOBEC 3G (apolipoprotein B mRNA-editing), and the GTPase MxA (Myxovirus resistance A) mRNA expression level was identified in the LP skin specimens. Other transcript expressions, such as the master regulator of type I interferon-dependent immune responses, STING (stimulator of interferon genes) and IRF-7 (interferon regulatory factor 7), IFN-β and the inflammassome NALP3, had increased levels in LP, when compared to HC group. Our study suggests that interferon-inducible factors, in addition to their role in innate immunity against exogenous pathogens, contribute to the immune control of HERVs. Evaluation of the balance between HERV and interferon-inducible factor expression could possibly contribute to surveillance of inflammatory/malignant status of skin diseases.
Dron, M; Modjtahedi, N; Brison, O; Tovey, M G
1986-05-01
Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells.
Diegelmann, Julia; Beigel, Florian; Zitzmann, Kathrin; Kaul, Artur; Göke, Burkhard; Auernhammer, Christoph J.; Bartenschlager, Ralf; Diepolder, Helmut M.; Brand, Stephan
2010-01-01
Background Specific differences in signaling and antiviral properties between the different Lambda-interferons, a novel group of interferons composed of IL-28A, IL-28B and IL-29, are currently unknown. This is the first study comparatively investigating the transcriptome and the antiviral properties of the Lambda-interferons IL-28A and IL-29. Methodology/Principal Findings Expression studies were performed by microarray analysis, quantitative PCR (qPCR), reporter gene assays and immunoluminometric assays. Signaling was analyzed by Western blot. HCV replication was measured in Huh-7 cells expressing subgenomic HCV replicon. All hepatic cell lines investigated as well as primary hepatocytes expressed both IFN-λ receptor subunits IL-10R2 and IFN-λR1. Both, IL-28A and IL-29 activated STAT1 signaling. As revealed by microarray analysis, similar genes were induced by both cytokines in Huh-7 cells (IL-28A: 117 genes; IL-29: 111 genes), many of them playing a role in antiviral immunity. However, only IL-28A was able to significantly down-regulate gene expression (n = 272 down-regulated genes). Both cytokines significantly decreased HCV replication in Huh-7 cells. In comparison to liver biopsies of patients with non-viral liver disease, liver biopsies of patients with HCV showed significantly increased mRNA expression of IL-28A and IL-29. Moreover, IL-28A serum protein levels were elevated in HCV patients. In a murine model of viral hepatitis, IL-28 expression was significantly increased. Conclusions/Significance IL-28A and IL-29 are up-regulated in HCV patients and are similarly effective in inducing antiviral genes and inhibiting HCV replication. In contrast to IL-29, IL-28A is a potent gene repressor. Both IFN-λs may have therapeutic potential in the treatment of chronic HCV. PMID:21170333
No Love Lost Between Viruses and Interferons.
Fensterl, Volker; Chattopadhyay, Saurabh; Sen, Ganes C
2015-11-01
The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent.
Dron, M; Modjtahedi, N; Brison, O; Tovey, M G
1986-01-01
Treatment of interferon-sensitive Daudi cell with electrophoretically pure human interferon alpha markedly reduced the level of c-myc mRNA, increased the level of class I histocompatibility antigen (HLA) mRNA, and did not affect the level of actin mRNA within the same cells. In contrast, the level of c-myc mRNA or HLA mRNA did not change significantly following interferon treatment in different clones of Daudi cells selected for resistance to the antiproliferative action of interferon. These cells possessed interferon receptors, however, and responded to interferon modulation of other genes, including 2',5' oligoisoadenylate synthetase (M. G. Tovey, M. Dron, K. E. Mogensen, B. Lebleu, N. Metchi, and J. Begon-Lours, Guymarho, J. Gen. Virol., 64:2649-2653, 1983; M. Dron, M. G. Tovey, and P. Eid, J. Gen. Virol., 66:787-795, 1985). A clone of interferon-resistant Daudi cells which had reverted to almost complete sensitivity to both the antiproliferative action of interferon and the interferon-enhanced expression of HLA mRNA remained refractory, however, to interferon modulation of c-myc expression, suggesting that a reduced level of c-myc mRNA may not be a prerequisite for inhibition of cell proliferation in interferon-treated cells. Our results do not exclude the possibility, however, that posttranscriptional modification(s) of c-myc expression may precede an inhibition of cell proliferation in interferon-treated cells. Images PMID:3785169
Tsai, Wei-Jern; Chang, Chu-Ting; Wang, Guei-Jane; Lee, Tzong-Huei; Chang, Shwu-Fen; Lu, Shao-Chun; Kuo, Yuh-Chi
2011-03-25
Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT.
Tsuji, Petra A.; Carlson, Bradley A.; Anderson, Christine B.; Seifried, Harold E.; Hatfield, Dolph L.; Howard, Michael T.
2015-01-01
Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake. PMID:26258789
Who Defends the Stem Cell's Citadel?
Strick-Marchand, Hélène; Durantel, David
2018-03-01
Recently in Cell, Wu et al. (2018) demonstrated that intrinsic expression of a subset of interferon stimulated genes confers resistance to viral infections in stem cells both in vitro and in vivo, while differentiated cells lose this intrinsic gatekeeper expression pattern in favor of inducible interferon responses. Copyright © 2018 Elsevier Inc. All rights reserved.
Mind-controlled transgene expression by a wireless-powered optogenetic designer cell implant.
Folcher, Marc; Oesterle, Sabine; Zwicky, Katharina; Thekkottil, Thushara; Heymoz, Julie; Hohmann, Muriel; Christen, Matthias; Daoud El-Baba, Marie; Buchmann, Peter; Fussenegger, Martin
2014-11-11
Synthetic devices for traceless remote control of gene expression may provide new treatment opportunities in future gene- and cell-based therapies. Here we report the design of a synthetic mind-controlled gene switch that enables human brain activities and mental states to wirelessly programme the transgene expression in human cells. An electroencephalography (EEG)-based brain-computer interface (BCI) processing mental state-specific brain waves programs an inductively linked wireless-powered optogenetic implant containing designer cells engineered for near-infrared (NIR) light-adjustable expression of the human glycoprotein SEAP (secreted alkaline phosphatase). The synthetic optogenetic signalling pathway interfacing the BCI with target gene expression consists of an engineered NIR light-activated bacterial diguanylate cyclase (DGCL) producing the orthogonal second messenger cyclic diguanosine monophosphate (c-di-GMP), which triggers the stimulator of interferon genes (STING)-dependent induction of synthetic interferon-β promoters. Humans generating different mental states (biofeedback control, concentration, meditation) can differentially control SEAP production of the designer cells in culture and of subcutaneous wireless-powered optogenetic implants in mice.
The POU Transcription Factor Oct-1 Represses Virus-Induced Interferon A Gene Expression
Mesplède, Thibault; Island, Marie-Laure; Christeff, Nicolas; Petek, Fahrettin; Doly, Janine; Navarro, Sébastien
2005-01-01
Alpha interferon (IFN-α) and IFN-β are able to interfere with viral infection. They exert a vast array of biologic functions, including growth arrest, cell differentiation, and immune system regulation. This regulation extends from innate immunity to cellular and humoral adaptive immune responses. A strict control of expression is needed to prevent detrimental effects of unregulated IFN. Multiple IFN-A subtypes are coordinately induced in human and mouse cells infected by virus and exhibit differences in expression of their individual mRNAs. We demonstrated that the weakly expressed IFN-A11 gene is negatively regulated after viral infection, due to a distal negative regulatory element, binding homeoprotein pituitary homeobox 1 (Pitx1). Here we show that the POU protein Oct-1 binds in vitro and in vivo to the IFN-A11 promoter and represses IFN-A expression upon interferon regulatory factor overexpression. Furthermore, we show that Oct-1-deficient MEFs exhibit increased in vivo IFN-A gene expression and increased antiviral activity. Finally, the IFN-A expression pattern is modified in Oct-1-deficient MEFs. The broad representation of effective and potent octamer-like sequences within IFN-A promoters suggests an important role for Oct-1 in IFN-A regulation. PMID:16166650
Wu, Chengjiang; Zhao, Yangjing; Lin, Yu; Yang, Xinxin; Yan, Meina; Min, Yujiao; Pan, Zihui; Xia, Sheng; Shao, Qixiang
2018-01-01
DNA microarray and high-throughput sequencing have been widely used to identify the differentially expressed genes (DEGs) in systemic lupus erythematosus (SLE). However, the big data from gene microarrays are also challenging to work with in terms of analysis and processing. The presents study combined data from the microarray expression profile (GSE65391) and bioinformatics analysis to identify the key genes and cellular pathways in SLE. Gene ontology (GO) and cellular pathway enrichment analyses of DEGs were performed to investigate significantly enriched pathways. A protein-protein interaction network was constructed to determine the key genes in the occurrence and development of SLE. A total of 310 DEGs were identified in SLE, including 193 upregulated genes and 117 downregulated genes. GO analysis revealed that the most significant biological process of DEGs was immune system process. Kyoto Encyclopedia of Genes and Genome pathway analysis showed that these DEGs were enriched in signaling pathways associated with the immune system, including the RIG-I-like receptor signaling pathway, intestinal immune network for IgA production, antigen processing and presentation and the toll-like receptor signaling pathway. The current study screened the top 10 genes with higher degrees as hub genes, which included 2′-5′-oligoadenylate synthetase 1, MX dynamin like GTPase 2, interferon induced protein with tetratricopeptide repeats 1, interferon regulatory factor 7, interferon induced with helicase C domain 1, signal transducer and activator of transcription 1, ISG15 ubiquitin-like modifier, DExD/H-box helicase 58, interferon induced protein with tetratricopeptide repeats 3 and 2′-5′-oligoadenylate synthetase 2. Module analysis revealed that these hub genes were also involved in the RIG-I-like receptor signaling, cytosolic DNA-sensing, toll-like receptor signaling and ribosome biogenesis pathways. In addition, these hub genes, from different probe sets, exhibited significant co-expressed tendency in multi-experiment microarray datasets (P<0.01). In conclusion, these key genes and cellular pathways may improve the current understanding of the underlying mechanism of development of SLE. These key genes may be potential biomarkers of diagnosis, therapy and prognosis for SLE. PMID:29257335
Reynier, Frédéric; Petit, Fabien; Paye, Malick; Turrel-Davin, Fanny; Imbert, Pierre-Emmanuel; Hot, Arnaud; Mougin, Bruno; Miossec, Pierre
2011-01-01
The analysis of gene expression data shows that many genes display similarity in their expression profiles suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a correlation-based research method to stratify individuals. Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF treatment identified changes in type I IFN gene activity induced in RA patients. In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a biological function showing that the activation levels of a biological signature could be characterized by its overall state of correlation.
Syal, Kirtimaan; Srinivasan, Anand; Banerjee, Dibyajyoti
2015-07-01
Diabetes and tuberculosis are world's most deadly epidemics. People suffering from diabetes are susceptible to tuberculosis. Molecular link between the two is largely unknown. It is known that Vitamin A receptor (RXR) heterodimerizes with Vitamin D receptor (VDR) and Peroxisome proliferator-activator receptor-γ (PPARγ) to regulate Tryptophan-aspartate containing coat protein (TACO) expression and fatty acid metabolism respectively, so it would be interesting to check the expression of these genes in diabetes mellitus (DM) patients which might explain the susceptibility of diabetics to tuberculosis. In this study, we checked the expression of RXR, VDR, TACO and Interferon-γ (IFNγ) genes in type-2 DM patients for understanding the link between the two diseases. We observed down regulation of RXR gene and corresponding up regulation of TACO gene expression. We have not observed significant change in expression of VDR and IFNγ genes in type-2 DM patients. Repression of RXR gene could hamper VDR-RXR heterodimer formation and thus would up regulate TACO gene expression which may predispose the type-2 DM patients to tuberculosis. Also, decrease in RXR-PPARγ heterodimer could be involved in DM.
2011-01-01
Background Arctium lappa (Niubang), a Chinese herbal medicine, is used to treat tissue inflammation. This study investigates the effects of arctigenin (AC), isolated from A. lappa, on anti-CD3/CD28 Ab-stimulated cell proliferation and cytokine gene expression in primary human T lymphocytes. Methods Cell proliferation was determined with enzyme immunoassays and the tritiated thymidine uptake method. Cytokine production and gene expression were analyzed with reverse transcription-polymerase chain reaction. Results AC inhibited primary human T lymphocytes proliferation activated by anti-CD3/CD28 Ab. Cell viability test indicated that the inhibitory effects of AC on primary human T lymphocyte proliferation were not due to direct cytotoxicity. AC suppressed interleukin-2 (IL-2) and interferon-γ (IFN-γ) production in a concentration-dependent manner. Furthermore, AC decreased the IL-2 and IFN-γ gene expression in primary human T lymphocytes induced by anti-CD3/CD28 Ab. Reporter gene analyses revealed that AC decreased NF-AT-mediated reporter gene expression. Conclusion AC inhibited T lymphocyte proliferation and decreased the gene expression of IL-2, IFN-γ and NF-AT. PMID:21435270
Giotis, Efstathios S; Robey, Rebecca C; Skinner, Natalie G; Tomlinson, Christopher D; Goodbourn, Stephen; Skinner, Michael A
2016-08-05
Viruses that infect birds pose major threats-to the global supply of chicken, the major, universally-acceptable meat, and as zoonotic agents (e.g. avian influenza viruses H5N1 and H7N9). Controlling these viruses in birds as well as understanding their emergence into, and transmission amongst, humans will require considerable ingenuity and understanding of how different species defend themselves. The type I interferon-coordinated response constitutes the major antiviral innate defence. Although interferon was discovered in chicken cells, details of the response, particularly the identity of hundreds of stimulated genes, are far better described in mammals. Viruses induce interferon-stimulated genes but they also regulate the expression of many hundreds of cellular metabolic and structural genes to facilitate their replication. This study focusses on the potentially anti-viral genes by identifying those induced just by interferon in primary chick embryo fibroblasts. Three transcriptomic technologies were exploited: RNA-seq, a classical 3'-biased chicken microarray and a high density, "sense target", whole transcriptome chicken microarray, with each recognising 120-150 regulated genes (curated for duplication and incorrect assignment of some microarray probesets). Overall, the results are considered robust because 128 of the compiled, curated list of 193 regulated genes were detected by two, or more, of the technologies.
Kim, Kyung-Hee; Yang, In Jung; Kim, Woo-Jin; Park, Choul-Ji; Park, Jong-Won; Noh, Gyeong Eon; Lee, Seunghyung; Lee, Young Mee; Hwang, Hyung Kyu; Kim, Hyun Chul
2017-12-01
Interferon-stimulated gene 15 (ISG15) is known to interfere with viral replication and infection by limiting the viral infection of cells. Interferon-stimulated gene 15 (ISG15) interferes with viral replication and infectivity by limiting viral infection in cells. It also plays an important role in the immune response. In this study, tissue-specific expression of ISG15 in healthy rock bream samples and spatial and temporal expression analysis of rock bream ISG15 (RbISG15) were performed following rock bream iridovirus (RSIV) infection. RbISG15 expression was significantly higher in the eye, gill, intestine, kidney, liver, muscle, spleen, and stomach, but low in the brain. There were particularly high levels of expression in the liver and muscle. RbISG15 expression was also examined in several tissues and at various times following RSIV infection. ISG15 expression increased within 3 h in the whole body and decreased at 24 h after infection. In addition, temporal expression of several tissues following RSIV infection showed a similar pattern in the muscle, kidney, and spleen, increasing at 3 h and decreasing at 72 h. These results suggest that ISG15 plays an important role in the immune response of rock bream. Overall, this study characterizes the response of RbISG15 following RSIV infection.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.
Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adultmore » lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced following infection of both fetal and adult cells and many of the genes upregulated in both cell types were those involved in establishment of an antiviral state; this is the first demonstration of an interferon response at this early stage of human embryonic development. In both fetal and adult cells, interferon controlled but did not eliminate virus spread and apoptosis was not induced in infected fetal cells in the absence of interferon. In addition to the interferon response, chemokines were induced in both infected fetal and adult cells. Thus, it is possible that fetal damage following congenital RUB infection, which involves cell proliferation and differentiation, could be due to induction of the innate immune response as well as frank virus infection.« less
How Does Vaccinia Virus Interfere With Interferon?
Smith, Geoffrey L; Talbot-Cooper, Callum; Lu, Yongxu
2018-01-01
Interferons (IFNs) are secreted glycoproteins that are produced by cells in response to virus infection and other stimuli and induce an antiviral state in cells bearing IFN receptors. In this way, IFNs restrict virus replication and spread before an adaptive immune response is developed. Viruses are very sensitive to the effects of IFNs and consequently have evolved many strategies to interfere with interferon. This is particularly well illustrated by poxviruses, which have large dsDNA genomes and encode hundreds of proteins. Vaccinia virus is the prototypic poxvirus and expresses many proteins that interfere with IFN and are considered in this review. These proteins act either inside or outside the cell and within the cytoplasm or nucleus. They function by restricting the production of IFN by blocking the signaling pathways leading to transcription of IFN genes, stopping IFNs binding to their receptors, blocking IFN-induced signal transduction leading to expression of interferon-stimulated genes (ISGs), or inhibiting the antiviral activity of ISG products. © 2018 Elsevier Inc. All rights reserved.
Interferon-γ Inhibits Ebola Virus Infection.
Rhein, Bethany A; Powers, Linda S; Rogers, Kai; Anantpadma, Manu; Singh, Brajesh K; Sakurai, Yasuteru; Bair, Thomas; Miller-Hunt, Catherine; Sinn, Patrick; Davey, Robert A; Monick, Martha M; Maury, Wendy
2015-01-01
Ebola virus outbreaks, such as the 2014 Makona epidemic in West Africa, are episodic and deadly. Filovirus antivirals are currently not clinically available. Our findings suggest interferon gamma, an FDA-approved drug, may serve as a novel and effective prophylactic or treatment option. Using mouse-adapted Ebola virus, we found that murine interferon gamma administered 24 hours before or after infection robustly protects lethally-challenged mice and reduces morbidity and serum viral titers. Furthermore, we demonstrated that interferon gamma profoundly inhibits Ebola virus infection of macrophages, an early cellular target of infection. As early as six hours following in vitro infection, Ebola virus RNA levels in interferon gamma-treated macrophages were lower than in infected, untreated cells. Addition of the protein synthesis inhibitor, cycloheximide, to interferon gamma-treated macrophages did not further reduce viral RNA levels, suggesting that interferon gamma blocks life cycle events that require protein synthesis such as virus replication. Microarray studies with interferon gamma-treated human macrophages identified more than 160 interferon-stimulated genes. Ectopic expression of a select group of these genes inhibited Ebola virus infection. These studies provide new potential avenues for antiviral targeting as these genes that have not previously appreciated to inhibit negative strand RNA viruses and specifically Ebola virus infection. As treatment of interferon gamma robustly protects mice from lethal Ebola virus infection, we propose that interferon gamma should be further evaluated for its efficacy as a prophylactic and/or therapeutic strategy against filoviruses. Use of this FDA-approved drug could rapidly be deployed during future outbreaks.
Estradiol targets T cell signaling pathways in human systemic lupus.
Walters, Emily; Rider, Virginia; Abdou, Nabih I; Greenwell, Cindy; Svojanovsky, Stan; Smith, Peter; Kimler, Bruce F
2009-12-01
The major risk factor for developing systemic lupus erythematosus (SLE) is being female. The present study utilized gene profiles of activated T cells from females with SLE and healthy controls to identify signaling pathways uniquely regulated by estradiol that could contribute to SLE pathogenesis. Selected downstream pathway genes (+/- estradiol) were measured by real time polymerase chain amplification. Estradiol uniquely upregulated six pathways in SLE T cells that control T cell function including interferon-alpha signaling. Measurement of interferon-alpha pathway target gene expression revealed significant differences (p= 0.043) in DRIP150 (+/- estradiol) in SLE T cell samples while IFIT1 expression was bimodal and correlated moderately (r= 0.55) with disease activity. The results indicate that estradiol alters signaling pathways in activated SLE T cells that control T cell function. Differential expression of transcriptional coactivators could influence estrogen-dependent gene regulation in T cell signaling and contribute to SLE onset and disease pathogenesis.
Mulero, Patricia; Almansa, Raquel; Neri, María José; Bermejo-Martin, Jesús Francisco; Archanco, Miguel; Arenillas, Juan Francisco; Téllez, Nieves
2015-03-15
Mechanisms underlying multiple sclerosis (MS) fatigue and the causes of the beneficial effect of exercise on this symptom are not clarified. Our aim was to evaluate gene expression profiles in MS patients who improved their fatigue status after an exercise program and to compare them with healthy controls (HC). Gene expression in whole blood was profiled at baseline in 7 HC and also in 7 fatigued-MS patients. Patients underwent an exercise program for 6 months, and their fatigue status and gene expression profiles were again analyzed. MS patients showed a significant activation of genes participating in the systemic interferon response in comparison with HC that disappeared at the end of the program. Our results provide a biological basis for the observed benefit of exercise in MS. Copyright © 2015 Elsevier B.V. All rights reserved.
Leung, Donald YM; Gao, Pei-Song; Grigoryev, Dmitry N; Rafaels, Nicholas M; Streib, Joanne E; Howell, Michael D; Taylor, Patricia A; Boguniewicz, Mark; Canniff, Jennifer; Armstrong, Brian; Zaccaro, Daniel J; Schneider, Lynda C; Hata, Tissa R; Hanifin, Jon M; Beck, Lisa A; Weinberg, Adriana; Barnes, Kathleen C
2011-01-01
Background The basis for increased susceptibility of atopic dermatitis (AD) patients to develop disseminated viral skin infections such as eczema herpeticum (ADEH+) is poorly understood. Objective We sought to determine whether atopic dermatitis subjects prone to disseminated viral skin infections have defects in their interferon responses. Methods GeneChip profiling was used to identify differences in gene expression of peripheral blood mononuclear cells (PBMC) from patients with a history of ADEH+ as compared to ADEH− and non-atopic controls. Key differences in protein expression were verified by ELISPOT and/or ELISA. Clinical relevance was further demonstrated by a mouse model of disseminated viral skin infection and genetic association analysis for genetic variants in IFNG and IFNGR1 and ADEH among 435 cases and controls. Results We demonstrate by global gene expression analysis selective transcriptomic changes within the interferon (IFN) superfamily of PBMCs from ADEH+ subjects reflecting low IFNγ and IFNγ receptor gene expression. IFNγ protein production was also significantly lower in ADEH+ (N=24) compared to ADEH− (N=20) and non-atopic (NA; N=20) controls. IFNγ receptor knockout (KO) mice developed disseminated viral skin infection after epicutaneous challenge with vaccinia virus (VV). Genetic variants in IFNG and IFNGR1 SNPs were significantly associated with ADEH (112 cases, 166 controls) and IFNγ production: a 2-SNP (A–G) IFNGR1 haplotype (rs10457655 and rs7749390) showed the strongest association with a reduced risk of ADEH+ ((13.2% ADEH+ vs 25.5% ADEH−, P = 0.00057). Conclusions ADEH+ patients have reduced IFNγ production, and IFNG and IFNGR1 SNPs are significantly associated with ADEH+ and may contribute to an impaired immune response to herpes simplex virus (HSV). Clinical Implications Atopic dermatitis subjects prone to disseminated viral skin infections have defects in their interferon responses. Capsule summary Using genomic, immunologic and genetic approaches, these investigators demonstrated that atopic dermatitis subjects prone to disseminated viral skin infections have defects in their interferon responses. PMID:21458658
[Gamma interferon: basics aspects, clinic significance and terapeutic uses].
Mata-Espinosa, Dulce A; Hernández-Pando, Rogelio
2008-01-01
Interferons are a family of pleiotropic cytokines, their name was assigned because of their anti-replicative viral activity. IFNgamma or immune type II interferon does not share receptors with the type I interferon, its structure is different and its gene is located in different chromosome, although its biologic effects are similar. Along of several years of research, it has been found that IFNgamma enhances the transcription of genes involved in immunomodulation, antiviral responses and antitumoral activities. Regarding to the immune system, IFNgamma increases the cytotoxic and phagocytic activity of macrophages and upregulates the expression of major histocompatibility complex (MHC) class I and class II molecules in dendritics cells and other antigen presenting cells. IFNgamma also promotes the development and differentiation of naive CD4+ T lymphocytes to Th1 helper subset. Indeed, this cytokine has a key role in the control of bacterial, micotic, viral and parasitic infections. Depending of the micro-environment, IFNgamma has a dual role as pro or anti inflammatory cytokine. Novel therapeutic strategies are currently being developed with the aim to enhance the immune response or replace IFNgamma gene abnormal expression with beneficial results in humans, being recombinant IFNgamma safe and well tolerated.
Mukherjee, Rathindra M; Bansode, Budhapriyavilas; Gangwal, Puja; Jakkampudi, Aparna; Reddy, Panyala B; Rao, Padaki N; Gupta, Rajesh; Reddy, D Nageshwar
2012-01-01
Background The interferon regulatory factors (IRFs) are a family of transcription factors known to be involved in the modulation of cellular responses to interferons (IFNs) and viral infection. While IRF-1 acts as a positive regulator, IRF-2 is known to repress IFN-mediated gene expression. The increase in the IRF-1/IRF-2 ratio is considered as an important event in the transcriptional activation of IFN-α gene toward development of the cellular antiviral response. Objective This study was performed to assess the expression of IRF mRNAs along with the expression level of IFN-α, its receptor (IFNAR-1), and the signal transduction factor (STAT-1) in treatment naive hepatitis C virus (HCV)-infected subjects. Materials Thirty-five chronically infected (CHC) patients and 39 voluntary blood donors as controls were included in the study. Quantification of HCV-RNA (ribonucleic acid) and genotyping were done by real-time polymerase chain reaction (PCR) and hybridization assays, respectively, using patient's serum/plasma. In both controls and patients, the serum level of IFN-α and IFN-α was measured by flow cytometry. Target gene expressions were studied by retro-transcription of respective mRNAs extracted from peripheral blood mononuclear cells (PBMCs) followed by PCR amplification and densitometry. Minus-strand HCV-RNA as a marker of viral replication in PBMCs was detected by an inhouse PCR assay. Results Both IRF-1 and IRF-2 genes were significantly enhanced in CHC than in control subjects (P < 0.001). A significant positive correlation (r2 = 0.386, P <0.01) was obtained between higher IRF-2 gene expression and increasing level of HCV-RNA. Chronically infected subjects (13%) harboring replicating HCV in PBMCs showed no significant differences in gene expressions than the subjects without HCV in PBMCs. Conclusion Our findings indicate that HCV modulates host immunity by inducing IRF-2 gene to counteract IRF-1-mediated IFN-α gene expression. Since the IRF-2 gene is known to encode oncogenic protein, the role of IRF-2 in CHC patients developing hepatocellular carcinoma warrants further studies. PMID:25755403
Peng, Wan; Lu, Dan-Qi; Li, Gao-Fei; Zhang, Xu; Yao, Mi; Zhang, Yong; Lin, Hao-Ran
2016-02-01
Interferon gamma (IFNγ) is a Th1 cytokine that plays a very important role in almost all phases of immune and inflammatory responses. In this study, we explored the functions of IFNγ1 and IFNγ2 of Tetraodon nigroviridis. Treating T. nigroviridis spleen and head kidney cells in vitro with recombinant T. nigroviridis IFNγ1 protein (rTn IFNγ1) or recombinant T. nigroviridis IFNγ2 protein (rTn IFNγ2) enhanced their nitric oxide responses. Both rTn IFNγ1 and rTn IFNγ2 also induced the expression of interferon-stimulated gene 15 (ISG15), a common anti-viral gene, although the expression of the interferon-inducible Mx gene was markedly inhibited by rTn IFNγ1 and was induced by rTn IFNγ2. The in vivo effects of rTn IFNγ1 and rTn IFNγ2 on Vibrio parahaemolyticus (V. parahaemolyticus) infection were assessed by intraperitoneally injecting rTn IFNγ1 or rTn IFNγ2 (100 ng) and V. parahaemolyticus (8 × 10(10)CFU/mL) into T. nigroviridis. A comparison of the group treated only with V. parahaemolyticus and those also treated with rTn IFNγ1 or rTn IFNγ2 showed that neither of these IFNγs protected T. nigroviridis from V. parahaemolyticus infection. However, rTn IFNγ1 more rapidly and robustly promoted inflammatory responses compared with rTn IFNγ2, whereas rTn IFNγ2 was involved in inducing the host to develop a more effective response earlier during the later stage of a V. parahaemolyticus infection. Moreover, microRNA-29b (miR-29b) expression is inversely correlated with IFNγ2 expression in T. nigroviridis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Bolen, Christopher R; Ding, Siyuan; Robek, Michael D; Kleinstein, Steven H
2014-04-01
Despite activating similar signaling cascades, the type I and type III interferons (IFNs) differ in their ability to antagonize virus replication. However, it is not clear whether these cytokines induce unique antiviral states, particularly in the liver, where the clinically important hepatitis B and C viruses cause persistent infection. Here, clustering and promoter analyses of microarray-based gene expression profiling were combined with mechanistic studies of signaling pathways to dynamically characterize the transcriptional responses induced by these cytokines in Huh7 hepatoma cells and primary human hepatocytes. Type I and III IFNs differed greatly in their level of interferon-stimulated gene (ISG) induction with a clearly detectable hierarchy (IFN-β > IFN-α > IFN-λ3 > IFN-λ1 > IFN-λ2). Notably, although the hierarchy identified varying numbers of differentially expressed genes when quantified using common statistical thresholds, further analysis of gene expression over multiple timepoints indicated that the individual IFNs do not in fact regulate unique sets of genes. The kinetic profiles of IFN-induced gene expression were also qualitatively similar with the important exception of IFN-α. While stimulation with either IFN-β or IFN-λs resulted in a similar long-lasting ISG induction, IFN-α signaling peaked early after stimulation then declined due to a negative feedback mechanism. The quantitative expression hierarchy and unique kinetics of IFN-α reveal potential specific roles for individual IFNs in the immune response, and elucidate the mechanism behind previously observed differences in IFN antiviral activity. While current clinical trials are focused on IFN-λ1 as a potential antiviral therapy, the finding that IFN-λ3 invariably possesses the highest activity among type III IFNs suggests that this cytokine may have superior clinical activity. © 2014 by the American Association for the Study of Liver Diseases.
Arazi, T; Slutsky, S G; Shiboleth, Y M; Wang, Y; Rubinstein, M; Barak, S; Yang, J; Gal-On, A
2001-04-27
Plant virus vectors provide an attractive biotechnological tool for the transient expression of foreign genes in whole plants. As yet there has been no use of recombinant viruses for the improvement of commercial crops. This is mainly because the viruses used to create vectors usually cause significant yield loss and can be transmitted in the field. A novel attenuated zucchini yellow mosaic potyvirus (AG) was used for the development of an environmentally safe non-pathogenic virus vector. The suitability of AG as an expression vector in plants was tested by analysis of two infectious viral constructs, each containing a distinct gene insertion site. Introduction of a foreign viral coat protein gene into AG genome between the P1 and HC-Pro genes, resulted in no expression in planta. In contrast, the same gene was stably expressed when inserted between NIb and CP genes, suggesting that this site is more suitable for a gene vector. Virus-mediated expression of reporter genes was observed in squash and cucumber leaves, stems, roots and edible fruit. Furthermore, AG stably expressed human interferon-alpha 2, an important human anti-viral drug, without affecting plant development and yield. Interferon biological activity was measured in cucumber and squash fruit. Together, these data corroborate a biotechnological utility of AG as a non-pathogenic vector for the expression of a foreign gene, as a benefit trait, in cucurbits and their edible fruit.
[Peptide Ala-Glu-Asp-Gly and interferon gamma: their role in immune response during aging].
Lin'kova, N S; Kuznik, B I; Khavinson, V Kh
2012-01-01
The decrease of lymphocyte interferon gamma expression during aging is one of the main mechanisms leading to the immunodeficiency state in the elderly. Cell penetrating geroprotective peptide Ala-Glu-Asp-Gly has the capability to activate the proliferation of lymphocytes in thymus during its aging. The nucleotide sequence which is complementary contacted with peptide Ala-Glu-Asp-Gly was found in promoter region of interferon gamma gene. Thus, the immune protection of this peptide can be explained by its activation of the interferon gamma production in T-cells.
Immunobiologic effects of cytokine gene transfer of the B16-BL6 melanoma.
Strome, S E; Krauss, J C; Cameron, M J; Forslund, K; Shu, S; Chang, A E
1993-12-01
The genetic modification of tumors offers an approach to modulate the host immune response to relatively weak native tumor antigens. We examined the immunobiologic effects of various cytokine genes transferred into the poorly immunogenic B16-BL6 murine melanoma. Retroviral expression vectors containing cDNAs for interleukin 2, interleukin 4, interferon gamma, or a neomycin-resistant control were electroporated into a B16-BL6 tumor clone. Selected transfected clones were examined for in vitro cytokine secretion and in vivo tumorigenicity. When cells from individual clones were injected intradermally into syngeneic mice, the interleukin 4-secreting clone grew significantly slower than did the neomycin-resistant transfected control, while the growth of the interleukin 2- and interferon gamma-expressing clones was not affected. Despite minimal cytokine secretion by interferon gamma-transfected cells, these cells expressed upregulated major histocompatibility class I antigen and were more susceptible to lysis by allosensitized cytotoxic T lymphocytes compared with parental or neomycin-resistant transfected tumor targets. We observed diverse immunobiologic effects associated with cytokine gene transfer into the B16-BL6 melanoma. Interleukin 4 transfection of tumor resulted in decreased in vivo tumorigenicity that may be related to a host immune response. Further studies to evaluate the host T-cell response to these gene-modified tumors are being investigated.
Association of IRF5 polymorphisms with activation of the interferon α pathway
Rullo, Ornella J; Woo, Jennifer M P; Wu, Hui; Hoftman, Alice D C; Maranian, Paul; Brahn, Brittany A; McCurdy, Deborah; Cantor, Rita M; Tsao, Betty P
2011-01-01
Objective The genetic association of interferon regulatory factor 5 (IRF5) with systemic lupus erythematosus (SLE) susceptibility has been convincingly established. To gain understanding of the effect of IRF5 variation in individuals without SLE, a study was undertaken to examine whether such genetic variation predisposes to activation of the interferon α (IFNα) pathway. Methods Using a computer simulated approach, 14 single nucleotide polymorphisms (SNPs) and haplotypes of IRF5 were tested for association with mRNA expression levels of IRF5, IFNα and IFN-inducible genes and chemokines in lymphoblastoid cell lines (LCLs) from individuals of European (CEU), Han Chinese (CHB), Japanese (JPT) and Yoruba Nigerian (YRI) backgrounds. IFN-inducible gene expression was assessed in LCLs from children with SLE in the presence and absence of IFNα stimulation. Results The major alleles of IRF5 rs13242262 and rs2280714 were associated with increased IRF5 mRNA expression levels in the CEU, CHB+JPT and YRI samples. The minor allele of IRF5 rs10488631 was associated with increased IRF5, IFNα and IFN-inducible chemokine expression in CEU (pc=0.0005, 0.01 and 0.04, respectively). A haplotype containing these risk alleles of rs13242262, rs10488631 and rs2280714 was associated with increased IRF5, IFNα and IFN-inducible chemokine expression in CEU LCLs. In vitro studies showed specific activation of IFN-inducible genes in LCLs by IFNα. Conclusions SNPs of IRF5 in healthy individuals of a number of ethnic groups were associated with increased mRNA expression of IRF5. In European-derived individuals, an IRF5 haplotype was associated with increased IRF5, IFNα and IFN-inducible chemokine expression. Identifying individuals genetically predisposed to increased IFN-inducible gene and chemokine expression may allow early detection of risk for SLE. PMID:19854706
Yu, Man; Tong, Jian-Hua; Mao, Mao; Kan, Li-Xin; Liu, Meng-Min; Sun, Yi-Wu; Fu, Gang; Jing, Yong-Kui; Yu, Long; Lepaslier, Denis; Lanotte, Michel; Wang, Zhen-Yi; Chen, Zhu; Waxman, Samuel; Wang, Ya-Xin; Tan, Jia-Zhen; Chen, Sai-Juan
1997-01-01
In a cell line (NB4) derived from a patient with acute promyelocytic leukemia, all-trans-retinoic acid (ATRA) and interferon (IFN) induce the expression of a novel gene we call RIG-G (for retinoic acid-induced gene G). This gene codes for a 58-kDa protein containing 490 amino acids with several potential sites for post-translational modification. In untreated NB4 cells, the expression of RIG-G is undetectable. ATRA treatment induces the transcriptional expression of RIG-G relatively late (12–24 hr) in a protein synthesis-dependent manner, whereas IFN-α induces its expression early (30 min to 3 hr). Database search has revealed a high-level homology between RIG-G and several IFN-stimulated genes in human (ISG54K, ISG56K, and IFN-inducible and retinoic acid-inducible 58K gene) and some other species, defining a well conserved gene family. The gene is composed of two exons and has been mapped by fluorescence in situ hybridization to chromosome 10q24, where two other human IFN-stimulated gene members are localized. A synergistic induction of RIG-G expression in NB4 cells by combined treatment with ATRA and IFNs suggests that a collaboration exists between their respective signaling pathways. PMID:9207104
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Saguna; Ziegler, Katja; Ananthula, Praveen
2006-02-20
Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarraymore » technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.« less
The antiviral activities of ISG15.
Morales, David J; Lenschow, Deborah J
2013-12-13
Post-translational protein modification is an important strategy for the regulation of the cell proteome independent of the need for new gene expression. Ubiquitin and ubiquitin-like modifiers mediate the regulation of protein levels, signaling pathways, vesicular trafficking, and many other cellular processes through their covalent conjugation to proteins. Interferon stimulated gene 15 (ISG15) is a ubiquitin-like modifier induced by type I interferon. In addition to conjugating to potentially hundreds of target proteins, ISG15 can be found in an unconjugated form both inside of the cell and released from interferon stimulated cells into the extracellular environment. Due to its robust expression after type I interferon stimulation and the broad panel of proteins that it targets, ISG15 has drawn much attention as a potential regulator of the immune response and has been shown to mediate protection in a number of different viral infection models. Here we will review the current state of the field of ISG15, the viruses against which ISG15 mediates protection, and the mechanisms by which ISG15 exerts antiviral activity. © 2013.
Liu, Ruikang; Moss, Bernard
2018-05-01
Type I interferons (IFNs) induce expression of more than 300 cellular genes that provide protection against viruses and other pathogens. For survival, viruses evolved defenses to prevent the IFN response or counteract the IFN-induced antiviral state. However, because viruses and cells coevolved, the dynamic relationship between virus and host is difficult to discern. In the present study, we demonstrated that vaccinia virus with a large deletion near the left end of the genome had a diminished ability to replicate in cells that had been pretreated with beta interferon (IFN-β), suggesting that one or more of the missing 17 open reading frames (ORFs) encode an antagonist of the IFN-induced antiviral state. By systematically deleting groups of ORFs and then individual ORFs, the C9L gene was shown to be required for IFN resistance. Replication of the C9L deletion mutant (vΔC9) was impaired in human cells that had been pretreated with IFN-β. Expression of viral early genes occurred, but subsequent events, including genome uncoating, genome replication, and postreplicative gene expression, were inhibited. Expression of the C9 protein occurred prior to genome replication, consistent with an early role in counteracting the IFN-induced antiviral state. C9 contains six ankyrin repeat motifs and a near C-terminal F-box. Mass spectrometry and immunoblotting identified host proteins that copurified with a functional epitope-tagged C9. The most abundant proteins were components of the SCF (CUL1, SKP1, F-box) and signalosome/deneddylation complexes, which interact with each other, suggesting a possible role in proteolysis of one or more interferon-induced proteins. IMPORTANCE Poxviruses comprise a family of large DNA viruses that replicate in the cytoplasm of vertebrate and insect hosts and cause human and zoonotic diseases. In most cases the primary infection is moderated by innate immune defenses. Vertebrates, including fish, amphibians, reptiles, birds, and mammals, all produce type I interferon homologs. In humans, interferon stimulates the synthesis of more than 300 proteins thought to have roles in host defense. Conversely, viruses have evolved means to thwart the host defenses. We are attempting to deconstruct the established virus-host relationship in order to better understand the molecular mechanisms involved. In the present study, we identified a vaccinia virus gene that prevents interferon-mediated inhibition of very early stages of viral replication and is conserved in orthopoxviruses. The viral protein was shown to interact with host proteins involved in proteolysis, suggesting that vaccinia virus may subvert the cellular apparatus for its own defense. Copyright © 2018 American Society for Microbiology.
USDA-ARS?s Scientific Manuscript database
Respiratory syncytial virus (RSV) is a leading cause of pediatric lower respiratory tract infections and has a high impact on pediatric emergency department utilization. Variation in host response may influence the pathogenesis and disease severity. We evaluated global gene expression profiles to be...
MicroRNA-Mediated Myostatin Silencing in Caprine Fetal Fibroblasts
Zhong, Bushuai; Zhang, Yanli; Yan, Yibo; Wang, Ziyu; Ying, Shijia; Huang, Mingrui; Wang, Feng
2014-01-01
Myostatin functions as a negative regulator of skeletal muscle growth by suppressing proliferation and differentiation of myoblasts. Dysfunction of the myostatin gene, either due to natural mutation or genetic manipulations such as knockout or knockdown, has been reported to increase muscle mass in mammalian species. RNA interference (RNAi) mediated by microRNAs (miRNAs) is a promising method for gene knockdown studies. In the present study, transient and stable silencing of the myostatin gene in caprine fetal fibroblasts (CFF) was evaluated using the two most effective constructs selected from four different miRNA expression constructs screened in 293FT cells. Using these two miRNA constructs, we achieved up to 84% silencing of myostatin mRNA in transiently transfected CFF cells and up to 31% silencing in stably transfected CFF cells. Moreover, off-target effects due to induction of interferon (IFN) response genes, such as interferon beta (IFN-β) and 2′-5′-oligoadenylate synthetase 2 (OAS2), were markedly fewer in stably transfected CFF cells than in transiently transfected cells. Stable expression of anti-myostatin miRNA with minimal induction of interferon shows great promise for increasing muscle mass in transgenic goats. PMID:25244645
Kumar, Mukesh; Belcaid, Mahdi; Nerurkar, Vivek R.
2016-01-01
Differential host responses may be critical determinants of distinct pathologies of West Nile virus (WNV) NY99 (pathogenic) and WNV Eg101 (non-pathogenic) strains. We employed RNA-seq technology to analyze global differential gene expression in WNV-infected mice brain and to identify the host cellular factors leading to lethal encephalitis. We identified 1,400 and 278 transcripts, which were differentially expressed after WNV NY99 and WNV Eg101 infections, respectively, and 147 genes were common to infection with both the viruses. Genes that were up-regulated in infection with both the viruses were mainly associated with interferon signaling. Genes associated with inflammation and cell death/apoptosis were only expressed after WNV NY99 infection. We demonstrate that differences in the activation of key pattern recognition receptors resulted in the induction of unique innate immune profiles, which corresponded with the induction of interferon and inflammatory responses. Pathway analysis of differentially expressed genes indicated that after WNV NY99 infection, TREM-1 mediated activation of toll-like receptors leads to the high inflammatory response. In conclusion, we have identified both common and specific responses to WNV NY99 and WNV Eg101 infections as well as genes linked to potential resistance to infection that may be targets for therapeutics. PMID:27211830
Han, Xuesheng; Parker, Tory L
2017-06-01
Arborvitae ( Thuja plicata ) essential oil (AEO) is becoming increasingly popular in skincare, although its biological activity in human skin cells has not been investigated. Therefore, we sought to study AEO's effect on 17 important protein biomarkers that are closely related to inflammation and tissue remodeling by using a pre-inflamed human dermal fibroblast culture model. AEO significantly inhibited the expression of vascular cell adhesion molecule 1 (VCAM-1), intracellular cell adhesion molecule 1 (ICAM-1), interferon gamma-induced protein 10 (IP-10), interferon-inducible T-cell chemoattractant (I-TAC), monokine induced by interferon gamma (MIG), and macrophage colony-stimulating factor (M-CSF). It also showed significant antiproliferative activity and robustly inhibited collagen-I, collagen-III, plasminogen activator inhibitor-1 (PAI-1), and tissue inhibitor of metalloproteinase 1 and 2 (TIMP-1 and TIMP-2). The inhibitory effect of AEO on increased production of these protein biomarkers suggests it has anti-inflammatory property. We then studied the effect of AEO on the genome-wide expression of 21,224 genes in the same cell culture. AEO significantly and diversely modulated global gene expression. Ingenuity pathway analysis (IPA) showed that AEO robustly affected numerous critical genes and signaling pathways closely involved in inflammatory and tissue remodeling processes. The findings of this study provide the first evidence of the biological activity and beneficial action of AEO in human skin cells.
Cappelli, G; Volpe, P; Sanduzzi, A; Sacchi, A; Colizzi, V; Mariani, F
2001-12-01
Mycobacterium tuberculosis is an intracellular pathogen that readily survives and replicates in human macrophages (MPhi). Host cells have developed different mycobactericidal mechanisms, including the production of inflammatory cytokines. The aim of this study was to compare the MPhi response, in terms of cytokine gene expression, to infection with the M. tuberculosis laboratory strain H37Rv and the clinical M. tuberculosis isolate CMT97. Both strains induce the production of interleukin-12 (IL-12) and IL-16 at comparable levels. However, the clinical isolate induces a significantly higher and more prolonged MPhi activation, as shown by reverse transcription-PCR analysis of IL-1beta, IL-6, IL-10, transforming growth factor beta, tumor necrosis factor alpha, and gamma interferon (IFN-gamma) transcripts. Interestingly, when IFN-gamma transcription is high, the number of M. tuberculosis genes expressed decreases and vice versa, whereas no mycobactericidal effect was observed in terms of bacterial growth. Expression of 11 genes was also studied in the two M. tuberculosis strains by infecting resting or activated MPhi and compared to bacterial intracellular survival. In both cases, a peculiar inverse correlation between expression of these genes and multiplication was observed. The number and type of genes expressed by the two strains differed significantly.
Kanno, Jun; Aisaki, Ken-ichi; Igarashi, Katsuhide; Kitajima, Satoshi; Matsuda, Nae; Morita, Koichi; Tsuji, Masaki; Moriyama, Noriko; Furukawa, Yusuke; Otsuka, Maki; Tachihara, Erika; Nakatsu, Noriyuki; Kodama, Yukio
2013-01-01
Pentachlorophenol (PCP) was monitored for transcriptome responses in adult mouse liver at 2, 4, 8 and 24 hr after a single oral administration at four dose levels, 0, 10, 30 and 100 mg/kg. The expression data obtained using Affymetrix GeneChip MOE430 2.0 were absolutized by the Percellome method and expressed as three dimensional (3D) surface graphs with axes of time, dose and copy numbers of mRNA per cell. We developed the programs RSort, for comprehensive screening of the 3D surface data and PercellomeExploror for cross-referencing and confirmed the significant responses by visual inspection. In the first 8 hr, approximately 100 probe sets (PSs) related to PXR/SXR and Cyp2a4 and other metabolic enzymes were induced whereas Fos and JunB were suppressed. At 24 hr, about 1,200 PSs were strongly induced. We cross-referenced the Percellome database consisting of 111 chemicals on the liver transcriptome and found that about half of the PSs belonged to the metabolic pathways including Nrf2-mediated oxidative stress response networks shared with some of the 111 chemicals. The other half of the induced genes were interferon signaling network genes (ISG) and their induction was unique to PCP. Toll like receptors and other pattern recognition receptors, interferon regulatory factors and interferon alpha itself were included but inflammatory cytokines were not induced. In summary, these data indicated that functional symptoms of PCP treatment, such as hyperthermia and profuse sweating might be mediated by the ISG rather than the previously documented mitochondrial uncoupling mechanism. PCP might become a hint for developing low molecular weight orally available interferon mimetic drugs following imiquimod and RO4948191 as agonists of toll-like receptor and interferon receptor.
Induction of Interferon-Stimulated Genes by Simian Virus 40 T Antigens
Rathi, Abhilasha V.; Cantalupo, Paul G.; Sarkar, Saumendra N.; Pipas, James M.
2010-01-01
Simian virus 40 (SV40) large T antigen (TAg) is a multifunctional oncoprotein essential for productive viral infection and for cellular transformation. We have used microarray analysis to examine the global changes in cellular gene expression induced by wild-type T antigen (TAgwt) and TAg-mutants in mouse embryo fibroblasts (MEFs). The expression profile of approximately 800 cellular genes was altered by TAgwt and a truncated TAg (TAgN136), including many genes that influence cell cycle, DNA-replication, transcription, chromatin structure and DNA repair. Unexpectedly, we found a significant number of immune response genes upregulated by TAgwt including many interferon stimulated genes (ISGs) such as ISG56, OAS, Rsad2, Ifi27 and Mx1. Additionally, we also observed activation of STAT1 by TAgwt. Our genetic studies using several TAg mutants reveal an unexplored function of TAg and indicate that the LXCXE motif and p53 binding are required for the upregulation of ISGs. PMID:20692676
Repression of Virus-Induced Interferon A Promoters by Homeodomain Transcription Factor Ptx1
Lopez, Sébastien; Island, Marie-Laure; Drouin, Jacques; Bandu, Marie-Thérese; Christeff, Nicolas; Darracq, Nicole; Barbey, Régine; Doly, Janine; Thomas, Dominique; Navarro, Sébastien
2000-01-01
Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by substitutions in the proximal positive virus responsive element A (VRE-A) of their promoters and by the presence or absence of a distal negative regulatory element (DNRE). The functional feature of the DNRE is to specifically act by repression of VRE-A activity. With the use of the yeast one-hybrid system, we describe here the identification of a specific DNRE-binding protein, the pituitary homeobox 1 (Ptx1 or Pitx1). Ptx1 is detectable in different cell types that differentially express IFN-A genes, and the endogenous Ptx1 protein binds specifically to the DNRE. Upon virus induction, Ptx1 negatively regulates the transcription of DNRE-containing IFN-A promoters, and the C-terminal region, as well as the homeodomain of the Ptx1 protein, is required for this repression. After virus induction, the expression of the Ptx1 antisense RNA leads to a significant increase of endogenous IFN-A gene transcription and is able to modify the pattern of differential expression of individual IFN-A genes. These studies suggest that Ptx1 contributes to the differential transcriptional strength of the promoters of different IFN-A genes and that these genes may provide new targets for transcriptional regulation by a homeodomain transcription factor. PMID:11003649
Hu, Guo-Bin; Lou, Hui-Min; Dong, Xian-Zhi; Liu, Qiu-Ming; Zhang, Shi-Cui
2012-10-01
Interferon regulatory factor 5 (IRF5) has been identified as a key transcriptional mediator regulating expression of both type I interferons (IFNs) and proinflammatory cytokines. In this study, the cDNA and genomic sequences of IRF5 were isolated from Japanese flounder, Paralichthys olivaceus. The gene of Japanese flounder (Jf)IRF5 is 7326 bp long, contains 9 exons and 8 introns and encodes a putative protein of 472 amino acids. The predicted protein sequence shares 61.1-81.9% identity to fish IRF5 and possesses a DNA-binding domain (DBD), a middle region (MR), an IRF association domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) conserved in all known IRF5s. Phylogenetic analysis clustered it into the teleost IRF5 subgroup within vertebrate IRF5 group. JfIRF5 mRNA was constitutively expressed in all tissues examined, with higher levels observed in the gills and head kidney. Gene expression of JfIRF5 was analyzed over a 7-day time course in the gills, head kidney, spleen and muscle of Japanese flounders challenged with lymphocystis disease virus (LCDV) and polyinosinic:polycytidylic acid (poly I:C). The data showed that JfIRF5 expression was slightly up-regulated by LCDV, but its induction time was clearly moved up; in contrast, the induction upon poly I:C challenge started not earlier than day 2 post-injection and was stronger and more persistent with a later peak time in all four organs. The late and long-lasting inductive expression of JfIRF5 following poly I:C challenge suggests that it might be an interferon stimulated gene (ISG), the induction of which is driven by poly I:C-induced type I IFNs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Adam, Liana; Black, Peter C; Kassouf, Wassim; Eve, Beryl; McConkey, David; Munsell, Mark F; Benedict, William F; Dinney, Colin P N
2007-05-01
Intravesical adenovirus mediated interferon-alpha gene transfer has a potent therapeutic effect against superficial human bladder carcinoma xenografts growing in the bladder of athymic nude mice. We determined whether the inhibition of angiogenesis might contribute to the antitumor effect. We treated several human urothelial carcinoma cells with adenovirus mediated interferon-alpha 2b and monitored its effects on the production of angiogenic factors using real-time reverse-transcription polymerase chain reaction, Western blotting, and immunohistochemical analysis and a gel shift based transcription factor array. To assess the role of adenovirus mediated interferon 2b in angiogenic activity we used in vitro invasion assays and evaluated the anti-angiogenic effects of adenovirus mediated interferon gene therapy in an orthotopic murine model of human superficial bladder cancer. In adenovirus mediated interferon-alpha infected 253J B-V cells vascular endothelial growth factor was decreased and anti-angiogenic interferon-gamma inducible protein 10 was up-regulated. In contrast, the addition of as much as 100,000 IU recombinant interferon had no apparent effect on vascular endothelial growth factor production. Conditioned medium derived from adenovirus mediated interferon 2b infected 253J B-V cells greatly decreased the invasive potential of human endothelial cells and down-regulated their matrix metalloproteinase 2 expression compared to controls. Furthermore, adenovirus mediated interferon 2b blocked pro-angiogenic nuclear signals, such as the transcription factors activating protein-1 and 2, stimulating protein-1, nuclear factor kappaB and c-myb. In vivo experiments revealed significant vascular endothelial growth factor down-regulation and decreased tumor vessel density in the adenovirus mediated interferon 2b treated group compared to controls. Treatment with adenovirus mediated interferon 2b increases the angiostatic activity of the bladder cancer microenvironment. This inhibition may prove beneficial for treating superficial bladder cancer with adenovirus mediated interferon-alpha and hopefully contribute to a decreased recurrence rate of this neoplasm.
Broering, R; Trippler, M; Werner, M; Real, C I; Megger, D A; Bracht, T; Schweinsberg, V; Sitek, B; Eisenacher, M; Meyer, H E; Baba, H A; Weber, F; Hoffmann, A-C; Gerken, G; Schlaak, J F
2016-05-01
The interferon-stimulated gene 15 (ISG15) plays an important role in the pathogenesis of hepatitis C virus (HCV) infection. ISG15-regulated proteins have previously been identified that putatively affect this proviral interaction. The present observational study aimed to elucidate the relation between ISG15 and these host factors during HCV infection. Transcriptomic and proteomic analyses were performed using liver samples of HCV-infected (n = 54) and uninfected (n = 10) or HBV-infected controls (n = 23). Primary human hepatocytes (PHH) were treated with Toll-like receptor ligands, interferons and kinase inhibitors. Expression of ISG15 and proteasome subunit alpha type-6 (PSMA6) was suppressed in subgenomic HCV replicon cell lines using specific siRNAs. Comparison of hepatic expression patterns revealed significantly increased signals for ISG15, IFIT1, HNRNPK and PSMA6 on the protein level as well as ISG15, IFIT1 and PSMA6 on the mRNA level in HCV-infected patients. In contrast to interferon-stimulated genes, PSMA6 expression occurred independent of HCV load and genotype. In PHH, the expression of ISG15 and PSMA6 was distinctly induced by poly(I:C), depending on IRF3 activation or PI3K/AKT signalling, respectively. Suppression of PSMA6 in HCV replicon cells led to significant induction of ISG15 expression, thus combined knock-down of both genes abrogated the antiviral effect induced by the separate suppression of ISG15. These data indicate that hepatic expression of PSMA6, which is upregulated during viral hepatitis, likely depends on TLR3 activation. PSMA6 affects the expression of immunoregulatory ISG15, a proviral factor in the pathogenesis of HCV infection. Therefore, the proteasome might be involved in the enigmatic interaction between ISG15 and HCV. © 2016 John Wiley & Sons Ltd.
Takahashi, Yuki; Vikman, Elin; Nishikawa, Makiya; Ando, Mitsuru; Watanabe, Yoshihiko; Takakura, Yoshinobu
2010-09-01
The in vivo half-life of interferons (IFNs) is very short, and its extension would produce a better therapeutic outcome in IFN-based therapy. Delivery of IFN genes is one solution for providing a sustained supply. IFNs have a variety of functions, including the suppression of transgene expression, through interaction with IFN receptors (IFNRs). This suppression could prevent IFNs from being expressed from vectors delivered. Silencing the expression of IFNAR and IFNGR, the receptors for type I and II IFNs, respectively, in cells expressing IFNs may prolong transgene expression of IFNs. Mouse melanoma B16-BL6 cells or mouse liver were selected as a site expressing IFNs (not a target for IFN gene therapy) and IFN-expressing plasmid DNA was delivered with or without small interfering RNA (siRNA) targeting IFNRs. Transfection of B16-BL6 cells with siRNA targeting IFNAR1 subunit (IFNAR1) resulted in the reduced expression of IFNAR on the cell surface. This silencing significantly increased the IFN-beta production in cells that were transfected with IFN-beta-expressing plasmid DNA. Similar results were obtained with the combination of IFN-gamma and IFNGR. Co-injection of IFN-beta-expressing plasmid DNA with siRNA targeting IFNAR1 into mice resulted in sustained plasma concentration of IFN-beta. These results provide experimental evidence that the RNAi-mediated silencing of IFNRs in cells expressing IFN, such as hepatocytes, is an effective approach for improving transgene expression of IFNs when their therapeutic target comprises cells other than those expressing IFNs.
Nordén, Rickard; Martner, Anna; Samuelsson, Ebba; Hynsjö, Lars; Wold, Agnes E.
2017-01-01
ABSTRACT A peculiar trait of pneumococci (Streptococcus pneumoniae) is their propensity to undergo spontaneous lysis during stationary growth due to activation of the enzyme autolysin (LytA), which fragments the peptidoglycan cell wall. The fragments that are generated upon autolysis impair phagocytosis and reduce production of interleukin-12 (IL-12) and gamma interferon (IFN-γ) by human leukocytes in response to intact pneumococci, thereby impeding crucial host defenses. The objective was to identify additional monocyte genes whose transcription is induced by intact pneumococci and subverted by autolyzed bacteria. Monocytes were isolated from healthy blood donors and stimulated for 3 h with UV-inactivated S. pneumoniae (Rx1PLY− LytA+ strain), which is capable of autolyzing, its LytA− isogenic autolysin-deficient mutant, or a mixture of the two (containing twice the initial bacterial concentration). Gene expression was assessed by Illumina microarray, and selected findings were confirmed by reverse transcription-quantitative real-time PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and flow cytometry. In all, we identified 121 genes that were upregulated to a significantly higher degree by intact than autolyzed pneumococci. These included IFNB1 and a large set of interferon-induced genes, such as IFIT3, RSAD2, CFCL1, and CXCL10 genes, as well as IL12B and CD40 genes. RT-qPCR revealed that transcription of these genes in response to intact pneumococci diminished when autolyzed pneumococci were admixed and that this pattern was independent of pneumolysin. Thus, transcription of interferon-related genes is triggered by intact pneumococci and subverted by fragments generated by spontaneous bacterial autolysis. We suggest that interferon-related pathways are important for elimination of pneumococci and that autolysis contributes to virulence by extinguishing these pathways. PMID:28223347
Cheng, Jinbo; Liao, Yajin; Zhou, Lujun; Peng, Shengyi; Chen, Hong; Yuan, Zengqiang
2016-01-01
Type I interferon (IFN-I) is critical for a host against viral and bacterial infections via induction of hundreds of interferon-stimulated genes (ISGs), but the mechanism underlying the regulation of IFN-I remains largely unknown. In this study, we first demonstrate that ISG expression is required for optimal IFN-β levels, an effect that is further enhanced by endoplasmic reticulum (ER) stress. Furthermore, we identify mitochondrial calcium uniporter protein (MCU) as a mitochondrial antiviral signaling protein (MAVS)-interacting protein that is important for ER stress induction and amplified MAVS signaling activation. In addition, by performing an ectopic expression assay to screen a library of 117 human ISGs for effects on IFN-β levels, we found that tumor necrosis factor receptor 1 (TNFR1) significantly increases IFN-β levels independent of ER stress. Altogether, our findings suggest that MCU and TNFR1 are involved in the regulation of RIG-I-like receptors (RLR) signaling. PMID:26892273
Limpers, Annelies; van Royen-Kerkhof, Annet; van Roon, Joel A G; Radstake, Timothy R D J; Broen, Jasper C A
2014-02-01
Inflammatory fibrotic disorders have been of high interest both for dermatologists and rheumatologists. Although the phenotypic end stage of this group of diseases is ultimately the same, namely fibrosis, patients present with different clinical features and are often treated with distinct therapeutic modalities. This review addresses whether there is evidence for different underlying molecular pathways in the various inflammatory fibrotic diseases such as localized scleroderma, pediatric lichen sclerosus, adult lichen sclerosus, eosinophilic fasciitis and systemic sclerosis. To investigate this, a large number of gene expression microarray studies performed on skin or fibroblasts from patients with these aforementioned diseases were described, (re-)analysed, and compared. As suspected by the heterogeneous phenotype, most diseases showed unique gene expression features. Intriguingly, a clear overlap was observed between adult and pediatric lichen sclerosus and localized scleroderma, in antigen processing and the interferon pathway. Delineating the cause and consequence of these pathways may generate novel tools to better characterize and more effectively treat these patients.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sakaeda, Yoshiichi; Hiroi, Miki; Shimojima, Takahiro
Sulindac, a non-steroidal anti-inflammatory drug, has been shown to exert an anti-tumor effect on several types of cancer. To determine the effect of sulindac on intracellular signaling pathways in host immune cells such as macrophages, we investigated the effect of the drug on interferon gamma (IFN{gamma})-induced expression of signal transducer and activator of transcription 1 (STAT1) and other genes in mouse macrophage-like cell line RAW264.7 cells. Sulindac, but not aspirin or sodium salicylate, inhibited IFN{gamma}-induced expression of the CXC ligand 9 (CXCL9) mRNA, a chemokine for activated T cells, whereas the interferon-induced expression of CXCL10 or IFN regulatory factor-1 wasmore » not affected by sulindac. Luciferase reporter assay demonstrated that sulindac inhibited IFN{gamma}-induced promoter activity of the CXCL9 gene. Surprisingly, sulindac had no inhibitory effect on IFN{gamma}-induced STAT1 activation; however, constitutive nuclear factor {kappa}B activity was suppressed by the drug. These results indicate that sulindac selectively inhibited IFN{gamma}-inducible gene expression without inhibiting STAT1 activation.« less
Castillo, Andres; Wang, Lu; Koriyama, Chihaya; Eizuru, Yoshito; Jordan, King; Akiba, Suminori
2014-10-01
Previous studies have reported the detection of a truncated E1 mRNA generated from HPV-18 in HeLa cells. Although it is unclear whether a truncated E1 protein could function as a replicative helicase for viral replication, it would still retain binding sites for potential interactions with different host cell proteins. Furthermore, in this study, we found evidence in support of expression of full-length HPV-18 E1 mRNA in HeLa cells. To determine whether interactions between E1 and cellular proteins play an important role in cellular processes other than viral replication, genome-wide expression profiles of HPV-18 positive HeLa cells were compared before and after the siRNA knockdown of E1 expression. Differential expression and gene set enrichment analysis uncovered four functionally related sets of genes implicated in host defence mechanisms against viral infection. These included the toll-like receptor, interferon and apoptosis pathways, along with the antiviral interferon-stimulated gene set. In addition, we found that the transcriptional coactivator E1A-binding protein p300 (EP300) was downregulated, which is interesting given that EP300 is thought to be required for the transcription of HPV-18 genes in HeLa cells. The observed changes in gene expression produced via the silencing of HPV-18 E1 expression in HeLa cells indicate that in addition to its well-known role in viral replication, the E1 protein may also play an important role in mitigating the host's ability to defend against viral infection.
[Interferon. An overview of the state of basic research with special regard to interferon-gamma].
Günther, G; Otto, B
1993-02-01
Interferons / An overview on the state of basic research with special regard to interferon-gamma Interferons are multifunctional glycoproteins with a broad range of antiviral, antiproliferative and immunoregulatory effects on the target cell. This review deals with the basics as well as with more recent developments in interferon research. A historic overview of 35 years of interferon research since the discovery of interferons by Isaacs and Lindenmann in 1957 introduces the most important milestones in this field and appreciates the work of the participating researchers. A brief description of the classification of interferons based on different tissue sources, different antigenic properties and different induction behaviour is made. The main part of this review focuses on human interferon-gamma. We discuss recent work on the structure-function relationship of interferon-gamma. The interferon-gamma receptor and its role in signal transduction is another part of this paper. The structure and length of the C-terminal region of interferon-gamma seems to be important for receptor binding and expression of biological activities. A conservative estimate is that the family of IFN-activated genes numbers 15-20 in most cells.
Barnea-Yizhar, Ofer; Ram, Sigal; Kovalev, Ekaterina; Azriel, Aviva; Rand, Ulfert; Nakayama, Manabu; Hauser, Hansjörg; Gepstein, Lior; Levi, Ben-Zion
2016-01-01
Interferon Regulatory Factor-8 (IRF-8) serves as a key factor in the hierarchical differentiation towards monocyte/dendritic cell lineages. While much insight has been accumulated into the mechanisms essential for its hematopoietic specific expression, the mode of restricting IRF-8 expression in non-hematopoietic cells is still unknown. Here we show that the repression of IRF-8 expression in restrictive cells is mediated by its 3rd intron. Removal of this intron alleviates the repression of Bacterial Artificial Chromosome (BAC) IRF-8 reporter gene in these cells. Fine deletion analysis points to conserved regions within this intron mediating its restricted expression. Further, the intron alone selectively initiates gene silencing only in expression-restrictive cells. Characterization of this intron’s properties points to its role as an initiator of sustainable gene silencing inducing chromatin condensation with suppressive histone modifications. This intronic element cannot silence episomal transgene expression underlining a strict chromatin-dependent silencing mechanism. We validated this chromatin-state specificity of IRF-8 intron upon in-vitro differentiation of induced pluripotent stem cells (iPSCs) into cardiomyocytes. Taken together, the IRF-8 3rd intron is sufficient and necessary to initiate gene silencing in non-hematopoietic cells, highlighting its role as a nucleation core for repressed chromatin during differentiation. PMID:27257682
[Fish interferon response and its molecular regulation: a review].
Zhang, Yibing; Gui, Jianfang
2011-05-01
Interferon response is the first line of host defense against virus infection. Recent years have witnessed tremendous progress in understanding of fish innate response to virus infection, especially in fish interferon antiviral response. A line of fish genes involved in interferon antiviral response have been identified and functional studies further reveal that fish possess an IFN antiviral system similar to mammals. However, fish virus-induced interferon genes contain introns similar to mammalian type III interferon genes although they encode proteins similar to type I interferons, which makes it hard to understand the evolution of vertebrate interferon genes directly resulting in a debate on nomenclature of fish interferon genes. Actually, fish display some unique mechanisms underlying interferon antiviral response. This review documents the recent progress on fish interferon response and its molecular mechanism.
Bekpen, Cemalettin; Hunn, Julia P; Rohde, Christoph; Parvanova, Iana; Guethlein, Libby; Dunn, Diane M; Glowalla, Eva; Leptin, Maria; Howard, Jonathan C
2005-01-01
Background Members of the p47 (immunity-related GTPases (IRG) family) GTPases are essential, interferon-inducible resistance factors in mice that are active against a broad spectrum of important intracellular pathogens. Surprisingly, there are no reports of p47 function in humans. Results Here we show that the p47 GTPases are represented by 23 genes in the mouse, whereas humans have only a single full-length p47 GTPase and an expressed, truncated presumed pseudo-gene. The human full-length gene is orthologous to an isolated mouse p47 GTPase that carries no interferon-inducible elements in the promoter of either species and is expressed constitutively in the mature testis of both species. Thus, there is no evidence for a p47 GTPase-based resistance system in humans. Dogs have several interferon-inducible p47s, and so the primate lineage that led to humans appears to have lost an ancient function. Multiple p47 GTPases are also present in the zebrafish, but there is only a tandem p47 gene pair in pufferfish. Conclusion Mice and humans must deploy their immune resources against vacuolar pathogens in radically different ways. This carries significant implications for the use of the mouse as a model of human infectious disease. The absence of the p47 resistance system in humans suggests that possession of this resistance system carries significant costs that, in the primate lineage that led to humans, are not outweighed by the benefits. The origin of the vertebrate p47 system is obscure. PMID:16277747
Innate immune activity conditions the effect of regulatory variants upon monocyte gene expression.
Fairfax, Benjamin P; Humburg, Peter; Makino, Seiko; Naranbhai, Vivek; Wong, Daniel; Lau, Evelyn; Jostins, Luke; Plant, Katharine; Andrews, Robert; McGee, Chris; Knight, Julian C
2014-03-07
To systematically investigate the impact of immune stimulation upon regulatory variant activity, we exposed primary monocytes from 432 healthy Europeans to interferon-γ (IFN-γ) or differing durations of lipopolysaccharide and mapped expression quantitative trait loci (eQTLs). More than half of cis-eQTLs identified, involving hundreds of genes and associated pathways, are detected specifically in stimulated monocytes. Induced innate immune activity reveals multiple master regulatory trans-eQTLs including the major histocompatibility complex (MHC), coding variants altering enzyme and receptor function, an IFN-β cytokine network showing temporal specificity, and an interferon regulatory factor 2 (IRF2) transcription factor-modulated network. Induced eQTL are significantly enriched for genome-wide association study loci, identifying context-specific associations to putative causal genes including CARD9, ATM, and IRF8. Thus, applying pathophysiologically relevant immune stimuli assists resolution of functional genetic variants.
Sobrevilla-Navarro, Ana Alondra; Sandoval-Rodríguez, Ana; García-Bañuelos, Jesús Javier; Armendariz-Borunda, Juan; Salazar-Montes, Adriana María
2018-04-01
Adenoviruses are the most common vectors used in clinical trials of gene therapy. In 2017, 21.2% of clinical trials used rAds as vectors. Systemic administration of rAds results in high tropism in the liver. Interferon types α and β are the major antiviral cytokines which orchestrate the host's immune response against rAd, limiting therapeutic gene expression and preventing subsequent vector administration. siRNA is small double-strand RNAs that temporally inhibit the expression of a specific gene. The aim is to evaluate the effect of IFN-α blocking by a specific siRNA on Ad-GFP transduction and on transgene expression in Huh7 cells in culture. Huh7 cells were cultured in DMEM and transfected with 70 nM of siRNA-IFN-α. Six hours later, the cells were exposed to 1 × 10 9 vp/ml of rAd-GFP for 24 h. Expression of IFN-α, TNF-α and the PKR gene was determined by RT-qPCR. Percentage of transduction was analyzed by flow cytometry and by qPCR. GFP expression was determined by western blot. 70 nM of siRNA-IFN-α inhibited 96% of IFN-α and 65% of TNF-α gene expression compared to an irrelevant siRNA. Percentage of transduction and transgene expression increased in these cells compared to an irrelevant siRNA. Inhibition of IFN-α expression by siRNA-IFN-α enabled a higher level of transduction and transgene expression GFP, highlighting the role of IFN-α in the elimination of adenovirus in transduced cells and thus suggesting that its inhibition could be an important strategy for gene therapy in clinical trials using adenovirus as a vector directed to liver diseases.
Takahashi, Yuki; Kaneda, Haruka; Takasuka, Nana; Hattori, Kayoko; Nishikawa, Makiya; Watanabe, Yoshihiko; Takakura, Yoshinobu
2008-08-01
The suppressor of cytokine signaling (SOCS) proteins, negative regulators of interferon (IFN)-induced signaling pathways, is involved in IFN resistance of tumor cells. To improve the growth inhibitory effect of IFN-beta and IFN-gamma on a murine melanoma cell line, B16-BL6, and a murine colon carcinoma cell line, Colon26 cells, SOCS-1 and SOCS-3 gene expression in tumor cells was downregulated by transfection of plasmid DNA expressing short hairpin RNA targeting one of these genes (pshSOCS-1 and pshSOCS-3, respectively). Transfection of pshSOCS-1 significantly increased the antiproliferative effect of IFN-gamma on B16-BL6 cells. However, any other combinations of plasmids and IFN had little effect on the growth of B16-BL6 cells. In addition, transfection of pshSOCS-1 and pshSOCS-3 produced little improvement in the effect of IFN on Colon26 cells. To understand the mechanism underlining these findings, the level of SOCS gene expression was measured by real time polymerase chain reaction. Addition of IFN-gamma greatly increased the SOCS-1 mRNA expression in B16-BL6 cells. Taking into account the synergistic effect of pshSOCS-1 and IFN-gamma on the growth of B16-BL6 cells, these findings suggest that IFN-gamma-induced high SOCS-1 gene expression in B16-BL6 cells significantly interferes with the antiproliferative effect of IFN-gamma. These results indicate that silencing SOCS gene expression can be an effective strategy to enhance the antitumor effect of IFN under conditions in which the SOCS gene expression is upregulated by IFN.
Vestergaard, Anna L; Knudsen, Ulla B; Munk, Torben; Rosbach, Hanne; Martensen, Pia M
2011-04-01
Endometriosis is a painful chronic female disease defined by the presence of endometrial tissue implants in ectopic (Ec) locations. The pathogenesis is much debated, and type-I interferons (IFNs) could be involved. The expression of genes of the type-I IFN response were profiled by a specific PCR array of RNA obtained from Ec and eutopic (Eu) endometrium collected from nine endometriosis patients and nine healthy control women. Transcriptional expression levels of selected IFN-regulated and housekeeping genes (HKGs) were investigated by real-time quantitative reverse transcriptase PCR (qRT-PCR). Stably expressed HKGs for valid normalization of transcriptional studies of endometrium and endometriosis have not yet been published. Here, seven HKGs were evaluated for stability using the GeNorm and NormFinder software. A normalization factor based on HMBS, TBP and YWHAZ expression was suitable for normalization of qRT-PCR studies of Eu versus Ec endometrium. In the endometrial cell lines HEC1A, HEC1B, Ishikawa and RL95-2, HMBS and HPRT1 were the most stably expressed. The IFN-specific PCR array indicated significantly different expression of the genes BST2, COL16A1, HOXB2 and ISG20 between the endometrial tissue types. However, by correctly normalized qRT-PCR, levels of BST2, COL16A1 and the highly type-I IFN-stimulated genes ISG12A and 6-16 displayed insignificant variations. Conversely, HOXB2 and ISG20 transcriptions were significantly reduced in endometriosis lesions compared with endometrium from endometriosis patients and healthy controls. In conclusion, appropriate HKGs for normalization of qRT-PCR studies of endometrium and endometriosis have been identified here. Abolished expression of ISG20 and HOX genes could be important in endometriosis.
Shaw, Patrick J; Ditewig, Amy C; Waring, Jeffrey F; Liguori, Michael J; Blomme, Eric A; Ganey, Patricia E; Roth, Robert A
2009-01-01
The antibiotic trovafloxacin (TVX) has caused severe idiosyncratic hepatotoxicity in people, whereas levofloxacin (LVX) has not. Mice cotreated with TVX and lipopolysaccharide (LPS), but not with LVX and LPS, develop severe hepatocellular necrosis. Mice were treated with TVX and/or LPS, and hepatic gene expression changes were measured before liver injury using gene array. Hepatic gene expression profiles from mice treated with TVX/LPS clustered differently from those treated with LPS or TVX alone. Several of the probe sets expressed differently in TVX/LPS-treated mice were involved in interferon (IFN) signaling and the janus kinase/signal transducers and activators of transcription (JAK/STAT) pathway. A time course of plasma concentrations of IFN-gamma and interleukin (IL)-18, which directly induces IFN-gamma production, revealed that both cytokines were selectively increased in TVX/LPS-treated mice. Both IL-18(-/-) and IFN-gamma(-/-) mice were significantly protected from TVX/LPS-induced liver injury. In addition, IFN-gamma(-/-) mice had decreased plasma concentrations of tumor necrosis factor-alpha, IL-18, and IL-1beta when compared to wild-type mice. In conclusion, the altered expression of genes involved in IFN signaling in TVX/LPS-treated mice led to the finding that IL-18 and IFN-gamma play a critical role in TVX/LPS-induced liver injury.
von Recum-Knepper, Jessica; Sadewasser, Anne; Weinheimer, Viola K.
2015-01-01
ABSTRACT Influenza A virus (IAV) infection provokes an antiviral response involving the expression of type I and III interferons (IFN) and IFN-stimulated genes (ISGs) in infected cell cultures. However, the spatiotemporal dynamics of the IFN reaction are incompletely understood, as previous studies investigated mainly the population responses of virus-infected cultures, although substantial cell-to-cell variability has been documented. We devised a fluorescence-activated cell sorting-based assay to simultaneously quantify expression of viral antigens and ISGs, such as ISG15, MxA, and IFIT1, in IAV-infected cell cultures at the single-cell level. This approach revealed that seasonal IAV triggers an unexpected asymmetric response, as the major cell populations expressed either viral antigen or ISG, but rarely both. Further investigations identified a role of the viral NS1 protein in blocking ISG expression in infected cells, which surprisingly did not reduce paracrine IFN signaling to noninfected cells. Interestingly, viral ISG control was impaired in cultures infected with avian-origin IAV, including the H7N9 virus from eastern China. This phenotype was traced back to polymorphic NS1 amino acids known to be important for stable binding of the polyadenylation factor CPSF30 and concomitant suppression of host cell gene expression. Most significantly, mutation of two amino acids within the CPSF30 attachment site of NS1 from seasonal IAV diminished the strict control of ISG expression in infected cells and substantially attenuated virus replication. In conclusion, our approach revealed an asymmetric, NS1-dependent ISG induction in cultures infected with seasonal IAV, which appears to be essential for efficient virus propagation. IMPORTANCE Interferons are expressed by infected cells in response to IAV infection and play important roles in the antiviral immune response by inducing hundreds of interferon-stimulated genes (ISGs). Unlike many previous studies, we investigated the ISG response at the single-cell level, enabling novel insights into this virus-host interaction. Hence, cell cultures infected with seasonal IAV displayed an asymmetric ISG induction that was confined almost exclusively to noninfected cells. In comparison, ISG expression was observed in larger cell populations infected with avian-origin IAV, suggesting a more resolute antiviral response to these strains. Strict control of ISG expression by seasonal IAV was explained by the binding of the viral NS1 protein to the polyadenylation factor CPSF30, which reduces host cell gene expression. Mutational disruption of CPSF30 binding within NS1 concomitantly attenuated ISG control and replication of seasonal IAV, illustrating the importance of maintaining an asymmetric ISG response for efficient virus propagation. PMID:25903337
Müller, M; Laxton, C; Briscoe, J; Schindler, C; Improta, T; Darnell, J E; Stark, G R; Kerr, I M
1993-01-01
Mutants in complementation group U3, completely defective in the response of all genes tested to interferons (IFNs) alpha and gamma, do not express the 91 and 84 kDa polypeptide components of interferon-stimulated gene factor 3 (ISGF3), a transcription factor known to play a primary role in the IFN-alpha response pathway. The 91 and 84 kDa polypeptides are products of a single gene. They result from differential splicing and differ only in a 38 amino acid extension at the C-terminus of the 91 kDa polypeptide. Complementation of U3 mutants with cDNA constructs expressing the 91 kDa product at levels comparable to those observed in induced wild-type cells completely restored the response to both IFN-alpha and -gamma and the ability to form ISGF3. Complementation with the 84 kDa component similarly restored the ability to form ISGF3 and, albeit to a lower level, the IFN-alpha response of all genes tested so far. It failed, however, to restore the IFN-gamma response of any gene analysed. The precise nature of the DNA motifs and combination of factors required for the transcriptional response of all genes inducible by IFN-alpha and -gamma remains to be established. The results presented here, however, emphasize the apparent general requirement of the 91 kDa polypeptide in the primary transcriptional response to both types of IFN. Images PMID:7693454
Curcumin induces apoptosis in human leukemic cell lines through an IFIT2-dependent pathway
Zhang, Yonglu; Kong, Yunyuan; Liu, Shuyuan; Zeng, Lingbing; Wan, Lagen; Zhang, Zhanglin
2017-01-01
ABSTRACT Curcumin, the primary bioactive component isolated from turmeric, has been shown to possess variety of biologic functions including anti-cancer activity. However, molecular mechanisms in different cancer cells are various. In the present study, we demonstrated that curcumin induced G2/M cell cycle arrest and apoptosis by increasing the expression levels of cleaved caspase-3, cleaved PARP and decreasing the expression of BCL−2 in U937 human leukemic cells but not in K562 cells. We found some interferon induced genes, especially interferon-induced protein with tetratricopeptide repeats 2 (IFIT2), were significantly upregulated when treated with curcumin in U937 cells by gene expression chip array, and further confirmed that the expression of IFIT2 was obviously higher in U937 than that in K562 cells by Western blot assay. In addition, inhibiting the expression of IFIT2 by shRNA in U937 rescued curcumin-induced apoptosis and exogenous overexpression of IFIT2 by lentiviral transduction or treating with IFNγ in K562 cells enhanced anti-cancer activity of curcumin. These results indicated for the first time that curcumin induced leukemic cell apoptosis via an IFIT2-dependent signaling pathways. The present study identified a novel mechanism underlying the antitumor effects of curcumin, and may provide a theoretical basis for curcumin combined with interferon in the cancer therapeutics. PMID:28071969
Mignot, Clémence C; Pirottin, Dimitri; Farnir, Frédéric; de Moffarts, Brieuc; Molitor, Céline; Lekeux, Pierre; Art, Tatiana
2012-06-30
The effects of strenuous exercise and ex vivo stimulation of TLR3 and TLR4 pathways on the expression of six inflammatory genes in equine pulmonary leukocytes were investigated. The genes tested were interferon-beta (IFN-β), interleukin-1-beta (IL-1β), interleukin-6 (IL-6), interferon gamma-induced protein 10 (IP-10), chemokine (c-c motif) ligand 5 (RANTES) and tumor necrosis factor-alpha (TNF-α). We hypothesized that strenuous exercise would modulate basal gene expression on one hand and modulate the response to bacterial lipopolysaccharide (LPS) and to polyinosinic:polycytidylic acid (Poly IC) on the other hand. Eight young Thoroughbred mares were selected for the experiment. Bronchoalveolar lavages were performed on horses 48 h before and 24h after the completion of treadmill exercise until fatigue. Differential counts were performed on the bronchoalveolar lavage cells. Real-time PCR was used to quantify cytokine expression in pulmonary leukocytes. Target gene expression was normalized to the expression of three housekeeping genes (HKG). There were no significant differences in the mRNA expression of the six cytokines between pre-exercise and post-exercise cells. LPS and Poly IC induced respectively significant increases of TNF-α, IFN-β, IL-6, IL-1β, and TNF-α, IFN-β, IP-10 and RANTES, both before and after exercise. However, exercise induced a significant decrease of the genes response to LPS and Poly IC. These findings may suggest that strenuous treadmill exercise exerts a deleterious effect on part of the pulmonary immune response in horses 24h following an intense physical activity. Copyright © 2012 Elsevier B.V. All rights reserved.
Activation of Stimulator of Interferon Genes (STING) and Sjögren Syndrome.
Papinska, J; Bagavant, H; Gmyrek, G B; Sroka, M; Tummala, S; Fitzgerald, K A; Deshmukh, U S
2018-03-01
Sjögren syndrome (SS), a chronic autoimmune disorder causing dry mouth, adversely affects the overall oral health in patients. Activation of innate immune responses and excessive production of type I interferons (IFNs) play a critical role in the pathogenesis of this disorder. Recognition of nucleic acids by cytosolic nucleic acid sensors is a major trigger for the induction of type I IFNs. Upon activation, cytosolic DNA sensors can interact with the stimulator of interferon genes (STING) protein, and activation of STING causes increased expression of type I IFNs. The role of STING activation in SS is not known. In this study, to investigate whether the cytosolic DNA sensing pathway influences SS development, female C57BL/6 mice were injected with a STING agonist, dimethylxanthenone-4-acetic acid (DMXAA). Salivary glands (SGs) were studied for gene expression and inflammatory cell infiltration. SG function was evaluated by measuring pilocarpine-induced salivation. Sera were analyzed for cytokines and autoantibodies. Primary SG cells were used to study the expression and activation of STING. Our data show that systemic DMXAA treatment rapidly induced the expression of Ifnb1, Il6, and Tnfa in the SGs, and these cytokines were also elevated in circulation. In contrast, increased Ifng gene expression was dominantly detected in the SGs. The type I innate lymphoid cells present within the SGs were the major source of IFN-γ, and their numbers increased significantly within 3 d of treatment. STING expression in SGs was mainly observed in ductal and interstitial cells. In primary SG cells, DMXAA activated STING and induced IFN-β production. The DMXAA-treated mice developed autoantibodies, sialoadenitis, and glandular hypofunction. Our study demonstrates that activation of the STING pathway holds the potential to initiate SS. Thus, apart from viral infections, conditions that cause cellular perturbations and accumulation of host DNA within the cytosol should also be considered as possible triggers for SS.
Ferreira, Ricardo C.; Guo, Hui; Coulson, Richard M.R.; Smyth, Deborah J.; Pekalski, Marcin L.; Burren, Oliver S.; Cutler, Antony J.; Doecke, James D.; Flint, Shaun; McKinney, Eoin F.; Lyons, Paul A.; Smith, Kenneth G.C.; Achenbach, Peter; Beyerlein, Andreas; Dunger, David B.; Clayton, David G.; Wicker, Linda S.; Bonifacio, Ezio
2014-01-01
Diagnosis of the autoimmune disease type 1 diabetes (T1D) is preceded by the appearance of circulating autoantibodies to pancreatic islets. However, almost nothing is known about events leading to this islet autoimmunity. Previous epidemiological and genetic data have associated viral infections and antiviral type I interferon (IFN) immune response genes with T1D. Here, we first used DNA microarray analysis to identify IFN-β–inducible genes in vitro and then used this set of genes to define an IFN-inducible transcriptional signature in peripheral blood mononuclear cells from a group of active systemic lupus erythematosus patients (n = 25). Using this predefined set of 225 IFN signature genes, we investigated the expression of the signature in cohorts of healthy controls (n = 87), patients with T1D (n = 64), and a large longitudinal birth cohort of children genetically predisposed to T1D (n = 109; 454 microarrayed samples). Expression of the IFN signature was increased in genetically predisposed children before the development of autoantibodies (P = 0.0012) but not in patients with established T1D. Upregulation of IFN-inducible genes was transient, temporally associated with a recent history of upper respiratory tract infections (P = 0.0064), and marked by increased expression of SIGLEC-1 (CD169), a lectin-like receptor expressed on CD14+ monocytes. DNA variation in IFN-inducible genes altered T1D risk (P = 0.007), as exemplified by IFIH1, one of the genes in our IFN signature for which increased expression is a known risk factor for disease. These findings identify transient increased expression of type I IFN genes in preclinical diabetes as a risk factor for autoimmunity in children with a genetic predisposition to T1D. PMID:24561305
Abdoon, Ahmed Sabry; Giraud-Delville, Corrine; Kandil, Omaima Mohamed; Kerboeuf-Giraud, Annelye; Eozénou, Caroline; Carvalho, Anais Vitorino; Julian, Skidmore; Sandra, Olivier
2017-03-01
Maternal recognition of pregnancy (MRP) and implantation involve appropriate interactions between the elongating conceptus and the receptive endometrium that will condition development of the feto-placental unit to term. Molecular mechanisms that take place at the conceptus-endometrium interface during early pregnancy have been extensively investigated in domestic ungulates but they are still poorly understood in camelids including the dromedary camel (Camelus dromedarius), a domestic species with important economic and social roles in arid and semi-arid areas. In order to better understand how MRP and implantation take place in the left horn of this species, we investigated expression levels of genes encoding steroid hormones (PGR, ESR1), transcription factors (STAT1, FOXL2), interferon stimulated genes (MX1, MX2, OAS1, RSAD2) including SOCS genes (SOCS1, SOCS2, SOCS3 and CISH), previously identified as conceptus regulated genes in the endometrium of other domestic animals. Using endometrial tissue collected from left and right uterine horns of dromedary camel females that were non pregnant or early pregnant, gene expression of these genes was detected and our results provided first insights on their regulation, showing that (i) conceptus implantation is not associated with an IFN response in the pregnant uterine horn (ii) when regulation of classical interferon-stimulated genes (ISG) occurs, it takes place during the formation of the feto-placental unit, and (iii) gene expression can differ between the left and right uterine horns during implantation and early placentation phase. Additional experiments will be required in dromedary camels to understand the unusual regulation of ISG during implantation as well as to determine the molecular processes that drive the systematic implantation of the elongating conceptus in the left uterine horn. Copyright © 2017 Elsevier Inc. All rights reserved.
T-lymphocyte and cytokine expression in human inflammatory periapical lesions.
de Brito, Luciana Carla Neves; Teles, Flávia Rocha Fonseca; Teles, Ricardo Palmier; Totola, Antônio Helvécio; Vieira, Leda Quércia; Sobrinho, Antônio Paulino Ribeiro
2012-04-01
Lymphocytes, among many cells, express different sets of cytokines, chemokines, and receptors, which are considered important mediators of periapical immune response to infection. The aim of this study was to evaluate the mRNA expression of CD4(+)CD28(+) and CD8(+) T genes and the gene expression of interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-17A, IL-10, CCL2/MCP-1, CCL4, CCL5, CXCR4, CCR5, and receptor activator for nuclear factor kappa B ligand (RANKL) in periapical interstitial fluid from human root canal infections. The samples were collected immediately after root canal cleaning and 7 days later (restrained root canal bacterial load) to characterize those gene expressions. Real-time polymerase chain reaction demonstrated significantly higher levels of CD4(+)CD28(+) and CD8(+) T-cell markers in the former root canal condition and an increase of IL-10 and CXCR4, followed by a decrease of proinflammatory cytokines such as RANKL, interferon-γ, IL-1β, and CCL5. Analyses of T-lymphocyte and cytokine expression in periapical area were able to show that distinct root canal conditions might play regulatory roles in controlling local immune/inflammatory processes. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Voels, Brent; Wang, Liping; Sens, Donald A; Garrett, Scott H; Zhang, Ke; Somji, Seema
2017-05-25
The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell's ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation.
Ohsugi, Tomoyuki; Yamaguchi, Kiyoshi; Zhu, Chi; Ikenoue, Tsuneo; Furukawa, Yoichi
2017-01-01
Impaired Wnt signaling pathway plays a crucial role in the development of colorectal cancer through activation of the β-catenin/TCF7L2 complex. Although genes up-regulated by Wnt/β-catenin signaling have been intensively studied, the roles of down-regulated genes are poorly understood. In this study, we explored a global gene expression of colorectal cancer cells transfected with β-catenin siRNAs or a dominant negative form of TCF7L2 (dnTCF7L2), and identified a set of genes down-regulated by Wnt/β-catenin signaling. Among the genes, we focused here on IFIT2, a gene encoding interferon-induced protein with tetratricopeptide repeats. A reporter assay using plasmids containing a 5’-flanking region of the gene showed that the reporter activity was enhanced by either transduction of β-catenin siRNA or dnTCF7L2, suggesting that the region is involved in the transcriptional regulation as a downstream of the β-catenin/TCF7L2 complex. Consistent with this result, expression of IFIT2 was significantly lower in colorectal cancer tissues than that in normal tissues. Exogenous IFIT2 expression decreased cell proliferation and increased apoptosis of colorectal cancer cells. These data suggested that the down-regulation of IFIT2 by Wnt/β-catenin signaling may play a vital role in human colorectal carcinogenesis through the suppression of apoptosis. PMID:29245969
Kiermer, V; Van Lint, C; Briclet, D; Vanhulle, C; Kettmann, R; Verdin, E; Burny, A; Droogmans, L
1998-07-01
Bovine leukemia virus (BLV) replication is controlled by both cis- and trans-acting elements. The virus-encoded transactivator, Tax, is necessary for efficient transcription from the BLV promoter, although it is not present during the early stages of infection. Therefore, sequences that control Tax-independent transcription must play an important role in the initiation of viral gene expression. This study demonstrates that the R-U5 sequence of BLV stimulates Tax-independent reporter gene expression directed by the BLV promoter. R-U5 was also stimulatory when inserted immediately downstream from the transcription initiation site of a heterologous promoter. Progressive deletion analysis of this region revealed that a 46-bp element corresponding to the 5' half of U5 is principally responsible for the stimulation. This element exhibited enhancer activity when inserted upstream or downstream from the herpes simplex virus thymidine kinase promoter. This enhancer contains a binding site for the interferon regulatory factors IRF-1 and IRF-2. A 3-bp mutation that destroys the IRF recognition site caused a twofold decrease in Tax-independent BLV long terminal repeat-driven gene expression. These observations suggest that the IRF binding site in the U5 region of BLV plays a role in the initiation of virus replication.
Xue, Leixi; Liu, Lei; Huang, Jun; Wen, Jian; Yang, Ru; Bo, Lin; Tang, Mei; Zhang, Yi; Liu, Zhichun
2017-01-01
Type I interferon (IFN) plays a central role in pathogenesis of systemic lupus erythematosus (SLE); tumor necrosis factor-like weak inducer of apoptosis (TWEAK) has been associated with a pathogenic role in lupus nephritis (LN). Thus we investigated whether TWEAK could induce the activation of type I IFN pathway in LN. We examined this in patient-derived peripheral blood mononuclear cells (PBMCs) as well as MRL/lpr mice, a murine LN model. Relative to the control cohorts, MRL/lpr mice showed severe histological changes, high index levels of renal damage, and elevated expression of type I IFN-inducible genes. After shRNA suppression of TWEAK, we observed that renal damage was significantly attenuated and expression of type I IFN-inducible genes was reduced in MRL/lpr mice. In parallel, siRNA of TWEAK also significantly reduced the expression of type I IFN-inducible genes in PBMCs relative to control transfections. In PBMCs, TWEAK stimulation also led to expression of type I IFN-inducible genes. Our results illustrate a novel regulatory role of TWEAK, in which its activity positively regulates type I IFN pathway in LN based on preclinical models. Our findings suggest TWEAK could act as a critical target in preventing renal damage in patients with LN.
Gene networks specific for innate immunity define post-traumatic stress disorder.
Breen, M S; Maihofer, A X; Glatt, S J; Tylee, D S; Chandler, S D; Tsuang, M T; Risbrough, V B; Baker, D G; O'Connor, D T; Nievergelt, C M; Woelk, C H
2015-12-01
The molecular factors involved in the development of Post-Traumatic Stress Disorder (PTSD) remain poorly understood. Previous transcriptomic studies investigating the mechanisms of PTSD apply targeted approaches to identify individual genes under a cross-sectional framework lack a holistic view of the behaviours and properties of these genes at the system-level. Here we sought to apply an unsupervised gene-network based approach to a prospective experimental design using whole-transcriptome RNA-Seq gene expression from peripheral blood leukocytes of U.S. Marines (N=188), obtained both pre- and post-deployment to conflict zones. We identified discrete groups of co-regulated genes (i.e., co-expression modules) and tested them for association to PTSD. We identified one module at both pre- and post-deployment containing putative causal signatures for PTSD development displaying an over-expression of genes enriched for functions of innate-immune response and interferon signalling (Type-I and Type-II). Importantly, these results were replicated in a second non-overlapping independent dataset of U.S. Marines (N=96), further outlining the role of innate immune and interferon signalling genes within co-expression modules to explain at least part of the causal pathophysiology for PTSD development. A second module, consequential of trauma exposure, contained PTSD resiliency signatures and an over-expression of genes involved in hemostasis and wound responsiveness suggesting that chronic levels of stress impair proper wound healing during/after exposure to the battlefield while highlighting the role of the hemostatic system as a clinical indicator of chronic-based stress. These findings provide novel insights for early preventative measures and advanced PTSD detection, which may lead to interventions that delay or perhaps abrogate the development of PTSD.
Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Honjoh, Chisato; Kato, Yuji; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao
2016-12-08
Interferon-α (IFN-α) and IFN-λ are structurally distinct cytokines that bind to different receptors, but induce expression of similar sets of genes through Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathways. The difference between IFN-α and IFN-λ signaling remains poorly understood. Here, using the CRISPR/Cas9 system, we examine the role of STAT1 and STAT2 in the inhibition of hepatitis C virus (HCV) replication by IFN-α and IFN-λ. Treatment with IFN-α increases expression of IFN-stimulated genes (ISGs) such as double-stranded RNA-activated protein kinase (PKR) and decreases viral RNA and protein levels in HCV-infected Huh-7.5 human hepatoma cells. These responses are only partially attenuated by knockout of STAT1 but are abolished by knockout of STAT2. In contrast, the inhibition of HCV replication by IFN-λ is abolished by knockout of STAT1 or STAT2. Microarray analysis reveals that IFN-α but not IFN-λ can induce expression of the majority of ISGs in STAT1 knockout cells. These findings suggest that IFN-α can inhibit HCV replication through a STAT2-dependent but STAT1-independent pathway, whereas IFN-λ induces ISG expression and inhibits HCV replication exclusively through a STAT1- and STAT2-dependent pathway.
Yamauchi, Shota; Takeuchi, Kenji; Chihara, Kazuyasu; Honjoh, Chisato; Kato, Yuji; Yoshiki, Hatsumi; Hotta, Hak; Sada, Kiyonao
2016-01-01
Interferon-α (IFN-α) and IFN-λ are structurally distinct cytokines that bind to different receptors, but induce expression of similar sets of genes through Janus kinase (JAK)-signal transducers and activators of transcription (STAT) pathways. The difference between IFN-α and IFN-λ signaling remains poorly understood. Here, using the CRISPR/Cas9 system, we examine the role of STAT1 and STAT2 in the inhibition of hepatitis C virus (HCV) replication by IFN-α and IFN-λ. Treatment with IFN-α increases expression of IFN-stimulated genes (ISGs) such as double-stranded RNA-activated protein kinase (PKR) and decreases viral RNA and protein levels in HCV-infected Huh-7.5 human hepatoma cells. These responses are only partially attenuated by knockout of STAT1 but are abolished by knockout of STAT2. In contrast, the inhibition of HCV replication by IFN-λ is abolished by knockout of STAT1 or STAT2. Microarray analysis reveals that IFN-α but not IFN-λ can induce expression of the majority of ISGs in STAT1 knockout cells. These findings suggest that IFN-α can inhibit HCV replication through a STAT2-dependent but STAT1-independent pathway, whereas IFN-λ induces ISG expression and inhibits HCV replication exclusively through a STAT1- and STAT2-dependent pathway. PMID:27929099
Purcell, Maureen K.; Kurath, Gael; Garver, Kyle A.; Herwig, Russell P.; Winton, James R.
2004-01-01
Infectious haematopoietic necrosis virus (IHNV) is a well-studied virus of salmonid fishes. A highly efficacious DNA vaccine has been developed against this virus and studies have demonstrated that this vaccine induces both an early and transient non-specific anti-viral phase as well as long-term specific protection. The mechanisms of the early anti-viral phase are not known, but previous studies noted changes in Mx gene expression, suggesting a role for type I interferon. This study used quantitative real-time reverse transcriptase PCR methodology to compare expression changes over time of a number of cytokine or cytokine-related genes in the spleen of rainbow trout following injection with poly I:C, live IHNV, the IHNV DNA vaccine or a control plasmid encoding the non-antigenic luciferase gene. The target genes included Mx-1, viral haemorrhagic septicaemia virus induced gene 8 (Vig-8), TNF-α1, TNF-α2, IL-1β1, IL-8, TGF-β1 and Hsp70. Poly I:C stimulation induced several genes but the strongest and significant response was observed in the Mx-1 and Vig-8 genes. The live IHN virus induced a significant response in all genes examined except TGF-β1. The control plasmid construct and the IHNV DNA vaccine marginally induced a number of genes, but the main difference between these two groups was a statistically significant induction of the Mx-1 and Vig-8 genes by the IHNV vaccine only. The gene expression profiles elicited by the live virus and the IHNV DNA vaccine differed in a number of aspects but this study confirms the clear role for a type I interferon-like response in early anti-viral defence.
Price, Aryn A; Tedesco, Dana; Prasad, Mona R; Workowski, Kimberly A; Walker, Christopher M; Suthar, Mehul S; Honegger, Jonathan R; Grakoui, Arash
2016-09-20
Maternal innate and adaptive immune responses are modulated during pregnancy to concurrently defend against infection and tolerate the semiallogeneic fetus. The restoration of these systems after childbirth is poorly understood. We reasoned that enhanced innate immune activation may extend beyond gestation while adaptive immunity recovers. To test this hypothesis, the transcriptional profiles of total peripheral blood mononuclear cells following delivery in healthy women were compared with those of nonpregnant control subjects. Interestingly, interferon-stimulated genes (ISGs) encoding proteins such as IFIT1, IFIT2, and IFIT3, as well as signaling proteins such as STAT1, STAT2, and MAVS, were enriched postpartum. Antiviral genes were primarily expressed in CD14(+) cells and could be stratified according to genetic variation at the interferon-λ3 gene (IFNL3, also named IL28B) SNP rs12979860. Antiviral gene expression was sustained beyond 6 mo following delivery in mothers with a CT or TT genotype, but resembled baseline nonpregnant control levels following delivery in mothers with a CC genotype. CT and TT IFNL3 genotypes have been associated with persistent elevated ISG expression in individuals chronically infected with hepatitis C virus. Together, these data suggest that postpartum, the normalization of the physiological rheostat controlling IFN signaling depends on IFNL3 genotype.
Morse, Herbert C.
2011-01-01
IRF8 (Interferon Regulatory Factor 8) is a transcription factor expressed throughout B cell differentiation except for mature plasma cells. Previous studies showed it is part of the transcriptional network governing B cell specification and commitment in the bone marrow, regulates the distribution of mature B cells into the splenic follicular and marginal zone compartments, and is expressed at highest levels in germinal center (GC) B cells. Here, we investigated the transcriptional programs and signaling pathways affected by IRF8 in human and mouse GC B cells as defined by ChIP-chip analyses and transcriptional profiling. We show that IRF8 binds a large number of genes by targeting two distinct motifs, half of which are also targeted by PU.1. Over 70% of the binding sites localized to proximal and distal promoter regions with ∼25% being intragenic. There was significant enrichment among targeted genes for those involved in innate and adaptive immunity with over 30% previously defined as interferon stimulated genes. We also showed that IRF8 target genes contributes to multiple aspects of the biology of mature B cells including critical components of the molecular crosstalk among GC B cells, T follicular helper cells, and follicular dendritic cells. PMID:22096565
Yang, Shih-Yi; Yang, Jui-Yung; Hsiao, Yen-Chang; Chuang, Shiow-Shuh
2017-01-01
The formation of hypertrophic scaring (HSc) is an abnormal wound-healing response. In a previous study, an animal model with human scar tissue implanted into nude mice (BALB/c) has been successfully established. The effects of verapamil as well as combination therapy with verapamil and kenacort have been studied and compared. To treat persistent hypertrophic scars, local injection of drugs composed of steroids, calcium channel blockers (CCBs), and interferon might be a good method. What is the best dose of the regimen and what are the mechanisms are also a worthwhile study. Scar specimens were harvested from patients with HSc or Keloid resulting from burn injury, and then implanted to BALB/c-nu nude mice for 4 weeks. Before implantation, the specimen was either injected with or without drugs such as steroids (kenacort), CCBs (verapamil), and interferons (INFα2b), respectively. After the removal of implants, quantitative gene expressions of decorin and collagenase (MMP13) were measured using a real-time polymerase chain reaction to detect their mRNAs. Two way-ANOVA and Post Hoc were used for statistical analysis using the software SPSS 15.0. All drug-treated groups increased the expressions of decorin and MMP13 in comparison with those in noninjected group (p < .001) in a dose-dependent manner. Comparing equal amounts of individual drugs, gene expression of decorin was increased with increasing injection amount, and the best result in low amount of injection (0.02 mL of each) was shown in the group injected with INFα2b followed by kenacort and verapamil. However, the results were changed while injection amount was up to 0.04 mL and the strongest decorin gene expression was found in kenacort injection. Regarding MMP-13 expression, low-amount injection (0.02 mL) of INFα2b has strongest gene expression followed by kenacort and verapamil, but in the large-amount regimes (0.04 mL), verapamil had strongest gene expression followed by INFα2b and kenacort. This study showed that the kenacort, verapamil, and INFα2b all inhibited HSc in a dose-dependent manner through the evidence of gene expression of decorin and MMP13. In comparison with the injections between small amounts of drugs, INFα2b potentiated the strongest decorin and MMP13 expression. On the contrary, among the large-amount injection regimes, kenacrot was more effective on decorin expression as verapamil to MMP13 expression. To decrease side effects from the drugs and produce promising results for the clinical practice, it is suggested to maintain the dose of INFα2b along with an increased dose of verapamil for HSc improvement.
Miller, Laura C; Jiang, Zhihua; Sang, Yongming; Harhay, Gregory P; Lager, Kelly M
2014-06-15
Studies have found that a cluster of duplicated gene loci encoding the interferon-inducible transmembrane proteins (IFITMs) family have antiviral activity against several viruses, including influenza A virus. The gene family has 5 and 7 members in humans and mice, respectively. Here, we confirm the current annotation of pig IFITM1, IFITM2, IFITM3, IFITM5, IFITM1L1 and IFITM1L4, manually annotated IFITM1L2, IFITM1L3, IFITM5L, IFITM3L1 and IFITM3L2, and provide expressed sequence tag (EST) and/or mRNA evidence, not contained with the NCBI Reference Sequence database (RefSeq), for the existence of IFITM6, IFITM7 and a new IFITM1-like (IFITM1LN) gene in pigs. Phylogenic analyses showed seven porcine IFITM genes with highly conserved human/mouse orthologs known to have anti-viral activity. Digital Gene Expression Tag Profiling (DGETP) of swine tracheobronchial lymph nodes (TBLN) of pigs infected with swine influenza virus (SIV), porcine pseudorabies virus, porcine reproductive and respiratory syndrome virus or porcine circovirus type 2 over 14 days post-inoculation (dpi) showed that gene expression abundance differs dramatically among pig IFITM family members, ranging from 0 to over 3000 tags per million. In particular, SIV up-regulated IFITM1 by 5.9 fold at 3 dpi. Bayesian framework further identified pig IFITM1 and IFITM3 as differentially expressed genes in the overall transcriptome analysis. In addition to being a component of protein complexes involved in homotypic adhesion, the IFITM1 is also associated with pathways related to regulation of cell proliferation and IFITM3 is involved in immune responses. Published by Elsevier B.V.
[The expression of interferon-lambda1 in CHO cell].
Yuan, Wu-Mei; Ma, Fen-Lian; Zhang, Qian; Zheng, Wen-Zhi; Zheng, Li-Shu
2013-06-01
To construct the eukaryotic expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which linked the enhancer SP163 with interferon lambda1. Then express the interferon lambda1 in CHO (dhfr-) cells. Using PCR method to introduce the restriction enzyme sites and through the fusion PCR binding the enhancer with the interferon Lambda1. After sequenced, lambda1 and SP163-lambda1 was inserted into PCI-dhfr forming the expression vector PCI-dhfr-lambda1 and PCI-dhfr-SP163-lambda1 which was constructed successfully confirming by sequencing. Then the expressing vectors were transfected into CHO (dhfr-) cells using liposome transfection method and interferon lambda1 protein was assayed with indirect immunofluorescence and Western Blot. Using cytopathic effect inhibition evaluated the antiviral activity of interferon lambda1. Successfully constructing the eukaryotic expression vectors of interferon lambda and the vectors could express interferon lambda1. The result of immunofluorescence showed the enhancer developed the expression of interferon lambda1. Detecting the interferon lambda1 in CHO (dhfr-) cells after transfecting 48 hour using Western Blot. The cytopathic effect inhibition showed the expressed interferon lambda1 has the antiviral activity. Successfully expressed the interferon lambda1 in CHO (dhfr-) cells and the protein possesses antiviral activity, which may supply a valuable basis for building the stable cell line of interferon lambda1.
Sun, Jinhua; Chen, Yinglin; Qin, Feiyue; Guan, Xueting; Xu, Wei; Xu, Liangmei
2017-06-01
Interferons have attracted considerable attention due to their vital roles in the host immune response and low induction of antibiotic resistance. In this study, total RNA was extracted from spleen cells of chicken embryos inoculated with Newcastle disease vaccine, and the full-length chicken interferon-γ (ChIFN-γ) gene was amplified by RT-PCR. The full complementary DNA sequence of the ChIFN-γ gene was 495 bp long and was cloned into the prokaryotic expression vector pProEX™HT b . The plasmid was transformed into Escherichia coli DH5α and the expression of ChIFN-γ was induced by isopropyl β-D-1-thiogalactopyranoside. Sodium dodecyl sulfate - polyacrylamide gel electrophoresis and Western blot results showed the expressed fusion protein had a molecular weight of approximately 18 kDa and was recognized by an anti-His mAb. Moreover, ChIFN-γ was found to demonstrate anti-viral activity in vitro. To test the in vivo function of ChIFN-γ in broilers under heat stress, a total of 100 broilers were randomly assigned to either a control group or a treated group, in which they were hypodermically injected with recombinant ChIFN-γ. Results demonstrated ChIFN-γ affects the messenger RNA expression levels of heat shock protein 70 (HSP70) in the heart and lung tissues, and decreases the concentration of HSP70 in serum. Therefore, we conclude recombinant ChIFN-γ can reduce heat stress to some extent in vivo. © 2016 Japanese Society of Animal Science.
Tian, Bing; Zhao, Yingxin; Kalita, Mridul; Edeh, Chukwudi B.; Paessler, Slobodan; Casola, Antonella; Teng, Michael N.; Garofalo, Roberto P.
2013-01-01
Respiratory syncytial virus (RSV) is a negative-sense single-stranded RNA virus responsible for lower respiratory tract infections. During infection, the presence of double-stranded RNA (dsRNA) activates the interferon (IFN) regulatory factor 3 (IRF3) transcription factor, an event triggering expression of immediate early, IFN-stimulated genes (ISGs). We examine the role of transcriptional elongation in control of IRF3-dependent ISG expression. RSV infection induces ISG54, ISG56, and CIG5 gene expression in an IRF3-dependent manner demonstrated by IRF3 small interfering RNA (siRNA) silencing in both A549 epithelial cells and IRF3−/− MEFs. ISG expression was mediated by the recruitment of IRF3, CDK9, polymerase II (Pol II), and phospho-Ser2 carboxy-terminal domain (CTD) Pol II to the IFN-stimulated response element (ISRE) binding sites of the IRF3-dependent ISG promoters in native chromatin. We find that RSV infection enhances the activated fraction of cyclin-dependent kinase 9 (CDK9) by promoting its association with bromodomain 4 (BRD4) and disrupting its association with the inhibitory 7SK small nuclear RNA. The requirement of CDK9 activity for ISG expression was shown by siRNA-mediated silencing of CDK9 and by a selective CDK9 inhibitor in A549 cells. In contrast, RSV-induced beta interferon (IFN-β) expression is not influenced by CDK9 inhibition. Using transcript-selective quantitative real-time reverse transcription-PCR (Q-RT-PCR) assays for the ISG54 gene, we observed that RSV induces transition from short to fully spliced mRNA transcripts and that this transition is blocked by CDK9 inhibition in both A549 and primary human small airway epithelial cells. These data indicate that transcription elongation plays a major role in RSV-induced ISG expression and is mediated by IRF3-dependent recruitment of activated CDK9. CDK9 activity may be a target for immunomodulation in RSV-induced lung disease. PMID:23596302
Scherer, Christina A.; Magness, Charles L.; Steiger, Kathryn V.; Poitinger, Nicholas D.; Caputo, Christine M.; Miner, Douglas G.; Winokur, Patricia L.; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A.; Gillham, Martha H.; Haulman, N. Jean; Stapleton, Jack T.; Iadonato, Shawn P.
2007-01-01
Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents. PMID:17651872
Müller, J-M V; Wissemann, J; Meli, M L; Dasen, G; Lutz, H; Heinzerling, L; Feige, K
2011-11-01
Whole blood pharmacokinetics of intratumourally injected naked plasmid DNA coding for equine Interleukin 12 (IL-12) was assessed as a means of in vivo gene transfer in the treatment of melanoma in grey horses. The expression of induced interferon gamma (IFN-g) was evaluated in order to determine the pharmacodynamic properties of in vivo gene transduction. Seven grey horses bearing melanoma were injected intratumourally with 250 µg naked plasmid DNA coding for IL-12. Peripheral blood and biopsies from the injection site were taken at 13 time points until day 14 post injection (p.i.). Samples were analysed using quantitative real-time PCR. Plasmid DNA was quantified in blood samples and mRNA expression for IFN-g in tissue samples. Plasmid DNA showed fast elimination kinetics with more than 99 % of the plasmid disappearing within 36 hours. IFN-g expression increased quickly after IL-12 plasmid injection, but varied between individual horses. Intratumoural injection of plasmid DNA is a feasible method for inducing transgene expression in vivo. Biological activity of the transgene IL-12 was confirmed by measuring expression of IFN-g.
DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis
Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra
2016-01-01
Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227
Švančarová, P; Svetlíková, D; Betáková, T
2015-06-01
RNA interference (RNAi) represents a form of post-transcriptional gene silencing mediated by small interfering RNAs (siRNA) and provides a powerful tool to specifically inhibit viral infection. To investigate therapeutic capacity of siRNAs targeting M gene, six vectors with U1-short hairpin RNA (shRNA) expression system were prepared and tested in infected cells and animals. In infected cells, three of six shRNAs targeting M1 gene significantly (P <0,01) reduced the virus titer to 66%, 45% or 21%, respectively. Replication of IAV and levels of M1 RNAs were significantly reduced in the cells transfected with shRNAs, which decreased the virus titer. IFN-α/β altered in shRNAs-treated cells. The level of IFN-λ (type III interferon) mRNA was significantly increased in the infected cells treated with shM22, shM349, shM522, and (type I interferon) as well as IP-10 (type II interferon) mRNAs were not significantly their mixtures. The increased level of IFN-λ mRNA corresponded to significantly increased level of RIG-1 mRNA. shRNAs inhibited influenza virus infection in a gene-specific manner in co-operation with IFN-λ. Some constructs targeting the M1 transcript prolonged the survival of infected mice.
Immunopathology of childhood celiac disease-Key role of intestinal epithelial cells.
Pietz, Grzegorz; De, Rituparna; Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten; Hammarström, Marie-Louise
2017-01-01
Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease.
Immunopathology of childhood celiac disease—Key role of intestinal epithelial cells
Hedberg, Maria; Sjöberg, Veronika; Sandström, Olof; Hernell, Olle; Hammarström, Sten
2017-01-01
Background & Aims Celiac disease is a chronic inflammatory disease of the small intestine mucosa due to permanent intolerance to dietary gluten. The aim was to elucidate the role of small intestinal epithelial cells in the immunopathology of celiac disease in particular the influence of celiac disease-associated bacteria. Methods Duodenal biopsies were collected from children with active celiac disease, treated celiac disease, and clinical controls. Intestinal epithelial cells were purified and analyzed for gene expression changes at the mRNA and protein levels. Two in vitro models for human intestinal epithelium, small intestinal enteroids and polarized tight monolayers, were utilized to assess how interferon-γ, interleukin-17A, celiac disease-associated bacteria and gluten influence intestinal epithelial cells. Results More than 25 defense-related genes, including IRF1, SPINK4, ITLN1, OAS2, CIITA, HLA-DMB, HLA-DOB, PSMB9, TAP1, BTN3A1, and CX3CL1, were significantly upregulated in intestinal epithelial cells at active celiac disease. Of these genes, 70% were upregulated by interferon-γ via the IRF1 pathway. Most interestingly, IRF1 was also upregulated by celiac disease-associated bacteria. The NLRP6/8 inflammasome yielding CASP1 and biologically active interleukin-18, which induces interferon-γ in intraepithelial lymphocytes, was expressed in intestinal epithelial cells. Conclusion A key factor in the epithelial reaction in celiac disease appears to be over-expression of IRF1 that could be inherent and/or due to presence of undesirable microbes that act directly on IRF1. Dual activation of IRF1 and IRF1-regulated genes, both directly and via the interleukin-18 dependent inflammasome would drastically enhance the inflammatory response and lead to the pathological situation seen in active celiac disease. PMID:28934294
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indukuri, Hemalatha; Castro, Shawn M.; Liao, S.-M.
2006-09-15
Respiratory syncytial virus (RSV)-induced chemokine gene expression occurs through the activation of a subset of transcription factors, including Interferon Regulatory Factor (IRF)-3. In this study, we have investigated the signaling pathway leading to RSV-induced IRF-3 activation and whether it is mediated by intracellular reactive oxygen species (ROS) generation. Our results show that RSV infection induces expression and catalytic activity of IKK{epsilon}, a noncanonical IKK-like kinase. Expression of a kinase-inactive IKK{epsilon} blocks RSV-induced IRF-3 serine phosphorylation, nuclear translocation and DNA-binding, leading to inhibition of RANTES gene transcription, mRNA expression and protein synthesis. Treatment of alveolar epithelial cells with antioxidants or withmore » NAD(P)H oxidase inhibitors abrogates RSV-induced chemokine secretion, IRF-3 phosphorylation and IKK{epsilon} induction, indicating that ROS generation plays a fundamental role in the signaling pathway leading to IRF-3 activation, therefore, identifying a novel molecular target for the development of strategies aimed to modify the inflammatory response associated with RSV infection of the lung.« less
Interferon in lyssavirus infection.
Rieder, Martina; Finke, Stefan; Conzelmann, Karl-Klaus
2012-01-01
Rabies is a zoonosis still claiming more than 50 000 human deaths per year. Typically, human cases are due to infection with rabies virus, the prototype of the Lyssavirus genus, but sporadic cases of rabies-like encephalitis caused by other lyssaviruses have been reported. In contrast to rabies virus, which has an extremely broad host range including many terrestrial warm-blooded animals, rabies-related viruses are associated predominantly with bats and rarely infect terrestrial species. In spite of a very close genetic relationship of rabies and rabies-related viruses, the factors determining the limited host range of rabies-related viruses are not clear. In the past years the importance of viral countermeasures against the host type I interferon system for establishment of an infection became evident. The rabies virus phosphoprotein (P) has emerged as a critical factor required for paralysing the signalling cascades leading to transcriptional activation of interferon genes as well as interferon signalling pathways, thereby limiting expression of antiviral and immune stimulatory genes. Comparative studies would be of interest in order to determine whether differential abilities of the lyssavirus P proteins contribute to the restricted host range of lyssaviruses.
Tan, Juan; Qiao, Wentao; Wang, Jian; Xu, Fengwen; Li, Yue; Zhou, Jun; Chen, Qimin; Geng, Yunqi
2008-01-01
Interferon-induced proteins (IFPs) exert multiple functions corresponding to diverse interferon signals. However, the intracellular functions of many IFPs are not fully characterized. Here, we report that IFP35, a member of the IFP family with a molecular mass of 35 kDa, can interact with the bovine Tas (BTas) regulatory protein of bovine foamy virus (BFV). The interaction involves NID2 (IFP35/Nmi homology domain) of IFP35 and the central domain of BTas. The overexpression of IFP35 disturbs the ability of BTas to activate viral-gene transcription and inhibits viral replication. The depletion of endogenous IFP35 by interfering RNA can promote the activation of BFV, suggesting an inhibitory function of IFP35 in viral-gene expression. In addition, IFP35 can interact with the homologous regulatory protein of prototype FV and arrest viral replication and repress viral transcription. Our study suggests that IFP35 may represent a novel pathway of interferon-mediated antiviral activity in host organisms that plays a role in the maintenance of FV latency. PMID:18305040
Kulski, Jerzy K; Kenworthy, William; Bellgard, Matthew; Taplin, Ross; Okamoto, Koichi; Oka, Akira; Mabuchi, Tomotaka; Ozawa, Akira; Tamiya, Gen; Inoko, Hidetoshi
2005-12-01
Gene expression profiling was performed on biopsies of affected and unaffected psoriatic skin and normal skin from seven Japanese patients to obtain insights into the pathways that control this disease. HUG95A Affymetrix DNA chips that contained oligonucleotide arrays of approximately 12,000 well-characterized human genes were used in the study. The statistical analysis of the Affymetrix data, based on the ranking of the Student t-test statistic, revealed a complex regulation of molecular stress and immune gene responses. The majority of the 266 induced genes in affected and unaffected psoriatic skin were involved with interferon mediation, immunity, cell adhesion, cytoskeleton restructuring, protein trafficking and degradation, RNA regulation and degradation, signalling transduction, apoptosis and atypical epidermal cellular proliferation and differentiation. The disturbances in the normal protein degradation equilibrium of skin were reflected by the significant increase in the gene expression of various protease inhibitors and proteinases, including the induced components of the ATP/ubiquitin-dependent non-lysosomal proteolytic pathway that is involved with peptide processing and presentation to T cells. Some of the up-regulated genes, such as TGM1, IVL, FABP5, CSTA and SPRR, are well-known psoriatic markers involved in atypical epidermal cellular organization and differentiation. In the comparison between the affected and unaffected psoriatic skin, the transcription factor JUNB was found at the top of the statistical rankings for the up-regulated genes in affected skin, suggesting that it has an important but as yet undefined role in psoriasis. Our gene expression data and analysis suggest that psoriasis is a chronic interferon- and T-cell-mediated immune disease of the skin where the imbalance in epidermal cellular structure, growth and differentiation arises from the molecular antiviral stress signals initiating inappropriate immune responses.
Zhang, Qian; Zeng, Lei-Ping; Zhou, Peng; Irving, Aaron T; Li, Shang; Shi, Zheng-Li; Wang, Lin-Fa
2017-01-01
Bats are important reservoirs of many viruses, which are capable of infecting the host without inducing obvious clinical diseases. Interferon and the downstream interferon regulated genes (IRGs) are known to act as the first line of defense against viral infections. Little is known about the transcriptional profile of genes being induced by interferon in bats and their role in controlling virus infection. In this study, we constructed IFNAR2 knockout bat cell lines using CRISPR technology and further characterized gene expression profiles induced by the most abundant IFN-α (IFN-α3). Firstly, we demonstrated that the CRISPR/Cas9 system is applicable for bat cells as this represents the first CRIPSR knockout cell line for bats. Our results showed the pleiotropic effect of IFN-α3 on the bat kidney cell line, PaKiT03. As expected, we confirmed that IFNAR2 is indispensable for IFN-a signaling pathway and plays an important role in antiviral immunity. Unexpectedly, we also identified novel IFNAR2-dependent IRGs which are enriched in pathways related to cancer. To our knowledge, this seems to be bat-specific as no such observation has been reported for other mammalian species. This study expands our knowledge about bat immunology and the cell line established can provide a powerful tool for future study into virus-bat interaction and cancer biology.
Rice, Gillian I; Forte, Gabriella M A; Szynkiewicz, Marcin; Chase, Diana S; Aeby, Alec; Abdel-Hamid, Mohamed S; Ackroyd, Sam; Allcock, Rebecca; Bailey, Kathryn M; Balottin, Umberto; Barnerias, Christine; Bernard, Genevieve; Bodemer, Christine; Botella, Maria P; Cereda, Cristina; Chandler, Kate E; Dabydeen, Lyvia; Dale, Russell C; De Laet, Corinne; De Goede, Christian G E L; Del Toro, Mireia; Effat, Laila; Enamorado, Noemi Nunez; Fazzi, Elisa; Gener, Blanca; Haldre, Madli; Lin, Jean-Pierre S-M; Livingston, John H; Lourenco, Charles Marques; Marques, Wilson; Oades, Patrick; Peterson, Pärt; Rasmussen, Magnhild; Roubertie, Agathe; Schmidt, Johanna Loewenstein; Shalev, Stavit A; Simon, Rogelio; Spiegel, Ronen; Swoboda, Kathryn J; Temtamy, Samia A; Vassallo, Grace; Vilain, Catheline N; Vogt, Julie; Wermenbol, Vanessa; Whitehouse, William P; Soler, Doriette; Olivieri, Ivana; Orcesi, Simona; Aglan, Mona S; Zaki, Maha S; Abdel-Salam, Ghada M H; Vanderver, Adeline; Kisand, Kai; Rozenberg, Flore; Lebon, Pierre; Crow, Yanick J
2013-12-01
Aicardi-Goutières syndrome (AGS) is an inflammatory disorder caused by mutations in any of six genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR). The disease is severe and effective treatments are urgently needed. We investigated the status of interferon-related biomarkers in patients with AGS with a view to future use in diagnosis and clinical trials. In this case-control study, samples were collected prospectively from patients with mutation-proven AGS. The expression of six interferon-stimulated genes (ISGs) was measured by quantitative PCR, and the median fold change, when compared with the median of healthy controls, was used to create an interferon score for each patient. Scores higher than the mean of controls plus two SD (>2·466) were designated as positive. Additionally, we collated historical data for interferon activity, measured with a viral cytopathic assay, in CSF and serum from mutation-positive patients with AGS. We also undertook neutralisation assays of interferon activity in serum, and looked for the presence of autoantibodies against a panel of interferon proteins. 74 (90%) of 82 patients had a positive interferon score (median 12·90, IQR 6·14-20·41) compared with two (7%) of 29 controls (median 0·93, IQR 0·57-1·30). Of the eight patients with a negative interferon score, seven had mutations in RNASEH2B (seven [27%] of all 26 patients with mutations in this gene). Repeat sampling in 16 patients was consistent for the presence or absence of an interferon signature on 39 of 41 occasions. Interferon activity (tested in 147 patients) was negatively correlated with age (CSF, r=-0·604; serum, r=-0·289), and was higher in CSF than in serum in 104 of 136 paired samples. Neutralisation assays suggested that measurable antiviral activity was related to interferon α production. We did not record significantly increased concentrations of autoantibodies to interferon subtypes in patients with AGS, or an association between the presence of autoantibodies and interferon score or serum interferon activity. AGS is consistently associated with an interferon signature, which is apparently sustained over time and can thus be used to differentiate patients with AGS from controls. If future studies show that interferon status is a reactive biomarker, the measurement of an interferon score might prove useful in the assessment of treatment efficacy in clinical trials. European Union's Seventh Framework Programme; European Research Council. Copyright © 2013 Elsevier Ltd. All rights reserved.
Rice, Gillian I; Forte, Gabriella M A; Szynkiewicz, Marcin; Chase, Diana S; Aeby, Alec; Abdel-Hamid, Mohamed S; Ackroyd, Sam; Allcock, Rebecca; Bailey, Kathryn M; Balottin, Umberto; Barnerias, Christine; Bernard, Genevieve; Bodemer, Christine; Botella, Maria P; Cereda, Cristina; Chandler, Kate E; Dabydeen, Lyvia; Dale, Russell C; De Laet, Corinne; De Goede, Christian G E L; del Toro, Mireia; Effat, Laila; Enamorado, Noemi Nunez; Fazzi, Elisa; Gener, Blanca; Haldre, Madli; Lin, Jean-Pierre S-M; Livingston, John H; Lourenco, Charles Marques; Marques, Wilson; Oades, Patrick; Peterson, Pärt; Rasmussen, Magnhild; Roubertie, Agathe; Schmidt, Johanna Loewenstein; Shalev, Stavit A; Simon, Rogelio; Spiegel, Ronen; Swoboda, Kathryn J; Temtamy, Samia A; Vassallo, Grace; Vilain, Catheline N; Vogt, Julie; Wermenbol, Vanessa; Whitehouse, William P; Soler, Doriette; Olivieri, Ivana; Orcesi, Simona; Aglan, Mona S; Zaki, Maha S; Abdel-Salam, Ghada M H; Vanderver, Adeline; Kisand, Kai; Rozenberg, Flore; Lebon, Pierre; Crow, Yanick J
2015-01-01
Summary Background Aicardi-Goutières syndrome (AGS) is an inflammatory disorder caused by mutations in any of six genes (TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR). The disease is severe and effective treatments are urgently needed. We investigated the status of interferon-related biomarkers in patients with AGS with a view to future use in diagnosis and clinical trials. Methods In this case-control study, samples were collected prospectively from patients with mutation-proven AGS. The expression of six interferon-stimulated genes (ISGs) was measured by quantitative PCR, and the median fold change, when compared with the median of healthy controls, was used to create an interferon score for each patient. Scores higher than the mean of controls plus two SD (>2·466) were designated as positive. Additionally, we collated historical data for interferon activity, measured with a viral cytopathic assay, in CSF and serum from mutation-positive patients with AGS. We also undertook neutralisation assays of interferon activity in serum, and looked for the presence of autoantibodies against a panel of interferon proteins. Findings 74 (90%) of 82 patients had a positive interferon score (median 12·90, IQR 6·14–20·41) compared with two (7%) of 29 controls (median 0·93, IQR 0·57–1·30). Of the eight patients with a negative interferon score, seven had mutations in RNASEH2B (seven [27%] of all 26 patients with mutations in this gene). Repeat sampling in 16 patients was consistent for the presence or absence of an interferon signature on 39 of 41 occasions. Interferon activity (tested in 147 patients) was negatively correlated with age (CSF, r=−0·604; serum, r=−0·289), and was higher in CSF than in serum in 104 of 136 paired samples. Neutralisation assays suggested that measurable antiviral activity was related to interferon α production. We did not record significantly increased concentrations of autoantibodies to interferon subtypes in patients with AGS, or an association between the presence of autoantibodies and interferon score or serum interferon activity. Interpretation AGS is consistently associated with an interferon signature, which is apparently sustained over time and can thus be used to differentiate patients with AGS from controls. If future studies show that interferon status is a reactive biomarker, the measurement of an interferon score might prove useful in the assessment of treatment efficacy in clinical trials. Funding European Union’s Seventh Framework Programme; European Research Council. PMID:24183309
Huang, Youhua; Huang, Xiaohong; Cai, Jia; OuYang, Zhengliang; Wei, Shina; Wei, Jingguang; Qin, Qiwei
2015-02-01
Interferon regulatory factor 3 (IRF3) is an important transcription factor which regulates the expression of interferon (IFN) and IFN-stimulated genes (ISGs) following virus recognition. In this study, a novel IRF3 gene was cloned from grouper Epinephelus coioides (EcIRF3) and its effects against Singapore grouper iridovirus (SGIV) and red spotted grouper nervous necrosis virus (RGNNV) was investigated. The full-length of EcIRF3 cDNA was composed of 2513 bp and encoded a polypeptide of 458 amino acids which shared 82% identity with European seabass (Dicentrarchus labrax). EcIRF3 contained three conserved domains including a DNA-binding domain (DBD), an IRF associated domain (IAD) and a serine-rich domain. Expression profile analysis revealed that EcIRF3 was abundant in head kidney, kidney, spleen and gill. Upon different stimuli in vitro, the transcript of EcIRF3 was significantly up-regulated after RGNNV infection or treatment with polyinosin-polycytidylic acid (poly I:C). During SGIV infection, the increase of the EcIRF3 transcription was only detected at the late stage, suggesting that EcIRF3 was differently regulated by different stimuli. Immune fluorescence assay indicated that the fluorescence signal of EcIRF3 was increased significantly after infection with RGNNV or treatment with poly I:C, but moderately at the late stage of SGIV infection. Reporter gene assay showed that EcIRF3 activated zebrafish type I IFN and type III IFN promoter in vitro. The viral gene transcription and virus production of RGNNV were significantly decreased in EcIRF3 overexpressing cells. However, the ectopic expression of EcIRF3 did not affect the gene transcription and virus production of SGIV. Moreover, the mRNA expression levels of type I IFN and IFN-inducible genes (MxI, ISG15 and ISG56) were increased in RGNNV infected EcIRF3 overexpressing cells compared to empty vector transfected cells. Together, our results demonstrated that IFN immune response mediated by grouper IRF3 was exerted crucial roles for fish RNA virus, but not for DNA virus replication. Copyright © 2014 Elsevier Ltd. All rights reserved.
Bémeur, Chantal; Qu, Hong; Desjardins, Paul; Butterworth, Roger F
2010-01-01
Previous reports suggested that brain-derived proinflammatory cytokines are involved in the pathogenesis of hepatic encephalopathy (HE) and brain edema in acute liver failure (ALF). To further address this issue, expression of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) mRNAs were measured in the brains of mice with acute liver failure resulting from exposure to azoxymethane. In addition, time to severe encephalopathy (coma) was assessed in mice lacking genes coding for interferon-gamma, the tumor necrosis factor receptor-1 or the interleukin-1 type 1 receptor. Interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma expression were quantified using RT-PCR. Significant increases in interleukin-1beta and tumor necrosis factor-alpha mRNA were observed in the frontal cortex of azoxymethane-treated wild-type mice at coma stages of encephalopathy. Interferon-gamma, however, could not be detected in the brains of these animals. Onset of severe encephalopathy (coma) and brain edema in ALF mice were significantly delayed in interleukin-1 type 1 receptor or tumor necrosis factor receptor-1 knockout mice. Deletion of the interferon-gamma gene, on the other hand, had no significative effect on the neurological status or brain water content of acute liver failure mice. These results demonstrate that toxic liver injury resulting from exposure to azoxymethane is associated with selective induction of proinflammatory cytokines in the brain and that deletion of tumor necrosis factor receptor-1 or interlukin-1 type 1 receptor delays the onset of coma and brain edema in this model of acute liver failure. These findings further support a role for selective brain-derived cytokines in the pathogenesis of the cerebral complications in acute liver failure and suggest that anti-inflammatory strategies could be beneficial in their prevention. Copyright 2009 Elsevier Ltd. All rights reserved.
Scherer, Christina A; Magness, Charles L; Steiger, Kathryn V; Poitinger, Nicholas D; Caputo, Christine M; Miner, Douglas G; Winokur, Patricia L; Klinzman, Donna; McKee, Janice; Pilar, Christine; Ward, Patricia A; Gillham, Martha H; Haulman, N Jean; Stapleton, Jack T; Iadonato, Shawn P
2007-08-29
Gene expression in human peripheral blood mononuclear cells was systematically evaluated following smallpox and yellow fever vaccination, and naturally occurring upper respiratory infection (URI). All three infections were characterized by the induction of many interferon stimulated genes, as well as enhanced expression of genes involved in proteolysis and antigen presentation. Vaccinia infection was also characterized by a distinct expression signature composed of up-regulation of monocyte response genes, with repression of genes expressed by B and T-cells. In contrast, the yellow fever host response was characterized by a suppression of ribosomal and translation factors, distinguishing this infection from vaccinia and URI. No significant URI-specific signature was observed, perhaps reflecting greater heterogeneity in the study population and etiological agents. Taken together, these data suggest that specific host gene expression signatures may be identified that distinguish one or a small number of virus agents.
Onabajo, Olusegun O.; Porter-Gill, Patricia; Paquin, Ashley; Rao, Nina; Liu, Luyang; Tang, Wei; Brand, Nathan
2015-01-01
Interferon lambda 4 (IFN-λ4) is a novel type-III interferon that can be generated only in individuals carrying a ΔG frame-shift allele of an exonic genetic variant (rs368234815-ΔG/TT). The rs368234815-ΔG allele is strongly associated with decreased clearance of hepatitis C virus (HCV) infection. Here, we further explored the biological function of IFN-λ4 expressed in human hepatic cells—a hepatoma cell line HepG2 and fresh primary human hepatocytes (PHHs). We performed live confocal imaging, cell death and proliferation assays, mRNA expression profiling, protein detection, and antibody blocking assays using transient and inducible stable in vitro systems. Not only did we observe significant intracellular retention of IFN-λ4 but also detected secreted IFN-λ4 in the culture media of expressing cells. Secreted IFN-λ4 induced strong activation of the interferon-stimulated genes (ISGs) in IFN-λ4-expressing and surrounding cells in transwell assays. Specifically, in PHHs, secreted IFN-λ4 induced expression of the CXCL10 transcript and a corresponding pro-inflammatory chemokine, IP-10. In IFN-λ4-expressing HepG2 cells, we also observed decreased proliferation and increased cell death. All IFN-λ4-induced phenotypes—activation of ISGs, decreased proliferation, and increased cell death—could be inhibited by an anti-IFN-λ4-specific antibody. Our study offers new insights into biology of IFN-λ4 and its possible role in HCV clearance. PMID:26134097
2013-01-01
Background Respiratory syncytial virus (RSV) is an important cause of lower respiratory tract infection in young children. The degree of disease severity is determined by the host response to infection. Lung macrophages play an important early role in the host response to infection and we have used a systems-based approach to examine the host response in RSV-infected lung-derived macrophage cells. Results Lung macrophage cells could be efficiently infected (>95%) with RSV in vitro, and the expression of several virus structural proteins could be detected. Although we failed to detect significant levels of virus particle production, virus antigen could be detected up until 96 hours post-infection (hpi). Microarray analysis indicated that 20,086 annotated genes were expressed in the macrophage cells, and RSV infection induced an 8.9% and 11.3% change in the global gene transcriptome at 4 hpi and 24 hpi respectively. Genes showing up-regulated expression were more numerous and exhibited higher changes in expression compared to genes showing down-regulated expression. Based on gene ontology, genes with cytokine, antiviral, cell death, and signal transduction functions showed the highest increases in expression, while signalling transduction, RNA binding and protein kinase genes showed the greatest reduction in expression levels. Analysis of the global gene expression profile using pathway enrichment analysis confirmed that up-regulated expression of pathways related to pathogen recognition, interferon signalling and antigen presentation occurred in the lung macrophage cells challenged with RSV. Conclusion Our data provided a comprehensive analysis of RSV-induced gene expression changes in lung macrophages. Although virus gene expression was detected, our data was consistent with an abortive infection and this correlated with the activation of several antivirus signalling pathways such as interferon type I signalling and cell death signalling. RSV infection induced a relatively large increase in pro-inflammatory cytokine expression, however the maintenance of this pro-inflammatory response was not dependent on the production of infectious virus particles. The sustained pro-inflammatory response even in the absence of a productive infection suggests that drugs that control the pro-inflammatory response may be useful in the treatment of patients with severe RSV infection. PMID:23506210
Han, Xuesheng; Parker, Tory L
2017-12-01
Clove (Eugenia caryophyllata Thunb. [Myrtaceae]) essential oil (CEO) has been shown to possess antimicrobial, antifungal, antiviral, antioxidant, anti-inflammatory and anticancer properties. However, few studies have focused on its topical use. We investigated the biological activity of a commercially available CEO in a human skin disease model. We evaluated the effect of CEO on 17 protein biomarkers that play critical roles in inflammation and tissue remodelling in a validated human dermal fibroblast system, which was designed to model chronic inflammation and fibrosis. Four concentrations of CEO (0.011, 0.0037, 0.0012, and 0.00041%, v/v) were studied. The effect of 0.011% CEO on genome-wide gene expression was also evaluated. CEO at a concentration of 0.011% showed robust antiproliferative effects on human dermal fibroblasts. It significantly inhibited the increased production of several proinflammatory biomarkers such as vascular cell adhesion molecule-1 (VCAM-1), interferon γ-induced protein 10 (IP-10), interferon-inducible T-cell α chemoattractant (I-TAC), and monokine induced by γ interferon (MIG). CEO also significantly inhibited tissue remodelling protein molecules, namely, collagen-I, collagen-III, macrophage colony-stimulating factor (M-CSF), and tissue inhibitor of metalloproteinase 2 (TIMP-2). Furthermore, it significantly modulated global gene expression and altered signalling pathways critical for inflammation, tissue remodelling, and cancer signalling processes. CEO significantly inhibited VCAM-1 and collagen III at both protein and gene expression levels. This study provides important evidence of CEO-induced anti-inflammatory and tissue remodelling activity in human dermal fibroblasts. This study also supports the anticancer properties of CEO and its major active component eugenol.
Sequence and expression analyses of porcine ISG15 and ISG43 genes.
Huang, Jiangnan; Zhao, Shuhong; Zhu, Mengjin; Wu, Zhenfang; Yu, Mei
2009-08-01
The coding sequences of porcine interferon-stimulated gene 15 (ISG15) and the interferon-stimulated gene (ISG43) were cloned from swine spleen mRNA. The amino acid sequences deduced from porcine ISG15 and ISG43 genes coding sequence shared 24-75% and 29-83% similarity with ISG15s and ISG43s from other vertebrates, respectively. Structural analyses revealed that porcine ISG15 comprises two ubiquitin homologues motifs (UBQ) domain and a conserved C-terminal LRLRGG conjugating motif. Porcine ISG43 contains an ubiquitin-processing proteases-like domain. Phylogenetic analyses showed that porcine ISG15 and ISG43 were mostly related to rat ISG15 and cattle ISG43, respectively. Using quantitative real-time PCR assay, significant increased expression levels of porcine ISG15 and ISG43 genes were detected in porcine kidney endothelial cells (PK15) cells treated with poly I:C. We also observed the enhanced mRNA expression of three members of dsRNA pattern-recognition receptors (PRR), TLR3, DDX58 and IFIH1, which have been reported to act as critical receptors in inducing the mRNA expression of ISG15 and ISG43 genes. However, we did not detect any induced mRNA expression of IFNalpha and IFNbeta, suggesting that transcriptional activations of ISG15 and ISG43 were mediated through IFN-independent signaling pathway in the poly I:C treated PK15 cells. Association analyses in a Landrace pig population revealed that ISG15 c.347T>C (BstUI) polymorphism and the ISG43 c.953T>G (BccI) polymorphism were significantly associated with hematological parameters and immune-related traits.
Early bovine embryos regulate oviduct epithelial cell gene expression during in vitro co-culture.
Schmaltz-Panneau, Barbara; Cordova, Amanda; Dhorne-Pollet, Sophie; Hennequet-Antier, Christelle; Uzbekova, Sveltlana; Martinot, Emmanuelle; Doret, Sarah; Martin, Patrice; Mermillod, Pascal; Locatelli, Yann
2014-10-01
In mammals, the oviduct may participate to the regulation of early embryo development. In vitro co-culture of early bovine embryos with bovine oviduct epithelial cells (BOEC) has been largely used to mimic the maternal environment. However, the mechanisms of BOEC action have not been clearly elucidated yet. The aim of this study was to determine the response of BOEC cultures to the presence of developing bovine embryos. A 21,581-element bovine oligonucleotide array was used compare the gene expression profiles of confluent BOEC cultured for 8 days with or without embryos. This study revealed 34 differentially expressed genes (DEG). Of these 34 genes, IFI6, ISG15, MX1, IFI27, IFI44, RSAD2, IFITM1, EPSTI1, USP18, IFIT5, and STAT1 expression increased to the greatest extent due to the presence of embryos with a major impact on antiviral and immune response. Among the mRNAs at least 25 are already described as induced by interferons. In addition, transcript levels of new candidate genes involved in the regulation of transcription, modulation of the maternal immune system and endometrial remodeling were found to be increased. We selected 7 genes and confirmed their differential expression by quantitative RT-PCR. The immunofluorescence imaging of cellular localization of STAT1 protein in BOEC showed a nuclear translocation in the presence of embryos, suggesting the activation of interferon signaling pathway. This first systematic study of BOEC transcriptome changes in response to the presence of embryos in cattle provides some evidences that these cells are able to adapt their transcriptomic profile in response to embryo signaling. Copyright © 2014 Elsevier B.V. All rights reserved.
Tsunoda, Fumiyoshi; Lamon-Fava, Stefania; Asztalos, Bela F; Iyer, Lakshmanan K; Richardson, Kris; Schaefer, Ernst J
2015-08-01
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) have beneficial effects on inflammation and cardiovascular disease (CVD). Our aim was to assess the effect of a six-week supplementation with either olive oil, EPA, or DHA on gene expression in peripheral blood mononuclear cells (PBMC). Subjects were sampled at baseline and six weeks after receiving either: olive oil 6.0 g/day (n = 16), EPA 1.8 g/day (n = 16), or DHA 1.8 g/day (n = 18). PBMC were subjected to gene expression analysis by microarray with key findings confirmed by quantitative real-time polymerase chain reaction (Q-PCR). Plasma phospholipid EPA increased 3 fold in the EPA group, and DHA increased 63% in the DHA group (both p < 0.01), while no effects were observed in the olive oil group. Microarray analysis indicated that EPA but not DHA or olive oil significantly affected the gene expression in the following pathways: 1) interferon signaling, 2) receptor recognition of bacteria and viruses, 3) G protein signaling, glycolysis and glycolytic shunting, 4) S-adenosyl-l-methionine biosynthesis, and 5) cAMP-mediated signaling including cAMP responsive element protein 1 (CREB1), as well as many other individual genes including hypoxia inducible factor 1, α subunit (HIF1A). The findings for CREB1 and HIF1A were confirmed by Q-PCR analysis. Our data indicate that EPA supplementation was associated with significant effects on gene expression involving the interferon pathway as well as down-regulation of CREB1 and HIF1A, which may relate to its beneficial effect on CVD risk reduction. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Beyer, Ulrike; Brand, Frank; Martens, Helge; Weder, Julia; Christians, Arne; Elyan, Natalie; Hentschel, Bettina; Westphal, Manfred; Schackert, Gabriele; Pietsch, Torsten; Hong, Bujung; Krauss, Joachim K; Samii, Amir; Raab, Peter; Das, Anibh; Dumitru, Claudia A; Sandalcioglu, I Erol; Hakenberg, Oliver W; Erbersdobler, Andreas; Lehmann, Ulrich; Reifenberger, Guido; Weller, Michael; Reijns, Martin A M; Preller, Matthias; Wiese, Bettina; Hartmann, Christian; Weber, Ruthild G
2017-12-01
In search of novel germline alterations predisposing to tumors, in particular to gliomas, we studied a family with two brothers affected by anaplastic gliomas, and their father and paternal great-uncle diagnosed with prostate carcinoma. In this family, whole-exome sequencing yielded rare, simultaneously heterozygous variants in the Aicardi-Goutières syndrome (AGS) genes ADAR and RNASEH2B co-segregating with the tumor phenotype. AGS is a genetically induced inflammatory disease particularly of the brain, which has not been associated with a consistently increased cancer risk to date. By targeted sequencing, we identified novel ADAR and RNASEH2B variants, and a 3- to 17-fold frequency increase of the AGS mutations ADAR,c.577C>G;p.(P193A) and RNASEH2B,c.529G>A;p.(A177T) in the germline of familial glioma patients as well as in test and validation cohorts of glioblastomas and prostate carcinomas versus ethnicity-matched controls, whereby rare RNASEH2B variants were significantly more frequent in familial glioma patients. Tumors with ADAR or RNASEH2B variants recapitulated features of AGS, such as calcification and increased type I interferon expression. Patients carrying ADAR or RNASEH2B variants showed upregulation of interferon-stimulated gene (ISG) transcripts in peripheral blood as seen in AGS. An increased ISG expression was also induced by ADAR and RNASEH2B variants in tumor cells and was blocked by the JAK inhibitor Ruxolitinib. Our data implicate rare variants in the AGS genes ADAR and RNASEH2B and a type I interferon signature in glioma and prostate carcinoma risk and tumorigenesis, consistent with a genetic basis underlying inflammation-driven malignant transformation in glioma and prostate carcinoma development.
Stuart, Jennifer H; Sumner, Rebecca P; Lu, Yongxu; Snowden, Joseph S; Smith, Geoffrey L
2016-12-01
The type I interferon (IFN) response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV) strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs) in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3) complex to the interferon stimulated response element (ISRE). Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion.
Hutson, Thomas H.; Foster, Edmund; Dawes, John M.; Hindges, Robert; Yáñez-Muñoz, Rafael J.; Moon, Lawrence D.F.
2017-01-01
Background Knocking down neuronal LINGO-1 using short hairpin RNAs (shRNAs) might enhance axon regeneration in the CNS. Integration-deficient lentiviral vectors have great potential as a therapeutic delivery system for CNS injuries. However, recent studies have revealed that shRNAs can induce an interferon response resulting in off-target effects and cytotoxicity. Methods CNS neurons were transduced with integration-deficient lentiviral vectors in vitro. The transcriptional effect of shRNA expression was analysed using qRT-PCR and northern blots were used to assess shRNA production. Results Integration-deficient lentiviral vectors efficiently transduced CNS neurons and knocked down LINGO-1 mRNA in vitro. However, an increase in cell death was observed when lentiviral vectors encoding an shRNA were applied or when high vector concentrations were used. We demonstrate that high doses of vector or the use of vectors encoding shRNAs can induce an up-regulation of interferon stimulated genes (OAS1 and PKR) and a down-regulation of off- target genes (including p75NTR and NgR1). Furthermore, the northern blot demonstrated that these negative consequences occur even when lentiviral vectors express low levels of shRNAs. Together, these results may explain why neurite outgrowth was not enhanced on an inhibitory substrate after transduction with lentiviral vectors encoding an shRNA targeting LINGO-1. Conclusions These findings highlight the importance of including appropriate controls to verify silencing specificity and the requirement to check for an interferon response when conducting RNA interference experiments. However, the potential benefits that RNA interference and viral vectors offer to gene-based therapies to CNS injuries cannot be overlooked and demand further investigation. PMID:22499506
Elmetwally, Mohammed A; Halawa, Amal A; Lenis, Yasser Y; Tang, Wanjin; Wu, Guoyao; Bazer, Fuller W
2018-04-07
This study evaluated the effects of bisphenol A (BPA) on proliferation of ovine trophectoderm (oTr1) cells, as well as expression of genes for transport of arginine and synthesis of polyamines. BPA reduced proliferation of oTr1 cells at concentrations of 1 × 10 -6 , 1 × 10 -5 , 1 × 10 -4 M compared to concentrations of 0, 1 × 10 -9 , and 1 × 10 -8 M at 24 and 96 h of culture. Lower concentrations of BPA significantly increased expression of mRNAs for agmatinase (AGMAT), arginine decarboxylase (ADC), ornithine decarboxylase (ODC1) and solute carrier family 7 member 1 (SLC7A1). Similarly, synthesis of polyamines by oTr1 cells was greatest at lower concentrations of BPA and decreased as the dose of BPA increased. Expression of mRNAs for interferon tau (IFNT) and insulin-like growth factor 2 (IGF2) by oTr1 cells was greater than for controls at 1 × 10 -9 M BPA. Overall, the effects of BPA on proliferation and gene expression by oTr1 cells were highly dose-dependent. Copyright © 2018 Elsevier Inc. All rights reserved.
Freeman, J; Baglino, S; Friborg, J; Kraft, Z; Gray, T; Hill, M; McPhee, F; Hillson, J; Lopez-Talavera, J C; Wind-Rotolo, M
2014-06-01
Pegylated interferon-lambda-1a (Lambda), a type III interferon (IFN) in clinical development for the treatment of chronic HCV infection, has shown comparable efficacy and an improved safety profile to a regimen based on pegylated IFN alfa-2a (alfa). To establish a mechanistic context for this improved profile, we investigated the ex vivo effects of Lambda and alfa on cytokine and chemokine release, and on expression of IFN-stimulated genes (ISGs) in primary human hepatocytes and peripheral blood mononuclear cells (PBMCs) from healthy subjects. Our findings were further compared with changes observed in blood analysed from HCV-infected patients treated with Lambda or alfa in clinical studies. mRNA transcript and protein expression of the IFN-λ-limiting receptor subunit was lower compared with IFN-α receptor subunits in all cell types. Upon stimulation, alfa and Lambda induced ISG expression in hepatocytes and PBMCs, although in PBMCs Lambda-induced ISG expression was modest. Furthermore, alfa and Lambda induced release of cytokines and chemokines from hepatocytes and PBMCs, although differences in their kinetics of induction were observed. In HCV-infected patients, alfa treatment induced ISG expression in whole blood after single and repeat dosing. Lambda treatment induced modest ISG expression after single dosing and showed no induction after repeat dosing. Alfa and Lambda treatment increased IP-10, iTAC, IL-6, MCP-1 and MIP-1β levels in serum, with alfa inducing higher levels of all mediators compared with Lambda. Overall, ex vivo and in vivo induction profiles reported in this analysis strongly correlate with clinical observations of fewer related adverse events for Lambda vs those typically associated with alfa. © 2014 John Wiley & Sons Ltd.
TALUKDER, Anup K.; YOUSEF, Mohamed S.; RASHID, Mohammad B.; AWAI, Kensuke; ACOSTA, Tomas J.; SHIMIZU, Takashi; OKUDA, Kiyoshi; SHIMADA, Masayuki; IMAKAWA, Kazuhiko; MIYAMOTO, Akio
2017-01-01
Recent observations suggest that the bovine uterus starts to react to the early embryo immediately after its arrival from the oviduct. The present study aimed to investigate the effect of the early developing embryo on the immune-related gene profile in bovine uterine epithelial cells (BUECs) in vitro, and to further examine the impact of conditioned media (CM), either from embryo-BUEC co-culture or embryo culture alone, on gene expression in peripheral blood mononuclear cells (PBMCs). First, BUECs were co-cultured with morulae (n = 10) for D5-D9 (D0 = IVF), and gene expression in BUECs was analyzed. Subsequently, PBMCs were cultured in CM from embryo-BUEC co-culture or D5-D9 embryo culture, and gene expression was evaluated. In BUECs, the embryo induced interferon (IFN)-stimulated genes (ISGs: ISG15, OAS1, and MX2), a key factor for IFN-signaling (STAT1), and type-1 IFN receptors (IFNAR1 and IFNAR2), with suppression of NFkB2, NFkBIA and pro-inflammatory cytokines (TNFA and IL1B). The embryo also stimulated PTGES and PGE2 secretion in BUECs. In PBMCs, both CM from embryo-BUEC co-culture and embryo culture alone induced ISGs, STAT1 and TGFB1, while suppressing TNFA and IL17. Similarly, interferon tau (IFNT) at 100 pg/ml suppressed NFkB2, TNFA and IL1B in BUECs, and also stimulated TGFB1 and suppressed TNFA in PBMCs. Our findings suggest that the bovine embryo, in the first four days in the uterus (D5-D9), starts to induce an anti-inflammatory response in epithelial cells and in immune cells. IFNT is likely to act as one of the intermediators for induction of the anti-inflammatory response in the bovine uterus. PMID:28603222
Peripheral inflammation is associated with remote global gene expression changes in the brain
2014-01-01
Background Although the central nervous system (CNS) was once considered an immunologically privileged site, in recent years it has become increasingly evident that cross talk between the immune system and the CNS does occur. As a result, patients with chronic inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease or psoriasis, are often further burdened with neuropsychiatric symptoms, such as depression, anxiety and fatigue. Despite the recent advances in our understanding of neuroimmune communication pathways, the precise effect of peripheral immune activation on neural circuitry remains unclear. Utilizing transcriptomics in a well-characterized murine model of systemic inflammation, we have started to investigate the molecular mechanisms by which inflammation originating in the periphery can induce transcriptional modulation in the brain. Methods Several different systemic and tissue-specific models of peripheral toll-like-receptor-(TLR)-driven (lipopolysaccharide (LPS), lipoteichoic acid and Imiquimod) and sterile (tumour necrosis factor (TNF) and 12-O-tetradecanoylphorbol-13-acetate (TPA)) inflammation were induced in C57BL/6 mice. Whole brain transcriptional profiles were assessed and compared 48 hours after intraperitoneal injection of lipopolysaccharide or vehicle, using Affymetrix GeneChip microarrays. Target gene induction, identified by microarray analysis, was validated independently using qPCR. Expression of the same panel of target genes was then investigated in a number of sterile and other TLR-dependent models of peripheral inflammation. Results Microarray analysis of whole brains collected 48 hr after LPS challenge revealed increased transcription of a range of interferon-stimulated genes (ISGs) in the brain. In addition to acute LPS challenge, ISGs were induced in the brain following both chronic LPS-induced systemic inflammation and Imiquimod-induced skin inflammation. Unique to the brain, this transcriptional response is indicative of peripherally triggered, interferon-mediated CNS inflammation. Similar models of sterile inflammation and lipoteichoic-acid-induced systemic inflammation did not share the capacity to trigger ISG induction in the brain. Conclusions These data highlight ISG induction in the brain as being a consequence of a TLR-induced type I interferon response. As considerable evidence links type I interferons to psychiatric disorders, we hypothesize that interferon production in the brain could represent an important mechanism, linking peripheral TLR-induced inflammation with behavioural changes. PMID:24708794
Zhou, Qin; Chen, Shun; Qi, Yulin; Zhou, Hao; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Chen, Xiaoyue; Zhou, Xue; Cheng, Anchun
2015-01-01
Interferons, as the first line of defense against the viral infection, play an important role in innate immune responses. Type III interferon (IFN-λ) was a newly identified member of IFN family, which plays IFN-like antiviral activity. Towards a better understanding of the type III interferon system in birds, type III interferon lambda receptor (IFNLR1) was first identified in the Chinese goose. In this paper, we had cloned 1952 bp for goose IFNLR1 (goIFNLR1), including an ORF of 1539 bp, encoding a 512-amino acid protein with a 20 aa predict signal peptide at its N terminal and a 23 aa transmembrane region. The predicted amino acid sequence of goIFNLR1 has 90%, 73%, and 34% identity with duck IFNLR1 (predicted sequence), chicken IFNLR1, and human IFNLR1, respectively. And the age-related tissue distribution of goIFNLR1 was identified by Real Time quantitative PCR (RT-qPCR), we found that the goIFNLR1 has a mainly expression in epithelium-rich tissues similar to other species', such as small intestinal, lung, liver, and stomach. Moreover, a relatively high expression of goIFNLR1 was also observed in the secondary immune tissues (harderian gland and cecal tonsil). The identification and tissue distribution of goIFNLR1 will facilitate further study of the role of IFN-λ in goose antiviral defense. PMID:26064884
Wilden, Holger; Schirrmacher, Volker; Fournier, Philippe
2011-08-01
Newcastle disease virus (NDV) is an interesting agent for activating innate immune activity in macrophages including secretion of TNF-α and IFN-α, upregulation of TRAIL and activation of NF-κB and iNOS. However, the molecular mechanism of such cellular activities remains largely unknown. Tumor selectivity of replication of NDV has been described to be linked to deviations in tumor cells of the type I interferon response. We therefore focused on the interferon response to NDV of macrophages as part of innate anti-viral and anti-tumor activity. In particular, we investigated the functional significance of the interferon regulatory factor genes (IRF)-3 and IRF-7. Deletion of the IRF-3 or IRF-7 gene was found to increase susceptibility of mouse macrophages to virus infection. Surprisingly, NDV replicated better in IRF-3 KO than in IRF-7 KO macrophages. Further analysis showed that IRF-3 KO macrophages have a lower basal and NDV-induced RIG-I expression in comparison to IRF-7 KO macrophages. This might explain why, in IRF-3 KO macrophages, the secretion of type I interferons after NDV infection is delayed, when compared to IRF-7 KO and wild-type macrophages. In addition, IRF-3 KO cells showed reduced NDV-induced levels of IRF-7. This effect could be prevented by priming the cells first by interferon-α. Further results indicated that an early production of type I interferon rather than high maximal levels at later time points are important for resistance to infection by NDV. In conclusion, these results demonstrate an important role of IRF-3 for the innate anti-viral response to NDV of mouse macrophages.
Kim, Su-Mi; Kim, Se-Kyung; Park, Jong-Hyeon; Lee, Kwang-Nyeong; Ko, Young-Joon; Lee, Hyang-Sim; Seo, Min-Goo; Shin, Yeun-Kyung; Kim, Byounghan
2014-04-01
Foot-and-mouth disease (FMD) is a virulent and economically costly disease in domestic livestock. Since the current vaccine available against FMD provides no protection until 7days postvaccination, the only alternative method to halt the spread of the FMD virus (FMDV) during outbreaks is by the application of anti-viral agents. The combination of recombinant adenovirus expressing type I interferon (IFN-α) and adenovirus expressing type II IFN (IFN-γ) has been reported to be an effective anti-viral treatment strategy against FMDV. Nevertheless, the recombinant adenovirus mixture may be inefficient because of the low anti-viral efficiency of IFN-γ compared to that of IFN-α. In this study, we generated a recombinant adenovirus co-expressing porcine IFN-α and IFN-γ in tandem using an FMDV 2A sequence to mediate effective cleavage of the two proteins (referred to as Ad-porcine IFN-αγ). We demonstrated that both recombinant porcine IFN-α and IFN-γ were expressed and interferon stimulated gene (ISG)s related with IFN-α and IFN-γ were induced in porcine kidney (IBRS-2) cells infected with Ad-porcine IFN-αγ. Additionally, the anti-viral effects of Ad-porcine IFN-αγ against FMDV were enhanced both in IBRS-2 cells and in CD-1 (ICR) suckling mice compared to that of adenovirus expressing only a single protein. We propose that Ad-porcine IFN-αγ could be a rapid, highly efficient, convenient anti-viral agent against FMDV. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Le-Le; Zhang, Zi-Ning; Wu, Xian; Jiang, Yong-Jun; Fu, Ya-Jing; Shang, Hong
2017-09-12
A small proportion of HIV-infected patients remain clinically and/or immunologically stable for years, including elite controllers (ECs) who have undetectable viremia (<50 copies/ml) and long-term nonprogressors (LTNPs) who maintain normal CD4 + T cell counts for prolonged periods (>10 years). However, the mechanism of nonprogression needs to be further resolved. In this study, a transcriptome meta-analysis was performed on nonprogressor and progressor microarray data to identify differential transcriptome pathways and potential biomarkers. Using the INMEX (integrative meta-analysis of expression data) program, we performed the meta-analysis to identify consistently differentially expressed genes (DEGs) in nonprogressors and further performed functional interpretation (gene ontology analysis and pathway analysis) of the DEGs identified in the meta-analysis. Five microarray datasets (81 cases and 98 controls in total), including whole blood, CD4 + and CD8 + T cells, were collected for meta-analysis. We determined that nonprogressors have reduced expression of important interferon-stimulated genes (ISGs), CD38, lymphocyte activation gene 3 (LAG-3) in whole blood, CD4 + and CD8 + T cells. Gene ontology (GO) analysis showed a significant enrichment in DEGs that function in the type I interferon signaling pathway. Upregulated pathways, including the PI3K-Akt signaling pathway in whole blood, cytokine-cytokine receptor interaction in CD4 + T cells and the MAPK signaling pathway in CD8 + T cells, were identified in nonprogressors compared with progressors. In each metabolic functional category, the number of downregulated DEGs was more than the upregulated DEGs, and almost all genes were downregulated DEGs in the oxidative phosphorylation (OXPHOS) and tricarboxylic acid (TCA) cycle in the three types of samples. Our transcriptomic meta-analysis provides a comprehensive evaluation of the gene expression profiles in major blood types of nonprogressors, providing new insights in the understanding of HIV pathogenesis and developing strategies to delay HIV disease progression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dang; Fang, Liurong; Luo, Rui
2010-08-13
Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reductionmore » of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.« less
Baerwald, Melinda R; Welsh, Amy B; Hedrick, Ronald P; May, Bernie
2008-01-01
Background Whirling disease, caused by the pathogen Myxobolus cerebralis, afflicts several salmonid species. Rainbow trout are particularly susceptible and may suffer high mortality rates. The disease is persistent and spreading in hatcheries and natural waters of several countries, including the U.S.A., and the economic losses attributed to whirling disease are substantial. In this study, genome-wide expression profiling using cDNA microarrays was conducted for resistant Hofer and susceptible Trout Lodge rainbow trout strains following pathogen exposure with the primary objective of identifying specific genes implicated in whirling disease resistance. Results Several genes were significantly up-regulated in skin following pathogen exposure for both the resistant and susceptible rainbow trout strains. For both strains, response to infection appears to be linked with the interferon system. Expression profiles for three genes identified with microarrays were confirmed with qRT-PCR. Ubiquitin-like protein 1 was up-regulated over 100 fold and interferon regulating factor 1 was up-regulated over 15 fold following pathogen exposure for both strains. Expression of metallothionein B, which has known roles in inflammation and immune response, was up-regulated over 5 fold in the resistant Hofer strain but was unchanged in the susceptible Trout Lodge strain following pathogen exposure. Conclusion The present study has provided an initial view into the genetic basis underlying immune response and resistance of rainbow trout to the whirling disease parasite. The identified genes have allowed us to gain insight into the molecular mechanisms implicated in salmonid immune response and resistance to whirling disease infection. PMID:18218127
Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics
Antoni, Michael H.; Lutgendorf, Susan K.; Blomberg, Bonnie; Carver, Charles S.; Lechner, Suzanne; Diaz, Alain; Stagl, Jamie; Arevalo, Jesusa M.G.; Cole, Steven W.
2011-01-01
Background Chronic threat and anxiety are associated with pro-inflammatory transcriptional profiles in circulating leukocytes, but the causal direction of that relationship has not been established. This study tested whether a Cognitive-Behavioral Stress Management (CBSM) intervention targeting negative affect and cognition might counteract anxiety-related transcriptional alterations in people confronting a major medical threat. Methods 199 women undergoing primary treatment of Stage 0–III breast cancer were randomized to a 10-week CBSM protocol or an active control condition. 79 provided peripheral blood leukocyte samples for genome-wide transcriptional profiling and bioinformatic analyses at baseline, 6-, and 12-month follow-ups. Results Baseline negative affect was associated with > 50% differential expression of 201 leukocyte transcripts, including up-regulated expression of pro-inflammatory and metastasis-related genes. CBSM altered leukocyte expression of 91 genes by > 50% at follow-up (Group × Time interaction), including down-regulation of pro-inflammatory and metastasis-related genes and up-regulation of Type I interferon response genes. Promoter-based bioinformatic analyses implicated decreased activity of NF-κB/Rel and GATA family transcription factors and increased activity of Interferon Response Factors and the Glucocorticoid Receptor (GR) as potential mediators of CBSM-induced transcriptional alterations. Conclusions In early stage breast cancer patients, a 10-week CBSM intervention can reverse anxiety-related up-regulation of pro-inflammatory gene expression in circulating leukocytes. These findings clarify the molecular signaling pathways by which behavioral interventions can influence physical health and alter peripheral inflammatory processes that may reciprocally affect brain affective and cognitive processes. PMID:22088795
Maternal metabolism affects endometrial expression of oxidative stress and FOXL2 genes in cattle
Forde, Niamh; Poirée, Mélanie; Healey, Gareth D.; Giraud-Delville, Corinne; Reinaud, Pierrette; Eozenou, Caroline; Vitorino Carvalho, Anaïs; Galio, Laurent; Raliou, Mariam; Oudin, Jean-François; Richard, Christophe; Sheldon, I. Martin; Charpigny, Gilles; Lonergan, Pat; Sandra, Olivier
2017-01-01
Intensive selection for milk production has led to reduced reproductive efficiency in high-producing dairy cattle. The impact of intensive milk production on oocyte quality as well as early embryo development has been established but few analyses have addressed this question at the initiation of implantation, a critical milestone ensuring a successful pregnancy and normal post-natal development. Our study aimed to determine if contrasted maternal metabolism affects the previously described sensory properties of the endometrium to the conceptus in cattle. Following embryo transfer at Day 7 post-oestrus, endometrial caruncular (CAR) and intercaruncular (ICAR) areas were collected at Day 19 from primiparous postpartum Holstein-Friesian cows that were dried-off immediately after parturition (i.e., never milked; DRY) or milked twice daily (LACT). Gene quantification indicated no significant impact of lactation on endometrial expression of transcripts previously reported as conceptus-regulated (PLET1, PTGS2, SOCS6) and interferon-tau stimulated (RSAD2, SOCS1, SOCS3, STAT1) factors or known as female hormone-regulated genes (FOXL2, SCARA5, PTGS2). Compared with LACT cows, DRY cows exhibited mRNA levels with increased expression for FOXL2 transcription factor and decreased expression for oxidative stress-related genes (CAT, SOD1, SOD2). In vivo and in vitro experiments highlighted that neither interferon-tau nor FOXL2 were involved in transcriptional regulation of CAT, SOD1 and SOD2. In addition, our data showed that variations in maternal metabolism had a higher impact on gene expression in ICAR areas. Collectively, our findings prompt the need to fully understand the extent to which modifications in endometrial physiology drive the trajectory of conceptus development from implantation onwards when maternal metabolism is altered. PMID:29281695
Maternal metabolism affects endometrial expression of oxidative stress and FOXL2 genes in cattle.
Lesage-Padilla, Audrey; Forde, Niamh; Poirée, Mélanie; Healey, Gareth D; Giraud-Delville, Corinne; Reinaud, Pierrette; Eozenou, Caroline; Vitorino Carvalho, Anaïs; Galio, Laurent; Raliou, Mariam; Oudin, Jean-François; Richard, Christophe; Sheldon, I Martin; Charpigny, Gilles; Lonergan, Pat; Sandra, Olivier
2017-01-01
Intensive selection for milk production has led to reduced reproductive efficiency in high-producing dairy cattle. The impact of intensive milk production on oocyte quality as well as early embryo development has been established but few analyses have addressed this question at the initiation of implantation, a critical milestone ensuring a successful pregnancy and normal post-natal development. Our study aimed to determine if contrasted maternal metabolism affects the previously described sensory properties of the endometrium to the conceptus in cattle. Following embryo transfer at Day 7 post-oestrus, endometrial caruncular (CAR) and intercaruncular (ICAR) areas were collected at Day 19 from primiparous postpartum Holstein-Friesian cows that were dried-off immediately after parturition (i.e., never milked; DRY) or milked twice daily (LACT). Gene quantification indicated no significant impact of lactation on endometrial expression of transcripts previously reported as conceptus-regulated (PLET1, PTGS2, SOCS6) and interferon-tau stimulated (RSAD2, SOCS1, SOCS3, STAT1) factors or known as female hormone-regulated genes (FOXL2, SCARA5, PTGS2). Compared with LACT cows, DRY cows exhibited mRNA levels with increased expression for FOXL2 transcription factor and decreased expression for oxidative stress-related genes (CAT, SOD1, SOD2). In vivo and in vitro experiments highlighted that neither interferon-tau nor FOXL2 were involved in transcriptional regulation of CAT, SOD1 and SOD2. In addition, our data showed that variations in maternal metabolism had a higher impact on gene expression in ICAR areas. Collectively, our findings prompt the need to fully understand the extent to which modifications in endometrial physiology drive the trajectory of conceptus development from implantation onwards when maternal metabolism is altered.
Coursey, Terry G; Tukler Henriksson, Johanna; Barbosa, Flavia L; de Paiva, Cintia S; Pflugfelder, Stephen C
2016-06-01
Goblet cells (GCs) are specialized secretory cells that produce mucins and a variety of other proteins. Significant conjunctival GC loss occurs in both experimental dry eye models and patients with keratoconjunctivitis sicca due to the induction of interferon (IFN)-γ. With the use of a primary murine culture model, we found that GCs are highly sensitive to IFN-γ with significantly reduced proliferation and altered structure with low concentrations. GC cultures treated with IFN-γ have increased gene expression of Muc2 and Muc5AC but do not express these mucin glycoproteins. We hypothesized that IFN-γ induces endoplasmic reticulum stress and the unfolded protein response (UPR) in GCs. Cultures treated with IFN-γ increased expression of UPR-associated genes and proteins. Increased GRP78 and sXBP1 expression was found in experimental dry eye and Sjögren syndrome models and was GC specific. Increased GRP78 was also found in the conjunctiva of patients with Sjögren syndrome at the gene and protein levels. Treatment with dexamethasone inhibited expression of UPR-associated genes and increased mucin production. These results indicate that induction of UPR by IFN-γ is an important cause of GC-associated mucin deficiency observed in aqueous-deficient dry eye. Therapies to block the effects of IFN-γ on the metabolically active endoplasmic reticulum in these cells might enhance synthesis and secretion of the protective GC mucins on the ocular surface. Copyright © 2016 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.
Cooper, Andrea M.; Pearl, John E.; Brooks, Jason V.; Ehlers, Stefan; Orme, Ian M.
2000-01-01
The interleukin-12 and gamma interferon (IFN-γ) pathway of macrophage activation plays a pivotal role in controlling tuberculosis. In the murine model, the generation of supplementary nitric oxide by the induction of the nitric oxide synthase 2 (NOS2) gene product is considered the principal antimicrobial mechanism of IFN-γ-activated macrophages. Using a low-dose aerosol-mediated infection model in the mouse, we have investigated the role of nitric oxide in controlling Mycobacterium tuberculosis in the lung. In contrast to the consequences of a systemic infection, a low dose of bacteria introduced directly into the lungs of mice lacking the NOS2 gene is controlled almost as well as in intact animals. This is in contrast to the rapid progression of disease in mice lacking IFN-γ or a key member of the IFN signaling pathway, interferon regulatory factor 1. Thus while IFN-γ is pivotal in early control of bacterial growth in the lung, this control does not completely depend upon the expression of the NOS2 gene. The absence of inducible nitric oxide in the lung does, however, result in increased polymorphonuclear cell involvement and eventual necrosis in the pulmonary granulomas of the infected mice lacking the NOS2 gene. PMID:11083808
Han, Xuesheng; Parker, Tory L
2017-06-01
Lemongrass ( Cymbopogon flexuosus ) essential oil (LEO), which has citral as its main component, has exhibited anti-inflammatory effect in both animal and human cells. In this study, we evaluated the anti-inflammatory activity of a commercially available LEO in pre-inflamed human dermal fibroblasts. We first studied the impact of LEO on 17 protein biomarkers that are critically associated with inflammation and tissue remodeling. LEO significantly inhibited production of the inflammatory biomarkers vascular cell adhesion molecule 1 (VCAM-1), interferon gamma-induced protein 10 (IP-10), interferon-inducible T-cell alpha chemoattractant (I-TAC), and monokine induced by gamma interferon (MIG); decreased levels of the tissue remodeling biomarkers collagen-I and III, epidermal growth factor receptor (EGFR), and plasminogen activator inhibitor (PAI-1); and inhibited the immunomodulatory biomarker macrophage colony-stimulating factor (M-CSF). Furthermore, we studied the impact of LEO on genome-wide gene expression profiles. LEO significantly modulated global gene expression and robustly impacted signaling pathways, many of which are critical for inflammation and tissue remodeling processes. This study provides the first evidence of the anti-inflammatory activity of LEO in human skin cells and indicates that it is a good therapeutic candidate for treating inflammatory conditions of the skin.
Antiviral Activity of Lambda Interferon in Chickens
Reuter, Antje; Soubies, Sebastien; Härtle, Sonja; Schusser, Benjamin; Kaspers, Bernd
2014-01-01
Interferons (IFNs) are essential components of the antiviral defense system of vertebrates. In mammals, functional receptors for type III IFN (lambda interferon [IFN-λ]) are found mainly on epithelial cells, and IFN-λ was demonstrated to play a crucial role in limiting viral infections of mucosal surfaces. To determine whether IFN-λ plays a similar role in birds, we produced recombinant chicken IFN-λ (chIFN-λ) and we used the replication-competent retroviral RCAS vector system to generate mosaic-transgenic chicken embryos that constitutively express chIFN-λ. We could demonstrate that chIFN-λ markedly inhibited replication of various virus strains, including highly pathogenic influenza A viruses, in ovo and in vivo, as well as in epithelium-rich tissue and cell culture systems. In contrast, chicken fibroblasts responded poorly to chIFN-λ. When applied in vivo to 3-week-old chickens, recombinant chIFN-λ strongly induced the IFN-responsive Mx gene in epithelium-rich organs, such as lungs, tracheas, and intestinal tracts. Correspondingly, these organs were found to express high transcript levels of the putative chIFN-λ receptor alpha chain (chIL28RA) gene. Transfection of chicken fibroblasts with a chIL28RA expression construct rendered these cells responsive to chIFN-λ treatment, indicating that receptor expression determines cell type specificity of IFN-λ action in chickens. Surprisingly, mosaic-transgenic chickens perished soon after hatching, demonstrating a detrimental effect of constitutive chIFN-λ expression. Our data highlight fundamental similarities between the IFN-λ systems of mammals and birds and suggest that type III IFN might play a role in defending mucosal surfaces against viral intruders in most if not all vertebrates. PMID:24371053
Frau, Aldo; Sgarbanti, Marco; Orsatti, Roberto
2018-01-01
The interferon (IFN) system is the first line of defense against viral infections. Evasion of IFN signaling by Ebola viral protein 24 (VP24) is a critical event in the pathogenesis of the infection and, hence, VP24 is a potential target for drug development. Since no drugs target VP24, the identification of molecules able to inhibit VP24, restoring and possibly enhancing the IFN response, is a goal of concern. Accordingly, we developed a dual signal firefly and Renilla luciferase cell-based drug screening assay able to quantify IFN-mediated induction of Interferon Stimulated Genes (ISGs) and its inhibition by VP24. Human Embryonic Kidney 293T (HEK293T) cells were transiently transfected with a luciferase reporter gene construct driven by the promoter of ISGs, Interferon-Stimulated Response Element (ISRE). Stimulation of cells with IFN-α activated the IFN cascade leading to the expression of ISRE. Cotransfection of cells with a plasmid expressing VP24 cloned from a virus isolated during the last 2014 outbreak led to the inhibition of ISRE transcription, quantified by a luminescent signal. To adapt this system to test a large number of compounds, we performed it in 96-well plates; optimized the assay analyzing different parameters; and validated the system by calculating the Z′- and Z-factor, which showed values of 0.62 and 0.53 for IFN-α stimulation assay and VP24 inhibition assay, respectively, indicative of robust assay performance. PMID:29495311
Lagor, William R; Fields, David W; Bauer, Robert C; Crawford, Alison; Abt, Michael C; Artis, David; Wherry, E John; Rader, Daniel J
2014-03-01
Apolipoprotein F (ApoF) is a sialoglycoprotein that is a component of the HDL and LDL fractions of human serum. We sought to test the hypothesis that ApoF plays an important role in atherosclerosis in mice by modulating lipoprotein function. Atherosclerosis was assessed in male low density lipoprotein receptor knockout (Ldlr KO) and ApoF/Ldlr double knockout (DKO) mice fed a Western diet for 16 weeks. ApoF/Ldlr DKO mice showed a 39% reduction in lesional area by en face analysis of aortas (p < 0.05), despite no significant differences in plasma lipid parameters. ApoF KO mice had reduced expression of Interferon alpha (IFNα) responsive genes in liver and spleen, as well as impaired macrophage activation. Interferon alpha induced gene 27 like 2a (Ifi27l2a), Oligoadenylate synthetases 2 and 3 (Oas2 and Oas3) were significantly reduced in the ApoF KO mice relative to wild type controls. These effects were attributable to hypomorphic expression of Stat2 in the ApoF KO mice, a critical gene in the Type I IFN pathway that is situated just 425 base pairs downstream of ApoF. These studies implicate STAT2 as a potentially important player in atherosclerosis, and support the growing evidence that the Type I IFN pathway may contribute to this complex disease. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Fanunza, Elisa; Frau, Aldo; Sgarbanti, Marco; Orsatti, Roberto; Corona, Angela; Tramontano, Enzo
2018-02-24
The interferon (IFN) system is the first line of defense against viral infections. Evasion of IFN signaling by Ebola viral protein 24 (VP24) is a critical event in the pathogenesis of the infection and, hence, VP24 is a potential target for drug development. Since no drugs target VP24, the identification of molecules able to inhibit VP24, restoring and possibly enhancing the IFN response, is a goal of concern. Accordingly, we developed a dual signal firefly and Renilla luciferase cell-based drug screening assay able to quantify IFN-mediated induction of Interferon Stimulated Genes (ISGs) and its inhibition by VP24. Human Embryonic Kidney 293T (HEK293T) cells were transiently transfected with a luciferase reporter gene construct driven by the promoter of ISGs, Interferon-Stimulated Response Element (ISRE). Stimulation of cells with IFN-α activated the IFN cascade leading to the expression of ISRE. Cotransfection of cells with a plasmid expressing VP24 cloned from a virus isolated during the last 2014 outbreak led to the inhibition of ISRE transcription, quantified by a luminescent signal. To adapt this system to test a large number of compounds, we performed it in 96-well plates; optimized the assay analyzing different parameters; and validated the system by calculating the Z'- and Z-factor, which showed values of 0.62 and 0.53 for IFN-α stimulation assay and VP24 inhibition assay, respectively, indicative of robust assay performance.
Mohanty, Madhu C; Deshpande, Jagadish M
2013-01-01
Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains) do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV) and Sabin attenuated type 1 poliovirus (Sabin PV) in cultured human neuronal cells. By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs) and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH) infected with Sabin PV and wild PV. Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5) m-RNA in neuronal cells at the beginning of infection (up to 4 h) as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies.
Spencer, Thomas E.; Forde, Niamh; Dorniak, Piotr; Hansen, Thomas R.; Romero, Jared J.; Lonergan, Patrick
2013-01-01
In cattle, the blastocyst hatches from the zona pellucida on days 8 to 9 and then forms a conceptus that grows and elongates into an ovoid and then filamentous shape between days 9 and 16. The growing conceptus synthesizes and secretes prostaglandins and interferon tau. Our hypothesis was that the ovoid conceptus exerts a local effect on the endometrium prior to maternal recognition of pregnancy on day 16 in cattle. In Study One, synchronized cyclic heifers received nothing or 20 in vitro produced blastocysts on day 7, and uteri were collected on day 13. Interferon tau was not detected by radioimmunoassay in the uterine flush of pregnant heifers containing multiple ovoid conceptuses; however, total prostaglandin levels were higher in the uterine lumen of pregnant as compared to cyclic heifers. Microarray analysis revealed that 44 genes were increased in the endometrium of day 13 pregnant as compared to cyclic heifers, and many of those genes were classical Type I IFN-stimulated genes (ISGs). Studies Two and Three determined effects of infusing prostaglandins at the levels produced by the elongating day 14 conceptus into the uterine lumen of cyclic ewes on ISG expression in the endometrium. Results indicated that prostaglandin infusion increased the abundance of several ISGs in the endometrium. These studies support the hypothesis that the day 13 conceptus secretes prostaglandins that act locally in a paracrine manner to alter gene expression in the endometrium prior to pregnancy recognition in cattle. PMID:23966582
Chicha, Laurie; Jarrossay, David; Manz, Markus G
2004-12-06
Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c(-) natural type I interferon-producing cells (IPCs) and CD11c(+) dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I-producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system.
Calonge, Esther; Bermejo, Mercedes; Diez-Fuertes, Francisco; Mangeot, Isabelle; González, Nuria; Coiras, Mayte; Jiménez Tormo, Laura; García-Perez, Javier; Dereuddre-Bosquet, Nathalie; Le Grand, Roger
2017-01-01
ABSTRACT Dendritic cells (DCs) are professional antigen-presenting cells whose functions are dependent on their degree of differentiation. In their immature state, DCs capture pathogens and migrate to the lymph nodes. During this process, DCs become resident mature cells specialized in antigen presentation. DCs are characterized by a highly limiting environment for human immunodeficiency virus type 1 (HIV-1) replication due to the expression of restriction factors such as SAMHD1 and APOBEC3G. However, uninfected DCs capture and transfer viral particles to CD4 lymphocytes through a trans-enhancement mechanism in which chemokines are involved. We analyzed changes in gene expression with whole-genome microarrays when immature DCs (IDCs) or mature DCs (MDCs) were productively infected using Vpx-loaded HIV-1 particles. Whereas productive HIV infection of IDCs induced expression of interferon-stimulated genes (ISGs), such induction was not produced in MDCs, in which a sharp decrease in ISG- and CXCR3-binding chemokines was observed, lessening trans-infection of CD4 lymphocytes. Similar patterns of gene expression were found when DCs were infected with HIV-2 that naturally expresses Vpx. Differences were also observed under conditions of restrictive HIV-1 infection, in the absence of Vpx. ISG expression was not modified in IDCs, whereas an increase of ISG- and CXCR3-binding chemokines was observed in MDCs. Overall these results suggest that sensing and restriction of HIV-1 infection are different in IDCs and MDCs. We propose that restrictive infection results in increased virulence through different mechanisms. In IDCs avoidance of sensing and induction of ISGs, whereas in MDCs increased production of CXCR3-binding chemokines, would result in lymphocyte attraction and enhanced infection at the immune synapse. IMPORTANCE In this work we describe for the first time the activation of a different genetic program during HIV-1 infection depending on the state of maturation of DCs. This represents a breakthrough in the understanding of the restriction to HIV-1 infection of DCs. The results show that infection of DCs by HIV-1 reprograms their gene expression pattern. In immature cells, productive HIV-1 infection activates interferon-related genes involved in the control of viral replication, thus inducing an antiviral state in surrounding cells. Paradoxically, restriction of HIV-1 by SAMHD1 would result in lack of sensing and IFN activation, thus favoring initial HIV-1 escape from the innate immune response. In mature DCs, restrictive infection results in HIV-1 sensing and induction of ISGs, in particular CXCR3-binding chemokines, which could favor the transmission of HIV to lymphocytes. Our data support the hypothesis that genetic DC reprograming by HIV-1 infection favors viral escape and dissemination, thus increasing HIV-1 virulence. PMID:28148784
Yu, Dawei; Zhang, Shoufeng; Du, Weihua; Zhang, Jinxia; Fan, Zongxing; Hao, Haisheng; Liu, Yan; Zhao, Xueming; Qin, Tong; Zhu, Huabin
2014-01-01
Foot-and-mouth disease, one of the most significant diseases of dairy herds, has substantial effects on farm economics, and currently, disease control measures are limited. In this study, we constructed a vector with a human interferon-α (hIFN-α) (without secretory signal sequence) gene cassette containing the immediate early promoter of human cytomegalovirus. Stably transfected bovine fetal fibroblasts were obtained by G418 selection, and hIFN-α transgenic embryos were produced by somatic cell nuclear transfer (SCNT). Forty-six transgenic embryos were transplanted into surrogate cows, and five cows (10.9%) became pregnant. Two male cloned calves were born. Expression of hIFN-α was detected in transfected bovine fetal fibroblasts, transgenic SCNT embryos, and different tissues from a transgenic SCNT calf at two days old. In transfected bovine fetal fibroblasts, expression of intracellular IFN-α induced resistance to vesicular stomatitis virus infection, increased apoptosis, and induced the expression of double-stranded RNA-activated protein kinase gene (PKR) and the 2'-5'-oligoadenylate synthetase gene (2'-5' OAS), which are IFN-inducible genes with antiviral activity. Analysis by qRT-PCR showed that the mRNA expression levels of PKR, 2'-5' OAS, and P53 were significantly increased in wild-type bovine fetal fibroblasts stimulated with extracellular recombinant human IFN-α-2b, showing that intracellular IFN-α induces biological functions similar to extracellular IFN-α. In conclusion, expression of intracellular hIFN-α conferred antiviral properties in transfected bovine fetal fibroblasts and did not significantly affect the full development of SCNT embryos. Thus, IFN-α transgenic technology may provide a revolutionary way to achieve elite breeding of livestock.
Ben, Jin; Jabs, Ethylin Wang; Chong, Samuel S
2005-06-01
Van der Woude syndrome (VWS) and popliteal pterygium syndrome (PPS) are autosomal dominant clefting disorders recently discovered to be caused by mutations in the IRF6 (Interferon Regulatory Factor 6) gene. The IRF gene family consists of nine members encoding transcription factors that share a highly conserved helix-turn-helix DNA-binding domain and a less conserved protein-binding domain. Most IRFs regulate the expression of interferon-alpha and -beta after viral infection, but the function of IRF6 remains unknown. We have isolated a full-length zebrafish irf6 cDNA, which encodes a 492 amino acid protein that contains a Smad-IRF interaction motif and a DNA-binding domain. The zebrafish irf6 gene consists of eight exons and maps to linkage group 22 closest to marker unp1375. By in situ hybridization analysis of embryo whole-mounts and cryosections, we demonstrate that irf6 is first expressed as a maternal transcript. During gastrulation, irf6 expression was concentrated in the forerunner cells. From the bud stage to the 3-somite stage, irf6 expression was observed in the Kupffer's vesicle. No expression could be detected at the 6-somite and 10-somite stages. At the 14-somite stage, expression was detected in the otic placode. At the 17-somite stage, strong expression was also observed in the cloaca. During the pharyngula, hatch and larva periods up to 5 days post-fertilization, irf6 was expressed in the pharyngeal arches, olfactory and otic placodes, and in the epithelial cells of endoderm derived tissues. The latter tissues include the mouth, pharynx, esophagus, endodermal lining of swim bladder, liver, exocrine pancreas, and associated ducts. Overall, the zebrafish expression data are consistent with the observations of lip pits in VWS patients, as well as more recent reports of alae nasi, otitis media and sensorineural hearing loss documented in some patients.
Charles, Peter C; Alder, Brian D; Hilliard, Eleanor G; Schisler, Jonathan C; Lineberger, Robert E; Parker, Joel S; Mapara, Sabeen; Wu, Samuel S; Portbury, Andrea; Patterson, Cam; Stouffer, George A
2008-01-01
Background Strong epidemiologic evidence correlates tobacco use with a variety of serious adverse health effects, but the biological mechanisms that produce these effects remain elusive. Results We analyzed gene transcription data to identify expression spectra related to tobacco use in circulating leukocytes of 67 Caucasian male subjects. Levels of cotinine, a nicotine metabolite, were used as a surrogate marker for tobacco exposure. Significance Analysis of Microarray and Gene Set Analysis identified 109 genes in 16 gene sets whose transcription levels were differentially regulated by nicotine exposure. We subsequently analyzed this gene set by hyperclustering, a technique that allows the data to be clustered by both expression ratio and gene annotation (e.g. Gene Ontologies). Conclusion Our results demonstrate that tobacco use affects transcription of groups of genes that are involved in proliferation and apoptosis in circulating leukocytes. These transcriptional effects include a repertoire of transcriptional changes likely to increase the incidence of neoplasia through an altered expression of genes associated with transcription and signaling, interferon responses and repression of apoptotic pathways. PMID:18710571
Albacker, Lee A; Wu, Jeremy; Smith, Peter; Warmuth, Markus; Stephens, Philip J; Zhu, Ping; Yu, Lihua; Chmielecki, Juliann
2017-01-01
Immune evasion is a well-recognized hallmark of cancer and recent studies with immunotherapy agents have suggested that tumors with increased numbers of neoantigens elicit greater immune responses. We hypothesized that the immune system presents a common selective pressure on high mutation burden tumors and therefore immune evasion mutations would be enriched in high mutation burden tumors. The JAK family of kinases is required for the signaling of a host of immune modulators in tumor, stromal, and immune cells. Therefore, we analyzed alterations in this family for the hypothesized signature of an immune evasion mutation. Here, we searched a database of 61,704 unique solid tumors for alterations in the JAK family kinases (JAK1/2/3, TYK2). We used The Cancer Genome Atlas and Cancer Cell Line Encyclopedia data to confirm and extend our findings by analyzing gene expression patterns. Recurrent frameshift mutations in JAK1 were associated with high mutation burden and microsatellite instability. These mutations occurred in multiple tumor types including endometrial, colorectal, stomach, and prostate carcinomas. Analyzing gene expression signatures in endometrial and stomach adenocarcinomas revealed that tumors with a JAK1 frameshift exhibited reduced expression of interferon response signatures and multiple anti-tumor immune signatures. Importantly, endometrial cancer cell lines exhibited similar gene expression changes that were expected to be tumor cell intrinsic (e.g. interferon response) but not those expected to be tumor cell extrinsic (e.g. NK cells). From these data, we derive two primary conclusions: 1) JAK1 frameshifts are loss of function alterations that represent a potential pan-cancer adaptation to immune responses against tumors with microsatellite instability; 2) The mechanism by which JAK1 loss of function contributes to tumor immune evasion is likely associated with loss of the JAK1-mediated interferon response.
Hecker, M.; Preiss, C.; Klemm, P.; Busse, R.
1996-01-01
1. In view of the potential deleterious effects of high amounts of nitric oxide (NO) produced by the inducible isoform of NO synthase (iNOS) in inflammation, the prevention of the expression of this enzyme represents an important therapeutic goal. In cytokine-stimulated cells, activation of nuclear factor kappa B (NF-kappa B) is crucial for the increase in iNOS gene expression. Since NF-kappa B activation appears to involve a redox-sensitive step, we have investigated whether three structurally unrelated antioxidants, 5,7-dihydroxyflavone (chrysin), 3,4-dichloroisocoumarin (DCI) and N-acetyl 5-hydroxytryptamine (N-acetylserotonin, NAS), affect iNOS expression in cultured RAW 264.7 monocyte/macrophages stimulated with bacterial lipopolysaccharide (LPS, 140 ng ml-1) and interferon-gamma (IFN gamma, 5 u ml-1). 2. During a 6 h incubation period neither LPS nor IFN gamma alone exerted a significant effect but when combined, caused a prominent increase in nitrite formation, iNOS mRNA and protein abundance. Co-incubation with chrysin (50 microM), DCI (50 microM) or NAS (1 mM) markedly attenuated this increase in iNOS gene expression. 3. DCI, but not chrysin or NAS, prevented the activation of NF-kappa B in cells exposed to LPS plus IFN gamma for 30 min. In contrast, all three antioxidants significantly blunted the DNA-binding activity of interferon regulatory factor 1 (IRF-1), which mediates the synergistic effect of IFN gamma on iNOS gene expression in cells treated for 2 h with LPS plus IFN gamma. 4. DCI thus appears to inhibit iNOS gene expression at the transcriptional level by preventing the activation of both NF-kappa B and IRF-1. The inhibitory effect of DCI on NF-kappa B activation, however, does not seem to be related to its antioxidative properties, since DCI, unlike chrysin or NAS, is a potent serine protease inhibitor which stabilizes the inactive NF-kappa B complex by protecting the inhibitory I kappa B-alpha subunit from proteolytic degradation. 5. The virtually identical inhibitory effect of chrysin, DCI and NAS on the activation of IRF-1 points to a redox-sensitive step in the activation of this transcription factor, which in contrast to NF-kappa B requires de novo protein synthesis. 6. Since iNOS gene expression in human cells and tissues usually requires the combination of several cytokines, antioxidants such as chrysin and NAS which do not interfere with the activation of NF-kappa B may be of therapeutic value for selectively inhibiting the enhanced expression of this enzyme in inflammation. Images Figure 4 Figure 6 Figure 7 PMID:8864559
Qin, Xin-Tian; Lu, Yue; Tan, Yin-Duo; Chen, Xiao-Qin; Gen, Qi-Rong
2008-01-01
We have constructed plasmid "pTre-IFN-gamma" and proved that the Tet-off system could regulate the expression of human interferon-gamma (IFN-gamma) gene in murine marrow stromal cells in vitro. This study was to investigate the regulatory reversibility of Tet-off system and its effect on the expression of human IFN-gamma gene in murine marrow stromal cells in mice. Plasmids pTet-off and pTre-IFN-gamma were co-transfected into murine marrow stromal cells. The expression of IFN-gamma in marrow stromal cells was detected with ELISA. The marrow stromal cells were transfused into BABL/c naked mice after co-transfection. The expression of IFN-gamma mRNA in the spleen was detected by real-time fluorescent quantitative reverse transcription-polymerase chain reaction (RT-PCR). IFN-gamma protein was detected in the culture solution of marrow stromal cells after co-transfection. The secretion peak appeared within the first 72 h. The protein level of IFN-gamma was significantly lower in 300 ng/ml tetracycline hydrochloride-treated marrow stroma cells than in untreated cells [(67.11+/-22.14) pg/1 x 10(7) cells vs. (319.96+/-29.04) pg/1 x 10(7) cells, P<0.001]; its expression was increased when removed tetracycline hydrochloride (P=0.032). The expression of human IFN-gamma mRNA was detected in the spleen. The mRNA level of IFN-gamma was significantly higher in untreated group than in continuous tetracycline hydrochloride-treated group [(1.5+/-0.7)x10(5) copies . (100 mg)(-1) vs. (6.9+/-5.3)x10(2) copies . (100 mg)(-1), P<0.001]; its expression in the mice received tetracycline hydrochloride for one single time lay between the above two groups with significant difference. In mice, Tet-off system could rapidly, efficiently and reversibly regulate the expression of human IFN-gamma gene in marrow stromal cells in vitro and in vivo.
Brkic, Zana; Maria, Naomi I; van Helden-Meeuwsen, Cornelia G; van de Merwe, Joop P; van Daele, Paul L; Dalm, Virgil A; Wildenberg, Manon E; Beumer, Wouter; Drexhage, Hemmo A; Versnel, Marjan A
2013-01-01
Objective To determine the prevalence of upregulation of interferon (IFN) type I inducible genes, the so called ‘IFN type I signature’, in CD14 monocytes in 69 patients with primary Sjögren's syndrome (pSS) and 44 healthy controls (HC) and correlate it with disease manifestations and expression of B cell activating factor (BAFF). Methods Expression of IFI44L, IFI44, IFIT3, LY6E and MX1 was measured using real time quantitative PCR in monocytes. Expression values were used to calculate IFN type I scores for each subject. pSS patients positive for the IFN type I signature (IFN score≥10) and patients negative for the signature (IFN score<10) were then compared for clinical disease manifestations and BAFF expression. A bioassay using a monocytic cell line was performed to study whether BAFF mRNA expression was inducible by IFN type I activity in serum of patients with pSS. Results An IFN type I signature was present in 55% of patients with pSS compared with 4.5% of HC. Patients with the IFN type I signature showed: (a) higher EULAR Sjögren's Syndrome Disease Activity Index scores; higher anti-Ro52, anti-Ro60 and anti-La autoantibodies; higher rheumatoid factor; higher serum IgG; lower C3, lower absolute lymphocyte and neutrophil counts; (b)higher BAFF gene expression in monocytes. In addition, serum of signature-positive patients induced BAFF gene expression in monocytes. Conclusions The monocyte IFN type I signature identifies a subgroup of patients with pSS with a higher clinical disease activity together with higher BAFF mRNA expression. Such patients might benefit from treatment blocking IFN type I production or activity. PMID:22736090
RING domain is essential for the antiviral activity of TRIM25 from orange spotted grouper.
Yang, Ying; Huang, Youhua; Yu, Yepin; Yang, Min; Zhou, Sheng; Qin, Qiwei; Huang, Xiaohong
2016-08-01
Tripartite motif-containing 25 (TRIM25) has been demonstrated to exert crucial roles in the regulation of innate immune signaling. However, the roles of fish TRIM25 in antiviral immune response still remained uncertain. Here, a novel fish TRIM25 gene from orange spotted grouper (EcTRIM25) was cloned and its roles in grouper virus infection were elucidated. EcTRIM25 encoded a 734-aa protein which shared 68% identity to large yellow croaker (Larimichthys crocea). Amino acid alignment showed that EcTRIM25 contained three conserved domains, including a RING-finger domain, a B box/coiled-coil domain and a SPRY domain. In healthy grouper, the transcript of EcTRIM25 was predominantly detected in skin, spleen and intestine. After stimulation with Singapore grouper iridovirus (SGIV) or poly I:C, the relative expression of EcTRIM25 in grouper spleen was significantly increased at the early stage of injection. Subcellular localization analysis showed that EcTRIM25 distributed throughout the cytoplasm in grouper cells. Notably, the deletion RING domain affected its accurate localization and displayed microtubule like structures or bright aggregates in GS cells. After incubation with SGIV or red spotted grouper nervous necrosis virus (RGNNV), overexpression of full length of EcTRIM25 in vitro significantly decreased the viral gene transcription of SGIV and RGNNV. Consistently, the deletion of RING domain obviously affected the inhibitory effect of EcTRIM25. Furthermore, overexpression of EcTRIM25 significantly increased the expression level of interferon related signaling molecules, including interferon regulatory factor (IRF) 3, interferon-induced 35-kDa protein (IFP35), MXI, IRF7 and myeloid differentiation factor 88 (MyD88), suggesting that the positive regulation of interferon immune response by EcTRIM25 might affected RGNNV replication directly. Meanwhile, the expression levels of pro-inflammation cytokines were differently regulated by the ectopic expression of EcTRIM25. We proposed that the regulation of IRF7, MyD88 and pro-inflammation cytokines might contribute more important roles in SGIV infection. In addition, the RING domain of EcTRIM25 also played critical roles in the regulation of interferon immune and inflammation response. Together, our results will provide new evidences that the RING domain was essential for the antiviral action of fish TRIM25 against iridovirus and nodavirus infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hammad, A; Mossad, Y M; Nasef, N; Eid, R
2017-07-01
Background Increased expression of interferon-inducible genes is implicated in the pathogenesis of systemic lupus erythematosus (SLE). Interferon regulatory factor 5 (IRF5) is one of the transcription factors regulating interferon and was proved to be implicated in the pathogenesis of SLE in different populations. Objectives The objective of this study was to investigate the correlation between polymorphisms of the IRF5 gene and SLE susceptibility in a cohort of Egyptian children and to investigate their association with clinico-pathological features, especially lupus nephritis. Subjects and methods Typing of interferon regulatory factor 5 rs10954213, rs2004640 and rs2280714 polymorphisms were done using polymerase chain reaction-restriction fragment length polymorphism for 100 children with SLE and 100 matched healthy controls. Results Children with SLE had more frequent T allele and TT genotype of rs2004640 ( P c = 0.003 and 0.024, respectively) compared to controls. Patients with nephritis had more frequent T allele of rs2004640 compared to controls ( P c = 0.003). However the allele and genotype frequencies of the three studied polymorphisms did not show any difference in patients with nephritis in comparison to those without nephritis. Haplotype GTA of rs10954213, rs2004640 and rs2280714, respectively, was more frequent in lupus patients in comparison to controls ( p = 0.01) while the haplotype GGG was more frequent in controls than lupus patients ( p = 0.011). Conclusion The rs2004640 T allele and TT genotype and GTA haplotype of rs rs10954213, rs2004640, and rs2280714, respectively, can be considered as risk factors for the development of SLE. The presence of the rs2004640 T allele increases the risk of nephritis development in Egyptian children with SLE.
Wachi, Masatada; Koyama, Masahiro; Utsuyama, Masanori; Bittman, Barry B; Kitagawa, Masanobu; Hirokawa, Katsuiku
2007-02-01
With growing evidence linking job stress to illness, finding an effective means of stress management has become a challenging international endeavor. Although music therapy has attracted the attention of various fields as a promising method for alleviating stress, lack of standardization and paucity of data have served as impediments to widespread utilization. The effects of a Recreational Music-Making (RMM) group drumming protocol was evaluated on Japanese male corporate employees. A total of 20 volunteers participated in a one-hour RMM session while 20 volunteers engaged in leisurely reading for one hour (controls). After a six-month interval, the groups switched activities and underwent one session each. Pre- and post-intervention data were collected using mood state questionnaires and blood samples. Individual and group mean values for natural killer (NK) cell activity, NK cell percentage, and cytokine gene expression were analyzed. NK cell activity in the RMM group increased among individuals with low pre-intervention levels, and decreased among those with high pre-intervention levels. A significant correlation was established between changes in NK cell activity and the changes in the level of gene expressions for interferon-gamma and interleukin-10. The RMM group demonstrated enhanced mood, lower gene expression levels of the stress-induced cytokine interleukin-10, and higher NK cell activity when compared to the control. Based upon documented changes in NK cell activity, coupled with gene expression changes for interferon-gamma, interleukin-10, and improved mood, this RMM protocol has significant potential for utilization in the corporate wellness environment.
MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway
Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A.; Pfeffer, Lawrence M.
2017-01-01
Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro, and inhibited GBM tumorigenesis in vivo. Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro, and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway. PMID:29348882
MicroRNA203a suppresses glioma tumorigenesis through an ATM-dependent interferon response pathway.
Yang, Chuan He; Wang, Yinan; Sims, Michelle; Cai, Chun; He, Ping; Häcker, Hans; Yue, Junming; Cheng, Jinjun; Boop, Frederick A; Pfeffer, Lawrence M
2017-12-22
Glioblastoma (GBM) is a deadly and incurable brain tumor. Although microRNAs (miRNAs) play critical roles in regulating the cancer cell phenotype, the underlying mechanisms of how they regulate tumorigenesis are incompletely understood. We previously showed that miR-203a is expressed at relatively low levels in GBM patients, and ectopic miR-203a expression in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by interferon (IFN) or temozolomide in vitro , and inhibited GBM tumorigenesis in vivo . Here we show that ectopic expression of miR-203a in GBM cell lines promotes the IFN response pathway as evidenced by increased IFN production and IFN-stimulated gene (ISG) expression, and high basal tyrosine phosphorylation of multiple STAT proteins. Importantly, we identified that miR-203a directly suppressed the protein levels of ataxia-telangiectasia mutated (ATM) kinase that negatively regulates IFN production. We found that high ATM expression in GBM correlates with poor patient survival and that ATM expression is inversely correlated with miR-203a expression. Knockout of ATM expression and inhibition of ATM function in GBM cell lines inhibited cell proliferation and migration, increased sensitivity to apoptosis induced by therapeutic agents in vitro , and markedly suppressed GBM tumor growth and promoted animal survival. In contrast, restoring ATM levels in GBM cells ectopically expressing miR-203a increased tumorigenicity and decreased animal survival. Our study suggests that low miR-203a expression in GBM suppresses the interferon response through an ATM-dependent pathway.
Peromyscus leucopus mouse brain transcriptome response to Powassan virus infection.
Mlera, Luwanika; Meade-White, Kimberly; Dahlstrom, Eric; Baur, Rachel; Kanakabandi, Kishore; Virtaneva, Kimmo; Porcella, Stephen F; Bloom, Marshall E
2018-02-01
Powassan virus (POWV) is a tick-borne Flavivirus responsible for life-threatening encephalitis in North America and some regions of Russia. The ticks that have been reported to transmit the virus belong to the Ixodes species, and they feed on small-to-medium-sized mammals, such as Peromyscus leucopus mice, skunks, and woodchucks. We previously developed a P. leucopus mouse model of POWV infection, and the model is characterized by a lack of clinical signs of disease following intraperitoneal or intracranial inoculation. However, intracranial inoculation results in mild subclinical encephalitis from 5 days post infection (dpi), but the encephalitis resolves by 28 dpi. We used RNA sequencing to profile the P. leucopus mouse brain transcriptome at different time points after intracranial challenge with POWV. At 24 h post infection, 42 genes were significantly differentially expressed and the number peaked to 232 at 7 dpi before declining to 31 at 28 dpi. Using Ingenuity Pathway Analysis, we determined that the genes that were significantly expressed from 1 to 15 dpi were mainly associated with interferon signaling. As a result, many interferon-stimulated genes (ISGs) were upregulated. Some of the ISGs include an array of TRIMs (genes encoding tripartite motif proteins). These results will be useful for the identification of POWV restriction factors.
Cauvi, David M; Cauvi, Gabrielle; Toomey, Christopher B; Jacquinet, Eric; Pollard, Kenneth Michael
2017-07-01
IFN-γ has been found to be robustly important to disease pathogenesis in both idiopathic and induced models of murine lupus. In transgenic mice, over production of IFN-γ in the skin results in an inflammatory response and autoimmunity. This suggests that localized exposure to environmental factors that induce autoimmunity may be associated with expression of an IFN-γ-dependent inflammatory response. Using murine mercury-induced autoimmunity (mHgIA), the severity of inflammation and proinflammatory cytokine expression, including the cellular source of IFN-γ, were assessed at the site of subcutaneous exposure and in secondary lymphoid organs. Exposure induced a localized chronic inflammation comprising both innate and adaptive immune cells but only CD8+ T and NK cells were reduced in the absence of IFN-γ. IFN-γ+ cells began to appear as early as day 1 and comprised both resident (γδ T) and infiltrating cells (CD8+ T, NKT, CD11c+). The requirements for inflammation were examined in mice deficient in genes required (Ifng, Il6) or not required (Casp1) for mHgIA. None of these genes were essential for induction of inflammation, however IFN-γ and IL-6 were required for exacerbation of other proinflammatory cytokines. Additionally, lack of IFN-γ or IL-6 impacted expression of genes regulated by either IFN-γ or type I IFN. Significantly, both IFN-γ and IL-6 were required for increased expression of IRF-1 which regulates IFN stimulated genes and is required for mHgIA. Thus IRF-1 may be at the nexus of the interplay between IFN-γ and IL-6 in exacerbating a xenobiotic-induced inflammatory response, regulation of interferon responsive genes and autoimmunity. © The Author 2017. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Bursztejn, A.-C.; Briggs, T.A.; del Toro Duany, Y.; Anderson, B.H.; O’Sullivan, J.; Williams, S.G.; Bodemer, C.; Fraitag, S.; Gebhard, F.; Leheup, B.; Lemelle, I.; Oojageer, A.; Raffo, E.; Schmitt, E.; Rice, G.I.; Hur, S.; Crow, Y.J.
2016-01-01
Summary Cutaneous lesions described as chilblain lupus occur in the context of familial chilblain lupus or Aicardi–Goutières syndrome. To date, seven genes related to Aicardi–Goutières syndrome have been described. The most recently described encodes the cytosolic double-stranded RNA receptor IFIH1 (also known as MDA5), a key component of the antiviral type I interferon-mediated innate immune response. Enhanced type I interferon signalling secondary to gain-of-function mutations in IFIH1 can result in a range of neuroinflammatory phenotypes including classical Aicardi–Goutières syndrome. It is of note that none of the patients with a neurological phenotype so far described with mutations in this gene was reported to demonstrate cutaneous involvement. We present a family segregating a heterozygous pathogenic mutation in IFIH1 showing dermatological involvement as a prominent feature, variably associated with neurological disturbance and premature tooth loss. All three affected individuals exhibited increased expression of interferon-stimulated genes in whole blood, and the mutant protein resulted in enhanced interferon signalling in vitro, both in the basal state and following ligand stimulation. Our results further extend the phenotypic spectrum associated with mutations in IFIH1, indicating that the disease can be confined predominantly to the skin, while also highlighting phenotypic overlap with both Aicardi–Goutières syndrome and Singleton–Merten syndrome. PMID:26284909
Singh, Manvender; Brahma, Biswajit; Maharana, Jitendra; Patra, Mahesh Chandra; Kumar, Sushil; Mishra, Purusottam; Saini, Megha; De, Bidhan Chandra; Mahanty, Sourav; Datta, Tirtha Kumar; De, Sachinandan
2014-01-01
RIG1 and MDA5 have emerged as important intracellular innate pattern recognition receptors that recognize viral RNA and mediate cellular signals controlling Type I interferon (IFN-I) response. Buffalo RIG1 and MDA5 genes were investigated to understand the mechanism of receptor induced antiviral response. Sequence analysis revealed that RIG1 and MDA5 maintain a domain arrangement that is common in mammals. Critical binding site residues of the receptors are evolutionary conserved among mammals. Molecular dynamics simulations suggested that RIG1 and MDA5 follow a similar, if not identical, dsRNA binding pattern that has been previously reported in human. Moreover, binding free energy calculation revealed that MDA5 had a greater affinity towards dsRNA compared to RIG1. Constitutive expressions of RLR genes were ubiquitous in different tissues without being specific to immune organs. Poly I:C stimulation induced elevated expressions of IFN-β and IFN-stimulated genes (ISGs) through interferon regulatory factors (IRFs) mediated pathway in buffalo foetal fibroblast cells. The present study provides crucial insights into the structure and function of RIG1 and MDA5 receptors in buffalo. PMID:24587036
Demirci, F Y K; Manzi, S; Ramsey-Goldman, R; Minster, R L; Kenney, M; Shaw, P S; Dunlop-Thomas, C M; Kao, A H; Rhew, E; Bontempo, F; Kammerer, C; Kamboh, M I
2007-05-01
Interferon regulatory factor 5 (IRF5) belongs to a family of transcription factors that control the transactivation of type I interferon system-related genes, as well as the expression of several other genes involved in immune response, cell signalling, cell cycle control and apoptosis. Two recent studies reported a significant association between the IRF5/rs2004640 T allele and systemic lupus erythematosus (SLE). The purpose of this study was to determine whether the reported rs2004640 T allele association could be replicated in our independent SLE case-control sample. We genotyped DNA samples from 370 white SLE-affected female subjects and 462 white healthy female controls using the TaqMan Assay-on-Demand for rs2004640, and performed a case-control genetic association analysis. Frequency of the rs2004640 T allele was significantly higher in cases than in controls (56.5% vs. 50%; P= 0.008). The odds ratio for T allele carriers was 1.68 (95% CI: 1.20 - 2.34; P= 0.003). Our results in an independent case-control sample confirm the robust association of the IRF5/rs2004640 T allele with SLE risk, and further support the relevance of the type I interferon system in the pathogenesis of SLE and autoimmunity.
Evaluation of signal transduction pathways after transient cutaneous adenoviral gene delivery
2011-01-01
Background Adenoviral vectors have provided effective methods for in vivo gene delivery in therapeutic applications. However, these vectors can induce immune responses that may severely affect the ability of vector re-application. There is limited information about the mechanisms and signal transduction pathways involved in adenoviral recognition. For optimization of cutaneous gene therapy it is necessary to investigate molecular mechanisms of virus recognition in epidermal cells. The aim of this study was to investigate the signal transduction of the innate immunity after adenoviral DNA internalization in keratinocytes. Methods In vitro, keratinocytes were transfected with DNA, in the presence and absence of inhibitors for signalling molecules. In vivo, immunocompetent and athymic mice (n = 3 per group) were twice transduced with an Ad-vector. Results The results show an acute induction of type-I-interferon after in vitro transfection. Inhibition of PI3K, p38 MAPK, JNK and NFkappaB resulted in a decreased expression of type-I-interferon. In contrast to immunocompetent mice, athymic mice demonstrated a constant transgene expression and reduced inflammatory response in vivo. Conclusion The results suggest an induction of the innate immunity triggered by cytoplasm localised DNA which is mediated by PI3K-, p38 MAPK-, JNK-, NFkappaB-, JAK/STAT- and ERK1/2-dependent pathways. A stable transgene expression and a reduced inflammatory response in immunodeficient mice have been observed. These results provide potential for an effective adenoviral gene delivery into immunosupressed skin. PMID:21255430
Latent Gammaherpesvirus 68 Infection Induces Distinct Transcriptional Changes in Different Organs
Canny, Susan P.; Goel, Gautam; Reese, Tiffany A.; Zhang, Xin; Xavier, Ramnik
2014-01-01
Previous studies identified a role for latent herpesvirus infection in cross-protection against infection and exacerbation of chronic inflammatory diseases. Here, we identified more than 500 genes differentially expressed in spleens, livers, or brains of mice latently infected with gammaherpesvirus 68 and found that distinct sets of genes linked to different pathways were altered in the spleen compared to those in the liver. Several of the most differentially expressed latency-specific genes (e.g., the gamma interferon [IFN-γ], Cxcl9, and Ccl5 genes) are associated with known latency-specific phenotypes. Chronic herpesvirus infection, therefore, significantly alters the transcriptional status of host organs. We speculate that such changes may influence host physiology, the status of the immune system, and disease susceptibility. PMID:24155394
García-Valtanen, Pablo; Martínez-López, Alicia; López-Muñoz, Azucena; Bello-Perez, Melissa; Medina-Gali, Regla M.; Ortega-Villaizán, María del Mar; Varela, Monica; Figueras, Antonio; Mulero, Víctoriano; Novoa, Beatriz; Estepa, Amparo; Coll, Julio
2017-01-01
To investigate fish innate immunity, we have conducted organ and cell immune-related transcriptomic as well as immunohistologic analysis in mutant zebra fish (Danio rerio) lacking adaptive immunity (rag1−/−) at different developmental stages (egg, larvae, and adult), before and after infection with spring viremia carp virus (SVCV). The results revealed that, compared to immunocompetent zebra fish (rag1+/+), rag1−/− acquired increased resistance to SVCV with age, correlating with elevated transcript levels of immune genes in skin/fins and lymphoid organs (head kidney and spleen). Gene sets corresponding to apoptotic functions, immune-related multigene families, and interferon-related genes were constitutively upregulated in uninfected adult rag1−/− zebra fish. Overexpression of activated CASPASE-3 in different tissues before and after infection with SVCV further confirmed increased apoptotic function in rag1−/− zebra fish. Concurrently, staining of different tissue samples with a pan-leukocyte antibody marker showed abundant leukocyte infiltrations in SVCV-infected rag1−/− fish, coinciding with increased transcript expression of genes related to NK-cells and macrophages, suggesting that these genes played a key role in the enhanced immune response of rag1−/− zebra fish to SVCV lethal infection. Overall, we present evidence that indicates that rag1−/− zebra fish acquire an antiviral alert state while they reach adulthood in the absence of adaptive immunity. This antiviral state was characterized by (i) a more rapid response to viral infection, which resulted in increased survival, (ii) the involvement of NK-cell- and macrophage-mediated transcript responses rather than B- and/or T-cell dependent cells, and (iii) enhanced apoptosis, described here for the first time, as well as the similar modulation of multigene family/interferon-related genes previously associated to fish that survived lethal viral infections. From this and other studies, it might be concluded that some of the characteristics of mammalian trained immunity are present in lower vertebrates. PMID:28243233
Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.
Mills, Evanna L; Ryan, Dylan G; Prag, Hiran A; Dikovskaya, Dina; Menon, Deepthi; Zaslona, Zbigniew; Jedrychowski, Mark P; Costa, Ana S H; Higgins, Maureen; Hams, Emily; Szpyt, John; Runtsch, Marah C; King, Martin S; McGouran, Joanna F; Fischer, Roman; Kessler, Benedikt M; McGettrick, Anne F; Hughes, Mark M; Carroll, Richard G; Booty, Lee M; Knatko, Elena V; Meakin, Paul J; Ashford, Michael L J; Modis, Louise K; Brunori, Gino; Sévin, Daniel C; Fallon, Padraic G; Caldwell, Stuart T; Kunji, Edmund R S; Chouchani, Edward T; Frezza, Christian; Dinkova-Kostova, Albena T; Hartley, Richard C; Murphy, Michael P; O'Neill, Luke A
2018-04-05
The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.
Verbruggen, Paul; Ruf, Marius; Blakqori, Gjon; Överby, Anna K; Heidemann, Martin; Eick, Dirk; Weber, Friedemann
2011-02-04
La Crosse encephalitis virus (LACV) is a mosquito-borne member of the negative-strand RNA virus family Bunyaviridae. We have previously shown that the virulence factor NSs of LACV is an efficient inhibitor of the antiviral type I interferon system. A recombinant virus unable to express NSs (rLACVdelNSs) strongly induced interferon transcription, whereas the corresponding wt virus (rLACV) suppressed it. Here, we show that interferon induction by rLACVdelNSs mainly occurs through the signaling pathway leading from the pattern recognition receptor RIG-I to the transcription factor IRF-3. NSs expressed by rLACV, however, acts downstream of IRF-3 by specifically blocking RNA polymerase II-dependent transcription. Further investigations revealed that NSs induces proteasomal degradation of the mammalian RNA polymerase II subunit RPB1. NSs thereby selectively targets RPB1 molecules of elongating RNA polymerase II complexes, the so-called IIo form. This phenotype has similarities to the cellular DNA damage response, and NSs was indeed found to transactivate the DNA damage response gene pak6. Moreover, NSs expressed by rLACV boosted serine 139 phosphorylation of histone H2A.X, one of the earliest cellular reactions to damaged DNA. However, other DNA damage response markers such as up-regulation and serine 15 phosphorylation of p53 or serine 1524 phosphorylation of BRCA1 were not triggered by LACV infection. Collectively, our data indicate that the strong suppression of interferon induction by LACV NSs is based on a shutdown of RNA polymerase II transcription and that NSs achieves this by exploiting parts of the cellular DNA damage response pathway to degrade IIo-borne RPB1 subunits.
Robinson, Nirmal; McComb, Scott; Mulligan, Rebecca; Dudani, Renu; Krishnan, Lakshmi; Sad, Subash
2014-01-01
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a virulent pathogen that induces rapid host death. Here we observed that host survival after infection with S. Typhimurium was enhanced in the absence of type I interferon signaling, with improved survival of mice deficient in the receptor for type I interferons (Ifnar1−/− mice) that was attributed to macrophages. Although there was no impairment in cytokine expression or inflammasome activation in Ifnar1−/− macrophages, they were highly resistant to S. Typhimurium–induced cell death. Specific inhibition of the kinase RIP1or knockdown of the gene encoding the kinase RIP3 prevented the death of wild-type macrophages, which indicated that necroptosis was a mechanism of cell death. Finally, RIP3-deficient macrophages, which cannot undergo necroptosis, had similarly less death and enhanced control of S. Typhimurium in vivo. Thus, we propose that S. Typhimurium induces the production of type I interferon, which drives necroptosis of macrophages and allows them to evade the immune response. PMID:22922364
Golding, Josephine P; Goatley, Lynnette; Goodbourn, Steve; Dixon, Linda K; Taylor, Geraldine; Netherton, Christopher L
2016-06-01
African swine fever virus (ASFV) causes a lethal haemorrhagic disease of pigs. There are conflicting reports on the role of interferon in ASFV infection. We therefore analysed the interaction of ASFV with porcine interferon, in vivo and in vitro. Virulent ASFV induced biologically active IFN in the circulation of pigs from day 3-post infection, whereas low virulent OUR T88/3, which lacks genes from multigene family (MGF) 360 and MGF505, did not. Infection of porcine leucocytes enriched for dendritic cells, with ASFV, in vitro, induced high levels of interferon, suggesting a potential source of interferon in animals undergoing acute ASF. Replication of OUR T88/3, but not virulent viruses, was reduced in interferon pretreated macrophages and a recombinant virus lacking similar genes to those absent in OUR T88/3 was also inhibited. These findings suggest that as well as inhibiting the induction of interferon, MGF360 and MGF505 genes also enable ASFV to overcome the antiviral state. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Role of STAT1 in Chlamydia-Induced Type-1 Interferon Production in Oviduct Epithelial Cells
Hosey, Kristen Lynette; Hu, Sishun
2015-01-01
We previously reported that Chlamydia muridarum-infected murine oviduct epithelial cells (OE cells) secrete interferon β (IFN-β) in a mostly TLR3-dependent manner. However, C. muridarum-infected TLR3-deficient OE cells were still able to secrete detectable levels of IFN-β into the supernatants, suggesting that other signaling pathways contribute to Chlamydia-induced IFN-β synthesis in these cells. We investigated the role of STAT1 as a possible contributor in the Chlamydia-induced type-1 IFN production in wild-type (WT) and TLR3-deficient OE cells to ascertain its putative role at early- and late-times during Chlamydia infection. Our data show that C. muridarum infection significantly increased STAT1 gene expression and protein activation in WT OE cells; however, TLR3-deficient OE cells showed diminished STAT1 protein activation and gene expression. There was significantly less IFN-β detected in the supernatants of C. muridarum-infected OE cells derived from mice deficient in STAT1 when compared with WT OE cells, which suggest that STAT1 is required for the optimal synthesis of IFN-β during infection. Real-time quantitative polymerase chain reaction analyses of signaling components of the type-1 IFN signaling pathway demonstrated equal upregulation in the expression of STAT2 and IRF7 genes in the WT and TLR3-deficient OE cells, but no upregulation in these genes in the STAT1-deficient OE cells. Finally, experiments in which INFAR1 was blocked with neutralizing antibody revealed that IFNAR1-mediated signaling was critical to the Chlamydia-induced upregulation in IFN-α gene transcription, but had no role in the Chlamydia-induced upregulation in IFN-β gene transcription. PMID:26262558
Roles of unphosphorylated STATs in signaling.
Yang, Jinbo; Stark, George R
2008-04-01
The seven members of the signal transducer and activator of transcription (STAT) family of transcription factors are activated in response to many different cytokines and growth factors by phosphorylation of specific tyrosine residues. The STAT1 and STAT3 genes are specific targets of activated STATs 1 and 3, respectively, resulting in large increases in the levels of these unphosphorylated STATs (U-STATs) in response to the interferons (STAT1) or ligands that active gp130, such as IL-6 (STAT3). U-STATs drive gene expression by novel mechanisms distinct from those used by phosphorylated STAT (P-STAT) dimers. In this review, we discuss the roles of U-STATs in transcription and regulation of gene expression.
Li, Ping; Shi, Ming-Lei; Shen, Wen-Long; Zhang, Zhang; Xie, De-Jian; Zhang, Xiang-Yuan; He, Chao; Zhang, Yan; Zhao, Zhi-Hu
2017-08-01
Interferon-induced transmembrane protein (IFITM) 1, 2 and 3 genes encode a family of interferon (IFN)-induced transmembrane proteins that block entry of a broad spectrum of pathogens. However, the transcriptional regulation of these genes, especially whether there exist any enhancers and their roles during the IFN induction process remain elusive. Here, through public data mining, episomal luciferase reporter assay and in vivo CRISPR-Cas9 genome editing, we identified an IFN-responsive enhancer located 35kb upstream of IFITM3 gene promoter upregulating the IFN-induced expression of IFITM1, 2 and 3 genes. Chromatin immunoprecipitation (ChIP), electrophoretic mobility shift assay (EMSA) and luciferase reporter assay demonstrated that signal transducers and activators of transcription (STAT) 1 bound to the enhancer with the treatment of IFN and was indispensable for the enhancer activity. Furthermore, using chromosome conformation capture technique, we revealed that the IFITM1, 2 and 3 genes physically clustered together and constitutively looped to the distal enhancer through long-range interactions in both HEK293 and A549 cells, providing structural basis for coordinated regulation of IFITM1, 2 and 3 by the enhancer. Finally, we showed that in vivo truncation of the enhancer impaired IFN-induced resistance to influenza A virus (IAV) infection. These findings expand our understanding of the mechanisms underlying the transcriptional regulation of IFITM1, 2 and 3 expression and its ability to mediate IFN signaling. Copyright © 2017 Elsevier B.V. All rights reserved.
Molecular cloning, expression and characterization of Pekin duck interferon-λ.
Yao, Qingxia; Fischer, Karl P; Arnesen, Karina; Tyrrell, D Lorne; Gutfreund, Klaus S
2014-09-10
Interferons (IFNs) are the first line of defense against viral infections in vertebrates. Type III interferon (IFN-λ) is recognized for its key role in innate immunity of tissues of epithelial origin. Here we describe the identification of the Pekin duck IFN-λ ortholog (duIFN-λ). The predicted duIFN-λ protein has an amino acid identity of 63%, 38%, 37% and 33% with chicken IFN-λ and human IFN-λ3, IFN-λ2 and IFN-λ1, respectively. The duck genome contains a single IFN-λ gene that is comprised of five exons and four introns. Recombinant duIFN-λ up-regulated OASL and Mx-1 mRNA in primary duck hepatocytes. Our observations suggest evolutionary conservation of genomic organization and structural features implicated in receptor binding and antiviral activity. The identification and expression of duIFN-λ will facilitate further study of the role of type III IFN in antiviral defense and inflammatory responses of the Pekin duck, a non-mammalian vertebrate and pathogen host with relevance for human and animal health. Copyright © 2014 Elsevier B.V. All rights reserved.
Crow, Yanick J.; Chase, Diana S.; Schmidt, Johanna Lowenstein; Szynkiewicz, Marcin; Forte, Gabriella M.A.; Gornall, Hannah L.; Oojageer, Anthony; Anderson, Beverley; Pizzino, Amy; Helman, Guy; Abdel-Hamid, Mohamed S.; Abdel-Salam, Ghada M.; Ackroyd, Sam; Aeby, Alec; Agosta, Guillermo; Albin, Catherine; Allon-Shalev, Stavit; Arellano, Montse; Ariaudo, Giada; Aswani, Vijay; Babul-Hirji, Riyana; Baildam, Eileen M.; Bahi-Buisson, Nadia; Bailey, Kathryn M.; Barnerias, Christine; Barth, Magalie; Battini, Roberta; Beresford, Michael W.; Bernard, Geneviève; Bianchi, Marika; de Villemeur, Thierry Billette; Blair, Edward M.; Bloom, Miriam; Burlina, Alberto B.; Carpanelli, Maria Luisa; Carvalho, Daniel R.; Castro-Gago, Manuel; Cavallini, Anna; Cereda, Cristina; Chandler, Kate E.; Chitayat, David A.; Collins, Abigail E.; Corcoles, Concepcion Sierra; Cordeiro, Nuno J.V.; Crichiutti, Giovanni; Dabydeen, Lyvia; Dale, Russell C.; D’Arrigo, Stefano; De Goede, Christian G.E.L.; De Laet, Corinne; De Waele, Liesbeth M.H.; Denzler, Ines; Desguerre, Isabelle; Devriendt, Koenraad; Di Rocco, Maja; Fahey, Michael C.; Fazzi, Elisa; Ferrie, Colin D.; Figueiredo, António; Gener, Blanca; Goizet, Cyril; Gowrinathan, Nirmala R.; Gowrishankar, Kalpana; Hanrahan, Donncha; Isidor, Bertrand; Kara, Bülent; Khan, Nasaim; King, Mary D.; Kirk, Edwin P.; Kumar, Ram; Lagae, Lieven; Landrieu, Pierre; Lauffer, Heinz; Laugel, Vincent; La Piana, Roberta; Lim, Ming J.; Lin, Jean-Pierre S.-M.; Linnankivi, Tarja; Mackay, Mark T.; Marom, Daphna R.; Lourenço, Charles Marques; McKee, Shane A.; Moroni, Isabella; Morton, Jenny E.V.; Moutard, Marie-Laure; Murray, Kevin; Nabbout, Rima; Nampoothiri, Sheela; Nunez-Enamorado, Noemi; Oades, Patrick J.; Olivieri, Ivana; Ostergaard, John R.; Pérez-Dueñas, Belén; Prendiville, Julie S.; Ramesh, Venkateswaran; Rasmussen, Magnhild; Régal, Luc; Ricci, Federica; Rio, Marlène; Rodriguez, Diana; Roubertie, Agathe; Salvatici, Elisabetta; Segers, Karin A.; Sinha, Gyanranjan P.; Soler, Doriette; Spiegel, Ronen; Stödberg, Tommy I.; Straussberg, Rachel; Swoboda, Kathryn J.; Suri, Mohnish; Tacke, Uta; Tan, Tiong Y.; Naude, Johann te Water; Teik, Keng Wee; Thomas, Maya Mary; Till, Marianne; Tonduti, Davide; Valente, Enza Maria; Van Coster, Rudy Noel; van der Knaap, Marjo S.; Vassallo, Grace; Vijzelaar, Raymon; Vogt, Julie; Wallace, Geoffrey B.; Wassmer, Evangeline; Webb, Hannah J.; Whitehouse, William P.; Whitney, Robyn N.; Zaki, Maha S.; Zuberi, Sameer M.; Livingston, John H.; Rozenberg, Flore; Lebon, Pierre; Vanderver, Adeline; Orcesi, Simona; Rice, Gillian I.
2015-01-01
Aicardi–Goutières syndrome is an inflammatory disease occurring due to mutations in any of TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR or IFIH1. We report on 374 patients from 299 families with mutations in these seven genes. Most patients conformed to one of two fairly stereotyped clinical profiles; either exhibiting an in utero disease-onset (74 patients; 22.8% of all patients where data were available), or a post-natal presentation, usually within the first year of life (223 patients; 68.6%), characterized by a sub-acute encephalopathy and a loss of previously acquired skills. Other clinically distinct phenotypes were also observed; particularly, bilateral striatal necrosis (13 patients; 3.6%) and non-syndromic spastic paraparesis (12 patients; 3.4%). We recorded 69 deaths (19.3% of patients with follow-up data). Of 285 patients for whom data were available, 210 (73.7%) were profoundly disabled, with no useful motor, speech and intellectual function. Chilblains, glaucoma, hypothyroidism, cardiomyopathy, intracerebral vasculitis, peripheral neuropathy, bowel inflammation and systemic lupus erythematosus were seen frequently enough to be confirmed as real associations with the Aicardi-Goutieres syndrome phenotype. We observed a robust relationship between mutations in all seven genes with increased type I interferon activity in cerebrospinal fluid and serum, and the increased expression of interferon-stimulated gene transcripts in peripheral blood. We recorded a positive correlation between the level of cerebrospinal fluid interferon activity assayed within one year of disease presentation and the degree of subsequent disability. Interferon-stimulated gene transcripts remained high in most patients, indicating an ongoing disease process. On the basis of substantial morbidity and mortality, our data highlight the urgent need to define coherent treatment strategies for the phenotypes associated with mutations in the Aicardi–Goutières syndrome-related genes. Our findings also make it clear that a window of therapeutic opportunity exists relevant to the majority of affected patients and indicate that the assessment of type I interferon activity might serve as a useful biomarker in future clinical trials. PMID:25604658
Crow, Yanick J; Chase, Diana S; Lowenstein Schmidt, Johanna; Szynkiewicz, Marcin; Forte, Gabriella M A; Gornall, Hannah L; Oojageer, Anthony; Anderson, Beverley; Pizzino, Amy; Helman, Guy; Abdel-Hamid, Mohamed S; Abdel-Salam, Ghada M; Ackroyd, Sam; Aeby, Alec; Agosta, Guillermo; Albin, Catherine; Allon-Shalev, Stavit; Arellano, Montse; Ariaudo, Giada; Aswani, Vijay; Babul-Hirji, Riyana; Baildam, Eileen M; Bahi-Buisson, Nadia; Bailey, Kathryn M; Barnerias, Christine; Barth, Magalie; Battini, Roberta; Beresford, Michael W; Bernard, Geneviève; Bianchi, Marika; Billette de Villemeur, Thierry; Blair, Edward M; Bloom, Miriam; Burlina, Alberto B; Carpanelli, Maria Luisa; Carvalho, Daniel R; Castro-Gago, Manuel; Cavallini, Anna; Cereda, Cristina; Chandler, Kate E; Chitayat, David A; Collins, Abigail E; Sierra Corcoles, Concepcion; Cordeiro, Nuno J V; Crichiutti, Giovanni; Dabydeen, Lyvia; Dale, Russell C; D'Arrigo, Stefano; De Goede, Christian G E L; De Laet, Corinne; De Waele, Liesbeth M H; Denzler, Ines; Desguerre, Isabelle; Devriendt, Koenraad; Di Rocco, Maja; Fahey, Michael C; Fazzi, Elisa; Ferrie, Colin D; Figueiredo, António; Gener, Blanca; Goizet, Cyril; Gowrinathan, Nirmala R; Gowrishankar, Kalpana; Hanrahan, Donncha; Isidor, Bertrand; Kara, Bülent; Khan, Nasaim; King, Mary D; Kirk, Edwin P; Kumar, Ram; Lagae, Lieven; Landrieu, Pierre; Lauffer, Heinz; Laugel, Vincent; La Piana, Roberta; Lim, Ming J; Lin, Jean-Pierre S-M; Linnankivi, Tarja; Mackay, Mark T; Marom, Daphna R; Marques Lourenço, Charles; McKee, Shane A; Moroni, Isabella; Morton, Jenny E V; Moutard, Marie-Laure; Murray, Kevin; Nabbout, Rima; Nampoothiri, Sheela; Nunez-Enamorado, Noemi; Oades, Patrick J; Olivieri, Ivana; Ostergaard, John R; Pérez-Dueñas, Belén; Prendiville, Julie S; Ramesh, Venkateswaran; Rasmussen, Magnhild; Régal, Luc; Ricci, Federica; Rio, Marlène; Rodriguez, Diana; Roubertie, Agathe; Salvatici, Elisabetta; Segers, Karin A; Sinha, Gyanranjan P; Soler, Doriette; Spiegel, Ronen; Stödberg, Tommy I; Straussberg, Rachel; Swoboda, Kathryn J; Suri, Mohnish; Tacke, Uta; Tan, Tiong Y; te Water Naude, Johann; Wee Teik, Keng; Thomas, Maya Mary; Till, Marianne; Tonduti, Davide; Valente, Enza Maria; Van Coster, Rudy Noel; van der Knaap, Marjo S; Vassallo, Grace; Vijzelaar, Raymon; Vogt, Julie; Wallace, Geoffrey B; Wassmer, Evangeline; Webb, Hannah J; Whitehouse, William P; Whitney, Robyn N; Zaki, Maha S; Zuberi, Sameer M; Livingston, John H; Rozenberg, Flore; Lebon, Pierre; Vanderver, Adeline; Orcesi, Simona; Rice, Gillian I
2015-02-01
Aicardi-Goutières syndrome is an inflammatory disease occurring due to mutations in any of TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, ADAR or IFIH1. We report on 374 patients from 299 families with mutations in these seven genes. Most patients conformed to one of two fairly stereotyped clinical profiles; either exhibiting an in utero disease-onset (74 patients; 22.8% of all patients where data were available), or a post-natal presentation, usually within the first year of life (223 patients; 68.6%), characterized by a sub-acute encephalopathy and a loss of previously acquired skills. Other clinically distinct phenotypes were also observed; particularly, bilateral striatal necrosis (13 patients; 3.6%) and non-syndromic spastic paraparesis (12 patients; 3.4%). We recorded 69 deaths (19.3% of patients with follow-up data). Of 285 patients for whom data were available, 210 (73.7%) were profoundly disabled, with no useful motor, speech and intellectual function. Chilblains, glaucoma, hypothyroidism, cardiomyopathy, intracerebral vasculitis, peripheral neuropathy, bowel inflammation and systemic lupus erythematosus were seen frequently enough to be confirmed as real associations with the Aicardi-Goutieres syndrome phenotype. We observed a robust relationship between mutations in all seven genes with increased type I interferon activity in cerebrospinal fluid and serum, and the increased expression of interferon-stimulated gene transcripts in peripheral blood. We recorded a positive correlation between the level of cerebrospinal fluid interferon activity assayed within one year of disease presentation and the degree of subsequent disability. Interferon-stimulated gene transcripts remained high in most patients, indicating an ongoing disease process. On the basis of substantial morbidity and mortality, our data highlight the urgent need to define coherent treatment strategies for the phenotypes associated with mutations in the Aicardi-Goutières syndrome-related genes. Our findings also make it clear that a window of therapeutic opportunity exists relevant to the majority of affected patients and indicate that the assessment of type I interferon activity might serve as a useful biomarker in future clinical trials. © 2015 Wiley Periodicals, Inc.
Liu, Yi-Ping; Rajamanikham, Victoria; Baron, Marissa; Patel, Sagar; Mathur, Sameer K.; Schwantes, Elizabeth A.; Ober, Carole; Jackson, Daniel J.; Gern, James E.; Lemanske, Robert F.; Smith, Judith A
2017-01-01
Background Children with risk alleles at the 17q21 genetic locus who wheeze during rhinovirus illnesses have a greatly increased likelihood of developing childhood asthma. In mice, overexpression of the 17q21 gene ORMDL3 leads to airway remodeling and hyper-responsiveness. However, the mechanisms by which ORMDL3 predisposes to asthma are unclear. Previous studies have suggested that ORMDL3 induces endoplasmic reticulum (ER) stress and production of the type I interferon (IFN) regulated chemokine CXCL10. Objective The purpose of this study was to determine the relationship between ORMDL3 and rhinovirus-induced ER stress and type I IFN in human leukocytes. Methods ER stress was monitored by measuring HSPA5, CHOP and spliced XBP1 gene expression, and type I IFN by measuring IFNB1 (IFN-β) and CXCL10 expression in human cell lines and primary leukocytes following treatment with rhinovirus. Requirements for cell contact and specific cell type in ORMDL3 induction were examined by transwell assay and depletion experiments, respectively. Finally, the effects of 17q21 genotype on the expression of ORMDL3, IFNB1, and ER stress genes were assessed. Results THP-1 monocytes overexpressing ORMDL3 responded to rhinovirus with increased IFNB1 and HSPA5. Rhinovirus-induced ORMDL3 expression in primary leukocytes required cell-cell contact, and induction was abrogated by plasmacytoid dendritic cell depletion. The degree of rhinovirus induced ORMDL3, HSPA5, and IFNB1 expression varied by leukocyte type and 17q21 genotype, with the highest expression of these genes in the asthma-associated genotype. Conclusions & Clinical Relevance Multiple lines of evidence support an association between higher ORMDL3 and increased rhinovirus-induced HSPA5 and type I IFN gene expression. These associations with ORMDL3 are cell-type specific, with the most significant 17q21 genotype effects on ORMDL3 expression and HSPA5 induction evident in B cells. Together, these findings have implications for how the interaction of increased ORMDL3 and rhinovirus may predispose to asthma. PMID:28192616
Interferon-λ restricts West Nile virus neuroinvasion by tightening the blood-brain barrier.
Lazear, Helen M; Daniels, Brian P; Pinto, Amelia K; Huang, Albert C; Vick, Sarah C; Doyle, Sean E; Gale, Michael; Klein, Robyn S; Diamond, Michael S
2015-04-22
Although interferon-λ [also known as type III interferon or interleukin-28 (IL-28)/IL-29] restricts infection by several viruses, its inhibitory mechanism has remained uncertain. We used recombinant interferon-λ and mice lacking the interferon-λ receptor (IFNLR1) to evaluate the effect of interferon-λ on infection with West Nile virus, an encephalitic flavivirus. Cell culture studies in mouse keratinocytes and dendritic cells showed no direct antiviral effect of exogenous interferon-λ, even though expression of interferon-stimulated genes was induced. We observed no differences in West Nile virus burden between wild-type and Ifnlr1(-/-) mice in the draining lymph nodes, spleen, or blood. We detected increased West Nile virus infection in the brain and spinal cord of Ifnlr1(-/-) mice, yet this was not associated with a direct antiviral effect in mouse neurons. Instead, we observed an increase in blood-brain barrier permeability in Ifnlr1(-/-) mice. Treatment of mice with pegylated interferon-λ2 resulted in decreased blood-brain barrier permeability, reduced West Nile virus infection in the brain without affecting viremia, and improved survival against lethal virus challenge. An in vitro model of the blood-brain barrier showed that interferon-λ signaling in mouse brain microvascular endothelial cells increased transendothelial electrical resistance, decreased virus movement across the barrier, and modulated tight junction protein localization in a protein synthesis- and signal transducer and activator of transcription 1 (STAT1)-independent manner. Our data establish an indirect antiviral function of interferon-λ in which noncanonical signaling through IFNLR1 tightens the blood-brain barrier and restricts viral neuroinvasion and pathogenesis. Copyright © 2015, American Association for the Advancement of Science.
Ferreyra, Gabriela A.; Elinoff, Jason M.; Demirkale, Cumhur Y.; Starost, Matthew F.; Buckley, Marilyn; Munson, Peter J.; Krakauer, Teresa; Danner, Robert L.
2014-01-01
Background Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB) challenge was investigated in six tissues. Results The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC), spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN)/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN)-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. Conclusion Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes. PMID:24551153
Viral evasion of DNA-stimulated innate immune responses
Christensen, Maria H; Paludan, Søren R
2017-01-01
Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP–AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway. PMID:26972769
Ruuska, Marja; Sahlberg, Anna S.; Colbert, Robert A.; Granfors, Kaisa; Penttinen, Markus A.
2011-01-01
Objective To study the phosphorylation of STAT1 in HLA-B27-transfected human monocytic cells and the role of signaling molecules PKR and p38 in STAT1 phosphorylation. Methods U937 human monocytic cell transfectants stably expressing wild type HLA-B27 or mutated HLA-B27 heavy chains (HC) with amino acid substitutions in the B pocket were prepared. Mock transfected cells were prepared using the antibiotic resistance vectors (pSV2neo or RSV5neo) alone. PMA differentiated cells were stimulated with LPS or infected with S. enteritidis. Western blotting and flow cytometry were used to detect the phosphorylation and expression levels of STAT1 protein. Specific inhibitors were added in cell culture to study the role of PKR and p38 on STAT1 phosphorylation. Results STAT1 is constitutively highly phosphorylated on tyrosine 701 residue in HLA-B27 positive monocytic cells when compared to control cells, even prior to stimulation with LPS or bacteria. This phenotype is associated with the expression of HLA-B27 HCs that misfold. In addition, phosphorylation of STAT1 is dependent on PKR. Conclusion Our results show that STAT1 tyrosine 701 is constitutively highly phosphorylated in HLA-B27 expressing monocyte-macrophage cell line. Since phosphorylation of tyrosine 701 on STAT1 is sufficient to induce interferon-dependent genes, constitutive activity of this phosphorylation site may lead to overexpression of interferon-dependent genes, as well as other STAT1-dependent genes, in HLA-B27 monocyte-macrophages. Our results offer a mechanism by which B27 expression alone, without any external trigger, is potentially capable of inducing activation of STAT1, a critical regulator of the inflammatory response. PMID:21968657
Zhou, Hao; Chen, Shun; Yan, Bing; Chen, Hongjun; Wang, Mingshu; Jia, Renyong; Zhu, Dekang; Liu, Mafeng; Liu, Fei; Yang, Qiao; Wu, Ying; Sun, Kunfeng; Chen, Xiaoyue; Jing, Bo; Cheng, Anchun
2016-01-01
Geese, as aquatic birds, are an important natural reservoir of avian influenza virus (AIV). To characterize the innate antiviral immune response against AIV H9N2 strain infection in geese as well as the probable relationship between the expression of immune-related genes and the distribution of viral antigens, we investigated the levels of immune-related gene transcription both in AIV H9N2 strain-infected geese and in vitro. The patterns of viral location and the tissue distribution of CD4- and CD8α-positive cells were concurrently detected by immunohistochemical staining, which revealed respiratory and digestive organs as the primary sites of antigen-positive signals. Average AIV H9N2 viral loads were detected in the feces, Harderian gland (HG), and trachea, where higher copy numbers were detected compared with the rectum. Our results suggested the strong induction of proinflammatory cytokine expression compared with interferons (IFNs). Notably, in most tissues from the AIV H9N2 strain-infected birds, IFNα and IFNγ gene transcripts were differentially expressed. However, inverse changes in IFNα and IFNγ expression after AIV H9N2 strain infection were observed in vitro. Taken together, the results suggest that AIV H9N2 is widely distributed in multiple tissues, efficiently induces inflammatory cytokines in the HG and spleen of goslings and inversely influences type I and II IFN expression both in vivo and in vitro. The findings of this study further our understanding of host defense mechanisms and the pathogenesis of the H9N2 influenza virus in geese.
Mauffré, V; Grimard, B; Eozenou, C; Inghels, S; Silva, L; Giraud-Delville, C; Capo, D; Sandra, O; Constant, F
2016-11-01
We investigated the diagnostic reliability of pregnancy detection using changes in interferon stimulated gene (ISG) messenger RNA (mRNA) levels in circulating immune cells in ewes. Two different groups of ewes (an experimental group, experiment 1 and a farm group, experiment 2) were oestrus-synchronized and blood sampled on day 14 (D0=day of insemination in control animals, experiment 1) and day 15 (experiment 2). Real-time PCR were performed to evaluate the abundance of different ISG mRNAs. In the experimental group, peripheral blood mononuclear cells of 29 ewes born and bred in experimental facilities were isolated using a Percoll gradient method. Gene expression for Chemokine (C-X-C motif) ligand 10 (CXCL10), Myxovirus (influenza virus) resistance 1 (MX1) and Signal transducer and activator of transcription 1 (STAT1) mRNA were, respectively, 8.3-fold, 6.1-fold and 2.7-fold higher (P0.10) in CXCL10, STAT1, MX1, Myxovirus (influenza virus) resistance 2 (MX2) and ISG15 ubiquitin-like modifier (ISG15) mRNA expression were found between pregnant and non-pregnant ewes. The ROC curves and the hierarchical classification generated from the real-time PCR data failed to discriminate between pregnant and non-pregnant animals. In this group of animals, our results show a strong variability in ISG expression patterns: 17% of animals identified as non-pregnant by the five tests were in fact pregnant, only 52% of pregnant animals had at least two positive results (two genes above threshold), whereas up to five positive results (five genes above threshold) were needed to avoid misclassification. In conclusion, this study illustrates the high variability in ISG expression levels in immune circulating cells during early pregnancy and, therefore, highlights the limits of using ISG expression levels in blood samples, collected on PAXgene® tubes on farms, for early pregnancy detection in sheep.
USDA-ARS?s Scientific Manuscript database
Channel catfish (Ictalurus punctatus) have proven to be an excellent model with which to study immune responses in lower vertebrates. Identification of antiviral antibodies and cytotoxic cells, as well as both type I and II interferon (IFN), demonstrate that catfish likely mount a vigorous anti-vir...
Dunmire, Samantha K.; Odumade, Oludare A.; Porter, Jean L.; Reyes-Genere, Juan; Schmeling, David O.; Bilgic, Hatice; Fan, Danhua; Baechler, Emily C.; Balfour, Henry H.; Hogquist, Kristin A.
2014-01-01
Epstein-Barr Virus (EBV) causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza), respiratory syncytial virus (RSV), human rhinovirus (HRV), attenuated yellow fever virus (YFV), and Dengue fever virus (DENV), revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans. PMID:24465555
Dunmire, Samantha K; Odumade, Oludare A; Porter, Jean L; Reyes-Genere, Juan; Schmeling, David O; Bilgic, Hatice; Fan, Danhua; Baechler, Emily C; Balfour, Henry H; Hogquist, Kristin A
2014-01-01
Epstein-Barr Virus (EBV) causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza), respiratory syncytial virus (RSV), human rhinovirus (HRV), attenuated yellow fever virus (YFV), and Dengue fever virus (DENV), revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans.
Watanuki, Hironobu; Chakraborty, Gunimala; Korenaga, Hiroki; Kono, Tomoya; Shivappa, R B; Sakai, Masahiro
2009-10-15
Human interferon-alpha (huIFN-alpha) is an important immunomodulatory substance used in the treatment and prevention of numerous infectious and immune-related diseases in animals. However, the immunostimulatory effects of huIFN-alpha in fish remain to be investigated. In the current study, the immune responses of the carp species Cyprinus carpio L. to treatment with huIFN-alpha were analyzed via measurement of superoxide anion production, phagocytic activity and the expression of cytokine genes including interleukin-1beta, tumor necrosis factor-alpha and interleukin 10. Low doses of huIFN-alpha were administered orally once a day for 3 days, and sampling was carried out at 1, 3 and 5 days post-treatment. Our results indicate that a low dose of huIFN-alpha significantly increased phagocytic activity and superoxide anion production in the carp kidney. The huIFN-alpha-treated fish also displayed a significant upregulation in cytokine gene expression. The current study demonstrates the stimulatory effects of huIFN-alpha on the carp immune system and highlights the immunomodulatory role of huIFN-alpha in fish.
Windass, J D; Newton, C R; De Maeyer-Guignard, J; Moore, V E; Markham, A F; Edge, M D
1982-01-01
An 82 base pair DNA fragment has been synthesised which contains the E. coli trp promoter and operator sequences and also encodes the first Shine Dalgarno sequence of the trp operon. This DNA fragment is flanked by EcoRI and ClaI/TaqI cohesive ends and is thus easy to clone, transfer between vector systems and couple to genes to drive their expression. It has been cloned into plasmid pAT153, producing a convenient trp promoter vector. We have also joined the fragment to a synthetic IFN-alpha 1 gene, using synthetic oligonucleotides to generate a completely natural, highly efficient bacterial translation initiation signal on the promoter proximal side of the IFN gene. Plasmids carrying this construction enable E. coli cells to express IFN-alpha 1 almost constitutively and with significantly higher efficiency than from a lacUV5 promoter based system. Images PMID:6184675
Transcriptomic Signatures of Tacaribe Virus-Infected Jamaican Fruit Bats
Gerrard, Diana L.; Hawkinson, Ann; Sherman, Tyler; Modahl, Cassandra M.; Hume, Gretchen; Campbell, Corey L.; Schountz, Tony
2017-01-01
ABSTRACT Tacaribe virus (TCRV) is a mammalian arenavirus that was first isolated from artibeus bats in the 1950s. Subsequent experimental infection of Jamaican fruit bats (Artibeus jamaicensis) caused a disease similar to that of naturally infected bats. Although substantial attention has focused on bats as reservoir hosts of viruses that cause human disease, little is known about the interactions between bats and their pathogens. We performed a transcriptome-wide study to illuminate the response of Jamaican fruit bats experimentally infected with TCRV. Differential gene expression analysis of multiple tissues revealed global and organ-specific responses associated with innate antiviral responses, including interferon alpha/beta and Toll-like receptor signaling, activation of complement cascades, and cytokine signaling, among others. Genes encoding proteins involved in adaptive immune responses, such as gamma interferon signaling and costimulation of T cells by the CD28 family, were also altered in response to TCRV infection. Immunoglobulin gene expression was also elevated in the spleens of infected bats, including IgG, IgA, and IgE isotypes. These results indicate an active innate and adaptive immune response to TCRV infection occurred but did not prevent fatal disease. This de novo assembly provides a high-throughput data set of the Jamaican fruit bat and its host response to TCRV infection, which remains a valuable tool to understand the molecular signatures involved in antiviral responses in bats. IMPORTANCE As reservoir hosts of viruses associated with human disease, little is known about the interactions between bats and viruses. Using Jamaican fruit bats infected with Tacaribe virus (TCRV) as a model, we characterized the gene expression responses to infection in different tissues and identified pathways involved with the response to infection. This report is the most detailed gene discovery work in the species to date and the first to describe immune gene expression responses in bats during a pathogenic viral infection. PMID:28959737
Eozenou, Caroline; Vitorino Carvalho, Anaïs; Carvalho, Anaïs Vitorino; Forde, Niamh; Giraud-Delville, Corinne; Gall, Laurence; Lonergan, Pat; Auguste, Aurélie; Charpigny, Gilles; Richard, Christophe; Pannetier, Maëlle; Sandra, Olivier
2012-08-01
FOXL2, a winged-helix/forkhead domain transcription factor, is a key gene involved in the differentiation and biological functions of the ovary. In a recent transcriptomic analysis, we found that FOXL2 expression in bovine caruncular endometrium was different from that in intercaruncular endometrium. In order to gain new insights into FOXL2 in this tissue, we determined the expression of this transcription factor during the estrous cycle and the establishment of pregnancy in cattle. The endometrial expression of FOXL2 did not vary during maternal recognition of pregnancy (Days 16-20). Using an in vivo bovine model and primary cell cultures, we showed that FOXL2 was not an interferon-tau target gene. Both FOXL2 transcript and protein were expressed from Day 5 to Day 20 of the estrous cycle, and their levels showed a significant increase during the luteolytic phase. A 2-day progesterone supplementation in heifers led to a clear down-regulation of FOXL2 protein levels, suggesting the negative impact of progesterone on FOXL2 expression. Immunohistochemistry data revealed the localization of FOXL2 in endometrial stromal and glandular cells. FOXL2 subcellular distribution was shown to be nuclear in endometrial samples collected during the luteolytic period, while it was not detected in nuclei during the luteal phase and at implantation. Collectively, our findings provide the first evidence that FOXL2 is involved in the regulation of endometrial tissue physiology.
Cannas, Valeria; Daino, Gian Luca; Corona, Angela; Esposito, Francesca; Tramontano, Enzo
2015-10-01
During Ebola virus (EBOV) infection, the type I interferon α/β (IFN-α/β) innate immune response is suppressed by EBOV viral protein 35 (VP35), a validated drug target. Identification of EBOV VP35 inhibitors requires a cellular system able to assess the VP35-based inhibitory functions of viral double-stranded RNA (dsRNA) IFN-β induction. We established a miniaturized luciferase gene reporter assay in A549 cells that measures IFN-β induction by viral dsRNA and is dose-dependently inhibited by VP35 expression. When compared to influenza A virus NS1 protein, EBOV VP35 showed improved inhibition of viral dsRNA-based IFN-β induction. This assay can be used to screen for EBOV VP35 inhibitors. © The Author 2015. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Type I interferon signature in systemic lupus erythematosus.
Bezalel, Shira; Guri, Keren Mahlab; Elbirt, Daniel; Asher, Ilan; Sthoeger, Zev Moshe
2014-04-01
Type I interferons (IFN) are primarily regarded as an inhibitor of viral replication. However, type I IFN, mainly IFNalpha, plays a major role in activation of both the innate and adaptive immune systems. Systemic lupus erythematosus (SLE) is a chronic, multi-systemic, inflammatory autoimmune disease with undefined etiology. SLE is characterized by dysregulation of both the innate and the adaptive immune systems. An increased expression of type I IFN-regulated genes, termed IFN signature, has been reported in patients with SLE. We review here the role of IFNalpha in the pathogenesis and course of SLE and the possible role of IFNalpha inhibition as a novel treatment for lupus patients.
Yuk, Seong-Su; Lee, Dong-Hun; Park, Jae-Keun; Tseren-Ochir, Erdene-Ochir; Kwon, Jung-Hoon; Noh, Jin-Yong; Lee, Joong-Bok; Park, Seung-Yong; Choi, In-Soo; Song, Chang-Seon
2016-04-27
Interferon gamma (IFN-γ), an immunoregulatory cytokine, is known to control many microbial infections. In a previous study, chicken interferon gamma (chIFN-γ) was found to be up-regulated following avian influenza virus (AIV) infection in specific pathogen-free chickens. We aimed to investigate whether the pre-immune state induced by chIFN-γ could generate an antiviral response against influenza virus. We generated a chIFN-γ-expressing plasmid and transfected it into chicken embryo fibroblasts (CEFs) and then infected the cells with human origin H1N1 or avian origin H9N2 influenza viruses. Viral titers of culture medium were evaluated in MDCK cell and the viral RNA and IFN-stimulated genes (ISGs) were then quantified by real-time reverse transcriptase polymerase. To further evaluate the role of the antiviral effect of chIFN-γ by using a backward approach, synthetic small interfering RNAs (siRNA) targeting chIFN-γ were used to suppress chIFN-γ. The chIFN-γ-stimulated CEFs inhibited the replication of viral RNA (vRNA) and showed a mild decrease in the infectious virus load released in the culture medium. Compared to the mock-transfected control, the messenger RNA (mRNA) levels of type I IFNs and IFN-stimulated genes were up-regulated in the cells expressing chIFN-γ. After treatment with the siRNA, we detected a higher expression of viral genes than that observed in the mock-transfected control. Our results suggest that apart from the important role played by chIFN-γ in the antiviral state generated against influenza virus infection, the pre-immune state induced by chIFN-γ can be helpful in mitigating the propagation of influenza virus.
Hu, Guobin; Yin, Xiangyan; Xia, Jun; Dong, Xianzhi; Zhang, Jianyie; Liu, Qiuming
2010-12-01
Interferon regulatory factor (IRF) 7 in mammals is known to be a key player in regulating the type I interferon (IFN) response to viral infection as a transcription activator of IFNs and IFN-stimulated genes (ISGs). In this study, a full-length cDNA of Japanese flounder, Paralichthys olivaceus, (Po)IRF-7 was cloned and characterized. PoIRF-7 is 2032 bp in length, with an open reading frame (ORF) of 1293 bp that encodes 430 amino acid residues. The putative amino acid sequence shows the highest homology to fish IRF-7 with 51.5-76.3% identity and possesses a DNA-binding domain (DBD), an IRF association domain (IAD) and a serine-rich domain of vertebrate IRF-7. In addition, the tryptophan cluster of PoIRF-7 DBD consists of only four tryptophans, which is a characteristic unique to all fish IRF-7 members. The PoIRF-7 was expressed constitutively in all tested tissues of healthy flounders, with high levels in head kidney, spleen, gill, intestine and skin, and moderately expressed in FG9307 cells, a flounder gill epithelial cell line. Using a luciferase assay, PoIRF-7 was proved to be capable of activating fish type I IFN promoter in FG9307 cells. A quantitative real time PCR assay was employed to monitor the gene expression of PoIRF-7 and Mx in FG9307 cells and flounder head kidney and gill. Both genes were up-regulated by polyinosinic:polycytidylic acid (poly I:C) and lymphocystis disease virus (LCDV) though to a much lesser extent in FG9307 cells. Further, their transcription kinetics were similar in fish organs but different in FG9307 cells. These data provide insights into the functions of PoIRF-7 and imply a difference in PoIRF-7-related signaling pathways in antiviral response between cultured cells and live fish. Copyright © 2010 Elsevier Ltd. All rights reserved.
Irf8-Regulated Genomic Responses Drive Pathological Inflammation during Cerebral Malaria
Radovanovic, Irena; Tam, Mifong; MacMicking, John D.; Stevenson, Mary M.; Gros, Philippe
2013-01-01
Interferon Regulatory Factor 8 (IRF8) is required for development, maturation and expression of anti-microbial defenses of myeloid cells. BXH2 mice harbor a severely hypomorphic allele at Irf8 (Irf8R294C) that causes susceptibility to infection with intracellular pathogens including Mycobacterium tuberculosis. We report that BXH2 are completely resistant to the development of cerebral malaria (ECM) following Plasmodium berghei ANKA infection. Comparative transcriptional profiling of brain RNA as well as chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq) was used to identify IRF8-regulated genes whose expression is associated with pathological acute neuroinflammation. Genes increased by infection were strongly enriched for IRF8 binding sites, suggesting that IRF8 acts as a transcriptional activator in inflammatory programs. These lists were enriched for myeloid-specific pathways, including interferon responses, antigen presentation and Th1 polarizing cytokines. We show that inactivation of several of these downstream target genes (including the Irf8 transcription partner Irf1) confers protection against ECM. ECM-resistance in Irf8 and Irf1 mutants is associated with impaired myeloid and lymphoid cells function, including production of IL12p40 and IFNγ. We note strong overlap between genes bound and regulated by IRF8 during ECM and genes regulated in the lungs of M. tuberculosis infected mice. This IRF8-dependent network contains several genes recently identified as risk factors in acute and chronic human inflammatory conditions. We report a common core of IRF8-bound genes forming a critical inflammatory host-response network. PMID:23853600
Sauerhering, Lucie; Müller, Helena; Behner, Laura; Elvert, Mareike; Fehling, Sarah Katharina; Strecker, Thomas; Maisner, Andrea
2017-10-01
Highly pathogenic Nipah virus (NiV) generally causes severe encephalitis in humans. Respiratory symptoms are infrequently observed, likely reflecting variations in infection kinetics in human airways. Supporting this idea, we recently identified individual differences in NiV replication kinetics in cultured airway epithelia from different human donors. As type III interferons (IFN-λ) represent major players in the defence mechanism against viral infection of the respiratory mucosa, we studied IFN-λ induction and antiviral activity in NiV-infected primary differentiated human bronchial epithelial cells (HBEpCs) cultured under air-liquid interface conditions. Our studies revealed that IFN-λ was upregulated in airway epithelia upon NiV infection. We also show that IFN-λ pretreatment efficiently inhibited NiV replication. Interestingly, the antiviral activity of IFN-λ varied in HBEpCs from two different donors. Increased sensitivity to IFN-λ was associated with higher expression levels of IFN-λ receptors, enhanced phosphorylation of STAT1, as well as enhanced induction of interferon-stimulated gene expression. These findings suggest that individual variations in IFN-λ receptor expression affecting IFN responsiveness can play a functional role for NiV replication kinetics in human respiratory epithelial cells of different donors.
Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells.
Elce, A; Amato, F; Zarrilli, F; Calignano, A; Troncone, R; Castaldo, G; Canani, R B
2017-10-13
Butyrate acts as energy source for intestinal epithelial cells and as key mediator of several immune processes, modulating gene expression mainly through histone deacetylation inhibition. Thanks to these effects, butyrate has been proposed for the treatment of many intestinal diseases. Aim of this study was to investigate the effect of butyrate on the expression of a large series of target genes encoding proteins involved in pro-inflammatory pathways. We performed quantitative real-time-PCR analysis of the expression of 86 genes encoding proteins bearing to pro-inflammatory pathways, before and after butyrate exposure, in primary epithelial cells derived from human small intestine and colon. Butyrate significantly down-regulated the expression of genes involved in inflammatory response, among which nuclear factor kappa beta, interferon-gamma, Toll like 2 receptor and tumour necrosis factor-alpha. Further confirmations of these data, including studies at protein level, would support the use of butyrate as effective therapeutic strategy in intestinal inflammatory disorders.
ADAR1 deletion induces NFκB and interferon signaling dependent liver inflammation and fibrosis.
Ben-Shoshan, Shirley Oren; Kagan, Polina; Sultan, Maya; Barabash, Zohar; Dor, Chen; Jacob-Hirsch, Jasmine; Harmelin, Alon; Pappo, Orit; Marcu-Malina, Victoria; Ben-Ari, Ziv; Amariglio, Ninette; Rechavi, Gideon; Goldstein, Itamar; Safran, Michal
2017-05-04
Adenosine deaminase acting on RNA (ADAR) 1 binds and edits double-stranded (ds) RNA secondary structures found mainly within untranslated regions of many transcripts. In the current research, our aim was to study the role of ADAR1 in liver homeostasis. As previous studies show a conserved immunoregulatory function for ADAR1 in mammalians, we focused on its role in preventing chronic hepatic inflammation and the associated activation of hepatic stellate cells to produce extracellular matrix and promote fibrosis. We show that hepatocytes specific ADAR1 knock out (KO) mice display massive liver damage with multifocal inflammation and fibrogenesis. The bioinformatics analysis of the microarray gene-expression datasets of ADAR1 KO livers reveled a type-I interferons signature and an enrichment for immune response genes compared to control littermate livers. Furthermore, we found that in vitro silencing of ADAR1 expression in HepG2 cells leads to enhanced transcription of NFκB target genes, foremost of the pro-inflammatory cytokines IL6 and IL8. We also discovered immune cell-independent paracrine signaling among ADAR1-depleted HepG2 cells and hepatic stellate cells, leading to the activation of the latter cell type to adopt a profibrogenic phenotype. This paracrine communication dependent mainly on the production and secretion of the cytokine IL6 induced by ADAR1 silencing in hepatocytes. Thus, our findings shed a new light on the vital regulatory role of ADAR1 in hepatic immune homeostasis, chiefly its inhibitory function on the crosstalk between the NFκB and type-I interferons signaling cascades, restraining the development of liver inflammation and fibrosis.
ADAR1 deletion induces NFκB and interferon signaling dependent liver inflammation and fibrosis
Ben-Shoshan, Shirley Oren; Kagan, Polina; Sultan, Maya; Barabash, Zohar; Dor, Chen; Jacob-Hirsch, Jasmine; Harmelin, Alon; Pappo, Orit; Marcu-Malina, Victoria; Ben-Ari, Ziv; Amariglio, Ninette; Rechavi, Gideon; Goldstein, Itamar; Safran, Michal
2017-01-01
ABSTRACT Adenosine deaminase acting on RNA (ADAR) 1 binds and edits double-stranded (ds) RNA secondary structures found mainly within untranslated regions of many transcripts. In the current research, our aim was to study the role of ADAR1 in liver homeostasis. As previous studies show a conserved immunoregulatory function for ADAR1 in mammalians, we focused on its role in preventing chronic hepatic inflammation and the associated activation of hepatic stellate cells to produce extracellular matrix and promote fibrosis. We show that hepatocytes specific ADAR1 knock out (KO) mice display massive liver damage with multifocal inflammation and fibrogenesis. The bioinformatics analysis of the microarray gene-expression datasets of ADAR1 KO livers reveled a type-I interferons signature and an enrichment for immune response genes compared to control littermate livers. Furthermore, we found that in vitro silencing of ADAR1 expression in HepG2 cells leads to enhanced transcription of NFκB target genes, foremost of the pro-inflammatory cytokines IL6 and IL8. We also discovered immune cell-independent paracrine signaling among ADAR1-depleted HepG2 cells and hepatic stellate cells, leading to the activation of the latter cell type to adopt a profibrogenic phenotype. This paracrine communication dependent mainly on the production and secretion of the cytokine IL6 induced by ADAR1 silencing in hepatocytes. Thus, our findings shed a new light on the vital regulatory role of ADAR1 in hepatic immune homeostasis, chiefly its inhibitory function on the crosstalk between the NFκB and type-I interferons signaling cascades, restraining the development of liver inflammation and fibrosis. PMID:27362366
Mann, Brandon A.; Huang, Julia He; Li, Ping; Chang, Hua-Chen; Slee, Roger B.; O'Sullivan, Audrey; Mathur, Anita; Yeh, Norman; Klemsz, Michael J.; Brutkiewicz, Randy R.; Blum, Janice S.
2008-01-01
Blocking the function of Stat (signal transducer and activator of transcription) proteins, which are critical for antiviral responses, has evolved as a common mechanism for pathogen immune evasion. The poxvirus-encoded phosphatase H1 is critical for viral replication, and may play an additional role in the evasion of host defense by dephosphorylating Stat1 and blocking interferon (IFN)-stimulated innate immune responses. Vaccinia virus (VACV) H1 can inhibit the phosphorylation of the transcription factor Stat1 after IFN-γ stimulation of epithelial cells, greatly attenuating IFN-induced biological functions. In this study, we demonstrate that VACV infection is capable of inhibiting the phosphorylation of Stat1 and Stat2 after stimulation of fibroblasts or bone marrow-derived macrophages with either type I or type II IFNs, but did not inhibit the activation of Stat3 or Stat5 in either cell type. By using recombinant proteins for in vitro assays, we observe that variola virus H1 is more active than VACV H1, although it has similar selectivity for Stat targets. Differential effects of VACV infection were observed on the induction of IFN-stimulated genes, with complete inhibition of some genes by VACV infection, while others were less affected. Despite the IFN-γ-induced expression of some genes in VACV-infected cells, IFN-γ was unable to rescue the VACV-mediated inhibition of MHC class II antigen presentation. Moreover, VACV infection can affect the IFN-induced expression of Stat1-dependent and Stat1-independent genes, suggesting that the virus may target additional IFN-activated pathways. Thus, VACV targets multiple signaling pathways in the evasion of antiviral immune responses. PMID:18593332
Cao, X L; Chen, J J; Cao, Y; Nie, G X; Su, J G
2016-05-01
Stimulator of interferon gene (sting) was identified and characterized from common carp Cyprinus carpio. The sting messenger (m)RNA encoded a polypeptide of 402 amino acids with a calculated molecular mass of 46·184 kDa and an isoelectronic point of 6·08. The deduced protein of sting contained a signal peptide, three transmembrane motifs in the N-terminal region and four putative motifs (RXR) found in resident endoplasmic reticulum proteins. mRNA expression of sting was present in twelve investigated tissues, and was up-regulated by koi herpesvirus (KHV) in vivo and in vitro. The transcription of sting was altered by poly(I:C) and poly(dT:dA) stimulation in vitro. The findings suggested that sting is an inducible gene involved in innate immunity against DNA- and RNA-derived pathogens. To investigate defence mechanisms in C. carpio development, sting level in embryos, larvae and juvenile fish was monitored following KHV challenge. The sting message was negligible in embryos prior to hatching, but observed at higher transcriptional levels throughout larval and juvenile stages. Investigation showed the mRNA expression profiles of genes encoding for proteins promoting various functions in the interferon pathway, from pattern recognition receptors to antiviral genes, to be significantly induced in all examined organs by in vivo infection with KHV. Following KHV infection, the ifn message was significantly downregulated in spleen, head kidney, brain and hepatopancreas but notably up-regulated in gill, intestine and skin, suggesting that ifn induction might be related to the mucosal immune system and virus anti-ifn mechanisms. These results provided the basis for further research into the role and mechanisms of sting in fishes. © 2016 The Fisheries Society of the British Isles.
Zhang, Kao; Jin, Huijun; Zhong, Fei; Li, Xiujin; Neng, Changai; Chen, Huihui; Li, Wenyan; Wen, Jiexia
2012-11-04
To construct recombinant adenovirus containing canine interferon-gamma (cIFN-gamma) gene and to investigate its antiviral activity against canine parvovirus in Madin-Darby canine kidney cells (MDCK). [Methods] The cIFN-gamma gene was inserted into adenovirus shuttle plasmid to construct pShuttle3-cIFN-gamma expression vector, from which the cIFN-gamma expression cassette was transferred into the adenovirus genomic plasmid pAdeno-X by specific restriction sites to generate recombinant adenovirus genomic plasmid pAd-cIFN-gamma. The pAd-cIFN-gamma plasmid was linearized by digestion and transfected into human embryonic kidney (HEK) 293T cells to generate the replication-defective cIFN-gamma recombinant adenovirus (Ad-cIFN-gamma). To analyze its anti-canine parvovirus activity, the MDCK cells were pre-infected by Ad-cIFN-gamma recombinant adenovirus, and then infected by canine parvovirus. The antiviral activity of the Ad-cIFN-gamma recombinant adenovirus against parvovirus was analyzed. The recombinant adenovirus containing cIFN-gamma gene was constructed by the ligation method. The recombinant adenovirus could mediates recombinant cIFN-gamma secretory expression in MDCK cells. The Ad-cIFN-gamma recombinant adenovirus could significantly inhibit canine parvovirus replication in MDCK cells pre-infected with the recombinant adenovirus. These results indicate that the Ad-cIFN-gamma recombinant adenovirus has the potent antiviral activity against canine parvovirus. The Ad-cIFN-gamma recombinant adenovirus was successfully constructed by the ligation method and possessed a powerful antiviral activity against canine parvovirus.
Rashid, Mohammad B; Talukder, Anup K; Kusama, Kazuya; Haneda, Shingo; Takedomi, Toshiro; Yoshino, Hitomi; Moriyasu, Satoru; Matsui, Motozumi; Shimada, Masayuki; Imakawa, Kazuhiko; Miyamoto, Akio
2018-06-12
Recent studies suggest that Day-7 bovine embryo starts to communicate with the uterine epithelium through interferon-tau (IFNT) signaling. However, immune modulatory role of IFNT in the uterus just after the embryo moves from the oviduct is unclear. We aimed to examine the hypothesis that Day-7 bovine embryo secretes IFNT in the uterus, which induces anti-inflammatory response in immune cells. The uterine flush (UF) with multiple embryos was collected from Day-7 donor pregnant cows and peripheral blood mononuclear cells (PBMCs) were then cultured in UF. Transcripts detected in PBMCs revealed that UF from pregnant cows down-regulated pro-inflammatory cytokines (TNFA, IL1B) and up-regulated anti-inflammatory cytokine (IL10) expression, with activation of interferon-stimulated genes (ISGs; ISG15, OAS1) as compared with UF from non-pregnant cows. An addition of specific anti-IFNT antibody to the UF inhibited the effect on PBMCs, indicating that IFNT is a major factor for such immune modulation. The observation that conditioned media from bovine uterine epithelial cells both stimulated with IFNT in vitro and supplemented with fresh IFNT induced similar PBMCs gene expression, confirming that IFNT directly acts on this immune crosstalk. This study shows that IFNT secreted from Day-7 embryo in vivo generates anti-inflammatory response in immune cells, which may provide immunological tolerance to accept the embryo. Copyright © 2018 Elsevier Inc. All rights reserved.
Dery, Kenneth J; Silver, Craig; Yang, Lu; Shively, John E
2018-06-15
The adhesion protein carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is widely expressed in epithelial cells as a short cytoplasmic isoform (S-iso) and in leukocytes as a long cytoplasmic isoform (L-iso) and is frequently silenced in cancer by unknown mechanisms. Previously, we reported that interferon response factor 1 (IRF1) biases alternative splicing (AS) to include the variable exon 7 (E7) in CEACAM1, generating long cytoplasmic isoforms. We now show that IRF1 and a variant of heterogeneous nuclear ribonucleoprotein L (Lv1) coordinately silence the CEACAM1 gene. RNAi-mediated Lv1 depletion in IRF1-treated HeLa and melanoma cells induced significant CEACAM1 protein expression, reversed by ectopic Lv1 expression. The Lv1-mediated CEACAM1 repression resided in residues Gly 71 -Gly 89 and Ala 38 -Gly 89 in Lv1's N-terminal extension. ChIP analysis of IRF1- and FLAG-tagged Lv1-treated HeLa cells and global treatment with the global epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A indicated that IRF1 and Lv1 together induce chromatin remodeling, restricting IRF1 access to the CEACAM1 promoter. In interferon γ-treated HeLa cells, the transcription factor SP1 did not associate with the CEACAM1 promoter, but binding by upstream transcription factor 1 (USF1), a known CEACAM1 regulator, was greatly enhanced. ChIP-sequencing revealed that Lv1 overexpression in IRF1-treated cells induces transcriptional silencing across many genes, including DCC ( d eleted in c olorectal c arcinoma), associated with CEACAM5 in colon cancer. Notably, IRF1, but not IRF3 and IRF7, affected CEACAM1 expression via translational repression. We conclude that IRF1 and Lv1 coordinately regulate CEACAM1 transcription, alternative splicing, and translation and may significantly contribute to CEACAM1 silencing in cancer. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
USDA-ARS?s Scientific Manuscript database
Interferons (IFNs) are key cytokines identified in vertebrates, and evolutionary dominance of intronless IFN genes in amniotes is a signature event in IFN evolution. For the first time, we show that the emergence and expansion of intronless IFN genes is evident in amphibians, shown by 24-37 intronle...
Interferon lambda inhibits dengue virus replication in epithelial cells.
Palma-Ocampo, Helen K; Flores-Alonso, Juan C; Vallejo-Ruiz, Verónica; Reyes-Leyva, Julio; Flores-Mendoza, Lilian; Herrera-Camacho, Irma; Rosas-Murrieta, Nora H; Santos-López, Gerardo
2015-09-28
In viral disease, infection is controlled at the cellular level by type I interferon (IFN-I), but dengue virus (DENV) has the ability to inhibit this response. Type III interferon, also known as lambda IFN (IFN-III or IFN-λ), is a complementary pathway to the antiviral response by IFN-I. This work analyzed the IFN-λ (IFN-III) mediated antiviral response against DENV serotype 2 (DENV-2) infection. Dengue fever patients were sampled to determine their IFN-λ levels by ELISA. To study the IFN-λ response during DENV infection we selected the epithelial cell line C33-A, and we demonstrated that it is permissive to DENV-2 infection. The effect of IFN-λ on virus replication was determined in these cells, in parallel to the expression of IFN-stimulated genes (ISGs), and Suppressor of Cytokine Signaling (SOCS), genes measured by RT-qPCR. We found increased (~1.8 times) serological IFN-λ in dengue fever patients compared to healthy blood donors. IFN-λ inhibited DENV-2 replication in a dose-dependent manner in vitro. The reduction of viral titer corresponded with increased ISG mRNA levels (MX1 and OAS1), with the highest inhibition occurring at ISG's peak expression. Presence of IFN-negative regulators, SOCS1 and SOCS3, during DENV-2 infection was associated with reduced IFN-λ1 expression. Evidence described here suggests that IFN-λ is a good candidate inhibitor of viral replication in dengue infection. Mechanisms for the cellular and organismal interplay between DENV and IFN- λ need to be further studied as they could provide insights into strategies to treat this disease. Furthermore, we report a novel epithelial model to study dengue infection in vitro.
Daffis, Stephane; Samuel, Melanie A; Keller, Brian C; Gale, Michael; Diamond, Michael S
2007-01-01
Interferon regulatory factor (IRF)-3 is a master transcription factor that activates host antiviral defense programs. Although cell culture studies suggest that IRF-3 promotes antiviral control by inducing interferon (IFN)-β, near normal levels of IFN-α and IFN-β were observed in IRF-3−/− mice after infection by several RNA and DNA viruses. Thus, the specific mechanisms by which IRF-3 modulates viral infection remain controversial. Some of this disparity could reflect direct IRF-3-dependent antiviral responses in specific cell types to control infection. To address this and determine how IRF-3 coordinates an antiviral response, we infected IRF-3−/− mice and two primary cells relevant for West Nile virus (WNV) pathogenesis, macrophages and cortical neurons. IRF-3−/− mice were uniformly vulnerable to infection and developed elevated WNV burdens in peripheral and central nervous system tissues, though peripheral IFN responses were largely normal. Whereas wild-type macrophages basally expressed key host defense molecules, including RIG-I, MDA5, ISG54, and ISG56, and restricted WNV infection, IRF-3−/− macrophages lacked basal expression of these host defense genes and supported increased WNV infection and IFN-α and IFN-β production. In contrast, wild-type cortical neurons were highly permissive to WNV and did not basally express RIG-I, MDA5, ISG54, and ISG56. IRF-3−/− neurons lacked induction of host defense genes and had blunted IFN-α and IFN-β production, yet exhibited only modestly increased viral titers. Collectively, our data suggest that cell-specific IRF-3 responses protect against WNV infection through both IFN-dependent and -independent programs. PMID:17676997
El Fiky, Ashraf; Perreault, Roger; McGinnis, Gwendolyn J; Rabin, Ronald L
2013-12-01
Macrophages can be polarized into classically (CAM) or alternatively (AAM) activated macrophages with IFN-γ or IL-4, respectively. CAM are associated with type 1 immune responses and are implicated in autoimmunity; AAM are associated with type 2 responses and are implicated in allergic diseases. An impediment in investigating macrophage biology using primary human monocyte derived macrophages is the wide inter-donor heterogeneity and the limited quantity of cells that survive in vitro polarization. To overcome this impediment, we established a protocol to generate CAM and AAM cultures derived from the THP-1 human promonocytic cell line. In this report, we demonstrate that THP-CAM and -AAM express gene and protein markers that define their primary human monocyte derived counterparts, such as IL-1β, CXCL10, and CXCL11 for CAM, and MRC1, IL-4 and CCL22 for AAM. In addition, we demonstrate that STAT6 is selectively activated in THP-AAM which, upon LPS stimulation, have an attenuated or delayed expression of IFN-β, IFN-λ1, and IFN α/β pathway genes compared to their CAM counterparts. Taken together, these findings may help further investigate human diseases associated with the alternatively activated macrophage phenotype using this reproducible in vitro macrophage model. Crown Copyright © 2013. Published by Elsevier Inc. All rights reserved.
Tao, Yaqiong; Zeng, Bo; Xu, Liu; Yue, Bisong; Yang, Dong; Zou, Fangdong
2010-01-01
Interferon-gamma (IFN-gamma) is the only member of type II IFN and is vital in the regulation of immune and inflammatory responses. Herein we report the cloning, expression, and sequence analysis of IFN-gamma from the giant panda (Ailuropoda melanoleuca). The open reading frame of this gene is 501 base pair in length and encodes a polypeptide consisting of 166 amino acids. All conserved N-linked glycosylation sites and cysteine residues among carnivores were found in the predicted amino acid sequence of the giant panda. Recombinant giant panda IFN-gamma with a V5 epitope and polyhistidine tag was expressed in HEK293 host cells and confirmed by Western blotting. Phylogenetic analysis of mammalian IFN-gamma-coding sequences indicated that the giant panda IFN-gamma was closest to that of carnivores, then to ungulates and dolphin, and shared a distant relationship with mouse and human. These results represent a first step into the study of IFN-gamma in giant panda.
Inhibition of Microprocessor Function during the Activation of the Type I Interferon Response.
Witteveldt, Jeroen; Ivens, Alasdair; Macias, Sara
2018-06-12
Type I interferons (IFNs) are central components of the antiviral response. Most cell types respond to viral infections by secreting IFNs, but the mechanisms that regulate correct expression of these cytokines are not completely understood. Here, we show that activation of the type I IFN response regulates the expression of miRNAs in a post-transcriptional manner. Activation of IFN expression alters the binding of the Microprocessor complex to pri-miRNAs, reducing its processing rate and thus leading to decreased levels of a subset of mature miRNAs in an IRF3-dependent manner. The rescue of Microprocessor function during the antiviral response downregulates the levels of IFN-β and IFN-stimulated genes. All these findings support a model by which the inhibition of Microprocessor activity is an essential step to induce a robust type I IFN response in mammalian cells. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
Premraj, A; Aleyas, A G; Nautiyal, B; Rasool, T J
2013-10-01
The mechanism by which type I interferon-mediated antiviral response is mounted by hosts against invading pathogen is an intriguing one. Of late, an endoplasmic reticulum transmembrane protein encoded by a gene called stimulator of interferon genes (STING) is implicated in the innate signalling pathways and has been identified and cloned in few mammalian species including human, mouse and pig. In this article, we report the identification of STING from three different species of a highly conserved family of mammals - the camelids. cDNAs encoding the STING of Old World camels - dromedary camel (Camelus dromedarius) and bactrian camel (Camelus bactrianus) and a New World camel - llama (Llama glama) were amplified using conserved primers and RACE. The complete STING cDNA of dromedary camel is 2171 bp long with a 706-bp 5' untranslated regions (UTR), an 1137-bp open reading frame (ORF) and a 328-bp 3' UTR. Sequence and phylogenetic analysis of the ORF of STING from these three camelids indicate high level of similarity among camelids and conservation of critical amino acid residues across different species. Quantitative real-time PCR analysis revealed high levels of STING mRNA expression in blood, spleen, lymph node and lung. The identification of camelid STING will help in better understanding of the role of this molecule in the innate immunity of the camelids and other mammals. © 2013 John Wiley & Sons Ltd.
Enhanced production of human influenza virus in PBS-12SF cells with a reduced interferon response.
Carvajal-Yepes, Monica; Sporer, Kelly R B; Carter, Jenna L; Colvin, Christopher J; Coussens, Paul M
2015-01-01
Influenza is one of the most important infectious diseases in humans. The best way to prevent severe illness caused by influenza infection is vaccination. Cell culture-derived influenza vaccines are being considered in addition to the widely used egg-based system in order to support the increasing seasonal demand and to be prepared in case of a pandemic. Cell culture based systems offer increased safety, capacity, and flexibility with reduced downstream processing relative to embryonated eggs. We have previously reported a chick embryo cell line, termed PBS-12SF, that supports replication of human and avian influenza A viruses to high titers (>10(7) PFU/ml) without the need for exogenous proteases or serum proteins. Viral infections in cells are limited by the Interferon (IFN) response typified by production of type I IFNs that bind to the IFNα/β receptor and activate an antiviral state. In this study, we investigated how neutralizing the interferon (IFN) response in PBS-12SF cells, via shRNA-mediated knock-down of IFNAR1 mRNA expression, affects influenza virus production. We were successful in knocking down ∼90% of IFNAR1 protein expression by this method, resulting in a significant decrease in the response to recombinant chIFNα stimulation in PBS-12SF cells as shown by a reduction in expression of interferon-responsive genes when compared to control cells. Additionally; IFNAR1-knock-down cells displayed enhanced viral HA production and released more virus into cell culture supernatants than parental PBS-12SF cells.
Type I Interferon in the Pathogenesis of Lupus
Crow, Mary K.
2014-01-01
Investigations of patients with systemic lupus erythematosus (SLE) have applied insights from studies of the innate immune response to define type I interferon (IFN-I), with IFN-α the dominant mediator, as central to the pathogenesis of this prototype systemic autoimmune disease. Genetic association data identify regulators of nucleic acid degradation and components of TLR-independent, endosomal TLR-dependent, and IFN-I signaling pathways as contributors to lupus disease susceptibility. Together with a gene expression signature characterized by IFNI-induced gene transcripts in lupus blood and tissue, those data support the conclusion that many of the immunologic and pathologic features of this disease are a consequence of a persistent self-directed immune reaction driven by IFN-I and mimicking a sustained anti-virus response. This expanding knowledge of the role of IFN-I and the innate immune response suggests candidate therapeutic targets that are being tested in lupus patients. PMID:24907379
Wieland, Stefan F.; Vega, Raquel G.; Müller, Rolf; Evans, Claire F.; Hilbush, Brian; Guidotti, Luca G.; Sutcliffe, J. Gregor; Schultz, Peter G.; Chisari, Francis V.
2003-01-01
We have previously shown that alpha/beta interferon (IFN-α/β) and IFN-γ inhibit hepatitis B virus (HBV) replication noncytopathically in the livers of HBV transgenic mice and in hepatocyte cell lines derived from these mice. The present study was designed to identify transcriptionally controlled hepatocellular genes that are tightly associated with the inhibition of HBV replication and that might, therefore, mediate the antiviral effect of these cytokines. Twenty-nine genes were identified, many of which have known or potential antiviral activity. Notably, multiple components of the immunoproteasome and ubiquitin-like proteins were strongly induced by both IFN-α/β and IFN-γ, as were a number of GTP-binding proteins, including GTPases with known antiviral activity, chemokines, signaling molecules, and miscellaneous genes associated with antigen processing, DNA-binding, or cochaperone activity and several expressed sequence tags. The results suggest that one or more members of this relatively small subset of genes may mediate the antiviral effect of IFN-α/β and IFN-γ against HBV. We have already exploited this information by demonstrating that the antiviral activity of IFN-α/β and IFN-γ is proteasome dependent. PMID:12502840
Personality and gene expression: Do individual differences exist in the leukocyte transcriptome?
Vedhara, Kavita; Gill, Sana; Eldesouky, Lameese; Campbell, Bruce K; Arevalo, Jesusa M G; Ma, Jeffrey; Cole, Steven W
2015-02-01
The temporal and situational stability of personality has led generations of researchers to hypothesize that personality may have enduring effects on health, but the biological mechanisms of such relationships remain poorly understood. In the present study, we utilized a functional genomics approach to examine the relationship between the 5 major dimensions of personality and patterns of gene expression as predicted by 'behavioural immune response' theory. We specifically focussed on two sets of genes previously linked to stress, threat, and adverse socio-environmental conditions: pro-inflammatory genes and genes involved in Type I interferon and antibody responses. An opportunity sample of 121 healthy individuals was recruited (86 females; mean age 24 years). Individuals completed a validated measure of personality; questions relating to current health behaviours; and provided a 5ml sample of peripheral blood for gene expression analysis. Extraversion was associated with increased expression of pro-inflammatory genes and Conscientiousness was associated with reduced expression of pro-inflammatory genes. Both associations were independent of health behaviours, negative affect, and leukocyte subset distributions. Antiviral and antibody-related gene expression was not associated with any personality dimension. The present data shed new light on the long-observed epidemiological associations between personality, physical health, and human longevity. Further research is required to elucidate the biological mechanisms underlying these associations. Copyright © 2014 Elsevier Ltd. All rights reserved.
Personality and gene expression: Do individual differences exist in the leukocyte transcriptome?
Vedhara, Kavita; Gill, Sana; Eldesouky, Lameese; Campbell, Bruce K.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cole, Steven W.
2014-01-01
Background The temporal and situational stability of personality has led generations of researchers to hypothesise that personality may have enduring effects on health, but the biological mechanisms of such relationships remain poorly understood. In the present study, we utilized a functional genomics approach to examine the relationship between the 5 major dimensions of personality and patterns of gene expression as predicted by ‘behavioural immune response’ theory. We specifically focussed on two sets of genes previously linked to stress, threat, and adverse socio-environmental conditions: pro-inflammatory genes and genes involved in Type I interferon and antibody responses. Methods An opportunity sample of 121 healthy individuals was recruited (86 females; mean age 24 years). Individuals completed a validated measure of personality; questions relating to current health behaviours; and provided a 5 ml sample of peripheral blood for gene expression analysis. Results Extraversion was associated with increased expression of pro-inflammatory genes and Conscientiousness was associated with reduced expression of pro-inflammatory genes. Both associations were independent of health behaviours, negative affect, and leukocyte subset distributions. Antiviral and antibody-related gene expression was not associated with any personality dimension. Conclusions The present data shed new light on the long-observed epidemiological associations between personality, physical health, and human longevity. Further research is required to elucidate the biological mechanisms underlying these associations. PMID:25459894
Digital gene expression for non-model organisms
Hong, Lewis Z.; Li, Jun; Schmidt-Küntzel, Anne; Warren, Wesley C.; Barsh, Gregory S.
2011-01-01
Next-generation sequencing technologies offer new approaches for global measurements of gene expression but are mostly limited to organisms for which a high-quality assembled reference genome sequence is available. We present a method for gene expression profiling called EDGE, or EcoP15I-tagged Digital Gene Expression, based on ultra-high-throughput sequencing of 27-bp cDNA fragments that uniquely tag the corresponding gene, thereby allowing direct quantification of transcript abundance. We show that EDGE is capable of assaying for expression in >99% of genes in the genome and achieves saturation after 6–8 million reads. EDGE exhibits very little technical noise, reveals a large (106) dynamic range of gene expression, and is particularly suited for quantification of transcript abundance in non-model organisms where a high-quality annotated genome is not available. In a direct comparison with RNA-seq, both methods provide similar assessments of relative transcript abundance, but EDGE does better at detecting gene expression differences for poorly expressed genes and does not exhibit transcript length bias. Applying EDGE to laboratory mice, we show that a loss-of-function mutation in the melanocortin 1 receptor (Mc1r), recognized as a Mendelian determinant of yellow hair color in many different mammals, also causes reduced expression of genes involved in the interferon response. To illustrate the application of EDGE to a non-model organism, we examine skin biopsy samples from a cheetah (Acinonyx jubatus) and identify genes likely to control differences in the color of spotted versus non-spotted regions. PMID:21844123
Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11
Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E.; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D.; David, Michael
2013-01-01
In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway1. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination. PMID:23000900
Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11.
Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D; David, Michael
2012-11-01
In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination.
Kim, Seokwoon; Choi, Youngsok; Spencer, Thomas E; Bazer, Fuller W
2003-01-01
In sheep, the uterus produces luteolytic pulses of prostaglandin F2α (PGF) on Days 15 to 16 of estrous cycle to regress the corpus luteum (CL). These PGF pulses are produced by the endometrial lumenal epithelium (LE) and superficial ductal glandular epithelium (sGE) in response to binding of pituitary and/or luteal oxytocin to oxytocin receptors (OTR) and liberation of arachidonic acid, the precursor of PGF. Cyclooxygenase-one (COX-1) and COX-2 are rate-limiting enzymes in PGF synthesis, and COX-2 is the major form expressed in ovine endometrium. During pregnancy recognition, interferon tau (IFNτ), produced by the conceptus trophectoderm, acts in a paracrine manner to suppress development of the endometrial epithelial luteolytic mechanism by inhibiting transcription of estrogen receptor α (ERα) (directly) and OTR (indirectly) genes. Conflicting studies indicate that IFNτ increases, decreases or has no effect on COX-2 expression in bovine and ovine endometrial cells. In Study One, COX-2 mRNA and protein were detected solely in endometrial LE and sGE of both cyclic and pregnant ewes. During the estrous cycle, COX-2 expression increased from Days 10 to 12 and then decreased to Day 16. During early pregnancy, COX-2 expression increased from Days 10 to 12 and remained higher than in cyclic ewes. In Study Two, intrauterine infusion of recombinant ovine IFNτ in cyclic ewes from Days 11 to 16 post-estrus did not affect COX-2 expression in the endometrial epithelium. These results clearly indicate that IFNτ has no effect on expression of the COX-2 gene in the ovine endometrium. Therefore, antiluteolytic effects of IFNτ are to inhibit ERα and OTR gene transcription, thereby preventing endometrial production of luteolytic pulses of PGF. Indeed, expression of COX-2 in the endometrial epithelia as well as conceptus is likely to have a beneficial regulatory role in implantation and development of the conceptus. PMID:12956885
Gupta, Harshita B; Clark, Curtis A; Yuan, Bin; Sareddy, Gangadhara; Pandeswara, Srilakshmi; Padron, Alvaro S; Hurez, Vincent; Conejo-Garcia, José; Vadlamudi, Ratna; Li, Rong; Curiel, Tyler J
2016-01-01
As tumor PD-L1 provides signals to anti-tumor PD-1+ T cells that blunt their functions, αPD-1 and αPD-L1 antibodies have been developed as anti-cancer immunotherapies based on interrupting this signaling axis. However, tumor cell-intrinsic PD-L1 signals also regulate immune-independent tumor cell proliferation and mTOR signals, among other important effects. Tumor-initiating cells (TICs) generate carcinomas, resist treatments and promote relapse. We show here that in murine B16 melanoma and ID8agg ovarian carcinoma cells, TICs express more PD-L1 versus non-TICs. Silencing PD-L1 in B16 and ID8agg cells by shRNA (‘PD-L1lo’) reduced TIC numbers, the canonical TIC genes nanog and pou5f1 (oct4), and functions as assessed by tumorosphere development, immune-dependent and immune-independent tumorigenesis, and serial transplantability in vivo. Strikingly, tumor PD-L1 sensitized TIC to interferon-γ and rapamycin in vitro. Cell-intrinsic PD-L1 similarly drove functional TIC generation, canonical TIC gene expression and sensitivity to interferon-γ and rapamycin in human ES2 ovarian cancer cells. Thus, tumor-intrinsic PD-L1 signals promote TIC generation and virulence, possibly by promoting canonical TIC gene expression, suggesting that PD-L1 has novel signaling effects on cancer pathogenesis and treatment responses. PMID:28798885
Scriba, Thomas J; Penn-Nicholson, Adam; Shankar, Smitha; Hraha, Tom; Thompson, Ethan G; Sterling, David; Nemes, Elisa; Darboe, Fatoumatta; Suliman, Sara; Amon, Lynn M; Mahomed, Hassan; Erasmus, Mzwandile; Whatney, Wendy; Johnson, John L; Boom, W Henry; Hatherill, Mark; Valvo, Joe; De Groote, Mary Ann; Ochsner, Urs A; Aderem, Alan; Hanekom, Willem A; Zak, Daniel E
2017-11-01
Our understanding of mechanisms underlying progression from Mycobacterium tuberculosis infection to pulmonary tuberculosis disease in humans remains limited. To define such mechanisms, we followed M. tuberculosis-infected adolescents longitudinally. Blood samples from forty-four adolescents who ultimately developed tuberculosis disease (“progressors”) were compared with those from 106 matched controls, who remained healthy during two years of follow up. We performed longitudinal whole blood transcriptomic analyses by RNA sequencing and plasma proteome analyses using multiplexed slow off-rate modified DNA aptamers. Tuberculosis progression was associated with sequential modulation of immunological processes. Type I/II interferon signalling and complement cascade were elevated 18 months before tuberculosis disease diagnosis, while changes in myeloid inflammation, lymphoid, monocyte and neutrophil gene modules occurred more proximally to tuberculosis disease. Analysis of gene expression in purified T cells also revealed early suppression of Th17 responses in progressors, relative to M. tuberculosis-infected controls. This was confirmed in an independent adult cohort who received BCG re-vaccination; transcript expression of interferon response genes in blood prior to BCG administration was associated with suppression of IL-17 expression by BCG-specific CD4 T cells 3 weeks post-vaccination. Our findings provide a timeline to the different immunological stages of disease progression which comprise sequential inflammatory dynamics and immune alterations that precede disease manifestations and diagnosis of tuberculosis disease. These findings have important implications for developing diagnostics, vaccination and host-directed therapies for tuberculosis. Clincialtrials.gov, NCT01119521.
de Bruin, Elza C.; van de Pas, Simone; van de Velde, Cornelis J. H.; van Krieken, J. Han J. M.; Peltenburg, Lucy T. C.; Marijnen, Corrie A. M.
2007-01-01
The level of apoptosis in rectal carcinomas of patients treated by surgery only predicts local failure; patients with intrinsically high-apoptotic tumors develop less local recurrences than patients with low levels of apoptosis. To identify genes involved in this intrinsic apoptotic process in vivo, 47 rectal tumors with known apoptotic phenotype (24 low- and 23 high-apoptotic) were analyzed by oligonucleotide microarray technology. We identified several genes differentially expressed between low- and high-apoptotic tumors. Unsupervised clustering of the tumors based on expression levels of these genes separated the low-apoptotic from the high-apoptotic tumors, indicating a gene expression-dependent regulation. In addition, this clustering revealed two subgroups of high-apoptotic tumors. One high-apoptotic subgroup showed subtle differences in mRNA and protein expression of the known apoptotic regulators BAX, cIAP2 and ARC compared to the low-apoptotic tumors. The other subgroup of high-apoptotic tumors showed high expression of immune-related genes; predominantly HLA class II and chemokines, but also HLA class I and interferon-inducible genes were highly expressed. Immunohistochemistry revealed HLA-DR expression in epithelial tumor cells in 70% of these high-apoptotic tumors. The expression data suggest that high levels of apoptosis in rectal carcinoma patients can be the result of either slightly altered expression of known pro- and anti-apoptotic genes or high expression of immune-related genes. Electronic supplementary material The online version of this article (doi: 10.1007/s10495-007-0088-2) contains supplementary material, which is available to authorized users. PMID:17610066
Interferon regulatory factor 1 and histone H4 acetylation in systemic lupus erythematosus
Leung, Yiu Tak; Shi, Lihua; Maurer, Kelly; Song, Li; Zhang, Zhe; Petri, Michelle; Sullivan, Kathleen E
2015-01-01
Histone acetylation modulates gene expression and has been described as increased in systemic lupus erythematosus (SLE). We investigated interferon regulatory factor 1 (IRF1) interactions that influence H4 acetylation (H4ac) in SLE. Intracellular flow cytometry for H4 acetylated lysine (K) 5, K8, K12, and K16 was performed. Histone acetylation was defined in monocytes and T cells from controls and SLE patients. RNA-Seq studies were performed on monocytes to look for an imbalance in histone acetyltransferases and histone deacetylase enzyme expression. Expression levels were validated using real-time quantitative RT-PCR. IRF1 induction of H4ac was evaluated using D54MG cells overexpressing IRF1. IRF1 protein interactions were studied using co-immunoprecipitation assays. IRF1-dependent recruitment of histone acetyltransferases to target genes was examined by ChIP assays using p300 antibody. Flow cytometry data showed significantly increased H4K5, H4K8, H4K12, and H4K16 acetylation in SLE monocytes. HDAC3 and HDAC11 gene expression were decreased in SLE monocytes. PCAF showed significantly higher gene expression in SLE than controls. IRF1-overexpressing D54MG cells were associated with significantly increased H4K5, H4K8, and H4K12 acetylation compared to vector-control D54MG cells both globally and at specific target genes. Co-immunoprecipitation studies using D54MG cells revealed IRF1 protein-protein interactions with PCAF, P300, CBP, GCN5, ATF2, and HDAC3. ChIP experiments demonstrated increased p300 recruitment to known IRF1 targets in D54MG cells overexpressing IRF1. In contrast, p300 binding to IRF1 targets decreased in D54MG cells with IRF1 knockdown. SLE appears to be associated with an imbalance in histone acetyltransferases and histone deacetylase enzymes favoring pathologic H4 acetylation. Furthermore, IRF1 directly interacts with chromatin modifying enzymes, supporting a model where recruitment to specific target genes is mediated in part by IRF1. PMID:25611806
Prevention of SHIV transmission by topical IFN-β treatment.
Veazey, R S; Pilch-Cooper, H A; Hope, T J; Alter, G; Carias, A M; Sips, M; Wang, X; Rodriguez, B; Sieg, S F; Reich, A; Wilkinson, P; Cameron, M J; Lederman, M M
2016-11-01
Understanding vaginal and rectal HIV transmission and protective cellular and molecular mechanisms is critical for designing new prevention strategies, including those required for an effective vaccine. The determinants of protection against HIV infection are, however, poorly understood. Increasing evidence suggest that innate immune defenses may help protect mucosal surfaces from HIV transmission in highly exposed, uninfected subjects. More recent studies suggest that systemically administered type 1 interferon protects against simian immunodeficiency virus infection of macaques. Here we hypothesized that topically applied type 1 interferons might stimulate vaginal innate responses that could protect against HIV transmission. We therefore applied a recombinant human type 1 interferon (IFN-β) to the vagina of rhesus macaques and vaginally challenged them with pathogenic simian/human immunodeficiency virus (SHIV). Vaginal administration of IFN-β resulted in marked local changes in immune cell phenotype, increasing immune activation and HIV co-receptor expression, yet provided significant protection from SHIV acquisition as interferon response genes were also upregulated. These data suggest that protection from vaginal HIV acquisition may be achieved by activating innate mucosal defenses.
Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness
Manokaran, Gayathri; Finol, Esteban; Wang, Chunling; Gunaratne, Jayantha; Bahl, Justin; Ong, Eugenia Z.; Tan, Hwee Cheng; Sessions, October M.; Ward, Alex M.; Gubler, Duane J.; Harris, Eva; Garcia-Blanco, Mariano A.; Ooi, Eng Eong
2016-01-01
The global spread of dengue virus (DENV) infections has increased viral genetic diversity, some of which appears associated with greater epidemic potential. The mechanisms governing viral fitness in epidemiological settings, however, remain poorly defined. We identified a determinant of fitness in a foreign dominant (PR-2B) DENV serotype 2 (DENV-2) clade, which emerged during the 1994 epidemic in Puerto Rico and replaced an endemic (PR-1) DENV-2 clade. The PR-2B DENV-2 produced increased levels of subgenomic flavivirus RNA (sfRNA) relative to genomic RNA during replication. PR-2B sfRNA showed sequence-dependent binding to and prevention of tripartite motif 25 (TRIM25) deubiquitylation, which is critical for sustained and amplified retinoic acid–inducible gene 1 (RIG-I)–induced type I interferon expression. Our findings demonstrate a distinctive viral RNA–host protein interaction to evade the innate immune response for increased epidemiological fitness. PMID:26138103
[Expression of gamma interferon during HPV and Chlamydia trachomatis infection in cervical samples].
Colín-Ferreyra, María Del Carmen; Mendieta-Zerón, Hugo; Romero-Figueroa, María Del Socorro; Martínez-Madrigal, Migdania; Martínez-Pérez, Sergio; Domínguez-García, María Victoria
2015-02-01
The aim of this study was to mesure the expression of gamma interferon in HPV and Chlamydia trachomatis infection in squamous intraepithelial lesions. Samples from 100 patients diagnosed by colposcopy with or without squamous intraepithelial lesions were used in the present study. Each patient was found to be infected by HPV and C.trachomatis. Relative gamma interferon mRNA expression was assessed using a real-time reverse transcriptase PCR assay (RT-PCR). The relative units of expression of gamma interferon mRNA were 13, 1.8 and 0.3, for HPV and C.trachomatis co-infection, or HPV or C.trachomatis infection, respectively. HPV and C.trachomatis could overstimulate the expression of gamma interferon. Copyright © 2014 Elsevier España, S.L.U. y Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Jin, J W; Kim, Y C; Hong, S; Kim, M S; Jeong, J B; Jeong, H D
2017-04-01
As suggested by the Office International des Epizooties (OIE), fishes belonging to the genus Oplegnathus are more sensitive to megalocytivirus infection than other fish species including red sea bream (Pagrus major). To assess the roles of the innate immune response to these different susceptibilities, we cloned the genes encoding inflammatory factors including IL-8 and COX-2, and the antiviral factor like Mx from red sea bream for the first time and performed phylogenetic and structural analysis. Analysed expression levels of IL-1β, IL-8 and COX-2 and the antiviral factor like Mx genes performed with in vivo challenge experiment showed no difference in inflammatory gene expression or respiratory burst activity between red sea bream and rock bream (Oplegnathus fasciatus). However, the Mx gene expression levels in red sea bream were markedly higher than those in rock bream, suggesting the importance of type I interferon (IFN)-induced proteins, particularly Mx, during megalocytivirus infection, rather than inflammation-related genes. The in vitro challenge experiments using embryonic primary cultures derived from both fish species showed no difference in cytopathic effects (CPE), viral replication profiles, and inflammatory and Mx gene expression pattern between the two fish species. © 2016 John Wiley & Sons Ltd.
Interferon-inducible effector mechanisms in cell-autonomous immunity
MacMicking, John D.
2014-01-01
Interferons (IFNs) induce the expression of hundreds of genes as part of an elaborate antimicrobial programme designed to combat infection in all nucleated cells — a process termed cell-autonomous immunity. As described in this Review, recent genomic and subgenomic analyses have begun to assign functional properties to novel IFN-inducible effector proteins that restrict bacteria, protozoa and viruses in different subcellular compartments and at different stages of the pathogen life cycle. Several newly described host defence factors also participate in canonical oxidative and autophagic pathways by spatially coordinating their activities to enhance microbial killing. Together, these IFN-induced effector networks help to confer vertebrate host resistance to a vast and complex microbial world. PMID:22531325
Adamek, Mikołaj; Rakus, Krzysztof Ł; Chyb, Jarosław; Brogden, Graham; Huebner, Arne; Irnazarow, Ilgiz; Steinhagen, Dieter
2012-09-01
Interferons (IFNs) are secreted mediators that play a fundamental role in the innate immune response against viruses among all vertebrate classes. Common carp is a host for two highly contagious viruses: spring viraemia of carp virus (Rhabdovirus carpio, SVCV) and the Cyprinid herpesvirus 3 (CyHV-3), which belong to Rhabdoviridae and Alloherpesviridae families, respectively. Both viruses are responsible for significant losses in carp aquaculture. In this paper we studied the mRNA expression profiles of genes encoding for proteins promoting various functions during the interferon pathway, from pattern recognition receptors to antiviral genes, during in vitro viral infection. Furthermore, we investigated the impact of the interferon pathway (stimulated with poly I:C) on CyHV-3 replication and the speed of virus spreading in cell culture. The results showed that two carp viruses, CyHV-3 and SVCV induced fundamentally different type I IFN responses in CCB cells. SVCV induced a high response in all studied genes, whereas CyHV-3 seems to induce no response in CCB cells, but it induces a response in head kidney leukocytes. The lack of an IFN type I response to CyHV-3 could be an indicator of anti-IFN actions of the virus, however the nature of this mechanism has to be evaluated in future studies. Our results also suggest that an activation of type I IFN in CyHV-3 infected cells can limit the spread of the virus in cell culture. This would open the opportunity to treat the disease associated with CyHV-3 by an application of poly I:C in certain cases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Hecker, Michael; Thamilarasan, Madhan; Koczan, Dirk; Schröder, Ina; Flechtner, Kristin; Freiesleben, Sherry; Füllen, Georg; Thiesen, Hans-Jürgen; Zettl, Uwe Klaus
2013-01-01
MicroRNAs (miRNAs) are small non-coding RNA molecules acting as post-transcriptional regulators of gene expression. They are involved in many biological processes, and their dysregulation is implicated in various diseases, including multiple sclerosis (MS). Interferon-beta (IFN-beta) is widely used as a first-line immunomodulatory treatment of MS patients. Here, we present the first longitudinal study on the miRNA expression changes in response to IFN-beta therapy. Peripheral blood mononuclear cells (PBMC) were obtained before treatment initiation as well as after two days, four days, and one month, from patients with clinically isolated syndrome (CIS) and patients with relapsing-remitting MS (RRMS). We measured the expression of 651 mature miRNAs and about 19,000 mRNAs in parallel using real-time PCR arrays and Affymetrix microarrays. We observed that the up-regulation of IFN-beta-responsive genes is accompanied by a down-regulation of several miRNAs, including members of the mir-29 family. These differentially expressed miRNAs were found to be associated with apoptotic processes and IFN feedback loops. A network of miRNA-mRNA target interactions was constructed by integrating the information from different databases. Our results suggest that miRNA-mediated regulation plays an important role in the mechanisms of action of IFN-beta, not only in the treatment of MS but also in normal immune responses. miRNA expression levels in the blood may serve as a biomarker of the biological effects of IFN-beta therapy that may predict individual disease activity and progression. PMID:23921681
Kelly, Aoife; Robinson, Mark W; Roche, Gerard; Biron, Christine A; O'Farrelly, Cliona; Ryan, Elizabeth J
2016-12-01
The interferon lambda (IFN-λ) cytokines have well-known antiviral properties, yet their contribution to immune regulation is not well understood. Epithelial cells represent the major target cell of IFN-λ; peripheral blood mononuclear cells are generally considered nonresponsive, with the exception of plasmacytoid dendritic cells (pDCs). In this study we aimed to define the potential for discrete subpopulations of cells to directly respond to IFN-λ. Analysis of peripheral blood leukocytes reveals that, while pDCs uniformly express the highest levels of IFN-λ receptor, a small proportion of B cells and monocytes also express the receptor. Nevertheless, B cells and monocytes respond poorly to IFN-λ stimulation in vitro, with minimal STAT phosphorylation and interferon-stimulated gene (ISG) induction observed. We confirm that pDCs respond to IFN-λ in vitro, upregulating their expression of pSTAT1, pSTAT3, and pSTAT5. However, we found that pDCs do not upregulate pSTAT6 in response to IFN-λ treatment. Our results highlight unique aspects of the response to IFN-λ and confirm that while the IFN-λ receptor is expressed by a small proportion of several different circulating immune cell lineages, under normal conditions only pDCs respond to IFN-λ stimulation with robust STAT phosphorylation and ISG induction. The difference in STAT6 responsiveness of pDCs to type I and type III interferons may help explain the divergence in their biological activities.
Ayithan, Natarajan; Bradfute, Steven B; Anthony, Scott M; Stuthman, Kelly S; Dye, John M; Bavari, Sina; Bray, Mike; Ozato, Keiko
2014-02-01
Ebola viruses (EBOV) can cause severe hemorrhagic disease with high case fatality rates. Currently, no vaccines or therapeutics are approved for use in humans. Ebola virus-like particles (eVLP) comprising of virus protein (VP40), glycoprotein, and nucleoprotein protect rodents and nonhuman primates from lethal EBOV infection, representing as a candidate vaccine for EBOV infection. Previous reports have shown that eVLP stimulate the expression of proinflammatory cytokines in dendritic cells (DCs) and macrophages (MΦs) in vitro. However, the molecular mechanisms and signaling pathways through which eVLP induce innate immune responses remain obscure. In this study, we show that eVLP stimulate not only the expression of proinflammatory cytokines but also the expression of type I interferons (IFNs) and IFN-stimulated genes (ISGs) in murine bone marrow-derived DCs (BMDCs) and MΦs. Our data indicate that eVLP trigger host responses through toll-like receptor (TLR) pathway utilizing 2 distinct adaptors, MyD88 and TRIF. More interestingly, eVLP activated the IFN signaling pathway by inducing a set of potent antiviral ISGs. Last, eVLP and synthetic adjuvants, Poly I:C and CpG DNA, cooperatively increased the expression of cytokines and ISGs. Further supporting this synergy, eVLP when administered together with Poly I:C conferred mice enhanced protection against EBOV infection. These results indicate that eVLP stimulate early innate immune responses through TLR and type I IFN signaling pathways to protect the host from EBOV infection.
Chen, Jihua; Uto, Takuhiro; Tanigawa, Shunsuke; Yamada-Kato, Tomeo; Fujii, Makoto; Hou, DE-Xing
2010-01-01
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a bioactive ingredient of wasabi [Wasabia japonica (Miq.) Matsumura], which is a popular pungent spice of Japan. To evaluate the anti-inflammatory function and underlying genes targeted by 6-MSITC, gene expression profiling through DNA microarray was performed in mouse macrophages. Among 22,050 oligonucleotides, the expression levels of 406 genes were increased by ≥3-fold in lipopolysaccharide (LPS)-activated RAW264 cells, 238 gene signals of which were attenuated by 6-MSITC (≥2-fold). Expression levels of 717 genes were decreased by ≥3-fold in LPS-activated cells, of which 336 gene signals were restored by 6-MSITC (≥2-fold). Utilizing group analysis, 206 genes affected by 6-MSITC with a ≥2-fold change were classified into 35 categories relating to biological processes (81), molecular functions (108) and signaling pathways (17). The genes were further categorized as 'defense, inflammatory response, cytokine activities and receptor activities' and some were confirmed by real-time polymerase chain reaction. Ingenuity pathway analysis further revealed that wasabi 6-MSITC regulated the relevant networks of chemokines, interleukins and interferons to exert its anti-inflammatory function.
CHEN, JIHUA; UTO, TAKUHIRO; TANIGAWA, SHUNSUKE; YAMADA-KATO, TOMEO; FUJII, MAKOTO; HOU, DE-XING
2010-01-01
6-(Methylsulfinyl)hexyl isothiocyanate (6-MSITC) is a bioactive ingredient of wasabi [Wasabia japonica (Miq.) Matsumura], which is a popular pungent spice of Japan. To evaluate the anti-inflammatory function and underlying genes targeted by 6-MSITC, gene expression profiling through DNA microarray was performed in mouse macrophages. Among 22,050 oligonucleotides, the expression levels of 406 genes were increased by ≥3-fold in lipopolysaccharide (LPS)-activated RAW264 cells, 238 gene signals of which were attenuated by 6-MSITC (≥2-fold). Expression levels of 717 genes were decreased by ≥3-fold in LPS-activated cells, of which 336 gene signals were restored by 6-MSITC (≥2-fold). Utilizing group analysis, 206 genes affected by 6-MSITC with a ≥2-fold change were classified into 35 categories relating to biological processes (81), molecular functions (108) and signaling pathways (17). The genes were further categorized as ‘defense, inflammatory response, cytokine activities and receptor activities’ and some were confirmed by real-time polymerase chain reaction. Ingenuity pathway analysis further revealed that wasabi 6-MSITC regulated the relevant networks of chemokines, interleukins and interferons to exert its anti-inflammatory function. PMID:23136589
Hetzel, Miriam; Mucci, Adele; Blank, Patrick; Nguyen, Ariane Hai Ha; Schiller, Jan; Halle, Olga; Kühnel, Mark-Philipp; Billig, Sandra; Meineke, Robert; Brand, Daniel; Herder, Vanessa; Baumgärtner, Wolfgang; Bange, Franz-Christoph; Goethe, Ralph; Jonigk, Danny; Förster, Reinhold; Gentner, Bernhard; Casanova, Jean-Laurent; Bustamante, Jacinta; Schambach, Axel; Kalinke, Ulrich; Lachmann, Nico
2018-02-01
Mendelian susceptibility to mycobacterial disease is a rare primary immunodeficiency characterized by severe infections caused by weakly virulent mycobacteria. Biallelic null mutations in genes encoding interferon gamma receptor 1 or 2 ( IFNGR1 or IFNGR2 ) result in a life-threatening disease phenotype in early childhood. Recombinant interferon γ (IFN-γ) therapy is inefficient, and hematopoietic stem cell transplantation has a poor prognosis. Thus, we developed a hematopoietic stem cell (HSC) gene therapy approach using lentiviral vectors that express Ifnγr1 either constitutively or myeloid specifically. Transduction of mouse Ifnγr1 -/- HSCs led to stable IFNγR1 expression on macrophages, which rescued their cellular responses to IFN-γ. As a consequence, genetically corrected HSC-derived macrophages were able to suppress T-cell activation and showed restored antimycobacterial activity against Mycobacterium avium and Mycobacterium bovis Bacille Calmette-Guérin (BCG) in vitro. Transplantation of genetically corrected HSCs into Ifnγr1 -/- mice before BCG infection prevented manifestations of severe BCG disease and maintained lung and spleen organ integrity, which was accompanied by a reduced mycobacterial burden in lung and spleen and a prolonged overall survival in animals that received a transplant. In summary, we demonstrate an HSC-based gene therapy approach for IFNγR1 deficiency, which protects mice from severe mycobacterial infections, thereby laying the foundation for a new therapeutic intervention in corresponding human patients. © 2018 by The American Society of Hematology.
Identification and regulatory analysis of rainbow trout tapasin and tapasin-related genes
Landis, E.D.; Palti, Y.; Dekoning, J.; Drew, R.; Phillips, R.B.; Hansen, J.D.
2006-01-01
Tapasin (TAPBP) is a key member of MHC class Ia antigen-loading complexes, bridging the class Ia molecule to the transporter associated with antigen presentation (TAP). As part of an ongoing study of MHC genomics in rainbow trout, we have identified two rainbow trout TAPBP genes (Onmy-TAPBP.a and .b) and a similar but distinct TAPBP-related gene (Onmy-TAPBP-R) that had previously only been described in mammals. Physical and genetic mapping indicate that Onmy-TAPBP.a is on chromosome 18 in the MHC class Ia region and that Onmy-TAPBP.b resides on chromosome 14 in the MHC class Ib region. There are also at least two copies of TAPBP-R, Onmy-TAPBP-R.a and Onmy-TAPBP-R.b, located on chromosomes 2 and 3, respectively. Due to the central role of TAPBP expression during acute viral infection, we have characterized the transcriptional profile and regulatory regions for both Onmy-TAPBP and Onmy-TAPBP-R. Transcription of both genes increased during acute infection with infectious hematapoeitic necrosis virus (IHNV) in a fashion indicative of interferon-mediated regulation. Promoter-reporter assays in STE-137 cells demonstrate that the trout TAPBP and TAPBP-R promoters respond to interferon regulatory factors, Onmy-IRF1 and Onmy-IRF2. Overall, TAPBP is expressed at higher levels than TAPBP-R in nai??ve tissues and TAPBP transcription is more responsive to viral infection and IRF1 and 2 binding. ?? Springer-Verlag 2006.
Casey, Janet; Pichichero, Michael
2016-01-01
Objective: Acute otitis media (AOM) causes an inflammatory response in the middle ear. We assessed differences in innate immune responses involved in bacterial defense at onset of AOM in children who were stringently defined as otitis prone (sOP) and children not otitis prone (NOP). Study Design: Innate immune genes analysis from middle ear fluid (MEF) samples of children. Methods: Genes of toll-like receptors (TLR), nod-like and retinoic acid-inducible gene-I-like receptors, downstream effectors important for inflammation and apoptosis, including cytokines and chemokines, were studied from MEF samples by using a real-time polymerase chain reaction array. Protein levels of differentially regulated genes were measured by Luminex. Results: Gene expression in MEF among children who were sOP was significantly different in upregulation of interleukin 8, secretory leukocyte peptidase inhibitor, and chemokine (C-C motif) ligand 3, and in downregulation of interferon regulatory factor 7 and its related signaling molecules interferon alpha, Toll-like receptor adaptor molecule 2, chemokine (C-C motif) ligand 5, and mitogen-activated protein kinase 8 compared with children who were NOP. Differences in innate gene regulation were similar when AOM was caused by Streptococcus pneumoniae or nontypeable Haemophilus influenzae. Conclusion: Innate-immune response genes are differentially regulated in children who were sOP compared with children with NOP. PMID:28124644
Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C.; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur
2017-01-01
Among nucleic acid–based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned. PMID:28877647
Beissert, Tim; Koste, Lars; Perkovic, Mario; Walzer, Kerstin C; Erbar, Stephanie; Selmi, Abderraouf; Diken, Mustafa; Kreiter, Sebastian; Türeci, Özlem; Sahin, Ugur
2017-12-01
Among nucleic acid-based delivery platforms, self-amplifying RNA (saRNA) vectors are of increasing interest for applications such as transient expression of recombinant proteins and vaccination. saRNA is safe and, due to its capability to amplify intracellularly, high protein levels can be produced from even minute amounts of transfected templates. However, it is an obstacle to full exploitation of this platform that saRNA induces a strong innate host immune response. In transfected cells, pattern recognition receptors sense double-stranded RNA intermediates and via activation of protein kinase R (PKR) and interferon signaling initiate host defense measures including a translational shutdown. To reduce pattern recognition receptor stimulation and unleash suppressed saRNA translation, this study co-delivered non-replicating mRNA encoding vaccinia virus immune evasion proteins E3, K3, and B18. It was shown that E3 is far superior to K3 or B18 as a highly potent blocker of PKR activation and of interferon (IFN)-β upregulation. B18, in contrast, is superior in controlling OAS1, a key IFN-inducible gene involved in viral RNA degradation. By combining all three vaccinia proteins, the study achieved significant suppression of PKR and IFN pathway activation in vitro and enhanced expression of saRNA-encoded genes of interest both in vitro and in vivo. This approach promises to overcome key hurdles of saRNA gene delivery. Its application may improve the bioavailability of the encoded protein, and reduce the effective dose and correspondingly the cost of goods of manufacture in the various fields where saRNA utilization is envisioned.
Transcriptional regulation of germinal center B and plasma cell fates by dynamical control of IRF4
Ochiai, Kyoko; Maienschein-Cline, Mark; Simonetti, Giorgia; Chen, Jianjun; Rosenthal, Rebecca; Brink, Robert; Chong, Anita S.; Klein, Ulf; Dinner, Aaron R.; Singh, Harinder; Sciammas, Roger
2013-01-01
Summary The transcription factor IRF4 regulates immunoglobulin class switch recombination and plasma cell differentiation. Its differing concentrations appear to regulate mutually antagonistic programs of B and plasma cell gene expression. We show IRF4 to be also required for generation of germinal center (GC) B cells. Its transient expression in vivo induced the expression of key GC genes including Bcl6 and Aicda. In contrast, sustained and higher concentrations of IRF4 promoted the generation of plasma cells while antagonizing the GC fate. IRF4 co-bound with the transcription factors PU.1 or BATF to Ets or AP-1 composite motifs, associated with genes involved in B cell activation and the GC response. At higher concentrations IRF4 binding shifted to interferon sequence response motifs; these enriched for genes involved in plasma cell differentiation. Our results support a model of “kinetic control” in which signaling induced dynamics of IRF4 in activated B cells control their cell fate outcomes. PMID:23684984
Induction of Interferon-Stimulated Genes by IRF3 Promotes Replication of Toxoplasma gondii
Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C.; Barik, Sailen
2015-01-01
Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell-intrinsic pro-parasitic role. PMID:25811886
Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii.
Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C; Barik, Sailen
2015-03-01
Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell-intrinsic pro-parasitic role.
2013-01-01
Background Human T-cell leukemia virus type-1 (HTLV-1) is the causative retrovirus of adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 gene expression is maintained at low levels in vivo by unknown mechanisms. A combination therapy of interferon-α (IFN-α) and zidovudin (AZT) shows therapeutic effects in ATL patients, although its mechanism is also obscure. We previously found that viral gene expression in IL-2-dependent HTLV-1-infected T-cells (ILTs) derived from ATL patients was markedly suppressed by stromal cells through a type I IFN response. Here, we investigated the effects of IFN-α with or without AZT on viral gene expression and cell growth in ILTs. Results ILTs expressed variable but lower amounts of HTLV-1 Tax protein than HTLV-1-transformed HUT102 cells. Following the addition of IFN-α, the amounts of HTLV-1 p19 in the supernatants of these cells decreased in three days, while HTLV-1 gene expression decreased only in ILTs but not HUT102 cells. IFN-α also suppressed the spontaneous HTLV-1 induction in primary ATL cells cultured for 24 h. A time course study using ILTs revealed that the levels of intracellular Tax proteins decreased in the first 24 h after addition of IFN-α, before the reduction in HTLV-1 mRNA levels. The initial decreases of Tax protein following IFN-α treatment were observed in 6 of 7 ILT lines tested, although the reduction rates varied among ILT lines. An RNA-dependent protein kinase (PKR)-inhibitor reversed IFN-mediated suppression of Tax in ILTs. IFN-α also induced cell cycle arrest at the G0/G1 phase and suppressed NF-κB activities in these cells. AZT alone did not affect HTLV-1 gene expression, cell viability or NF-κB activities. AZT combined with IFN-α markedly induced cell apoptosis associated with phosphorylation of p53 and induction of p53-responsive genes in ILTs. Conclusions IFN-α suppressed HTLV-1 gene expression at least through a PKR-mediated mechanism, and also induced cell cycle arrest in ILTs. In combination with AZT, IFN-α further induced p53 signaling and cell apoptosis in these cells. These findings suggest that HTLV-1-infected cells at an IL-2-dependent stage retain susceptibility to type I IFN-mediated regulation of viral expression, and partly explain how AZT/IFN-α produces therapeutic effects in ATL. PMID:23688327
Abdulhaqq, S A; Zorrilla, C; Kang, G; Yin, X; Tamayo, V; Seaton, K E; Joseph, J; Garced, S; Tomaras, G D; Linn, K A; Foulkes, A S; Azzoni, L; VerMilyea, M; Coutifaris, C; Kossenkov, A V; Showe, L; Kraiselburd, E N; Li, Q; Montaner, L J
2016-07-01
Sex workers practicing in high HIV endemic areas have been extensively targeted to test anti-HIV prophylactic strategies. We hypothesize that in women with high levels of genital exposure to semen changes in cervico-vaginal mucosal and/or systemic immune activation will contribute to a decreased susceptibility to HIV-1 infection. To address this question, we assessed sexual activity and immune activation status (in peripheral blood), as well as cellular infiltrates and gene expression in ectocervical mucosa biopsies in female sex workers (FSWs; n=50), as compared with control women (CG; n=32). FSWs had low-to-absent HIV-1-specific immune responses with significantly lower CD38 expression on circulating CD4(+) or CD8(+) T-cells (both: P<0.001) together with lower cervical gene expression of genes associated with leukocyte homing and chemotaxis. FSWs also had increased levels of interferon-ɛ (IFNɛ) gene and protein expression in the cervical epithelium together with reduced expression of genes associated with HIV-1 integration and replication. A correlative relationship between semen exposure and elevated type-1 IFN expression in FSWs was also established. Overall, our data suggest that long-term condomless sex work can result in multiple changes within the cervico-vaginal compartment that would contribute to sustaining a lower susceptibility for HIV-1 infection in the absence of HIV-specific responses.
Fischer, Catha; Mamillapalli, Ramanaiah; Goetz, Laura G; Jorgenson, Elisa; Ilagan, Ysabel; Taylor, Hugh S
2016-08-01
Bisphenol-A (BPA) is a ubiquitous estrogen-like endocrine disrupting compound (EDC). BPA exposure in utero has been linked to breast cancer and abnormal mammary gland development in mice. The recent rise in incidence of human breast cancer and decreased age of first detection suggests a possible environmental etiology. We hypothesized that developmental programming of carcinogenesis may involve an aberrant immune response. Both innate and adaptive immunity play a role in tumor suppression through cytolytic CD8, NK, and Th1 T-cells. We hypothesized that BPA exposure in utero would lead to dysregulation of both innate and adaptive immunity in the mammary gland. CD1 mice were exposed to BPA in utero during gestation (days 9-21) via osmotic minipump. At 6 weeks, the female offspring were ovariectomized and estradiol was given at 8 weeks. RNA and protein were extracted from the posterior mammary glands, and the mRNA and protein levels were measured by PCR array, qRT-PCR, and western blot. In mouse mammary tissue, BPA exposure in utero significantly decreased the expression of members of the chemokine CXC family (Cxcl2, Cxcl4, Cxcl14, and Ccl20), interleukin 1 (Il1) gene family (Il1β and Il1rn), interleukin 2 gene family (Il7 receptor), and interferon gene family (interferon regulatory factor 9 (Irf9), as well as immune response gene 1 (Irg1). Additionally, BPA exposure in utero decreased Esr1 receptor gene expression and increased Esr2 receptor gene expression. In utero exposure of BPA resulted in significant changes to inflammatory modulators within mammary tissue. We suggest that dysregulation of inflammatory cytokines, both pro-inflammatory and anti-inflammatory, leads to a microenvironment that may promote disordered cell growth through inhibition of the immune response that targets cancer cells.
Faulkner, C B; Simecka, J W; Davidson, M K; Davis, J K; Schoeb, T R; Lindsey, J R; Everson, M P
1995-01-01
Studies were conducted to determine whether the production of various cytokines is associated with Mycoplasma pulmonis disease expression. Susceptible C3H/HeN and resistant C57BL/6N mice were inoculated intranasally with 10(7) CFU of virulent M. pulmonis UAB CT or avirulent M. pulmonis UAB T. Expression of genes for tumor necrosis factor alpha (TNF-alpha), interleukin 1 alpha (IL-1 alpha), IL-1 beta, IL-6, and gamma interferon (IFN-gamma) in whole lung tissue and TNF-alpha gene expression in bronchoalveolar lavage (BAL) cells was determined by reverse transcription-PCR using specific cytokine primers at various times postinoculation. In addition, concentrations of TNF-alpha, IL-1, IL-6, and IFN-gamma were determined in BAL fluid and serum samples at various times postinoculation. Our results showed that there was a sequential appearance of cytokines in the lungs of infected mice: TNF-alpha, produced primarily by BAL cells, appeared first, followed by IL-1 and IL-6, which were followed by IFN-gamma. Susceptible C3H/HeN mice had higher and more persistent concentrations of TNF-alpha and IL-6 in BAL fluid than did resistant C57BL/6N mice, indicating that TNF-alpha and possibly IL-6 are important factors in pathogenesis of acute M. pulmonis disease in mice. Serum concentrations of IL-6 were elevated in C3H/HeN mice, but not C57BL/6N mice, following infection with M. pulmonis, suggesting that IL-6 has both local and systemic effects in M. pulmonis disease. PMID:7558323
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ocana-Macchi, Manuela; Ricklin, Meret E.; Python, Sylvie
2012-05-25
The 2009 influenza A virus (IAV) pandemic resulted from reassortment of avian, human and swine strains probably in pigs. To elucidate the role of viral genes in host adaptation regarding innate immune responses, we focussed on the effect of genes from an avian H5N1 and a porcine H1N1 IAV on infectivity and activation of porcine GM-CSF-induced dendritic cells (DC). The highest interferon type I responses were achieved by the porcine virus reassortant containing the avian polymerase gene PB2. This finding was not due to differential tropism since all viruses infected DC equally. All viruses equally induced MHC class II, butmore » porcine H1N1 expressing the avian viral PB2 induced more prominent nuclear NF-{kappa}B translocation compared to its parent IAV. The enhanced activation of DC may be detrimental or beneficial. An over-stimulation of innate responses could result in either pronounced tissue damage or increased resistance against IAV reassortants carrying avian PB2.« less
Tong, Ann-Jay; Kollmann, Tobias R.; Smale, Stephen T.
2015-01-01
A variety of age-related differences in the innate and adaptive immune systems have been proposed to contribute to the increased susceptibility to infection of human neonates and older adults. The emergence of RNA sequencing (RNA-seq) provides an opportunity to obtain an unbiased, comprehensive, and quantitative view of gene expression differences in defined cell types from different age groups. An examination of ex vivo human monocyte responses to lipopolysaccharide stimulation or Listeria monocytogenes infection by RNA-seq revealed extensive similarities between neonates, young adults, and older adults, with an unexpectedly small number of genes exhibiting statistically significant age-dependent differences. By examining the differentially induced genes in the context of transcription factor binding motifs and RNA-seq data sets from mutant mouse strains, a previously described deficiency in interferon response factor-3 activity could be implicated in most of the differences between newborns and young adults. Contrary to these observations, older adults exhibited elevated expression of inflammatory genes at baseline, yet the responses following stimulation correlated more closely with those observed in younger adults. Notably, major differences in the expression of constitutively expressed genes were not observed, suggesting that the age-related differences are driven by environmental influences rather than cell-autonomous differences in monocyte development. PMID:26147648
Mechanisms of HO-1 mediated attenuation of renal immune injury: a gene profiling study.
Duann, Pu; Lianos, Elias A
2011-10-01
Using a mouse model of immune injury directed against the renal glomerular vasculature and resembling human forms of glomerulonephritis (GN), we assessed the effect of targeted expression of the cytoprotective enzyme heme oxygenase (HO)-1. A human (h) HO-1 complementary DNAN (cDNA) sequence was targeted to glomerular epithelial cells (GECs) using a GEC-specific murine nephrin promoter. Injury by administration of antibody against the glomerular basement membrane (anti-GBM) to transgenic (TG) mice with GEC-targeted hHO-1 was attenuated compared with wild-type (WT) controls. To explore changes in the expression of genes that could mediate this salutary effect, we performed gene expression profiling using a microarray analysis of RNA isolated from the renal cortex of WT or TG mice with or without anti-GBM antibody-induced injury. Significant increases in expression were detected in 9 major histocompatibility complex (MHC)-class II genes, 2 interferon-γ (IFN-γ)-inducible guanosine triphosphate (GTP)ases, and 3 genes of the ubiquitin-proteasome system. The increase in MHC-class II and proteasome gene expression in TG mice with injury was validated by real-time polymerase chain reaction (PCR) or Western blot analysis. The observations point to novel mechanisms underlying the cytoprotective effect of HO-1 in renal immune injury. Copyright © 2011. Published by Mosby, Inc.
Thompson, Jill C; Smith, Maria W; Yeh, Matthew M; Proll, Sean; Zhu, Lin-Fu; Gao, T. J; Kneteman, Norman M; Tyrrell, D. Lorne; Katze, Michael G
2006-01-01
The severe combined immunodeficiency disorder (SCID)-beige/albumin (Alb)-urokinase plasminogen activator (uPA) mouse containing a human-mouse chimeric liver is currently the only small animal model capable of supporting hepatitis C virus (HCV) infection. This model was utilized to characterize the host transcriptional response to HCV infection. The purpose of these studies was to investigate the genetic component of the host response to HCV infection and also to distinguish virus-induced gene expression changes from adaptive HCV-specific immune-mediated effects. Gene expression profiles from HCV-infected mice were also compared to those from HCV-infected patients. Analyses of the gene expression data demonstrate that host factors regulate the response to HCV infection, including the nature of the innate antiviral immune response. They also indicate that HCV mediates gene expression changes, including regulation of lipid metabolism genes, which have the potential to be directly cytopathic, indicating that liver pathology may not be exclusively mediated by HCV-specific adaptive immune responses. This effect appears to be inversely related to the activation of the innate antiviral immune response. In summary, the nature of the initial interferon response to HCV infection may determine the extent of viral-mediated effects on host gene expression. PMID:16789836
Grünvogel, Oliver; Esser-Nobis, Katharina; Reustle, Anna; Schult, Philipp; Müller, Birthe; Metz, Philippe; Trippler, Martin; Windisch, Marc P.; Frese, Michael; Binder, Marco; Fackler, Oliver; Bartenschlager, Ralf; Ruggieri, Alessia
2015-01-01
ABSTRACT All major types of interferon (IFN) efficiently inhibit hepatitis C virus (HCV) replication in vitro and in vivo. Remarkably, HCV replication is not sensitive to IFN-γ in the hepatoma cell line Huh6, despite an intact signaling pathway. We performed transcriptome analyses between Huh6 and Huh-7 cells to identify effector genes of the IFN-γ response and thereby identified the DExD/H box helicase DEAD box polypeptide 60-like (DDX60L) as a restriction factor of HCV replication. DDX60L and its homolog DEAD box polypeptide 60 (DDX60) were both induced upon viral infection and IFN treatment in primary human hepatocytes. However, exclusively DDX60L knockdown increased HCV replication in Huh-7 cells and rescued HCV replication from type II IFN as well as type I and III IFN treatment, suggesting that DDX60L is an important effector protein of the innate immune response against HCV. In contrast, we found no impact of DDX60L on replication of hepatitis A virus. DDX60L protein was detectable only upon strong ectopic overexpression, displayed a broad cytoplasmic distribution, but caused cytopathic effects under these conditions. DDX60L knockdown did not alter interferon-stimulated gene (ISG) induction after IFN treatment but inhibited HCV replication upon ectopic expression, suggesting that it is a direct effector of the innate immune response. It most likely inhibits viral RNA replication, since we found neither impact of DDX60L on translation or stability of HCV subgenomic replicons nor additional impact on assembly of infectious virus. Similar to DDX60, DDX60L had a moderate impact on RIG-I dependent activation of innate immunity, suggesting additional functions in the sensing of viral RNA. IMPORTANCE Interferons induce a plethora of interferon-stimulated genes (ISGs), which are our first line of defense against viral infections. In addition, IFNs have been used in antiviral therapy, in particular against the human pathogen hepatitis C virus (HCV); still, their mechanism of action is not well understood, since diverse, overlapping sets of antagonistic effector ISGs target viruses with different biologies. Our work identifies DDX60L as a novel factor that inhibits replication of HCV. DDX60L expression is regulated similarly to that of its homolog DDX60, but our data suggest that it has distinct functions, since we found no contribution of DDX60 in combatting HCV replication. The identification of novel components of the innate immune response contributes to a comprehensive understanding of the complex mechanisms governing antiviral defense. PMID:26269178
Nagaraju, Kanneboyina; Ghimbovschi, Svetlana; Rayavarapu, Sree; Phadke, Aditi; Rider, Lisa G.; Hoffman, Eric P.
2016-01-01
Abstract Objective. To identify muscle gene expression patterns that predict rituximab responses and assess the effects of rituximab on muscle gene expression in PM and DM. Methods. In an attempt to understand the molecular mechanism of response and non-response to rituximab therapy, we performed Affymetrix gene expression array analyses on muscle biopsy specimens taken before and after rituximab therapy from eight PM and two DM patients in the Rituximab in Myositis study. We also analysed selected muscle-infiltrating cell phenotypes in these biopsies by immunohistochemical staining. Partek and Ingenuity pathway analyses assessed the gene pathways and networks. Results. Myeloid type I IFN signature genes were expressed at higher levels at baseline in the skeletal muscle of rituximab responders than in non-responders, whereas classic non-myeloid IFN signature genes were expressed at higher levels in non-responders at baseline. Also, rituximab responders have a greater reduction of the myeloid and non-myeloid type I IFN signatures than non-responders. The decrease in the type I IFN signature following administration of rituximab may be associated with the decreases in muscle-infiltrating CD19 + B cells and CD68 + macrophages in responders. Conclusion. Our findings suggest that high levels of myeloid type I IFN gene expression in skeletal muscle predict responses to rituximab in PM/DM and that rituximab responders also have a greater decrease in the expression of these genes. These data add further evidence to recent studies defining the type I IFN signature as both a predictor of therapeutic responses and a biomarker of myositis disease activity. PMID:27215813
Hu, Guobin; Yin, Xiangyan; Lou, Huimin; Xia, Jun; Dong, Xianzhi; Zhang, Jianyie; Liu, Qiuming
2011-02-01
Two cDNAs with different 3'-untranslated region (UTR) encoding an interferon regulatory factor 3 (IRF-3) were cloned from head kidney of Japanese flounder, Paralichthys olivaceus, by reverse transcription polymerase chain reaction (RT-PCR) and rapid amplification of cDNA ends (RACE) methods. Sequence analysis reveals that they were generated by alternative polyadenylation. The predicted protein consists of 467 amino acid residues which shares the highest identity of 50.7-57.6% to fish IRF-3 and possesses a DNA-binding domain (DBD), an IRF association domain (IAD) and a serine-rich domain (SRD) of vertebrate IRF-3. The presence of these domains along with phylogenetic analysis places it into the IRF-3 group of the IRF-3 subfamily. RT-PCR analysis revealed that flounder IRF-3 was expressed constitutively in limited tissue types including head kidney, spleen, kidney, heart, gill, intestine and liver. A quantitative real time PCR assay was employed to monitor expression of IRF-3, type I interferon (IFN) and Mx in flounder head kidney and gill. All three genes were up-regulated by polyinosinic:polycytidylic acid (polyI:C) and lymphocystis disease virus (LCDV) with an earlier but slight and less persistent increase in transcription levels seen for the IRF-3. Finally, flounder IRF-3 was proved to induce fish type I IFN promoter in FG9307 cells, a flounder gill cell line, by a luciferase assay. These results provide insights into the roles of fish IRF-3 in the antiviral immunity. Copyright © 2010 Elsevier Ltd. All rights reserved.
Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure.
Gram, Anna M; Sun, Chenglong; Landman, Sanne L; Oosenbrug, Timo; Koppejan, Hester J; Kwakkenbos, Mark J; Hoeben, Rob C; Paludan, Søren R; Ressing, Maaike E
2017-11-01
Most cells are believed to be capable of producing type I interferons (IFN I) as part of an innate immune response against, for instance, viral infections. In macrophages, IFN I is potently induced upon cytoplasmic exposure to foreign nucleic acids. Infection of these cells with herpesviruses leads to triggering of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic GMP-AMP (cGAMP) synthase (cGAS). Thereby, the stimulator of interferon genes (STING) and the downstream molecules TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) are sequentially activated culminating in IFN I secretion. Human gamma-herpesviruses, such as Epstein-Barr virus (EBV), exploit B cells as a reservoir for persistent infection. In this study, we investigated whether human B cells, similar to macrophages, engage the cytoplasmic DNA sensing pathway to induce an innate immune response. We found that the B cells fail to secrete IFN I upon cytoplasmic DNA exposure, although they express the DNA sensors cGAS and IFI16 and the signaling components TBK1 and IRF3. In primary human B lymphocytes and EBV-negative B cell lines, this deficiency is explained by a lack of detectable levels of the central adaptor protein STING. In contrast, EBV-transformed B cell lines did express STING, yet both these lines as well as STING-reconstituted EBV-negative B cells did not produce IFN I upon dsDNA or cGAMP stimulation. Our combined data show that the cytoplasmic DNA sensing pathway is dysfunctional in human B cells. This exemplifies that certain cell types cannot induce IFN I in response to cytoplasmic DNA exposure providing a potential niche for viral persistence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Island, Marie-Laure; Mesplede, Thibault; Darracq, Nicole; Bandu, Marie-Thérèse; Christeff, Nicolas; Djian, Philippe; Drouin, Jacques; Navarro, Sébastien
2002-01-01
Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by the specific transcription activators IFN regulatory factor 3 (IRF3) and IRF-7 and the homeoprotein transcription repressor Pitx1. We now show that repression by Pitx1 does not appear to be due to the recruitment of histone deacetylases. On the other hand, Pitx1 inhibits the IRF3 and IRF7 transcriptional activity of the IFN-A11 and IFN-A5 promoters and interacts physically with IRF3 and IRF7. Pitx1 trans-repression activity maps to specific C-terminal domains, and the Pitx1 homeodomain is involved in physical interaction with IRF3 or IRF7. IRF3 is able to bind to the antisilencer region of the IFN-A4 promoter, which overrides the repressive activity of Pitx1. These results indicate that interaction between the Pitx1 homeodomain and IRF3 or IRF7 and the ability of the Pitx1 C-terminal repressor domains to block IFN-A11 and IFN-A5 but not IFN-A4 promoter activities may contribute to our understanding of the complex differential transcriptional activation, repression, and antirepression of the IFN-A genes. PMID:12242290
Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A
2007-04-10
Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A(*)0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A(*)0201+, TAA+) and NA8 (HLA-A(*)0201+, TAA-) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-gamma) production by HLA-A(*)0201-restricted Melan-A/MART-1(27-35) or gp 100(280-288)-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-gamma production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL.
Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1
Cho, Jae Youl
2018-01-01
Interferon regulatory factor (IRF)-3 is known to have a critical role in viral and bacterial innate immune responses by regulating the production of type I interferon (IFN). Thymoquinone (TQ) is a compound derived from black cumin (Nigella sativa L.) and is known to regulate immune responses by affecting transcription factors associated with inflammation, including nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). However, the role of TQ in the IRF-3 signaling pathway has not been elucidated. In this study, we explored the molecular mechanism of TQ-dependent regulation of enzymes in IRF-3 signaling pathways using the lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cell line. TQ decreased mRNA expression of the interferon genes IFN-α and IFN-β in these cells. This inhibition was due to its suppression of the transcriptional activation of IRF-3, as shown by inhibition of IRF-3 PRD (III-I) luciferase activity as well as the phosphorylation pattern of IRF-3 in the immunoblotting experiment. Moreover, TQ targeted the autophosphorylation of TANK-binding kinase 1 (TBK1), an upstream key enzyme responsible for IRF-3 activation. Taken together, these findings suggest that TQ can downregulate IRF-3 activation via inhibition of TBK1, which would subsequently decrease the production of type I IFN. TQ also regulated IRF-3, one of the inflammatory transcription factors, providing a novel insight into its anti-inflammatory activities. PMID:29751576
van den Pol, Anthony N; Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K; Davis, John N
2017-03-15
Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain. IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah, chikungunya, and influenza viruses and nonstructural genes from Semliki Forest virus. Two of the four, VSVΔG-CHIKV and VLV, show substantially attenuated neurotropism and were safe in the healthy adult mouse brain. VSVΔG-H5N1 was safe in the adult brain but lethal in the younger brain. VSVΔG Nipah F+G was even more neurotropic than wild-type VSV, evoking a rapid lethal response in the adult brain. These results suggest that while chimeric VSVs show promise, each must be tested with both intranasal and intracranial administration to ensure the absence of lethal neurotropism. Copyright © 2017 American Society for Microbiology.
Mao, Guochao; Chattopadhyay, Anasuya; Rose, John K.; Davis, John N.
2017-01-01
ABSTRACT Recombinant vesicular stomatitis virus (VSV)-based chimeric viruses that include genes from other viruses show promise as vaccines and oncolytic viruses. However, the critical safety concern is the neurotropic nature conveyed by the VSV glycoprotein. VSVs that include the VSV glycoprotein (G) gene, even in most recombinant attenuated strains, can still show substantial adverse or lethal actions in the brain. Here, we test 4 chimeric viruses in the brain, including those in which glycoprotein genes from Nipah, chikungunya (CHIKV), and influenza H5N1 viruses were substituted for the VSV glycoprotein gene. We also test a virus-like vesicle (VLV) in which the VSV glycoprotein gene is expressed from a replicon encoding the nonstructural proteins of Semliki Forest virus. VSVΔG-CHIKV, VSVΔG-H5N1, and VLV were all safe in the adult mouse brain, as were VSVΔG viruses expressing either the Nipah F or G glycoprotein. In contrast, a complementing pair of VSVΔG viruses expressing Nipah G and F glycoproteins were lethal within the brain within a surprisingly short time frame of 2 days. Intranasal inoculation in postnatal day 14 mice with VSVΔG-CHIKV or VLV evoked no adverse response, whereas VSVΔG-H5N1 by this route was lethal in most mice. A key immune mechanism underlying the safety of VSVΔG-CHIKV, VSVΔG-H5N1, and VLV in the adult brain was the type I interferon response; all three viruses were lethal in the brains of adult mice lacking the interferon receptor, suggesting that the viruses can infect and replicate and spread in brain cells if not blocked by interferon-stimulated genes within the brain. IMPORTANCE Vesicular stomatitis virus (VSV) shows considerable promise both as a vaccine vector and as an oncolytic virus. The greatest limitation of VSV is that it is highly neurotropic and can be lethal within the brain. The neurotropism can be mostly attributed to the VSV G glycoprotein. Here, we test 4 chimeric viruses of VSV with glycoprotein genes from Nipah, chikungunya, and influenza viruses and nonstructural genes from Semliki Forest virus. Two of the four, VSVΔG-CHIKV and VLV, show substantially attenuated neurotropism and were safe in the healthy adult mouse brain. VSVΔG-H5N1 was safe in the adult brain but lethal in the younger brain. VSVΔG Nipah F+G was even more neurotropic than wild-type VSV, evoking a rapid lethal response in the adult brain. These results suggest that while chimeric VSVs show promise, each must be tested with both intranasal and intracranial administration to ensure the absence of lethal neurotropism. PMID:28077641
DOE Office of Scientific and Technical Information (OSTI.GOV)
Last, Jerold A.; Gohil, Kishorchandra; Mathrani, Vivek C.
2005-10-15
Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkersmore » of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-{kappa}B in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone.« less
Last, Jerold A; Gohil, Kishorchandra; Mathrani, Vivek C; Kenyon, Nicholas J
2005-10-15
Rats or mice acutely exposed to high concentrations of ozone show an immediate and significant weight loss, even when allowed free access to food and water. The mechanisms underlying this systemic response to ozone have not been previously elucidated. We have applied the technique of global gene expression analysis to the livers of C57BL mice acutely exposed to ozone. Mice lost up to 14% of their original body weight, with a 42% decrease in total food consumption. We previously had found significant up-regulation of genes encoding proliferative enzymes, proteins related to acute phase reactions and cytoskeletal functions, and other biomarkers of a cachexia-like inflammatory state in lungs of mice exposed to ozone. These results are consistent with a general up-regulation of different gene families responsive to NF-kappaB in the lungs of the exposed mice. In the present study, we observed significant down-regulation of different families of mRNAs in the livers of the exposed mice, including genes related to lipid and fatty acid metabolism, and to carbohydrate metabolism in this tissue, consistent with a systemic cachexic response. Several interferon-dependent genes were down-regulated in the liver, suggesting a possible role for interferon as a signaling molecule between lung and liver. In addition, transcription of several mRNAs encoding enzymes of xenobiotic metabolism in the livers of mice exposed to ozone was decreased, suggesting cytokine-mediated suppression of cytochrome P450 expression. This finding may explain a previously controversial report from other investigators more than 20 years ago of prolongation of pentobarbital sleeping time in mice exposed to ozone.
Felger, Jennifer C.; Cole, Steve W.; Pace, Thaddeus W. W.; Hu, Fang; Woolwine, Bobbi J.; Doho, Gregory H.; Raison, Charles L.; Miller, Andrew H.
2012-01-01
Background Interferon (IFN)-alpha treatment for infectious disease and cancer causes high rates of depression and fatigue, and has been used to investigate the impact of inflammatory cytokines on brain and behavior. However, little is known about the transcriptional impact of chronic IFN-alpha on immune cells in vivo and its relationship to IFN-alpha-induced behavioral changes. Methods Genome-wide transcriptional profiling was performed on peripheral blood mononuclear cells from 21 patients with chronic hepatitis C either awaiting IFN-alpha therapy (n=10) or at 12 weeks of IFN-alpha treatment (n=11). Results Significance analysis of microarray data identified 252 up-regulated and 116 down-regulated gene transcripts. Of up-regulated genes, 2'-5'-oligoadenylate synthetase 2 (OAS2), a gene linked to chronic fatigue syndrome (CFS), was the only gene that was differentially expressed in patients with IFN-alpha-induced depression/fatigue, and correlated with depression and fatigue scores at 12 weeks (r=0.80, p=0.003 and r=0.70, p=0.017, respectively). Promoter-based bioinformatic analyses linked IFN-alpha-related transcriptional alterations to transcription factors involved in myeloid differentiation, IFN-alpha signaling, AP1 and CREB/ATF pathways, which were derived primarily from monocytes and plasmacytoid dendritic cells. IFN-alpha-treated patients with high depression/fatigue scores demonstrated up-regulation of genes bearing promoter motifs for transcription factors involved in myeloid differentiation, IFN-alpha and AP1 signaling, and reduced prevalence of motifs for CREB/ATF, which has been implicated in major depression. Conclusions Depression and fatigue during chronic IFN-alpha administration were associated with alterations in the expression (OAS2) and transcriptional control (CREB/ATF) of genes linked to behavioral disorders including CFS and major depression, further supporting an immune contribution to these diseases. PMID:22152193
Razaghi, Ali; Owens, Leigh; Heimann, Kirsten
2016-12-20
Human interferon gamma is a cytokine belonging to a diverse group of interferons which have a crucial immunological function against mycobacteria and a wide variety of viral infections. To date, it has been approved for treatment of chronic granulomatous disease and malignant osteopetrosis, and its application as an immunotherapeutic agent against cancer is an increasing prospect. Recombinant human interferon gamma, as a lucrative biopharmaceutical, has been engineered in different expression systems including prokaryotic, protozoan, fungal (yeasts), plant, insect and mammalian cells. Human interferon gamma is commonly expressed in Escherichia coli, marketed as ACTIMMUNE ® , however, the resulting product of the prokaryotic expression system is unglycosylated with a short half-life in the bloodstream; the purification process is tedious and makes the product costlier. Other expression systems also did not show satisfactory results in terms of yields, the biological activity of the protein or economic viability. Thus, the review aims to synthesise available information from previous studies on the production of human interferon gamma and its glycosylation patterns in different expression systems, to provide direction to future research in this field. Copyright © 2016 Elsevier B.V. All rights reserved.
Chou, Wen K; Park, Jungwoo; Carey, John B; McIntyre, Don R; Berghman, Luc R
2017-01-01
A study was conducted to evaluate the molecular and cellular immunomodulatory effects of a Saccharomyces cerevisiae fermentation product (Original XPC, Diamond V) in broilers. Our lab has previously demonstrated that broilers fed XPC generate faster and stronger antigen-specific humoral immune responses to Newcastle disease virus (NDV) vaccination. This study aims at investigating the mechanism behind this increased immunocompetence. One-day-old broilers were randomly assigned to one of two treatments: 1.25 kg/ton S. cerevisiae fermentation product (XPC treatment group) or control diet. Birds were vaccinated against NDV on day 1 (B1 strain) and day 21 (LaSota strain) post-hatch. Innate and adaptive immune-related gene expression profiles in central (thymus and bursa of Fabricius) and peripheral (spleen) immune organs were investigated at 14 and 28 days of age by qPCR array. Fold changes larger than 1.2 ( P < 0.05) between treated and control were considered significant. Lymphocyte subpopulations in central and peripheral immune organs and blood leukocytes were analyzed by flow cytometry at 14, 21, 28, and 42 days of age. In the spleen, Th1 immune responses and antiviral genes, such as IFN-γ, and its downstream genes signal transducer and activator of transcription (STAT4) and NFκB, were significantly upregulated in the treated group by 14 days of age. In the thymus, genes belonging to different functional groups were influenced at different time points. Cytokine genes associated with lymphocyte maturation, differentiation, and proliferation, such as IL-1R, IL-2, and IL-15 were significantly upregulated in the treated group by 28 days of age. Genes preferentially expressed in the medulla of the thymus and mature thymocytes, such as Myxovirus resistance gene 1, interferon regulatory factor-1, interferon regulatory factor-7, and STAT1, were upregulated in the birds supplemented with XPC. Birds supplemented with XPC had significantly higher percentages of CD3 + , CD4 + , and CD8 + T-cells in the thymus at day 28 of age, indicating production of more mature T-cells, which was consistent with gene expression results. Results suggest that XPC supplementation primes broilers to become more immunocompetent, without compromising growth performance.
Zhang, Chaoyang; Peng, Li; Zhang, Yaqin; Liu, Zhaoyang; Li, Wenling; Chen, Shilian; Li, Guancheng
2017-06-01
Liver cancer is a serious threat to public health and has fairly complicated pathogenesis. Therefore, the identification of key genes and pathways is of much importance for clarifying molecular mechanism of hepatocellular carcinoma (HCC) initiation and progression. HCC-associated gene expression dataset was downloaded from Gene Expression Omnibus database. Statistical software R was used for significance analysis of differentially expressed genes (DEGs) between liver cancer samples and normal samples. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, based on R software, were applied for the identification of pathways in which DEGs significantly enriched. Cytoscape software was for the construction of protein-protein interaction (PPI) network and module analysis to find the hub genes and key pathways. Finally, weighted correlation network analysis (WGCNA) was conducted to further screen critical gene modules with similar expression pattern and explore their biological significance. Significance analysis identified 1230 DEGs with fold change >2, including 632 significantly down-regulated DEGs and 598 significantly up-regulated DEGs. GO term enrichment analysis suggested that up-regulated DEG significantly enriched in immune response, cell adhesion, cell migration, type I interferon signaling pathway, and cell proliferation, and the down-regulated DEG mainly enriched in response to endoplasmic reticulum stress and endoplasmic reticulum unfolded protein response. KEGG pathway analysis found DEGs significantly enriched in five pathways including complement and coagulation cascades, focal adhesion, ECM-receptor interaction, antigen processing and presentation, and protein processing in endoplasmic reticulum. The top 10 hub genes in HCC were separately GMPS, ACACA, ALB, TGFB1, KRAS, ERBB2, BCL2, EGFR, STAT3, and CD8A, which resulted from PPI network. The top 3 gene interaction modules in PPI network enriched in immune response, organ development, and response to other organism, respectively. WGCNA revealed that the confirmed eight gene modules significantly enriched in monooxygenase and oxidoreductase activity, response to endoplasmic reticulum stress, type I interferon signaling pathway, processing, presentation and binding of peptide antigen, cellular response to cadmium and zinc ion, cell locomotion and differentiation, ribonucleoprotein complex and RNA processing, and immune system process, respectively. In conclusion, we identified some key genes and pathways closely related with HCC initiation and progression by a series of bioinformatics analysis on DEGs. These screened genes and pathways provided for a more detailed molecular mechanism underlying HCC occurrence and progression, holding promise for acting as biomarkers and potential therapeutic targets.
Britto, Alan M A; Amoedo, Nívea D; Pezzuto, Paula; Afonso, Adriana O; Martínez, Ana M B; Silveira, Jussara; Sion, Fernando S; Machado, Elizabeth S; Soares, Marcelo A; Giannini, Ana L M
2013-07-31
TLRs (Toll-like receptors) and RLRs (RIG-I-like receptors) mediate innate immune responses by detecting microorganism invasion. RIG-I activation results in the production of interferon (IFN) type 1 and IFN responsive genes (ISGs). As the ubiquitin ligases RNF125 and TRIM25 are involved in regulating RIG-I function, our aim was to assess whether the levels of these three genes vary between healthy and HIV-infected individuals and whether these levels are related to disease progression. Gene expression analyses for RIG-I, RNF125, and TRIM25 were performed for HIV-infected adults and the children's peripheral blood mononuclear cells (PBMCs). Reverse transcription-quantitative PCRs (RT-qPCRs) were performed in order to quantify the expression levels of RIG-I, RNF125 and TRIM25 from PBMCs purified from control or HIV-infected individuals. Controls express higher levels of the three genes when compared to HIV-infected patients. These expressions are clearly distinct between healthy and progressors, and are reproduced in adults and children. In controls, RNF125 is the highest expressed gene, whereas in progressors, RIG-I is either the highest expressed gene or is expressed similarly to RNF125 and TRIM25. A pattern of expression of RIG-I, RNF125, and TRIM25 genes in HIV patients is evident. The high expression of RNF125 in healthy individuals reflects the importance of keeping RIG-I function off, inhibiting unnecessary IFN production. Consistent with this assumption, RNF125 levels are lower in HIV patients and importantly, the RNF125/RIG-I ratio is lower in patients who progress to AIDS. Our results might help to predict disease progression and unveil the role of poorly characterized host genes during HIV infection.
Chebolu, S; Daniell, H
2009-01-01
Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%-31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bio-reactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner.
Ka, Mignane B.; Mezouar, Soraya; Ben Amara, Amira; Raoult, Didier; Ghigo, Eric; Olive, Daniel; Mege, Jean-Louis
2016-01-01
Plasmacytoid dendritic cells (pDCs) play a major role in antiviral immunity via the production of type I interferons (IFNs). There is some evidence that pDCs interact with bacteria but it is not yet clear whether they are protective or contribute to bacterial pathogenicity. We wished to investigate whether Coxiella burnetii, the agent of Q fever, interacts with pDCs. The stimulation of pDCs with C. burnetii increased the expression of activation and migratory markers (CD86 and CCR7) as determined by flow cytometry and modulated gene expression program as revealed by a microarray approach. Indeed, genes encoding for pro-inflammatory cytokines, chemokines, and type I INF were up-regulated. The up-regulation of type I IFN was correlated with an increase in IFN-α release by C. burnetii-stimulated pDCs. We also investigated pDCs in patients with Q fever endocarditis. Using flow cytometry and a specific gating strategy, we found that the number of circulating pDCs was significantly lower in patients with Q fever endocarditis as compared to healthy donors. In addition, the remaining circulating pDCs expressed activation and migratory markers. As a whole, our study identified non-previously reported activation of pDCs by C. burnetii and their modulation during Q fever. PMID:27446817
Chebolu, S.; Daniell, H.
2009-01-01
Chloroplast genetic engineering offers several advantages, including high levels of transgene expression, transgene containment via maternal inheritance, and multi-gene expression in a single transformation event. Oral delivery is facilitated by hyperexpression of vaccine antigens against cholera, tetanus, anthrax, plague, or canine parvovirus (4%–31% of total soluble protein, TSP) in transgenic chloroplasts (leaves) or non-green plastids (carrots, tomato) as well as the availability of antibiotic free selectable markers or the ability to excise selectable marker genes. Hyperexpression of several therapeutic proteins, including human serum albumin (11.1% TSP), somatotropin (7% TSP), interferon-alpha (19% TSP), interferon-gamma (6% TSP), and antimicrobial peptide (21.5% TSP), facilitates efficient and economic purification. Also, the presence of chaperones and enzymes in chloroplasts facilitates assembly of complex multisubunit proteins and correct folding of human blood proteins with proper disulfide bonds. Functionality of chloroplast-derived vaccine antigens and therapeutic proteins has been demonstrated by several assays, including the macrophage lysis assay, GM1-ganglioside binding assay, protection of HeLA cells or human lung carcinoma cells against encephalomyocarditis virus, systemic immune response, protection against pathogen challenge, and growth or inhibition of cell cultures. Purification of human proinsulin has been achieved using novel purification strategies (inverse temperature transition property) that do not require expensive column chromatography techniques. Thus, transgenic chloroplasts are ideal bioreactors for production of functional human and animal therapeutic proteins in an environmentally friendly manner. PMID:19401820
Wang, Fangchao; Yang, Can; Liu, Guoyan; Song, Xiangfeng
2016-01-01
Human adipose-derived mesenchymal stem cells (hAD-MSCs) are mesenchymal stem cells with the capability to modulate immune responses. Evidence showing that hAD-MSCs could mediate innate immune responses through pattern recognition receptors (PRRs) is increasing. However, the roles of PRRs in regulating the innate sensing of virus nucleic acids (RNA and DNA) in hAD-MSCs have not yet been investigated. This study focused on the abundant expression of PRRs, including Toll-like receptor 3 (TLR3) and retinoic acid-inducible gene I (RIG-I), which recognize viral RNA, and gamma-interferon inducible protein 16 (IFI16), which recognizes viral DNA in hAD-MSCs. Poly(I:C), a synthetic dsRNA analogy, activated TLR3 and RIG-I and induced the expression of type I interferons (IFN-α/β) and antivirus proteins, including IFN-stimulating gene 15, 2′5′-oligoadenylate synthetase, and Mx GTPase 1 in hAD-MSCs, which were attenuated by the knockdown of each TLR3 or RIG-I. Synthetic herpes simplex viral DNA (HSV60) activated IFI16 and induced the expression of IFN-α/β and antivirus proteins in hAD-MSCs, which were inhibited by the knockdown of IFI16. Both poly(I:C) and HSV60 induced the expression of IFN-α/β through the phosphorylation of IFN-regulatory factor 3. All these results indicated that PRRs recognizing virus nucleic acids were expressed and can mediate antivirus responses in hAD-MSCs. PMID:28105439
Dron, Michel; Meritet, Jean François; Dandoy-Dron, Françoise; Meyniel, Jean-Philippe; Maury, Chantal; Tovey, Michael G
2002-03-01
The expression of the previously uncharacterized gene Adir (for ATP dependent interferon responsive gene) was increased by 5- to 15-fold in tissue of the oral cavity or in spleen and liver of mice treated orally or intraperitoneally with IFN-alpha, and in mouse cells treated in vitro with IFN-alpha or IFN-gamma. The level of Adir mRNA was also increased 20- to 40-fold in the brains of animals infected with encephalomyocarditis virus. Adir is expressed ubiquitously in mouse tissues as 1.9-, 2.4-, and 3.5-kb mRNA transcripts encoding a 385-amino-acid protein with a conserved ATP binding domain containing typical nucleotide and Mg(2+) binding sites. We also characterized the human ortholog, ADIR, which is located on chromosome 1q25-q31 and contains six exons encoding a 397-amino-acid protein with 80% homology to the mouse protein. A single 2.3-kb mRNA was detected in all human tissues examined, except for placenta, which also contained a 1.25-kb tissue-specific transcript generated by alternative splicing and encoding a putative 336-amino-acid protein. Although ADIR exhibits low homology to DYT1 and TOR1B, the deduced ADIR protein sequences are highly homologous to torsin A and torsin B and more distantly related to members of the Clp/HSP100 family of proteins, suggesting that ADIR, like torsins, is related to the AAA chaperone-like family of ATPases. An ADIR-EGFP fusion protein expressed in HeLa cells was shown to be associated with the endoplasmic reticulum.
Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control.
Soper, Andrew; Kimura, Izumi; Nagaoka, Shumpei; Konno, Yoriyuki; Yamamoto, Keisuke; Koyanagi, Yoshio; Sato, Kei
2017-01-01
Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome and its infection leads to the onset of several disorders such as the depletion of peripheral CD4 + T cells and immune activation. HIV-1 is recognized by innate immune sensors that then trigger the production of type I interferons (IFN-Is). IFN-Is are well-known cytokines eliciting broad anti-viral effects by inducing the expression of anti-viral genes called interferon-stimulated genes (ISGs). Extensive in vitro studies using cell culture systems have elucidated that certain ISGs such as APOBEC3G, tetherin, SAM domain and HD domain-containing protein 1, MX dynamin-like GTPase 2, guanylate-binding protein 5, and schlafen 11 exert robust anti-HIV-1 activity, suggesting that IFN-I responses triggered by HIV-1 infection are detrimental for viral replication and spread. However, recent studies using animal models have demonstrated that at both the acute and chronic phase of infection, the role of IFN-Is produced by HIV or SIV infection in viral replication, spread, and pathogenesis, may not be that straightforward. In this review, we describe the pluses and minuses of HIV-1 infection stimulated IFN-I responses on viral replication and pathogenesis, and further discuss the possibility for therapeutic approaches.
Wang, Chia-Hung; Naik, Nenavath Gopal; Liao, Lin-Li; Wei, Sung-Chan; Chao, Yu-Chan
2017-09-15
Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1) significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7) was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1)-an inhibitor of RIP1 kinase activity-dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a "nonadaptive virus." In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.
Changes in Global Transcriptional Profiling of Women Following Obesity Surgery Bypass.
Pinhel, Marcela Augusta de Souza; Noronha, Natalia Yumi; Nicoletti, Carolina Ferreira; de Oliveira, Bruno Affonso Parente; Cortes-Oliveira, Cristiana; Pinhanelli, Vitor Caressato; Salgado Junior, Wilson; Machry, Ana Julia; da Silva Junior, Wilson Araújo; Souza, Dorotéia Rossi Silva; Marchini, Júlio Sérgio; Nonino, Carla Barbosa
2018-01-01
Differential gene expression in peripheral blood mononuclear cells (PBMCs) after Roux-en-Y gastric bypass (RYGB) is poorly characterized. Markers of these processes may provide a deeper understanding of the mechanisms that underlie these events. The main goal of this study was to identify changes in PBMC gene expression in women with obesity before and 6 months after RYGB-induced weight loss. The ribonucleic acid (RNA) of PBMCs from 13 obese women was analyzed before and 6 months after RYGB; the RNA of PBMCs from nine healthy women served as control. The gene expression levels were determined by microarray analysis. Significant differences in gene expression were validated by real-time quantitative polymerase chain reaction (RT-qPCR). Microarray analysis for comparison of the pre- and postoperative periods showed that 1366 genes were differentially expressed genes (DEGs). The main pathways were related to gene transcription; lipid, energy, and glycide metabolism; inflammatory and immunological response; cell differentiation; oxidative stress regulation; response to endogenous and exogenous stimuli; substrate oxidation; mTOR signaling pathway; interferon signaling; mitogen-activated protein kinases (MAPK), cAMP response element binding protein (CREB1), heat shock factor 1 (HSF1), and sterol regulatory element binding protein 1c (SREBP-1c) gene expression; adipocyte differentiation; and methylation. Six months after bariatric surgery and significant weight loss, many molecular pathways involved in obesity and metabolic diseases change. These findings are an important tool to identify potential targets for therapeutic intervention and clinical practice of nutritional genomics in obesity.
Divergent Gene Expression Responses to Complicated Grief and Non-complicated Grief
Irwin, Michael R.; Arevalo, Jesusa M. G.; Cole, Steven W.
2014-01-01
The “widowhood effect” (i.e., morbidity/mortality in recently bereaved spouses) may be related to changes in immune function, but little is known about the impact of bereavement on gene transcription in immune cells. This study examined how Complicated Grief and Non-complicated Grief responses to bereavement differentially affect leukocyte gene expression. Genome-wide transcriptional profiling and bioinformatic analyses were completed on 63 older adults. Thirty-six of them had lost their spouse/partner on average 2 years ago, and 27 were nonbereaved, married controls. Twelve of the bereaved participants met criteria for Complicated Grief. Compared to nonbereaved controls, bereavement (both Complicated Grief and Non-complicated Grief) was associated with upregulated expression of genes involved in general immunologic activation and a selective downregulation of genes involved in B lymphocyte responses. However, Complicated Grief and Non-complicated Grief differed markedly in their expression of Type I interferon-related transcripts, with Non-complicated Grief subjects showing substantial upregulation relative to nonbereaved controls and Complicated Grief subjects showing substantial downregulation. Bereavement significantly modulates immune function gene expression. The magnitude of bereavement-related distress (i.e., Complicated Grief vs. Non-complicated Grief) is linked to differential patterns of transcription factor activation and gene expression involved in innate antiviral responses. These findings provide a molecular framework for understanding the health effects of bereavement, as well as new insights into the particular gene modules that are most sensitive to the individual's psychological response to loss. PMID:24380850
Zuo, Chaohui; Sheng, Xinyi; Ma, Min; Xia, Man; Ouyang, Linda
2016-01-01
The interferon-stimulated gene 15 ubiquitin-like modifier (ISG15) encodes an IFN-inducible, ubiquitin-like protein. The ISG15 protein forms conjugates with numerous cellular proteins that are involved in a multitude of cellular functions, including interferon-induced immune responses and the regulation of cellular protein turnover. The expression of ISG15 and ISG15-mediated conjugation has been implicated in a wide range of human tumors and cancer cell lines, but the roles of ISG15 in tumorigenesis and responses to anticancer treatments remain largely unknown. In this review, we discuss the findings of recent studies with regard to the role of ISG15 pathways in cancers of the digestive system. PMID:27626310
Zuo, Chaohui; Sheng, Xinyi; Ma, Min; Xia, Man; Ouyang, Linda
2016-11-08
The interferon-stimulated gene 15 ubiquitin-like modifier (ISG15) encodes an IFN-inducible, ubiquitin-like protein. The ISG15 protein forms conjugates with numerous cellular proteins that are involved in a multitude of cellular functions, including interferon-induced immune responses and the regulation of cellular protein turnover. The expression of ISG15 and ISG15-mediated conjugation has been implicated in a wide range of human tumors and cancer cell lines, but the roles of ISG15 in tumorigenesis and responses to anticancer treatments remain largely unknown. In this review, we discuss the findings of recent studies with regard to the role of ISG15 pathways in cancers of the digestive system.
Chattopadhyay, Saurabh; Kuzmanovic, Teodora; Zhang, Ying; Wetzel, Jaime L.; Sen, Ganes C.
2016-01-01
SUMMARY The transcription factor IRF-3 mediates cellular antiviral response by inducing the expression of interferon and other antiviral proteins. In RNA-virus infected cells, IRF-3’s transcriptional activation is triggered primarily by RIG-I-like receptors (RLR), which can also activate the RLR-induced IRF-3-mediated pathway of apoptosis (RIPA). Here, we have reported that the pathway of IRF-3 activation in RIPA was independent of and distinct from the known pathway of transcriptional activation of IRF-3. It required linear polyubiquitination of two specific lysine residues of IRF-3 by LUBAC, the linear polyubiquitinating enzyme complex, which bound IRF-3 in signal-dependent fashion. To evaluate the role of RIPA in viral pathogenesis, we engineered a genetically targeted mouse, which expressed a mutant IRF-3 that was RIPA-competent but transcriptionally inert; this single-action IRF-3 could protect mice from lethal viral infection. Our observations indicated that IRF-3-mediated apoptosis of virus-infected cells could be an effective antiviral mechanism, without expression of the interferon-stimulated genes. PMID:27178468
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Karen E.; Knipe, David M., E-mail: david_knipe@hms.harvard.ed
2010-01-05
Host cells respond to viral infection by the production of type I interferons (IFNs), which induce the expression of antiviral genes. Herpes simplex virus I (HSV-1) encodes many mechanisms that inhibit the type I IFN response, including the ICP27-dependent inhibition of type I IFN signaling. Here we show inhibition of Stat-1 nuclear accumulation in cells that express ICP27. ICP27 expression also induces the secretion of a small, heat-stable type I IFN antagonizing protein that inhibits Stat-1 nuclear accumulation. We show that the inhibition of IFN-induced Stat-1 phosphorylation occurs at or upstream of Jak-1 phosphorylation. Finally, we show that ISG15 expressionmore » is induced after IFNalpha treatment in mock-infected cells, but not cells infected with WT HSV-1 or ICP27{sup -} HSV-1. These data suggest that HSV-1 has evolved multiple mechanisms to inhibit IFN signaling not only in infected cells, but also in neighboring cells, thereby allowing for increased viral replication and spread.« less
Arsenic enhances the apoptosis induced by interferon gamma: key role of IRF-1.
El Bougrini, J; Pampin, M; Chelbi-Alix, M K
2006-05-15
Interferons (IFNs) and arsenic trioxide (As2O3) are known inhibitors of cell proliferation and have been used in the treatment of certain forms of malignancy. IFNgamma treatment of cells leads to tyrosine phosphorylation of STAT1 followed by dimerization that accumulates in the nucleus. This is followed by DNA binding, activation of target gene transcription, dephosphorylation, and return to the cytoplasm. We have shown earlier that IFNgamma and As2O3 act synergistically in acute promyelocytic leukemia cells to upregulate IRF-1 expression and to induce apoptosis. Here, we show that in the human fibrosarcoma cell line 2fTGH, As2O3 prolongs IFNgamma-induced STAT1 phosphorylation resulting in persistent binding of STAT1 to GAS motif leading to an increase in IRF-1 expression which correlated with both higher anti-proliferative effect and increased apoptosis. These biological responses induced by IFNgamma alone or in combination with As2O3 were abolished when IRF-1 expression was down-regulated by RNA interference, thus demonstrating the key role of IRF-1.
Subramanian, Gayatri; Kuzmanovic, Teodora; Zhang, Ying; Peter, Cara Beate; Veleeparambil, Manoj; Chakravarti, Ritu; Sen, Ganes C; Chattopadhyay, Saurabh
2018-01-01
The interferon (IFN) system represents the first line of defense against a wide range of viruses. Virus infection rapidly triggers the transcriptional induction of IFN-β and IFN Stimulated Genes (ISGs), whose protein products act as viral restriction factors by interfering with specific stages of virus life cycle, such as entry, transcription, translation, genome replication, assembly and egress. Here, we report a new mode of action of an ISG, IFN-induced TDRD7 (tudor domain containing 7) inhibited paramyxovirus replication by inhibiting autophagy. TDRD7 was identified as an antiviral gene by a high throughput screen of an ISG shRNA library for blocking IFN's protective effect against Sendai virus (SeV) replication. The antiviral activity of TDRD7 against SeV, human parainfluenza virus 3 and respiratory syncytial virus was confirmed by its genetic ablation or ectopic expression in several types of mouse and human cells. TDRD7's antiviral action was mediated by its ability to inhibit autophagy, a cellular catabolic process which was robustly induced by SeV infection and required for its replication. Mechanistic investigation revealed that TDRD7 interfered with the activation of AMP-dependent kinase (AMPK), an enzyme required for initiating autophagy. AMPK activity was required for efficient replication of several paramyxoviruses, as demonstrated by its genetic ablation or inhibition of its activity by TDRD7 or chemical inhibitors. Therefore, our study has identified a new antiviral ISG with a new mode of action.
Kato, Yoko; Li, Xiangping; Amarnath, Dasari; Ushizawa, Koichi; Hashizume, Kazuyoshi; Tokunaga, Tomoyuki; Taniguchi, Masanori; Tsunoda, Yukio
2007-01-01
Placental abnormalities are the main factor in the high incidence of somatic cell clone abnormalities. The expression of several trophoblast cell-specific molecules is enhanced during gestational days 7 to 14. To determine the possible genes whose expression patterns might reflect calf normality, we first compared the gene expression profiles on day 15 between in vitro-fertilized (IVF) embryos and two types of somatic cell nuclear-transferred embryos with either a high (FNT) or low (CNT) incidence of neonatal abnormalities using a cDNA microarray containing 16 of 21 placenta-specific genes developed from tissues collected across gestation. To identify significant genes from the screening of day 15 embryos, genes with a less than two-fold difference in expression between IVF and CNT embryos, and those with a greater than two-fold difference between IVF and FNT and between CNT and FNT were considered to contribute to clone abnormalities. These two comparisons revealed 18 down-regulated and 18 upregulated genes of the 1722 genes examined. We then examined the expression levels of 10 genes with known functions in eight-cell and blastocyst-stage embryos by real-time PCR. The mRNA expression pattern of interferon (IFN)-tau, a trophectoderm-related gene, differed between IVF, CNT, and FNT eight-cell embryos; few or none of the IVF or CNT eight-cell embryos expressed IFN-tau mRNA, but all eight-cell FNT embryos expressed IFN-tau. IFN-tau mRNA expression was significantly higher in IVF blastocysts, however, than in nuclear-transferred blastocysts. Average IFN-tau mRNA expression in FNT blastocysts was not different from that in CNT blastocysts, due to one CNT blastocyst with high expression. The precise relation between early expression of IFN-tau mRNA and inferior developmental potential in cloned embryos should be examined further.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaiboullina, Svetlana F., E-mail: sv.khaiboullina@gmail.com; Morzunov, Sergey P.; Boichuk, Sergei V.
2013-09-01
Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirusmore » triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.« less
ERRα negatively regulates type I interferon induction by inhibiting TBK1-IRF3 interaction
Tian, Yinyin; Wei, Congwen; Zhu, Yongjie; Li, Feng; Zhang, Pingping; Wang, Penghao; Zhang, Yanhong
2017-01-01
Estrogen-related receptor α (ERRα) is a member of the nuclear receptor superfamily controlling energy homeostasis; however, its precise role in regulating antiviral innate immunity remains to be clarified. Here, we showed that ERRα deficiency conferred resistance to viral infection both in vivo and in vitro. Mechanistically, ERRα inhibited the production of type-I interferon (IFN-I) and the expression of multiple interferon-stimulated genes (ISGs). Furthermore, we found that viral infection induced TBK1-dependent ERRα stabilization, which in turn associated with TBK1 and IRF3 to impede the formation of TBK1-IRF3, IRF3 phosphorylation, IRF3 dimerization, and the DNA binding affinity of IRF3. The effect of ERRα on IFN-I production was independent of its transcriptional activity and PCG-1α. Notably, ERRα chemical inhibitor XCT790 has broad antiviral potency. This work not only identifies ERRα as a critical negative regulator of antiviral signaling, but also provides a potential target for future antiviral therapy. PMID:28591144
Select nutrients, progesterone, and interferon tau affect conceptus metabolism and development
Bazer, Fuller W; Kim, Jingyoung; Song, Gwonhwa; Ka, Hakhyun; Tekwe, Carmen D; Wu, Guoyao
2012-01-01
Interferon tau (IFNT), a novel multifunctional type I interferon secreted by trophectoderm, is the pregnancy recognition signal in ruminants that also has antiviral, antiproliferative, and immunomodulatory bioactivities. IFNT, with progesterone, affects availability of the metabolic substrate in the uterine lumen by inducing expression of genes for transport of select nutrients into the uterine lumen that activate mammalian target of rapamycin (mTOR) cell signaling responsible for proliferation, migration, and protein synthesis by conceptus trophectoderm. As an immunomodulatory protein, IFNT induces an anti-inflammatory state affecting metabolic events that decrease adiposity and glutamine:fructose-6-phosphate amidotransferase 1 activity, while increasing insulin sensitivity, nitric oxide production by endothelial cells, and brown adipose tissue in rats. This short review focuses on effects of IFNT and progesterone affecting transport of select nutrients into the uterine lumen to stimulate mTOR cell signaling required for conceptus development, as well as effects of IFNT on the immune system and adiposity in rats with respect to its potential therapeutic value in reducing obesity. PMID:23050969
Small self-RNA generated by RNase L amplifies antiviral innate immunity
Malathi, Krishnamurthy; Dong, Beihua; Gale, Michael; Silverman, Robert H.
2013-01-01
Antiviral innate immunity is initiated in response to RNA molecules that are produced in virus-infected cells1. These RNAs activate signalling cascades that activate the genes that encode α- and β-interferon (IFN). Signalling occurs through the interaction of the RNAs with either of two pathogen recognition receptors, retinoic acid-inducible gene-I (RIG-I, also known as DDX58) and melanoma differentiation associated gene-5 (MDA5, also known as IFIH1), which contain amino-terminal caspase activation and recruitment domains (CARD) and carboxy-terminal DExD/H Box RNA helicase motifs2-5. RIG-I and MDA5 interact with another CARD protein, interferon-β promotor stimulator protein-1 (IPS-1, also known as MAVS, VISA and Cardif), in the mitochondrial membrane, which relays the signal through the transcription factors interferon regulatory factor 3 (IRF-3) and nuclear factor (NF)-κB to the IFN-β gene6-10. Although the signalling pathway is well understood, the origin of the RNA molecules that initiate these processes is not. Here we show that activation of the antiviral endoribonuclease, RNase L11, by 2′,5′-linked oligoadenylate (2-5A)12 produces small RNA cleavage products from self-RNA that initiate IFN production. Accordingly, mouse embryonic fibroblasts lacking RNase L were resistant to the induction of IFN-β expression in response to 2-5A, dsRNA or viral infection. Single-stranded regions of RNA are cleaved 3′ of UpUp and UpAp sequences by RNase L during viral infections, resulting in small, often duplex, RNAs13,14. We show that small self-RNAs produced by the action of RNase L on cellular RNA induce IFN-β expression and that the signalling involves RIG-I, MDA5 and IPS-1. Mice lacking RNase L produce significantly less IFN-β during viral infections than infected wild-type mice. Furthermore, activation of RNase L with 2-5A in vivo induced the expression of IFN-β in wild-type but not RNase L-deficient mice. Our results indicate that RNase L has an essential role in the innate antiviral immune response that relieves the requirement for direct sensing of non-self RNA. PMID:17653195
Popik, Waldemar; Khatua, Atanu; Hildreth, James E K; Lee, Benjamin; Alcendor, Donald J
2018-06-01
Zika virus (ZIKV) infection has been associated with microcephaly in infants. Currently there is no treatment or vaccine. Here we explore the use of a morpholino oligonucleotide targeted to the 5' untranslated region (5'-UTR) of the ZIKV RNA to prevent ZIKV replication. Morpholino DWK-1 inhibition of ZIKV replication in human glomerular podocytes was examined by qRT-PCR, reduction in ZIKV genome copy number, western blot analysis, immunofluorescence and proinflammatory cytokine gene expression. Podocytes pretreated with DWK-1 showed reduced levels of both viral mRNA and ZIKV E protein expression compared to controls. We observed suppression in proinflammatory gene expression for IFN-β (interferon β) RANTES (regulated on activation, normal T cell expressed and secreted), MIP-1α (macrophage inflammatory protein-1α), TNF-α (tumor necrosis factor-α) and IL1-α (interleukin 1-α) in ZIKV-infected podocytes pretreated with DWK-1. Morpholino DWK-1 targeting the ZIKV 5'-UTR effectively inhibits ZIKV replication and suppresses ZIKV-induced proinflammatory gene expression. Copyright © 2018 Elsevier Inc. All rights reserved.
Hoffman, Robert W; Merrill, Joan T; Alarcón-Riquelme, Marta M E; Petri, Michelle; Dow, Ernst R; Nantz, Eric; Nisenbaum, Laura K; Schroeder, Krista M; Komocsar, Wendy J; Perumal, Narayanan B; Linnik, Matthew D; Airey, David C; Liu, Yushi; Rocha, Guilherme V; Higgs, Richard E
2017-03-01
To characterize baseline gene expression and pharmacodynamically induced changes in whole blood gene expression in 1,760 systemic lupus erythematosus (SLE) patients from 2 phase III, 52-week, randomized, placebo-controlled, double-blind studies in which patients were treated with the BAFF-blocking IgG4 monoclonal antibody tabalumab. Patient samples were obtained from SLE patients from the ILLUMINATE-1 and ILLUMINATE-2 studies, and control samples were obtained from healthy donors. Blood was collected in Tempus tubes at baseline, week 16, and week 52. RNA was analyzed using Affymetrix Human Transcriptome Array 2.0 and NanoString. At baseline, expression of the interferon (IFN) response gene was elevated in patients compared with controls, with 75% of patients being positive for this IFN response gene signature. There was, however, substantial heterogeneity of IFN response gene expression and complex relationships among gene networks. The IFN response gene signature was a predictor of time to disease flare, independent of anti-double-stranded DNA (anti-dsDNA) antibody and C3 and C4 levels, and overall disease activity. Pharmacodynamically induced changes in gene expression following tabalumab treatment were extensive, occurring predominantly in B cell-related and immunoglobulin genes, and were consistent with other pharmacodynamic changes including anti-dsDNA antibody, C3, and immunoglobulin levels. SLE patients demonstrated increased expression of an IFN response gene signature (75% of patients had an elevated IFN response gene signature) at baseline in ILLUMINATE-1 and ILLUMINATE-2. Substantial heterogeneity of gene expression was detected among individual patients and in gene networks. The IFN response gene signature was an independent risk factor for future disease flares. Pharmacodynamic changes in gene expression were consistent with the mechanism of BAFF blockade by tabalumab. © 2016, American College of Rheumatology.
Blanc, Mathieu; Hsieh, Wei Yuan; Robertson, Kevin A.; Watterson, Steven; Shui, Guanghou; Lacaze, Paul; Khondoker, Mizanur; Dickinson, Paul; Sing, Garwin; Rodríguez-Martín, Sara; Phelan, Peter; Forster, Thorsten; Strobl, Birgit; Müller, Matthias; Riemersma, Rudolph; Osborne, Timothy; Wenk, Markus R.; Angulo, Ana; Ghazal, Peter
2011-01-01
Little is known about the protective role of inflammatory processes in modulating lipid metabolism in infection. Here we report an intimate link between the innate immune response to infection and regulation of the sterol metabolic network characterized by down-regulation of sterol biosynthesis by an interferon regulatory loop mechanism. In time-series experiments profiling genome-wide lipid-associated gene expression of macrophages, we show a selective and coordinated negative regulation of the complete sterol pathway upon viral infection or cytokine treatment with IFNγ or β but not TNF, IL1β, or IL6. Quantitative analysis at the protein level of selected sterol metabolic enzymes upon infection shows a similar level of suppression. Experimental testing of sterol metabolite levels using lipidomic-based measurements shows a reduction in metabolic output. On the basis of pharmacologic and RNAi inhibition of the sterol pathway we show augmented protection against viral infection, and in combination with metabolite rescue experiments, we identify the requirement of the mevalonate-isoprenoid branch of the sterol metabolic network in the protective response upon statin or IFNβ treatment. Conditioned media experiments from infected cells support an involvement of secreted type 1 interferon(s) to be sufficient for reducing the sterol pathway upon infection. Moreover, we show that infection of primary macrophages containing a genetic knockout of the major type I interferon, IFNβ, leads to only a partial suppression of the sterol pathway, while genetic knockout of the receptor for all type I interferon family members, ifnar1, or associated signaling component, tyk2, completely abolishes the reduction of the sterol biosynthetic activity upon infection. Levels of the proteolytically cleaved nuclear forms of SREBP2, a key transcriptional regulator of sterol biosynthesis, are reduced upon infection and IFNβ treatment at both the protein and de novo transcription level. The reduction in srebf2 gene transcription upon infection and IFN treatment is also found to be strictly dependent on ifnar1. Altogether these results show that type 1 IFN signaling is both necessary and sufficient for reducing the sterol metabolic network activity upon infection, thereby linking the regulation of the sterol pathway with interferon anti-viral defense responses. These findings bring a new link between sterol metabolism and interferon antiviral response and support the idea of using host metabolic modifiers of innate immunity as a potential antiviral strategy. PMID:21408089
Interferon Regulatory Factor 6 Has a Protective Role in the Host Response to Endotoxic Shock
Volk, Paige; Moreland, Jessica G.; Dunnwald, Martine
2016-01-01
Interferon Regulatory Factor (IRF) 6, a member of the IRF family, is essential for epidermal and orofacial embryonic development. Irf6 is strongly expressed in keratinocytes, in which it regulates epidermal proliferation, differentiation, and migration. A recent role for Irf6 in Toll-like receptor 2-dependent chemokine gene expression was also reported in an epithelial cell line. However, a function for Irf6 in innate immune cells was not previously reported. In the present study, we investigated the expression and function of Irf6 in bone marrow-derived neutrophils and macrophages. We show here, using a conditional knockout of Irf6 in lysosymeM expressing cells, that Irf6 is required for resistance to LPS-induced endotoxic shock. In addition, Irf6-deficient bone marrow-derived neutrophils exhibited increased chemotactic index and velocity compared with wild-type cells in vitro. TLR4-specific KC and IL6 secretions were upregulated in Irf6-deficient bone marrow-derived macrophages in vitro. These cells also exhibited an increased level of phosphorylated IkBa. Collectively, our findings suggest a role for Irf6 in the resistance to endotoxic shock due to NFk-B-mediated alteration of cytokine production. PMID:27035130
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kurihara, H.; Sezutsu, H.; Tamura, T.
2007-04-20
We constructed the fibroin H-chain expression system to produce recombinant proteins in the cocoon of transgenic silkworms. Feline interferon (FeIFN) was used for production and to assess the quality of the product. Two types of FeIFN fusion protein, each with N- and C-terminal sequences of the fibroin H-chain, were designed to be secreted into the lumen of the posterior silk glands. The expression of the FeIFN/H-chain fusion gene was regulated by the fibroin H-chain promoter domain. The transgenic silkworms introduced these constructs with the piggyBac transposon-derived vector, which produced the normal sized cocoons containing each FeIFN/H-chain fusion protein. Although themore » native-protein produced by transgenic silkworms have almost no antiviral activity, the proteins after the treatment with PreScission protease to eliminate fibroin H-chain derived N- and C-terminal sequences from the products, had very high antiviral activity. This H-chain expression system, using transgenic silkworms, could be an alternative method to produce an active recombinant protein and silk-based biomaterials.« less
Wang, Xiao Yang; Crowston, Jonathan G; White, Andrew J R; Zoellner, Hans; Healey, Paul R
2014-08-01
The aim of the study was to investigate, using a native mitomycin-C-resistant human Tenon's fibroblast cell line, the possibility that interferon-alpha and gamma could be used with Fas agonists as an alternative anti-fibrotic strategy to mitomycin-C in trabeculectomy. A clinically resistant and in vitro verified mitomycin-C-resistant human Tenon's fibroblast cell line was pretreated with interferon-alpha and interferon-gamma for 48 h before stimulation with an agonistic Fas antibody (CH11) for 2 days to induce cell death. Cell death assays were undertaken. Changes in apoptosis-related proteins were determined by flow cytometry and Western blot. Pretreatment with interferon-alpha or interferon-gamma for 48 h increased Fas, Fas-associated protein with death domain and caspase-8 expression. Protein expression was further increased by combined exposure to interferon-alpha and gamma. Pretreatment with cytokines had no effect on Fas-L and Bcl-2. Interferon-alpha alone did not change the rate of induced cell death. A combination of interferon-alpha and gamma synergistically increased the sensitivity of mitomycin-C-resistant human Tenon's fibroblast cell line to induced cell death. An antagonistic anti-Fas antibody (ZB4) completely blocked induced cell death. Broad caspase inhibitors specific for caspases-8 and -3 reduced induced deaths in interferon pretreated mitomycin-C-resistant human Tenon's fibroblast cell line in a dose-dependent manner. Interferon-alpha and interferon-gamma render mitomycin-C-resistant human Tenon's fibroblast cell line sensitive to Fas-mediated apoptosis. The mechanism involves increased death-inducing signalling complex formation by upregulation of Fas, Fas-associated protein with death domain and caspase-8 expression. © 2013 Royal Australian and New Zealand College of Ophthalmologists.
Ma, Xiaoqing; Xu, Zhongyang; Ding, Shaofeng; Yi, Guangkun; Wang, Qian
2018-01-01
Alendronate is commonly used for the treatment of postmenopausal osteoporosis; however, the underlying pathological molecular mechanisms of its action remain unclear. In the present study, the alendronate-treated signaling pathway in bone metabolism in rats with ovariectomy induced by osteoporosis was investigated. Rats with osteoporosis were orally administered alendronate or phosphate-buffered saline (control). In addition, the interferon-β (IFN-β)/signal transducer and activator of transcription 1 (STAT1) signaling pathway was investigated in osteoblasts following treatment with alendronate in vitro and in vivo. During the differentiation period, IFN-β (100 ng/ml) was used to treat the osteoblast cells, and the activity, viability and bone metabolism-associated gene expression levels (STAT1, p-STAT1, Fra1, TRAF6 and SOCS1) were analyzed in osteoblast cells. Histopathological changes were used to evaluate osteoblasts, osteoclasts, inflammatory phase of bone healing and osteonecrotic areas. The results demonstrated that alendronate significantly inhibited the activity of osteoporotic osteoclasts by stimulating expression of IFN-β, as well as markedly improved the viability and activity of osteoblasts compared with the control group. In addition, alendronate increased the expression and phosphorylation levels of STAT1 in osteoclasts, enhanced osteoblast differentiation, upregulated the expression levels of alkaline phosphatase and osteocalcin, and increased the expression of osteoblast differentiation-associated genes (osteocalcin, osterix and Runx2). Inhibition of IFN-β expression canceled the benefits of alendronate-mediated osteoblast differentiation. Notably, alendronate enhanced bone formation in rats with osteoporosis induced by ovariectomy. In conclusion, these findings suggest that alendronate can regulate osteoblast differentiation and bone formation in rats with osteoporosis induced by ovariectomy through upregulation of IFN-β/STAT1 signaling pathway. PMID:29375681
de Laurentiis, A; Hiscott, J; Alcalay, M
2015-12-03
The t(12;21) translocation is the most common genetic rearrangement in childhood acute lymphoblastic leukemia (ALL) and gives rise to the TEL-AML1 fusion gene. Many studies on TEL-AML1 describe specific properties of the fusion protein, but a thorough understanding of its function is lacking. We exploited a pluripotent hematopoietic stem/progenitor cell line, EML1, and generated a cell line (EML-TA) stably expressing the TEL-AML1 fusion protein. EML1 cells differentiate to mature B-cells following treatment with IL7; whereas EML-TA display an impaired differentiation capacity and remain blocked at an early stage of maturation. Global gene expression profiling of EML1 cells at different stages of B-lymphoid differentiation, compared with EML-TA, identified the interferon (IFN)α/β pathway as a primary target of repression by TEL-AML1. In particular, expression and phosphorylation of interferon-regulatory factor 3 (IRF3) was decreased in EML-TA cells; strikingly, stable expression of IRF3 restored the capacity of EML-TA cells to differentiate into mature B-cells. Similarly, IRF3 silencing in EML1 cells by siRNA was sufficient to block B-lymphoid differentiation. The ability of TEL-AML1 to block B-cell differentiation and downregulate the IRF3-IFNα/β pathway was confirmed in mouse and human primary hematopoietic precursor cells (Lin- and CD34+ cells, respectively), and in a patient-derived cell line expressing TEL-AML1 (REH). Furthermore, treatment of TEL-AML1 expressing cells with IFNα/β was sufficient to overcome the maturation block. Our data provide new insight on TEL-AML1 function and may offer a new therapeutic opportunity for B-ALL.
The antiviral innate immune response in fish: evolution and conservation of the IFN system.
Langevin, Christelle; Aleksejeva, Elina; Passoni, Gabriella; Palha, Nuno; Levraud, Jean-Pierre; Boudinot, Pierre
2013-12-13
Innate immunity constitutes the first line of the host defense after pathogen invasion. Viruses trigger the expression of interferons (IFNs). These master antiviral cytokines induce in turn a large number of interferon-stimulated genes, which possess diverse effector and regulatory functions. The IFN system is conserved in all tetrapods as well as in fishes, but not in tunicates or in the lancelet, suggesting that it originated in early vertebrates. Viral diseases are an important concern of fish aquaculture, which is why fish viruses and antiviral responses have been studied mostly in species of commercial value, such as salmonids. More recently, there has been an interest in the use of more tractable model fish species, notably the zebrafish. Progress in genomics now makes it possible to get a relatively complete image of the genes involved in innate antiviral responses in fish. In this review, by comparing the IFN system between teleosts and mammals, we will focus on its evolution in vertebrates. © 2013 Elsevier Ltd. All rights reserved.
Interferon lambda: opportunities, risks, and uncertainties in the fight against HCV.
Laidlaw, Stephen M; Dustin, Lynn B
2014-01-01
Innate immunity is key to the fight against the daily onslaught from viruses that our bodies are subjected to. Essential to this response are the interferons (IFNs) that prime our cells to block viral pathogens. Recent evidence suggests that the Type III (λ) IFNs are intimately associated with the immune response to hepatitis C virus (HCV) infection. Genome-wide association studies have identified polymorphisms within the IFN-λ gene locus that correlate with response to IFNα-based antiviral therapy and with spontaneous clearance of HCV infection. The mechanisms for these correlations are incompletely understood. Restricted expression of the IFN-λ receptor, and the ability of IFN-λ to induce IFN-stimulated genes in HCV-infected cells, suggest potential roles for IFN-λ in HCV therapy even in this era of directly acting antivirals. This review summarizes our current understanding of the IFN-λ family and the role of λ IFNs in the natural history of HCV infection.
In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target.
Manguso, Robert T; Pope, Hans W; Zimmer, Margaret D; Brown, Flavian D; Yates, Kathleen B; Miller, Brian C; Collins, Natalie B; Bi, Kevin; LaFleur, Martin W; Juneja, Vikram R; Weiss, Sarah A; Lo, Jennifer; Fisher, David E; Miao, Diana; Van Allen, Eliezer; Root, David E; Sharpe, Arlene H; Doench, John G; Haining, W Nicholas
2017-07-27
Immunotherapy with PD-1 checkpoint blockade is effective in only a minority of patients with cancer, suggesting that additional treatment strategies are needed. Here we use a pooled in vivo genetic screening approach using CRISPR-Cas9 genome editing in transplantable tumours in mice treated with immunotherapy to discover previously undescribed immunotherapy targets. We tested 2,368 genes expressed by melanoma cells to identify those that synergize with or cause resistance to checkpoint blockade. We recovered the known immune evasion molecules PD-L1 and CD47, and confirmed that defects in interferon-γ signalling caused resistance to immunotherapy. Tumours were sensitized to immunotherapy by deletion of genes involved in several diverse pathways, including NF-κB signalling, antigen presentation and the unfolded protein response. In addition, deletion of the protein tyrosine phosphatase PTPN2 in tumour cells increased the efficacy of immunotherapy by enhancing interferon-γ-mediated effects on antigen presentation and growth suppression. In vivo genetic screens in tumour models can identify new immunotherapy targets in unanticipated pathways.
Das, Amitabh; Chai, Jin Choul; Yang, Chul-su; Lee, Young Seek; Das, Nando Dulal; Jung, Kyoung Hwa; Chai, Young Gyu
2015-01-01
Persistent macrophage activation is associated with the expression of various pro-inflammatory genes, cytokines and chemokines, which may initiate or amplify inflammatory disorders. A novel synthetic BET inhibitor, JQ1, was proven to exert immunosuppressive activities in macrophages. However, a genome-wide search for JQ1 molecular targets has not been undertaken. The present study aimed at evaluating the anti-inflammatory function and underlying genes that are targeted by JQ1 in LPS-stimulated primary bone marrow-derived macrophages (BMDMs) using global transcriptomic RNA sequencing and quantitative real-time PCR. Among the annotated genes, transcriptional sequencing of BMDMs that were treated with JQ1 revealed a selective effect on LPS-induced gene expression in which the induction of cytokines/chemokines, interferon-stimulated genes, and prominent (transcription factors) TFs was suppressed. Additionally, we found that JQ1 reduced the expression of previously unidentified genes that are important in inflammation. Importantly, these inflammatory genes were not affected by JQ1 treatment alone. Furthermore, we confirmed that JQ1 reduced cytokines/chemokines in the supernatants of LPS treated BMDMs. Moreover, the biological pathways and gene ontology of the differentially expressed genes were determined in the JQ1 treatment of BMDMs. These unprecedented results suggest that the BET inhibitor JQ1 is a candidate for the prevention or therapeutic treatment of inflammatory disorders. PMID:26582142
Hirotani, Tomonori; Yamamoto, Masahiro; Kumagai, Yutaro; Uematsu, Satoshi; Kawase, Ichiro; Takeuchi, Osamu; Akira, Shizuo
2005-03-11
Macrophages recognize lipopolysaccharide (LPS) by Toll-like receptor 4 and activate inflammatory responses by inducing expression of various genes. TLR4 activates intracellular signaling pathways via TIR domain containing adaptor molecules, MyD88, and Toll/IL-1 domain containing adaptor inducing IFN-beta (TRIF). Although macrophages lacking MyD88 or TRIF showed impaired cytokine production, activation of intracellular signaling molecules still occurred in response to LPS in these cells. In the present study, we implemented cDNA microarrays to investigate the contribution of MyD88 and TRIF in gene expression induced by LPS stimulation. Whereas wild-type macrophages induced 148 genes in response to LPS, macrophages lacking both MyD88 and TRIF did not upregulate any genes in response to LPS. Surprisingly, 80 LPS-inducible genes were redundantly regulated by either MyD88 or TRIF. In contrast, proinflammatory cytokines and chemokines were critically regulated by MyD88 or TRIF alone. Genes critically regulated by MyD88 alone tend to be induced quickly after LPS stimulation and regulated by mRNA stability as well as transcription. Genes known to be induced by type I interferons were simply dependent on TRIF for their expression. Taken together, MyD88 and TRIF play both redundant and distinct roles in LPS-induced gene expression.
Stifter, Sebastian A; Gould, Jodee A; Mangan, Niamh E; Reid, Hugh H; Rossjohn, Jamie; Hertzog, Paul J; de Weerd, Nicole A
2014-02-01
Interferon β (IFNβ) is a member of the type I interferon family of cytokines widely recognised for their anti-viral, anti-proliferative and immunomodulatory properties. Recombinant, biologically active forms of this cytokine are used clinically for the treatment of multiple sclerosis and in laboratories to study the role of this cytokine in health and disease. Established methods for expression of IFNβ utilise either bacterial systems from which the insoluble recombinant proteins must be refolded, or mammalian expression systems in which large volumes of cell culture are required for recovery of acceptable yields. Utilising the baculovirus expression system and Trichoplusia ni (Cabbage Looper) BTI-TN-5B1-4 cell line, we report a reproducible method for production and purification of milligram/litre quantities of biologically active murine IFNβ. Due to the design of our construct and the eukaryotic nature of insect cells, the resulting soluble protein is secreted allowing purification of the Histidine-tagged natively-folded protein from the culture supernatant. The IFNβ purification method described is a two-step process employing immobilised metal-ion affinity chromatography (IMAC) and reverse-phase high performance liquid chromatography (RP-HPLC) that results in production of significantly more purified IFNβ than any other reported eukaryotic-based expression system. Recombinant murine IFNβ produced by this method was natively folded and demonstrated hallmark type I interferon biological effects including antiviral and anti-proliferative activities, and induced genes characteristic of IFNβ activity in vivo. Recombinant IFNβ also had specific activity levels exceeding that of the commercially available equivalent. Together, our findings provide a method for production of highly pure, biologically active murine IFNβ. Copyright © 2013 Elsevier Inc. All rights reserved.
Wei, Zhiquan; Yan, Li; Chen, Yixin; Bao, Chuanhong; Deng, Jing; Deng, Jiagang
2016-01-01
Mangiferin is a natural polyphenol and the predominant effective component of Mangifera indica Linn. leaves. For hundreds of years, Mangifera indica Linn. leaf has been used as an ingredient in numerous traditional Chinese medicine preparations for the treatment of bronchitis. However, the pharmacological mechanism of mangiferin in the treatment of bronchitis remains to be elucidated. Macrophage classical activation is important role in the process of bronchial airway inflammation, and interferon regulatory factor 5 (IRF5) has been identified as a key regulatory factor for macrophage classical activation. The present study used the THP-1 human monocyte cell line to investigate whether mangiferin inhibits macrophage classical activation via suppressing IRF5 expression in vitro. THP-1 cells were differentiated to macrophages by phorbol 12-myristate 13-acetate. Macrophages were polarized to M1 macrophages following stimulation with lipopolysaccharide (LPS)/interferon-γ (IFN-γ). Flow cytometric analysis was conducted to detect the M1 macrophages. Reverse transcription-quantitative polymerase chain reaction was used to investigate cellular IRF5 gene expression. Levels of proinflammatory cytokines and IRF5 were assessed following cell culture and cellular homogenization using enzyme-linked immunosorbent assay. IRF5 protein and nuclei co-localization was performed in macrophages with laser scanning confocal microscope immunofluorescence analysis. The results of the present study demonstrated that mangiferin significantly inhibits LPS/IFN-γ stimulation-induced classical activation of macrophages in vitro and markedly decreases proinflammatory cytokine release. In addition, cellular IRF5 expression was markedly downregulated. These results suggest that the inhibitory effect of mangiferin on classical activation of macrophages may be exerted via downregulation of cellular IRF5 expression levels. PMID:27277156
Williams, C M; Coleman, J W
1995-10-01
We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs.
Williams, C M; Coleman, J W
1995-01-01
We examined the capacity of purified rat peritoneal connective tissue-type mast cells (PMC) to express mRNA for several cytokines. Stimulation of PMC with anti-IgE for 4 hr induced the expression of mRNA encoding interleukin-5 (IL-5), IL-6, tumour necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-2 (MIP-2) and interferon-gamma (IFN-gamma). Unstimulated PMC expressed detectable mRNA for TNF-alpha but not for the other four cytokines. Incubation of PMC with cyclosporin A (CsA) or dexamethasone (DEX), each at 10(-6) M for 24 hr, significantly inhibited the induced expression of mRNA for each of the five cytokines, and also inhibited release of biologically active TNF-alpha. Throughout these experiments mRNA levels of the housekeeping gene G3PDH were not altered by stimulation with anti-IgE or incubation with CsA or DEX. We conclude that immunological activation of rat PMC induces gene expression of several cytokines and that expression of these genes can be inhibited by immunosuppressive drugs. Images Figure 1 Figure 2 Figure 3 PMID:7490125
Christophi, George P.; Christophi, Jennifer A.; Gruber, Ross C.; Mihai, Cornelia; Mejico, Luis J.; Massa, Paul T.; Jubelt, Burk
2012-01-01
Interferon-β (IFN-β) is a current effective treatment for multiple sclerosis (MS) and exerts its therapeutic effects by down-modulating the systemic immune response and cytokine signaling. In clinical practice there are several formulations of interferon including a low dose of IFN-β 1a formulation of 30μg IM once weekly (Avonex) and a high dose formulation of 44 μg SC three times weekly (Rebif). Recent studies suggest that Rebif is more efficacious compared to Avonex in preventing relapses and decreasing MRI activity in relapsing remitting MS (RRMS) patients. This study examines whether there are quantitative gene expression changes in interferon-treated RRMS patients that can explain the difference in efficacy and side effects between Rebif and Avonex. Herein, RRMS patients were treated for three months with IFN-β 1a and the levels of plasma cytokines and gene expression in peripheral blood mononuclear cells were examined. Thirty-two normal subjects were compared to thirty-two RRMS patients, of which ten were treated with Rebif and ten with Avonex. Rebif and Avonex both significantly and equally suppressed plasma TNF-α and IL-6 levels. Rebif suppressed IL-13 significantly more than Avonex. Rebif also significantly suppressed the levels of the chemokines CCL17 and RANTES, the protease ADAM8, and COX-2 at a higher degree compared to Avonex. The STAT1-inducible genes IP-10 and caspase 1 were significantly increased with Rebif compared to Avonex. In conclusion, the higher dosed, more frequently administered IFN-β 1a Rebif when compared to IFN β-1a Avonex has more potent immunomodulatory effects. These quantitative results might relate to efficacy and side-effect profile of the two IFN-β 1a formulations and provide prospective practical clinical tools to monitor treatment and adjust dosage. PMID:21658727
2012-01-01
Background Atlantic cod (Gadus morhua) reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days) impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC). Results The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI), respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%), including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. Conclusions The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen’s transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with pIC at 10°C vs. 16°C at 6HPI. These results substantially increase our understanding of the genes and molecular pathways involved in the negative impacts of elevated ambient temperature on fish health, and may also be valuable to our understanding of how accelerated global climate change could impact cold-water marine finfish species. PMID:22928584
Hori, Tiago S; Gamperl, A Kurt; Booman, Marije; Nash, Gordon W; Rise, Matthew L
2012-08-28
Atlantic cod (Gadus morhua) reared in sea-cages can experience large variations in temperature, and these have been shown to affect their immune function. We used the new 20K Atlantic cod microarray to investigate how a water temperature change which, simulates that seen in Newfoundland during the spring-summer (i.e. from 10°C to 16°C, 1°C increase every 5 days) impacted the cod spleen transcriptome response to the intraperitoneal injection of a viral mimic (polyriboinosinic polyribocytidylic acid, pIC). The temperature regime alone did not cause any significant increases in plasma cortisol levels and only minor changes in spleen gene transcription. However, it had a considerable impact on the fish spleen transcriptome response to pIC [290 and 339 significantly differentially expressed genes between 16°C and 10°C at 6 and 24 hours post-injection (HPI), respectively]. Seventeen microarray-identified transcripts were selected for QPCR validation based on immune-relevant functional annotations. Fifteen of these transcripts (i.e. 88%), including DHX58, STAT1, IRF7, ISG15, RSAD2 and IκBα, were shown by QPCR to be significantly induced by pIC. The temperature increase appeared to accelerate the spleen immune transcriptome response to pIC. We found 41 and 999 genes differentially expressed between fish injected with PBS vs. pIC at 10°C and sampled at 6HPI and 24HPI, respectively. In contrast, there were 656 and 246 genes differentially expressed between fish injected with PBS vs. pIC at 16°C and sampled at 6HPI and 24HPI, respectively. Our results indicate that the modulation of mRNA expression of genes belonging to the NF-κB and type I interferon signal transduction pathways may play a role in controlling temperature-induced changes in the spleen's transcript expression response to pIC. Moreover, interferon effector genes such as ISG15 and RSAD2 were differentially expressed between fish injected with pIC at 10°C vs. 16°C at 6HPI. These results substantially increase our understanding of the genes and molecular pathways involved in the negative impacts of elevated ambient temperature on fish health, and may also be valuable to our understanding of how accelerated global climate change could impact cold-water marine finfish species.
The effects of interferon-alpha/beta in a model of rat heart transplantation
NASA Technical Reports Server (NTRS)
Slater, A. D.; Klein, J. B.; Sonnenfeld, G.; Ogden, L. L. 2nd; Gray, L. A. Jr
1992-01-01
Interferons have multiple immunologic effects. One such effect is the activation of expression of cell surface antigens. Interferon alpha/beta enhance expression of class I but not class II histocompatibility antigens. Contradictory information has been published regarding the effect of interferon-alpha/beta administration in patients with kidney transplantation. In a model of rat heart transplantation we demonstrated that administration of interferon-alpha/beta accelerated rejection in a dose-dependent fashion in the absence of maintenance cyclosporine. Animals treated with maintenance cyclosporine had evidence of increased rejection at 20 days that was resolved completely at 45 days with cyclosporine alone.
Nagaraju, Kanneboyina; Ghimbovschi, Svetlana; Rayavarapu, Sree; Phadke, Aditi; Rider, Lisa G; Hoffman, Eric P; Miller, Frederick W
2016-09-01
To identify muscle gene expression patterns that predict rituximab responses and assess the effects of rituximab on muscle gene expression in PM and DM. In an attempt to understand the molecular mechanism of response and non-response to rituximab therapy, we performed Affymetrix gene expression array analyses on muscle biopsy specimens taken before and after rituximab therapy from eight PM and two DM patients in the Rituximab in Myositis study. We also analysed selected muscle-infiltrating cell phenotypes in these biopsies by immunohistochemical staining. Partek and Ingenuity pathway analyses assessed the gene pathways and networks. Myeloid type I IFN signature genes were expressed at higher levels at baseline in the skeletal muscle of rituximab responders than in non-responders, whereas classic non-myeloid IFN signature genes were expressed at higher levels in non-responders at baseline. Also, rituximab responders have a greater reduction of the myeloid and non-myeloid type I IFN signatures than non-responders. The decrease in the type I IFN signature following administration of rituximab may be associated with the decreases in muscle-infiltrating CD19(+) B cells and CD68(+) macrophages in responders. Our findings suggest that high levels of myeloid type I IFN gene expression in skeletal muscle predict responses to rituximab in PM/DM and that rituximab responders also have a greater decrease in the expression of these genes. These data add further evidence to recent studies defining the type I IFN signature as both a predictor of therapeutic responses and a biomarker of myositis disease activity. Published by Oxford University Press on behalf British Society for Rheumatology 2016. This work is written by US Government employees and is in the public domain in the US.
The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon
Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio
2010-01-01
Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241
Retinoid X receptor α attenuates host antiviral response by suppressing type I interferon
Ma, Feng; Liu, Su-Yang; Razani, Bahram; Arora, Neda; Li, Bing; Kagechika, Hiroyuki; Tontonoz, Peter; Núñez, Vanessa; Ricote, Mercedes; Cheng, Genhong
2015-01-01
The retinoid X receptor α (RXRα), a key nuclear receptor in metabolic processes, is down-regulated during host antiviral response. However, the roles of RXRα in host antiviral response are unknown. Here we show that RXRα overexpression or ligand activation increases host susceptibility to viral infections in vitro and in vivo, while Rxra −/− or antagonist treatment reduces infection by the same viruses. Consistent with these functional studies, ligand activation of RXR inhibits the expression of antiviral genes including type I interferon (IFN) and Rxra −/− macrophages produce more IFNβ than WT macrophages in response to polyI:C stimulation. Further results indicate that ligand activation of RXR suppresses the nuclear translocation of β-catenin, a co-activator of IFNβ enhanceosome. Thus, our studies have uncovered a novel RXR-dependent innate immune regulatory pathway, suggesting that the downregulation of RXR expression or RXR antagonist treatment benefits host antiviral response, whereas RXR agonist treatment may increase the risk of viral infections. PMID:25417649
Dengue subgenomic RNA binds TRIM25 to inhibit interferon expression for epidemiological fitness.
Manokaran, Gayathri; Finol, Esteban; Wang, Chunling; Gunaratne, Jayantha; Bahl, Justin; Ong, Eugenia Z; Tan, Hwee Cheng; Sessions, October M; Ward, Alex M; Gubler, Duane J; Harris, Eva; Garcia-Blanco, Mariano A; Ooi, Eng Eong
2015-10-09
The global spread of dengue virus (DENV) infections has increased viral genetic diversity, some of which appears associated with greater epidemic potential. The mechanisms governing viral fitness in epidemiological settings, however, remain poorly defined. We identified a determinant of fitness in a foreign dominant (PR-2B) DENV serotype 2 (DENV-2) clade, which emerged during the 1994 epidemic in Puerto Rico and replaced an endemic (PR-1) DENV-2 clade. The PR-2B DENV-2 produced increased levels of subgenomic flavivirus RNA (sfRNA) relative to genomic RNA during replication. PR-2B sfRNA showed sequence-dependent binding to and prevention of tripartite motif 25 (TRIM25) deubiquitylation, which is critical for sustained and amplified retinoic acid-inducible gene 1 (RIG-I)-induced type I interferon expression. Our findings demonstrate a distinctive viral RNA-host protein interaction to evade the innate immune response for increased epidemiological fitness. Copyright © 2015, American Association for the Advancement of Science.
Buitendijk, Maarten; Eszterhas, Susan K; Howell, Alexandra L
2014-05-01
Innate immune responses to microbial pathogens are initiated following the binding of ligand to specific pattern recognition receptors. Each pattern recognition receptor, which includes members of the Toll-like receptor (TLR) family, is specific for a particular type of pathogen associated molecular pattern ensuring that the organism can respond rapidly to a wide range of pathogens including bacteria, viruses, and fungi. We studied the extent to which agonists to endosomal TLR could induce anti-HIV-1 activity in peripheral blood mononuclear cells (PBMCs). When agonists to TLR3, TLR7, TLR8 and TLR9 were added prior to infection with HIV-1, they significantly reduced infection of peripheral blood mononuclear cells. Interestingly, agonists to TLR8 and TLR9 were highly effective at blocking HIV replication even when added as late as 48 h or 72 h, respectively, after HIV-1 infection, indicating that the anti-viral effect was durable and long lasting. Analysis of the induction of anti-viral genes after agonist activation of TLR indicated that all of the agonists induced expression of the type I interferons and interferon stimulated genes, although to variable levels that depended on the agonist used. Interestingly, only the agonist to TLR9, ODN2395 DNA, induced expression of type II interferon and the anti-HIV proteins Apobec3G and SAMHD1. By blocking TLR activity using an inhibitor to the MyD88 adaptor protein, we demonstrated that, at least for TLR8 and TLR9, the anti-HIV activity was not entirely mediated by TLR activation, but likely by the activation of additional anti-viral sensors in HIV target cells. These findings suggest that agonists to the endosomal TLR function to induce expression of anti-HIV molecules by both TLR-mediated and non-TLR-mediated mechanisms. Moreover, the non-TLR-mediated mechanisms induced by these agonists could potentially be exploited to block HIV-1 replication in recently HIV-exposed individuals.
Salmonella induces prominent gene expression in the rat colon
Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg MJ
2007-01-01
Background Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Results Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFNγ and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. Conclusion We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression. PMID:17850650
Salmonella induces prominent gene expression in the rat colon.
Rodenburg, Wendy; Keijer, Jaap; Kramer, Evelien; Roosing, Susanne; Vink, Carolien; Katan, Martijn B; van der Meer, Roelof; Bovee-Oudenhoven, Ingeborg M J
2007-09-12
Salmonella enteritidis is suggested to translocate in the small intestine. In vivo it induces gene expression changes in the ileal mucosa and Peyer's patches. Stimulation of Salmonella translocation by dietary prebiotics fermented in colon suggests involvement of the colon as well. However, effects of Salmonella on colonic gene expression in vivo are largely unknown. We aimed to characterize time dependent Salmonella-induced changes of colonic mucosal gene expression in rats using whole genome microarrays. For this, rats were orally infected with Salmonella enteritidis to mimic a foodborne infection and colonic gene expression was determined at days 1, 3 and 6 post-infection (n = 8 rats per time-point). As fructo-oligosaccharides (FOS) affect colonic physiology, we analyzed colonic mucosal gene expression of FOS-fed versus cellulose-fed rats infected with Salmonella in a separate experiment. Colonic mucosal samples were isolated at day 2 post-infection. Salmonella affected transport (e.g. Chloride channel calcium activated 6, H+/K+ transporting Atp-ase), antimicrobial defense (e.g. Lipopolysaccharide binding protein, Defensin 5 and phospholipase A2), inflammation (e.g. calprotectin), oxidative stress related genes (e.g. Dual oxidase 2 and Glutathione peroxidase 2) and Proteolysis (e.g. Ubiquitin D and Proteosome subunit beta type 9). Furthermore, Salmonella translocation increased serum IFN gamma and many interferon-related genes in colonic mucosa. The gene most strongly induced by Salmonella infection was Pancreatitis Associated Protein (Pap), showing >100-fold induction at day 6 after oral infection. Results were confirmed by Q-PCR in individual rats. Stimulation of Salmonella translocation by dietary FOS was accompanied by enhancement of the Salmonella-induced mucosal processes, not by induction of other processes. We conclude that the colon is a target tissue for Salmonella, considering the abundant changes in mucosal gene expression.
NASA Astrophysics Data System (ADS)
Anderson, Alison M.; Kalimutho, Murugan; Harten, Sarah; Nanayakkara, Devathri M.; Khanna, Kum Kum; Ragan, Mark A.
2017-01-01
In breast cancer metastasis, the dynamic continuum involving pro- and anti-inflammatory regulators can become compromised. Over 600 genes have been implicated in metastasis to bone, lung or brain but how these genes might contribute to perturbation of immune function is poorly understood. To gain insight, we adopted a gene co-expression network approach that draws on the functional parallels between naturally occurring bone marrow-derived mesenchymal stem cells (BM-MSCs) and cancer stem cells (CSCs). Our network analyses indicate a key role for metastasis suppressor RARRES3, including potential to regulate the immunoproteasome (IP), a specialized proteasome induced under inflammatory conditions. Knockdown of RARRES3 in near-normal mammary epithelial and breast cancer cell lines increases overall transcript and protein levels of the IP subunits, but not of their constitutively expressed counterparts. RARRES3 mRNA expression is controlled by interferon regulatory factor IRF1, an inducer of the IP, and is sensitive to depletion of the retinoid-related receptor RORA that regulates various physiological processes including immunity through modulation of gene expression. Collectively, these findings identify a novel regulatory role for RARRES3 as an endogenous inhibitor of IP expression, and contribute to our evolving understanding of potential pathways underlying breast cancer driven immune modulation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Klopp, Ann H.; Jhingran, Anuja; Ramdas, Latha
2008-05-01
Purpose: The purpose of this study was to investigate early gene expression changes after chemoradiation in a human solid tumor, allowing identification of chemoradiation-induced gene expression changes in the tumor as well as the tumor microenvironment. In addition we aimed to identify a gene expression profile that was associated with clinical outcome. Methods and Materials: Microarray experiments were performed on cervical cancer specimens obtained before and 48 h after chemoradiation from 12 patients with Stage IB2 to IIIB squamous cell carcinoma of the cervix treated between April 2001 and August 2002. Results: A total of 262 genes were identified thatmore » were significantly changed after chemoradiation. Genes involved in DNA repair were identified including DDB2, ERCC4, GADD45A, and XPC. In addition, significantly regulated cell-to-cell signaling pathways included insulin-like growth factor-1 (IGF-1), interferon, and vascular endothelial growth factor signaling. At a median follow-up of 41 months, 5 of 12 patients had experienced either local or distant failure. Supervised clustering analysis identified a 58-gene set from the pretreatment samples that were differentially expressed between patients with and without recurrence. Genes involved in integrin signaling and apoptosis pathways were identified in this gene set. Immortalization-upregulated protein (IMUP), IGF-2, and ARHD had particularly marked differences in expression between patients with and without recurrence. Conclusions: Genetic profiling identified genes regulated by chemoradiation including DNA damage and cell-to-cell signaling pathways. Genes associated with recurrence were identified that will require validation in an independent patient data set to determine whether the 58-gene set associated with clinical outcome could be useful as a prognostic assay.« less
Zhu, Hui; Wang, Wen-Xiu; Wang, Bao-Qin; Zhu, Xiao-Fu; Wu, Xu-Jin; Ma, Qing-Yi; Chen, De-Kun
2012-06-29
The giant panda (Ailuropoda melanoleuca) is an endangered species and indigenous to China. Interferon-gamma (IFN-γ) is the only member of type □ IFN and is vital for the regulation of host adapted immunity and inflammatory response. Little is known aboutthe FN-γ gene and its roles in giant panda.In this study, IFN-γ gene of Qinling giant panda was amplified from total blood RNA by RT-CPR, cloned, sequenced and analysed. The open reading frame (ORF) of Qinling giant panda IFN-γ encodes 152 amino acidsand is highly similar to Sichuan giant panda with an identity of 99.3% in cDNA sequence. The IFN-γ cDNA sequence was ligated to the pET32a vector and transformed into E. coli BL21 competent cells. Expression of recombinant IFN-γ protein of Qinling giant panda in E. coli was confirmed by SDS-PAGE and Western blot analysis. Biological activity assay indicated that the recombinant IFN-γ protein at the concentration of 4-10 µg/ml activated the giant panda peripheral blood lymphocytes,while at 12 µg/mlinhibited. the activation of the lymphocytes.These findings provide insights into the evolution of giant panda IFN-γ and information regarding amino acid residues essential for their biological activity.
Nombela, Ivan; Puente-Marin, Sara; Chico, Veronica; Villena, Alberto J; Carracedo, Begoña; Ciordia, Sergio; Mena, Maria Carmen; Mercado, Luis; Perez, Luis; Coll, Julio; Estepa, Amparo; Ortega-Villaizan, Maria Del Mar
2017-01-01
Background: It has been described that fish nucleated red blood cells (RBCs) generate a wide variety of immune-related gene transcripts when viruses highly replicate inside them and are their main target cell. The immune response and mechanisms of fish RBCs against viruses targeting other cells or tissues has not yet been explored and is the objective of our study. Methods: Rainbow trout RBCs were obtained from peripheral blood, ficoll purified and exposed to Viral Haemorrhagic Septicaemia virus (VHSV). Immune response was evaluated by means of RT-qPCR, flow cytometry, immunofluorescence and isobaric tag for relative and absolute quantification (iTRAQ) protein profiling. Results: VHSV N gene transcripts incremented early postexposure and were drastically decreased after 6 hours postexposure (hpe). The expression of type I interferon ( ifn1 ) gene was significantly downregulated at early postexposure (3 hpe), together with a gradual downregulation of interferon-inducible mx and pkr genes until 72 hpe. Type I IFN protein was downregulated and interferon-inducible Mx protein was maintained at basal levels. Co-culture assays of RBCs, previously exposed to UV-inactivated VHSV, and TSS (stromal cell line from spleen) revealed IFN crosstalk between both cell types. On the other hand, anti-microbial peptide β-defensin 1 and neutrophil chemotactic factor interleukin 8 were slightly upregulated in VHSV-exposed RBCs. iTRAQ profiling revealed that VHSV exposure can induce a global protein downregulation in rainbow trout RBCs, mainly related to RNA stability and proteasome pathways. Antioxidant/antiviral response is also suggested to be involved in the response of rainbow trout RBCs to VHSV. Conclusions: A variety of mechanisms are proposed to be implicated in the antiviral response of rainbow trout RBCs against VHSV halted infection. Ongoing research is focused on understanding the mechanisms in detail.
Mitsumoto, Koji; Watanabe, Rina; Nakao, Katsuki; Yonenaka, Hisaki; Hashimoto, Takao; Kato, Norihisa; Kumrungsee, Thanutchaporn; Yanaka, Noriyuki
2017-09-01
Choline-deficient diet is extensively used as a model of nonalcoholic fatty liver disease (NAFLD). In this study, we explored genes in the liver for which the expression changed in response to the choline-deficient (CD) diet. Male CD-1 mice were divided into two groups and fed a CD diet with or without 0.2% choline bitartrate for one or three weeks. Hepatic levels of choline metabolites were analyzed by using liquid chromatography mass spectrometry and hepatic gene expression profiles were examined by DNA microarray analysis. The CD diet lowered liver choline metabolites after one week and exacerbated fatty liver between one and three weeks. We identified >300 genes whose expression was significantly altered in the livers of mice after consumption of this CD diet for one week and showed that liver gene expression profiles could be classified into six distinct groups. This study showed that STAT1 and interferon-regulated genes was up-regulated after the CD diet consumption and that the Stat1 mRNA level was negatively correlated with liver phosphatidylcholine level. Stat1 mRNA expression was actually up-regulated in isolated hepatocytes from the mouse liver with the CD diet. This study provides insight into the genomic effects of the CD diet through the Stat1 expression, which might be involved in NAFLD development. Copyright © 2017 Elsevier Inc. All rights reserved.
Assessment of Type I Interferon Signaling in Pediatric Inflammatory Disease.
Rice, Gillian I; Melki, Isabelle; Frémond, Marie-Louise; Briggs, Tracy A; Rodero, Mathieu P; Kitabayashi, Naoki; Oojageer, Anthony; Bader-Meunier, Brigitte; Belot, Alexandre; Bodemer, Christine; Quartier, Pierre; Crow, Yanick J
2017-02-01
Increased type I interferon is considered relevant to the pathology of a number of monogenic and complex disorders spanning pediatric rheumatology, neurology, and dermatology. However, no test exists in routine clinical practice to identify enhanced interferon signaling, thus limiting the ability to diagnose and monitor treatment of these diseases. Here, we set out to investigate the use of an assay measuring the expression of a panel of interferon-stimulated genes (ISGs) in children affected by a range of inflammatory diseases. A cohort study was conducted between 2011 and 2016 at the University of Manchester, UK, and the Institut Imagine, Paris, France. RNA PAXgene blood samples and clinical data were collected from controls and symptomatic patients with a genetically confirmed or clinically well-defined inflammatory phenotype. The expression of six ISGs was measured by quantitative polymerase chain reaction, and the median fold change was used to calculate an interferon score (IS) for each subject compared to a previously derived panel of 29 controls (where +2 SD of the control data, an IS of >2.466, is considered as abnormal). Results were correlated with genetic and clinical data. Nine hundred ninety-two samples were analyzed from 630 individuals comprising symptomatic patients across 24 inflammatory genotypes/phenotypes, unaffected heterozygous carriers, and controls. A consistent upregulation of ISG expression was seen in 13 monogenic conditions (455 samples, 265 patients; median IS 10.73, interquartile range (IQR) 5.90-18.41), juvenile systemic lupus erythematosus (78 samples, 55 patients; median IS 10.60, IQR 3.99-17.27), and juvenile dermatomyositis (101 samples, 59 patients; median IS 9.02, IQR 2.51-21.73) compared to controls (78 samples, 65 subjects; median IS 0.688, IQR 0.427-1.196), heterozygous mutation carriers (89 samples, 76 subjects; median IS 0.862, IQR 0.493-1.942), and individuals with non-molecularly defined autoinflammation (89 samples, 69 patients; median IS 1.07, IQR 0.491-3.74). An assessment of six ISGs can be used to define a spectrum of inflammatory diseases related to enhanced type I interferon signaling. If future studies demonstrate that the IS is a reactive biomarker, this measure may prove useful both in the diagnosis and the assessment of treatment efficacy.
Hong, Y K; Kim, D H; Beletskii, A; Lee, C; Memili, E; Strauss, W M
2001-04-01
Most conditional expression vectors designed for mammalian cells have been valuable systems for studying genes of interest by regulating their expressions. The available vectors, however, are reliable for the short-length cDNA clones and not optimal for relatively long fragments of genomic DNA or long cDNAs. Here, we report the construction of two bacterial artificial chromosome (BAC) vectors, capable of harboring large inserts and shuttling among Escherichia coli, yeast, and mammalian cells. These two vectors, pEYMT and pEYMI, contain conditional expression systems which are designed to be regulated by tetracycline and mouse interferons, respectively. To test the properties of the vectors, we cloned in both vectors the green fluorescence protein (GFP) through an in vitro ligation reaction and the 17.8-kb-long X-inactive-specific transcript (Xist) cDNA through homologous recombination in yeast. Subsequently, we characterized their regulated expression properties using real-time quantitative RT-PCR (TaqMan) and RNA-fluorescent in situ hybridization (FISH). We demonstrate that these two BAC vectors are good systems for recombination-based cloning and regulated expression of large genes in mammalian cells. Copyright 2001 Academic Press.
Feder-Mengus, C; Ghosh, S; Weber, W P; Wyler, S; Zajac, P; Terracciano, L; Oertli, D; Heberer, M; Martin, I; Spagnoli, G C; Reschner, A
2007-01-01
Cancer cells' growth in three-dimensional (3D) architectures promotes resistance to drugs, cytokines, or irradiation. We investigated effects of 3D culture as compared to monolayers (2D) on melanoma cells' recognition by tumour-associated antigen (TAA)-specific HLA-A*0201-restricted cytotoxic T-lymphocytes (CTL). Culture of HBL, D10 (both HLA-A*0201+, TAA+) and NA8 (HLA-A*0201+, TAA−) melanoma cells on polyHEMA-coated plates, resulted in generation of 3D multicellular tumour spheroids (MCTS). Interferon-gamma (IFN-γ) production by HLA-A*0201-restricted Melan-A/MART-127–35 or gp100280–288-specific CTL clones served as immunorecognition marker. Co-culture with melanoma MCTS, resulted in defective TAA recognition by CTL as compared to 2D as witnessed by decreased IFN-γ production and decreased Fas Ligand, perforin and granzyme B gene expression. A multiplicity of mechanisms were potentially involved. First, MCTS per se limit CTL capacity of recognising HLA class I restricted antigens by reducing exposed cell surfaces. Second, expression of melanoma differentiation antigens is downregulated in MCTS. Third, expression of HLA class I molecules can be downregulated in melanoma MCTS, possibly due to decreased interferon-regulating factor-1 gene expression. Fourth, lactic acid production is increased in MCTS, as compared to 2D. These data suggest that melanoma cells growing in 3D, even in the absence of immune selection, feature characteristics capable of dramatically inhibiting TAA recognition by specific CTL. PMID:17342088
Capitanio, John P.; Abel, Kristina; Mendoza, Sally P.; Blozis, Shelley A.; McChesney, Michael B.; Cole, Steve W.; Mason, William A.
2008-01-01
From the beginning of the AIDS epidemic, stress has been a suspected contributor to the wide variation seen in disease progression, and some evidence supports this idea. Not all individuals respond to a stressor in the same way, however, and little is known about the biological mechanisms by which variations in individuals’ responses to their environment affect disease-relevant immunologic processes. Using the simian immunodeficiency virus/rhesus macaque model of AIDS, we explored how personality (sociability) and genotype (serotonin transporter promoter) independently interact with social context (stable or unstable social conditions) to influence behavioral expression, plasma cortisol concentrations, SIV-specific IgG, and expression of genes associated with Type I interferon early in infection. SIV viral RNA set-point was strongly and negatively correlated with survival as expected. Set-point was also associated with expression of interferon-stimulated genes, with CXCR3 expression, and with SIV-specific IgG titers. Poorer immune responses, in turn, were associated with display of sustained aggression and submission. Personality and genotype acted independently as well as in interaction with social condition to affect behavioral responses. Together, the data support an “interactionist” perspective (Eysenck, 1991) on disease. Given that an important goal of HIV treatment is to maintain viral set-point as low as possible, our data suggest that supplementing anti-retroviral therapy with behavioral or pharmacologic modulation of other aspects of an organism’s functioning might prolong survival, particularly among individuals living under conditions of threat or uncertainty. PMID:17719201
Ellison, Michael A; Thurman, Gail; Gearheart, Christy M; Seewald, Ryan H; Porter, Christopher C; Ambruso, Daniel R
2015-01-01
The cytokine and drug interferon-γ enhances superoxide anion production by the antimicrobicidal Nox2 enzyme of neutrophils. Because mature neutrophils have a short lifespan, we hypothesized that the effects of interferon-γ on these cells might be mediated by its prolonged exposure to differentiating neutrophil precursors in the bone marrow rather than its brief exposure to mature circulating neutrophils. Effects of INF-Γ on NOX2 activity: To address this possibility we exposed the myeloid PLB-985 cell line to interferon-γ for 3 days in the presence of dimethyl sulfoxide which induces terminal differentiation of these cells. Interferon-γ was found to enhance superoxide production by Nox2 in a concentration dependent manner. In contrast, application of interferon-γ alone for 3 days failed to induce detectible Nox2 activity. Additionally, application of interferon-γ for 3 hours to pre-differentiated PLB-985 cells, which models studies using isolated neutrophils, was much less effective at enhancing superoxide anion production. Effects of INF-Γ on phox protein levels: Addition of interferon-γ during differentiation was found to upregulate the Nox2 proteins gp91phox and p47phox in concert with elevated transcription of their genes. The p22phox protein was upregulated in the absence of increased transcription presumably reflecting stabilization resulting from binding to the elevated gp91phox. Thus, increased levels of gp91phox, p47phox and p22phox likely account for the interferon-γ mediated enhancement of dimethyl sulfoxide-induced Nox2 activity. In contrast, although interferon-γ alone also increased various phox proteins and their mRNAs, the pattern was very different to that seen with interferon-γ plus dimethyl sulfoxide. In particular, p47phox was not induced thus explaining the inability of interferon -γ alone to enhance Nox2 activity. Short application of interferon-γ to already differentiated cells failed to increase any phox proteins. Our findings indicate that interferon-γ has complex effects on phox protein expression and that these are different in cells undergoing terminal differentiation. Understanding these changes may indicate additional therapeutic uses for this cytokine in human disorders.
Krasnov, Aleksei; Kileng, Øyvind; Skugor, Stanko; Jørgensen, Sven Martin; Afanasyev, Sergey; Timmerhaus, Gerrit; Sommer, Ann-Inger; Jensen, Ingvill
2013-07-01
Genome sequencing combined with transcriptome profiling promotes exploration of defence against pathogens and discovery of immune genes. Based on sequences from the recently released genome of Atlantic cod, a genome-wide oligonucleotide microarray (ACIQ-1) was designed and used for analyses of gene expression in the brain during infection with nervous necrosis virus (NNV). A challenge experiment with NNV was performed with Atlantic cod juveniles and brain samples from virus infected and uninfected fish were used for microarray analysis. Expression of virus induced genes increased at 5 days post challenge and persisted at stable level to the last sampling at 25 days post challenge. A large fraction of the up-regulated genes (546 features) were known or expected to have immune functions and most of these have not previously been characterized in Atlantic cod. Transcriptomic changes induced by the virus involved strong activation of genes associated with interferon and tumour necrosis factor related responses and acute inflammation. Up-regulation of genes involved in adaptive immunity suggested a rapid recruitment of B and T lymphocytes to the NNV infected brain. QPCR analyses of 15 candidate genes of innate immunity showed rapid induction by poly(I:C) in Atlantic cod larvae cells suggesting an antiviral role. Earliest and greatest expression changes after poly I:C stimulation was observed for interferon regulatory factors IRF4 and IRF7. Comparative studies between teleost species provided new knowledge about the evolution of innate antiviral immunity in fish. A number of genes is present or responds to viruses only in fish. Innate immunity of Atlantic cod is characterized by selective expansion of several medium-sized multigene families with ribose binding domains. An interesting finding was the high representation of three large gene families among the early antiviral genes, including tripartite motif proteins (TRIM) and proteins with PRY-SPRY and NACHT domains. The latter two with respectively 52 and 114 members in Atlantic cod have gone through expansions in different groups of fish. These proteins most likely have ligand binding properties and their propagation could be linked to the loss of MHC class II in the Atlantic cod genome. Copyright © 2013 Elsevier Ltd. All rights reserved.
Immune Response to Koi Herpesvirus (KHV) of Koi and Koi × Red Common Carp (Cyprinus carpio)
Hwang, Ju-ae; Kim, Jung Eun; Kim, Hyeong-su; Lee, Jeong-Ho
2017-01-01
ABSTRACT Koi herpesvirus (KHV), also known as Cyprinid herpes virus 3 (Cyprinid 3) is lethal disease in common carp and koi (Cyprinus carpio). Two different groups (KK and RK) were infected KHV by intraperitoneal injection. Fish for gene expression analysis were sampled at 0 h, 12 h, 24 h, 48 h and 72 h post infection (p.i). The results showed that two immune related gene, Interferons (INFs) ɑβ and Interleukin (IL)-12 p35 induced a high response in RK. The IL-12 p35 cytokine and Toll-like receptor (TLR) 9 were significantly high expressed on 48 h post infection (p.i) in RK as compared to the KK. The histopatological examination reveals focal necrosis in liver and infiltrate of lymphocytes in spleen of KK as compared to the RK. In immunohistochemistry analysis, the KHV protein high expressed in the infected kidney cell and slenocyte of KK. Therefore, the expression of IL-12 p35, IFN ɑβ and TLR 9 may provide a potentially genes related with KHV resistance in Koi and red common carp × koi. PMID:29354782
Immune Response to Koi Herpesvirus (KHV) of Koi and Koi × Red Common Carp (Cyprinus carpio).
Hwang, Ju-Ae; Kim, Jung Eun; Kim, Hyeong-Su; Lee, Jeong-Ho
2017-12-01
Koi herpesvirus (KHV), also known as Cyprinid herpes virus 3 (Cyprinid 3) is lethal disease in common carp and koi ( Cyprinus carpio ). Two different groups (KK and RK) were infected KHV by intraperitoneal injection. Fish for gene expression analysis were sampled at 0 h, 12 h, 24 h, 48 h and 72 h post infection (p.i). The results showed that two immune related gene, Interferons (INFs) ɑβ and Interleukin (IL)-12 p35 induced a high response in RK. The IL-12 p35 cytokine and Toll-like receptor (TLR) 9 were significantly high expressed on 48 h post infection (p.i) in RK as compared to the KK. The histopatological examination reveals focal necrosis in liver and infiltrate of lymphocytes in spleen of KK as compared to the RK. In immunohistochemistry analysis, the KHV protein high expressed in the infected kidney cell and slenocyte of KK. Therefore, the expression of IL-12 p35, IFN ɑβ and TLR 9 may provide a potentially genes related with KHV resistance in Koi and red common carp × koi.
Båge, Tove; Lagervall, Maria; Jansson, Leif; Lundeberg, Joakim; Yucel-Lindberg, Tülay
2012-01-01
Periodontitis is a chronic inflammatory disease affecting the soft tissue and bone that surrounds the teeth. Despite extensive research, distinctive genes responsible for the disease have not been identified. The objective of this study was to elucidate transcriptome changes in periodontitis, by investigating gene expression profiles in gingival tissue obtained from periodontitis-affected and healthy gingiva from the same patient, using RNA-sequencing. Gingival biopsies were obtained from a disease-affected and a healthy site from each of 10 individuals diagnosed with periodontitis. Enrichment analysis performed among uniquely expressed genes for the periodontitis-affected and healthy tissues revealed several regulated pathways indicative of inflammation for the periodontitis-affected condition. Hierarchical clustering of the sequenced biopsies demonstrated clustering according to the degree of inflammation, as observed histologically in the biopsies, rather than clustering at the individual level. Among the top 50 upregulated genes in periodontitis-affected tissues, we investigated two genes which have not previously been demonstrated to be involved in periodontitis. These included interferon regulatory factor 4 and chemokine (C-C motif) ligand 18, which were also expressed at the protein level in gingival biopsies from patients with periodontitis. In conclusion, this study provides a first step towards a quantitative comprehensive insight into the transcriptome changes in periodontitis. We demonstrate for the first time site-specific local variation in gene expression profiles of periodontitis-affected and healthy tissues obtained from patients with periodontitis, using RNA-seq. Further, we have identified novel genes expressed in periodontitis tissues, which may constitute potential therapeutic targets for future treatment strategies of periodontitis. PMID:23029519
The regulation of inflammation by interferons and their STATs.
Rauch, Isabella; Müller, Mathias; Decker, Thomas
2013-01-01
Interferons (IFN) are subdivided into type I IFN (IFN-I, here synonymous with IFN-α/β), type II (IFN-γ) and type III IFN (IFN-III/IFN-λ) that reprogram nuclear gene expression through STATs 1 and 2 by forming STAT1 dimers (mainly IFN-γ) or the ISGF3 complex, a STAT1-STAT2-IRF9 heterotrimer (IFN-I and IFN-III). Dominant IFN activities in the immune system are to protect cells from viral replication and to activate macrophages for enhanced effector function. However, the impact of IFN and their STATs on the immune system stretches far beyond these activities and includes the control of inflammation. The goal of this review is to give an overview of the different facets of the inflammatory process that show regulatory input by IFN/STAT.
Megger, Dominik A.; Philipp, Jos; Le-Trilling, Vu Thuy Khanh; Sitek, Barbara; Trilling, Mirko
2017-01-01
Interferons (IFNs) are pleotropic cytokines secreted upon encounter of pathogens and tumors. Applying their antipathogenic, antiproliferative, and immune stimulatory capacities, recombinant IFNs are frequently prescribed as drugs to treat different diseases. IFNs act by changing the gene expression profile of cells. Due to characteristics such as rapid gene induction and signaling, IFNs also represent prototypical model systems for various aspects of biomedical research (e.g., signal transduction). In regard to the signaling and activated promoters, IFNs can be subdivided into two groups. Here, alterations of the cellular proteome of human cells treated with IFNα and IFNγ were elucidated in a time-resolved manner by quantitative proteome analysis. The majority of protein regulations were strongly IFN type and time dependent. In addition to the expected upregulation of IFN-responsive proteins, an astonishing number of proteins became profoundly repressed especially by IFNγ. Thus, our comprehensive analysis revealed important insights into the human IFN-regulated proteome and its dynamics of protein induction and repression. Interestingly, the new class of IFN-repressed genes comprises known host factors for highly relevant pathogens such as HIV, dengue virus, and hepatitis C virus. PMID:28959263
Seelan, Ratnam S; Mukhopadhyay, Partha; Warner, Dennis R; Smolenkova, Irina A; Pisano, M Michele; Greene, Robert M
2017-01-01
Defects in development of the secondary palate, which arise from the embryonic first branchial arch (1-BA), can cause cleft palate (CP). Administration of 5-Aza-2'-deoxycytidine (AzaD), a demethylating agent, to pregnant mice on gestational day 9.5 resulted in complete penetrance of CP in fetuses. Several genes critical for normal palatogenesis were found to be upregulated in 1-BA, 12h after AzaD exposure. MethylCap-Seq (MCS) analysis identified several differentially methylated regions (DMRs) in DNA extracted from AzaD-exposed 1-BAs. Hypomethylated DMRs did not correlate with the upregulation of genes in AzaD-exposed 1-BAs. However, most DMRs were associated with endogenous retroviral elements. Expression analyses suggested that interferon signaling was activated in AzaD-exposed 1-BAs. Our data, thus, suggest that a 12-h in utero AzaD exposure demethylates and activates endogenous retroviral elements in the 1-BA, thereby triggering an interferon-mediated response. This may result in the dysregulation of key signaling pathways during palatogenesis, causing CP. Copyright © 2016 Elsevier Inc. All rights reserved.
Qadir, Abdul S; Ceppi, Paolo; Brockway, Sonia; Law, Calvin; Mu, Liang; Khodarev, Nikolai N; Kim, Jung; Zhao, Jonathan C; Putzbach, William; Murmann, Andrea E; Chen, Zhuo; Chen, Wenjing; Liu, Xia; Salomon, Arthur R; Liu, Huiping; Weichselbaum, Ralph R; Yu, Jindan; Peter, Marcus E
2017-03-07
Stimulation of CD95/Fas drives and maintains cancer stem cells (CSCs). We now report that this involves activation of signal transducer and activator of transcription 1 (STAT1) and induction of STAT1-regulated genes and that this process is inhibited by active caspases. STAT1 is enriched in CSCs in cancer cell lines, patient-derived human breast cancer, and CD95 high -expressing glioblastoma neurospheres. CD95 stimulation of cancer cells induced secretion of type I interferons (IFNs) that bind to type I IFN receptors, resulting in activation of Janus-activated kinases, activation of STAT1, and induction of a number of STAT1-regulated genes that are part of a gene signature recently linked to therapy resistance in five primary human cancers. Consequently, we identified type I IFNs as drivers of cancer stemness. Knockdown or knockout of STAT1 resulted in a strongly reduced ability of CD95L or type I IFN to increase cancer stemness. This identifies STAT1 as a key regulator of the CSC-inducing activity of CD95. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.
Megger, Dominik A; Philipp, Jos; Le-Trilling, Vu Thuy Khanh; Sitek, Barbara; Trilling, Mirko
2017-01-01
Interferons (IFNs) are pleotropic cytokines secreted upon encounter of pathogens and tumors. Applying their antipathogenic, antiproliferative, and immune stimulatory capacities, recombinant IFNs are frequently prescribed as drugs to treat different diseases. IFNs act by changing the gene expression profile of cells. Due to characteristics such as rapid gene induction and signaling, IFNs also represent prototypical model systems for various aspects of biomedical research (e.g., signal transduction). In regard to the signaling and activated promoters, IFNs can be subdivided into two groups. Here, alterations of the cellular proteome of human cells treated with IFNα and IFNγ were elucidated in a time-resolved manner by quantitative proteome analysis. The majority of protein regulations were strongly IFN type and time dependent. In addition to the expected upregulation of IFN-responsive proteins, an astonishing number of proteins became profoundly repressed especially by IFNγ. Thus, our comprehensive analysis revealed important insights into the human IFN-regulated proteome and its dynamics of protein induction and repression. Interestingly, the new class of IFN-repressed genes comprises known host factors for highly relevant pathogens such as HIV, dengue virus, and hepatitis C virus.
Feng, Xuan; Han, Diana; Kilaru, Bharat K.; Franek, Beverly S.; Niewold, Timothy B.; Reder, Anthony T.
2014-01-01
Objective To determine whether statins affect type 1 interferon responses in relapsing-remitting multiple sclerosis (RRMS). Design Study effects of atorvastatin on type 1 interferon responses in Jurkat cells, mononuclear cells (MNCs) from therapy-naive patients with RRMS in vitro, and MNCs from interferon-treated RRMS patients in vivo in 4 conditions: no drug, statin only, interferon-beta only, and statin added on to interferon-beta therapy. Patients The study examined clinically stable patients with RRMS: 21 therapy-naive patients and 14 patients receiving interferon-beta with a statin. Interventions Statin effects on in vitro and in vivo interferon-beta–induced STAT1 transcription factor activation, expression of interferon-stimulated proteins in MNCs, and serum type 1 interferon activity. Results In vitro, atorvastatin dose dependently inhibited expression of interferon-stimulated P-Y-STAT1 by 44% (P< .001), interferon regulatory factor 1 protein by 30% (P= .006), and myxovirus resistance 1 protein by 32% (P=.004) compared with no-statin control in MNCs from therapy-naive RRMS patients. In vivo, 9 of 10 patients who received high-dose statins (80 mg) had a significant reduction in interferon-beta therapy–induced serum interferon-α/β activity, whereas only 2 of 4 patients who received medium-dose statins (40 mg) had reductions. High-dose add-on statin therapy significantly blocked interferon-beta function, with less P-Y-STAT1 transcription factor activation, and reduced myxovirus resistance 1 protein and viperin protein production. Medium doses of statins did not change STAT1 activation. Conclusions High-dose add-on statin therapy significantly reduces interferon-beta function and type 1 interferon responses in RRMS patients. These data provide a putative mechanism for how statins could counteract the beneficial effects of interferon-beta and worsen disease. PMID:22801747
Silva, S.M.; Jerônimo, M.S.; Silva-Pereira, I.; Bocca, A.L.; Sousa, J.B.
2014-01-01
Anastomotic dehiscence is the most severe complication of colorectal surgery. Metalloproteinases (MMPs) and interleukins (ILs) can be used to analyze the healing process of anastomosis. To evaluate the effects of bromopride on MMP and cytokine gene expression in left colonic anastomoses in rats with or without induced abdominal sepsis, 80 rats were divided into two groups for euthanasia on the third or seventh postoperative day (POD). They were then divided into subgroups of 20 rats for sepsis induction or not, and then into subgroups of 10 rats for administration of bromopride or saline. Left colonic anastomosis was performed and abdominal sepsis was induced by cecal ligation and puncture. A colonic segment containing the anastomosis was removed for analysis of gene expression of MMP-1α, MMP-8, MMP-13, IL-β, IL-6, IL-10, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). On the third POD, bromopride was associated with increased MMP-1α, MMP-13, IL-6, IFN-γ, and IL-10 gene expression. On the seventh POD, all MMP transcripts became negatively modulated and all IL transcripts became positively modulated. In the presence of sepsis, bromopride administration increased MMP-8 and IFN-γ gene expression and decreased MMP-1, TNF-α, IL-6, and IL-10 gene expression on the third POD. On the seventh POD, we observed increased expression of MMP-13 and all cytokines, except for TNF-α. In conclusion, bromopride interferes with MMP and IL gene expression during anastomotic healing. Further studies are needed to correlate these changes with the healing process. PMID:25140813
Silva, S M; Jerônimo, M S; Silva-Pereira, I; Bocca, A L; Sousa, J B
2014-10-01
Anastomotic dehiscence is the most severe complication of colorectal surgery. Metalloproteinases (MMPs) and interleukins (ILs) can be used to analyze the healing process of anastomosis. To evaluate the effects of bromopride on MMP and cytokine gene expression in left colonic anastomoses in rats with or without induced abdominal sepsis, 80 rats were divided into two groups for euthanasia on the third or seventh postoperative day (POD). They were then divided into subgroups of 20 rats for sepsis induction or not, and then into subgroups of 10 rats for administration of bromopride or saline. Left colonic anastomosis was performed and abdominal sepsis was induced by cecal ligation and puncture. A colonic segment containing the anastomosis was removed for analysis of gene expression of MMP-1α, MMP-8, MMP-13, IL-β, IL-6, IL-10, tumor necrosis factor-α (TNF-α), and interferon-γ (IFN-γ). On the third POD, bromopride was associated with increased MMP-1α, MMP-13, IL-6, IFN-γ, and IL-10 gene expression. On the seventh POD, all MMP transcripts became negatively modulated and all IL transcripts became positively modulated. In the presence of sepsis, bromopride administration increased MMP-8 and IFN-γ gene expression and decreased MMP-1, TNF-α, IL-6, and IL-10 gene expression on the third POD. On the seventh POD, we observed increased expression of MMP-13 and all cytokines, except for TNF-α. In conclusion, bromopride interferes with MMP and IL gene expression during anastomotic healing. Further studies are needed to correlate these changes with the healing process.
Shi, Lihua; Zhang, Zhe; Yu, Angela M; Wang, Wei; Wei, Zhi; Akhter, Ehtisham; Maurer, Kelly; Costa Reis, Patrícia; Song, Li; Petri, Michelle; Sullivan, Kathleen E
2014-01-01
Gene expression studies of peripheral blood mononuclear cells from patients with systemic lupus erythematosus (SLE) have demonstrated a type I interferon signature and increased expression of inflammatory cytokine genes. Studies of patients with Aicardi Goutières syndrome, commonly cited as a single gene model for SLE, have suggested that accumulation of non-coding RNAs may drive some of the pathologic gene expression, however, no RNA sequencing studies of SLE patients have been performed. This study was designed to define altered expression of coding and non-coding RNAs and to detect globally altered RNA processing in SLE. Purified monocytes from eight healthy age/gender matched controls and nine SLE patients (with low-moderate disease activity and lack of biologic drug use or immune suppressive treatment) were studied using RNA-seq. Quantitative RT-PCR was used to validate findings. Serum levels of endotoxin were measured by ELISA. We found that SLE patients had diminished expression of most endogenous retroviruses and small nucleolar RNAs, but exhibited increased expression of pri-miRNAs. Splicing patterns and polyadenylation were significantly altered. In addition, SLE monocytes expressed novel transcripts, an effect that was replicated by LPS treatment of control monocytes. We further identified increased circulating endotoxin in SLE patients. Monocytes from SLE patients exhibit globally dysregulated gene expression. The transcriptome is not simply altered by the transcriptional activation of a set of genes, but is qualitatively different in SLE. The identification of novel loci, inducible by LPS, suggests that chronic microbial translocation could contribute to the immunologic dysregulation in SLE, a new potential disease mechanism.
Zhang, Sheng-Jia; Zou, Ming; Lu, Li; Lau, David; Ditzel, Désirée A. W.; Delucinge-Vivier, Celine; Aso, Yoshinori; Descombes, Patrick; Bading, Hilmar
2009-01-01
Synaptic activity can boost neuroprotection through a mechanism that requires synapse-to-nucleus communication and calcium signals in the cell nucleus. Here we show that in hippocampal neurons nuclear calcium is one of the most potent signals in neuronal gene expression. The induction or repression of 185 neuronal activity-regulated genes is dependent upon nuclear calcium signaling. The nuclear calcium-regulated gene pool contains a genomic program that mediates synaptic activity-induced, acquired neuroprotection. The core set of neuroprotective genes consists of 9 principal components, termed Activity-regulated Inhibitor of Death (AID) genes, and includes Atf3, Btg2, GADD45β, GADD45γ, Inhibin β-A, Interferon activated gene 202B, Npas4, Nr4a1, and Serpinb2, which strongly promote survival of cultured hippocampal neurons. Several AID genes provide neuroprotection through a common process that renders mitochondria more resistant to cellular stress and toxic insults. Stereotaxic delivery of AID gene-expressing recombinant adeno-associated viruses to the hippocampus confers protection in vivo against seizure-induced brain damage. Thus, treatments that enhance nuclear calcium signaling or supplement AID genes represent novel therapies to combat neurodegenerative conditions and neuronal cell loss caused by synaptic dysfunction, which may be accompanied by a deregulation of calcium signal initiation and/or propagation to the cell nucleus. PMID:19680447
Local expression of interferon-alpha and interferon receptors in cervical intraepithelial neoplasia.
Tirone, Nelson R; Peghini, Bethanea C; Barcelos, Ana Cristina M; Murta, Eddie F C; Michelin, Marcia A
2009-12-01
The present study evaluated mRNA expression of interferon-alpha (IFN-alpha), IFN-alpha receptor subunits (IFNAR-1 and IFNAR-2) and an IFN-stimulated gene encoding the enzyme 2',5'-oligoadenylate synthetase (2'5'OAS) in biopsies on patients with varying grades of cervical intraepithelial neoplasia (CIN I, II and III). Uterine cervix biopsies were collected from women with CIN I, II and III (n = 28) and controls without CIN lesions or human papilloma virus (HPV) infection (n = 17). The presence of high and low-risk HPV DNA was determined using hybrid capture. The mRNA levels of IFNAR-1, IFNAR-2, IFN-alpha and 2'5'OAS were determined by RT-PCR with specific primers. The control group exhibited a greater frequency of IFNAR-1 expression (10/17; 58.3%) than the CIN samples (4/28; 14.2%) (P = 0.0018), while, the expression of IFNAR-2 was also greater in the control samples (11/17; 64.7%) than in the patients with lesions (2/28; 7.1%) (P = 0.0018). Importantly, simultaneous expression of both receptors was observed only in the control group (8/17; 47.0%) (P = 0.0001). Among the CIN samples, there was one case of low expression of mRNA of IFNAR-1 and IFNAR-2. IFN-alpha was present in 14.2% (4/28) of the CIN samples but was not expressed in the control group. mRNA 2'5'OAS were expressed in 28.5% (8/28) of the CIN samples and 11.7% (2/17) of the control samples (not statistically significant). Fifty percent (14/28) of the CIN samples were positive for HPV DNA. Cervical biopsy samples from control women or those without neoplasia or HPV infection displayed higher IFN-alpha receptor expression than those with CIN, while simultaneous expression of both IFN-alpha receptor subunits was found only in the control group. There was no significant difference in mRNA expression of IFN-alpha and 2'5'OAS between the control and CIN groups. Then we concluded that the samples obtained from patients with CIN present low levels of the IFN-alpha receptor mRNA.
Wang, Na; Wang, Xianli; Yang, Changgeng; Zhao, Xiaojie; Zhang, Yuxi; Wang, Tianzi; Chen, Songlin
2014-03-01
GRIM-19 (gene associated with retinoid-interferon-induced mortality 19), a novel cell death regulatory gene, plays important roles in cell apoptosis, embryogenesis, mitochondrial respiratory chain and immune response. To date, little information is known about fish GRIM-19 characteristics except orange-spotted grouper (Epinephelus coioides). Here a new GRIM-19 gene is identified and characterized from turbot (Scophthalmus maximus), an economic marine fish in China and Europe. Briefly, turbot GRIM-19 is a 595-bp gene encoding a 144 amino acids protein, which shares the closest relationship with Atlantic halibut (Hippoglossus hippoglossus). The expression of turbot grim-19 in liver, spleen and kidney is up-regulated by the infection of Vibrio anguillarum and LCDV (lymphocystis disease virus). Subsequently, a recombinant protein of turbot GRIM-19 is acquired and the anti-bacterial function is proved by liquid culture inhibition experiment. The subcellular location indicates that turbot GRIM-19 is co-localized with STAT3 in the cytoplasm, which is mainly determined by GRIM-19 41-84 amino acids and STAT3 1-321 amino acids. Finally, the involvements of turbot GRIM-19 in cell apoptosis and NF-κB pathway are investigated. All these data help to understand GRIM-19 function in fish, as well as provide the application possibility of GRIM-19 in fish disease resistance breeding. Copyright © 2013 Elsevier Ltd. All rights reserved.
Transient overexpression of exogenous APOBEC3A causes C-to-U RNA editing of thousands of genes.
Sharma, Shraddha; Patnaik, Santosh K; Kemer, Zeynep; Baysal, Bora E
2017-05-04
APOBEC3A cytidine deaminase induces site-specific C-to-U RNA editing of hundreds of genes in monocytes exposed to hypoxia and/or interferons and in pro-inflammatory macrophages. To examine the impact of APOBEC3A overexpression, we transiently expressed APOBEC3A in HEK293T cell line and performed RNA sequencing. APOBEC3A overexpression induces C-to-U editing at more than 4,200 sites in transcripts of 3,078 genes resulting in protein recoding of 1,110 genes. We validate recoding RNA editing of genes associated with breast cancer, hematologic neoplasms, amyotrophic lateral sclerosis, Alzheimer disease and primary pulmonary hypertension. These results highlight the fundamental impact of APOBEC3A overexpression on human transcriptome by widespread RNA editing.
Hong, Suntaek; Kim, Hye-Youn; Kim, Jooyoung; Ha, Huyen Trang; Kim, Young-Mi; Bae, Eunjin; Kim, Tae Hyung; Lee, Kang Choon; Kim, Seong-Jin
2013-01-01
Smad7 has been known as a negative regulator for the transforming growth factor-β (TGF-β) signaling pathway through feedback regulation. However, Smad7 has been suspected to have other biological roles through the regulation of gene transcription. By screening differentially regulated genes, we found that the caspase 8 gene was highly up-regulated in Smad7-expressing cells. Smad7 was able to activate the caspase 8 promoter through recruitment of the interferon regulatory factor 1 (IRF1) transcription factor to the interferon-stimulated response element (ISRE) site. Interaction of Smad7 on the caspase 8 promoter was confirmed with electrophoretic mobility shift assay and chromatin immunoprecipitation experiment. Interestingly, Smad7 did not directly interact with the ISRE site, but it increased the binding activity of IRF1 with ISRE. These results support that Smad7 recruits IRF1 protein on the caspase 8 promoter and functions as a transcriptional coactivator. To confirm the biological significance of caspase 8 up-regulation, we tested tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated cell death assay in breast cancer cells. Smad7 in apoptosis-resistant MCF7 cells markedly sensitized the cells to TRAIL-induced cell death by restoring the caspase cascade. Furthermore, restoration of caspase 8-mediated apoptosis pathway repressed the tumor growth in the xenograft model. In conclusion, we suggest a novel role for Smad7 as a transcriptional coactivator for caspase 8 through the interaction with IRF1 in regulation of the cell death pathway. PMID:23255602
Methamphetamine enhances Hepatitis C virus replication in human hepatocytes
Ye, L.; Peng, J. S.; Wang, X.; Wang, Y. J.; Luo, G. X.; Ho, W. Z.
2009-01-01
SUMMARY Very little is known about the interactions between hepatitis C virus (HCV) and methamphetamine, which is a highly abused psychostimulant and a known risk factor for human immunodeficiency virus (HIV)/HCV infection. This study examined whether methamphetamine has the ability to inhibit innate immunity in the host cells, facilitating HCV replication in human hepatocytes. Methamphetamine inhibited intracellular interferon alpha expression in human hepatocytes, which was associated with the increase in HCV replication. In addition, methamphetamine also compromised the anti-HCV effect of recombinant interferon alpha. Further investigation of mechanism(s) responsible for the methamphetamine action revealed that methamphetamine was able to inhibit the expression of the signal transducer and activator of transcription 1, a key modulator in interferon-mediated immune and biological responses. Methamphetamine also down-regulated the expression of interferon regulatory factor-5, a crucial transcriptional factor that activates the interferon pathway. These in vitro findings that methamphetamine compromises interferon alpha-mediated innate immunity against HCV infection indicate that methamphetamine may have a cofactor role in the immunopathogenesis of HCV disease. PMID:18307590
Akdis, Mübeccel; Aab, Alar; Altunbulakli, Can; Azkur, Kursat; Costa, Rita A; Crameri, Reto; Duan, Su; Eiwegger, Thomas; Eljaszewicz, Andrzej; Ferstl, Ruth; Frei, Remo; Garbani, Mattia; Globinska, Anna; Hess, Lena; Huitema, Carly; Kubo, Terufumi; Komlosi, Zsolt; Konieczna, Patricia; Kovacs, Nora; Kucuksezer, Umut C; Meyer, Norbert; Morita, Hideaki; Olzhausen, Judith; O'Mahony, Liam; Pezer, Marija; Prati, Moira; Rebane, Ana; Rhyner, Claudio; Rinaldi, Arturo; Sokolowska, Milena; Stanic, Barbara; Sugita, Kazunari; Treis, Angela; van de Veen, Willem; Wanke, Kerstin; Wawrzyniak, Marcin; Wawrzyniak, Paulina; Wirz, Oliver F; Zakzuk, Josefina Sierra; Akdis, Cezmi A
2016-10-01
There have been extensive developments on cellular and molecular mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections during the last few years. Better understanding the functions, reciprocal regulation, and counterbalance of subsets of immune and inflammatory cells that interact through interleukins, interferons, TNF-α, and TGF-β offer opportunities for immune interventions and novel treatment modalities in the era of development of biological immune response modifiers particularly targeting these molecules or their receptors. More than 60 cytokines have been designated as interleukins since the initial discoveries of monocyte and lymphocyte interleukins (called IL-1 and IL-2, respectively). Studies of transgenic or gene-deficient mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided essential information about their functions. Here we review recent developments on IL-1 to IL-38, TNF-α, TGF-β, and interferons. We highlight recent advances during the last few years in this area and extensively discuss their cellular sources, targets, receptors, signaling pathways, and roles in immune regulation in patients with allergy and asthma and other inflammatory diseases. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Transcriptome profiling reveals the immune response of goose T cells under selenium stimuli.
Cao, Nan; Li, Wanyan; Li, Bingxin; Tian, Yunbo; Xu, Danning
2017-12-01
The goose is an economically important poultry species and a principal natural host of avian viruses. This study aimed to determine the effects of selenium on the immune response of geese. Under selenium stimulation, gene expression profiling was investigated using transcriptome sequencing. The selenoproteins were promoted by selenium stimulation, while the heat shock proteins, interleukin and interferons were mainly down-regulated. After comparison, 2228 differentially expressed genes were primarily involved in immune and environmental response, and infectious disease and genetic information processing related pathways were identified. Specifically, the enzymes of the lysosomes which acted as a safeguard in preventing pathogens were mostly up-regulated and six randomly selected differentially expressed genes were validated by quantitative polymerase chain reaction. In addition, the most proportional increased transcription factor family basic helix-loop-helix (bHLH) located in the 5' flank of selenoprotein P-like protein for selenium metabolism was identified by response to the selenium stimulation in this study. These analyses show that selenium can promote immune function by activating selenoproteins, transcript factors and lysosome pathway related genes, while weakening cytokine content genes in geese. © 2017 Japanese Society of Animal Science.
Avian influenza rapidly induces antiviral genes in duck lung and intestine
Vanderven, Hillary A.; Petkau, Kristina; Ryan-Jean, Kieran E. E.; Aldridge, Jerry R.; Webster, Robert G.; Magor, Katharine E.
2012-01-01
Ducks are the natural reservoir of influenza A and survive infection by most strains. To characterize the duck immune response to influenza, we sought to identify innate immune genes expressed early in an infection. We used suppressive subtractive hybridization (SSH) to construct 3 libraries enriched in differentially expressed genes from lung RNA of a duck infected with highly pathogenic avian influenza virus A/Vietnam/1203/04 (H5N1), or lung and intestine RNA of a duck infected with low pathogenic avian influenza A/mallard/BC/500/05 (H5N2) compared to a mock-infected duck. Sequencing of 1687 clones identified a transcription profile enriched in genes involved in antiviral defense and other cellular processes. Major histocompatibility complex class I (MHC I), interferon induced protein with tricopeptide repeats 5 (IFIT5), and 2′–5′oligoadenylate synthetase-like gene (OASL) were increased more than 1000-fold in relative transcript abundance in duck lung at 1 dpi with highly pathogenic VN1203. These genes were induced much less in lung or intestine following infection with low pathogenic BC500. The expression of these genes following infection suggests that ducks initiate an immediate and robust response to a potentially lethal influenza strain, and a minimal response a low pathogenic strain. PMID:22534314
Characterization of Breast Cancer Cell Death Induced by Interferons and Retinoids
1999-07-01
treated cells. Cells were treated for 48 hr, before RNA extraction . Figure 4: Expression of GRIM-I in different mouse tissues. A multiple tissue...knockout approach (12). In this teria were scraped from the plates, and plasmid DNA was extracted and purified approach specific cell death-associated genes...ml), and Hirt DNA extracts intracellular redox regulatory enzyme (16). We show that cel- were prepared (22). DNA was digested with DpnI and
Kalunian, K C
2016-09-01
Clinical trials of investigational agents in systemic lupus erythematosus (SLE) have focused on targeting dysregulated B and T cells; however, recent translational research findings of the importance of the dysregulation of the innate immune system in SLE have led to clinical trials that target interferon. Three biologics that target type I interferons have been tested for their efficacy and safety in active SLE patients; these phase II trials have tested the hypothesis that down-regulation of interferon-regulated gene expression (the interferon signature) lessen the clinical burden of SLE. Rontalizumab, an anti-interferon-α monoclonal antibody, was studied in patients who had discontinued immunosuppressants. This study failed to show efficacy as assessed by both two outcome assessments; however, in low interferon signature patients, response was higher and corticosteroid usage was less in rontalizumab-treated patients. Sifalimumab, another anti-interferon-α monoclonal antibody, was studied in patients who remained on standard of care therapy. This study showed significantly better efficacy in patients treated with two sifalimumab dosages; significant differences were seen in the high interferon signature group. In a similar design and in a similar population as the sifalimumab study, anifrolumab, a monoclonal antibody that binds to a type I interferon receptor, was studied in patients who remained on standard of care therapy. In this study, one dosage group demonstrated efficacy and statistically significant effects were achieved in both tested dosage groups with secondary end points. Oral corticosteroid reduction to ≤7.5 mg daily was achieved in one of the tested dosage groups and organ-specific outcomes were significantly improved in that same group. For all studies, no significant differences in serious adverse effects were seen; although, herpes zoster infections were increased in sifalimumab- and anifrolumab-treated patients and influenza rates were increased in anifrolumab-treated patients. Anifrolumab is currently in pivotal phase III studies. Data appear to support the concept that targeting type I interferon in SLE patients associates with clinical efficacy and safety. Further data are forthcoming from ongoing phase III clinical trials of anifrolumab. Other drug development efforts should be considered that target plasmacytoid dendritic cells and toll like receptors given the effects these components have on interferon production. © The Author(s) 2016.
Martín, V; Pascual, E; Avia, M; Rangel, G; de Molina, A; Alejo, A; Sevilla, N
2016-01-06
Ovine interferon tau (IFN-τ) is a unique type I interferon with low toxicity and a broad host range in vivo. We report the generation of a nonreplicative recombinant adenovirus expressing biologically active IFN-τ. Using the B6.A2G-Mx1 mouse model, we showed that single-dose intranasal administration of recombinant Ad5-IFN-τ can effectively prevent lethality and disease induced by highly virulent hv-PR8 influenza virus by activating the interferon response and preventing viral replication. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H.; Blesso, Christopher N.; Fernandez, Maria Luz
2017-01-01
To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group (p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group (p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls (p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver. PMID:28640194
Almatrafi, Manal Mused; Vergara-Jimenez, Marcela; Murillo, Ana Gabriela; Norris, Gregory H; Blesso, Christopher N; Fernandez, Maria Luz
2017-06-22
To investigate the mechanisms by which Moringa oleifera leaves (ML) modulate hepatic lipids, guinea pigs were allocated to either control (0% ML), 10% Low Moringa (LM) or 15% High Moringa (HM) diets with 0.25% dietary cholesterol to induce hepatic steatosis. After 6 weeks, guinea pigs were sacrificed and liver and plasma were collected to determine plasma lipids, hepatic lipids, cytokines and the expression of genes involved in hepatic cholesterol (CH) and triglyceride (TG) metabolism. There were no differences in plasma lipids among groups. A dose-response effect of ML was observed in hepatic lipids (CH and TG) with the lowest concentrations in the HM group ( p < 0.001), consistent with histological evaluation of lipid droplets. Hepatic gene expression of diglyceride acyltransferase-2 and peroxisome proliferator activated receptor-γ, as well as protein concentrations interleukin (IL)-1β and interferon-γ, were lowest in the HM group ( p < 0.005). Hepatic gene expression of cluster of differentiation-68 and sterol regulatory element binding protein-1c were 60% lower in both the LM and HM groups compared to controls ( p < 0.01). This study demonstrates that ML may prevent hepatic steatosis by affecting gene expression related to hepatic lipids synthesis resulting in lower concentrations of cholesterol and triglycerides and reduced inflammation in the liver.
Characterization and anti-inflammation role of swine IFITM3 gene
Li, He-Ping; Chen, Pei-Ge; Liu, Fu-Tao; Zhu, He-Shui; Jiao, Xian-Qin; Zhong, Kai; Guo, Yu-Jie; Zha, Guang-Ming; Han, Li-Qiang; Lu, Wei-Fei; Wang, Yue-Ying; Yang, Guo-Yu
2017-01-01
IFITM3 is involved in cell adhesion, apoptosis, immune, and antivirus activity. Furthermore, IFITM3 gene has been considered as a preferential marker for inflammatory diseases, and positive correlation to pathological grades. Therefore, we assumed that IFITM3 was regulated by different signal pathways. To better understand IFITM3 function in inflammatory response, we cloned swine IFITM3 gene, and detected IFITM3 distribution in tissues, as well as characterized this gene. Results indicated that the length of swine IFITM3 gene was 438 bp, encoding 145 amino acids. IFITM3 gene expression abundance was higher in spleen and lungs. Moreover, we next constructed the eukaryotic expression vector PBIFM3 and transfected into PK15 cells, finally obtained swine IFITM3 gene stable expression cell line. Meanwhile, we explored the effects of LPS on swine IFITM3 expression. Results showed that LPS increased IFITM3 mRNA abundance and exhibited time-dependent effect for LPS treatment. To further demonstrate the mechanism that IFITM3 regulated type I IFNs production, we also detected the important molecules expression of TLR4 signaling pathway. In transfected and non-transfected IFITM3 PK15 cells, LPS exacerbated the relative expression of TLR4-NFκB signaling molecules. However, the IFITM3 overexpression suppressed the inflammatory development of PK15 cells. In conclusion, these data indicated that the overexpression of swine IFITM3 could decrease the inflammatory response through TLR4 signaling pathway, and participate in type I interferon production. These findings may lead to an improved understanding of the biological function of IFITM3 in inflammation. PMID:29088728
The structure of the human interferon alpha/beta receptor gene.
Lutfalla, G; Gardiner, K; Proudhon, D; Vielh, E; Uzé, G
1992-02-05
Using the cDNA coding for the human interferon alpha/beta receptor (IFNAR), the IFNAR gene has been physically mapped relative to the other loci of the chromosome 21q22.1 region. 32,906 base pairs covering the IFNAR gene have been cloned and sequenced. Primer extension and solution hybridization-ribonuclease protection have been used to determine that the transcription of the gene is initiated in a broad region of 20 base pairs. Some aspects of the polymorphism of the gene, including noncoding sequences, have been analyzed; some are allelic differences in the coding sequence that induce amino acid variations in the resulting protein. The exon structure of the IFNAR gene and of that of the available genes for the receptors of the cytokine/growth hormone/prolactin/interferon receptor family have been compared with the predictions for the secondary structure of those receptors. From this analysis, we postulate a common origin and propose an hypothesis for the divergence from the immunoglobulin superfamily.
Xu, Jinfang; Qian, Ping; Wu, Qunfeng; Liu, Shasha; Fan, Wenchun; Zhang, Keshan; Wang, Rong; Zhang, Huawei; Chen, Huanchun; Li, Xiangmin
2014-09-01
The interferon-induced transmembrane protein 3 (IFITM3) is a widely expressed potent antiviral effector of the host innate immune system. It restricts a diverse group of pathogenic, enveloped viruses, by interfering with endosomal fusion. In this report, the swine IFITM3 (sIFITM3) gene was cloned. It shares the functionally conserved CD225 domain and multiple critical amino acid residues (Y19, F74, F77, R86 and Y98) with its human ortholog, which are essential for antiviral activity. Ectopic expression of sIFITM3 significantly inhibited non-enveloped foot-and-mouth disease virus (FMDV) infection in BHK-21 cells. Furthermore, sIFITM3 blocked FMDV infection at early steps in the virus life cycle by disrupting viral attachment to the host cell surface. Importantly, inoculation of 2-day-old suckling mice with a plasmid expressing sIFITM3 conferred protection against lethal challenge with FMDV. These results suggest that sIFITM3 is a promising antiviral agent and that can safeguard the host from infection with FMDV. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhou, Weichen; Ma, Yanyun; Zhang, Jun; Hu, Jingyi; Zhang, Menghan; Wang, Yi; Li, Yi; Wu, Lijun; Pan, Yida; Zhang, Yitong; Zhang, Xiaonan; Zhang, Xinxin; Zhang, Zhanqing; Zhang, Jiming; Li, Hai; Lu, Lungen; Jin, Li; Wang, Jiucun; Yuan, Zhenghong; Liu, Jie
2017-11-01
Liver biopsy is the gold standard to assess pathological features (eg inflammation grades) for hepatitis B virus-infected patients although it is invasive and traumatic; meanwhile, several gene profiles of chronic hepatitis B (CHB) have been separately described in relatively small hepatitis B virus (HBV)-infected samples. We aimed to analyse correlations among inflammation grades, gene expressions and clinical parameters (serum alanine amino transaminase, aspartate amino transaminase and HBV-DNA) in large-scale CHB samples and to predict inflammation grades by using clinical parameters and/or gene expressions. We analysed gene expressions with three clinical parameters in 122 CHB samples by an improved regression model. Principal component analysis and machine-learning methods including Random Forest, K-nearest neighbour and support vector machine were used for analysis and further diagnosis models. Six normal samples were conducted to validate the predictive model. Significant genes related to clinical parameters were found enriching in the immune system, interferon-stimulated, regulation of cytokine production, anti-apoptosis, and etc. A panel of these genes with clinical parameters can effectively predict binary classifications of inflammation grade (area under the ROC curve [AUC]: 0.88, 95% confidence interval [CI]: 0.77-0.93), validated by normal samples. A panel with only clinical parameters was also valuable (AUC: 0.78, 95% CI: 0.65-0.86), indicating that liquid biopsy method for detecting the pathology of CHB is possible. This is the first study to systematically elucidate the relationships among gene expressions, clinical parameters and pathological inflammation grades in CHB, and to build models predicting inflammation grades by gene expressions and/or clinical parameters as well. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Penski, Nicola; Härtle, Sonja; Rubbenstroth, Dennis; Krohmann, Carsten; Ruggli, Nicolas; Schusser, Benjamin; Pfann, Michael; Reuter, Antje; Gohrbandt, Sandra; Hundt, Jana; Veits, Jutta; Breithaupt, Angele; Kochs, Georg; Stech, Jürgen; Summerfield, Artur; Vahlenkamp, Thomas; Kaspers, Bernd; Staeheli, Peter
2011-01-01
From infection studies with cultured chicken cells and experimental mammalian hosts, it is well known that influenza viruses use the nonstructural protein 1 (NS1) to suppress the synthesis of interferon (IFN). However, our current knowledge regarding the in vivo role of virus-encoded NS1 in chickens is much more limited. Here, we report that highly pathogenic avian influenza viruses of subtypes H5N1 and H7N7 lacking fully functional NS1 genes were attenuated in 5-week-old chickens. Surprisingly, in diseased birds infected with NS1 mutants, the IFN levels were not higher than in diseased birds infected with wild-type virus, suggesting that NS1 cannot suppress IFN gene expression in at least one cell population of infected chickens that produces large amounts of the cytokine in vivo. To address the question of why influenza viruses are highly pathogenic in chickens although they strongly activate the innate immune system, we determined whether recombinant chicken alpha interferon (IFN-α) can inhibit the growth of highly pathogenic avian influenza viruses in cultured chicken cells and whether it can ameliorate virus-induced disease in 5-week-old birds. We found that IFN treatment failed to confer substantial protection against challenge with highly pathogenic viruses, although it was effective against viruses with low pathogenic potential. Taken together, our data demonstrate that preventing the synthesis of IFN is not the primary role of the viral NS1 protein during infection of chickens. Our results further suggest that virus-induced IFN does not contribute substantially to resistance of chickens against highly pathogenic influenza viruses. PMID:21613402
Wang, Yang; McGivern, David R; Cheng, Liang; Li, Guangming; Lemon, Stanley M; Niu, Junqi; Su, Lishan; Reszka-Blanco, Natalia J
2015-01-01
Ribavirin is used as a component of combination therapies for the treatment of chronic hepatitis C virus (HCV) infection together with pegylated interferon and/or direct-acting antiviral drugs. Its mechanism of action, however, is not clear. Direct antiviral activity and immunomodulatory functions have been implicated. Plasmacytoid dendritic cells (pDCs) are the principal source of type 1 interferon during viral infection. The interaction of pDCs with HCV-infected hepatocytes is the subject of intense recent investigation, but the effect of ribavirin on pDC activation has not been evaluated. In this study we showed that ribavirin augments toll-like receptors 7 and 9-mediated IFNα/β expression from pDCs and up-regulated numerous interferon-stimulated genes. Using the H77S.3 HCV infection and replication system, we showed that ribavirin enhanced the ability of activated pDCs to inhibit HCV replication, correlated with elevated induction of IFNα. Our findings provide novel evidence that ribavirin contributes to HCV inhibition by augmenting pDCs-derived type 1 IFN production.
Wang, Yang; McGivern, David R; Cheng, Liang; Li, Guangming; Lemon, Stanley M; Niu, Junqi; Su, Lishan; Reszka-Blanco, Natalia J
2015-01-01
Ribavirin is used as a component of combination therapies for the treatment of chronic hepatitis C virus (HCV) infection together with pegylated interferon and/or direct-acting antiviral drugs. Its mechanism of action, however, is not clear. Direct antiviral activity and immunomodulatory functions have been implicated. Plasmacytoid dendritic cells (pDCs) are the principal source of type 1 interferon during viral infection. The interaction of pDCs with HCV-infected hepatocytes is the subject of intense recent investigation, but the effect of ribavirin on pDC activation has not been evaluated. In this study we showed that ribavirin augments toll-like receptors 7 and 9-mediated IFNα/β expression from pDCs and up-regulated numerous interferon-stimulated genes. Using the H77S.3 HCV infection and replication system, we showed that ribavirin enhanced the ability of activated pDCs to inhibit HCV replication, correlated with elevated induction of IFNα. Our findings provide novel evidence that ribavirin contributes to HCV inhibition by augmenting pDCs-derived type 1 IFN production. PMID:26274905
The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon.
Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K; Alcami, Antonio
2010-05-01
Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.
Li, Qunfang; Tang, Lin; Roberts, Paul Christopher; Kraniak, Janice M.; Fridman, Aviva Levine; Kulaeva, Olga I.; Tehrani, Omid S.; Tainsky, Michael A.
2013-01-01
Cellular immortalization is one of the prerequisite steps in carcinogenesis. By gene expression profiling, we have found that genes in the interferon (IFN) pathway were dysregulated during the spontaneous cellular immortalization of fibroblasts from Li-Fraumeni syndrome (LFS) patients with germ-line mutations in p53. IFN signaling pathway genes were down-regulated by epigenetic silencing during immortalization, and some of these same IFN-regulated genes were activated during replicative senescence. Bisulfite sequencing of the promoter regions of two IFN regulatory transcription factors (IRF5 and IRF7) revealed that IRF7, but not IRF5, was epigenetically silenced by methylation of CpG islands in immortal LFS cells. The induction of IRF7 gene by IFNα in immortal LFS cells was potentiated by pretreatment with the demethylation agent 5-aza-2′-deoxycytidine. Overexpression of IRF5 and IRF7 revealed that they can act either alone or in tandem to activate other IFN-regulated genes. In addition, they serve to inhibit the proliferation rate and induce a senescence-related phenotype in immortal LFS cells. Furthermore, polyinosinic:polycytidylic acid treatment of the IRF-overexpressing cells showed a more rapid induction of several IFN-regulated genes. We conclude that the epigenetic inactivation of the IFN pathway plays a critical role in cellular immortalization, and the reactivation of IFN-regulated genes by transcription factors IRF5 and/or IRF7 is sufficient to induce cellular senescence. The IFN pathway may provide valuable molecular targets for therapeutic interventions at early stages of cancer development. PMID:18505922
Li, Qunfang; Tang, Lin; Roberts, Paul Christopher; Kraniak, Janice M; Fridman, Aviva Levine; Kulaeva, Olga I; Tehrani, Omid S; Tainsky, Michael A
2008-05-01
Cellular immortalization is one of the prerequisite steps in carcinogenesis. By gene expression profiling, we have found that genes in the interferon (IFN) pathway were dysregulated during the spontaneous cellular immortalization of fibroblasts from Li-Fraumeni syndrome (LFS) patients with germ-line mutations in p53. IFN signaling pathway genes were down-regulated by epigenetic silencing during immortalization, and some of these same IFN-regulated genes were activated during replicative senescence. Bisulfite sequencing of the promoter regions of two IFN regulatory transcription factors (IRF5 and IRF7) revealed that IRF7, but not IRF5, was epigenetically silenced by methylation of CpG islands in immortal LFS cells. The induction of IRF7 gene by IFNalpha in immortal LFS cells was potentiated by pretreatment with the demethylation agent 5-aza-2'-deoxycytidine. Overexpression of IRF5 and IRF7 revealed that they can act either alone or in tandem to activate other IFN-regulated genes. In addition, they serve to inhibit the proliferation rate and induce a senescence-related phenotype in immortal LFS cells. Furthermore, polyinosinic:polycytidylic acid treatment of the IRF-overexpressing cells showed a more rapid induction of several IFN-regulated genes. We conclude that the epigenetic inactivation of the IFN pathway plays a critical role in cellular immortalization, and the reactivation of IFN-regulated genes by transcription factors IRF5 and/or IRF7 is sufficient to induce cellular senescence. The IFN pathway may provide valuable molecular targets for therapeutic interventions at early stages of cancer development.
Salvesen, Ø; Reiten, M R; Espenes, A; Bakkebø, M K; Tranulis, M A; Ersdal, C
2017-05-22
The cellular prion protein (PrP C ) is an evolutionary conserved protein abundantly expressed not only in the central nervous system but also peripherally including the immune system. A line of Norwegian dairy goats naturally devoid of PrP C (PRNP Ter/Ter ) provides a novel model for studying PrP C physiology. In order to explore putative roles for PrP C in acute inflammatory responses, we performed a lipopolysaccharide (LPS, Escherichia coli O26:B6) challenge of 16 goats (8 PRNP +/+ and 8 PRNP Ter/Ter ) and included 10 saline-treated controls (5 of each PRNP genotype). Clinical examinations were performed continuously, and blood samples were collected throughout the trial. Genome-wide transcription profiles of the choroid plexus, which is at the blood-brain interface, and the hippocampus were analyzed by RNA sequencing, and the same tissues were histologically evaluated. All LPS-treated goats displayed clinical signs of sickness behavior, which were of significantly (p < 0.01) longer duration in animals without PrP C . In the choroid plexus, a substantial alteration of the transcriptome and activation of Iba1-positive cells were observed. This response included genotype-dependent differential expression of several genes associated with the immune response, such as ISG15, CXCL12, CXCL14, and acute phase proteins, among others. Activation of cytokine-responsive genes was skewed towards a more profound type I interferon response, and a less obvious type II response, in PrP C -deficient goats. The magnitude of gene expression in response to LPS was smaller in the hippocampus than in the choroid plexus. Resting state expression profiles revealed a few differences between the PRNP genotypes. Our data suggest that PrP C acts as a modulator of certain pathways of innate immunity signaling, particularly downstream of interferons, and probably contributes to protection of vulnerable tissues against inflammatory damage.
Inorganic arsenic represses interleukin-17A expression in human activated Th17 lymphocytes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morzadec, Claudie; Macoch, Mélinda; Robineau, Marc
2012-08-01
Trivalent inorganic arsenic [As(III)] is an efficient anticancer agent used to treat patients suffering from acute promyelocytic leukemia. Recently, experimental studies have clearly demonstrated that this metalloid can also cure lymphoproliferative and/or pro-inflammatory syndromes in different murine models of chronic immune-mediated diseases. T helper (Th) 1 and Th17 lymphocytes play a central role in development of these diseases, in mice and humans, especially by secreting the potent pro-inflammatory cytokine interferon-γ and IL-17A, respectively. As(III) impairs basic functions of human T cells but its ability to modulate secretion of pro-inflammatory cytokines by differentiated Th lymphocytes is unknown. In the present study,more » we demonstrate that As(III), used at concentrations clinically achievable in plasma of patients, has no effect on the secretion of interferon-γ from Th1 cells but almost totally blocks the expression and the release of IL-17A from human Th17 lymphocytes co-stimulated for five days with anti-CD3 and anti-CD28 antibodies, in the presence of differentiating cytokines. In addition, As(III) specifically reduces mRNA levels of the retinoic-related orphan receptor (ROR)C gene which encodes RORγt, a key transcription factor controlling optimal IL-17 expression in fully differentiated Th17 cells. The metalloid also blocks initial expression of IL-17 gene induced by the co-stimulation, probably in part by impairing activation of the JNK/c-Jun pathway. In conclusion, our results demonstrate that As(III) represses expression of the major pro-inflammatory cytokine IL-17A produced by human Th17 lymphocytes, thus strengthening the idea that As(III) may be useful to treat inflammatory immune-mediated diseases in humans. -- Highlights: ► Arsenic inhibits secretion of IL-17A from human naïve and memory Th17 lymphocytes. ► Arsenic represses early expression of IL-17A gene in human activated T lymphocytes. ► Arsenic interferes with activation of the JNK/c-Jun pathway in human T lymphocytes.« less
Shahera, Umme; Munshi, Saifullah; Jahan, Munira; Nessa, Afzalun; Alam, Shahinul; Tabassum, Shahina
2016-01-01
Elucidating differences in gene expression may be useful in understanding the molecular pathogenesis and for developing specific markers for the outcome of hepatitis B virus (HBV) infection. In the present study, expressions of host gene interferon gamma-inducible protein (IP-10), p53, and Foxp3 were studied in hepatocytes of patients with chronic HBV infection to determine a possible link between selected host gene expression and the outcome of HBV infection. The study was conducted in 60 patients with chronic HBV infection and they were divided into four groups: HBV-positive cirrhosis (n = 15), HBV-negative cirrhosis (n = 15), HBV-positive hepatocellular carcinoma (HCC) (n = 15) and HBV-negative HCC (n = 15). Total messenger ribonucleic acid (mRNA) extraction was done followed by complementary deoxyribonucleic acid (cDNA) synthesis, and finally gene expression was performed using real-time polymerase chain reaction (PCR) technique. IP-10 and p53 gene expressions were lower in HBV-positive cirrhosis, and Foxp3 gene expression was upregulated in HBV-positive cirrhosis in comparison to HBV-negative cirrhosis. The expressions of all the three genes were upregulated among HBV-positive HCC in comparison to HBV-negative HCC. The expression of IP-10, p53, and Foxp3 genes was upregulated in HBV-positive HCC in comparison to HBV-positive cirrhosis. This study indicates that there are variations in the expression of the selected genes among cirrhosis and HCC patients with or without HBV. All the three selected genes were more or less upregulated in HBV-positive HCC patients, but only Foxp3 expression was upregulated in HBV-positive cirrhosis. These three particular genes may have a role in the molecular pathogenesis and clinical outcome of HBV-positive cirrhosis and HCC patients. These aspects need further evaluation by studies with larger numbers of cirrhosis and HCC patients. Shahera U, Munshi S, Jahan M, Nessa A, Alam S, Tabassum S. IP-10, p53, and Foxp3 Expression in Hepatocytes of Chronic Hepatitis B Patients with Cirrhosis and Hepatocellular Carcinoma. Euroasian J Hepato-Gastroenterol 2016;6(2):149-153.
Paijo, Jennifer; Döring, Marius; Spanier, Julia; Grabski, Elena; Nooruzzaman, Mohammed; Schmidt, Tobias; Witte, Gregor; Messerle, Martin; Hornung, Veit; Kaever, Volkhard; Kalinke, Ulrich
2016-01-01
Human cytomegalovirus (HCMV) infections of healthy individuals are mostly unnoticed and result in viral latency. However, HCMV can also cause devastating disease, e.g., upon reactivation in immunocompromised patients. Yet, little is known about human immune cell sensing of DNA-encoded HCMV. Recent studies indicated that during viral infection the cyclic GMP/AMP synthase (cGAS) senses cytosolic DNA and catalyzes formation of the cyclic di-nucleotide cGAMP, which triggers stimulator of interferon genes (STING) and thus induces antiviral type I interferon (IFN-I) responses. We found that plasmacytoid dendritic cells (pDC) as well as monocyte-derived DC and macrophages constitutively expressed cGAS and STING. HCMV infection further induced cGAS, whereas STING expression was only moderately affected. Although pDC expressed particularly high levels of cGAS, and the cGAS/STING axis was functional down-stream of STING, as indicated by IFN-I induction upon synthetic cGAMP treatment, pDC were not susceptible to HCMV infection and mounted IFN-I responses in a TLR9-dependent manner. Conversely, HCMV infected monocyte-derived cells synthesized abundant cGAMP levels that preceded IFN-I production and that correlated with the extent of infection. CRISPR/Cas9- or siRNA-mediated cGAS ablation in monocytic THP-1 cells and primary monocyte-derived cells, respectively, impeded induction of IFN-I responses following HCMV infection. Thus, cGAS is a key sensor of HCMV for IFN-I induction in primary human monocyte-derived DC and macrophages. PMID:27058035
Zhao, Hongjing; Ma, Jian; Wang, Yu; Liu, Juanjuan; Shao, Yizhi; Li, Jinglun; Jiang, Guangshun; Xing, Mingwei
2017-12-01
Interferon has a broad-spectrum of antiviral effects and represents an ideal choice for the development of antiviral drugs. Nonetheless, information about alpha interferon (IFN-α) is vacant in Amur tiger (Panthera tigris altaica), an endangered species and indigenous to northeast Asia. Herein, 11 PtIFN-αs genes, which encoded proteins of 164-165 amino acids, were amplified. Afterwards, expression and purification were conducted in Escherichia coli. In physicochemical analysis, PtIFN-αs were shown to be highly sensitive to trypsin and remained stable despite changes in pH and temperature. In feline kidney cells (F81)/vesicular stomatitis virus (VSV)/canine distemper virus (CDV)/avian influenza virus (AIV) systems, PtIFN-αs were demonstrated to have distinct antiviral activities, some of them (PtIFN-α and PtIFN-α9) inhibited viral transcription levels more effectively than the other subtypes including Felis catus IFN-α, an effective therapeutic agent used for viral infections clinically. Additionally, PtIFN-α and PtIFN-α9 can up-regulate the transcription and expression of p53, a tumor suppressor factor, which could promote apoptosis of virus-infected cells. In conclusion, we cloned and expressed 11 subtypes of PtIFN-α for the first time. Furthermore, PtIFN-α and PtIFN-α9 were likely to be more efficient against both chronic viral infections and neoplastic diseases that affect the Amur tiger population. It will be of significant importance for further studies to protect this endangered species. Copyright © 2017. Published by Elsevier Ltd.
Genetic Contributions of Inflammation to Depression
Barnes, Jacob; Mondelli, Valeria; Pariante, Carmine M
2017-01-01
This paper describes the effects of immune genes genetic variants and mRNA expression on depression's risk, severity, and response to antidepressant treatment, through a systematic review on all papers published between 2000 and 2016. Our results, based largely on case–control studies, suggest that common genetic variants and gene-expression pathways are involved in both immune activation and depression. The most replicated and relevant genetic variants include polymorphisms in the genes for interleukin (IL)-1β, IL-6, IL-10, monocyte chemoattractant protein-1, tumor necrosis factor-alpha, C-reactive protein, and phospholipase A2. Moreover, increased blood cytokines mRNA expression (especially of IL-1β) identifies patients that are less likely to respond to conventional antidepressants. However, even for the most replicated findings there are inconsistent results, not only between studies, but also between the immune effects of the genetic variants and the resulting effects on depression. We find evidence that these discrepant findings may be explained, at least in part, by the heterogeneity of the depression immunophenotype, by environmental influences and gene × environment interactions, and by the complex interfacing of genetic variants with gene expression. Indeed, some of the most robust findings have been obtained in patients developing depression in the context of treatment with interferon-alpha, a widely used model to mimic depression in the context of inflammation. Further ‘omics' approaches, through GWAS and transcriptomics, will finally shed light on the interaction between immune genes, their expression, and the influence of the environment, in the pathogenesis of depression. PMID:27555379
Karam, Rehab A; Rezk, Noha A; Amer, Mona M; Fathy, Hala A
2016-09-01
Interferon (IFN)-β is one of the disease modifying drugs used in the treatment of multiple sclerosis. A predictive marker that indicates good or poor response to the treatment is highly desirable. We aimed to investigate the relation between the immune response genes receptors (IFNAR1, IFNAR2, and CCR5) expression and their polymorhic variants and multiple sclerosis (MS) susceptibility as well as the response to IFN-β therapy. The immune response genes receptors expression and genotyping were analyzed in 80 patients with MS, treated with IFN-β and in 110 healthy controls. There was a significant decrease of IFNAR1 and IFNAR2 mRNA expression and a significant increase of CCR5 mRNA expression in MS patients compared with the control group. Also, the level of IFNAR1, IFNAR2, and CCR5 mRNA expression was found to be significantly lower in the responders than nonresponders. Carriers of IFNAR1 18417 C/C genotype and C allele had an increased risk of developing MS. There was a significant relation between CCR5 Δ32 allele and IFN-β treatment response in MS patients. Our results highlighted the significance of IFNAR and CCR5 genes in multiple sclerosis risk and the response to IFN-β therapy. © 2016 IUBMB Life, 68(9):727-734, 2016. © 2016 International Union of Biochemistry and Molecular Biology.
Vaccari, Monica; Fenizia, Claudio; Ma, Zhong-Min; Hryniewicz, Anna; Boasso, Adriano; Doster, Melvin N; Miller, Christopher J; Lindegardh, Niklas; Tarning, Joel; Landay, Alan L; Shearer, Gene M; Franchini, Genoveffa
2014-04-01
Simian immunodeficiency virus (SIV) infection leads to AIDS in experimentally infected Rhesus macaques similarly to HIV-infected humans. In contrast, SIV infection of natural hosts is characterized by a down-regulation of innate acute responses to the virus within a few weeks of infection and results in limited pathology. Chloroquine (CQ) has been used in the treatment or prevention of malaria and has recently been shown to cause a decrease of immune activation and CD4 cell loss in HIV-infected individuals treated with antiretroviral therapy. Here, we treated Rhesus macaques with CQ during the acute phase of SIVmac251 infection with the intent to decrease viral-induced immune activation and possibly limit disease progression. Contrary to what was expected, CQ treatment resulted in a temporary increased expression of interferon (IFN)-stimulating genes and it worsened the recovery of CD4(+) T cells in the blood. Our findings confirm recent results observed in asymptomatic HIV-infected patients and suggest that CQ does not provide an obvious benefit in the absence of antiretroviral therapy.
Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency.
Maglione, Paul J; Cols, Montserrat; Cunningham-Rundles, Charlotte
2017-10-05
Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches.
Dysregulation of Innate Lymphoid Cells in Common Variable Immunodeficiency
Maglione, Paul J.; Cols, Montserrat
2018-01-01
Common variable immunodeficiency (CVID) is the most prevalent symptomatic primary immune deficiency. With widespread use of immunoglobulin replacement therapy, non-infectious complications, such as autoimmunity, chronic intestinal inflammation, and lung disease, have replaced infections as the major cause of morbidity and mortality in this immune deficiency. The pathogenic mechanisms that underlie the development of these complications in CVID are not known; however, there have been numerous associated laboratory findings. Among the most intriguing of these associations is elevation of interferon signature genes in CVID patients with inflammatory/autoimmune complications, as a similar gene expression profile is found in systemic lupus erythematosus and other chronic inflammatory diseases. Linked with this heightened interferon signature in CVID is an expansion of circulating IFN-γ-producing innate lymphoid cells. Innate lymphoid cells are key regulators of both protective and pathogenic immune responses that have been extensively studied in recent years. Further exploration of innate lymphoid cell biology in CVID may uncover key mechanisms underlying the development of inflammatory complications in these patients and may inspire much needed novel therapeutic approaches. PMID:28983810
Howard, Leigh M; Hoek, Kristen L; Goll, Johannes B; Samir, Parimal; Galassie, Allison; Allos, Tara M; Niu, Xinnan; Gordy, Laura E; Creech, C Buddy; Prasad, Nripesh; Jensen, Travis L; Hill, Heather; Levy, Shawn E; Joyce, Sebastian; Link, Andrew J; Edwards, Kathryn M
2017-01-01
Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18-49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. ClinicalTrials.gov NCT01573312.
Samir, Parimal; Galassie, Allison; Allos, Tara M.; Niu, Xinnan; Gordy, Laura E.; Creech, C. Buddy; Prasad, Nripesh; Jensen, Travis L.; Hill, Heather; Levy, Shawn E.; Joyce, Sebastian; Link, Andrew J.; Edwards, Kathryn M.
2017-01-01
Background Vaccine development for influenza A/H5N1 is an important public health priority, but H5N1 vaccines are less immunogenic than seasonal influenza vaccines. Adjuvant System 03 (AS03) markedly enhances immune responses to H5N1 vaccine antigens, but the underlying molecular mechanisms are incompletely understood. Objective and Methods We compared the safety (primary endpoint), immunogenicity (secondary), gene expression (tertiary) and cytokine responses (exploratory) between AS03-adjuvanted and unadjuvanted inactivated split-virus H5N1 influenza vaccines. In a double-blinded clinical trial, we randomized twenty adults aged 18–49 to receive two doses of either AS03-adjuvanted (n = 10) or unadjuvanted (n = 10) H5N1 vaccine 28 days apart. We used a systems biology approach to characterize and correlate changes in serum cytokines, antibody titers, and gene expression levels in six immune cell types at 1, 3, 7, and 28 days after the first vaccination. Results Both vaccines were well-tolerated. Nine of 10 subjects in the adjuvanted group and 0/10 in the unadjuvanted group exhibited seroprotection (hemagglutination inhibition antibody titer > 1:40) at day 56. Within 24 hours of AS03-adjuvanted vaccination, increased serum levels of IL-6 and IP-10 were noted. Interferon signaling and antigen processing and presentation-related gene responses were induced in dendritic cells, monocytes, and neutrophils. Upregulation of MHC class II antigen presentation-related genes was seen in neutrophils. Three days after AS03-adjuvanted vaccine, upregulation of genes involved in cell cycle and division was detected in NK cells and correlated with serum levels of IP-10. Early upregulation of interferon signaling-related genes was also found to predict seroprotection 56 days after first vaccination. Conclusions Using this cell-based systems approach, novel mechanisms of action for AS03-adjuvanted pandemic influenza vaccination were observed. Trial Registration ClinicalTrials.gov NCT01573312 PMID:28099485
NASA Astrophysics Data System (ADS)
Yan, Li; Liu, Xiao; Liu, Wei-Xia; Tan, Xiao-Qiu; Xiong, Fei; Gu, Ning; Hao, Wei; Gao, Xue; Cao, Ji-Min
2015-12-01
Superparamagnetic iron oxide nanoparticles (SPIONs) are promising nanomaterials in medical practice due to their special magnetic characteristics and nanoscale size. However, their potential impacts on immune cells are not well documented. This study aims to investigate the effects of Fe2O3 nanoparticles (Fe2O3-NPs) on the electrophysiology of Kv1.3 channels in Jurkat T cells. Using the whole-cell patch-clamp technique, we demonstrate that incubation of Jurkat cells with Fe2O3-NPs dose- and time-dependently decreased the current density and shifted the steady-state inactivation curve and the recovery curve of Kv1.3 channels to a rightward direction. Fe2O3-NPs increased the NADP level but decreased the NADPH level of Jurkat cells. Direct induction of NADPH into the cytosole of Jurkat cells via the pipette abolished the rightward shift of the inactivation curve. In addition, transmission electron microscopy showed that Fe2O3-NPs could be endocytosed by Jurkat cells with relatively low speed and capacity. Fe2O3-NPs did not significantly affect the viability of Jurkat cells, but suppressed the expressions of certain cytokines (TNFα, IFNγ and IL-2) and interferon responsive genes (IRF-1 and PIM-1), and the time courses of Fe2O3-NPs endocytosis and effects on the expressions of cytokines and interferon responsive genes were compatible. We conclude that Fe2O3-NPs can be endocytosed by Jurkat cells and act intracellularly. Fe2O3-NPs decrease the current density and delay the inactivation and recovery kinetics of Kv1.3 channels in Jurkat cells by oxidizing NADPH and therefore disrupting the redox activity of the Kvβ2 auxiliary subunit, and as a result, lead to changes of the Kv1.3 channel function. These results suggest that iron oxide nanoparticles may affect T cell function by disturbing the activity of Kv1.3 channels. Further, the suppressing effects of Fe2O3-NPs on the expressions of certain inflammatory cytokines and interferon responsive genes suggest that iron oxide nanoparticles may exert modulatory effects on T cell immune activities and anti-inflammation effects.
Vaghjiani, Vijesh; Cain, Jason E; Lee, William; Vaithilingam, Vijayaganapathy; Tuch, Bernard E; St John, Justin C
2017-10-15
Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.
IRF-4 and c-Rel expression in antiviral-resistant adult T-cell leukemia/lymphoma
Ramos, Juan Carlos; Ruiz, Phillip; Ratner, Lee; Reis, Isildinha M.; Brites, Carlos; Pedroso, Celia; Byrne, Gerald E.; Toomey, Ngoc L.; Andela, Valentine; Harhaj, Edward W.; Lossos, Izidore S.
2007-01-01
Adult T-cell leukemia/lymphoma (ATLL) is a generally fatal malignancy. Most ATLL patients fare poorly with conventional chemotherapy; however, antiviral therapy with zidovudine (AZT) and interferon alpha (IFN-α) has produced long-term clinical remissions. We studied primary ATLL tumors and identified molecular features linked to sensitivity and resistance to antiviral therapy. Enhanced expression of the proto-oncogene c-Rel was noted in 9 of 27 tumors. Resistant tumors exhibited c-Rel (6 of 10; 60%) more often than did sensitive variants (1 of 9; 11%). This finding was independent of the disease form. Elevated expression of the putative c-Rel target, interferon regulatory factor-4 (IRF-4), was observed in 10 (91%) of 11 nonresponders and in all tested patients with c-Rel+ tumors and occurred in the absence of the HTLV-1 oncoprotein Tax. In contrast, tumors in complete responders did not express c-Rel or IRF-4. Gene rearrangement studies demonstrated the persistence of circulating T-cell clones in long-term survivors maintained on antiviral therapy. The expression of nuclear c-Rel and IRF-4 occurs in the absence of Tax in primary ATLL and is associated with antiviral resistance. These molecular features may help guide treatment. AZT and IFN-α is a suppressive rather than a curative regimen, and patients in clinical remission should remain on maintenance therapy indefinitely. PMID:17138822
Inhibition of interferon-inducible MxA protein expression by hepatitis B virus capsid protein.
Rosmorduc, O; Sirma, H; Soussan, P; Gordien, E; Lebon, P; Horisberger, M; Bréchot, C; Kremsdorf, D
1999-05-01
Chronic hepatitis B treatment has been significantly improved by interferon (IFN) treatment. However, some studies have suggested that hepatitis B virus (HBV) might have a direct effect on the resistance to IFN. Defective particles, generated by spliced HBV RNA and associated with chronic hepatitis B, have been previously characterized; expression of these particles leads to cytoplasmic accumulation of the capsid protein. The aim of this study was to investigate the role of these defective genomes in IFN resistance. The global antiviral activity of IFN was studied by virus yield reduction assays, the expression of three IFN-induced antiviral proteins was analysed by Western blotting and confocal microscopy, and the regulation of MxA gene expression was studied by Northern blotting and the luciferase assay, in Huh7 cells transfected with a complete or the defective HBV genome. Results showed that the expression of the defective genome reduces the antiviral activity of IFN and that this modulation involves a selective inhibition of MxA protein induction by the HBV capsid protein. Our results also show the trans-suppressive effect of the HBV capsid on the MxA promoter, which might participate in this phenomenon. In conclusion, this study shows a direct interplay between the IFN-sensitive pathway and the capsid protein and might implicate this defective HBV genome in virus persistence.
Ding, Hongda; Liu, Junpeng; Liu, Baiming; Zeng, Yongchao; Chen, Pengrui; Su, Yang
2018-06-12
Long noncoding RNA (LncRNA) PVT1 has recently been reported to be involved in the development of hepatocellular carcinoma (HCC) and hsigh expression of oncogenic PVT1 is associated with poor prognosis of HCC. Interferon-α (IFN-α) has been used in clinic for HCC therapy. However, whether PVT1 is involved in the IFN-α therapy for HCC is completely unknown. Our study found that high PVT1 expression in HCC cells is associated with high unmethylation in PVT1 promoter region. IFN-α treatment further increases PVT1 expression in HCC cells by enhancing H3K4me3 modification on the promoter. Furthermore, PVT1 knockdown enhances IFN-α-induced HCC cell apoptosis by promoting phosphorylation of signal transducer and activator of transcription 1 (STAT1) and upregulating IFN-stimulated genes expression. Moreover, PVT1 specifically interacts with STAT1 in HCC cells. Taken together, these results for the first time indicate that IFN-α treatment promotes oncogenic PVT1 expression in HCC cells, which interacts with STAT1 to inhibit IFN-α signaling, ultimately blocking IFN-α-induced cells apoptosis, suggesting that lncRNA PVT1 may be a potential target to improve IFN-α-mediated HCC immunotherapies. Copyright © 2018. Published by Elsevier Inc.
Peng, Xinxia; Gralinski, Lisa; Armour, Christopher D; Ferris, Martin T; Thomas, Matthew J; Proll, Sean; Bradel-Tretheway, Birgit G; Korth, Marcus J; Castle, John C; Biery, Matthew C; Bouzek, Heather K; Haynor, David R; Frieman, Matthew B; Heise, Mark; Raymond, Christopher K; Baric, Ralph S; Katze, Michael G
2010-10-26
Studies of the host response to virus infection typically focus on protein-coding genes. However, non-protein-coding RNAs (ncRNAs) are transcribed in mammalian cells, and the roles of many of these ncRNAs remain enigmas. Using next-generation sequencing, we performed a whole-transcriptome analysis of the host response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection across four founder mouse strains of the Collaborative Cross. We observed differential expression of approximately 500 annotated, long ncRNAs and 1,000 nonannotated genomic regions during infection. Moreover, studies of a subset of these ncRNAs and genomic regions showed the following. (i) Most were similarly regulated in response to influenza virus infection. (ii) They had distinctive kinetic expression profiles in type I interferon receptor and STAT1 knockout mice during SARS-CoV infection, including unique signatures of ncRNA expression associated with lethal infection. (iii) Over 40% were similarly regulated in vitro in response to both influenza virus infection and interferon treatment. These findings represent the first discovery of the widespread differential expression of long ncRNAs in response to virus infection and suggest that ncRNAs are involved in regulating the host response, including innate immunity. At the same time, virus infection models provide a unique platform for studying the biology and regulation of ncRNAs.
Peng, Xinxia; Gralinski, Lisa; Armour, Christopher D.; Ferris, Martin T.; Thomas, Matthew J.; Proll, Sean; Bradel-Tretheway, Birgit G.; Korth, Marcus J.; Castle, John C.; Biery, Matthew C.; Bouzek, Heather K.; Haynor, David R.; Frieman, Matthew B.; Heise, Mark; Raymond, Christopher K.; Baric, Ralph S.; Katze, Michael G.
2010-01-01
Studies of the host response to virus infection typically focus on protein-coding genes. However, non-protein-coding RNAs (ncRNAs) are transcribed in mammalian cells, and the roles of many of these ncRNAs remain enigmas. Using next-generation sequencing, we performed a whole-transcriptome analysis of the host response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection across four founder mouse strains of the Collaborative Cross. We observed differential expression of approximately 500 annotated, long ncRNAs and 1,000 nonannotated genomic regions during infection. Moreover, studies of a subset of these ncRNAs and genomic regions showed the following. (i) Most were similarly regulated in response to influenza virus infection. (ii) They had distinctive kinetic expression profiles in type I interferon receptor and STAT1 knockout mice during SARS-CoV infection, including unique signatures of ncRNA expression associated with lethal infection. (iii) Over 40% were similarly regulated in vitro in response to both influenza virus infection and interferon treatment. These findings represent the first discovery of the widespread differential expression of long ncRNAs in response to virus infection and suggest that ncRNAs are involved in regulating the host response, including innate immunity. At the same time, virus infection models provide a unique platform for studying the biology and regulation of ncRNAs. PMID:20978541
Type I interferon and pattern recognition receptor signaling following particulate matter inhalation
2012-01-01
Background Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc – stainless steel (GMA-SS) welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. Results The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10). In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR) and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3) were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88) to inhalation of GMA-SS. Conclusion This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure. PMID:22776377
Erdely, Aaron; Antonini, James M; Salmen-Muniz, Rebecca; Liston, Angie; Hulderman, Tracy; Simeonova, Petia P; Kashon, Michael L; Li, Shengqiao; Gu, Ja K; Stone, Samuel; Chen, Bean T; Frazer, David G; Zeidler-Erdely, Patti C
2012-07-09
Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc - stainless steel (GMA-SS) welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10). In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR) and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3) were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88) to inhalation of GMA-SS. This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure.
The regulation of inflammation by interferons and their STATs
Rauch, Isabella; Müller, Mathias; Decker, Thomas
2013-01-01
Interferons (IFN) are subdivided into type I IFN (IFN-I, here synonymous with IFN-α/β), type II (IFN-γ) and type III IFN (IFN-III/IFN-λ) that reprogram nuclear gene expression through STATs 1 and 2 by forming STAT1 dimers (mainly IFN-γ) or the ISGF3 complex, a STAT1-STAT2-IRF9 heterotrimer (IFN-I and IFN-III). Dominant IFN activities in the immune system are to protect cells from viral replication and to activate macrophages for enhanced effector function. However, the impact of IFN and their STATs on the immune system stretches far beyond these activities and includes the control of inflammation. The goal of this review is to give an overview of the different facets of the inflammatory process that show regulatory input by IFN/STAT. PMID:24058799
Valente, C A; Monteiro, G A; Cabral, J M S; Fevereiro, M; Prazeres, D M F
2006-01-01
The human interferon alpha2b (hu-IFNalpha2b) gene was cloned in Escherichia coli JM109(DE3) and the recombinant protein was expressed as cytoplasmic inclusion bodies (IB). The present work discusses the recovery of hu-IFNalpha2b IB from the E. coli cells. An optimized protocol is proposed based on the sequential evaluation of recovery steps and parameters: (i) cell disruption, (ii) IB recovery and separation from cell debris, (iii) IB washing, and (iv) IB solubilization. Parameters such as hu-IFNalpha2b purity and recovery yield were measured after each step. The optimized recovery protocol yielded 60% of hu-IFNalpha2b with a purity of up to 80%. The protein was renatured at high concentration after recovery and it was found to display biological activity.
Birerdinc, A; Estep, M; Afendy, A; Stepanova, M; Younossi, I; Baranova, A; Younossi, Z M
2012-06-01
Anaemia is a common side effect of ribavirin (RBV) which is used for the treatment of hepatitis C. Inosine triphosphatase gene polymorphism (C to A) protects against RBV-induced anaemia. The aim of our study was to genotype patients for inosine triphosphatase gene polymorphism rs1127354 SNP (CC or CA) and associate treatment-induced anaemia with gene expression profile and genotypes. We used 67 hepatitis C patients with available gene expression, clinical, laboratory data and whole-blood samples. Whole blood was used to determine inosine triphosphatase gene polymorphism rs1127354 genotypes (CC or CA). The cohort with inosine triphosphatase gene polymorphism CA genotype revealed a distinct pattern of protection against anaemia and a lower drop in haemoglobin. A variation in the propensity of CC carriers to develop anaemia prompted us to look for additional predictors of anaemia during pegylated interferon (PEG-IFN) and RBV. Pretreatment blood samples of patients receiving a full course of PEG-IFN and RBV were used to assess expression of 153 genes previously implicated in host response to viral infections. The gene expression data were analysed according to presence of anaemia and inosine triphosphatase gene polymorphism genotypes. Thirty-six genes were associated with treatment-related anaemia, six of which are involved in the response to hypoxia pathway (HIF1A, AIF1, RHOC, PTEN, LCK and PDGFB). There was a substantial overlap between sustained virological response (SVR)-predicting and anaemia-related genes; however, of the nine JAK-STAT pathway-related genes associated with SVR, none were implicated in anaemia. These observations exclude the direct involvement of antiviral response in the development of anaemia associated with PEG-IFN and RBV treatment, whereas another, distinct component within the SVR-associated gene expression response may predict anaemia. We have identified baseline gene expression signatures associated with RBV-induced anaemia and identified its functional pathways. In particular, we identified the hypoxia response pathway and the apoptosis/survival-related gene network, as differentially expressed in chronic hepatitis C patients with anaemia. © 2011 Blackwell Publishing Ltd.
Montano, Giorgia; Ullmark, Tove; Jernmark-Nilsson, Helena; Sodaro, Gaetano; Drott, Kristina; Costanzo, Paola; Vidovic, Karina; Gullberg, Urban
2016-01-01
The transcription factor interferon regulatory factor-8 (IRF8) is highly expressed in myeloid progenitors, while most myeloid leukemias show low or absent expression. Loss of IRF8 in mice leads to a myeloproliferative disorder, indicating a tumor-suppressive role of IRF8. The Wilms tumor gene 1 (WT1) protein represses the IRF8-promoter. The zinc finger protein ZNF224 can act as a transcriptional co-factor of WT1 and potentiate the cytotoxic response to the cytostatic drug cytarabine. We hypothesized that cytarabine upregulates IRF8 and that transcriptional control of IRF8 involves WT1 and ZNF224. Treatment of leukemic K562 cells with cytarabine upregulated IRF8 protein and mRNA, which was correlated to increased expression of ZNF224. Knock down of ZNF224 with shRNA suppressed both basal and cytarabine-induced IRF8 expression. While ZNF224 alone did not affect IRF8 promoter activity, ZNF224 partially reversed the suppressive effect of WT1 on the IRF8 promoter, as judged by luciferase reporter experiments. Coprecipitation revealed nuclear binding of WT1 and ZNF224, and by chromatin immunoprecipitation (ChIP) experiments it was demonstrated that WT1 recruits ZNF224 to the IRF8 promoter. We conclude that cytarabine-induced upregulation of the IRF8 in leukemic cells involves increased levels of ZNF224, which can counteract the repressive activity of WT1 on the IRF8-promoter. Copyright © 2015 Elsevier Ltd. All rights reserved.
Inhibition of IFN-γ-dependent antiviral airway epithelial defense by cigarette smoke
2010-01-01
Background Although individuals exposed to cigarette smoke are more susceptible to respiratory infection, the effects of cigarette smoke on lung defense are incompletely understood. Because airway epithelial cell responses to type II interferon (IFN) are critical in regulation of defense against many respiratory viral infections, we hypothesized that cigarette smoke has inhibitory effects on IFN-γ-dependent antiviral mechanisms in epithelial cells in the airway. Methods Primary human tracheobronchial epithelial cells were first treated with cigarette smoke extract (CSE) followed by exposure to both CSE and IFN-γ. Epithelial cell cytotoxicity and IFN-γ-induced signaling, gene expression, and antiviral effects against respiratory syncytial virus (RSV) were tested without and with CSE exposure. Results CSE inhibited IFN-γ-dependent gene expression in airway epithelial cells, and these effects were not due to cell loss or cytotoxicity. CSE markedly inhibited IFN-γ-induced Stat1 phosphorylation, indicating that CSE altered type II interferon signal transduction and providing a mechanism for CSE effects. A period of CSE exposure combined with an interval of epithelial cell exposure to both CSE and IFN-γ was required to inhibit IFN-γ-induced cell signaling. CSE also decreased the inhibitory effect of IFN-γ on RSV mRNA and protein expression, confirming effects on viral infection. CSE effects on IFN-γ-induced Stat1 activation, antiviral protein expression, and inhibition of RSV infection were decreased by glutathione augmentation of epithelial cells using N-acetylcysteine or glutathione monoethyl ester, providing one strategy to alter cigarette smoke effects. Conclusions The results indicate that CSE inhibits the antiviral effects of IFN-γ, thereby presenting one explanation for increased susceptibility to respiratory viral infection in individuals exposed to cigarette smoke. PMID:20504369
Kang, Jung-Woo; Shin, Jun-Kyu; Koh, Eun-Ji; Ryu, Hyojeong; Kim, Hyoung Ja; Lee, Sun-Mee
2016-04-01
Opuntia ficus-indica (L.) is a popular edible plant that possesses considerable nutritional value and exhibits diverse biological actions including anti-inflammatory and antidiabetic activities. In this study, we hypothesized that DWJ504, an extract of O ficus-indica seed, would ameliorate hepatic steatosis and inflammation by regulating hepatic de novo lipogenesis and macrophage polarization against experimental nonalcoholic steatohepatitis. Mice were fed a normal diet or a high-fat diet (HFD) for 10 weeks. DWJ504 (250, 500, and 1000 mg/kg) or vehicle (0.5% carboxymethyl cellulose) were orally administered for the last 4 weeks of the 10-week HFD feeding period. DWJ504 treatment remarkably attenuated HFD-induced increases in hepatic lipid content and hepatocellular damage. DWJ504 attenuated increases in sterol regulatory element-binding protein 1 and carbohydrate-responsive element-binding protein expression and a decrease in carnitine palmitoyltransferase 1A. Although DWJ504 augmented peroxisome proliferator-activated receptor α protein expression, it attenuated peroxisome proliferator-activated receptor γ expression. Moreover, DWJ504 promoted hepatic M2 macrophage polarization as indicated by attenuation of the M1 marker genes and enhancement of M2 marker genes. Finally, DWJ504 attenuated expression of toll-like receptor 4, nuclear factor κB, tumor necrosis factor α, interleukin 6, TIR-domain-containing adapter-inducing interferon β, and interferon β levels. Our results demonstrate that DWJ504 prevented intrahepatic lipid accumulation, induced M2 macrophage polarization, and suppressed the toll-like receptor 4-mediated inflammatory signaling pathway. Thus, DWJ504 has therapeutic potential in the prevention of nonalcoholic fatty liver disease. Copyright © 2016 Elsevier Inc. All rights reserved.
Zhu, Yaoyao; Qi, Chenchen; Shan, Shijuan; Zhang, Fumiao; Li, Hua; An, Liguo; Yang, Guiwen
2016-06-27
Common carp (Cyprinus carpio L.), one of the most economically valuable commercial farming fish species in China, is often infected by a variety of viruses. As the first line of defence against microbial pathogens, the innate immune system plays a crucial role in teleost fish, which are lower vertebrates. Interferon (IFN) regulatory factor 5 (IRF5) is a key molecule in antiviral immunity that regulating the expression of IFN and other pro-inflammatory cytokines. It is necessary to gain more insight into the common carp IFN system and the function of fish IRF5 in the antiviral and antibacterial response. In the present study, we characterized the cDNA and genomic sequence of the IRF5 gene in common carp, and analysed tissue distribution and expression profile of this gene in response to polyinosinic:polycytidylic acid (poly I:C) and lipopolysaccharides (LPS) treatment. The common carp IRF5 (ccIRF5) gene is 5790 bp in length and is composed of 9 exons and 8 introns. The open reading frame (ORF) of ccIRF5 is 1554 bp, and encodes 517 amino acid protein. The putative ccIRF5 protein shares identity (65.4-90.0 %) with other fish IRF5s and contains a DNA binding domain (DBD), a middle region (MR), an IRF-associated domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) similar to those found in vertebrate IRF5. Phylogenetic analysis clustered ccIRF5 into the IRF5 subfamily with other vertebrate IRF5 and IRF6 genes. Real-time PCR analysis revealed that ccIRF5 mRNA was expressed in all examined tissues of healthy carps, with high levels observed in the gills and the brain. After poly I:C challenge, expression levels of ccIRF5, tumour-necrosis factor α (ccTNFα) and two IFN stimulated genes [ISGs (ccISG5 and ccPKR)] were up-regulated in seven immune-related tissues (liver, spleen, head kidney, foregut, hindgut, skin and gills). Furthermore, all four genes were up-regulated in vitro upon poly I:C and LPS challenges. Our findings suggest that IRF5 might play an important role in regulating the antiviral and antibacterial response in fish. These results could provide a clue for preventing common carp infection by pathogenic microorganisms present in the aquatic environment.
Ohshima, Koichi; Karube, Kennosuke; Hamasaki, Makoto; Tutiya, Takeshi; Yamaguchi, Takahiro; Suefuji, Hiroaki; Suzuki, Keiko; Suzumiya, Junji; Ohga, Shouichi; Kikuchi, Masahiro
2003-08-01
T cell immunity plays an important role in the clinicopathology of Epstein-Barr virus (EBV)-associated diseases. Acute EBV-induced infectious mononucleosis (IM) is a common self-limiting disease, however, other EBV-associated diseases, including chronic active EBV infection (CAEBV), NK cell lymphoma (NKL), and Hodgkin's lymphoma (HL), exhibit distinct clinical features. Chemokines are members of a family of small-secreted proteins. The relationships between chemokines and the chemokine receptor (R) are thought to be important for selectivity of local immunity. Some chemokines, chemokine R and cytokines closely associate with the T cell subtypes, Th1 and Th2 T cells and cytotoxic cells. To clarify the role of T cell immunity in EBV-associated diseases, we conducted gene expression profiling, using chemokine, chemokine R and cytokine DNA chips. Compared to EBV negative non-specific lymphadenitis, CAEBV and NKL exhibited diffuse down- and up-regulation, respectively, of these gene profiles. IM had a predominantly Th1-type profile, whereas HL had a mixed Th1/Th2-type profile. Reduction of the Th1-type cytokine interferon gamma (IFN-gamma) in CAEBV was confirmed by Reverse transcriptase-polymerase chain reaction, whereas IFN-gamma expression was markedly enhanced in NKL, and moderately enhanced in IM. Compared to IM, CAEBV showed slight elevation of "regulated upon activation, normal T expressed and secreted" (RANTES), but almost all other genes assayed were down-regulated. NKL exhibited elevated expression of numerous genes, particularly IFN-gamma-inducible-10 (IP-10) and monokine induced by IFN-gamma (MIG). HL showed variable elevated and reduced expression of various genes, with increased expression of IL-13 receptor and MIG. Our study demonstrated the enormous potential of gene expression profiling for clarifying the pathogenesis of EBV-associated diseases.
Izquierdo-Bouldstridge, Andrea; Bustillos, Alberto; Bonet-Costa, Carles; Aribau-Miralbés, Patricia; García-Gomis, Daniel; Dabad, Marc; Esteve-Codina, Anna; Pascual-Reguant, Laura; Peiró, Sandra; Esteller, Manel; Murtha, Matthew; Millán-Ariño, Lluís
2017-01-01
Abstract Histone H1 has seven variants in human somatic cells and contributes to chromatin compaction and transcriptional regulation. Knock-down (KD) of each H1 variant in breast cancer cells results in altered gene expression and proliferation differently in a variant specific manner with H1.2 and H1.4 KDs being most deleterious. Here we show combined depletion of H1.2 and H1.4 has a strong deleterious effect resulting in a strong interferon (IFN) response, as evidenced by an up-regulation of many IFN-stimulated genes (ISGs) not seen in individual nor in other combinations of H1 variant KDs. Although H1 participates to repress ISG promoters, IFN activation upon H1.2 and H1.4 KD is mainly generated through the activation of the IFN response by cytosolic nucleic acid receptors and IFN synthesis, and without changes in histone modifications at induced ISG promoters. H1.2 and H1.4 co-KD also promotes the appearance of accessibility sites genome wide and, particularly, at satellites and other repeats. The IFN response may be triggered by the expression of noncoding RNA generated from heterochromatic repeats or endogenous retroviruses upon H1 KD. In conclusion, redundant H1-mediated silencing of heterochromatin is important to maintain cell homeostasis and to avoid an unspecific IFN response. PMID:28977426
Goin, Dana E; Smed, Mette Kiel; Pachter, Lior; Purdom, Elizabeth; Nelson, J Lee; Kjærgaard, Hanne; Olsen, Jørn; Hetland, Merete Lund; Zoffmann, Vibeke; Ottesen, Bent; Jawaheer, Damini
2017-05-25
Little is known about gene expression changes induced by pregnancy in women with rheumatoid arthritis (RA) and healthy women because the few studies previously conducted did not have pre-pregnancy samples available as baseline. We have established a cohort of women with RA and healthy women followed prospectively from a pre-pregnancy baseline. In this study, we tested the hypothesis that pregnancy-induced changes in gene expression among women with RA who improve during pregnancy (pregDAS improved ) overlap substantially with changes observed among healthy women and differ from changes observed among women with RA who worsen during pregnancy (pregDAS worse ). Global gene expression profiles were generated by RNA sequencing (RNA-seq) from 11 women with RA and 5 healthy women before pregnancy (T0) and at the third trimester (T3). Among the women with RA, eight showed an improvement in disease activity by T3, whereas three worsened. Differential expression analysis was used to identify genes demonstrating significant changes in expression within each of the RA and healthy groups (T3 vs T0), as well as between the groups at each time point. Gene set enrichment was assessed in terms of Gene Ontology processes and protein networks. A total of 1296 genes were differentially expressed between T3 and T0 among the 8 pregDAS improved women, with 161 genes showing at least two-fold change (FC) in expression by T3. The majority (108 of 161 genes) were also differentially expressed among healthy women (q<0.05, FC≥2). Additionally, a small cluster of genes demonstrated contrasting changes in expression between the pregDAS improved and pregDAS worse groups, all of which were inducible by type I interferon (IFN). These IFN-inducible genes were over-expressed at T3 compared to the T0 baseline among the pregDAS improved women. In our pilot RNA-seq dataset, increased pregnancy-induced expression of type I IFN-inducible genes was observed among women with RA who improved during pregnancy, but not among women who worsened. These findings warrant further investigation into expression of these genes in RA pregnancy and their potential role in modulation of disease activity. These results are nevertheless preliminary and should be interpreted with caution until replicated in a larger sample.
Mahoney, J. Matthew; Taroni, Jaclyn; Martyanov, Viktor; Wood, Tammara A.; Greene, Casey S.; Pioli, Patricia A.; Hinchcliff, Monique E.; Whitfield, Michael L.
2015-01-01
Systemic sclerosis (SSc) is a rare systemic autoimmune disease characterized by skin and organ fibrosis. The pathogenesis of SSc and its progression are poorly understood. The SSc intrinsic gene expression subsets (inflammatory, fibroproliferative, normal-like, and limited) are observed in multiple clinical cohorts of patients with SSc. Analysis of longitudinal skin biopsies suggests that a patient's subset assignment is stable over 6–12 months. Genetically, SSc is multi-factorial with many genetic risk loci for SSc generally and for specific clinical manifestations. Here we identify the genes consistently associated with the intrinsic subsets across three independent cohorts, show the relationship between these genes using a gene-gene interaction network, and place the genetic risk loci in the context of the intrinsic subsets. To identify gene expression modules common to three independent datasets from three different clinical centers, we developed a consensus clustering procedure based on mutual information of partitions, an information theory concept, and performed a meta-analysis of these genome-wide gene expression datasets. We created a gene-gene interaction network of the conserved molecular features across the intrinsic subsets and analyzed their connections with SSc-associated genetic polymorphisms. The network is composed of distinct, but interconnected, components related to interferon activation, M2 macrophages, adaptive immunity, extracellular matrix remodeling, and cell proliferation. The network shows extensive connections between the inflammatory- and fibroproliferative-specific genes. The network also shows connections between these subset-specific genes and 30 SSc-associated polymorphic genes including STAT4, BLK, IRF7, NOTCH4, PLAUR, CSK, IRAK1, and several human leukocyte antigen (HLA) genes. Our analyses suggest that the gene expression changes underlying the SSc subsets may be long-lived, but mechanistically interconnected and related to a patients underlying genetic risk. PMID:25569146
Foley, Kendra C; Spear, Timothy T; Murray, David C; Nagato, Kaoru; Garrett-Mayer, Elizabeth; Nishimura, Michael I
2017-06-16
T cell receptor (TCR)-gene-modified T cells for adoptive cell transfer can mediate objective clinical responses in melanoma and other malignancies. When introducing a second TCR, mispairing between the endogenous and introduced α and β TCR chains limits expression of the introduced TCR, which can result in impaired efficacy or off-target reactivity and autoimmunity. One approach to promote proper TCR chain pairing involves modifications of the introduced TCR genes: introducing a disulfide bridge, substituting murine for human constant regions, codon optimization, TCR chain leucine zipper fusions, and a single-chain TCR. We have introduced these modifications into our hepatitis C virus (HCV) reactive TCR and utilize a marker gene, CD34t, which allows us to directly compare transduction efficiency with TCR expression and T cell function. Our results reveal that of the TCRs tested, T cells expressing the murine Cβ2 TCR or leucine zipper TCR have the highest levels of expression and the highest percentage of lytic and interferon-γ (IFN-γ)-producing T cells. Our studies give us a better understanding of how TCR modifications impact TCR expression and T cell function that may allow for optimization of TCR-modified T cells for adoptive cell transfer to treat patients with malignancies.
Mata-Espinosa, Dulce A; Mendoza-Rodríguez, Valentin; Aguilar-León, Diana; Rosales, Ricardo; López-Casillas, Fernando; Hernández-Pando, Rogelio
2008-06-01
We constructed recombinant adenoviruses encoding murine interferon-γ (AdIFNγ) and tested its therapeutic efficiency in a well characterized model of progressive pulmonary tuberculosis (TB) in Balb/c mice, infected through the trachea with the laboratory drug-susceptible H37Rv strain or multidrug-resistant (MDR) clinical isolate. When the disease was in a late phase, 2 months after infection, we administered by intratracheal cannulation a single dose [1.7 × 10 9 plaque forming units (pfu)] of AdIFNγ or the control adenovirus. Groups of mice were killed at different time-points and the lungs were examined to determine bacilli colony forming units (CFU), cytokine/chemokine gene expression, and CD4/CD8 subpopulations, and also subjected to automated histomorphometry. In comparison with the control group, after 2 weeks of treatment and during the next 6 months, AdIFNγ-treated animals infected with either the H37Rv strain or the MDR strain showed significantly lower bacilli loads and tissue damage (pneumonia), higher expressions of IFN-γ, tumor necrosis factor (TNF), and inducible nitric oxide synthase (iNOS), and bigger granulomas. When compared with the results from conventional chemotherapy or AdIFNγ treatment alone, the combined treatment with AdIFNγ plus conventional chemotherapy shortened the time taken for reduction of bacillary load. This shows that gene therapy with AdIFNγ efficiently reconstituted the protective immune response and controlled the progress of pulmonary TB produced by MDR or non-MDR strains. Copyright © 2008 The American Society of Gene Therapy. Published by Elsevier Inc. All rights reserved.
Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively.
Porta, Chiara; Hadj-Slimane, Reda; Nejmeddine, Mohamed; Pampin, Mathieu; Tovey, Michael G; Espert, Lucile; Alvarez, Sandra; Chelbi-Alix, Mounira K
2005-01-20
Type I interferon (IFN) enhances the transcription of the tumor suppressor gene p53. To elucidate the molecular mechanism mediating IFN-induced apoptosis, we analysed programmed cell death in response to type I (IFNalpha) or type II (IFNgamma) treatment in relation to p53 status. In two cell lines (MCF-7, SKNSH), IFNalpha, but not IFNgamma, enhanced apoptosis in a p53-dependent manner. Furthermore, only IFNalpha upregulated p53 as well as p53 target genes (Noxa, Mdm2 and CD95). The apoptotic response to IFNalpha decreased in the presence of ZB4, an anti-CD95 antibody, suggesting that CD95 is involved in this process. When p53 was inactivated by the E6 viral protein or the expression of a p53 mutant, IFNalpha-induced apoptosis and p53 target genes upregulation were abrogated. Altogether these results demonstrate that p53 plays a pivotal role in the IFNalpha-induced apoptotic response. IFNalpha-induced PML was unable to recruit p53 into nuclear bodies and its downregulation by siRNA did not alter CD95 expression. In contrast, IFNgamma-induced apoptosis is p53-independent. CD95 and IFN-regulatory factor 1 (IRF1) are directly upregulated by this cytokine. Apoptotic response to IFNgamma is decreased in the presence of ZB4 and strongly diminished by IRF1 siRNA, implicating both CD95 and IRF1 in IFNgamma-induced apoptotic response. Taken together, these results show that in two different cell lines, IFNalpha and IFNgamma, induce p53-dependent -independent apoptosis, respectively.
Jang, Ah-Ra; Choi, Joo-Hee; Shin, Sung Jae; Park, Jong-Hwan
2018-04-01
Mycobacterium tuberculosis is a highly virulent bacterium that causes tuberculosis. It infects about one third of the world's population. Type I interferons (IFNs) play a detrimental role in host defense against M. tuberculosis infection. Proteins secreted by M. tuberculosis through ESX-1 secretion system contribute to type I IFNs production. However, the precise mechanism by which 6-kDa early secretory antigen target (ESAT6), one of ESX-1-mediated secretory proteins, induces type I IFNs production in host cells is currently unclear. Therefore, the objective of the present study was to determine the underlying molecular mechanism regulating ESAT6-mediated gene expression of IFN-β in macrophages. Recombinant ESAT6 produced from E. coli expression system induced IFN-β gene expression in various types of macrophages such as mouse bone marrow-derived macrophages (BMDMs), peritoneal macrophages, and MH-S cells (murine alveolar macrophage cell line). Deficiency of TLR4 and TRIF absolutely abrogated ESAT6-induced IFN-β gene expression. TLR2 and MyD88 were partially involved in IFN-β gene expression in response to low dose of ESAT6. Another recombinant ESAT6 produced from baculovirus system also upregulated IFN-β gene expression via TLR4-dependent pathway. Polymyxin B (PMB) treatment impaired LPS-induced IFN-β expression. However, IFN-β expression induced by ESAT6 was not influenced by PMB. This suggests that ESAT6-mediated IFN-β expression is not due to LPS contamination. Treatment with ESAT6 resulted in activation of TBK1 and IRF3 in macrophages. Such activation was abolished in TLR4- and TRIF-deficient cells. Moreover, inhibition of IRF3 and TBK1 suppressed IFN-β gene expression in response to ESAT6. Our results suggest that ESAT6 might contribute to virulence of M. tuberculosis by regulating type I IFNs production through TLR4-TRIF signaling pathway. Copyright © 2017 Elsevier Ltd. All rights reserved.
Targeting IFN-λ: therapeutic implications.
Eslam, Mohammed; George, Jacob
2016-12-01
Type-III interferons (IFN-λ), the most recently discovered family of IFNs, shares common features with other family members, but also has many distinctive activities. IFN-λ uniquely has a different receptor complex, and a more focused pattern of tissue expression and signaling effects, from other classes of IFNs. Multiple genome-wide association studies (GWAS) and subsequent validation reports suggest a pivotal role for polymorphisms near the IFNL3 gene in hepatitis C clearance and control, as also for several other epithelial cell tropic viruses. Apart from its antiviral activity, IFN-λ possesses anti-tumor, immune-inflammatory and homeostatic functions. The overlapping effects of IFN-λ with type I IFN, with a restricted tissue expression pattern renders IFN-λ an attractive therapeutic target for viral infection, cancer and autoimmune diseases, with limited side effects. Areas covered: This review will summarize the current and future therapeutic opportunities offered by this most recently discovered family of interferons. Expert opinion: Our knowledge on IFN-λ is rapidly expanding. Though there are many remaining questions and challenges that require elucidation, the unique characteristics of IFN-λ increases enthusiasm that multiple therapeutic options will emerge.
Control of epithelial immune-response genes and implications for airway immunity and inflammation.
Holtzman, M J; Look, D C; Sampath, D; Castro, M; Koga, T; Walter, M J
1998-01-01
A major goal of our research is to understand how immune cells (especially T cells) infiltrate the pulmonary airway during host defense and inflammatory disease (especially asthma). In that context, we have proposed that epithelial cells lining the airway provide critical biochemical signals for immune-cell influx and activation and that this epithelial-immune cell interaction is a critical feature of airway inflammation and hyperreactivity. In this brief report, we describe our progress in defining a subset of epithelial immune-response genes the expression of which is coordinated for viral defense both directly in response to replicating virus and indirectly under the control of a specific interferon-gamma signal transduction pathway featuring the Stat1 transcription factor as a critical relay signal between cytoplasm and nucleus. Unexpectedly, the same pathway is also activated during asthmatic airway inflammation in a setting where there is no apparent infection and no increase in interferon-gamma levels. The findings provide the first evidence of an overactive Stat1-dependent gene network in asthmatic airways and a novel molecular link between mucosal immunity and inflammation. The findings also offer the possibility that overactivity of Stat1-dependent genes might augment a subsequent T helper cell (Th1)-type response to virus or might combine with a heightened Th2-type response to allergen to account for more severe exacerbations of asthma.
Eising, Else; Shyti, Reinald; 't Hoen, Peter A C; Vijfhuizen, Lisanne S; Huisman, Sjoerd M H; Broos, Ludo A M; Mahfouz, Ahmed; Reinders, Marcel J T; Ferrari, Michel D; Tolner, Else A; de Vries, Boukje; van den Maagdenberg, Arn M J M
2017-05-01
Familial hemiplegic migraine type 1 (FHM1) is a rare monogenic subtype of migraine with aura caused by mutations in CACNA1A that encodes the α 1A subunit of voltage-gated Ca V 2.1 calcium channels. Transgenic knock-in mice that carry the human FHM1 R192Q missense mutation ('FHM1 R192Q mice') exhibit an increased susceptibility to cortical spreading depression (CSD), the mechanism underlying migraine aura. Here, we analysed gene expression profiles from isolated cortical tissue of FHM1 R192Q mice 24 h after experimentally induced CSD in order to identify molecular pathways affected by CSD. Gene expression profiles were generated using deep serial analysis of gene expression sequencing. Our data reveal a signature of inflammatory signalling upon CSD in the cortex of both mutant and wild-type mice. However, only in the brains of FHM1 R192Q mice specific genes are up-regulated in response to CSD that are implicated in interferon-related inflammatory signalling. Our findings show that CSD modulates inflammatory processes in both wild-type and mutant brains, but that an additional unique inflammatory signature becomes expressed after CSD in a relevant mouse model of migraine.
Thakar, Juilee; Mohanty, Subhasis; West, A Phillip; Joshi, Samit R; Ueda, Ikuyo; Wilson, Jean; Meng, Hailong; Blevins, Tamara P; Tsang, Sui; Trentalange, Mark; Siconolfi, Barbara; Park, Koonam; Gill, Thomas M; Belshe, Robert B; Kaech, Susan M; Shadel, Gerald S; Kleinstein, Steven H; Shaw, Albert C
2015-01-01
To elucidate gene expression pathways underlying age-associated impairment in influenza vaccine response, we screened young (age 21-30) and older (age≥65) adults receiving influenza vaccine in two consecutive seasons and identified those with strong or absent response to vaccine, including a subset of older adults meeting criteria for frailty. PBMCs obtained prior to vaccination (Day 0) and at day 2 or 4, day 7 and day 28 post-vaccine were subjected to gene expression microarray analysis. We defined a response signature and also detected induction of a type I interferon response at day 2 and a plasma cell signature at day 7 post-vaccine in young responders. The response signature was dysregulated in older adults, with the plasma cell signature induced at day 2, and was never induced in frail subjects (who were all non-responders). We also identified a mitochondrial signature in young vaccine responders containing genes mediating mitochondrial biogenesis and oxidative phosphorylation that was consistent in two different vaccine seasons and verified by analyses of mitochondrial content and protein expression. These results represent the first genome-wide transcriptional profiling analysis of age-associated dynamics following influenza vaccination, and implicate changes in mitochondrial biogenesis and function as a critical factor in human vaccine responsiveness.
Decreased cohesin in the brain leads to defective synapse development and anxiety-related behavior
Fujita, Yuki; Masuda, Koji; Bando, Masashige; Nakato, Ryuichiro; Katou, Yuki; Tanaka, Takashi; Nakayama, Masahiro; Takao, Keizo; Miyakawa, Tsuyoshi; Tanaka, Tatsunori; Ago, Yukio
2017-01-01
Abnormal epigenetic regulation can cause the nervous system to develop abnormally. Here, we sought to understand the mechanism by which this occurs by investigating the protein complex cohesin, which is considered to regulate gene expression and, when defective, is associated with higher-level brain dysfunction and the developmental disorder Cornelia de Lange syndrome (CdLS). We generated conditional Smc3-knockout mice and observed greater dendritic complexity and larger numbers of immature synapses in the cerebral cortex of Smc3+/− mice. Smc3+/− mice also exhibited more anxiety-related behavior, which is a symptom of CdLS. Further, a gene ontology analysis after RNA-sequencing suggested the enrichment of immune processes, particularly the response to interferons, in the Smc3+/− mice. Indeed, fewer synapses formed in their cortical neurons, and this phenotype was rescued by STAT1 knockdown. Thus, low levels of cohesin expression in the developing brain lead to changes in gene expression that in turn lead to a specific and abnormal neuronal and behavioral phenotype. PMID:28408410
Karachaliou, Niki; Gonzalez-Cao, Maria; Crespo, Guillermo; Drozdowskyj, Ana; Aldeguer, Erika; Gimenez-Capitan, Ana; Teixido, Cristina; Molina-Vila, Miguel Angel; Viteri, Santiago; De Los Llanos Gil, Maria; Algarra, Salvador Martin; Perez-Ruiz, Elisabeth; Marquez-Rodas, Ivan; Rodriguez-Abreu, Delvys; Blanco, Remedios; Puertolas, Teresa; Royo, Maria Angeles; Rosell, Rafael
2018-01-01
Background: Programmed death-ligand 1 (PD-L1) may be induced by oncogenic signals or can be upregulated via interferon gamma (IFN-γ). We have explored whether the expression of IFNG, the gene encoding IFN-γ, is associated with clinical response to the immune checkpoint blockade in non-small cell lung cancer (NSCLC) and melanoma patients. The role of inflammation-associated transcription factors STAT3, IKBKE, STAT1 and other associated genes has also been examined. Methods: Total RNA from 17 NSCLC and 21 melanoma patients was analyzed by quantitative reverse transcription PCR. STAT3 and Rantes, YAP1 and CXCL5, DNMT1, RIG1 and TET1, EOMES, IFNG, PD-L1 and CTLA4, IKBKE and NFATC1 mRNA were examined. PD-L1 protein expression in tumor and immune cells and stromal infiltration of CD8+ T-cells were also evaluated. Progression-free survival and overall survival were estimated. Results: A total of 17 NSCLC patients received nivolumab and 21 melanoma patients received pembrolizumab. Progression-free survival with nivolumab was significantly longer in NSCLC patients with high versus low IFNG expression (5.1 months versus 2 months, p = 0.0124). Progression-free survival with pembrolizumab was significantly longer in melanoma patients with high versus low IFNG expression (5.0 months versus 1.9 months, p = 0.0099). Significantly longer overall survival was observed for melanoma patients with high versus low IFNG expression (not reached versus 10.2 months p = 0.0183). There was a trend for longer overall survival for NSCLC patients with high versus low IFNG expression. Conclusions: IFN-γ is an important marker for prediction of response to immune checkpoint blockade. Further research is warranted in order to validate whether IFNG is more accurate than PD-L1. PMID:29383037
Offenbacher, Steven; Barros, Silvana P; Paquette, David W; Winston, J Leslie; Biesbrock, Aaron R; Thomason, Ryan G; Gibb, Roger D; Fulmer, Andy W; Tiesman, Jay P; Juhlin, Kenton D; Wang, Shuo L; Reichling, Tim D; Chen, Ker-Sang; Ho, Begonia
2009-12-01
To our knowledge, changes in the patterns of whole-transcriptome gene expression that occur during the induction and resolution of experimental gingivitis in humans were not previously explored using bioinformatic tools. Gingival biopsy samples collected from 14 subjects during a 28-day stent-induced experimental gingivitis model, followed by treatment, and resolution at days 28 through 35 were analyzed using gene-expression arrays. Biopsy samples were collected at different sites within each subject at baseline (day 0), at the peak of gingivitis (day 28), and at resolution (day 35) and processed using whole-transcriptome gene-expression arrays. Gene-expression data were analyzed to identify biologic themes and pathways associated with changes in gene-expression profiles that occur during the induction and resolution of experimental gingivitis using bioinformatic tools. During disease induction and resolution, the dominant expression pathway was the immune response, with 131 immune response genes significantly up- or downregulated during induction, during resolution, or during both at P <0.05. During induction, there was significant transient increase in the expression of inflammatory and oxidative stress mediators, including interleukin (IL)-1 alpha (IL1A), IL-1 beta (IL1B), IL8, RANTES, colony stimulating factor 3 (CSF3), and superoxide dismutase 2 (SOD2), and a decreased expression of IP10, interferon inducible T-cell alpha chemoattractant (ITAC), matrix metalloproteinase 10 (MMP10), and beta 4 defensin (DEFB4). These genes reversed expression patterns upon resolution in parallel with the reversal of gingival inflammation. A relatively small subset (11.9%) of the immune response genes analyzed by array was transiently activated in response to biofilm overgrowth, suggesting a degree of specificity in the transcriptome-expression response. The fact that this same subset demonstrates a reversal in expression patterns during clinical resolution implicates these genes as being critical for maintaining tissue homeostasis at the biofilm-gingival interface. In addition to the immune response pathway as the dominant response theme, new candidate genes and pathways were identified as being selectively modulated in experimental gingivitis, including neural processes, epithelial defenses, angiogenesis, and wound healing.
Melo, Mariane B; Nguyen, Quynh P; Cordeiro, Cynthia; Hassan, Musa A; Yang, Ninghan; McKell, Renée; Rosowski, Emily E; Julien, Lindsay; Butty, Vincent; Dardé, Marie-Laure; Ajzenberg, Daniel; Fitzgerald, Katherine; Young, Lucy H; Saeij, Jeroen P J
2013-01-01
Most isolates of Toxoplasma from Europe and North America fall into one of three genetically distinct clonal lineages, the type I, II and III lineages. However, in South America these strains are rarely isolated and instead a great variety of other strains are found. T. gondii strains differ widely in a number of phenotypes in mice, such as virulence, persistence, oral infectivity, migratory capacity, induction of cytokine expression and modulation of host gene expression. The outcome of toxoplasmosis in patients is also variable and we hypothesize that, besides host and environmental factors, the genotype of the parasite strain plays a major role. The molecular basis for these differences in pathogenesis, especially in strains other than the clonal lineages, remains largely unexplored. Macrophages play an essential role in the early immune response against T. gondii and are also the cell type preferentially infected in vivo. To determine if non-canonical Toxoplasma strains have unique interactions with the host cell, we infected murine macrophages with 29 different Toxoplasma strains, representing global diversity, and used RNA-sequencing to determine host and parasite transcriptomes. We identified large differences between strains in the expression level of known parasite effectors and large chromosomal structural variation in some strains. We also identified novel strain-specifically regulated host pathways, including the regulation of the type I interferon response by some atypical strains. IFNβ production by infected cells was associated with parasite killing, independent of interferon gamma activation, and dependent on endosomal Toll-like receptors in macrophages and the cytoplasmic receptor retinoic acid-inducible gene 1 (RIG-I) in fibroblasts.
Requirement for STAT1 in LPS-induced gene expression in macrophages.
Ohmori, Y; Hamilton, T A
2001-04-01
This study examines the role of the signal transducer and activator of transcription 1 (STAT1) in induction of lipopolysaccharide (LPS)-stimulated gene expression both in vitro and in vivo. LPS-induced expression of an interferon (IFN)-inducible 10-kDa protein (IP-10), IFN regulatory factor-1 (IRF-1), and inducible nitric oxide synthase (iNOS) mRNAs was severely impaired in macrophages prepared from Stat1-/- mice, whereas levels of tumor necrosis factor alpha and KC (a C-X-C chemokine) mRNA in LPS-treated cell cultures were unaffected. A similar deficiency in LPS-induced gene expression was observed in livers and spleens from Stat1-/- mice. The reduced LPS-stimulated gene expression seen in Stat1-/- macrophages was not the result of reduced activation of nuclear factor kappaB. LPS stimulated the delayed activation of both IFN-stimulated response element and IFN-gamma-activated sequence binding activity in macrophages from wild-type mice. Activation of these STAT1-containing transcription factors was mediated by the intermediate induction of type I IFNs, since the LPS-induced IP-10, IRF-1, and iNOS mRNA expression was markedly reduced in macrophages from IFN-alpha/betaR-/- mice and blocked by cotreatment with antibodies against type I IFN. These results indicate that indirect activation of STAT1 by LPS-induced type I IFN participates in promoting optimal expression of LPS-inducible genes, and they suggest that STAT1 may play a critical role in innate immunity against gram-negative bacterial infection.
Patel, Utsav A; Patel, Amrutlal K; Joshi, Chaitanya G
2015-01-01
Myostatin (MSTN) is a secreted growth factor that negatively regulates skeletal muscle mass, and therefore, strategies to block myostatin-signaling pathway have been extensively pursued to increase the muscle mass in livestock. Here, we report a lentiviral vector-based delivery of shRNA to disrupt myostatin expression into goat fetal fibroblasts (GFFs) that were commonly used as karyoplast donors in somatic-cell nuclear transfer (SCNT) studies. Sh-RNA positive cells were screened by puromycin selection. Using real-time polymerase chain reaction (PCR), we demonstrated efficient knockdown of endogenous myostatin mRNA with 64% down-regulation in sh2 shRNA-treated GFF cells compared to GFF cells treated by control lentivirus without shRNA. Moreover, we have also demonstrated both the induction of interferon response and the expression of genes regulating myogenesis in GFF cells. The results indicate that myostatin-targeting siRNA produced endogenously could efficiently down-regulate myostatin expression. Therefore, targeted knockdown of the MSTN gene using lentivirus-mediated shRNA transgenics would facilitate customized cell engineering, allowing potential use in the establishment of stable cell lines to produce genetically engineered animals. © 2014 American Institute of Chemical Engineers.
HTLV-1 Tax protein recruitment into IKKε and TBK1 kinase complexes enhances IFN-I expression.
Diani, Erica; Avesani, Francesca; Bergamo, Elisa; Cremonese, Giorgia; Bertazzoni, Umberto; Romanelli, Maria Grazia
2015-02-01
The Tax protein expressed by human T-cell leukemia virus type 1 (HTLV-1) plays a pivotal role in the deregulation of cellular pathways involved in the immune response, inflammation, cell survival, and cancer. Many of these effects derive from Tax multiple interactions with host factors, including the subunits of the IKK-complex that are required for NF-κB activation. IKKɛ and TBK1 are two IKK-related kinases that allow the phosphorylation of interferon regulatory factors that trigger IFN type I gene expression. We observed that IKKɛ and TBK1 recruit Tax into cellular immunocomplexes. We also found that TRAF3, which regulates cell receptor signaling effectors, forms complexes with Tax. Transactivation analyses revealed that expression of Tax, in presence of IKKɛ and TBK1, enhances IFN-β promoter activity, whereas the activation of NF-κB promoter is not modified. We propose that Tax may be recruited into the TBK1/IKKɛ complexes as a scaffolding-adaptor protein that enhances IFN-I gene expression. Copyright © 2014 Elsevier Inc. All rights reserved.
NF-kappaB mediates FGF signal regulation of msx-1 expression.
Bushdid, P B; Chen, C L; Brantley, D M; Yull, F; Raghow, R; Kerr, L D; Barnett, J V
2001-09-01
The nuclear factor-kappaB (NF-kappaB) family of transcription factors is involved in proliferation, differentiation, and apoptosis in a stage- and cell-dependent manner. Recent evidence has shown that NF-kappaB activity is necessary for both chicken and mouse limb development. We report here that the NF-kappaB family member c-rel and the homeodomain gene msx-1 have partially overlapping expression patterns in the developing chick limb. In addition, inhibition of NF-kappaB activity resulted in a decrease in msx-1 mRNA expression. Sequence analysis of the msx-1 promoter revealed three potential kappaB-binding sites similar to the interferon-gamma (IFN-gamma) kappaB-binding site. These sites bound to c-Rel, as shown by electrophoretic mobility shift assay (EMSA). Furthermore, inhibition of NF-kappaB activity significantly reduced transactivation of the msx-1 promoter in response to FGF-2/-4, known stimulators of msx-1 expression. These results suggest that NF-kappaB mediates the FGF-2/-4 signal regulation of msx-1 gene expression. Copyright 2001 Academic Press.
Santhakumar, Diwakar; Rohaim, Mohammed Abdel Mohsen Shahaat; Hussein, Hussein A; Hawes, Pippa; Ferreira, Helena Lage; Behboudi, Shahriar; Iqbal, Munir; Nair, Venugopal; Arns, Clarice W; Munir, Muhammad
2018-05-01
The intracellular actions of interferon (IFN)-regulated proteins, including IFN-induced proteins with tetratricopeptide repeats (IFITs), attribute a major component of the protective antiviral host defense. Here we applied genomics approaches to annotate the chicken IFIT locus and currently identified a single IFIT (chIFIT5) gene. The profound transcriptional level of this effector of innate immunity was mapped within its unique cis-acting elements. This highly virus- and IFN-responsive chIFIT5 protein interacted with negative sense viral RNA structures that carried a triphosphate group on its 5' terminus (ppp-RNA). This interaction reduced the replication of RNA viruses in lentivirus-mediated IFIT5-stable chicken fibroblasts whereas CRISPR/Cas9-edited chIFIT5 gene knockout fibroblasts supported the replication of RNA viruses. Finally, we generated mosaic transgenic chicken embryos stably expressing chIFIT5 protein or knocked-down for endogenous chIFIT5 gene. Replication kinetics of RNA viruses in these transgenic chicken embryos demonstrated the antiviral potential of chIFIT5 in ovo. Taken together, these findings propose that IFIT5 specifically antagonize RNA viruses by sequestering viral nucleic acids in chickens, which are unique in innate immune sensing and responses to viruses of both poultry and human health significance.
Olivier, T T; Viljoen, I M; Hofmeyr, J; Hausler, G A; Goosen, W J; Tordiffe, A S W; Buss, P; Loxton, A G; Warren, R M; Miller, M A; van Helden, P D; Parsons, S D C
2017-06-01
Mycobacterium bovis infection, the cause of bovine tuberculosis (BTB), is endemic in wildlife in the Kruger National Park (KNP), South Africa. In lions, a high infection prevalence and BTB mortalities have been documented in the KNP; however, the ecological consequences of this disease are currently unknown. Sensitive assays for the detection of this infection in this species are therefore required. Blood from M. bovis-exposed, M. bovis-unexposed, M. tuberculosis-exposed and M. bovis-infected lions was incubated in QuantiFERON ® -TB Gold (QFT) tubes containing either saline or ESAT-6/CFP-10 peptides. Using qPCR, selected reference genes were evaluated for expression stability in these samples and selected target genes were evaluated as markers of antigen-dependent immune activation. The abundance of monokine induced by gamma interferon (MIG/CXCL9) mRNA, measured in relation to that of YWHAZ, was used as a marker of ESAT-6/CFP-10 sensitization. The gene expression assay results were compared between lion groups, and lenient and stringent diagnostic cut-off values were calculated. This CXCL9 gene expression assay combines a highly specific stimulation platform with a sensitive diagnostic marker that allows for discrimination between M. bovis-infected and M. bovis-uninfected lions. © 2015 Blackwell Verlag GmbH.
Gene expression in the chicken caecum in response to infections with non-typhoid Salmonella.
Rychlik, Ivan; Elsheimer-Matulova, Marta; Kyrova, Kamila
2014-12-05
Chickens can be infected with Salmonella enterica at any time during their life. However, infections within the first hours and days of their life are epidemiologically the most important, as newly hatched chickens are highly sensitive to Salmonella infection. Salmonella is initially recognized in the chicken caecum by TLR receptors and this recognition is followed by induction of chemokines, cytokines and many effector genes. This results in infiltration of heterophils, macrophages, B- and T-lymphocytes and changes in total gene expression in the caecal lamina propria. The highest induction in expression is observed for matrix metalloproteinase 7 (MMP7). Expression of this gene is increased in the chicken caecum over 4000 fold during the first 10 days after the infection of newly hatched chickens. Additional highly inducible genes in the caecum following S. Enteritidis infection include immune responsive gene 1 (IRG1), serum amyloid A (SAA), extracellular fatty acid binding protein (ExFABP), serine protease inhibitor (SERPINB10), trappin 6-like (TRAP6), calprotectin (MRP126), mitochondrial ES1 protein homolog (ES1), interferon-induced protein with tetratricopeptide repeats 5 (IFIT5), avidin (AVD) and transglutaminase 4 (TGM4). The induction of expression of these proteins exceeds a factor of 50. Similar induction rates are also observed for chemokines and cytokines such as IL1β, IL6, IL8, IL17, IL18, IL22, IFNγ, AH221 or iNOS. Once the infection is under control, which happens approx. 2 weeks after infection, expression of IgY and IgA increases to facilitate Salmonella elimination from the gut lumen. This review outlines the function of individual proteins expressed in chickens after infection with non-typhoid Salmonella serovars.
Xu, Qiaoqing; Jiang, Yousheng; Wangkahart, Eakapol; Zou, Jun; Chang, Mingxian; Yang, Daiqin; Secombes, Chris J; Nie, Pin; Wang, Tiehui
2016-01-01
Interferon regulatory factor (IRF) 10 was first found in birds and is present in the genome of other tetrapods (but not humans and mice), as well as in teleost fish. The functional role of IRF10 in vertebrate immunity is relatively unknown compared to IRF1-9. The target of this research was to clone and characterize the IRF10 genes in three economically important fish species that will facilitate future evaluation of this molecule in fish innate and adaptive immunity. In the present study, a single IRF10 gene was cloned in grass carp Ctenopharyngodon idella and Asian swamp eel Monopterus albus, and two, named IRF10a and IRF10b, in rainbow trout Oncorhynchus mykiss. The fish IRF10 molecules share highest identities to other vertebrate IRF10s, and have a well conserved DNA binding domain, IRF-associated domain, and an 8 exon/7 intron structure with conserved intron phase. The presence of an upstream ATG or open reading frame (ORF) in the 5'-untranslated region of different fish IRF10 cDNA sequences suggests potential regulation at the translational level, and this has been verified by in vitro transcription/translation experiments of the trout IRF10a cDNA, but would still need to be validated in fish cells. Both trout IRF10 paralogues are highly expressed in thymus, blood and spleen but are relatively low in head kidney and caudal kidney. Trout IRF10b expression is significantly higher than IRF10a in integumentary tissues i.e. gills, scales, skin, intestine, adipose fin and tail fins, suggesting that IRF10b may be more important in mucosal immunity. The expression of both trout IRF10 paralogues is up-regulated by recombinant IFN-γ. The expression of the IRF10 genes is highly induced by Poly I:C in vitro and in vivo, and by viral infection, but is less responsive to peptidoglycan and bacterial infection, suggesting an important role of fish IRF10 in antiviral defense.
de Toledo-Pinto, Thiago Gomes; Ferreira, Anna Beatriz Robottom; Ribeiro-Alves, Marcelo; Rodrigues, Luciana Silva; Batista-Silva, Leonardo Ribeiro; Silva, Bruno Jorge de Andrade; Lemes, Robertha Mariana Rodrigues; Martinez, Alejandra Nóbrega; Sandoval, Felipe Galvan; Alvarado-Arnez, Lucia Elena; Rosa, Patrícia Sammarco; Shannon, Edward Joseph; Pessolani, Maria Cristina Vidal; Pinheiro, Roberta Olmo; Antunes, Sérgio Luís Gomes; Sarno, Euzenir Nunes; Lara, Flávio Alves; Williams, Diana Lynn; Ozório Moraes, Milton
2016-07-15
Cytosolic detection of nucleic acids elicits a type I interferon (IFN) response and plays a critical role in host defense against intracellular pathogens. Herein, a global gene expression profile of Mycobacterium leprae-infected primary human Schwann cells identified the genes differentially expressed in the type I IFN pathway. Among them, the gene encoding 2'-5' oligoadenylate synthetase-like (OASL) underwent the greatest upregulation and was also shown to be upregulated in M. leprae-infected human macrophage cell lineages, primary monocytes, and skin lesion specimens from patients with a disseminated form of leprosy. OASL knock down was associated with decreased viability of M. leprae that was concomitant with upregulation of either antimicrobial peptide expression or autophagy levels. Downregulation of MCP-1/CCL2 release was also observed during OASL knock down. M. leprae-mediated OASL expression was dependent on cytosolic DNA sensing mediated by stimulator of IFN genes signaling. The addition of M. leprae DNA enhanced nonpathogenic Mycobacterium bovis bacillus Calmette-Guerin intracellular survival, downregulated antimicrobial peptide expression, and increased MCP-1/CCL2 secretion. Thus, our data uncover a promycobacterial role for OASL during M. leprae infection that directs the host immune response toward a niche that permits survival of the pathogen. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Costa, Elísio; Fernandes, João; Ribeiro, Sandra; Sereno, José; Garrido, Patrícia; Rocha-Pereira, Petronila; Coimbra, Susana; Catarino, Cristina; Belo, Luís; Bronze-da-Rocha, Elsa; Vala, Helena; Alves, Rui; Reis, Flávio; Santos-Silva, Alice
2014-12-01
Our aim was to contribute to a better understanding of the pathophysiology of anemia in elderly, by studying how aging affects renal function, iron metabolism, erythropoiesis and the inflammatory response, using an experimental animal model. The study was performed in male Wistar, a group of young rats with 2 months age and an old one with 18 months age. Old rats presented a significant higher urea, creatinine, interferon (INF)-gamma, ferritin and soluble transferrin receptor serum levels, as well as increased counts of reticulocytes and RDW. In addition, these rats showed significant lower erythropoietin (EPO) and iron serum levels. Concerning gene expression of iron regulatory proteins, old rats presented significantly higher mRNA levels of hepcidin (Hamp), transferrin (TF), transferrin receptor 2 (TfR2) and hemojuvelin (HJV); divalent metal transporter 1 (DMT1) mRNA levels were significantly higher in duodenal tissue; EPO gene expression was significantly higher in liver and lower in kidney, and the expression of the EPOR was significantly higher in both liver and kidney. Our results showed that aging is associated with impaired renal function, which could be in turn related with the inflammatory process and with a decline in EPO renal production. Moreover, we also propose that aging may be associated with INF-gamma-induced inflammation and with alterations upon iron regulatory proteins gene expression.
Wyatt, Linda S; Xiao, Wei; Americo, Jeffrey L; Earl, Patricia L; Moss, Bernard
2017-06-06
Viruses are used as expression vectors for protein synthesis, immunology research, vaccines, and therapeutics. Advantages of poxvirus vectors include the accommodation of large amounts of heterologous DNA, the presence of a cytoplasmic site of transcription, and high expression levels. On the other hand, competition of approximately 200 viral genes with the target gene for expression and immune recognition may be disadvantageous. We describe a vaccinia virus (VACV) vector that uses an early promoter to express the bacteriophage T7 RNA polymerase; has the A23R intermediate transcription factor gene deleted, thereby restricting virus replication to complementing cells; and has a heterologous gene regulated by a T7 promoter. In noncomplementing cells, viral early gene expression and DNA replication occurred normally but synthesis of intermediate and late proteins was prevented. Nevertheless, the progeny viral DNA provided templates for abundant expression of heterologous genes regulated by a T7 promoter. Selective expression of the Escherichia coli lac repressor gene from an intermediate promoter reduced transcription of the heterologous gene specifically in complementing cells, where large amounts might adversely impact VACV replication. Expression of heterologous proteins mediated by the A23R deletion vector equaled that of a replicating VACV, was higher than that of a nonreplicating modified vaccinia virus Ankara (MVA) vector used for candidate vaccines in vitro and in vivo , and was similarly immunogenic in mice. Unlike the MVA vector, the A23R deletion vector still expresses numerous early genes that can restrict immunogenicity as demonstrated here by the failure of the prototype vector to induce interferon alpha. By deleting immunomodulatory genes, we anticipate further improvements in the system. IMPORTANCE Vaccines provide an efficient and effective way of preventing infectious diseases. Nevertheless, new and better vaccines are needed. Vaccinia virus, which was used successfully as a live vaccine to eradicate smallpox, has been further attenuated and adapted as a recombinant vector for immunization against other pathogens. However, since the initial description of this vector system, only incremental improvements largely related to safety have been implemented. Here we described novel modifications of the platform that increased expression of the heterologous target gene and decreased expression of endogenous vaccinia virus genes while providing safety by preventing replication of the candidate vaccine except in complementing cells used for vector propagation. Copyright © 2017 Wyatt et al.
Mansourian, Robert; Mutch, David M; Antille, Nicolas; Aubert, Jerome; Fogel, Paul; Le Goff, Jean-Marc; Moulin, Julie; Petrov, Anton; Rytz, Andreas; Voegel, Johannes J; Roberts, Matthew-Alan
2004-11-01
Microarray technology has become a powerful research tool in many fields of study; however, the cost of microarrays often results in the use of a low number of replicates (k). Under circumstances where k is low, it becomes difficult to perform standard statistical tests to extract the most biologically significant experimental results. Other more advanced statistical tests have been developed; however, their use and interpretation often remain difficult to implement in routine biological research. The present work outlines a method that achieves sufficient statistical power for selecting differentially expressed genes under conditions of low k, while remaining as an intuitive and computationally efficient procedure. The present study describes a Global Error Assessment (GEA) methodology to select differentially expressed genes in microarray datasets, and was developed using an in vitro experiment that compared control and interferon-gamma treated skin cells. In this experiment, up to nine replicates were used to confidently estimate error, thereby enabling methods of different statistical power to be compared. Gene expression results of a similar absolute expression are binned, so as to enable a highly accurate local estimate of the mean squared error within conditions. The model then relates variability of gene expression in each bin to absolute expression levels and uses this in a test derived from the classical ANOVA. The GEA selection method is compared with both the classical and permutational ANOVA tests, and demonstrates an increased stability, robustness and confidence in gene selection. A subset of the selected genes were validated by real-time reverse transcription-polymerase chain reaction (RT-PCR). All these results suggest that GEA methodology is (i) suitable for selection of differentially expressed genes in microarray data, (ii) intuitive and computationally efficient and (iii) especially advantageous under conditions of low k. The GEA code for R software is freely available upon request to authors.
Interferon alpha bioactivity critically depends on Scavenger receptor class B type I function
Vasquez, Marcos; Fioravanti, Jessica; Aranda, Fernando; Paredes, Vladimir; Gomar, Celia; Ardaiz, Nuria; Fernandez-Ruiz, Veronica; Méndez, Miriam; Nistal-Villan, Estanislao; Larrea, Esther; Gao, Qinshan; Gonzalez-Aseguinolaza, Gloria; Prieto, Jesus; Berraondo, Pedro
2016-01-01
ABSTRACT Scavenger receptor class B type I (SR-B1) binds pathogen-associated molecular patterns participating in the regulation of the inflammatory reaction but there is no information regarding potential interactions between SR-B1 and the interferon system. Herein, we report that SR-B1 ligands strongly regulate the transcriptional response to interferon α (IFNα) and enhance its antiviral and antitumor activity. This effect was mediated by the activation of TLR2 and TLR4 as it was annulled by the addition of anti-TLR2 or anti-TLR4 blocking antibodies. In vivo, we maximized the antitumor activity of IFNα co-expressing in the liver a SR-B1 ligand and IFNα by adeno-associated viruses. This gene therapy strategy eradicated liver metastases from colon cancer with reduced toxicity. On the other hand, genetic and pharmacological inhibition of SR-B1 blocks the clathrin-dependent interferon receptor recycling pathway with a concomitant reduction in IFNα signaling and bioactivity. This effect can be applied to enhance cancer immunotherapy with oncolytic viruses. Indeed, SR-B1 antagonists facilitate replication of oncolytic viruses amplifying their tumoricidal potential. In conclusion, SR-B1 agonists behave as IFNα enhancers while SR-B1 inhibitors dampen IFNα activity. These results demonstrate that SR-B1 is a suitable pharmacology target to enhance cancer immunotherapy based on IFNα and oncolytic viruses. PMID:27622065
Zhou, Hao; Chen, Shun; Wang, Mingshu; Cheng, Anchun
2014-01-01
Interferon may be thought of as a key, with the interferon receptor as the signal lock: Crosstalk between them maintains their balance during viral infection. In this review, the protein structure of avian interferon and the interferon receptor are discussed, indicating remarkable similarity between different species. However, the structures of the interferon receptors are more sophisticated than those of the interferons, suggesting that the interferon receptor is a more complicated signal lock system and has considerable diversity in subtypes or structures. Preliminary evolutionary analysis showed that the subunits of the interferon receptor formed a distinct clade, and the orthologs may be derived from the same ancestor. Furthermore, the development of interferons and interferon receptors in birds may be related to an animal’s age and the maintenance of a balanced state. In addition, the equilibrium between interferon and its receptor during pathological and physiological states revealed that the virus and the host influence this equilibrium. Birds could represent an important model for studies on interferon’s antiviral activities and may provide the basis for new antiviral strategies. PMID:25405736
Ramos, Paula S.; Williams, Adrienne H.; Ziegler, Julie T.; Comeau, Mary E.; Guy, Richard T.; Lessard, Christopher J.; Li, He; Edberg, Jeffrey C.; Zidovetzki, Raphael; Criswell, Lindsey A.; Gaffney, Patrick M.; Graham, Deborah Cunninghame; Graham, Robert R.; Kelly, Jennifer A.; Kaufman, Kenneth M.; Brown, Elizabeth E.; Alarcón, Graciela S.; Petri, Michelle A.; Reveille, John D.; McGwin, Gerald; Vilá, Luis M.; Ramsey-Goldman, Rosalind; Jacob, Chaim O.; Vyse, Timothy J.; Tsao, Betty P.; Harley, John B.; Kimberly, Robert P.; Alarcón-Riquelme, Marta E.; Langefeld, Carl D.; Moser, Kathy L.
2011-01-01
Objective The overexpression of interferon (IFN)-inducible genes is a prominent feature of SLE, serves as a marker for active and more severe disease, and is also observed in other autoimmune and inflammatory conditions. The genetic variations responsible for sustained activation of IFN responsive genes are unknown. Methods We systematically evaluated association of SLE with a total of 1,754 IFN-pathway related genes, including IFN-inducible genes known to be differentially expressed in SLE patients and their direct regulators. We performed a three-stage design where two cohorts (total n=939 SLE cases, 3,398 controls) were analyzed independently and jointly for association with SLE, and the results were adjusted for the number of comparisons. Results A total of 16,137 SNPs passed all quality control filters of which 316 demonstrated replicated association with SLE in both cohorts. Nine variants were further genotyped for confirmation in an average of 1,316 independent SLE cases and 3,215 independent controls. Association with SLE was confirmed for several genes, including the transmembrane receptor CD44 (rs507230, P = 3.98×10−12), cytokine pleiotrophin (PTN) (rs919581, P = 5.38×10−04), the heat-shock DNAJA1 (rs10971259, P = 6.31×10−03), and the nuclear import protein karyopherin alpha 1 (KPNA1) (rs6810306, P = 4.91×10−02). Conclusion This study expands the number of candidate genes associated with SLE and highlights the potential of pathway-based approaches for gene discovery. Identification of the causal alleles will help elucidate the molecular mechanisms responsible for activation of the IFN system in SLE. PMID:21437871
1995-09-20
parentheses represent the lower and upper values defined by 1 SEM. The LSD test was used for pairwise mean comparisons. c,d,"Means are significantly...different at the 5% level of significance of the LSD test. 100 Table VI: Effect of Calyculin A on LPS-induced TNF and IFN Production Treatment Medium...transfer an antiviral state. Role of endogenous interferon. J. Immun . 139:1991. Gille. H. G., A. D. Sharrocks, and P. E. Shaw . 1992. Phosphorylation
Effect of Moderate Hypothermia on Gene Expression by THP-1 Cells: A DNA Microarray Study
2006-01-01
h was found to improve both survival and neurological outcomes in newborn infants suffering from hypoxic-ischemic encephalopathy (17). Al- though the...from adults and newborns . J Interferon Cytokine Res 20: 1049–1055, 2000. 7. Farrell RE Jr. Determination of nucleic acid concentration and purity. In...hypoxic-ischemic encephalopathy . N Engl J Med 353: 1574–1584, 2005. 18. Sonna LA, Cullivan ML, Sheldon HK, Pratt RE, and Lilly CM. Effect of hypoxia
Xi, Yang; Troy, Niamh M.; Anderson, Denise; Pena, Olga M.; Lynch, Jason P.; Phipps, Simon; Bosco, Anthony; Upham, John W.
2017-01-01
Though human rhinoviruses (HRVs) are usually innocuous viruses, they can trigger serious consequences in certain individuals, especially in the setting of impaired interferon (IFN) synthesis. Plasmacytoid dendritic cells (pDCs) are key IFN producing cells, though we know little about the role of pDC in HRV-induced immune responses. Herein, we used gene expression microarrays to examine HRV-activated peripheral blood mononuclear cells (PBMCs) from healthy people, in combination with pDC depletion, to assess whether observed gene expression patterns were pDC dependent. As expected, pDC depletion led to a major reduction in IFN-α release. This was associated with profound differences in gene expression between intact PBMC and pDC-depleted PBMC, and major changes in upstream regulators: 70–80% of the HRV activated genes appeared to be pDC dependent. Real-time PCR confirmed key changes in gene expression, in which the following selected genes were shown to be highly pDC dependent: the transcription factor IRF7, both IL-27 chains (IL-27p28 and EBI3), the alpha chain of the IL-15 receptor (IL-15RA) and the IFN-related gene IFI27. HRV-induced IL-6, IFN-γ, and IL-27 protein synthesis were also highly pDC dependent. Supplementing pDC-depleted cultures with recombinant IL-15, IFN-γ, IL-27, or IL-6 was able to restore the IFN-α response, thereby compensating for the absence of pDC. Though pDC comprise only a minority population of migratory leukocytes, our findings highlight the profound extent to which these cells contribute to the immune response to HRV. PMID:29118754
Microarray analysis of gene expression in West Nile virus–infected human retinal pigment epithelium
Munoz-Erazo, Luis; Natoli, Ricardo; Provis, Jan Marie; Madigan, Michelle Catherine
2012-01-01
Purpose To identify key genes differentially expressed in the human retinal pigment epithelium (hRPE) following low-level West Nile virus (WNV) infection. Methods Primary hRPE and retinal pigment epithelium cell line (ARPE-19) cells were infected with WNV (multiplicity of infection 1). RNA extracted from mock-infected and WNV-infected cells was assessed for differential expression of genes using Affymetrix microarray. Quantitative real-time PCR analysis of 23 genes was used to validate the microarray results. Results Functional annotation clustering of the microarray data showed that gene clusters involved in immune and antiviral responses ranked highly, involving genes such as chemokine (C-C motif) ligand 2 (CCL2), chemokine (C-C motif) ligand 5 (CCL5), chemokine (C-X-C motif) ligand 10 (CXCL10), and toll like receptor 3 (TLR3). In conjunction with the quantitative real-time PCR analysis, other novel genes regulated by WNV infection included indoleamine 2,3-dioxygenase (IDO1), genes involved in the transforming growth factor–β pathway (bone morphogenetic protein and activin membrane-bound inhibitor homolog [BAMBI] and activating transcription factor 3 [ATF3]), and genes involved in apoptosis (tumor necrosis factor receptor superfamily, member 10d [TNFRSF10D]). WNV-infected RPE did not produce any interferon-γ, suggesting that IDO1 is induced by other soluble factors, by the virus alone, or both. Conclusions Low-level WNV infection of hRPE cells induced expression of genes that are typically associated with the host cell response to virus infection. We also identified other genes, including IDO1 and BAMBI, that may influence the RPE and therefore outer blood-retinal barrier integrity during ocular infection and inflammation, or are associated with degeneration, as seen for example in aging. PMID:22509103
Dynamic gene expression analysis in a H1N1 influenza virus mouse pneumonia model.
Bao, Yanyan; Gao, Yingjie; Shi, Yujing; Cui, Xiaolan
2017-06-01
H1N1, a major pathogenic subtype of influenza A virus, causes a respiratory infection in humans and livestock that can range from a mild infection to more severe pneumonia associated with acute respiratory distress syndrome. Understanding the dynamic changes in the genome and the related functional changes induced by H1N1 influenza virus infection is essential to elucidating the pathogenesis of this virus and thereby determining strategies to prevent future outbreaks. In this study, we filtered the significantly expressed genes in mouse pneumonia using mRNA microarray analysis. Using STC analysis, seven significant gene clusters were revealed, and using STC-GO analysis, we explored the significant functions of these seven gene clusters. The results revealed GOs related to H1N1 virus-induced inflammatory and immune functions, including innate immune response, inflammatory response, specific immune response, and cellular response to interferon-beta. Furthermore, the dynamic regulation relationships of the key genes in mouse pneumonia were revealed by dynamic gene network analysis, and the most important genes were filtered, including Dhx58, Cxcl10, Cxcl11, Zbp1, Ifit1, Ifih1, Trim25, Mx2, Oas2, Cd274, Irgm1, and Irf7. These results suggested that during mouse pneumonia, changes in the expression of gene clusters and the complex interactions among genes lead to significant changes in function. Dynamic gene expression analysis revealed key genes that performed important functions. These results are a prelude to advancements in mouse H1N1 influenza virus infection biology, as well as the use of mice as a model organism for human H1N1 influenza virus infection studies.
Haralambieva, Iana H; Oberg, Ann L; Dhiman, Neelam; Ovsyannikova, Inna G; Kennedy, Richard B; Grill, Diane E; Jacobson, Robert M; Poland, Gregory A
2012-11-15
The mechanisms underlying smallpox vaccine-induced variations in immune responses are not well understood, but are of considerable interest to a deeper understanding of poxvirus immunity and correlates of protection. We assessed transcriptional messenger RNA expression changes in 197 recipients of primary smallpox vaccination representing the extremes of humoral and cellular immune responses. The 20 most significant differentially expressed genes include a tumor necrosis factor-receptor superfamily member, an interferon (IFN) gene, a chemokine gene, zinc finger protein genes, nuclear factors, and histones (P ≤ 1.06E(-20), q ≤ 2.64E(-17)). A pathway analysis identified 4 enriched pathways with cytokine production by the T-helper 17 subset of CD4+ T cells being the most significant pathway (P = 3.42E(-05)). Two pathways (antiviral actions of IFNs, P = 8.95E(-05); and IFN-α/β signaling pathway, P = 2.92E(-04)), integral to innate immunity, were enriched when comparing high with low antibody responders (false discovery rate, < 0.05). Genes related to immune function and transcription (TLR8, P = .0002; DAPP1, P = .0003; LAMP3, P = 9.96E(-05); NR4A2, P ≤ .0002; EGR3, P = 4.52E(-05)), and other genes with a possible impact on immunity (LNPEP, P = 3.72E(-05); CAPRIN1, P = .0001; XRN1, P = .0001), were found to be expressed differentially in high versus low antibody responders. We identified novel and known immunity-related genes and pathways that may account for differences in immune response to smallpox vaccination.
Nombela, Ivan; Puente-Marin, Sara; Chico, Veronica; Villena, Alberto J.; Carracedo, Begoña; Ciordia, Sergio; Mena, Maria Carmen; Mercado, Luis; Perez, Luis; Coll, Julio; Ortega-Villaizan, Maria del Mar
2018-01-01
Background: It has been described that fish nucleated red blood cells (RBCs) generate a wide variety of immune-related gene transcripts when viruses highly replicate inside them and are their main target cell. The immune response and mechanisms of fish RBCs against viruses targeting other cells or tissues has not yet been explored and is the objective of our study. Methods: Rainbow trout RBCs were obtained from peripheral blood, ficoll purified and exposed to Viral Haemorrhagic Septicaemia virus (VHSV). Immune response was evaluated by means of RT-qPCR, flow cytometry, immunofluorescence and isobaric tag for relative and absolute quantification (iTRAQ) protein profiling. Results: VHSV N gene transcripts incremented early postexposure and were drastically decreased after 6 hours postexposure (hpe). The expression of type I interferon ( ifn1) gene was significantly downregulated at early postexposure (3 hpe), together with a gradual downregulation of interferon-inducible mx and pkr genes until 72 hpe. Type I IFN protein was downregulated and interferon-inducible Mx protein was maintained at basal levels. Co-culture assays of RBCs, previously exposed to UV-inactivated VHSV, and TSS (stromal cell line from spleen) revealed IFN crosstalk between both cell types. On the other hand, anti-microbial peptide β-defensin 1 and neutrophil chemotactic factor interleukin 8 were slightly upregulated in VHSV-exposed RBCs. iTRAQ profiling revealed that VHSV exposure can induce a global protein downregulation in rainbow trout RBCs, mainly related to RNA stability and proteasome pathways. Antioxidant/antiviral response is also suggested to be involved in the response of rainbow trout RBCs to VHSV. Conclusions: A variety of mechanisms are proposed to be implicated in the antiviral response of rainbow trout RBCs against VHSV halted infection. Ongoing research is focused on understanding the mechanisms in detail. PMID:29527292
Single cell RNA Seq reveals dynamic paracrine control of cellular variation
Shalek, Alex K.; Satija, Rahul; Shuga, Joe; Trombetta, John J.; Gennert, Dave; Lu, Diana; Chen, Peilin; Gertner, Rona S.; Gaublomme, Jellert T.; Yosef, Nir; Schwartz, Schraga; Fowler, Brian; Weaver, Suzanne; Wang, Jing; Wang, Xiaohui; Ding, Ruihua; Raychowdhury, Raktima; Friedman, Nir; Hacohen, Nir; Park, Hongkun; May, Andrew P.; Regev, Aviv
2014-01-01
High-throughput single-cell transcriptomics offers an unbiased approach for understanding the extent, basis, and function of gene expression variation between seemingly identical cells. Here, we sequence single-cell RNA-Seq libraries prepared from over 1,700 primary mouse bone marrow derived dendritic cells (DCs) spanning several experimental conditions. We find substantial variation between identically stimulated DCs, in both the fraction of cells detectably expressing a given mRNA and the transcript’s level within expressing cells. Distinct gene modules are characterized by different temporal heterogeneity profiles. In particular, a “core” module of antiviral genes is expressed very early by a few “precocious” cells, but is later activated in all cells. By stimulating cells individually in sealed microfluidic chambers, analyzing DCs from knockout mice, and modulating secretion and extracellular signaling, we show that this response is coordinated via interferon-mediated paracrine signaling. Surprisingly, preventing cell-to-cell communication also substantially reduces variability in the expression of an early-induced “peaked” inflammatory module, suggesting that paracrine signaling additionally represses part of the inflammatory program. Our study highlights the importance of cell-to-cell communication in controlling cellular heterogeneity and reveals general strategies that multicellular populations use to establish complex dynamic responses. PMID:24919153
Sin, Onsam; Mabiala, Prudence; Liu, Ye; Sun, Ying; Hu, Tao; Liu, Qingzhen; Guo, Deyin
2012-02-01
Artificial microRNA (miRNA) expression vectors have been developed and used for RNA interference. The secondary structure of artificial miRNA is important for RNA interference efficacy. We designed two groups of six artificial splicing miRNA 155-based miRNAs (SM155-based miRNAs) with the same target in the coding region or 3' UTR of a target gene and studied their RNA silencing efficiency and interferon β (IFN-β) induction effects. SM155-based miRNA with a mismatch at the +1 position and a bulge at the +11, +12 positions in a miRNA precursor stem-loop structure showed the highest gene silencing efficiency and lowest IFN-β induction effect (increased IFN-β mRNA level by 10% in both target cases), regardless of the specificity of the target sequence, suggesting that pSM155-based miRNA with this design could be a valuable miRNA expression vector.
Giles, E M; Sanders, T J; McCarthy, N E; Lung, J; Pathak, M; MacDonald, T T; Lindsay, J O; Stagg, A J
2017-01-01
Type 1 interferon (IFN-1) promotes regulatory T-cell function to suppress inflammation in the mouse intestine, but little is known about IFN-1 in the human gut. We therefore assessed the influence of IFN-1 on CD4+ T-cells isolated from human colon tissue obtained from healthy controls or patients with inflammatory bowel disease (IBD). Immunofluorescent imaging revealed constitutive expression of IFNβ in human intestinal tissue, and colonic T-cells were responsive to exogenous IFN-1 as assessed by phosphorylation of signal transduction and activator of transcription 1 (pSTAT1) and induction of interferon stimulated genes (ISGs). Unlike their blood counterparts, intestinal T-cells from non-inflamed regions of IBD colon displayed enhanced responsiveness to IFN-1, increased frequency of pSTAT1+ cells, and greater induction of ISGs upon IFN-1 exposure in vitro. In healthy tissue, antibody neutralization of IFNβ selectively reduced T-cell production of the pro-regulatory cytokine interleukin-10 (IL-10) and increased IFNγ synthesis. In contrast, neutralization of IFNβ in IBD tissue cultures increased the frequency of T-cells producing inflammatory cytokines but did not alter IL-10 expression. These data support a role for endogenous IFN-1 as a context-dependent modulator of T-cell function that promotes regulatory activity in healthy human intestine, but indicate that the IFN-1/STAT1 pathway is dysregulated in inflammatory bowel disease.
STAT3 Activation Promotes Oncolytic HSV1 Replication in Glioma Cells
Okemoto, Kazuo; Wagner, Benjamin; Meisen, Hans; Haseley, Amy; Kaur, Balveen; Chiocca, Ennio Antonio
2013-01-01
Recent studies report that STAT3 signaling is a master regulator of mesenchymal transformation of gliomas and that STAT3 modulated genes are highly expressed in the mesenchymal transcriptome of gliomas. A currently studied experimental treatment for gliomas consists of intratumoral injection of oncolytic viruses (OV), such as oncolytic herpes simplex virus type 1 (oHSV). We have described one particular oHSV (rQNestin34.5) that exhibits potent anti-glioma activity in animal models. Here, we hypothesized that alterations in STAT3 signaling in glioma cells may affect the replicative ability of rQNestin34.5. In fact, human U251 glioma cells engineered to either over-express STAT3 or with genetic down-regulation of STAT3 supported oHSV replication to a significantly higher or lesser degree, respectively, when compared to controls. Administration of pharmacologic agents that increase STAT3 phosphorylation/activation (Valproic Acid) or increase STAT3 levels (Interleukin 6) also significantly enhanced oHSV replication. Instead, administration of inhibitors of STAT3 phosphorylation/activation (LLL12) significantly reduced oHSV replication. STAT3 led to a reduction in interferon signaling in oHSV infected cells and inhibition of interferon signaling abolished the effect of STAT3 on oHSV replication. These data thus indicate that STAT3 signaling in malignant gliomas enhances oHSV replication, likely by inhibiting the interferon response in infected glioma cells, thus suggesting avenues for possible potentiation of oncolytic virotherapy. PMID:23936533
Effect of homeopathic treatment on gene expression in Copenhagen rat tumor tissues.
Thangapazham, Rajesh L; Rajeshkumar, N V; Sharma, Anuj; Warren, Jim; Singh, Anoop K; Ives, John A; Gaddipati, Jaya P; Maheshwari, Radha K; Jonas, Wayne B
2006-12-01
Increasing evidence suggests that the inability to undergo apoptosis is an important factor in the development and progression of prostate cancer. Agents that induce apoptosis may inhibit tumor growth and provide therapeutic benefit. In a recent study, the authors found that certain homeopathic treatments produced anticancer effects in an animal model. In this study, the authors examined the immunomodulating and apoptotic effects of these remedies. The authors investigated the effect of a homeopathic treatment regimen containing Conium maculatum, Sabal serrulata, Thuja occidentalis, and a MAT-LyLu Carcinosin nosode on the expression of cytokines and genes that regulate apoptosis. This was assessed in prostate cancer tissues, extracted from animals responsive to these drugs, using ribonuclease protection assay or reverse transcription polymerase chain reaction. There were no significant changes in mRNA levels of the apoptotic genes bax, bcl-2, bcl-x, caspase-1, caspase-2, caspase-3, Fas, FasL, or the cytokines interleukin (IL)-1alpha, IL-1beta, tumor necrosis factor (TNF)-beta, IL-3, IL-4, IL-5, IL-6, IL-10, TNF-alpha, IL-2, and interferon-gamma in prostate tumor and lung metastasis after treatment with homeopathic medicines. This study indicates that treatment with the highly diluted homeopathic remedies does not alter the gene expression in primary prostate tumors or in lung metastasis. The therapeutic effect of homeopathic treatments observed in the in vivo experiments cannot be explained by mechanisms based on distinct alterations in gene expression related to apoptosis or cytokines. Future research should explore subtle modulations in the expression of multiple genes in different biological pathways.
Crosstalk Between Apoptosis and Autophagy: Environmental Genotoxins, Infection, and Innate Immunity.
Kemp, Michael G
2017-01-01
Autoimmune disorders constitute a major and growing health concern. However, the genetic and environmental factors that contribute to or exacerbate disease symptoms remain unclear. Type I interferons (IFNs) are known to break immune tolerance and be elevated in the serum of patients with autoimmune diseases such as lupus. Extensive work over the past decade has characterized the role of a protein termed stimulator of interferon genes, or STING, in mediating IFN expression and activation in response to cytosolic DNA and cyclic dinucleotides. Interestingly, this STING-dependent innate immune pathway both utilizes and is targeted by the cell's autophagic machinery. Given that aberrant interplay between the apoptotic and autophagic machineries contributes to deregulation of the STING-dependent pathway, IFN-regulated autoimmune phenotypes may be influenced by the combined exposure to environmental carcinogens and pathogenic microorganisms and viruses. This review therefore summarizes recent data regarding these important issues in the field of autoimmunity.
Detection of interferon alpha protein reveals differential levels and cellular sources in disease.
Rodero, Mathieu P; Decalf, Jérémie; Bondet, Vincent; Hunt, David; Rice, Gillian I; Werneke, Scott; McGlasson, Sarah L; Alyanakian, Marie-Alexandra; Bader-Meunier, Brigitte; Barnerias, Christine; Bellon, Nathalia; Belot, Alexandre; Bodemer, Christine; Briggs, Tracy A; Desguerre, Isabelle; Frémond, Marie-Louise; Hully, Marie; van den Maagdenberg, Arn M J M; Melki, Isabelle; Meyts, Isabelle; Musset, Lucile; Pelzer, Nadine; Quartier, Pierre; Terwindt, Gisela M; Wardlaw, Joanna; Wiseman, Stewart; Rieux-Laucat, Frédéric; Rose, Yoann; Neven, Bénédicte; Hertel, Christina; Hayday, Adrian; Albert, Matthew L; Rozenberg, Flore; Crow, Yanick J; Duffy, Darragh
2017-05-01
Type I interferons (IFNs) are essential mediators of antiviral responses. These cytokines have been implicated in the pathogenesis of autoimmunity, most notably systemic lupus erythematosus (SLE), diabetes mellitus, and dermatomyositis, as well as monogenic type I interferonopathies. Despite a fundamental role in health and disease, the direct quantification of type I IFNs has been challenging. Using single-molecule array (Simoa) digital ELISA technology, we recorded attomolar concentrations of IFNα in healthy donors, viral infection, and complex and monogenic interferonopathies. IFNα protein correlated well with functional activity and IFN-stimulated gene expression. High circulating IFNα levels were associated with increased clinical severity in SLE patients, and a study of the cellular source of IFNα protein indicated disease-specific mechanisms. Measurement of IFNα attomolar concentrations by digital ELISA will enhance our understanding of IFN biology and potentially improve the diagnosis and stratification of pathologies associated with IFN dysregulation. © 2017 Rodero et al.
Detection of interferon alpha protein reveals differential levels and cellular sources in disease
Rodero, Mathieu P.; Rice, Gillian I.; Werneke, Scott; Alyanakian, Marie-Alexandra; Barnerias, Christine; Bellon, Nathalia; Belot, Alexandre; Bodemer, Christine; Desguerre, Isabelle; Meyts, Isabelle; Musset, Lucile; Wardlaw, Joanna; Wiseman, Stewart; Rose, Yoann; Neven, Bénédicte; Hertel, Christina; Hayday, Adrian; Albert, Matthew L.; Rozenberg, Flore
2017-01-01
Type I interferons (IFNs) are essential mediators of antiviral responses. These cytokines have been implicated in the pathogenesis of autoimmunity, most notably systemic lupus erythematosus (SLE), diabetes mellitus, and dermatomyositis, as well as monogenic type I interferonopathies. Despite a fundamental role in health and disease, the direct quantification of type I IFNs has been challenging. Using single-molecule array (Simoa) digital ELISA technology, we recorded attomolar concentrations of IFNα in healthy donors, viral infection, and complex and monogenic interferonopathies. IFNα protein correlated well with functional activity and IFN-stimulated gene expression. High circulating IFNα levels were associated with increased clinical severity in SLE patients, and a study of the cellular source of IFNα protein indicated disease-specific mechanisms. Measurement of IFNα attomolar concentrations by digital ELISA will enhance our understanding of IFN biology and potentially improve the diagnosis and stratification of pathologies associated with IFN dysregulation. PMID:28420733
Non-B-DNA structures on the interferon-beta promoter?
Robbe, K; Bonnefoy, E
1998-01-01
The high mobility group (HMG) I protein intervenes as an essential factor during the virus induced expression of the interferon-beta (IFN-beta) gene. It is a non-histone chromatine associated protein that has the dual capacity of binding to a non-B-DNA structure such as cruciform-DNA as well as to AT rich B-DNA sequences. In this work we compare the binding affinity of HMGI for a synthetic cruciform-DNA to its binding affinity for the HMGI-binding-site present in the positive regulatory domain II (PRDII) of the IFN-beta promoter. Using gel retardation experiments, we show that HMGI protein binds with at least ten times more affinity to the synthetic cruciform-DNA structure than to the PRDII B-DNA sequence. DNA hairpin sequences are present in both the human and the murine PRDII-DNAs. We discuss in this work the presence of, yet putative, non-B-DNA structures in the IFN-beta promoter.
Huang, Jianbing; Li, Yuan; Lu, Zhiliang; Che, Yun; Sun, Shouguo; Mao, Shuangshuang; Lei, Yuanyuan; Zang, Ruochuan; Li, Ning; Sun, Nan; He, Jie
2018-05-09
The long non-coding RNA GAS5 has been reported as a tumor suppressor in many cancers. However, its functions and mechanisms remain largely unknown in esophageal squamous cell carcinoma (ESCC). In this study, we found that GAS5 was over-expressed in ESCC tissue compared with that in normal esophageal tissue in a public database. Functional studies showed that GAS5 could inhibit ESCC cell proliferation, migration and invasion in vitro. Further analysis revealed that GAS5 was regulated by interferon (IFN) responses via the JAK-STAT pathway. Moreover, as an IFN-stimulated gene (ISG), GAS5 was a positive regulator of IFN responses. The feedback loop between GAS5 and the IFN signaling pathway plays an important antitumor role in ESCC, thus providing novel potential therapeutic targets. © 2018 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.
Association of a functional IRF7 variant with systemic lupus erythematosus.
Fu, Qiong; Zhao, Jian; Qian, Xiaoxia; Wong, Jonathan L H; Kaufman, Kenneth M; Yu, C Yung; Mok, Mo Yin; Harley, John B; Guthridge, Joel M; Song, Yeong Wook; Cho, Soo-Kyung; Bae, Sang-Cheol; Grossman, Jennifer M; Hahn, Bevra H; Arnett, Frank C; Shen, Nan; Tsao, Betty P
2011-03-01
A previous genome-wide association study conducted in a population of European ancestry identified rs4963128, a KIAA1542 single-nucleotide polymorphism (SNP) 23 kb telomeric to IRF7 (the gene for interferon regulatory factor 7 [IRF-7]), to be strongly associated with systemic lupus erythematosus (SLE). This study was undertaken to investigate whether genetic polymorphism within IRF7 is a risk factor for the development of SLE. We genotyped one KIAA1542 SNP (rs4963128) and one IRF7 SNP (rs1131665 [Q412R]) in an Asian population (1,302 cases, 1,479 controls), to assess their association with SLE. Subsequently, rs1131665 was further genotyped in independent panels of Chinese subjects (528 cases, 527 controls), European American subjects (446 cases, 461 controls), and African American subjects (159 cases, 115 controls) by TaqMan genotyping assay, to seek confirmation of association in various ethnic groups. A luciferase reporter assay was used to assess the effect of Q412R polymorphism on the activation of IRF-7. Consistent association of rs1131665 (Q412R) with SLE was identified in Asian, European American, and African American populations (total 2,435 cases and 2,582 controls) (P(meta) = 6.18 × 10(-6) , odds ratio 1.42 [95% confidence interval 1.22-1.65]). Expression of the IRF7 412Q risk allele resulted in a 2-fold increase in interferon-stimulated response element transcriptional activity compared with expression of IRF7 412R (P = 0.0003), suggesting that IRF7 412Q confers elevated IRF-7 activity and may therefore affect a downstream interferon pathway. These findings show that the major allele of a nonsynonymous SNP, rs1131665 (412Q) in IRF7, confers elevated activation of IRF-7 and predisposes to the development of SLE in multiple ethnic groups. This result provides direct genetic evidence that IRF7 may be a risk gene for human SLE. Copyright © 2011 by the American College of Rheumatology.
Interferon-related genetic markers of necroinflammatory activity in chronic hepatitis C.
López-Rodríguez, Rosario; Hernández-Bartolomé, Ángel; Borque, María Jesús; Rodríguez-Muñoz, Yolanda; Martín-Vílchez, Samuel; García-Buey, Luisa; González-Moreno, Leticia; Real-Martínez, Yolanda; Muñoz de Rueda, Paloma; Salmerón, Javier; Vidal-Castiñeira, José Ramón; López-Larrea, Carlos; Rodrigo, Luis; Moreno-Otero, Ricardo; Sanz-Cameno, Paloma
2017-01-01
Chronic hepatitis C (CHC) is a major cause of liver disease worldwide which often leads to progressive liver inflammation, fibrosis, cirrhosis and hepatocellular carcinoma (HCC). CHC displays heterogeneous progression depending on a broad set of factors, some of them intrinsic to each individual such as the patient's genetic profile. This study aims to evaluate the contribution of certain genetic variants of crucial interferon alpha and lambda signaling pathways to the hepatic necroinflammatory activity (NIA) grade of CHC patients. NIA was evaluated in 119 CHC patients by METAVIR scale and classified as low (NIA = 0-2, n = 80) or high grade (NIA = 3, n = 39). In a candidate gene approach, 64 SNPs located in 30 different genes related to interferon pathways (IL-28B, IFNAR1-2, JAK-STAT and OAS1-3, among others) were genotyped using the Illumina GoldenGate® Genotyping Assay. Statistical association was determined by logistic regression and expressed as OR and 95% CI. Those SNPs significantly associated were further adjusted by other covariates. Seven SNPs located in IL-28B (rs12979860), JAK1 (rs11576173 and rs1497056), TYK2 (rs280519), OAS1 (rs2057778), SOCS1 (rs33932899) and RNASEL (rs3738579) genes were significantly related to severe NIA grade (p<0.05). Regarding to clinical variables, elevated NIA was notably associated with aspartate aminotransferase (AST) serum levels >40 IU/L (p<0.05) but not with other clinical factors. Multivariate logistic regression analysis of these factors reflected that AST (>40 IU/L), TYK2 rs280519 (G allele) and RNASEL rs3738579 (G allele) were factors independently associated with elevated NIA (p<0.05). AST concentration showed a moderate AUC value (AUC = 0.63), similar to TYK2 (rs280519) and RNASEL (rs3738579) SNPs (AUC = 0.61, both) in the ROC_AUC analysis. Interestingly, the model including all significant variables reached a considerable predictive value (AUC = 0.74). The identified genetic variants in interferon signaling pathways may constitute useful prognostic markers of CHC progression. Further validation in larger cohorts of patients is needed.
McKay, Fiona; Schibeci, Stephen; Heard, Robert; Stewart, Graeme; Booth, David
2006-03-20
Persistent high-titre neutralizing antibodies (NAB) to therapeutic interferon-beta(IFNbeta)in multiple sclerosis patients reduce therapeutic efficacy. Difficulties in standardization of cell-based bioactivity assays have hindered interlaboratory comparison of NAB titres and the determination of a clinically relevant definition of seropositivity. We determined NAB status in Australasian multiple sclerosis patients receiving IFNbetausing both the antiviral cytopathic effect (CPE) assay (n = 227) and the more specific ELISA for the type I interferon-inducible MxA protein (n = 350). While the log(10) titres determined in the two assays were highly correlated (p < 0.0001; r = 0.967) with similar distributions, the MxA assay was more sensitive, detecting lower concentrations of NAB than the CPE assay. The range of titres determined in the CPE assay was 10 to >7290; and 9 to 53,700 in the MxA assay, with ranked titre distribution highlighting the arbitrary nature of currently accepted definitions of NAB seropositivity. Bioactivity of injected IFNbetawas significantly reduced in NAB-positive patients (p = 0.006; NAB MxA titres = 184 to 5340) compared to NAB-negative patients as assessed ex vivo using real-time RT-PCR analysis of MxA gene induction. The range of MxA mRNA levels in healthy controls was remarkably consistent with previously published results, regardless of the assay standardization method [Gilli, F., Sala, A., Marnetto, F., Lindberg, R.L., Leppert, D. and Bertolotto, A. (2003) Comparison of IFNbeta bioavailability evaluations by MxA mRNA using two independent quantification methods. Abstract, ECTRIMS Meeting, Milan, Italy; Pachner, A., Narayan, K., Price, N., Hurd, M. and Dail, D. (2003a) MxA Gene Expression Analysis as an Interferon-beta Bioactivity Measurement in Patients with Multiple Sclerosis and the Identification of Antibody-Mediated Decreased Bioactivity. Mol. Diagn. 7, 17-25]. Assessment of IFNbetaresponse ex vivo accounts for both circulating factors and the cellular response to IFNbeta, and the data support the development of the MxA gene induction assay for the routine screening of patients receiving IFNbeta.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K., E-mail: tfrey@gsu.edu
Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drugmore » selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.« less
Sato, Mayumi; Tokuji, Yoshihiko; Yoneyama, Shozo; Fujii-Akiyama, Kyoko; Kinoshita, Mikio; Ohnishi, Masao
2011-10-12
To compare and estimate the effects of dietary intake of three kinds of mushrooms (Pleurotus ostreatus, Grifola frondosa, and Hypsizigus marmoreus), mice were fed a diet containing 10-14% of each mushroom for 4 weeks. Triacylglycerol in the liver and plasma decreased and plasma cholesterol increased in the P. ostreatus-fed group compared with those in the control group. Cholesterol in the liver was lower in the G. frondosa-fed group than in the control group, but no changes were found in the H. marmoreus-fed group. DNA microarray analysis of the liver revealed differences of gene expression patterns among mushrooms. Ctp1a and Fabp families were upregulated in the P. ostreatus-fed group, which were considered to promote lipid transport and β-oxidation. In the G. frondosa-fed group, not only the gene involved in signal transduction of innate immunity via TLR3 and interferon but also virus resistance genes, such as Mx1, Rsad2, and Oas1, were upregulated.
The Transcription Factor p53 Influences Microglial Activation Phenotype
Jayadev, Suman; Nesser, Nicole K.; Hopkins, Stephanie; Myers, Scott J.; Case, Amanda; Lee, Rona J.; Seaburg, Luke A.; Uo, Takuma; Murphy, Sean P.; Morrison, Richard S.; Garden, Gwenn A.
2011-01-01
Several neurodegenerative diseases are influenced by the innate immune response in the central nervous system (CNS). Microglia, have pro-inflammatory and subsequently neurotoxic actions as well as anti-inflammatory functions that promote recovery and repair. Very little is known about the transcriptional control of these specific microglial behaviors. We have previously shown that in HIV associated neurocognitive disorders (HAND), the transcription factor p53 accumulates in microglia and that microglial p53 expression is required for the in vitro neurotoxicity of the HIV coat glycoprotein gp120. These findings suggested a novel function for p53 in regulating microglial activation. Here we report that in the absence of p53, microglia demonstrate a blunted response to interferon-γ, failing to increase expression of genes associated with classical macrophage activation or secrete pro-inflammatory cytokines. Microarray analysis of global gene expression profiles revealed increased expression of genes associated with anti-inflammatory functions, phagocytosis and tissue repair in p53 knockout (p53−/−) microglia compared with those cultured from strain matched p53 expressing (p53+/+) mice. We further observed that p53−/− microglia demonstrate increased phagocytic activity in vitro and expression of markers for alternative macrophage activation both in vitro and in vivo. In HAND brain tissue, the alternative activation marker CD163 was expressed in a separate subset of microglia than those demonstrating p53 accumulation. These data suggest that p53 influences microglial behavior, supporting the adoption of a pro-inflammatory phenotype, while p53 deficiency promotes phagocytosis and gene expression associated with alternative activation and anti-inflammatory functions. PMID:21598312
Wang, Rong; Nan, Yuchen; Yu, Ying
2013-01-01
Porcine reproductive and respiratory syndrome virus (PRRSV) inhibits the interferon-mediated antiviral response. Type I interferons (IFNs) induce the expression of IFN-stimulated genes by activating phosphorylation of both signal transducer and activator of transcription 1 (STAT1) and STAT2, which form heterotrimers (interferon-stimulated gene factor 3 [ISGF3]) with interferon regulatory factor 9 (IRF9) and translocate to the nucleus. PRRSV Nsp1β blocks the nuclear translocation of the ISGF3 complex by an unknown mechanism. In this study, we discovered that Nsp1β induced the degradation of karyopherin-α1 (KPNA1, also called importin-α5), which is known to mediate the nuclear import of ISGF3. Overexpression of Nsp1β resulted in a reduction of KPNA1 levels in a dose-dependent manner, and treatment of the cells with the proteasome inhibitor MG132 restored KPNA1 levels. Furthermore, the presence of Nsp1β induced an elevation of KPNA1 ubiquitination and a shortening of its half-life. Our analysis of Nsp1β deletion constructs showed that the N-terminal domain of Nsp1β was involved in the ubiquitin-proteasomal degradation of KPNA1. A nucleotide substitution resulting in an amino acid change from valine to isoleucine at residue 19 of Nsp1β diminished its ability to induce KPNA1 degradation and to inhibit IFN-mediated signaling. Interestingly, infection of MARC-145 cells by PRRSV strains VR-2332 and VR-2385 also resulted in KPNA1 reduction, whereas infection by an avirulent strain, Ingelvac PRRS modified live virus (MLV), did not. MLV Nsp1β had no effect on KPNA1; however, a mutant with an amino acid change at residue 19 from isoleucine to valine induced KPNA1 degradation. These results indicate that Nsp1β blocks ISGF3 nuclear translocation by inducing KPNA1 degradation and that valine-19 in Nsp1β correlates with the inhibition. PMID:23449802
Meade, Kieran G; Gormley, Eamonn; Park, Stephen D E; Fitzsimons, Tara; Rosa, Guilherme J M; Costello, Eamon; Keane, Joseph; Coussens, Paul M; MacHugh, David E
2006-09-15
Microarray analysis of messenger RNA (mRNA) abundance was used to investigate the gene expression program of peripheral blood mononuclear cells (PBMC) from cattle infected with Mycobacterium bovis, the causative agent of bovine tuberculosis. An immunospecific bovine microarray platform (BOTL-4) with spot features representing 1336 genes was used for transcriptional profiling of PBMC from six M. bovis-infected cattle stimulated in vitro with bovine purified protein derivative of tuberculin (PPD-bovine). Cells were harvested at four time points (3 h, 6 h, 12 h and 24 h post-stimulation) and a split-plot design with pooled samples was used for the microarray experiment to compare gene expression between PPD-bovine stimulated PBMC and unstimulated controls for each time point. Statistical analyses of these data revealed 224 genes (approximately 17% of transcripts on the array) differentially expressed between stimulated and unstimulated PBMC across the 24 h time course (P<0.05). Of the 224 genes, 87 genes were significantly upregulated and 137 genes were significantly downregulated in M. bovis-infected PBMC stimulated with PPD-bovine across the 24 h time course. However, perturbation of the PBMC transcriptome was most apparent at time points 3 h and 12 h post-stimulation, with 81 and 84 genes differentially expressed, respectively. In addition, a more stringent statistical threshold (P<0.01) revealed 35 genes (approximately 3%) that were differentially expressed across the time course. Real-time quantitative reverse transcription PCR (qRT-PCR) of selected genes validated the microarray results and demonstrated a wide range of differentially expressed genes in PPD-bovine-, PPD-avian- and Concanavalin A (ConA) stimulated PBMC, including the interferon-gamma gene (IFNG), which was upregulated in PBMC stimulated with PPD-bovine (40-fold), PPD-avian (10-fold) and ConA (8-fold) after in vitro culture for 12 h. The pattern of expression of these genes in PPD-bovine stimulated PBMC provides the first description of an M. bovis-specific signature of infection that may provide insights into the molecular basis of the host response to infection. Although the present study was carried out with mixed PBMC cell populations, it will guide future studies to dissect immune cell-specific gene expression patterns in response to M. bovis infection.
Munshi, Saifullah; Jahan, Munira; Nessa, Afzalun; Alam, Shahinul; Tabassum, Shahina
2016-01-01
ABSTRACT Aim Elucidating differences in gene expression may be useful in understanding the molecular pathogenesis and for developing specific markers for the outcome of hepatitis B virus (HBV) infection. In the present study, expressions of host gene interferon gamma-inducible protein (IP-10), p53, and Foxp3 were studied in hepatocytes of patients with chronic HBV infection to determine a possible link between selected host gene expression and the outcome of HBV infection. Materials and methods The study was conducted in 60 patients with chronic HBV infection and they were divided into four groups: HBV-positive cirrhosis (n = 15), HBV-negative cirrhosis (n = 15), HBV-positive hepatocellular carcinoma (HCC) (n = 15) and HBV-negative HCC (n = 15). Total messenger ribonucleic acid (mRNA) extraction was done followed by complementary deoxyribonucleic acid (cDNA) synthesis, and finally gene expression was performed using real-time polymerase chain reaction (PCR) technique. Results IP-10 and p53 gene expressions were lower in HBV-positive cirrhosis, and Foxp3 gene expression was upregulated in HBV-positive cirrhosis in comparison to HBV-negative cirrhosis. The expressions of all the three genes were upregulated among HBV-positive HCC in comparison to HBV-negative HCC. The expression of IP-10, p53, and Foxp3 genes was upregulated in HBV-positive HCC in comparison to HBV-positive cirrhosis. Conclusion This study indicates that there are variations in the expression of the selected genes among cirrhosis and HCC patients with or without HBV. All the three selected genes were more or less upregulated in HBV-positive HCC patients, but only Foxp3 expression was upregulated in HBV-positive cirrhosis. These three particular genes may have a role in the molecular pathogenesis and clinical outcome of HBV-positive cirrhosis and HCC patients. These aspects need further evaluation by studies with larger numbers of cirrhosis and HCC patients. How to cite this article Shahera U, Munshi S, Jahan M, Nessa A, Alam S, Tabassum S. IP-10, p53, and Foxp3 Expression in Hepatocytes of Chronic Hepatitis B Patients with Cirrhosis and Hepatocellular Carcinoma. Euroasian J Hepato-Gastroenterol 2016;6(2):149-153. PMID:29201748
Gene expression patterns associated with neurological disease in human HIV infection
Repunte-Canonigo, Vez; Masliah, Eliezer; Lefebvre, Celine
2017-01-01
The pathogenesis and nosology of HIV-associated neurological disease (HAND) remain incompletely understood. Here, to provide new insight into the molecular events leading to neurocognitive impairments (NCI) in HIV infection, we analyzed pathway dysregulations in gene expression profiles of HIV-infected patients with or without NCI and HIV encephalitis (HIVE) and control subjects. The Gene Set Enrichment Analysis (GSEA) algorithm was used for pathway analyses in conjunction with the Molecular Signatures Database collection of canonical pathways (MSigDb). We analyzed pathway dysregulations in gene expression profiles of patients from the National NeuroAIDS Tissue Consortium (NNTC), which consists of samples from 3 different brain regions, including white matter, basal ganglia and frontal cortex of HIV-infected and control patients. While HIVE is characterized by widespread, uncontrolled inflammation and tissue damage, substantial gene expression evidence of induction of interferon (IFN), cytokines and tissue injury is apparent in all brain regions studied, even in the absence of NCI. Various degrees of white matter changes were present in all HIV-infected subjects and were the primary manifestation in patients with NCI in the absence of HIVE. In particular, NCI in patients without HIVE in the NNTC sample is associated with white matter expression of chemokines, cytokines and β-defensins, without significant activation of IFN. Altogether, the results identified distinct pathways differentially regulated over the course of neurological disease in HIV infection and provide a new perspective on the dynamics of pathogenic processes in the course of HIV neurological disease in humans. These results also demonstrate the power of the systems biology analyses and indicate that the establishment of larger human gene expression profile datasets will have the potential to provide novel mechanistic insight into the pathogenesis of neurological disease in HIV infection and identify better therapeutic targets for NCI. PMID:28445538
Interferon lambda 1-3 expression in infants hospitalized for RSV or HRV associated bronchiolitis.
Selvaggi, Carla; Pierangeli, Alessandra; Fabiani, Marco; Spano, Lucia; Nicolai, Ambra; Papoff, Paola; Moretti, Corrado; Midulla, Fabio; Antonelli, Guido; Scagnolari, Carolina
2014-05-01
The airway expression of type III interferons (IFNs) was evaluated in infants hospitalized for respiratory syncytial virus (RSV) or rhinovirus (HRV) bronchiolitis. As an additional objective we sought to determine whether a different expression of IFN lambda 1-3 was associated with different harboring viruses, the clinical course of bronchiolitis or with the levels of well established IFN stimulated genes (ISGs), such as mixovirus resistance A (MxA) and ISG56. The analysis was undertaken in 118 infants with RSV or HRV bronchiolitis. Nasopharyngeal washes were collected for virological studies and molecular analysis of type III IFN responses. RSV elicited higher levels of IFN lambda subtypes when compared with HRV. A similar expression of type III IFN was found in RSVA or RSVB infected infants and in those infected with HRVA or HRVC viruses. Results also indicate that IFN lambda 1 and IFN lambda 2-3 levels were correlated with each other and with MxA and ISG56-mRNAs. In addition, a positive correlation exists between the IFN lambda1 levels and the clinical score index during RSV infection. In particular, higher IFN lambda 1 levels are associated to an increase of respiratory rate. These findings show that differences in the IFN lambda 1-3 levels in infants with RSV or HRV infections are present and that the expression of IFN lambda 1 correlates with the severity of RSV bronchiolitis. Copyright © 2014 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Syu, Li-Jyun; El-Zaatari, Mohamad; Eaton, Kathryn A.; Liu, Zhiping; Tetarbe, Manas; Keeley, Theresa M.; Pero, Joanna; Ferris, Jennifer; Wilbert, Dawn; Kaatz, Ashley; Zheng, Xinlei; Qiao, Xiotan; Grachtchouk, Marina; Gumucio, Deborah L.; Merchant, Juanita L.; Samuelson, Linda C.; Dlugosz, Andrzej A.
2013-01-01
Gastric adenocarcinoma is one of the leading causes of cancer mortality worldwide. It arises through a stepwise process that includes prominent inflammation with expression of interferon-γ (IFN-γ) and multiple other pro-inflammatory cytokines. We engineered mice expressing IFN-γ under the control of the stomach-specific H+/K+ ATPase β promoter to test the potential role of this cytokine in gastric tumorigenesis. Stomachs of H/K-IFN-γ transgenic mice exhibited inflammation, expansion of myofibroblasts, loss of parietal and chief cells, spasmolytic polypeptide expressing metaplasia, and dysplasia. Proliferation was elevated in undifferentiated and metaplastic epithelial cells in H/K-IFN-γ transgenic mice, and there was increased apoptosis. H/K-IFN-γ mice had elevated levels of mRNA for IFN-γ target genes and the pro-inflammatory cytokines IL-6, IL-1β, and tumor necrosis factor-α. Intracellular mediators of IFN-γ and IL-6 signaling, pSTAT1 and pSTAT3, respectively, were detected in multiple cell types within stomach. H/K-IFN-γ mice developed dysplasia as early as 3 months of age, and 4 of 39 mice over 1 year of age developed antral polyps or tumors, including one adenoma and one adenocarcinoma, which expressed high levels of nuclear β-catenin. Our data identified IFN-γ as a pivotal secreted factor that orchestrates complex changes in inflammatory, epithelial, and mesenchymal cell populations to drive pre-neoplastic progression in stomach; however, additional alterations appear to be required for malignant conversion. PMID:23036899
Kolehmainen, Marjukka; Ulven, Stine M; Paananen, Jussi; de Mello, Vanessa; Schwab, Ursula; Carlberg, Carsten; Myhrstad, Mari; Pihlajamäki, Jussi; Dungner, Elisabeth; Sjölin, Eva; Gunnarsdottir, Ingibjörg; Cloetens, Lieselotte; Landin-Olsson, Mona; Akesson, Björn; Rosqvist, Fredrik; Hukkanen, Janne; Herzig, Karl-Heinz; Dragsted, Lars O; Savolainen, Markku J; Brader, Lea; Hermansen, Kjeld; Risérus, Ulf; Thorsdottir, Inga; Poutanen, Kaisa S; Uusitupa, Matti; Arner, Peter; Dahlman, Ingrid
2015-01-01
Previously, a healthy Nordic diet (ND) has been shown to have beneficial health effects close to those of Mediterranean diets. The objective was to explore whether the ND has an impact on gene expression in abdominal subcutaneous adipose tissue (SAT) and whether changes in gene expression are associated with clinical and biochemical effects. Obese adults with features of the metabolic syndrome underwent an 18- to 24-wk randomized intervention study comparing the ND with the control diet (CD) (the SYSDIET study, carried out within Nordic Centre of Excellence of the Systems Biology in Controlled Dietary Interventions and Cohort Studies). The present study included participants from 3 Nordic SYSDIET centers [Kuopio (n = 20), Lund (n = 18), and Oulu (n = 18)] with a maximum weight change of ±4 kg, highly sensitive C-reactive protein concentration <10 mg/L at the beginning and the end of the intervention, and baseline body mass index (in kg/m²) <38. SAT biopsy specimens were obtained before and after the intervention and subjected to global transcriptome analysis with Gene 1.1 ST Arrays (Affymetrix). Altogether, 128 genes were differentially expressed in SAT between the ND and CD (nominal P < 0.01; false discovery rate, 25%). These genes were overrepresented in pathways related to immune response (adjusted P = 0.0076), resulting mainly from slightly decreased expression in the ND and increased expression in the CD. Immune-related pathways included leukocyte trafficking and macrophage recruitment (e.g., interferon regulatory factor 1, CD97), adaptive immune response (interleukin32, interleukin 6 receptor), and reactive oxygen species (neutrophil cytosolic factor 1). Interestingly, the regulatory region of the 128 genes was overrepresented for binding sites for the nuclear transcription factor κB. A healthy Nordic diet reduces inflammatory gene expression in SAT compared with a control diet independently of body weight change in individuals with features of the metabolic syndrome. © 2015 American Society for Nutrition.
McKay, Fiona C; Gatt, Prudence N; Fewings, Nicole; Parnell, Grant P; Schibeci, Stephen D; Basuki, Monica A I; Powell, Joseph E; Goldinger, Anita; Fabis-Pedrini, Marzena J; Kermode, Allan G; Burke, Therese; Vucic, Steve; Stewart, Graeme J; Booth, David R
2016-02-01
Multiple Sclerosis (MS) is an autoimmune disease treated by therapies targeting peripheral blood cells. We previously identified that expression of two MS-risk genes, the transcription factors EOMES and TBX21 (ET), was low in blood from MS and stable over time. Here we replicated the low ET expression in a new MS cohort (p<0.0007 for EOMES, p<0.028 for TBX21) and demonstrate longitudinal stability (p<10(-4)) and high heritability (h(2)=0.48 for EOMES) for this molecular phenotype. Genes whose expression correlated with ET, especially those controlling cell migration, further defined the phenotype. CD56+ cells and other subsets expressed lower levels of Eomes or T-bet protein and/or were under-represented in MS. EOMES and TBX21 risk SNP genotypes, and serum EBNA-1 titres were not correlated with ET expression, but HLA-DRB1*1501 genotype was. ET expression was normalised to healthy control levels with natalizumab, and was highly variable for glatiramer acetate, fingolimod, interferon-beta, dimethyl fumarate. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.
Shu, Xing-Sheng; Zhao, Yingying; Sun, Yanmei; Zhong, Lan; Cheng, Yingduan; Zhang, Yixiang; Ning, Kaile; Tao, Qian; Wang, Yejun; Ying, Ying
2018-01-01
It has long been known that patients suffering from inflammatory bowel disease (IBD) have an increased risk of developing colorectal cancer (CRC). The innate immune system of host cells provides a first-line defence against pathogenic infection, whereas an uncontrolled inflammatory response under homeostatic conditions usually leads to pathological consequences, as exemplified by the chronic inflammation of IBD. The key molecules and pathways keeping innate immunity in check are still poorly defined. Here, we report that the chromatin remodeller polybromo-1 (PBRM1) is a repressor of innate immune signalling mediated by retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs). Knockdown of PBRM1 in colon cancer cells increased the expression of two receptor genes (RIG-I and MDA5) and upregulated interferon (IFN)-related and inflammation-related gene signatures. The innate immune signal stimulated by a double-stranded RNA viral mimic was exaggerated by PBRM1 suppression. PBRM1 cooperated with polycomb protein EZH2 to directly bind the cis-regulatory elements of RIG-I and MDA5, thereby suppressing their transcription. Moreover, upregulation of RIG-I and MDA5 is required for IFN response activation induced by PBRM1 silencing. TRIM25, a protein stimulated by the RLR pathway and IFN production, physically interacted with PBRM1 and induced PBRM1 protein destabilization by promoting its ubiquitination. These findings reveal a PBRM1-RLR regulatory circuit that can keep innate immune activity at a minimal level in resting cells, and also ensure a robust inflammatory response in the case of pathogen invasion. PBRM1 was found to be downregulated in primary tissues from patients with CRC or IBD, and its expression correlated negatively with that of RLR genes and interferon-stimulated genes in CRC samples. Lower PBRM1 expression was associated with advanced pathological grade and poorer survival of CRC patients, indicating that PBRM1 could serve as a potential prognostic biomarker for CRC. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Wang, Yun-Feng; Sun, Yong-Ke; Tian, Zhan-Cheng; Shi, Xing-Ming; Tong, Guang-Zhi; Liu, Sheng-Wang; Zhi, Hai-Dong; Kong, Xian-Gang; Wang, Mei
2009-11-23
A fowlpox virus expressing the chicken infectious bronchitis virus (IBV) S1 gene of the LX4 strain (rFPV-IBVS1) and a fowlpox virus co-expressing the S1 gene and the chicken type II interferon gene (rFPV-IBVS1-ChIFNgamma) were constructed. These viruses were assessed for their immunological efficacy on specific-pathogen-free (SPF) chickens challenged with a virulent IBV. Although the antibody levels in the rFPV-IBVS1-ChIFNgamma-vaccinated group were lower than those in the attenuated live IB vaccine H120 group and the rFPV-IBVS1 group, the rFPV-IBVS1-ChIFNgamma provided the strongest protection against an IBV LX4 virus challenge (15 out of 16 chickens immunized with rFPV-IBVS1-ChIFNgamma were protected), followed by the attenuated live IB vaccine (13/16 protected) and the rFPV-IBVS1 (12/16 protected). Compared to those of the rFPV-IBVS1 and the attenuated live IB vaccine groups, chickens in the rFPV-IBVS1-ChIFNgamma group eliminated virus more quickly and decreased the presence of viral antigen more significantly in renal tissue. Examination of affected tissues revealed abnormalities in the liver, spleen, kidney, lung and trachea of chickens vaccinated with the attenuated live IB vaccine and the rFPV-IBVS1 vaccine. In rFPV-IBVS1-ChIFNgamma-vaccinated chickens, pathological changes were also observed in those organs, but were milder and lasted shorter. The lesions in the mock control group were the most severe and lasted for at least 20 days. This study demonstrated that chicken type II interferon increased the immunoprotective efficacy of rFPV-IBVS1-ChIFNgamma and normal weight gain in vaccinated chickens although it inhibited serum antibody production.
Ikegami, Tetsuro; Won, Sungyong; Peters, C J; Makino, Shinji
2006-03-01
Rift Valley fever virus (RVFV) (genus Phlebovirus, family Bunyaviridae) has a tripartite negative-strand genome, causes a mosquito-borne disease that is endemic in sub-Saharan African countries and that also causes large epidemics among humans and livestock. Furthermore, it is a bioterrorist threat and poses a risk for introduction to other areas. In spite of its danger, neither veterinary nor human vaccines are available. We established a T7 RNA polymerase-driven reverse genetics system to rescue infectious clones of RVFV MP-12 strain entirely from cDNA, the first for any phlebovirus. Expression of viral structural proteins from the protein expression plasmids was not required for virus rescue, whereas NSs protein expression abolished virus rescue. Mutants of MP-12 partially or completely lacking the NSs open reading frame were viable. These NSs deletion mutants replicated efficiently in Vero and 293 cells, but not in MRC-5 cells. In the latter cell line, accumulation of beta interferon mRNA occurred after infection by these NSs deletion mutants, but not after infection by MP-12. The NSs deletion mutants formed larger plaques than MP-12 did in Vero E6 cells and failed to shut off host protein synthesis in Vero cells. An MP-12 mutant carrying a luciferase gene in place of the NSs gene replicated as efficiently as MP-12 did, produced enzymatically active luciferase during replication, and stably retained the luciferase gene after 10 virus passages, representing the first demonstration of foreign gene expression in any bunyavirus. This reverse genetics system can be used to study the molecular virology of RVFV, assess current vaccine candidates, produce new vaccines, and incorporate marker genes into animal vaccines.
Peri, Suraj; Caretti, Elena; Tricarico, Rossella; Devarajan, Karthik; Cheung, Mitchell; Sementino, Eleonora; Menges, Craig W.; Nicolas, Emmanuelle; Vanderveer, Lisa A.; Howard, Sharon; Conrad, Peggy; Crowell, James A.; Campbell, Kerry S.; Ross, Eric A.; Godwin, Andrew K.; Yeung, Anthony T.; Clapper, Margie L.; Uzzo, Robert G.; Henske, Elizabeth P.; Ricketts, Christopher J.; Vocke, Cathy D.; Linehan, W. Marston; Testa, Joseph R.; Bellacosa, Alfonso; Kopelovich, Levy; Knudson, Alfred G.
2017-01-01
Tumor suppressor genes and their effector pathways have been identified for many dominantly heritable cancers, enabling efforts to intervene early in the course of disease. Our approach on the subject of early intervention was to investigate gene expression patterns of morphologically normal one-hit cells before they become hemizygous or homozygous for the inherited mutant gene which is usually required for tumor formation. Here, we studied histologically non-transformed renal epithelial cells from patients with inherited disorders that predispose to renal tumors, including von Hippel-Lindau (VHL) disease and Tuberous Sclerosis (TSC). As controls, we studied histologically normal cells from non-cancerous renal epithelium of patients with sporadic clear cell renal cell carcinoma (ccRCC). Gene expression analyses of VHLmut/wt or TSC1/2mut/wt versus wild-type (WT) cells revealed transcriptomic alterations previously implicated in the transition to precancerous renal lesions. For example, the gene expression changes in VHLmut/wt cells were consistent with activation of the hypoxia response, associated, in part, with the Warburg effect. Knockdown of any remaining VHL mRNA using shRNA induced secondary expression changes, such as activation of NF?B and interferon pathways, that are fundamentally important in the development of RCC. We posit that this is a general pattern of hereditary cancer predisposition, wherein haploinsufficiency for VHL or TSC1/2, or potentially other tumor susceptibility genes, is sufficient to promote development of early lesions, while cancer results from inactivation of the remaining normal allele. The gene expression changes identified here are related to the metabolic basis of renal cancer and may constitute suitable targets for early intervention. PMID:27682873
Robinson, E; Keystone, E C; Schall, T J; Gillett, N; Fish, E N
1995-01-01
Earlier studies from this laboratory provided evidence for restricted cytokine expression in the T cell population in RA tissues. Specifically, IL-2, IL-4, IL-6 and interferon-gamma (IFN-gamma) gene expression levels were low. The selective chemoattractant and activation effects of chemokines on leucocytes identify them as potentially ideal candidates in mediating selective inflammatory processes in RA. Accordingly, we undertook studies to examine constitutive chemokine gene expression in RA tissues. RANTES, monocyte chemotactic protein-1 (MCP-1) and MIP-1 beta gene expression was examined in both the T and non-T cell populations in RA peripheral blood (PB), synovial fluid (SF) and synovial tissues (ST). Our results identified elevated levels of both RANTES and MIP-1 beta gene expression in circulating RA PB and SF T cells. By contrast, MCP-1 expression was virtually absent in RA PB, yet elevated MCP-1 mRNA levels were detected primarily in the non-T cell populations of the SF and ST samples. Histological examination of affected rheumatoid joints revealed extensive RANTES and MIP-1 beta expression in sites of lymphocyte infiltration and cell proliferation, namely the synovial lining and sublining layers. Fractionation or RA ST patient samples revealed that RANTES expression was restricted to the T cells, whereas MIP-1 beta expression was detected in both T and non-T fractions. These data suggest that MCP-1, MIP-1 beta and RANTES may have a central role in the trafficking of reactive molecules involved in immunoregulation and in the inflammatory processes in RA. Images Fig. 4 PMID:7545093
Frémond, Marie-Louise; Uggenti, Carolina; Van Eyck, Lien; Melki, Isabelle; Bondet, Vincent; Kitabayashi, Naoki; Hertel, Christina; Hayday, Adrian; Neven, Bénédicte; Rose, Yoann; Duffy, Darragh; Crow, Yanick J; Rodero, Mathieu P
2017-07-01
Gain-of-function mutations in TMEM173, encoding the stimulator of interferon (IFN) genes (STING) protein, underlie a novel type I interferonopathy that is minimally responsive to conventional immunosuppressive therapies and associated with high frequency of childhood morbidity and mortality. STING gain-of-function causes constitutive oversecretion of IFN. This study was undertaken to determine the effects of a TANK-binding kinase 1 (TBK-1)/IKKɛ inhibitor (BX795) on secretion and signaling of IFN in primary peripheral blood mononuclear cells (PBMCs) from patients with mutations in STING. PBMCs from 4 patients with STING-associated disease were treated with BX795. The effect of BX795 on IFN pathways was assessed by Western blotting and an IFNβ reporter assay, as well as by quantification of IFNα in cell lysates, staining for STAT-1 phosphorylation, and measurement of IFN-stimulated gene (ISG) messenger RNA (mRNA) expression. Treatment of PBMCs with BX795 inhibited the phosphorylation of IFN regulatory factor 3 and IFNβ promoter activity induced in HEK 293T cells by cyclic GMP-AMP or by genetic activation of STING. In vitro exposure to BX795 inhibited IFNα production in PBMCs of patients with STING-associated disease without affecting cell survival. In addition, BX795 decreased STAT-1 phosphorylation and ISG mRNA expression independent of IFNα blockade. These findings demonstrate the effect of BX795 on reducing type I IFN production and IFN signaling in cells from patients with gain-of-function mutations in STING. A combined inhibition of TBK-1 and IKKɛ therefore holds potential for the treatment of patients carrying STING mutations, and may also be relevant in other type I interferonopathies. © 2017, American College of Rheumatology.
Liu, Xiangdong; Huang, Jing; Yang, Songbai; Zhao, Yunxia; Xiang, Anjing; Cao, Jianhua; Fan, Bin; Wu, Zhenfang; Zhao, Junlong; Zhao, Shuhong; Zhu, Mengjin
2014-05-01
Interferon (IFN) is one of the major regulators of innate immunity, it also mediates the adaptive immune responses to a broad spectrum of pathogens. This study aims in identifying differences between high vs. low INF-a responders which were chosen based on serum INF-a levels at 4 h post poly I:C treatment. A transcriptomic analysis was designed to describe the whole blood differential transcriptomal response to poly I:C by pigs with high vs. low IFN alpha levels. The capability of producing dsRNA (poly I:C)-induced serum IFN-a is highly variable in pig population. The high INF-a responders had 328 unique differentially expressed genes, suggesting that the HIGH pigs have greater responsiveness upon the dsRNA simulation. Based on the results, the interferon-dependent antiviral responsiveness through the IFN-stimulated genes (ISGs) is likely more effective in HIGH pigs. Inferring from the known organization of IFN pathways, the reason for the more IFN-a production in the HIGH pigs was likely due to the enhanced expression of IRF-7 in TLR or RIG- I/MDA5 signaling pathways. Furthermore, the larger number of the altered genes in the HIGH pigs after simulation is also possibly because of the greater number of the altered transcription factors. To our knowledge, this is the first report of comparative transcriptomic analysis to advance our understanding of whole blood immune response in pigs with different in vivo poly I:C-inducted IFN-a levels. The paper significantly expands our knowledge of how pigs respond to poly I:C which is highly relevant for understanding resistance to viral infections and also for vaccine development. Copyright © 2013 Elsevier Ltd. All rights reserved.
Cheng, Christine S.; Feldman, Kristyn E.; Lee, James; Verma, Shilpi; Huang, De-Bin; Huynh, Kim; Chang, Mikyoung; Ponomarenko, Julia V.; Sun, Shao-Cong; Benedict, Chris A.; Ghosh, Gourisankar; Hoffmann, Alexander
2011-01-01
The specific binding of transcription factors to cognate sequence elements is thought to be critical for the generation of specific gene expression programs. Members of the nuclear factor κB (NF-κB) and interferon (IFN) regulatory factor (IRF) transcription factor families bind to the κB site and the IFN response element (IRE), respectively, of target genes, and they are activated in macrophages after exposure to pathogens. However, how these factors produce pathogen-specific inflammatory and immune responses remains poorly understood. Combining top-down and bottom-up systems biology approaches, we have identified the NF-κB p50 homodimer as a regulator of IRF responses. Unbiased genome-wide expression and biochemical and structural analyses revealed that the p50 homodimer repressed a subset of IFN-inducible genes through a previously uncharacterized subclass of guanine-rich IRE (G-IRE) sequences. Mathematical modeling predicted that the p50 homodimer might enforce the stimulus specificity of composite promoters. Indeed, the production of the antiviral regulator IFN-β was rendered stimulus-specific by the binding of the p50 homodimer to the G-IRE–containing IFNβ enhancer to suppress cytotoxic IFN signaling. Specifically, a deficiency in p50 resulted in the inappropriate production of IFN-β in response to bacterial DNA sensed by Toll-like receptor 9. This role for the NF-κB p50 homodimer in enforcing the specificity of the cellular response to pathogens by binding to a subset of IRE sequences alters our understanding of how the NF-κB and IRF signaling systems cooperate to regulate antimicrobial immunity. PMID:21343618
Modulation of HIV replication in monocyte derived macrophages (MDM) by steroid hormones.
Devadas, Krishnakumar; Biswas, Santanu; Ragupathy, Viswanath; Lee, Sherwin; Dayton, Andrew; Hewlett, Indira
2018-01-01
Significant sex specific differences in the progression of HIV/AIDS have been reported. Several studies have implicated steroid hormones in regulating host factor expression and modulating HIV transmission and replication. However, the exact mechanism exerted by steroid hormones estrogen and progesterone in the regulation of HIV-1 replication is still unclear. Results from the current study indicated a dose dependent down regulation of HIV-1 replication in monocyte derived macrophages pre-treated with high concentrations of estrogen or progesterone. To elucidate the molecular mechanisms associated with the down regulation of HIV-1 replication by estrogen and progesterone we used PCR arrays to analyze the expression profile of host genes involved in antiviral responses. Several chemokines, cytokines, transcription factors, interferon stimulated genes and genes involved in type-1 interferon signaling were down regulated in cells infected with HIV-1 pre-treated with high concentrations of estrogen or progesterone compared to untreated HIV-1 infected cells or HIV-1 infected cells treated with low concentrations of estrogen or progesterone. The down regulation of CXCL9, CXCL10 and CXCL11 chemokines and IL-1β, IL-6 cytokines in response to high concentrations of estrogen and progesterone pre-treatment in HIV-1 infected cells was confirmed at the protein level by quantitating chemokine and cytokine concentrations in the culture supernatant. These results demonstrate that a potent anti-inflammatory response is mediated by pre-treatment with high concentrations of estrogen and progesterone. Thus, our study suggests a strong correlation between the down-modulation of anti-viral and pro-inflammatory responses mediated by estrogen and progesterone pre-treatment and the down regulation of HIV-1 replication. These findings may be relevant to clinical observations of sex specific differences in patient populations and point to the need for further investigation.
Purcell, M.K.; Laing, K.J.; Woodson, J.C.; Thorgaard, G.H.; Hansen, J.D.
2009-01-01
The genes encoding the type I and type II interferons (IFNs) have previously been identified in rainbow trout and their proteins partially characterized. These previous studies reported a single type II IFN (rtIFN-??) and three rainbow trout type I IFN genes that are classified into either group I (rtIFN1, rtIFN2) or group II (rtIFN3). In this present study, we report the identification of a novel IFN-?? gene (rtIFN-??2) and a novel type I group II IFN (rtIFN4) in homozygous rainbow trout and predict that additional IFN genes or pseudogenes exist in the rainbow trout genome. Additionally, we provide evidence that short and long forms of rtIFN1 are actively and differentially transcribed in homozygous trout, and likely arose due to alternate splicing of the first exon. Quantitative reverse transcriptase PCR (qRT-PCR) assays were developed to systematically profile all of the rainbow trout IFN transcripts, with high specificity at an individual gene level, in na??ve fish and after stimulation with virus or viral-related molecules. Cloned PCR products were used to ensure the specificity of the qRT-PCR assays and as absolute standards to assess transcript abundance of each gene. All IFN genes were modulated in response to Infectious hematopoietic necrosis virus (IHNV), a DNA vaccine based on the IHNV glycoprotein, and poly I:C. The most inducible of the type I IFN genes, by all stimuli tested, were rtIFN3 and the short transcript form of rtIFN1. Gene expression of rtIFN-??1 and rtIFN-??2 was highly up-regulated by IHNV infection and DNA vaccination but rtIFN-??2 was induced to a greater magnitude. The specificity of the qRT-PCR assays reported here will be useful for future studies aimed at identifying which cells produce IFNs at early time points after infection. ?? 2008 Elsevier Ltd.
Yoshida, S; Arakawa, F; Higuchi, F; Ishibashi, Y; Goto, M; Sugita, Y; Nomura, Y; Niino, D; Shimizu, K; Aoki, R; Hashikawa, K; Kimura, Y; Yasuda, K; Tashiro, K; Kuhara, S; Nagata, K; Ohshima, K
2012-01-01
Objectives The main histological change in rheumatoid arthritis (RA) is the villous proliferation of synovial lining cells, an important source of cytokines and chemokines, which are associated with inflammation. The aim of this study was to evaluate gene expression in the microdissected synovial lining cells of RA patients, using those of osteoarthritis (OA) patients as the control. Methods Samples were obtained during total joint replacement from 11 RA and five OA patients. Total RNA from the synovial lining cells was derived from selected specimens by laser microdissection (LMD) for subsequent cDNA microarray analysis. In addition, the expression of significant genes was confirmed immunohistochemically. Results The 14 519 genes detected by cDNA microarray were used to compare gene expression levels in synovial lining cells from RA with those from OA patients. Cluster analysis indicated that RA cells, including low- and high-expression subgroups, and OA cells were stored in two main clusters. The molecular activity of RA was statistically consistent with its clinical and histological activity. Expression levels of signal transducer and activator of transcription 1 (STAT1), interferon regulatory factor 1 (IRF1), and the chemokines CXCL9, CXCL10, and CCL5 were statistically significantly higher in the synovium of RA than in that of OA. Immunohistochemically, the lining synovium of RA, but not that of OA, clearly expressed STAT1, IRF1, and chemokines, as was seen in microarray analysis combined with LMD. Conclusions Our findings indicate an important role for lining synovial cells in the inflammatory and proliferative processes of RA. Further understanding of the local signalling in structural components is important in rheumatology. PMID:22401175
Resistance to Rhabdoviridae Infection and Subversion of Antiviral Responses.
Blondel, Danielle; Maarifi, Ghizlane; Nisole, Sébastien; Chelbi-Alix, Mounira K
2015-07-07
Interferon (IFN) treatment induces the expression of hundreds of IFN-stimulated genes (ISGs). However, only a selection of their products have been demonstrated to be responsible for the inhibition of rhabdovirus replication in cultured cells; and only a few have been shown to play a role in mediating the antiviral response in vivo using gene knockout mouse models. IFNs inhibit rhabdovirus replication at different stages via the induction of a variety of ISGs. This review will discuss how individual ISG products confer resistance to rhabdoviruses by blocking viral entry, degrading single stranded viral RNA, inhibiting viral translation or preventing release of virions from the cell. Furthermore, this review will highlight how these viruses counteract the host IFN system.
Buggele, William A.
2013-01-01
The mammalian type I interferon (IFN) response is a primary barrier for virus infection and is essential for complete innate and adaptive immunity. Both IFN production and IFN-mediated antiviral signaling are the result of differential cellular gene expression, a process that is tightly controlled at transcriptional and translational levels. To determine the potential for microRNA (miRNA)-mediated regulation of the antiviral response, small-RNA profiling was used to analyze the miRNA content of human A549 cells at steady state and following infection with the Cantell strain of Sendai virus, a potent inducer of IFN and cellular antiviral responses. While the miRNA content of the cells was largely unaltered by infection, specific changes in miRNA abundance were identified during Sendai virus infection. One miRNA, miR-203, was found to accumulate in infected cells and in response to IFN treatment. Results indicate that miR-203 is an IFN-inducible miRNA that can negatively regulate a number of cellular mRNAs, including an IFN-stimulated gene target, IFIT1/ISG56, by destabilizing its mRNA transcript. PMID:23785202
Pokatayev, Vladislav; Hasin, Naushaba; Chon, Hyongi; Cerritelli, Susana M.; Sakhuja, Kiran; Ward, Jerrold M.; Morris, H. Douglas; Yan, Nan
2016-01-01
The neuroinflammatory autoimmune disease Aicardi-Goutières syndrome (AGS) develops from mutations in genes encoding several nucleotide-processing proteins, including RNase H2. Defective RNase H2 may induce accumulation of self-nucleic acid species that trigger chronic type I interferon and inflammatory responses, leading to AGS pathology. We created a knock-in mouse model with an RNase H2 AGS mutation in a highly conserved residue of the catalytic subunit, Rnaseh2aG37S/G37S (G37S), to understand disease pathology. G37S homozygotes are perinatal lethal, in contrast to the early embryonic lethality previously reported for Rnaseh2b- or Rnaseh2c-null mice. Importantly, we found that the G37S mutation led to increased expression of interferon-stimulated genes dependent on the cGAS–STING signaling pathway. Ablation of STING in the G37S mice results in partial rescue of the perinatal lethality, with viable mice exhibiting white spotting on their ventral surface. We believe that the G37S knock-in mouse provides an excellent animal model for studying RNASEH2-associated autoimmune diseases. PMID:26880576
Menachery, Vineet D.; Eisfeld, Amie J.; Schäfer, Alexandra; Josset, Laurence; Sims, Amy C.; Proll, Sean; Fan, Shufang; Li, Chengjun; Neumann, Gabriele; Tilton, Susan C.; Chang, Jean; Gralinski, Lisa E.; Long, Casey; Green, Richard; Williams, Christopher M.; Weiss, Jeffrey; Matzke, Melissa M.; Webb-Robertson, Bobbie-Jo; Schepmoes, Athena A.; Shukla, Anil K.; Metz, Thomas O.; Smith, Richard D.; Waters, Katrina M.; Katze, Michael G.; Kawaoka, Yoshihiro
2014-01-01
ABSTRACT The broad range and diversity of interferon-stimulated genes (ISGs) function to induce an antiviral state within the host, impeding viral pathogenesis. While successful respiratory viruses overcome individual ISG effectors, analysis of the global ISG response and subsequent viral antagonism has yet to be examined. Employing models of the human airway, transcriptomics and proteomics datasets were used to compare ISG response patterns following highly pathogenic H5N1 avian influenza (HPAI) A virus, 2009 pandemic H1N1, severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome CoV (MERS-CoV) infection. The results illustrated distinct approaches utilized by each virus to antagonize the global ISG response. In addition, the data revealed that highly virulent HPAI virus and MERS-CoV induce repressive histone modifications, which downregulate expression of ISG subsets. Notably, influenza A virus NS1 appears to play a central role in this histone-mediated downregulation in highly pathogenic influenza strains. Together, the work demonstrates the existence of unique and common viral strategies for controlling the global ISG response and provides a novel avenue for viral antagonism via altered histone modifications. PMID:24846384
IL-32 is a molecular marker of a host defense network in human tuberculosis
Montoya, Dennis; Inkeles, Megan S.; Liu, Phillip T.; Realegeno, Susan; Teles, Rosane M. B.; Vaidya, Poorva; Munoz, Marcos A.; Schenk, Mirjam; Swindell, William R.; Chun, Rene; Zavala, Kathryn; Hewison, Martin; Adams, John S.; Horvath, Steve; Pellegrini, Matteo; Bloom, Barry R.; Modlin, Robert L.
2014-01-01
Tuberculosis is a leading cause of infectious disease–related death worldwide; however, only 10% of people infected with Mycobacterium tuberculosis develop disease. Factors that contribute to protection could prove to be promising targets for M. tuberculosis therapies. Analysis of peripheral blood gene expression profiles of active tuberculosis patients has identified correlates of risk for disease or pathogenesis. We sought to identify potential human candidate markers of host defense by studying gene expression profiles of macrophages, cells that, upon infection by M. tuberculosis, can mount an antimicrobial response. Weighted gene coexpression network analysis revealed an association between the cytokine interleukin-32 (IL-32) and the vitamin D antimicrobial pathway in a network of interferon-γ– and IL-15–induced “defense response” genes. IL-32 induced the vitamin D–dependent antimicrobial peptides cathelicidin and DEFB4 and to generate antimicrobial activity in vitro, dependent on the presence of adequate 25-hydroxyvitamin D. In addition, the IL-15–induced defense response macrophage gene network was integrated with ranked pairwise comparisons of gene expression from five different clinical data sets of latent compared with active tuberculosis or healthy controls and a coexpression network derived from gene expression in patients with tuberculosis undergoing chemotherapy. Together, these analyses identified eight common genes, including IL-32, as molecular markers of latent tuberculosis and the IL-15–induced gene network. As maintaining M. tuberculosis in a latent state and preventing transition to active disease may represent a form of host resistance, these results identify IL-32 as one functional marker and potential correlate of protection against active tuberculosis. PMID:25143364
IL-32 is a molecular marker of a host defense network in human tuberculosis.
Montoya, Dennis; Inkeles, Megan S; Liu, Phillip T; Realegeno, Susan; Teles, Rosane M B; Vaidya, Poorva; Munoz, Marcos A; Schenk, Mirjam; Swindell, William R; Chun, Rene; Zavala, Kathryn; Hewison, Martin; Adams, John S; Horvath, Steve; Pellegrini, Matteo; Bloom, Barry R; Modlin, Robert L
2014-08-20
Tuberculosis is a leading cause of infectious disease-related death worldwide; however, only 10% of people infected with Mycobacterium tuberculosis develop disease. Factors that contribute to protection could prove to be promising targets for M. tuberculosis therapies. Analysis of peripheral blood gene expression profiles of active tuberculosis patients has identified correlates of risk for disease or pathogenesis. We sought to identify potential human candidate markers of host defense by studying gene expression profiles of macrophages, cells that, upon infection by M. tuberculosis, can mount an antimicrobial response. Weighted gene coexpression network analysis revealed an association between the cytokine interleukin-32 (IL-32) and the vitamin D antimicrobial pathway in a network of interferon-γ- and IL-15-induced "defense response" genes. IL-32 induced the vitamin D-dependent antimicrobial peptides cathelicidin and DEFB4 and to generate antimicrobial activity in vitro, dependent on the presence of adequate 25-hydroxyvitamin D. In addition, the IL-15-induced defense response macrophage gene network was integrated with ranked pairwise comparisons of gene expression from five different clinical data sets of latent compared with active tuberculosis or healthy controls and a coexpression network derived from gene expression in patients with tuberculosis undergoing chemotherapy. Together, these analyses identified eight common genes, including IL-32, as molecular markers of latent tuberculosis and the IL-15-induced gene network. As maintaining M. tuberculosis in a latent state and preventing transition to active disease may represent a form of host resistance, these results identify IL-32 as one functional marker and potential correlate of protection against active tuberculosis. Copyright © 2014, American Association for the Advancement of Science.
Underlying pathways for interferon risk to type II diabetes mellitus.
Abdel-Hamid, Nabil; Jubori, Taghreed Al; Farhan, Amaal; Mahrous, Mariam; Gouri, Adel; Awad, Ezzat; Breuss, Johannes
2013-11-01
It has been known that chronic liver treatments interfere with blood glucose metabolism. It was recognized that diabetes mellitus among chronic hepatitis C was greater in other types of chronic liver diseases. Hepatitis C directly promotes insulin resistance through the proteosomal degradation of insulin resistance substrate. It suppressed hepatocyte glucose uptake through down-regulation of surface expression of glucose transporter. Long-term exposure to cytokine over expression seems to be cytotoxic to both beta cells of the pancreas and to hepatocytes. Elevated tumor necrosis factor-a, or its neutralization, increased insulin sensitivity. Interferon-a may also elevate the serum level of interleukin-1 which is cytotoxic to pancreatic islet cells. Both diabetes mellitus and resistance to interferon-a therapy are abnormally mediated by over-expression of suppressor of cytokine signaling-1 in hepatocytes of chronic hepatitis C patients. These data suggest that interferon-a therapy should be administered with caution in patients showing any predisposition to Diabetes mellitus. Anti inflammatory therapy is critically recommended as a protector against disease development due to cytokine mediated Diabetes mellitus during hepatitis C therapy, since inflammation seems to be a main candidate to interferon suspected diabetogenesis.
The human immune response to tuberculosis and its treatment: a view from the blood
Cliff, Jacqueline M; Kaufmann, Stefan H E; McShane, Helen; van Helden, Paul; O'Garra, Anne
2015-01-01
The immune response upon infection with the pathogen Mycobacterium tuberculosis is poorly understood, hampering the discovery of new treatments and the improvements in diagnosis. In the last years, a blood transcriptional signature in tuberculosis has provided knowledge on the immune response occurring during active tuberculosis disease. This signature was absent in the majority of asymptomatic individuals who are latently infected with M. tuberculosis (referred to as latent). Using modular and pathway analyses of the complex data has shown, now in multiple studies, that the signature of active tuberculosis is dominated by overexpression of interferon-inducible genes (consisting of both type I and type II interferon signaling), myeloid genes, and inflammatory genes. There is also downregulation of genes encoding B and T-cell function. The blood signature of tuberculosis correlates with the extent of radiographic disease and is diminished upon effective treatment suggesting the possibility of new improved strategies to support diagnostic assays and methods for drug treatment monitoring. The signature suggested a previously under-appreciated role for type I interferons in development of active tuberculosis disease, and numerous mechanisms have now been uncovered to explain how type I interferon impedes the protective response to M. tuberculosis infection. PMID:25703554
Distinctive gene expression profiles characterize donor biopsies from HCV-positive kidney donors.
Mas, Valeria R; Archer, Kellie J; Suh, Lacey; Scian, Mariano; Posner, Marc P; Maluf, Daniel G
2010-12-15
Because of the shortage of organs for transplantation, procurement of kidneys from extended criteria donors is inevitable. Frequently, donors infected with hepatitis C virus (HCV) are used. To elucidate an initial compromise of molecular pathways in HCV graft, gene expression profiles were evaluated. Twenty-four donor allograft biopsies (n=12 HCV positive (+) and n=12 HCV negative (-)) were collected at preimplantation time and profiled using microarrays. Donors were age, race, gender, and cold and warm ischemia time matched between groups. Probe level data were read into the R programming environment using the affy Bioconductor package, and the robust multiarray average method was used to obtain probe set expression summaries. To identify probe sets exhibiting differential expression, a two sample t test was performed. Molecular and biologic functions were analyzed using Interaction Networks and Functional Analysis. Fifty-eight probe sets were differentially expressed between HCV (+) versus HCV (-) donors (P<0.001). The molecular functions associated with the two top scored networks from the analysis of the differentially expressed genes were connective tissue development and function and tissue morphology (score 34), cell death, cell signaling, cellular assembly, and organization (score 32). Among the differentially affected top canonical pathways, we found the role of RIG1-like receptors in antiviral innate immunity (P<0.001), natural killer cell signaling (P=0.007), interleukin-8 signaling (P=0.048), interferon signaling (P=0.0 11; INFA21, INFGR1, and MED14), ILK signaling (P=0.001), and apoptosis signaling. A unique gene expression pattern was identified in HCV (+) kidney grafts. Innate immune system and inflammatory pathways were the most affected.
Muramatsu, Matthew K.; Brothwell, Julie A.; Stein, Barry D.; Putman, Timothy E.; Rockey, Daniel D.
2016-01-01
Chlamydia trachomatis can enter a viable but nonculturable state in vitro termed persistence. A common feature of C. trachomatis persistence models is that reticulate bodies fail to divide and make few infectious progeny until the persistence-inducing stressor is removed. One model of persistence that has relevance to human disease involves tryptophan limitation mediated by the host enzyme indoleamine 2,3-dioxygenase, which converts l-tryptophan to N-formylkynurenine. Genital C. trachomatis strains can counter tryptophan limitation because they encode a tryptophan-synthesizing enzyme. Tryptophan synthase is the only enzyme that has been confirmed to play a role in interferon gamma (IFN-γ)-induced persistence, although profound changes in chlamydial physiology and gene expression occur in the presence of persistence-inducing stressors. Thus, we screened a population of mutagenized C. trachomatis strains for mutants that failed to reactivate from IFN-γ-induced persistence. Six mutants were identified, and the mutations linked to the persistence phenotype in three of these were successfully mapped. One mutant had a missense mutation in tryptophan synthase; however, this mutant behaved differently from previously described synthase null mutants. Two hypothetical genes of unknown function, ctl0225 and ctl0694, were also identified and may be involved in amino acid transport and DNA damage repair, respectively. Our results indicate that C. trachomatis utilizes functionally diverse genes to mediate survival during and reactivation from persistence in HeLa cells. PMID:27430273
Xu, Qiaoqing; Jiang, Yousheng; Wangkahart, Eakapol; Zou, Jun; Chang, Mingxian; Yang, Daiqin; Secombes, Chris J.; Nie, Pin; Wang, Tiehui
2016-01-01
Background Interferon regulatory factor (IRF) 10 was first found in birds and is present in the genome of other tetrapods (but not humans and mice), as well as in teleost fish. The functional role of IRF10 in vertebrate immunity is relatively unknown compared to IRF1-9. The target of this research was to clone and characterize the IRF10 genes in three economically important fish species that will facilitate future evaluation of this molecule in fish innate and adaptive immunity. Molecular Characterization of IRF10 in Three Fish Species In the present study, a single IRF10 gene was cloned in grass carp Ctenopharyngodon idella and Asian swamp eel Monopterus albus, and two, named IRF10a and IRF10b, in rainbow trout Oncorhynchus mykiss. The fish IRF10 molecules share highest identities to other vertebrate IRF10s, and have a well conserved DNA binding domain, IRF-associated domain, and an 8 exon/7 intron structure with conserved intron phase. The presence of an upstream ATG or open reading frame (ORF) in the 5’-untranslated region of different fish IRF10 cDNA sequences suggests potential regulation at the translational level, and this has been verified by in vitro transcription/translation experiments of the trout IRF10a cDNA, but would still need to be validated in fish cells. Expression Analysis of IRF10 In Vivo and In Vitro Both trout IRF10 paralogues are highly expressed in thymus, blood and spleen but are relatively low in head kidney and caudal kidney. Trout IRF10b expression is significantly higher than IRF10a in integumentary tissues i.e. gills, scales, skin, intestine, adipose fin and tail fins, suggesting that IRF10b may be more important in mucosal immunity. The expression of both trout IRF10 paralogues is up-regulated by recombinant IFN-γ. The expression of the IRF10 genes is highly induced by Poly I:C in vitro and in vivo, and by viral infection, but is less responsive to peptidoglycan and bacterial infection, suggesting an important role of fish IRF10 in antiviral defense. PMID:26783745
Gameiro, Steven F.; Zhang, Ali; Ghasemi, Farhad; Barrett, John W.; Mymryk, Joe S.
2017-01-01
Oncoproteins from high-risk human papillomaviruses (HPV) downregulate the transcription of the class I major histocompatibility complex (MHC-I) antigen presentation apparatus in tissue culture model systems. This could allow infected or transformed cells to evade the adaptive immune response. Using data from over 800 human cervical and head & neck tumors from The Cancer Genome Atlas (TCGA), we determined the impact of HPV status on the mRNA expression of all six MHC-I heavy chain genes, and the β2 microglobulin light chain. Unexpectedly, these genes were all expressed at high levels in HPV positive (HPV+) cancers compared with normal control tissues. Indeed, many of these genes were expressed at significantly enhanced levels in HPV+ tumors. Similarly, the transcript levels of several other components of the MHC-I peptide-loading complex were also high in HPV+ cancers. The coordinated expression of high mRNA levels of the MHC-I antigen presentation apparatus could be a consequence of the higher intratumoral levels of interferon γ in HPV+ carcinomas, which correlate with signatures of increased infiltration by T- and NK-cells. These data, which were obtained from both cervical and oral tumors in large human cohorts, indicates that HPV oncoproteins do not efficiently suppress the transcription of the antigen presentation apparatus in human tumors. PMID:28891951
The JAK inhibitor tofacitinib suppresses synovial JAK1-STAT signalling in rheumatoid arthritis
Boyle, D L; Soma, K; Hodge, J; Kavanaugh, A; Mandel, D; Mease, P; Shurmur, R; Singhal, A K; Wei, N; Rosengren, S; Kaplan, I; Krishnaswami, S; Luo, Z; Bradley, J; Firestein, G S
2015-01-01
Objective Tofacitinib is an oral Janus kinase (JAK) inhibitor for the treatment of rheumatoid arthritis (RA). The pathways affected by tofacitinib and the effects on gene expression in situ are unknown. Therefore, tofacitinib effects on synovial pathobiology were investigated. Methods A randomised, double-blind, phase II serial synovial biopsy study (A3921073; NCT00976599) in patients with RA with an inadequate methotrexate response. Patients on background methotrexate received tofacitinib 10 mg twice daily or placebo for 28 days. Synovial biopsies were performed on Days -7 and 28 and analysed by immunoassay or quantitative PCR. Clinical response was determined by disease activity score and European League Against Rheumatism (EULAR) response on Day 28 in A3921073, and at Month 3 in a long-term extension study (A3921024; NCT00413699). Results Tofacitinib exposure led to EULAR moderate to good responses (11/14 patients), while placebo was ineffective (1/14 patients) on Day 28. Tofacitinib treatment significantly reduced synovial mRNA expression of matrix metalloproteinase (MMP)-1 and MMP-3 (p<0.05) and chemokines CCL2, CXCL10 and CXCL13 (p<0.05). No overall changes were observed in synovial inflammation score or the presence of T cells, B cells or macrophages. Changes in synovial phosphorylation of signal transducer and activator of transcription 1 (STAT1) and STAT3 strongly correlated with 4-month clinical responses (p<0.002). Tofacitinib significantly decreased plasma CXCL10 (p<0.005) at Day 28 compared with placebo. Conclusions Tofacitinib reduces metalloproteinase and interferon-regulated gene expression in rheumatoid synovium, and clinical improvement correlates with reductions in STAT1 and STAT3 phosphorylation. JAK1-mediated interferon and interleukin-6 signalling likely play a key role in the synovial response. Trial registration number NCT00976599. PMID:25398374
Ekmekcioglu, Suhendan; Mumm, John B.; Udtha, Malini; Chada, Sunil; Grimm, Elizabeth A.
2008-01-01
Restoration of the tumor-suppression function by gene transfer of the melanoma differentiation-associated gene 7 (MDA7)/interleukin 24 (IL-24) successfully induces apoptosis in melanoma tumors in vivo. To address the molecular mechanisms involved, we previously revealed that MDA7/IL-24 treatment of melanoma cells down-regulates interferon regulatory factor (IRF)-1 expression and concomitantly up-regulates IRF-2 expression, which competes with the activity of IRF-1 and reverses the induction of IRF-1–regulated inducible nitric oxide synthase (iNOS). Interferons (IFNs) influence melanoma cell survival by modulating apoptosis. A class I IFN (IFN alfa) has been approved for the treatment of advanced melanoma with some limited success. A class II IFN (IFN gamma), on the other hand, supports melanoma cell survival, possibly through constitutive activation of iNOS expression. We therefore conducted this study to explore the molecular pathways of MDA7/IL-24 regulation of apoptosis via the intracellular induction of IFNs in melanoma. We hypothesized that the restoration of the MDA7/IL-24 axis leads to upregulation of Class I IFNs and induction of the apoptotic cascade. We found that MDA7/IL-24 induces the secretion of endogenous IFN beta, another class I IFN, leading to the arrest of melanoma cell growth and apoptosis. We also identified a series of apoptotic markers that play a role in this pathway, including the regulation of tumor necrosis factor–related apoptosis-inducing ligand (TRAIL) and Fas-FasL. In summary, we described a novel pathway of MDA7/IL-24 regulation of apoptosis in melanoma tumors via endogenous IFN beta induction followed by IRF regulation and TRAIL/FasL system activation. PMID:18511292
Effects of supplementation with docosahexaenoic acid on reproduction of dairy cows.
Sinedino, Letícia D P; Honda, Paula M; Souza, Letícia R L; Lock, Adam L; Boland, Maurice P; Staples, Charles R; Thatcher, William W; Santos, José E P
2017-05-01
The objectives were to determine the effects of supplementing docosahexaenoic acid (DHA)-rich algae on reproduction of dairy cows. Holstein cows were assigned randomly to either a control ( n = 373) or the same diet supplemented daily with 100 g/cow of an algae product containing 10% DHA (algae, n = 366) from 27 to 147 days postpartum. Measurements included yields of milk and milk components, fatty acids (FA) profiles in milk fat and plasma phospholipids, resumption of ovulation by 57 days postpartum, pregnancy per artificial insemination (AI) and expression of interferon-stimulated genes in leukocytes. Feeding algae increased resumption of estrous cyclicity (77.6 vs 65.9%) and pregnancy at first AI (47.6 vs 32.8%) in primiparous cows. Algae increased pregnancy per AI in all AI in both primiparous and multiparous cows (41.6 vs 30.7%), which reduced days to pregnancy by 22 days (102 vs 124 days) compared with control cows. Pregnant cows fed algae had greater expression of RTP4 in blood leukocytes compared with those in pregnant control cows. Feeding algae increased the incorporation of DHA, eicosapentaenoic acid, conjugated linoleic acid isomers cis -9 trans -11, trans -10 cis -12 and total n-3 FA in phospholipids in plasma and milk fat. Yields of milk and true protein increased by 1.1 kg/day and 30 g/day respectively, whereas fat yield decreased 40 g/day in algae compared with that in control. Supplementing DHA-rich algae altered the FA composition of lipid fractions and improved reproduction in dairy cows. The benefits on reproduction might be mediated by enhanced embryo development based on changes in interferon-stimulated gene expression. © 2017 Society for Reproduction and Fertility.
Activation of lysosomal cathepsins in pregnant bovine leukocytes.
Talukder, Md Abdus Shabur; Balboula, Ahmed Zaky; Shirozu, Takahiro; Kim, Sung Woo; Kunii, Hiroki; Suzuki, Toshiyuki; Ito, Tsukino; Kimura, Koji; Takahashi, Masashi
2018-06-01
In ruminants, interferon-tau (IFNT) - mediated expression of interferon-stimulated genes in peripheral blood leukocytes (PBLs) can indicate pregnancy. Recently, type 1 IFN-mediated activation of lysosomes and lysosomal cathepsins (CTSs) was observed in immune cells. This study investigated the status of lysosomal CTSs and lysosomes in PBLs collected from pregnant (P) and non-pregnant (NP) dairy cows, and conducted in vitro IFNT stimulation of NP blood leukocytes. Blood samples were collected 0, 7, 14 and 18 days post-artificial insemination, and the peripheral blood mononuclear cells (PBMCs) and polymorphonuclear granulocytes (PMNs) separated. The fluorescent activity of CTSB and CTSK in PMNs significantly increased with the progress of pregnancy, especially on day 18. In vitro supplementation of IFNT significantly increased the activities of CTSB and CTSK in NP PBMCs and PMNs. CTSB expression was significantly higher in PBMCs and PMNs collected from P day-18 cows than from NP cows, whereas there was no difference in CTSK expression. IFNT increased CTSB expression but did not affect CTSK expression. Immunodetection showed an increase of CTSB in P day-18 PBMCs and PMNs. In vitro stimulation of IFNT increased CTSB in NP PBMCs and PMNs. Lysosomal acidification showed a significant increase in P day-18 PBMCs and PMNs. IFNT also stimulated lysosomal acidification. Expressions of lysosome-associated membrane protein (LAMP) 1 and LAMP2 were significantly higher in P day-18 PBMCs and PMNs. The results suggest that pregnancy-specific activation of lysosomal functions by CTS activation in blood leukocytes is highly associated with IFNT during maternal and fetal recognition of pregnancy. © 2018 Society for Reproduction and Fertility.
Glaser, Alexander P.; Fantini, Damiano; Wang, Yiduo; Yu, Yanni; Rimar, Kalen J.; Podojil, Joseph R.; Miller, Stephen D.; Meeks, Joshua J.
2018-01-01
APOBEC enzymes are responsible for a mutation signature (TCW>T/G) implicated in a wide variety of tumors. We explore the APOBEC mutational signature in bladder cancer and the relationship with specific mutations, molecular subtype, gene expression, and survival using sequencing data from The Cancer Genome Atlas (n = 395), Beijing Genomics Institute (n = 99), and Cancer Cell Line Encyclopedia. Tumors were split into “APOBEC-high” and “APOBEC-low” based on APOBEC enrichment. Patients with APOBEC-high tumors have better overall survival compared to those with APOBEC-low tumors (38.2 vs. 18.5 months, p = 0.005). APOBEC-high tumors are more likely to have mutations in DNA damage response genes (TP53, ATR, BRCA2) and chromatin regulatory genes (ARID1A, MLL, MLL3), while APOBEC-low tumors are more likely to have mutations in FGFR3 and KRAS. APOBEC3A and APOBEC3B expression correlates with mutation burden, regardless of bladder tumor molecular subtype. APOBEC mutagenesis is associated with increased expression of immune signatures, including interferon signaling, and expression of APOBEC3B is increased after stimulation of APOBEC-high bladder cancer cell lines with IFNγ. In summary, APOBEC-high tumors are more likely to have mutations in DNA damage response and chromatin regulatory genes, potentially providing more substrate for APOBEC enzymes, leading to a hypermutational phenotype and the subsequent enhanced immune response. PMID:29435122
Zapata, Juan Carlos; Carrion, Ricardo; Patterson, Jean L.; Crasta, Oswald; Zhang, Yan; Mani, Sachin; Jett, Marti; Poonia, Bhawna; Djavani, Mahmoud; White, David M.; Lukashevich, Igor S.; Salvato, Maria S.
2013-01-01
Lassa virus (LASV) is the causative agent of Lassa Fever and is responsible for several hundred thousand infections and thousands of deaths annually in West Africa. LASV and the non-pathogenic Mopeia virus (MOPV) are both rodent-borne African arenaviruses. A live attenuated reassortant of MOPV and LASV, designated ML29, protects rodents and primates from LASV challenge and appears to be more attenuated than MOPV. To gain better insight into LASV-induced pathology and mechanism of attenuation we performed gene expression profiling in human peripheral blood mononuclear cells (PBMC) exposed to LASV and the vaccine candidate ML29. PBMC from healthy human subjects were exposed to either LASV or ML29. Although most PBMC are non-permissive for virus replication, they remain susceptible to signal transduction by virus particles. Total RNA was extracted and global gene expression was evaluated during the first 24 hours using high-density microarrays. Results were validated using RT-PCR, flow cytometry and ELISA. LASV and ML29 elicited differential expression of interferon-stimulated genes (ISG), as well as genes involved in apoptosis, NF-kB signaling and the coagulation pathways. These genes could eventually serve as biomarkers to predict disease outcomes. The remarkable differential expression of thrombomodulin, a key regulator of inflammation and coagulation, suggests its involvement with vascular abnormalities and mortality in Lassa fever disease. PMID:24069471
Park, Geon-Tae; Kim, Seung U.; Choi, Kyung-Chul
2017-01-01
Purpose Genetically engineered stem cells may be advantageous for gene therapy against various human cancers due to their inherent tumor-tropic properties. In this study, genetically engineered human neural stem cells (HB1.F3) expressing Escherichia coli cytosine deaminase (CD) (HB1.F3.CD) and human interferon-β (IFN-β) (HB1.F3.CD.IFN-β) were employed against lymph node–derived metastatic colorectal adenocarcinoma. Materials and Methods CD can convert a prodrug, 5-fluorocytosine (5-FC), to active 5-fluorouracil, which inhibits tumor growth through the inhibition of DNA synthesis,while IFN-β also strongly inhibits tumor growth by inducing the apoptotic process. In reverse transcription polymerase chain reaction analysis, we confirmed that HB1.F3.CD cells expressed the CD gene and HB1.F3.CD.IFN-β cells expressed both CD and IFN-β genes. Results In results of a modified trans-well migration assay, HB1.F3.CD and HB1.F3.CD.IFN-β cells selectively migrated toward SW-620, human lymph node–derived metastatic colorectal adenocarcinoma cells. The viability of SW-620 cells was significantly reduced when co-cultured with HB1.F3.CD or HB1.F3.CD.IFN-β cells in the presence of 5-FC. In addition, it was found that the tumor-tropic properties of these engineered human neural stem cells (hNSCs) were attributed to chemoattractant molecules including stromal cell-derived factor 1, c-Kit, urokinase receptor, urokinase-type plasminogen activator, and C-C chemokine receptor type 2 secreted by SW-620 cells. In a xenograft mouse model, treatment with hNSC resulted in significantly inhibited growth of the tumor mass without virulent effects on the animals. Conclusion The current results indicate that engineered hNSCs and a prodrug treatment inhibited the growth of SW-620 cells. Therefore, hNSC therapy may be a clinically effective tool for the treatment of lymph node metastatic colorectal cancer. PMID:27188205
Psychological Well-Being and the Human Conserved Transcriptional Response to Adversity
Fredrickson, Barbara L.; Grewen, Karen M.; Algoe, Sara B.; Firestine, Ann M.; Arevalo, Jesusa M. G.; Ma, Jeffrey; Cole, Steve W.
2015-01-01
Research in human social genomics has identified a conserved transcriptional response to adversity (CTRA) characterized by up-regulated expression of pro-inflammatory genes and down-regulated expression of Type I interferon- and antibody-related genes. This report seeks to identify the specific aspects of positive psychological well-being that oppose such effects and predict reduced CTRA gene expression. In a new confirmation study of 122 healthy adults that replicated the approach of a previously reported discovery study, mixed effect linear model analyses identified a significant inverse association between expression of CTRA indicator genes and a summary measure of eudaimonic well-being from the Mental Health Continuum – Short Form. Analyses of a 2- representation of eudaimonia converged in finding correlated psychological and social subdomains of eudaimonic well-being to be the primary carriers of CTRA associations. Hedonic well-being showed no consistent CTRA association independent of eudaimonic well-being, and summary measures integrating hedonic and eudaimonic well-being showed less stable CTRA associations than did focal measures of eudaimonia (psychological and social well-being). Similar results emerged from analyses of pooled discovery and confirmation samples (n = 198). Similar results also emerged from analyses of a second new generalization study of 107 healthy adults that included the more detailed Ryff Scales of Psychological Well-being and found this more robust measure of eudaimonic well-being to also associate with reduced CTRA gene expression. Five of the 6 major sub-domains of psychological well-being predicted reduced CTRA gene expression when analyzed separately, and 3 remained distinctively prognostic in mutually adjusted analyses. All associations were independent of demographic characteristics, health-related confounders, and RNA indicators of leukocyte subset distribution. These results identify specific sub-dimensions of eudaimonic well-being as promising targets for future interventions to mitigate CTRA gene expression, and provide no support for any independent favorable contribution from hedonic well-being. PMID:25811656
Ch'ng, Wei-Choong; Stanbridge, Eric J.; Yusoff, Khatijah
2013-01-01
Viral-mediated oncolysis is a promising cancer therapeutic approach offering an increased efficacy with less toxicity than the current therapies. The complexity of solid tumor microenvironments includes regions of hypoxia. In these regions, the transcription factor, hypoxia inducible factor (HIF), is active and regulates expression of many genes that contribute to aggressive malignancy, radio-, and chemo-resistance. To investigate the oncolytic efficacy of a highly virulent (velogenic) Newcastle disease virus (NDV) in the presence or absence of HIF-2α, renal cell carcinoma (RCC) cell lines with defective or reconstituted wild-type (wt) von Hippel-Lindau (VHL) activity were used. We show that these RCC cells responded to NDV by producing only interferon (IFN)-β, but not IFN-α, and are associated with increased STAT1 phosphorylation. Restoration of wt VHL expression enhanced NDV-induced IFN-β production, leading to prolonged STAT1 phosphorylation and increased cell death. Hypoxia augmented NDV oncolytic activity regardless of the cells' HIF-2α levels. These results highlight the potential of oncolytic NDV as a potent therapeutic agent in the killing of hypoxic cancer cells. PMID:23506478
Rodriguez, Kenny R; Horvath, Curt M
2014-07-01
The interferon antiviral system is a primary barrier to virus replication triggered upon recognition of nonself RNAs by the cytoplasmic sensors encoded by retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology gene 2 (LGP2). Paramyxovirus V proteins are interferon antagonists that can selectively interact with MDA5 and LGP2 through contact with a discrete helicase domain region. Interaction with MDA5, an activator of antiviral signaling, disrupts interferon gene expression and antiviral responses. LGP2 has more diverse reported roles as both a coactivator of MDA5 and a negative regulator of both RIG-I and MDA5. This functional dichotomy, along with the concurrent interference with both cellular targets, has made it difficult to assess the unique consequences of V protein interaction with LGP2. To directly evaluate the impact of LGP2 interference, MDA5 and LGP2 variants unable to be recognized by measles virus and parainfluenza virus 5 (PIV5) V proteins were tested in signaling assays. Results indicate that interaction with LGP2 specifically prevents coactivation of MDA5 signaling and that LGP2's negative regulatory capacity was not affected. V proteins only partially antagonize RIG-I at high concentrations, and their expression had no additive effects on LGP2-mediated negative regulation. However, conversion of RIG-I to a direct V protein target was accomplished by only two amino acid substitutions that allowed both V protein interaction and efficient interference. These results clarify the unique consequences of MDA5 and LGP2 interference by paramyxovirus V proteins and help resolve the distinct roles of LGP2 in both activation and inhibition of antiviral signal transduction. Importance: Paramyxovirus V proteins interact with two innate immune receptors, MDA5 and LGP2, but not RIG-I. V proteins prevent MDA5 from signaling to the beta interferon promoter, but the consequences of LGP2 targeting are poorly understood. As the V protein targets MDA5 and LGP2 simultaneously, and LGP2 is both a positive and negative regulator of both MDA5 and RIG-I, it has been difficult to evaluate the specific advantages conferred by LGP2 targeting. Experiments with V-insensitive proteins revealed that the primary outcome of LGP2 interference is suppression of its ability to synergize with MDA5. LGP2's negative regulation of MDA5 and RIG-I remains intact irrespective of V protein interaction. Complementary experiments demonstrate that RIG-I can be converted to V protein sensitivity by two amino acid substitutions. These findings clarify the functions of LGP2 as a positive regulator of MDA5 signaling, demonstrate the basis for V-mediated LGP2 targeting, and broaden our understanding of paramyxovirus-host interactions. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Rodriguez, Kenny R.
2014-01-01
ABSTRACT The interferon antiviral system is a primary barrier to virus replication triggered upon recognition of nonself RNAs by the cytoplasmic sensors encoded by retinoic acid-inducible gene I (RIG-I), melanoma differentiation-associated gene 5 (MDA5), and laboratory of genetics and physiology gene 2 (LGP2). Paramyxovirus V proteins are interferon antagonists that can selectively interact with MDA5 and LGP2 through contact with a discrete helicase domain region. Interaction with MDA5, an activator of antiviral signaling, disrupts interferon gene expression and antiviral responses. LGP2 has more diverse reported roles as both a coactivator of MDA5 and a negative regulator of both RIG-I and MDA5. This functional dichotomy, along with the concurrent interference with both cellular targets, has made it difficult to assess the unique consequences of V protein interaction with LGP2. To directly evaluate the impact of LGP2 interference, MDA5 and LGP2 variants unable to be recognized by measles virus and parainfluenza virus 5 (PIV5) V proteins were tested in signaling assays. Results indicate that interaction with LGP2 specifically prevents coactivation of MDA5 signaling and that LGP2's negative regulatory capacity was not affected. V proteins only partially antagonize RIG-I at high concentrations, and their expression had no additive effects on LGP2-mediated negative regulation. However, conversion of RIG-I to a direct V protein target was accomplished by only two amino acid substitutions that allowed both V protein interaction and efficient interference. These results clarify the unique consequences of MDA5 and LGP2 interference by paramyxovirus V proteins and help resolve the distinct roles of LGP2 in both activation and inhibition of antiviral signal transduction. IMPORTANCE Paramyxovirus V proteins interact with two innate immune receptors, MDA5 and LGP2, but not RIG-I. V proteins prevent MDA5 from signaling to the beta interferon promoter, but the consequences of LGP2 targeting are poorly understood. As the V protein targets MDA5 and LGP2 simultaneously, and LGP2 is both a positive and negative regulator of both MDA5 and RIG-I, it has been difficult to evaluate the specific advantages conferred by LGP2 targeting. Experiments with V-insensitive proteins revealed that the primary outcome of LGP2 interference is suppression of its ability to synergize with MDA5. LGP2's negative regulation of MDA5 and RIG-I remains intact irrespective of V protein interaction. Complementary experiments demonstrate that RIG-I can be converted to V protein sensitivity by two amino acid substitutions. These findings clarify the functions of LGP2 as a positive regulator of MDA5 signaling, demonstrate the basis for V-mediated LGP2 targeting, and broaden our understanding of paramyxovirus-host interactions. PMID:24829334
Molecular cloning and characterization of a novel bovine IFN-ε.
Guo, Yongli; Gao, Mingchun; Bao, Jun; Luo, Xiuxin; Liu, Ying; An, Dong; Zhang, Haili; Ma, Bo; Wang, Junwei
2015-03-01
A bovine IFN-ε (BoIFN-ε) gene was amplified from bovine liver genomic DNA consisting of a 463bp partial 5'UTR, 582bp complete ORF and 171bp partial 3'UTR, which encodes a protein of 193 amino acids with a 21-amino acid signal peptide and shares 61 to 87% identity with other species IFN-ε. Then BoIFN-ε gene was characterized, and it can be transcribed in EBK cells at a high level after being infected by VSV. Recombinant proteins were expressed in Escherichia coli and the antiviral activity was determined in vitro, which revealed that bovine IFN-ε has less antiviral activity than bovine IFN-α. In addition, an immunofluorescence assay indicated that BoIFN-ε expressed in MDBK cells could be detected by polyclonal antibody against BoIFN-ε. Furthermore, the BoIFN-ε gene can be constitutively expressed in the liver, thymus, kidney, small intestine and testis, but not in the heart. This study revealed that BoIFN-ε has the typical characteristics of type I interferon and can be expressed constitutively in certain tissue, which not only can be a likely candidate for a novel, effective therapeutic agent, but also facilitate further research on the role of bovine IFN system. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chattopadhyay, Saket; Ely, Abdullah; Bloom, Kristie
2009-11-20
RNA interference (RNAi) may be harnessed to inhibit viral gene expression and this approach is being developed to counter chronic infection with hepatitis B virus (HBV). Compared to synthetic RNAi activators, DNA expression cassettes that generate silencing sequences have advantages of sustained efficacy and ease of propagation in plasmid DNA (pDNA). However, the large size of pDNAs and inclusion of sequences conferring antibiotic resistance and immunostimulation limit delivery efficiency and safety. To develop use of alternative DNA templates that may be applied for therapeutic gene silencing, we assessed the usefulness of PCR-generated linear expression cassettes that produce anti-HBV micro-RNA (miR)more » shuttles. We found that silencing of HBV markers of replication was efficient (>75%) in cell culture and in vivo. miR shuttles were processed to form anti-HBV guide strands and there was no evidence of induction of the interferon response. Modification of terminal sequences to include flanking human adenoviral type-5 inverted terminal repeats was easily achieved and did not compromise silencing efficacy. These linear DNA sequences should have utility in the development of gene silencing applications where modifications of terminal elements with elimination of potentially harmful and non-essential sequences are required.« less
Sun, Peifang; García, Josefina; Comach, Guillermo; Vahey, Maryanne T.; Wang, Zhining; Forshey, Brett M.; Morrison, Amy C.; Sierra, Gloria; Bazan, Isabel; Rocha, Claudio; Vilcarromero, Stalin; Blair, Patrick J.; Scott, Thomas W.; Camacho, Daria E.; Ockenhouse, Christian F.; Halsey, Eric S.; Kochel, Tadeusz J.
2013-01-01
Background Dengue virus (DENV) infection can range in severity from mild dengue fever (DF) to severe dengue hemorrhagic fever (DHF) or dengue shock syndrome (DSS). Changes in host gene expression, temporally through the progression of DENV infection, especially during the early days, remains poorly characterized. Early diagnostic markers for DHF are also lacking. Methodology/Principal Findings In this study, we investigated host gene expression in a cohort of DENV-infected subjects clinically diagnosed as DF (n = 51) and DHF (n = 13) from Maracay, Venezuela. Blood specimens were collected daily from these subjects from enrollment to early defervescence and at one convalescent time-point. Using convalescent expression levels as baseline, two distinct groups of genes were identified: the “early” group, which included genes associated with innate immunity, type I interferon, cytokine-mediated signaling, chemotaxis, and complement activity peaked at day 0–1 and declined on day 3–4; the second “late” group, comprised of genes associated with cell cycle, emerged from day 4 and peaked at day 5–6. The up-regulation of innate immune response genes coincided with the down-regulation of genes associated with viral replication during day 0–3. Furthermore, DHF patients had lower expression of genes associated with antigen processing and presentation, MHC class II receptor, NK and T cell activities, compared to that of DF patients. These results suggested that the innate and adaptive immunity during the early days of the disease are vital in suppressing DENV replication and in affecting outcome of disease severity. Gene signatures of DHF were identified as early as day 1. Conclusions/Significance Our study reveals a broad and dynamic picture of host responses in DENV infected subjects. Host response to DENV infection can now be understood as two distinct phases with unique transcriptional markers. The DHF signatures identified during day 1–3 may have applications in developing early molecular diagnostics for DHF. PMID:23875036
Haralambieva, Iana H.; Oberg, Ann L.; Dhiman, Neelam; Ovsyannikova, Inna G.; Kennedy, Richard B.; Grill, Diane E.; Jacobson, Robert M.; Poland, Gregory A.
2012-01-01
Background. The mechanisms underlying smallpox vaccine-induced variations in immune responses are not well understood, but are of considerable interest to a deeper understanding of poxvirus immunity and correlates of protection. Methods. We assessed transcriptional messenger RNA expression changes in 197 recipients of primary smallpox vaccination representing the extremes of humoral and cellular immune responses. Results. The 20 most significant differentially expressed genes include a tumor necrosis factor–receptor superfamily member, an interferon (IFN) gene, a chemokine gene, zinc finger protein genes, nuclear factors, and histones (P ≤ 1.06E−20, q ≤ 2.64E−17). A pathway analysis identified 4 enriched pathways with cytokine production by the T-helper 17 subset of CD4+ T cells being the most significant pathway (P = 3.42E−05). Two pathways (antiviral actions of IFNs, P = 8.95E−05; and IFN-α/β signaling pathway, P = 2.92E−04), integral to innate immunity, were enriched when comparing high with low antibody responders (false discovery rate, < 0.05). Genes related to immune function and transcription (TLR8, P = .0002; DAPP1, P = .0003; LAMP3, P = 9.96E−05; NR4A2, P ≤ .0002; EGR3, P = 4.52E−05), and other genes with a possible impact on immunity (LNPEP, P = 3.72E−05; CAPRIN1, P = .0001; XRN1, P = .0001), were found to be expressed differentially in high versus low antibody responders. Conclusion. We identified novel and known immunity-related genes and pathways that may account for differences in immune response to smallpox vaccination. PMID:22949304
Magiri, R B; Lai, K; Chaffey, A M; Wilson, H L; Berry, W E; Szafron, M L; Mutwiri, G K
2016-07-01
Understanding the mechanisms by which adjuvants mediate their effects provide critical information on how innate immunity influences the development of adaptive immunity. Despite being a critical vaccine component, the mechanisms by which adjuvants mediate their effects are not fully understood and this is especially true when they are used in large animals. This lack of understanding limits our ability to design effective vaccines. In the present study, we administered polyphosphazene (PCEP), CpG oligodeoxynucleotides (CpG), emulsigen or saline via an intradermal injection into pigs and assessed the impact on the expression of reported 'adjuvant response genes' over time. CpG induced a strong upregulation of the chemokine CXL10 several 'Interferon Response Genes', as well as TNFα, and IL-10, and a down-regulation of IL-17 genes. Emulsigen upregulated expression of chemokines CCL2 and CCL5, proinflammatory cytokines IL-6 and TNFα, as well as TLR9, and several IFN response genes. PCEP induced the expression of chemokine CCL2 and proinflammatory cytokine IL-6. These results suggest that emulsigen and CpG may promote recruitment of innate immune cells and Th1 type cytokine production but that PCEP may promote a Th-2 type immune response through the induction of IL-6, an inducer of B cell activity and differentiation. Copyright © 2016 Elsevier B.V. All rights reserved.
RIOK3 Is an Adaptor Protein Required for IRF3-Mediated Antiviral Type I Interferon Production
Feng, Jun; De Jesus, Paul D.; Su, Victoria; Han, Stephanie; Gong, Danyang; Wu, Nicholas C.; Tian, Yuan; Li, Xudong; Wu, Ting-Ting; Chanda, Sumit K.
2014-01-01
ABSTRACT Detection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide RNA interference screens. RIOK3 knockdown blocks both cytosolic double-stranded B-form DNA and double-stranded RNA-induced IRF3 activation and IFN-β production. In contrast, the overexpression of RIOK3 activates IRF3 and induces IFN-β. RIOK3 functions downstream of TBK1 and upstream of IRF3 activation. Furthermore, RIOK3 physically interacts with both IRF3 and TBK1 and is necessary for the interaction between TBK1 and IRF3. In addition, global transcriptome analysis shows that the expression of many gene involved antiviral responses is dependent on RIOK3. Thus, knockdown of RIOK3 inhibits cellular antiviral responses against both DNA and RNA viruses (herpesvirus and influenza A virus). Our data suggest that RIOK3 plays a critical role in the antiviral type I IFN pathway by bridging TBK1 and IRF3. IMPORTANCE The innate immune response, such as the production of type I interferons, acts as the first line of defense, limiting infectious pathogens directly and shaping the adaptive immune response. In this study, we identified RIOK3 as a novel regulator of the antiviral type I interferon pathway. Specifically, we found that RIOK3 physically interacts with TBK1 and IRF3 and bridges the functions between TBK1 and IRF3 in the activation of type I interferon pathway. The identification of a cellular kinase that plays a role the type I interferon pathway adds another level of complexity in the regulation of innate immunity and will have implications for developing novel strategies to combat viral infection. PMID:24807708
Han, Jingjing; Xu, Guoliang; Xu, Tianjun
2016-07-01
MicroRNAs (miRNAs) as endogenous small non-coding RNAs play key regulatory roles in diverse biological processes via degrading the target mRNAs or inhibiting protein translation. Previously many researchers have reported the identification, characteristic of miRNAs and the interaction with its target gene. But, the study on the regulation of miRNAs to biological processes via regulatory the key signaling pathway was still limited. In order to comprehend the regulatory mechanism of miRNAs, two small RNA libraries from the spleen of miiuy croaker individuals with or without poly(I:C) infection were constructed. The 197 conserved miRNAs and 75 novel miRNAs were identified, and 14 conserved and 8 novel miRNAs appeared significant variations. Those differently expressed miRNAs relate to immune regulation of miiuy croaker. Furthermore, expressions of four differently expressed miRNAs were validated by qRT-PCR, and the result was consistent with sequencing data. The target genes of the differently expressed miRNAs in the two libraries were predicted, and some candidate target genes were involved in the RIG-I-like receptor (RLR) signaling pathway. The negative regulation of miRNAs to target genes were confirmed by comparing the expression pattern of miRNAs and their target genes. The results of regulating target genes were that firstly directly or indirectly activating the downstream signaling cascades and subsequent inducting the type I interferon, inflammatory cytokines and apoptosis. These studies could help us to deeper understand the roles of miRNAs played in the fish immune system, and provide a new way to investigate the defense mechanism of fish. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bouma, G; Baggen, J M; van Bodegraven, A A; Mulder, C J J; Kraal, G; Zwiers, A; Horrevoets, A J; van der Pouw Kraan, C T M
2013-07-01
Crohn's disease (CD) is characterized by chronic inflammation of the gastrointestinal tract, as a result of aberrant activation of the innate immune system through TLR stimulation by bacterial products. The conventional immunosuppressive thiopurine derivatives (azathioprine and mercaptopurine) are used to treat CD. The effects of thiopurines on circulating immune cells and TLR responsiveness are unknown. To obtain a global view of affected gene expression of the immune system in CD patients and the treatment effect of thiopurine derivatives, we performed genome-wide transcriptome analysis on whole blood samples from 20 CD patients in remission, of which 10 patients received thiopurine treatment, compared to 16 healthy controls, before and after TLR4 stimulation with LPS. Several immune abnormalities were observed, including increased baseline interferon activity, while baseline expression of ribosomal genes was reduced. After LPS stimulation, CD patients showed reduced cytokine and chemokine expression. None of these effects were related to treatment. Strikingly, only one highly correlated set of 69 genes was affected by treatment, not influenced by LPS stimulation and consisted of genes reminiscent of effector cytotoxic NK cells. The most reduced cytotoxicity-related gene in CD was the cell surface marker CD160. Concordantly, we could demonstrate an in vivo reduction of circulating CD160(+)CD3(-)CD8(-) cells in CD patients after treatment with thiopurine derivatives in an independent cohort. In conclusion, using genome-wide profiling, we identified a disturbed immune activation status in peripheral blood cells from CD patients and a clear treatment effect of thiopurine derivatives selectively affecting effector cytotoxic CD160-positive cells. Copyright © 2013 Elsevier Ltd. All rights reserved.
Wolschendorf, Frank; Duverger, Alexandra; Jones, Jennifer; Wagner, Frederic H; Huff, Jason; Benjamin, William H; Saag, Michael S; Niederweis, Michael; Kutsch, Olaf
2010-09-01
Current antiretroviral therapy (ART) efficiently controls HIV-1 replication but fails to eradicate the virus. Even after years of successful ART, HIV-1 can conceal itself in a latent state in long-lived CD4(+) memory T cells. From this latent reservoir, HIV-1 rebounds during treatment interruptions. Attempts to therapeutically eradicate this viral reservoir have yielded disappointing results. A major problem with previously utilized activating agents is that at the concentrations required for efficient HIV-1 reactivation, these stimuli trigger high-level cytokine gene expression (hypercytokinemia). Therapeutically relevant HIV-1-reactivating agents will have to trigger HIV-1 reactivation without the induction of cytokine expression. We present here a proof-of-principle study showing that this is a possibility. In a high-throughput screening effort, we identified an HIV-1-reactivating protein factor (HRF) secreted by the nonpathogenic bacterium Massilia timonae. In primary T cells and T-cell lines, HRF triggered a high but nonsustained peak of nuclear factor kappa B (NF-kappaB) activity. While this short NF-kappaB peak potently reactivated latent HIV-1 infection, it failed to induce gene expression of several proinflammatory NF-kappaB-dependent cellular genes, such as those for tumor necrosis factor alpha (TNF-alpha), interleukin-8 (IL-8), and gamma interferon (IFN-gamma). Dissociation of cellular and viral gene induction was achievable, as minimum amounts of Tat protein, synthesized following application of a short NF-kappaB pulse, triggered HIV-1 transactivation and subsequent self-perpetuated HIV-1 expression. In the absence of such a positive feedback mechanism, cellular gene expression was not sustained, suggesting that strategies modulating the NF-kappaB activity profile could be used to selectively trigger HIV-1 reactivation.
Austruy, E; Bagnis, C; Carbuccia, N; Maroc, C; Birg, F; Dubreuil, P; Mannoni, P; Chabannon, C
1998-01-01
Using the LXSN backbone, a defective retroviral vector (LISN) was constructed that encodes the human interferon (IFN)-alpha2 (hIFN-alpha2) gene and the neomycin resistance gene; the hIFN-alpha2 gene was cloned from human placental genomic DNA. High titers of the LISN retrovirus were produced by the amphotropic packaging cell line GP+envAM12. LISN is able to infect three human hematopoietic and leukemic cell lines: K562, LAMA-84, and TF-1. G418-resistant cells were detected in a similar proportion after infection with either the LISN retroviral vector or the LnLSN retroviral vector (encoding the nlsLacZ gene instead of hIFN-alpha2), suggesting that hIFN-alpha2 does not inhibit (or only partially inhibits) the production of retroviral particles by the packaging cell line and the infection of human cells. LISN-infected cells express and secrete hIFN-alpha2 as demonstrated by Northern blot analysis of poly(A)+ RNA, detection of the intracellular protein by fluorescence-activated cell sorter analysis, and detection of secreted hIFN-alpha in cell supernatants using an enzyme-linked immunosorbent assay. Retrovirally produced hIFN-alpha2 is biologically active, as demonstrated by the partial inhibition of the growth of K562 and TF-1, the modulation of the expression of cell surface antigens, the induction of the (2'-5') oligoadenylate synthetase, and, for LAMA-84, the down-modulation of the BCR-ABL protein. We conclude that the infection of human leukemic cell lines with a retroviral vector encoding hIFN-alpha2 is feasible and induces the expected biological effects. This experimental model will be useful in investigating the possibility of transducing normal and leukemic cells and hematopoietic progenitors and in determining the consequences of the autocrine production of hIFN-alpha2 on the behavior of these cells.
Inhibition of inflammatory cytokine-induced response in human islet cells by withaferin A.
Peng, H; Olsen, G; Tamura, Y; Noguchi, H; Matsumoto, S; Levy, M F; Naziruddin, B
2010-01-01
After islet cell transplantation, a substantial mass of islets are lost owing to nonspecific inflammatory reactions. Cytokine exposure before or after transplantation can upregulate expression of proinflammatory genes via the nuclear factor-kappaB signaling pathway, eventually resulting in islet loss. To test the effects of a naturally occurring nuclear factor-kappaB inhibitor, withaferin A, on regulation of inflammatory genes in human islets. Human pancreatic islets were isolated using a modified Ricordi protocol. Purified islets were cultured for 2 days. The effect of withaferin A treatment on islet cell viability was examined using the fluorescein diacetate-propidium iodide dye exclusion test, and on function using a static glucose stimulation assay. Islet cells were treated with a cytokine mixture (50 U/mL of interleukin-1beta, 1000 U/mL of tumor necrosis factor-alpha, and 1000 U/mL of interferon-gamma) for 48 hours with or without withaferin A, 1 microg/mL. Treated islets were used for real-time polymerase chain reaction (PCR) array analysis for expression of inflammatory genes, and expression of other selected genes was analyzed using real-time PCR with single primers. Glucose stimulation and viability assays demonstrated that withaferin A was not toxic to islet cells. Of 84 inflammation-related genes examined using real-time PCR array analysis, 9 were significantly upregulated by cytokine treatment compared with the control group. However, addition of withaferin A to the culture significantly inhibited expression of all genes. Withaferin A significantly inhibits the inflammatory response of islet cells with cytokine exposure. Copyright 2010 Elsevier Inc. All rights reserved.
Vernon, Suzanne D; Whistler, Toni; Cameron, Barbara; Hickie, Ian B; Reeves, William C; Lloyd, Andrew
2006-01-31
Acute infectious diseases are typically accompanied by non-specific symptoms including fever, malaise, irritability and somnolence that usually resolve on recovery. However, in some individuals these symptoms persist in what is commonly termed post-infective fatigue. The objective of this pilot study was to determine the gene expression correlates of post-infective fatigue following acute Epstein Barr virus (EBV) infection. We followed 5 people with acute mononucleosis who developed post-infective fatigue of more than 6 months duration and 5 HLA-matched control subjects who recovered within 3 months. Subjects had peripheral blood mononuclear cell (PBMC) samples collected at varying time points including at diagnosis, then every 2 weeks for 3 months, then every 3 months for a year. Total RNA was extracted from the PBMC samples and hybridized to microarrays spotted with 3,800 oligonucleotides. Those who developed post-infective fatigue had gene expression profiles indicative of an altered host response during acute mononucleosis compared to those who recovered uneventfully. Several genes including ISG20 (interferon stimulated gene), DNAJB2 (DnaJ [Hsp40] homolog and CD99), CDK8 (cyclin-dependent kinase 8), E2F2 (E2F transcription factor 2), CDK8 (cyclin-dependent kinase 8), and ACTN2 (actinin, alpha 2), known to be regulated during EBV infection, were differentially expressed in post-infective fatigue cases. Several of the differentially expressed genes affect mitochondrial functions including fatty acid metabolism and the cell cycle. These preliminary data provide insights into alterations in gene transcripts associated with the varied clinical outcomes from acute infectious mononucleosis.
IFNL4 affects clearance of hepatitis C virus
Scientists have discovered a new human interferon gene, Interferon Lambda 4 (IFNL4), that affects clearance of the hepatitis C virus. They also identified an inherited genetic variant within IFNL4 that predicts how people respond to treatment for hepatit
Hastie, Marcus L.; Headlam, Madeleine J.; Patel, Nirav B.; Bukreyev, Alexander A.; Buchholz, Ursula J.; Dave, Keyur A.; Norris, Emma L.; Wright, Cassandra L.; Spann, Kirsten M.; Collins, Peter L.; Gorman, Jeffrey J.
2012-01-01
Respiratory syncytial viruses encode a nonstructural protein (NS1) that interferes with type I and III interferon and other antiviral responses. Proteomic studies were conducted on human A549 type II alveolar epithelial cells and type I interferon-deficient Vero cells (African green monkey kidney cells) infected with wild-type and NS1-deficient clones of human respiratory syncytial virus to identify other potential pathway and molecular targets of NS1 interference. These analyses included two-dimensional differential gel electrophoresis and quantitative Western blotting. Surprisingly, NS1 was found to suppress the induction of manganese superoxide dismutase (SOD2) expression in A549 cells and to a much lesser degree Vero cells in response to infection. Because SOD2 is not directly inducible by type I interferons, it served as a marker to probe the impact of NS1 on signaling of other cytokines known to induce SOD2 expression and/or indirect effects of type I interferon signaling. Deductive analysis of results obtained from cell infection and cytokine stimulation studies indicated that interferon-γ signaling was a potential target of NS1, possibly as a result of modulation of STAT1 levels. However, this was not sufficient to explain the magnitude of the impact of NS1 on SOD2 induction in A549 cells. Vero cell infection experiments indicated that NS1 targeted a component of the type I interferon response that does not directly induce SOD2 expression but is required to induce another initiator of SOD2 expression. STAT2 was ruled out as a target of NS1 interference using quantitative Western blot analysis of infected A549 cells, but data were obtained to indicate that STAT1 was one of a number of potential targets of NS1. A label-free mass spectrometry-based quantitative approach is proposed as a means of more definitive identification of NS1 targets. PMID:22322095