Feng, Xuan; Han, Diana; Kilaru, Bharat K.; Franek, Beverly S.; Niewold, Timothy B.; Reder, Anthony T.
2014-01-01
Objective To determine whether statins affect type 1 interferon responses in relapsing-remitting multiple sclerosis (RRMS). Design Study effects of atorvastatin on type 1 interferon responses in Jurkat cells, mononuclear cells (MNCs) from therapy-naive patients with RRMS in vitro, and MNCs from interferon-treated RRMS patients in vivo in 4 conditions: no drug, statin only, interferon-beta only, and statin added on to interferon-beta therapy. Patients The study examined clinically stable patients with RRMS: 21 therapy-naive patients and 14 patients receiving interferon-beta with a statin. Interventions Statin effects on in vitro and in vivo interferon-beta–induced STAT1 transcription factor activation, expression of interferon-stimulated proteins in MNCs, and serum type 1 interferon activity. Results In vitro, atorvastatin dose dependently inhibited expression of interferon-stimulated P-Y-STAT1 by 44% (P< .001), interferon regulatory factor 1 protein by 30% (P= .006), and myxovirus resistance 1 protein by 32% (P=.004) compared with no-statin control in MNCs from therapy-naive RRMS patients. In vivo, 9 of 10 patients who received high-dose statins (80 mg) had a significant reduction in interferon-beta therapy–induced serum interferon-α/β activity, whereas only 2 of 4 patients who received medium-dose statins (40 mg) had reductions. High-dose add-on statin therapy significantly blocked interferon-beta function, with less P-Y-STAT1 transcription factor activation, and reduced myxovirus resistance 1 protein and viperin protein production. Medium doses of statins did not change STAT1 activation. Conclusions High-dose add-on statin therapy significantly reduces interferon-beta function and type 1 interferon responses in RRMS patients. These data provide a putative mechanism for how statins could counteract the beneficial effects of interferon-beta and worsen disease. PMID:22801747
Predictive Factors for Beneficial Response to Interferon-alfa Therapy in Chronic Hepatitis C
Yoon, Seung-Kew; Kim, Sung Soo; Park, Young Min; Shim, Kyu Sik; Lee, Chang Don; Sun, Hee Sik; Park, Doo Ho; Kim, Boo Sung; Ryu, Wang Shick; Cho, Joong Myung
1995-01-01
Objectives: Interferon is the only established teatment for chronic hepatitis C but the host-dependent or virus-related factors affecting the response rate to interferon therapy are not yet dear. The purpose of this study was to investigate the factors predictive of response to interferon-alfa therapy in chronic hepatitis C. Methods: Twenty-five consecutive patients with chronic hepatitis C were randomized to three regimens of interferon-alfa: group A (n=7, 3MU every day for 3 months), group B (n=8, 3MU every other day for 3 months) and group C (n=10, 3MU every other day for 6 months), We quantified serum HC RNA levels by competitive reverse transcription-polymerase chain reaction (RT-PCR)and performed HCV genotyping using type-specific primers deduced from the NS5 region of the HCV genome. We also attempted to identify which demographic, biochemical and histologic factors in addition to virus-related factors would significantly predict beneficial response to interferon by multivariate analysis. Results: Sustained responders were 8 (36.4%), nonsustained responders were 2 (9.1%) and nonresponders were 12 (54.5%) of 22 patients who had received complete therapy. The initial HCV RNA level (logarithmic transformed copy numbers per ml of serum)in sustained responders (5.75±0.39) was significantly lower than that of nonsustained responders (6.80±0.71)and nonresponders (6.70±0.52) (p<0.05). In multivariate multiple logistic regression analysis, the serum HCV RNA level before therapy was only the independent predictor of a sustained response to interferon-alfa therapy (p=0.001). Conclusions: Serum HCV RNA level before therapy was the most useful predictor of a sustained response to interferon-alfa therapy for chronic hepatitis C. PMID:7495780
The Jak-STAT pathway stimulated by interferon alpha or interferon beta.
Horvath, Curt M
2004-11-23
Type I interferons, such as interferon alpha and interferon beta (IFN-alpha and beta), signal through a Janus kinase (Jak) to signal transduction and activator of transcription (STAT) pathway to stimulate gene expression. In response to ligand binding, the receptors dimerize, Jaks phosphorylate STAT1 and STAT2, which then dimerize and interact with a third transcriptional regulator IFN regulatory factor 9 (IRF9) to stimulate gene expression. IFN-alpha is the main innate antiviral cytokine and is essential for effective immune response to viral infection. The animation shows activation of STAT-responsive gene expression in response to type I IFNs.
USDA-ARS?s Scientific Manuscript database
Type I interferons (IFN) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF7), the master regulator of IFN transcription. The role of 4EBPs in the negat...
Methamphetamine enhances Hepatitis C virus replication in human hepatocytes
Ye, L.; Peng, J. S.; Wang, X.; Wang, Y. J.; Luo, G. X.; Ho, W. Z.
2009-01-01
SUMMARY Very little is known about the interactions between hepatitis C virus (HCV) and methamphetamine, which is a highly abused psychostimulant and a known risk factor for human immunodeficiency virus (HIV)/HCV infection. This study examined whether methamphetamine has the ability to inhibit innate immunity in the host cells, facilitating HCV replication in human hepatocytes. Methamphetamine inhibited intracellular interferon alpha expression in human hepatocytes, which was associated with the increase in HCV replication. In addition, methamphetamine also compromised the anti-HCV effect of recombinant interferon alpha. Further investigation of mechanism(s) responsible for the methamphetamine action revealed that methamphetamine was able to inhibit the expression of the signal transducer and activator of transcription 1, a key modulator in interferon-mediated immune and biological responses. Methamphetamine also down-regulated the expression of interferon regulatory factor-5, a crucial transcriptional factor that activates the interferon pathway. These in vitro findings that methamphetamine compromises interferon alpha-mediated innate immunity against HCV infection indicate that methamphetamine may have a cofactor role in the immunopathogenesis of HCV disease. PMID:18307590
Meet the terminator: The phosphatase PP2A puts brakes on IRF-3 activation.
Chattopadhyay, Saurabh; Sen, Ganes C
2014-04-24
Cellular interferon response to microbial infection is transient. In a recent paper in Immunity, Long et al. (2014) identify protein phosphatase 2A (PP2A) as a deactivator of phospho-interferon regulatory factor 3, the key transcription factor for interferon synthesis, thus providing one basis for the observed transiency. Copyright © 2014 Elsevier Inc. All rights reserved.
Cisneros, Irma E; Erdenizmenli, Mert; Cunningham, Kathryn A; Paessler, Slobodan; Dineley, Kelly T
2018-06-01
HIV-1 and Zika virus (ZIKV) represent RNA viruses with neurotropic characteristics. Infected individuals suffer neurocognitive disorders aggravated by environmental toxins, including drugs of abuse such as cocaine, exacerbating HIV-associated neurocognitive disorders through a combination of astrogliosis, oxidative stress and innate immune signaling; however, little is known about how cocaine impacts the progression of ZIKV neural perturbations. Impaired innate immune signaling is characterized by weakened antiviral activation of interferon signaling and alterations in inflammatory signaling, factors contributing to cognitive sequela associated with cocaine in HIV-1/ZIKV infection. We employed cellular/molecular biology techniques to test if cocaine suppresses the efficacy of astrocytes to initiate a Type 1 interferon response to HIV-1/ZIKV, in vitro. We found cocaine activated antiviral signaling pathways and type I interferon in the absence of inflammation. Cocaine pre-exposure suppressed antiviral responses to HIV-1/ZIKV, triggering antiviral signaling and phosphorylation of interferon regulatory transcription factor 3 to stimulate type I interferon gene transcription. Our data indicate that oxidative stress is a major driver of cocaine-mediated astrocyte antiviral immune responses. Although astrocyte antiviral signaling is activated following detection of foreign pathogenic material, oxidative stress and increased cytosolic double-stranded DNA (dsDNA) can drive antiviral signaling via stimulation of pattern recognition receptors. Pretreatment with the glial modulators propentofylline (PPF) or pioglitazone (PIO) reversed cocaine-mediated attenuation of astrocyte responses to HIV-1/ZIKV. Both PPF/PIO protected against cocaine-mediated generation of reactive oxygen species (ROS), increased dsDNA, antiviral signaling pathways and increased type I interferon, indicating that cocaine induces astrocyte type I interferon signaling in the absence of virus and oxidative stress is a major driver of cocaine-mediated astrocyte antiviral immunity. Lastly, PPF and PIO have therapeutic potential to ameliorate cocaine-mediated dysregulation of astrocyte antiviral immunity possibly via a myriad of protective actions including decreases in reactive phenotype and damaging immune factors. Published by Elsevier Ltd.
Wilden, Holger; Schirrmacher, Volker; Fournier, Philippe
2011-08-01
Newcastle disease virus (NDV) is an interesting agent for activating innate immune activity in macrophages including secretion of TNF-α and IFN-α, upregulation of TRAIL and activation of NF-κB and iNOS. However, the molecular mechanism of such cellular activities remains largely unknown. Tumor selectivity of replication of NDV has been described to be linked to deviations in tumor cells of the type I interferon response. We therefore focused on the interferon response to NDV of macrophages as part of innate anti-viral and anti-tumor activity. In particular, we investigated the functional significance of the interferon regulatory factor genes (IRF)-3 and IRF-7. Deletion of the IRF-3 or IRF-7 gene was found to increase susceptibility of mouse macrophages to virus infection. Surprisingly, NDV replicated better in IRF-3 KO than in IRF-7 KO macrophages. Further analysis showed that IRF-3 KO macrophages have a lower basal and NDV-induced RIG-I expression in comparison to IRF-7 KO macrophages. This might explain why, in IRF-3 KO macrophages, the secretion of type I interferons after NDV infection is delayed, when compared to IRF-7 KO and wild-type macrophages. In addition, IRF-3 KO cells showed reduced NDV-induced levels of IRF-7. This effect could be prevented by priming the cells first by interferon-α. Further results indicated that an early production of type I interferon rather than high maximal levels at later time points are important for resistance to infection by NDV. In conclusion, these results demonstrate an important role of IRF-3 for the innate anti-viral response to NDV of mouse macrophages.
Contradictory results in interferon research
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.
1984-01-01
Several reports on immunologically related interferon research, both in the areas of basic science and clinical research, are briefly reviewed, and it is noted that in many cases the results obtained are contradictory. It is argued, however, that the contradictory results are not surprising since interferon is a biological response modifier and has been known to produce opposite results even when the same interferon prepartion is used. It is emphasized that dosage, timing, route, and other experimental conditions are essential factors in planning immunological studies with interferon. Careful planning of future experiments with interferon should be required to prevent the possible generation of effects that are opposite to those expected.
Interferons and Interferon Regulatory Factors in Malaria
Claser, Carla; Tan, Kevin Shyong Wei; Rénia, Laurent
2014-01-01
Malaria is one of the most serious infectious diseases in humans and responsible for approximately 500 million clinical cases and 500 thousand deaths annually. Acquired adaptive immune responses control parasite replication and infection-induced pathologies. Most infections are clinically silent which reflects on the ability of adaptive immune mechanisms to prevent the disease. However, a minority of these can become severe and life-threatening, manifesting a range of overlapping syndromes of complex origins which could be induced by uncontrolled immune responses. Major players of the innate and adaptive responses are interferons. Here, we review their roles and the signaling pathways involved in their production and protection against infection and induced immunopathologies. PMID:25157202
Carlin, Aaron F; Plummer, Emily M; Vizcarra, Edward A; Sheets, Nicholas; Joo, Yunichel; Tang, William; Day, Jeremy; Greenbaum, Jay; Glass, Christopher K; Diamond, Michael S; Shresta, Sujan
2017-11-07
Interferon-regulatory factors (IRFs) are a family of transcription factors (TFs) that translate viral recognition into antiviral responses, including type I interferon (IFN) production. Dengue virus (DENV) and other clinically important flaviviruses are suppressed by type I IFN. While mice lacking the type I IFN receptor (Ifnar1 -/- ) succumb to DENV infection, we found that mice deficient in three transcription factors controlling type I IFN production (Irf3 -/- Irf5 -/- Irf7 -/- triple knockout [TKO]) survive DENV challenge. DENV infection of TKO mice resulted in minimal type I IFN production but a robust type II IFN (IFN-γ) response. Using loss-of-function approaches for various molecules, we demonstrate that the IRF-3-, IRF-5-, IRF-7-independent pathway predominantly utilizes IFN-γ and, to a lesser degree, type I IFNs. This pathway signals via IRF-1 to stimulate interleukin-12 (IL-12) production and IFN-γ response. These results reveal a key antiviral role for IRF-1 by activating both type I and II IFN responses during DENV infection. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Conrad, Curdin; Di Domizio, Jeremy; Mylonas, Alessio; Belkhodja, Cyrine; Demaria, Olivier; Navarini, Alexander A; Lapointe, Anne-Karine; French, Lars E; Vernez, Maxime; Gilliet, Michel
2018-01-02
Although anti-tumor necrosis factor (TNF) agents are highly effective in the treatment of psoriasis, 2-5% of treated patients develop psoriasis-like skin lesions called paradoxical psoriasis. The pathogenesis of this side effect and its distinction from classical psoriasis remain unknown. Here we show that skin lesions from patients with paradoxical psoriasis are characterized by a selective overexpression of type I interferons, dermal accumulation of plasmacytoid dendritic cells (pDC), and reduced T-cell numbers, when compared to classical psoriasis. Anti-TNF treatment prolongs type I interferon production by pDCs through inhibition of their maturation. The resulting type I interferon overexpression is responsible for the skin phenotype of paradoxical psoriasis, which, unlike classical psoriasis, is independent of T cells. These findings indicate that paradoxical psoriasis represents an ongoing overactive innate inflammatory process, driven by pDC-derived type I interferon that does not lead to T-cell autoimmunity.
[Fish interferon response and its molecular regulation: a review].
Zhang, Yibing; Gui, Jianfang
2011-05-01
Interferon response is the first line of host defense against virus infection. Recent years have witnessed tremendous progress in understanding of fish innate response to virus infection, especially in fish interferon antiviral response. A line of fish genes involved in interferon antiviral response have been identified and functional studies further reveal that fish possess an IFN antiviral system similar to mammals. However, fish virus-induced interferon genes contain introns similar to mammalian type III interferon genes although they encode proteins similar to type I interferons, which makes it hard to understand the evolution of vertebrate interferon genes directly resulting in a debate on nomenclature of fish interferon genes. Actually, fish display some unique mechanisms underlying interferon antiviral response. This review documents the recent progress on fish interferon response and its molecular mechanism.
Thymoquinone Suppresses IRF-3-Mediated Expression of Type I Interferons via Suppression of TBK1
Cho, Jae Youl
2018-01-01
Interferon regulatory factor (IRF)-3 is known to have a critical role in viral and bacterial innate immune responses by regulating the production of type I interferon (IFN). Thymoquinone (TQ) is a compound derived from black cumin (Nigella sativa L.) and is known to regulate immune responses by affecting transcription factors associated with inflammation, including nuclear factor-κB (NF-κB) and activator protein-1 (AP-1). However, the role of TQ in the IRF-3 signaling pathway has not been elucidated. In this study, we explored the molecular mechanism of TQ-dependent regulation of enzymes in IRF-3 signaling pathways using the lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cell line. TQ decreased mRNA expression of the interferon genes IFN-α and IFN-β in these cells. This inhibition was due to its suppression of the transcriptional activation of IRF-3, as shown by inhibition of IRF-3 PRD (III-I) luciferase activity as well as the phosphorylation pattern of IRF-3 in the immunoblotting experiment. Moreover, TQ targeted the autophosphorylation of TANK-binding kinase 1 (TBK1), an upstream key enzyme responsible for IRF-3 activation. Taken together, these findings suggest that TQ can downregulate IRF-3 activation via inhibition of TBK1, which would subsequently decrease the production of type I IFN. TQ also regulated IRF-3, one of the inflammatory transcription factors, providing a novel insight into its anti-inflammatory activities. PMID:29751576
Yu, Tao; Yang, Yanyan; Kwak, Yi-Seong; Song, Gwan Gyu; Kim, Mi-Yeon; Rhee, Man Hee; Cho, Jae Youl
2017-04-01
Ginsenoside Rc (G-Rc) is one of the major protopanaxadiol-type saponins isolated from Panax ginseng , a well-known medicinal herb with many beneficial properties including anticancer, anti-inflammatory, antiobesity, and antidiabetic effects. In this study, we investigated the effects of G-Rc on inflammatory responses in vitro and examined the mechanisms of these effects. The in vitro inflammation system used lipopolysaccharide-treated macrophages, tumor necrosis factor-α/interferon-γ-treated synovial cells, and HEK293 cells transfected with various inducers of inflammation. G-Rc significantly inhibited the expression of macrophage-derived cytokines, such as tumor necrosis factor-α and interleukin-1β. G-Rc also markedly suppressed the activation of TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling in activated RAW264.7 macrophages, human synovial cells, and HEK293 cells. G-Rc exerts its anti-inflammatory actions by suppressing TANK-binding kinase 1/IκB kinase ε/interferon regulatory factor-3 and p38/ATF-2 signaling.
Verbruggen, Paul; Ruf, Marius; Blakqori, Gjon; Överby, Anna K; Heidemann, Martin; Eick, Dirk; Weber, Friedemann
2011-02-04
La Crosse encephalitis virus (LACV) is a mosquito-borne member of the negative-strand RNA virus family Bunyaviridae. We have previously shown that the virulence factor NSs of LACV is an efficient inhibitor of the antiviral type I interferon system. A recombinant virus unable to express NSs (rLACVdelNSs) strongly induced interferon transcription, whereas the corresponding wt virus (rLACV) suppressed it. Here, we show that interferon induction by rLACVdelNSs mainly occurs through the signaling pathway leading from the pattern recognition receptor RIG-I to the transcription factor IRF-3. NSs expressed by rLACV, however, acts downstream of IRF-3 by specifically blocking RNA polymerase II-dependent transcription. Further investigations revealed that NSs induces proteasomal degradation of the mammalian RNA polymerase II subunit RPB1. NSs thereby selectively targets RPB1 molecules of elongating RNA polymerase II complexes, the so-called IIo form. This phenotype has similarities to the cellular DNA damage response, and NSs was indeed found to transactivate the DNA damage response gene pak6. Moreover, NSs expressed by rLACV boosted serine 139 phosphorylation of histone H2A.X, one of the earliest cellular reactions to damaged DNA. However, other DNA damage response markers such as up-regulation and serine 15 phosphorylation of p53 or serine 1524 phosphorylation of BRCA1 were not triggered by LACV infection. Collectively, our data indicate that the strong suppression of interferon induction by LACV NSs is based on a shutdown of RNA polymerase II transcription and that NSs achieves this by exploiting parts of the cellular DNA damage response pathway to degrade IIo-borne RPB1 subunits.
Maloney, Nicole S.; Thackray, Larissa B.; Goel, Gautam; Hwang, Seungmin; Duan, Erning; Vachharajani, Punit; Xavier, Ramnik
2012-01-01
Noroviruses (NVs) cause the majority of cases of epidemic nonbacterial gastroenteritis worldwide and contribute to endemic enteric disease. However, the molecular mechanisms responsible for immune control of their replication are not completely understood. Here we report that the transcription factor interferon regulatory factor 1 (IRF-1) is required for control of murine NV (MNV) replication and pathogenesis in vivo. This led us to studies documenting a cell-autonomous role for IRF-1 in gamma interferon (IFN-γ)-mediated inhibition of MNV replication in primary macrophages. This role of IRF-1 in the inhibition of MNV replication by IFN-γ is independent of IFN-αβ signaling. While the signal transducer and activator of transcription STAT-1 was also required for IFN-γ-mediated inhibition of MNV replication in vitro, class II transactivator (CIITA), interferon regulatory factor 3 (IRF-3), and interferon regulatory factor 7 (IRF-7) were not required. We therefore hypothesized that there must be a subset of IFN-stimulated genes (ISGs) regulated by IFN-γ in a manner dependent only on STAT-1 and IRF-1. Analysis of transcriptional profiles of macrophages lacking various transcription factors confirmed this hypothesis. These studies identify a key role for IRF-1 in IFN-γ-dependent control of norovirus infection in mice and macrophages. PMID:22973039
Prevalence and detection of neuropsychiatric adverse effects during hepatitis C treatment.
Masip, Montserrat; Tuneu, Laura; Pagès, Neus; Torras, Xavier; Gallego, Adolfo; Guardiola, Josep Maria; Faus, María José; Mangues, Maria Antònia
2015-12-01
Current treatment combinations for chronic hepatitis C virus infection still include pegylated interferon and ribavirin despite the new therapeutic options available. Interferon-based treatments are associated with a high incidence of adverse effects. Central nervous system events are among the most frequent adverse drug reactions and their influence on treatment adherence and effectiveness is controversial. The aim of the study was to evaluate neuropsychiatric adverse effects of interferon-based treatment for chronic hepatitis C in standard multidisciplinary clinical practice. Risk factors for these adverse effects and their impact on adherence and sustained viral response were also evaluated. Setting Ambulatory care pharmacy in coordination with the liver unit and the infectious diseases unit at a 650-bed tertiary university hospital. We included all consecutive patients with chronic hepatitis C who completed treatment with pegylated interferon and ribavirin between 2005 and 2013. All patients underwent a multidisciplinary follow-up during treatment. Neuropsychiatric adverse effects were evaluated in relation to severity, management and outcome. The presence of anxiety and depression was evaluated by means of specific tests. A total of 717 treatments in 679 patients were included. During treatment, we detected 1679 neuropsychiatric adverse effects in 618 patients (86.2 %), generating 1737 clinical interventions. Fifty-seven (3.3 %) neuropsychiatric adverse effects were severe and 2 (0.1 %) were life-threatening (suicidal attempts). Most neuropsychiatric adverse effects (1555 events, 92.6 %) resolved without sequelae. Psychiatric medication was required in 289 patients (40.3 %). Sustained viral response was achieved in 400 cases (55.8 %) and was associated with adherence (OR = 1.942, 95 % CI = 1.235-3.052, p = 0.004). A multivariate analysis did not show any relationship between neuropsychiatric adverse effects and treatment adherence or sustained viral response. A psychiatric history was a strong risk factor for depression, anxiety and other psychiatric disorders during treatment. Neuropsychiatric adverse effects during interferon-based treatments in patients with chronic hepatitis C were common but mostly mild or moderate. Early detection and accurate multidisciplinary management avoided treatment discontinuation, ensuring adherence and attaining sustained viral response. The identified risk factors could be used to determine patients eligible for interferon-free combinations, thus optimizing health system economics.
Interferon Response Factors 3 and 7 Protect against Chikungunya Virus Hemorrhagic Fever and Shock
Rudd, Penny A.; Wilson, Jane; Gardner, Joy; Larcher, Thibaut; Babarit, Candice; Le, Thuy T.; Anraku, Itaru; Kumagai, Yutaro; Loo, Yueh-Ming; Gale, Michael; Akira, Shizuo; Khromykh, Alexander A.
2012-01-01
Chikungunya virus (CHIKV) infections can produce severe disease and mortality. Here we show that CHIKV infection of adult mice deficient in interferon response factors 3 and 7 (IRF3/7−/−) is lethal. Mortality was associated with undetectable levels of alpha/beta interferon (IFN-α/β) in serum, ∼50- and ∼10-fold increases in levels of IFN-γ and tumor necrosis factor (TNF), respectively, increased virus replication, edema, vasculitis, hemorrhage, fever followed by hypothermia, oliguria, thrombocytopenia, and raised hematocrits. These features are consistent with hemorrhagic shock and were also evident in infected IFN-α/β receptor-deficient mice. In situ hybridization suggested CHIKV infection of endothelium, fibroblasts, skeletal muscle, mononuclear cells, chondrocytes, and keratinocytes in IRF3/7−/− mice; all but the latter two stained positive in wild-type mice. Vaccination protected IRF3/7−/− mice, suggesting that defective antibody responses were not responsible for mortality. IPS-1- and TRIF-dependent pathways were primarily responsible for IFN-α/β induction, with IRF7 being upregulated >100-fold in infected wild-type mice. These studies suggest that inadequate IFN-α/β responses following virus infection can be sufficient to induce hemorrhagic fever and shock, a finding with implications for understanding severe CHIKV disease and dengue hemorrhagic fever/dengue shock syndrome. PMID:22761364
Estes, D M; Tuo, W; Brown, W C; Goin, J
1998-12-01
In this report, we sought to determine the role of selected type I interferons [interferon-alpha (IFN-alpha) and interferon-tau (IFN-tau)], IFN-gamma and transforming growth factor-beta (TGF-beta) in the regulation of bovine antibody responses. B cells were stimulated via CD40 in the presence or absence of B-cell receptor (BCR) cross-linking. IFN-alpha enhanced IgM, IgG2 and IgA responses but did not enhance IgG1 responses. BCR signalling alone was more effective at inducing IgG2 responses with IFN-alpha than dual cross-linking with CD40. Recombinant ovine IFN-tau was less effective at inducing IgG2 responses when compared with IFN-alpha, though IgA responses were similar in magnitude following BCR cross-linking. At higher concentrations, IFN-tau enhanced IgA responses greater than twofold over the levels observed with IFN-alpha. Previous studies have shown that addition of IFN-gamma to BCR or pokeweed mitogen-activated bovine B cells stimulates IgG2 production. However, following CD40 stimulation alone, IFN-gamma was relatively ineffective at stimulating high-rate synthesis of any non-IgM isotype. Dual cross-linking via CD40 and the BCR resulted in decreased synthesis of IgM with a concomitant increase in IgA and similar levels of IgG2 production to those obtained via the BCR alone. We also assessed the effects of endogenous and exogenous TGF-beta on immunoglobulin synthesis by bovine B cells. Exogenous TGF-beta stimulates both IgG2 and IgA production following CD40 and BCR cross-linking in the presence of IL-2. Blocking endogenous TGF-beta did not inhibit the up-regulation of IgG2 or IgA by interferons.
Laouar, Yasmina; Sutterwala, Fayyaz S; Gorelik, Leonid; Flavell, Richard A
2005-06-01
Interferon-gamma and interleukin 12 produced by the innate arm of the immune system are important regulators of T helper type 1 (T(H)1) cell development, but signals that negatively regulate their expression remain controversial. Here we show that transforming growth factor-beta (TGF-beta) controlled T(H)1 differentiation through the regulation of interferon-gamma produced by natural killer (NK) cells. Blockade of TGF-beta signaling in NK cells caused the accumulation of a large pool of NK cells secreting copious interferon-gamma, responsible for T(H)1 differentiation and protection from leishmania infection. In contrast, blockade of TGF-beta signaling in dendritic cells did not affect dendritic cell homeostasis or interleukin 12 production, thus indicating a previously undescribed demarcation of the function of TGF-beta in NK cells versus dendritic cells.
Müller, M; Laxton, C; Briscoe, J; Schindler, C; Improta, T; Darnell, J E; Stark, G R; Kerr, I M
1993-01-01
Mutants in complementation group U3, completely defective in the response of all genes tested to interferons (IFNs) alpha and gamma, do not express the 91 and 84 kDa polypeptide components of interferon-stimulated gene factor 3 (ISGF3), a transcription factor known to play a primary role in the IFN-alpha response pathway. The 91 and 84 kDa polypeptides are products of a single gene. They result from differential splicing and differ only in a 38 amino acid extension at the C-terminus of the 91 kDa polypeptide. Complementation of U3 mutants with cDNA constructs expressing the 91 kDa product at levels comparable to those observed in induced wild-type cells completely restored the response to both IFN-alpha and -gamma and the ability to form ISGF3. Complementation with the 84 kDa component similarly restored the ability to form ISGF3 and, albeit to a lower level, the IFN-alpha response of all genes tested so far. It failed, however, to restore the IFN-gamma response of any gene analysed. The precise nature of the DNA motifs and combination of factors required for the transcriptional response of all genes inducible by IFN-alpha and -gamma remains to be established. The results presented here, however, emphasize the apparent general requirement of the 91 kDa polypeptide in the primary transcriptional response to both types of IFN. Images PMID:7693454
Interaction of SARS and MERS Coronaviruses with the Antiviral Interferon Response.
Kindler, E; Thiel, V; Weber, F
2016-01-01
Severe Acute Respiratory Syndrome (SARS) and Middle East Respiratory Syndrome (MERS) are the most severe coronavirus (CoV)-associated diseases in humans. The causative agents, SARS-CoV and MERS-CoV, are of zoonotic origin but may be transmitted to humans, causing severe and often fatal respiratory disease in their new host. The two coronaviruses are thought to encode an unusually large number of factors that allow them to thrive and replicate in the presence of efficient host defense mechanisms, especially the antiviral interferon system. Here, we review the recent progress in our understanding of the strategies that highly pathogenic coronaviruses employ to escape, dampen, or block the antiviral interferon response in human cells. © 2016 Elsevier Inc. All rights reserved.
Kemp, Michael G.; Lindsey-Boltz, Laura A.; Sancar, Aziz
2015-01-01
The mechanism by which ultraviolet (UV) wavelengths of sunlight trigger or exacerbate the symptoms of the autoimmune disorder lupus erythematosus is not known but may involve a role for the innate immune system. Here we show that UV radiation potentiates STING (stimulator of interferon genes)-dependent activation of the immune signaling transcription factor interferon regulatory factor 3 (IRF3) in response to cytosolic DNA and cyclic dinucleotides in keratinocytes and other human cells. Furthermore, we find that modulation of this innate immune response also occurs with UV-mimetic chemical carcinogens and in a manner that is independent of DNA repair and several DNA damage and cell stress response signaling pathways. Rather, we find that the stimulation of STING-dependent IRF3 activation by UV is due to apoptotic signaling-dependent disruption of ULK1 (Unc51-like kinase 1), a pro-autophagic protein that negatively regulates STING. Thus, deregulation of ULK1 signaling by UV-induced DNA damage may contribute to the negative effects of sunlight UV exposure in patients with autoimmune disorders. PMID:25792739
Pang, Phillip S; Planet, Paul J; Glenn, Jeffrey S
2009-08-11
Patients chronically infected with hepatitis C virus (HCV) require significantly different durations of therapy and achieve substantially different sustained virologic response rates to interferon-based therapies, depending on the HCV genotype with which they are infected. There currently exists no systematic framework that explains these genotype-specific response rates. Since humans are the only known natural hosts for HCV-a virus that is at least hundreds of years old-one possibility is that over the time frame of this relationship, HCV accumulated adaptive mutations that confer increasing resistance to the human immune system. Given that interferon therapy functions by triggering an immune response, we hypothesized that clinical response rates are a reflection of viral evolutionary adaptations to the immune system. We have performed the first phylogenetic analysis to include all available full-length HCV genomic sequences (n = 345). This resulted in a new cladogram of HCV. This tree establishes for the first time the relative evolutionary ages of the major HCV genotypes. The outcome data from prospective clinical trials that studied interferon and ribavirin therapy was then mapped onto this new tree. This mapping revealed a correlation between genotype-specific responses to therapy and respective genotype age. This correlation allows us to predict that genotypes 5 and 6, for which there currently are no published prospective trials, will likely have intermediate response rates, similar to genotype 3. Ancestral protein sequence reconstruction was also performed, which identified the HCV proteins E2 and NS5A as potential determinants of genotype-specific clinical outcome. Biochemical studies have independently identified these same two proteins as having genotype-specific abilities to inhibit the innate immune factor double-stranded RNA-dependent protein kinase (PKR). An evolutionary analysis of all available HCV genomes supports the hypothesis that immune selection was a significant driving force in the divergence of the major HCV genotypes and that viral factors that acquired the ability to inhibit the immune response may play a role in determining genotype-specific response rates to interferon therapy.
Hayes, C. Nelson; Abe, Hiromi; Miki, Daiki; Ochi, Hidenori; Karino, Yoshiyasu; Toyota, Joji; Nakamura, Yusuke; Kamatani, Naoyuki; Sezaki, Hitomi; Kobayashi, Mariko; Akuta, Norio; Suzuki, Fumitaka; Kumada, Hiromitsu
2011-01-01
Background. Pegylated interferon, ribavirin, and telaprevir triple therapy is a new strategy expected to eradicate the hepatitis C virus (HCV) even in patients infected with difficult-to-treat genotype 1 strains, although adverse effects, such as anemia and rash, are frequent. Methods. We assessed efficacy and predictive factors for sustained virological response (SVR) for triple therapy in 94 Japanese patients with HCV genotype 1. We included recently identified predictive factors, such as IL28B and ITPA polymorphism, and substitutions in the HCV core and NS5A proteins. Results. Patients treated with triple therapy achieved comparatively high SVR rates (73%), especially among treatment-naive patients (80%). Of note, however, patients who experienced relapse during prior pegylated interferon plus ribavirin combination therapy were highly likely to achieve SVR while receiving triple therapy (93%); conversely, prior nonresponders were much less likely to respond to triple therapy (32%). In addition to prior treatment response, IL28B SNP genotype and rapid viral response were significant independent predictors for SVR. Patients with the anemia-susceptible ITPA SNP rs1127354 genotype typically required ribavirin dose reduction earlier than did patients with other genotypes. Conclusions. Analysis of predictive factors identified IL28B SNP, rapid viral response, and transient response to previous therapy as significant independent predictors of SVR after triple therapy. PMID:21628662
Tan, Dino Bee Aik; Yong, Yean Kong; Lim, Andrew; Tan, Hong Yien; Kamarulzaman, Adeeba; French, Martyn; Price, Patricia
2011-05-01
Amongst HIV patients with successful virological responses to antiretroviral therapy (ART), poor CD4(+) T-cell recovery is associated with low nadir CD4(+) T-cell counts and persistent immune activation. These factors might be influenced by dendritic cell (DC) function. Interferon-α-producing plasmacytoid DC and IL-12-producing myeloid DC were quantified by flow cytometry after stimulation with agonists to TLR7/8 (CL075) or TLR9 (CpG-ODN). These were compared between patients who achieved CD4(+) T-cell counts above or below 200 cells/μL after 6 months on ART (High vs. Low groups). High Group patients had more DC producing interferon-α or IL-12 at Weeks 6 and 12 on ART than Low Group patients. The frequencies of cytokine-producing DC at Week 12 were directly correlated with CD4(+) T-cell counts at baseline and at Week 12. Patients with good recovery of CD4(+) T-cells had robust TLR-mediated interferon-α responses by plasmacytoid DC and IL-12 responses by myeloid DC during early ART (1-3 months). Copyright © 2011 Elsevier Inc. All rights reserved.
Palmblad, J; Cantell, K; Holm, G; Norberg, R; Strander, H; Sunblad, L
1977-01-01
The effects of 10 days of total energy deprivation on serum levels of immunoglobulins, antibodies acute phase reactants and on interferon production were evaluated in fourteen healthy, normal-weight males. A significant depression was noted of the serum levels of complement factor 3, haptoglobin and orosomucoid. The titres of mercaptoethanol-sensitive specific antibodies to flagellin were higher in the subjects inoculated at the end of the starvation period than in controls and those inoculated at the start of the period. The serum levels of IgG, IgM, IgA, IgE, alpha-1-antitrypsin and complement factor 4, and the interferon-producing capacity of blood lymphocytes, were not changed. Thus, 10 days of total energy deprivation depresses the serum levels of several acute phase reactants and re-feeding may enhance antibody production. PMID:606438
Interferon response factor 3 is essential for house dust mite-induced airway allergy.
Marichal, Thomas; Bedoret, Denis; Mesnil, Claire; Pichavant, Muriel; Goriely, Stanislas; Trottein, François; Cataldo, Didier; Goldman, Michel; Lekeux, Pierre; Bureau, Fabrice; Desmet, Christophe J
2010-10-01
Pattern-recognition receptors (PRRs) are critically involved in the pathophysiology of airway allergy, yet most of the signaling pathways downstream of PRRs implicated in allergic airway sensitization remain unknown. We sought to study the effects of genetic depletion of interferon response factor (IRF) 3 and IRF7, important transcription factors downstream of various PRRs, in a murine model of house dust mite (HDM)-induced allergic asthma. We compared HDM-induced allergic immune responses in IRF3-deficient (IRF3(-/-)), IRF7(-/-), and wild-type mice. Parameters of airway allergy caused by HDM exposure were strongly attenuated in IRF3(-/-), but not IRF7(-/-), mice compared with those in wild-type mice. Indeed, in HDM-exposed IRF3(-/-) mice HDM-specific T(H)2 cell responses did not develop. This correlated with impaired maturation and migration of IRF3(-/-) lung dendritic cells (DCs) on HDM treatment. Furthermore, adoptive transfer of HDM-loaded DCs indicated that IRF3(-/-) DCs had an intrinsic defect rendering them unable to migrate and to prime HDM-specific T(H)2 responses. Intriguingly, we also show that DC function and allergic airway sensitization in response to HDM were independent of signaling by type I interferons, the main target genes of IRF3. Through its role in DC function, IRF3, mainly known as a central activator of antiviral immunity, is essential for the development of T(H)2-type responses to airway allergens. Copyright © 2010 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.
Ferreyra, Gabriela A.; Elinoff, Jason M.; Demirkale, Cumhur Y.; Starost, Matthew F.; Buckley, Marilyn; Munson, Peter J.; Krakauer, Teresa; Danner, Robert L.
2014-01-01
Background Bacterial superantigens are virulence factors that cause toxic shock syndrome. Here, the genome-wide, temporal response of mice to lethal intranasal staphylococcal enterotoxin B (SEB) challenge was investigated in six tissues. Results The earliest responses and largest number of affected genes occurred in peripheral blood mononuclear cells (PBMC), spleen, and lung tissues with the highest content of both T-cells and monocyte/macrophages, the direct cellular targets of SEB. In contrast, the response of liver, kidney, and heart was delayed and involved fewer genes, but revealed a dominant genetic program that was seen in all 6 tissues. Many of the 85 uniquely annotated transcripts participating in this shared genomic response have not been previously linked to SEB. Nine of the 85 genes were subsequently confirmed by RT-PCR in every tissue/organ at 24 h. These 85 transcripts, up-regulated in all tissues, annotated to the interferon (IFN)/antiviral-response and included genes belonging to the DNA/RNA sensing system, DNA damage repair, the immunoproteasome, and the ER/metabolic stress-response and apoptosis pathways. Overall, this shared program was identified as a type I and II interferon (IFN)-response and the promoters of these genes were highly enriched for IFN regulatory matrices. Several genes whose secreted products induce the IFN pathway were up-regulated at early time points in PBMCs, spleen, and/or lung. Furthermore, IFN regulatory factors including Irf1, Irf7 and Irf8, and Zbp1, a DNA sensor/transcription factor that can directly elicit an IFN innate immune response, participated in this host-wide SEB signature. Conclusion Global gene-expression changes across multiple organs implicated a host-wide IFN-response in SEB-induced death. Therapies aimed at IFN-associated innate immunity may improve outcome in toxic shock syndromes. PMID:24551153
Effect of space flight on cytokine production
NASA Astrophysics Data System (ADS)
Sonnenfeld, Gerald
Space flight has been shown to alter many immunological responses. Among those affected are the production of cytokines, Cytokines are the messengers of the immune system that facilitate communication among cells that allow the interaction among cells leading to the development of immune responses. Included among the cytokines are the interferons, interleukins, and colony stimulating factors. Cytokines also facilitate communication between the immune system and other body systems, such as the neuroendocrine and musculoskeletal systems. Some cytokines also have direct protective effects on the host, such as interferon, which can inhibit the replication of viruses. Studies in both humans and animals indicate that models of space flight as well as actual space flight alter the production and action of cytokines. Included among these changes are altered interferon production, altered responsiveness of bone marrow cells to granulocyte/monocyte-colony stimulating factor, but no alteration in the production of interleukin-3. This suggests that there are selective effects of space flight on immune responses, i.e. not all cytokines are affected in the same fashion by space flight. Tissue culture studies also suggest that there may be direct effects of space flight on the cells responsible for cytokine production and action. The results of the above study indicate that the effects of space flight on cytokines may be a fundamental mechanism by which space flight not only affects immune responses, but also other biological systems of the human.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Dang; Fang, Liurong; Luo, Rui
2010-08-13
Research highlights: {yields} FMDV L{sup pro} inhibits poly(I:C)-induced IFN-{alpha}1/{beta} mRNA expression. {yields} L{sup pro} inhibits MDA5-mediated activation of the IFN-{alpha}1/{beta} promoter. {yields} L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes. {yields} L{sup pro} inhibits IFN-{alpha}1/{beta} promoter activation by decreasing IRF-3/7 in protein levels. {yields} The ability to process eIF-4G of L{sup pro} is not necessary to inhibit IFN-{alpha}1/{beta} activation. -- Abstract: The leader proteinase (L{sup pro}) of foot-and-mouth disease virus (FMDV) has been identified as an interferon-{beta} (IFN-{beta}) antagonist that disrupts the integrity of transcription factor nuclear factor {kappa}B (NF-{kappa}B). In this study, we showed that the reductionmore » of double stranded RNA (dsRNA)-induced IFN-{alpha}1/{beta} expression caused by L{sup pro} was also associated with a decrease of interferon regulatory factor 3/7 (IRF-3/7) in protein levels, two critical transcription factors for activation of IFN-{alpha}/{beta}. Furthermore, overexpression of L{sup pro} significantly reduced the transcription of multiple IRF-responsive genes including 2',5'-OAS, ISG54, IP-10, and RANTES. Screening L{sup pro} mutants indicated that the ability to process eIF-4G of L{sup pro} is not required for suppressing dsRNA-induced activation of the IFN-{alpha}1/{beta} promoter and decreasing IRF-3/7 expression. Taken together, our results demonstrate that, in addition to disrupting NF-{kappa}B, L{sup pro} also decreases IRF-3/7 expression to suppress dsRNA-induced type I IFN production, suggesting multiple strategies used by FMDV to counteract the immune response to viral infection.« less
Nazli, Aisha; Dizzell, Sara; Zahoor, Muhammad Atif; Ferreira, Victor H; Kafka, Jessica; Woods, Matthew William; Ouellet, Michel; Ashkar, Ali A; Tremblay, Michel J; Bowdish, Dawn Me; Kaushic, Charu
2018-03-19
More than 40% of HIV infections occur via female reproductive tract (FRT) through heterosexual transmission. Epithelial cells that line the female genital mucosa are the first line of defense against HIV-1 and other sexually transmitted pathogens. These sentient cells recognize and respond to external stimuli by induction of a range of carefully balanced innate immune responses. Previously, we have shown that in response to HIV-1 gp120, the genital epithelial cells (GECs) from upper reproductive tract induce an inflammatory response that may facilitate HIV-1 translocation and infection. In this study, we report that the endometrial and endocervical GECs simultaneously induce biologically active interferon-β (IFNβ) antiviral responses following exposure to HIV-1 that act to protect the epithelial tight junction barrier. The innate antiviral response was directly induced by HIV-1 envelope glycoprotein gp120 and addition of gp120 neutralizing antibody inhibited IFNβ production. Interferon-β was induced by gp120 in upper GECs through Toll-like receptor 2 signaling and required presence of heparan sulfate on epithelial cell surface. The induction of IFNβ was dependent upon activation of transcription factor IRF3 (interferon regulatory factor 3). The IFNβ was biologically active, had a protective effect on epithelial tight junction barrier and was able to inhibit HIV-1 infection in TZM-bl indicator cells and HIV-1 replication in T cells. This is the first report that recognition of HIV-1 by upper GECs leads to induction of innate antiviral pathways. This could explain the overall low infectivity of HIV-1 in the FRT and could be exploited for HIV-1 prophylaxis.Cellular and Molecular Immunology advance online publication, 19 March 2018; doi:10.1038/cmi.2017.168.
Cytosolic sensing of immuno-stimulatory DNA, the enemy within.
Dhanwani, Rekha; Takahashi, Mariko; Sharma, Sonia
2018-02-01
In the cytoplasm, DNA is sensed as a universal danger signal by the innate immune system. Cyclic GMP-AMP synthase (cGAS) is a cytosolic DNA sensor/enzyme that catalyzes formation of 2'-5'-cGAMP, an atypical cyclic di-nucleotide second messenger that binds and activates the Stimulator of Interferon Genes (STING), resulting in recruitment of Tank Binding Kinase 1 (TBK1), activation of the transcription factor Interferon Regulatory Factor 3 (IRF3), and trans-activation of innate immune response genes, including type I Interferon cytokines (IFN-I). Activation of the pro-inflammatory cGAS-STING-IRF3 response is triggered by direct recognition of the DNA genomes of bacteria and viruses, but also during RNA virus infection, neoplastic transformation, tumor immunotherapy and systemic auto-inflammatory diseases. In these circumstances, the source of immuno-stimulatory DNA has often represented a fundamental yet poorly understood aspect of the response. This review focuses on recent findings related to cGAS activation by an array of self-derived DNA substrates, including endogenous retroviral elements, mitochondrial DNA (mtDNA) and micronuclei generated as a result of genotoxic stress and DNA damage. These findings emphasize the role of the cGAS axis as a cell-intrinsic innate immune response to a wide variety of genomic insults. Copyright © 2017. Published by Elsevier Ltd.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Melroe, Gregory T.; Silva, Lindsey; Schaffer, Priscilla A.
2007-04-10
The host innate response to viral infection includes the production of interferons, which is dependent on the coordinated activity of multiple transcription factors. Herpes simplex virus 1 (HSV-1) has been shown to block efficient interferon expression by multiple mechanisms. We and others have demonstrated that HSV-1 can inhibit the transcription of genes promoted by interferon regulatory factor-3 (IRF-3), including interferon beta (IFN-{beta}), and that the immediate-early ICP0 protein is sufficient for this function. However, the exact mechanism by which ICP0 blocks IRF-3 activity has yet to be determined. Unlike some other viral proteins that inhibit IRF-3 activity, ICP0 does notmore » appear to affect phosphorylation and dimerization of IRF-3. Here, we show that a portion of activated IRF-3 co-localizes with nuclear foci containing ICP0 at early times after virus infection. Co-localization to ICP0-containing foci is also seen with the IRF-3-binding partners and transcriptional co-activators, CBP and p300. In addition, using immunoprecipitation of infected cell lysates, we can immunoprecipitate a complex containing ICP0, IRF-3, and CBP. Thus we hypothesize that ICP0 recruits activated IRF-3 and CBP/p300 to nuclear structures, away from the host chromatin. This leads to the inactivation and accelerated degradation of IRF-3, resulting in reduced transcription of IFN-{beta} and an inhibition of the host response. Therefore, ICP0 provides an example of how viruses can block IFN-{beta} induction by sequestration of important transcription factors essential for the host response.« less
Viral evasion of DNA-stimulated innate immune responses
Christensen, Maria H; Paludan, Søren R
2017-01-01
Cellular sensing of virus-derived nucleic acids is essential for early defenses against virus infections. In recent years, the discovery of DNA sensing proteins, including cyclic GMP–AMP synthase (cGAS) and gamma-interferon-inducible protein (IFI16), has led to understanding of how cells evoke strong innate immune responses against incoming pathogens carrying DNA genomes. The signaling stimulated by DNA sensors depends on the adaptor protein STING (stimulator of interferon genes), to enable expression of antiviral proteins, including type I interferon. To facilitate efficient infections, viruses have evolved a wide range of evasion strategies, targeting host DNA sensors, adaptor proteins and transcription factors. In this review, the current literature on virus-induced activation of the STING pathway is presented and we discuss recently identified viral evasion mechanisms targeting different steps in this antiviral pathway. PMID:26972769
Nogueira, Marcelle Almeida de Sousa; Gavioli, Camila Fátima Biancardi; Pereira, Nátalli Zanete; de Carvalho, Gabriel Costa; Domingues, Rosana; Aoki, Valéria; Sato, Maria Notomi
2015-04-01
Lichen planus (LP) is a common inflammatory skin disease of unknown etiology. Reports of a common transactivation of quiescent human endogenous retroviruses (HERVs) support the connection of viruses to the disease. HERVs are ancient retroviral sequences in the human genome and their transcription is often deregulated in cancer and autoimmune diseases. We explored the transcriptional activity of HERV sequences as well as the antiviral restriction factor and interferon-inducible genes in the skin from LP patients and healthy control (HC) donors. The study included 13 skin biopsies from patients with LP and 12 controls. Real-time PCR assay identified significant decrease in the HERV-K gag and env mRNA expression levels in LP subjects, when compared to control group. The expressions of HERV-K18 and HERV-W env were also inhibited in the skin of LP patients. We observed a strong correlation between HERV-K gag with other HERV sequences, regardless the down-modulation of transcripts levels in LP group. In contrast, a significant up-regulation of the cytidine deaminase APOBEC 3G (apolipoprotein B mRNA-editing), and the GTPase MxA (Myxovirus resistance A) mRNA expression level was identified in the LP skin specimens. Other transcript expressions, such as the master regulator of type I interferon-dependent immune responses, STING (stimulator of interferon genes) and IRF-7 (interferon regulatory factor 7), IFN-β and the inflammassome NALP3, had increased levels in LP, when compared to HC group. Our study suggests that interferon-inducible factors, in addition to their role in innate immunity against exogenous pathogens, contribute to the immune control of HERVs. Evaluation of the balance between HERV and interferon-inducible factor expression could possibly contribute to surveillance of inflammatory/malignant status of skin diseases.
Adam, Liana; Black, Peter C; Kassouf, Wassim; Eve, Beryl; McConkey, David; Munsell, Mark F; Benedict, William F; Dinney, Colin P N
2007-05-01
Intravesical adenovirus mediated interferon-alpha gene transfer has a potent therapeutic effect against superficial human bladder carcinoma xenografts growing in the bladder of athymic nude mice. We determined whether the inhibition of angiogenesis might contribute to the antitumor effect. We treated several human urothelial carcinoma cells with adenovirus mediated interferon-alpha 2b and monitored its effects on the production of angiogenic factors using real-time reverse-transcription polymerase chain reaction, Western blotting, and immunohistochemical analysis and a gel shift based transcription factor array. To assess the role of adenovirus mediated interferon 2b in angiogenic activity we used in vitro invasion assays and evaluated the anti-angiogenic effects of adenovirus mediated interferon gene therapy in an orthotopic murine model of human superficial bladder cancer. In adenovirus mediated interferon-alpha infected 253J B-V cells vascular endothelial growth factor was decreased and anti-angiogenic interferon-gamma inducible protein 10 was up-regulated. In contrast, the addition of as much as 100,000 IU recombinant interferon had no apparent effect on vascular endothelial growth factor production. Conditioned medium derived from adenovirus mediated interferon 2b infected 253J B-V cells greatly decreased the invasive potential of human endothelial cells and down-regulated their matrix metalloproteinase 2 expression compared to controls. Furthermore, adenovirus mediated interferon 2b blocked pro-angiogenic nuclear signals, such as the transcription factors activating protein-1 and 2, stimulating protein-1, nuclear factor kappaB and c-myb. In vivo experiments revealed significant vascular endothelial growth factor down-regulation and decreased tumor vessel density in the adenovirus mediated interferon 2b treated group compared to controls. Treatment with adenovirus mediated interferon 2b increases the angiostatic activity of the bladder cancer microenvironment. This inhibition may prove beneficial for treating superficial bladder cancer with adenovirus mediated interferon-alpha and hopefully contribute to a decreased recurrence rate of this neoplasm.
Gauldie, J; Richards, C; Harnish, D; Lansdorp, P; Baumann, H
1987-01-01
One of the oldest and most preserved of the homeostatic responses of the body to injury is the acute phase protein response associated with inflammation. The liver responds to hormone-like mediators by the increased synthesis of a series of plasma proteins called acute phase reactants. In these studies, we examined the relationship of hepatocyte-stimulating factor derived from peripheral blood monocytes to interferon beta 2 (IFN-beta 2), which has been cloned. Antibodies raised against fibroblast-derived IFN-beta having neutralizing activity against both IFN-beta 1 and -beta 2 inhibited the major hepatocyte-stimulating activity derived from monocytes. Fibroblast-derived mediator elicited the identical stimulated response in human HepG2 cells and primary rat hepatocytes as the monocyte cytokine. Finally, recombinant-derived human B-cell stimulatory factor type 2 (IFN-beta 2) from Escherichia coli induced the synthesis of all major acute phase proteins studied in human hepatoma HepG2 and primary rat hepatocyte cultures. These data demonstrate that monocyte-derived hepatocyte-stimulating factor and IFN-beta 2 share immunological and functional identity and that IFN-beta 2, also known as B-cell stimulatory factor and hybridoma plasmacytoma growth factor, has the hepatocyte as a major physiologic target and thereby is essential in controlling the hepatic acute phase response. Images PMID:2444978
Theodos, C M; Povinelli, L; Molina, R; Sherry, B; Titus, R G
1991-01-01
Recombinant human tumor necrosis factor (TNF) and purified murine TNF were both able to activate macrophages to destroy intracellular Leishmania major in vitro. In addition, parasitizing macrophages with L. major markedly increased the ability of the cells to produce TNF. Finally, when mice were vaccinated with an avirulent form of L. major, the animals produced large amounts of TNF but no gamma interferon in response to infection with virulent L. major. Treating these mice with a neutralizing anti-TNF antibody led to partial but not complete inhibition of the resistant state, which suggests that factors other than TNF and gamma interferon contribute to resistance to L. major. PMID:1906844
Darwish, Samar F; El-Bakly, Wesam M; El-Naga, Reem N; Awad, Azza S; El-Demerdash, Ebtehal
2015-11-01
Iron-overload is a well-known factor of hepatotoxicity and liver fibrosis, which found to be a common finding among hepatitis C virus patients and related to interferon resistance. We aimed to elucidate the potential antifibrotic effect of deferoxamine; the main iron chelator, and its additional usefulness to interferon-based therapy in concanavalin A-induced immunological model of liver fibrosis. Rats were treated with deferoxamine and/or pegylated interferon-α for 6 weeks. Hepatotoxicity indices, oxidative stress, inflammatory and liver fibrosis markers were assessed. Concanavalin A induced a significant increase in hepatotoxicity indices and lipid peroxidation accompanied with a significant depletion of total antioxidant capacity, glutathione level and superoxide dismutase activity. Besides, it increased CD4(+) T-cells content and the downstream inflammatory cascades, including NF-κB, TNF-α, iNOS, COX-2, IL-6 and IFN-γ. Furthermore, α-SMA, TGF-β1 and hydroxyproline were increased markedly, which confirmed by histopathology. Treatment with either deferoxamine or pegylated interferon-α alone reduced liver fibrosis markers significantly and improved liver histology. However, some of the hepatotoxicity indices and oxidative stress markers did not improve upon pegylated interferon-α treatment alone, besides the remarkable increase in IL-6. Combination therapy of deferoxamine with pegylated interferon-α further improved all previous markers, ameliorated IL-6 elevation, as well as increased hepcidin expression. In conclusion, our study provides evidences for the potent antifibrotic effects of deferoxamine and the underlying mechanisms that involved attenuating oxidative stress and subsequent inflammatory cascade, as well as the production of profibrogenic factors. Addition of deferoxamine to interferon regimen for HCV patients may offer a promising adjuvant modality to enhance therapeutic response. Copyright © 2015 Elsevier Inc. All rights reserved.
Yoshizawa, Kai; Abe, Hiroshi; Aida, Yuta; Ishiguro, Haruya; Ika, Makiko; Shimada, Noritomo; Tsubota, Akihito; Aizawa, Yoshio
2013-07-01
Host lipoprotein metabolism is associated closely with the life cycle of hepatitis C virus (HCV), and serum lipid profiles have been linked to the response to pegylated interferon (Peg-IFN) plus ribavirin (RBV) therapy. Polymorphisms in the human IL28B gene and amino acid substitutions in the core and interferon sensitivity-determining region (ISDR) in NS5A of HCV genotype 1b (G1b) were also shown to strongly affect the outcome of Peg-IFN plus RBV therapy. In this study, an observational cohort study was performed in 247 HCV G1b-infected patients to investigate whether the response to Peg-IFN and RBV combination therapy in these patients is independently associated with the level of lipid factors, especially apolipoprotein B-100 (apoB-100), an obligatory structural component of very low density lipoprotein and low density lipoprotein. The multivariate logistic analysis subsequently identified apoB-100 (odds ratio (OR), 1.602; 95% confidence interval (CI), 1.046-2.456), alpha-fetoprotein (OR, 0.764; 95% CI, 0.610-0.958), non-wild-type ISDR (OR, 5.617; 95% CI, 1.274-24.754), and the rs8099917 major genotype (OR, 34.188; 95% CI, 10.225-114.308) as independent factors affecting rapid initial virological response (decline in HCV RNA levels by ≥3-log10 at week 4). While lipid factors were not independent predictors of complete early or sustained virological response, the serum apoB-100 level was an independent factor for sustained virological response in patients carrying the rs8099917 hetero/minor genotype. Together, we conclude that serum apoB-100 concentrations could predict virological response to Peg-IFN plus RBV combination therapy in patients infected with HCV G1b, especially in those with the rs8099917 hetero/minor genotype. Copyright © 2013 Wiley Periodicals, Inc.
Seago, Julian; Hilton, Louise; Reid, Elizabeth; Doceul, Virginie; Jeyatheesan, Janan; Moganeradj, Kartykayan; McCauley, John; Charleston, Bryan; Goodbourn, Stephen
2007-11-01
Classical swine fever virus (CSFV) is a member of the genus Pestivirus in the family Flaviviridae. The N(pro) product of CSFV targets the host's innate immune response and can prevent the production of type I interferon (IFN). The mechanism by which CSFV orchestrates this inhibition was investigated and it is shown that, like the related pestivirus bovine viral diarrhea virus (BVDV), this involves the N(pro) protein targeting interferon regulatory factor-3 (IRF-3) for degradation by proteasomes and thus preventing IRF-3 from activating transcription from the IFN-beta promoter. Like BVDV, the steady-state levels of IRF-3 mRNA are not reduced markedly by CSFV infection or N(pro) overexpression. Moreover, IFN-alpha stimulation of CSFV-infected cells induces the antiviral protein MxA, indicating that, as in BVDV-infected cells, the JAK/STAT pathway is not targeted for inhibition.
Immunity to betanodavirus infections of marine fish.
Chen, Young-Mao; Wang, Ting-Yu; Chen, Tzong-Yueh
2014-04-01
Betanodaviruses cause viral nervous necrosis in numerous fish species, but some species are resistant to infection by these viruses. It is essential to fully characterize the immune responses that underlie this protective response. Complete characterization of the immune responses against nodaviruses may allow the development of methods that stimulate fish immunity and of an effective betanodavirus vaccine. Such strategies could include stimulation of specific immune system responses or blockage of factors that decrease the immune response. The innate immune system clearly provides a front-line defense, and this includes the production of interferons and other cytokines. Interferons that are released inside infected cells and that suppress viral replication may be the most ancient form of innate immunity. This review focuses on the immune responses of fish to betanodavirus infection. Copyright © 2013 Elsevier Ltd. All rights reserved.
Qu, Lin; Lemon, Stanley M
2010-11-01
Hepatitis A and hepatitis C viruses (HAV and HCV) are both positive-strand ribonucleic acid (RNA) viruses with hepatotropic lifestyles. Despite several important differences, they share many biological and molecular features and similar genome replication schemes. Despite this, HAV infections are usually effectively controlled by the host with elimination of the virus, whereas HCV most often is able to establish lifelong persistent infection. The mechanisms underlying this difference are unknown. The cellular helicases RIG-I and MDA5, and Toll-like receptor 3, are pattern recognition receptors that sense virus-derived RNAs within hepatocytes in the liver. Activation of these receptors leads to their interaction with specific adaptor proteins, mitochondrial antiviral signaling protein (MAVS) and TIR-domain-containing adapter-inducing interferon-β (TRIF), respectively, which engage downstream kinases to activate two crucial transcription factors, nuclear factor kappa B (NF-κB) and interferon regulatory factor 3 (IRF3). This results in the induction of interferons (IFNs) and IFN-stimulated genes that ultimately establish an antiviral state. These signaling pathways are central to host antiviral defense and thus frequent targets for viral interference. Both HAV and HCV express proteases that target signal transduction through these pathways and that block the induction of IFNs upon sensing of viral RNA by these receptors. An understanding of the differences and similarities in the early innate immune responses to these infections is likely to provide important insights into the mechanism underlying the long-term persistence of HCV. © Thieme Medical Publishers.
Kanno, Jun; Aisaki, Ken-ichi; Igarashi, Katsuhide; Kitajima, Satoshi; Matsuda, Nae; Morita, Koichi; Tsuji, Masaki; Moriyama, Noriko; Furukawa, Yusuke; Otsuka, Maki; Tachihara, Erika; Nakatsu, Noriyuki; Kodama, Yukio
2013-01-01
Pentachlorophenol (PCP) was monitored for transcriptome responses in adult mouse liver at 2, 4, 8 and 24 hr after a single oral administration at four dose levels, 0, 10, 30 and 100 mg/kg. The expression data obtained using Affymetrix GeneChip MOE430 2.0 were absolutized by the Percellome method and expressed as three dimensional (3D) surface graphs with axes of time, dose and copy numbers of mRNA per cell. We developed the programs RSort, for comprehensive screening of the 3D surface data and PercellomeExploror for cross-referencing and confirmed the significant responses by visual inspection. In the first 8 hr, approximately 100 probe sets (PSs) related to PXR/SXR and Cyp2a4 and other metabolic enzymes were induced whereas Fos and JunB were suppressed. At 24 hr, about 1,200 PSs were strongly induced. We cross-referenced the Percellome database consisting of 111 chemicals on the liver transcriptome and found that about half of the PSs belonged to the metabolic pathways including Nrf2-mediated oxidative stress response networks shared with some of the 111 chemicals. The other half of the induced genes were interferon signaling network genes (ISG) and their induction was unique to PCP. Toll like receptors and other pattern recognition receptors, interferon regulatory factors and interferon alpha itself were included but inflammatory cytokines were not induced. In summary, these data indicated that functional symptoms of PCP treatment, such as hyperthermia and profuse sweating might be mediated by the ISG rather than the previously documented mitochondrial uncoupling mechanism. PCP might become a hint for developing low molecular weight orally available interferon mimetic drugs following imiquimod and RO4948191 as agonists of toll-like receptor and interferon receptor.
Yoo, S H; Kwon, J H; Nam, S W; Kim, H Y; Kim, C W; You, C R; Choi, S W; Cho, S H; Han, J-Y; Song, D S; Chang, U I; Yang, J M; Lee, H L; Lee, S W; Han, N I; Kim, S-H; Song, M J; Hwang, S; Sung, P S; Jang, J W; Bae, S H; Choi, J Y; Yoon, S K
2018-04-16
Patients with chronic hepatitis C who achieve a sustained viral response after pegylated interferon therapy have a reduced risk of hepatocellular carcinoma, but the risk after treatment with direct-acting antivirals is unclear. We compared the rates of early development of hepatocellular carcinoma after direct-acting antivirals and after pegylated interferon therapy. We retrospectively analysed 785 patients with chronic hepatitis C who had no history of hepatocellular carcinoma (211 treated with pegylated interferon, 574 with direct-acting antivirals) and were followed up for at least 24 weeks after antiviral treatment. De novo hepatocellular carcinoma developed in 6 of 574 patients receiving direct-acting antivirals and in 1 of 211 patients receiving pegylated interferon. The cumulative incidence of early hepatocellular carcinoma development did not differ between the treatment groups either for the whole cohort (1.05% vs 0.47%, P = .298) or for those patients with Child-Pugh Class A cirrhosis (3.73% vs 2.94%, P = .827). Multivariate analysis indicated that alpha-fetoprotein level >9.5 ng/mL at the time of end-of-treatment response was the only independent risk factor for early development of hepatocellular carcinoma in all patients (P < .0001, hazard ratio 176.174, 95% confidence interval 10.768-2882.473) and in patients treated with direct-acting agents (P < .0001, hazard ratio 128.402, 95% confidence interval 8.417-1958.680). In conclusion, the rate of early development of hepatocellular carcinoma did not differ between patients treated with pegylated interferon and those treated with direct-acting antivirals and was associated with the serum alpha-fetoprotein level at the time of end-of-treatment response. © 2018 John Wiley & Sons Ltd.
Immune Response Following Photodynamic Therapy For Bladder Cancer
NASA Astrophysics Data System (ADS)
Raymond K.
1989-06-01
This study was undertaken to determine if photodynamic therapy (PDT) produces an immunologic response in patients treated for bladder cancer. Gamma interferon, interleukin 1-beta, interleukin 2 and tumor necrosis factor-alpha were assayed in the urine of four patients treated with photodynamic therapy for bladder cancer, in seven patients undergoing transurethral procedures, and in five healthy control subjects. Quantifiable concentrations of all cytokines, except gamma interferon, were measured in urine samples from the PDT patients treated with the highest light energies, while no urinary cytokines were found in the PDT patient who received the lowest light energy or in the control subjects. These findings suggest that a local immunologic response may occur following PDT for bladder cancer. Such an immunologic response activated by PDT may be an additional mechanism involved in bladder tumor destruction.
Thackray, Larissa B.; Duan, Erning; Lazear, Helen M.; Kambal, Amal; Schreiber, Robert D.; Diamond, Michael S.
2012-01-01
Human noroviruses (HuNoV) are the major cause of epidemic, nonbacterial gastroenteritis in the world. The short course of HuNoV-induced symptoms has implicated innate immunity in control of norovirus (NoV) infection. Studies using murine norovirus (MNV) confirm the importance of innate immune responses during NoV infection. Type I alpha and beta interferons (IFN-α/β) limit HuNoV replicon function, restrict MNV replication in cultured cells, and control MNV replication in vivo. Therefore, the cell types and transcription factors involved in antiviral immune responses and IFN-α/β-mediated control of NoV infection are important to define. We used mice with floxed alleles of the IFNAR1 chain of the IFN-α/β receptor to identify cells expressing lysozyme M or CD11c as cells that respond to IFN-α/β to restrict MNV replication in vivo. Furthermore, we show that the transcription factors IRF-3 and IRF-7 work in concert to initiate unique and overlapping antiviral responses to restrict MNV replication in vivo. IRF-3 and IRF-7 restrict MNV replication in both cultured macrophages and dendritic cells, are required for induction of IFN-α/β in macrophages but not dendritic cells, and are dispensable for the antiviral effects of IFN-α/β that block MNV replication. These studies suggest that expression of the IFN-α/β receptor on macrophages/neutrophils and dendritic cells, as well as of IRF-3 and IRF-7, is critical for innate immune responses to NoV infection. PMID:23035219
Demirci, F Y K; Manzi, S; Ramsey-Goldman, R; Minster, R L; Kenney, M; Shaw, P S; Dunlop-Thomas, C M; Kao, A H; Rhew, E; Bontempo, F; Kammerer, C; Kamboh, M I
2007-05-01
Interferon regulatory factor 5 (IRF5) belongs to a family of transcription factors that control the transactivation of type I interferon system-related genes, as well as the expression of several other genes involved in immune response, cell signalling, cell cycle control and apoptosis. Two recent studies reported a significant association between the IRF5/rs2004640 T allele and systemic lupus erythematosus (SLE). The purpose of this study was to determine whether the reported rs2004640 T allele association could be replicated in our independent SLE case-control sample. We genotyped DNA samples from 370 white SLE-affected female subjects and 462 white healthy female controls using the TaqMan Assay-on-Demand for rs2004640, and performed a case-control genetic association analysis. Frequency of the rs2004640 T allele was significantly higher in cases than in controls (56.5% vs. 50%; P= 0.008). The odds ratio for T allele carriers was 1.68 (95% CI: 1.20 - 2.34; P= 0.003). Our results in an independent case-control sample confirm the robust association of the IRF5/rs2004640 T allele with SLE risk, and further support the relevance of the type I interferon system in the pathogenesis of SLE and autoimmunity.
Gomaa, Wafaey M.; Ibrahim, Mohammed A.; Shatat, Mohamed E.
2014-01-01
Background/Aims: COX-2 and TGF-β1 are overexpressed in hepatitis C virus (HCV) infection and are related to hepatitis pathogenesis and hepatic fibrosis. The current study investigated the relationship between pretreatment COX-2 and TGF-β1 hepatic expression in HCV genotype 4 and the virological response to interferon therapy. Patients and Methods: Liver biopsies of 55 patients with HCV infection genotype 4 were selected together with 10 liver biopsies as control. The patients’ clinicopathological data were collected. Immunohistochemistry was done using anti-COX-2 and anti-TGF-β1 antibodies. Statistical tests were used to determine the association between both COX-2 and TGF-β1 expression in relation to clinicopathological parameters and response to interferon therapy. Results: COX-2 was upregulated especially in nonresponders and was an independent predictor of poor virological response. However, COX-2 showed no association with other clinicopathological features. TGF-β1 was upregulated and associated with nonresponders, histological activity, and fibrosis stage. There was no association between TGF-β1 and other clinicopathological features. There was an association between COX-2 and TGF-β1 immunoexpression. Conclusion: Overexpression of COX-2 and TGF-β1 is an independent predictor for poor outcome of interferon and ribavirin therapy and these might be useful markers for the response to treatment. Both molecules are associated together; however, their role during hepatitis treatment has to be clarified. PMID:24496160
Dumitru, Claudia A.; Hemeda, Hatim; Jakob, Mark; Lang, Stephan; Brandau, Sven
2014-01-01
Mesenchymal stem/stromal cells (MSCs) are emerging as important regulators of innate and adaptive immunity. In this context, both proinflammatory and anti-inflammatory effects have been described for MSCs. The mechanisms mediating this functional plasticity are poorly characterized at present. Here, we investigated the inflammatory responses of MSCs isolated from human nasal mucosa (nmMSCs) upon challenge with different Toll-like receptor (TLR) ligands. We found that TLR3 ligands induced the strongest release of both proinflammatory cytokines [interleukin (IL)-6 and IL-8] and type I interferon by nmMSCs compared with other TLR ligands. Notably, TLR3 ligands triggered a biphasic cytokine response, with an early peak of type I interferon at 4 h poststimulation and a late release of proinflammatory cytokines at 24 h poststimulation. While the early interferon response was subject to direct stimulation, the proinflammatory response was regulated by factors released during the early cytokine response, which subsequently enhanced sensitivity to TLR3 ligation and amplified the production of IL-6 and IL-8 but not that of interferon. Taken together, our findings indicate that TLR3 ligands polarize the inflammatory phenotype of MSCs in a time-dependent manner. Thus, our study proposes a novel model that helps to explain the strikingly dichotomous functionality of MSCs in inflammation and immunoregulation.—Dumitru, C. A., Hemeda, H., Jakob, M., Lang, S., Brandau, S. Stimulation of mesenchymal stromal cells (MSCs) via TLR3 reveals a novel mechanism of autocrine priming. PMID:24830384
Effects of interferon on antibody formation
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.
1984-01-01
Studies of the effects of interferon on primary and secondary antibody responses and of the relationship of interferon to other cytokines, or cell products, are presented. Dosage- and timing-dependent immunoenhancing and immunosuppressive activities of interferon are documented for mouse spleen cell cultures and for mice infected with murine hepatitis virus (MHV-3). A possibility that altered interferon production might lead to immunopathological disorders, such as lupus erythematosus, AIDS, arthritis, etc., is discussed. Latest technological developments are presented that indicate that interferon does apparently play a major role in the regulation of antibody responses.
The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon.
Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K; Alcami, Antonio
2010-05-01
Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.
Targeting Interferon Regulatory Factor for Cardiometabolic Diseases: Opportunities and Challenges.
Zhang, Yaxing; Zhang, Xiao-Jing; Li, Hongliang
2017-01-01
The pathological activation of innate immune system may contribute to the development of cardiometabolic diseases. The interferon regulatory factor (IRF) family members, which are the major transcription factors in innate immune signaling, are implicated in cardiometabolic diseases. The aim of this review is to summary the current knowledge of the biological functions of IRFs in innate immune responses and immune cell development, and highlight our contemporary understanding of the functions and molecular mechanisms of IRFs in metabolic diseases, cardiovascular remodeling, and stroke. IRFs are the essential regulators of cardiometabolic diseases via immune-dependent and - independent manners. IRFs signaling is the promising target to manage the initiation and progression of cardiometabolic disorders. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Oze, Tsugiko; Hiramatsu, Naoki; Yakushijin, Takayuki; Miyazaki, Masanori; Yamada, Akira; Oshita, Masahide; Hagiwara, Hideki; Mita, Eiji; Ito, Toshifumi; Fukui, Hiroyuki; Inui, Yoshiaki; Hijioka, Taizo; Inada, Masami; Katayama, Kazuhiro; Tamura, Shinji; Yoshihara, Harumasa; Inoue, Atsuo; Imai, Yasuharu; Hayashi, Eijiro; Kato, Michio; Miyagi, Takuya; Yoshida, Yuichi; Tatsumi, Tomohide; Kasahara, Akinori; Hamasaki, Toshimitsu; Hayashi, Norio; Takehara, Tetsuo
2014-07-01
In patients with chronic hepatitis C virus (HCV) infection, lack of sustained virologic response (SVR) 24 weeks after the end of interferon therapy is a significant risk factor for hepatocellular carcinoma (HCC). Although many pretreatment factors are known to affect HCC incidence, less is known about post-treatment factors-many change during the course of interferon therapy. We performed a prospective study, collecting data from 2659 patients with chronic hepatitis C without a history of HCC who had been treated with pegylated interferon (Peg-IFN) plus ribavirin from 2002 through 2008 at hospitals in Japan. Biopsy specimens were collected before treatment; all patients received Peg-IFN plus ribavirin for 48 to 72 weeks (HCV genotype 1) or 24 weeks (HCV genotype 2). Hematologic, biochemical, and virologic data were collected every 4 weeks during treatment and every 6 months after treatment. HCC was diagnosed based on angiography, computed tomography, and/or magnetic resonance imaging findings. HCC developed in 104 patients during a mean observation period of 40 months. Older age, male sex, lower platelet counts and higher levels of α-fetoprotein at baseline, and lack of an SVR were significant risk factors for HCC. The cumulative incidence of HCC was significantly lower in patients without SVRs who relapsed than those with no response to treatment. Levels of α-fetoprotein 24 weeks after the end of treatment (AFP24) were significantly lower than levels of α-fetoprotein at baseline in patients with SVRs and those who relapsed, but not in nonresponders. Post-treatment risk factors for HCC among patients with SVRs included higher AFP24 level and older age; among those without SVRs, risk factors included higher AFP24 level, integrated level of alanine aminotransferase, older age, and male sex. AFP24 (≥10 ng/mL, 10-5 ng/mL, and then <5 ng/mL) was a better predictor of HCC incidence than pretreatment level of AFP among patients with and without SVRs. In patients with chronic HCV infection, levels of α-fetoprotein decrease during interferon therapy. High post-treatment levels of α-fetoprotein predict HCC, regardless of whether patients achieve an SVR. University Hospital Medical Information Network Clinical Trials Registry: C000000196, C000000197. Copyright © 2014. Published by Elsevier Inc.
Abdallah, Fatma; Hassanin, Ola
2015-12-01
Avian Influenza (AI) vaccines are widely used for mammals and birds in a trial to eliminate the Avian Influenza virus (AIV) infection from the world. However and up till now the virus is still existed via modulation of its antigenic structure to evade the pressure of host immune responses. For a complete understanding of the immune responses following AI vaccination in chickens, the modulations of the chickens humoral immune responses and interferon-alpha signaling pathway, as a fundamental part of the innate immune responses, were investigated. In our study, we measured the humoral immune response using hemagglutination-inhibition (HI) and enzyme-linked immunosorbent assay (ELISA) tests. In addition, chicken interferon-alpha pathway components was measured at RNA levels using Quantitative Real-time PCR (qRT-PCR) following one dose of inactivated H5N1 influenza vaccine at 14 days of age. In this study, the protective levels of humoral antibody responses were observed at 14, 21 and 28 days following immunization with inactivated (Re-1/H5N1) AI vaccine. In the chicken spleen cells, up regulation in the chicken interferon-alpha pathway components (MX1 & IRF7) was existed as early as 48 h post vaccination and remained until 28 days post vaccination at the endogenous state. However, after the recall with ex-vivo stimulation, the up regulation was more pronounced in the transcriptional factor (IRF7) compared to the antiviral gene (MX1) at 28 days post vaccination. So far, from our results it appears that the inactivated H5N1 vaccine can trigger the chicken interferon-alpha signaling pathway as well as it can elicit protective humoral antibody responses.
Polyfunctional CD4 T cells in the response to bovine tuberculosis
USDA-ARS?s Scientific Manuscript database
Polyfunctional CD4 T cells simultaneously produce interferon-gamma (IFN-gamma), interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-alpha) and play relevant roles in several chronic infections, including human TB and HIV. However, the assessment of this response in bovine infections was not fe...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bentz, Gretchen L.; Liu Renshui; Hahn, Angela M.
Activation of interferon regulatory factors (IRFs) 3 and 7 is essential for the induction of Type I interferons (IFN) and innate antiviral responses, and herpesviruses have evolved mechanisms to evade such responses. We previously reported that Epstein-Barr virus BZLF1, an immediate-early (IE) protein, inhibits the function of IRF7, but the role of BRLF1, the other IE transactivator, in IRF regulation has not been examined. We now show that BRLF1 expression decreased induction of IFN-{beta}, and reduced expression of IRF3 and IRF7; effects were dependent on N- and C-terminal regions of BRLF1 and its nuclear localization signal. Endogenous IRF3 and IRF7more » RNA and protein levels were also decreased during cytolytic EBV infection. Finally, production of IFN-{beta} was decreased during lytic EBV infection and was associated with increased susceptibility to superinfection with Sendai virus. These data suggest a new role for BRLF1 with the ability to evade host innate immune responses.« less
Wang, Bin; Fu, Mengjiao; Liu, Yanan; Wang, Yongqiang; Li, Xiaoqi; Cao, Hong; Zheng, Shijun J.
2018-01-01
Infectious bursal disease (IBD) is an acute, highly contagious, and immunosuppressive avian disease caused by IBD virus (IBDV). MicroRNAs (miRNAs) are involved in host-pathogen interactions and innate immune response to viral infection. However, the role of miRNAs in host response to IBDV infection is not clear. We report here that gga-miR-155 acts as an anti-virus host factor inhibiting IBDV replication. We found that transfection of DF-1 cells with gga-miR-155 suppressed IBDV replication, while blockage of the endogenous gga-miR-155 by inhibitors enhanced IBDV replication. Furthermore, our data showed that gga-miR-155 enhanced the expression of type I interferon in DF-1 cells post IBDV infection. Importantly, we found that gga-miR-155 enhanced type I interferon expression via targeting SOCS1 and TANK, two negative regulators of type I IFN signaling. These results indicate that gga-miR-155 plays a critical role in cell response to IBDV infection. PMID:29564226
Antiviral Activity of Porcine Interferon Regulatory Factor 1 against Swine Viruses in Cell Culture.
Li, Yongtao; Chang, Hongtao; Yang, Xia; Zhao, Yongxiang; Chen, Lu; Wang, Xinwei; Liu, Hongying; Wang, Chuanqing; Zhao, Jun
2015-11-17
Interferon regulatory factor 1 (IRF1), as an important transcription factor, is abundantly induced upon virus infections and participates in host antiviral immune responses. However, the roles of porcine IRF1 (poIRF1) in host antiviral defense remain poorly understood. In this study, we determined that poIRF1 was upregulated upon infection with viruses and distributed in nucleus in porcine PK-15 cells. Subsequently, we tested the antiviral activities of poIRF1 against several swine viruses in cells. Overexpression of poIRF1 can efficiently suppress the replication of viruses, and knockdown of poIRF1 promotes moderately viral replication. Interestingly, overexpression of poIRF1 enhances dsRNA-induced IFN-β and IFN-stimulated response element (ISRE) promoter activation, whereas knockdown of poIRF1 cannot significantly affect the activation of IFN-β promoter induced by RNA viruses. This study suggests that poIRF1 plays a significant role in cellular antiviral response against swine viruses, but might be dispensable for IFN-β induction triggered by RNA viruses in PK-15 cells. Given these results, poIRF1 plays potential roles in cellular antiviral responses against swine viruses.
Stuart, Jennifer H; Sumner, Rebecca P; Lu, Yongxu; Snowden, Joseph S; Smith, Geoffrey L
2016-12-01
The type I interferon (IFN) response is a crucial innate immune signalling pathway required for defense against viral infection. Accordingly, the great majority of mammalian viruses possess means to inhibit this important host immune response. Here we show that vaccinia virus (VACV) strain Western Reserve protein C6, is a dual function protein that inhibits the cellular response to type I IFNs in addition to its published function as an inhibitor of IRF-3 activation, thereby restricting type I IFN production from infected cells. Ectopic expression of C6 inhibits the induction of interferon stimulated genes (ISGs) in response to IFNα treatment at both the mRNA and protein level. C6 inhibits the IFNα-induced Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway at a late stage, downstream of STAT1 and STAT2 phosphorylation, nuclear translocation and binding of the interferon stimulated gene factor 3 (ISGF3) complex to the interferon stimulated response element (ISRE). Mechanistically, C6 associates with the transactivation domain of STAT2 and this might explain how C6 inhibits the type I IFN signalling very late in the pathway. During virus infection C6 reduces ISRE-dependent gene expression despite the presence of the viral protein phosphatase VH1 that dephosphorylates STAT1 and STAT2. The ability of a cytoplasmic replicating virus to dampen the immune response within the nucleus, and the ability of viral immunomodulators such as C6 to inhibit multiple stages of the innate immune response by distinct mechanisms, emphasizes the intricacies of host-pathogen interactions and viral immune evasion.
Airway epithelial cell response to human metapneumovirus infection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bao, X.; Liu, T.; Spetch, L.
2007-11-10
Human metapneumovirus (hMPV) is a major cause of lower respiratory tract infections (LRTIs) in infants, elderly and immunocompromised patients. In this study, we show that hMPV can infect in a similar manner epithelial cells representative of different tracts of the airways. hMPV-induced expression of chemokines IL-8 and RANTES in primary small alveolar epithelial cells (SAE) and in a human alveolar type II-like epithelial cell line (A549) was similar, suggesting that A549 cells can be used as a model to study lower airway epithelial cell responses to hMPV infection. A549 secreted a variety of CXC and CC chemokines, cytokines and typemore » I interferons, following hMPV infection. hMPV was also a strong inducer of transcription factors belonging to nuclear factor (NF)-{kappa}B, interferon regulatory factors (IRFs) and signal transducers and activators of transcription (STATs) families, which are known to orchestrate the expression of inflammatory and immunomodulatory mediators.« less
The immunomodulatory effects of interferon-gamma on mature B-lymphocyte responses.
Jurado, A; Carballido, J; Griffel, H; Hochkeppel, H K; Wetzel, G D
1989-06-15
Interferon-gamma (IFN-gamma) exerts a broad spectrum of activities which affect the responses of mature B-cells. It strongly inhibits B-cell activation, acts as a B-cell growth factor (BCGF), and also induces final differentiation to immunoglobulin (Ig) production. IFN-gamma is deeply involved in the differential control of isotype expression, as it enhances IgG2a production and suppresses both IgG1 and IgE production. Although it is now possible to draw a general scheme of the effects of IFN-gamma on B-cells, a number of paradoxical results still exist in the field. In this manuscript, different experimental systems are analyzed in an attempt to explain these apparent paradoxes.
Fontes, Alide Caroline Lima; Bretas Oliveira, Danilo; Santos, Juliana Ribeiro Alves; Carneiro, Hellem Cristina Silva; Ribeiro, Noelly de Queiroz; Oliveira, Lorena Vívien Neves de; Barcellos, Vanessa Abreu; Paixão, Tatiane Alves; Abrahão, Jonatas Santos; Resende-Stoianoff, Maria Aparecida; Vainstein, Marilene Henning; Santos, Daniel Assis
2017-02-01
Cryptococcosis is an invasive infection caused by yeast-like fungus of the genera Cryptococcus spp. The antifungal therapy for this disease provides some toxicity and the incidence of infections caused by resistant strains increased. Thus, we aimed to assess the consequences of fluconazole subdoses during the treatment of cryptococcosis in the murine inflammatory response and in the virulence factors of Cryptococcus gattii. Mice infected with Cryptococcus gattii were treated with subdoses of fluconazole. We determined the behavior of mice and type 1 interferon expression during the treatment; we also studied the virulence factors and susceptibility to fluconazole for the colonies recovered from the animals. A subdose of fluconazole prolonged the survival of mice, but the morbidity of cryptococcosis was higher in treated animals. These data were linked to the increase in: (i) fluconazole minimum inhibitory concentration, (ii) capsule size and (iii) melanization of C. gattii, which probably led to the increased expression of type I interferons in the brains of mice but not in the lungs. In conclusion, a subdose of fluconazole altered fungal virulence factors and susceptibility to this azole, leading to an altered inflammatory host response and increased morbidity. © The Author 2016. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon
Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio
2010-01-01
Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khaiboullina, Svetlana F., E-mail: sv.khaiboullina@gmail.com; Morzunov, Sergey P.; Boichuk, Sergei V.
2013-09-01
Hantaviruses are negative strand RNA species that replicate predominantly in the cytoplasm. They also activate numerous cellular responses, but their involvement in nuclear processes is yet to be established. Using human umbilical vein endothelial cells (HUVECs), this study investigates the molecular finger-print of nuclear transcription factors during hantavirus infection. The viral-replication-dependent activation of pro-myelocytic leukemia protein (PML) was followed by subsequent localization in nuclear bodies (NBs). PML was also found in close proximity to activated Sp100 nuclear antigen and interferon-stimulated gene 20 kDa protein (ISG-20), but co-localization with death-domain associated protein-6 (DAXX) was not observed. These data demonstrate that hantavirusmore » triggers PML activation and localization in NBs in the absence of DAXX-PLM-NB co-localization. The results suggest that viral infection interferes with DAXX-mediated apoptosis, and expression of interferon-activated Sp100 and ISG-20 proteins may indicate intracellular intrinsic antiviral attempts.« less
Polyfunctional cytokine responses by central memory CD4*T cells in response to bovine tuberculosis
USDA-ARS?s Scientific Manuscript database
CD4 T cells are crucial in immunity to tuberculosis (TB). Polyfunctional CD4 T cells simultaneously produce interferon-gamma (IFN-gamma), interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-alpha) and play relevant roles in several chronic infections, including human TB. Mycobacterium bovis in...
Polyfunctional cytokine responses by central memory CD4+T cells in response to bovine tuberculosis
USDA-ARS?s Scientific Manuscript database
CD4 T cells are crucial in immunity to tuberculosis (TB). Polyfunctional CD4 T cells simultaneously produce interferon-gamma (IFN-gamma), interleukin-2 (IL-2) and tumor necrosis factor-alpha (TNF-alpha) and play relevant roles in several chronic infections, including human TB and HIV. Mycobacterium ...
Janfeshan, Sahar; Yaghobi, Ramin; Eidi, Akram; Karimi, Mohammad Hossein; Geramizadeh, Bita; Malekhosseini, Seyed Ali; Kafilzadeh, Farshid
2017-12-01
Hepatitis B virus, which mainly affects normal liver function, leads to severe acute and chronic hepatitis, resulting in cirrhosis and hepatocellular carcinoma, but can be safely treated after liver transplant. Evaluation of determinative biomarkers may facilitate more effective treatment of posttransplant rejection. Therefore, we investigated interferon regulatory factor 1 expression in hepatitis B virus-infected liver transplant patients with and without previous rejection compared with controls. Hepatitis B virus-infected liver recipients were divided into those with (20 patients) and without a rejection (26 patients), confirmed by pathologic analyses in those who had a rejection. In addition, a healthy control group composed of 13 individuals was included. Expression levels of interferon regulatory factor 1 were evaluated during 3 follow-ups after transplant using an in-house comparative SYBR green real-time polymerase chain reaction method. Statistical analyses were performed with SPSS software (SPSS: An IBM Company, version 16.0, IBM Corporation, Armonk, NY, USA). Modifications of interferon regulatory factor 1 gene expression levels in patient groups with and without rejection were not significant between days 1, 4, and 7 after liver transplant. Interferon regulatory factor 1 mRNA expression levels were down-regulated in patients without rejection versus patients with rejection, although not significantly at day 1 (P = .234) and day 4 (P = .302) but significantly at day 7 (P = .004) after liver transplant. Down-regulation of interferon regulatory factor 1 gene expression in hepatitis B virus patients without rejection emphasized counteraction between hepatitis B virus replication and interferon regulatory factor 1 production. On the other hand, interferon regulatory factor 1 gene overexpression in patients with rejection may result in inflammatory reactions and ischemic-reperfusion injury. Therefore, a better understanding of the association between interferon regulatory factor 1 and hepatitis B virus pathogenesis in a larger population with longer follow-up is needed.
Lu, Jia-Jie; Chen, En-Qiang; Yang, Jia-Hong; Zhou, Tao-You; Liu, Li; Tang, Hong
2012-01-10
A functional interferon regulatory element (IRE) has been found in the EnhI/X promoter region of hepatitis B virus (HBV) genome. The purpose of this study is to compare the gene order of responder and non-responder to interferon therapy in patients with chronic hepatitis B (CHB), so as to evaluate the relationship between IRE mutation and the response to interferon treatment for CHB patients. Synthetic therapeutic effect is divided into complete response (CR), partial response (PR) and non-response (NR). Among the 62 cases included in this study, 40 cases (64.5%) were in the response group (CR and PR) and 22 (35.5%) cases were in the NR group. Wild type sequence of HBV IRE TTTCACTTTC were found in 35 cases (56.5%), and five different IRE gene sequences. included TTTtACTTTC, TTTCAtTTTC, TTTtAtTTTC, TTTtACTTTt and cTTtACcTTC, were found in 22 cases (35.5%), 1 case (1.6%), 1 case (1.6%), 2 cases (3.2%) and 1 case (1.6%) respectively. There were 41.9%cases (26/62) with forth base C→T mutation, consisted of 32.5% (13/40) cases in response group and 59.1% (13/22) cases in NR group. Among the 35 cases with IRE sequences, there were 67.5% (27/40) cases in response group and 36.4% (8/22) in NR group, and the difference in IRE sequences between two groups was statistic significantly (P = 0.027). The result suggested that there is likely relationship between the forth base mutation (C→T) of IRE region and the response of HBV to Interferon therapy, and this mutation may partially decrease the inhibition effect of interferon on HBV. The forth base C→T mutation in IRE element of HBV may partially influence the response of Interferon treatment in CHB patients.
Human B cells fail to secrete type I interferons upon cytoplasmic DNA exposure.
Gram, Anna M; Sun, Chenglong; Landman, Sanne L; Oosenbrug, Timo; Koppejan, Hester J; Kwakkenbos, Mark J; Hoeben, Rob C; Paludan, Søren R; Ressing, Maaike E
2017-11-01
Most cells are believed to be capable of producing type I interferons (IFN I) as part of an innate immune response against, for instance, viral infections. In macrophages, IFN I is potently induced upon cytoplasmic exposure to foreign nucleic acids. Infection of these cells with herpesviruses leads to triggering of the DNA sensors interferon-inducible protein 16 (IFI16) and cyclic GMP-AMP (cGAMP) synthase (cGAS). Thereby, the stimulator of interferon genes (STING) and the downstream molecules TANK-binding kinase 1 (TBK1) and interferon regulatory factor 3 (IRF3) are sequentially activated culminating in IFN I secretion. Human gamma-herpesviruses, such as Epstein-Barr virus (EBV), exploit B cells as a reservoir for persistent infection. In this study, we investigated whether human B cells, similar to macrophages, engage the cytoplasmic DNA sensing pathway to induce an innate immune response. We found that the B cells fail to secrete IFN I upon cytoplasmic DNA exposure, although they express the DNA sensors cGAS and IFI16 and the signaling components TBK1 and IRF3. In primary human B lymphocytes and EBV-negative B cell lines, this deficiency is explained by a lack of detectable levels of the central adaptor protein STING. In contrast, EBV-transformed B cell lines did express STING, yet both these lines as well as STING-reconstituted EBV-negative B cells did not produce IFN I upon dsDNA or cGAMP stimulation. Our combined data show that the cytoplasmic DNA sensing pathway is dysfunctional in human B cells. This exemplifies that certain cell types cannot induce IFN I in response to cytoplasmic DNA exposure providing a potential niche for viral persistence. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Interferon for the treatment of genital warts: a systematic review
2009-01-01
Background Interferon has been widely used in the treatment of genital warts for its immunomodulatory, antiproliferative and antiviral properties. Currently, no evidence that interferon improves the complete response rate or reduces the recurrence rate of genital warts has been generally provided. The aim of this review is to assess, from randomized control trials (RCTs), the efficacy and safety of interferon in curing genital warts. Methods We searched Cochrane Sexually Transmitted Diseases Group's Trials Register (January, 2009), Cochrane Central Register of Controlled Trials (2009, issue 1), PubMed (1950-2009), EMBASE (1974-2009), Chinese Biomedical Literature Database (CBM) (1975-2009), China National Knowledge Infrastructure (CNKI) (1979-2009), VIP database (1989-2009), as well as reference lists of relevant studies. Two reviewers independently screened searched studies, extracted data and evaluated their methodological qualities. RevMan 4.2.8 software was used for meta-analysis Results 12 RCTs involving 1445 people were included. Among them, 7 studies demonstrated the complete response rate of locally-used interferon as compared to placebo for treating genital warts. Based on meta-analysis, the rate of Complete response of the two interventions differed significantly (locally-used interferon:44.4%; placebo:16.1%). The difference between the two groups had statistical significance (RR 2.68, 95% CI 1.79 to 4.02, P < 0.00001). 5 studies demonstrated the complete response rate of systemically-used interferon as compared to placebo for treating genital warts. Based on meta-analysis, the rate of Complete response of the two interventions had no perceivable discrepancy (systemically-used interferon:27.4%; placebo:26.4%). The difference between the two groups had no statistical significance (RR1.25, 95% CI 0.80 to 1.95, P > 0.05). 7 studies demonstrated the recurrence rate of interferon as compared to placebo for treating genital warts. Based on meta-analysis, the recurrence rate of the two interventions had no perceivable discrepancy(interferon 21.1%; placebo: 34.2%). The difference between the two groups had no statistical significance (RR0.56, 95% CI 0.27 to 1.18, P > 0.05). However, subgroup analysis showed that HPV-infected patients with locally administered interferon were less likely than those given placebo to relapse, but that no significant difference in relapse rates was observed between systemic and placebo. The reported adverse events of interferon were mostly mild and transient, which could be well tolerated. Conclusion Interferon tends to be a fairly well-tolerated form of therapy. According to different routes of administration, locally-used interferon appears to be much more effective than both systemically-used interferon and placebo in either improving the complete response rate or reducing the recurrence rate for the treatment of genital warts. PMID:19772554
Interferon for the treatment of genital warts: a systematic review.
Yang, Jin; Pu, Yu-Guo; Zeng, Zhong-Ming; Yu, Zhi-Jian; Huang, Na; Deng, Qi-Wen
2009-09-21
Interferon has been widely used in the treatment of genital warts for its immunomodulatory, antiproliferative and antiviral properties. Currently, no evidence that interferon improves the complete response rate or reduces the recurrence rate of genital warts has been generally provided. The aim of this review is to assess, from randomized control trials (RCTs), the efficacy and safety of interferon in curing genital warts. We searched Cochrane Sexually Transmitted Diseases Group's Trials Register (January, 2009), Cochrane Central Register of Controlled Trials (2009, issue 1), PubMed (1950-2009), EMBASE (1974-2009), Chinese Biomedical Literature Database (CBM) (1975-2009), China National Knowledge Infrastructure (CNKI) (1979-2009), VIP database (1989-2009), as well as reference lists of relevant studies. Two reviewers independently screened searched studies, extracted data and evaluated their methodological qualities. RevMan 4.2.8 software was used for meta-analysis 12 RCTs involving 1445 people were included. Among them, 7 studies demonstrated the complete response rate of locally-used interferon as compared to placebo for treating genital warts. Based on meta-analysis, the rate of Complete response of the two interventions differed significantly (locally-used interferon:44.4%; placebo:16.1%). The difference between the two groups had statistical significance (RR 2.68, 95% CI 1.79 to 4.02, P < 0.00001). 5 studies demonstrated the complete response rate of systemically-used interferon as compared to placebo for treating genital warts. Based on meta-analysis, the rate of Complete response of the two interventions had no perceivable discrepancy (systemically-used interferon:27.4%; placebo:26.4%). The difference between the two groups had no statistical significance (RR1.25, 95% CI 0.80 to 1.95, P > 0.05). 7 studies demonstrated the recurrence rate of interferon as compared to placebo for treating genital warts. Based on meta-analysis, the recurrence rate of the two interventions had no perceivable discrepancy(interferon 21.1%; placebo: 34.2%). The difference between the two groups had no statistical significance (RR0.56, 95% CI 0.27 to 1.18, P > 0.05). However, subgroup analysis showed that HPV-infected patients with locally administered interferon were less likely than those given placebo to relapse, but that no significant difference in relapse rates was observed between systemic and placebo. The reported adverse events of interferon were mostly mild and transient, which could be well tolerated. Interferon tends to be a fairly well-tolerated form of therapy. According to different routes of administration, locally-used interferon appears to be much more effective than both systemically-used interferon and placebo in either improving the complete response rate or reducing the recurrence rate for the treatment of genital warts.
Chang, Ruey-Yi; Hsu, Ta-Wen; Chen, Yen-Lin; Liu, Shu-Fan; Tsai, Yi-Jer; Lin, Yun-Tong; Chen, Yi-Shiuan; Fan, Yi-Hsin
2013-09-27
Noncoding RNA (ncRNA) plays a critical role in modulating a broad range of diseases. All arthropod-borne flaviviruses produce short fragment ncRNA (sfRNA) collinear with highly conserved regions of the 3'-untranslated region (UTR) in the viral genome. We show that the molar ratio of sfRNA to genomic RNA in Japanese encephalitis virus (JEV) persistently infected cells is greater than that in acutely infected cells, indicating an sfRNA role in establishing persistent infection. Transfecting excess quantities of sfRNA into JEV-infected cells reduced interferon-β (IFN-β) promoter activity by 57% and IFN-β mRNA levels by 52%, compared to mock-transfected cells. Transfection of sfRNA into JEV-infected cells also reduced phosphorylation of interferon regulatory factor-3 (IRF-3), the IFN-β upstream regulator, and blocked roughly 30% of IRF-3 nuclear localization. Furthermore, JEV-infected sfRNA transfected cells produced 23% less IFN-β-stimulated apoptosis than mock-transfected groups did. Taken together, these results suggest that sfRNA plays a role against host-cell antiviral responses, prevents cells from undergoing apoptosis, and thus contributes to viral persistence. Copyright © 2013 Elsevier B.V. All rights reserved.
Is the use of IL28B genotype justified in the era of interferon-free treatments for hepatitis C?
Kanda, Tatsuo; Nakamoto, Shingo; Yokosuka, Osamu
2015-01-01
In 2009, several groups reported that interleukin-28B (IL28B) genotypes are associated with the response to peginterferon plus ribavirin therapy for chronic hepatitis C virus (HCV) infection in a genome-wide association study, although the mechanism of this association is not yet well understood. However, in recent years, tremendous progress has been made in the treatment of HCV infection. In Japan, some patients infected with HCV have the IL28B major genotype, which may indicate a favorable response to interferon-including regimens; however, certain patients within this group are also interferon-intolerant or ineligible. In Japan, interferon-free 24-wk regimens of asunaprevir and daclatasvir are now available for HCV genotype 1b-infected patients who are interferon-intolerant or ineligible or previous treatment null-responders. The treatment response to interferon-free regimens appears better, regardless of IL28B genotype. Maybe other interferon-free regimens will widely be available soon. In conclusion, although some HCV-infected individuals have IL28B favorable alleles, importance of IL28B will be reduced with availability of oral interferon free regimen. PMID:26279979
Polak, Marta E; Ung, Chuin Ying; Masapust, Joanna; Freeman, Tom C; Ardern-Jones, Michael R
2017-04-06
Langerhans cells (LCs) are able to orchestrate adaptive immune responses in the skin by interpreting the microenvironmental context in which they encounter foreign substances, but the regulatory basis for this has not been established. Utilising systems immunology approaches combining in silico modelling of a reconstructed gene regulatory network (GRN) with in vitro validation of the predictions, we sought to determine the mechanisms of regulation of immune responses in human primary LCs. The key role of Interferon regulatory factors (IRFs) as controllers of the human Langerhans cell response to epidermal cytokines was revealed by whole transcriptome analysis. Applying Boolean logic we assembled a Petri net-based model of the IRF-GRN which provides molecular pathway predictions for the induction of different transcriptional programmes in LCs. In silico simulations performed after model parameterisation with transcription factor expression values predicted that human LC activation of antigen-specific CD8 T cells would be differentially regulated by epidermal cytokine induction of specific IRF-controlled pathways. This was confirmed by in vitro measurement of IFN-γ production by activated T cells. As a proof of concept, this approach shows that stochastic modelling of a specific immune networks renders transcriptome data valuable for the prediction of functional outcomes of immune responses.
Kotla, Swathi; Gustin, Kurt E
2015-10-06
The type I interferon (IFN) response is a critical component of the innate immune response to infection by RNA viruses and is initiated via recognition of viral nucleic acids by RIG-like receptors (RLR). Engagement of these receptors in the cytoplasm initiates a signal transduction pathway leading to activation of the transcription factors NF-κB, ATF-2 and IRF-3 that coordinately upregulate transcription of type I IFN genes, such as that encoding IFN-β. In this study the impact of poliovirus infection on the type I interferon response has been examined. The type I IFN response was assessed by measuring IFN-β mRNA levels using qRT-PCR and normalizing to levels of β-actin mRNA. The status of host factors involved in activation of the type I IFN response was examined by immunoblot, immunofluorescence microcopy and qRT-PCR. The results show that poliovirus infection results in induction of very low levels of IFN-β mRNA despite clear activation of NF-κB and ATF-2. In contrast, analysis of IRF-3 revealed no transcriptional induction of an IRF-3-responsive promoter or homodimerization of IRF-3 indicating it is not activated in poliovirus-infected cells. Exposure of poliovirus-infected cells to poly(I:C) results in lower levels of IFN-β mRNA synthesis and IRF-3 activation compared to mock-infected cells. Analysis of MDA-5 and IPS-1 revealed that these components of the RLR pathway were largely intact at times when the type I IFN response was suppressed. Collectively, these results demonstrate that poliovirus infection actively suppresses the host type I interferon response by blocking activation of IRF-3 and suggests that this is not mediated by cleavage of MDA-5 or IPS-1.
Pestivirus Npro Directly Interacts with Interferon Regulatory Factor 3 Monomer and Dimer
Holthauzen, Luis Marcelo F.; Ruggli, Nicolas
2016-01-01
ABSTRACT Interferon regulatory factor 3 (IRF3) is a transcription factor involved in the activation of type I alpha/beta interferon (IFN-α/β) in response to viral infection. Upon viral infection, the IRF3 monomer is activated into a phosphorylated dimer, which induces the transcription of interferon genes in the nucleus. Viruses have evolved several ways to target IRF3 in order to subvert the innate immune response. Pestiviruses, such as classical swine fever virus (CSFV), target IRF3 for ubiquitination and subsequent proteasomal degradation. This is mediated by the viral protein Npro that interacts with IRF3, but the molecular details for this interaction are largely unknown. We used recombinant Npro and IRF3 proteins and show that Npro interacts with IRF3 directly without additional proteins and forms a soluble 1:1 complex. The full-length IRF3 but not merely either of the individual domains is required for this interaction. The interaction between Npro and IRF3 is not dependent on the activation state of IRF3, since Npro binds to a constitutively active form of IRF3 in the presence of its transcriptional coactivator, CREB-binding protein (CBP). The results indicate that the Npro-binding site on IRF3 encompasses a region that is unperturbed by the phosphorylation and subsequent activation of IRF3 and thus excludes the dimer interface and CBP-binding site. IMPORTANCE The pestivirus N-terminal protease, Npro, is essential for evading the host's immune system by facilitating the degradation of interferon regulatory factor 3 (IRF3). However, the nature of the Npro interaction with IRF3, including the IRF3 species (inactive monomer versus activated dimer) that Npro targets for degradation, is largely unknown. We show that classical swine fever virus Npro and porcine IRF3 directly interact in solution and that full-length IRF3 is required for interaction with Npro. Additionally, Npro interacts with a constitutively active form of IRF3 bound to its transcriptional cofactor, the CREB-binding protein. This is the first study to demonstrate that Npro is able to bind both inactive IRF3 monomer and activated IRF3 dimer and thus likely targets both IRF3 species for ubiquitination and proteasomal degradation. PMID:27334592
Alternative activation of STAT1 and STAT3 in response to interferon-gamma.
Qing, Yulan; Stark, George R
2004-10-01
Interferon-gamma (IFNgamma) is a pluripotent cytokine whose major biological effects are mediated through a pathway in which STAT1 is the predominant and essential transcription factor. STAT3 can also be activated weakly by IFNgamma, but the mechanism of activation and function of STAT3 as a part of the interferon response are not known. Here we show that STAT3 activation is much stronger and more prolonged in STAT1-null mouse embryo fibroblasts than in wild-type cells. In response to IFNgamma, SRC-family kinases are required to activate STAT3 (but not STAT1) through tyrosine phosphorylation, whereas the receptor-bound kinases JAK1 and JAK2 are required to activate both STATs. Tyrosine 419 of the IFNgamma receptor subunit 1 (IFNGR1) is required to activate both STATs, suggesting that STAT1 and STAT3 compete with each other for the same receptor phosphotyrosine motif. Activated STAT3 can replace STAT1 in STAT1-null cells to drive the transcription of certain genes, for example, socs-3 and c/ebpdelta, which have gamma-activated sequence motifs in their promoters. Work from Ian Kerr's laboratory reveals that the gp130-linked interleukin-6 receptor, which usually activates STAT3 predominantly, activates STAT1 efficiently when STAT3 is absent. Because STAT1 and STAT3 have opposing biological effects (STAT3 is an oncogene, and STAT1 is a tumor suppressor), the reciprocal activation of these two transcription factors in response to IFNgamma or interleukin-6 suggests that their relative abundance, which may vary substantially in different normal cell types, under different conditions or in tumors is likely to have a major impact on how cells behave in response to different cytokines.
Daffis, Stephane; Samuel, Melanie A; Keller, Brian C; Gale, Michael; Diamond, Michael S
2007-01-01
Interferon regulatory factor (IRF)-3 is a master transcription factor that activates host antiviral defense programs. Although cell culture studies suggest that IRF-3 promotes antiviral control by inducing interferon (IFN)-β, near normal levels of IFN-α and IFN-β were observed in IRF-3−/− mice after infection by several RNA and DNA viruses. Thus, the specific mechanisms by which IRF-3 modulates viral infection remain controversial. Some of this disparity could reflect direct IRF-3-dependent antiviral responses in specific cell types to control infection. To address this and determine how IRF-3 coordinates an antiviral response, we infected IRF-3−/− mice and two primary cells relevant for West Nile virus (WNV) pathogenesis, macrophages and cortical neurons. IRF-3−/− mice were uniformly vulnerable to infection and developed elevated WNV burdens in peripheral and central nervous system tissues, though peripheral IFN responses were largely normal. Whereas wild-type macrophages basally expressed key host defense molecules, including RIG-I, MDA5, ISG54, and ISG56, and restricted WNV infection, IRF-3−/− macrophages lacked basal expression of these host defense genes and supported increased WNV infection and IFN-α and IFN-β production. In contrast, wild-type cortical neurons were highly permissive to WNV and did not basally express RIG-I, MDA5, ISG54, and ISG56. IRF-3−/− neurons lacked induction of host defense genes and had blunted IFN-α and IFN-β production, yet exhibited only modestly increased viral titers. Collectively, our data suggest that cell-specific IRF-3 responses protect against WNV infection through both IFN-dependent and -independent programs. PMID:17676997
Vortia, Eugene; Uko, Victor E; Yen-Lieberman, Belinda; Frawley, Jill; Worley, Sarah E; Danziger-Isakov, Lara; Kaplan, Barbara; Mahajan, Lori
2018-03-19
Tumor necrosis factor alpha (TNF-α) inhibitors are linked with increased risk of reactivation of active tuberculosis. The QuantiFERON-TB Gold In-Tube test is approved for screening latent tuberculosis infection in children and adults. There are limited data on the test performance in children on long-term treatment with TNF-α inhibitors. The objective of this study was to assess the proportion of indeterminate results for the QuantiFERON-TB Gold In-Tube in children with inflammatory bowel disease (IBD) on long-term infliximab treatment and to evaluate the range of interferon-γ responses to mitogen. A single-center prospective study of children 5 to 19 years of age with IBD on long-term infliximab treatment (>3 months). Each child was assessed for tuberculosis exposure risk and had blood drawn for the QuantiFERON-TB Gold In-Tube. Data on the range of interferon-γ responses and final QuantiFERON-TB Gold In-Tube test results were collected. Ninety-three children were included, with a median age of 16 years. The median total duration of infliximab therapy was 34 months (range, 3-119 months). The QuantiFERON-TB Gold In-Tube was indeterminate in 1 patient (1.1%), positive in 2 patients, and negative in 90 patients. The maximum interferon-γ response to mitogen (10 IU/mL) was observed in 82 patients (88%), with only 1 patient having an inadequate response. The proportion of indeterminate results was significantly lower than the prospectively hypothesized rate of 8%, based on prior studies in nonimmunosuppressed patients (P = 0.004). Pediatric patients with IBD on long-term treatment with infliximab had an adequate interferon-γ response to mitogen and a low indeterminate rate when assessed with the QuantiFERON-TB Gold In-Tube test. This study demonstrates a robust interferon gamma response to phytohemagglutinin stimulation in a pediatric population on long-term therapy with infliximab. The QuantiFERON-TB Gold In-Tube test may therefore be useful as a periodic screening tactic for latent TB in children on long-term infliximab therapy.
USDA-ARS?s Scientific Manuscript database
Type I interferons, such as interferon (IFN) alpha, contribute to innate antiviral immunity by promoting production of antiviral mediators and also play a role in the adaptive immune response. Porcine reproductive and respiratory syndrome (PRRS) has been shown to induce a meager IFN-alpha response. ...
Deng, Song-Yun; Zhang, Le-Meng; Ai, Yu-hang; Pan, Pin-Hua; Zhao, Shuang-Ping; Su, Xiao-Li; Wu, Dong-Dong; Tan, Hong-Yi; Zhang, Li-Na; Tsung, Allan
2017-01-01
Sepsis causes many early deaths; both macrophage mitochondrial damage and oxidative stress responses are key factors in its pathogenesis. Although the exact mechanisms responsible for sepsis-induced mitochondrial damage are unknown, the nuclear transcription factor, interferon regulatory factor-1 (IRF-1) has been reported to cause mitochondrial damage in several diseases. Previously, we reported that in addition to promoting systemic inflammation, IRF-1 promoted the apoptosis of and inhibited autophagy in macrophages. In the present study, we hypothesized that lipopolysaccharide (LPS)-induced IRF-1 activation in macrophages may promote mitochondrial damage and oxidative stress. In vitro, LPS was found to promote IRF-1 activation, reactive oxygen species (ROS) production, adenosine triphosphate (ATP) depletion, superoxide dismutase (SOD) consumption, malondialdehyde (MDA) accumulation and mitochondrial depolarization in macrophages in a time- and dose-dependent manner. These effects were abrogated in cells in which IRF-1 was knocked down. Furthermore, IRF-1 overexpression increased LPS-induced oxidative stress responses and mitochondrial damage. In vivo, peritoneal macrophages obtained from IRF-1 knockout (KO) mice produced less ROS and had less mitochondrial depolarization and damage following the administration of LPS, when compared to their wild-type (WT) counterparts. In addition, IRF-1 KO mice exhibited a decreased release of mitochondrial DNA (mtDNA) following the administration of LPS. Thus, IRF-1 may be a critical factor in augmenting LPS-induced oxidative stress and mitochondrial damage in macrophages. PMID:28849179
Cheng, Christine S.; Feldman, Kristyn E.; Lee, James; Verma, Shilpi; Huang, De-Bin; Huynh, Kim; Chang, Mikyoung; Ponomarenko, Julia V.; Sun, Shao-Cong; Benedict, Chris A.; Ghosh, Gourisankar; Hoffmann, Alexander
2011-01-01
The specific binding of transcription factors to cognate sequence elements is thought to be critical for the generation of specific gene expression programs. Members of the nuclear factor κB (NF-κB) and interferon (IFN) regulatory factor (IRF) transcription factor families bind to the κB site and the IFN response element (IRE), respectively, of target genes, and they are activated in macrophages after exposure to pathogens. However, how these factors produce pathogen-specific inflammatory and immune responses remains poorly understood. Combining top-down and bottom-up systems biology approaches, we have identified the NF-κB p50 homodimer as a regulator of IRF responses. Unbiased genome-wide expression and biochemical and structural analyses revealed that the p50 homodimer repressed a subset of IFN-inducible genes through a previously uncharacterized subclass of guanine-rich IRE (G-IRE) sequences. Mathematical modeling predicted that the p50 homodimer might enforce the stimulus specificity of composite promoters. Indeed, the production of the antiviral regulator IFN-β was rendered stimulus-specific by the binding of the p50 homodimer to the G-IRE–containing IFNβ enhancer to suppress cytotoxic IFN signaling. Specifically, a deficiency in p50 resulted in the inappropriate production of IFN-β in response to bacterial DNA sensed by Toll-like receptor 9. This role for the NF-κB p50 homodimer in enforcing the specificity of the cellular response to pathogens by binding to a subset of IRE sequences alters our understanding of how the NF-κB and IRF signaling systems cooperate to regulate antimicrobial immunity. PMID:21343618
Nucleic acid-induced antiviral immunity in invertebrates: an evolutionary perspective.
Wang, Pei-Hui; Weng, Shao-Ping; He, Jian-Guo
2015-02-01
Nucleic acids derived from viral pathogens are typical pathogen associated molecular patterns (PAMPs). In mammals, the recognition of viral nucleic acids by pattern recognition receptors (PRRs), which include Toll-like receptors (TLRs) and retinoic acid-inducible gene (RIG)-I-like receptors (RLRs), induces the release of inflammatory cytokines and type I interferons (IFNs) through the activation of nuclear factor κB (NF-κB) and interferon regulatory factor (IRF) 3/7 pathways, triggering the host antiviral state. However, whether nucleic acids can induce similar antiviral immunity in invertebrates remains ambiguous. Several studies have reported that nucleic acid mimics, especially dsRNA mimic poly(I:C), can strongly induce non-specific antiviral immune responses in insects, shrimp, and oyster. This behavior shows multiple similarities to the hallmarks of mammalian IFN responses. In this review, we highlight the current understanding of nucleic acid-induced antiviral immunity in invertebrates. We also discuss the potential recognition and regulatory mechanisms that confer non-specific antiviral immunity on invertebrate hosts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Akahane, Y; Miyazaki, Y; Naitoh, S; Takeda, K; Tsuda, F; Okamoto, H; Itoh, K; Miyakawa, Y; Mayumi, M
1996-02-01
Because of its specific association with hepatitis C virus (HCV) infection, the cold activation of complement is an easy and inexpensive indicator of HCV viremia. It was evaluated for eligibility as a marker of response to interferon in patients with hepatitis C. The cold activation of complement was determined by the loss or decrease of hemolytic activity with the microtitration method in sera that had been stored at 4 degrees C overnight. We observed the loss of hemolytic activity by the cold activation of complement in 236 (72%) and a decrease in 56 (17%) of 327 sera from patients with HCV-associated chronic liver disease, which was much more (p < 0.001) that in 1 (1%) and 13 (14%), respectively, of 49 sera from patients with chronic liver disease associated with hepatitis B virus infection. Interferon-alpha (total dose 516 x 10(6) units) or interferon-alpha 2b (774 x 10(6) units) was given to 67 patients with chronic hepatitis C, of whom 56 had the cold activation of complement. The response to interferon was evaluated by the clearance of serum HCV RNA at 6 months after the completion of therapy. The cold activation of complement disappeared in 18 patients, of whom 15 (86%) responded. It persisted or fluctuated in the remaining 38 patients, only six (16%) of whom responded to interferon (p < 0.001). The cold activation of complement once disappeared at the completion of interferon and then reappeared in patients who relapsed after completing interferon therapy. These results indicate that the cold activation of complement may be associated with the presence of HCV in blood and a lower rate of durable response after completion of interferon therapy.
USDA-ARS?s Scientific Manuscript database
Type I interferons, such as interferon alpha (IFNa), contribute to innate antiviral immunity by promoting production of antiviral mediators and are also involved in promoting an adaptive immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating and c...
Poynard, Thierry; Colombo, Massimo; Bruix, Jordi; Schiff, Eugene; Terg, Ruben; Flamm, Steven; Moreno-Otero, Ricardo; Carrilho, Flair; Schmidt, Warren; Berg, Thomas; McGarrity, Thomas; Heathcote, E Jenny; Gonçales, Fernando; Diago, Moises; Craxi, Antonio; Silva, Marcelo; Bedossa, Pierre; Mukhopadhyay, Pabak; Griffel, Louis; Burroughs, Margaret; Brass, Clifford; Albrecht, Janice
2009-05-01
Treatment with peginterferon alfa and ribavirin produces a sustained virologic response (SVR) in approximately 60% of hepatitis C virus (HCV)-infected patients. Alternate options are needed for patients who relapse or do not respond to therapy. This prospective, international, multicenter, open-label study evaluated efficacy and safety of peginterferon alfa-2b (1.5 microg/kg/wk) plus weight-based ribavirin (800-1400 mg/day) in 2333 chronic HCV-infected patients with significant fibrosis/cirrhosis whose previous interferon alfa/ribavirin therapy failed. Patients with undetectable HCV-RNA at treatment week (TW) 12 received 48 weeks of therapy; patients with detectable HCV-RNA at TW12 could enter maintenance studies at TW18; 188 patients with low/detectable HCV-RNA at TW12 continued therapy at the investigator's request. Overall, 22% of the patients attained SVR (56% with undetectable HCV-RNA and 12% with low/detectable HCV-RNA at TW12). SVR was better in relapsers (38%) than nonresponders (14%), regardless of previous treatment, and in patients previously treated with interferon-alfa/ribavirin (25%) than peginterferon alfa-ribavirin (17%). Predictors of response in patients with undetectable HCV-RNA at TW12 were genotype (2/3 vs 1, respectively; odds ratio [OR] 2.4; P < .0001), fibrosis score (F2 vs F4; OR, 2.2; F3 vs F4; OR, 1.7; P < .0001), and baseline viral load (< or =600,000 vs >600,000 IU/mL; OR, 1.4; P = .0223). These factors plus previous treatment and response were overall predictors of SVR. Safety was similar among fibrosis groups. Peginterferon alfa-2b plus weight-based ribavirin is effective and safe in patients who failed interferon alfa/ribavirin therapy. Genotype, baseline viral load, and fibrosis stage were predictors of response.
The RNA-Editing Enzyme ADAR1 Controls Innate Immune Responses to RNA
Mannion, Niamh M.; Greenwood, Sam M.; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P.; McLaughlin, Paul J.; Jantsch, Michael F.; Dorin, Julia; Adams, Ian R.; Scadden, A.D.J.; Öhman, Marie; Keegan, Liam P.; O’Connell, Mary A.
2014-01-01
Summary The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. PMID:25456137
The RNA-editing enzyme ADAR1 controls innate immune responses to RNA.
Mannion, Niamh M; Greenwood, Sam M; Young, Robert; Cox, Sarah; Brindle, James; Read, David; Nellåker, Christoffer; Vesely, Cornelia; Ponting, Chris P; McLaughlin, Paul J; Jantsch, Michael F; Dorin, Julia; Adams, Ian R; Scadden, A D J; Ohman, Marie; Keegan, Liam P; O'Connell, Mary A
2014-11-20
The ADAR RNA-editing enzymes deaminate adenosine bases to inosines in cellular RNAs. Aberrant interferon expression occurs in patients in whom ADAR1 mutations cause Aicardi-Goutières syndrome (AGS) or dystonia arising from striatal neurodegeneration. Adar1 mutant mouse embryos show aberrant interferon induction and die by embryonic day E12.5. We demonstrate that Adar1 embryonic lethality is rescued to live birth in Adar1; Mavs double mutants in which the antiviral interferon induction response to cytoplasmic double-stranded RNA (dsRNA) is prevented. Aberrant immune responses in Adar1 mutant mouse embryo fibroblasts are dramatically reduced by restoring the expression of editing-active cytoplasmic ADARs. We propose that inosine in cellular RNA inhibits antiviral inflammatory and interferon responses by altering RLR interactions. Transfecting dsRNA oligonucleotides containing inosine-uracil base pairs into Adar1 mutant mouse embryo fibroblasts reduces the aberrant innate immune response. ADAR1 mutations causing AGS affect the activity of the interferon-inducible cytoplasmic isoform more severely than the nuclear isoform. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Pizzi, Marco; Silver, Richard T; Barel, Ariella; Orazi, Attilio
2015-10-01
Recombinant interferon-α represents a well-established therapeutic option for the treatment of polycythemia vera and essential thrombocythemia. Recent studies also suggest a role for recombinant interferon-α in the treatment of 'early stage' primary myelofibrosis, but few studies have reported the bone marrow changes after clinically successful interferon therapy. The aim of the present study is to detail the histological responses to recombinant interferon-α in primary myelofibrosis and post-polycythemia vera/post-essential thrombocythemia myelofibrosis and to correlate these with clinical findings. We retrospectively studied 12 patients with primary myelofibrosis or post-polycythemia vera/post-essential thrombocythemia myelofibrosis, who had been treated with recombinant interferon-α. Six patients had received other prior cytoreductive therapies. Bone marrow biopsy was assessed for the following histological parameters: (i) cellularity; (ii) myeloid-to-erythroid ratio; (iii) megakaryocyte tight clusters; (iv) megakaryocyte and naked nuclei density; (v) megakaryocytic atypia; (vi) fibrosis; and (vii) the percentage of blasts. Clinical and laboratory data were included: (i) constitutional symptoms; (ii) splenomegaly, if present; and (iii) complete cell blood count. The clinical response to therapy was evaluated using the International Working Group for Myelofibrosis Research and Treatment/European LeukemiaNet response criteria. The Dynamic International Prognostic Scoring System (DIPSS) score was calculated before and after recombinant interferon-α administration. Successful interferon therapy for myelofibrosis was associated with a significant reduction of marrow fibrosis, cellularity, megakaryocyte density and naked nuclei density. The presence of JAK2(V617F) mutation correlated with improved DIPSS score. JAK2(V617F)-negative cases showed worsening of such score or evolution to acute myeloid leukemia. Cytogenetic analysis documented a normal karyotype in all cases. In conclusion, successful clinical response to interferon-α correlates well with an improvement of bone marrow morphology. The prognostic effect of such therapy may be influenced by the JAK2 mutational status. Additional studies are needed to confirm these preliminary data.
Fu, Yuxuan; Zhang, Li; Zhang, Fang; Tang, Ting; Zhou, Qi; Feng, Chunhong; Jin, Yu
2017-01-01
Exosomes can transfer genetic materials between cells. Their roles in viral infections are beginning to be appreciated. Researches have shown that exosomes released from virus-infected cells contain a variety of viral and host cellular factors that are able to modulate recipient’s cellular response and result in productive infection of the recipient host. Here, we showed that EV71 infection resulted in upregulated exosome secretion and differential packaging of the viral genomic RNA and miR-146a into exosomes. We provided evidence showing that miR-146a was preferentially enriched in exosomes while the viral RNA was not in infected cells. Moreover, the exosomes contained replication-competent EV71 RNA in complex with miR-146a, Ago2, and GW182 and could mediate EV71 transmission independent of virus-specific receptor. The exosomal viral RNA could be transferred to and replicate in a new target cell while the exosomal miR-146a suppressed type I interferon response in the target cell, thus facilitating the viral replication. Additionally, we found that the IFN-stimulated gene factors (ISGs), BST-2/tetherin, were involved in regulating EV71-induced upregulation of exosome secretion. Importantly, in vivo study showed that exosomal viral RNA exhibited differential tissue accumulation as compared to the free virus particles. Together, our findings provide evidence that exosomes secreted by EV71-infected cells selectively packaged high level miR-146a that can be functionally transferred to and facilitate exosomal EV71 RNA to replicate in the recipient cells by suppressing type I interferon response. PMID:28910400
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verma, Saguna; Ziegler, Katja; Ananthula, Praveen
2006-02-20
Human polyomavirus JC (JCV) infects 80% of the population worldwide. Primary infection, typically occurring during childhood, is asymptomatic in immunocompetent individuals and results in lifelong latency and persistent infection. However, among the severely immunocompromised, JCV may cause a fatal demyelinating disease, progressive multifocal leukoencephalopathy (PML). Virus-host interactions influencing persistence and pathogenicity are not well understood, although significant regulation of JCV activity is thought to occur at the level of transcription. Regulation of the JCV early and late promoters during the lytic cycle is a complex event that requires participation of both viral and cellular factors. We have used cDNA microarraymore » technology to analyze global alterations in gene expression in JCV-permissive primary human fetal glial cells (PHFG). Expression of more than 400 cellular genes was altered, including many that influence cell proliferation, cell communication and interferon (IFN)-mediated host defense responses. Genes in the latter category included signal transducer and activator of transcription 1 (STAT1), interferon stimulating gene 56 (ISG56), myxovirus resistance 1 (MxA), 2'5'-oligoadenylate synthetase (OAS), and cig5. The expression of these genes was further confirmed in JCV-infected PHFG cells and the human glioblastoma cell line U87MG to ensure the specificity of JCV in inducing this strong antiviral response. Results obtained by real-time RT-PCR and Western blot analyses supported the microarray data and provide temporal information related to virus-induced changes in the IFN response pathway. Our data indicate that the induction of an antiviral response may be one of the cellular factors regulating/controlling JCV replication in immunocompetent hosts and therefore constraining the development of PML.« less
Sim, Chan Kyu; Cho, Yeon Sook; Kim, Byung Soo; Baek, In-Jeoung; Kim, Young-Joon; Lee, Myeong Sup
2016-06-01
Type I interferon (IFN-I) plays a critical role in antiviral and antitumor defense. In our previous studies, we showed that IFN-I-inducible 2'-5' oligoadenylate synthetase-like 1 (OASL1) negatively regulates IFN-I production upon viral infection by specifically inhibiting translation of the IFN-I-regulating master transcription factor, interferon regulatory factor 7 (IRF7). In this study, we investigated whether OASL1 plays a negative role in the anti-tumor immune response by using OASL1-deficient (Oasl1 (-/-)) mice and transplantable syngeneic tumor cell models. We found that Oasl1 (-/-) mice demonstrate enhanced resistance to lung metastatic tumors and subcutaneously implanted tumors compared to wild-type (WT) mice. Additionally, we found that cytotoxic effector cells such as CD8(+) T cells (including tumor antigen-specific CD8(+) T cells) and NK cells as well as CD8α(+) DCs (the major antigen cross-presenting cells) were much more frequent (>fivefold) in the Oasl1 (-/-) mouse tumors. Furthermore, the cytotoxic effector cells in Oasl1 (-/-) mouse tumors seemed to be more functionally active. However, the proportion of immunosuppressive myeloid-derived suppressor cells within hematopoietic cells and of regulatory T cells within CD4(+) T cells in Oasl1 (-/-) mouse tumors did not differ significantly from that of WT mice. Tumor-challenged Oasl1 (-/-) mice expressed increased levels of IFN-I and IRF7 protein in the growing tumor, indicating that the enhanced antitumor immune response observed in Oasl1 (-/-) mice was caused by higher IFN-I production in Oasl1 (-/-) mice. Collectively, these results show that OASL1 deficiency promotes the antitumor immune response, and thus, OASL1 could be a good therapeutic target for treating tumors.
Crisan, Dana; Grigorescu, Mircea Dan; Radu, Corina; Suciu, Alina; Grigorescu, Mircea
2017-04-01
One of the multiple factors contributing to virological response in chronic hepatitis C (CHC) is interferon-gamma-inducible protein-10 (IP-10). Its level reflects the status of interferon-stimulated genes, which in turn is associated with virological response to antiviral therapy. The aim of this study was to evaluate the role of serum IP-10 levels on sustained virological response (SVR) and the association of this parameter with insulin resistance (IR) and liver histology. Two hundred and three consecutive biopsy proven CHC patients were included in the study. Serum levels of IP-10 were determined using ELISA method. IR was evaluated by homeostasis model assessment-IR (HOMA-IR). Histological features were assessed invasively by liver biopsy and noninvasively using FibroTest, ActiTest and SteatoTest. Predictive factors for SVR and their interrelations were assessed. A cut-off value for IP-10 of 392 pg/ml was obtained to discriminate between responders and non-responders. SVR was obtained in 107 patients (52.70%). Area under the receiver operating characteristic curve for SVR was 0.875 with a sensitivity of 91.6 per cent, specificity 74.7 per cent, positive predictive value 80.3 per cent and negative predictive value 88.7 per cent. Higher values of IP-10 were associated with increasing stages of fibrosis (P<0.01) and higher grades of inflammation (P=0.02, P=0.07) assessed morphologically and noninvasively through FibroTest and ActiTest. Significant steatosis and IR were also associated with increased levels of IP-10 (P=0.01 and P=0.02). In multivariate analysis, IP-10 levels and fibrosis stages were independently associated with SVR. Our findings showed that the assessment of serum IP-10 level could be a predictive factor for SVR and it was associated with fibrosis, necroinflammatory activity, significant steatosis and IR in patients with chronic HCV infection.
Paglino, Justin C; Andres, Wells; van den Pol, Anthony N
2014-05-01
Members of the genus Parvovirus are small, nonenveloped single-stranded DNA viruses that are nonpathogenic in humans but have potential utility as cancer therapeutics. Because the innate immune response to parvoviruses has received relatively little attention, we compared the response to parvoviruses to that of several other types of viruses in human cells. In normal human glia, fibroblasts, or melanocytes, vesicular stomatitis virus evoked robust beta interferon (IFN-β) responses. Cytomegalovirus, pseudorabies virus, and Sindbis virus all evoked a 2-log-unit or greater upregulation of IFN-β in glia; in contrast, LuIII and MVMp parvoviruses did not evoke a detectable IFN-β or interferon-stimulated gene (ISG; MX1, oligoadenylate synthetase [OAS], IFIT-1) response in the same cell types. The lack of response raised the question of whether parvoviral infection can be attenuated by IFN; interestingly, we found that IFN did not decrease parvovirus (MVMp, LuIII, and H-1) infectivity in normal human glia, fibroblasts, or melanocytes. The same was true in human cancers, including glioma, sarcoma, and melanoma. Similarly, IFN failed to attenuate transduction by the dependovirus vector adeno-associated virus type 2. Progeny production of parvoviruses was also unimpaired by IFN in both glioma and melanoma, whereas vesicular stomatitis virus replication was blocked. Sarcoma cells with upregulated IFN signaling that show high levels of resistance to other viruses showed strong infection by LuIII. Unlike many other oncolytic viruses, we found no evidence that impairment of innate immunity in cancer cells plays a role in the oncoselectivity of parvoviruses in human cells. Parvoviral resistance to the effects of IFN in cancer cells may constitute an advantage in the virotherapy of some tumors. Understanding the interactions between oncolytic viruses and the innate immune system will facilitate employing these viruses as therapeutic agents in cancer patients. The cancer-selective nature of some oncolytic viruses is based on the impaired innate immunity of many cancer cells. The parvoviruses H-1, LuIII, and MVM target cancer cells; however, their relationship with the innate immune system is relatively uncharacterized. Surprisingly, we found that these parvoviruses do not evoke an interferon response in normal human fibroblasts, glia, or melanocytes. Furthermore, unlike most other types of virus, we found that parvovirus infectivity is unaffected by interferon treatment of human normal or tumor cells. Finally, parvoviral replication was unimpaired by interferon in four human tumor types, including those with residual interferon functionality. We conclude that deficits in the interferon antiviral response of cancer cells do not contribute to parvoviral oncoselectivity in human cells. The interferon-resistant phenotype of parvoviruses may give them an advantage over interferon-sensitive oncolytic viruses in tumors showing residual interferon functionality.
Paglino, Justin C.; Andres, Wells
2014-01-01
ABSTRACT Members of the genus Parvovirus are small, nonenveloped single-stranded DNA viruses that are nonpathogenic in humans but have potential utility as cancer therapeutics. Because the innate immune response to parvoviruses has received relatively little attention, we compared the response to parvoviruses to that of several other types of viruses in human cells. In normal human glia, fibroblasts, or melanocytes, vesicular stomatitis virus evoked robust beta interferon (IFN-β) responses. Cytomegalovirus, pseudorabies virus, and Sindbis virus all evoked a 2-log-unit or greater upregulation of IFN-β in glia; in contrast, LuIII and MVMp parvoviruses did not evoke a detectable IFN-β or interferon-stimulated gene (ISG; MX1, oligoadenylate synthetase [OAS], IFIT-1) response in the same cell types. The lack of response raised the question of whether parvoviral infection can be attenuated by IFN; interestingly, we found that IFN did not decrease parvovirus (MVMp, LuIII, and H-1) infectivity in normal human glia, fibroblasts, or melanocytes. The same was true in human cancers, including glioma, sarcoma, and melanoma. Similarly, IFN failed to attenuate transduction by the dependovirus vector adeno-associated virus type 2. Progeny production of parvoviruses was also unimpaired by IFN in both glioma and melanoma, whereas vesicular stomatitis virus replication was blocked. Sarcoma cells with upregulated IFN signaling that show high levels of resistance to other viruses showed strong infection by LuIII. Unlike many other oncolytic viruses, we found no evidence that impairment of innate immunity in cancer cells plays a role in the oncoselectivity of parvoviruses in human cells. Parvoviral resistance to the effects of IFN in cancer cells may constitute an advantage in the virotherapy of some tumors. IMPORTANCE Understanding the interactions between oncolytic viruses and the innate immune system will facilitate employing these viruses as therapeutic agents in cancer patients. The cancer-selective nature of some oncolytic viruses is based on the impaired innate immunity of many cancer cells. The parvoviruses H-1, LuIII, and MVM target cancer cells; however, their relationship with the innate immune system is relatively uncharacterized. Surprisingly, we found that these parvoviruses do not evoke an interferon response in normal human fibroblasts, glia, or melanocytes. Furthermore, unlike most other types of virus, we found that parvovirus infectivity is unaffected by interferon treatment of human normal or tumor cells. Finally, parvoviral replication was unimpaired by interferon in four human tumor types, including those with residual interferon functionality. We conclude that deficits in the interferon antiviral response of cancer cells do not contribute to parvoviral oncoselectivity in human cells. The interferon-resistant phenotype of parvoviruses may give them an advantage over interferon-sensitive oncolytic viruses in tumors showing residual interferon functionality. PMID:24554651
Ramírez-Carvajal, Lisbeth; Singh, Neetu; de los Santos, Teresa; Rodríguez, Luis L; Long, Charles R
2016-01-01
Type I interferons (IFNs) are key mediators of the innate antiviral response in mammalian cells. Elongation initiation factor 4E binding proteins (4E-BPs) are translational controllers of interferon regulatory factor 7 (IRF-7), the "master regulator" of IFN transcription. Previous studies have suggested that mouse cells depleted of 4E-BPs are more sensitive to IFNβ treatment and had lower viral loads as compared to wild type (WT) cells. However, such approach has not been tested as an antiviral strategy in livestock species. In this study, we tested the antiviral activity of porcine cells depleted of 4E-BP1 by a Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome engineering system. We found that 4E-BP1 knockout (KO) porcine cells had increased expression of IFNα and β, IFN stimulated genes, and significant reduction in vesicular stomatitis virus titer as compare to WT cells. No phenotypical changes associated with CRISPR/Cas9 manipulation were observed in 4E-BP1 KO cells. This work highlights the use of the CRISPR/Cas9 system to enhance the antiviral response in porcine cells. Copyright © 2015 Elsevier B.V. All rights reserved.
Stuart, Johnasha D; Holm, Geoffrey H; Boehme, Karl W
2018-05-01
Serotype 3 (T3) reoviruses induce substantially more type 1 interferon (IFN-I) secretion than serotype 1 (T1) strains. However, the mechanisms underlying differences in IFN-I production between T1 and T3 reoviruses remain undefined. Here, we found that differences in IFN-I production between T1 and T3 reoviruses correlate with activation of interferon regulatory factor 3 (IRF3), a key transcription factor for the production of IFN-I. T3 strain rsT3D activated IRF3 more rapidly and to a greater extent than the T1 strain rsT1L, in simian virus 40 (SV40) immortalized endothelial cells (SVECs). Differences in IRF3 activation between rsT1L and rsT3D were observed in the first hours of infection and were independent of de novo viral RNA and protein synthesis. NF-κB activation mirrored IRF3 activation, with rsT3D inducing more NF-κB activity than rsT1L. We also found that IRF3 and NF-κB are activated in a mitochondrial antiviral-signaling protein (MAVS)-dependent manner. rsT1L does not suppress IRF3 activation, as IRF3 phosphorylation could be induced in rsT1L-infected cells. Transfected rsT1L and rsT3D RNA induced IRF3 phosphorylation, indicating that genomic RNA from both strains has the capacity to activate IRF3. Finally, bypassing the normal route of reovirus entry by transfecting in vitro -generated viral cores revealed that rsT1L and rsT3D core particles induced equivalent IRF3 activation. Taken together, our findings indicate that entry-related events that occur after outer capsid disassembly, but prior to deposition of viral cores into the cytoplasm, influence the efficiency of IFN-I responses to reovirus. This work provides further insight into mechanisms by which nonenveloped viruses activate innate immune responses. IMPORTANCE Detection of viral nucleic acids by the host cell triggers type 1 interferon (IFN-I) responses, which are critical for containing and clearing viral infections. Viral RNA is sensed in the cytoplasm by cellular receptors that initiate signaling pathways, leading to the activation of interferon regulatory factor 3 (IRF3) and NF-κB, key transcription factors required for IFN-I induction. Serotype 3 (T3) reoviruses induce significantly more IFN-I than serotype 1 (T1) strains. In this work, we found that differences in IFN-I production by T1 and T3 reoviruses correlate with differential IRF3 activation. Differences in IRF3 activation are not caused by a blockade of the IRF3 activation by a T1 strain. Rather, differences in events during the late stages of viral entry determine the capacity of reovirus to activate host IFN-I responses. Together, our work provides insight into mechanisms of IFN-I induction by nonenveloped viruses. Copyright © 2018 American Society for Microbiology.
Kremers, Marjolein N. T.; Hodemaekers, Hennie M.; Hagenaars, Julia C. J. P.; Koning, Olivier H. J.; Renders, Nicole H. M.; Hermans, Mirjam H. A.; de Klerk, Arja; Notermans, Daan W.; Wever, Peter C.; Janssen, Riny
2015-01-01
A large community outbreak of Q fever occurred in the Netherlands in the period 2007 to 2010. Some of the infected patients developed chronic Q fever, which typically includes pathogen dissemination to predisposed cardiovascular sites, with potentially fatal consequences. To identify the immune mechanisms responsible for ineffective clearance of Coxiella burnetii in patients who developed chronic Q fever, we compared serum concentrations of 47 inflammation-associated markers among patients with acute Q fever, vascular chronic Q fever, and past resolved Q fever. Serum levels of gamma interferon were strongly increased in acute but not in vascular chronic Q fever patients, compared to past resolved Q fever patients. Interleukin-18 levels showed a comparable increase in acute as well as vascular chronic Q fever patients. Additionally, vascular chronic Q fever patients had lower serum levels of gamma interferon-inducible protein 10 (IP-10) and transforming growth factor β (TGF-β) than did acute Q fever patients. Serum responses for these and other markers indicate that type I immune responses to C. burnetii are affected in chronic Q fever patients. This may be attributed to an affected immune system in cardiovascular patients, which enables local C. burnetii replication at affected cardiovascular sites. PMID:25924761
Artaç, Mehmet; Çoşkun, Hasan Şenol; Korkmaz, Levent; Koçer, Murat; Turhal, Nazım Serdar; Engin, Hüseyin; Dede, İsa; Paydaş, Semra; Öksüzoğlu, Berna; Bozcuk, Hakan; Demirkazık, Ahmet
2016-08-01
We aimed to investigate the outcomes of interferon alfa and sequencing tyrosine kinase inhibitors (TKIs) in patients with metastatic renal cell carcinoma. This multicenter study assessing the efficacy of TKIs after interferon alfa therapy in the first-line setting in patients with metastatic renal cell carcinoma. Patients (n = 104) from 8 centers in Turkey, who had been treated with interferon alfa in the first-line setting, were included in the study. Prognostic factors were evaluated for progression-free survival (PFS). The median age of the patients was 57 years. The median PFS of the patients treated with interferon alfa in the first-line was 3.6 months. A total of 61 patients received TKIs (sunitinib, n = 58; sorafenib, n = 3) after progression while on interferon alfa. The median PFS among the TKI-treated patients was 13.2 months. In the univariate analysis for interferon alfa treatment, neutrophil and hemoglobin level, platelet count, and Karnofsky performance status were the significant factors associated with PFS. In the univariate analysis for TKI treatment, neutrophil and hemoglobin levels were the significant factors for PFS. The median total PFS of the patients who had been treated with first-line interferon alfa and second-line TKIs was 24.9 months. This study showed that first-line interferon alfa treatment before TKIs may improve the total PFS in patients with metastatic renal cell carcinoma. Copyright © 2016 Elsevier Inc. All rights reserved.
Stevenson, Heather L; Estes, Mark D; Thirumalapura, Nagaraja R; Walker, David H; Ismail, Nahed
2010-08-01
Human monocytotropic ehrlichiosis is caused by Ehrlichia chaffeensis, a Gram-negative bacterium lacking lipopolysaccharide. We have shown that fatal murine ehrlichiosis is associated with CD8(+)T cell-mediated tissue damage, tumor necrosis factor-alpha, and interleukin (IL)-10 overproduction, and CD4(+)Th1 hyporesponsiveness. In this study, we examined the relative contributions of natural killer (NK) and NKT cells in Ehrlichia-induced toxic shock. Lethal ehrlichial infection in wild-type mice induced a decline in NKT cell numbers, and late expansion and migration of activated NK cells to the liver, a main infection site that coincided with development of hepatic injury. The spatial and temporal changes in NK and NKT cells in lethally infected mice correlated with higher NK cell cytotoxic activity, higher expression of cytotoxic molecules such as granzyme B, higher production of interferon-gamma and tumor necrosis factor-alpha, increased hepatic infiltration with CD8alphaCD11c(+) dendritic cells and CD8(+)T cells, decreased splenic CD4(+)T cells, increased serum concentrations of IL-12p40, IL-18, RANTES, and monocyte chemotactic protein-1, and elevated production of IL-18 by liver mononuclear cells compared with nonlethally infected mice. Depletion of NK cells prevented development of severe liver injury, decreased serum levels of interferon-gamma, tumor necrosis factor-alpha, and IL-10, and enhanced bacterial elimination. These data indicate that NK cells promote immunopathology and defective anti-ehrlichial immunity, possibly via decreasing the protective immune response mediated by interferon-gamma producing CD4(+)Th1 and NKT cells.
Harris, H E; Costella, A; Amirthalingam, G; Alexander, G; Ramsay, M E B; Andrews, N
2012-10-01
In a cohort of 272 treatment-naive individuals with chronic hepatitis C infection acquired on a known date who were enrolled in the UK HCV National Register, a progressive improvement in response to treatment was found with the evolution of antiviral therapies from 20% (25/122) for interferon monotherapy to 63% (55/88) for pegylated interferon+ribavirin therapy. Multivariable analysis results showed increasing age to be associated with poorer response to therapy [odds ratio (OR) 0·84, 95% confidence interval (CI) 0·72-0·99, P=0·03] whereas time since infection was not associated with response (OR 0·93, 95% CI 0·44-1·98, P=0·85). Other factors significantly associated with a positive response were non-type 1 genotype (P<0·0001) and combination therapies (P<0·0001). During the first two decades of chronic HCV infection, treatment at a younger age was found to be more influential in achieving a sustained viral response than treating earlier in the course of infection.
RING domain is essential for the antiviral activity of TRIM25 from orange spotted grouper.
Yang, Ying; Huang, Youhua; Yu, Yepin; Yang, Min; Zhou, Sheng; Qin, Qiwei; Huang, Xiaohong
2016-08-01
Tripartite motif-containing 25 (TRIM25) has been demonstrated to exert crucial roles in the regulation of innate immune signaling. However, the roles of fish TRIM25 in antiviral immune response still remained uncertain. Here, a novel fish TRIM25 gene from orange spotted grouper (EcTRIM25) was cloned and its roles in grouper virus infection were elucidated. EcTRIM25 encoded a 734-aa protein which shared 68% identity to large yellow croaker (Larimichthys crocea). Amino acid alignment showed that EcTRIM25 contained three conserved domains, including a RING-finger domain, a B box/coiled-coil domain and a SPRY domain. In healthy grouper, the transcript of EcTRIM25 was predominantly detected in skin, spleen and intestine. After stimulation with Singapore grouper iridovirus (SGIV) or poly I:C, the relative expression of EcTRIM25 in grouper spleen was significantly increased at the early stage of injection. Subcellular localization analysis showed that EcTRIM25 distributed throughout the cytoplasm in grouper cells. Notably, the deletion RING domain affected its accurate localization and displayed microtubule like structures or bright aggregates in GS cells. After incubation with SGIV or red spotted grouper nervous necrosis virus (RGNNV), overexpression of full length of EcTRIM25 in vitro significantly decreased the viral gene transcription of SGIV and RGNNV. Consistently, the deletion of RING domain obviously affected the inhibitory effect of EcTRIM25. Furthermore, overexpression of EcTRIM25 significantly increased the expression level of interferon related signaling molecules, including interferon regulatory factor (IRF) 3, interferon-induced 35-kDa protein (IFP35), MXI, IRF7 and myeloid differentiation factor 88 (MyD88), suggesting that the positive regulation of interferon immune response by EcTRIM25 might affected RGNNV replication directly. Meanwhile, the expression levels of pro-inflammation cytokines were differently regulated by the ectopic expression of EcTRIM25. We proposed that the regulation of IRF7, MyD88 and pro-inflammation cytokines might contribute more important roles in SGIV infection. In addition, the RING domain of EcTRIM25 also played critical roles in the regulation of interferon immune and inflammation response. Together, our results will provide new evidences that the RING domain was essential for the antiviral action of fish TRIM25 against iridovirus and nodavirus infection. Copyright © 2016 Elsevier Ltd. All rights reserved.
Jang, Eun Sun; Kim, Young Seok; Kim, Kyung-Ah; Lee, Youn Jae; Chung, Woo Jin; Kim, In Hee; Lee, Byung Seok; Jeong, Sook-Hyang
2017-01-01
Background/Aims To evaluate the era of direct acting antivirals (DAAs), we must understand the treatment patterns and outcomes of interferon-based therapy for hepatitis C virus (HCV) infection. We aimed to elucidate the treatment rate, factors affecting treatment decisions, and efficacy of interferon-based therapy in a real-world setting. Methods This nationwide cohort study included 1,191 newly diagnosed patients with chronic HCV infection at seven tertiary hospitals in South Korea. Subjects were followed retrospectively until March 2015, which was just before the approval of DAA therapy. Results In total, 48.2% and 49.3% of the patients had HCV genotypes 1 and 2, respectively. Interferon-based therapy was initiated in 541 patients (45.4%). The major reasons for no treatment included ineligibility (18.9%), concern about adverse events (22.3%), cost (21.5%), and an age >75 years (19.5%). Interferon-based therapy was discontinued (18.5%) mainly due to adverse events (n=66). The intent-to-treat analysis found that the sustained virologic response (SVR) rate was 58.3% in genotype 1 patients and 74.7% in non-genotype 1 patients. Conclusions Approximately one-third of newly diagnosed HCV patients in South Korea received interferon-based therapy and showed a suboptimal SVR rate. Diagnosis of patients at younger ages and with a less advanced liver status and reducing the DAA therapy cost may fulfill unmet needs. PMID:28506027
Tomimaru, Y; Eguchi, H; Wada, H; Noda, T; Murakami, M; Kobayashi, S; Marubashi, S; Takeda, Y; Tanemura, M; Umeshita, K; Doki, Y; Mori, M; Nagano, H
2010-05-11
A striking efficiency of interferon (IFN)-based anticancer therapy for advanced hepatocellular carcinoma (HCC) has been reported. Because its clinical efficiency greatly depends on each patient's local response, prediction of local response is crucial. Continuous exposure of IFN-alpha to parental PLC/PRF/5 cells (PLC-P) and a limiting dilution method resulted in the establishment of IFN-resistant cell clones (PLC-Rs). Microarray analyses of PLC-P and PLC-Rs identified insulin-like growth factor-binding protein 7 (IGFBP7) as one of the most significantly downregulated genes in PLC-Rs. Changes in anticancer effects of IFN-alpha were examined in HCC cells after genetic manipulation of IGFBP7 expression. The correlation between immunohistochemically determined IGFBP7 expression and the response to IFN-alpha/5-fluorouracil (5-FU) therapy was investigated in surgically resected HCC specimens. PLC-R cells showed a remarkable downregulation of IGFBP7 and resistance to IFN-alpha, compared with PLC-P. Parental PLC/PRF/5 cells transfected with short hairpin RNA against IGFBP7 showed a significant resistance to IFN-alpha relative to control cells (IC(50) fold increase=14.38 times). Insulin-like growth factor-binding protein 7 transfection into PLC-R restored sensitivity to IFN-alpha. In resected specimens, IGFBP7 expression significantly correlated with the response to IFN-alpha/5-FU therapy. IGFBP7 could be a useful predictor of the response to IFN-based therapy in advanced HCC.
Clearance of hepatitis C viral RNA in cirrhotic patients with antiviral therapy.
Ono, S K; da Silva, L C; Carrilho, F J; da Fonseca, L E; Mendes, L C; Madruga, C L; Farias, A de Q; Laudanna, A A
1996-01-01
Interferon is indicated in chronic infection by hepatitis C virus (HCV), however, cirrhosis has been reported as a bad response factor to the therapy. Fifteen cirrhotic patients with HCV, undergoing treatment with recombinant interferon-alpha, ribavirin and/or ursodeoxycholic acid were studied. They were followed-up and evaluated with dosages of alanine aminotransferase and HCV RNA investigation by PCR technique. Of the 15 cirrhotic patients, seven were negative for HCV RNA after antiviral treatment, however ALT was normal in only three of them. Of the eight patients who were not negative, two had normal ALT. Biochemical-virological discrepancy in the follow-up of the patients after antiviral treatment observed in this study has also been reported by other authors. These reports show that the criteria for response to the treatment is to be established.
Interferon system in women with genital papillomavirus infection receiving immunomodulatory therapy.
Rogovskaya, S I; Zhdanov, A V; Loginova, N S; Faizullin, L Z; Prilepskaya, V N; Van'ko, L V; Sukhikh, G T
2002-11-01
The interferon system was studied in women with genital papillomavirus infection. In most patients the interferon system was activated, while the ability of lymphocytes to respond to inductors decreased. Laserotherapy and immunomodulatory therapy with larifan, ridostin, and viferon for 1 month normalized blood interferon concentration (39.4% patients) and interferon-gamma production by lymphocytes in response to inductors (87.9% patients). After laser monotherapy these parameters returned to normal only in 13.2 and 7.6% patients, respectively. Correlation and regression analyses showed that changes in the interferon system were synchronized after immunomodulatory therapy. These data indicate that immunomodulatory therapy produces a complex effect on the interferon system. Measurements of blood interferon level can be used to predict the effect of further treatment with interferon-gamma inductors.
Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11
Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E.; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D.; David, Michael
2013-01-01
In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway1. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination. PMID:23000900
Codon-usage-based inhibition of HIV protein synthesis by human schlafen 11.
Li, Manqing; Kao, Elaine; Gao, Xia; Sandig, Hilary; Limmer, Kirsten; Pavon-Eternod, Mariana; Jones, Thomas E; Landry, Sebastien; Pan, Tao; Weitzman, Matthew D; David, Michael
2012-11-01
In mammals, one of the most pronounced consequences of viral infection is the induction of type I interferons, cytokines with potent antiviral activity. Schlafen (Slfn) genes are a subset of interferon-stimulated early response genes (ISGs) that are also induced directly by pathogens via the interferon regulatory factor 3 (IRF3) pathway. However, many ISGs are of unknown or incompletely understood function. Here we show that human SLFN11 potently and specifically abrogates the production of retroviruses such as human immunodeficiency virus 1 (HIV-1). Our study revealed that SLFN11 has no effect on the early steps of the retroviral infection cycle, including reverse transcription, integration and transcription. Rather, SLFN11 acts at the late stage of virus production by selectively inhibiting the expression of viral proteins in a codon-usage-dependent manner. We further find that SLFN11 binds transfer RNA, and counteracts changes in the tRNA pool elicited by the presence of HIV. Our studies identified a novel antiviral mechanism within the innate immune response, in which SLFN11 selectively inhibits viral protein synthesis in HIV-infected cells by means of codon-bias discrimination.
Pryke, Kara M.; Abraham, Jinu; Sali, Tina M.; Gall, Bryan J.; Archer, Iris; Liu, Andrew; Bambina, Shelly; Baird, Jason; Gough, Michael; Chakhtoura, Marita; Haddad, Elias K.; Kirby, Ilsa T.; Nilsen, Aaron; Streblow, Daniel N.; Hirsch, Alec J.; Smith, Jessica L.
2017-01-01
ABSTRACT The ongoing concurrent outbreaks of Zika, Chikungunya, and dengue viruses in Latin America and the Caribbean highlight the need for development of broad-spectrum antiviral treatments. The type I interferon (IFN) system has evolved in vertebrates to generate tissue responses that actively block replication of multiple known and potentially zoonotic viruses. As such, its control and activation through pharmacological agents may represent a novel therapeutic strategy for simultaneously impairing growth of multiple virus types and rendering host populations resistant to virus spread. In light of this strategy’s potential, we undertook a screen to identify novel interferon-activating small molecules. Here, we describe 1-(2-fluorophenyl)-2-(5-isopropyl-1,3,4-thiadiazol-2-yl)-1,2-dihydrochromeno[2,3-c]pyrrole-3,9-dione, which we termed AV-C. Treatment of human cells with AV-C activates innate and interferon-associated responses that strongly inhibit replication of Zika, Chikungunya, and dengue viruses. By utilizing genome editing, we investigated the host proteins essential to AV-C-induced cellular states. This showed that the compound requires a TRIF-dependent signaling cascade that culminates in IFN regulatory factor 3 (IRF3)-dependent expression and secretion of type I interferon to elicit antiviral responses. The other canonical IRF3-terminal adaptor proteins STING and IPS-1/MAVS were dispensable for AV-C-induced phenotypes. However, our work revealed an important inhibitory role for IPS-1/MAVS, but not TRIF, in flavivirus replication, implying that TRIF-directed viral evasion may not occur. Additionally, we show that in response to AV-C, primary human peripheral blood mononuclear cells secrete proinflammatory cytokines that are linked with establishment of adaptive immunity to viral pathogens. Ultimately, synthetic innate immune activators such as AV-C may serve multiple therapeutic purposes, including direct antimicrobial responses and facilitation of pathogen-directed adaptive immunity. PMID:28465426
Hong, Suntaek; Kim, Hye-Youn; Kim, Jooyoung; Ha, Huyen Trang; Kim, Young-Mi; Bae, Eunjin; Kim, Tae Hyung; Lee, Kang Choon; Kim, Seong-Jin
2013-01-01
Smad7 has been known as a negative regulator for the transforming growth factor-β (TGF-β) signaling pathway through feedback regulation. However, Smad7 has been suspected to have other biological roles through the regulation of gene transcription. By screening differentially regulated genes, we found that the caspase 8 gene was highly up-regulated in Smad7-expressing cells. Smad7 was able to activate the caspase 8 promoter through recruitment of the interferon regulatory factor 1 (IRF1) transcription factor to the interferon-stimulated response element (ISRE) site. Interaction of Smad7 on the caspase 8 promoter was confirmed with electrophoretic mobility shift assay and chromatin immunoprecipitation experiment. Interestingly, Smad7 did not directly interact with the ISRE site, but it increased the binding activity of IRF1 with ISRE. These results support that Smad7 recruits IRF1 protein on the caspase 8 promoter and functions as a transcriptional coactivator. To confirm the biological significance of caspase 8 up-regulation, we tested tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-mediated cell death assay in breast cancer cells. Smad7 in apoptosis-resistant MCF7 cells markedly sensitized the cells to TRAIL-induced cell death by restoring the caspase cascade. Furthermore, restoration of caspase 8-mediated apoptosis pathway repressed the tumor growth in the xenograft model. In conclusion, we suggest a novel role for Smad7 as a transcriptional coactivator for caspase 8 through the interaction with IRF1 in regulation of the cell death pathway. PMID:23255602
Polyfunctional CD4 T cells in the response to bovine tuberculosis
USDA-ARS?s Scientific Manuscript database
CD4 T cells are crucial in immunity to tuberculosis (TB). Polyfunctional CD4 T cells simultaneously produce interferon-gamma (IFN-gamma), Interleukin-2 (IL-2) and Tumor necrosis factor-alpha (TNF-alpha) and play relevant roles in several chronic infections, including human TB and HIV. However, the a...
Mst1 shuts off cytosolic antiviral defense through IRF3 phosphorylation
Meng, Fansen; Zhou, Ruyuan; Wu, Shiying; Zhang, Qian; Jin, Qiuheng; Zhou, Yao; Plouffe, Steven W.; Liu, Shengduo; Song, Hai; Xia, Zongping; Zhao, Bin; Ye, Sheng; Feng, Xin-Hua; Guan, Kun-Liang; Zou, Jian
2016-01-01
Cytosolic RNA/DNA sensing elicits primary defense against viral pathogens. Interferon regulatory factor 3 (IRF3), a key signal mediator/transcriptional factor of the antiviral-sensing pathway, is indispensible for interferon production and antiviral defense. However, how the status of IRF3 activation is controlled remains elusive. Through a functional screen of the human kinome, we found that mammalian sterile 20-like kinase 1 (Mst1), but not Mst2, profoundly inhibited cytosolic nucleic acid sensing. Mst1 associated with IRF3 and directly phosphorylated IRF3 at Thr75 and Thr253. This Mst1-mediated phosphorylation abolished activated IRF3 homodimerization, its occupancy on chromatin, and subsequent IRF3-mediated transcriptional responses. In addition, Mst1 also impeded virus-induced activation of TANK-binding kinase 1 (TBK1), further attenuating IRF3 activation. As a result, Mst1 depletion or ablation enabled an enhanced antiviral response and defense in cells and mice. Therefore, the identification of Mst1 as a novel physiological negative regulator of IRF3 activation provides mechanistic insights into innate antiviral defense and potential antiviral prevention strategies. PMID:27125670
Ho, Nathan K.; Crandall, Ian; Sherman, Philip M.
2012-01-01
Enterohemorrhagic Escherichia coli serotype O157:H7 is a food borne enteric bacterial pathogen that causes significant morbidity and mortality in both developing and industrialized nations. E. coli O157:H7 infection of host epithelial cells inhibits the interferon gamma pro-inflammatory signaling pathway, which is important for host defense against microbial pathogens, through the inhibition of Stat-1 tyrosine phosphorylation. The aim of this study was to determine which bacterial factors are involved in the inhibition of Stat-1 tyrosine phosphorylation. Human epithelial cells were challenged with either live bacteria or bacterial-derived culture supernatants, stimulated with interferon-gamma, and epithelial cell protein extracts were then analyzed by immunoblotting. The results show that Stat-1 tyrosine phosphorylation was inhibited by E. coli O157:H7 secreted proteins. Using sequential anion exchange and size exclusion chromatography, YodA was identified, but not confirmed to mediate subversion of the Stat-1 signaling pathway using isogenic mutants. We conclude that E. coli O157:H7 subverts Stat-1 tyrosine phosphorylation in response to interferon-gamma through a still as yet unidentified secreted bacterial protein. PMID:22253910
Vollmer-Conna, Uté; Piraino, Barbara F; Cameron, Barbara; Davenport, Tracey; Hickie, Ian; Wakefield, Denis; Lloyd, Andrew R
2008-12-01
Functional polymorphisms in immune response genes are increasingly recognized as important contributors to the marked individual differences in susceptibility to and outcomes of infectious disease. The acute sickness response is a stereotypical set of illness manifestations mediated by the proinflammatory cytokines induced by many different pathogens. The genetic determinants of severity of the acute sickness response have not previously been explored. We examined the impact of functional polymorphisms in cytokine genes with critical roles in the early immune response (tumor necrosis factor-alpha, interleukin-6, interleukin-10, and interferon-gamma) on the severity and duration of illness following acute infection with Epstein-Barr virus, Coxiella burnetii (the causative agent of Q fever), or Ross River virus. We found that the interferon-gamma +874T/A and the interleukin-10 -592C/A polymorphisms significantly affected illness severity, cytokine protein levels, and the duration of illness. These cytokine genotypes acted in synergy to potentiate their influence on disease outcomes. These findings suggest that genetically determined variations in the intensity of the inflammatory response underpin the severity of the acute sickness response and predict the recovery time across varied infections.
Molecular Mechanisms of Innate Immune Inhibition by Non-Segmented Negative-Sense RNA Viruses
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chatterjee, Srirupa; Basler, Christopher F.; Amarasinghe, Gaya K.
The host innate immune system serves as the first line of defense against viral infections. Germline-encoded pattern recognition receptors detect molecular patterns associated with pathogens and activate innate immune responses. Of particular relevance to viral infections are those pattern recognition receptors that activate type I interferon responses, which establish an antiviral state. The order Mononegavirales is composed of viruses that possess single-stranded, non-segmented negative-sense (NNS) RNA genomes and are important human pathogens that consistently antagonize signaling related to type I interferon responses. NNS viruses have limited encoding capacity compared to many DNA viruses, and as a likely consequence, most openmore » reading frames encode multifunctional viral proteins that interact with host factors in order to evade host cell defenses while promoting viral replication. In this review, we will discuss the molecular mechanisms of innate immune evasion by select NNS viruses. A greater understanding of these interactions will be critical in facilitating the development of effective therapeutics and viral countermeasures.« less
Movement Limitation and Immune Responses of Rhesus Monkeys
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald; Morton, Darla S.; Swiggett, Jeanene P.; Hakenewerth, Anne M.; Fowler, Nina A.
1993-01-01
The effects of restraint on immunological parameters was determined in an 18 day ARRT (adult rhesus restraint test). The monkeys were restrained for 18 days in the experimental station for the orbiting primate (ESOP), the chair of choice for Space Shuttle experiments. Several immunological parameters were determined using peripheral blood, bone marrow, and lymph node specimens from the monkeys. The parameters included: response of bone marrow cells to GM-CSF (granulocyte-macrophage colony stimulating factor), leukocyte subset distribution, and production of IFN-alpha (interferon-alpha) and IFN-gamma (interferon-gamma). The only parameter changed after 18 days of restraint was the percentage of CDB+ T cells. No other immunological parameters showed changes due to restraint. Handling and changes in housing prior to the restraint period did apparently result in some restraint-independent immunological changes. Handling must be kept to a minimum and the animals allowed time to recover prior to flight. All experiments must be carefully controlled. Restraint does not appear to be a major issue regarding the effects of space flight on immune responses.
Spaceflight and immune responses of rhesus monkeys
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald; Morton, Darla S.; Swiggett, Jeanene P.; Hakenewerth, Anne M.; Fowler, Nina A.
1995-01-01
The effects of restraint on immunological parameters was determined in an 18 day ARRT (adult rhesus restraint test). The monkeys were restrained for 18 days in the experimental station for the orbiting primate (ESOP), the chair of choice for Space Shuttle experiments. Several immunological parameters were determined using peripheral blood, bone marrow, and lymph node specimens from the monkeys. The parameters included: response of bone marrow cells to GM-CSF (granulocyte-macrophage colony stimulating factor), leukocyte subset distribution, and production of IFN-a (interferon-alpha) and IFN-gamma (interferon-gamma). The only parameter changed after 18 days of restraint was the percentage of CD8+ T cells. No other immunological parameters showed changes due to restraint. Handling and changes in housing prior to the restraint period did apparently result in some restraint-independent immunological changes. Handling must be kept to a minimum and the animals allowed time to recover prior to flight. All experiments must be carefully controlled. Restraint does not appear to be a major issue regarding the effects of space flight on immune responses.
2013-01-09
specificity. The majority of the top 50 predictive genes contained in each factor are known to characterize host response to viral infection, and include...RSAD2, the OAS family, multiple interferon response elements, the myxovirus- resistance gene MX1, cytokine response pathways and others [16,17,18]. Many...antiviral pathways (Fig. s4). Furthermore, the high degree of similarity and cross- applicability of the two signatures permit the mathematical
Interferon-based treatment of chronic hepatitis C.
Souvignet, Claude; Lejeune, Olivier; Trepo, Christian
2007-01-01
The treatment of patients with chronic hepatitis C has rapidly evolved in the past 10 years centered on the use of interferon alpha 2 as an antiviral and immunomodulatory agent against hepatitis C virus. Firstly used as a monotherapy associated with a deceiving long-term efficacy, interferon alpha was then combined with ribavirin, a nucleoside analog with large antiviral properties. Combination of both drugs dramatically improved the efficacy of treatment with 50% of patients reaching a sustained viral response, characterized by the final eradication of the virus from the infected individual. Surprisingly, this synergistic effect remains greatly unexplained. The third step consisted in the use of pegylated interferon in order to adapt its pharmacokinetics and to allow a better efficacy with a more tolerable dosing schedule: once weekly subcutaneous injection instead of thrice weekly. Pegylated interferon combined with ribavirin during 24-48 weeks of treatment is the current standard of care with nearly 60% of sustained virologic response, overall. Development of new forms of interferon alpha are on the way with promising preliminary results.
Singanayagam, Aran; Glanville, Nicholas; Girkin, Jason L; Ching, Yee Man; Marcellini, Andrea; Porter, James D; Toussaint, Marie; Walton, Ross P; Finney, Lydia J; Aniscenko, Julia; Zhu, Jie; Trujillo-Torralbo, Maria-Belen; Calderazzo, Maria Adelaide; Grainge, Chris; Loo, Su-Ling; Veerati, Punnam Chander; Pathinayake, Prabuddha S; Nichol, Kristy S; Reid, Andrew T; James, Phillip L; Solari, Roberto; Wark, Peter A B; Knight, Darryl A; Moffatt, Miriam F; Cookson, William O; Edwards, Michael R; Mallia, Patrick; Bartlett, Nathan W; Johnston, Sebastian L
2018-06-08
Inhaled corticosteroids (ICS) have limited efficacy in reducing chronic obstructive pulmonary disease (COPD) exacerbations and increase pneumonia risk, through unknown mechanisms. Rhinoviruses precipitate most exacerbations and increase susceptibility to secondary bacterial infections. Here, we show that the ICS fluticasone propionate (FP) impairs innate and acquired antiviral immune responses leading to delayed virus clearance and previously unrecognised adverse effects of enhanced mucus, impaired antimicrobial peptide secretion and increased pulmonary bacterial load during virus-induced exacerbations. Exogenous interferon-β reverses these effects. FP suppression of interferon may occur through inhibition of TLR3- and RIG-I virus-sensing pathways. Mice deficient in the type I interferon-α/β receptor (IFNAR1 -/- ) have suppressed antimicrobial peptide and enhanced mucin responses to rhinovirus infection. This study identifies type I interferon as a central regulator of antibacterial immunity and mucus production. Suppression of interferon by ICS during virus-induced COPD exacerbations likely mediates pneumonia risk and raises suggestion that inhaled interferon-β therapy may protect.
Kast, Richard E
2008-10-01
This note mechanistically accounts for recent unexplained findings that all-trans retinoic acid (ATRA, also termed tretinoin) exerts an anti-viral effect against hepatitis C virus (HCV) in chronically infected patients, in whom ATRA also showed synergy with interferon-alpha. How HCV replication was suppressed was unclear. Both effects of ATRA can be accounted for by ATRA's upregulation of RIG protein, an 18 kDa product of retinoic induced gene-1. Increased RIG then couples ATRA to increased Type 1 interferons' production. Details of this mechanism predict that ATRA will similarly augment interferon-a activity in treating chronic myelogenous leukemia, melanoma, myeloma and renal cell carcinoma and that the addition of ribavirin and/or bexarotene will each incrementally enhance interferon-a responses in these cancers.
Gil, Olga; Vilaplana, Cristina; Guirado, Evelyn; Díaz, Jorge; Cáceres, Neus; Singh, Mahavir; Cardona, Pere-Joan
2008-11-01
Gamma interferon responses of spleen cells in mice were examined during postchemotherapy relapse of intraperitoneally induced latent tuberculous infection. The mycobacterial extract RUTI, which prevented the relapse, significantly enhanced the immune responses to secreted and structural recombinant mycobacterial antigens, suggesting that RUTI-mediated protection was mediated by activated T cells.
Customizing treatment to patient populations.
Brown, Robert S
2007-01-01
Combination treatment with pegylated interferon plus ribavirin is the most effective therapy for patients with chronic hepatitis C virus (HCV); however, responses are less than optimal in some subpopulations of patients. Emerging insights are suggesting that viral kinetics can be used to predict response. The rapidity of response has been shown to be a more important predictor of sustained virologic response than the duration of therapy. In patients with HCV genotype 2 or 3, shorter durations of treatment might be sufficient in rapid responders and could minimize the risk of toxic effects. Weight-based dosing of ribavirin has emerged as another important consideration. This strategy seems to be most important for difficult-to-treat patients with HCV genotype 1 or advanced fibrosis, and for African-Americans, and is possibly important for patients who have genotype 3 and a high viral load. Re-treatment of nonresponders with interferon-based therapy has been associated with low rates of sustained virologic response. Consensus interferon might offer a new option for patients who do not achieve an early treatment response to standard or pegylated interferon plus ribavirin.
Evasion of interferon responses by Ebola and Marburg viruses.
Basler, Christopher F; Amarasinghe, Gaya K
2009-09-01
The filoviruses, Ebola virus (EBOV) and Marburg virus (MARV), cause frequently lethal viral hemorrhagic fever. These infections induce potent cytokine production, yet these host responses fail to prevent systemic virus replication. Consistent with this, filoviruses have been found to encode proteins VP35 and VP24 that block host interferon (IFN)-alpha/beta production and inhibit signaling downstream of the IFN-alpha/beta and the IFN-gamma receptors, respectively. VP35, which is a component of the viral nucleocapsid complex and plays an essential role in viral RNA synthesis, acts as a pseudosubstrate for the cellular kinases IKK-epsilon and TBK-1, which phosphorylate and activate interferon regulatory factor 3 (IRF-3) and interferon regulatory factor 7 (IRF-7). VP35 also promotes SUMOylation of IRF-7, repressing IFN gene transcription. In addition, VP35 is a dsRNA-binding protein, and mutations that disrupt dsRNA binding impair VP35 IFN-antagonist activity while leaving its RNA replication functions intact. The phenotypes of recombinant EBOV bearing mutant VP35s unable to inhibit IFN-alpha/beta demonstrate that VP35 IFN-antagonist activity is critical for full virulence of these lethal pathogens. The structure of the VP35 dsRNA-binding domain, which has recently become available, is expected to provide insight into how VP35 IFN-antagonist and dsRNA-binding functions are related. The EBOV VP24 protein inhibits IFN signaling through an interaction with select host cell karyopherin-alpha proteins, preventing the nuclear import of otherwise activated STAT1. It remains to be determined to what extent VP24 may also modulate the nuclear import of other host cell factors and to what extent this may influence the outcome of infection. Notably, the Marburg virus VP24 protein does not detectably block STAT1 nuclear import, and, unlike EBOV, MARV infection inhibits STAT1 and STAT2 phosphorylation. Thus, despite their similarities, there are fundamental differences by which these deadly viruses counteract the IFN system. It will be of interest to determine how these differences influence pathogenesis.
Flutter, Barry; Nestle, Frank O
2013-10-17
Interferon regulatory factors play an important role in the transcriptional regulation of immunity. In this issue of Immunity, Kumamoto et al. (2013) and Gao et al. (2013) identify an Irf4-dependent migratory dendritic cell subset required for T helper 2 cell polarization following cutaneous challenge. Copyright © 2013 Elsevier Inc. All rights reserved.
Toxoplasma's arms race with the host interferon response: a ménage à trois of ROPs.
Zhao, Yanlin; Yap, George S
2014-05-14
The Toxoplasma gondii virulence factors ROP5 and ROP18 both target immunity-related GTPases (IRGs) to evade immunity. In this issue of Cell Host & Microbe, Etheridge et al. (2014) identify a third virulence factor, ROP17, which forms a complex and synergizes with ROP5/ROP18 to fully disable the IRG system of antiparasite defense. Copyright © 2014 Elsevier Inc. All rights reserved.
Kathum, Omer Abid; Schräder, Tobias; Anhlan, Darisuren; Nordhoff, Carolin; Liedmann, Swantje; Pande, Amit; Mellmann, Alexander; Ehrhardt, Christina; Wixler, Viktor; Ludwig, Stephan
2016-06-01
Phosphorylation and dephosphorylation acts as a fundamental molecular switch that alters protein function and thereby regulates many cellular processes. The non-structural protein 1 (NS1) of influenza A virus is an important factor regulating virulence by counteracting cellular immune responses against viral infection. NS1 was shown to be phosphorylated at several sites; however, so far, no function has been conclusively assigned to these post-translational events yet. Here, we show that the newly identified phospho-site threonine 49 of NS1 is differentially phosphorylated in the viral replication cycle. Phosphorylation impairs binding of NS1 to double-stranded RNA and TRIM25 as well as complex formation with RIG-I, thereby switching off its interferon antagonistic activity. Because phosphorylation was shown to occur at later stages of infection, we hypothesize that at this stage other functions of the multifunctional NS1 beyond its interferon-antagonistic activity are needed. © 2016 The Authors Cellular Microbiology published by John Wiley & Sons Ltd.
Chicha, Laurie; Jarrossay, David; Manz, Markus G
2004-12-06
Because of different cytokine responsiveness, surface receptor, and transcription factor expression, human CD11c(-) natural type I interferon-producing cells (IPCs) and CD11c(+) dendritic cells were thought to derive through lymphoid and myeloid hematopoietic developmental pathways, respectively. To directly test this hypothesis, we used an in vitro assay allowing simultaneous IPC, dendritic cell, and B cell development and we tested lymphoid and myeloid committed hematopoietic progenitor cells for their developmental capacity. Lymphoid and common myeloid and granulocyte/macrophage progenitors were capable of developing into both functional IPCs, expressing gene transcripts thought to be associated with lymphoid lineage development, and into dendritic cells. However, clonal progenitors for both populations were about fivefold more frequent within myeloid committed progenitor cells. Thus, in humans as in mice, natural IPC and dendritic cell development robustly segregates with myeloid differentiation. This would fit with natural interferon type I-producing cell and dendritic cell activity in innate immunity, the evolutionary older arm of the cellular immune system.
Lamote, Jochen A. S.; Kestens, Manon; Van Waesberghe, Cliff; Delva, Jonas; De Pelsmaeker, Steffi; Devriendt, Bert
2017-01-01
ABSTRACT Plasmacytoid dendritic cells (pDC) play a central role in the antiviral immune response, both in the innate response and in shaping the adaptive response, mainly because of their ability to produce massive amounts of type I interferon (TI-IFN). Here, we report that cells infected with the live attenuated Bartha vaccine strain of porcine alphaherpesvirus pseudorabies virus (PRV) trigger a dramatically increased TI-IFN response by porcine primary pDC compared to cells infected with wild-type PRV strains (Becker and Kaplan). Since Bartha is one of the relatively few examples of a highly successful alphaherpesvirus vaccine, identification of factors that may contribute to its efficacy may provide insights for the rational design of other alphaherpesvirus vaccines. The Bartha vaccine genome displays several mutations compared to the genome of wild-type PRV strains, including a large deletion in the unique short (US) region, encompassing the glycoprotein E (gE), gI, US9, and US2 genes. Using recombinant PRV Becker strains harboring the entire Bartha US deletion or single mutations in the four affected US genes, we demonstrate that the absence of the viral gE/gI complex contributes to the observed increased IFN-α response. Furthermore, we show that the absence of gE leads to an enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in pDC, which correlates with a higher TI-IFN production by pDC. In conclusion, the PRV Bartha vaccine strain triggers strongly increased TI-IFN production by porcine pDC. Our data further indicate that the gE/gI glycoprotein complex suppresses TI-IFN production by pDC, which represents the first alphaherpesvirus factor that suppresses pDC activity. IMPORTANCE Several alphaherpesviruses, including herpes simpex virus, still lack effective vaccines. However, the highly successful Bartha vaccine has contributed substantially to eradication of the porcine alphaherpesvirus pseudorabies virus (PRV) in several countries. The impact of Bartha on the immune response is still poorly understood. Type I interferon (TI-IFN)-producing plasmacytoid dendritic cells (pDC) may play an important role in vaccine development. Here, we show that Bartha elicits a dramatically increased type I interferon (TI-IFN) response in primary porcine pDC compared to wild-type strains. In addition, we found that the gE/gI complex, which is absent in Bartha, inhibits the pDC TI-IFN response. This is the first description of an immune cell type that is differentially affected by Bartha versus wild-type PRV and is the first report describing an alphaherpesvirus protein that inhibits the TI-IFN response by pDC. These data may therefore contribute to the rational design of other alphaherpesvirus vaccines. PMID:28122975
von Recum-Knepper, Jessica; Sadewasser, Anne; Weinheimer, Viola K.
2015-01-01
ABSTRACT Influenza A virus (IAV) infection provokes an antiviral response involving the expression of type I and III interferons (IFN) and IFN-stimulated genes (ISGs) in infected cell cultures. However, the spatiotemporal dynamics of the IFN reaction are incompletely understood, as previous studies investigated mainly the population responses of virus-infected cultures, although substantial cell-to-cell variability has been documented. We devised a fluorescence-activated cell sorting-based assay to simultaneously quantify expression of viral antigens and ISGs, such as ISG15, MxA, and IFIT1, in IAV-infected cell cultures at the single-cell level. This approach revealed that seasonal IAV triggers an unexpected asymmetric response, as the major cell populations expressed either viral antigen or ISG, but rarely both. Further investigations identified a role of the viral NS1 protein in blocking ISG expression in infected cells, which surprisingly did not reduce paracrine IFN signaling to noninfected cells. Interestingly, viral ISG control was impaired in cultures infected with avian-origin IAV, including the H7N9 virus from eastern China. This phenotype was traced back to polymorphic NS1 amino acids known to be important for stable binding of the polyadenylation factor CPSF30 and concomitant suppression of host cell gene expression. Most significantly, mutation of two amino acids within the CPSF30 attachment site of NS1 from seasonal IAV diminished the strict control of ISG expression in infected cells and substantially attenuated virus replication. In conclusion, our approach revealed an asymmetric, NS1-dependent ISG induction in cultures infected with seasonal IAV, which appears to be essential for efficient virus propagation. IMPORTANCE Interferons are expressed by infected cells in response to IAV infection and play important roles in the antiviral immune response by inducing hundreds of interferon-stimulated genes (ISGs). Unlike many previous studies, we investigated the ISG response at the single-cell level, enabling novel insights into this virus-host interaction. Hence, cell cultures infected with seasonal IAV displayed an asymmetric ISG induction that was confined almost exclusively to noninfected cells. In comparison, ISG expression was observed in larger cell populations infected with avian-origin IAV, suggesting a more resolute antiviral response to these strains. Strict control of ISG expression by seasonal IAV was explained by the binding of the viral NS1 protein to the polyadenylation factor CPSF30, which reduces host cell gene expression. Mutational disruption of CPSF30 binding within NS1 concomitantly attenuated ISG control and replication of seasonal IAV, illustrating the importance of maintaining an asymmetric ISG response for efficient virus propagation. PMID:25903337
Lamote, Jochen A S; Kestens, Manon; Van Waesberghe, Cliff; Delva, Jonas; De Pelsmaeker, Steffi; Devriendt, Bert; Favoreel, Herman W
2017-04-01
Plasmacytoid dendritic cells (pDC) play a central role in the antiviral immune response, both in the innate response and in shaping the adaptive response, mainly because of their ability to produce massive amounts of type I interferon (TI-IFN). Here, we report that cells infected with the live attenuated Bartha vaccine strain of porcine alphaherpesvirus pseudorabies virus (PRV) trigger a dramatically increased TI-IFN response by porcine primary pDC compared to cells infected with wild-type PRV strains (Becker and Kaplan). Since Bartha is one of the relatively few examples of a highly successful alphaherpesvirus vaccine, identification of factors that may contribute to its efficacy may provide insights for the rational design of other alphaherpesvirus vaccines. The Bartha vaccine genome displays several mutations compared to the genome of wild-type PRV strains, including a large deletion in the unique short (US) region, encompassing the glycoprotein E (gE), gI, US9, and US2 genes. Using recombinant PRV Becker strains harboring the entire Bartha US deletion or single mutations in the four affected US genes, we demonstrate that the absence of the viral gE/gI complex contributes to the observed increased IFN-α response. Furthermore, we show that the absence of gE leads to an enhanced extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation in pDC, which correlates with a higher TI-IFN production by pDC. In conclusion, the PRV Bartha vaccine strain triggers strongly increased TI-IFN production by porcine pDC. Our data further indicate that the gE/gI glycoprotein complex suppresses TI-IFN production by pDC, which represents the first alphaherpesvirus factor that suppresses pDC activity. IMPORTANCE Several alphaherpesviruses, including herpes simpex virus, still lack effective vaccines. However, the highly successful Bartha vaccine has contributed substantially to eradication of the porcine alphaherpesvirus pseudorabies virus (PRV) in several countries. The impact of Bartha on the immune response is still poorly understood. Type I interferon (TI-IFN)-producing plasmacytoid dendritic cells (pDC) may play an important role in vaccine development. Here, we show that Bartha elicits a dramatically increased type I interferon (TI-IFN) response in primary porcine pDC compared to wild-type strains. In addition, we found that the gE/gI complex, which is absent in Bartha, inhibits the pDC TI-IFN response. This is the first description of an immune cell type that is differentially affected by Bartha versus wild-type PRV and is the first report describing an alphaherpesvirus protein that inhibits the TI-IFN response by pDC. These data may therefore contribute to the rational design of other alphaherpesvirus vaccines. Copyright © 2017 American Society for Microbiology.
Induction of Interferon-Stimulated Genes by IRF3 Promotes Replication of Toxoplasma gondii
Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C.; Barik, Sailen
2015-01-01
Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell-intrinsic pro-parasitic role. PMID:25811886
Induction of interferon-stimulated genes by IRF3 promotes replication of Toxoplasma gondii.
Majumdar, Tanmay; Chattopadhyay, Saurabh; Ozhegov, Evgeny; Dhar, Jayeeta; Goswami, Ramansu; Sen, Ganes C; Barik, Sailen
2015-03-01
Innate immunity is the first line of defense against microbial insult. The transcription factor, IRF3, is needed by mammalian cells to mount innate immune responses against many microbes, especially viruses. IRF3 remains inactive in the cytoplasm of uninfected cells; upon virus infection, it gets phosphorylated and then translocates to the nucleus, where it binds to the promoters of antiviral genes and induces their expression. Such genes include type I interferons (IFNs) as well as Interferon Stimulated Genes (ISGs). IRF3-/- cells support enhanced replication of many viruses and therefore, the corresponding mice are highly susceptible to viral pathogenesis. Here, we provide evidence for an unexpected pro-microbial role of IRF3: the replication of the protozoan parasite, Toxoplasma gondii, was significantly impaired in IRF3-/- cells. In exploring whether the transcriptional activity of IRF3 was important for its pro-parasitic function, we found that ISGs induced by parasite-activated IRF3 were indeed essential, whereas type I interferons were not important. To delineate the signaling pathway that activates IRF3 in response to parasite infection, we used genetically modified human and mouse cells. The pro-parasitic signaling pathway, which we termed PISA (Parasite-IRF3 Signaling Activation), activated IRF3 without any involvement of the Toll-like receptor or RIG-I-like receptor pathways, thereby ruling out a role of parasite-derived RNA species in activating PISA. Instead, PISA needed the presence of cGAS, STING, TBK1 and IRF3, indicating the necessity of DNA-triggered signaling. To evaluate the physiological significance of our in vitro findings, IRF3-/- mice were challenged with parasite infection and their morbidity and mortality were measured. Unlike WT mice, the IRF3-/- mice did not support replication of the parasite and were resistant to pathogenesis caused by it. Our results revealed a new paradigm in which the antiviral host factor, IRF3, plays a cell-intrinsic pro-parasitic role.
Interferon-alpha in the treatment of multiple myeloma.
Khoo, Teh Liane; Vangsted, Annette Juul; Joshua, Douglas; Gibson, John
2011-03-01
Interferons are soluble proteins produced naturally by cells in response to viruses. It has both anti-proliferative and immunomodulating properties and is one of the first examples of a biological response modifier use to treat the haematological malignancy multiple myeloma. Interferon has been used in this clinical practice for over thirty years. However, despite considerable efforts, numerous clinical trials and two large meta-analysis, its exact role in the management of multiple myeloma still remains unclear. Its role in the treatment of multiple myeloma has been as a single induction agent, a co-induction agent with other chemotherapy regimens, and as maintenance therapy after conventional chemotherapy or complete remission after autologous or allogeneic transplantation. Interferon as a single induction agent or co-induction agent with other chemotherapy agents appears only to have minimal benefit in myeloma. Its role as maintenance therapy in the plateau phase of myeloma also remains uncertain. More recently, the use of interferon must now compete with the "new drugs"--thalidomide, lenalidomide and bortezomib in myeloma treatment. Will there be a future role of interferon in the treatment of multiple myeloma or will interferon be resigned to the history books remains to be seen.
Nombela, Ivan; Puente-Marin, Sara; Chico, Veronica; Villena, Alberto J; Carracedo, Begoña; Ciordia, Sergio; Mena, Maria Carmen; Mercado, Luis; Perez, Luis; Coll, Julio; Estepa, Amparo; Ortega-Villaizan, Maria Del Mar
2017-01-01
Background: It has been described that fish nucleated red blood cells (RBCs) generate a wide variety of immune-related gene transcripts when viruses highly replicate inside them and are their main target cell. The immune response and mechanisms of fish RBCs against viruses targeting other cells or tissues has not yet been explored and is the objective of our study. Methods: Rainbow trout RBCs were obtained from peripheral blood, ficoll purified and exposed to Viral Haemorrhagic Septicaemia virus (VHSV). Immune response was evaluated by means of RT-qPCR, flow cytometry, immunofluorescence and isobaric tag for relative and absolute quantification (iTRAQ) protein profiling. Results: VHSV N gene transcripts incremented early postexposure and were drastically decreased after 6 hours postexposure (hpe). The expression of type I interferon ( ifn1 ) gene was significantly downregulated at early postexposure (3 hpe), together with a gradual downregulation of interferon-inducible mx and pkr genes until 72 hpe. Type I IFN protein was downregulated and interferon-inducible Mx protein was maintained at basal levels. Co-culture assays of RBCs, previously exposed to UV-inactivated VHSV, and TSS (stromal cell line from spleen) revealed IFN crosstalk between both cell types. On the other hand, anti-microbial peptide β-defensin 1 and neutrophil chemotactic factor interleukin 8 were slightly upregulated in VHSV-exposed RBCs. iTRAQ profiling revealed that VHSV exposure can induce a global protein downregulation in rainbow trout RBCs, mainly related to RNA stability and proteasome pathways. Antioxidant/antiviral response is also suggested to be involved in the response of rainbow trout RBCs to VHSV. Conclusions: A variety of mechanisms are proposed to be implicated in the antiviral response of rainbow trout RBCs against VHSV halted infection. Ongoing research is focused on understanding the mechanisms in detail.
No Love Lost Between Viruses and Interferons.
Fensterl, Volker; Chattopadhyay, Saurabh; Sen, Ganes C
2015-11-01
The interferon system protects mammals against virus infections. There are several types of interferons, which are characterized by their ability to inhibit virus replication and resultant pathogenesis by triggering both innate and cell-mediated immune responses. Virus infection is sensed by a variety of cellular pattern-recognition receptors and triggers the synthesis of interferons, which are secreted by the infected cells. In uninfected cells, cell surface receptors recognize the secreted interferons and activate intracellular signaling pathways that induce the expression of interferon-stimulated genes; the proteins encoded by these genes inhibit different stages of virus replication. To avoid extinction, almost all viruses have evolved mechanisms to defend themselves against the interferon system. Consequently, a dynamic equilibrium of survival is established between the virus and its host, an equilibrium that can be shifted to the host's favor by the use of exogenous interferon as a therapeutic antiviral agent.
Grünvogel, Oliver; Esser-Nobis, Katharina; Reustle, Anna; Schult, Philipp; Müller, Birthe; Metz, Philippe; Trippler, Martin; Windisch, Marc P.; Frese, Michael; Binder, Marco; Fackler, Oliver; Bartenschlager, Ralf; Ruggieri, Alessia
2015-01-01
ABSTRACT All major types of interferon (IFN) efficiently inhibit hepatitis C virus (HCV) replication in vitro and in vivo. Remarkably, HCV replication is not sensitive to IFN-γ in the hepatoma cell line Huh6, despite an intact signaling pathway. We performed transcriptome analyses between Huh6 and Huh-7 cells to identify effector genes of the IFN-γ response and thereby identified the DExD/H box helicase DEAD box polypeptide 60-like (DDX60L) as a restriction factor of HCV replication. DDX60L and its homolog DEAD box polypeptide 60 (DDX60) were both induced upon viral infection and IFN treatment in primary human hepatocytes. However, exclusively DDX60L knockdown increased HCV replication in Huh-7 cells and rescued HCV replication from type II IFN as well as type I and III IFN treatment, suggesting that DDX60L is an important effector protein of the innate immune response against HCV. In contrast, we found no impact of DDX60L on replication of hepatitis A virus. DDX60L protein was detectable only upon strong ectopic overexpression, displayed a broad cytoplasmic distribution, but caused cytopathic effects under these conditions. DDX60L knockdown did not alter interferon-stimulated gene (ISG) induction after IFN treatment but inhibited HCV replication upon ectopic expression, suggesting that it is a direct effector of the innate immune response. It most likely inhibits viral RNA replication, since we found neither impact of DDX60L on translation or stability of HCV subgenomic replicons nor additional impact on assembly of infectious virus. Similar to DDX60, DDX60L had a moderate impact on RIG-I dependent activation of innate immunity, suggesting additional functions in the sensing of viral RNA. IMPORTANCE Interferons induce a plethora of interferon-stimulated genes (ISGs), which are our first line of defense against viral infections. In addition, IFNs have been used in antiviral therapy, in particular against the human pathogen hepatitis C virus (HCV); still, their mechanism of action is not well understood, since diverse, overlapping sets of antagonistic effector ISGs target viruses with different biologies. Our work identifies DDX60L as a novel factor that inhibits replication of HCV. DDX60L expression is regulated similarly to that of its homolog DDX60, but our data suggest that it has distinct functions, since we found no contribution of DDX60 in combatting HCV replication. The identification of novel components of the innate immune response contributes to a comprehensive understanding of the complex mechanisms governing antiviral defense. PMID:26269178
USDA-ARS?s Scientific Manuscript database
Type I interferons, such as interferon alpha (IFN-alpha), contribute to innate antiviral immunity by promoting production of antiviral mediators and also play a role in the adaptive immune response. Porcine reproductive and respiratory syndrome (PRRS) is one of the most devastating and costly diseas...
Skums, Pavel; Campo, David S; Dimitrova, Zoya; Vaughan, Gilberto; Lau, Daryl T; Khudyakov, Yury
Hepatitis C virus (HCV) is a major cause of liver disease world-wide. Current interferon and ribavirin (IFN/RBV) therapy is effective in 50%-60% of patients. HCV exists in infected patients as a large viral population of intra-host variants (quasispecies), which may be differentially resistant to interferon treatment. We present a method for measuring differential interferon resistance of HCV quasispecies based on mathematical modeling and analysis of HCV population dynamics during the first hours of interferon therapy. The mathematical models showed that individual intra-host HCV variants have a wide range of resistance to IFN treatment in each patient. Analysis of differential IFN resistance among intra-host HCV variants allows for accurate prediction of response to IFN therapy. The models strongly suggest that resistance to interferon may vary broadly among closely related variants in infected hosts and therapy outcome may be defined by a single or a few variants irrespective of their frequency in the intra-host HCV population before treatment.
Wong, Hui Hui; Fung, To Sing; Fang, Shouguo; Huang, Mei; Le, My Tra; Liu, Ding Xiang
2018-02-01
Severe acute respiratory syndrome coronavirus (SARS-CoV) is an inefficient inducer of interferon (IFN) response. It expresses various proteins that effectively circumvent IFN production at different levels via distinct mechanisms. Through the construction of recombinant IBV expressing proteins 8a, 8b and 8ab encoded by SARS-CoV ORF8, we demonstrate that expression of 8b and 8ab enables the corresponding recombinant viruses to partially overcome the inhibitory actions of IFN activation to achieve higher replication efficiencies in cells. We also found that proteins 8b and 8ab could physically interact with IRF3. Overexpression of 8b and 8ab resulted in the reduction of poly (I:C)-induced IRF3 dimerization and inhibition of the IFN-β signaling pathway. This counteracting effect was partially mediated by protein 8b/8ab-induced degradation of IRF3 in a ubiquitin-proteasome-dependent manner. Taken together, we propose that SARS-CoV may exploit the unique functions of proteins 8b and 8ab as novel mechanisms to overcome the effect of IFN response during virus infection. Copyright © 2017 Elsevier Inc. All rights reserved.
Wang, Jennifer P; Zhang, Lei; Madera, Rachel F; Woda, Marcia; Libraty, Daniel H
2012-07-06
Sex differences in response to microbial infections, especially viral ones, may be associated with Toll-like receptor (TLR)-mediated responses by plasmacytoid dendritic cells (pDCs). In this study, we identified sex differences in human infant pDC interferon-α production following challenge with the TLR7/8 agonist R-848. Male pDC responses were significantly lower than those of females during early infancy. This difference may be attributed to the androgen surge experienced by males during the early infancy period. Pretreatment of human pDCs with dihydrotestosterone produced a significant reduction in interferon-α production following R-848 challenge. Androgen-mediated regulation of pDC TLR7-driven innate immune responses may contribute to the observed sex differences in response to infections during early infancy.
Phleboviruses and the Type I Interferon Response
Wuerth, Jennifer Deborah; Weber, Friedemann
2016-01-01
The genus Phlebovirus of the family Bunyaviridae contains a number of emerging virus species which pose a threat to both human and animal health. Most prominent members include Rift Valley fever virus (RVFV), sandfly fever Naples virus (SFNV), sandfly fever Sicilian virus (SFSV), Toscana virus (TOSV), Punta Toro virus (PTV), and the two new members severe fever with thrombocytopenia syndrome virus (SFTSV) and Heartland virus (HRTV). The nonstructural protein NSs is well established as the main phleboviral virulence factor in the mammalian host. NSs acts as antagonist of the antiviral type I interferon (IFN) system. Recent progress in the elucidation of the molecular functions of a growing list of NSs proteins highlights the astonishing variety of strategies employed by phleboviruses to evade the IFN system. PMID:27338447
Affinity of antigen encounter and other early B-cell signals determine B-cell fate
Benson, Micah J; Erickson, Loren D; Gleeson, Michael W; Noelle, Randolph J
2010-01-01
Three possible effector fates await the naïve follicular B cell following antigen stimulation in thymus-dependent reactions. Short-lived plasma cells produce an initial burst of germline-encoded protective antibodies, and long-lived plasma cells and memory B cells arise from the germinal center and function to enhance and sustain the humoral immune response. The inherent B-cell receptor affinity of naïve follicular B cells and the contribution of other early B-cell signals pre-determines the pattern of transcription factor expression and the differentiation path taken by these cells. High initial B-cell receptor affinity shunts naïve follicular B-cell clones towards the short-lived plasma cell fate, whereas modest-affinity clones are skewed towards a plasma cell fate and low-affinity clones are recruited into the germinal center and are selected for both long-lived plasma cells and memory B cell pathways. In the germinal center reaction, increased levels of the transcription factor interferon regulatory factor-4 drive the molecular program that dictates differentiation into the long-lived plasma cell phenotype but has no impact on the memory B cell compartment. We hypothesize that graded interferon regulatory factor-4 levels driven by signals to B cells, including B-cell receptor signal strength, are responsible for this branch point in the B-cell terminal differentiation pathway. PMID:17433651
Shen, Miaoqing; Bunaciu, Rodica P; Congleton, Johanna; Jensen, Holly A; Sayam, Lavanya G; Varner, Jeffrey D; Yen, Andrew
2011-12-01
All-trans retinoic acid (RA) and interferons (IFNs) have efficacy in treating certain leukemias and lymphomas, respectively, motivating interest in their mechanism of action to improve therapy. Both RA and IFNs induce interferon regulatory factor-1 (IRF-1). We find that in HL-60 myeloblastic leukemia cells which undergo mitogen activated protien kinase (MAPK)-dependent myeloid differentiation in response to RA, IRF-1 propels differentiation. RA induces MAPK-dependent expression of IRF-1. IRF-1 binds c-Cbl, a MAPK related adaptor. Ectopic IRF-1 expression causes CD38 expression and activation of the Raf/MEK/ERK axis, and enhances RA-induced differentiation by augmenting CD38, CD11b, respiratory burst and G0 arrest. Ectopic IRF-1 expression also decreases the activity of aldehyde dehydrogenase 1, a stem cell marker, and enhances RA-induced ALDH1 down-regulation. Interestingly, expression of aryl hydrocarbon receptor (AhR), which is RA-induced and known to down-regulate Oct4 and drive RA-induced differentiation, also enhances IRF-1 expression. The data are consistent with a model whereby IRF-1 acts downstream of RA and AhR to enhance Raf/MEK/ERK activation and propel differentiation.
Jääskeläinen, Kirsi M; Kaukinen, Pasi; Minskaya, Ekaterina S; Plyusnina, Angelina; Vapalahti, Olli; Elliott, Richard M; Weber, Friedemann; Vaheri, Antti; Plyusnin, Alexander
2007-10-01
The S RNA genome segment of hantaviruses carried by Arvicolinae and Sigmodontinae rodents encodes the nucleocapsid (N) protein and has an overlapping (+1) open reading frame (ORF) for a putative nonstructural protein (NSs). The aim of this study was to determine whether the ORF is functional. A protein corresponding to the predicted size of Tula virus (TULV) NSs was detected using coupled in vitro transcription and translation from a cloned S segment cDNA, and a protein corresponding to the predicted size of Puumala virus (PUUV) NSs was detected in infected cells by Western blotting with an anti-peptide serum. The activities of the interferon beta (IFN-beta) promoter, and nuclear factor kappa B (NF-kappaB)- and interferon regulatory factor-3 (IRF-3) responsive promoters, were inhibited in COS-7 cells transiently expressing TULV or PUUV NSs. Also IFN-beta mRNA levels in IFN-competent MRC5 cells either infected with TULV or transiently expressing NSs were decreased. These data demonstrate that Tula and Puumala hantaviruses have a functional NSs ORF. The findings may explain why the NSs ORF has been preserved in the genome of most hantaviruses during their long evolution and why hantavirus-infected cells secrete relatively low levels of IFNs. (c) 2007 Wiley-Liss, Inc.
The POU Transcription Factor Oct-1 Represses Virus-Induced Interferon A Gene Expression
Mesplède, Thibault; Island, Marie-Laure; Christeff, Nicolas; Petek, Fahrettin; Doly, Janine; Navarro, Sébastien
2005-01-01
Alpha interferon (IFN-α) and IFN-β are able to interfere with viral infection. They exert a vast array of biologic functions, including growth arrest, cell differentiation, and immune system regulation. This regulation extends from innate immunity to cellular and humoral adaptive immune responses. A strict control of expression is needed to prevent detrimental effects of unregulated IFN. Multiple IFN-A subtypes are coordinately induced in human and mouse cells infected by virus and exhibit differences in expression of their individual mRNAs. We demonstrated that the weakly expressed IFN-A11 gene is negatively regulated after viral infection, due to a distal negative regulatory element, binding homeoprotein pituitary homeobox 1 (Pitx1). Here we show that the POU protein Oct-1 binds in vitro and in vivo to the IFN-A11 promoter and represses IFN-A expression upon interferon regulatory factor overexpression. Furthermore, we show that Oct-1-deficient MEFs exhibit increased in vivo IFN-A gene expression and increased antiviral activity. Finally, the IFN-A expression pattern is modified in Oct-1-deficient MEFs. The broad representation of effective and potent octamer-like sequences within IFN-A promoters suggests an important role for Oct-1 in IFN-A regulation. PMID:16166650
Itaconate is an anti-inflammatory metabolite that activates Nrf2 via alkylation of KEAP1.
Mills, Evanna L; Ryan, Dylan G; Prag, Hiran A; Dikovskaya, Dina; Menon, Deepthi; Zaslona, Zbigniew; Jedrychowski, Mark P; Costa, Ana S H; Higgins, Maureen; Hams, Emily; Szpyt, John; Runtsch, Marah C; King, Martin S; McGouran, Joanna F; Fischer, Roman; Kessler, Benedikt M; McGettrick, Anne F; Hughes, Mark M; Carroll, Richard G; Booty, Lee M; Knatko, Elena V; Meakin, Paul J; Ashford, Michael L J; Modis, Louise K; Brunori, Gino; Sévin, Daniel C; Fallon, Padraic G; Caldwell, Stuart T; Kunji, Edmund R S; Chouchani, Edward T; Frezza, Christian; Dinkova-Kostova, Albena T; Hartley, Richard C; Murphy, Michael P; O'Neill, Luke A
2018-04-05
The endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues. Itaconate alkylates cysteine residues 151, 257, 288, 273 and 297 on the protein KEAP1, enabling Nrf2 to increase the expression of downstream genes with anti-oxidant and anti-inflammatory capacities. The activation of Nrf2 is required for the anti-inflammatory action of itaconate. We describe the use of a new cell-permeable itaconate derivative, 4-octyl itaconate, which is protective against lipopolysaccharide-induced lethality in vivo and decreases cytokine production. We show that type I interferons boost the expression of Irg1 (also known as Acod1) and itaconate production. Furthermore, we find that itaconate production limits the type I interferon response, indicating a negative feedback loop that involves interferons and itaconate. Our findings demonstrate that itaconate is a crucial anti-inflammatory metabolite that acts via Nrf2 to limit inflammation and modulate type I interferons.
Liu, San-du; Cheng, Ming-liang; Ren, Hong; Yang, Qing-kun; Shu, De-yun
2012-08-01
To investigate the efficacy of interferon alpha 2 b plus ribavirin combination therapy in sixty-two patients with chronic hepatitis c (CHC) infection originating from a single blood donor. The 62 patients who developed CHC following blood transfusion from a known single infected donor were treated with interferon and ribavirin combination therapy for 48 weeks and followed-up for 96 weeks. The therapy regimen consisted of subcutaneous administration of 3-500 MIU interferon alpha 2 b every other day and daily oral administration of 0.6-1.0 g of ribavirin. Patients were monitored during treatment and in follow-up for sustained virological response (SVR), early virology response (EVR), treatment end virology response (ETVR), biochemical response of withdrawals, and side effects. The SVR rate was 83.9% (52/62). The EVR rate was 95.2% (59/62). The ETVR rate was 87.1% (54/62). The biochemical response rate after withdrawal of treatment was 100.0%. Eight patients developed mildly abnormal thyroid function as a result of the interferon therapy, but all were able to complete the antiviral treatment regimen under the care of endocrinologists. Younger age, relatively short course of disease, low viral load, and better compliance, but not sex, were correlated to curative effect of the combination therapy. Interferon alpha 2 b plus ribavirin combination therapy had a significant curative effect on a group of 62 CHC patients originating from a single case, with 52 of the patients showing SVR out to 96 weeks after therapy. Antiviral treatment is recommended for hepatitis C virus-positive patients to eradicate the virus and prevent disease progression.
Lessard, M; Gagnon, N; Godson, D L; Petit, H V
2004-07-01
The objectives of this study were to evaluate the functional properties of immunocompetent cells in dairy cows fed diets enriched in n-3 or n-6 polyunsaturated fatty acids during the transition period. Six weeks before calving, 21 primiparous and 27 multiparous pregnant Holstein dairy cows were randomly allotted to 1 of 3 dietary fat treatments: calcium salts of palm oil (Megalac), micronized soybeans, or whole flaxseed, which are, respectively, rich in saturated, n-6, or n-3 fatty acids. On wk 6 and 3 before parturition, cows received a subcutaneous injection of ovalbumin to measure the antibody response in colostrum and serum. Colostrum samples were collected at the first milking after calving, and blood samples were taken 6, 3, and 1 wk before the expected calving date and 1, 3, and 6 wk after calving. Blood mononuclear cells were cultured to evaluate the proliferative response to concanavalin A and the in vitro productions of interferon-gamma, tumor necrosis factor-alpha, nitric oxide, and prostaglandin E2. The serum antibody response to ovalbumin was unaffected by dietary fatty acids, but the response was lower in primiparous cows than in multiparous cows. A significant diet x parity interaction indicated that colostral antibody level against ovalbumin was significantly higher in multiparous cows fed soybeans than in those fed flaxseed or Megalac; there was no difference among treatments for primiparous cows. The lymphocyte response to concanavalin A was lower in cows fed soybeans than in those receiving flaxseed or Megalac when the cells were incubated with autologous serum. The proliferative response of mononuclear cells incubated with autologous serum was suppressed in the 1st wk after calving in both primiparous and multiparous cows, and multiparous cows showed a higher response than primiparous cows throughout the experiment. There was a significant interaction between parity and diet as a result of a greater production of interferon-gamma by mononuclear cells incubated with autologous serum in multiparous cows than in primiparous cows fed flaxseed; there was no difference among cows fed the other diets. Interferon-gamma production was reduced around calving while the inverse was observed for productions of nitric oxide and tumor necrosis factor-alpha. Productions of nitric oxide, prostaglandin E2, and tumor necrosis factor-gamma were greater in primiparous cows than in multiparous cows. In conclusion, functional properties of lymphocytes and monocyte/macrophage lineage of dairy cows during the transition period are modulated by parturition and the composition of polyunsaturated fatty acids in the diet.
Gupta, Kanupriya; Ogendi, Brian M. O.; Bakshi, Rakesh K.; Kapil, Richa; Press, Christen G.; Sabbaj, Steffanie; Lee, Jeannette Y.
2017-01-01
ABSTRACT Chlamydia trachomatis infection is the most prevalent bacterial sexually transmitted infection and can cause significant reproductive morbidity in women. There is insufficient knowledge of C. trachomatis-specific immune responses in humans, which could be important in guiding vaccine development efforts. In contrast, murine models have clearly demonstrated the essential role of T helper type 1 (Th1) cells, especially interferon gamma (IFN-γ)-producing CD4+ T cells, in protective immunity to chlamydia. To determine the frequency and magnitude of Th1 cytokine responses elicited to C. trachomatis infection in humans, we stimulated peripheral blood mononuclear cells from 90 chlamydia-infected women with C. trachomatis elementary bodies, Pgp3, and major outer membrane protein and measured IFN-γ-, tumor necrosis factor alpha (TNF-α)-, and interleukin-2 (IL-2)-producing CD4+ and CD8+ T-cell responses using intracellular cytokine staining. The majority of chlamydia-infected women elicited CD4+ TNF-α responses, with frequency and magnitude varying significantly depending on the C. trachomatis antigen used. CD4+ IFN-γ and IL-2 responses occurred infrequently, as did production of any of the three cytokines by CD8+ T cells. About one-third of TNF-α-producing CD4+ T cells coproduced IFN-γ or IL-2. In summary, the predominant Th1 cytokine response elicited to C. trachomatis infection in women was a CD4+ TNF-α response, not CD4+ IFN-γ, and a subset of the CD4+ TNF-α-positive cells produced a second Th1 cytokine. PMID:28100498
Wang, Guohua; Wang, Fang; Huang, Qian; Li, Yu; Liu, Yunlong; Wang, Yadong
2015-01-01
Transcription factors are proteins that bind to DNA sequences to regulate gene transcription. The transcription factor binding sites are short DNA sequences (5-20 bp long) specifically bound by one or more transcription factors. The identification of transcription factor binding sites and prediction of their function continue to be challenging problems in computational biology. In this study, by integrating the DNase I hypersensitive sites with known position weight matrices in the TRANSFAC database, the transcription factor binding sites in gene regulatory region are identified. Based on the global gene expression patterns in cervical cancer HeLaS3 cell and HelaS3-ifnα4h cell (interferon treatment on HeLaS3 cell for 4 hours), we present a model-based computational approach to predict a set of transcription factors that potentially cause such differential gene expression. Significantly, 6 out 10 predicted functional factors, including IRF, IRF-2, IRF-9, IRF-1 and IRF-3, ICSBP, belong to interferon regulatory factor family and upregulate the gene expression levels responding to the interferon treatment. Another factor, ISGF-3, is also a transcriptional activator induced by interferon alpha. Using the different transcription factor binding sites selected criteria, the prediction result of our model is consistent. Our model demonstrated the potential to computationally identify the functional transcription factors in gene regulation.
Rashid, Mohammad B; Talukder, Anup K; Kusama, Kazuya; Haneda, Shingo; Takedomi, Toshiro; Yoshino, Hitomi; Moriyasu, Satoru; Matsui, Motozumi; Shimada, Masayuki; Imakawa, Kazuhiko; Miyamoto, Akio
2018-06-12
Recent studies suggest that Day-7 bovine embryo starts to communicate with the uterine epithelium through interferon-tau (IFNT) signaling. However, immune modulatory role of IFNT in the uterus just after the embryo moves from the oviduct is unclear. We aimed to examine the hypothesis that Day-7 bovine embryo secretes IFNT in the uterus, which induces anti-inflammatory response in immune cells. The uterine flush (UF) with multiple embryos was collected from Day-7 donor pregnant cows and peripheral blood mononuclear cells (PBMCs) were then cultured in UF. Transcripts detected in PBMCs revealed that UF from pregnant cows down-regulated pro-inflammatory cytokines (TNFA, IL1B) and up-regulated anti-inflammatory cytokine (IL10) expression, with activation of interferon-stimulated genes (ISGs; ISG15, OAS1) as compared with UF from non-pregnant cows. An addition of specific anti-IFNT antibody to the UF inhibited the effect on PBMCs, indicating that IFNT is a major factor for such immune modulation. The observation that conditioned media from bovine uterine epithelial cells both stimulated with IFNT in vitro and supplemented with fresh IFNT induced similar PBMCs gene expression, confirming that IFNT directly acts on this immune crosstalk. This study shows that IFNT secreted from Day-7 embryo in vivo generates anti-inflammatory response in immune cells, which may provide immunological tolerance to accept the embryo. Copyright © 2018 Elsevier Inc. All rights reserved.
Younossi, Zobair M; Baranova, Ancha; Afendy, Arian; Collantes, Rochelle; Stepanova, Maria; Manyam, Ganiraju; Bakshi, Anita; Sigua, Christopher L; Chan, Joanne P; Iverson, Ayuko A; Santini, Christopher D; Chang, Sheng-Yung P
2009-03-01
Responsiveness to hepatitis C virus (HCV) therapy depends on viral and host factors. Our aim was to assess sustained virologic response (SVR)-associated early gene expression in patients with HCV receiving pegylated interferon-alpha2a (PEG-IFN-alpha2a) or PEG-IFN-alpha2b and ribavirin with the duration based on genotypes. Blood samples were collected into PAXgene tubes prior to treatment as well as 1, 7, 28, and 56 days after treatment. From the peripheral blood cells, total RNA was extracted, quantified, and used for one-step reverse transcription polymerase chain reaction to profile 154 messenger RNAs. Expression levels of messenger RNAs were normalized with six "housekeeping" genes and a reference RNA. Multiple regression and stepwise selection were performed to assess differences in gene expression at different time points, and predictive performance was evaluated for each model. A total of 68 patients were enrolled in the study and treated with combination therapy. The results of gene expression showed that SVR could be predicted by the gene expression of signal transducer and activator of transcription-6 (STAT-6) and suppressor of cytokine signaling-1 in the pretreatment samples. After 24 hours, SVR was predicted by the expression of interferon-dependent genes, and this dependence continued to be prominent throughout the treatment. Early gene expression during anti-HCV therapy may elucidate important molecular pathways that may be influencing the probability of achieving virologic response.
[Natural history, diagnosis and treatment of chronic hepatitis B and C in hemodialysis patients].
Nicolardi, Erica; Grieco, Antonio; Rapaccini, Gian Ludovico; Pompili, Maurizio
2010-01-01
Chronic hepatitis B and C are important causes of liver disease in hemodialysis units. The most important route of transmission is the inapparent parenteral route; known risk factors are the high prevalence of HBV and HCV infections in hemodialysis units, previous blood transfusions, long-term dialysis treatment, frequent changes of hemodialysis unit, and previous renal transplants. The source, time and duration of infection are often difficult to ascertain. The studies investigating the natural history of viral hepatitis in hemodialysis patients are few and limited by a short follow-up, but they show an independent and negative impact on survival due to an increased risk of liver cirrhosis and hepatocellular carcinoma. The treatment options include conventional or pegylated interferon (alone or in association with ribavirin) and the nucleoside/nucleotide analogs. The aim of treatment is viral eradication or persistent suppression of viral replication. The altered pharmacokinetics, the increased risk of drug-related toxicity, and the need for renal transplant complicate the management of antiviral therapy. In patients with chronic HBV infection and active replication the most common approach is persistent suppression of viral replication using nucleoside/nucleotide analogs. As regards hepatitis C, several clinical trials evaluating conventional interferon monotherapy have shown higher sustained virological response and dropout rates in dialysis patients than in patients with normal kidney function. Data about pegylated interferon as monotherapy or in association with ribavirin are promising but limited. Hemodialyzed patients obtaining a sustained virological response often maintain the response after kidney transplantation.
Viperin targets flavivirus virulence by inducing assembly of non-infectious capsid particles.
Vonderstein, Kirstin; Nilsson, Emma; Hubel, Philipp; Nygård Skalman, Lars; Upadhyay, Arunkumar; Pasto, Jenny; Pichlmair, Andreas; Lundmark, Richard; Överby, Anna K
2017-10-18
Efficient antiviral immunity requires interference with virus replication at multiple layers targeting diverse steps in the viral life cycle. Here we describe a novel flavivirus inhibition mechanism that results in interferon-mediated obstruction of tick-borne encephalitis virus particle assembly, and involves release of malfunctional membrane associated capsid (C) particles. This mechanism is controlled by the activity of the interferon-induced protein viperin, a broad spectrum antiviral interferon stimulated gene. Through analysis of the viperin-interactome, we identified the Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1), as the cellular protein targeted by viperin. Viperin-induced antiviral activity as well as C-particle release was stimulated by GBF1 inhibition and knock down, and reduced by elevated levels of GBF1. Our results suggest that viperin targets flavivirus virulence by inducing the secretion of unproductive non-infectious virus particles, by a GBF1-dependent mechanism. This yet undescribed antiviral mechanism allows potential therapeutic intervention. Importance The interferon response can target viral infection on almost every level, however, very little is known about interference of flavivirus assembly. Here we show that interferon, through the action of viperin, can disturb assembly of tick-borne encephalitis virus. The viperin protein is highly induced after viral infection and exhibit broad-spectrum antiviral activity. However, the mechanism of action is still elusive and appear to vary between the different viruses, indicating that cellular targets utilized by several viruses might be involved. In this study we show that viperin induce capsid particle release by interacting and inhibiting the function of the cellular protein Golgi Brefeldin A resistant guanine nucleotide exchange factor 1 (GBF1). GBF1 is a key protein in the cellular secretory pathway and essential in the life cycle of many viruses, also targeted by viperin, implicating GBF1 as a novel putative drug target. Copyright © 2017 Vonderstein et al.
ATL response to arsenic/interferon therapy is triggered by SUMO/PML/RNF4-dependent Tax degradation.
Dassouki, Zeina; Sahin, Umut; El Hajj, Hiba; Jollivet, Florence; Kfoury, Youmna; Lallemand-Breitenbach, Valérie; Hermine, Olivier; de Thé, Hugues; Bazarbachi, Ali
2015-01-15
The human T-cell lymphotropic virus type I (HTLV-1) Tax transactivator initiates transformation in adult T-cell leukemia/lymphoma (ATL), a highly aggressive chemotherapy-resistant malignancy. The arsenic/interferon combination, which triggers degradation of the Tax oncoprotein, selectively induces apoptosis of ATL cell lines and has significant clinical activity in Tax-driven murine ATL or human patients. However, the role of Tax loss in ATL response is disputed, and the molecular mechanisms driving degradation remain elusive. Here we demonstrate that ATL-derived or HTLV-1-transformed cells are dependent on continuous Tax expression, suggesting that Tax degradation underlies clinical responses to the arsenic/interferon combination. The latter enforces promyelocytic leukemia protein (PML) nuclear body (NB) formation and partner protein recruitment. In arsenic/interferon-treated HTLV-1 transformed or ATL cells, Tax is recruited onto NBs and undergoes PML-dependent hyper-sumoylation by small ubiquitin-like modifier (SUMO)2/3 but not SUMO1, ubiquitination by RNF4, and proteasome-dependent degradation. Thus, the arsenic/interferon combination clears ATL through degradation of its Tax driver, and this regimen could have broader therapeutic value by promoting degradation of other pathogenic sumoylated proteins. © 2015 by The American Society of Hematology.
Iacob, Speranta; Gheorghe, Liana; Hrehoret, Doina; Becheanu, Gabriel; Herlea, Vlad; Popescu, Irinel
2008-06-01
Hepatitis C virus (HCV) related cirrhosis represents the leading indication for liver transplantation (LT) worldwide and HCV reinfection is the rule among transplant recipients. Combination therapy with interferon and ribavirin is the treatment of choice for established recurrent hepatitis C. To evaluate the efficacy and safety of the combination of pegylated interferon alpha-2a and ribavirin in LT recipients with histological recurrence of hepatitis C. Seven LT recipients with chronic hepatitis C recurrence were treated with peginterferon alpha-2a with an initial intended dose of 180 microg/week and an intended dose of ribavirin 800-1000 mg/day for at least 12 months and followed-up for at least 24 weeks. Early virological response rate was 57.1%. Three patients (42.8%) had end of treatment virological response and all had also sustained viral response (SVR). Five patients had end of treatment biological response, out of which 4 had also sustained biochemical response. Three patients had both SVR and sustained biochemical response. Four patients had end of treatment histological response, out of which 3 patients had also SVR. Cytopenia was the most common adverse event: anemia (57.1%), leucopenia/neutropenia (71.4%), thrombocytopenia (42.8%). Combination of pegylated interferon and ribavirin can be safely and successfully used in liver transplant recipients.
Flores, Jose; DuPont, Herbert L; Paredes-Paredes, Mercedes; Aguirre-Garcia, M Magdalena; Rojas, Araceli; Gonzalez, Alexei; Okhuysen, Pablo C
2010-05-01
Enterotoxigenic Escherichia coli (ETEC), which produces heat-labile toxin (LT), is a common cause of travelers' diarrhea (TD). The B subunit of ETEC LT is immunologically related to the B subunit of Vibrio cholerae toxin (CT). In this pilot study we evaluated the whole-blood gamma interferon response to CT B in 17 U.S. adults traveling to Mexico. Only one of nine subjects who demonstrated a cellular immune response as determined by whole-blood gamma interferon production to CT B on arrival to Mexico developed diarrhea, whereas five of eight without a cellular response developed diarrhea. Markers of the cellular immune response to ETEC LT could help in identifying individuals immune to ETEC LT, and these markers deserve additional study.
2012-01-01
Background Sex differences in response to microbial infections, especially viral ones, may be associated with Toll-like receptor (TLR)-mediated responses by plasmacytoid dendritic cells (pDCs). Results In this study, we identified sex differences in human infant pDC interferon-α production following challenge with the TLR7/8 agonist R-848. Male pDC responses were significantly lower than those of females during early infancy. This difference may be attributed to the androgen surge experienced by males during the early infancy period. Pretreatment of human pDCs with dihydrotestosterone produced a significant reduction in interferon-α production following R-848 challenge. Conclusions Androgen-mediated regulation of pDC TLR7-driven innate immune responses may contribute to the observed sex differences in response to infections during early infancy. PMID:22769054
USDA-ARS?s Scientific Manuscript database
Gamma interferon (IFN-gamma)-induced protein 10 (IP-10) has recently shown promise as a diagnostic biomarker of Mycobacterium tuberculosis infection of humans. The aim of the current study was to compare IP-10 and IFN-gamma responses upon Mycobacterium bovis infection in cattle using archived sample...
D'Ombrain, Marthe C; Voss, Till S; Maier, Alexander G; Pearce, J Andrew; Hansen, Diana S; Cowman, Alan F; Schofield, Louis
2007-08-16
Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP-1) is a variable antigen expressed by P. falciparum, the malarial parasite. PfEMP-1, present on the surface of infected host erythrocytes, mediates erythrocyte binding to vascular endothelium, enabling the parasite to avoid splenic clearance. In addition, PfEMP-1 is proposed to regulate host immune responses via interactions with the CD36 receptor on antigen-presenting cells. We investigated the immunoregulatory function of PfEMP-1 by comparing host cell responses to erythrocytes infected with either wild-type parasites or transgenic parasites lacking PfEMP-1. We showed that PfEMP-1 suppresses the production of the cytokine interferon-gamma by human peripheral blood mononuclear cells early after exposure to P. falciparum. Suppression of this rapid proinflammatory response was CD36 independent and specific to interferon-gamma production by gammadelta-T, NK, and alphabeta-T cells. These data demonstrate a parasite strategy for downregulating the proinflammatory interferon-gamma response and further establish transgenic parasites lacking PfEMP-1 as powerful tools for elucidating PfEMP-1 functions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Indukuri, Hemalatha; Castro, Shawn M.; Liao, S.-M.
2006-09-15
Respiratory syncytial virus (RSV)-induced chemokine gene expression occurs through the activation of a subset of transcription factors, including Interferon Regulatory Factor (IRF)-3. In this study, we have investigated the signaling pathway leading to RSV-induced IRF-3 activation and whether it is mediated by intracellular reactive oxygen species (ROS) generation. Our results show that RSV infection induces expression and catalytic activity of IKK{epsilon}, a noncanonical IKK-like kinase. Expression of a kinase-inactive IKK{epsilon} blocks RSV-induced IRF-3 serine phosphorylation, nuclear translocation and DNA-binding, leading to inhibition of RANTES gene transcription, mRNA expression and protein synthesis. Treatment of alveolar epithelial cells with antioxidants or withmore » NAD(P)H oxidase inhibitors abrogates RSV-induced chemokine secretion, IRF-3 phosphorylation and IKK{epsilon} induction, indicating that ROS generation plays a fundamental role in the signaling pathway leading to IRF-3 activation, therefore, identifying a novel molecular target for the development of strategies aimed to modify the inflammatory response associated with RSV infection of the lung.« less
Enhanced antitumor reactivity of tumor-sensitized T cells by interferon alfa
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vander Woude, D.L.; Wagner, P.D.; Shu, S.
Tumor-draining lymph node cells from mice bearing the methylcholanthrene-induced MCA 106 tumors can be sensitized in vitro to acquire antitumor reactivity. We examined the effect of interferon alfa on the function of cells that underwent in vitro sensitization in adoptive immunotherapy. Interferon alfa increased the antitumor reactivity of in vitro sensitized cells in the treatment of MCA 106 pulmonary metastases. This effect was evident in irradiated mice, indicating that a host response to the interferon alfa was not required. Interferon alfa treatment increased class I major histocompatibility complex antigen expression on tumor cells and increased their susceptibility to lysis bymore » in vitro sensitized cells. These results suggest that interferon alfa enhancement of adoptive immunotherapy was mediated by its effect on tumor cells. Interferon alfa may be a useful adjunct to the adoptive immunotherapy of human cancer.« less
Meta-Analysis Identifies NF-κB as a Therapeutic Target in Renal Cancer
Peri, Suraj; Devarajan, Karthik; Yang, Dong-Hua; Knudson, Alfred G.; Balachandran, Siddharth
2013-01-01
Objective To determine the expression patterns of NF-κB regulators and target genes in clear cell renal cell carcinoma (ccRCC), their correlation with von Hippel Lindau (VHL) mutational status, and their association with survival outcomes. Methods Meta-analyses were carried out on published ccRCC gene expression datasets by RankProd, a non-parametric statistical method. DEGs with a False Discovery Rate of < 0.05 by this method were considered significant, and intersected with a curated list of NF-κB regulators and targets to determine the nature and extent of NF-κB deregulation in ccRCC. Results A highly-disproportionate fraction (~40%; p < 0.001) of NF-κB regulators and target genes were found to be up-regulated in ccRCC, indicative of elevated NF-κB activity in this cancer. A subset of these genes, comprising a key NF-κB regulator (IKBKB) and established mediators of the NF-κB cell-survival and pro-inflammatory responses (MMP9, PSMB9, and SOD2), correlated with higher relative risk, poorer prognosis, and reduced overall patient survival. Surprisingly, levels of several interferon regulatory factors (IRFs) and interferon target genes were also elevated in ccRCC, indicating that an ‘interferon signature’ may represent a novel feature of this disease. Loss of VHL gene expression correlated strongly with the appearance of NF-κB- and interferon gene signatures in both familial and sporadic cases of ccRCC. As NF-κB controls expression of key interferon signaling nodes, our results suggest a causal link between VHL loss, elevated NF-κB activity, and the appearance of an interferon signature during ccRCC tumorigenesis. Conclusions These findings identify NF-κB and interferon signatures as clinical features of ccRCC, provide strong rationale for the incorporation of NF-κB inhibitors and/or and the exploitation of interferon signaling in the treatment of ccRCC, and supply new NF-κB targets for potential therapeutic intervention in this currently-incurable malignancy. PMID:24116146
Interferon Induced Transfer of Viral Resistance
1981-02-01
necseeary and Identify by block number) - Interferon, Cell Communication, Resistance Transfer, Viruses , Antibody Production, Polypeptide Hormones...lymphocytes and the foreign cells, but not mycoplasmas or endogenous viruses , appears to be required for induction. The kinetics of production of leukocyte...interferon by nonsensitized lymphocytes in response to foreign cells is similar to that induced by viruses . We have shown that a component probably of Vie
Nagesh, Prashanth Thevkar
2016-01-01
ABSTRACT Viruses dysregulate the host factors that inhibit virus infection. Here, we demonstrate that human enzyme, histone deacetylase 1 (HDAC1) is a new class of host factor that inhibits influenza A virus (IAV) infection, and IAV dysregulates HDAC1 to efficiently replicate in epithelial cells. A time-dependent decrease in HDAC1 polypeptide level was observed in IAV-infected cells, reducing to <50% by 24 h of infection. A further depletion (97%) of HDAC1 expression by RNA interference increased the IAV growth kinetics, increasing it by >3-fold by 24 h and by >6-fold by 48 h of infection. Conversely, overexpression of HDAC1 decreased the IAV infection by >2-fold. Likewise, a time-dependent decrease in HDAC1 activity, albeit with slightly different kinetics to HDAC1 polypeptide reduction, was observed in infected cells. Nevertheless, a further inhibition of deacetylase activity increased IAV infection in a dose-dependent manner. HDAC1 is an important host deacetylase and, in addition to its role as a transcription repressor, HDAC1 has been lately described as a coactivator of type I interferon response. Consistent with this property, we found that inhibition of deacetylase activity either decreased or abolished the phosphorylation of signal transducer and activator of transcription I (STAT1) and expression of interferon-stimulated genes, IFITM3, ISG15, and viperin in IAV-infected cells. Furthermore, the knockdown of HDAC1 expression in infected cells decreased viperin expression by 58% and, conversely, the overexpression of HDAC1 increased it by 55%, indicating that HDAC1 is a component of IAV-induced host type I interferon antiviral response. IMPORTANCE Influenza A virus (IAV) continues to significantly impact global public health by causing regular seasonal epidemics, occasional pandemics, and zoonotic outbreaks. IAV is among the successful human viral pathogens that has evolved various strategies to evade host defenses, prevent the development of a universal vaccine, and acquire antiviral drug resistance. A comprehensive knowledge of IAV-host interactions is needed to develop a novel and alternative anti-IAV strategy. Host produces a variety of factors that are able to fight IAV infection by employing various mechanisms. However, the full repertoire of anti-IAV host factors and their antiviral mechanisms has yet to be identified. We have identified here a new host factor, histone deacetylase 1 (HDAC1) that inhibits IAV infection. We demonstrate that HDAC1 is a component of host innate antiviral response against IAV, and IAV undermines HDAC1 to limit its role in antiviral response. PMID:26912629
RIOK3 Is an Adaptor Protein Required for IRF3-Mediated Antiviral Type I Interferon Production
Feng, Jun; De Jesus, Paul D.; Su, Victoria; Han, Stephanie; Gong, Danyang; Wu, Nicholas C.; Tian, Yuan; Li, Xudong; Wu, Ting-Ting; Chanda, Sumit K.
2014-01-01
ABSTRACT Detection of cytosolic nucleic acids by pattern recognition receptors leads to the induction of type I interferons (IFNs) and elicits the innate immune response. We report here the identification of RIOK3 as a novel adaptor protein that is essential for the cytosolic nucleic acid-induced type I IFN production and for the antiviral response to gammaherpesvirus through two independent kinome-wide RNA interference screens. RIOK3 knockdown blocks both cytosolic double-stranded B-form DNA and double-stranded RNA-induced IRF3 activation and IFN-β production. In contrast, the overexpression of RIOK3 activates IRF3 and induces IFN-β. RIOK3 functions downstream of TBK1 and upstream of IRF3 activation. Furthermore, RIOK3 physically interacts with both IRF3 and TBK1 and is necessary for the interaction between TBK1 and IRF3. In addition, global transcriptome analysis shows that the expression of many gene involved antiviral responses is dependent on RIOK3. Thus, knockdown of RIOK3 inhibits cellular antiviral responses against both DNA and RNA viruses (herpesvirus and influenza A virus). Our data suggest that RIOK3 plays a critical role in the antiviral type I IFN pathway by bridging TBK1 and IRF3. IMPORTANCE The innate immune response, such as the production of type I interferons, acts as the first line of defense, limiting infectious pathogens directly and shaping the adaptive immune response. In this study, we identified RIOK3 as a novel regulator of the antiviral type I interferon pathway. Specifically, we found that RIOK3 physically interacts with TBK1 and IRF3 and bridges the functions between TBK1 and IRF3 in the activation of type I interferon pathway. The identification of a cellular kinase that plays a role the type I interferon pathway adds another level of complexity in the regulation of innate immunity and will have implications for developing novel strategies to combat viral infection. PMID:24807708
Understanding the causes and consequences of measles virus persistence
Griffin, Diane E.; Lin, Wen-Hsuan W.; Nelson, Ashley N.
2018-01-01
Measles is an acute systemic viral disease with initial amplification of infection in lymphoid tissue and subsequent spread over 10–14 days to multiple organs. Failure of the innate response to control initial measles virus (MeV) replication is associated with the ability of MeV to inhibit the induction of type I interferon and interferon-stimulated antiviral genes. Rather, the innate response is characterized by the expression of proteins regulated by nuclear factor kappa B and the inflammasome. With eventual development of the adaptive response, the rash appears with immune cell infiltration into sites of virus replication to initiate the clearance of infectious virus. However, MeV RNA is cleared much more slowly than recoverable infectious virus and remains present in lymphoid tissue for at least 6 months after infection. Persistence of viral RNA and protein suggests persistent low-level replication in lymphoid tissue that may facilitate maturation of the immune response, resulting in lifelong protection from reinfection, while persistence in other tissues (for example, the nervous system) may predispose to development of late disease such as subacute sclerosing panencephalitis. Further studies are needed to identify mechanisms of viral clearance and to understand the relationship between persistence and development of lifelong immunity. PMID:29560260
Understanding the causes and consequences of measles virus persistence.
Griffin, Diane E; Lin, Wen-Hsuan W; Nelson, Ashley N
2018-01-01
Measles is an acute systemic viral disease with initial amplification of infection in lymphoid tissue and subsequent spread over 10-14 days to multiple organs. Failure of the innate response to control initial measles virus (MeV) replication is associated with the ability of MeV to inhibit the induction of type I interferon and interferon-stimulated antiviral genes. Rather, the innate response is characterized by the expression of proteins regulated by nuclear factor kappa B and the inflammasome. With eventual development of the adaptive response, the rash appears with immune cell infiltration into sites of virus replication to initiate the clearance of infectious virus. However, MeV RNA is cleared much more slowly than recoverable infectious virus and remains present in lymphoid tissue for at least 6 months after infection. Persistence of viral RNA and protein suggests persistent low-level replication in lymphoid tissue that may facilitate maturation of the immune response, resulting in lifelong protection from reinfection, while persistence in other tissues (for example, the nervous system) may predispose to development of late disease such as subacute sclerosing panencephalitis. Further studies are needed to identify mechanisms of viral clearance and to understand the relationship between persistence and development of lifelong immunity.
Thackray, Larissa B; Shrestha, Bimmi; Richner, Justin M; Miner, Jonathan J; Pinto, Amelia K; Lazear, Helen M; Gale, Michael; Diamond, Michael S
2014-10-01
Upon activation of Toll-like and RIG-I-like receptor signaling pathways, the transcription factor IRF5 translocates to the nucleus and induces antiviral immune programs. The recent discovery of a homozygous mutation in the immunoregulatory gene guanine exchange factor dedicator of cytokinesis 2 (Dock2mu/mu) in several Irf5-/- mouse colonies has complicated interpretation of immune functions previously ascribed to IRF5. To define the antiviral functions of IRF5 in vivo, we infected backcrossed Irf5-/-×Dock2wt/wt mice (here called Irf5-/- mice) and independently generated CMV-Cre Irf5fl/fl mice with West Nile virus (WNV), a pathogenic neurotropic flavivirus. Compared to congenic wild-type animals, Irf5-/- and CMV-Cre Irf5fl/fl mice were more vulnerable to WNV infection, and this phenotype was associated with increased infection in peripheral organs, which resulted in higher virus titers in the central nervous system. The loss of IRF5, however, was associated with only small differences in the type I interferon response systemically and in the draining lymph node during WNV infection. Instead, lower levels of several other proinflammatory cytokines and chemokines, as well as fewer and less activated immune cells, were detected in the draining lymph node 2 days after WNV infection. WNV-specific antibody responses in Irf5-/- mice also were blunted in the context of live or inactivated virus infection and this was associated with fewer antigen-specific memory B cells and long-lived plasma cells. Our results with Irf5-/- mice establish a key role for IRF5 in shaping the early innate immune response in the draining lymph node, which impacts the spread of virus infection, optimal B cell immunity, and disease pathogenesis. Although the roles of IRF3 and IRF7 in orchestrating innate and adaptive immunity after viral infection are established, the function of the related transcription factor IRF5 remains less certain. Prior studies in Irf5-/- mice reported conflicting results as to the contribution of IRF5 in regulating type I interferon and adaptive immune responses. The lack of clarity may stem from a recently discovered homozygous loss-of-function mutation of the immunoregulatory gene Dock2 in several colonies of Irf5-/- mice. Here, using a mouse model with a deficiency in IRF5 and wild-type Dock2 alleles, we investigated how IRF5 modulates West Nile virus (WNV) pathogenesis and host immune responses. Our in vivo studies indicate that IRF5 has a key role in shaping the early proinflammatory cytokine response in the draining lymph node, which impacts immunity and control of WNV infection. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Responses to Cytokines and Interferons that Depend upon JAKs and STATs.
Stark, George R; Cheon, HyeonJoo; Wang, Yuxin
2018-01-02
Many cytokines and all interferons activate members of a small family of kinases (the Janus kinases [JAKs]) and a slightly larger family of transcription factors (the signal transducers and activators of transcription [STATs]), which are essential components of pathways that induce the expression of specific sets of genes in susceptible cells. JAK-STAT pathways are required for many innate and acquired immune responses, and the activities of these pathways must be finely regulated to avoid major immune dysfunctions. Regulation is achieved through mechanisms that include the activation or induction of potent negative regulatory proteins, posttranslational modification of the STATs, and other modulatory effects that are cell-type specific. Mutations of JAKs and STATs can result in gains or losses of function and can predispose affected individuals to autoimmune disease, susceptibility to a variety of infections, or cancer. Here we review recent developments in the biochemistry, genetics, and biology of JAKs and STATs. Copyright © 2018 Cold Spring Harbor Laboratory Press; all rights reserved.
Wang, Yaya; Shaked, Iftach; Stanford, Stephanie M; Zhou, Wenbo; Curtsinger, Julie M; Mikulski, Zbigniew; Shaheen, Zachary R; Cheng, Genhong; Sawatzke, Kristy; Campbell, Amanda M; Auger, Jennifer L; Bilgic, Hatice; Shoyama, Fernanda M; Schmeling, David O; Balfour, Henry H; Hasegawa, Kiminori; Chan, Andrew C; Corbett, John A; Binstadt, Bryce A; Mescher, Matthew F; Ley, Klaus; Bottini, Nunzio; Peterson, Erik J
2013-07-25
Immune cells sense microbial products through Toll-like receptors (TLR), which trigger host defense responses including type 1 interferons (IFNs) secretion. A coding polymorphism in the protein tyrosine phosphatase nonreceptor type 22 (PTPN22) gene is a susceptibility allele for human autoimmune and infectious disease. We report that Ptpn22 selectively regulated type 1 IFN production after TLR engagement in myeloid cells. Ptpn22 promoted host antiviral responses and was critical for TLR agonist-induced, type 1 IFN-dependent suppression of inflammation in colitis and arthritis. PTPN22 directly associated with TNF receptor-associated factor 3 (TRAF3) and promotes TRAF3 lysine 63-linked ubiquitination. The disease-associated PTPN22W variant failed to promote TRAF3 ubiquitination, type 1 IFN upregulation, and type 1 IFN-dependent suppression of arthritis. The findings establish a candidate innate immune mechanism of action for a human autoimmunity "risk" gene in the regulation of host defense and inflammation. Copyright © 2013 Elsevier Inc. All rights reserved.
Sun, Xiaoming; Hua, Stephane; Chen, Hsiao-Rong; Ouyang, Zhengyu; Einkauf, Kevin; Tse, Samantha; Ard, Kevin; Ciaranello, Andrea; Yawetz, Sigal; Sax, Paul; Rosenberg, Eric S; Lichterfeld, Mathias; Yu, Xu G
2017-12-19
Although dendritic cells are among the human cell population best equipped for cell-intrinsic antiviral immune defense, they seem highly susceptible to infection with the Zika virus (ZIKV). Using highly purified myeloid dendritic cells isolated from individuals with naturally acquired acute infection, we here show that ZIKV induces profound perturbations of transcriptional signatures relative to healthy donors. Interestingly, we noted a remarkable downregulation of antiviral interferon-stimulated genes and innate immune sensors, suggesting that ZIKV can actively suppress interferon-dependent immune responses. In contrast, several host factors known to support ZIKV infection were strongly upregulated during natural ZIKV infection; these transcripts included AXL, the main entry receptor for ZIKV; SOCS3, a negative regulator of ISG expression; and IDO-1, a recognized inducer of regulatory T cell responses. Thus, during in vivo infection, ZIKV can transform the transcriptome of dendritic cells in favor of the virus to render these cells highly conducive to ZIKV infection. Published by Elsevier Inc.
Yamanaka, Daisuke; Ishibashi, Ken-Ichi; Adachi, Yoshiyuki; Ohno, Naohito
2016-09-01
Recent studies have revealed that lignin-like polymerized polyphenols can activate innate immune systems. In this study, we aimed to evaluate whether these polymerized polyphenols could activate leukocytes from different murine strains. Splenocytes from 12 mouse strains were investigated. Our results revealed species differences in reactivity to phenolic polymers on interferon-γ (IFN-γ) release. Mice that possessed the H2(a) or H2(k) haplotype antigens were the highly responsive strains. To clarify these different points in soluble factors, multiplex cytokine profiling analysis was carried out and we identified interleukin (IL)-2 as a key molecule for IFN-γ induction by polymerized polyphenols. Furthermore, inhibition of IL-2 and IL-2Rα by neutralizing antibodies significantly decreased cytokine production in the highly responsive mice strains. Our results indicate that species difference in reactivity to phenolic polymers is mediated by adequate release of IL-2 and its receptor, IL-2Rα. Copyright © 2016 Elsevier B.V. All rights reserved.
Efficacy of HCV treatment in Poland at the turn of the interferon era - the EpiTer study.
Flisiak, Robert; Pogorzelska, Joanna; Berak, Hanna; Horban, Andrzej; Orłowska, Iwona; Simon, Krzysztof; Tuchendler, Ewelina; Madej, Grzegorz; Piekarska, Anna; Jabłkowski, Maciej; Deroń, Zbigniew; Mazur, Włodzimierz; Kaczmarczyk, Marcin; Janczewska, Ewa; Pisula, Arkadiusz; Smykał, Jacek; Nowak, Krzysztof; Matukiewicz, Marek; Halota, Waldemar; Wernik, Joanna; Sikorska, Katarzyna; Mozer-Lisewska, Iwona; Rozpłochowski, Błażej; Garlicki, Aleksander; Tomasiewicz, Krzysztof; Krzowska-Firych, Joanna; Baka-Ćwierz, Barbara; Kryczka, Wiesław; Zarębska-Michaluk, Dorota; Olszok, Iwona; Boroń-Kaczmarska, Anna; Sobala-Szczygieł, Barbara; Szlauer, Bronisława; Korcz-Ondrzejek, Bogumiła; Sieklucki, Jerzy; Pleśniak, Robert; Ruszała, Agata; Postawa-Kłosińska, Barbara; Citko, Jolanta; Lachowicz-Wawrzyniak, Anna; Musialik, Joanna; Jezierska, Edyta; Dobracki, Witold; Dobracka, Beata; Hałubiec, Jan; Krygier, Rafał; Strokowska, Anna; Chomczyk, Wojciech; Witczak-Malinowska, Krystyna
2016-12-01
Was to analyze the efficacy achieved with regimens available for chronic hepatitis C (CHC) in Poland between 2013 and 2016. Data were collected from 29 centers and included 6786 patients with available sustained virologic response (SVR) data between 1 January 2013 and 31 March 2016. The sustained virologic response rate for genotypes (G) 1a, 1b, 2, 3 and 4 was 62%, 56%, 92%, 67% and 56% respectively; 71% patients ( n = 4832) were treated with pegylated interferon α (Peg-IFNα) and ribavirin (RBV), with SVR rates of 58%, 49%, 92%, 67% and 55% respectively. The sustained virologic response among 5646 G1 infected patients was the lowest with natural interferon α (7%, n = 70) or PegIFN (50%, n = 3779) with RBV, and improved in those receiving triple regimens of Peg-IFN + RBV combined with boceprevir (47%, n = 485), telaprevir (64%, n = 805), simeprevir (73%, n = 132) or sofosbuvir (70%, n = 23). The sustained virologic response with interferon-free regimens of sofosbuvir and RBV ( n = 7), sofosbuvir and simeprevir ( n = 53), and ledipasvir and sofosbuvir ( n = 64) achieved 86%, 89% and 94% respectively. The highest SVR of 98% was observed with ombitasvir/paritaprevir combined with dasabuvir ( n = 227). Patients infected with G3 ( n = 896) and G4 ( n = 220) received mostly Peg-IFN + RBV with SVR of 67% and 56% respectively. Interferon-free regimens were administered in 18 G3/G4 patients and all achieved an SVR. Sofosbuvir combined with Peg-IFN and RBV was administered to 33 patients with an SVR rate of 94%, and a similar rate was achieved among 13 G2 patients treated with interferon and RBV. We observed significant differences in efficacy of HCV regimens available in Poland at the turn of the interferon era. The data will be useful as a comparison for therapeutic options expected in the next few years.
Efficacy of HCV treatment in Poland at the turn of the interferon era – the EpiTer study
Pogorzelska, Joanna; Berak, Hanna; Horban, Andrzej; Orłowska, Iwona; Simon, Krzysztof; Tuchendler, Ewelina; Madej, Grzegorz; Piekarska, Anna; Jabłkowski, Maciej; Deroń, Zbigniew; Mazur, Włodzimierz; Kaczmarczyk, Marcin; Janczewska, Ewa; Pisula, Arkadiusz; Smykał, Jacek; Nowak, Krzysztof; Matukiewicz, Marek; Halota, Waldemar; Wernik, Joanna; Sikorska, Katarzyna; Mozer-Lisewska, Iwona; Rozpłochowski, Błażej; Garlicki, Aleksander; Tomasiewicz, Krzysztof; Krzowska-Firych, Joanna; Baka-Ćwierz, Barbara; Kryczka, Wiesław; Zarębska-Michaluk, Dorota; Olszok, Iwona; Boroń-Kaczmarska, Anna; Sobala-Szczygieł, Barbara; Szlauer, Bronisława; Korcz-Ondrzejek, Bogumiła; Sieklucki, Jerzy; Pleśniak, Robert; Ruszała, Agata; Postawa-Kłosińska, Barbara; Citko, Jolanta; Lachowicz-Wawrzyniak, Anna; Musialik, Joanna; Jezierska, Edyta; Dobracki, Witold; Dobracka, Beata; Hałubiec, Jan; Krygier, Rafał; Strokowska, Anna; Chomczyk, Wojciech; Witczak-Malinowska, Krystyna
2016-01-01
The aim of the study Was to analyze the efficacy achieved with regimens available for chronic hepatitis C (CHC) in Poland between 2013 and 2016. Material and methods Data were collected from 29 centers and included 6786 patients with available sustained virologic response (SVR) data between 1 January 2013 and 31 March 2016. Results The sustained virologic response rate for genotypes (G) 1a, 1b, 2, 3 and 4 was 62%, 56%, 92%, 67% and 56% respectively; 71% patients (n = 4832) were treated with pegylated interferon α (Peg-IFNα) and ribavirin (RBV), with SVR rates of 58%, 49%, 92%, 67% and 55% respectively. The sustained virologic response among 5646 G1 infected patients was the lowest with natural interferon α (7%, n = 70) or PegIFN (50%, n = 3779) with RBV, and improved in those receiving triple regimens of Peg-IFN + RBV combined with boceprevir (47%, n = 485), telaprevir (64%, n = 805), simeprevir (73%, n = 132) or sofosbuvir (70%, n = 23). The sustained virologic response with interferon-free regimens of sofosbuvir and RBV (n = 7), sofosbuvir and simeprevir (n = 53), and ledipasvir and sofosbuvir (n = 64) achieved 86%, 89% and 94% respectively. The highest SVR of 98% was observed with ombitasvir/paritaprevir combined with dasabuvir (n = 227). Patients infected with G3 (n = 896) and G4 (n = 220) received mostly Peg-IFN + RBV with SVR of 67% and 56% respectively. Interferon-free regimens were administered in 18 G3/G4 patients and all achieved an SVR. Sofosbuvir combined with Peg-IFN and RBV was administered to 33 patients with an SVR rate of 94%, and a similar rate was achieved among 13 G2 patients treated with interferon and RBV. Conclusions We observed significant differences in efficacy of HCV regimens available in Poland at the turn of the interferon era. The data will be useful as a comparison for therapeutic options expected in the next few years. PMID:28856278
MyD88 contributes to neuroinflammatory responses induced by cerebral ischemia/reperfusion in mice
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ye, Xinchun; Kong, Delian; Wang, Jun
Myeloid differentiation primary-response protein-88 (MyD88) is one of adaptor proteins mediating Toll-like receptors (TLRs) signaling. Activation of MyD88 results in the activation of nuclear factor kappa B (NFκB) and the increase of inflammatory responses. Evidences have demonstrated that TLRs signaling contributes to cerebral ischemia/reperfusion (I/R) injury. However, the role of MyD88 in this mechanism of action is disputed and needs to be clarified. In the present study, in a mouse model of cerebral I/R, we examined the activities of NFκB and interferon factor-3 (IRF3), and the inflammatory responses in ischemic brain tissue using ELISA, Western blots, and real-time PCR. Neurologicalmore » function and cerebral infarct size were also evaluated 24 h after cerebral I/R. Our results showed that NFκB activity increased in ischemic brains, but IRF3 was not activated after cerebral I/R, in wild-type (WT) mice. MyD88 deficit inhibited the activation of NFκB, and the expression of interleukin-1β (IL-1β), IL-6, Beclin-1 (BECN1), pellino-1, and cyclooxygenase-2 (COX-2) increased by cerebral I/R compared with WT mice. Interestingly, the expression of interferon Beta 1 (INFB1) and vascular endothelial growth factor (VEGF) increased in MyD88 KO mice. Unexpectedly, although the neurological function improved in the MyD88 knockout (KO) mice, the deficit of MyD88 failed to reduce cerebral infarct size compared to WT mice. We concluded that MyD88-dependent signaling contributes to the inflammatory responses induced by cerebral I/R. MyD88 deficit may inhibit the increased inflammatory response and increase neuroprotective signaling. - Highlights: • Cerebral ischemia/reperfusion activates inflammatory responses in brain tissue. • MyD88-dependent pathway contributes to the activated inflammatory responses. • MyD88 deficit increases neuroprotective signaling in ischemic brain.« less
[Peptide Ala-Glu-Asp-Gly and interferon gamma: their role in immune response during aging].
Lin'kova, N S; Kuznik, B I; Khavinson, V Kh
2012-01-01
The decrease of lymphocyte interferon gamma expression during aging is one of the main mechanisms leading to the immunodeficiency state in the elderly. Cell penetrating geroprotective peptide Ala-Glu-Asp-Gly has the capability to activate the proliferation of lymphocytes in thymus during its aging. The nucleotide sequence which is complementary contacted with peptide Ala-Glu-Asp-Gly was found in promoter region of interferon gamma gene. Thus, the immune protection of this peptide can be explained by its activation of the interferon gamma production in T-cells.
Type I interferon and pattern recognition receptor signaling following particulate matter inhalation
2012-01-01
Background Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc – stainless steel (GMA-SS) welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. Results The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10). In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR) and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3) were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88) to inhalation of GMA-SS. Conclusion This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure. PMID:22776377
Erdely, Aaron; Antonini, James M; Salmen-Muniz, Rebecca; Liston, Angie; Hulderman, Tracy; Simeonova, Petia P; Kashon, Michael L; Li, Shengqiao; Gu, Ja K; Stone, Samuel; Chen, Bean T; Frazer, David G; Zeidler-Erdely, Patti C
2012-07-09
Welding, a process that generates an aerosol containing gases and metal-rich particulates, induces adverse physiological effects including inflammation, immunosuppression and cardiovascular dysfunction. This study utilized microarray technology and subsequent pathway analysis as an exploratory search for markers/mechanisms of in vivo systemic effects following inhalation. Mice were exposed by inhalation to gas metal arc - stainless steel (GMA-SS) welding fume at 40 mg/m3 for 3 hr/d for 10 d and sacrificed 4 hr, 14 d and 28 d post-exposure. Whole blood cells, aorta and lung were harvested for global gene expression analysis with subsequent Ingenuity Pathway Analysis and confirmatory qRT-PCR. Serum was collected for protein profiling. The novel finding was a dominant type I interferon signaling network with the transcription factor Irf7 as a central component maintained through 28 d. Remarkably, these effects showed consistency across all tissues indicating a systemic type I interferon response that was complemented by changes in serum proteins (decreased MMP-9, CRP and increased VCAM1, oncostatin M, IP-10). In addition, pulmonary expression of interferon α and β and Irf7 specific pattern recognition receptors (PRR) and signaling molecules (Ddx58, Ifih1, Dhx58, ISGF3) were induced, an effect that showed specificity when compared to other inflammatory exposures. Also, a canonical pathway indicated a coordinated response of multiple PRR and associated signaling molecules (Tlr7, Tlr2, Clec7a, Nlrp3, Myd88) to inhalation of GMA-SS. This methodological approach has the potential to identify consistent, prominent and/or novel pathways and provides insight into mechanisms that contribute to pulmonary and systemic effects following toxicant exposure.
Role of interferon in resistance and immunity to protozoa
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.; Degee, A. L. W.; Mansfield, J. M.; Newsome, A. L.; Arnold, R. R.
1985-01-01
Production of interferon (I) in response to protozoan infection, and the interferon-mediated inhibition of parasite replication were studied in order to determine if these effects may be related to immunologic-mediated resistance of the hosts. Two extracellular parasites-Trypanosoma brucei rhodesiense and Naegleria fowlei were used. Upon infection with the trypanosome, only resistant strains of mice produced I. An early peak of alpha/beta I is followed by appearance of gamma I, which coincided with antibody production and a drop in parasitemia. In case of the amoeba, pretreatment of its suspension with alpha/beta I inhibits its replication in vitro, and appears to protect mice from the infection and the disease. It is proposed that production of interferon, with its regulatory effect on the immune responses, may play a major role in regulating the processes of protozoan-caused diseases.
[Interferon-alpha and liver fibrosis in patients with chronic damage due to hepatitis C virus].
Gonzalez-Huezo, María Sarai; Gallegos-Orozco, Juan Fernando
2003-01-01
The present review focuses on the published information published regarding the effects of interferon alpha therapy on liver fibrosis in patients with chronic liver damage secondary to hepatitis C infection. Data reviewed included results of the in vitro effects of interferon on hepatic cell line cultures with regards to indirect markers of fibrosis, activation of hepatic stellate cells and oxidative stress response. In the clinical arena, there is current clear evidence of a favorable histological outcome in patients with sustained viral response to interferon therapy. For this reason, the current review focuses more on the histological outcomes regarding liver fibrosis in patients who have not attained viral response to therapy (non-responders) or who already have biopsy defined cirrhosis. Data in these patients were analyzed according to the results of objective testing of fibrosis through the assessment of liver biopsy and its change during time, specially because the morbidity and mortality of this disease is directly related to the complications of liver cirrhosis and not necessarily to the persistence of the hepatitis C virus. Lastly, it is concluded that the process of liver fibrosis/cirrhosis is a dynamic one and that there is some evidence to support the usefulness of interferon alpha therapy as a means to halt or retard the progression of hepatic fibrosis. The result of current clinical trials in which interferon therapy is being used to modify the progression of fibrosis in non-responders or cirrhotic patients is eagerly awaited.
Drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy.
Gheorghe, Liana; Cotruta, Bogdan; Trifu, Viorel; Cotruta, Cristina; Becheanu, Gabriel; Gheorghe, Cristian
2008-09-01
Pegylated interferon-alpha in combination with ribavirin currently represents the therapeutic standard for the hepatitis C virus infection. Interferon based therapy may be responsible for many cutaneous side effects. We report a case of drug-induced Sweet's syndrome secondary to hepatitis C antiviral therapy. To our knowledge, this is the first reported case of Sweet's syndrome in association with pegylated interferon-alpha therapy.
Bloom, Chloe I; Graham, Christine M; Berry, Matthew P R; Rozakeas, Fotini; Redford, Paul S; Wang, Yuanyuan; Xu, Zhaohui; Wilkinson, Katalin A; Wilkinson, Robert J; Kendrick, Yvonne; Devouassoux, Gilles; Ferry, Tristan; Miyara, Makoto; Bouvry, Diane; Valeyre, Dominique; Dominique, Valeyre; Gorochov, Guy; Blankenship, Derek; Saadatian, Mitra; Vanhems, Phillip; Beynon, Huw; Vancheeswaran, Rama; Wickremasinghe, Melissa; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Ho, Ling-Pei; Lipman, Marc; O'Garra, Anne
2013-01-01
New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment.
The interferon response circuit in antiviral host defense.
Haller, O; Weber, F
2009-01-01
Viruses have learned to multiply in the face of a powerful innate and adaptive immune response of the host. They have evolved multiple strategies to evade the interferon (IFN) system which would otherwise limit virus growth at an early stage of infection. IFNs induce the synthesis of a range of antiviral proteins which serve as cell-autonomous intrinsic restriction factors. For example, the dynamin-like MxA GTPase inhibits the multiplication of influenza and bunyaviruses (such as La Crosse virus, Hantaan virus, Rift Valley Fever virus, and Crimean-Congo hemorrhagic fever virus) by binding and sequestering the nucleocapsid protein into large perinuclear complexes. To overcome such intracellular restrictions, virulent viruses either inhibit IFN synthesis, bind and inactivate secreted IFN molecules, block IFN-activated signaling, or disturb the action of IFN-induced antiviral proteins. Many viruses produce specialized proteins to disarm the danger signal or express virulence genes that target members of the IFN regulatory factor family (IRFs) or components of the JAK-STAT signaling pathway. An alternative evasion strategy is based on extreme viral replication speed which out-competes the IFN response. The identification of viral proteins with IFN antagonistic functions has great implications for disease prevention and therapy. Virus mutants lacking IFN antagonistic properties represent safe yet highly immunogenic candidate vaccines. Furthermore, novel drugs intercepting viral IFN-antagonists could be used to disarm the viral intruders.
Erdal, Erkin; Haider, Syed; Rehwinkel, Jan; Harris, Adrian L.
2017-01-01
Radiotherapy and chemotherapy are effective treatment methods for many types of cancer, but resistance is common. Recent findings indicate that antiviral type I interferon (IFN) signaling is induced by these treatments. However, the underlying mechanisms still need to be elucidated. Expression of a set of IFN-stimulated genes comprises an IFN-related DNA damage resistance signature (IRDS), which correlates strongly with resistance to radiotherapy and chemotherapy across different tumors. Classically, during viral infection, the presence of foreign DNA in the cytoplasm of host cells can initiate type I IFN signaling. Here, we demonstrate that DNA-damaging modalities used during cancer therapy lead to the release of ssDNA fragments from the cell nucleus into the cytosol, engaging this innate immune response. We found that the factors that control DNA end resection during double-strand break repair, including the Bloom syndrome (BLM) helicase and exonuclease 1 (EXO1), play a major role in generating these DNA fragments and that the cytoplasmic 3′–5′ exonuclease Trex1 is required for their degradation. Analysis of mRNA expression profiles in breast tumors demonstrates that those with lower Trex1 and higher BLM and EXO1 expression levels are associated with poor prognosis. Targeting BLM and EXO1 could therefore represent a novel approach for circumventing the IRDS produced in response to cancer therapeutics. PMID:28279982
Functions of TGF-β-exposed plasmacytoid dendritic cells.
Saas, Philippe; Perruche, Sylvain
2012-01-01
Plasmacytoid dendritic cells (pDCs) belong to the family of dendritic cells and possess specific features that distinguish them from conventional dendritic cells. For instance, pDC are the main interferon-alpha-secreting cells. Plasmacytoid dendritic cells exert both proinflammatory and regulatory functions. This is attested by the involvement of pDC through interferon-alpha secretion in several autoimmune diseases, and by the implication of pDC in tolerance. The same is true for TGF-β that plays a dual role in inflammation. In this review, we discuss recent data on pDC and TGF-β interactions. As with many cell types, pDCs are able to respond to TGF-β using the classic Smad signaling pathway. In addition, pDCs are capable to secrete TGF-β, in particular in response to TGF-β exposure. Exposure of pDCs to TGF-β prevents type I interferon secretion in response to TLR7/9 ligands. In contrast, the consequences of TGF-β on the antigen-presenting cell capacities of pDC are less clear, since TGF-β-exposed pDCs may lead to both regulatory T-cell and interleukin-17-secreting cell polarization. Here, we discuss the factors that may influence this polarization. We also discuss how pDCs exposed to TGF-β may participate in tolerance induction and maintenance, or, on the contrary, in autoimmune diseases.
Regulation of Innate Immune Responses by Bovine Herpesvirus 1 and Infected Cell Protein 0 (bICP0)
Jones, Clinton
2009-01-01
Bovine herpesvirus 1 (BoHV-1) infected cell protein 0 (bICP0) is an important transcriptional regulatory protein that stimulates productive infection. In transient transfection assays, bICP0 also inhibits interferon dependent transcription. bICP0 can induce degradation of interferon stimulatory factor 3 (IRF3), a cellular transcription factor that is crucial for activating beta interferon (IFN-β) promoter activity. Recent studies also concluded that interactions between bICP0 and IRF7 inhibit trans-activation of IFN-β promoter activity. The C3HC4 zinc RING (really important new gene) finger located near the amino terminus of bICP0 is important for all known functions of bICP0. A recombinant virus that contains a single amino acid change in a well conserved cysteine residue of the C3HC4 zinc RING finger of bICP0 grows poorly in cultured cells, and does not reactivate from latency in cattle confirming that the C3HC4 zinc RING finger is crucial for viral growth and pathogenesis. A bICP0 deletion mutant does not induce plaques in permissive cells, but induces autophagy in a cell type dependent manner. In summary, the ability of bICP0 to stimulate productive infection, and repress IFN dependent transcription plays a crucial role in the BoHV-1 infection cycle. PMID:21994549
Interferon regulatory factors: A key to tumour immunity.
Chen, Yan-Jie; Li, Jing; Lu, Nan; Shen, Xi-Zhong
2017-08-01
Interferon regulatory factors (IRFs), which have 10 members, belong to the transcription factor family and were named because of the regulation of interferon expression. They play important roles in the immune regulation, cell differentiation, cell apoptosis, and cell cycle regulation. This article will review the functional characteristics and immune activity of the family members, especially in the role of cell differentiation and autoimmune diseases. Intensive studies will help uncover the pathogenesis of the disease in a more comprehensive view, and provide novel targets for disease treatment. But the most important problems yet to solve is IRFs function in the development processes of tumour, and whether IRFs can be an important regulator in tumour immune treatment. Copyright © 2017. Published by Elsevier B.V.
Chen, Wei
2016-02-01
To observe the clinical efficacy of spleen, liver and kidney-strengthening formula combined with polyethylene glycol interferon in the treatment of HBeAg positive chronic hepatitis B(HP-HBV).One hundred and twenty-six patients with HP-HBV, who were treated in the hospital from June 2012 to December 2014, were selected and injected with polyethylene glycol interferon α-2a(or α-2b). The treatment course for the patients lasted for 24 weeks. Base on the level of HBV-DNA, patients are divided into response group and poor response group. According to random number table, the poor response group were randomized into control group and test group. Patients in the control group were injected with polyethylene glycol interferon α-2a(or α-2b), and patients in the test group were treated with spleen, liver and kidney-strengthening formula combined with polyethylene glycol interferon. Clinical efficacies of the 2 groups were observed, and changes in the level of HBeAg, ALT and HBV-DNA were observed before treatment and at the 24th week after treatment, and virological and serological response, biochemical responses, integral clinical symptoms and signs, adverse reactions were observed after 48 weeks of treatment.After 24 weeks of treatment, the response group was significantly better than the poor response group in HBeAg, ALT and the level of HBV-DNA(P<0.05). After 48 weeks of treatment, there was statistical significance in HBV-DNA negative conversion rate, HBeAg negative conversion rate between the 2 groups(P<0.05), and the test group was better in the two indicators. And the test group was significantly lower than the control group in clinical symptoms and signs score at the 48th week after treatment(P<0.05), with a significantly lower adverse reaction rate than the control group(P<0.05).Combination of spleen, liver and kidney-strengthening formula and polyethylene glycol interferon α-2a was effective and safe in the treatment of chronic hepatitis B, and so worth promoting in clinic. Copyright© by the Chinese Pharmaceutical Association.
Helal, Gouda Kamel; Gad, Magdy Abdelmawgoud; Abd-Ellah, Mohamed Fahmy; Eid, Mahmoud Saied
2016-12-01
The therapeutic effect of pegylated interferon (peg-IFN) alfa-2a combined with ribavirin (RBV) on chronic hepatitis C Egyptian patients is low and further efforts are required to optimize this therapy for achievement of higher rates of virological response. This study aimed to evaluate the safety and efficacy of hydroxychloroquine (HCQ) in combination with pegylated interferon plus ribavirin on early virological response (EVR) in chronic hepatitis C Egyptian patients. Naïve 120 Egyptian patients with chronic hepatitis C virus infection were divided into two groups. Group 1 have administered the standard of care therapy (pegylated interferon alfa-2a plus ribavirin) for 12 weeks, (n = 60). Group 2 have administered hydroxychloroquine plus standard of care therapy for 12 weeks, (n = 60). Therapeutics included hydroxychloroquine (200 mg) oral twice daily, peginterferon alfa-2a (160 μg) subcutaneous once weekly and oral weight-based ribavirin (1000-1200 mg/day). Baseline characteristics were similar in the two groups. The percentage of early virological response was significantly more in patients given the triple therapy than in patients given the standard of care [54/60 (90%) vs. 43/60 (71.7%); P = 0.011; respectively]. Biochemical response at week 12 was also significantly higher in patients given the triple therapy compared with the standard of care [58/60 (96.7%) vs. 42/60 (70%); P < 0.001; respectively]. Along the study, the observed adverse events were mild and similar across treatment groups. Addition of hydroxychloroquine to pegylated interferon plus ribavirin improves the rate of early virological and biochemical responses in chronic hepatitis C Egyptian patients without an increase in adverse events. J. Med. Virol. 88:2170-2178, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Galor, Anat; Garg, Nisha; Nanji, Afshan; Joag, Madhura; Nuovo, Gerard; Palioura, Sotiria; Wang, Gaofeng; Karp, Carol L
2015-11-01
To identify the frequency of human papilloma virus (HPV) in ocular surface squamous neoplasia (OSSN) and to evaluate differences in clinical features and treatment response of tumors with positive versus negative HPV results. Retrospective case series. Twenty-seven patients with OSSN. Ocular surface squamous neoplasia specimens were analyzed for the presence of HPV. Clinical features and response to interferon were determined retrospectively and linked to the presence (versus absence) of HPV. Clinical characteristics of OSSN by HPV status. Twenty-one of 27 tumors (78%) demonstrated positive HPV results. The HPV genotypes identified included HPV-16 in 10 tumors (48%), HPV-31 in 5 tumors, HPV-33 in 1 tumor, HPV-35 in 2 tumors, HPV-51 in 2 tumors, and a novel HPV in 3 tumors (total of 23 tumors because 1 tumor had 3 identified genotypes). Tumors found in the superior limbus were more likely to show positive HPV results (48% vs. 0%; P=0.06, Fisher exact test). Tumors with positive HPV-16 results were larger (68 vs. 34 mm2; P=0.08, Mann-Whitney U test) and were more likely to have papillomatous morphologic features (50% vs. 12%; P=0.07, Fisher exact test) compared with tumors showing negative results for HPV-16. Human papilloma virus status was not found to be associated with response to interferon therapy (P=1.0, Fisher exact test). Metrics found to be associated with a nonfavorable response to interferon were male gender and tumors located in the superior conjunctivae. The presence of HPV in OSSN seems to be more common in lesions located in the nonexposed, superior limbus. Human papilloma virus presence does not seem to be required for a favorable response to interferon therapy. Copyright © 2015 American Academy of Ophthalmology. All rights reserved.
3C Protease of Enterovirus D68 Inhibits Cellular Defense Mediated by Interferon Regulatory Factor 7
Xiang, Zichun; Liu, Lulu; Lei, Xiaobo; Zhou, Zhuo
2015-01-01
ABSTRACT Human enterovirus 68 (EV-D68) is a member of the EV-D species, which belongs to the EV genus of the Picornaviridae family. Over the past several years, clusters of EV-D68 infections have occurred worldwide. A recent outbreak in the United States is the largest one associated with severe respiratory illness and neurological complication. Although clinical symptoms are recognized, the virus remains poorly understood. Here we report that EV-D68 inhibits innate antiviral immunity by downregulation of interferon regulatory factor 7 (IRF7), an immune factor with a pivotal role in viral pathogenesis. This process depends on 3Cpro, an EV-D68-encoded protease, to mediate IRF7 cleavage. When expressed in host cells, 3Cpro targets Q167 and Q189 within the constitutive activation domain, resulting in cleavage of IRF7. Accordingly, wild-type IRF7 is fully active. However, IRF7 cleavage abrogated its capacity to activate type I interferon expression and limit replication of EV-D68. Notably, IRF7 cleavage strictly requires the protease activity of 3Cpro. Together, these results suggest that a dynamic interplay between 3Cpro and IRF7 may determine the outcome of EV-D68 infection. IMPORTANCE EV-D68 is a globally emerging pathogen, but the molecular basis of EV-D68 pathogenesis is unclear. Here we report that EV-D68 inhibits innate immune responses by targeting an immune factor, IRF7. This involves the 3C protease encoded by EV-D68, which mediates the cleavage of IRF7. These observations suggest that the 3Cpro-IRF7 interaction may represent an interface that dictates EV-D68 infection. PMID:26608321
Ning, Yun-Jia; Feng, Kuan; Min, Yuan-Qin; Deng, Fei; Hu, Zhihong; Wang, Hualin
2017-10-06
Heartland virus (HRTV) is a pathogenic phlebovirus related to the severe fever with thrombocytopenia syndrome virus (SFTSV), another phlebovirus causing life-threatening disease in humans. Previous findings have suggested that SFTSV can antagonize the host interferon (IFN) system via viral nonstructural protein (NSs)-mediated sequestration of antiviral signaling proteins into NSs-induced inclusion bodies. However, whether and how HRTV counteracts the host innate immunity is unknown. Here, we report that HRTV NSs (HNSs) also antagonizes IFN and cytokine induction and bolsters viral replication, although no noticeable inclusion body formation was observed in HNSs-expressing cells. Furthermore, HNSs inhibited the virus-triggered activation of IFN-β promoter by specifically targeting the IFN-stimulated response element but not the NF-κB response element. Consistently, HNSs blocked the phosphorylation and nuclear translocation of IFN regulatory factor 3 (IRF3, an IFN-stimulated response element-activating transcription factor). Reporter gene assays next showed that HNSs blockades the antiviral signaling mediated by RIG-I-like receptors likely at the level of TANK-binding kinase 1 (TBK1). Indeed, HNSs strongly interacts with TBK1 as indicated by confocal microscopy and pulldown analyses, and we also noted that the scaffold dimerization domain of TBK1 is required for the TBK1-HNSs interaction. Finally, pulldown assays demonstrated that HNSs expression dose-dependently diminishes a TBK1-IRF3 interaction, further explaining the mechanism for HNSs function. Collectively, these data suggest that HNSs, an antagonist of host innate immunity, interacts with TBK1 and thereby hinders the association of TBK1 with its substrate IRF3, thus blocking IRF3 activation and transcriptional induction of the cellular antiviral responses. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.
Inhibited interferon production after space flight
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.; Gould, C. L.; Williams, J.; Mandel, A. D.
1988-01-01
Several studies have been performed in our laboratories indicating that interferon production may be impaired in rodents after space flight. Using an antiorthostatic suspension model that simulates some of the effects of microgravity seen during space flight, we have shown that interferon-alpha/beta production was inhibited. The inhibition was not due solely to the stress of suspension. The inhibited interferon production was transient, as suspended animals returned to normal caging recovered the ability to produce interferon. Antiorthostatic suspension of mice also resulted in a loss of resistance to infection with the diabetogenic strain of encephalomyocarditis virus, which correlated with the drop in interferon production. In rats flown in US Space Shuttle mission SL-3, interferon-gamma production was inhibited severely when spleen cells were challenged with concanavalin-A upon return to earth. In contrast, interleukin-3 production by these cells was normal. These results suggest that immune responses may be altered after antiorthostatic modeling or space flight, and the resistance to viral infections may be especially affected.
Global Secretome Characterization of Herpes Simplex Virus 1-Infected Human Primary Macrophages
Miettinen, Juho J.; Matikainen, Sampsa
2012-01-01
Herpes simplex virus 1 (HSV-1) is a common pathogen infecting the majority of people worldwide at some stage in their lives. The early host response to viral infection is initiated by the cells of the innate immune response, including macrophages. Here, we have characterized the secretome of HSV-1-infected human primary macrophages using high-throughput quantitative proteomics. We identified and quantified 516 distinct human proteins with high confidence from the macrophage secretome upon HSV-1 infection, and the secretion of 411 proteins was >2-fold increased upon beta interferon (IFN-β) priming and/or HSV-1 infection. Bioinformatics analysis of the secretome data revealed that most of the secreted proteins were intracellular, and almost 80% of the proteins whose secretion increased more than 2-fold were known exosomal proteins. This strongly suggests that nonclassical, vesicle-mediated protein secretion is activated in IFN-β-primed and HSV-1-infected macrophages. Proteins related to immune and inflammatory responses, interferon-induced proteins, and endogenous danger signal proteins were efficiently secreted upon IFN-β priming and HSV-1 infection. The secreted IFN-induced proteins include interferon-induced tetratricopeptide protein 2 (IFIT2), IFIT3, signal transducer and activator of transcription 1 (STAT1), and myxovirus resistance protein A (MxA), implicating that these proteins also have important extracellular antiviral functions. Proinflammatory cytokine interleukin-1β was not released by HSV-1-infected macrophages, demonstrating that HSV-1 can antagonize inflammasome function. In conclusion, our results provide a global view of the secretome of HSV-1-infected macrophages, revealing host factors possibly having a role in antiviral defense. PMID:22973042
Wynn, Daniel; Kaufman, Michael; Montalban, Xavier; Vollmer, Timothy; Simon, Jack; Elkins, Jacob; O'Neill, Gilmore; Neyer, Lauri; Sheridan, James; Wang, Chungchi; Fong, Alice; Rose, John W
2010-04-01
Daclizumab, a humanised monoclonal antibody, reduced multiple sclerosis disease activity in previous non-randomised studies. We aimed to assess whether daclizumab reduces disease activity in patients with active relapsing multiple sclerosis who are receiving interferon beta treatment. We did a phase 2, randomised, double-blind, placebo-controlled study at 51 centres in the USA, Canada, Germany, Italy, and Spain. Patients with active relapsing multiple sclerosis who were taking interferon beta were randomly assigned to receive add-on subcutaneous daclizumab 2 mg/kg every 2 weeks (interferon beta and high-dose daclizumab group), daclizumab 1 mg/kg every 4 weeks (interferon beta and low-dose daclizumab group), or interferon beta and placebo for 24 weeks. The randomisation scheme was generated by Facet Biotech. All patients and assessors were masked to treatment with the exception of Facet Biotech bioanalysts who prepared data for the data safety monitoring board or generated pharmacokinetic or pharmacodynamic data, a drug accountability auditor, and the site pharmacist. The primary endpoint was total number of new or enlarged gadolinium contrast-enhancing lesions measured on brain MRI scans every 4 weeks between weeks 8 and 24. Effects of daclizumab on prespecified subsets of lymphocytes and quantitative T-cell proliferative response were assessed in an exploratory pharmacodynamic substudy. Analysis was by intention to treat. This trial is registered with ClinicalTrials.gov, number NCT00109161. From May, 2005, to March, 2006, 288 patients were assessed for eligibility, and 230 were randomly assigned to receive interferon beta and high-dose daclizumab (n=75), interferon beta and low-dose daclizumab (n=78), or interferon beta and placebo (n=77). The adjusted mean number of new or enlarged gadolinium contrast-enhancing lesions was 4.75 in the interferon beta and placebo group compared with 1.32 in the interferon beta and high-dose daclizumab group (difference 72%, 95% CI 34% to 88%; p=0.004) and 3.58 in the interferon beta and low-dose daclizumab group (25%, -76% to 68%; p=0.51). In the pharmacodynamic substudy, daclizumab was not associated with significant changes in absolute numbers of T cells, B cells, or natural killer cells, or T-cell proliferative response compared with interferon beta alone. The number of CD56(bright) natural killer cells was seven to eight times higher in both daclizumab groups than in the interferon beta and placebo group (interferon beta and low-dose daclizumab group p=0.002; interferon beta and high-dose daclizumab group p<0.0001). Common adverse events were equally distributed across groups. Add-on daclizumab treatment reduced the number of new or enlarged gadolinium contrast-enhancing lesions compared with interferon beta alone and might reduce multiple sclerosis disease activity to a greater extent than interferon beta alone. Facet Biotech and Biogen Idec. 2010 Elsevier Ltd. All rights reserved.
Martín, V; Pascual, E; Avia, M; Rangel, G; de Molina, A; Alejo, A; Sevilla, N
2016-01-06
Ovine interferon tau (IFN-τ) is a unique type I interferon with low toxicity and a broad host range in vivo. We report the generation of a nonreplicative recombinant adenovirus expressing biologically active IFN-τ. Using the B6.A2G-Mx1 mouse model, we showed that single-dose intranasal administration of recombinant Ad5-IFN-τ can effectively prevent lethality and disease induced by highly virulent hv-PR8 influenza virus by activating the interferon response and preventing viral replication. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Nombela, Ivan; Puente-Marin, Sara; Chico, Veronica; Villena, Alberto J.; Carracedo, Begoña; Ciordia, Sergio; Mena, Maria Carmen; Mercado, Luis; Perez, Luis; Coll, Julio; Ortega-Villaizan, Maria del Mar
2018-01-01
Background: It has been described that fish nucleated red blood cells (RBCs) generate a wide variety of immune-related gene transcripts when viruses highly replicate inside them and are their main target cell. The immune response and mechanisms of fish RBCs against viruses targeting other cells or tissues has not yet been explored and is the objective of our study. Methods: Rainbow trout RBCs were obtained from peripheral blood, ficoll purified and exposed to Viral Haemorrhagic Septicaemia virus (VHSV). Immune response was evaluated by means of RT-qPCR, flow cytometry, immunofluorescence and isobaric tag for relative and absolute quantification (iTRAQ) protein profiling. Results: VHSV N gene transcripts incremented early postexposure and were drastically decreased after 6 hours postexposure (hpe). The expression of type I interferon ( ifn1) gene was significantly downregulated at early postexposure (3 hpe), together with a gradual downregulation of interferon-inducible mx and pkr genes until 72 hpe. Type I IFN protein was downregulated and interferon-inducible Mx protein was maintained at basal levels. Co-culture assays of RBCs, previously exposed to UV-inactivated VHSV, and TSS (stromal cell line from spleen) revealed IFN crosstalk between both cell types. On the other hand, anti-microbial peptide β-defensin 1 and neutrophil chemotactic factor interleukin 8 were slightly upregulated in VHSV-exposed RBCs. iTRAQ profiling revealed that VHSV exposure can induce a global protein downregulation in rainbow trout RBCs, mainly related to RNA stability and proteasome pathways. Antioxidant/antiviral response is also suggested to be involved in the response of rainbow trout RBCs to VHSV. Conclusions: A variety of mechanisms are proposed to be implicated in the antiviral response of rainbow trout RBCs against VHSV halted infection. Ongoing research is focused on understanding the mechanisms in detail. PMID:29527292
Specificity, cross-talk and adaptation in Interferon signaling
NASA Astrophysics Data System (ADS)
Zilman, Anton
Innate immune system is the first line of defense of higher organisms against pathogens. It coordinates the behavior of millions of cells of multiple types, achieved through numerous signaling molecules. This talk focuses on the signaling specificity of a major class of signaling molecules - Type I Interferons - which are also used therapeutically in the treatment of a number of diseases, such as Hepatitis C, multiple sclerosis and some cancers. Puzzlingly, different Interferons act through the same cell surface receptor but have different effects on the target cells. They also exhibit a strange pattern of temporal cross-talk resulting in a serious clinical problem - loss of response to Interferon therapy. We combined mathematical modeling with quantitative experiments to develop a quantitative model of specificity and adaptation in the Interferon signaling pathway. The model resolves several outstanding experimental puzzles and directly affects the clinical use of Type I Interferons in treatment of viral hepatitis and other diseases.
Roles of unphosphorylated STATs in signaling.
Yang, Jinbo; Stark, George R
2008-04-01
The seven members of the signal transducer and activator of transcription (STAT) family of transcription factors are activated in response to many different cytokines and growth factors by phosphorylation of specific tyrosine residues. The STAT1 and STAT3 genes are specific targets of activated STATs 1 and 3, respectively, resulting in large increases in the levels of these unphosphorylated STATs (U-STATs) in response to the interferons (STAT1) or ligands that active gp130, such as IL-6 (STAT3). U-STATs drive gene expression by novel mechanisms distinct from those used by phosphorylated STAT (P-STAT) dimers. In this review, we discuss the roles of U-STATs in transcription and regulation of gene expression.
Update on the Effects of Space Flight on Development of Immune Responses
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.; Foster, M.; Morton, D.; Bailliard, F.; Fowler, N. A.; Hakenwewerth, A. M.; Bates, R.; Miller, E. S.
1999-01-01
This study has been completed, and the following is an update of the results as published. Pregnant rats were flown on the Space Shuttle in the NIH.R I mission for 11 days, and pregnant control rats were maintained in animal enclosure modules in a ground-based chamber under conditions approximating those in flight. Additional controls were in standard housing. The effects of the flight on immunological parameters (including blastogenesis, interferon-gamma production, response to colony stimulating factor and total immunoglobulin levels) of dams, fetuses, and pups was determined.
We Can Still Be Friends: IFN-γ Breaks Up Macrophage Enhancers.
Novakovic, Boris; Wang, Cheng; Logie, Colin
2017-08-15
Interferon (IFN)-γ can prime macrophages for inflammatory responses by several mechanisms, including enhancer establishment and gene activation. In this issue of Immunity, Kang et al. (2017) provide insight into the mechanisms of IFN-γ-mediated gene repression as they show that IFN-γ promotes the disassembly of select active enhancers by interfering with enhancer-binding transcription factor MAF. Copyright © 2017 Elsevier Inc. All rights reserved.
USDA-ARS?s Scientific Manuscript database
While pandemic 2009 H1N1 influenza A viruses were responsible for numerous severe infections in humans, these viruses do not typically cause corresponding severe disease in mammalian models. However, the generation of a virulent 2009 H1N1 virus following serial lung passage in mice has allowed for...
Modulation of rotavirus severe gastroenteritis by the combination of probiotics and prebiotics.
Gonzalez-Ochoa, Guadalupe; Flores-Mendoza, Lilian K; Icedo-Garcia, Ramona; Gomez-Flores, Ricardo; Tamez-Guerra, Patricia
2017-09-01
Annual mortality rates due to infectious diarrhea are about 2.2 million; children are the most vulnerable age group to severe gastroenteritis, representing group A rotaviruses as the main cause of disease. One of the main factors of rotavirus pathogenesis is the NSP4 protein, which has been characterized as a viral toxin involved in triggering several cellular responses leading to diarrhea. Furthermore, the rotavirus protein NSP1 has been associated with interferon production inhibition by inducing the degradation of interferon regulatory factors IRF3, IRF5, and IRF7. On the other hand, probiotics such as Bifidobacterium and Lactobacillus species in combination with prebiotics such as inulin, HMO, scGOS, lcFOS have been associated with improved generalized antiviral response and anti-rotavirus effect by the reduction of rotavirus infectivity and viral shedding, decreased expression of NSP4 and increased levels of specific anti-rotavirus IgAs. Moreover, these probiotics and prebiotics have been related to shorter duration and severity of rotavirus diarrhea, to the prevention of infection and reduced incidence of reinfections. In this review we will discuss in detail about the rotavirus pathogenesis and immunity, and how probiotics such as Lactobacillus and Bifidobacterium species in combination with prebiotics have been associated with the prevention or modulation of rotavirus severe gastroenteritis.
Nakamura, Taichi; Ito, Tetsuhide; Igarashi, Hisato; Uchida, Masahiko; Hijioka, Masayuki; Oono, Takamasa; Fujimori, Nao; Niina, Yusuke; Suzuki, Koichi; Jensen, Robert T.; Takayanagi, Ryoichi
2012-01-01
Pancreatitis is an inflammatory disease of unknown causes. There are many triggers causing pancreatitis, such as alcohol, common bile duct stone, virus and congenital or acquired stenosis of main pancreatic duct, which often involve tissue injuries. Pancreatitis often occurs in sterile condition, where the dead/dying pancreatic parenchymal cells and the necrotic tissues derived from self-digested-pancreas were observed. However, the causal relationship between tissue injury and pancreatitis and how tissue injury could induce the inflammation of the pancreas were not elucidated fully until now. This study demonstrates that cytosolic double-stranded DNA increases the expression of several inflammatory genes (cytokines, chemokines, type I interferon, and major histocompatibility complex) in rat pancreatic stellate cells. Furthermore, these increase accompanied the multiple signal molecules genes, such as interferon regulatory factors, nuclear factor-kappa B, low-molecular-weight protein 2, and transporter associated with antigen processing 1. We suggest that this phenomenon is a plausible mechanism that might explain how cell damage of the pancreas or tissue injury triggers acute, chronic, and autoimmune pancreatitis; it is potentially relevant to host immune responses induced during alcohol consumption or other causes. PMID:22550608
Grau, G E; Heremans, H; Piguet, P F; Pointaire, P; Lambert, P H; Billiau, A; Vassalli, P
1989-01-01
Experimental cerebral malaria (ECM), a lethal hyperacute neurological syndrome associated with high blood levels of tumor necrosis factor, develops in genetically susceptible (CBA/Ca) mice 7 days after infection with Plasmodium berghei ANKA strain. Injections of neutralizing monoclonal antibody against recombinant murine interferon gamma, not later than 4 days after infection, markedly reduced the incidence of ECM and the elevation in serum levels of tumor necrosis factor. This treatment prevented the cerebral lesions (plugging of brain vessels by monocytes, lymphocytes, and parasitized erythrocytes). In contrast, the extent of macrophage infiltration in lymphoid organs (which is a characteristic feature of mice developing ECM), as well as the course of infection, remained unaffected by the antibody treatment. Protected mice died at a later time of severe anemia and overwhelming parasitemia, the usual outcome of P. berghei infection in mice that are not susceptible to ECM. The present data indicate that interferon gamma constitutes an important link in the cytokine network that leads to brain vessel inflammation in experimental malaria. It is proposed that interferon gamma released by activated CD4+ T cells acts by augmenting both production and action of tumor necrosis factor. PMID:2501793
Mukherjee, Rathindra M; Bansode, Budhapriyavilas; Gangwal, Puja; Jakkampudi, Aparna; Reddy, Panyala B; Rao, Padaki N; Gupta, Rajesh; Reddy, D Nageshwar
2012-01-01
Background The interferon regulatory factors (IRFs) are a family of transcription factors known to be involved in the modulation of cellular responses to interferons (IFNs) and viral infection. While IRF-1 acts as a positive regulator, IRF-2 is known to repress IFN-mediated gene expression. The increase in the IRF-1/IRF-2 ratio is considered as an important event in the transcriptional activation of IFN-α gene toward development of the cellular antiviral response. Objective This study was performed to assess the expression of IRF mRNAs along with the expression level of IFN-α, its receptor (IFNAR-1), and the signal transduction factor (STAT-1) in treatment naive hepatitis C virus (HCV)-infected subjects. Materials Thirty-five chronically infected (CHC) patients and 39 voluntary blood donors as controls were included in the study. Quantification of HCV-RNA (ribonucleic acid) and genotyping were done by real-time polymerase chain reaction (PCR) and hybridization assays, respectively, using patient's serum/plasma. In both controls and patients, the serum level of IFN-α and IFN-α was measured by flow cytometry. Target gene expressions were studied by retro-transcription of respective mRNAs extracted from peripheral blood mononuclear cells (PBMCs) followed by PCR amplification and densitometry. Minus-strand HCV-RNA as a marker of viral replication in PBMCs was detected by an inhouse PCR assay. Results Both IRF-1 and IRF-2 genes were significantly enhanced in CHC than in control subjects (P < 0.001). A significant positive correlation (r2 = 0.386, P <0.01) was obtained between higher IRF-2 gene expression and increasing level of HCV-RNA. Chronically infected subjects (13%) harboring replicating HCV in PBMCs showed no significant differences in gene expressions than the subjects without HCV in PBMCs. Conclusion Our findings indicate that HCV modulates host immunity by inducing IRF-2 gene to counteract IRF-1-mediated IFN-α gene expression. Since the IRF-2 gene is known to encode oncogenic protein, the role of IRF-2 in CHC patients developing hepatocellular carcinoma warrants further studies. PMID:25755403
Blanc, Mathieu; Hsieh, Wei Yuan; Robertson, Kevin A.; Watterson, Steven; Shui, Guanghou; Lacaze, Paul; Khondoker, Mizanur; Dickinson, Paul; Sing, Garwin; Rodríguez-Martín, Sara; Phelan, Peter; Forster, Thorsten; Strobl, Birgit; Müller, Matthias; Riemersma, Rudolph; Osborne, Timothy; Wenk, Markus R.; Angulo, Ana; Ghazal, Peter
2011-01-01
Little is known about the protective role of inflammatory processes in modulating lipid metabolism in infection. Here we report an intimate link between the innate immune response to infection and regulation of the sterol metabolic network characterized by down-regulation of sterol biosynthesis by an interferon regulatory loop mechanism. In time-series experiments profiling genome-wide lipid-associated gene expression of macrophages, we show a selective and coordinated negative regulation of the complete sterol pathway upon viral infection or cytokine treatment with IFNγ or β but not TNF, IL1β, or IL6. Quantitative analysis at the protein level of selected sterol metabolic enzymes upon infection shows a similar level of suppression. Experimental testing of sterol metabolite levels using lipidomic-based measurements shows a reduction in metabolic output. On the basis of pharmacologic and RNAi inhibition of the sterol pathway we show augmented protection against viral infection, and in combination with metabolite rescue experiments, we identify the requirement of the mevalonate-isoprenoid branch of the sterol metabolic network in the protective response upon statin or IFNβ treatment. Conditioned media experiments from infected cells support an involvement of secreted type 1 interferon(s) to be sufficient for reducing the sterol pathway upon infection. Moreover, we show that infection of primary macrophages containing a genetic knockout of the major type I interferon, IFNβ, leads to only a partial suppression of the sterol pathway, while genetic knockout of the receptor for all type I interferon family members, ifnar1, or associated signaling component, tyk2, completely abolishes the reduction of the sterol biosynthetic activity upon infection. Levels of the proteolytically cleaved nuclear forms of SREBP2, a key transcriptional regulator of sterol biosynthesis, are reduced upon infection and IFNβ treatment at both the protein and de novo transcription level. The reduction in srebf2 gene transcription upon infection and IFN treatment is also found to be strictly dependent on ifnar1. Altogether these results show that type 1 IFN signaling is both necessary and sufficient for reducing the sterol metabolic network activity upon infection, thereby linking the regulation of the sterol pathway with interferon anti-viral defense responses. These findings bring a new link between sterol metabolism and interferon antiviral response and support the idea of using host metabolic modifiers of innate immunity as a potential antiviral strategy. PMID:21408089
Weiner, N; Williams, N; Birch, G; Ramachandran, C; Shipman, C; Flynn, G
1989-01-01
The topical delivery of liposomally encapsulated interferon was evaluated in the cutaneous herpes simplex virus guinea pig model. Application of liposomally entrapped interferon caused a reduction of lesion scores, whereas application of interferon formulated as a solution or as an emulsion was ineffective. The method of liposomal preparation rather than the lipid composition of the bilayers appeared to be the most important factor for reducing lesion scores. Only liposomes prepared by the dehydration-rehydration method were effective. This finding implied that the dehydration and subsequent rehydration of the liposomes facilitate partitioning of the interferon into liposomal bilayers, where the drug is positioned for transfer into the lipid compartment of the stratum corneum. Liposomes do not appear to function as permeation enhancers but seem to provide the needed physicochemical environment for transfer of interferon into the skin. PMID:2802550
Singh, Manvender; Brahma, Biswajit; Maharana, Jitendra; Patra, Mahesh Chandra; Kumar, Sushil; Mishra, Purusottam; Saini, Megha; De, Bidhan Chandra; Mahanty, Sourav; Datta, Tirtha Kumar; De, Sachinandan
2014-01-01
RIG1 and MDA5 have emerged as important intracellular innate pattern recognition receptors that recognize viral RNA and mediate cellular signals controlling Type I interferon (IFN-I) response. Buffalo RIG1 and MDA5 genes were investigated to understand the mechanism of receptor induced antiviral response. Sequence analysis revealed that RIG1 and MDA5 maintain a domain arrangement that is common in mammals. Critical binding site residues of the receptors are evolutionary conserved among mammals. Molecular dynamics simulations suggested that RIG1 and MDA5 follow a similar, if not identical, dsRNA binding pattern that has been previously reported in human. Moreover, binding free energy calculation revealed that MDA5 had a greater affinity towards dsRNA compared to RIG1. Constitutive expressions of RLR genes were ubiquitous in different tissues without being specific to immune organs. Poly I:C stimulation induced elevated expressions of IFN-β and IFN-stimulated genes (ISGs) through interferon regulatory factors (IRFs) mediated pathway in buffalo foetal fibroblast cells. The present study provides crucial insights into the structure and function of RIG1 and MDA5 receptors in buffalo. PMID:24587036
DeDiego, Marta L.; Nogales, Aitor; Lambert-Emo, Kris; Martinez-Sobrido, Luis
2016-01-01
ABSTRACT Influenza NS1 protein is the main viral protein counteracting host innate immune responses, allowing the virus to efficiently replicate in interferon (IFN)-competent systems. In this study, we analyzed NS1 protein variability within influenza A (IAV) H3N2 viruses infecting humans during the 2012-2013 season. We also evaluated the impact of the mutations on the ability of NS1 proteins to inhibit host innate immune responses and general gene expression. Surprisingly, a previously unidentified mutation in the double-stranded RNA (dsRNA)-binding domain (I64T) decreased NS1-mediated general inhibition of host protein synthesis by decreasing its interaction with cleavage and polyadenylation specificity factor 30 (CPSF30), leading to increased innate immune responses after viral infection. Notably, a recombinant A/Puerto Rico/8/34 H1N1 virus encoding the H3N2 NS1-T64 protein was highly attenuated in mice, most likely because of its ability to induce higher antiviral IFN responses at early times after infection and because this virus is highly sensitive to the IFN-induced antiviral state. Interestingly, using peripheral blood mononuclear cells (PBMCs) collected at the acute visit (2 to 3 days after infection), we show that the subject infected with the NS1-T64 attenuated virus has diminished responses to interferon and to interferon induction, suggesting why this subject could be infected with this highly IFN-sensitive virus. These data demonstrate the importance of influenza virus surveillance in identifying new mutations in the NS1 protein, affecting its ability to inhibit innate immune responses and, as a consequence, the pathogenicity of the virus. IMPORTANCE Influenza A and B viruses are one of the most common causes of respiratory infections in humans, causing 1 billion infections and between 300,000 and 500,000 deaths annually. Influenza virus surveillance to identify new mutations in the NS1 protein affecting innate immune responses and, as a consequence, the pathogenicity of the circulating viruses is highly relevant. Here, we analyzed amino acid variability in the NS1 proteins from human seasonal viruses and the effect of the mutations in innate immune responses and virus pathogenesis. A previously unidentified mutation in the dsRNA-binding domain decreased NS1-mediated general inhibition of host protein synthesis and the interaction of the protein with CPSF30. This mutation led to increased innate immune responses after viral infection, augmented IFN sensitivity, and virus attenuation in mice. Interestingly, using PBMCs, the subject infected with the virus encoding the attenuating mutation induced decreased antiviral responses, suggesting why this subject could be infected with this virus. PMID:27535054
DeDiego, Marta L; Nogales, Aitor; Lambert-Emo, Kris; Martinez-Sobrido, Luis; Topham, David J
2016-11-01
Influenza NS1 protein is the main viral protein counteracting host innate immune responses, allowing the virus to efficiently replicate in interferon (IFN)-competent systems. In this study, we analyzed NS1 protein variability within influenza A (IAV) H3N2 viruses infecting humans during the 2012-2013 season. We also evaluated the impact of the mutations on the ability of NS1 proteins to inhibit host innate immune responses and general gene expression. Surprisingly, a previously unidentified mutation in the double-stranded RNA (dsRNA)-binding domain (I64T) decreased NS1-mediated general inhibition of host protein synthesis by decreasing its interaction with cleavage and polyadenylation specificity factor 30 (CPSF30), leading to increased innate immune responses after viral infection. Notably, a recombinant A/Puerto Rico/8/34 H1N1 virus encoding the H3N2 NS1-T64 protein was highly attenuated in mice, most likely because of its ability to induce higher antiviral IFN responses at early times after infection and because this virus is highly sensitive to the IFN-induced antiviral state. Interestingly, using peripheral blood mononuclear cells (PBMCs) collected at the acute visit (2 to 3 days after infection), we show that the subject infected with the NS1-T64 attenuated virus has diminished responses to interferon and to interferon induction, suggesting why this subject could be infected with this highly IFN-sensitive virus. These data demonstrate the importance of influenza virus surveillance in identifying new mutations in the NS1 protein, affecting its ability to inhibit innate immune responses and, as a consequence, the pathogenicity of the virus. Influenza A and B viruses are one of the most common causes of respiratory infections in humans, causing 1 billion infections and between 300,000 and 500,000 deaths annually. Influenza virus surveillance to identify new mutations in the NS1 protein affecting innate immune responses and, as a consequence, the pathogenicity of the circulating viruses is highly relevant. Here, we analyzed amino acid variability in the NS1 proteins from human seasonal viruses and the effect of the mutations in innate immune responses and virus pathogenesis. A previously unidentified mutation in the dsRNA-binding domain decreased NS1-mediated general inhibition of host protein synthesis and the interaction of the protein with CPSF30. This mutation led to increased innate immune responses after viral infection, augmented IFN sensitivity, and virus attenuation in mice. Interestingly, using PBMCs, the subject infected with the virus encoding the attenuating mutation induced decreased antiviral responses, suggesting why this subject could be infected with this virus. Copyright © 2016 DeDiego et al.
Heathcote, E J; James, S; Mullen, K D; Hauser, S C; Rosenblate, H; Albert, D G
1999-08-01
Patients with chronic hepatitis C who have not had a sustained hepatitis C virus (HCV)-RNA response or serum alanine transaminase (ALT) response to a 6-month course of interferon (IFN) may respond to higher dose retreatment with consensus interferon (CIFN). Some nonresponders to initial IFN treatment have a transient response defined as undetectable HCV RNA or normalization of ALT during treatment, but subsequently have a "breakthrough" while still on treatment. The aim of this study was to determine if nonresponders who had breakthroughs responded differently to CIFN retreatment than nonresponders without breakthroughs using data from a large, multicenter trial. ALT and HCV RNA were monitored frequently during initial IFN therapy (either 9 mcg CIFN or 3 MU IFN-alpha2b 3 times per week). HCV-RNA breakthroughs were observed in 86 of 467 (18%) of all treated patients, and ALT breakthroughs were observed in 90 of 467 (19%) of all treated patients. There was no association between breakthroughs and the presence of either binding or neutralizing anti-IFN antibodies. When the patients who were nonresponders to initial IFN treatment were retreated with CIFN (15 mcg) for 12 months, 27% of those with viral breakthroughs had a sustained viral response compared with 8% in prior nonresponders without breakthroughs (P =.102). Sustained ALT responses were observed in 39% with breakthroughs compared with 10% in those without breakthroughs (P =.014). The data suggest that prior nonresponders with breakthroughs have a greater chance of responding to retreatment than do nonresponders without breakthroughs. However, most breakthrough patients would be missed unless repeated HCV-RNA testing were conducted during therapy.
Uematsu, Satoshi; Sato, Shintaro; Yamamoto, Masahiro; Hirotani, Tomonori; Kato, Hiroki; Takeshita, Fumihiko; Matsuda, Michiyuki; Coban, Cevayir; Ishii, Ken J.; Kawai, Taro; Takeuchi, Osamu; Akira, Shizuo
2005-01-01
Toll-like receptors (TLRs) recognize microbial pathogens and trigger innate immune responses. Among TLR family members, TLR7, TLR8, and TLR9 induce interferon (IFN)-α in plasmacytoid dendritic cells (pDCs). This induction requires the formation of a complex consisting of the adaptor MyD88, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and IFN regulatory factor (IRF) 7. Here we show an essential role of IL-1 receptor-associated kinase (IRAK)-1 in TLR7- and TLR9-mediated IRF7 signaling pathway. IRAK-1 directly bound and phosphorylated IRF7 in vitro. The kinase activity of IRAK-1 was necessary for transcriptional activation of IRF7. TLR7- and TLR9-mediated IFN-α production was abolished in Irak-1–deficient mice, whereas inflammatory cytokine production was not impaired. Despite normal activation of NF-κB and mitogen-activated protein kinases, IRF7 was not activated by a TLR9 ligand in Irak-1–deficient pDCs. These results indicated that IRAK-1 is a specific regulator for TLR7- and TLR9-mediated IFN-α induction in pDCs. PMID:15767370
Wang, Rong; Nan, Yuchen; Yu, Ying
2013-01-01
Porcine reproductive and respiratory syndrome virus (PRRSV) inhibits the interferon-mediated antiviral response. Type I interferons (IFNs) induce the expression of IFN-stimulated genes by activating phosphorylation of both signal transducer and activator of transcription 1 (STAT1) and STAT2, which form heterotrimers (interferon-stimulated gene factor 3 [ISGF3]) with interferon regulatory factor 9 (IRF9) and translocate to the nucleus. PRRSV Nsp1β blocks the nuclear translocation of the ISGF3 complex by an unknown mechanism. In this study, we discovered that Nsp1β induced the degradation of karyopherin-α1 (KPNA1, also called importin-α5), which is known to mediate the nuclear import of ISGF3. Overexpression of Nsp1β resulted in a reduction of KPNA1 levels in a dose-dependent manner, and treatment of the cells with the proteasome inhibitor MG132 restored KPNA1 levels. Furthermore, the presence of Nsp1β induced an elevation of KPNA1 ubiquitination and a shortening of its half-life. Our analysis of Nsp1β deletion constructs showed that the N-terminal domain of Nsp1β was involved in the ubiquitin-proteasomal degradation of KPNA1. A nucleotide substitution resulting in an amino acid change from valine to isoleucine at residue 19 of Nsp1β diminished its ability to induce KPNA1 degradation and to inhibit IFN-mediated signaling. Interestingly, infection of MARC-145 cells by PRRSV strains VR-2332 and VR-2385 also resulted in KPNA1 reduction, whereas infection by an avirulent strain, Ingelvac PRRS modified live virus (MLV), did not. MLV Nsp1β had no effect on KPNA1; however, a mutant with an amino acid change at residue 19 from isoleucine to valine induced KPNA1 degradation. These results indicate that Nsp1β blocks ISGF3 nuclear translocation by inducing KPNA1 degradation and that valine-19 in Nsp1β correlates with the inhibition. PMID:23449802
Ray, Gautam
2016-01-01
Standard treatment of hepatitis C involves the use of pegylated interferon (PEGIFN) and ribavirin but directly acting antiviral agents (DAA) with seemingly greater efficacy have now appeared on the market. Thus closer detail needs to be given to optimise the use of the former. Fifty-two chronic hepatitis C patients (Child class A) were administered PEGIFN and ribavirin in a prospective, open label study in standard dose and duration. Complete therapy was ensured for the best chance of achieving a sustained viral response (SVR) and delineating its controlling factors. Seventy-five percent had genotype 3 virus. Compensated cirrhosis was present in 38.5%. Response overall and in cirrhotics were 65.4% and 30%, respectively, without difference between genotypes 1 and 3. Non-cirrhotics had higher response in all groups, especially genotype 1 (83.3%). The factors associated with positive response were age less than 50 years, absence of cirrhosis and presence of risk factors for transmission. Treatment outcome and factors affecting it are similar to studies from Europe and America. © The Author(s) 2015.
Kumar, Mukesh; Belcaid, Mahdi; Nerurkar, Vivek R.
2016-01-01
Differential host responses may be critical determinants of distinct pathologies of West Nile virus (WNV) NY99 (pathogenic) and WNV Eg101 (non-pathogenic) strains. We employed RNA-seq technology to analyze global differential gene expression in WNV-infected mice brain and to identify the host cellular factors leading to lethal encephalitis. We identified 1,400 and 278 transcripts, which were differentially expressed after WNV NY99 and WNV Eg101 infections, respectively, and 147 genes were common to infection with both the viruses. Genes that were up-regulated in infection with both the viruses were mainly associated with interferon signaling. Genes associated with inflammation and cell death/apoptosis were only expressed after WNV NY99 infection. We demonstrate that differences in the activation of key pattern recognition receptors resulted in the induction of unique innate immune profiles, which corresponded with the induction of interferon and inflammatory responses. Pathway analysis of differentially expressed genes indicated that after WNV NY99 infection, TREM-1 mediated activation of toll-like receptors leads to the high inflammatory response. In conclusion, we have identified both common and specific responses to WNV NY99 and WNV Eg101 infections as well as genes linked to potential resistance to infection that may be targets for therapeutics. PMID:27211830
Hegazy, Ahmed N; Peine, Michael; Helmstetter, Caroline; Panse, Isabel; Fröhlich, Anja; Bergthaler, Andreas; Flatz, Lukas; Pinschewer, Daniel D; Radbruch, Andreas; Löhning, Max
2010-01-29
Current T cell differentiation models invoke separate T helper 2 (Th2) and Th1 cell lineages governed by the lineage-specifying transcription factors GATA-3 and T-bet. However, knowledge on the plasticity of Th2 cell lineage commitment is limited. Here we show that infection with Th1 cell-promoting lymphocytic choriomeningitis virus (LCMV) reprogrammed otherwise stably committed GATA-3(+) Th2 cells to adopt a GATA-3(+)T-bet(+) and interleukin-4(+)interferon-gamma(+) "Th2+1" phenotype that was maintained in vivo for months. Th2 cell reprogramming required T cell receptor stimulation, concerted type I and type II interferon and interleukin-12 signals, and T-bet. LCMV-triggered T-bet induction in adoptively transferred virus-specific Th2 cells was crucial to prevent viral persistence and fatal immunopathology. Thus, functional reprogramming of unfavorably differentiated Th2 cells may facilitate the establishment of protective immune responses. Stable coexpression of GATA-3 and T-bet provides a molecular concept for the long-term coexistence of Th2 and Th1 cell lineage characteristics in single memory T cells. Copyright 2010 Elsevier Inc. All rights reserved.
Hastie, Marcus L.; Headlam, Madeleine J.; Patel, Nirav B.; Bukreyev, Alexander A.; Buchholz, Ursula J.; Dave, Keyur A.; Norris, Emma L.; Wright, Cassandra L.; Spann, Kirsten M.; Collins, Peter L.; Gorman, Jeffrey J.
2012-01-01
Respiratory syncytial viruses encode a nonstructural protein (NS1) that interferes with type I and III interferon and other antiviral responses. Proteomic studies were conducted on human A549 type II alveolar epithelial cells and type I interferon-deficient Vero cells (African green monkey kidney cells) infected with wild-type and NS1-deficient clones of human respiratory syncytial virus to identify other potential pathway and molecular targets of NS1 interference. These analyses included two-dimensional differential gel electrophoresis and quantitative Western blotting. Surprisingly, NS1 was found to suppress the induction of manganese superoxide dismutase (SOD2) expression in A549 cells and to a much lesser degree Vero cells in response to infection. Because SOD2 is not directly inducible by type I interferons, it served as a marker to probe the impact of NS1 on signaling of other cytokines known to induce SOD2 expression and/or indirect effects of type I interferon signaling. Deductive analysis of results obtained from cell infection and cytokine stimulation studies indicated that interferon-γ signaling was a potential target of NS1, possibly as a result of modulation of STAT1 levels. However, this was not sufficient to explain the magnitude of the impact of NS1 on SOD2 induction in A549 cells. Vero cell infection experiments indicated that NS1 targeted a component of the type I interferon response that does not directly induce SOD2 expression but is required to induce another initiator of SOD2 expression. STAT2 was ruled out as a target of NS1 interference using quantitative Western blot analysis of infected A549 cells, but data were obtained to indicate that STAT1 was one of a number of potential targets of NS1. A label-free mass spectrometry-based quantitative approach is proposed as a means of more definitive identification of NS1 targets. PMID:22322095
Nyberg, L; Albrecht, J; Glue, P; Gianelli, G; Zambas, D; Elliot, M; Conrad, A; McHutchison, J
1999-06-01
Ribavirin, a nucleoside analogue, inhibits replication of RNA and DNA viruses and may control hepatitis C virus (HCV) infection through modulation of anti-inflammatory and antiviral actions. Ribavirin monotherapy has no effect on serum HCV RNA levels. In combination with interferon, this agent appears to enhance the efficacy of interferon. The aim of this study was to monitor serum HCV RNA levels early during therapy with interferon and ribavirin compared with that previously seen in the same patients during interferon monotherapy. Five patients who previously showed no response to therapy with interferon alfa 3 MU three times weekly for 6 months were retreated with the identical dose of interferon alfa 2b in combination with oral ribavirin 1,000 mg/day. Serum HCV RNA levels were monitored at baseline, week 4, week 8, and week 12 of therapy by a quantitative multicycle polymerase chain reaction assay. In the first 8 to 12 weeks, serum HCV RNA levels showed a greater decrease in all patients when retreated with combination therapy compared with interferon alone. Mean (+/- SEM) serum HCV RNA levels for interferon therapy alone were 3.3 +/- 0.95, 1.2 +/- 0.95, 1.6 +/- 1.2, and 2.3 +/- 1.2 x 10(6) copies/ml at week 0, 4, 8, and 12, respectively. This was compared with 3.3 +/- 0.83, 0.3 +/- 0.2, 0.03 +/- 0.02, and 0.15 +/- 0.14 x 10(6), respectively, for the interferon and ribavirin group (p < 0.07 at week 8). Two of five patients had undetectable serum HCV RNA during combination therapy. Combination therapy with interferon and ribavirin in prior interferon nonresponders reduces serum HCV RNA levels compared with interferon alone. This may suggest some additional antiviral effect of ribavirin when given with interferon.
Giotis, Efstathios S; Robey, Rebecca C; Skinner, Natalie G; Tomlinson, Christopher D; Goodbourn, Stephen; Skinner, Michael A
2016-08-05
Viruses that infect birds pose major threats-to the global supply of chicken, the major, universally-acceptable meat, and as zoonotic agents (e.g. avian influenza viruses H5N1 and H7N9). Controlling these viruses in birds as well as understanding their emergence into, and transmission amongst, humans will require considerable ingenuity and understanding of how different species defend themselves. The type I interferon-coordinated response constitutes the major antiviral innate defence. Although interferon was discovered in chicken cells, details of the response, particularly the identity of hundreds of stimulated genes, are far better described in mammals. Viruses induce interferon-stimulated genes but they also regulate the expression of many hundreds of cellular metabolic and structural genes to facilitate their replication. This study focusses on the potentially anti-viral genes by identifying those induced just by interferon in primary chick embryo fibroblasts. Three transcriptomic technologies were exploited: RNA-seq, a classical 3'-biased chicken microarray and a high density, "sense target", whole transcriptome chicken microarray, with each recognising 120-150 regulated genes (curated for duplication and incorrect assignment of some microarray probesets). Overall, the results are considered robust because 128 of the compiled, curated list of 193 regulated genes were detected by two, or more, of the technologies.
Nagesh, Prashanth Thevkar; Husain, Matloob
2016-05-01
Viruses dysregulate the host factors that inhibit virus infection. Here, we demonstrate that human enzyme, histone deacetylase 1 (HDAC1) is a new class of host factor that inhibits influenza A virus (IAV) infection, and IAV dysregulates HDAC1 to efficiently replicate in epithelial cells. A time-dependent decrease in HDAC1 polypeptide level was observed in IAV-infected cells, reducing to <50% by 24 h of infection. A further depletion (97%) of HDAC1 expression by RNA interference increased the IAV growth kinetics, increasing it by >3-fold by 24 h and by >6-fold by 48 h of infection. Conversely, overexpression of HDAC1 decreased the IAV infection by >2-fold. Likewise, a time-dependent decrease in HDAC1 activity, albeit with slightly different kinetics to HDAC1 polypeptide reduction, was observed in infected cells. Nevertheless, a further inhibition of deacetylase activity increased IAV infection in a dose-dependent manner. HDAC1 is an important host deacetylase and, in addition to its role as a transcription repressor, HDAC1 has been lately described as a coactivator of type I interferon response. Consistent with this property, we found that inhibition of deacetylase activity either decreased or abolished the phosphorylation of signal transducer and activator of transcription I (STAT1) and expression of interferon-stimulated genes, IFITM3, ISG15, and viperin in IAV-infected cells. Furthermore, the knockdown of HDAC1 expression in infected cells decreased viperin expression by 58% and, conversely, the overexpression of HDAC1 increased it by 55%, indicating that HDAC1 is a component of IAV-induced host type I interferon antiviral response. Influenza A virus (IAV) continues to significantly impact global public health by causing regular seasonal epidemics, occasional pandemics, and zoonotic outbreaks. IAV is among the successful human viral pathogens that has evolved various strategies to evade host defenses, prevent the development of a universal vaccine, and acquire antiviral drug resistance. A comprehensive knowledge of IAV-host interactions is needed to develop a novel and alternative anti-IAV strategy. Host produces a variety of factors that are able to fight IAV infection by employing various mechanisms. However, the full repertoire of anti-IAV host factors and their antiviral mechanisms has yet to be identified. We have identified here a new host factor, histone deacetylase 1 (HDAC1) that inhibits IAV infection. We demonstrate that HDAC1 is a component of host innate antiviral response against IAV, and IAV undermines HDAC1 to limit its role in antiviral response. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
RNA-Seq Reveals an Integrated Immune Response in Nucleated Erythrocytes
Morera, Davinia; Roher, Nerea; Ribas, Laia; Balasch, Joan Carles; Doñate, Carmen; Callol, Agnes; Boltaña, Sebastian; Roberts, Steven; Goetz, Giles; Goetz, Frederick W.; MacKenzie, Simon A.
2011-01-01
Background Throughout the primary literature and within textbooks, the erythrocyte has been tacitly accepted to have maintained a unique physiological role; namely gas transport and exchange. In non-mammalian vertebrates, nucleated erythrocytes are present in circulation throughout the life cycle and a fragmented series of observations in mammals support a potential role in non-respiratory biological processes. We hypothesised that nucleated erythrocytes could actively participate via ligand-induced transcriptional re-programming in the immune response. Methodology/Principal Findings Nucleated erythrocytes from both fish and birds express and regulate specific pattern recognition receptor (PRR) mRNAs and, thus, are capable of specific pathogen associated molecular pattern (PAMP) detection that is central to the innate immune response. In vitro challenge with diverse PAMPs led to de novo specific mRNA synthesis of both receptors and response factors including interferon-alpha (IFNα) that exhibit a stimulus-specific polysomal shift supporting active translation. RNA-Seq analysis of the PAMP (Poly (I∶C), polyinosinic∶polycytidylic acid)-erythrocyte response uncovered diverse cohorts of differentially expressed mRNA transcripts related to multiple physiological systems including the endocrine, reproductive and immune. Moreover, erythrocyte-derived conditioned mediums induced a type-1 interferon response in macrophages thus supporting an integrative role for the erythrocytes in the immune response. Conclusions/Significance We demonstrate that nucleated erythrocytes in non-mammalian vertebrates spanning significant phylogenetic distance participate in the immune response. RNA-Seq studies highlight a mRNA repertoire that suggests a previously unrecognized integrative role for the erythrocytes in other physiological systems. PMID:22046430
Identification of distal silencing elements in the murine interferon-A11 gene promoter.
Roffet, P; Lopez, S; Navarro, S; Bandu, M T; Coulombel, C; Vignal, M; Doly, J; Vodjdani, G
1996-08-01
The murine interferon-A11 (Mu IFN-A11) gene is a member of the IFN-A multigenic family. In mouse L929 cells, the weak response of the gene's promoter to viral induction is due to a combination of both a point mutation in the virus responsive element (VRE) and the presence of negatively regulating sequences surrounding the VRE. In the distal part of the promoter, the negatively acting E1E2 sequence was delimited. This sequence displays an inhibitory effect in either orientation or position on the inducibility of a virus-responsive heterologous promoter. It selectively represses VRE-dependent transcription but is not able to reduce the transcriptional activity of a VRE-lacking promoter. In a transient transfection assay, an E1E2-containing DNA competitor was able to derepress the native Mu IFN-A11 promoter. Specific nuclear factors bind to this sequence; thus the binding of trans-regulators participates in the repression of the Mu IFN-A11 gene. The E1E2 sequence contains an IFN regulatory factor (IRF)-binding site. Recombinant IRF2 binds this sequence and anti-IRF2 antibodies supershift a major complex formed with nuclear extracts. The protein composing the complex is 50 kDa in size, indicating the presence of IRF2 or antigenically related proteins in the complex. The Mu IFN-A11 gene is the first example within the murine IFN-A family, in which a distal promoter element has been identified that can negatively modulate the transcriptional response to viral induction.
Bloom, Chloe I.; Graham, Christine M.; Berry, Matthew P. R.; Rozakeas, Fotini; Redford, Paul S.; Wang, Yuanyuan; Xu, Zhaohui; Wilkinson, Katalin A.; Wilkinson, Robert J.; Kendrick, Yvonne; Devouassoux, Gilles; Ferry, Tristan; Miyara, Makoto; Bouvry, Diane; Dominique, Valeyre; Gorochov, Guy; Blankenship, Derek; Saadatian, Mitra; Vanhems, Phillip; Beynon, Huw; Vancheeswaran, Rama; Wickremasinghe, Melissa; Chaussabel, Damien; Banchereau, Jacques; Pascual, Virginia; Ho, Ling-pei; Lipman, Marc; O’Garra, Anne
2013-01-01
Rationale New approaches to define factors underlying the immunopathogenesis of pulmonary diseases including sarcoidosis and tuberculosis are needed to develop new treatments and biomarkers. Comparing the blood transcriptional response of tuberculosis to other similar pulmonary diseases will advance knowledge of disease pathways and help distinguish diseases with similar clinical presentations. Objectives To determine the factors underlying the immunopathogenesis of the granulomatous diseases, sarcoidosis and tuberculosis, by comparing the blood transcriptional responses in these and other pulmonary diseases. Methods We compared whole blood genome-wide transcriptional profiles in pulmonary sarcoidosis, pulmonary tuberculosis, to community acquired pneumonia and primary lung cancer and healthy controls, before and after treatment, and in purified leucocyte populations. Measurements and Main Results An Interferon-inducible neutrophil-driven blood transcriptional signature was present in both sarcoidosis and tuberculosis, with a higher abundance and expression in tuberculosis. Heterogeneity of the sarcoidosis signature correlated significantly with disease activity. Transcriptional profiles in pneumonia and lung cancer revealed an over-abundance of inflammatory transcripts. After successful treatment the transcriptional activity in tuberculosis and pneumonia patients was significantly reduced. However the glucocorticoid-responsive sarcoidosis patients showed a significant increase in transcriptional activity. 144-blood transcripts were able to distinguish tuberculosis from other lung diseases and controls. Conclusions Tuberculosis and sarcoidosis revealed similar blood transcriptional profiles, dominated by interferon-inducible transcripts, while pneumonia and lung cancer showed distinct signatures, dominated by inflammatory genes. There were also significant differences between tuberculosis and sarcoidosis in the degree of their transcriptional activity, the heterogeneity of their profiles and their transcriptional response to treatment. PMID:23940611
Virtue, Elena R; Marsh, Glenn A; Baker, Michelle L; Wang, Lin-Fa
2011-01-01
Bats are natural reservoirs for a spectrum of infectious zoonotic diseases including the recently emerged henipaviruses (Hendra and Nipah viruses). Henipaviruses have been observed both naturally and experimentally to cause serious and often fatal disease in many different mammal species, including humans. Interestingly, infection of the flying fox with henipaviruses occurs in the absence of clinical disease. The extreme variation in the disease pattern between humans and bats has led to an investigation into the effects of henipavirus infection on the innate immune response in bat cell lines. We report that henipavirus infection does not result in the induction of interferon expression, and the viruses also inhibit interferon signaling. We also confirm that the interferon production and signaling block in bat cells is not due to differing viral protein expression levels between human and bat hosts. This information, in addition to the known lack of clinical signs in bats following henipavirus infection, suggests that bats control henipavirus infection by an as yet unidentified mechanism, not via the interferon response. This is the first report of henipavirus infection in bat cells specifically investigating aspects of the innate immune system.
Lein, B
1995-12-01
Several immune-based HIV therapy studies presented at the Interscience Conference on Antimicrobial Agents Chemotherapy (ICAAC) are summarized. These studies involve the following therapies: HIV-IT, a gene therapy approach to augmenting the body's anti-HIV responses; interferon-alpha n3, a new formulation of alpha interferon with fewer toxicities; transfer of immune responses from one individual to another, also called passive immune therapy; and interleukin-2 (IL-2) in combination with protease inhibitors.
The human immune response to tuberculosis and its treatment: a view from the blood
Cliff, Jacqueline M; Kaufmann, Stefan H E; McShane, Helen; van Helden, Paul; O'Garra, Anne
2015-01-01
The immune response upon infection with the pathogen Mycobacterium tuberculosis is poorly understood, hampering the discovery of new treatments and the improvements in diagnosis. In the last years, a blood transcriptional signature in tuberculosis has provided knowledge on the immune response occurring during active tuberculosis disease. This signature was absent in the majority of asymptomatic individuals who are latently infected with M. tuberculosis (referred to as latent). Using modular and pathway analyses of the complex data has shown, now in multiple studies, that the signature of active tuberculosis is dominated by overexpression of interferon-inducible genes (consisting of both type I and type II interferon signaling), myeloid genes, and inflammatory genes. There is also downregulation of genes encoding B and T-cell function. The blood signature of tuberculosis correlates with the extent of radiographic disease and is diminished upon effective treatment suggesting the possibility of new improved strategies to support diagnostic assays and methods for drug treatment monitoring. The signature suggested a previously under-appreciated role for type I interferons in development of active tuberculosis disease, and numerous mechanisms have now been uncovered to explain how type I interferon impedes the protective response to M. tuberculosis infection. PMID:25703554
Hammad, A; Mossad, Y M; Nasef, N; Eid, R
2017-07-01
Background Increased expression of interferon-inducible genes is implicated in the pathogenesis of systemic lupus erythematosus (SLE). Interferon regulatory factor 5 (IRF5) is one of the transcription factors regulating interferon and was proved to be implicated in the pathogenesis of SLE in different populations. Objectives The objective of this study was to investigate the correlation between polymorphisms of the IRF5 gene and SLE susceptibility in a cohort of Egyptian children and to investigate their association with clinico-pathological features, especially lupus nephritis. Subjects and methods Typing of interferon regulatory factor 5 rs10954213, rs2004640 and rs2280714 polymorphisms were done using polymerase chain reaction-restriction fragment length polymorphism for 100 children with SLE and 100 matched healthy controls. Results Children with SLE had more frequent T allele and TT genotype of rs2004640 ( P c = 0.003 and 0.024, respectively) compared to controls. Patients with nephritis had more frequent T allele of rs2004640 compared to controls ( P c = 0.003). However the allele and genotype frequencies of the three studied polymorphisms did not show any difference in patients with nephritis in comparison to those without nephritis. Haplotype GTA of rs10954213, rs2004640 and rs2280714, respectively, was more frequent in lupus patients in comparison to controls ( p = 0.01) while the haplotype GGG was more frequent in controls than lupus patients ( p = 0.011). Conclusion The rs2004640 T allele and TT genotype and GTA haplotype of rs rs10954213, rs2004640, and rs2280714, respectively, can be considered as risk factors for the development of SLE. The presence of the rs2004640 T allele increases the risk of nephritis development in Egyptian children with SLE.
Frau, Aldo; Sgarbanti, Marco; Orsatti, Roberto
2018-01-01
The interferon (IFN) system is the first line of defense against viral infections. Evasion of IFN signaling by Ebola viral protein 24 (VP24) is a critical event in the pathogenesis of the infection and, hence, VP24 is a potential target for drug development. Since no drugs target VP24, the identification of molecules able to inhibit VP24, restoring and possibly enhancing the IFN response, is a goal of concern. Accordingly, we developed a dual signal firefly and Renilla luciferase cell-based drug screening assay able to quantify IFN-mediated induction of Interferon Stimulated Genes (ISGs) and its inhibition by VP24. Human Embryonic Kidney 293T (HEK293T) cells were transiently transfected with a luciferase reporter gene construct driven by the promoter of ISGs, Interferon-Stimulated Response Element (ISRE). Stimulation of cells with IFN-α activated the IFN cascade leading to the expression of ISRE. Cotransfection of cells with a plasmid expressing VP24 cloned from a virus isolated during the last 2014 outbreak led to the inhibition of ISRE transcription, quantified by a luminescent signal. To adapt this system to test a large number of compounds, we performed it in 96-well plates; optimized the assay analyzing different parameters; and validated the system by calculating the Z′- and Z-factor, which showed values of 0.62 and 0.53 for IFN-α stimulation assay and VP24 inhibition assay, respectively, indicative of robust assay performance. PMID:29495311
Zhang, Bao-cun; Zhou, Ze-jun; Sun, Li
2016-01-01
Megalocytivirus is a DNA virus that is highly infectious in a wide variety of marine and freshwater fish, including Japanese flounder (Paralichthys olivaceus), a flatfish that is farmed worldwide. However, the infection mechanism of megalocytivirus remains largely unknown. In this study, we investigated the function of a flounder microRNA, pol-miR-731, in virus-host interaction. We found that pol-miR-731 was induced in expression by megalocytivirus and promoted viral replication at the early infection stage. In vivo and in vitro studies revealed that pol-miR-731 (i) specifically suppresses the expression of interferon regulatory factor 7 (IRF7) and cellular tumor antigen p53 in a manner that depended on the integrity of the pol-miR-731 complementary sequences in the 3′ untranslated regions of IRF7 and p53, (ii) disrupts megalocytivirus-induced Type I interferon response through IRF7, (iii) inhibits megalocytivirus-induced splenocyte apoptosis and cell cycle arrest through p53. Furthermore, overexpression of IRF7 and p53 abolished both the inhibitory effects of pol-miR-731 on these biological processes and its stimulatory effect on viral replication. These results disclosed a novel evasion mechanism of megalocytivirus mediated by a host miRNA. This study also provides the first evidence that a virus-induced host miRNA can facilitate viral infection by simultaneously suppressing several antiviral pathways. PMID:27311682
Fanunza, Elisa; Frau, Aldo; Sgarbanti, Marco; Orsatti, Roberto; Corona, Angela; Tramontano, Enzo
2018-02-24
The interferon (IFN) system is the first line of defense against viral infections. Evasion of IFN signaling by Ebola viral protein 24 (VP24) is a critical event in the pathogenesis of the infection and, hence, VP24 is a potential target for drug development. Since no drugs target VP24, the identification of molecules able to inhibit VP24, restoring and possibly enhancing the IFN response, is a goal of concern. Accordingly, we developed a dual signal firefly and Renilla luciferase cell-based drug screening assay able to quantify IFN-mediated induction of Interferon Stimulated Genes (ISGs) and its inhibition by VP24. Human Embryonic Kidney 293T (HEK293T) cells were transiently transfected with a luciferase reporter gene construct driven by the promoter of ISGs, Interferon-Stimulated Response Element (ISRE). Stimulation of cells with IFN-α activated the IFN cascade leading to the expression of ISRE. Cotransfection of cells with a plasmid expressing VP24 cloned from a virus isolated during the last 2014 outbreak led to the inhibition of ISRE transcription, quantified by a luminescent signal. To adapt this system to test a large number of compounds, we performed it in 96-well plates; optimized the assay analyzing different parameters; and validated the system by calculating the Z'- and Z-factor, which showed values of 0.62 and 0.53 for IFN-α stimulation assay and VP24 inhibition assay, respectively, indicative of robust assay performance.
Khoroshko, N D; Turkina, A G; Kumas, S M; Zhuravlev, V S; Kuznetsov, S V; Sokolova, M A; Semenova, E A; Kaplanskaia, I B; Frank, G A; Korolev, A V; Shcherbinina, L A; Zakharova, A V; Domracheva, E V; Zingerman, B A
2004-01-01
To investigate factors determining prognosis and efficacy of induction therapy including interferon-alpha-2b (intron-A, Schering Plough) in patients at an early chronic stage of Ph-positive chronic myeloid leukemia (CML) as shown by histomorphological examination. The analysis covered 52 CML patients treated at an early chronic phase with intron-A in a standard daily dose 5 IU/m2 in combination with low-dose cytosinearabinoside (10 mg/m2, s.c. , daily for 10 days of each month). The treatment efficacy was assessed by the international criteria of complete and partial hematological remission and cytogenetic response. The cytogenetic study employed the direct method, even and G-differential staining, fluorescent hybridization in situ (FISH). The sections were stained with hematoxilin-eosine by Gomori, van Gieson. Histological samples were examined with histomorphometry. Immunohistochemical examination was made on paraffin sections using a panel of monoclonal antibodies CD3, CD4, CD8, CD20, NK, PCNA, Ki-67 (Dako, Denmark). Repeated assessment of histomorphological parameters such as erythroid lineage, degree of myelofibrosis and reduction of leukemic population indicate the treatment efficacy. Estimation of the level of leukemic population proliferation in trephine biopsies from CML patients with monoclonal antibodies PCNA and Ki-67 before the treatment is prognostically significant as it further correlates with the cytogenetic response (r = 0.821, p = 0.000000). It is valid to study histomorphological picture of CML to prognosticate and assess treatment efficacy with standard doses of interferon-alpha with high probability.
Non-Canonical Role of IKKα in the Regulation of STAT1 Phosphorylation in Antiviral Signaling
Xing, Fei; Matsumiya, Tomoh; Shiba, Yuko; Hayakari, Ryo; Yoshida, Hidemi; Imaizumi, Tadaatsu
2016-01-01
Non-self RNA is recognized by retinoic acid-inducible gene-I (RIG-I)-like receptors (RLRs), inducing type I interferons (IFNs). Type I IFN promotes the expression of IFN-stimulated genes (ISGs), which requires the activation of signal transducer and activator of transcription-1 (STAT1). We previously reported that dsRNA induced STAT1 phosphorylation via a type I IFN-independent pathway in addition to the well-known type I IFN-dependent pathway. IκB kinase α (IKKα) is involved in antiviral signaling induced by dsRNA; however, its role is incompletely understood. Here, we explored the function of IKKα in RLR-mediated STAT1 phosphorylation. Silencing of IKKα markedly decreased the level of IFN-β and STAT1 phosphorylation inHeH response to dsRNA. However, the inhibition of IKKα did not alter the RLR signaling-mediated dimerization of interferon responsive factor 3 (IRF3) or the nuclear translocation of nuclear factor-κB (NFκB). These results suggest a non-canonical role of IKKα in RLR signaling. Furthermore, phosphorylation of STAT1 was suppressed by IKKα knockdown in cells treated with a specific neutralizing antibody for the type I IFN receptor (IFNAR) and in IFNAR-deficient cells. Collectively, the dual regulation of STAT1 by IKKα in antiviral signaling suggests a role for IKKα in the fine-tuning of antiviral signaling in response to non-self RNA. PMID:27992555
de Diego, Rebeca Pérez; Sancho-Shimizu, Vanessa; Lorenzo, Lazaro; Puel, Anne; Plancoulaine, Sabine; Picard, Capucine; Herman, Melina; Cardon, Annabelle; Durandy, Anne; Bustamante, Jacinta; Vallabhapurapu, Sivakumar; Bravo, Jerónimo; Warnatz, Klaus; Chaix, Yves; Cascarrigny, Françoise; Lebon, Pierre; Rozenberg, Flore; Karin, Michael; Tardieu, Marc; Al-Muhsen, Saleh; Jouanguy, Emmanuelle; Zhang, Shen-Ying; Abel, Laurent; Casanova, Jean-Laurent
2010-01-01
Tumor necrosis factor (TNF) receptor-associated factor 3 (TRAF3) functions downstream of multiple receptors that induce interferon-α (IFN-α), IFN–β and IFN-λ production, including Toll-like receptor 3 (TLR3), which is deficient in some patients with herpes simplex virus-1 encephalitis (HSE). Mice lacking TRAF3 die in the neonatal period, preventing direct investigation of the role of TRAF3 in immune responses and host defenses in vivo. Here we reported the autosomal dominant, human TRAF3 deficiency in a young adult with a history of HSE in childhood. The TRAF3 mutant allele was a loss-of-expression, loss-of-function, dominant-negative phenotype, and was associated with impaired, but not abolished TRAF3-dependent responses upon stimulation of both TNF receptors and receptors that induce IFN production. TRAF3 deficiency was associated with a clinical phenotype limited to HSE resulting from the impairment of TLR3-dependent induction of IFN. Thus, TLR3-mediated immunity against primary infection by HSV-1 in the central nervous system is critically dependent on TRAF3. Highlight sentence Autosomal dominant TRAF3 deficiency is a genetic etiology of herpes simplex encephalitis. Highlight sentence R118W TRAF3 allele is loss-of-function, loss-of-expression, and dominant-negative. Highlight sentence Human TRAF3 deficiency impairs the TLR3-dependent induction of anti-viral interferons. PMID:20832341
Skrzeczynska-Moncznik, Joanna; Zabieglo, Katarzyna; Bossowski, Jozef P; Osiecka, Oktawia; Wlodarczyk, Agnieszka; Kapinska-Mrowiecka, Monika; Kwitniewski, Mateusz; Majewski, Pawel; Dubin, Adam; Cichy, Joanna
2017-03-01
Eosinophils constitute an important component of helminth immunity and are not only associated with various allergies but are also linked to autoinflammatory disorders, including the skin disease psoriasis. Here we demonstrate the functional relationship between eosinophils and plasmacytoid dendritic cells (pDCs) as related to skin diseases. We previously showed that pDCs colocalize with neutrophil extracellular traps (NETs) in psoriatic skin. Here we demonstrate that eosinophils are found in psoriatic skin near neutrophils and NETs, suggesting that pDC responses can be regulated by eosinophils. Eosinophils inhibited pDC function in vitro through a mechanism that did not involve cell contact but depended on soluble factors. In pDCs stimulated by specific NET components, eosinophil-conditioned media attenuated the production of interferon α (IFNα) but did not affect the maturation of pDCs as evidenced by the unaltered expression of the costimulatory molecules CD80 and CD86. As pDCs and IFNα play a key role in autoimmune skin inflammation, these data suggest that eosinophils may influence autoinflammatory responses through their impact on the production of IFNα by pDCs.
2011-01-01
Background The mechanisms by which chronic hepatitis B is completely resolved through antiviral therapy are unknown, and the contribution of acquired T cell immunity to hepatitis B surface antigen (HBsAg) seroclearance has not been investigated. Therefore, we measured the T-cell responses to core and envelope antigens in patients with HBsAg seroclearance. Methods Fourteen subjects with HBsAg seroclearance following antiviral treatment for chronic hepatitis B, 7 HBeAg-positive immunotolerant HBV carriers and 9 HBeAg-negative inactive HBsAg carriers were recruited. HBV-specific T-cell responses to recombinant HBV core (rHBcAg) and envelope (rHBsAg) proteins and pools of core and envelope peptides were measured using an ELISPOT assay detecting interferon-gamma and intracellular cytokine staining (ICS) assays detecting interferon-gamma or interleukin 2. Results Interferon-gamma ELISPOT assays showed a low frequency of weak responses to the rHBsAg and S peptide pool in the HBsAg seroclearance group, and the response frequency to the rHBcAg and the C peptide pool was higher than to the rHBsAg (P < 0.001) and S peptide pool (P = 0.001) respectively. A higher response frequency to C than S peptide pools was confirmed in the interferon-gamma ICS assays for both CD4+ (P = 0.033) and CD8+ (P = 0.040) T cells in the HBsAg seroclearance group. The responses to C and S antigens in the inactive carriers were similar. Conclusions There was a low frequency of CD4+ and CD8+ T cell immune responses to envelope antigens in Chinese subjects with HBsAg seroclearance following antiviral therapy. It is unlikely that these immune responses are responsible for HBsAg seroclearance in these subjects. PMID:21320337
1991-03-31
mnxeiators such as prostaglandins, leukotrienes, 10 thromboxanes, free radicals, interleukin-l, tim=r necrosis factor, interferon, lysosoail enzymes ...blood enzymes levels in comparison to the control group (Table (c)2). Although the small animals showed a signifi- cant elevation in blood enzyme leiels...large animals showed a nearly five-fold 19 higher level of most enzymes in corparison to the snall animal group. Blood triglyceride levels were
Takahashi, Keita; Sugiyama, Tsuyoshi; Tokoro, Shunji; Neri, Paol; Mori, Hiroshi
2013-08-01
Toll-like receptors (TLRs) play a critical role in innate immunity by recognizing pathogen-associated molecular patterns. Various environmental materials including lipids may affect TLR signaling and modulate innate immune responses. We previously reported that 10-hydroxy-trans-2-decenoic acid (10H2DA) inhibits lipopolysaccharide (LPS)-induced interleukin (IL)-6 and nitric oxide (NO) production via inhibiting NF-κB activation. In this study, we investigated the effect of 10-hydroxydecanoic acid (10HDA), a saturated fatty acid of 10H2DA, on LPS-induced cytokines/chemokines and NO production. 10HDA inhibited LPS-induced NO production, but not tumor necrosis factor-α or IL-6 production. LPS-induced activation of interferon (IFN)-stimulated response element, but not NF-κB, was inhibited by 10HDA. Phosphorylation of STAT1 and STAT2 was not affected, but IFN-regulatory factor (IRF)-1 production was significantly reduced by 10HDA. The LPS-induced increase of IRF-1 mRNA, however, was not affected by 10HDA. We found that IRF-1 mRNA level in the polysomal fraction was significantly decreased by 10HDA. Further, LPS-induced phosphorylation of Akt and 4E-BP1, which control mRNA translation, was markedly decreased. These results suggest that 10HDA inhibited LPS-induced NO production through inhibiting IRF-1 translation. These findings elucidate a novel mechanism for anti-inflammatory activity of medium-chain fatty acid 10HDA.
Mitochondrial DNA as an inflammatory mediator in cardiovascular diseases.
Nakayama, Hiroyuki; Otsu, Kinya
2018-03-06
Mitochondria play a central role in multiple cellular functions, including energy production, calcium homeostasis, and cell death. Currently, growing evidence indicates the vital roles of mitochondria in triggering and maintaining inflammation. Chronic inflammation without microbial infection - termed sterile inflammation - is strongly involved in the development of heart failure. Sterile inflammation is triggered by the activation of pattern recognition receptors (PRRs) that sense endogenous ligands called damage-associated molecular patterns (DAMPs). Mitochondria release multiple DAMPs including mitochondrial DNA, peptides, and lipids, which induce inflammation via the stimulation of multiple PRRs. Among the mitochondrial DAMPs, mitochondrial DNA (mtDNA) is currently highlighted as the DAMP that mediates the activation of multiple PRRs, including Toll-like receptor 9, Nod-like receptors, and cyclic GMP-AMP synthetase/stimulator of interferon gene pathways. These PRR signalling pathways, in turn, lead to the activation of nuclear factor-κB and interferon regulatory factor, which enhances the transcriptional activity of inflammatory cytokines and interferons, and induces the recruitment of inflammatory cells. As the heart is an organ comprising abundant mitochondria for its ATP consumption (needed to maintain constant cyclic contraction and relaxation), the generation of massive amounts of mitochondrial radical oxygen species and mitochondrial DAMPs are predicted to occur and promote cardiac inflammation. Here, we will focus on the role of mtDNA in cardiac inflammation and review the mechanism and pathological significance of mtDNA-induced inflammatory responses in cardiac diseases. © 2018 The Author(s).
Chattopadhyay, Saurabh; Kuzmanovic, Teodora; Zhang, Ying; Wetzel, Jaime L.; Sen, Ganes C.
2016-01-01
SUMMARY The transcription factor IRF-3 mediates cellular antiviral response by inducing the expression of interferon and other antiviral proteins. In RNA-virus infected cells, IRF-3’s transcriptional activation is triggered primarily by RIG-I-like receptors (RLR), which can also activate the RLR-induced IRF-3-mediated pathway of apoptosis (RIPA). Here, we have reported that the pathway of IRF-3 activation in RIPA was independent of and distinct from the known pathway of transcriptional activation of IRF-3. It required linear polyubiquitination of two specific lysine residues of IRF-3 by LUBAC, the linear polyubiquitinating enzyme complex, which bound IRF-3 in signal-dependent fashion. To evaluate the role of RIPA in viral pathogenesis, we engineered a genetically targeted mouse, which expressed a mutant IRF-3 that was RIPA-competent but transcriptionally inert; this single-action IRF-3 could protect mice from lethal viral infection. Our observations indicated that IRF-3-mediated apoptosis of virus-infected cells could be an effective antiviral mechanism, without expression of the interferon-stimulated genes. PMID:27178468
Multiple roles of the coagulation protease cascade during virus infection.
Antoniak, Silvio; Mackman, Nigel
2014-04-24
The coagulation cascade is activated during viral infections. This response may be part of the host defense system to limit spread of the pathogen. However, excessive activation of the coagulation cascade can be deleterious. In fact, inhibition of the tissue factor/factor VIIa complex reduced mortality in a monkey model of Ebola hemorrhagic fever. Other studies showed that incorporation of tissue factor into the envelope of herpes simplex virus increases infection of endothelial cells and mice. Furthermore, binding of factor X to adenovirus serotype 5 enhances infection of hepatocytes but also increases the activation of the innate immune response to the virus. Coagulation proteases activate protease-activated receptors (PARs). Interestingly, we and others found that PAR1 and PAR2 modulate the immune response to viral infection. For instance, PAR1 positively regulates TLR3-dependent expression of the antiviral protein interferon β, whereas PAR2 negatively regulates expression during coxsackievirus group B infection. These studies indicate that the coagulation cascade plays multiple roles during viral infections.
Ng, Cherie T; Sullivan, Brian M; Teijaro, John R; Lee, Andrew M; Welch, Megan; Rice, Stephanie; Sheehan, Kathleen C F; Schreiber, Robert D; Oldstone, Michael B A
2015-05-13
Although type I interferon (IFN-I) is thought to be beneficial against microbial infections, persistent viral infections are characterized by high interferon signatures suggesting that IFN-I signaling may promote disease pathogenesis. During persistent lymphocytic choriomeningitis virus (LCMV) infection, IFNα and IFNβ are highly induced early after infection, and blocking IFN-I receptor (IFNAR) signaling promotes virus clearance. We assessed the specific roles of IFNβ versus IFNα in controlling LCMV infection. While blockade of IFNβ alone does not alter early viral dissemination, it is important in determining lymphoid structure, lymphocyte migration, and anti-viral T cell responses that lead to accelerated virus clearance, approximating what occurs during attenuation of IFNAR signaling. Comparatively, blockade of IFNα was not associated with improved viral control, but with early dissemination of virus. Thus, despite their use of the same receptor, IFNβ and IFNα have unique and distinguishable biologic functions, with IFNβ being mainly responsible for promoting viral persistence. Copyright © 2015 Elsevier Inc. All rights reserved.
How Does Vaccinia Virus Interfere With Interferon?
Smith, Geoffrey L; Talbot-Cooper, Callum; Lu, Yongxu
2018-01-01
Interferons (IFNs) are secreted glycoproteins that are produced by cells in response to virus infection and other stimuli and induce an antiviral state in cells bearing IFN receptors. In this way, IFNs restrict virus replication and spread before an adaptive immune response is developed. Viruses are very sensitive to the effects of IFNs and consequently have evolved many strategies to interfere with interferon. This is particularly well illustrated by poxviruses, which have large dsDNA genomes and encode hundreds of proteins. Vaccinia virus is the prototypic poxvirus and expresses many proteins that interfere with IFN and are considered in this review. These proteins act either inside or outside the cell and within the cytoplasm or nucleus. They function by restricting the production of IFN by blocking the signaling pathways leading to transcription of IFN genes, stopping IFNs binding to their receptors, blocking IFN-induced signal transduction leading to expression of interferon-stimulated genes (ISGs), or inhibiting the antiviral activity of ISG products. © 2018 Elsevier Inc. All rights reserved.
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.; Cunnick, J. E.; Armfield, A. V.; Wood, P. G.; Rabin, B. S.
1992-01-01
Mild electric foot-shock has been shown to be a stressor that can alter immune responses. Male Lewis rats were exposed to one session of 16 5.0-s 1.6-mA foot-shocks. Production of interferon-gamma by splenocytes in response to concanavalin-A was decreased in spleens from the shocked rats compared to control spleens. Spleen cells from rats treated with nadolol, a peripherally acting beta-adrenergic receptor antagonist, and then shocked, showed dose-dependent attenuation of the suppression of interferon-gamma production. This suggests that catecholamines mediate shock-induced suppression of interferon-gamma production. The percentage of splenic mononuclear cells expressing class II histocompatibility (Ia) antigens on their surfaces from spleens of shocked rats was determined by flow cytometry. Significantly decreased class II positive mononuclear cells were present in the spleens of shocked rats in comparison to the spleens of control rats. This may reflect an alteration of cell trafficking or decreased production of class II antigens.
Duran, Anyelo; Valero, Nereida; Mosquera, Jesus; Delgado, Lineth; Alvarez-Mon, Melchor; Torres, Mariana
2016-10-01
Dengue disease courses with high viremia titers and high cytokine production suggesting viral replication and active immune response that could be related to viral evasion. One of the main targets of dengue virus (DENV) is monocyte/macrophage cells; however, little information regarding viral evasive mechanisms and pathway activation in monocytes infected by DENV is available. The aim of this study was to determine the role of myeloid differentiation primary response (MyD88), TIR-domain-containing adapter- inducing interferon-β (TRIF) and NF-kB pathways in viral replication and cytokine production in human monocyte cultures infected by DENV2. In this regard Pepinh- TRIF, Pepinh- MYD and pyrrolidine dithiocarbamate (PDTC) were used to inhibit TRIF, MYD88 and NF-kB pathways. Cytokine production was measured by ELISA. Increased DENV replication and IFNα/β, TNF-α, IL-12 and IL-18 in infected cultures at 24h were found. All of these parameters were significantly decreased after TRIF, MYD88 or NF-kB inhibition. Association analysis between viral replication and cytokine production showed high significant positive correlation in TRIF and MYD88 treated cultures. This study shows that DENV2 induces activation of innate-immune response and transcription factors to drive viral expression and replication in the face of pro-inflammatory antiviral responses in vitro. Copyright © 2016 Elsevier Inc. All rights reserved.
Control of epithelial immune-response genes and implications for airway immunity and inflammation.
Holtzman, M J; Look, D C; Sampath, D; Castro, M; Koga, T; Walter, M J
1998-01-01
A major goal of our research is to understand how immune cells (especially T cells) infiltrate the pulmonary airway during host defense and inflammatory disease (especially asthma). In that context, we have proposed that epithelial cells lining the airway provide critical biochemical signals for immune-cell influx and activation and that this epithelial-immune cell interaction is a critical feature of airway inflammation and hyperreactivity. In this brief report, we describe our progress in defining a subset of epithelial immune-response genes the expression of which is coordinated for viral defense both directly in response to replicating virus and indirectly under the control of a specific interferon-gamma signal transduction pathway featuring the Stat1 transcription factor as a critical relay signal between cytoplasm and nucleus. Unexpectedly, the same pathway is also activated during asthmatic airway inflammation in a setting where there is no apparent infection and no increase in interferon-gamma levels. The findings provide the first evidence of an overactive Stat1-dependent gene network in asthmatic airways and a novel molecular link between mucosal immunity and inflammation. The findings also offer the possibility that overactivity of Stat1-dependent genes might augment a subsequent T helper cell (Th1)-type response to virus or might combine with a heightened Th2-type response to allergen to account for more severe exacerbations of asthma.
Role for herpes simplex virus 1 ICP27 in the inhibition of type I interferon signaling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Karen E.; Song, Byeongwoon; Knipe, David M.
2008-05-10
Host cells respond to viral infection by many mechanisms, including the production of type I interferons which act in a paracrine and autocrine manner to induce the expression of antiviral interferon-stimulated genes (ISGs). Viruses have evolved means to inhibit interferon signaling to avoid induction of the innate immune response. Herpes simplex virus 1 (HSV-1) has several mechanisms to inhibit type I interferon production, the activities of ISGs, and the interferon signaling pathway itself. We report that the inhibition of the Jak/STAT pathway by HSV-1 requires viral gene expression and that viral immediate-early protein ICP27 plays a role in downregulating STAT-1more » phosphorylation and in preventing the accumulation of STAT-1 in the nucleus. We also show that expression of ICP27 by transfection causes an inhibition of IFN-induced STAT-1 nuclear accumulation. Therefore, ICP27 is necessary and sufficient for at least some of the effects of HSV infection on STAT-1.« less
Treatment of yellow fever virus with an adenovirus-vectored interferon, DEF201, in a hamster model.
Julander, Justin G; Ennis, Jane; Turner, Jeffrey; Morrey, John D
2011-05-01
Interferon (IFN) is an innate immune response protein that is involved in the antiviral response during viral infection. Treatment of acute viral infections with exogenous interferon may be effective but is generally not feasible for clinical use due to many factors, including cost, stability, and availability. To overcome these limitations, an adenovirus type 5-vectored consensus alpha IFN, termed DEF201, was constructed as a potential way to deliver sustained therapeutic levels of systemic IFN. To demonstrate the efficacy of DEF201 against acute flaviviral disease, various concentrations of the construct were administered as a single intranasal dose prior to virus infection, which resulted in a dose-responsive, protective effect in a hamster model of yellow fever virus (YFV) disease. A DEF201 dose of 5×10(7) PFU/animal administered intranasally just prior to YFV challenge protected 100% of the animals, while a 10-fold lower DEF201 dose exhibited lower, although significant, levels of protection. Virus titers in the liver and serum and levels of serum alanine aminotransferase were all significantly reduced as a result of DEF201 administration at all doses tested. No toxicity, as indicated by weight loss or gross morbidity, was observed in non-YFV-infected animals treated with DEF201. Protection of YFV-infected animals was observed when DEF201 was delivered as early as 7 days prior to virus challenge and as late as 2 days after virus challenge, demonstrating effective prophylaxis and therapy in a hamster model of disease. Overall, it appears that DEF201 is effective in the treatment of YFV in a hamster model.
Kanda, Tatsuo; Yasui, Shin; Nakamura, Masato; Nakamoto, Shingo; Takahashi, Koji; Wu, Shuang; Sasaki, Reina; Haga, Yuki; Ogasawara, Sadahisa; Saito, Tomoko; Kobayashi, Kazufumi; Kiyono, Soichiro; Ooka, Yoshihiko; Suzuki, Eiichiro; Chiba, Tetsuhiro; Maruyama, Hitoshi; Imazeki, Fumio; Moriyama, Mitsuhiko; Kato, Naoya
2018-02-20
Interferon-free treatment can achieve higher sustained virological response (SVR) rates, even in patients in whom hepatitis C virus (HCV) could not be eradicated in the interferon treatment era. Immune restoration in the liver is occasionally associated with HCV infection. We examined the safety and effects of interferon-free regimens on HCV patients with autoimmune liver diseases. All 7 HCV patients with autoimmune hepatitis (AIH) completed treatment and achieved SVR. Three patients took prednisolone (PSL) at baseline, and 3 did not take PSL during interferon-free treatment. In one HCV patient with AIH and cirrhosis, PSL were not administered at baseline, but she needed to take 40 mg/day PSL at week 8 for liver dysfunction. She also complained back pain and was diagnosed with vasospastic angina by coronary angiography at week 11. However, she completed interferon-free treatment. All 5 HCV patients with primary biliary cholangitis (PBC) completed treatment and achieved SVR. Three of these HCV patients with PBC were treated with UDCA during interferon-free treatment. Interferon-free regimens could result in higher SVR rates in HCV patients with autoimmune liver diseases. As interferon-free treatment for HCV may have an effect on hepatic immunity and activity of the autoimmune liver diseases, careful attention should be paid to unexpected adverse events in their treatments. Total 12 patients with HCV and autoimmune liver diseases [7 AIH and PBC], who were treated with interferon-free regimens, were retrospectively analyzed.
Branched-chain amino acid supplementation and the immune response of long-distance athletes.
Bassit, Reinaldo A; Sawada, Letícia A; Bacurau, Reury F P; Navarro, Franciso; Martins, Eivor; Santos, Ronaldo V T; Caperuto, Erico C; Rogeri, Patrícia; Costa Rosa, Luís F B P
2002-05-01
Intense long-duration exercise has been associated with immunosuppression, which affects natural killer cells, lymphokine-activated killer cells, and lymphocytes. The mechanisms involved, however, are not fully determined and seem to be multifactorial, including endocrine changes and alteration of plasma glutamine concentration. Therefore, we evaluated the effect of branched-chain amino acid supplementation on the immune response of triathletes and long-distance runners. Peripheral blood was collected prior to and immediately after an Olympic Triathlon or a 30k run. Lymphocyte proliferation, cytokine production by cultured cells, and plasma glutamine were measured. After the exercise bout, athletes from the placebo group presented a decreased plasma glutamine concentration that was abolished by branched-chain amino acid supplementation and an increased proliferative response in their peripheral blood mononuclear cells. Those cells also produced, after exercise, less tumor necrosis factor, interleukins-1 and -4, and interferon and 48% more interleukin-2. Supplementation stimulated the production of interleukin-2 and interferon after exercise and a more pronounced decrease in the production of interleukin-4, indicating a diversion toward a Th1 type immune response. Our results indicate that branched-chain amino acid (BCAA) supplementation recovers the ability of peripheral blood mononuclear cells proliferate in response to mitogens after a long distance intense exercise, as well as plasma glutamine concentration. The amino acids also modify the pattern of cytokine production leading to a diversion of the immune response toward a Th1 type of immune response.
de Queiróz, A T L; Maracaja-Coutinho, V; Jardim, A C G; Rahal, P; de Carvalho-Mello, I M V G; Matioli, S R
2011-02-01
Hepatitis C virus (HCV) infection frequently persists despite substantial virus-specific immune responses and the combination of pegylated interferon (INF)-α and ribavirin therapy. Major histocompatibility complex class I restricted CD8(+) T cells are responsible for the control of viraemia in HCV infection, and several studies suggest protection against viral infection associated with specific HLAs. The reason for low rates of sustained viral response (SVR) in HCV patients remains unknown. Escape mutations in response to cytotoxic T lymphocyte are widely described; however, its influence in the treatment outcome is ill understood. Here, we investigate the differences in CD8 epitopes frequencies from the Los Alamos database between groups of patients that showed distinct response to pegylated α-INF with ribavirin therapy and test evidence of natural selection on the virus in those who failed treatment, using five maximum likelihood evolutionary models from PAML package. The group of sustained virological responders showed three epitopes with frequencies higher than Non-responders group, all had statistical support, and we observed evidence of selection pressure in the last group. No escape mutation was observed. Interestingly, the epitope VLSDFKTWL was 100% conserved in SVR group. These results suggest that the response to treatment can be explained by the increase in immune pressure, induced by interferon therapy, and the presence of those epitopes may represent an important factor in determining the outcome of therapy. © 2010 Blackwell Publishing Ltd.
Crosstalk Between Apoptosis and Autophagy: Environmental Genotoxins, Infection, and Innate Immunity.
Kemp, Michael G
2017-01-01
Autoimmune disorders constitute a major and growing health concern. However, the genetic and environmental factors that contribute to or exacerbate disease symptoms remain unclear. Type I interferons (IFNs) are known to break immune tolerance and be elevated in the serum of patients with autoimmune diseases such as lupus. Extensive work over the past decade has characterized the role of a protein termed stimulator of interferon genes, or STING, in mediating IFN expression and activation in response to cytosolic DNA and cyclic dinucleotides. Interestingly, this STING-dependent innate immune pathway both utilizes and is targeted by the cell's autophagic machinery. Given that aberrant interplay between the apoptotic and autophagic machineries contributes to deregulation of the STING-dependent pathway, IFN-regulated autoimmune phenotypes may be influenced by the combined exposure to environmental carcinogens and pathogenic microorganisms and viruses. This review therefore summarizes recent data regarding these important issues in the field of autoimmunity.
Interferon-Lambda: A Potent Regulator of Intestinal Viral Infections.
Lee, Sanghyun; Baldridge, Megan T
2017-01-01
Interferon-lambda (IFN-λ) is a recently described cytokine found to be of critical importance in innate immune regulation of intestinal viruses. Endogenous IFN-λ has potent antiviral effects and has been shown to control multiple intestinal viruses and may represent a factor that contributes to human variability in response to infection. Importantly, recombinant IFN-λ has therapeutic potential against enteric viral infections, many of which lack other effective treatments. In this mini-review, we describe recent advances regarding IFN-λ-mediated regulation of enteric viruses with important clinical relevance including rotavirus, reovirus, and norovirus. We also briefly discuss IFN-λ interactions with other cytokines important in the intestine, and how IFN-λ may play a role in regulation of intestinal viruses by the commensal microbiome. Finally, we indicate currently outstanding questions regarding IFN-λ control of enteric infections that remain to be explored to enhance our understanding of this important immune molecule.
Interferon-Lambda: A Potent Regulator of Intestinal Viral Infections
Lee, Sanghyun; Baldridge, Megan T.
2017-01-01
Interferon-lambda (IFN-λ) is a recently described cytokine found to be of critical importance in innate immune regulation of intestinal viruses. Endogenous IFN-λ has potent antiviral effects and has been shown to control multiple intestinal viruses and may represent a factor that contributes to human variability in response to infection. Importantly, recombinant IFN-λ has therapeutic potential against enteric viral infections, many of which lack other effective treatments. In this mini-review, we describe recent advances regarding IFN-λ-mediated regulation of enteric viruses with important clinical relevance including rotavirus, reovirus, and norovirus. We also briefly discuss IFN-λ interactions with other cytokines important in the intestine, and how IFN-λ may play a role in regulation of intestinal viruses by the commensal microbiome. Finally, we indicate currently outstanding questions regarding IFN-λ control of enteric infections that remain to be explored to enhance our understanding of this important immune molecule. PMID:28713375
Endobiont Viruses Sensed by the Human Host – Beyond Conventional Antiparasitic Therapy
Fichorova, Raina N.; Takagi, Yuko; Hayes, Gary R.; Goodman, Russell P.; Chepa-Lotrea, Xenia; Buck, Olivia R.; Murray, Ryan; Kula, Tomasz; Beach, David H.; Singh, Bibhuti N.; Nibert, Max L.
2012-01-01
Wide-spread protozoan parasites carry endosymbiotic dsRNA viruses with uncharted implications to the human host. Among them, Trichomonas vaginalis, a parasite adapted to the human genitourinary tract, infects globally ∼250 million each year rendering them more susceptible to devastating pregnancy complications (especially preterm birth), HIV infection and HPV-related cancer. While first-line antibiotic treatment (metronidazole) commonly kills the protozoan pathogen, it fails to improve reproductive outcome. We show that endosymbiotic Trichomonasvirus, highly prevalent in T. vaginalis clinical isolates, is sensed by the human epithelial cells via Toll-like receptor 3, triggering Interferon Regulating Factor -3, interferon type I and proinflammatory cascades previously implicated in preterm birth and HIV-1 susceptibility. Metronidazole treatment amplified these proinflammatory responses. Thus, a new paradigm targeting the protozoan viruses along with the protozoan host may prevent trichomoniasis-attributable inflammatory sequelae. PMID:23144878
Anti-interferon-gamma antibodies in the treatment of autoimmune diseases.
Skurkovich, Boris; Skurkovich, Simon
2003-02-01
Interferon (IFN)-gamma is an important immune regulator in normal immunity. When IFN gamma production is disturbed, various autoimmune diseases (ADs) can develop, in which we suggest that anti-IFN gamma could have a beneficial effect. Depending on the cell type in which IFN gamma synthesis is disturbed, different clinical manifestations may result. We have also proposed to remove tumor necrosis factor (TNF)-alpha, together with certain types of IFNs, to treat various ADs and AIDS, also an autoimmune condition. Anti-IFN gamma has been tested in several T-helper cell (Th1) ADs, including rheumatoid arthritis (RA), multiple sclerosis (MS), corneal transplant rejection, uveitis, Type I diabetes, schizophrenia (anti-IFN gamma and anti-TNF alpha), and various autoimmune skin diseases (alopecia areata, psoriasis vulgaris, vitiligo, pemphigus vulgaris and epidermolysis bullosa). A strong, sometimes striking, therapeutic response followed administration of anti-IFN gamma, indicating that it may be a promising therapy for Th1 ADs.
Bernardo, Ana R; Cosgaya, José M; Aranda, Ana; Jiménez-Lara, Ana M
2017-07-01
Breast cancer is one of the most lethal malignancies for women. Retinoic acid (RA) and double-stranded RNA (dsRNA) are considered signaling molecules with potential anticancer activity. RA, co-administered with the dsRNA mimic polyinosinic-polycytidylic acid (poly(I:C)), synergizes to induce a TRAIL (Tumor-Necrosis-Factor Related Apoptosis-Inducing Ligand)- dependent apoptotic program in breast cancer cells. Here, we report that RA/poly(I:C) co-treatment, synergically, induce the activation of Interferon Regulatory Factor-3 (IRF3) in breast cancer cells. IRF3 activation is mediated by a member of the pathogen recognition receptors, Toll-like receptor-3 (TLR3), since its depletion abrogates IRF3 activation by RA/poly(I:C) co-treatment. Besides induction of TRAIL, apoptosis induced by RA/poly(I:C) correlates with the increased expression of pro-apoptotic TRAIL receptors, TRAIL-R1/2, and the inhibition of the antagonistic receptors TRAIL-R3/4. IRF3 plays an important role in RA/poly(I:C)-induced apoptosis since IRF3 depletion suppresses caspase-8 and caspase-3 activation, TRAIL expression upregulation and apoptosis. Interestingly, RA/poly(I:C) combination synergizes to induce a bioactive autocrine/paracrine loop of type-I Interferons (IFNs) which is ultimately responsible for TRAIL and TRAIL-R1/2 expression upregulation, while inhibition of TRAIL-R3/4 expression is type-I IFN-independent. Our results highlight the importance of IRF3 and type-I IFNs signaling for the pro-apoptotic effects induced by RA and synthetic dsRNA in breast cancer cells.
The role of cytokines in immune changes induced by spaceflight
NASA Technical Reports Server (NTRS)
Sonnenfeld, G.; Miller, E. S.
1993-01-01
It has become apparent that spaceflight alters many immune responses. Among the regulatory components of the immune response that have been shown to be affected by spaceflight is the cytokine network. Spaceflight, as well as model systems of spaceflight, have been shown to affect the production and action of various cytokines including interferons, interleukins, colony stimulating factors, and tumor necrosis factors. These changes have been shown not to involve a general shutdown of the cytokine network but, rather, to involve selective alterations of specific cytokine functions by spaceflight. The full breadth of changes in cytokines induced by spaceflight, as well as mechanisms, duration, adaptation, reversibility, and significance to resistance to infection and neoplastic diseases, remains to be established.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Preble, O.T.; Rothko, K.; Klippel, J.H.
1983-06-01
The interferon (IFN)-induced enzyme 2-5A synthetase was elevated in mononuclear cells from both serum IFN-positive and -negative systemic lupus erythematosus (SLE) patients. This suggests that a much higher percentage of patients than previously thought produce endogenous IFN. These results may partly explain findings that mononuclear cells from SLE patients are deficient in IFN production in vitro in response to certain IFN inducers. Although normal lymphocytes can produce an acid-labile alpha IFN after stimulation with C. parvum in vitro, the reason for endogenous production of this unusual alpha IFN by SLE patients remains unknown.
Montanuy, Imma; Alejo, Ali; Alcami, Antonio
2011-01-01
Eradication of smallpox was accomplished 30 yr ago, but poxviral infections still represent a public health concern due to the potential release of variola virus or the emergence of zoonotic poxviruses, such as monkeypox virus. A critical determinant of poxvirus virulence is the inhibition of interferons (IFNs) by the virus-encoded type I IFN-binding protein (IFNα/βBP). This immunomodulatory protein is secreted and has the unique property of interacting with the cell surface in order to prevent IFN-mediated antiviral responses. However, the mechanism of its attachment to the cell surface remains unknown. Using surface plasmon resonance and cell-binding assays, we report that the IFNα/βBP from vaccinia virus, the smallpox vaccine, interacts with cell surface glycosaminoglycans (GAGs). Analysis of the contribution of different regions of the protein to cell surface binding demonstrated that clusters of basic residues in the first immunoglobulin domain mediate GAG interactions. Furthermore, mutation of the GAG-interaction motifs does not affect its IFN-binding and -blocking capacity. Functional conservation of GAG-binding sites is demonstrated for the IFNα/βBP from variola and monkeypox viruses, extending our understanding of immune modulation by the most virulent human poxviruses. These results are relevant for the design of improved vaccines and intervention strategies.—Montanuy, I., Alejo, A., Alcami, A. Glycosaminoglycans mediate retention of the poxvirus type I interferon binding protein at the cell surface to locally block interferon antiviral responses. PMID:21372110
Small self-RNA generated by RNase L amplifies antiviral innate immunity
Malathi, Krishnamurthy; Dong, Beihua; Gale, Michael; Silverman, Robert H.
2013-01-01
Antiviral innate immunity is initiated in response to RNA molecules that are produced in virus-infected cells1. These RNAs activate signalling cascades that activate the genes that encode α- and β-interferon (IFN). Signalling occurs through the interaction of the RNAs with either of two pathogen recognition receptors, retinoic acid-inducible gene-I (RIG-I, also known as DDX58) and melanoma differentiation associated gene-5 (MDA5, also known as IFIH1), which contain amino-terminal caspase activation and recruitment domains (CARD) and carboxy-terminal DExD/H Box RNA helicase motifs2-5. RIG-I and MDA5 interact with another CARD protein, interferon-β promotor stimulator protein-1 (IPS-1, also known as MAVS, VISA and Cardif), in the mitochondrial membrane, which relays the signal through the transcription factors interferon regulatory factor 3 (IRF-3) and nuclear factor (NF)-κB to the IFN-β gene6-10. Although the signalling pathway is well understood, the origin of the RNA molecules that initiate these processes is not. Here we show that activation of the antiviral endoribonuclease, RNase L11, by 2′,5′-linked oligoadenylate (2-5A)12 produces small RNA cleavage products from self-RNA that initiate IFN production. Accordingly, mouse embryonic fibroblasts lacking RNase L were resistant to the induction of IFN-β expression in response to 2-5A, dsRNA or viral infection. Single-stranded regions of RNA are cleaved 3′ of UpUp and UpAp sequences by RNase L during viral infections, resulting in small, often duplex, RNAs13,14. We show that small self-RNAs produced by the action of RNase L on cellular RNA induce IFN-β expression and that the signalling involves RIG-I, MDA5 and IPS-1. Mice lacking RNase L produce significantly less IFN-β during viral infections than infected wild-type mice. Furthermore, activation of RNase L with 2-5A in vivo induced the expression of IFN-β in wild-type but not RNase L-deficient mice. Our results indicate that RNase L has an essential role in the innate antiviral immune response that relieves the requirement for direct sensing of non-self RNA. PMID:17653195
Hepatitis C virus and antiviral innate immunity: who wins at tug-of-war?
Yang, Da-Rong; Zhu, Hai-Zhen
2015-04-07
Hepatitis C virus (HCV) is a major human pathogen of chronic hepatitis and related liver diseases. Innate immunity is the first line of defense against invading foreign pathogens, and its activation is dependent on the recognition of these pathogens by several key sensors. The interferon (IFN) system plays an essential role in the restriction of HCV infection via the induction of hundreds of IFN-stimulated genes (ISGs) that inhibit viral replication and spread. However, numerous factors that trigger immune dysregulation, including viral factors and host genetic factors, can help HCV to escape host immune response, facilitating viral persistence. In this review, we aim to summarize recent advances in understanding the innate immune response to HCV infection and the mechanisms of ISGs to suppress viral survival, as well as the immune evasion strategies for chronic HCV infection.
Tarasova, Irina A; Chumakov, Peter M; Moshkovskii, Sergei A; Gorshkov, Mikhail V
2018-05-17
Peptide mass shifts were profiled using ultra-tolerant database search strategy for shotgun proteomics data sets of human glioblastoma cell lines demonstrating strong response to the type I interferon (IFNα-2b) treatment. The main objective of this profiling was revealing the cell response to IFN treatment at the level of protein modifications. To achieve this objective, statistically significant changes in peptide mass shift profiles between IFN treated and untreated glioblastoma samples were analyzed. Detailed analysis of MS/MS spectra allowed further interpretation of the observed mass shifts and differentiation between post-translational and artifact modifications. Malignant cells typically acquire increased sensitivity to viruses due to the deregulated antiviral mechanisms. Therefore, a viral therapy is considered as one of the promising approaches to treat cancer. However, recent studies have demonstrated that malignant cells can preserve intact antiviral mechanisms, e.g. interferon signaling, and develop resistance to virus infection in response to interferon treatment. Post translational modifications, e.g. tyrosine phosphorylation, are the interferon signaling drivers. Thus, comprehensive characterization of modifications is crucially important, yet, most challenging problem in cancer proteomics. Here, we report on the application of the recently introduced ultra-tolerant search strategy for profiling peptide modifications in the human glioblastoma cell lines demonstrating strong response to the type I interferon (IFNα-2b) treatment. The specific aim of the study was identification of statistically significant changes in peptide mass shift profiles between IFN treated and untreated glioblastoma samples, as well as determination of whether these shifts represent the biologically relevant modification. Copyright © 2018 Elsevier B.V. All rights reserved.
Bémeur, Chantal; Qu, Hong; Desjardins, Paul; Butterworth, Roger F
2010-01-01
Previous reports suggested that brain-derived proinflammatory cytokines are involved in the pathogenesis of hepatic encephalopathy (HE) and brain edema in acute liver failure (ALF). To further address this issue, expression of interleukin-1beta (IL-1beta), tumor necrosis factor-alpha (TNF-alpha) and interferon-gamma (IFN-gamma) mRNAs were measured in the brains of mice with acute liver failure resulting from exposure to azoxymethane. In addition, time to severe encephalopathy (coma) was assessed in mice lacking genes coding for interferon-gamma, the tumor necrosis factor receptor-1 or the interleukin-1 type 1 receptor. Interleukin-1beta, tumor necrosis factor-alpha and interferon-gamma expression were quantified using RT-PCR. Significant increases in interleukin-1beta and tumor necrosis factor-alpha mRNA were observed in the frontal cortex of azoxymethane-treated wild-type mice at coma stages of encephalopathy. Interferon-gamma, however, could not be detected in the brains of these animals. Onset of severe encephalopathy (coma) and brain edema in ALF mice were significantly delayed in interleukin-1 type 1 receptor or tumor necrosis factor receptor-1 knockout mice. Deletion of the interferon-gamma gene, on the other hand, had no significative effect on the neurological status or brain water content of acute liver failure mice. These results demonstrate that toxic liver injury resulting from exposure to azoxymethane is associated with selective induction of proinflammatory cytokines in the brain and that deletion of tumor necrosis factor receptor-1 or interlukin-1 type 1 receptor delays the onset of coma and brain edema in this model of acute liver failure. These findings further support a role for selective brain-derived cytokines in the pathogenesis of the cerebral complications in acute liver failure and suggest that anti-inflammatory strategies could be beneficial in their prevention. Copyright 2009 Elsevier Ltd. All rights reserved.
Yetkin, Mehmet Fatih; Mirza, Meral; Dönmez, Halil
2016-09-01
The aim of this study is to compare the white matter of multiple sclerosis (MS) patients with healthy controls and to monitor the response to the treatment with magnetic resonance spectroscopy (MRS).Fifteen healthy controls and 36 recently diagnosed MS patients never treated with interferon β were included in this study. In the patient group, MRS was performed before treatment, at 6th and 12th month after the initiation of treatment and once in control group. Patient group was divided into 3 interferon groups randomly. Physical examination findings were recorded as Expanded Disability Status Scale scores before treatment, at 6th and 12th month of interferon treatment.At the end of 1 year follow up, 26 of 36 patients completed the study. In patients' white matter lesions, N-acetylaspartate/creatine (NAA/Cr) ratios were lower than control group's white matters. NAA/Cr ratios were higher in control group's white matter than patient's normal appearing white matter but this difference was not statistically significant. There was no difference in choline/creatine (Cho/Cr) ratios between 2 groups. In follow-up period, NAA/Cr and Cho/Cr ratios obtained from patients' white matter lesions and normal appearing white matter did not change statistically.This study showed that in MS patients' white matters, especially in white matter lesions, neuron viability is reduced compared with healthy controls' normal white matter; and in the patients treated with interferon β NAA/Cr ratios remained stable. These stable levels of metabolite ratios in the patients who received interferon β therapy can be explained with either the shortness of the follow-up period post-treatment or may reflect a positive effect of the beta interferon therapy on the progress of MS.
Adamek, Mikołaj; Rakus, Krzysztof Ł; Chyb, Jarosław; Brogden, Graham; Huebner, Arne; Irnazarow, Ilgiz; Steinhagen, Dieter
2012-09-01
Interferons (IFNs) are secreted mediators that play a fundamental role in the innate immune response against viruses among all vertebrate classes. Common carp is a host for two highly contagious viruses: spring viraemia of carp virus (Rhabdovirus carpio, SVCV) and the Cyprinid herpesvirus 3 (CyHV-3), which belong to Rhabdoviridae and Alloherpesviridae families, respectively. Both viruses are responsible for significant losses in carp aquaculture. In this paper we studied the mRNA expression profiles of genes encoding for proteins promoting various functions during the interferon pathway, from pattern recognition receptors to antiviral genes, during in vitro viral infection. Furthermore, we investigated the impact of the interferon pathway (stimulated with poly I:C) on CyHV-3 replication and the speed of virus spreading in cell culture. The results showed that two carp viruses, CyHV-3 and SVCV induced fundamentally different type I IFN responses in CCB cells. SVCV induced a high response in all studied genes, whereas CyHV-3 seems to induce no response in CCB cells, but it induces a response in head kidney leukocytes. The lack of an IFN type I response to CyHV-3 could be an indicator of anti-IFN actions of the virus, however the nature of this mechanism has to be evaluated in future studies. Our results also suggest that an activation of type I IFN in CyHV-3 infected cells can limit the spread of the virus in cell culture. This would open the opportunity to treat the disease associated with CyHV-3 by an application of poly I:C in certain cases. Copyright © 2012 Elsevier Ltd. All rights reserved.
Arif, S; Gibson, V B; Nguyen, V; Bingley, P J; Todd, J A; Guy, C; Dunger, D B; Dayan, C M; Powrie, J; Lorenc, A; Peakman, M
2017-03-01
To examine the hypothesis that the quality, magnitude and breadth of helper T-lymphocyte responses to β cells differ in Type 1 diabetes according to diagnosis in childhood or adulthood. We studied helper T-lymphocyte reactivity against β-cell autoantigens by measuring production of the pro-inflammatory cytokine interferon-γ and the anti-inflammatory cytokine interleukin-10, using enzyme-linked immunospot assays in 61 people with Type 1 diabetes (within 3 months of diagnosis, positive for HLA DRB1*0301 and/or *0401), of whom 33 were children/adolescents, and a further 91 were unaffected siblings. Interferon-γ responses were significantly more frequent in children with Type 1 diabetes compared with adults (85 vs 61%; P = 0.04). Insulin and proinsulin peptides were preferentially targeted in children (P = 0.0001 and P = 0.04, respectively) and the breadth of the interferon-γ response was also greater, with 70% of children having an interferon-γ response to three or more peptides compared with 14% of adults (P < 0.0001). Islet β-cell antigen-specific interleukin-10 responses were similar in children and adults in terms of frequency, breadth and magnitude, with the exception of responses to glutamic acid decarboxylase 65, which were significantly less frequent in adults. At diagnosis of Type 1 diabetes, pro-inflammatory autoreactivity is significantly more prevalent, focuses on a wider range of targets, and is more focused on insulin/proinsulin in children than adults. We interpret this as indicating a more aggressive immunological response in the younger age group that is especially characterized by loss of tolerance to proinsulin. These findings highlight the existence of age-related heterogeneity in Type 1 diabetes pathogenesis that could have relevance to the development of immune-based therapies. © 2016 Diabetes UK.
Hu, Guo-Bin; Lou, Hui-Min; Dong, Xian-Zhi; Liu, Qiu-Ming; Zhang, Shi-Cui
2012-10-01
Interferon regulatory factor 5 (IRF5) has been identified as a key transcriptional mediator regulating expression of both type I interferons (IFNs) and proinflammatory cytokines. In this study, the cDNA and genomic sequences of IRF5 were isolated from Japanese flounder, Paralichthys olivaceus. The gene of Japanese flounder (Jf)IRF5 is 7326 bp long, contains 9 exons and 8 introns and encodes a putative protein of 472 amino acids. The predicted protein sequence shares 61.1-81.9% identity to fish IRF5 and possesses a DNA-binding domain (DBD), a middle region (MR), an IRF association domain (IAD), a virus activated domain (VAD) and two nuclear localization signals (NLSs) conserved in all known IRF5s. Phylogenetic analysis clustered it into the teleost IRF5 subgroup within vertebrate IRF5 group. JfIRF5 mRNA was constitutively expressed in all tissues examined, with higher levels observed in the gills and head kidney. Gene expression of JfIRF5 was analyzed over a 7-day time course in the gills, head kidney, spleen and muscle of Japanese flounders challenged with lymphocystis disease virus (LCDV) and polyinosinic:polycytidylic acid (poly I:C). The data showed that JfIRF5 expression was slightly up-regulated by LCDV, but its induction time was clearly moved up; in contrast, the induction upon poly I:C challenge started not earlier than day 2 post-injection and was stronger and more persistent with a later peak time in all four organs. The late and long-lasting inductive expression of JfIRF5 following poly I:C challenge suggests that it might be an interferon stimulated gene (ISG), the induction of which is driven by poly I:C-induced type I IFNs. Copyright © 2012 Elsevier Ltd. All rights reserved.
Effects of chicken interferon Gamma on Newcastle disease virus vaccine immunogenicity
USDA-ARS?s Scientific Manuscript database
More effective vaccines are needed to control avian diseases. The use of chicken interferon gamma (chIFN') during vaccination is a potentially important but controversial approach that may improve the immune response to antigens. In the present study, three different systems to co-deliver chIFN' wit...
Tian, Bing; Zhao, Yingxin; Kalita, Mridul; Edeh, Chukwudi B.; Paessler, Slobodan; Casola, Antonella; Teng, Michael N.; Garofalo, Roberto P.
2013-01-01
Respiratory syncytial virus (RSV) is a negative-sense single-stranded RNA virus responsible for lower respiratory tract infections. During infection, the presence of double-stranded RNA (dsRNA) activates the interferon (IFN) regulatory factor 3 (IRF3) transcription factor, an event triggering expression of immediate early, IFN-stimulated genes (ISGs). We examine the role of transcriptional elongation in control of IRF3-dependent ISG expression. RSV infection induces ISG54, ISG56, and CIG5 gene expression in an IRF3-dependent manner demonstrated by IRF3 small interfering RNA (siRNA) silencing in both A549 epithelial cells and IRF3−/− MEFs. ISG expression was mediated by the recruitment of IRF3, CDK9, polymerase II (Pol II), and phospho-Ser2 carboxy-terminal domain (CTD) Pol II to the IFN-stimulated response element (ISRE) binding sites of the IRF3-dependent ISG promoters in native chromatin. We find that RSV infection enhances the activated fraction of cyclin-dependent kinase 9 (CDK9) by promoting its association with bromodomain 4 (BRD4) and disrupting its association with the inhibitory 7SK small nuclear RNA. The requirement of CDK9 activity for ISG expression was shown by siRNA-mediated silencing of CDK9 and by a selective CDK9 inhibitor in A549 cells. In contrast, RSV-induced beta interferon (IFN-β) expression is not influenced by CDK9 inhibition. Using transcript-selective quantitative real-time reverse transcription-PCR (Q-RT-PCR) assays for the ISG54 gene, we observed that RSV induces transition from short to fully spliced mRNA transcripts and that this transition is blocked by CDK9 inhibition in both A549 and primary human small airway epithelial cells. These data indicate that transcription elongation plays a major role in RSV-induced ISG expression and is mediated by IRF3-dependent recruitment of activated CDK9. CDK9 activity may be a target for immunomodulation in RSV-induced lung disease. PMID:23596302
Le-Trilling, Vu Thuy Khanh; Wohlgemuth, Kerstin; Rückborn, Meike U; Jagnjic, Andreja; Maaßen, Fabienne; Timmer, Lejla; Katschinski, Benjamin; Trilling, Mirko
2018-05-09
Pathogen encounter induces interferons which signal via Janus kinases and STAT transcription factors to establish an antiviral state. However, host and pathogens are situated in a continuous arms race which shapes host evolution towards optimized immune responses and the pathogens towards enhanced immune evasive properties.Mouse cytomegalovirus (MCMV) counteracts interferon responses by pM27-mediated degradation of STAT2 which directly affects the signaling of type I as well as type III interferons. Using MCMV mutants lacking M27 and mice lacking STAT2, we studied the opposing relationship between antiviral activities and viral antagonism in a natural host-pathogen pair in vitro and in vivo In contrast to wt-MCMV, ΔM27-MCMV was efficiently cleared from all organs within a few days in BALB/c, C57BL/6, and 129 mice, highlighting the general importance of STAT2 antagonism for MCMV replication. Despite this effective and relevant STAT2 antagonism, wt and STAT2-deficient mice exhibited fundamentally different susceptibilities to MCMV infections. MCMV replication was increased in all assessed organs (e.g. liver, spleen, lungs, and salivary glands) of STAT2-deficient mice, resulting in mortality during the first week after infection.Taken together, our study reveals the importance of cytomegaloviral interferon antagonism for viral replication as well as a pivotal role of the remaining STAT2 activity for host survival. This mutual influence establishes a stable evolutionary stand-off situation with fatal consequences when the equilibrium is disturbed. IMPORTANCE The host limits viral replication by interferons which signal via STAT proteins. Several viruses evolved antagonists targeting STATs to antagonize IFNs (e.g. cytomegaloviruses, Zika virus, Dengue virus, and several paramyxoviruses). We analyzed infections of mouse CMV expressing or lacking the STAT2 antagonist pM27 in STAT2-deficient and control mice to evaluate their importance for host and virus in vitro and in vivo The inability to counteract STAT2 directly translates into exaggerated IFN susceptibility in vitro and pronounced attenuation in vivo Thus, the antiviral activity mediated by IFNs via STAT2-dependent signaling drove the development of a potent MCMV-encoded STAT2 antagonist which became indispensable for efficient virus replication and spread to organs required for dissemination. Despite this clear impact of viral STAT2 antagonism, the host critically required the remaining STAT2 activity to prevent overt disease and mortality upon MCMV infection. Our findings highlight a remarkably delicate balance between host and virus. Copyright © 2018 Le-Trilling et al.
Huang, Youhua; Huang, Xiaohong; Cai, Jia; OuYang, Zhengliang; Wei, Shina; Wei, Jingguang; Qin, Qiwei
2015-02-01
Interferon regulatory factor 3 (IRF3) is an important transcription factor which regulates the expression of interferon (IFN) and IFN-stimulated genes (ISGs) following virus recognition. In this study, a novel IRF3 gene was cloned from grouper Epinephelus coioides (EcIRF3) and its effects against Singapore grouper iridovirus (SGIV) and red spotted grouper nervous necrosis virus (RGNNV) was investigated. The full-length of EcIRF3 cDNA was composed of 2513 bp and encoded a polypeptide of 458 amino acids which shared 82% identity with European seabass (Dicentrarchus labrax). EcIRF3 contained three conserved domains including a DNA-binding domain (DBD), an IRF associated domain (IAD) and a serine-rich domain. Expression profile analysis revealed that EcIRF3 was abundant in head kidney, kidney, spleen and gill. Upon different stimuli in vitro, the transcript of EcIRF3 was significantly up-regulated after RGNNV infection or treatment with polyinosin-polycytidylic acid (poly I:C). During SGIV infection, the increase of the EcIRF3 transcription was only detected at the late stage, suggesting that EcIRF3 was differently regulated by different stimuli. Immune fluorescence assay indicated that the fluorescence signal of EcIRF3 was increased significantly after infection with RGNNV or treatment with poly I:C, but moderately at the late stage of SGIV infection. Reporter gene assay showed that EcIRF3 activated zebrafish type I IFN and type III IFN promoter in vitro. The viral gene transcription and virus production of RGNNV were significantly decreased in EcIRF3 overexpressing cells. However, the ectopic expression of EcIRF3 did not affect the gene transcription and virus production of SGIV. Moreover, the mRNA expression levels of type I IFN and IFN-inducible genes (MxI, ISG15 and ISG56) were increased in RGNNV infected EcIRF3 overexpressing cells compared to empty vector transfected cells. Together, our results demonstrated that IFN immune response mediated by grouper IRF3 was exerted crucial roles for fish RNA virus, but not for DNA virus replication. Copyright © 2014 Elsevier Ltd. All rights reserved.
Tsuji, Petra A.; Carlson, Bradley A.; Anderson, Christine B.; Seifried, Harold E.; Hatfield, Dolph L.; Howard, Michael T.
2015-01-01
Selenium is an essential element that is required to support a number of cellular functions and biochemical pathways. The objective of this study was to examine the effects of reduced dietary selenium levels on gene expression to assess changes in expression of non-selenoprotein genes that may contribute to the physiological consequences of selenium deficiency. Mice were fed diets that were either deficient in selenium or supplemented with selenium in the form of sodium selenite for six weeks. Differences in liver mRNA expression and translation were measured using a combination of ribosome profiling, RNA-Seq, microarrays, and qPCR. Expression levels and translation of mRNAs encoding stress-related selenoproteins were shown to be up-regulated by increased selenium status, as were genes involved in inflammation and response to interferon-γ. Changes in serum cytokine levels were measured which confirmed that interferon-γ, as well as IL-6, were increased in selenium adequate mice. Finally, microarray and qPCR analysis of lung tissue demonstrated that the selenium effects on immune function are not limited to liver. These data are consistent with previous reports indicating that adequate selenium levels can support beneficial immune responses, and further identify the IL-6 and interferon-γ pathways as being responsive to dietary selenium intake. PMID:26258789
Airway fungal colonization compromises the immune system allowing bacterial pneumonia to prevail.
Roux, Damien; Gaudry, Stéphane; Khoy-Ear, Linda; Aloulou, Meryem; Phillips-Houlbracq, Mathilde; Bex, Julie; Skurnik, David; Denamur, Erick; Monteiro, Renato C; Dreyfuss, Didier; Ricard, Jean-Damien
2013-09-01
To study the correlation between fungal colonization and bacterial pneumonia and to test the effect of antifungal treatments on the development of bacterial pneumonia in colonized rats. Experimental animal investigation. University research laboratory. Pathogen-free male Wistar rats weighing 250-275 g. Rats were colonized by intratracheal instillation of Candida albicans. Fungal clearance from the lungs and immune response were measured. Both colonized and noncolonized animals were secondarily instilled with different bacterial species (Pseudomonas aeruginosa, Escherichia coli, or Staphylococcus aureus). Bacterial phagocytosis by alveolar macrophages was evaluated in the presence of interferon-gamma, the main cytokine produced during fungal colonization. The effect of antifungal treatments on fungal colonization and its immune response were assessed. The prevalence of P. aeruginosa pneumonia was compared in antifungal treated and control colonized rats. C. albicans was slowly cleared and induced a Th1-Th17 immune response with very high interferon-gamma concentrations. Airway fungal colonization favored the development of bacterial pneumonia. Interferon-gamma was able to inhibit the phagocytosis of unopsonized bacteria by alveolar macrophages. Antifungal treatment decreased airway fungal colonization, lung interferon-gamma levels and, consequently, the prevalence of subsequent bacterial pneumonia. C. albicans airway colonization elicited a Th1-Th17 immune response that favored the development of bacterial pneumonia via the inhibition of bacterial phagocytosis by alveolar macrophages. Antifungal treatment decreased the risk of bacterial pneumonia in colonized rats.
A strong interferon response correlates with a milder dengue clinical condition.
De La Cruz Hernández, Sergio Isaac; Puerta-Guardo, Henry; Flores-Aguilar, Hilario; González-Mateos, Silvia; López-Martinez, Irma; Ortiz-Navarrete, Vianney; Ludert, Juan E; Del Angel, Rosa María
2014-07-01
Type 1 interferon (IFNα/β) has a significant role in establishing protection against virus infections. It has been well documented by in vitro studies that dengue virus (DENV) activates a robust IFNα/β response. However, DENV also induces a down-regulation of the JAK/STAT pathway, inhibiting the induction of interferon regulated genes. As a consequence, the role played by the IFN type 1 response in the protection of dengue patients is not fully understood. To compare IFN-α levels in dengue patients with dengue fever (DF) or dengue hemorrhagic fever (DHF) undergoing primary or secondary infections. Two hundred and four serum samples were analyzed for IFN-α level by cytometric bead array. Patients' clinical condition was assigned following the WHO 1997 criteria and specific IgG and IgM antibodies were measured using commercial assays to determine primary and secondary infections. The infecting serotype was determined by qRT-PCR. The IFN-α levels were found significantly higher in DF than DHF patients irrespective of the infecting serotype (DENV1 or 2), and were found to decline rapidly at day 3 after fever onset. For DENV2 infections, higher IFN-α level was found during primary than secondary infections. These results suggest that an early strong interferon response correlates with a better clinical condition. Copyright © 2014 Elsevier B.V. All rights reserved.
The Battle between Rotavirus and Its Host for Control of the Interferon Signaling Pathway
Arnold, Michelle M.; Sen, Adrish; Greenberg, Harry B.; Patton, John T.
2013-01-01
Viral pathogens must overcome innate antiviral responses to replicate successfully in the host organism. Some of the mechanisms viruses use to interfere with antiviral responses in the infected cell include preventing detection of viral components, perturbing the function of transcription factors that initiate antiviral responses, and inhibiting downstream signal transduction. RNA viruses with small genomes and limited coding space often express multifunctional proteins that modulate several aspects of the normal host response to infection. One such virus, rotavirus, is an important pediatric pathogen that causes severe gastroenteritis, leading to ∼450,000 deaths globally each year. In this review, we discuss the nature of the innate antiviral responses triggered by rotavirus infection and the viral mechanisms for inhibiting these responses. PMID:23359266
Kanda, Tatsuo; Yasui, Shin; Nakamura, Masato; Nakamoto, Shingo; Takahashi, Koji; Wu, Shuang; Sasaki, Reina; Haga, Yuki; Ogasawara, Sadahisa; Saito, Tomoko; Kobayashi, Kazufumi; Kiyono, Soichiro; Ooka, Yoshihiko; Suzuki, Eiichiro; Chiba, Tetsuhiro; Maruyama, Hitoshi; Imazeki, Fumio; Moriyama, Mitsuhiko; Kato, Naoya
2018-01-01
Background Interferon-free treatment can achieve higher sustained virological response (SVR) rates, even in patients in whom hepatitis C virus (HCV) could not be eradicated in the interferon treatment era. Immune restoration in the liver is occasionally associated with HCV infection. We examined the safety and effects of interferon-free regimens on HCV patients with autoimmune liver diseases. Results All 7 HCV patients with autoimmune hepatitis (AIH) completed treatment and achieved SVR. Three patients took prednisolone (PSL) at baseline, and 3 did not take PSL during interferon-free treatment. In one HCV patient with AIH and cirrhosis, PSL were not administered at baseline, but she needed to take 40 mg/day PSL at week 8 for liver dysfunction. She also complained back pain and was diagnosed with vasospastic angina by coronary angiography at week 11. However, she completed interferon-free treatment. All 5 HCV patients with primary biliary cholangitis (PBC) completed treatment and achieved SVR. Three of these HCV patients with PBC were treated with UDCA during interferon-free treatment. Conclusions Interferon-free regimens could result in higher SVR rates in HCV patients with autoimmune liver diseases. As interferon-free treatment for HCV may have an effect on hepatic immunity and activity of the autoimmune liver diseases, careful attention should be paid to unexpected adverse events in their treatments. Methods Total 12 patients with HCV and autoimmune liver diseases [7 AIH and PBC], who were treated with interferon-free regimens, were retrospectively analyzed. PMID:29545925
Hu, Guobin; Yin, Xiangyan; Xia, Jun; Dong, Xianzhi; Zhang, Jianyie; Liu, Qiuming
2010-12-01
Interferon regulatory factor (IRF) 7 in mammals is known to be a key player in regulating the type I interferon (IFN) response to viral infection as a transcription activator of IFNs and IFN-stimulated genes (ISGs). In this study, a full-length cDNA of Japanese flounder, Paralichthys olivaceus, (Po)IRF-7 was cloned and characterized. PoIRF-7 is 2032 bp in length, with an open reading frame (ORF) of 1293 bp that encodes 430 amino acid residues. The putative amino acid sequence shows the highest homology to fish IRF-7 with 51.5-76.3% identity and possesses a DNA-binding domain (DBD), an IRF association domain (IAD) and a serine-rich domain of vertebrate IRF-7. In addition, the tryptophan cluster of PoIRF-7 DBD consists of only four tryptophans, which is a characteristic unique to all fish IRF-7 members. The PoIRF-7 was expressed constitutively in all tested tissues of healthy flounders, with high levels in head kidney, spleen, gill, intestine and skin, and moderately expressed in FG9307 cells, a flounder gill epithelial cell line. Using a luciferase assay, PoIRF-7 was proved to be capable of activating fish type I IFN promoter in FG9307 cells. A quantitative real time PCR assay was employed to monitor the gene expression of PoIRF-7 and Mx in FG9307 cells and flounder head kidney and gill. Both genes were up-regulated by polyinosinic:polycytidylic acid (poly I:C) and lymphocystis disease virus (LCDV) though to a much lesser extent in FG9307 cells. Further, their transcription kinetics were similar in fish organs but different in FG9307 cells. These data provide insights into the functions of PoIRF-7 and imply a difference in PoIRF-7-related signaling pathways in antiviral response between cultured cells and live fish. Copyright © 2010 Elsevier Ltd. All rights reserved.
Hopewell, Emily L.; Bronk, Crystina C.; Massengill, Michael; Engelman, Robert W.; Beg, Amer A.
2012-01-01
Microbial adjuvants in vaccines activate key transcription factors, including NF-κB and interferon response factors (IRFs). However, the individual role of these transcription factor pathways in promoting adaptive immunity by adjuvants is not clear. It is widely believed that induction of a strong inflammatory response potentiates an adaptive immune response. In this study, we sought to determine whether activation of the pro-inflammatory inhibitor of κB kinase β (IKKβ) canonical NF-κB pathway promoted vaccine-induced immune responses. An adenovirus expressing constitutively-activated IKKβ (AdIKK) induced robust DC maturation and high expression of key cytokines compared to a control virus. In vivo, AdIKK triggered rapid inflammation after pulmonary infection, increased leukocyte entry into draining LNs, and enhanced early antibody and T-cell responses. Notably, AdIKK did not influence the overall magnitude of the adaptive immune response. These results indicate that induction of inflammation by IKKβ/NF-κB in this setting impacts the kinetics but not the magnitude of adaptive immune responses. These findings therefore help define the individual role of a key pathway induced by vaccine adjuvants in promoting adaptive immunity. PMID:22161279
Wells, Malcolm M; Roth, Lee S; Marotta, Paul; Levstik, Mark; Mason, Andrew L; Bain, Vincent G; Chandok, Natasha; Aljudaibi, Bandar M
2013-01-01
In patients with advanced post-transplant hepatitis C virus (HCV) recurrence, antiviral treatment (AVT) with interferon and ribavirin is indicated to prevent graft failure. The aim of this study was to determine and report Canadian data with respect to the safety, efficacy, and spontaneous virologic response (SVR) predictors of AVT among transplanted patients with HCV recurrence. A retrospective chart review was performed on patients transplanted in London, Ontario and Edmonton, Alberta from 2002 to 2012 who were treated for HCV. Demographic, medical, and treatment information was collected and analyzed. A total of 85 patients with HCV received pegylated interferon with ribavirin post-liver transplantation and 28 of the 65 patients (43%) with genotype 1 achieved SVR. Of the patients having genotype 1 HCV who achieved SVR, there was a significantly lower stage of fibrosis (1.37 ± 0.88 vs. 1.89 ± 0.96; P = 0.03), increased ribavirin dose (total daily dose 1057 ± 230 vs. 856 ± 399 mg; P = 0.02), increased rapid virologic response (RVR) (6/27 vs. 0/31; P = 0.05), increased early virologic response (EVR) (28/28 vs. 18/35; P = 0.006), and longer duration of therapy (54.7 ± 13.4 weeks vs. 40.2 ± 18.7; P = 0.001). A logistic regression model using gender, age, RVR, EVR, anemia, duration of therapy, viral load, years' post-transplant, and type of organ (donation after cardiac death vs. donation after brain death) significantly predicted SVR (P < 0.001), with duration of therapy having a significant odds ratio of 1.078 (P = 0.007). This study identified factors that predict SVR in HCV-positive patients who received dual therapy post-transplantation. Extending therapy from 48 weeks to 72 weeks of dual therapy is associated with increased SVR rates. Future studies examining the role of extended therapy are needed to confirm these findings, since the current study is a retrospective one.
Rodrigues-Duarte, Lurdes; Pandya, Yash; Neres, Rita
2018-01-01
ABSTRACT Malaria in pregnancy (MiP) is a distinctive clinical form of Plasmodium infection and is a cause of placental insufficiency leading to poor pregnancy outcomes. Maternal innate immunity responses play a decisive role in the development of placental inflammation, but the action of fetus-derived factors in MiP outcomes has been overlooked. We investigated the role of the Tlr4 and Ifnar1 genes, taking advantage of heterogenic mating strategies to dissect the effects mediated by maternally and fetally derived Toll-like receptor 4 (TLR4) or type I interferon receptor 1 (IFNAR1). Using a mouse infection system displaying severe MiP outcomes, we found that the expressions of TLR4 and IFNAR1 in the maternal compartment take part in deleterious MiP outcomes, but their fetal counterparts patently counteract these effects. We uncovered that fetal TLR4 contributes to the in vitro uptake of infected erythrocytes by trophoblasts and to the innate immune response in the placenta, offering robust protection of fetus viability, but had no sensible impact on the placental parasite burden. In contrast, we observed that the expression of IFNAR1 in the fetal compartment was associated with a reduced placental parasite burden but had little beneficial effect on fetus outcomes. Furthermore, the downregulation of Ifnar1 expression in infected placentas and in trophoblasts exposed to infected erythrocytes indicated that the interferon-IFNAR1 pathway is involved in the trophoblast response to infection. This work unravels that maternal and fetal counterparts of innate immune pathways drive opposing responses in murine placental malaria and implicates the activation of innate receptors in fetal trophoblast cells in the control of placental infection and in the protection of the fetus. PMID:29440369
Caspase-12 controls West Nile virus infection via the viral RNA receptor RIG-I.
Wang, Penghua; Arjona, Alvaro; Zhang, Yue; Sultana, Hameeda; Dai, Jianfeng; Yang, Long; LeBlanc, Philippe M; Doiron, Karine; Saleh, Maya; Fikrig, Erol
2010-10-01
Caspase-12 has been shown to negatively modulate inflammasome signaling during bacterial infection. Its function in viral immunity, however, has not been characterized. We now report an important role for caspase-12 in controlling viral infection via the pattern-recognition receptor RIG-I. After challenge with West Nile virus (WNV), caspase-12-deficient mice had greater mortality, higher viral burden and defective type I interferon response compared with those of challenged wild-type mice. In vitro studies of primary neurons and mouse embryonic fibroblasts showed that caspase-12 positively modulated the production of type I interferon by regulating E3 ubiquitin ligase TRIM25-mediated ubiquitination of RIG-I, a critical signaling event for the type I interferon response to WNV and other important viral pathogens.
Zhang, S; Zheng, B; Wang, T; Li, A; Wan, J; Qu, J; Li, C H; Li, D; Liang, M
Severe fever with thrombocytopenia syndrome virus (SFTSV) is a newly identified Phlebovirus that causes severe fever with thrombocytopenia syndrome. Our study demonstrated that SFTSV NSs functioned as IFN antagonist mainly by suppressing TBK1/IKKε-IRF3 signaling pathway. NSs interacted with and relocalized TANK-binding kinase 1 (TBK1) into NSs-induced cytoplasmic structures and this interaction could effectively inhibit downstream phosphorylation and dimerization of interferon regulatory factor 3 (IRF3), resulting in the suppression of antiviral signaling and IFN induction. Functional sites of SFTSV NSs binding with TBK1 were then studied and results showed that NSs had lost their IFN-inhibiting activity after deleting the 25 amino acids in N-terminal. Furthermore, the mechanism of Rift Valley fever virus (RVFV) NSs blocking IFN-β response were also investigated. Preliminary results showed that RVFV NSs proteins could neither interact nor co-localize with TBK1 in cytoplasm, but suppressed its expression levels, phosphorylation and dimerization of IRF3 in the subsequent steps, resulting in inhibition of the IFN-β production. Altogether, our data demonstrated the probable mechanism used by SFTSV to inhibit IFN responses which was different from RVFV and pointed toward a novel mechanism for RVFV suppressing IFN responses.
Rivera, L E; Kraiselburd, E; Meléndez, L M
2016-10-01
Cystatin B is a cysteine protease inhibitor that induces HIV replication in monocyte-derived macrophages (MDM). This protein interacts with signal transducer and activator of transcription (STAT-1) factor and inhibits the interferon (IFN-β) response in Vero cells by preventing STAT-1 translocation to the nucleus. Cystatin B also decreases the levels of tyrosine-phosphorylated STAT-1 (STAT-1PY). However, the mechanisms of cystatin B regulation on STAT-1 phosphorylation in MDM are unknown. We hypothesized that cystatin B inhibits IFN-β antiviral responses and induces HIV replication in macrophage reservoirs through the inhibition of STAT-1 phosphorylation. Macrophages were transfected with cystatin B siRNA prior to interferon-β treatment or infected with HIV-ADA to determine the effect of cystatin B modulation in STAT-1 localization and activation using immunofluorescence and proximity ligation assays. Cystatin B decreased STAT-1PY and its transportation to the nucleus, while HIV infection retained unphosphorylated STAT (USTAT-1) in the nucleus avoiding its exit to the cytoplasm for eventual phosphorylation. In IFN-β-treated MDM, cystatin B inhibited the nuclear translocation of both, USTAT-1 and STAT-1PY. These results demonstrate that cystatin B interferes with the STAT-1 signaling and IFN-β-antiviral responses perpetuating HIV in macrophage reservoirs.
Effect of space flight on interferon production - mechanistic studies
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1991-01-01
Ground-based models were studied for the effects of space flight on immune responses. Most time was spent on the model for the antiorthostatic, hypokinetic, hypodynamic suspension model for rats. Results indicate that suspension is useful for modeling the effects of spaceflight on functional immune responses, such as interferon and interleukin production. It does not appear to be useful for modeling shifts in leukocyte sub-populations. Calcium and 1,25-dihydroxyvitamin D sub 3 appear to play a pivitol role in regulating shifts in immune responses due to suspension. The macrophage appears to be an important target cell for the effects of suspension on immune responses.
Coordinated therapeutic effects of immune modulators and interferon.
Cerutti, I; Chany, C
1983-01-01
Immune modulators injected 24 h before encephalomyocarditis virus significantly increase antiviral resistance in mice when interferon is administered 1 h after the virus. These immune modulators can be crude bacterial extracts or synthetic drugs. In some cases, the responses are additive; in others, they are clearly cooperative. To protect the mice against the development of 180 TG Crocker sarcomas, the association of bacterial extracts and interferon is highly effective under the condition that the drug concentrations and chronological order and number of injections are well defined. In contrast, the conjunction of interferon and synthetic immune modulators, in particular cimetidine, result in delayed tumor development with no significant change in the final survival rate in the experimental model described here. PMID:6315585
Leung, Donald YM; Gao, Pei-Song; Grigoryev, Dmitry N; Rafaels, Nicholas M; Streib, Joanne E; Howell, Michael D; Taylor, Patricia A; Boguniewicz, Mark; Canniff, Jennifer; Armstrong, Brian; Zaccaro, Daniel J; Schneider, Lynda C; Hata, Tissa R; Hanifin, Jon M; Beck, Lisa A; Weinberg, Adriana; Barnes, Kathleen C
2011-01-01
Background The basis for increased susceptibility of atopic dermatitis (AD) patients to develop disseminated viral skin infections such as eczema herpeticum (ADEH+) is poorly understood. Objective We sought to determine whether atopic dermatitis subjects prone to disseminated viral skin infections have defects in their interferon responses. Methods GeneChip profiling was used to identify differences in gene expression of peripheral blood mononuclear cells (PBMC) from patients with a history of ADEH+ as compared to ADEH− and non-atopic controls. Key differences in protein expression were verified by ELISPOT and/or ELISA. Clinical relevance was further demonstrated by a mouse model of disseminated viral skin infection and genetic association analysis for genetic variants in IFNG and IFNGR1 and ADEH among 435 cases and controls. Results We demonstrate by global gene expression analysis selective transcriptomic changes within the interferon (IFN) superfamily of PBMCs from ADEH+ subjects reflecting low IFNγ and IFNγ receptor gene expression. IFNγ protein production was also significantly lower in ADEH+ (N=24) compared to ADEH− (N=20) and non-atopic (NA; N=20) controls. IFNγ receptor knockout (KO) mice developed disseminated viral skin infection after epicutaneous challenge with vaccinia virus (VV). Genetic variants in IFNG and IFNGR1 SNPs were significantly associated with ADEH (112 cases, 166 controls) and IFNγ production: a 2-SNP (A–G) IFNGR1 haplotype (rs10457655 and rs7749390) showed the strongest association with a reduced risk of ADEH+ ((13.2% ADEH+ vs 25.5% ADEH−, P = 0.00057). Conclusions ADEH+ patients have reduced IFNγ production, and IFNG and IFNGR1 SNPs are significantly associated with ADEH+ and may contribute to an impaired immune response to herpes simplex virus (HSV). Clinical Implications Atopic dermatitis subjects prone to disseminated viral skin infections have defects in their interferon responses. Capsule summary Using genomic, immunologic and genetic approaches, these investigators demonstrated that atopic dermatitis subjects prone to disseminated viral skin infections have defects in their interferon responses. PMID:21458658
Laurito, Marcela Pezzoto; Parise, Edison Roberto
2013-01-01
Controversial results have been found in literature for the association between insulin resistance and sustained virologic response to standard chronic hepatitis C treatment. This study aims to provide a systematic literature review with meta-analysis, in order to evaluate if insulin resistance interferes with sustained virologic response in patients infected by the HCV genotype 1 versus HCV genotypes 2 and 3, undergoing treatment with interferon and ribavirin or pegylated interferon and ribavarin. Systematic search was performed on main electronic databases until May 2012. Primary outcome was sustained virologic response, defined as undetectable levels of HCV-RNA six months after the end of treatment. Meta-analytic measure was estimated using Dersimonian and Laird's method, using Stata software. Thirteen studies involving 2238 infected patients were included. There was a statistically significant association between insulin resistance and lower sustained virologic response rate, and this difference occurred in HCV genotype G1 (OR: 2.23; 95% CI: 1.59-3.13) and G2/G3 (OR: 4.45; 95% CI: 1.59-12.49). In addition, a difference was seen in the cut-offs used for defining insulin resistance by Homeostasis Model Assessment of Insulin Resistance. To minimize this limitation, sub-analysis that excluded the studies that did not use 2 as a cut-off value was performed and the results still demonstrated association between insulin resistance and sustained virologic response, for both genotypic groups. This meta-analysis provides evidence that elevated Homeostasis Model Assessment of Insulin Resistance is associated with a lower sustained virologic response rate in patients with hepatitis C treated with interferon and ribavirin or pegylated interferon and ribavarin, regardless of their genotype. Copyright © 2013 Elsevier Editora Ltda. All rights reserved.
Casey, Janet; Pichichero, Michael
2016-01-01
Objective: Acute otitis media (AOM) causes an inflammatory response in the middle ear. We assessed differences in innate immune responses involved in bacterial defense at onset of AOM in children who were stringently defined as otitis prone (sOP) and children not otitis prone (NOP). Study Design: Innate immune genes analysis from middle ear fluid (MEF) samples of children. Methods: Genes of toll-like receptors (TLR), nod-like and retinoic acid-inducible gene-I-like receptors, downstream effectors important for inflammation and apoptosis, including cytokines and chemokines, were studied from MEF samples by using a real-time polymerase chain reaction array. Protein levels of differentially regulated genes were measured by Luminex. Results: Gene expression in MEF among children who were sOP was significantly different in upregulation of interleukin 8, secretory leukocyte peptidase inhibitor, and chemokine (C-C motif) ligand 3, and in downregulation of interferon regulatory factor 7 and its related signaling molecules interferon alpha, Toll-like receptor adaptor molecule 2, chemokine (C-C motif) ligand 5, and mitogen-activated protein kinase 8 compared with children who were NOP. Differences in innate gene regulation were similar when AOM was caused by Streptococcus pneumoniae or nontypeable Haemophilus influenzae. Conclusion: Innate-immune response genes are differentially regulated in children who were sOP compared with children with NOP. PMID:28124644
Modulation of HIV replication in monocyte derived macrophages (MDM) by steroid hormones.
Devadas, Krishnakumar; Biswas, Santanu; Ragupathy, Viswanath; Lee, Sherwin; Dayton, Andrew; Hewlett, Indira
2018-01-01
Significant sex specific differences in the progression of HIV/AIDS have been reported. Several studies have implicated steroid hormones in regulating host factor expression and modulating HIV transmission and replication. However, the exact mechanism exerted by steroid hormones estrogen and progesterone in the regulation of HIV-1 replication is still unclear. Results from the current study indicated a dose dependent down regulation of HIV-1 replication in monocyte derived macrophages pre-treated with high concentrations of estrogen or progesterone. To elucidate the molecular mechanisms associated with the down regulation of HIV-1 replication by estrogen and progesterone we used PCR arrays to analyze the expression profile of host genes involved in antiviral responses. Several chemokines, cytokines, transcription factors, interferon stimulated genes and genes involved in type-1 interferon signaling were down regulated in cells infected with HIV-1 pre-treated with high concentrations of estrogen or progesterone compared to untreated HIV-1 infected cells or HIV-1 infected cells treated with low concentrations of estrogen or progesterone. The down regulation of CXCL9, CXCL10 and CXCL11 chemokines and IL-1β, IL-6 cytokines in response to high concentrations of estrogen and progesterone pre-treatment in HIV-1 infected cells was confirmed at the protein level by quantitating chemokine and cytokine concentrations in the culture supernatant. These results demonstrate that a potent anti-inflammatory response is mediated by pre-treatment with high concentrations of estrogen and progesterone. Thus, our study suggests a strong correlation between the down-modulation of anti-viral and pro-inflammatory responses mediated by estrogen and progesterone pre-treatment and the down regulation of HIV-1 replication. These findings may be relevant to clinical observations of sex specific differences in patient populations and point to the need for further investigation.
Park, Se-Jeong; Lee, Mi-Young; Son, Bu-Soon; Youn, Hyung-Sun
2009-07-01
Toll-like receptors (TLRs) are primary sensors that detect a wide variety of microbial components involving induction of innate immune responses. After recognition of microbial components, TLRs trigger the activation of myeloid differential factor 88 (MyD88) and Toll-interleukin-1 (IL-1) receptor domain-containing adapter inducing interferon-beta (TRIF)-dependent downstream signaling pathways. 6-Shoagol, an active ingredient of ginger, inhibits the MyD88-dependent signaling pathway by inhibiting inhibitor-kappaB kinase activity. Inhibitor-kappaB kinase is a key kinase in nuclear factor kappaB (NF-kappaB) activation. However, it is not known whether 6-shogaol inhibits the TRIF-dependent signaling pathway. Our goal was to identify the molecular target of 6-shogaol in the TRIF-dependent pathway of TLRs. 6-Shogaol inhibited the activation of interferon-regulatory factor 3 (IRF3) induced by lipopolysaccharide (LPS) and by polyriboinosinic polyribocytidylic acid (poly[I:C]), overexpression of TRIF, TANK-binding kinase1 (TBK1), and IRF3. Furthermore, 6-shogaol inhibited TBK1 activity in vitro. Together, these results suggest that 6-shogaol inhibits the TRIF-dependent signaling pathway of TLRs by targeting TBK1, and, they imply that 6-shogaol can modulate TLR-derived immune/inflammatory target gene expression induced by microbial infection.
Jayakumar, Asha; Donovan, Michael J.; Tripathi, Vinita; Ramalho-Ortigao, Marcelo; McDowell, Mary Ann
2008-01-01
The salient feature of dendritic cells (DC) is the initiation of appropriate adaptive immune responses by discriminating between pathogens. Using a prototypic model of intracellular infection, we previously showed that Leishmania major parasites prime human DC for efficient interleukin-12 (IL-12) secretion. L. major infection is associated with self-limiting cutaneous disease and powerful immunity. In stark contrast, the causative agent of visceral leishmaniasis, Leishmania donovani, does not prime human DC for IL-12 production. Here, we report that DC priming by L. major infection results in the early activation of NF-κB transcription factors and the up-regulation and nuclear translocation of interferon regulatory factor 1 (IRF-1) and IRF-8. The inhibition of NF-κB activation by the pretreatment of DC with caffeic acid phenethyl ester blocks L. major-induced IRF-1 and IRF-8 activation and IL-12 expression. We further demonstrate that IRF-1 and IRF-8 obtained from L. major-infected human DC specifically bind to their consensus binding sites on the IL-12p35 promoter, indicating that L. major infection either directly stimulates a signaling cascade or induces an autocrine pathway that activates IRF-1 and IRF-8, ultimately resulting in IL-12 transcription. PMID:18316378
Abdalla, Douglas R; Murta, Eddie F C; Michelin, Márcia A
2013-05-01
This study aims to investigate cytokine synthesis by lymphocytes in the presence of mammary tumors and the interaction with physical activity. For this study, we used 56 female Balb/c, 8-week-old, virgin mice with a body mass between 20 and 30 g. The mice were divided into four groups: a no tumor/nontrained control group; a no tumor/trained group subjected to physical training of swimming in water (30 ± 4°C) for 45 min, five times per week for 8 weeks; a tumor/nontrained (sedentary) group in which the animals received 7,12-dimethylbenzanthracene [(DMBA) 1 mg/ml weekly for 6 weeks)]; and a tumor/trained group in which animals were subjected to the aforementioned DMBA tumor induction and swim training protocols. After the experimental period, immune cells were collected from spleen cell specimens, placed in culture, and stimulated with lipopolysaccharide. The presence of cluster of differentiation (CD)3, CD4, and CD8 markers and the expression of interferon-γ, interleukin (IL)-2, IL-4, IL-10, IL-12, transforming growth factor β, and tumor necrosis factor α cytokines were assessed by flow cytometry and enzyme-linked immunosorbent assay. Physical activity increased the quantities of lymphocytes producing interferon γ, IL-2, IL-12, and tumor necrosis factor α and decreased the quantities of lymphocytes and macrophages expressing IL-4, IL-10, and transforming growth factor β. In contrast, tumor induction, in the absence of swim training, reduced Th1 cytokine levels while increasing the presence of Th2 cytokines and Treg cells. Physical activity promoted reductions in the incidence of tumor development and promoted immune system polarization toward an antitumor Th1 response pattern profile.
Bjerre, Anna; Brusletto, Berit; Høiby, Ernst Arne; Kierulf, Peter; Brandtzaeg, Petter
2004-02-01
To analyze plasma interferon-gamma and interleukin-10 concentrations in patients with systemic meningococcal disease and patients with severe Gram-positive septic shock caused by Streptococcus pneumoniae or Staphylococcus aureus. To study the in vitro cytokine (interferon-gamma and interleukin-10) responses in a whole blood model boosted with heat-killed Neisseria meningitidis, S. pneumoniae, and S. aureus before and after treatment with recombinant interleukin-10 or recombinant interferon-gamma. Experimental study. Laboratory. Plasma samples were collected from patients with systemic meningococcal disease (n = 66) and patients with severe Gram-positive septic shock caused by S. pneumoniae (n = 4) or S. aureus (n = 3). Whole blood was boosted with heat-killed N. meningitidis, S. pneumoniae, and S. aureus (1 x 106 colony forming units/mL), and plasmas were analyzed for interleukin-10 or interferon-gamma at 0, 5, 12, and 24 hrs. Furthermore, recombinant interleukin-10 or recombinant interferon-gamma was added before bacteria, and the effect on the secretion of interferon-gamma and interleukin-10, respectively, was analyzed after 24 hrs. The median concentration of interferon-gamma was 15 pg/mL and of interleukin-10 was 10,269 pg/mL in patients with meningococcal septic shock (n = 24) compared with median interferon-gamma concentration of 3400 pg/mL and interleukin-10 concentration of 465 pg/mL in patients with severe Gram-positive shock (p =.001). Increased interferon-gamma concentrations were associated with case fatality (p =.011). In a whole blood model we demonstrated that 1 x 106 colony forming units/mL of N. meningitidis induced more interleukin-10 but less interferon-gamma than S. pneumoniae. S. aureus induced minimal secretion of both cytokines. Recombinant interleukin-10 efficiently down-regulated the secretion of interferon-gamma, and vice versa, as shown in a whole blood model. We speculate whether high concentrations of interleukin-10 contribute to the low concentrations of interferon-gamma in fulminant meningococcal septicemia. In addition, it appears as if interferon-gamma plays a minor role in the pathophysiology of meningococcal septic shock.
The ebola virus interferon antagonist VP24 directly binds STAT1 and has a novel, pyramidal fold.
Zhang, Adrianna P P; Bornholdt, Zachary A; Liu, Tong; Abelson, Dafna M; Lee, David E; Li, Sheng; Woods, Virgil L; Saphire, Erica Ollmann
2012-02-01
Ebolaviruses cause hemorrhagic fever with up to 90% lethality and in fatal cases, are characterized by early suppression of the host innate immune system. One of the proteins likely responsible for this effect is VP24. VP24 is known to antagonize interferon signaling by binding host karyopherin α proteins, thereby preventing them from transporting the tyrosine-phosphorylated transcription factor STAT1 to the nucleus. Here, we report that VP24 binds STAT1 directly, suggesting that VP24 can suppress at least two distinct branches of the interferon pathway. Here, we also report the first crystal structures of VP24, derived from different species of ebolavirus that are pathogenic (Sudan) and nonpathogenic to humans (Reston). These structures reveal that VP24 has a novel, pyramidal fold. A site on a particular face of the pyramid exhibits reduced solvent exchange when in complex with STAT1. This site is above two highly conserved pockets in VP24 that contain key residues previously implicated in virulence. These crystal structures and accompanying biochemical analysis map differences between pathogenic and nonpathogenic viruses, offer templates for drug design, and provide the three-dimensional framework necessary for biological dissection of the many functions of VP24 in the virus life cycle.
Lückoff, Anika; Caramoy, Albert; Scholz, Rebecca; Prinz, Marco; Kalinke, Ulrich; Langmann, Thomas
2016-06-01
Age-related macular degeneration (AMD) is a leading cause of vision loss among the elderly. AMD pathogenesis involves chronic activation of the innate immune system including complement factors and microglia/macrophage reactivity in the retina. Here, we show that lack of interferon-β signaling in the retina accelerates mononuclear phagocyte reactivity and promotes choroidal neovascularization (CNV) in the laser model of neovascular AMD Complete deletion of interferon-α/β receptor (Ifnar) using Ifnar1(-/-) mice significantly enhanced early microglia and macrophage activation in lesion areas. This triggered subsequent vascular leakage and CNV at later stages. Similar findings were obtained in laser-treated Cx3cr1(Cre) (ER):Ifnar1(fl/fl) animals that allowed the tamoxifen-induced conditional depletion of Ifnar in resident mononuclear phagocytes only. Conversely, systemic IFN-β therapy of laser-treated wild-type animals effectively attenuated microgliosis and macrophage responses in the early stage of disease and significantly reduced CNV size in the late phase. Our results reveal a protective role of Ifnar signaling in retinal immune homeostasis and highlight a potential use for IFN-β therapy in the eye to limit chronic inflammation and pathological angiogenesis in AMD. © 2016 The Authors. Published under the terms of the CC BY 4.0 license.
Wilcox, Douglas R; Folmsbee, Stephen S; Muller, William J; Longnecker, Richard
2016-04-12
Newborns are significantly more susceptible to severe viral encephalitis than adults, with differences in the host response to infection implicated as a major factor. However, the specific host signaling pathways responsible for differences in susceptibility and neurologic morbidity have remained unknown. In a murine model of HSV encephalitis, we demonstrated that the choroid plexus (CP) is susceptible to herpes simplex virus 1 (HSV-1) early in infection of the newborn but not the adult brain. We confirmed susceptibility of the CP to HSV infection in a human case of newborn HSV encephalitis. We investigated components of the type I interferon (IFN) response in the murine brain that might account for differences in cell susceptibility and found that newborns have a dampened interferon response and significantly lower basal levels of the alpha/beta interferon (IFN-α/β) receptor (IFNAR) than do adults. To test the contribution of IFNAR to restricting infection from the CP, we infected IFNAR knockout (KO) adult mice, which showed restored CP susceptibility to HSV-1 infection in the adult. Furthermore, reduced IFNAR levels did not account for differences we found in the basal levels of several other innate signaling proteins in the wild-type newborn and the adult, including protein kinase R (PKR), that suggested specific regulation of innate immunity in the developing brain. Viral targeting of the CP, a region of the brain that plays a critical role in neurodevelopment, provides a link between newborn susceptibility to HSV and long-term neurologic morbidity among survivors of newborn HSV encephalitis. Compared to adults, newborns are significantly more susceptible to severe disease following HSV infection. Over half of newborn HSV infections result in disseminated disease or encephalitis, with long-term neurologic morbidity in 2/3 of encephalitis survivors. We investigated differences in host cell susceptibility between newborns and adults that contribute to severe central nervous system disease in the newborn. We found that, unlike the adult brain, the newborn choroid plexus (CP) was susceptible early in HSV-1 infection. We demonstrated that IFN-α/β receptor levels are lower in the newborn brain than in the adult brain and that deletion of this receptor restores susceptibility of the CP in the adult brain. The CP serves as a barrier between the blood and the cerebrospinal fluid and plays a role in proper neurodevelopment. Susceptibility of the newborn choroid plexus to HSV-1 has important implications in viral spread to the brain and, also, in the neurologic morbidity following HSV encephalitis. Copyright © 2016 Wilcox et al.
Neuropeptides activate human mast cell degranulation and chemokine production
Kulka, Marianna; Sheen, Cecilia H; Tancowny, Brian P; Grammer, Leslie C; Schleimer, Robert P
2008-01-01
During neuronal-induced inflammation, mast cells may respond to stimuli such as neuropeptides in an FcεRI-independent manner. In this study, we characterized human mast cell responses to substance P (SP), nerve growth factor (NGF), calcitonin gene-related peptide (CGRP) and vasoactive intestinal polypeptide (VIP) and compared these responses to human mast cell responses to immunoglobulin E (IgE)/anti-IgE and compound 48/80. Primary cultured mast cells, generated from CD34+ progenitors in the presence of stem cell factor and interleukin-6 (IL-6), and human cultured mast cells (LAD2) were stimulated with these and other stimuli (gastrin, concanavalin A, radiocontrast media, and mannitol) and their degranulation and chemokine production was assessed. VIP and SP stimulated primary human mast cells and LAD cells to degranulate; gastrin, concanavalin A, radiocontrast media, mannitol, CGRP and NGF did not activate degranulation. While anti-IgE stimulation did not induce significant production of chemokines, stimulation with VIP, SP or compound 48/80 potently induced production of monocyte chemoattractant protein-1, inducible protein-10, monokine induced by interferon-γ (MIG), RANTES (regulated on activation, normal, T-cell expressed, and secreted) and IL-8. VIP, SP and compound 48/80 also activated release of tumour necrosis factor, IL-3 and granulocyte–macrophage colony-stimulating factor, but not IL-4, interferon-γ or eotaxin. Human mast cells expressed surface neurokinin 1 receptor (NK1R), NK2R, NK3R and VIP receptor type 2 (VPAC2) but not VPAC1 and activation of human mast cells by IgE/anti-IgE up-regulated expression of VPAC2, NK2R, and NK3R. These studies demonstrate the pattern of receptor expression and activation of mast cell by a host of G-protein coupled receptor ligands and suggest that SP and VIP activate a unique signalling pathway in human mast cells. These results are likely to have direct relevance to neuronally induced inflammatory diseases. PMID:17922833
Influenza A virus TRIMs the type I interferon response.
Ludwig, Stephan; Wolff, Thorsten
2009-05-08
The virulence of many pathogenic viruses depends on suppression of the innate type I interferon defense. For influenza viruses, a unique strategy has now been unraveled, as the viral nonstructural protein 1 was shown to inhibit activation of the pathogen recognition receptor RIG-I by binding the ubiquitin ligase TRIM25.
Localization of type I interferon receptor limits interferon-induced TLR-3 in epithelial cells
This study aimed to expand on the role of type I IFNs in the influenza-induced upregulation of TLR3 and determine whether and how the localization of the IFN-alpha/beta receptor (IFNAR) in respiratory epithelial cells could modify IFN-induced responses. Using differentiated prima...
Expression of biologically active human interferon alpha 2 in aloe vera
USDA-ARS?s Scientific Manuscript database
We have developed a system for transgenic expression of proteins in Aloe Vera. Using this approach we have generated plants expressing the human gene interferon alpha 2, IFNa2. IFNa2 is a small secreted cytokine that plays a vital role in regulating the body’s immune response to viral infections a...
USDA-ARS?s Scientific Manuscript database
Currently the Bovigam assay is used as an official supplemental test within the bovine tuberculosis eradication program. This assay measures interferon-gamma (IFN-gamma) produced by lymphocytes in response to specific antigens. The objectives of the present study were to evaluate two Mycobacterium ...
[Autoimmunity in children with chronic hepatitis C treated with interferon alpha and ribavirin].
Gora-Gebka, Magdalena; Liberek, Anna; Bako, Wanda; Raczkowska-Kozak, Janina; Sikorska-Wisniewska, Grazyna; Korzon, Maria
2004-01-01
The role of interferon alpha or the virus itself in the pathogenesis and the risk of autoimmunological disorders in patients infected with HCV, still remain unknown, especially in children. The aim of the study was to evaluate the incidence of autoantibodies and the risk of autoimmunological disorders in children with chronic hepatitis C, treated with interferon alpha and ribavirin in the Department of Paediatrics, Paediatric Gastroenterology and Oncology in Gdansk. In the studied group of 12 patients, in 4 cases autoantibodies were present in low titers prior to the treatment and they had no prognostic value for the response to the therapy or the risk of autoimmunological disorders. Positive response for the treatment was achieved in 4 cases; in 3 cases indications for discontinuation of the therapy were established. During the therapy with interferon alpha and ribavirin, in 2 children elevation of serum titers of antibodies to liver-kidney microsome type 1 (anti-LKM1) (> 1:640) with normal gammaglobulin levels was noted. In none of the children autoimmunological disorders were observed.
Prevention of SHIV transmission by topical IFN-β treatment.
Veazey, R S; Pilch-Cooper, H A; Hope, T J; Alter, G; Carias, A M; Sips, M; Wang, X; Rodriguez, B; Sieg, S F; Reich, A; Wilkinson, P; Cameron, M J; Lederman, M M
2016-11-01
Understanding vaginal and rectal HIV transmission and protective cellular and molecular mechanisms is critical for designing new prevention strategies, including those required for an effective vaccine. The determinants of protection against HIV infection are, however, poorly understood. Increasing evidence suggest that innate immune defenses may help protect mucosal surfaces from HIV transmission in highly exposed, uninfected subjects. More recent studies suggest that systemically administered type 1 interferon protects against simian immunodeficiency virus infection of macaques. Here we hypothesized that topically applied type 1 interferons might stimulate vaginal innate responses that could protect against HIV transmission. We therefore applied a recombinant human type 1 interferon (IFN-β) to the vagina of rhesus macaques and vaginally challenged them with pathogenic simian/human immunodeficiency virus (SHIV). Vaginal administration of IFN-β resulted in marked local changes in immune cell phenotype, increasing immune activation and HIV co-receptor expression, yet provided significant protection from SHIV acquisition as interferon response genes were also upregulated. These data suggest that protection from vaginal HIV acquisition may be achieved by activating innate mucosal defenses.
Irf8-Regulated Genomic Responses Drive Pathological Inflammation during Cerebral Malaria
Radovanovic, Irena; Tam, Mifong; MacMicking, John D.; Stevenson, Mary M.; Gros, Philippe
2013-01-01
Interferon Regulatory Factor 8 (IRF8) is required for development, maturation and expression of anti-microbial defenses of myeloid cells. BXH2 mice harbor a severely hypomorphic allele at Irf8 (Irf8R294C) that causes susceptibility to infection with intracellular pathogens including Mycobacterium tuberculosis. We report that BXH2 are completely resistant to the development of cerebral malaria (ECM) following Plasmodium berghei ANKA infection. Comparative transcriptional profiling of brain RNA as well as chromatin immunoprecipitation and high-throughput sequencing (ChIP-seq) was used to identify IRF8-regulated genes whose expression is associated with pathological acute neuroinflammation. Genes increased by infection were strongly enriched for IRF8 binding sites, suggesting that IRF8 acts as a transcriptional activator in inflammatory programs. These lists were enriched for myeloid-specific pathways, including interferon responses, antigen presentation and Th1 polarizing cytokines. We show that inactivation of several of these downstream target genes (including the Irf8 transcription partner Irf1) confers protection against ECM. ECM-resistance in Irf8 and Irf1 mutants is associated with impaired myeloid and lymphoid cells function, including production of IL12p40 and IFNγ. We note strong overlap between genes bound and regulated by IRF8 during ECM and genes regulated in the lungs of M. tuberculosis infected mice. This IRF8-dependent network contains several genes recently identified as risk factors in acute and chronic human inflammatory conditions. We report a common core of IRF8-bound genes forming a critical inflammatory host-response network. PMID:23853600
Zhang, Huijie; Feng, Shini; Yan, Ting; Zhi, Chunyi; Gao, Xiao-Dong; Hanagata, Nobutaka
2015-01-01
CpG oligodeoxynucleotides (ODNs) stimulate innate and adaptive immune responses. Thus, these molecules are promising therapeutic agents and vaccine adjuvants against various diseases. In this study, we developed a novel CpG ODNs delivery system based on polyethyleneimine (PEI)-functionalized boron nitride nanospheres (BNNS). PEI was coated on the surface of BNNS via electrostatic interactions. The prepared BNNS–PEI complexes had positive zeta potential and exhibited enhanced dispersity and stability in aqueous solution. In vitro cytotoxicity assays revealed that the BNNS–PEI complexes with concentrations up to 100 μg/mL exhibited no obvious cytotoxicity. Furthermore, the positively charged surface of the BNNS–PEI complexes greatly improved the loading capacity and cellular uptake efficiency of CpG ODNs. Class B CpG ODNs loaded on the BNNS–PEI complexes enhanced the production of interleukin-6 and tumor necrosis factor-α from peripheral blood mononuclear cells compared with CpG ODNs directly loaded on BNNS. Contrary to the free CpG ODNs or CpG ODNs directly loaded on BNNS, class B CpG ODNs loaded on the BNNS–PEI complexes induced interferon-α simultaneously. PEI coating may have changed the physical form of class B CpG ODNs on BNNS, which further affected their interaction with Toll-like receptor 9 and induced interferon-α. Therefore, BNNS–PEI complexes can be used to enhance the immunostimulatory effect and therapeutic activity of CpG ODNs and the treatment of diseases requiring interleukin-6, tumor necrosis factor-α, and interferon-α. PMID:26346655
Zhang, Huijie; Feng, Shini; Yan, Ting; Zhi, Chunyi; Gao, Xiao-Dong; Hanagata, Nobutaka
2015-01-01
CpG oligodeoxynucleotides (ODNs) stimulate innate and adaptive immune responses. Thus, these molecules are promising therapeutic agents and vaccine adjuvants against various diseases. In this study, we developed a novel CpG ODNs delivery system based on polyethyleneimine (PEI)-functionalized boron nitride nanospheres (BNNS). PEI was coated on the surface of BNNS via electrostatic interactions. The prepared BNNS-PEI complexes had positive zeta potential and exhibited enhanced dispersity and stability in aqueous solution. In vitro cytotoxicity assays revealed that the BNNS-PEI complexes with concentrations up to 100 μg/mL exhibited no obvious cytotoxicity. Furthermore, the positively charged surface of the BNNS-PEI complexes greatly improved the loading capacity and cellular uptake efficiency of CpG ODNs. Class B CpG ODNs loaded on the BNNS-PEI complexes enhanced the production of interleukin-6 and tumor necrosis factor-α from peripheral blood mononuclear cells compared with CpG ODNs directly loaded on BNNS. Contrary to the free CpG ODNs or CpG ODNs directly loaded on BNNS, class B CpG ODNs loaded on the BNNS-PEI complexes induced interferon-α simultaneously. PEI coating may have changed the physical form of class B CpG ODNs on BNNS, which further affected their interaction with Toll-like receptor 9 and induced interferon-α. Therefore, BNNS-PEI complexes can be used to enhance the immunostimulatory effect and therapeutic activity of CpG ODNs and the treatment of diseases requiring interleukin-6, tumor necrosis factor-α, and interferon-α.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheon, Soyoung; Song, Seok Bean; Jung, Minkyung
2008-09-12
Natural killer (NK) cells play an important role in the innate immune response. Interleukin-18 (IL-18) is a well-known interferon-gamma (IFN-{gamma} inducing factor, which stimulates immune response in NK and T cells. Sphingosine kinase (SPHK) catalyzes the formation of sphingosine 1-phosphate (S1P), which acts as a second messenger to function as an anti-apoptotic factor and proliferation stimulator of immune cells. In this study, to elucidate whether SPHK is involved in IL-18-induced IFN-{gamma} production, we measured IL-18-induced IFN-{gamma} production after pre-treatment with SPHK inhibitor (SKI) in NK-92MI cells. We found that IL-18-induced IFN-{gamma} expression was blocked by SKI pre-treatment in both mRNAmore » and protein levels. In addition, the increased IFN-{gamma} production by stimulation with IL-18 is mediated through both SPHK and p38 MAPK. To determine the upstream signals of SKI and p38 MAPK in IL-18-induced IFN-{gamma} production, phosphorylation levels of p38 MAPK was measured after SKI pre-treatment. As a result, inhibition of SPHK by SKI blocked phosphorylation of p38 MAPK, showing that SPHK activation by IL-18 is an upstream signal of p38 MAPK activation. Inhibition of SPHK by SKI also inhibited IL-18-induced IFN-{gamma} production in human primary NK cells. In conclusion, SPHK activation is an essential factor for IL-18-induced IFN-{gamma} production via p38 MAPK.« less
[Alpha interferon induced hyperthyroidism: a case report and review of the literature].
Maiga, I; Valdes-Socin, H; Thiry, A; Delwaide, J; Sidibe, A T; Beckers, A
2015-01-01
Treatment with alpha interferon in hepatitis C triggers a thyroid autoimmunity in a variable percentage of cases (2-8%). This complication raises some questions about its screening, the possibility to continue anti-viral therapy and thyroid treatment. Alpha interferon has an immunomodulatory effect on the thyroid, but also an inhibitory effect on thyroid hormone synthesis. This explains the occurrence of cases of thyroid dysfunction, which often remain undetected because of their latency. Factors predicting thyroid dysfunction with interferon use are: female sex, history of thyroid disease and previous autoimmunity. Several clinical aspects are encountered including hypothyroidism (the most frequent depending on the series) and hyperthyroidism related to Graves' disease. For their detection, a cooperation between general practionners, gastroenterologists and endocrinologists is mandatory thyroid function tests are requested before, during and after treatment,with alpha interferon. Therapeutic aspects of thyroid disorders range from simple monitoring to symptomatic treatment, such as thyroxine prescription in the presence of hypothyroidism. Antithyroid drugs radioactive iodine or thyroid surgery are used in cases of severe or persistent Graves' disease induced by alpha interferon.
Peripheral inflammation is associated with remote global gene expression changes in the brain
2014-01-01
Background Although the central nervous system (CNS) was once considered an immunologically privileged site, in recent years it has become increasingly evident that cross talk between the immune system and the CNS does occur. As a result, patients with chronic inflammatory diseases, such as rheumatoid arthritis, inflammatory bowel disease or psoriasis, are often further burdened with neuropsychiatric symptoms, such as depression, anxiety and fatigue. Despite the recent advances in our understanding of neuroimmune communication pathways, the precise effect of peripheral immune activation on neural circuitry remains unclear. Utilizing transcriptomics in a well-characterized murine model of systemic inflammation, we have started to investigate the molecular mechanisms by which inflammation originating in the periphery can induce transcriptional modulation in the brain. Methods Several different systemic and tissue-specific models of peripheral toll-like-receptor-(TLR)-driven (lipopolysaccharide (LPS), lipoteichoic acid and Imiquimod) and sterile (tumour necrosis factor (TNF) and 12-O-tetradecanoylphorbol-13-acetate (TPA)) inflammation were induced in C57BL/6 mice. Whole brain transcriptional profiles were assessed and compared 48 hours after intraperitoneal injection of lipopolysaccharide or vehicle, using Affymetrix GeneChip microarrays. Target gene induction, identified by microarray analysis, was validated independently using qPCR. Expression of the same panel of target genes was then investigated in a number of sterile and other TLR-dependent models of peripheral inflammation. Results Microarray analysis of whole brains collected 48 hr after LPS challenge revealed increased transcription of a range of interferon-stimulated genes (ISGs) in the brain. In addition to acute LPS challenge, ISGs were induced in the brain following both chronic LPS-induced systemic inflammation and Imiquimod-induced skin inflammation. Unique to the brain, this transcriptional response is indicative of peripherally triggered, interferon-mediated CNS inflammation. Similar models of sterile inflammation and lipoteichoic-acid-induced systemic inflammation did not share the capacity to trigger ISG induction in the brain. Conclusions These data highlight ISG induction in the brain as being a consequence of a TLR-induced type I interferon response. As considerable evidence links type I interferons to psychiatric disorders, we hypothesize that interferon production in the brain could represent an important mechanism, linking peripheral TLR-induced inflammation with behavioural changes. PMID:24708794
2012-01-01
Background In vitro and animal studies have demonstrated that Chlorella is a potent biological response modifier on immunity. However, there were no direct evidences for the effect of Chlorella supplementation on immune/inflammation response in healthy humans. Methods This study was designed for an 8-week randomized, double-blinded, placebo-controlled trial: 5g of Chlorella (n=23) or Placebo (n=28) as form of tablets. Mainly, cytotoxic activities of Natural killer (NK) cells and serum concentrations of interferon-γ, interleukin-1β and interleukin-12 were measured. Results After the 8-week, serum concentrations of interferon-γ (p<0.05) and interleukin-1β (p<0.001) significantly increased and that of interleukin-12 (p<0.1) tended to increase in the Chlorella group. The increments of these cytokines after the intervention were significantly bigger in the Chlorella group than those in the placebo group. In addition, NK cell activities (%) were significantly increased in Chlorella group, but not in Placebo group. The increments of NK cell activities (%) were also significantly bigger in the Chlorella group than the placebo group. Additionally, changed levels of NK cell activity were positively correlated with those of serum interleukin-1β (r=0.280, p=0.047) and interferon-γ (r=0.271, p<0.005). Signficantly positive correlations were also observed among the changed levels of serum cytokines; between interferon-γ and interleukin-1β (r=0.448, p<0.001), between interleukin-12 and interleukin-1β (r=0.416, p=0.003) and between interleukin-12 and interferon-γ (r=0.570, p<001). Conclusion These results may suggest a beneficial immunostimulatory effect of short-term Chlorella supplementation which enhances the NK cell activity and produces interferon-γ and interleukin-12 as well as interleukin-1β, the Th-1 cell-induced cytokines in healthy people. PMID:22849818
Interferon in lyssavirus infection.
Rieder, Martina; Finke, Stefan; Conzelmann, Karl-Klaus
2012-01-01
Rabies is a zoonosis still claiming more than 50 000 human deaths per year. Typically, human cases are due to infection with rabies virus, the prototype of the Lyssavirus genus, but sporadic cases of rabies-like encephalitis caused by other lyssaviruses have been reported. In contrast to rabies virus, which has an extremely broad host range including many terrestrial warm-blooded animals, rabies-related viruses are associated predominantly with bats and rarely infect terrestrial species. In spite of a very close genetic relationship of rabies and rabies-related viruses, the factors determining the limited host range of rabies-related viruses are not clear. In the past years the importance of viral countermeasures against the host type I interferon system for establishment of an infection became evident. The rabies virus phosphoprotein (P) has emerged as a critical factor required for paralysing the signalling cascades leading to transcriptional activation of interferon genes as well as interferon signalling pathways, thereby limiting expression of antiviral and immune stimulatory genes. Comparative studies would be of interest in order to determine whether differential abilities of the lyssavirus P proteins contribute to the restricted host range of lyssaviruses.
USP15 regulates type I interferon response and is required for pathogenesis of neuroinflammation.
Torre, Sabrina; Polyak, Maria J; Langlais, David; Fodil, Nassima; Kennedy, James M; Radovanovic, Irena; Berghout, Joanne; Leiva-Torres, Gabriel A; Krawczyk, Connie M; Ilangumaran, Subburaj; Mossman, Karen; Liang, Chen; Knobeloch, Klaus-Peter; Healy, Luke M; Antel, Jack; Arbour, Nathalie; Prat, Alexandre; Majewski, Jacek; Lathrop, Mark; Vidal, Silvia M; Gros, Philippe
2017-01-01
Genes and pathways in which inactivation dampens tissue inflammation present new opportunities for understanding the pathogenesis of common human inflammatory diseases, including inflammatory bowel disease, rheumatoid arthritis and multiple sclerosis. We identified a mutation in the gene encoding the deubiquitination enzyme USP15 (Usp15 L749R ) that protected mice against both experimental cerebral malaria (ECM) induced by Plasmodium berghei and experimental autoimmune encephalomyelitis (EAE). Combining immunophenotyping and RNA sequencing in brain (ECM) and spinal cord (EAE) revealed that Usp15 L749R -associated resistance to neuroinflammation was linked to dampened type I interferon responses in situ. In hematopoietic cells and in resident brain cells, USP15 was coexpressed with, and functionally acted together with the E3 ubiquitin ligase TRIM25 to positively regulate type I interferon responses and to promote pathogenesis during neuroinflammation. The USP15-TRIM25 dyad might be a potential target for intervention in acute or chronic states of neuroinflammation.
Enhanced production of human influenza virus in PBS-12SF cells with a reduced interferon response.
Carvajal-Yepes, Monica; Sporer, Kelly R B; Carter, Jenna L; Colvin, Christopher J; Coussens, Paul M
2015-01-01
Influenza is one of the most important infectious diseases in humans. The best way to prevent severe illness caused by influenza infection is vaccination. Cell culture-derived influenza vaccines are being considered in addition to the widely used egg-based system in order to support the increasing seasonal demand and to be prepared in case of a pandemic. Cell culture based systems offer increased safety, capacity, and flexibility with reduced downstream processing relative to embryonated eggs. We have previously reported a chick embryo cell line, termed PBS-12SF, that supports replication of human and avian influenza A viruses to high titers (>10(7) PFU/ml) without the need for exogenous proteases or serum proteins. Viral infections in cells are limited by the Interferon (IFN) response typified by production of type I IFNs that bind to the IFNα/β receptor and activate an antiviral state. In this study, we investigated how neutralizing the interferon (IFN) response in PBS-12SF cells, via shRNA-mediated knock-down of IFNAR1 mRNA expression, affects influenza virus production. We were successful in knocking down ∼90% of IFNAR1 protein expression by this method, resulting in a significant decrease in the response to recombinant chIFNα stimulation in PBS-12SF cells as shown by a reduction in expression of interferon-responsive genes when compared to control cells. Additionally; IFNAR1-knock-down cells displayed enhanced viral HA production and released more virus into cell culture supernatants than parental PBS-12SF cells.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sigaud, Samuel; Goldsmith, Carroll-Ann W.; Zhou Hongwei
Epidemiological studies reveal increased incidence of lung infection when air pollution particle levels are increased. We postulate that one risk factor for bacterial pneumonia, prior viral infection, can prime the lung for greater deleterious effects of particles via the interferon-gamma (IFN-{gamma}) characteristic of successful host anti-viral responses. To test this postulate, we developed a mouse model in which mice were treated with {gamma}-interferon aerosol, followed by exposure to concentrated ambient particles (CAPs) collected from urban air. The mice were then infected with Streptococcus pneumoniae and the effect of these treatments on the lung's innate immune response was evaluated. The combinationmore » of IFN-{gamma} priming and CAPs exposure enhanced lung inflammation, manifest as increased polymorphonuclear granulocyte (PMN) recruitment to the lung, and elevated expression of pro-inflammatory cytokine mRNAs. Combined priming and CAPs exposure resulted in impaired pulmonary bacterial clearance, as well as increased oxidant production and diminished bacterial uptake by alveolar macrophages (AMs) and PMNs. The data suggest that priming and CAPs exposure lead to an inflamed alveolar milieu where oxidant stress causes loss of antibacterial functions in AMs and recruited PMNs. The model reported here will allow further analysis of priming and CAPs exposure on lung sensitivity to infection.« less
Yanguas-Casás, Natalia; Crespo-Castrillo, Andrea; de Ceballos, Maria L; Chowen, Julie A; Azcoitia, Iñigo; Arevalo, Maria Angeles; Garcia-Segura, Luis M
2018-03-01
Sex differences in the incidence, clinical manifestation, disease course, and prognosis of neurological diseases, such as autism spectrum disorders or Alzheimer's disease, have been reported. Obesity has been postulated as a risk factor for cognitive decline and Alzheimer's disease and, during pregnancy, increases the risk of autism spectrum disorders in the offspring. Obesity is associated with increased serum and brain levels of free fatty acids, such as palmitic acid, which activate microglial cells triggering a potent inflammatory cascade. In this study, we have determined the effect of palmitic acid in the inflammatory profile, motility, and phagocytosis of primary male and female microglia, both in basal conditions and in the presence of a pro-inflammatory stimulus (interferon-γ). Male microglia in vitro showed higher migration than female microglia under basal and stimulated conditions. In contrast, female microglia had higher basal and stimulated phagocytic activity than male microglia. Palmitic acid did not affect basal migration or phagocytosis, but abolished the migration and phagocytic activity of male and female microglia in response to interferon-γ. These findings extend previous observations of sex differences in microglia and suggest that palmitic acid impairs the protective responses of these cells. © 2017 Wiley Periodicals, Inc.
Shin, K Y; Moon, H S; Park, H Y; Lee, T Y; Woo, Y N; Kim, H J; Lee, S J; Kong, G
2000-10-31
We have investigated the effects of tumor necrosis factor-alpha (TNF-alpha) and interferon (INF-gamma), the potent Bacillus Calmette-Guerin (BCG)-induced cytokines on the production of MMP-2, MMP-9, TIMP-1, TIMP-2 and MT1-MMP in high grade human bladder cancer cell lines, T-24, J-82 and HT-1376 cell lines. MMP-2 expression and activity were decreased in T-24 cells treated with both cytokines in a dose dependent manner. However, J-82 cells treated with TNF-alpha and INF-gamma revealed dose dependent increases of MMP-9 expression and activity with similar baseline expression and activity of MMP-2. HT-1376 cells after exposure to TNF-alpha only enhanced the expression and activity of MMP-9. These results indicate that TNF-alpha and INF-gamma could regulate the production of MMP-2 or MMP-9 on bladder cancer cells and their patterns of regulation are cell specific. Furthermore, this diverse response of bladder cancer cells to TNF-alpha and INF-gamma suggests that BCG immunotherapy may enhance the invasiveness of bladder cancer in certain conditions with induction of MMPs.
Interferon Regulatory Factor 6 Has a Protective Role in the Host Response to Endotoxic Shock
Volk, Paige; Moreland, Jessica G.; Dunnwald, Martine
2016-01-01
Interferon Regulatory Factor (IRF) 6, a member of the IRF family, is essential for epidermal and orofacial embryonic development. Irf6 is strongly expressed in keratinocytes, in which it regulates epidermal proliferation, differentiation, and migration. A recent role for Irf6 in Toll-like receptor 2-dependent chemokine gene expression was also reported in an epithelial cell line. However, a function for Irf6 in innate immune cells was not previously reported. In the present study, we investigated the expression and function of Irf6 in bone marrow-derived neutrophils and macrophages. We show here, using a conditional knockout of Irf6 in lysosymeM expressing cells, that Irf6 is required for resistance to LPS-induced endotoxic shock. In addition, Irf6-deficient bone marrow-derived neutrophils exhibited increased chemotactic index and velocity compared with wild-type cells in vitro. TLR4-specific KC and IL6 secretions were upregulated in Irf6-deficient bone marrow-derived macrophages in vitro. These cells also exhibited an increased level of phosphorylated IkBa. Collectively, our findings suggest a role for Irf6 in the resistance to endotoxic shock due to NFk-B-mediated alteration of cytokine production. PMID:27035130
Ghrelin Ameliorates Asthma by Inhibiting Endoplasmic Reticulum Stress.
Fu, Tian; Wang, Lei; Zeng, Qingdi; Zhang, Yan; Sheng, Baowei; Han, Liping
2017-12-01
This study aimed to confirm the ameliorative effect of ghrelin on asthma and investigate its mechanism. The murine model of asthma was induced by ovalbumin (OVA) treatment and assessed by histological pathology and airway responsiveness to methacholine. The total and differential leukocytes were counted. Tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 levels in bronchoalveolar lavage fluid were quantified by commercial kits. The protein levels in pulmonary tissues were measured by Western blot analysis. Ghrelin ameliorated the histological pathology and airway hyperresponsiveness in the OVA-induced asthmatic mouse model. Consistently, OVA-increased total and differential leukocytes and levels of tumor necrosis factor α, interferon γ, interleukin-5 and interleukin-13 in bronchoalveolar lavage fluid were significantly attenuated by ghrelin. Ghrelin prevented the increased protein levels of the endoplasmic reticulum stress markers glucose regulated protein 78 and CCAAT/enhancer binding protein homologous protein and reversed the reduced levels of p-Akt in asthmatic mice. Ghrelin might prevent endoplasmic reticulum stress activation by stimulating the Akt signaling pathway, which attenuated inflammation and ameliorated asthma in mice. Ghrelin might be a new target for asthma therapy. Copyright © 2017. Published by Elsevier Inc.
Coelho-Borges, Silvia; Cheinquer, Hugo; Wolff, Fernando Herz; Cheinquer, Nelson; Krug, Luciano; Ashton-Prolla, Patricia
2012-01-01
Abnormal serum ferritin levels are found in approximately 20%-30% of the patients with chronic hepatitis C and are associated with a lower response rate to interferon therapy. To determine if the presence of HFE gene mutations had any effect on the sustained virological response rate to interferon based therapy in chronic hepatitis C patients with elevated serum ferritin. A total of 44 treatment naÏve patients with histologically demonstrated chronic hepatitis C, all infected with hepatitis C virus genotype non-1 (38 genotype 3; 6 genotype 2) and serum ferritin above 500 ng/mL were treated with interferon (3 MU, 3 times a week) and ribavirin (1.000 mg, daily) for 24 weeks. Sustained virological response was defined as negative qualitative HCV-RNA more than 24 weeks after the end of treatment. Serum HCV-RNA was measured by qualitative in house polymerase chain reaction with a limit of detection of 200 IU/mL. HFE gene mutation was detected using restriction-enzyme digestion with RsaI (C282Y mutation analysis) and BclI (H63D mutation analysis) in 16 (37%) patients, all heterozygous (11 H63D, 2 C282Y and 3 both). Sustained virological response was achieved in 0 of 16 patients with HFE gene mutations and 11 (41%) of 27 patients without HFE gene mutations (P = 0.002; exact Fisher test). Heterozigozity for H63D and/or C282Y HFE gene mutation predicts absence of sustained virological response to combination treatment with interferon and ribavirin in patients with chronic hepatitis C, non-1 genotype and serum ferritin levels above 500 ng/mL.
Bernstein, David; Kleinman, Leah; Barker, Chris M; Revicki, Dennis A; Green, Jesse
2002-03-01
Interferon therapy may exacerbate health-related quality of life (HRQL) deficits associated with hepatitis C virus (HCV) early in the course of therapy. Treatment with polyethylene glycol-modified interferon (peginterferon) alfa-2a (40 kd) provides improved sustained response over interferon alfa-2a, but its effect on HRQL is unknown. The objective of this study was to (1) evaluate the effect of sustained virologic response on HRQL in patients with HCV and (2) determine whether impairment of HRQL during treatment contributes to early treatment discontinuation. Data consisted of a pooled secondary analysis of patients (n = 1,441) across 3 international, multicenter, open-label, randomized studies that compared peginterferon alfa-2a (40 kd) with interferon alfa-2a. ANCOVA was used to examine the effect of sustained virologic response on HRQL. Repeated-measures mixed-models ANCOVA was used to compare Fatigue Severity Scale (FSS) and SF-36 scores during treatment by treatment group. Logistic regression analysis was used to examine the association between changes at baseline in on-treatment HRQL and early treatment discontinuation. Sustained virologic response was associated with marked improvements from baseline to end of follow-up in all subjects, including patients with cirrhosis. During treatment, patients receiving peginterferon alfa-2a (40 kd) had statistically significantly better scores on both the SF-36 and FSS. Baseline to 24-week changes in fatigue and SF-36 mental and physical summary scores significantly predicted treatment discontinuation. In conclusion, sustained virologic response is associated with improvements in quality of life in patients with or without advanced liver disease. This parameter may be an important consideration in maximizing treatment adherence.
Lee, Soon Jae; Cho, Yoo-Kyung; Na, Soo-Young; Choi, Eun Kwang; Boo, Sun Jin; Jeong, Seung Uk; Song, Hyung Joo; Kim, Heung Up; Kim, Bong Soo; Song, Byung-Cheol
2016-09-01
Some recent studies have found regression of liver cirrhosis after antiviral therapy in patients with hepatitis C virus (HCV)-related liver cirrhosis, but there have been no reports of complete regression of esophageal varices after interferon/peg-interferon and ribavirin combination therapy. We describe two cases of complete regression of esophageal varices and splenomegaly after interferon-alpha and ribavirin combination therapy in patients with HCV-related liver cirrhosis. Esophageal varices and splenomegaly regressed after 3 and 8 years of sustained virologic responses in cases 1 and 2, respectively. To our knowledge, this is the first study demonstrating that complications of liver cirrhosis, such as esophageal varices and splenomegaly, can regress after antiviral therapy in patients with HCV-related liver cirrhosis.
DNA polymerase-α regulates type I interferon activation through cytosolic RNA:DNA synthesis
Starokadomskyy, Petro; Gemelli, Terry; Rios, Jonathan J.; Xing, Chao; Wang, Richard C.; Li, Haiying; Pokatayev, Vladislav; Dozmorov, Igor; Khan, Shaheen; Miyata, Naoteru; Fraile, Guadalupe; Raj, Prithvi; Xu, Zhe; Xu, Zigang; Ma, Lin; Lin, Zhimiao; Wang, Huijun; Yang, Yong; Ben-Amitai, Dan; Orenstein, Naama; Mussaffi, Huda; Baselga, Eulalia; Tadini, Gianluca; Grunebaum, Eyal; Sarajlija, Adrijan; Krzewski, Konrad; Wakeland, Edward K.; Yan, Nan; de la Morena, Maria Teresa; Zinn, Andrew R.; Burstein, Ezra
2016-01-01
Aberrant nucleic acids generated during viral replication are the main trigger for antiviral immunity, and mutations disrupting nucleic acid metabolism can lead to autoinflammatory disorders. Here we investigated the etiology of X-linked reticulate pigmentary disorder (XLPDR), a primary immunodeficiency with autoinflammatory features. We discovered that XLPDR is caused by an intronic mutation that disrupts expression of POLA1, the gene encoding the catalytic subunit of DNA polymerase-α. Unexpectedly, POLA1 deficiency results in increased type I interferon production. This enzyme is necessary for RNA:DNA primer synthesis during DNA replication and strikingly, POLA1 is also required for the synthesis of cytosolic RNA:DNA, which directly modulates interferon activation. Altogether, this work identified POLA1 as a critical regulator of the type I interferon response. PMID:27019227
Werner-Felmayer, G; Werner, E R; Fuchs, D; Hausen, A; Reibnegger, G; Wachter, H
1990-05-15
Determination of neopterin [D-erythro-6-(1',2',3'-trihydroxypropyl)pterin] in body fluids is a powerful diagnostic tool in a variety of diseases in which activation of cellular immune mechanisms is involved, such as certain malignancies, allograft rejection, and autoimmune and infectious diseases. In vitro, neopterin is released into the supernatant by peripheral blood-derived monocytes/macrophages upon stimulation with gamma-interferon. In parallel, cleavage of tryptophan by indoleamine 2,3-dioxygenase is induced. We report here that the human myelomonocytic cell line THP-1 forms neopterin and degrades tryptophan upon treatment with gamma-interferon. Like in macrophages alpha-interferon and beta-interferon induce these pathways only to a much smaller degree. The action of interferons is enhanced by cotreatment with tumor necrosis factor alpha, lipopolysaccharide, or dexamethasone. gamma-Interferon-induced neopterin formation and indoleamine 2,3-dioxygenase activity are increased by raising extracellular tryptophan concentrations. The pattern of intracellularly formed pteridines upon stimulation with gamma-interferon shows the unique characteristics of human monocytes/macrophages. Neopterin, monapterin, and biopterin are produced in a 50:2:1 ratio. Thus, the THP-1 cell line provides a permanent, easily accessible in vitro system for studying the induction and mechanism of neopterin formation.
Basic and clinical aspects of malignant melanoma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nathanson, L.
1987-01-01
This book contains the following 10 chapters: The role of oncogenes in the pathogenesis of malignant melanoma; Laminin and fibronectin modulate the metastatic activity of melanoma cells; Structure, function and biosynthesis of ganglioside antigens associated with human tumors derived from the neuroectoderm; Epidemiology of ocular melanoma; Malignant melanoma: Prognostic factors; Endocrine influences on the natural history of human malignant melanoma; Psychosocial factors associated with prognostic indicators, progression, psychophysiology, and tumor-host response in cutaneous malignant melanoma; Central nervous system metastases in malignant melanoma; Interferon trials in the management of malignant melanoma and other neoplasms: an overview; and The treatment of malignantmore » melanoma by fast neutrons.« less
USDA-ARS?s Scientific Manuscript database
Paramyxoviruses are known to inhibit type I interferon (IFN) production, however there is a lack of information regarding the type III IFN response during infection. Type III IFNs signal through a unique heterodimeric receptor, the IFN-'R1/IL-10R2, which is primarily expressed by epithelial cells. ...
Who Defends the Stem Cell's Citadel?
Strick-Marchand, Hélène; Durantel, David
2018-03-01
Recently in Cell, Wu et al. (2018) demonstrated that intrinsic expression of a subset of interferon stimulated genes confers resistance to viral infections in stem cells both in vitro and in vivo, while differentiated cells lose this intrinsic gatekeeper expression pattern in favor of inducible interferon responses. Copyright © 2018 Elsevier Inc. All rights reserved.
Antiviral Activity of Polyacrylic and Polymethacrylic Acids
De Somer, P.; De Clercq, E.; Billiau, A.; Schonne, E.; Claesen, M.
1968-01-01
A marked virus-inhibiting potency is obtained in the serum after intraperitoneal injection of polyacrylic acid (PAA) and polymethacrylic acid (PMAA) in mice. Much higher antiviral levels were reached than for other related polymers including dextran sulfate, heparin, polyvinyl sulfate, pyran copolymer, polystyrene sulfonate, and macrodex. The broad antiviral action of PAA and PMAA was attributed both to a direct interference with the virus-cell interaction and the viral ribonucleic acid metabolism and to the formation of an interferon-like factor. Both polyanions differed in interferon-inducing ability: highest serum interferon titer was obtained 18 hr after the intraperitoneal injection of PAA. The mechanism of interferon production by PAA and PMAA is discussed. As described previously for Sindbis virus and endotoxin, the animals also became hyporeactive after injection of PAA. PMID:5725320
Fabrizi, Fabrizio; Aghemo, Alessio; Lampertico, Pietro; Fraquelli, Mirella; Cresseri, Donata; Moroni, Gabriella; Passerini, Patrizia; Donato, Francesca M; Messa, Piergiorgio
2018-06-01
The evidence in the medical literature on the treatment of hepatitis C virus-associated glomerular disease is extremely limited. The advent of nonconventional immunosuppressive agents and direct-acting antivirals promises high efficacy and safety. We conducted an open-label, single-arm clinical study to examine the efficacy and safety of a combined approach for hepatitis C virus-associated glomerular disease. In the first phase of the study, patients with hepatitis C virus-associated glomerular disease received interferon-based antiviral therapy and immunosuppressive agents; since 2013, interferon-free antiviral therapy was adopted and novel immunosuppressants (including B-cell depleting agents and mycophenolate mofetil) or immunomodulators (ribavirin) were choiced. Virological and clinical responses were evaluated over a long observation period (median follow-up of 60 weeks and 46.5 months after the end of treatment with interferon and direct-acting antiviral agents, respectively). We enrolled 25 consecutive patients with hepatitis C virus-associated glomerular disease, 8 being liver transplant recipients for hepatitis C. A total of 13 patients received therapy with direct-acting antivirals and experienced sustained viral response (serum hepatitis C virus RNA <12 IU/mL, 12 weeks after treatment ended, sustained viral response12). The mean (±standard deviation) proteinuria decreased from 2.61 ± 1.01 at baseline to 1.71 ± 1.43 (g/day) at sustained viral response 48, p = 0.031; microscopic hematuria and serum cryoglobulins disappeared in six (50%) and seven (64%) patients, respectively, after sustained viral response by direct-acting antivirals. Adverse events occurred in 69% (9/13) of patients and were mild, with four cases of ribavirin-related anemia requiring blood transfusions (no drop-outs). After sustained viral response by direct-acting antivirals, immunosuppressive and immunomodulatory agents were initiated in clinical relapsers ( n = 2) and nonresponders ( n = 3) with some benefit. Among patients on interferon-based regimens ( n = 12), viral response (sustained viral response 24) and dropout rates were 58% (7/12) and 33% (4/12), respectively. After sustained viral response by interferon-based therapy, clinical relapsers ( n = 3) were successfully managed with immunosuppressive agents in two patients. Treatment with direct-acting antivirals provides excellent rates of viral response and safety in patients with hepatitis C virus-related glomerular disease; viral response was frequently accompanied by clinical improvement. The absence of hepatitis C virus RNA from serum allowed immunosuppressive and immunomodulatory therapies with benefits for glomerular abnormalities and no concern on hepatitis C virus replication.
The Foot-and-Mouth Disease Carrier State Divergence in Cattle
Eschbaumer, Michael; Rekant, Steven I.; Pacheco, Juan M.; Smoliga, George R.; Hartwig, Ethan J.; Rodriguez, Luis L.
2016-01-01
ABSTRACT The pathogenesis of persistent foot-and-mouth disease virus (FMDV) infection was investigated in 46 cattle that were either naive or had been vaccinated using a recombinant, adenovirus-vectored vaccine 2 weeks before challenge. The prevalence of FMDV persistence was similar in both groups (62% in vaccinated cattle, 67% in nonvaccinated cattle), despite vaccinated cattle having been protected from clinical disease. Analysis of antemortem infection dynamics demonstrated that the subclinical divergence between FMDV carriers and animals that cleared the infection had occurred by 10 days postinfection (dpi) in vaccinated cattle and by 21 dpi in nonvaccinated animals. The anatomic distribution of virus in subclinically infected, vaccinated cattle was restricted to the pharynx throughout both the early and the persistent phases of infection. In nonvaccinated cattle, systemically disseminated virus was cleared from peripheral sites by 10 dpi, while virus selectively persisted within the nasopharynx of a subset of animals. The quantities of viral RNA shed in oropharyngeal fluid during FMDV persistence were similar in vaccinated and nonvaccinated cattle. FMDV structural and nonstructural proteins were localized to follicle-associated epithelium of the dorsal soft palate and dorsal nasopharynx in persistently infected cattle. Host transcriptome analysis of tissue samples processed by laser capture microdissection indicated suppression of antiviral host factors (interferon regulatory factor 7, CXCL10 [gamma interferon-inducible protein 10], gamma interferon, and lambda interferon) in association with persistent FMDV. In contrast, during the transitional phase of infection, the level of expression of IFN-λ mRNA was higher in follicle-associated epithelium of animals that had cleared the infection. This work provides novel insights into the intricate mechanisms of FMDV persistence and contributes to further understanding of this critical aspect of FMDV pathogenesis. IMPORTANCE The existence of a prolonged, asymptomatic carrier state is a political impediment for control and potential eradication of foot-and-mouth disease (FMD). When FMD outbreaks occur, they are often extinguished by massive depopulation of livestock due to the fear that some animals may have undiagnosed subclinical infection, despite uncertainty over the biological relevance of FMD virus (FMDV) persistence. The work described here elucidates aspects of the FMDV carrier state in cattle which may facilitate identification and/or abrogation of asymptomatic FMDV infection. The divergence between animals that clear infection and those that develop persistent infection was demonstrated to occur earlier than previously established. The host antiviral response in tissues maintaining persistent FMDV was downregulated, whereas upregulation of IFN-λ mRNA was found in the epithelium of cattle that had recently cleared the infection. This suggests that the clearing of FMDV infection is associated with an enhanced mucosal antiviral response, whereas FMDV persistence is associated with suppression of the host antiviral response. PMID:27147736
Rodriguez, Jason J.; Parisien, Jean-Patrick; Horvath, Curt M.
2002-01-01
Characterization of recent outbreaks of fatal encephalitis in southeast Asia identified the causative agent to be a previously unrecognized enveloped negative-strand RNA virus of the Paramyxoviridae family, Nipah virus. One feature linking Nipah virus to this family is a conserved cysteine-rich domain that is the hallmark of paramyxovirus V proteins. The V proteins of other paramyxovirus species have been linked with evasion of host cell interferon (IFN) signal transduction and subsequent antiviral responses by inducing proteasomal degradation of the IFN-responsive transcription factors, STAT1 or STAT2. Here we demonstrate that Nipah virus V protein escapes IFN by a distinct mechanism involving direct inhibition of STAT protein function. Nipah virus V protein differs from other paramyxovirus V proteins in its subcellular distribution but not in its ability to inhibit cellular IFN responses. Nipah virus V protein does not induce STAT degradation but instead inhibits IFN responses by forming high-molecular-weight complexes with both STAT1 and STAT2. We demonstrate that Nipah virus V protein accumulates in the cytoplasm by a Crm1-dependent mechanism, alters the STAT protein subcellular distribution in the steady state, and prevents IFN-stimulated STAT redistribution. Consistent with the formation of complexes, STAT protein tyrosine phosphorylation is inhibited in cells expressing the Nipah virus V protein. As a result, Nipah virus V protein efficiently prevents STAT1 and STAT2 nuclear translocation in response to IFN, inhibiting cellular responses to both IFN-α and IFN-γ. PMID:12388709
Setoh, Yin Xiang; Periasamy, Parthiban; Peng, Nias Yong Gao; Amarilla, Alberto A; Slonchak, Andrii; Khromykh, Alexander A
2017-11-02
West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in humans) caused by NSW2011 strain. Using chimeric viruses between NY99 and NSW2011 strains we previously identified a role for the non-structural proteins of NY99 strain and especially the NS3 protein, in enhanced virus replication in type I interferon response-competent cells and increased virulence in mice. To further define the role of NY99 NS3 protein in inhibition of type I interferon response, we have generated and characterised additional chimeric viruses containing the protease or the helicase domains of NY99 NS3 on the background of the NSW2011 strain. The results identified the role for the helicase but not the protease domain of NS3 protein in the inhibition of type I interferon signalling and showed that helicase domain of the more virulent NY99 strain performs this function more efficiently than helicase domain of the less virulent NSW2011 strain. Further analysis with individual amino acid mutants identified two amino acid residues in the helicase domain primarily responsible for this difference. Using chimeric replicons, we also showed that the inhibition of type I interferon (IFN) signalling was independent of other known functions of NS3 in RNA replication and assembly of virus particles.
Periasamy, Parthiban; Peng, Nias Yong Gao; Amarilla, Alberto A.; Slonchak, Andrii; Khromykh, Alexander A.
2017-01-01
West Nile virus (WNV) is a neurotropic flavivirus that can cause encephalitis in mammalian and avian hosts. In America, the virulent WNV strain (NY99) is causing yearly outbreaks of encephalitis in humans and horses, while in Australia the less virulent Kunjin strain of WNV strain has not been associated with significant disease outbreaks until a recent 2011 large outbreak in horses (but not in humans) caused by NSW2011 strain. Using chimeric viruses between NY99 and NSW2011 strains we previously identified a role for the non-structural proteins of NY99 strain and especially the NS3 protein, in enhanced virus replication in type I interferon response-competent cells and increased virulence in mice. To further define the role of NY99 NS3 protein in inhibition of type I interferon response, we have generated and characterised additional chimeric viruses containing the protease or the helicase domains of NY99 NS3 on the background of the NSW2011 strain. The results identified the role for the helicase but not the protease domain of NS3 protein in the inhibition of type I interferon signalling and showed that helicase domain of the more virulent NY99 strain performs this function more efficiently than helicase domain of the less virulent NSW2011 strain. Further analysis with individual amino acid mutants identified two amino acid residues in the helicase domain primarily responsible for this difference. Using chimeric replicons, we also showed that the inhibition of type I interferon (IFN) signalling was independent of other known functions of NS3 in RNA replication and assembly of virus particles. PMID:29099073
Nordén, Rickard; Martner, Anna; Samuelsson, Ebba; Hynsjö, Lars; Wold, Agnes E.
2017-01-01
ABSTRACT A peculiar trait of pneumococci (Streptococcus pneumoniae) is their propensity to undergo spontaneous lysis during stationary growth due to activation of the enzyme autolysin (LytA), which fragments the peptidoglycan cell wall. The fragments that are generated upon autolysis impair phagocytosis and reduce production of interleukin-12 (IL-12) and gamma interferon (IFN-γ) by human leukocytes in response to intact pneumococci, thereby impeding crucial host defenses. The objective was to identify additional monocyte genes whose transcription is induced by intact pneumococci and subverted by autolyzed bacteria. Monocytes were isolated from healthy blood donors and stimulated for 3 h with UV-inactivated S. pneumoniae (Rx1PLY− LytA+ strain), which is capable of autolyzing, its LytA− isogenic autolysin-deficient mutant, or a mixture of the two (containing twice the initial bacterial concentration). Gene expression was assessed by Illumina microarray, and selected findings were confirmed by reverse transcription-quantitative real-time PCR (RT-qPCR), enzyme-linked immunosorbent assay (ELISA), and flow cytometry. In all, we identified 121 genes that were upregulated to a significantly higher degree by intact than autolyzed pneumococci. These included IFNB1 and a large set of interferon-induced genes, such as IFIT3, RSAD2, CFCL1, and CXCL10 genes, as well as IL12B and CD40 genes. RT-qPCR revealed that transcription of these genes in response to intact pneumococci diminished when autolyzed pneumococci were admixed and that this pattern was independent of pneumolysin. Thus, transcription of interferon-related genes is triggered by intact pneumococci and subverted by fragments generated by spontaneous bacterial autolysis. We suggest that interferon-related pathways are important for elimination of pneumococci and that autolysis contributes to virulence by extinguishing these pathways. PMID:28223347
Auyeung, S Freda; Long, Qi; Royster, Erica Bruce; Murthy, Smitha; McNutt, Marcia D; Lawson, David; Miller, Andrew; Manatunga, Amita; Musselman, Dominique L
2009-10-01
Interferon-alpha therapy, which is used to treat metastatic malignant melanoma, can cause patients to develop two distinct neurobehavioral symptom complexes: a mood syndrome and a neurovegetative syndrome. Interferon-alpha effects on serotonin metabolism appear to contribute to the mood and anxiety syndrome, while the neurovegetative syndrome appears to be related to interferon-alpha effects on dopamine. Our goal is to propose a design for utilizing a sequential, multiple assignment, randomized trial design for patients with malignant melanoma to test the relative efficacy of drugs that target serotonin versus dopamine metabolism during 4 weeks of intravenous, then 8 weeks of subcutaneous, interferon-alpha therapy. Patients will be offered participation in a double-blinded, randomized, controlled, 14-week trial involving two treatment phases. During the first month of intravenous interferon-alpha therapy, we will test the hypotheses that escitalopram will be more effective in reducing depressed mood, anxiety, and irritability, whereas methylphenidate will be more effective in diminishing interferon-alpha-induced neurovegetative symptoms, such as fatigue and psychomotor slowing. During the next 8 weeks of subcutaneous interferon therapy, participants whose symptoms do not improve significantly will be randomized to the alternate agent alone versus escitalopram and methylphenidate together. We present a prototype for a single-center, sequential, multiple assignment, randomized trial, which seeks to determine the efficacy of sequenced and targeted treatment for the two distinct symptom complexes suffered by patients treated with interferon-alpha. Because we cannot completely control for external factors, a relevant question is whether or not 'short-term' neuropsychiatric interventions can increase the number of interferon-alpha doses tolerated and improve long-term survival. This sequential, multiple assignment, randomized trial proposes a framework for developing optimal treatment strategies; however, additional studies are needed to determine the best strategy for treating or preventing neurobehavioral symptoms induced by the immunotherapy interferon-alpha.
Treatment of inflammatory airway disease in young standardbreds with interferon alpha
2004-01-01
Abstract The effect of oral treatment with natural or recombinant human interferon alpha (HIA) on inflammatory airway disease in young standardbreds was assessed in a double-blind, randomized clinical trial. A total of 34 horses with nasal discharge, excess mucus in the trachea, and a persistent cough of at least 2 weeks’ duration that interfered with training completed the trial. Horses were rested for 1 week and received oral treatment with either a saline placebo, recombinant human interferon alpha (rHIA; 90 U/horse/day), or natural human interferon alpha (nHIA: 50 U/horse/day) for 5 days. There was a significant decline in nasal discharge and cough scores in all groups and the apparent response rate was similar. However, significantly fewer horses relapsed within 2 weeks once treatment was ceased when interferon rather than placebo was used (P = 0.012). Seventeen of 22 horses treated with rHIA or nHIA were cough-free 4 weeks after treatment, compared with only 4 of 12 after treatment with the placebo. Treatment with oral interferon is a useful adjunct to rest in standardbreds with inflammatory airway disease. PMID:15317391
Jimenez-Sousa, Maria Angeles; Almansa, Raquel; de la Fuente, Concha; Caro-Paton, Agustín; Ruiz, Lourdes; Sanchez-Antolín, Gloria; Gonzalez, Jose Manuel; Aller, Rocio; Alcaide, Noelia; Largo, Pilar; Resino, Salvador; de Lejarazu, Raul Ortiz; Bermejo-Martin, Jesus F
2010-06-01
Hepatitis C virus causes significant morbidity and mortality worldwide. The infection induces up-regulation of cytokine and chemokines commonly linked to the development of cellular and pro-inflammatory antiviral responses. The current standard in hepatitis C treatment consists of combination regimens of pegylated interferon-alpha plus ribavirin. The impact of combined treatment in the host immune response is still poorly understood. In the present study, we profiled 27 cytokines, chemokines and growth factors involved in the innate and adaptive responses to the virus in the serum of 27 hepatitis C virus-infected patients, before and after 12 weeks of combined treatment, and compared them to 10 healthy controls. Hepatitis C virus infection induced not only the secretion of chemokines and cytokines participating in Th1 responses (MIP-1 alpha, IP-10, TNF-alpha, IL-12p70, IL-2), but also cytokines involved in the development of Th17 responses (IL-6, IL-8, IL-9 and IL-17) and two pro-fibrotic factors (FGF-b, VEGF). The most important increases included MIP-1 alpha (4.7-fold increase compared to the control group), TNF-alpha (3.0-fold), FGF-b (3.4-fold), VEGF (3.5-fold), IP-10 (3.6-fold), IL-17 (107.0-fold), IL-9 (7.5-fold), IL-12p70 (7.0-fold), IL-2 (5.6-fold) and IL-7 (5.6-fold). Combined treatment with pegylated interferon-alpha plus ribavirin down-modulated the secretion of key Th1 and Th17 pro-inflammatory mediators, and pro-fibrotic growth factors as early as 12 weeks after treatment initiation. MIP-1 alpha, FGF-b, IL-17 decreased in a more dramatic manner in the group of responder patients than in the group of non-responders (fold-change in cEVR; fold-change in NcEVR): MIP-1 alpha (4.72;1.71), FGF-b (4.54;1.21), IL-17 (107.1;1.8). Correlation studies demonstrated that the decreases in the levels of these mediators were significantly associated with each other, pointing to a coordinated effect of the treatment on their secretion (r coefficient; p value): [ FGF-b versus IL-17 (0.90; 0.00), IL-17 versus VEGF (0.88; 0.00), MIP-1 alpha versus IL-17 (0.84;0.00), FGF-b versus MIP-1 alpha (0.96;0.00), FGF-b versus IL-12p70 (0.90; 0.00), VEGF versus IL-12p70 (0.89; 0.00)]. Th17 immunity has been previously associated with autoimmune diseases and asthma, but this is the first work reporting a role for this profile in viral hepatitis. These results provide an opportunity to evaluate the impact of the treatment with Peg-INF-alpha and RBV on the prevention of immune-driven tissue damage in infected patients.
NASA Technical Reports Server (NTRS)
1978-01-01
A technical analysis on the feasibility of commercial manufacturing of pharmaceuticals in space is presented. The method of obtaining pharmaceutical company involvement, laboratory results of the separation of serum proteins by the continuous flow electrophoresis process, the selection and study of candidate products, and their production requirements is described. The candidate products are antihemophilic factor, beta cells, erythropoietin, epidermal growth factor, alpha-1-antitrypsin and interferon. Production mass balances for antihemophelic factor, beta cells, and erythropoietin were compared for space versus ground operation. A conceptual description of a multiproduct processing system for space operation is discussed. Production requirements for epidermal growth factor of alpha-1-antitrypsin and interferon are presented.
PNPLA3 I148M associations with liver carcinogenesis in Japanese chronic hepatitis C patients.
Nakaoka, Kazunori; Hashimoto, Senju; Kawabe, Naoto; Nitta, Yoshifumi; Murao, Michihito; Nakano, Takuji; Shimazaki, Hiroaki; Kan, Toshiki; Takagawa, Yuka; Ohki, Masashi; Kurashita, Takamitsu; Takamura, Tomoki; Nishikawa, Toru; Ichino, Naohiro; Osakabe, Keisuke; Yoshioka, Kentaro
2015-01-01
To investigate associations between patatin-like phospholipase domain-containing 3 (PNPLA3) genotypes and fibrosis and hepatocarcinogenesis in Japanese chronic hepatitis C (CHC) patients. Two hundred and thirty-one patients with CHC were examined for PNPLA3 genotypes, liver stiffness measurements (LSM), and hepatocellular carcinoma (HCC) from May 2010 to October 2012 at Fujita Health University Hospital. The rs738409 single nucleotide polymorphism (SNP) encoding for a functional PNPLA3 I148M protein variant was genotyped using a TaqMan predesigned SNP genotyping assay. LSM was determined as the velocity of a shear wave (Vs) with an acoustic radiation force impulse. Vs cut-off values for cirrhosis were set at 1.55 m/s. We excluded CHC patients with a sustained virological response or relapse after interferon treatment. PNPLA3 genotypes were CC, CG, and GG for 118, 72, and 41 patients, respectively. Multivariable logistic regression analysis selected older age (OR = 1.06; 95% CI: 1.03-1.09; p < 0.0001), higher body mass index (BMI) (OR= 1.12; 95% CI: 1.03-1.22; p = 0.0082), and PNPLA3 genotype GG (OR = 2.07; 95% CI: 0.97-4.42; p = 0.0599) as the factors independently associated with cirrhosis. When 137 patients without past history of interferon treatment were separately assessed, multivariable logistic regression analysis selected older age (OR = 1.05; 95% CI: 1.02-1.09; p = 0.0034), and PNPLA3 genotype GG (OR = 3.35; 95% CI: 1.13-9.91; p = 0.0291) as the factors independently associated with cirrhosis. Multivariable logistic regression analysis selected older age (OR = 1.12; 95% CI: 1.07-1.17; p < 0.0001), PNPLA3 genotype GG (OR = 2.62; 95% CI: 1.15-5.96; p = 0.0218), and male gender (OR = 1.83; 95% CI: 0.90-3.71); p = 0.0936) as the factors independently associated with HCC. PNPLA3 genotype I148M is one of risk factors for developing HCC in Japanese CHC patients, and is one of risk factors for progress to cirrhosis in the patients without past history of interferon treatment.
Liu, Mary Y.; Khachigian, Levon M.
2009-01-01
Understanding the mechanisms governing cytokine control of growth factor expression in smooth muscle cells would provide invaluable insight into the molecular regulation of vascular phenotypes and create future opportunities for therapeutic intervention. Here, we report that the proinflammatory cytokine interleukin (IL)-1β suppresses platelet-derived growth factor (PDGF)-D promoter activity and mRNA and protein expression in smooth muscle cells. NF-κB p65, induced by IL-1β, interacts with a novel element in the PDGF-D promoter and inhibits PDGF-D transcription. Interferon regulatory factor-1 (IRF-1) is also induced by IL-1β and binds to a different element upstream in the promoter. Immunoprecipitation and chromatin immunoprecipitation experiments showed that IL-1β stimulates p65 interaction with IRF-1 and the accumulation of both factors at the PDGF-D promoter. Mutation of the IRF-1 and p65 DNA-binding elements relieved the promoter from IL-1β-mediated repression. PDGF-D repression by IL-1β involves histone deacetylation and interaction of HDAC-1 with IRF-1 and p65. HDAC-1 small interfering RNA ablates complex formation with IRF-1 and p65 and abrogates IRF-1 and p65 occupancy of the PDGF-D promoter. Thus, HDAC-1 is enriched at the PDGF-D promoter in cells exposed to IL-1β and forms a cytokine-inducible gene-silencing complex with p65 and IRF-1. PMID:19843519
Results of interferon treatment in children with chronic hepatitis B.
Grigorescu-Sido, Paula; Călin, Lazăr; Manasia, Rodica; Mireştean, Stefan; Creţ, Victoria; Skorka, Cristina; Grigorescu-Sido, Anca
2002-12-01
Many observations report a variable therapeutical response to interferon in children with chronic hepatitis B. In order to evaluate the efficiency of alpha-interferon treatment in the downregulation of viral replication and in the eradication of infection in these patients, we assessed HBeAg/HBeAb and HBsAg/HBsAb seroconversion (as well as with clinical outcome and the changes in the plasma level of aminotransferases) in 61 treated patients. The diagnosis was established by means of the usual clinical, biochemical and histopathological criteria. There was no possibility to viral DNA test and no control group was included. Patients were selected for interferon treatment who displayed at least a two fold rise in the plasma level of aminotransferases as compared to normal values, as well as necroinflammatory activity (score > or = 6) and positive HBeAg as a marker of viral replication. Treatment was carried out with alpha-2a interferon or alpha-2b interferon in a dose of 3 million U/m2/dose in 3 weekly doses for a period of 4-6 months. The monitoring interval was 6.6+/-3 years. HBeAg/HBeAb seroconversion was registered in 77.2% of the patients and mainly occurred during the first year of follow-up (50.9 %). HBsAg/HBsAb seroconversion was revealed in 1.75% of the cases. The therapeutical response was complete, incomplete, transient and absent in 1.75%, 64.9%, 10.5% and 22.8% of the patients, respectively. The results show that the eradication of HBV infection is insignificant, but the downregulation of viral replication and, subsequently the halt of further progression of hepatic lesions is obtained in a high percentage of cases, highlighting the efficiency of this treatment in children with chronic hepatitis B
Trikudanathan, Guru V.; Ahmad, Imad; Israel, Jonathan L
2011-01-01
Classical interferon-α has been shown to be associated with the development of a variety of autoimmune disorders. A 34-year-old white woman with chronic hepatitis C virus infection who was treated with pegylated interferon α-2a and ribavirin, developed Grave's disease and autoimmune hepatitis (AIH) at 32 and 44 weeks, respectively, following initiation of the therapy. The diagnosis of AIH was made based on the new development of anti-smooth muscle antibodies, anti-mitochondrial antibodies, and liver biopsy findings. It was confirmed by positive response to steroid challenge and was assessed according to the international AIH scoring system. Based on the previous case reports, we review the existing literature. Clinicians should be aware of the possibility of multiple autoimmune disorders during interferon-based therapy for chronic hepatitis. PMID:21912063
Trikudanathan, Guru V; Ahmad, Imad; Israel, Jonathan L
2011-01-01
Classical interferon-α has been shown to be associated with the development of a variety of autoimmune disorders. A 34-year-old white woman with chronic hepatitis C virus infection who was treated with pegylated interferon α-2a and ribavirin, developed Grave's disease and autoimmune hepatitis (AIH) at 32 and 44 weeks, respectively, following initiation of the therapy. The diagnosis of AIH was made based on the new development of anti-smooth muscle antibodies, anti-mitochondrial antibodies, and liver biopsy findings. It was confirmed by positive response to steroid challenge and was assessed according to the international AIH scoring system. Based on the previous case reports, we review the existing literature. Clinicians should be aware of the possibility of multiple autoimmune disorders during interferon-based therapy for chronic hepatitis.
Verrier, Eloi R; Genet, Carine; Laloë, Denis; Jaffrezic, Florence; Rau, Andrea; Esquerre, Diane; Dechamp, Nicolas; Ciobotaru, Céline; Hervet, Caroline; Krieg, Francine; Jouneau, Luc; Klopp, Christophe; Quillet, Edwige; Boudinot, Pierre
2018-06-19
The viral hemorrhagic septicemia virus (VHSV) is a major threat for salmonid farming and for wild fish populations worldwide. Previous studies have highlighted the importance of innate factors regulated by a major quantitative trait locus (QTL) for the natural resistance to waterborne VHSV infection in rainbow trout. The aim of this study was to analyze the early transcriptomic response to VHSV inoculation in cell lines derived from previously described resistant and susceptible homozygous isogenic lines of rainbow trout to obtain insights into the molecular mechanisms responsible for the resistance to the viral infection. We first confirmed the presence of the major QTL in a backcross involving a highly resistant fish isogenic line (B57) and a highly susceptible one (A22), and were able to define the confidence interval of the QTL and to identify its precise position. We extended the definition of the QTL since it controls not only resistance to waterborne infection but also the kinetics of mortality after intra-peritoneal injection. Deep sequencing of the transcriptome of B57 and A22 derived cell lines exposed to inactivated VHSV showed a stronger response to virus inoculation in the resistant background. In line with our previous observations, an early and strong induction of interferon and interferon-stimulated genes was correlated with the resistance to VHSV, highlighting the major role of innate immune factors in natural trout resistance to the virus. Interestingly, major factors of the antiviral innate immunity were much more expressed in naive B57 cells compared to naive A22 cells, which likely contributes to the ability of B57 to mount a fast antiviral response after viral infection. These observations were further extended by the identification of several innate immune-related genes localized close to the QTL area on the rainbow trout genome. Taken together, our results improve our knowledge in virus-host interactions in vertebrates and provide novel insights in the molecular mechanisms explaining the resistance to VHSV in rainbow trout. Our data also provide a collection of potential markers for resistance and susceptibility of rainbow trout to VHSV infection.
ERIC Educational Resources Information Center
Gilli, Francesca; Bertolotto, Antonio; Sala, Arianna; Hoffmann, Francine; Capobianco, Marco; Malucchi, Simona; Glass, Tracy; Kappos, Ludwig; Lindberg, Raija L. P.; Leppert, David
2004-01-01
Neutralizing antibodies (NAb) against interferon-[Beta] (IFN-Beta) develop in about a third of treated multiple sclerosis patients and are believed to reduce therapeutic efficacy of IFN-[Beta] on clinical and MRI measures. The expression of the interferon acute-response protein, myxovirus resistance protein A (MxA) is a sensitive measure of the…
[Gamma interferon: basics aspects, clinic significance and terapeutic uses].
Mata-Espinosa, Dulce A; Hernández-Pando, Rogelio
2008-01-01
Interferons are a family of pleiotropic cytokines, their name was assigned because of their anti-replicative viral activity. IFNgamma or immune type II interferon does not share receptors with the type I interferon, its structure is different and its gene is located in different chromosome, although its biologic effects are similar. Along of several years of research, it has been found that IFNgamma enhances the transcription of genes involved in immunomodulation, antiviral responses and antitumoral activities. Regarding to the immune system, IFNgamma increases the cytotoxic and phagocytic activity of macrophages and upregulates the expression of major histocompatibility complex (MHC) class I and class II molecules in dendritics cells and other antigen presenting cells. IFNgamma also promotes the development and differentiation of naive CD4+ T lymphocytes to Th1 helper subset. Indeed, this cytokine has a key role in the control of bacterial, micotic, viral and parasitic infections. Depending of the micro-environment, IFNgamma has a dual role as pro or anti inflammatory cytokine. Novel therapeutic strategies are currently being developed with the aim to enhance the immune response or replace IFNgamma gene abnormal expression with beneficial results in humans, being recombinant IFNgamma safe and well tolerated.
Monitoring acute phase proteins in retrovirus infected cats undergoing feline interferon-ω therapy.
Leal, R O; Gil, S; Sepúlveda, N; McGahie, D; Duarte, A; Niza, M M R E; Tavares, L
2014-01-01
Recombinant feline interferon-ω therapy is an immunomodulator currently used in the treatment of different retroviral diseases including feline immune deficiency virus and feline leukaemia virus. Although its mechanism of action remains unclear, this drug appears to potentiate the innate response. Acute phase proteins are one of the key components of innate immunity and studies describing their use as a monitoring tool for the immune system in animals undergoing interferon-ω therapy are lacking. This study aimed to determine whether interferon-ω therapy influences acute phase protein concentrations namely serum amyloid-A, α-1-glycoprotein and C-reactive protein. A single-arm study was performed using 16 cats, living in an animal shelter, naturally infected with retroviruses and subjected to the interferon-ω therapy licensed protocol. Samples were collected before (D0), during (D10 and D30) and after therapy (D65). Serum amyloid-A and C-reactive protein were measured by specific enzyme-linked immunosorbent assay kits and α-1-glycoprotein by single radial immunodiffusion. All the acute phase proteins significantly increased in cats undergoing interferon-ω therapy (D0/D65: P<0·05) CLINICAL SIGNIFICANCE: Acute phase proteins appear to be reasonable predictors of innate-immune stimulation and may be useful in the individual monitoring of naturally retroviral infected cats undergoing interferon-ω therapy. © 2013 British Small Animal Veterinary Association.
Liu, Zhigang; Wu, Shu-Wen; Lei, Cao-Qi; Zhou, Qian; Li, Shu; Shu, Hong-Bing; Wang, Yan-Yi
2013-05-01
In response to viral infection, RIG-I-like RNA helicases detect viral RNA and signal through the mitochondrial adapter protein VISA. VISA activation leads to rapid activation of transcription factors IRF3 and NF-κB, which collaborate to induce transcription of type I interferon (IFN) genes and cellular antiviral response. It has been demonstrated that VISA is activated by forming prion-like aggregates. However, how this process is regulated remains unknown. Here we show that overexpression of HSC71 resulted in potent inhibition of virus-triggered transcription of IFNB1 gene and cellular antiviral response. Consistently, knockdown of HSC71 had opposite effects. HSC71 interacted with VISA, and negatively regulated virus-triggered VISA aggregation. These findings suggest that HSC71 functions as a check against VISA-mediated antiviral response.
Giles, F J; Shan, J; Advani, S H; Akan, H; Aydogdu, I; Aziz, Z; Azim, H A; Bapsy, P P; Buyukkececi, F; Chaimongkol, B; Chen, P M; Cheong, S K; Ferhanoglu, B; Hamza, R; Khalid, H M; Intragumtornchai, T; Kim, S W; Kim, S Y; Koc, H; Kumar, L; Kumar, R; Lei, K I; Lekhakula, A; Muthalib, A; Patel, M; Poovalingam, V P; Prayoonwiwat, W; Rana, F; Reksodiputro, A H; Ruff, P; Sagar, T G; Schwarer, A P; Song, H S; Suh, C W; Suharti, C; Supindiman, I; Tee, G Y; Thamprasit, T; Villalon, A H; Wickham, N R; Wong, J E; Yalcin, A; Jootar, S
2000-12-01
The addition of a brief alpha interferon regimen to each CHOP induction cycle, plus one year of alpha interferon thrice weekly maintenance therapy, has no early effect on response rates or survival in patients with Intermediate or High grade cell NHL. The CHOP (Cyclophosphamide, Adriamycin. Vincristine, Prednisone) regimen is the most widely used first-line therapy for patients with Intermediate or High Grade (IG/HG) non-Hodgkin's lymphoma (NHL). Alpha 2b interferon (INF) enhances response rates and improves survival in low-grade NHL. The International Oncology Study Group (IOSG) conducted a prospective randomized study comparing CHOP alone or combined with INF in patients with IG/HG-NHL. The primary study aim was to compare the objective response rates in these patient cohorts. Patients with a confirmed diagnosis of measurable NHL of International Working Formulation (IWF) groups D to H histology were randomized to receive CHOP alone or CHOP with 5Mu INF s.c. for 5 days on days 22 to 26 of each 28 day cycle with INF 5 million units (Mu) given three times per week subcutaneously for 52 weeks in those patients who responded to CHOP plus INF. The overall response rates were equivalent in both groups: CHOP alone (214 patients) 81% (complete 55%, partial 26%); CHOP plus INF (221 patients) 80% (complete 54%, partial 26%). At 36 months, the actuarial survival rate was equivalent in both groups. There is no apparent early advantage in terms of response or survival conferred by adding the study INF regimen to CHOP therapy for patients with IG/HG-NHL.
Schroder, Wayne A.; Ellis, Jonathan J.; Cumming, Helen E.; Poo, Yee Suan; Hertzog, Paul J.; Di Giallonardo, Francesca; Hueston, Linda; Le Grand, Roger; Tang, Bing; Gardner, Joy; Mahalingam, Suresh; Bird, Phillip I.
2017-01-01
Chikungunya virus (CHIKV) is an arthritogenic alphavirus causing epidemics of acute and chronic arthritic disease. Herein we describe a comprehensive RNA-Seq analysis of feet and lymph nodes at peak viraemia (day 2 post infection), acute arthritis (day 7) and chronic disease (day 30) in the CHIKV adult wild-type mouse model. Genes previously shown to be up-regulated in CHIKV patients were also up-regulated in the mouse model. CHIKV sequence information was also obtained with up to ≈8% of the reads mapping to the viral genome; however, no adaptive viral genome changes were apparent. Although day 2, 7 and 30 represent distinct stages of infection and disease, there was a pronounced overlap in up-regulated host genes and pathways. Type I interferon response genes (IRGs) represented up to ≈50% of up-regulated genes, even after loss of type I interferon induction on days 7 and 30. Bioinformatic analyses suggested a number of interferon response factors were primarily responsible for maintaining type I IRG induction. A group of genes prominent in the RNA-Seq analysis and hitherto unexplored in viral arthropathies were granzymes A, B and K. Granzyme A-/- and to a lesser extent granzyme K-/-, but not granzyme B-/-, mice showed a pronounced reduction in foot swelling and arthritis, with analysis of granzyme A-/- mice showing no reductions in viral loads but reduced NK and T cell infiltrates post CHIKV infection. Treatment with Serpinb6b, a granzyme A inhibitor, also reduced arthritic inflammation in wild-type mice. In non-human primates circulating granzyme A levels were elevated after CHIKV infection, with the increase correlating with viral load. Elevated granzyme A levels were also seen in a small cohort of human CHIKV patients. Taken together these results suggest granzyme A is an important driver of arthritic inflammation and a potential target for therapy. Trial Registration: ClinicalTrials.gov NCT00281294 PMID:28207896
TALUKDER, Anup K.; YOUSEF, Mohamed S.; RASHID, Mohammad B.; AWAI, Kensuke; ACOSTA, Tomas J.; SHIMIZU, Takashi; OKUDA, Kiyoshi; SHIMADA, Masayuki; IMAKAWA, Kazuhiko; MIYAMOTO, Akio
2017-01-01
Recent observations suggest that the bovine uterus starts to react to the early embryo immediately after its arrival from the oviduct. The present study aimed to investigate the effect of the early developing embryo on the immune-related gene profile in bovine uterine epithelial cells (BUECs) in vitro, and to further examine the impact of conditioned media (CM), either from embryo-BUEC co-culture or embryo culture alone, on gene expression in peripheral blood mononuclear cells (PBMCs). First, BUECs were co-cultured with morulae (n = 10) for D5-D9 (D0 = IVF), and gene expression in BUECs was analyzed. Subsequently, PBMCs were cultured in CM from embryo-BUEC co-culture or D5-D9 embryo culture, and gene expression was evaluated. In BUECs, the embryo induced interferon (IFN)-stimulated genes (ISGs: ISG15, OAS1, and MX2), a key factor for IFN-signaling (STAT1), and type-1 IFN receptors (IFNAR1 and IFNAR2), with suppression of NFkB2, NFkBIA and pro-inflammatory cytokines (TNFA and IL1B). The embryo also stimulated PTGES and PGE2 secretion in BUECs. In PBMCs, both CM from embryo-BUEC co-culture and embryo culture alone induced ISGs, STAT1 and TGFB1, while suppressing TNFA and IL17. Similarly, interferon tau (IFNT) at 100 pg/ml suppressed NFkB2, TNFA and IL1B in BUECs, and also stimulated TGFB1 and suppressed TNFA in PBMCs. Our findings suggest that the bovine embryo, in the first four days in the uterus (D5-D9), starts to induce an anti-inflammatory response in epithelial cells and in immune cells. IFNT is likely to act as one of the intermediators for induction of the anti-inflammatory response in the bovine uterus. PMID:28603222
Yoo, J C; Pae, H O; Choi, B M; Kim, W I; Kim, J D; Kim, Y M; Chung, H T
2000-02-01
The effects of ionizing irradiation on the nitric oxide (NO) production in murine embryonic liver cell line, BNL CL.2 cells, were investigated. Various doses (5-40 Gy) of radiation made BNL CL.2 cells responsive to interferon-gamma alone for the production of NO in a dose-dependent manner. Small amounts of lipopolysaccharide (LPS) or tumor necrosis factor-alpha (TNF-alpha) synergized with IFN-gamma in the production of NO from irradiated BNL CL.2 cells, even though LPS or TNF-alpha alone did not induce NO production from the same cells. Immunoblots showed parallel induction of inducible nitric oxide synthase (iNOS). NO production in irradiated BNL CL.2 cells by IFN-gamma or IFN-gamma plus LPS was decreased by the addition of catalase, suggesting that H(2)O(2) produced by ionizing irradiation primed the cells to trigger NO production in response to IFN-gamma or IFN-gamma plus LPS. Furthermore, the treatment of nongamma-irradiated BNL CL.2 cells with H(2)O(2) made the cells responsive to IFN-gamma or IFN-gamma plus LPS for the production of NO. This study shows that ionizing irradiation has the ability to induce iNOS gene expression in responsive to IFN-gamma via the formation of H(2)O(2) in BNL CL.2 murine embryonic liver cells.
Cao, Ye; Guan, Kai; He, Xiang; Wei, Congwen; Zheng, Zirui; Zhang, Yanhong; Ma, Shengli; Zhong, Hui; Shi, Wei
2016-12-01
The Yersinia outer protein J (YopJ) plays a pivotal role in evading the host immune response and establishes a persistent infection in host cells after bacterial infection. YopJ is a cysteine protease and can act as a deubiquitinating enzyme that deubiquitinates several targets in multiple signaling pathways. Stimulator of interferon genes (STING) is a critical adapter for the induction of interferon regulatory factor 3 (IRF3) phosphorylation and subsequent production of the cytokines in response to nucleic acids in the cytoplasm. Our studies demonstrate that YopJ targets STING to inhibit IRF3 signaling. Specially, YopJ interacts with STING to block its ER-to-Golgi traffic and remove its K63-linked ubiquitination chains. Deubiquited STING perturbs the formation of STING-TBK1 complex and the activation of IRF3. The 172th cysteine of YopJ mediated STING deubiquitination and IRF3 signaling inhibition. Consequently, mice infected with WT and ΔYopJ/YopJ bacteria induced lower levels of IRF3 and IFN-β, decreased inflammation and reduced staining of STING as compared to ΔYopJ and ΔYopJ/YopJ C172A strains infection. The data herein reveal a previously unrecognized mechanism by which YopJ modulates innate immune signaling. Copyright © 2016 Elsevier B.V. All rights reserved.
Molecular characterization and functional analysis of IRF3 in tilapia (Oreochromis niloticus).
Gu, Yi-Feng; Wei, Qun; Tang, Shou-Jie; Chen, Xiao-Wu; Zhao, Jin-Liang
2016-02-01
Interferon regulatory factor 3 (IRF3) plays a key role in interferon (IFN) response and binding to the IFN stimulatory response elements (ISREs) within the promoter of IFN and IFN-stimulated genes followed by virus infection. In the current study, we discovered one IRF3 homologue in tilapia genome and analyzed the characterizations and functions of tilapia IRF3. Tilapia IRF3 contains 1368 bp with an ORF of 455 aa. Structurally, tilapia IRF3 protein typically shares the conserved characterizations with other species' IRF3 homologues, displaying conserved DNA-binding domain, IRF association domain, serine-rich C terminal domain, and tryptophan residue cluster. Phylogenetic analysis illustrated that tilapia IRF3 belongs to the IRF3 subfamily. Real-time PCR revealed a broad expression pattern of tilapia IRF3 in various tissues. Subcellular localization analysis showed that tilapia IRF3 mainly resides in the cytoplasm, Western blot demonstrated that IRF3 was distributed in the cytoplasmic fraction. Functionally, IRF3 was found to be transcriptionally up-regulated by the poly I:C stimulation. Moreover, reporter assay elucidated that tilapia IRF3 serves as a regulator in mediating IFN response by increasing the activity of IFN-β and ISRE-containing promoter. These data supported the view that tilapia IRF3 is a potential molecule in IFN immune defense system against viral infection. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hyun, Jinhee; Ramos, Juan Carlos; Toomey, Ngoc; Balachandran, Siddharth; Lavorgna, Alfonso; Harhaj, Edward; Barber, Glen N
2015-05-01
Human T-cell lymphotropic virus type I (HTLV-1) is an oncogenic retrovirus considered to be the etiological agent of adult T-cell leukemia (ATL). The viral transactivator Tax is regarded as the oncoprotein responsible for contributing toward the transformation process. Here, we demonstrate that Tax potently inhibits the activity of DEx(D/H) box helicases RIG-I and MDA5 as well as Toll-dependent TIR-domain-containing adapter-inducing interferon-β (TRIF), which function as cellular sensors or mediators of viral RNA and facilitate innate immune responses, including the production of type I IFN. Tax manifested this function by binding to the RIP homotypic interaction motif (RHIM) domains of TRIF and RIP1 to disrupt interferon regulatory factor 7 (IRF7) activity, a critical type I IFN transcription factor. These data provide further mechanistic insight into HTLV-1-mediated subversion of cellular host defense responses, which may help explain HTLV-1-related pathogenesis and oncogenesis. It is predicted that up to 15% of all human cancers may involve virus infection. For example, human T-cell lymphotropic virus type 1 (HTLV-1) has been reported to infect up to 25 million people worldwide and is the causative agent of adult T-cell leukemia (ATL). We show here that HTLV-1 may be able to successfully infect the T cells and remain latent due to the virally encoded product Tax inhibiting a key host defense pathway. Understanding the mechanisms by which Tax subverts the immune system may lead to the development of a therapeutic treatment for HTLV-1-mediated disease. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Zhao, Shou-Cai; Wang, Chun; Xu, Heng; Wu, Wen-Qian; Chu, Zhao-Hu; Ma, Ling-Song; Zhang, Ying-Dong; Liu, Fudong
2017-11-01
Stroke is a disease that mainly affects the elderly. Since the age-related differences in stroke have not been well studied, modeling stroke in aged animals is clinically more relevant. The inflammatory responses to stroke are a fundamental pathological procedure, in which microglial activation plays an important role. Interferon regulatory factor-5 (IRF5) and IRF4 regulate M1 and M2 activation of macrophages, respectively, in peripheral inflammation; but it is unknown whether IRF5/IRF4 are also involved in cerebral inflammatory responses to stroke and whether age-related differences of the IRF5/IRF4 signaling exist in ischemic brain. Here, we investigated the influences of aging on IRF5/IRF4 signaling and post-stroke inflammation in mice. Both young (9-12 weeks) and aged (18 months) male mice were subjected to middle cerebral artery occlusion (MCAO). Morphological and biochemical changes in the ischemic brains and behavior deficits were assessed on 1, 3, and 7 d post-stroke. After MCAO, the aged mice showed smaller infarct sizes but higher neurological deficits and corner test scores than young mice. Young mice had higher levels of IRF4 and CD206 microglia in the ischemic brains, whereas the aged mice expressed more IRF5 and MHCII microglia. After MCAO, serum pro-inflammatory cytokines (TNF-α, iNOS, IL-6) were more prominently up-regulated in aged mice, whereas serum anti-inflammatory cytokines (TGF-β, IL-4, IL-10) were more prominently up-regulated in young mice. Our results demonstrate that aging has a significant influence on stroke outcomes in mice, which is probably mediated by age-specific inflammatory responses.
Bo, Marco; Erre, Gian Luca; Niegowska, Magdalena; Piras, Marco; Taras, Loredana; Longu, Maria Giovanna; Passiu, Giuseppe; Sechi, Leonardo A
2018-01-01
Rheumatoid arthritis (RA) is a chronic disease characterised by a pro-inflammatory cytokines linked erosive joint damage and by humoral and cellular response against a broad range of self-peptides. Molecular mimicry between Epstein-Barr virus (EBV), Mycobacterium avium subsp. paratuberculosis (MAP) and host peptides has long been regarded as an RA pathogenetic mechanism. Using bioinformatic analysis we identified high sequence homology among interferon regulatory factor 5 (IRF5), EBV antigen BOLF1 and MAP antigen MAP_4027. Our objective was to evaluate the presence in sera of RA patients of antibodies (Abs) directed against human homologous IRF5 cross-reacting with BOLF1 and MAP_4027. Frequency of reactivity against IRF5424-434, BOLF1305-320 and MAP_402718-32 was tested by indirect ELISA in sera from 71 RA patients and 60 healthy controls (HCs). RA sera show a remarkable high frequency of reactivity against IRF5424-434 in comparison to HCs (69% vs. 8%; p<0.0001). Similarly, seroreactivity against BOLF1305-320 was more frequently detected in RA sera than in HCs counterpart (58% vs. 8%; p<0.0001). Frequency of Abs against MAP_402718-32 was 17% in RA sera vs. 5% in HCs with a p-value at the threshold level (p<0.051). Prevalence of Abs against at least one of the assessed epitopes reached 72% in RA patients and 15% among HCs. Levels of Abs in RA patients were significantly related to systemic inflammation. IRF5 is a potential autoimmune target of RA. Our results support the hypothesis that EBV and MAP infections may be involved in the pathogenesis of RA, igniting a secondary immune response that cross-reacts against RA self-peptides.
Hyun, Jinhee; Ramos, Juan Carlos; Toomey, Ngoc; Balachandran, Siddharth; Lavorgna, Alfonso; Harhaj, Edward
2015-01-01
ABSTRACT Human T-cell lymphotropic virus type I (HTLV-1) is an oncogenic retrovirus considered to be the etiological agent of adult T-cell leukemia (ATL). The viral transactivator Tax is regarded as the oncoprotein responsible for contributing toward the transformation process. Here, we demonstrate that Tax potently inhibits the activity of DEx(D/H) box helicases RIG-I and MDA5 as well as Toll-dependent TIR-domain-containing adapter-inducing interferon-β (TRIF), which function as cellular sensors or mediators of viral RNA and facilitate innate immune responses, including the production of type I IFN. Tax manifested this function by binding to the RIP homotypic interaction motif (RHIM) domains of TRIF and RIP1 to disrupt interferon regulatory factor 7 (IRF7) activity, a critical type I IFN transcription factor. These data provide further mechanistic insight into HTLV-1-mediated subversion of cellular host defense responses, which may help explain HTLV-1-related pathogenesis and oncogenesis. IMPORTANCE It is predicted that up to 15% of all human cancers may involve virus infection. For example, human T-cell lymphotropic virus type 1 (HTLV-1) has been reported to infect up to 25 million people worldwide and is the causative agent of adult T-cell leukemia (ATL). We show here that HTLV-1 may be able to successfully infect the T cells and remain latent due to the virally encoded product Tax inhibiting a key host defense pathway. Understanding the mechanisms by which Tax subverts the immune system may lead to the development of a therapeutic treatment for HTLV-1-mediated disease. PMID:25694597
Perot, Brieuc P; Boussier, Jeremy; Yatim, Nader; Rossman, Jeremy S; Ingersoll, Molly A; Albert, Matthew L
2018-05-10
Influenza A virus (IAV) infection perturbs metabolic pathways such as autophagy, a stress-induced catabolic pathway that crosstalks with cellular inflammatory responses. However, the impact of autophagy perturbation on IAV gene expression or host cell responses remains disputed. Discrepant results may be a reflection of in vivo studies using cell-specific autophagy-related (Atg) gene-deficient mouse strains, which do not delineate modification of developmental programmes from more proximal effects on inflammatory response. In vitro experiments can be confounded by gene expression divergence in wild-type cultivated cell lines, as compared to those experiencing long-term absence of autophagy. With the goal to investigate cellular processes within cells that are competent or incompetent for autophagy, we generated a novel experimental cell line in which autophagy can be restored by ATG5 protein stabilization in an otherwise Atg5-deficient background. We confirmed that IAV induced autophagosome formation and p62 accumulation in infected cells and demonstrated that perturbation of autophagy did not impact viral infection or replication in ATG5-stablized cells. Notably, the induction of interferon-stimulated genes (ISGs) by IAV was diminished when cells were autophagy competent. We further demonstrated that, in the absence of ATG5, IAV-induced interferon-β (IFN-β) expression was increased as compared to levels in autophagy-competent lines, a mechanism that was independent of IAV non-structural protein 1. In sum, we report that induction of autophagy by IAV infection reduces ISG expression in infected cells by limiting IFN-β expression, which may benefit viral replication and spread.
Antiproliferative Properties of Type I and Type II Interferon
Bekisz, Joseph; Baron, Samuel; Balinsky, Corey; Morrow, Angel; Zoon, Kathryn C.
2010-01-01
The clinical possibilities of interferon (IFN) became apparent with early studies demonstrating that it was capable of inhibiting tumor cells in culture and in vivo using animal models. IFN gained the distinction of being the first recombinant cytokine to be licensed in the USA for the treatment of a malignancy in 1986, with the approval of IFN-α2a (Hoffman-La Roche) and IFN-α2b (Schering-Plough) for the treatment of Hairy Cell Leukemia. In addition to this application, other approved antitumor applications for IFN-α2a are AIDS-related Kaposi’s Sarcoma and Chronic Myelogenous Leukemia (CML) and other approved antitumor applications for IFN-α2b are Malignant Melanoma, Follicular Lymphoma, and AIDS-related Kapoisi’s Sarcoma. In the ensuing years, a considerable number of studies have been conducted to establish the mechanisms of the induction and action of IFN’s anti-tumor activity. These include identifying the role of Interferon Regulatory Factor 9 (IRF9) as a key factor in eliciting the antiproliferative effects of IFN-α as well as identifying genes induced by IFN that are involved in recognition of tumor cells. Recent studies also show that IFN-activated human monocytes can be used to achieve >95% eradication of select tumor cells. The signaling pathways by which IFN induces apoptosis can vary. IFN treatment induces the tumor suppressor gene p53, which plays a role in apoptosis for some tumors, but it is not essential for the apoptotic response. IFN-α also activates phosphatidylinositol 3-kinase (PI3K), which is associated with cell survival. Downstream of PI3K is the mammalian target of rapamycin (mTOR) which, in conjunction with PI3K, may act in signaling induced by growth factors after IFN treatment. This paper will explore the mechanisms by which IFN acts to elicit its antiproliferative effects and more closely examine the clinical applications for the anti-tumor potential of IFN. PMID:20664817
Interferon-gamma enhances radiation-induced cell death via downregulation of Chk1
Kim, Kwang Seok; Choi, Kyu Jin; Bae, Sangwoo
2012-01-01
Interferon-gamma (IFNγ) is a cytokine with roles in immune responses as well as in tumor control. Interferon is often used in cancer treatment together with other therapies. Here we report a novel approach to enhancement of cancer cell killing by combined treatment of IFNγ with ionizing radiation. We found that IFNγ treatment alone in HeLa cells induced phosphorylation of Chk1 in a time- and dose-dependent manner, and resulted in cell arrest. Moreover IFNγ treatment was correlated with attenuation of Chk1 as the treatment shortened protein half-life of Chk1. As Chk1 is an essential cell cycle regulator for viability after DNA damage, attenuation of Chk1 by IFNγ pre-treatment in HeLa cells resulted in increased cell death following ionizing radiation about 2-folds than ionizing radiation treatment alone whereas IFNγ treatment alone had little effect on cell death. X-linked inhibitor of apoptosis-associated factor 1 (XAF1), an IFN-induced gene, seems to partly regulate IFNγ-induced Chk1 destabilization and radiation sensitivity because transient depletion of XAF1 by siRNA prevented IFNγ-induced Chk1 attenuation and partly protected cells from IFNγ-enhanced radiation cell killing. Therefore the results provide a novel rationale to combine IFNγ pretreatment and DNA-damaging anti-cancer drugs such as ionizing radiation to enhance cancer cell killing. PMID:22825336
Akdis, Mübeccel; Aab, Alar; Altunbulakli, Can; Azkur, Kursat; Costa, Rita A; Crameri, Reto; Duan, Su; Eiwegger, Thomas; Eljaszewicz, Andrzej; Ferstl, Ruth; Frei, Remo; Garbani, Mattia; Globinska, Anna; Hess, Lena; Huitema, Carly; Kubo, Terufumi; Komlosi, Zsolt; Konieczna, Patricia; Kovacs, Nora; Kucuksezer, Umut C; Meyer, Norbert; Morita, Hideaki; Olzhausen, Judith; O'Mahony, Liam; Pezer, Marija; Prati, Moira; Rebane, Ana; Rhyner, Claudio; Rinaldi, Arturo; Sokolowska, Milena; Stanic, Barbara; Sugita, Kazunari; Treis, Angela; van de Veen, Willem; Wanke, Kerstin; Wawrzyniak, Marcin; Wawrzyniak, Paulina; Wirz, Oliver F; Zakzuk, Josefina Sierra; Akdis, Cezmi A
2016-10-01
There have been extensive developments on cellular and molecular mechanisms of immune regulation in allergy, asthma, autoimmune diseases, tumor development, organ transplantation, and chronic infections during the last few years. Better understanding the functions, reciprocal regulation, and counterbalance of subsets of immune and inflammatory cells that interact through interleukins, interferons, TNF-α, and TGF-β offer opportunities for immune interventions and novel treatment modalities in the era of development of biological immune response modifiers particularly targeting these molecules or their receptors. More than 60 cytokines have been designated as interleukins since the initial discoveries of monocyte and lymphocyte interleukins (called IL-1 and IL-2, respectively). Studies of transgenic or gene-deficient mice with altered expression of these cytokines or their receptors and analyses of mutations and polymorphisms in human genes that encode these products have provided essential information about their functions. Here we review recent developments on IL-1 to IL-38, TNF-α, TGF-β, and interferons. We highlight recent advances during the last few years in this area and extensively discuss their cellular sources, targets, receptors, signaling pathways, and roles in immune regulation in patients with allergy and asthma and other inflammatory diseases. Copyright © 2016 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.
Rothel, James S; Andersen, Peter
2005-12-01
Tuberculosis is responsible for more then 2 million deaths worldwide each year and vies with HIV as the world's most fatal infectious disease. In many developing countries, attempts to control the spread of infection rely solely on identification and treatment of those with active disease, ignoring subclinical infection. However, in developed countries, large efforts are also expended to identify and give prophylactic drugs to people with latent tuberculosis infection. Until recently, the 100-year-old tuberculin skin test (Mantoux) has been the only available diagnostic test for latent tuberculosis infection, despite its many well-known limitations. Advances in scientific knowledge have led to the development of tests for tuberculosis that measure the production of interferon-gamma by T-cells stimulated in vitro with Mycobacterium tuberculosis-specific antigens. These interferon-gamma tests are highly specific and unaffected by prior Bacille Calmette-Guérin vaccination or immune reactivity to most atypical mycobacteria. They are more sensitive than the tuberculin skin test in detecting people with active tuberculosis, and their results correlate more closely with M. tuberculosis exposure risk factors than the tuberculin skin test in people likely to have latent tuberculosis infection. Science has caught up with one of the oldest diagnostic tests still in use worldwide, and the adoption of new, tuberculosis-specific interferon-gamma-based tests should move us one step closer to better control of this insidious pathogen.
Inhibition of interferon-gamma expression by osmotic shrinkage of peripheral blood lymphocytes.
Lang, K S; Weigert, C; Braedel, S; Fillon, S; Palmada, M; Schleicher, E; Rammensee, H-G; Lang, F
2003-01-01
A hypertonic environment, as it prevails in renal medulla or in hyperosmolar states such as hyperglycemia of diabetes mellitus, has been shown to impair the immune response, thus facilitating the development of infection. The present experiments were performed to test whether hypertonicity influences activation of T lymphocytes. To this end, peripheral blood lymphocytes (PBL) of cytomegalovirus (CMV)-positive donors were stimulated by human leukocyte antigen (HLA)-A2-restricted CMV epitope NLVPMVATV to produce interferon (IFN)-gamma at varying extracellular osmolarity. As a result, increasing extracellular osmolarity during exposure to the CMV antigen indeed decreased IFN-gamma formation. Addition of NaCl was more effective than urea. A 50% inhibition was observed at 350 mosM by addition of NaCl. The combined application of the Ca(2+) ionophore ionomycin (1 microg/ml) and the phorbol ester phorbol 12-myristate 13-acetate (PMA; 5 microg/ml) stimulated IFN-gamma production, an effect again reversed by hyperosmolarity. Moreover, hyperosmolarity abrogated the stimulating effect of ionomycin (1 microg/ml) and PMA (5 microg/ml) on the transcription factors activator protein (AP)-1, nuclear factor of activated T cells (NFAT), and NF-kappaB but not Sp1. In conclusion, osmotic cell shrinkage blunts the stimulatory action of antigen exposure on IFN-gamma production, an effect explained at least partially by suppression of transcription factor activation.
Induction of tumor necrosis factor by Legionella pneumophila.
Blanchard, D K; Djeu, J Y; Klein, T W; Friedman, H; Stewart, W E
1987-01-01
Mice were inoculated with Legionella pneumophila via an intratracheal route to establish an experimental model of infection. Lung lavage fluid obtained from infected mice contained a cytolytic factor identified as tumor necrosis factor (TNF). Peak levels of TNF were produced at about 24 h postinfection and rapidly declined thereafter. Treatment of the mice with dextran sulfate before inoculation with the bacteria resulted in lowered amounts of TNF in the lung lavage fluid, suggesting that macrophages were responsible for production of the cytokine. Furthermore, cultures of adherent lung leukocytes and a macrophage cell line, PU 5-1.8, were stimulated to produce TNF by exposure to Legionella antigens. In addition, adherent lung leukocytes from Legionella-infected mice spontaneously released TNF into the culture supernatant. Inoculation of mice with saline or latex particles failed to induce TNF in vivo, indicating that bacterial antigens or products were the stimulating signals. Since there was no detectable TNF activity in sera at any time after intratracheal inoculation, TNF production appeared to be confined to the site of infection. Pretreatment of PU 5-1.8 cultures with gamma interferon, which was detected in the lung lavage fluid before TNF, resulted in augmented TNF production, suggesting cooperativity may exist between the two cytokines, either in the pathogenicity of the bacterium or in a possible immunomodulatory function of TNF and interferon during infection. PMID:2433220
Cytokines and immune surveillance in humans
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1993-01-01
Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to further explore the effects of space flight on cytokines and cytokine-directed immunological function.
ALIZADEH, ASH A.; BOHEN, SEAN P.; LOSSOS, CHEN; MARTINEZ-CLIMENT, JOSE A.; RAMOS, JUAN CARLOS; CUBEDO-GIL, ELENA; HARRINGTON, WILLIAM J.; LOSSOS, IZIDORE S.
2014-01-01
Adult T-cell leukemia–lymphoma (ATLL) is an HTLV-1-associated lymphoproliferative malignancy that is frequently fatal. We compared gene expression profiles (GEPs) of leukemic specimens from nine patients with ATLL at the time of diagnosis and immediately after combination therapy with zidovudine (AZT) and interferon α (IFNα). GEPs were also related to genetic aberrations determined by comparative genomic hybridization. We identified several genes anomalously over-expressed in the ATLL leukemic cells at the mRNA level, including LYN, CSPG2, and LMO2, and confirmed LMO2 expression in ATLL cells at the protein level. In vivo AZT–IFNα therapy evoked a marked induction of interferon-induced genes accompanied by repression of cell-cycle regulated genes, including those encoding ribosomal proteins. Remarkably, patients not responding to AZT–IFNα differed most from responding patients in lower expression of these same IFN-responsive genes, as well as components of the antigen processing and presentation apparatus. Demonstration of specific gene expression signatures associated with response to AZT–IFNα therapy may provide novel insights into the mechanisms of action in ATLL. PMID:20370541
Knight, Jason S; Luo, Wei; O'Dell, Alexander A; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C; Thompson, Paul R; Eitzman, Daniel T; Kaplan, Mariana J
2014-03-14
Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Apolipoprotein-E (Apoe)(-/-) mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe(-/-) mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses.
Interferons alpha and gamma induce p53-dependent and p53-independent apoptosis, respectively.
Porta, Chiara; Hadj-Slimane, Reda; Nejmeddine, Mohamed; Pampin, Mathieu; Tovey, Michael G; Espert, Lucile; Alvarez, Sandra; Chelbi-Alix, Mounira K
2005-01-20
Type I interferon (IFN) enhances the transcription of the tumor suppressor gene p53. To elucidate the molecular mechanism mediating IFN-induced apoptosis, we analysed programmed cell death in response to type I (IFNalpha) or type II (IFNgamma) treatment in relation to p53 status. In two cell lines (MCF-7, SKNSH), IFNalpha, but not IFNgamma, enhanced apoptosis in a p53-dependent manner. Furthermore, only IFNalpha upregulated p53 as well as p53 target genes (Noxa, Mdm2 and CD95). The apoptotic response to IFNalpha decreased in the presence of ZB4, an anti-CD95 antibody, suggesting that CD95 is involved in this process. When p53 was inactivated by the E6 viral protein or the expression of a p53 mutant, IFNalpha-induced apoptosis and p53 target genes upregulation were abrogated. Altogether these results demonstrate that p53 plays a pivotal role in the IFNalpha-induced apoptotic response. IFNalpha-induced PML was unable to recruit p53 into nuclear bodies and its downregulation by siRNA did not alter CD95 expression. In contrast, IFNgamma-induced apoptosis is p53-independent. CD95 and IFN-regulatory factor 1 (IRF1) are directly upregulated by this cytokine. Apoptotic response to IFNgamma is decreased in the presence of ZB4 and strongly diminished by IRF1 siRNA, implicating both CD95 and IRF1 in IFNgamma-induced apoptotic response. Taken together, these results show that in two different cell lines, IFNalpha and IFNgamma, induce p53-dependent -independent apoptosis, respectively.
Interferon-free treatment for HCV-infected patients with decompensated cirrhosis.
Kanda, Tatsuo
2017-01-01
Progress in interferon-free treatment against hepatitis C virus (HCV) has remained a challenge in patients with decompensated cirrhosis due to a paucity of information on efficacy and safety profiles. This review illustrates that interferon-free treatment could result in greater than 85 % sustained virological response (SVR) rates in patients with HCV genotype 1 and decompensated cirrhosis. The combination of pangenotypic HCV NS5A inhibitor velpatasvir and HCV NS5B inhibitor sofosbuvir has demonstrated high SVR rates in patients with HCV genotypes 1, 2, 3, 4 or 6 and decompensated cirrhosis. Certain patients discontinued treatment due to adverse events, death or having liver transplantation. Taken together, interferon-free treatment could produce higher SVR rates in decompensated hepatic cirrhosis. However, as adverse events were occasionally observed, liver transplantation should always be considered as well. Further improvements in treatment are called for in patients with decompensated cirrhosis.
Brockmeier, Susan L; Loving, Crystal L; Eberle, Kirsten C; Hau, Samantha J; Buckley, Alexandra; Van Geelen, Albert; Montiel, Nestor A; Nicholson, Tracy; Lager, Kelly M
2017-12-01
Type I interferons, such as interferon alpha (IFN-α), contribute to innate antiviral immunity by promoting production of antiviral mediators and are also involved in promoting an adaptive immune response. Porcine reproductive and respiratory syndrome virus (PRRSV) is one of the most devastating and costly viruses to the swine industry world-wide and has been shown to induce a meager IFN-α response. Previously we administered porcine IFN-α using a replication-defective adenovirus vector (Ad5-IFN-α) at the time of challenge with virulent PRRSV and demonstrated an increase in the number of virus-specific IFNγ secreting cells, indicating that the presence of IFN-α at the time of infection can alter the adaptive immune responses to PRRSV. In the current experiment, we explored the use of IFN-α as an adjuvant administered with live-attenuated PRRSV vaccine as a method to enhance immune response to the vaccine. Unlike the previous studies with fully virulent virus, one injection of the Ad5-IFN-α abolished replication of the vaccine virus and as a result there was no detectible adaptive immune response. Although IFN-α did not have the desired adjuvant effect, the results further highlight the use of IFN-α as a treatment for PRRSV infection. Published by Elsevier B.V.
Brass, Abraham L; Huang, I-Chueh; Benita, Yair; John, Sinu P; Krishnan, Manoj N; Feeley, Eric M; Ryan, Bethany J; Weyer, Jessica L; van der Weyden, Louise; Fikrig, Erol; Adams, David J; Xavier, Ramnik J; Farzan, Michael; Elledge, Stephen J
2009-12-24
Influenza viruses exploit host cell machinery to replicate, resulting in epidemics of respiratory illness. In turn, the host expresses antiviral restriction factors to defend against infection. To find host cell modifiers of influenza A H1N1 viral infection, we used a functional genomic screen and identified over 120 influenza A virus-dependency factors with roles in endosomal acidification, vesicular trafficking, mitochondrial metabolism, and RNA splicing. We discovered that the interferon-inducible transmembrane proteins IFITM1, 2, and 3 restrict an early step in influenza A viral replication. The IFITM proteins confer basal resistance to influenza A virus but are also inducible by interferons type I and II and are critical for interferon's virustatic actions. Further characterization revealed that the IFITM proteins inhibit the early replication of flaviviruses, including dengue virus and West Nile virus. Collectively this work identifies a family of antiviral restriction factors that mediate cellular innate immunity to at least three major human pathogens. Copyright 2009 Elsevier Inc. All rights reserved.
Innate Immune Responses in ALV-J Infected Chicks and Chickens with Hemangioma In Vivo.
Feng, Min; Dai, Manman; Xie, Tingting; Li, Zhenhui; Shi, Meiqing; Zhang, Xiquan
2016-01-01
Avian leukosis virus subgroup J (ALV-J) infection can cause tumors and immunosuppression. Since the precise mechanism of the innate immune response induced by ALV-J is unknown, we investigated the antiviral innate immune responses induced by ALV-J in chicks and chickens that had developed tumors. Spleen levels of interleukin-6 (IL-6), IL-10, IL-1β, and interferon-β (IFN-β) were not significantly different between the infected chick groups and the control groups from 1 day post hatch to 7 days post hatch. However, IL-6, IL-1β, and IFN-β protein levels in the three clinical samples with hemangiomas were dramatically increased compared to the healthy samples. In addition, the anti-inflammatory cytokine IL-10 increased sharply in two of three clinical samples. We also found a more than 20-fold up-regulation of ISG12-1 mRNA at 1 day post infection (d.p.i.) and a twofold up-regulation of ZC3HAV1 mRNA at 4 d.p.i. However, there were no statistical differences in ISG12-1 and ZC3HAV1 mRNA expression levels in the tumorigenesis phase. ALV-J infection induced a significant increase of Toll-like receptor 7 (TLR-7) at 1 d.p.i. and dramatically increased the mRNA levels of melanoma differentiation-associated gene 5 (MDA5) in the tumorigenesis phase. Moreover, the protein levels of interferon regulatory factor 1 (IRF-1) and signal transducer and activator of transcription 1 (STAT1) were decreased in chickens with tumors. These results suggest that ALV-J was primarily recognized by chicken TLR7 and MDA5 at early and late in vivo infection stages, respectively. ALV-J strain SCAU-HN06 did not induce any significant antiviral innate immune response in 1 week old chicks. However, interferon-stimulated genes were not induced normally during the late phase of ALV-J infection due to a reduction of IRF1 and STAT1 expression.
Mohanty, Madhu C; Deshpande, Jagadish M
2013-01-01
Polioviruses are the causative agent of paralytic poliomyelitis. Attenuated polioviruses (Sabin oral poliovirus vaccine strains) do not replicate efficiently in neurons as compared to the wild type polioviruses and therefore do not cause disease. This study was aimed to investigate the differential host immune response to wild type 1 poliovirus (wild PV) and Sabin attenuated type 1 poliovirus (Sabin PV) in cultured human neuronal cells. By using flow cytometry and real time PCR methods we examined host innate immune responses and compared the role of toll like receptors (TLRs) and cytoplasmic RNA helicases in cultured human neuronal cells (SK-N-SH) infected with Sabin PV and wild PV. Human neuronal cells expressed very low levels of TLRs constitutively. Sabin PV infection induced significantly higher expression of TLR3, TLR7 and melanoma differentiation-associated protein-5 (MDA-5) m-RNA in neuronal cells at the beginning of infection (up to 4 h) as compared to wild PV. Further, Sabin PV also induced the expression of interferon α/β at early time point of infection. The induced expression of IFN α/β gene by Sabin PV in neuronal cells could be suppressed by inhibiting TLR7. Neuronal cell innate immune response to Sabin and wild polioviruses differ significantly for TLR3, TLR7, MDA5 and type 1 interferons. Effects of TLR7 activation and interferon production and Sabin virus replication in neuronal cells need to be actively investigated in future studies.
Nightingale, Cameron R; Sellers, Matthew D; Ballou, Michael A
2015-03-15
The objectives were to describe the relationship between the intensity of the acute phase response and the metabolic status and leukocyte responses of early postpartum, multiparous cows and determine if subsequent reproductive performance was impaired in cows with a greater acute phase response. Peripheral blood was collected from 240 Holstein cows, 2-8 days in milk and 2nd-8th parity from 8 dairies in Western TX and Eastern NM across 5 days (n=6 cows/dairy/day). Plasma concentrations of haptoglobin were measured and cows were classified as Low (1st quartile), Moderate (2nd and 3rd quartiles), or High (4th quartile) responders. Metabolic measurements included: plasma glucose, urea nitrogen, non-esterified fatty acids and β-hydroxybutyrate concentrations. Leukocyte response measurements included: total leukocyte counts and differentials, neutrophil surface expression of L-selectin, neutrophil oxidative burst capacity when co-cultured with an environmental Escherichia coli, as well as the secretion of tumor necrosis factor-α and interferon-γ when diluted whole blood were co-cultured with lipopolysaccharide and phytohemagglutinin-P, respectively. All data are reported as Low, Moderate, and High haptoglobin responders. Plasma haptoglobin concentrations ranged from below the limit of detection to 8.4 μg/mL, 8.5 to 458 μg/mL, and 459 to 1757 μg/mL. The High cows had more severe neutropenia (3.45, 3.31, and 2.23 ± 0.31 × 10(6)cells/mL; P=0.013) Additionally, the innate leukocyte responses of the High cows were stimulated as evident by increased secretion of tumor necrosis factor-α (568, 565, and 730 ± 73.4 pg/mL; P=0.003), surface expression of L-selectin on neutrophils (70.8, 71.9, and 119.8 ± 7.9 geometric mean fluorescence intensity; P=0.001), and greater neutrophil oxidative burst capacity (37.9, 40.4, and 47.9 ± 0.31 geometric mean fluorescence intensity; P=0.002). In contrast, the secretion of the T-lymphocyte derived cytokine, interferon-γ, was suppressed in both the Moderate and High cows when compared with Low cows (718, 408, and 322 ± 92.2 pg/mL; P=0.01). Haptoglobin class had an overall effect on days to conception (P=0.039). The number of days in milk for 75% of the cows in each haptoglobin class to conceive increased from 123 d in the Low group, 139 d in the Moderate group, and 183 d in the High group. These data indicate that a stronger acute phase response during the early postpartum period that is characterized by an activated innate immune system and a suppressed mitogen-induced interferon-γ secretion resulted in impaired reproductive efficiency, and this response was consistent across the large commercial dairy herds sampled. Copyright © 2015 Elsevier B.V. All rights reserved.
Peromyscus leucopus mouse brain transcriptome response to Powassan virus infection.
Mlera, Luwanika; Meade-White, Kimberly; Dahlstrom, Eric; Baur, Rachel; Kanakabandi, Kishore; Virtaneva, Kimmo; Porcella, Stephen F; Bloom, Marshall E
2018-02-01
Powassan virus (POWV) is a tick-borne Flavivirus responsible for life-threatening encephalitis in North America and some regions of Russia. The ticks that have been reported to transmit the virus belong to the Ixodes species, and they feed on small-to-medium-sized mammals, such as Peromyscus leucopus mice, skunks, and woodchucks. We previously developed a P. leucopus mouse model of POWV infection, and the model is characterized by a lack of clinical signs of disease following intraperitoneal or intracranial inoculation. However, intracranial inoculation results in mild subclinical encephalitis from 5 days post infection (dpi), but the encephalitis resolves by 28 dpi. We used RNA sequencing to profile the P. leucopus mouse brain transcriptome at different time points after intracranial challenge with POWV. At 24 h post infection, 42 genes were significantly differentially expressed and the number peaked to 232 at 7 dpi before declining to 31 at 28 dpi. Using Ingenuity Pathway Analysis, we determined that the genes that were significantly expressed from 1 to 15 dpi were mainly associated with interferon signaling. As a result, many interferon-stimulated genes (ISGs) were upregulated. Some of the ISGs include an array of TRIMs (genes encoding tripartite motif proteins). These results will be useful for the identification of POWV restriction factors.
Ishida, Kasumi; Kubo, Takeru; Saeki, Ayumi; Yamane, Chikayo; Matsuo, Junji; Yimin; Nakamura, Shinji; Hayashi, Yasuhiro; Kunichika, Miyuki; Yoshida, Mitsutaka; Takahashi, Kaori; Hirai, Itaru; Yamamoto, Yoshimasa; Shibata, Ken-ichiro; Yamaguchi, Hiroyuki
2013-03-01
Lymphocytes are a potential host cell for Chlamydophila pneumoniae, although why the bacteria must hide in lymphocytes remains unknown. Meanwhile, interferon (IFN)-γ is a crucial factor for eliminating chlamydiae from infected cells through indoleamine 2,3-dioxygenase (IDO) expression, resulting in depletion of tryptophan. We therefore assessed if lymphocytes could work as a shelter for the bacteria to escape IFN-γ. C. pneumoniae grew normally in human lymphoid Jurkat cells, even in the presence of IFN-γ or under stimulation with phorbol myristate acetate plus ionomycin. Although Jurkat cells expressed IFN-γ receptor CD119, their lack of IDO expression was confirmed by RT-PCR and western blotting. Also, C. pneumoniae survived in enriched human peripheral blood lymphocytes, even in the presence of IFN-γ. Furthermore, C. pneumoniae in spleen cells obtained from IFN-γ knockout mice with C57BL/6 background was maintained in a similar way to wild-type mice, supporting a minimal role of IFN-γ-related response for eliminating C. pneumoniae from lymphocytes. Thus, we concluded that IFN-γ did not remove C. pneumoniae from lymphocytes, possibly providing a shelter for C. pneumoniae to escape from the innate immune response, which has direct clinical significance. Copyright © 2012 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Dery, Kenneth J; Silver, Craig; Yang, Lu; Shively, John E
2018-06-15
The adhesion protein carcinoembryonic antigen-related cell adhesion molecule 1 (CEACAM1) is widely expressed in epithelial cells as a short cytoplasmic isoform (S-iso) and in leukocytes as a long cytoplasmic isoform (L-iso) and is frequently silenced in cancer by unknown mechanisms. Previously, we reported that interferon response factor 1 (IRF1) biases alternative splicing (AS) to include the variable exon 7 (E7) in CEACAM1, generating long cytoplasmic isoforms. We now show that IRF1 and a variant of heterogeneous nuclear ribonucleoprotein L (Lv1) coordinately silence the CEACAM1 gene. RNAi-mediated Lv1 depletion in IRF1-treated HeLa and melanoma cells induced significant CEACAM1 protein expression, reversed by ectopic Lv1 expression. The Lv1-mediated CEACAM1 repression resided in residues Gly 71 -Gly 89 and Ala 38 -Gly 89 in Lv1's N-terminal extension. ChIP analysis of IRF1- and FLAG-tagged Lv1-treated HeLa cells and global treatment with the global epigenetic modifiers 5-aza-2'-deoxycytidine and trichostatin A indicated that IRF1 and Lv1 together induce chromatin remodeling, restricting IRF1 access to the CEACAM1 promoter. In interferon γ-treated HeLa cells, the transcription factor SP1 did not associate with the CEACAM1 promoter, but binding by upstream transcription factor 1 (USF1), a known CEACAM1 regulator, was greatly enhanced. ChIP-sequencing revealed that Lv1 overexpression in IRF1-treated cells induces transcriptional silencing across many genes, including DCC ( d eleted in c olorectal c arcinoma), associated with CEACAM5 in colon cancer. Notably, IRF1, but not IRF3 and IRF7, affected CEACAM1 expression via translational repression. We conclude that IRF1 and Lv1 coordinately regulate CEACAM1 transcription, alternative splicing, and translation and may significantly contribute to CEACAM1 silencing in cancer. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
T-lymphocyte and cytokine expression in human inflammatory periapical lesions.
de Brito, Luciana Carla Neves; Teles, Flávia Rocha Fonseca; Teles, Ricardo Palmier; Totola, Antônio Helvécio; Vieira, Leda Quércia; Sobrinho, Antônio Paulino Ribeiro
2012-04-01
Lymphocytes, among many cells, express different sets of cytokines, chemokines, and receptors, which are considered important mediators of periapical immune response to infection. The aim of this study was to evaluate the mRNA expression of CD4(+)CD28(+) and CD8(+) T genes and the gene expression of interferon-γ, tumor necrosis factor-α, interleukin (IL)-1β, IL-17A, IL-10, CCL2/MCP-1, CCL4, CCL5, CXCR4, CCR5, and receptor activator for nuclear factor kappa B ligand (RANKL) in periapical interstitial fluid from human root canal infections. The samples were collected immediately after root canal cleaning and 7 days later (restrained root canal bacterial load) to characterize those gene expressions. Real-time polymerase chain reaction demonstrated significantly higher levels of CD4(+)CD28(+) and CD8(+) T-cell markers in the former root canal condition and an increase of IL-10 and CXCR4, followed by a decrease of proinflammatory cytokines such as RANKL, interferon-γ, IL-1β, and CCL5. Analyses of T-lymphocyte and cytokine expression in periapical area were able to show that distinct root canal conditions might play regulatory roles in controlling local immune/inflammatory processes. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
1989-01-01
The role of interferon-alpha (IFN-alpha) and transfer factor (TF) in the treatment of multiple sclerosis was investigated in a prospective, multi-centric, three year, double-blind, placebo-controlled trial. One hundred and eighty two patients with clinically definite multiple sclerosis were randomised into three treatment groups whose compositions were found to be similar for demographic and prognostic variables including HLA status. Subcutaneous injections of IFN-alpha (3 x 10(6) units), TF (0.5 units) manufactured from leucocytes of cohabiting donors, or placebo were given twice weekly for two months, once weekly for 10 months then fortnightly for 24 months. One hundred and fifty three patients completed the injection regimen. There was no significant difference in the progression of disability for multiple sclerosis patients in either the IFN-alpha or TF-treated groups compared with the placebo group. Similarly, change in visual evoked responses (VER), and in number of oligoclonal bands (OCB) and the level of myelin basic protein (MBP) in the cerebrospinal fluid (CSF) over the trial period did not differ significantly between the three groups. However, the IFN-alpha-treated group had significantly more reported adverse drug reactions and patient withdrawals than either of the other two groups. PMID:2659737
Kiermer, V; Van Lint, C; Briclet, D; Vanhulle, C; Kettmann, R; Verdin, E; Burny, A; Droogmans, L
1998-07-01
Bovine leukemia virus (BLV) replication is controlled by both cis- and trans-acting elements. The virus-encoded transactivator, Tax, is necessary for efficient transcription from the BLV promoter, although it is not present during the early stages of infection. Therefore, sequences that control Tax-independent transcription must play an important role in the initiation of viral gene expression. This study demonstrates that the R-U5 sequence of BLV stimulates Tax-independent reporter gene expression directed by the BLV promoter. R-U5 was also stimulatory when inserted immediately downstream from the transcription initiation site of a heterologous promoter. Progressive deletion analysis of this region revealed that a 46-bp element corresponding to the 5' half of U5 is principally responsible for the stimulation. This element exhibited enhancer activity when inserted upstream or downstream from the herpes simplex virus thymidine kinase promoter. This enhancer contains a binding site for the interferon regulatory factors IRF-1 and IRF-2. A 3-bp mutation that destroys the IRF recognition site caused a twofold decrease in Tax-independent BLV long terminal repeat-driven gene expression. These observations suggest that the IRF binding site in the U5 region of BLV plays a role in the initiation of virus replication.
Kaseb, Ahmed O; Shindoh, Junichi; Patt, Yehuda Z; Roses, Robert E; Zimmitti, Giuseppe; Lozano, Richard D; Hassan, Manal M; Hassabo, Hesham M; Curley, Steven A; Aloia, Thomas A; Abbruzzese, James L; Vauthey, Jean-Nicolas
2013-09-15
The purpose of this study was to evaluate the factors associated with response rate, resectability, and survival after cisplatin/interferon α-2b/doxorubicin/5-fluorouracil (PIAF) combination therapy in patients with initially unresectable hepatocellular carcinoma. The study included 2 groups of patients treated with conventional high-dose PIAF (n = 84) between 1994 and 2003 and those without hepatitis or cirrhosis treated with modified PIAF (n = 33) between 2003 and 2012. Tolerance of chemotherapy, best radiographic response, rate of conversion to curative surgery, and overall survival were analyzed and compared between the 2 groups, and multivariate and logistic regression analyses were applied to identify predictors of response and survival. The modified PIAF group had a higher median number of PIAF cycles (4 versus 2, P = .049), higher objective response rate (36% versus 15%, P = .013), higher rate of conversion to curative surgery (33% versus 10%, P = .004), and longer median overall survival (21.3 versus 10.6 months, P = .002). Multivariate analyses confirmed that positive hepatitis B serology (hazard ratio [HR] = 1.68; 95% confidence interval [CI] = 1.08-2.59) and Eastern Cooperative Oncology Group performance status ≥ 2 (HR = 1.75; 95% CI = 1.04-2.93) were associated with worse survival whereas curative surgical resection after PIAF treatment (HR = 0.15; 95% CI = 0.07-0.35) was associated with improved survival. In patients with initially unresectable hepatocellular carcinoma, the modified PIAF regimen in patients with no hepatitis or cirrhosis is associated with improved response, resectability, and survival. © 2013 American Cancer Society.
Kaseb, Ahmed O.; Shindoh, Junichi; Patt, Yehuda Z.; Roses, Robert E.; Zimmitti, Giuseppe; Lozano, Richard D.; Hassan, Manal M.; Hassabo, Hesham M.; Curley, Steven A.; Aloia, Thomas A.; Abbruzzese, James L.; Vauthey, Jean-Nicolas
2013-01-01
Purpose The purposes of this study was to evaluate the factors associated with response rate, resectability, and survival after cisplatin/interferon α-2b/doxorubicin/5-flurouracil (PIAF) combination therapy in patients with initially unresectable hepatocellular carcinoma (HCC). Patients and Methods The study included two groups of patients treated with conventional high-dose PIAF (n=84) between 1994 and 2003 and those without hepatitis or cirrhosis treated with modified PIAF (n=33) between 2003 and 2012. Tolerance of chemotherapy, best radiographic response, rate of conversion to curative surgery, and overall survival were analyzed and compared between the two groups, and multivariate and logistic regression analyses were applied to identify predictors of response and survival. Results The modified PIAF group had a higher median number of PIAF cycles (4 vs. 2, P = .049), higher objective response rate (36% vs. 15%, P = .013), higher rate of conversion to curative surgery (33% vs. 10%, P = .004), and longer median overall survival (21.3 vs. 10.6 months, P = .002). Multivariate analyses confirmed that positive hepatitis B serology (hazard ratio [HR], 1.68; 95% CI, 1.08 to 2.59) and Eastern Cooperative Oncology Group performance status ≥2 (HR, 1.75; 95% CI 1.04 to 2.93) were associated with worse survival while curative surgical resection after PIAF treatment (HR, 0.15; 95% CI, 0.07 to 0.35) was associated with improved survival. Conclusions In patients with initially unresectable HCC, the modified PIAF regimen in patients with no hepatitis or cirrhosis is associated with improved response, resectability, and survival. PMID:23821538
Kalunian, K C
2016-09-01
Clinical trials of investigational agents in systemic lupus erythematosus (SLE) have focused on targeting dysregulated B and T cells; however, recent translational research findings of the importance of the dysregulation of the innate immune system in SLE have led to clinical trials that target interferon. Three biologics that target type I interferons have been tested for their efficacy and safety in active SLE patients; these phase II trials have tested the hypothesis that down-regulation of interferon-regulated gene expression (the interferon signature) lessen the clinical burden of SLE. Rontalizumab, an anti-interferon-α monoclonal antibody, was studied in patients who had discontinued immunosuppressants. This study failed to show efficacy as assessed by both two outcome assessments; however, in low interferon signature patients, response was higher and corticosteroid usage was less in rontalizumab-treated patients. Sifalimumab, another anti-interferon-α monoclonal antibody, was studied in patients who remained on standard of care therapy. This study showed significantly better efficacy in patients treated with two sifalimumab dosages; significant differences were seen in the high interferon signature group. In a similar design and in a similar population as the sifalimumab study, anifrolumab, a monoclonal antibody that binds to a type I interferon receptor, was studied in patients who remained on standard of care therapy. In this study, one dosage group demonstrated efficacy and statistically significant effects were achieved in both tested dosage groups with secondary end points. Oral corticosteroid reduction to ≤7.5 mg daily was achieved in one of the tested dosage groups and organ-specific outcomes were significantly improved in that same group. For all studies, no significant differences in serious adverse effects were seen; although, herpes zoster infections were increased in sifalimumab- and anifrolumab-treated patients and influenza rates were increased in anifrolumab-treated patients. Anifrolumab is currently in pivotal phase III studies. Data appear to support the concept that targeting type I interferon in SLE patients associates with clinical efficacy and safety. Further data are forthcoming from ongoing phase III clinical trials of anifrolumab. Other drug development efforts should be considered that target plasmacytoid dendritic cells and toll like receptors given the effects these components have on interferon production. © The Author(s) 2016.
NASA Astrophysics Data System (ADS)
Grecco, Ana Carolina P.; Paula, Rosemeire F. O.; Mizutani, Erica; Sartorelli, Juliana C.; Milani, Ana M.; Longhini, Ana Leda F.; Oliveira, Elaine C.; Pradella, Fernando; Silva, Vania D. R.; Moraes, Adriel S.; Peterlevitz, Alfredo C.; Farias, Alessandro S.; Ceragioli, Helder J.; Santos, Leonilda M. B.; Baranauskas, Vitor
2011-07-01
Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGFβ) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGFβ and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.
Grecco, Ana Carolina P; Paula, Rosemeire F O; Mizutani, Erica; Sartorelli, Juliana C; Milani, Ana M; Longhini, Ana Leda F; Oliveira, Elaine C; Pradella, Fernando; Silva, Vania D R; Moraes, Adriel S; Peterlevitz, Alfredo C; Farias, Alessandro S; Ceragioli, Helder J; Santos, Leonilda M B; Baranauskas, Vitor
2011-07-01
Our data demonstrate that multi-walled carbon nanotubes (MWCNTs) are internalized by macrophages, subsequently activating them to produce interleukin (IL)-12 (IL-12). This cytokine induced the proliferative response of T lymphocytes to a nonspecific mitogen and to ovalbumin (OVA). This increase in the proliferative response was accompanied by an increase in the expression of pro-inflammatory cytokines, such as interferon-gamma (IFNγ), tumor necrosis factor-alpha (TNFα) and IL-6, in mice inoculated with MWCNTs, whether or not they had been immunized with OVA. A decrease in the expression of transforming growth factor-beta (TGFβ) was observed in the mice treated with MWCNTs, whereas the suppression of the expression of both TGFβ and IL-10 was observed in mice that had been both treated and immunized. The activation of the T lymphocyte response by the pro-inflammatory cytokines leads to an increase in antibody production to OVA, suggesting the important immunostimulatory effect of carbon nanotubes.
Bray, Mike; Geisbert, Thomas W
2005-08-01
Ebola hemorrhagic fever is a severe viral infection characterized by fever, shock and coagulation defects. Recent studies in macaques show that major features of illness are caused by effects of viral replication on macrophages and dendritic cells. Infected macrophages produce proinflammatory cytokines, chemokines and tissue factor, attracting additional target cells and inducing vasodilatation, increased vascular permeability and disseminated intravascular coagulation. However, they cannot restrict viral replication, possibly because of suppression of interferon responses. Infected dendritic cells also secrete proinflammatory mediators, but cannot initiate antigen-specific responses. In consequence, virus disseminates to these and other cell types throughout the body, causing multifocal necrosis and a syndrome resembling septic shock. Massive "bystander" apoptosis of natural killer and T cells further impairs immunity. These findings suggest that modifying host responses would be an effective therapeutic strategy, and treatment of infected macaques with a tissue-factor inhibitor reduced both inflammation and viral replication and improved survival.
Kwack, Kyu Hwan; Lee, Jung Min; Park, Sang Hyuk; Lee, Hyeon Woo
2017-01-01
Human dental pulp stem cells (hDPSCs) are ideal candidates for regenerating damaged dental tissue. To examine the possibility that hDPSCs may be used to regenerate pulp, we tested their in vitro effects on acute allogeneic immune responses. A peripheral blood mononuclear cell (PBMC) proliferation assay and immunoglobulin (Ig) production assay were performed to evaluate the immunosuppressive properties of hDPSCs. The mixed lymphocyte reaction was suppressed by incubation with hDPSCs. Transforming growth factor beta (TGF-β) was the major soluble factor responsible for inhibiting the allogeneic proliferation of PBMCs. The production of IgM and IgG by allogeneic activation of responder B lymphocytes was also completely abrogated by TGF-β released from hDPSCs via interferon gamma in response to activation of the responder T lymphocytes. hDPSCs inhibit acute allogeneic immune responses by their release of TGF-β as a result of allogeneic stimulation of T lymphocytes. This study provides an insight into the potential clinical use of hDPSCs for allogeneic transplantation. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
[Immunomodulators in Therapy of Respiratory Infections].
Isakov, V A; Isakov, D V
2014-01-01
Viral infections provoke dysbalance in the interferon system and inhibition of the cellular and phagocytic responses of the host. Long-term persistence of pathogenic viruses and bacteria induce atopy and could aggravate chronic respiratory diseases. The up-to-date classification of immunomodulators is described. High efficacy of interferon inductors, such as cycloferon and some others as auxiliary means in therapy or prophylaxis (immunorehabilitation) of viral respiratory infections in adults and children was shown.
Cachay, Edward R; Ballard, Craig; Colwell, Bradford; Torriani, Francesca; Hicks, Charles; Mathews, Wm Christopher
2017-09-20
Clinicians are incorporating patient-reported outcomes in the management of HIV-infected persons co-infected with hepatitis C virus (HCV), but there are no validated inventories to monitor symptoms of patients during HCV therapy. Five-year retrospective cohort analysis of persons living with HIV (PLWH) treated for HCV. The HCV symptom-inventory (HCV-SI) was administered before, during, and after HCV treatment. Discriminant validity was assessed, separately, in mixed model linear regression of HCV-SI T-scores on treatment regimens (pegylated-interferon and ribavirin; pegylated-interferon, ribavirin, and telaprevir; and interferon-free antivirals); and side effect-related premature treatment discontinuation (SE-DC). From the 103 patients who completed the HCV-SI, 7% were female, 26% non-white, 32% cirrhotics and 91% had undetectable HIV viral loads. Most had genotype 1 (83%) and were HCV treatment-naïve (78%). We treated 19% of patients with pegylated-interferon and ribavirin, 22% with pegylated-interferon, ribavirin, and telaprevir and 59% received interferon-free antivirals. Overall, 77% achieved a sustained virologic response, and 6% discontinued HCV treatment due to side effects. In the treatment discrimination model, compared to the no treatment period, HCV-SI scores were significantly (p < 0.01) lower for interferon-free antivirals and higher for interferon-containing regimens. In the SE-DC model, the total HCV-SI, somatic and neuropsychiatric scores significantly predicted those patients who prematurely discontinued HCV treatment (P < 0.05). The HCV-SI effectively differentiated among treatment regimens known to vary by side effect profiles and between patients with and without treatment discontinuation due to side effects. The HCV-SI may have value as a patient-reported outcome instrument predicting the risk of HCV treatment discontinuation.
Current report on the interferon program at Roswell Park Memorial Institute.
Murphy, G P
1981-01-01
An overview of the interferon program at Roswell Park Memorial Institute (RPMI), is presented. This program encompasses three interrelated areas of research and new drug development: (a) basic research on purification and characterization of animal and human interferons (leukocyte, fibroblast, and immune); (b) large scale manufacture and preclinical testing of human fibroblast interferon (HFIF); and (c) clinical trials with HFIF to determine its safety of administration as well as antiviral, antitumor, and immunomodulatory activities in patients with neoplastic or viral disease. The antitumor effect of HFIF produced at RPMI as assessed by intralesional injection of various metastatic nodules resulted in an overall 71% local response. Phase I studies in 13 patients demonstrated that HFIF can be administered safely by the subcutaneous, intramuscular, and intravenous routes in doses up to 25 million units per day without any serious untoward effects. Intrathecal administration of HFIF into patients with CNS leukemia was also well tolerated. Pharmacokinetic studies indicated significant levels of HFIF in serum and cerebrospinal fluid after intravenous and intrathecal administration, respectively. Coincidental with the HFIF systemic administration during the Phase I trials, favorable responses in several laboratory, immune, and clinical parameters were observed. These results provide the rationale for conducting phase II and phase III clinical trials with HFIF produced at RPMI.
Innate immune response to Burkholderia mallei.
Saikh, Kamal U; Mott, Tiffany M
2017-06-01
Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin-cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei.
García-León, Miguel L; Bonifaz, Laura C; Espinosa-Torres, Bogart; Hernández-Pérez, Brenda; Cardiel-Marmolejo, Lino; Santos-Preciado, José I; Wong-Chew, Rosa M
2015-01-01
Measles virus (MeV) represents one of the main causes of death among young children, particularly in developing countries. Upon infection, MeV controls both interferon induction (IFN) and the interferon signaling pathway which results in a severe host immunosuppression that can persists for up to 6 mo after infection. Despite the global biology of MeV infection is well studied, the role of the plasmacytoid dendritic cells (pDCs) during the host innate immune response after measles vaccination remains largely uncharacterized. Here we investigated the role of pDCs, the major producers of interferon in response to viral infections, in the development of adaptive immune response against MeV vaccine. We report that there is a strong correlation between pDCs population and the humoral immune response to Edmonston Zagreb (EZ) measles vaccination in 9-month-old mexican infants. Five infants were further evaluated after vaccination, showing a clear increase in pDCs at baseline, one week and 3 months after immunization. Three months postvaccination they showed increase in memory T-cells and pDCs populations, high induction of adaptive immunity and also observed a correlation between pDCs number and the humoral immune response. These findings suggest that the development and magnitude of the adaptive immune response following measles immunization is directly dependent on the number of pDCs of the innate immune response. PMID:26075901
DOE Office of Scientific and Technical Information (OSTI.GOV)
Komatsu, Tetsuro; Department of Infection Biology, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575; Will, Hans
2016-04-22
Recent studies involving several viral systems have highlighted the importance of cellular intrinsic defense mechanisms through nuclear antiviral proteins that restrict viral propagation. These factors include among others components of PML nuclear bodies, the nuclear DNA sensor IFI16, and a potential restriction factor PHF13/SPOC1. For several nuclear replicating DNA viruses, it was shown that these factors sense and target viral genomes immediately upon nuclear import. In contrast to the anticipated view, we recently found that incoming adenoviral genomes are not targeted by PML nuclear bodies. Here we further explored cellular responses against adenoviral infection by focusing on specific conditions asmore » well as additional nuclear antiviral factors. In line with our previous findings, we show that neither interferon treatment nor the use of specific isoforms of PML nuclear body components results in co-localization between incoming adenoviral genomes and the subnuclear domains. Furthermore, our imaging analyses indicated that neither IFI16 nor PHF13/SPOC1 are likely to target incoming adenoviral genomes. Thus our findings suggest that incoming adenoviral genomes may be able to escape from a large repertoire of nuclear antiviral mechanisms, providing a rationale for the efficient initiation of lytic replication cycle. - Highlights: • Host nuclear antiviral factors were analyzed upon adenovirus genome delivery. • Interferon treatments fail to permit PML nuclear bodies to target adenoviral genomes. • Neither Sp100A nor B targets adenoviral genomes despite potentially opposite roles. • The nuclear DNA sensor IFI16 does not target incoming adenoviral genomes. • PHF13/SPOC1 targets neither incoming adenoviral genomes nor genome-bound protein VII.« less
Peng, Wan; Lu, Dan-Qi; Li, Gao-Fei; Zhang, Xu; Yao, Mi; Zhang, Yong; Lin, Hao-Ran
2016-02-01
Interferon gamma (IFNγ) is a Th1 cytokine that plays a very important role in almost all phases of immune and inflammatory responses. In this study, we explored the functions of IFNγ1 and IFNγ2 of Tetraodon nigroviridis. Treating T. nigroviridis spleen and head kidney cells in vitro with recombinant T. nigroviridis IFNγ1 protein (rTn IFNγ1) or recombinant T. nigroviridis IFNγ2 protein (rTn IFNγ2) enhanced their nitric oxide responses. Both rTn IFNγ1 and rTn IFNγ2 also induced the expression of interferon-stimulated gene 15 (ISG15), a common anti-viral gene, although the expression of the interferon-inducible Mx gene was markedly inhibited by rTn IFNγ1 and was induced by rTn IFNγ2. The in vivo effects of rTn IFNγ1 and rTn IFNγ2 on Vibrio parahaemolyticus (V. parahaemolyticus) infection were assessed by intraperitoneally injecting rTn IFNγ1 or rTn IFNγ2 (100 ng) and V. parahaemolyticus (8 × 10(10)CFU/mL) into T. nigroviridis. A comparison of the group treated only with V. parahaemolyticus and those also treated with rTn IFNγ1 or rTn IFNγ2 showed that neither of these IFNγs protected T. nigroviridis from V. parahaemolyticus infection. However, rTn IFNγ1 more rapidly and robustly promoted inflammatory responses compared with rTn IFNγ2, whereas rTn IFNγ2 was involved in inducing the host to develop a more effective response earlier during the later stage of a V. parahaemolyticus infection. Moreover, microRNA-29b (miR-29b) expression is inversely correlated with IFNγ2 expression in T. nigroviridis. Copyright © 2015 Elsevier Ltd. All rights reserved.
Chen, Shuliang; Bonifati, Serena; Qin, Zhihua; St Gelais, Corine; Kodigepalli, Karthik M; Barrett, Bradley S; Kim, Sun Hee; Antonucci, Jenna M; Ladner, Katherine J; Buzovetsky, Olga; Knecht, Kirsten M; Xiong, Yong; Yount, Jacob S; Guttridge, Denis C; Santiago, Mario L; Wu, Li
2018-04-17
Sterile alpha motif and HD-domain-containing protein 1 (SAMHD1) blocks replication of retroviruses and certain DNA viruses by reducing the intracellular dNTP pool. SAMHD1 has been suggested to down-regulate IFN and inflammatory responses to viral infections, although the functions and mechanisms of SAMHD1 in modulating innate immunity remain unclear. Here, we show that SAMHD1 suppresses the innate immune responses to viral infections and inflammatory stimuli by inhibiting nuclear factor-κB (NF-κB) activation and type I interferon (IFN-I) induction. Compared with control cells, infection of SAMHD1-silenced human monocytic cells or primary macrophages with Sendai virus (SeV) or HIV-1, or treatment with inflammatory stimuli, induces significantly higher levels of NF-κB activation and IFN-I induction. Exogenous SAMHD1 expression in cells or SAMHD1 reconstitution in knockout cells suppresses NF-κB activation and IFN-I induction by SeV infection or inflammatory stimuli. Mechanistically, SAMHD1 inhibits NF-κB activation by interacting with NF-κB1/2 and reducing phosphorylation of the NF-κB inhibitory protein IκBα. SAMHD1 also interacts with the inhibitor-κB kinase ε (IKKε) and IFN regulatory factor 7 (IRF7), leading to the suppression of the IFN-I induction pathway by reducing IKKε-mediated IRF7 phosphorylation. Interactions of endogenous SAMHD1 with NF-κB and IFN-I pathway proteins were validated in human monocytic cells and primary macrophages. Comparing splenocytes from SAMHD1 knockout and heterozygous mice, we further confirmed SAMHD1-mediated suppression of NF-κB activation, suggesting an evolutionarily conserved property of SAMHD1. Our findings reveal functions of SAMHD1 in down-regulating innate immune responses to viral infections and inflammatory stimuli, highlighting the importance of SAMHD1 in modulating antiviral immunity.
Quakkelaar, Esther D.; Redeker, Anke; Haddad, Elias K.; Harari, Alexandre; McCaughey, Stella Mayo; Duhen, Thomas; Filali-Mouhim, Abdelali; Goulet, Jean-Philippe; Loof, Nikki M.; Ossendorp, Ferry; Perdiguero, Beatriz; Heinen, Paul; Gomez, Carmen E.; Kibler, Karen V.; Koelle, David M.; Sékaly, Rafick P.; Sallusto, Federica; Lanzavecchia, Antonio; Pantaleo, Giuseppe; Esteban, Mariano; Tartaglia, Jim; Jacobs, Bertram L.; Melief, Cornelis J. M.
2011-01-01
Attenuated poxviruses are safe and capable of expressing foreign antigens. Poxviruses are applied in veterinary vaccination and explored as candidate vaccines for humans. However, poxviruses express multiple genes encoding proteins that interfere with components of the innate and adaptive immune response. This manuscript describes two strategies aimed to improve the immunogenicity of the highly attenuated, host-range restricted poxvirus NYVAC: deletion of the viral gene encoding type-I interferon-binding protein and development of attenuated replication-competent NYVAC. We evaluated these newly generated NYVAC mutants, encoding HIV-1 env, gag, pol and nef, for their ability to stimulate HIV-specific CD8 T-cell responses in vitro from blood mononuclear cells of HIV-infected subjects. The new vectors were evaluated and compared to the parental NYVAC vector in dendritic cells (DCs), RNA expression arrays, HIV gag expression and cross-presentation assays in vitro. Deletion of type-I interferon-binding protein enhanced expression of interferon and interferon-induced genes in DCs, and increased maturation of infected DCs. Restoration of replication competence induced activation of pathways involving antigen processing and presentation. Also, replication-competent NYVAC showed increased Gag expression in infected cells, permitting enhanced cross-presentation to HIV-specific CD8 T cells and proliferation of HIV-specific memory CD8 T-cells in vitro. The recombinant NYVAC combining both modifications induced interferon-induced genes and genes involved in antigen processing and presentation, as well as increased Gag expression. This combined replication-competent NYVAC is a promising candidate for the next generation of HIV vaccines. PMID:21347234
Lucidone suppresses dengue viral replication through the induction of heme oxygenase-1.
Chen, Wei-Chun; Tseng, Chin-Kai; Lin, Chun-Kuang; Wang, Shen-Nien; Wang, Wen-Hung; Hsu, Shih-Hsien; Wu, Yu-Hsuan; Hung, Ling-Chien; Chen, Yen-Hsu; Lee, Jin-Ching
2018-01-01
Dengue virus (DENV) infection causes life-threatening diseases such as dengue hemorrhagic fever and dengue shock syndrome. Currently, there is no effective therapeutic agent or vaccine against DENV infection; hence, there is an urgent need to discover anti-DENV agents. The potential therapeutic efficacy of lucidone was first evaluated in vivo using a DENV-infected Institute of Cancer Research (ICR) suckling mouse model by monitoring body weight, clinical score, survival rate, and viral titer. We found that lucidone effectively protected mice from DENV infection by sustaining survival rate and reducing viral titers in DENV-infected ICR suckling mice. Then, the anti-DENV activity of lucidone was confirmed by western blotting and quantitative-reverse-transcription-polymerase chain reaction analysis, with an EC 50 value of 25 ± 3 μM. Lucidone significantly induced heme oxygenase-1 (HO-1) production against DENV replication by inhibiting DENV NS2B/3 protease activity to induce the DENV-suppressed antiviral interferon response. The inhibitory effect of lucidone on DENV replication was attenuated by silencing of HO-1 gene expression or blocking HO-1 activity. In addition, lucidone-stimulated nuclear factor erythroid 2-related factor 2 (Nrf2), which is involved in transactivation of HO-1 expression for its anti-DENV activity. Taken together, the mechanistic investigations revealed that lucidone exhibits significant anti-DENV activity in in vivo and in vitro by inducing Nrf2-mediated HO-1 expression, leading to blockage of viral protease activity to induce the anti-viral interferon (IFN) response. These results suggest that lucidone is a promising candidate for drug development.
Cognitive-behavioral stress management reverses anxiety-related leukocyte transcriptional dynamics
Antoni, Michael H.; Lutgendorf, Susan K.; Blomberg, Bonnie; Carver, Charles S.; Lechner, Suzanne; Diaz, Alain; Stagl, Jamie; Arevalo, Jesusa M.G.; Cole, Steven W.
2011-01-01
Background Chronic threat and anxiety are associated with pro-inflammatory transcriptional profiles in circulating leukocytes, but the causal direction of that relationship has not been established. This study tested whether a Cognitive-Behavioral Stress Management (CBSM) intervention targeting negative affect and cognition might counteract anxiety-related transcriptional alterations in people confronting a major medical threat. Methods 199 women undergoing primary treatment of Stage 0–III breast cancer were randomized to a 10-week CBSM protocol or an active control condition. 79 provided peripheral blood leukocyte samples for genome-wide transcriptional profiling and bioinformatic analyses at baseline, 6-, and 12-month follow-ups. Results Baseline negative affect was associated with > 50% differential expression of 201 leukocyte transcripts, including up-regulated expression of pro-inflammatory and metastasis-related genes. CBSM altered leukocyte expression of 91 genes by > 50% at follow-up (Group × Time interaction), including down-regulation of pro-inflammatory and metastasis-related genes and up-regulation of Type I interferon response genes. Promoter-based bioinformatic analyses implicated decreased activity of NF-κB/Rel and GATA family transcription factors and increased activity of Interferon Response Factors and the Glucocorticoid Receptor (GR) as potential mediators of CBSM-induced transcriptional alterations. Conclusions In early stage breast cancer patients, a 10-week CBSM intervention can reverse anxiety-related up-regulation of pro-inflammatory gene expression in circulating leukocytes. These findings clarify the molecular signaling pathways by which behavioral interventions can influence physical health and alter peripheral inflammatory processes that may reciprocally affect brain affective and cognitive processes. PMID:22088795
Fink, Karin; Martin, Lydie; Mukawera, Esperance; Chartier, Stéfany; De Deken, Xavier; Brochiero, Emmanuelle; Miot, Françoise; Grandvaux, Nathalie
2013-01-01
Airway epithelial cells are key initial innate immune responders in the fight against respiratory viruses, primarily via the secretion of antiviral and proinflammatory cytokines that act in an autocrine/paracrine fashion to trigger the establishment of an antiviral state. It is currently thought that the early antiviral state in airway epithelial cells primarily relies on IFNβ secretion and the subsequent activation of the interferon-stimulated gene factor 3 (ISGF3) transcription factor complex, composed of STAT1, STAT2 and IRF9, which regulates the expression of a panoply of interferon-stimulated genes encoding proteins with antiviral activities. However, the specific pathways engaged by the synergistic action of different cytokines during viral infections, and the resulting physiological outcomes are still ill-defined. Here, we unveil a novel delayed antiviral response in the airways, which is initiated by the synergistic autocrine/paracrine action of IFNβ and TNFα, and signals through a non-canonical STAT2- and IRF9-dependent, but STAT1-independent cascade. This pathway ultimately leads to the late induction of the DUOX2 NADPH oxidase expression. Importantly, our study uncovers that the development of the antiviral state relies on DUOX2-dependent H2O2 production. Key antiviral pathways are often targeted by evasion strategies evolved by various pathogenic viruses. In this regard, the importance of the novel DUOX2-dependent antiviral pathway is further underlined by the observation that the human respiratory syncytial virus is able to subvert DUOX2 induction. PMID:23545780
Interferon Lambda: A New Sword in Cancer Immunotherapy
Lasfar, Ahmed; Abushahba, Walid; Balan, Murugabaskar; Cohen-Solal, Karine A.
2011-01-01
The discovery of the interferon-lambda (IFN-λ) family has considerably contributed to our understanding of the role of interferon not only in viral infections but also in cancer. IFN-λ proteins belong to the new type III IFN group. Type III IFN is structurally similar to type II IFN (IFN-γ) but functionally identical to type I IFN (IFN-α/β). However, in contrast to type I or type II IFNs, the response to type III IFN is highly cell-type specific. Only epithelial-like cells and to a lesser extent some immune cells respond to IFN-λ. This particular pattern of response is controlled by the differential expression of the IFN-λ receptor, which, in contrast to IFN-α, should result in limited side effects in patients. Recently, we and other groups have shown in several animal models a potent antitumor role of IFN-λ that will open a new challenging era for the current IFN therapy. PMID:22190970
[Therapy of malignant melanoma at the stage of distant metastasis].
Garbe, C; Eigentler, T K
2004-02-01
Treatment of melanoma in the stage of distant metastasis aims on palliation and achievement of durable tumor remission with prolongation of survival. As long as metastasis is confined to one organ system and is removable, surgery remains the treatment of first choice. In limited metastasis radiotherapy may likewise be indicated, particularly in bone and brain metastasis. More extensive metastasis should be treated by chemotherapy or chemoimmunotherapy. Monochemotherapy with dacarbazine, temozolomide, fotemustine and vindesine or its combinations with interferon-alpha are currently preferred. Polychemotherapy or its combinations with interferon-alpha and interleukin-2 are suitable to produce higher response rates but failed to prolong survival. As these treatments are associated with substantially higher toxicity they have been widely abandoned. Combined treatment with dacarbazine and interferon-alpha obtain tumor responses or stable disease in 40-50% and objective tumor remissions in 15-20% of patients. Effective cancer vaccination strategies and blockade of melanoma specific target molecules are currently developed as new treatment options.
The brain parenchyma has a type I interferon response that can limit virus spread.
Drokhlyansky, Eugene; Göz Aytürk, Didem; Soh, Timothy K; Chrenek, Ryan; O'Loughlin, Elaine; Madore, Charlotte; Butovsky, Oleg; Cepko, Constance L
2017-01-03
The brain has a tightly regulated environment that protects neurons and limits inflammation, designated "immune privilege." However, there is not an absolute lack of an immune response. We tested the ability of the brain to initiate an innate immune response to a virus, which was directly injected into the brain parenchyma, and to determine whether this response could limit viral spread. We injected vesicular stomatitis virus (VSV), a transsynaptic tracer, or naturally occurring VSV-derived defective interfering particles (DIPs), into the caudate-putamen (CP) and scored for an innate immune response and inhibition of virus spread. We found that the brain parenchyma has a functional type I interferon (IFN) response that can limit VSV spread at both the inoculation site and among synaptically connected neurons. Furthermore, we characterized the response of microglia to VSV infection and found that infected microglia produced type I IFN and uninfected microglia induced an innate immune response following virus injection.
Baerwald, Melinda R; Welsh, Amy B; Hedrick, Ronald P; May, Bernie
2008-01-01
Background Whirling disease, caused by the pathogen Myxobolus cerebralis, afflicts several salmonid species. Rainbow trout are particularly susceptible and may suffer high mortality rates. The disease is persistent and spreading in hatcheries and natural waters of several countries, including the U.S.A., and the economic losses attributed to whirling disease are substantial. In this study, genome-wide expression profiling using cDNA microarrays was conducted for resistant Hofer and susceptible Trout Lodge rainbow trout strains following pathogen exposure with the primary objective of identifying specific genes implicated in whirling disease resistance. Results Several genes were significantly up-regulated in skin following pathogen exposure for both the resistant and susceptible rainbow trout strains. For both strains, response to infection appears to be linked with the interferon system. Expression profiles for three genes identified with microarrays were confirmed with qRT-PCR. Ubiquitin-like protein 1 was up-regulated over 100 fold and interferon regulating factor 1 was up-regulated over 15 fold following pathogen exposure for both strains. Expression of metallothionein B, which has known roles in inflammation and immune response, was up-regulated over 5 fold in the resistant Hofer strain but was unchanged in the susceptible Trout Lodge strain following pathogen exposure. Conclusion The present study has provided an initial view into the genetic basis underlying immune response and resistance of rainbow trout to the whirling disease parasite. The identified genes have allowed us to gain insight into the molecular mechanisms implicated in salmonid immune response and resistance to whirling disease infection. PMID:18218127
Erwin-Cohen, Rebecca A; Porter, Aimee I; Pittman, Phillip R; Rossi, Cynthia A; DaSilva, Luis
2017-01-02
Venezuelan equine encephalitis virus (VEEV) is an important human and animal alphavirus pathogen transmitted by mosquitoes. The virus is endemic in Central and South America, but has also caused equine outbreaks in southwestern areas of the United States. In an effort to better understand the molecular mechanisms of the development of immunity to this important pathogen, we performed transcriptional analysis from whole, unfractionated human blood of patients who had been immunized with the live-attenuated vaccine strain of VEEV, TC-83. We compared changes in the transcriptome between naïve individuals who were mock vaccinated with saline to responses of individuals who received TC-83. Significant transcriptional changes were noted at days 2, 7, and 14 following vaccination. The top canonical pathways revealed at early and intermediate time points (days 2 and 7) included the involvement of the classic interferon response, interferon-response factors, activation of pattern recognition receptors, and engagement of the inflammasome. By day 14, the top canonical pathways included oxidative phosphorylation, the protein ubiquitination pathway, natural killer cell signaling, and B-cell development. Biomarkers were identified that differentiate between vaccinees and control subjects, at early, intermediate, and late stages of the development of immunity as well as markers which were common to all 3 stages following vaccination but distinct from the sham-vaccinated control subjects. The study represents a novel examination of molecular processes that lead to the development of immunity against VEEV in humans and which may be of value as diagnostic targets, to enhance modern vaccine design, or molecular correlates of protection.
Afzal, Muhammad Sohail
2016-09-18
In Pakistan which ranked second in terms of hepatitis C virus (HCV) infection, it is highly needed to have an established diagnostic test for antiviral therapy response prediction. Interleukin 28B (IL-28B) genetic testing is widely used throughout the world for interferon based therapy prediction for HCV patients and is quite helpful not only for health care workers but also for the patients. There is a strong relationship between single nucleotide polymorphisms at or near the IL-28B gene and the sustained virological response with pegylated interferon plus ribavirin treatment for chronic hepatitis C. Pakistan is a resource limited country, with very low per capita income and there is no proper social security (health insurance) system. The allocated health budget by the government is very low and is used on other health emergencies like polio virus and dengue virus infection. Therefore it is proposed that there should be a well established diagnostic test on the basis of IL-28B which can predict the antiviral therapy response to strengthen health care set-up of Pakistan. This test once established will help in better management of HCV infected patients.
Knight, Jason S.; Luo, Wei; O’Dell, Alexander A.; Yalavarthi, Srilakshmi; Zhao, Wenpu; Subramanian, Venkataraman; Guo, Chiao; Grenn, Robert C.; Thompson, Paul R.; Eitzman, Daniel T.; Kaplan, Mariana J.
2014-01-01
Rationale Neutrophil extracellular trap (NET) formation promotes vascular damage, thrombosis, and activation of interferon-α-producing plasmacytoid dendritic cells in diseased arteries. Peptidylarginine deiminase inhibition is a strategy that can decrease in vivo NET formation. Objective To test whether peptidylarginine deiminase inhibition, a novel approach to targeting arterial disease, can reduce vascular damage and inhibit innate immune responses in murine models of atherosclerosis. Methods and Results Apolipoprotein-E (Apoe)−/− mice demonstrated enhanced NET formation, developed autoantibodies to NETs, and expressed high levels of interferon-α in diseased arteries. Apoe−/− mice were treated for 11 weeks with daily injections of Cl-amidine, a peptidylarginine deiminase inhibitor. Peptidylarginine deiminase inhibition blocked NET formation, reduced atherosclerotic lesion area, and delayed time to carotid artery thrombosis in a photochemical injury model. Decreases in atherosclerosis burden were accompanied by reduced recruitment of netting neutrophils and macrophages to arteries, as well as by reduced arterial interferon-α expression. Conclusions Pharmacological interventions that block NET formation can reduce atherosclerosis burden and arterial thrombosis in murine systems. These results support a role for aberrant NET formation in the pathogenesis of atherosclerosis through modulation of innate immune responses. PMID:24425713
Measles virus induces persistent infection by autoregulation of viral replication.
Doi, Tomomitsu; Kwon, Hyun-Jeong; Honda, Tomoyuki; Sato, Hiroki; Yoneda, Misako; Kai, Chieko
2016-11-24
Natural infection with measles virus (MV) establishes lifelong immunity. Persistent infection with MV is likely involved in this phenomenon, as non-replicating protein antigens never induce such long-term immunity. Although MV establishes stable persistent infection in vitro and possibly in vivo, the mechanism by which this occurs is largely unknown. Here, we demonstrate that MV changes the infection mode from lytic to non-lytic and evades the innate immune response to establish persistent infection without viral genome mutation. We found that, in the persistent phase, the viral RNA level declined with the termination of interferon production and cell death. Our analysis of viral protein dynamics shows that during the establishment of persistent infection, the nucleoprotein level was sustained while the phosphoprotein and large protein levels declined. The ectopic expression of nucleoprotein suppressed viral replication, indicating that viral replication is self-regulated by nucleoprotein accumulation during persistent infection. The persistently infected cells were able to produce interferon in response to poly I:C stimulation, suggesting that MV does not interfere with host interferon responses in persistent infection. Our results may provide mechanistic insight into the persistent infection of this cytopathic RNA virus that induces lifelong immunity.
Zhou, Xiao-Ming; Chan, Paul Ks; Tam, John S
2011-12-28
To explore mutations around the interferon sensitivity-determining region (ISDR) which are associated with the resistance of hepatitis C virus 1b (HCV-1b) to interferon-α treatment. Thirty-seven HCV-1b samples were obtained from Hong Kong patients who had completed the combined interferon-α/ribavirin treatment for more than one year with available response data. Nineteen of them were sustained virological responders, while 18 were non-responders. The amino acid sequences of the extended ISDR (eISDR) covering 64 amino acids upstream and 67 amino acids downstream from the previously reported ISDR were analyzed. One amino acid variation (I2268V, P = 0.023) was significantly correlated with treatment outcome in this pilot study with a limited number of patients, while two amino acid variations (R2260H, P = 0.05 and S2278T, P = 0.05) were weakly associated with treatment outcome. The extent of amino acid variations within the ISDR or eISDR was not correlated with treatment outcome as previously reported. Three amino acid mutations near but outside of ISDR may associate with interferon treatment resistance of HCV-1b patients in Hong Kong.
Cytokines and immune surveillance in humans
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald
1994-01-01
Evidence from both human and rodent studies has indicated that alterations in immunological parameters occur after space flight. Among the parameters shown, by us and others, to be affected is the production of interferons. Interferons are a family of cytokines that are antiviral and play a major role in regulating immune responses that control resistance to infection. Alterations in interferon and other cytokine production and activity could result in changes in immunity and a possible compromise of host defenses against both opportunistic and external infections. The purpose of the present study is to explore further the effects of space flight on cyotokines and cytokine-directed immunological function. Among the tests carried out are interferon-alpha production, interferon-gamma production, interleukin-1 and -2 production, signal transduction in neutrophils, signal transduction in monocytes, and monocyte phagocytic activity. The experiments will be performed using peripheral blood obtained from human subjects. It is our intent to eventually carry out these experiments using astronauts as subjects to determine the effects of space flight on cytokine production and activity. However, these subjects are not currently available. Until they become available, we will carry out these experiments using subjects maintained in the bed-rest model for microgravity.
Okan, Gökhan; Ayan, Inci; Karslioğlu, Safak; Altiok, Ender; Yenmiş, Güven; Vural, Gürcan
2010-01-01
Conjunctival papilloma is a benign tumor of the conjunctival mucosa. In childhood, papilloma represents 7-10% of conjunctival tumors. Human papillomavirus (HPV)-6 and HPV-11 are the major HPV types responsible for conjunctival lesions. A five-year-old boy with a two-year history of conjunctival papilloma caused by HPV type 11 treated with systemic interferon alpha is reported and the literature is reviewed.
Rodríguez-Güell, Elisabeth; Agustí, Gemma; Corominas, Mercè; Cardona, Pere-Joan; Luquin, Marina; Julián, Esther
2008-01-01
Whole heat-killed Mycobacterium vaccae is used as an immunotherapeutic agent in tuberculosis (TB), but the compound(s) that triggers its immunostimulatory ability is not known. Here, we show that among different subcellular fractions, the cell wall skeleton induced a prominent expression of gamma interferon in splenocytes from both non-TB and TB M. vaccae-treated mice. PMID:18337379
Zimmermann, Tim; Hueppe, Dietrich; Mauss, Stefan; Buggisch, Peter; Pfeiffer-Vornkahl, Heike; Grimm, Daniel; Galle, Peter R; Alshuth, Ulrich
2016-03-01
Smoking has multiple effects on factors influencing hepatitis C and antiviral therapy, including lipid metabolism, fibrosis, platelet count and adherence aspects. The aim of this analysis was to determine the impact of smoking on hepatitis C virus antiviral therapy. Data of two cohorts of an observational multicenter study including therapy-naïve patients infected with genotype 1 hepatitis C virus (HCV) treated with dual antiviral therapy (n=7,796) with pegylated interferon alpha 2a in combination with ribavirin, or triple antiviral therapy (n=1,122) containing telaprevir or boceprevir, were analysed. In the univariate matched pair analysis of dual antiviral therapy patients (n=584), smoking was significantly associated with lower sustained viral response rates (p=0.026, OR 0.69 CI: 0.50 - 0.96). The effect of smoking on sustained viral response remained significant (p=0.028, OR 0.67 CI: 0.47 - 0.96) in the multivariate analysis when adjusting for all other baseline parameters with a significant association in the univariate analysis, i.e. diabetes, fibrosis, body mass index, transaminases and baseline viral load. Under protease inhibitors the influence of smoking on virological response did not arise. Smoking has a negative impact on antiviral therapy in naïve patients infected with HCV genotype 1 independently of age, gender, history of drug use or alcoholic liver disease. The effects of smoking might be overcome by the new antiviral agents.
Weil, Robert; Laplantine, Emmanuel; Génin, Pierre
2016-06-01
The innate immune system has evolved to detect and neutralize viral invasions. Triggering of this defense mechanism relies on the production and secretion of soluble factors that stimulate intracellular antiviral defense mechanisms. The Tank Binding Kinase 1 (TBK1) is a serine/threonine kinase in the innate immune signaling pathways including the antiviral response and the host defense against cytosolic infection by bacteries. Given the critical roles of TBK1, important regulatory mechanisms are required to regulate its activity. Among these, Optineurin (Optn) was shown to negatively regulate the interferon response, in addition to its important role in membrane trafficking, protein secretion, autophagy and cell division. As Optn does not carry any enzymatic activity, its functions depend on its precise subcellular localization and its interaction with other proteins, especially with components of the innate immune pathway. This review highlights advances in our understanding of Optn mechanisms of action with focus on the relationships between Optn and TBK1 and their implication in host defense against pathogens. Specifically, how the antiviral immune system is controlled during the cell cycle by the Optn/TBK1 axis and the physiological consequences of this regulatory mechanism are described. This review may serve to a better understanding of the relationships between the different functions of Optn, including those related to immune responses and its associated pathologies such as primary open-angle glaucoma, amyotrophic lateral sclerosis and Paget's disease of bone. Copyright © 2016 Elsevier Ltd. All rights reserved.
Huang, Li; Xiong, Tao; Yu, Huibin; Zhang, Quan; Zhang, Kunli; Li, Changyao; Hu, Liang; Zhang, Yuanfeng; Zhang, Lijie; Liu, Qinfang; Wang, Shengnan; He, Xijun; Bu, Zhigao; Cai, Xuehui; Cui, Shangjin; Li, Jiangnan; Weng, Changjiang
2017-06-09
TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)-(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK-TBK1-IKKε-IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK. © 2017 The Author(s).
Huang, Li; Xiong, Tao; Yu, Huibin; Zhang, Quan; Zhang, Kunli; Li, Changyao; Hu, Liang; Zhang, Yuanfeng; Zhang, Lijie; Liu, Qinfang; Wang, Shengnan; He, Xijun; Bu, Zhigao; Cai, Xuehui
2017-01-01
TRAF family member-associated NF-κB activator (TANK) is a scaffold protein that assembles into the interferon (IFN) regulator factor 3 (IRF3)-phosphorylating TANK-binding kinase 1 (TBK1)–(IκB) kinase ε (IKKε) complex, where it is involved in regulating phosphorylation of the IRF3 and IFN production. However, the functions of TANK in encephalomyocarditis virus (EMCV) infection-induced type I IFN production are not fully understood. Here, we demonstrated that, instead of stimulating type I IFN production, the EMCV-HB10 strain infection potently inhibited Sendai virus- and polyI:C-induced IRF3 phosphorylation and type I IFN production in HEK293T cells. Mechanistically, EMCV 3C protease (EMCV 3C) cleaved TANK and disrupted the TANK–TBK1–IKKε–IRF3 complex, which resulted in the reduction in IRF3 phosphorylation and type I IFN production. Taken together, our findings demonstrate that EMCV adopts a novel strategy to evade host innate immune responses through cleavage of TANK. PMID:28487378
Spasticity in multiple sclerosis and role of glatiramer acetate treatment
Meca-Lallana, Jose Eustasio; Hernández-Clares, Rocío; Carreón-Guarnizo, Ester
2015-01-01
Introduction Spasticity is one of the most disabling and difficult-to-treat symptoms shown by patients with multiple sclerosis, who often show a suboptimal and unsatisfactory response to classic treatment and new available nonpharmacological alternatives. Due to the progressive nature of this condition, the early management should be essential to improve long-term outcomes. Methods We performed a narrative literature review of the contribution of spasticity to the burden of multiple sclerosis and the potential role of classic disease-modifying drugs. Results Added to the underlying pathophysiology of spasticity, certain external factors and drugs such as interferon may exacerbate the existing condition, hence their awareness is crucial as part of an effective management of spasticity. Furthermore, the evidence for the effectiveness of glatiramer acetate in preventing spasticity in naïve patients and in those switching from interferon should not be ignored. Conclusions This literature review proposes the examination of spasticity and the influence of classic disease-modifying agents on the level of existing condition among the variables to be considered when deciding on therapy for multiple sclerosis in clinical practice. PMID:26445705
RUNX2 Mediates Plasmacytoid Dendritic Cell Egress from the Bone Marrow and Controls Viral Immunity.
Chopin, Michaël; Preston, Simon P; Lun, Aaron T L; Tellier, Julie; Smyth, Gordon K; Pellegrini, Marc; Belz, Gabrielle T; Corcoran, Lynn M; Visvader, Jane E; Wu, Li; Nutt, Stephen L
2016-04-26
Plasmacytoid dendritic cells (pDCs) represent a unique immune cell type that responds to viral nucleic acids through the rapid production of type I interferons. Within the hematopoietic system, the transcription factor RUNX2 is exclusively expressed in pDCs and is required for their peripheral homeostasis. Here, we show that RUNX2 plays an essential role in promoting pDC localization and function. RUNX2 is required for the appropriate expression of the integrin-mediated adhesion machinery, as well as for the down-modulation of the chemokine receptor CXCR4, which allows pDC egress into the circulation. RUNX2 also facilitates the robust response to viral infection through the control of IRF7, the major regulator of type I interferon production. Mice lacking one copy of Runx2 have reduced numbers of peripheral pDCs and IFN-α expression, which might contribute to the reported difficulties of individuals with cleidocranial dysplasia, who are haploinsufficient for RUNX2, to clear viral infections. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Perdomo-Celis, Federico; Salgado, Doris M; Narváez, Carlos F
2017-07-01
During dengue virus (DENV) infection, a blockage of secretion of cytokines such as tumor necrosis factor (TNF)-α and members of the interferon (IFN) family has been described in vitro. We evaluated the functionality of monocytes as well as dendritic, B and T cells isolated from children with mild and severe dengue. Compared with those of healthy children, stimulated monocytes, CD4 + T cells and dendritic cells from children with dengue had lower production of proinflammatory cytokines. The interferon axis was dramatically modulated by infection as plasmacytoid dendritic cells (pDCs) and CD4 + T cells had low production of IFN-α and IFN-γ, respectively; plasma levels of IFN-α and IFN-γ were lower in severely ill children, suggesting a protective role. Patients with antigenemia had the highest levels of IFN-α in plasma but the lowest frequency of IFN-α-producing pDCs, suggesting that DENV infection stimulates a systemic type I IFN response but affects the pDCs function. Copyright © 2017 Elsevier Inc. All rights reserved.
Watanuki, Hironobu; Chakraborty, Gunimala; Korenaga, Hiroki; Kono, Tomoya; Shivappa, R B; Sakai, Masahiro
2009-10-15
Human interferon-alpha (huIFN-alpha) is an important immunomodulatory substance used in the treatment and prevention of numerous infectious and immune-related diseases in animals. However, the immunostimulatory effects of huIFN-alpha in fish remain to be investigated. In the current study, the immune responses of the carp species Cyprinus carpio L. to treatment with huIFN-alpha were analyzed via measurement of superoxide anion production, phagocytic activity and the expression of cytokine genes including interleukin-1beta, tumor necrosis factor-alpha and interleukin 10. Low doses of huIFN-alpha were administered orally once a day for 3 days, and sampling was carried out at 1, 3 and 5 days post-treatment. Our results indicate that a low dose of huIFN-alpha significantly increased phagocytic activity and superoxide anion production in the carp kidney. The huIFN-alpha-treated fish also displayed a significant upregulation in cytokine gene expression. The current study demonstrates the stimulatory effects of huIFN-alpha on the carp immune system and highlights the immunomodulatory role of huIFN-alpha in fish.
Zhou, Jing; Qin, Lingfeng; Yi, Tai; Ali, Rahmat; Li, Qingle; Jiao, Yang; Li, Guangxin; Tobiasova, Zuzana; Huang, Yan; Zhang, Jiasheng; Yun, James J.; Sadeghi, Mehran M.; Giordano, Frank J.; Pober, Jordan S.; Tellides, George
2015-01-01
Rationale Transplantation, the most effective therapy for end-stage organ failure, is markedly limited by early-onset cardiovascular disease (CVD) and premature death of the host. The mechanistic basis of this increased CVD is not fully explained by known risk factors. Objective To investigate the role of alloimmune responses in promoting CVD of organ transplant recipients. Methods and Results We established an animal model of graft-exacerbated host CVD by combining murine models of atherosclerosis (apolipoprotein E-deficient recipients on standard diet) and of intra-abdominal graft rejection (heterotopic cardiac transplantation without immunosuppression). CVD was absent in normolipidemic hosts receiving allogeneic grafts and varied in severity among hyperlipidemic grafted hosts according to recipient-donor genetic disparities, most strikingly across an isolated major histocompatibility complex class II antigen barrier. Host disease manifested as increased atherosclerosis of the aorta that also involved the native coronary arteries and new findings of decreased cardiac contractility, ventricular dilatation, and diminished aortic compliance. Exacerbated CVD was accompanied by greater levels of circulating cytokines, especially interferon-γ and other Th1-type cytokines, and showed both systemic and intra-lesional activation of leukocytes, particularly T helper cells. Serologic neutralization of interferon-γ after allotransplantation prevented graft-related atherosclerosis, cardiomyopathy, and aortic stiffening in the host. Conclusions Our study reveals that sustained activation of the immune system due to chronic allorecognition exacerbates the atherogenic diathesis of hyperlipidemia and results in de novo cardiovascular dysfunction in organ transplant recipients. PMID:26399469
Edvardsen, Kine; Hellesen, Alexander; Husebye, Eystein S; Bratland, Eirik
2016-03-09
Autoimmune Addison's disease (AAD) is caused by multiple genetic and environmental factors. Variants of genes encoding immunologically important proteins such as the HLA molecules are strongly associated with AAD, but any environmental risk factors have yet to be defined. We hypothesized that primary or reactivating infections with cytomegalovirus (CMV) could represent an environmental risk factor in AAD, and that CMV specific CD8(+) T cell responses may be dysregulated, possibly leading to a suboptimal control of CMV. In particular, the objective was to assess the HLA-B8 restricted CD8(+) T cell response to CMV since this HLA class I variant is a genetic risk factor for AAD. To examine the CD8(+) T cell response in detail, we analyzed the HLA-A2 and HLA-B8 restricted responses in AAD patients and healthy controls seropositive for CMV antibodies using HLA multimer technology, IFN-γ ELISpot and a CD107a based degranulation assay. No differences between patients and controls were found in functions or frequencies of CMV-specific T cells, regardless if the analyses were performed ex vivo or after in vitro stimulation and expansion. However, individual patients showed signs of reactivating CMV infection correlating with poor CD8(+) T cell responses to the virus, and a concomitant upregulation of interferon regulated genes in peripheral blood cells. Several recently diagnosed AAD patients also showed serological signs of ongoing primary CMV infection. CMV infection does not appear to be a major environmental risk factor in AAD, but may represent a precipitating factor in individual patients.
The immunomodulatory activities of pullulan and its derivatives in human pDC-like CAL-1 cell line.
Wang, Fang; Qiao, Linan; Chen, Liwei; Zhang, Cong; Wang, Yan; Wang, Yinsong; Liu, Yuanyuan; Zhang, Ning
2016-05-01
In this study, acidic and alkaline pullulan derivates were synthesized and their immunomodulatory activities compared to pullulan were investigated in human pDC-like CAL-1 cell line. Pullulan was reacted respectively with succinic anhydride and N-(-2-aminoethyl)-1,3-propanediamine/N,N-carbonyl diimidazole to form acidic pullulan monosuccinate (SUPL) and alkaline pullulan-g-N-(-2-aminoethyl)-1,3-propanediamine (AMPL). In CAL-1 cells, pullulan, SUPL and AMPL up-regulated the mRNA expressions of type I interferons (IFN), including IFN-α and IFN-β1, and some other proinflammatory cytokines, including tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and interleukin-23 (IL-23), and also significantly enhanced the protein expressions of IFN-α and TNF-α. The activation of nuclear factor kappa B (NF-κB) and the nuclear translocations of interferon regulation factors (IRFs), including IRF-3 and IRF-5, exhibited pivotal roles in the immune responses induced by pullulan, SUPL and AMPL. By comparison, pullulan and SUPL displayed weak effects on the activation of CAL-1 cells, but AMPL showed remarkably enhanced immunomodulatory activities, which were comparable to that induced by R848, an agonist for Toll-like receptor (TLR) 7/8. Our results suggested that AMPL, as an alkaline pullulan derivative, could be used as a potent immunomodulatory agent in the food and pharmacological fields. Copyright © 2016 Elsevier B.V. All rights reserved.
Tsai, Shu-Mei; Kao, Jung-Ta; Tsai, Yun-Fang
2016-07-11
Hepatitis C virus (HCV) infection is a global public health issue. Adequate treatment for hepatitis C patients is important, but anticipated side effects make patients fearful of receiving treatment. Little is known about the experiences of hepatitis C patients who have completed treatment with pegylated interferon and ribavirin. The purpose of this study was to explore the experiences of hepatitis C patients who had undergone therapy with pegylated interferon and ribavirin and gain an understanding of what factors contributed to completion of treatment. This was a qualitative study with 21 adult hepatitis C patients purposively sampled from outpatient liver clinics of a medical university hospital in Taichung City, Taiwan. Participants had completed 6-12 months of therapy with pegylated interferon and ribavirin. Data were collected through individual, face-to-face, in-depth interviews conducted in the participants' homes from June-October 2013. Data were analysed using conventional content analysis. Data analysis revealed three themes that described the strategies employed to alleviate and ease symptoms and manage the processes involved: restructuring their lifestyle, adopting a positive attitude, and seeking support. Hepatitis C patients face many challenges during treatment with pegylated interferon and ribavirin. These findings provide knowledge that can be used in designing effective programs to help other Hepatitis C patients manage the side effects of pegylated interferon and ribavirin therapy, complete treatment and improve quality of life.
Liu, Xiangdong; Huang, Jing; Yang, Songbai; Zhao, Yunxia; Xiang, Anjing; Cao, Jianhua; Fan, Bin; Wu, Zhenfang; Zhao, Junlong; Zhao, Shuhong; Zhu, Mengjin
2014-05-01
Interferon (IFN) is one of the major regulators of innate immunity, it also mediates the adaptive immune responses to a broad spectrum of pathogens. This study aims in identifying differences between high vs. low INF-a responders which were chosen based on serum INF-a levels at 4 h post poly I:C treatment. A transcriptomic analysis was designed to describe the whole blood differential transcriptomal response to poly I:C by pigs with high vs. low IFN alpha levels. The capability of producing dsRNA (poly I:C)-induced serum IFN-a is highly variable in pig population. The high INF-a responders had 328 unique differentially expressed genes, suggesting that the HIGH pigs have greater responsiveness upon the dsRNA simulation. Based on the results, the interferon-dependent antiviral responsiveness through the IFN-stimulated genes (ISGs) is likely more effective in HIGH pigs. Inferring from the known organization of IFN pathways, the reason for the more IFN-a production in the HIGH pigs was likely due to the enhanced expression of IRF-7 in TLR or RIG- I/MDA5 signaling pathways. Furthermore, the larger number of the altered genes in the HIGH pigs after simulation is also possibly because of the greater number of the altered transcription factors. To our knowledge, this is the first report of comparative transcriptomic analysis to advance our understanding of whole blood immune response in pigs with different in vivo poly I:C-inducted IFN-a levels. The paper significantly expands our knowledge of how pigs respond to poly I:C which is highly relevant for understanding resistance to viral infections and also for vaccine development. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lawson, A
2011-07-01
Ethnicity is an important host variable, but its impact on disease progression and response to therapy in Hepatitis C infection is unclear. Here we compare the natural history and outcome of therapy in white and Asian (Indian subcontinent) Hepatitis C infected patients. A total of 2123 White and 120 Asian HCV infected patients were identified within the Trent HCV study. Response to therapy was assessed in 224 white and 46 Asian patients with genotype 3 infection who received pegylated interferon and ribavirin. Asian patients were more likely to be older, female, infected with genotype 3 and to consume no alcohol. At time of first biopsy, fibrosis stage was significantly higher in Asian patients than in Whites (3.0 ± 2.3 vs 1.8 ± 2.0, P < 0.001), as were necro-inflammation and steatosis scores. However, in those patients where duration of infection could be estimated, fibrosis progression was similar for both groups (0.25 ± 0.31 vs. 0.16 ± 0.54 Ishak points/year, P = 0.068). 78.3% of Asian and 67.9% of White genotype 3 patients had a sustained virological response following Pegylated Interferon and Ribavirin. Cirrhosis and increased levels of GGT, but not ethnicity were associated with a reduction in the likelihood of a sustained virological response on multivariate analysis. Asian patients with Hepatitis C are more likely to be female, less likely to give a history of risk factors, present to medical services at an older age, and have more severe liver disease at diagnosis, but disease progression and response to treatment are similar to white patients. © 2010 Blackwell Publishing Ltd.
Effects of microgravity on the immune system
NASA Technical Reports Server (NTRS)
Sonnenfeld, Gerald; Taylor, Gerald R.
1991-01-01
Changes in resistance to bacterial and viral infections in Apollo crew members has stimulated interest in the study of immunity and space flight. Results of studies from several laboratories in both humans and rodents have indicated alterations after space flight that include the following immunological parameters: thymus size, lymphocyte blastogenesis, interferon and interleukin production, natural killer cell activity, cytotoxic T-cell activity, leukocyte subset population distribution, response of bone marrow cells to colony stimulating factors, and delayed hypersensitivity skin test reactivity. The interactions of the immune system with other physiological systems, including muscle, bone, and the nervous system, may play a major role in the development of these immunological parameters during and after flight. There may also be direct effects of space flight on immune responses.
Underlying pathways for interferon risk to type II diabetes mellitus.
Abdel-Hamid, Nabil; Jubori, Taghreed Al; Farhan, Amaal; Mahrous, Mariam; Gouri, Adel; Awad, Ezzat; Breuss, Johannes
2013-11-01
It has been known that chronic liver treatments interfere with blood glucose metabolism. It was recognized that diabetes mellitus among chronic hepatitis C was greater in other types of chronic liver diseases. Hepatitis C directly promotes insulin resistance through the proteosomal degradation of insulin resistance substrate. It suppressed hepatocyte glucose uptake through down-regulation of surface expression of glucose transporter. Long-term exposure to cytokine over expression seems to be cytotoxic to both beta cells of the pancreas and to hepatocytes. Elevated tumor necrosis factor-a, or its neutralization, increased insulin sensitivity. Interferon-a may also elevate the serum level of interleukin-1 which is cytotoxic to pancreatic islet cells. Both diabetes mellitus and resistance to interferon-a therapy are abnormally mediated by over-expression of suppressor of cytokine signaling-1 in hepatocytes of chronic hepatitis C patients. These data suggest that interferon-a therapy should be administered with caution in patients showing any predisposition to Diabetes mellitus. Anti inflammatory therapy is critically recommended as a protector against disease development due to cytokine mediated Diabetes mellitus during hepatitis C therapy, since inflammation seems to be a main candidate to interferon suspected diabetogenesis.
West Nile Virus NS1 Antagonizes Interferon Beta Production by Targeting RIG-I and MDA5.
Zhang, Hong-Lei; Ye, Han-Qing; Liu, Si-Qing; Deng, Cheng-Lin; Li, Xiao-Dan; Shi, Pei-Yong; Zhang, Bo
2017-09-15
West Nile virus (WNV) is a mosquito-borne flavivirus that causes epidemics of encephalitis and viscerotropic disease worldwide. This virus has spread rapidly and has posed a significant public health threat since the outbreak in New York City in 1999. The interferon (IFN)-mediated antiviral response represents an important component of virus-host interactions and plays an essential role in regulating viral replication. Previous studies have suggested that multifunctional nonstructural proteins encoded by flaviviruses antagonize the host IFN response via various means in order to establish efficient viral replication. In this study, we demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes IFN-β production, most likely through suppression of retinoic acid-inducible gene I (RIG-I)-like receptor (RLR) activation. In a dual-luciferase reporter assay, WNV NS1 significantly inhibited the activation of the IFN-β promoter after Sendai virus infection or poly(I·C) treatment. NS1 also suppressed the activation of the IFN-β promoter when it was stimulated by interferon regulatory factor 3 (IRF3)/5D or its upstream molecules in the RLR signaling pathway. Furthermore, NS1 blocked the phosphorylation and nuclear translocation of IRF3 upon stimulation by various inducers. Mechanistically, WNV NS1 targets RIG-I and melanoma differentiation-associated gene 5 (MDA5) by interacting with them and subsequently causing their degradation by the proteasome. Furthermore, WNV NS1 inhibits the K63-linked polyubiquitination of RIG-I, thereby inhibiting the activation of downstream sensors in the RLR signaling pathway. Taken together, our results reveal a novel mechanism by which WNV NS1 interferes with the host antiviral response. IMPORTANCE WNV Nile virus (WNV) has received increased attention since its introduction to the United States. However, the pathogenesis of this virus is poorly understood. This study demonstrated that the nonstructural protein 1 (NS1) of WNV antagonizes the induction of interferon beta (IFN-β) by interacting with and degrading retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5), which are crucial viral sensors in the host innate immune system. Further experiments suggested that NS1-mediated inhibition of the RIG-I-like receptor (RLR) signaling pathway involves inhibition of RIG-I K63-linked polyubiquitination and that the proteasome plays a role in RIG-I degradation. This study provides new insights into the regulation of WNV NS1 in the RLR signaling pathway and reveals a novel mechanism by which WNV evades the host innate immune response. The novel findings may guide us to discover new therapeutic targets and develop effective vaccines for WNV infections. Copyright © 2017 American Society for Microbiology.
Robinson, Nirmal; McComb, Scott; Mulligan, Rebecca; Dudani, Renu; Krishnan, Lakshmi; Sad, Subash
2014-01-01
Salmonella enterica serovar Typhimurium (S. Typhimurium) is a virulent pathogen that induces rapid host death. Here we observed that host survival after infection with S. Typhimurium was enhanced in the absence of type I interferon signaling, with improved survival of mice deficient in the receptor for type I interferons (Ifnar1−/− mice) that was attributed to macrophages. Although there was no impairment in cytokine expression or inflammasome activation in Ifnar1−/− macrophages, they were highly resistant to S. Typhimurium–induced cell death. Specific inhibition of the kinase RIP1or knockdown of the gene encoding the kinase RIP3 prevented the death of wild-type macrophages, which indicated that necroptosis was a mechanism of cell death. Finally, RIP3-deficient macrophages, which cannot undergo necroptosis, had similarly less death and enhanced control of S. Typhimurium in vivo. Thus, we propose that S. Typhimurium induces the production of type I interferon, which drives necroptosis of macrophages and allows them to evade the immune response. PMID:22922364
Impact of cytokine in type 1 narcolepsy: Role of pandemic H1N1 vaccination ?
Lecendreux, Michel; Libri, Valentina; Jaussent, Isabelle; Mottez, Estelle; Lopez, Régis; Lavault, Sophie; Regnault, Armelle; Arnulf, Isabelle; Dauvilliers, Yves
2015-06-01
Recent advances in the identification of susceptibility genes and environmental exposures (pandemic influenza 2009 vaccination) provide strong support that narcolepsy type 1 is an immune-mediated disease. Considering the limited knowledge regarding the immune mechanisms involved in narcolepsy whether related to flu vaccination or not and the recent progresses in cytokine measurement technology, we assessed 30 cytokines, chemokines and growth factors using the Luminex technology in either peripheral (serum) or central (CSF) compartments in a large population of 90 children and adult patients with narcolepsy type 1 in comparison to 58 non-hypocretin deficient hypersomniacs and 41 healthy controls. Furthermore, we compared their levels in patients with narcolepsy whether exposed to pandemic flu vaccine or not, and analyzed the effect of age, duration of disease and symptom severity. Comparison for sera biomarkers between narcolepsy (n = 84, 54 males, median age: 15.5 years old) and healthy controls (n = 41, 13 males, median age: 20 years old) revealed an increased stimulation of the immune system with high release of several pro- and anti-inflammatory serum cytokines and growth factors with interferon-γ, CCL11, epidermal growth factor, and interleukin-2 receptor being independently associated with narcolepsy. Increased levels of interferon-γ, CCL11, and interleukin-12 were found when close to narcolepsy onset. After several adjustments, only one CSF biomarker differed between narcolepsy (n = 44, 26 males, median age: 15 years old) and non-hypocretin deficient hypersomnias (n = 57, 24 males, median age: 36 years old) with higher CCL 3 levels found in narcolepsy. Comparison for sera biomarkers between patients with narcolepsy who developed the disease post-pandemic flu vaccination (n = 36) to those without vaccination (n = 48) revealed an increased stimulation of the immune system with high release of three cytokines, regulated upon activation normal T-cell expressed and secreted, CXCL10, and CXCL9, being independently and significantly increased in the group exposed to the vaccine. No significant differences were found between narcoleptics whether exposed to flu vaccination or not for CSF biomarkers except for a lower CXCL10 level found in the exposed group. To conclude, we highlighted the role of sera cytokine with pro-inflammatory properties and especially interferon-γ being independently associated with narcolepsy close to disease onset. The activity of the interferon-γ network was also increased in the context of narcolepsy after the pandemic flu vaccination being a potential key player in the immune mechanism that triggers narcolepsy and that coordinates the immune response necessary for resolving vaccination assaults. Copyright © 2015 Elsevier Ltd. All rights reserved.
Effects of interferon-gamma and tumor necrosis factor-alpha on macrophage enzyme levels
NASA Technical Reports Server (NTRS)
Pierangeli, Silvia S.; Sonnenfeld, Gerald
1989-01-01
Murine peritoneal macrophages were treated with interferon-gamma (IFN-gamma) or tumor necrosis factor-alpha (TNF). Measurements of changes in acid phosphatase and beta-glucuronidase levels were made as an indication of activation by cytokine treatment. IFN-gamma or TNF-gamma treatment resulted in a significant increase in the activities of both enzymes measured in the cell lysates. This increase was observable after 6 h of incubation, but reached its maximum level after 24 h of incubation. The effect of the treatment of the cell with both cytokines together was additive. No synergistic effect of addition of both cytokines on the enzyme levels was observed.
Lemos, Henrique; Huang, Lei; Chandler, Phillip R.; Mohamed, Eslam; Souza, Guilherme R.; Li, Lingqian; Pacholczyk, Gabriela; Barber, Glen N.; Hayakawa, Yoshihiro; Munn, David H.; Mellor, Andrew L.
2014-01-01
Cytosolic DNA sensing activates the Stimulator of Interferon Genes (STING) adaptor to induce interferon type I (IFNαβ) production. Constitutive DNA sensing to induce sustained STING activation incites tolerance breakdown leading to autoimmunity. Here we show that systemic treatments with DNA nanoparticles (DNPs) induced potent immune regulatory responses via STING signaling that suppressed experimental autoimmune encephalitis (EAE) when administered to mice after immunization with myelin oligodendrocyte glycoprotein (MOG), at EAE onset, or at peak disease severity. DNP treatments attenuated infiltration of effector T cells into the central nervous system (CNS) and suppressed innate and adaptive immune responses to MOG immunization in spleen. Therapeutic responses were not observed in mice treated with cargo DNA or cationic polymers alone, indicating that DNP uptake and cargo DNA sensing by cells with regulatory functions was essential for therapeutic responses to manifest. Intact STING and IFNαβ receptor genes, but not IFNγ receptor genes, were essential for therapeutic responses to DNPs to manifest. Treatments with cyclic diguanylate monophosphate (c-diGMP) to activate STING also delayed EAE onset and reduced disease severity. Therapeutic responses to DNPs were critically dependent on indoleamine 2,3 dioxygenase (IDO) enzyme activity in hematopoietic cells. Thus DNPs and c-diGMP attenuate EAE by inducing dominant T cell regulatory responses via the STING-IFNαβ-IDO pathway that suppress CNS-specific autoimmunity. These findings reveal dichotomous roles for the STING-IFNαβ pathway in either stimulating or suppressing autoimmunity and identify STING activating reagents as a novel class of immune modulatory drugs. PMID:24799564
Hepatic inclusions during interferon therapy in chronic viral hepatitis.
Schaff, Z; Hoofnagle, J H; Grimley, P M
1986-01-01
Two types of cytomembranous abnormalities were identified for the first time in liver biopsies from patients with chronic active type B hepatitis during treatment with recombinant alpha-interferon. Tubuloreticular inclusions were present in the hepatic endothelial cells, Kupffer cells and perisinusoidal cells of liver biopsies from both patients, and they were absent in liver biopsies obtained before treatment. Cylindrical confronting lamellae, having "test tube" or "ring-shape" forms were observed in the cytoplasm both of Kupffer cells and macrophages in the second liver biopsy of one of the patients. The findings suggest that interferon can be involved in the pathogenesis of both cytomembranous abnormalities, but that additional biological factors may play a role in formation of the cylindrical confronting lamellae.
BAD-LAMP controls TLR9 trafficking and signalling in human plasmacytoid dendritic cells.
Combes, Alexis; Camosseto, Voahirana; N'Guessan, Prudence; Argüello, Rafael J; Mussard, Julie; Caux, Christophe; Bendriss-Vermare, Nathalie; Pierre, Philippe; Gatti, Evelina
2017-10-13
Toll-like receptors (TLR) are essential components of the innate immune system. Several accessory proteins, such as UNC93B1, are required for transport and activation of nucleic acid sensing Toll-like receptors in endosomes. Here, we show that BAD-LAMP (LAMP5) controls TLR9 trafficking to LAMP1 + late endosomes in human plasmacytoid dendritic cells (pDC), leading to NF-κB activation and TNF production upon DNA detection. An inducible VAMP3 +/ LAMP2 +/ LAMP1 - endolysosome compartment exists in pDCs from which TLR9 activation triggers type I interferon expression. BAD-LAMP-silencing enhances TLR9 retention in this compartment and consequent downstream signalling events. Conversely, sustained BAD-LAMP expression in pDCs contributes to their lack of type I interferon production after exposure to a TGF-β-positive microenvironment or isolation from human breast tumours. Hence, BAD-LAMP limits interferon expression in pDCs indirectly, by promoting TLR9 sorting to late endosome compartments at steady state and in response to immunomodulatory cues.TLR9 is highly expressed by plasmacytoid dendritic cells and detects nucleic acids, but to discriminate between host and microbial nucleic acids TLR9 is sorted into different endosomal compartments. Here the authors show that BAD-LAMP limits type 1 interferon responses by sorting TLR9 to late endosomal compartments.
El Kassas, Mohamed; Omran, Dalia; Elsaeed, Kadry; Alboraie, Mohamed; Elakel, Wafaa; El Tahan, Adel; Abd El Latif, Yasmeen; Nabeel, Mohamed Mahmoud; Korany, Mohamed; Ezzat, Sameera; El-Serafy, Magdy; ElShazly, Yehia; Doss, Wahid; Esmat, Gamal
2018-02-01
The aim of this study was to retrospectively analyze the outcome of an unscheduled change in national Egyptian policies for the treatment of hepatitis C virus (HCV), which was transpired as a result of a reduction in interferon supplies, and to manage patients who already started interferon-based therapy. After completing a priming 4-weeks course of sofosbuvir/pegylated interferon/ribavirin (SOF/PEG IFN/RBV), a 12-weeks course of sofosbuvir/daclatasvir (SOF/DCV) combination was initiated. We evaluated the sustained virologic response at 12 weeks posttreatment (SVR12) for 2 groups of patients; Group 1, which included patients who had the previous regimen with IFN priming, and group 2, which included the first consecutive group of patients who received SOF/DCV for 12 weeks from the start without IFN priming. All group 1 patients (1,214 patients) achieved SVR12 (100%) and this was statistically significant when compared with the overall SVR12 in group 2 [8,869 patients with sustained virologic response [SVR] of 98.9%] (P value <0.001). No serious adverse events were reported in both groups. In this real-life treatment experience, interferon-based directly acting antiviral treatment with SOF/PEG IFN/RBV as a priming for 4 weeks, followed by SOF/DCV combination for 12 weeks, led to HCV viral suppression in all treated patients.
ATM supports gammaherpesvirus replication by attenuating type I interferon pathway.
Darrah, Eric J; Stoltz, Kyle P; Ledwith, Mitchell; Tarakanova, Vera L
2017-10-01
Ataxia-Telangiectasia mutated (ATM) kinase participates in multiple networks, including DNA damage response, oxidative stress, and mitophagy. ATM also supports replication of diverse DNA and RNA viruses. Gammaherpesviruses are prevalent cancer-associated viruses that benefit from ATM expression during replication. This proviral role of ATM had been ascribed to its signaling within the DNA damage response network; other functions of ATM have not been considered. In this study increased type I interferon (IFN) responses were observed in ATM deficient gammaherpesvirus-infected macrophages. Using a mouse model that combines ATM and type I IFN receptor deficiencies we show that increased type I IFN response in the absence of ATM fully accounts for the proviral role of ATM during gammaherpesvirus replication. Further, increased type I IFN response rendered ATM deficient macrophages more susceptible to antiviral effects of type II IFN. This study identifies attenuation of type I IFN responses as the primary mechanism underlying proviral function of ATM during gammaherpesvirus infection. Copyright © 2017 Elsevier Inc. All rights reserved.
Santana, Vinicius Canato; Almeida, Rafael Ribeiro; Ribeiro, Susan Pereira; Ferreira, Luís Carlos de Souza; Kalil, Jorge; Rosa, Daniela Santoro; Cunha-Neto, Edecio
2015-01-01
T-cell based vaccines against human immunodeficiency virus (HIV) generate specific responses that may limit both transmission and disease progression by controlling viral load. Broad, polyfunctional, and cytotoxic CD4+T-cell responses have been associated with control of simian immunodeficiency virus/HIV-1 replication, supporting the inclusion of CD4+ T-cell epitopes in vaccine formulations. Plasmid-encoded granulocyte-macrophage colony-stimulating factor (pGM-CSF) co-administration has been shown to induce potent CD4+ T-cell responses and to promote accelerated priming and increased migration of antigen-specific CD4+ T-cells. However, no study has shown whether co-immunisation with pGM-CSF enhances the number of vaccine-induced polyfunctional CD4+ T-cells. Our group has previously developed a DNA vaccine encoding conserved, multiple human leukocyte antigen (HLA)-DR binding HIV-1 subtype B peptides, which elicited broad, polyfunctional and long-lived CD4+ T-cell responses. Here, we show that pGM-CSF co-immunisation improved both magnitude and quality of vaccine-induced T-cell responses, particularly by increasing proliferating CD4+ T-cells that produce simultaneously interferon-γ, tumour necrosis factor-α and interleukin-2. Thus, we believe that the use of pGM-CSF may be helpful for vaccine strategies focused on the activation of anti-HIV CD4+ T-cell immunity. PMID:26602876
Stephen, Tom L; Rutkowski, Melanie R; Allegrezza, Michael J; Perales-Puchalt, Alfredo; Tesone, Amelia J; Svoronos, Nikolaos; Nguyen, Jenny M; Sarmin, Fahmida; Borowsky, Mark E; Tchou, Julia; Conejo-Garcia, Jose R
2014-09-18
Tumor-reactive T cells become unresponsive in advanced tumors. Here we have characterized a common mechanism of T cell unresponsiveness in cancer driven by the upregulation of the transcription factor Forkhead box protein P1 (Foxp1), which prevents CD8⁺ T cells from proliferating and upregulating Granzyme-B and interferon-γ in response to tumor antigens. Accordingly, Foxp1-deficient lymphocytes induced rejection of incurable tumors and promoted protection against tumor rechallenge. Mechanistically, Foxp1 interacted with the transcription factors Smad2 and Smad3 in preactivated CD8⁺ T cells in response to microenvironmental transforming growth factor-β (TGF-β), and was essential for its suppressive activity. Therefore, Smad2 and Smad3-mediated c-Myc repression requires Foxp1 expression in T cells. Furthermore, Foxp1 directly mediated TGF-β-induced c-Jun transcriptional repression, which abrogated T cell activity. Our results unveil a fundamental mechanism of T cell unresponsiveness different from anergy or exhaustion, driven by TGF-β signaling on tumor-associated lymphocytes undergoing Foxp1-dependent transcriptional regulation. Copyright © 2014 Elsevier Inc. All rights reserved.
Younossi, Zobair M; Limongi, Dolores; Stepanova, Maria; Pierobon, Mariaelena; Afendy, Arian; Mehta, Rohini; Baranova, Ancha; Liotta, Lance; Petricoin, Emanuel
2011-02-04
Only half of chronic hepatitis C (CH-C) patients treated with pegylated interferon and ribavirin (PEG-IFN+RBV) achieve sustained virologic response) SVR. In addition to known factors, we postulated that activation of key protein signaling networks in the peripheral blood mononuclear cells (PBMCs) may contribute to SVR due to inherent patient-specific basal immune cell signaling architecture. In this study, we included 92 patients with CH-C. PBMCs were collected while patients were not receiving treatment and used for phosphoprotein-based network profiling. Patients received a full course of PEG-IFN+RBV with overall SVR of 55%. From PBMC, protein lysates were extracted and then used for Reverse Phase Protein Microarray (RPMA) analysis, which quantitatively measured the levels of cytokines and activation levels of 25 key protein signaling molecules involved in immune cell regulation and interferon alpha signaling. Regression models for predicting SVR were generated by stepwise bidirectional selection. Both clinical-laboratory and RPMA parameters were used as predictor variables. Model accuracies were estimated using 10-fold cross-validation. Our results show that by comparing patients who achieved SVR to those who did not, phosphorylation levels of 6 proteins [AKT(T308), JAK1(Y1022/1023), p70 S6 Kinase (S371), PKC zeta/lambda(T410/403), TYK2(Y1054/1055), ZAP-70(Y319)/Syk(Y352)] and overall levels of 6 unmodified proteins [IL2, IL10, IL4, IL5, TNF-alpha, CD5L] were significantly different (P < 0.05). For SVR, the model based on a combination of clinical and proteome parameters was developed, with an AUC = 0.914, sensitivity of 92.16%, and specificity of 85.0%. This model included the following parameters: viral genotype, previous treatment status, BMI, phosphorylated states of STAT2, AKT, LCK, and TYK2 kinases as well as steady state levels of IL4, IL5, and TNF-alpha. In conclusion, SVR could be predicted by a combination of clinical, cytokine, and protein signaling activation profiles. Signaling events elucidated in the study may shed some light into molecular mechanisms of response to anti-HCV treatment.
Auger, Jean-Philippe; Santinón, Agustina; Roy, David; Mossman, Karen; Xu, Jianguo; Segura, Mariela; Gottschalk, Marcelo
2017-01-01
Streptococcus suis serotype 2 is an important porcine bacterial pathogen and emerging zoonotic agent mainly responsible for sudden death, septic shock, and meningitis, with exacerbated inflammation being a hallmark of the infection. However, serotype 2 strains are genotypically and phenotypically heterogeneous, being composed of a multitude of sequence types (STs) whose virulence greatly varies: the virulent ST1 (Eurasia), highly virulent ST7 (responsible for the human outbreaks in China), and intermediate virulent ST25 (North America) are the most important worldwide. Even though type I interferons (IFNs) are traditionally associated with important antiviral functions, recent studies have demonstrated that they may also play an important role during infections with extracellular bacteria. Upregulation of IFN-β levels was previously observed in mice following infection with this pathogen. Consequently, the implication of IFN-β in the S. suis serotype 2 pathogenesis, which has always been considered a strict extracellular bacterium, was evaluated using strains of varying virulence. This study demonstrates that intermediate virulent strains are significantly more susceptible to phagocytosis than virulent strains. Hence, subsequent localization of these strains within the phagosome results in recognition of bacterial nucleic acids by Toll-like receptors 7 and 9, leading to activation of the interferon regulatory factors 1, 3, and 7 and production of IFN-β. Type I IFN, whose implication depends on the virulence level of the S. suis strain, is involved in host defense by participating in the modulation of systemic inflammation, which is responsible for the clearance of blood bacterial burden. As such, when induced by intermediate, and to a lesser extent, virulent S. suis strains, type I IFN plays a beneficial role in host survival. The highly virulent ST7 strain, however, hastily induces a septic shock that cannot be controlled by type I IFN, leading to rapid death of the host. A better understanding of the underlying mechanisms involved in the control of inflammation and subsequent bacterial burden could help to develop control measures for this important porcine and zoonotic agent. PMID:28894449
Schuster, Susan; Tholen, Lotte E; Overheul, Gijs J; van Kuppeveld, Frank J M; van Rij, Ronald P
2017-01-01
Antiviral immunity in insects and plants is mediated by the RNA interference (RNAi) pathway in which viral long double-stranded RNA (dsRNA) is processed into small interfering RNAs (siRNAs) by Dicer enzymes. Although this pathway is evolutionarily conserved, its involvement in antiviral defense in mammals is the subject of debate. In vertebrates, recognition of viral RNA induces a sophisticated type I interferon (IFN)-based immune response, and it has been proposed that this response masks or inhibits antiviral RNAi. To test this hypothesis, we analyzed viral small RNA production in differentiated cells deficient in the cytoplasmic RNA sensors RIG-I and MDA5. We did not detect 22-nucleotide (nt) viral siRNAs upon infection with three different positive-sense RNA viruses. Our data suggest that the depletion of cytoplasmic RIG-I-like sensors is not sufficient to uncover viral siRNAs in differentiated cells. IMPORTANCE The contribution of the RNA interference (RNAi) pathway in antiviral immunity in vertebrates has been widely debated. It has been proposed that RNAi possesses antiviral activity in mammalian systems but that its antiviral effect is masked by the potent antiviral interferon response in differentiated mammalian cells. In this study, we show that inactivation of the interferon response is not sufficient to uncover antiviral activity of RNAi in human epithelial cells infected with three wild-type positive-sense RNA viruses.
Hoffman, Kevin W; Sachs, David; Bardina, Susana V; Michlmayr, Daniela; Rodriguez, Carlos A; Sum, Janet; Foster, Gregory A; Krysztof, David; Stramer, Susan L; Lim, Jean K
2016-08-15
West Nile virus (WNV) is an emerging cause of meningitis and encephalitis in the United States. Although severe neuroinvasive disease and death can occur in rare instances, the majority of infected individuals remain asymptomatic or present with a range of clinical manifestations associated with West Nile fever. To better understand the interindividual variability associated with the majority of WNV infections, we evaluated the association of cytokine/chemokine production and outcome of infection among 115 WNV-positive US blood donors identified in 2008-2011. All subjects self-reported symptoms as having occurred during the 2 weeks following blood donation, using a standardized questionnaire. We discovered that, prior to seroconversion, an early potent, largely type I interferon-mediated response correlated with development of a greater number of symptoms in WNV-infected individuals. Interestingly, individuals who developed fewer symptoms had not only a more modest type I interferon response initially, but also a protracted cytokine response after seroconversion, marked by the production of monocyte and T-cell-associated chemokines. Collectively, our data suggest that, although an early type I interferon response appears to be crucial to control WNV infection, successful immunity may require a modest early response that is maintained during the course of infection. © The Author 2016. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail journals.permissions@oup.com.
Tumour ischaemia by interferon-γ resembles physiological blood vessel regression.
Kammertoens, Thomas; Friese, Christian; Arina, Ainhoa; Idel, Christian; Briesemeister, Dana; Rothe, Michael; Ivanov, Andranik; Szymborska, Anna; Patone, Giannino; Kunz, Severine; Sommermeyer, Daniel; Engels, Boris; Leisegang, Matthias; Textor, Ana; Fehling, Hans Joerg; Fruttiger, Marcus; Lohoff, Michael; Herrmann, Andreas; Yu, Hua; Weichselbaum, Ralph; Uckert, Wolfgang; Hübner, Norbert; Gerhardt, Holger; Beule, Dieter; Schreiber, Hans; Blankenstein, Thomas
2017-05-04
The relative contribution of the effector molecules produced by T cells to tumour rejection is unclear, but interferon-γ (IFNγ) is critical in most of the analysed models. Although IFNγ can impede tumour growth by acting directly on cancer cells, it must also act on the tumour stroma for effective rejection of large, established tumours. However, which stroma cells respond to IFNγ and by which mechanism IFNγ contributes to tumour rejection through stromal targeting have remained unknown. Here we use a model of IFNγ induction and an IFNγ-GFP fusion protein in large, vascularized tumours growing in mice that express the IFNγ receptor exclusively in defined cell types. Responsiveness to IFNγ by myeloid cells and other haematopoietic cells, including T cells or fibroblasts, was not sufficient for IFNγ-induced tumour regression, whereas responsiveness of endothelial cells to IFNγ was necessary and sufficient. Intravital microscopy revealed IFNγ-induced regression of the tumour vasculature, resulting in arrest of blood flow and subsequent collapse of tumours, similar to non-haemorrhagic necrosis in ischaemia and unlike haemorrhagic necrosis induced by tumour necrosis factor. The early events of IFNγ-induced tumour ischaemia resemble non-apoptotic blood vessel regression during development, wound healing or IFNγ-mediated, pregnancy-induced remodelling of uterine arteries. A better mechanistic understanding of how solid tumours are rejected may aid the design of more effective protocols for adoptive T-cell therapy.
Specificity in Toll-like receptor signalling through distinct effector functions of TRAF3 and TRAF6.
Häcker, Hans; Redecke, Vanessa; Blagoev, Blagoy; Kratchmarova, Irina; Hsu, Li-Chung; Wang, Gang G; Kamps, Mark P; Raz, Eyal; Wagner, Hermann; Häcker, Georg; Mann, Matthias; Karin, Michael
2006-01-12
Toll-like receptors (TLRs) are activated by pathogen-associated molecular patterns to induce innate immune responses and production of pro-inflammatory cytokines, interferons and anti-inflammatory cytokines. TLRs activate downstream effectors through adaptors that contain Toll/interleukin-1 receptor (TIR) domains, but the mechanisms accounting for diversification of TLR effector functions are unclear. To dissect biochemically TLR signalling, we established a system for isolating signalling complexes assembled by dimerized adaptors. Using MyD88 as a prototypical adaptor, we identified TNF receptor-associated factor 3 (TRAF3) as a new component of TIR signalling complexes that is recruited along with TRAF6. Using myeloid cells from TRAF3- and TRAF6-deficient mice, we show that TRAF3 is essential for the induction of type I interferons (IFN) and the anti-inflammatory cytokine interleukin-10 (IL-10), but is dispensable for expression of pro-inflammatory cytokines. In fact, TRAF3-deficient cells overproduce pro-inflammatory cytokines owing to defective IL-10 production. Despite their structural similarity, the functions of TRAF3 and TRAF6 are largely distinct. TRAF3 is also recruited to the adaptor TRIF (Toll/IL-1 receptor domain-containing adaptor-inducing IFN-beta) and is required for marshalling the protein kinase TBK1 (also called NAK) into TIR signalling complexes, thereby explaining its unique role in activation of the IFN response.
Hellesen, A; Edvardsen, K; Breivik, L; Husebye, E S; Bratland, E
2014-06-01
Autoimmune Addison's disease (AAD) is caused by selective destruction of the hormone-producing cells of the adrenal cortex. As yet, little is known about the potential role played by environmental factors in this process. Type I and/or type III interferons (IFNs) are signature responses to virus infections, and have also been implicated in the pathogenesis of autoimmune endocrine disorders such as type 1 diabetes and autoimmune thyroiditis. Transient development of AAD and exacerbation of established or subclinical disease, as well as the induction of autoantibodies associated with AAD, have been reported following therapeutic administration of type I IFNs. We therefore hypothesize that exposure to such IFNs could render the adrenal cortex susceptible to autoimmune attack in genetically predisposed individuals. In this study, we investigated possible immunopathological effects of type I and type III IFNs on adrenocortical cells in relation to AAD. Both types I and III IFNs exerted significant cytotoxicity on NCI-H295R adrenocortical carcinoma cells and potentiated IFN-γ- and polyinosine-polycytidylic acid [poly (I : C)]-induced chemokine secretion. Furthermore, we observed increased expression of human leucocyte antigen (HLA) class I molecules and up-regulation of 21-hydroxylase, the primary antigenic target in AAD. We propose that these combined effects could serve to initiate or aggravate an ongoing autoimmune response against the adrenal cortex in AAD. © 2014 British Society for Immunology.
Hellesen, A; Edvardsen, K; Breivik, L; Husebye, E S; Bratland, E
2014-01-01
Autoimmune Addison's disease (AAD) is caused by selective destruction of the hormone-producing cells of the adrenal cortex. As yet, little is known about the potential role played by environmental factors in this process. Type I and/or type III interferons (IFNs) are signature responses to virus infections, and have also been implicated in the pathogenesis of autoimmune endocrine disorders such as type 1 diabetes and autoimmune thyroiditis. Transient development of AAD and exacerbation of established or subclinical disease, as well as the induction of autoantibodies associated with AAD, have been reported following therapeutic administration of type I IFNs. We therefore hypothesize that exposure to such IFNs could render the adrenal cortex susceptible to autoimmune attack in genetically predisposed individuals. In this study, we investigated possible immunopathological effects of type I and type III IFNs on adrenocortical cells in relation to AAD. Both types I and III IFNs exerted significant cytotoxicity on NCI-H295R adrenocortical carcinoma cells and potentiated IFN-γ-and polyinosine-polycytidylic acid [poly (I : C)]-induced chemokine secretion. Furthermore, we observed increased expression of human leucocyte antigen (HLA) class I molecules and up-regulation of 21-hydroxylase, the primary antigenic target in AAD. We propose that these combined effects could serve to initiate or aggravate an ongoing autoimmune response against the adrenal cortex in AAD. PMID:24666275
H-Ras Exerts Opposing Effects on Type I Interferon Responses Depending on Its Activation Status.
Chen, Guann-An; Lin, Yun-Ru; Chung, Hai-Ting; Hwang, Lih-Hwa
2017-01-01
Using shRNA high-throughput screening, we identified H-Ras as a regulator of antiviral activity, whose depletion could enhance Sindbis virus replication. Further analyses indicated that depletion of H-Ras results in a robust increase in vesicular stomatitis virus infection and a decrease in Sendai virus (SeV)-induced retinoic acid-inducible gene-I-like receptor (RLR) signaling. Interestingly, however, ectopic expression of wild-type H-Ras results in a biphasic mode of RLR signaling regulation: while low-level expression of H-Ras enhances SeV-induced RLR signaling, high-level expression of H-Ras significantly inhibits this signaling. The inhibitory effects correlate with the activation status of H-Ras. As a result, oncogenic H-Ras, H-RasV12, strongly inhibits SeV-induced IFN-β promoter activity and type I interferon signaling. Conversely, the positive effects exerted by H-Ras on RLR signaling are independent of its signaling activity, as a constitutively inactive form of H-Ras, H-RasN17, also positively regulates RLR signaling. Mechanistically, we demonstrate that depletion of H-Ras reduces the formation of MAVS-TNF receptor-associated factor 3 signaling complexes. These results reveal that the H-Ras protein plays a role in promoting MAVS signalosome assembly in the mitochondria, whereas oncogenic H-Ras exerts a negative effect on type I IFN responses.
Structures of apo IRF-3 and IRF-7 DNA binding domains: effect of loop L1 on DNA binding
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Ioannes, Pablo; Escalante, Carlos R.; Aggarwal, Aneel K.
2013-11-20
Interferon regulatory factors IRF-3 and IRF-7 are transcription factors essential in the activation of interferon-{beta} (IFN-{beta}) gene in response to viral infections. Although, both proteins recognize the same consensus IRF binding site AANNGAAA, they have distinct DNA binding preferences for sites in vivo. The X-ray structures of IRF-3 and IRF-7 DNA binding domains (DBDs) bound to IFN-{beta} promoter elements revealed flexibility in the loops (L1-L3) and the residues that make contacts with the target sequence. To characterize the conformational changes that occur on DNA binding and how they differ between IRF family members, we have solved the X-ray structures ofmore » IRF-3 and IRF-7 DBDs in the absence of DNA. We found that loop L1, carrying the conserved histidine that interacts with the DNA minor groove, is disordered in apo IRF-3 but is ordered in apo IRF-7. This is reflected in differences in DNA binding affinities when the conserved histidine in loop L1 is mutated to alanine in the two proteins. The stability of loop L1 in IRF-7 derives from a unique combination of hydrophobic residues that pack against the protein core. Together, our data show that differences in flexibility of loop L1 are an important determinant of differential IRF-DNA binding.« less
Williams, Roderick; Dias, Daniel A; Jayasinghe, Nirupama; Roessner, Ute; Bennett, Louise E
2016-04-15
Regulation of the human immune system requires controlled pro- and anti-inflammatory responses for host defence against infection and disease states. Yeasts (Saccharomyces cerevisiae), as used in brewing and baking, are mostly known for ability to stimulate the human immune-system predominantly reflecting the pro-inflammatory cell wall β-glucans. However, in this study, using food-compatible processing methods, glycopeptide-enriched and β-glucan-depleted products were each prepared from Brewer's and Baker's yeasts, which suppressed production of interferon-γ (IFN-γ) in human whole blood cell assay, signifying that anti-inflammatory factors are also present in yeast. Anti-inflammatory bioactivities of products prepared from Brewer's and Baker's yeast were compared with the commercial yeast product, Epicor®. While unfractionated Epicor was inactive, the C18 resin-binding fractions of Brewer's and Baker's yeast products and Epicor dose-dependently lowered IFN-γ, demonstrating that Epicor also contained both pro-inflammatory (β-glucans) and anti-inflammatory components. Anti-inflammatory activity was attributed to C18 resin-binding species glyco-peptides in Epicor and experimental yeast products. This study demonstrated that pro- and anti-inflammatory factors could be resolved and enriched in yeasts by suitable processing, with potential to improve specific activities. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Repression of Virus-Induced Interferon A Promoters by Homeodomain Transcription Factor Ptx1
Lopez, Sébastien; Island, Marie-Laure; Drouin, Jacques; Bandu, Marie-Thérese; Christeff, Nicolas; Darracq, Nicole; Barbey, Régine; Doly, Janine; Thomas, Dominique; Navarro, Sébastien
2000-01-01
Interferon A (IFN-A) genes are differentially expressed after virus induction. The differential expression of individual IFN-A genes is modulated by substitutions in the proximal positive virus responsive element A (VRE-A) of their promoters and by the presence or absence of a distal negative regulatory element (DNRE). The functional feature of the DNRE is to specifically act by repression of VRE-A activity. With the use of the yeast one-hybrid system, we describe here the identification of a specific DNRE-binding protein, the pituitary homeobox 1 (Ptx1 or Pitx1). Ptx1 is detectable in different cell types that differentially express IFN-A genes, and the endogenous Ptx1 protein binds specifically to the DNRE. Upon virus induction, Ptx1 negatively regulates the transcription of DNRE-containing IFN-A promoters, and the C-terminal region, as well as the homeodomain of the Ptx1 protein, is required for this repression. After virus induction, the expression of the Ptx1 antisense RNA leads to a significant increase of endogenous IFN-A gene transcription and is able to modify the pattern of differential expression of individual IFN-A genes. These studies suggest that Ptx1 contributes to the differential transcriptional strength of the promoters of different IFN-A genes and that these genes may provide new targets for transcriptional regulation by a homeodomain transcription factor. PMID:11003649
Cappelli, G; Volpe, P; Sanduzzi, A; Sacchi, A; Colizzi, V; Mariani, F
2001-12-01
Mycobacterium tuberculosis is an intracellular pathogen that readily survives and replicates in human macrophages (MPhi). Host cells have developed different mycobactericidal mechanisms, including the production of inflammatory cytokines. The aim of this study was to compare the MPhi response, in terms of cytokine gene expression, to infection with the M. tuberculosis laboratory strain H37Rv and the clinical M. tuberculosis isolate CMT97. Both strains induce the production of interleukin-12 (IL-12) and IL-16 at comparable levels. However, the clinical isolate induces a significantly higher and more prolonged MPhi activation, as shown by reverse transcription-PCR analysis of IL-1beta, IL-6, IL-10, transforming growth factor beta, tumor necrosis factor alpha, and gamma interferon (IFN-gamma) transcripts. Interestingly, when IFN-gamma transcription is high, the number of M. tuberculosis genes expressed decreases and vice versa, whereas no mycobactericidal effect was observed in terms of bacterial growth. Expression of 11 genes was also studied in the two M. tuberculosis strains by infecting resting or activated MPhi and compared to bacterial intracellular survival. In both cases, a peculiar inverse correlation between expression of these genes and multiplication was observed. The number and type of genes expressed by the two strains differed significantly.
Abdoon, Ahmed Sabry; Giraud-Delville, Corrine; Kandil, Omaima Mohamed; Kerboeuf-Giraud, Annelye; Eozénou, Caroline; Carvalho, Anais Vitorino; Julian, Skidmore; Sandra, Olivier
2017-03-01
Maternal recognition of pregnancy (MRP) and implantation involve appropriate interactions between the elongating conceptus and the receptive endometrium that will condition development of the feto-placental unit to term. Molecular mechanisms that take place at the conceptus-endometrium interface during early pregnancy have been extensively investigated in domestic ungulates but they are still poorly understood in camelids including the dromedary camel (Camelus dromedarius), a domestic species with important economic and social roles in arid and semi-arid areas. In order to better understand how MRP and implantation take place in the left horn of this species, we investigated expression levels of genes encoding steroid hormones (PGR, ESR1), transcription factors (STAT1, FOXL2), interferon stimulated genes (MX1, MX2, OAS1, RSAD2) including SOCS genes (SOCS1, SOCS2, SOCS3 and CISH), previously identified as conceptus regulated genes in the endometrium of other domestic animals. Using endometrial tissue collected from left and right uterine horns of dromedary camel females that were non pregnant or early pregnant, gene expression of these genes was detected and our results provided first insights on their regulation, showing that (i) conceptus implantation is not associated with an IFN response in the pregnant uterine horn (ii) when regulation of classical interferon-stimulated genes (ISG) occurs, it takes place during the formation of the feto-placental unit, and (iii) gene expression can differ between the left and right uterine horns during implantation and early placentation phase. Additional experiments will be required in dromedary camels to understand the unusual regulation of ISG during implantation as well as to determine the molecular processes that drive the systematic implantation of the elongating conceptus in the left uterine horn. Copyright © 2017 Elsevier Inc. All rights reserved.
Wuest, Todd; Austin, Bobbie Ann; Uematsu, Satoshi; Thapa, Manoj; Akira, Shizuo; Carr, Daniel J. J.
2006-01-01
Herpes simplex virus type 1 ocular infection elicits a potent inflammatory response including the production of the chemokines, CXCL9 and CXCL10, in mice. Since HSV-1 nucleic acid is recognized by pattern receptors including toll-like receptor (TLR) 9, we tested the hypothesis that TLR9 is necessary for the early augmentation of CXCL10 following HSV-1 infection. Similar to wild type controls, TLR9 deficient mice constitutively expressed CXCL10 in the cornea. Following infection or stimulation with the deoxycytidylate-phosphate-deoxyguanylate (CpG) motif, CXCL10 levels were significantly elevated in the cornea of wild type but not TLR9 or type I interferon receptor deficient mice. The reduced CXCL10 response in the cornea of TLR deficient mice was correlative with an increase in virus shedding and a reduction in neutrophil infiltration. This is the first report that shows enhanced CXCL10 expression following neurotropic viral replication requires both intact TLR 9 and type I interferon signaling pathways. PMID:16884784
Zhang, Lu; Mo, Jinyao; Swanson, Karen V.; Wen, Haitao; Petrucelli, Alex; Gregory, Sean M.; Zhang, Zhigang; Schneider, Monika; Jiang, Yan; Fitzgerald, Katherine A.; Ouyang, Songying; Liu, Zhi-Jie; Damania, Blossom A; Shu, Hong-Bing; Duncan, Joseph A.; Ting, Jenny P-Y.
2014-01-01
SUMMARY Stimulator of interferon genes (STING, also named MITA, MYPS or ERIS) is an intracellular DNA sensor that induces type I interferon through its interaction with TANK-binding kinase 1 (TBK1). Here we found that the nucleotide-binding, leucine-rich repeat containing protein, NLRC3, reduced STING-dependent innate immune activation in response to cytosolic DNA, cyclic di-GMP (c-di-GMP) and DNA viruses. NLRC3 associated with both STING and TBK1, and impeded STING-TBK1 interaction and downstream type I interferon production. Using purified recombinant proteins NLRC3 was found to interact directly with STING. Furthermore, NLRC3 prevented proper trafficking of STING to perinuclear and punctated region, known to be important for its activation. In animals, herpes simplex virus 1 (HSV-1)-infected Nlrc3−/− mice exhibited enhanced innate immunity, reduced morbidity and viral load. This demonstrates the intersection of two key pathways of innate immune regulation, NLR and STING, to fine tune host response to intracellular DNA, DNA virus and c-di-GMP PMID:24560620
Schirtzinger, Erin E; Andrade, Christy C; Devitt, Nicholas; Ramaraj, Thiruvarangan; Jacobi, Jennifer L; Schilkey, Faye; Hanley, Kathryn A
2015-02-01
RNA interference (RNAi) is the major defense of many arthropods against arthropod-borne RNA viruses (arboviruses), but the role of RNAi in vertebrate immunity to arboviruses is not clear. RNA viruses can trigger RNAi in vertebrate cells, but the vertebrate interferon response may obscure this interaction. We quantified virus-derived small RNAs (vRNAs) generated by mosquito (U4.4) cells and interferon-deficient (Vero) and interferon-competent (HuH-7) mammalian cells infected with a single isolate of mosquito-borne dengue virus. Mosquito cells produced significantly more vRNAs than mammalian cells, and mosquito cell vRNAs were derived from both the positive- and negative-sense dengue genomes whereas mammalian cell vRNAs were derived primarily from positive-sense genome. Mosquito cell vRNAs were predominantly 21 nucleotides in length whereas mammalian cell vRNAs were between 12 and 36 nucleotides with a modest peak at 24 nucleotides. Hot-spots, regions of the virus genome that generated a disproportionate number of vRNAs, overlapped among the cell lines. Copyright © 2014 Elsevier Inc. All rights reserved.
Bowick, Gavin C; Airo, Adriana M; Bente, Dennis A
2012-06-19
Crimean Congo hemorrhagic fever (CCHF) is a tick-borne hemorrhagic zoonosis associated with high mortality. Pathogenesis studies and the development of vaccines and antivirals against CCHF have been severely hampered by the lack of suitable animal model. We recently developed and characterized a mature mouse model for CCHF using mice carrying STAT1 knockout (KO). Given the importance of interferons in controlling viral infections, we investigated the expression of interferon pathway-associated genes in KO and wild-type (WT) mice challenged with CCHF virus. We expected that the absence of the STAT1 protein would result in minimal expression of IFN-related genes. Surprisingly, the KO mice showed high levels of IFN-stimulated gene expression, beginning on day 2 post-infection, while in WT mice challenged with virus the same genes were expressed at similar levels on day 1. We conclude that CCHF virus induces similar type I IFN responses in STAT1 KO and WT mice, but the delayed response in the KO mice permits rapid viral dissemination and fatal illness.
Meyerson, Nicholas R; Zhou, Ligang; Guo, Yusong R; Zhao, Chen; Tao, Yizhi J; Krug, Robert M; Sawyer, Sara L
2017-11-08
TRIM25 is an E3 ubiquitin ligase that activates RIG-I to promote the antiviral interferon response. The NS1 protein from all strains of influenza A virus binds TRIM25, although not all virus strains block the interferon response, suggesting alternative mechanisms for TRIM25 action. Here we present a nuclear role for TRIM25 in specifically restricting influenza A virus replication. TRIM25 inhibits viral RNA synthesis through a direct mechanism that is independent of its ubiquitin ligase activity and the interferon pathway. This activity can be inhibited by the viral NS1 protein. TRIM25 inhibition of viral RNA synthesis results from its binding to viral ribonucleoproteins (vRNPs), the structures containing individual viral RNA segments, the viral polymerase, and multiple viral nucleoproteins. TRIM25 binding does not inhibit initiation of capped-RNA-primed viral mRNA synthesis by the viral polymerase. Rather, the onset of RNA chain elongation is inhibited because TRIM25 prohibits the movement of RNA into the polymerase complex. Copyright © 2017 Elsevier Inc. All rights reserved.
Harada, Toshie; Kawaminami, Hiromi; Miura, Noriko N; Adachi, Yoshiyuki; Nakajima, Mitsuhiro; Yadomae, Toshiro; Ohno, Naohito
2006-01-01
SCG is a major 6-branched 1,3-beta-D-glucan in Sparassis crispa Fr. SCG shows antitumor activity and also enhances the hematopoietic response in cyclophosphamide (CY)-treated mice. In the present study, the molecular mechanism of the enhancement of the hematopoietic response was investigated. The levels of interferon-(IFN-)gamma, tumor necrosis factor-(TNF-)alpha, granulocyte-macrophage-colony stimulating factor (GM-CSF), interleukin-(IL-) 6 and IL-12p70 were significantly increased by SCG in CY-treated mice. GM-CSF production in the splenocytes from the CY-treated mice was higher than that in normal mice regardless of SCG stimulation. Neutralizing GM-CSF significantly inhibited the induction of IFN-gamma, TNF-alpha and IL-12p70 by SCG. The level of cytokine induction by SCG was regulated by the amount of endogenous GM-CSF produced in response to CY treatment in a dose-dependent manner. The expression of beta-glucan receptors, such as CR3 and dectin-1, was up-regulated by CY treatment. Blocking dectin-1 significantly inhibited the induction of TNF-alpha and IL-12p70 production by SCG. Taken together, these results suggest that the key factors in the cytokine induction in CY-treated mice were the enhanced levels of both endogenous GM-CSF production and dectin-1 expression.
Antiviral activity of ovine interferon tau 4 against foot-and-mouth disease virus.
Usharani, Jayaramaiah; Park, Sun Young; Cho, Eun-Ju; Kim, Chungsu; Ko, Young-Joon; Tark, Dongseob; Kim, Su-Mi; Park, Jong-Hyeon; Lee, Kwang-Nyeong; Lee, Myoung-Heon; Lee, Hyang-Sim
2017-07-01
Foot-and-mouth disease (FMD) is an economically important disease in most parts of the world and new therapeutic agents are needed to protect the animals before vaccination can trigger the host immune response. Although several interferons have been used for their antiviral activities against Foot-and-mouth disease virus (FMDV), ovine interferon tau 4 (OvIFN-τ4), with a broad-spectrum of action, cross-species antiviral activity, and lower incidence of toxicity in comparison to other type І interferons, has not yet been evaluated for this indication. This is the first study to evaluate the antiviral activity of OvIFN-τ4 against various strains of FMDV. The effective anti-cytopathic concentration of OvIFN-τ4 and its effectiveness pre- and post-infection with FMDV were tested in vitro in LFBK cells. In vivo activity of OvIFN-τ4 was then confirmed in a mouse model of infection. OvIFN-τ4 at a concentration of 500 ng, protected mice until 5days post-FMDV challenge and provided 90% protection for 10 days following FMDV challenge. These results suggest that OvIFN-τ4 could be used as an alternative to other interferons or antiviral agents at the time of FMD outbreak. Copyright © 2017. Published by Elsevier B.V.
Zhou, Xiao-Ming; Chan, Paul KS; Tam, John S
2011-01-01
AIM: To explore mutations around the interferon sensitivity-determining region (ISDR) which are associated with the resistance of hepatitis C virus 1b (HCV-1b) to interferon-α treatment. METHODS: Thirty-seven HCV-1b samples were obtained from Hong Kong patients who had completed the combined interferon-α/ribavirin treatment for more than one year with available response data. Nineteen of them were sustained virological responders, while 18 were non-responders. The amino acid sequences of the extended ISDR (eISDR) covering 64 amino acids upstream and 67 amino acids downstream from the previously reported ISDR were analyzed. RESULTS: One amino acid variation (I2268V, P = 0.023) was significantly correlated with treatment outcome in this pilot study with a limited number of patients, while two amino acid variations (R2260H, P = 0.05 and S2278T, P = 0.05) were weakly associated with treatment outcome. The extent of amino acid variations within the ISDR or eISDR was not correlated with treatment outcome as previously reported. CONCLUSION: Three amino acid mutations near but outside of ISDR may associate with interferon treatment resistance of HCV-1b patients in Hong Kong. PMID:22219602
Innate immune response to Burkholderia mallei
Saikh, Kamal U.; Mott, Tiffany M.
2017-01-01
Purpose of review Burkholderia mallei is a facultative intracellular pathogen that causes the highly contagious and often the fatal disease, glanders. With its high rate of infectivity via aerosol and recalcitrance toward antibiotics, this pathogen is considered a potential biological threat agent. This review focuses on the most recent literature highlighting host innate immune response to B. mallei. Recent findings Recent studies focused on elucidating host innate immune responses to the novel mechanisms and virulence factors employed by B. mallei for survival. Studies suggest that pathogen proteins manipulate various cellular processes, including host ubiquitination pathways, phagosomal escape, and actin–cytoskeleton rearrangement. Immune-signaling molecules such as Toll-like receptors, nucleotode-binding oligomerization domain, myeloid differentiation primary response protein 88, and proinflammatory cytokines such as interferon-gamma and tumor necrosis factor-α, play key roles in the induction of innate immune responses. Modifications in B. mallei lipopolysaccharide, in particular, the lipid A acyl groups, stimulate immune responses via Toll-like receptor4 activation that may contribute to persistent infection. Summary Mortality is high because of septicemia and immune pathogenesis with B. mallei exposure. An effective innate immune response is critical to controlling the acute phase of the infection. Both vaccination and therapeutic approaches are necessary for complete protection against B. mallei. PMID:28177960
Management of hepatitis C infection in the era of direct-acting antiviral therapy
NASA Astrophysics Data System (ADS)
Zain, L. H.; Sungkar, T.
2018-03-01
Hepatitis C viral infection globally affects millions of people and commonly results in debilitating complications and mortality. Initial mainstay therapy consisted of pegylated interferon α (pegIFNα) with additional ribavirin that showed unsatisfactory cure rate, common side effects and complicated dosing, contributing to high discontinuation rate. Over the last few years, newer antivirals have been extensively studied, that are Direct-Acting Antivirals (DAAs). Specifically targeting viral protein mainly during replication phase, DAAs showed greater cure rate (commonly measured as sustained virologic response), improved safety profile and shorter treatment duration compared to traditional interferon-ribavirin therapy. Current guidelines have also included Interferon-free, often ribavirin-free, DAAs combinations that suggest promising outcomes. The current review highlights development of rapidly growing hepatitis C treatment including DAAs recommendations.
Swedan, Samer; Musiyenko, Alla; Barik, Sailen
2009-10-01
Viruses of the Paramyxoviridae family, such as the respiratory syncytial virus (RSV), suppress cellular innate immunity represented by type I interferon (IFN) for optimal growth in their hosts. The two unique nonstructural (NS) proteins, NS1 and NS2, of RSV suppress IFN synthesis, as well as IFN function, but their exact targets are still uncharacterized. Here, we investigate if either or both of the NS proteins affect the steady-state levels of key members of the IFN pathway. We found that both NS1 and NS2 decreased the levels of TRAF3, a strategic integrator of multiple IFN-inducing signals, although NS1 was more efficient. Only NS1 reduced IKKepsilon, a key protein kinase that specifically phosphorylates and activates IFN regulatory factor 3. Loss of the TRAF3 and IKKepsilon proteins appeared to involve a nonproteasomal mechanism. Interestingly, NS2 modestly increased IKKepsilon levels. In the IFN response pathway, NS2 decreased the levels of STAT2, the essential transcription factor for IFN-inducible antiviral genes. Preliminary mapping revealed that the C-terminal 10 residues of NS1 were essential for reducing IKKepsilon levels and the C-terminal 10 residues of NS2 were essential for increasing and reducing IKKepsilon and STAT2, respectively. In contrast, deletion of up to 20 residues of the C termini of NS1 and NS2 did not diminish their TRAF3-reducing activity. Coimmunoprecipitation studies revealed that NS1 and NS2 form a heterodimer. Clearly, the NS proteins of RSV, working individually and together, regulate key signaling molecules of both the IFN activation and response pathways.
O’Connor, Jason C.; André, Caroline; Wang, Yunxia; Lawson, Marcus A.; Szegedi, Sandra S.; Lestage, Jacques; Castanon, Nathalie; Kelley, Keith W.; Dantzer, Robert
2010-01-01
Although the tryptophan-degrading enzyme, indoleamine 2,3-dioxygenase (IDO), is a pivotal mediator of inflammation-induced depression, its mechanism of regulation has not yet been investigated in this context. Here, we demonstrate an essential role for interferon (IFN)γ and tumor necrosis factor (TNF)α in the induction of IDO and depressive-like behaviors in response to chronic immune activation. Wild-type (WT) control mice and IFNγR−/− mice were inoculated with an attenuated form of Mycobacterium bovis, bacille Calmette-Guérin (BCG). Infection with BCG induced an acute episode of sickness that was similar in WT and IFNγR−/− mice. Increased immobility during the forced swim and tail suspension tests occurred in WT mice 7 d after BCG inoculation but was entirely absent in IFNγR−/− mice. In WT mice, these indices of depressive-like behavior were associated with chronic upregulation of IFNγ, interleukin(IL)-1β, TNFα, and IDO. Proinflammatory cytokine expression was elevated in BCG-infected IFNγR−/− mice as well, but upregulation of lung and brain IDO mRNA was completely abolished. This was accompanied by an attenuation of BCG-induced TNFα mRNA and the lack of an increase in plasma kynurenine/tryptophan ratio in the BCG-inoculated IFNγR−/− mice compared with WT controls. Pretreatment of mice with the TNFα antagonist, etanercept, partially blunted BCG-induced IDO activation and depressive-like behavior. In accordance with these in vivo data, IFNγ and TNFα synergized to induce IDO in primary microglia. Together, these data demonstrate that IFNγ, with TNFα, is necessary for induction of IDO and depressive-like behavior in mice after BCG infection. PMID:19339614
Bentz, Gretchen L.; Shackelford, Julia
2012-01-01
Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) induces multiple signal transduction pathways during latent EBV infection via its C-terminal activating region 1 (CTAR1), CTAR2, and the less-studied CTAR3. One mechanism by which LMP1 regulates cellular activation is through the induction of protein posttranslational modifications, including phosphorylation and ubiquitination. We recently documented that LMP1 induces a third major protein modification by physically interacting with the SUMO-conjugating enzyme Ubc9 through CTAR3 and inducing the sumoylation of cellular proteins in latently infected cells. We have now identified a specific target of LMP1-induced sumoylation, interferon regulatory factor 7 (IRF7). We hypothesize that during EBV latency, LMP1 induces the sumoylation of IRF7, limiting its transcriptional activity and modulating the activation of innate immune responses. Our data show that endogenously sumoylated IRF7 is detected in latently infected EBV lymphoblastoid cell lines. LMP1 expression coincided with increased sumoylation of IRF7 in a CTAR3-dependent manner. Additional experiments show that LMP1 CTAR3-induced sumoylation regulates the expression and function of IRF7 by decreasing its turnover, increasing its nuclear retention, decreasing its DNA binding, and limiting its transcriptional activation. Finally, we identified that IRF7 is sumoylated at lysine 452. These data demonstrate that LMP1 CTAR3 does in fact function in intracellular signaling, leading to biologic effects. We propose that CTAR3 is an important signaling region of LMP1 that regulates protein function by sumoylation. We have shown specifically that LMP1 CTAR3, in cooperation with CTAR2, can limit the ability of IRF7 to induce innate immune responses by inducing the sumoylation of IRF7. PMID:22951831
Treatment of three patients with systemic mastocytosis with interferon alpha-2b.
Worobec, A S; Kirshenbaum, A S; Schwartz, L B; Metcalfe, D D
1996-08-01
It has been reported that the administration of interferon alpha-2b is of potential benefit in the treatment of mastocytosis based on a single patient study (NEJM, Feb 27, 1992, 326(9):619-623). Following this report, we administered interferon alpha-2b at a dose of 4 to 5 million units per square meter of body surface area for at least 12 months to one patient with mastocytosis with an associated hematologic disorder (patient 1), one patient with aggressive systemic mastocytosis (patient 2), and one patient with indolent mastocytosis (patient 3). Patients were monitored with the following clinical and laboratory parameters: serial bone marrow biopsies and aspirates, patient log of histamine release attacks, medication dependency, plasma tryptase levels, serum lactate dehydrogenase (LDH) levels, white blood cell counts and differentials, extent of urticaria pigmentosa lesions, bony involvement, and extent of gastrointestinal involvement and hepatomegaly. We also examined the ability of interferon alpha-2b to inhibit recombinant human stem cell factor (rhSCF)-dependent mast cell proliferation from CD34+ bone marrow-derived cells. All patients demonstrated continued progression of disease in one or more clinical criteria at one year of therapy. Similarly, interferon alpha-2b did not inhibit the culture of mast cells from CD34+ bone marrow-derived cells in the presence of SCF. Thus, in our study of three patients with systemic mastocytosis, treatment with interferon alpha-2b was found to be ineffective in controlling progression of disease.
Kilday, John-Paul; Caldarelli, Massimo; Massimi, Luca; Chen, Robert Hsin-Hung; Lee, Yi Yen; Liang, Muh-Lii; Parkes, Jeanette; Naiker, Thuran; van Veelen, Marie-Lise; Michiels, Erna; Mallucci, Conor; Pettorini, Benedetta; Meijer, Lisethe; Dorfer, Christian; Czech, Thomas; Diezi, Manuel; Schouten-van Meeteren, Antoinette Y N; Holm, Stefan; Gustavsson, Bengt; Benesch, Martin; Müller, Hermann L; Hoffmann, Anika; Rutkowski, Stefan; Flitsch, Joerg; Escherich, Gabriele; Grotzer, Michael; Spoudeas, Helen A; Azquikina, Kristian; Capra, Michael; Jiménez-Guerra, Rolando; MacDonald, Patrick; Johnston, Donna L; Dvir, Rina; Constantini, Shlomi; Kuo, Meng-Fai; Yang, Shih-Hung; Bartels, Ute
2017-10-01
Craniopharyngiomas are frequent hypothalamo-pituitary tumors in children, presenting predominantly as cystic lesions. Morbidity from conventional treatment has focused attention on intracystic drug delivery, hypothesized to cause fewer clinical consequences. However, the efficacy of intracystic therapy remains unclear. We report the retrospective experiences of several global centers using intracystic interferon-alpha. European Société Internationale d'Oncologie Pédiatrique and International Society for Pediatric Neurosurgery centers were contacted to submit a datasheet capturing pediatric patients with cystic craniopharyngiomas who had received intracystic interferon-alpha. Patient demographics, administration schedules, adverse events, and outcomes were obtained. Progression was clinical or radiological (cyst reaccumulation, novel cysts, or solid growth). Fifty-six children (median age, 6.3 y) from 21 international centers were identified. Median follow-up from diagnosis was 5.1 years (0.3-17.7 y). Lesions were cystic (n = 22; 39%) or cystic/solid (n = 34; 61%). Previous progression was treated in 43 (77%) patients before interferon use. In such cases, further progression was delayed by intracystic interferon compared with the preceding therapy for cystic lesions (P = 0.0005). Few significant attributable side effects were reported. Progression post interferon occurred in 42 patients (median 14 mo; 0-8 y), while the estimated median time to definitive therapy post interferon was 5.8 (1.8-9.7) years. Intracystic interferon-alpha can delay disease progression and potentially offer a protracted time to definitive surgery or radiotherapy in pediatric cystic craniopharyngioma, yet demonstrates a favorable toxicity profile compared with other therapeutic modalities-important factors for this developing age group. A prospective, randomized international clinical trial assessment is warranted. © The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Neuro-Oncology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com
2016-12-12
of type I interferons on cells of the immune system. Clin Cancer Res 17: 755 2619-2627. 52. Le Bon A, Tough DF (2002) Links between innate and...debris, and inflammatory cell infiltrates. This model of ZIKV 45 pathogenesis will be valuable for evaluating medical countermeasures and the...The major limitation of these models is they utilize immunodeficient knockout mice that lack key components of the innate antiviral response. We
Association of a functional IRF7 variant with systemic lupus erythematosus.
Fu, Qiong; Zhao, Jian; Qian, Xiaoxia; Wong, Jonathan L H; Kaufman, Kenneth M; Yu, C Yung; Mok, Mo Yin; Harley, John B; Guthridge, Joel M; Song, Yeong Wook; Cho, Soo-Kyung; Bae, Sang-Cheol; Grossman, Jennifer M; Hahn, Bevra H; Arnett, Frank C; Shen, Nan; Tsao, Betty P
2011-03-01
A previous genome-wide association study conducted in a population of European ancestry identified rs4963128, a KIAA1542 single-nucleotide polymorphism (SNP) 23 kb telomeric to IRF7 (the gene for interferon regulatory factor 7 [IRF-7]), to be strongly associated with systemic lupus erythematosus (SLE). This study was undertaken to investigate whether genetic polymorphism within IRF7 is a risk factor for the development of SLE. We genotyped one KIAA1542 SNP (rs4963128) and one IRF7 SNP (rs1131665 [Q412R]) in an Asian population (1,302 cases, 1,479 controls), to assess their association with SLE. Subsequently, rs1131665 was further genotyped in independent panels of Chinese subjects (528 cases, 527 controls), European American subjects (446 cases, 461 controls), and African American subjects (159 cases, 115 controls) by TaqMan genotyping assay, to seek confirmation of association in various ethnic groups. A luciferase reporter assay was used to assess the effect of Q412R polymorphism on the activation of IRF-7. Consistent association of rs1131665 (Q412R) with SLE was identified in Asian, European American, and African American populations (total 2,435 cases and 2,582 controls) (P(meta) = 6.18 × 10(-6) , odds ratio 1.42 [95% confidence interval 1.22-1.65]). Expression of the IRF7 412Q risk allele resulted in a 2-fold increase in interferon-stimulated response element transcriptional activity compared with expression of IRF7 412R (P = 0.0003), suggesting that IRF7 412Q confers elevated IRF-7 activity and may therefore affect a downstream interferon pathway. These findings show that the major allele of a nonsynonymous SNP, rs1131665 (412Q) in IRF7, confers elevated activation of IRF-7 and predisposes to the development of SLE in multiple ethnic groups. This result provides direct genetic evidence that IRF7 may be a risk gene for human SLE. Copyright © 2011 by the American College of Rheumatology.
Kalveram, Birte; Lihoradova, Olga; Indran, Sabarish V; Ikegami, Tetsuro
2011-11-01
Rift Valley fever virus (RVFV), which causes hemorrhagic fever, neurological disorders or blindness in humans, and a high rate abortion and fetal malformation in ruminants, has been classified as a HHS/USDA overlap select agent and a risk group 3 pathogen. It belongs to the genus Phlebovirus in the family Bunyaviridae and is one of the most virulent members of this family. Several reverse genetics systems for the RVFV MP-12 vaccine strain as well as wild-type RVFV strains, including ZH548 and ZH501, have been developed since 2006. The MP-12 strain (which is a risk group 2 pathogen and a non-select agent) is highly attenuated by several mutations in its M- and L-segments, but still carries virulent S-segment RNA, which encodes a functional virulence factor, NSs. The rMP12-C13type (C13type) carrying 69% in-frame deletion of NSs ORF lacks all the known NSs functions, while it replicates as efficient as does MP-12 in VeroE6 cells lacking type-I IFN. NSs induces a shut-off of host transcription including interferon (IFN)-beta mRNA and promotes degradation of double-stranded RNA-dependent protein kinase (PKR) at the post-translational level. IFN-beta is transcriptionally upregulated by interferon regulatory factor 3 (IRF-3), NF-kB and activator protein-1 (AP-1), and the binding of IFN-beta to IFN-alpha/beta receptor (IFNAR) stimulates the transcription of IFN-alpha genes or other interferon stimulated genes (ISGs), which induces host antiviral activities, whereas host transcription suppression including IFN-beta gene by NSs prevents the gene upregulations of those ISGs in response to viral replication although IRF-3, NF-kB and activator protein-1 (AP-1) can be activated by RVFV7. Thus, NSs is an excellent target to further attenuate MP-12, and to enhance host innate immune responses by abolishing the IFN-beta suppression function. Here, we describe a protocol for generating a recombinant MP-12 encoding mutated NSs, and provide an example of a screening method to identify NSs mutants lacking the function to suppress IFN-beta mRNA synthesis. In addition to its essential role in innate immunity, type-I IFN is important for the maturation of dendritic cells and the induction of an adaptive immune response. Thus, NSs mutants inducing type-I IFN are further attenuated, but at the same time are more efficient at stimulating host immune responses than wild-type MP-12, which makes them ideal candidates for vaccination approaches.
Treatment of Waldenstrom's macroglobulinemia with very low doses of alpha interferon.
Legouffe, E; Rossi, J F; Laporte, J P; Isnard, F; Oziol, E; Fabbro, M; Janbon, C; Jourdan, J; Najman, A
1995-10-01
Waldenström's macroglobulinemia (WM) is a differentiated B-cell malignancy which is usually less responsive to standard chemotherapy because of low-proliferating cells. Interferon alpha has been shown to possess a therapeutic action in numerous B-cell malignancies including the early stage of chronic lymphocytic leukemia, multiple myeloma, follicular lymphoma and hairy cell leukemia. Fourteen patients with progressive WM were included in a pilot study using very low dose of interferon alpha-2a (1 Million Units 3 times a week). The mean duration of treatment was 10.3 months (range 2-44). Six of 14 (42%) patients presented an increase in the hemoglobin level (> or = 0.9 g/dL) and 4/14 (28%) had a substantial decrease of the monoclonal component (> or = 20% of reduction). Only two patients presented both types of response, while the others with an increase in the hemoglobin level had a slight decrease in the monoclonal component (MC) (1 patient), a stable MC (1 patient) or a slight increase of MC (1 patient). One additional patient had a 15% decrease of the MC with a stable hemoglobin level. Response was observed within 3 months with a median duration of 6 months. Treatment was stopped for 3 patients because of flu-like symptoms (2 patients), or thrombocytopenia (1 patient). Follow up was possible in 12 patients lasting up to a maximum of 30 months after discontinuing treatment. Seven patients died, including 4 with progressive disease, two of infection and one of cardiac failure. In the view of these results, very low dose of interferon alpha may constitute a new approach for treatment of some cases of WM.
Hutson, Thomas H.; Foster, Edmund; Dawes, John M.; Hindges, Robert; Yáñez-Muñoz, Rafael J.; Moon, Lawrence D.F.
2017-01-01
Background Knocking down neuronal LINGO-1 using short hairpin RNAs (shRNAs) might enhance axon regeneration in the CNS. Integration-deficient lentiviral vectors have great potential as a therapeutic delivery system for CNS injuries. However, recent studies have revealed that shRNAs can induce an interferon response resulting in off-target effects and cytotoxicity. Methods CNS neurons were transduced with integration-deficient lentiviral vectors in vitro. The transcriptional effect of shRNA expression was analysed using qRT-PCR and northern blots were used to assess shRNA production. Results Integration-deficient lentiviral vectors efficiently transduced CNS neurons and knocked down LINGO-1 mRNA in vitro. However, an increase in cell death was observed when lentiviral vectors encoding an shRNA were applied or when high vector concentrations were used. We demonstrate that high doses of vector or the use of vectors encoding shRNAs can induce an up-regulation of interferon stimulated genes (OAS1 and PKR) and a down-regulation of off- target genes (including p75NTR and NgR1). Furthermore, the northern blot demonstrated that these negative consequences occur even when lentiviral vectors express low levels of shRNAs. Together, these results may explain why neurite outgrowth was not enhanced on an inhibitory substrate after transduction with lentiviral vectors encoding an shRNA targeting LINGO-1. Conclusions These findings highlight the importance of including appropriate controls to verify silencing specificity and the requirement to check for an interferon response when conducting RNA interference experiments. However, the potential benefits that RNA interference and viral vectors offer to gene-based therapies to CNS injuries cannot be overlooked and demand further investigation. PMID:22499506
Immunobiologic effects of cytokine gene transfer of the B16-BL6 melanoma.
Strome, S E; Krauss, J C; Cameron, M J; Forslund, K; Shu, S; Chang, A E
1993-12-01
The genetic modification of tumors offers an approach to modulate the host immune response to relatively weak native tumor antigens. We examined the immunobiologic effects of various cytokine genes transferred into the poorly immunogenic B16-BL6 murine melanoma. Retroviral expression vectors containing cDNAs for interleukin 2, interleukin 4, interferon gamma, or a neomycin-resistant control were electroporated into a B16-BL6 tumor clone. Selected transfected clones were examined for in vitro cytokine secretion and in vivo tumorigenicity. When cells from individual clones were injected intradermally into syngeneic mice, the interleukin 4-secreting clone grew significantly slower than did the neomycin-resistant transfected control, while the growth of the interleukin 2- and interferon gamma-expressing clones was not affected. Despite minimal cytokine secretion by interferon gamma-transfected cells, these cells expressed upregulated major histocompatibility class I antigen and were more susceptible to lysis by allosensitized cytotoxic T lymphocytes compared with parental or neomycin-resistant transfected tumor targets. We observed diverse immunobiologic effects associated with cytokine gene transfer into the B16-BL6 melanoma. Interleukin 4 transfection of tumor resulted in decreased in vivo tumorigenicity that may be related to a host immune response. Further studies to evaluate the host T-cell response to these gene-modified tumors are being investigated.
A molecular arms race between host innate antiviral response and emerging human coronaviruses.
Wong, Lok-Yin Roy; Lui, Pak-Yin; Jin, Dong-Yan
2016-02-01
Coronaviruses have been closely related with mankind for thousands of years. Community-acquired human coronaviruses have long been recognized to cause common cold. However, zoonotic coronaviruses are now becoming more a global concern with the discovery of highly pathogenic severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses causing severe respiratory diseases. Infections by these emerging human coronaviruses are characterized by less robust interferon production. Treatment of patients with recombinant interferon regimen promises beneficial outcomes, suggesting that compromised interferon expression might contribute at least partially to the severity of disease. The mechanisms by which coronaviruses evade host innate antiviral response are under intense investigations. This review focuses on the fierce arms race between host innate antiviral immunity and emerging human coronaviruses. Particularly, the host pathogen recognition receptors and the signal transduction pathways to mount an effective antiviral response against SARS and MERS coronavirus infection are discussed. On the other hand, the counter-measures evolved by SARS and MERS coronaviruses to circumvent host defense are also dissected. With a better understanding of the dynamic interaction between host and coronaviruses, it is hoped that insights on the pathogenesis of newly-identified highly pathogenic human coronaviruses and new strategies in antiviral development can be derived.
Type I Interferon Responses by HIV-1 Infection: Association with Disease Progression and Control.
Soper, Andrew; Kimura, Izumi; Nagaoka, Shumpei; Konno, Yoriyuki; Yamamoto, Keisuke; Koyanagi, Yoshio; Sato, Kei
2017-01-01
Human immunodeficiency virus type 1 (HIV-1) is the causative agent of acquired immunodeficiency syndrome and its infection leads to the onset of several disorders such as the depletion of peripheral CD4 + T cells and immune activation. HIV-1 is recognized by innate immune sensors that then trigger the production of type I interferons (IFN-Is). IFN-Is are well-known cytokines eliciting broad anti-viral effects by inducing the expression of anti-viral genes called interferon-stimulated genes (ISGs). Extensive in vitro studies using cell culture systems have elucidated that certain ISGs such as APOBEC3G, tetherin, SAM domain and HD domain-containing protein 1, MX dynamin-like GTPase 2, guanylate-binding protein 5, and schlafen 11 exert robust anti-HIV-1 activity, suggesting that IFN-I responses triggered by HIV-1 infection are detrimental for viral replication and spread. However, recent studies using animal models have demonstrated that at both the acute and chronic phase of infection, the role of IFN-Is produced by HIV or SIV infection in viral replication, spread, and pathogenesis, may not be that straightforward. In this review, we describe the pluses and minuses of HIV-1 infection stimulated IFN-I responses on viral replication and pathogenesis, and further discuss the possibility for therapeutic approaches.
Zhu, Jia-Wu; Liu, Feng-Liang; Mu, Dan; Deng, De-Yao; Zheng, Yong-Tang
Heroin use is associated with increased incidence of infectious diseases such as HIV-1 infection, as a result of immunosuppression to a certain extent. Host restriction factors are recently identified cellular proteins with potent antiviral activities. Whether heroin use impacts on the in vivo expression of restriction factors that result in facilitating HIV-1 replication is poorly understood. Here we recruited 432 intravenous drug users (IDUs) and 164 non-IDUs at high-risk behaviors. Based on serological tests, significantly higher prevalence of HIV-1 infection was observed among IDUs compared with non-IDUs. We included those IDUs and non-IDUs without HIV-1 infection, and found IDUs had significantly lower levels of TRIM5α, TRIM22, APOBEC3G, and IFN-α, -β expression than did non-IDUs. We also directly examined plasma viral load in HIV-1 mono-infected IDUs and non-IDUs and found HIV-1 mono-infected IDUs had significantly higher plasma viral load than did non-IDUs. Moreover, intrinsically positive correlation between type I interferon and TRIM5α or TRIM22 was observed, however, which was dysregulated following heroin use. Collectively, heroin use benefits HIV-1 replication that may be partly due to suppression of host restriction factors and type I interferon expression. Copyright © 2017 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Versteeg, Gijs A.; Bredenbeek, Peter J.; Worm, Sjoerd H.E. van den
Many viruses encode antagonists to prevent interferon (IFN) induction. Infection of fibroblasts with the murine hepatitis coronavirus (MHV) and SARS-coronavirus (SARS-CoV) did not result in nuclear translocation of interferon-regulatory factor 3 (IRF3), a key transcription factor involved in IFN induction, and induction of IFN mRNA transcription. Furthermore, MHV and SARS-CoV infection could not prevent IFN induction by poly (I:C) or Sendai virus, suggesting that these CoVs do not inactivate IRF3-mediated transcription regulation, but apparently prevent detection of replicative RNA by cellular sensory molecules. Our data indicate that shielding of viral RNA to host cell sensors might be the main generalmore » mechanism for coronaviruses to prevent IFN induction.« less
Impact of adherence on the outcome of antiviral therapy for chronic hepatitis C.
Mulhall, Brian P; Younossi, Zobair
2005-01-01
Nearly 4 million people in the United States have evidence of hepatitis C infection (HCV), representing a significant cause of cirrhosis and liver cancer as well a major burden to our healthcare systems and society. Antiviral therapy can successfully eradicate HCV over the long term, potentially reducing the risk of progression and improving patients' quality of life. The currently preferred HCV treatment is a combination of pegylated interferon alfa and ribavirin, which can achieve an overall sustained viral eradication rate of 55%. The duration of this treatment is typically determined by HCV genotype and the patient's early virologic response to the antiviral regimen. Evidence has accumulated over the past few years to indicate that close adherence to the optimal antiviral regimen can enhance sustained virologic response. But optimal treatment outcomes require diligence and careful management of side effects related to combination therapy. Although reducing the dose of pegylated interferon alfa, ribavirin, or both can effectively treat side effects, suboptimal doses of this regimen, especially ribavirin, may negatively affect virologic response. An alternative strategy is to use growth factors to treat cytopenias. This strategy can obviate dose reductions while potentially improving patients' quality of life. Patient support seems especially important early after the initiation of antiviral therapy. Encouraging study findings involving the growth factors, epoetin alfa and darbepoetin alfa, suggest improved anemia and quality of life while maintaining the optimal ribavirin dose. Future work should be aimed at providing stronger evidence for the use of these "supportive products" during anti-HCV therapy. As we strive to develop better treatment options for our HCV patients, the importance of adhering to the treatment regimen continues to play a central role. Effective side effect management is crucial for the success of this treatment because adherence is negatively affected by side effects related to the antiviral regimen. By identifying and addressing the important side effects of combination therapy for HCV, adherence to treatment can be improved and optimal outcomes can be achieved.
Downregulation of MicroRNA miR-526a by Enterovirus Inhibits RIG-I-Dependent Innate Immune Response
Xu, Changzhi; He, Xiang; Zheng, Zirui; Zhang, Zhe; Wei, Congwen; Guan, Kai; Hou, Lihua; Zhang, Buchang; Zhu, Lin; Cao, Yuan; Zhang, Yanhong; Cao, Ye; Ma, Shengli; Wang, Penghao; Zhang, Pingping; Xu, Quanbin; Ling, Youguo
2014-01-01
ABSTRACT Retinoic acid-inducible gene I (RIG-I) is an intracellular RNA virus sensor that induces type I interferon-mediated host-protective innate immunity against viral infection. Although cylindromatosis (CYLD) has been shown to negatively regulate innate antiviral response by removing K-63-linked polyubiquitin from RIG-I, the regulation of its expression and the underlying regulatory mechanisms are still incompletely understood. Here we show that RIG-I activity is regulated by inhibition of CYLD expression mediated by the microRNA miR-526a. We found that viral infection specifically upregulates miR-526a expression in macrophages via interferon regulatory factor (IRF)-dependent mechanisms. In turn, miR-526a positively regulates virus-triggered type I interferon (IFN-I) production, thus suppressing viral replication, the underlying mechanism of which is the enhancement of RIG-I K63-linked ubiquitination by miR-526a via suppression of the expression of CYLD. Remarkably, virus-induced miR-526a upregulation and CYLD downregulation are blocked by enterovirus 71 (EV71) 3C protein, while ectopic miR-526a expression inhibits the replication of EV71 virus. The collective results of this study suggest a novel mechanism of the regulation of RIG-I activity during RNA virus infection by miR-526a and suggest a novel mechanism for the evasion of the innate immune response controlled by EV71. IMPORTANCE RNA virus infection upregulates the expression of miR-526a in macrophages through IRF-dependent pathways. In turn, miR-526a positively regulates virus-triggered type I IFN production and inhibits viral replication, the underlying mechanism of which is the enhancement of RIG-I K-63 ubiquitination by miR-526a via suppression of the expression of CYLD. Remarkably, virus-induced miR-526a upregulation and CYLD downregulation are blocked by enterovirus 71 (EV71) 3C protein; cells with overexpressed miR-526a were highly resistant to EV71 infection. The collective results of this study suggest a novel mechanism of the regulation of RIG-I activity during RNA virus infection by miR-526a and propose a novel mechanism for the evasion of the innate immune response controlled by EV71. PMID:25056901
Polyfunctional response by ImmTAC (IMCgp100) redirected CD8+ and CD4+ T cells.
Boudousquie, Caroline; Bossi, Giovanna; Hurst, Jacob M; Rygiel, Karolina A; Jakobsen, Bent K; Hassan, Namir J
2017-11-01
The success of immune system-based cancer therapies depends on a broad immune response engaging a range of effector cells and mechanisms. Immune mobilizing monoclonal T cell receptors (TCRs) against cancer (ImmTAC™ molecules: fusion proteins consisting of a soluble, affinity enhanced TCR and an anti-CD3 scFv antibody) were previously shown to redirect CD8 + and CD4 + T cells against tumours. Here we present evidence that IMCgp100 (ImmTAC recognizing a peptide derived from the melanoma-specific protein, gp100, presented by HLA-A*0201) efficiently redirects and activates effector and memory cells from both CD8 + and CD4 + repertoires. Using isolated subpopulations of T cells, we find that both terminally differentiated and effector memory CD8 + T cells redirected by IMCgp100 are potent killers of melanoma cells. Furthermore, CD4 + effector memory T cells elicit potent cytotoxic activity leading to melanoma cell killing upon redirection by IMCgp100. The majority of T cell subsets belonging to both the CD8 + and CD4 + repertoires secrete key pro-inflammatory cytokines (tumour necrosis factor-α, interferon-γ, interleukin-6) and chemokines (macrophage inflammatory protein-1α-β, interferon-γ-inducible protein-10, monocyte chemoattractant protein-1). At an individual cell level, IMCgp100-redirected T cells display a polyfunctional phenotype, which is a hallmark of a potent anti-cancer response. This study demonstrates that IMCgp100 induces broad immune responses that extend beyond the induction of CD8 + T cell-mediated cytotoxicity. These findings are of particular importance because IMCgp100 is currently undergoing clinical trials as a single agent or in combination with check point inhibitors for patients with malignant melanoma. © 2017 The Authors. Immunology Published by John Wiley & Sons Ltd.
Cardone, Marco; Dzutsev, Amiran K.; Li, Hongchuan; Riteau, Nicolas; Gerosa, Franca; Shenderov, Kevin; Winkler-Pickett, Robin; Provezza, Lisa; Riboldi, Elena; Leighty, Robert M.; Orr, Selinda J.; Steinhagen, Folkert; Wewers, Mark D.; Sher, Alan; Anderson, Stephen K.; Goldszmid, Romina; McVicar, Daniel W.
2014-01-01
Recognition of microbial components via innate receptors including the C-type lectin receptor Dectin-1, together with the inflammatory environment, programs dendritic cells (DCs) to orchestrate the magnitude and type of adaptive immune responses. The exposure to β-glucan, a known Dectin-1 agonist and component of fungi, yeasts, and certain immune support supplements, activates DCs to induce T helper (Th)17 cells that are essential against fungal pathogens and extracellular bacteria but may trigger inflammatory pathology or autoimmune diseases. However, the exact mechanisms of DC programming by β-glucan have not yet been fully elucidated. Using a gene expression/perturbation approach, we demonstrate that in human DCs β-glucan transcriptionally activates via an interleukin (IL)-1- and inflammasome-mediated positive feedback late-induced genes that bridge innate and adaptive immunity. We report that in addition to its known ability to directly prime T cells toward the Th17 lineage, IL-1 by promoting the transcriptional cofactor inhibitor of κB-ζ (IκB-ζ) also programs β-glucan-exposed DCs to express cell adhesion and migration mediators, antimicrobial molecules, and Th17-polarizing factors. Interferon (IFN)-γ interferes with the IL-1/IκB-ζ axis in β-glucan-activated DCs and promotes T cell-mediated immune responses with increased release of IFN-γ and IL-22, and diminished production of IL-17. Thus, our results identify IL-1 and IFN-γ as regulators of DC programming by β-glucan. These molecular networks provide new insights into the regulation of the Th17 response as well as new targets for the modulation of immune responses to β-glucan-containing microorganisms. PMID:25474109
Collison, Meadhbh; Chin, Jun Liong; Abu Shanab, Ahmed; Mac Nicholas, Ross; Segurado, Ricardo; Coughlan, Suzie; Connell, Jeff; Carr, Michael J; Merriman, Raphael B; McCormick, P Aiden; Hall, William W
2015-02-01
Host genetic factors influence treatment responses to antiviral therapy in chronic hepatitis C virus (HCV) infection. We retrospectively investigated associations between host genetic markers and treatment-induced virologic responses to dual therapy with interferon-α and ribavirin in chronically infected HCV genotype 1 (g1)- and genotype 3 (g3)-infected individuals. A total of 171 patients (89 HCV g1 and 82 HCV g3 infected) were investigated for genetic markers influencing treatment-induced sustained virologic response (SVR). Overall, SVR was observed for 46/89 (52%) HCV g1- and 57/82 (70%) HCV g3-infected patients. Of the 4 interleukin 28B (IL28B) single-nucleotide polymorphisms (SNPs), rs12979860 was the host genetic marker most significantly associated with failure to achieve an SVR in HCV g1-infected individuals [P=3.83×10(-4); odds ratio (OR)=5.61; confidence interval (CI)=2.07-15.18] and gave a positive predictive value for treatment failure of 81.3% for minor homozygotes (TT). Using additive (P=3.54×10(-4)) and dominant models (P=3.83×10(-4)), a dosage effect of the T allele was observed, with the dominance term not significant for this SNP. Logistic regression showed an association between HLA-C1/C1 and rapid virologic response in HCV g1 infections with an OR relative to the heterozygote of 10.0 (95% CI: 1.6-62.5, P=0.014). HLA-C2 homozygosity was a significant predictor of nonresponse to treatment in HCV g1-infected individuals (P=0.023).
Kandilarova, Snezhina M; Georgieva, Atanaska I; Mihaylova, Anastasiya P; Baleva, Marta P; Atanasova, Valentina K; Petrova, Diana V; Popov, Georgi T; Naumova, Elissaveta J
2017-03-01
The patient's immune response is one of the major factors influencing HBV eradication or chronification, and it is thought to be responsible for the treatment success. Our study aimed to investigate whether cellular defense mechanisms are associated with the course of HBV infection (spontaneous recovery [SR] or chronification [CHB]) and with the therapeutic approach. A total of 139 patients (118 with CHB, 21 SR) and 29 healthy individuals (HI) were immunophenotyped by flowcytometry. Fifty-six patients were treatment-naïve, 20 were treated with interferons and 42 with nucleoside/ nucleotide analogues. Deficiency of T lymphocytes, helper-inducer (CD3+CD4+), suppressorcytotoxic (CD8+CD3+) and cytotoxic (CD8+CD11b-, CD8+CD28+) subsets, activated T cells (CD3+HLA-DR+, CD8+CD38+) and increased CD57+CD8- cells, elevated percentages of B lymphocytes and NKT cells were observed in CHB patients compared with HI. In SR patients, elevated CD8+CD11b+, NKT and activated T cells were found in comparison with controls. The higher values of T cells and their subsets in SR patients than in CHB patients reflect a recovery of cellular immunity in resolved HBV infection individuals. In both groups of treated patients, reduced T lymphocytes, CD3+CD4+ and CD8+CD38+ subsets were found in comparison with HI. Higher proportions of cytotoxic subsets were observed in treated patients compared with treatment-naïve CHB patients, more pronounced in the group with interferon therapy. Our data demonstrate that cellular immune profiles may be of prognostic value in predicting the clinical course of HBV infection, and the determination of the therapeutic response.
Jeevan, Amminikutty; Bonilla, Diana Lucia; McMurray, David Neil
2009-09-01
Cytokine messenger RNA (mRNA) expression was investigated in the spleen and lung digest cells of bacillus Calmette-Guérin (BCG)-vaccinated and non-vaccinated guinea pigs following low-dose, pulmonary exposure to virulent Mycobacterium tuberculosis. After purified protein derivative (PPD) stimulation, the levels of lung cell interferon-gamma (IFN-gamma), tumour necrosis factor-alpha (TNF-alpha) and spleen cell interleukin-12 (IL-12) p40 mRNAs were significantly increased in the non-vaccinated M. tuberculosis-infected guinea pigs compared to the BCG-vaccinated guinea pigs. In contrast, the expression of anti-inflammatory transforming growth factor-beta and IL-10 mRNAs was significantly enhanced in the spleens of BCG-vaccinated animals. Despite the presence of protective cytokine mRNA expression, the non-vaccinated guinea pigs had significantly higher lung and spleen bacterial burdens. In contrast, BCG-vaccinated guinea pigs controlled the bacterial multiplication in their lungs and spleens, indicating that both protective as well as anti-inflammatory cytokine responses are associated with a reduction in bacteria. In addition, lung digest cells from non-vaccinated guinea pigs contained a significantly higher percentage of neutrophils, CD3(+) and CD8(+) T cells, while the percentage of macrophages was increased in the BCG-vaccinated animals. Total and purified lung digest T cells co-cultured with lung macrophages (LMøs) proliferated poorly after PPD stimulation in both non-vaccinated and BCG-vaccinated animals while robust proliferation to PPD was observed when T cells were co-cultured with peritoneal macrophages (PMøs). Macrophages within the lung compartment appear to regulate the response of T cells irrespective of the vaccination status in guinea pigs. Taken together, our results suggest that type I cytokine mRNA expression is not associated with vaccine-induced protection in the low-dose guinea pig model of tuberculosis.
Cell-wall deficient L. monocytogenes L-forms feature abrogated pathogenicity
Schnell, Barbara; Staubli, Titu; Harris, Nicola L.; Rogler, Gerhard; Kopf, Manfred; Loessner, Martin J.; Schuppler, Markus
2014-01-01
Stable L-forms are cell wall-deficient bacteria which are able to multiply and propagate indefinitely, despite the absence of a rigid peptidoglycan cell wall. We investigated whether L-forms of the intracellular pathogen L. monocytogenes possibly retain pathogenicity, and if they could trigger an innate immune response. While phagocytosis of L. monocytogenes L-forms by non-activated macrophages sometimes resulted in an unexpected persistence of the bacteria in the phagocytes, they were effectively eliminated by IFN-γ preactivated or bone marrow-derived macrophages (BMM). These findings were in line with the observed down-regulation of virulence factors in the cell-wall deficient L. monocytogenes. Absence of Interferon-β (IFN-β) triggering indicated inability of L-forms to escape from the phagosome into the cytosol. Moreover, abrogated cytokine response in MyD88-deficient dendritic cells (DC) challenged with L. monocytogenes L-forms suggested an exclusive TLR-dependent host response. Taken together, our data demonstrate a strong attenuation of Listeria monocytogenes L-form pathogenicity, due to diminished expression of virulence factors and innate immunity recognition, eventually resulting in elimination of L-form bacteria from phagocytes. PMID:24904838
MAVS-dependent host species range and pathogenicity of human hepatitis A virus.
Hirai-Yuki, Asuka; Hensley, Lucinda; McGivern, David R; González-López, Olga; Das, Anshuman; Feng, Hui; Sun, Lu; Wilson, Justin E; Hu, Fengyu; Feng, Zongdi; Lovell, William; Misumi, Ichiro; Ting, Jenny P-Y; Montgomery, Stephanie; Cullen, John; Whitmire, Jason K; Lemon, Stanley M
2016-09-30
Hepatotropic viruses are important causes of human disease, but the intrahepatic immune response to hepatitis viruses is poorly understood because of a lack of tractable small- animal models. We describe a murine model of hepatitis A virus (HAV) infection that recapitulates critical features of type A hepatitis in humans. We demonstrate that the capacity of HAV to evade MAVS-mediated type I interferon responses defines its host species range. HAV-induced liver injury was associated with interferon-independent intrinsic hepatocellular apoptosis and hepatic inflammation that unexpectedly resulted from MAVS and IRF3/7 signaling. This murine model thus reveals a previously undefined link between innate immune responses to virus infection and acute liver injury, providing a new paradigm for viral pathogenesis in the liver. Copyright © 2016, American Association for the Advancement of Science.
Sierra, Beatriz; Pérez, Ana B.; Alvarez, Mayling; García, Gissel; Vogt, Katrin; Aguirre, Eglys; Schmolke, Kathrin; Volk, Hans-Dieter; Guzmán, María G.
2012-01-01
Secondary heterologous dengue infection is a risk factor for severe disease manifestations because of the immune-enhancement phenomenon. Succeeding clinical infections are seldom reported, and the clinical course of tertiary and quaternary dengue infections is not clear. Cuba represents a unique environment to study tertiary/quaternary dengue infections in a population with known clinical and serologic dengue markers and no dengue endemicity. We took advantage of this exceptional epidemiologic condition to study the effect of primary, secondary, tertiary, and quaternary dengue infection exposure on the expression of pro-inflammatory and regulatory cytokines, critical in dengue infection pathogenesis, by using a dengue infection ex vivo model. Whereas secondary exposure induced a high cytokine response, we found a significantly lower expression of tumor necrosis factor-α, interferon-γ, interleukin-10, and tumor growth factor-β after tertiary and quaternary infectious challenge. Significant differences in expression of the cytokines were seen between the dengue immune profiles, suggesting that the sequence in which the immune system encounters serotypes may be important in determining the nature of the immune response to subsequent infections. PMID:22802438
Inhibition of Breast Cancer by Repression of Angiogenic Hypoxia-Inducible Transcription Factors
2003-09-01
cancer cells to death receptor-induced apoptosis by inhibition ofNF-KB: Synergistic action of Apo2L/TRAIL, Interferon-y, Aspirin and Apigenin . (Abstract...of !KK0 (with ::leety! ,~81iCy!iC ::H~irl" ASA), and CK2 (with the plant flavonoid, apigenin ), results in loss of NF-KB-dependent expression of BcI...reduction of NF-KS-induced survival proteins by ASA and apigenin synergizes with interferon-y-mediated elevation of death signaling proteins to
Spratte, Julia; Oemus, Anne; Zygmunt, Marek; Fluhr, Herbert
2015-09-01
The pro-inflammatory T helper (Th)-1 cytokines, tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ), are immunological factors relevant at the feto-maternal interface and involved in the pathophysiology of implantation disorders. The synergistic action of the two cytokines has been described with regard to apoptotic cell death and inflammatory responses in different cell types, but little is known regarding the human endometrium. Therefore, we examined the interaction of TNF-α and IFN-γ in human endometrial stromal cells (ESCs). ESCs were isolated from specimens obtained during hysterectomy and decidualized in vitro. Cells were incubated with TNF-α, IFN-γ or signaling-inhibitor. Insulin-like growth factor binding protein (IGFBP)-1, prolactin (PRL), leukemia inhibitory factor (LIF), interleukin (IL)-6, IL-8, regulated on activation normal T-cell expressed and secreted protein (RANTES) and monocyte chemotactic protein (MCP)-1 were measured using ELISA and real-time RT-PCR. Nuclear factor of transcription (NF)-κB and its inhibitor (IκBα) were analyzed by in-cell western assay and transcription factor assay. TNF-α inhibited and IFN-γ did not affect the decidualization of ESCs. In contrast, IFN-gamma differentially modulated the stimulating effect of TNF-alpha on cytokines by enhancing IL-6, RANTES and MCP-1 and attenuating LIF mRNA expression. These effects were time- and dose-dependent. IFN-γ had no impact on the initial activation of NF-κB signaling. Histone-deacetylase activity was involved in the modulating effect of IFN-γ on RANTES secretion. These observations showed a distinct pattern of interaction of the Th-1 cytokines, TNF-α and IFN-γ in the human endometrium, which could play an important role in the pathophysiology of implantation disorders. Copyright © 2015 Society for Biology of Reproduction & the Institute of Animal Reproduction and Food Research of Polish Academy of Sciences in Olsztyn. Published by Elsevier Urban & Partner Sp. z o.o. All rights reserved.
Retinoid X receptor α attenuates host antiviral response by suppressing type I interferon
Ma, Feng; Liu, Su-Yang; Razani, Bahram; Arora, Neda; Li, Bing; Kagechika, Hiroyuki; Tontonoz, Peter; Núñez, Vanessa; Ricote, Mercedes; Cheng, Genhong
2015-01-01
The retinoid X receptor α (RXRα), a key nuclear receptor in metabolic processes, is down-regulated during host antiviral response. However, the roles of RXRα in host antiviral response are unknown. Here we show that RXRα overexpression or ligand activation increases host susceptibility to viral infections in vitro and in vivo, while Rxra −/− or antagonist treatment reduces infection by the same viruses. Consistent with these functional studies, ligand activation of RXR inhibits the expression of antiviral genes including type I interferon (IFN) and Rxra −/− macrophages produce more IFNβ than WT macrophages in response to polyI:C stimulation. Further results indicate that ligand activation of RXR suppresses the nuclear translocation of β-catenin, a co-activator of IFNβ enhanceosome. Thus, our studies have uncovered a novel RXR-dependent innate immune regulatory pathway, suggesting that the downregulation of RXR expression or RXR antagonist treatment benefits host antiviral response, whereas RXR agonist treatment may increase the risk of viral infections. PMID:25417649
Inhibition of Microprocessor Function during the Activation of the Type I Interferon Response.
Witteveldt, Jeroen; Ivens, Alasdair; Macias, Sara
2018-06-12
Type I interferons (IFNs) are central components of the antiviral response. Most cell types respond to viral infections by secreting IFNs, but the mechanisms that regulate correct expression of these cytokines are not completely understood. Here, we show that activation of the type I IFN response regulates the expression of miRNAs in a post-transcriptional manner. Activation of IFN expression alters the binding of the Microprocessor complex to pri-miRNAs, reducing its processing rate and thus leading to decreased levels of a subset of mature miRNAs in an IRF3-dependent manner. The rescue of Microprocessor function during the antiviral response downregulates the levels of IFN-β and IFN-stimulated genes. All these findings support a model by which the inhibition of Microprocessor activity is an essential step to induce a robust type I IFN response in mammalian cells. Copyright © 2018 The Author(s). Published by Elsevier Inc. All rights reserved.
The innate and adaptive immune response to avian influenza virus
USDA-ARS?s Scientific Manuscript database
Protective immunity against viruses is mediated by the early innate immune responses and later on by the adaptive immune responses. The early innate immunity is designed to contain and limit virus replication in the host, primarily through cytokine and interferon production. Most all cells are cap...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adamo, Maria Pilar; Zapata, Marta; Frey, Teryl K.
Congenital infection with rubella virus (RUB) leads to persistent infection and congenital defects and we showed previously that primary human fetal fibroblasts did not undergo apoptosis when infected with RUB, which could promote fetal virus persistence [Adamo, P., Asis, L., Silveyra, P., Cuffini, C., Pedranti, M., Zapata, M., 2004. Rubella virus does not induce apoptosis in primary human embryo fibroblasts cultures: a possible way of viral persistence in congenital infection. Viral Immunol. 17, 87-100]. To extend this observation, gene chip analysis was performed on a line of primary human fetal fibroblasts (10 weeks gestation) and a line of human adultmore » lung fibroblasts (which underwent apoptosis in response to RUB infection) to compare gene expression in infected and uninfected cells. A total of 632 and 516 genes were upregulated or downregulated in the infected fetal and adult cells respectively in comparison to uninfected cells, however only 52 genes were regulated in both cell types. Although the regulated genes were different, across functional gene categories the patterns of gene regulation were similar. In general, regulation of pro- and anti-apoptotic genes following infection appeared to favor apoptosis in the adult cells and lack of apoptosis in the fetal cells, however there was a greater relative expression of anti-apoptotic genes and reduced expression of pro-apoptotic genes in uninfected fetal cells versus uninfected adult cells and thus the lack of apoptosis in fetal cells following RUB infection was also due to the prevailing background of gene expression that is antagonistic to apoptosis. In support of this hypothesis, it was found that of a battery of five chemicals known to induce apoptosis, two induced apoptosis in the adult cells, but not in fetal cells, and two induced apoptosis more rapidly in the adult cells than in fetal cells (the fifth did not induce apoptosis in either). A robust interferon-stimulated gene response was induced following infection of both fetal and adult cells and many of the genes upregulated in both cell types were those involved in establishment of an antiviral state; this is the first demonstration of an interferon response at this early stage of human embryonic development. In both fetal and adult cells, interferon controlled but did not eliminate virus spread and apoptosis was not induced in infected fetal cells in the absence of interferon. In addition to the interferon response, chemokines were induced in both infected fetal and adult cells. Thus, it is possible that fetal damage following congenital RUB infection, which involves cell proliferation and differentiation, could be due to induction of the innate immune response as well as frank virus infection.« less
Montano, Giorgia; Ullmark, Tove; Jernmark-Nilsson, Helena; Sodaro, Gaetano; Drott, Kristina; Costanzo, Paola; Vidovic, Karina; Gullberg, Urban
2016-01-01
The transcription factor interferon regulatory factor-8 (IRF8) is highly expressed in myeloid progenitors, while most myeloid leukemias show low or absent expression. Loss of IRF8 in mice leads to a myeloproliferative disorder, indicating a tumor-suppressive role of IRF8. The Wilms tumor gene 1 (WT1) protein represses the IRF8-promoter. The zinc finger protein ZNF224 can act as a transcriptional co-factor of WT1 and potentiate the cytotoxic response to the cytostatic drug cytarabine. We hypothesized that cytarabine upregulates IRF8 and that transcriptional control of IRF8 involves WT1 and ZNF224. Treatment of leukemic K562 cells with cytarabine upregulated IRF8 protein and mRNA, which was correlated to increased expression of ZNF224. Knock down of ZNF224 with shRNA suppressed both basal and cytarabine-induced IRF8 expression. While ZNF224 alone did not affect IRF8 promoter activity, ZNF224 partially reversed the suppressive effect of WT1 on the IRF8 promoter, as judged by luciferase reporter experiments. Coprecipitation revealed nuclear binding of WT1 and ZNF224, and by chromatin immunoprecipitation (ChIP) experiments it was demonstrated that WT1 recruits ZNF224 to the IRF8 promoter. We conclude that cytarabine-induced upregulation of the IRF8 in leukemic cells involves increased levels of ZNF224, which can counteract the repressive activity of WT1 on the IRF8-promoter. Copyright © 2015 Elsevier Ltd. All rights reserved.