Science.gov

Sample records for intergalactic space

  1. ISO proves that intergalactic space is dusty

    NASA Astrophysics Data System (ADS)

    1997-11-01

    In the past, astronomers have considered intergalactic space to be extremely clean. Except in the vast concentrations of stars, gas and dust that make up the galaxies themselves, the Universe was supposed to be filled only by very thin traces of invisible gas. ISO's detection of dust means that the Universe is less transparent than astronomers have assumed. Their cosmic window-pane is slightly dirty and large-scale inferences based on the brightnesses of distant galaxies and quasars may be affected. Emissions from the intergalactic dust were picked up by the photometer ISOPHOT. A team of German, British, Spanish and Danish astronomers contributed this versatile set of detectors to ISO. The leader of the ISOPHOT team is Dietrich Lemke of the Max-Planck Institut fr Astronomie (MPIA) in Heidelberg, Germany. "ISOPHOT in ISO is the only instrument in existence capable of making this detection" Lemke says. "The intergalactic dust is so cold that we need a very cold telescope to detect it. The strongest emissions from the dust are at a wavelength of 0.1-0.2 millimetre, which cannot be well observed from the Earth. ISO provides telescope in space cooled by superfluid helium to within 2 degrees of absolute zero. ISOPHOT is the instrument on ISO that measures infrared intensities at the longest wavelengths, up to 0.2 millimetre." ISOPHOT's advantages made finding the intergalactic dust possible, but not easy. The observations pushed instrumental sensitivity to the limit, and emissions from cold dust clouds in the Milky Way Galaxy confused the picture. The signal of intergalactic dust emerged clearly only after extensive data analysis. Cold dust in a hot cluster Our home Galaxy, the Milky Way, belongs to a very small group of galaxies. Intergalactic dust may very well be present nearby, but it is likely to be sparse and scattered. A team of astronomers, from MPIA Heidelberg and Helsinki Observatory, hoped that the intergalactic dust might be easier to recognise in a large

  2. Intergalactic Travel Bureau

    NASA Astrophysics Data System (ADS)

    Koski, Olivia; Rosin, Mark; Guerilla Science Team

    2014-03-01

    The Intergalactic Travel Bureau is an interactive theater outreach experience that engages the public in the incredible possibilities of space tourism. The Bureau is staffed by professional actors, who play the role of space travel agents, and professional astrophysicists, who play the role of resident scientists. Members of the public of all ages were invited to visit with bureau staff to plan the vacation of their dreams-to space. We describe the project's successful nine day run in New York in August 2013. Funded by the American Physical Society Public Outreach and Informing the Public Grants.

  3. Scatter broadening of compact radio sources by the ionized intergalactic medium: prospects for detection with Space VLBI and the Square Kilometre Array

    NASA Astrophysics Data System (ADS)

    Koay, J. Y.; Macquart, J.-P.

    2015-01-01

    We investigate the feasibility of detecting and probing various components of the ionized intergalactic medium (IGM) and their turbulent properties at radio frequencies through observations of scatter broadening of compact sources. There is a strong case for conducting targeted observations to resolve scatter broadening (where the angular size scales as ˜ν-2) of compact background sources intersected by foreground galaxy haloes and rich clusters of galaxies to probe the turbulence of the ionized gas in these objects, particularly using Space very long baseline interferometry (VLBI) with baselines of 350 000 km at frequencies below 800 MHz. The sensitivity of the Square Kilometre Array (SKA) allows multifrequency surveys of interstellar scintillation (ISS) of ˜ 100 μJy sources to detect or place very strong constraints on IGM scatter broadening down to ˜ 1 μas scales at 5 GHz. Scatter broadening in the warm-hot component of the IGM with typical overdensities of ˜30 cannot be detected, even with Space VLBI or ISS, and even if the outer scales of turbulence have an unlikely low value of ˜1 kpc. None the less, intergalactic scatter broadening can be of the order of ˜ 100 μas at 1 GHz and ˜ 3 μas at 5 GHz for outer scales ˜1 kpc, assuming a sufficiently high-source redshift that most sight-lines intersect within a virial radius of at least one galaxy halo (z ≳ 0.5 and 1.4 for 1010 and 1011 M⊙ systems, following McQuinn 2014). Both Space VLBI and multiwavelength ISS observations with the SKA can easily test such a scenario, or place strong constraints on the outer scale of the turbulence in such regions.

  4. The Evolution of the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew

    2016-09-01

    The bulk of cosmic matter resides in a dilute reservoir that fills the space between galaxies, the intergalactic medium (IGM). The history of this reservoir is intimately tied to the cosmic histories of structure formation, star formation, and supermassive black hole accretion. Our models for the IGM at intermediate redshifts (2≲z≲5) are a tremendous success, quantitatively explaining the statistics of Lyα absorption of intergalactic hydrogen. However, at both lower and higher redshifts (and around galaxies) much is still unknown about the IGM. We review the theoretical models and measurements that form the basis for the modern understanding of the IGM, and we discuss unsolved puzzles (ranging from the largely unconstrained process of reionization at high z to the missing baryon problem at low z), highlighting the efforts that have the potential to solve them.

  5. On the intergalactic attenuation for high-z galaxies

    NASA Astrophysics Data System (ADS)

    Inoue, Akio K.

    2015-01-01

    Even after the cosmic reionization, neutral hydrogen still remains in the intergalactic space. These intervening hydrogen atoms absorb the radiation from high-z objects and make a numerous absorption lines, the so-called Lyman alpha forest, in the spectra of the objects. To know the absorption amount as a function of redshift is essentially important for studies of the high-z objects, for example, to predict how much reddening occurs in the spectra of the high-z galaxies, which is used as the so-called Lyman break technique. The current standard model for the intergalactic attenuation is Madau (1995). However, the intergalactic absorbers' statistics, which is the ingredient of the model, is largely updated during two decades after Madau (1995). Here, I present an update of this kind model. I also show a preliminary result of the absorption excess in a proto-cluster environment found in a composite spectrum of galaxies behind the proto-cluster.

  6. The intergalactic medium and galaxy formation

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.

    1989-01-01

    Recent observational and theoretical investigations of the intergalactic medium (IGM), defined as the component of the baryon-electron matter which now occupies the space between galaxies and which filled the pregalactic universe, are reviewed. Topics addressed include the Gunn-Peterson constraint on the history of the IGM, the mean mass density of the IGM at high redshift, requirements for ionizing the IGM, the observed quasar contribution, the thermal and ionization history of the IGM (quasar photoionization, stellar sources of the ionizing background, and alternative sources such as protogalactic shock radiation and the decay of exotic particles), and the hydrodynamical evolution of the IGM. Typical results from observations and numerical simulations are presented graphically.

  7. A SEARCH FOR DUST EMISSION IN THE LEO INTERGALACTIC CLOUD

    SciTech Connect

    Bot, Caroline; Helou, George; Puget, Jeremie; Latter, William B.; Schneider, Stephen; Terzian, Yervant

    2009-08-15

    We present a search for infrared dust emission associated with the Leo cloud, a large intergalactic cloud in the M96 group. Mid-infrared and far-infrared images were obtained with the InfraRed Array Camera and the Multiband Imaging Photometer for Spitzer on the Spitzer Space Telescope. Our analysis of these maps is done at each wavelength relative to the H I spatial distribution. We observe a probable detection at 8 {mu}m and a marginal detection at 24 {mu}m associated with the highest H I column densities in the cloud. At 70 and 160 {mu}m, upper limits on the dust emission are deduced. The level of the detection is low so that the possibility of a fortuitous cirrus clump or of an overdensity of extragalactic sources along the line of sight cannot be excluded. If this detection is confirmed, the quantities of dust inferred imply a dust-to-gas ratio in the intergalactic cloud up to a few times solar but no less than 1/20 solar. A confirmed detection would therefore exclude the possibility that the intergalactic cloud has a primordial origin. Instead, this large intergalactic cloud could therefore have been formed through interactions between galaxies in the group.

  8. Impact of galactic and intergalactic dust on the stellar EBL

    NASA Astrophysics Data System (ADS)

    Vavryčuk, V.

    2016-06-01

    Current theories assume that the low intensity of the stellar extragalactic background light (stellar EBL) is caused by finite age of the Universe because the finite-age factor limits the number of photons that have been pumped into the space by galaxies and thus the sky is dark in the night. We oppose this opinion and show that two main factors are responsible for the extremely low intensity of the observed stellar EBL. The first factor is a low mean surface brightness of galaxies, which causes a low luminosity density in the local Universe. The second factor is light extinction due to absorption by galactic and intergalactic dust. Dust produces a partial opacity of galaxies and of the Universe. The galactic opacity reduces the intensity of light from more distant background galaxies obscured by foreground galaxies. The inclination-averaged values of the effective extinction AV for light passing through a galaxy is about 0.2 mag. This causes that distant background galaxies become apparently faint and do not contribute to the EBL significantly. In addition, light of distant galaxies is dimmed due to absorption by intergalactic dust. Even a minute intergalactic opacity of 1 × 10^{-2} mag per Gpc is high enough to produce significant effects on the EBL. As a consequence, the EBL is comparable with or lower than the mean surface brightness of galaxies. Comparing both extinction effects, the impact of the intergalactic opacity on the EBL is more significant than the obscuration of distant galaxies by partially opaque foreground galaxies by factor of 10 or more. The absorbed starlight heats up the galactic and intergalactic dust and is further re-radiated at IR, FIR and micro-wave spectrum. Assuming static infinite universe with no galactic or intergalactic dust, the stellar EBL should be as high as the surface brightness of stars. However, if dust is considered, the predicted stellar EBL is about 290 nW m^{-2} sr^{-1}, which is only 5 times higher than the observed

  9. INTERGALACTIC 'PIPELINE' FUNNELS MATTER BETWEEN COLLIDING GALAXIES

    NASA Technical Reports Server (NTRS)

    2002-01-01

    This visible-light picture, taken by NASA's Hubble Space Telescope, reveals an intergalactic 'pipeline' of material flowing between two battered galaxies that bumped into each other about 100 million years ago. The pipeline [the dark string of matter] begins in NGC 1410 [the galaxy at left], crosses over 20,000 light-years of intergalactic space, and wraps around NGC 1409 [the companion galaxy at right] like a ribbon around a package. Although astronomers have taken many stunning pictures of galaxies slamming into each other, this image represents the clearest view of how some interacting galaxies dump material onto their companions. These results are being presented today at the 197th meeting of the American Astronomical Society in San Diego, CA. Astronomers used the Space Telescope Imaging Spectrograph to confirm that the pipeline is a continuous string of material linking both galaxies. Scientists believe that the tussle between these compact galaxies somehow created the pipeline, but they're not certain why NGC 1409 was the one to begin gravitationally siphoning material from its partner. And they don't know where the pipeline begins in NGC 1410. More perplexing to astronomers is that NGC 1409 is seemingly unaware that it is gobbling up a steady flow of material. A stream of matter funneling into the galaxy should have fueled a spate of star birth. But astronomers don't see it. They speculate that the gas flowing into NGC 1409 is too hot to gravitationally collapse and form stars. Astronomers also believe that the pipeline itself may contribute to the star-forming draught. The pipeline, a pencil-thin, 500 light-year-wide string of material, is moving a mere 0.02 solar masses of matter a year. Astronomers estimate that NGC 1409 has consumed only about a million solar masses of gas and dust, which is not enough material to spawn some of the star-forming regions seen in our Milky Way. The low amount means that there may not be enough material to ignite star birth

  10. DIOS: the diffuse intergalactic oxygen surveyor

    NASA Astrophysics Data System (ADS)

    Ohashi, T.; Ishida, M.; Sasaki, S.; Ishisaki, Y.; Mitsuda, K.; Yamasaki, N. Y.; Fujimoto, R.; Takei, Y.; Tawara, Y.; Furuzawa, A.; Suto, Y.; Yoshikawa, Y.; Kawayara, H.; Kawai, N.; Tsuru, T. G.; Matsushita, K.; Kitayama, T.

    2006-06-01

    We present our proposal for a small X-ray mission DIOS (Diffuse Intergalactic Oxygen Surveyor), consisting of a 4-stage X-ray telescope and an array of TES microcalorimeters, cooled with mechanical coolers, with a total weight of about 400 kg. The mission will perform survey observations of warm-hot intergalactic medium using OVII and OVIII emission lines, with the energy coverage up to 1.5 keV. The wide field of view of about 50' diameter, superior energy resolution close to 2 eV FWHM, and very low background will together enable us a wide range of science for diffuse X-ray sources. We briefly describe the design of the satellite, performance of the subsystems and the expected results.

  11. The Ionization History of The Intergalactic Medium:

    NASA Technical Reports Server (NTRS)

    Madau, Piero

    2003-01-01

    The funded project seeked a unified description of the ionization, physical structure, and evolution of the intergalactic medium (IGM) and quasar intervening absorption systems. We proposed to conduct theoretical studies of the IGM and QSO absorbers in the context of current theories of galaxy formation, developing and using numerical and analytical techniques aimed at a detailed modeling of cosmological radiative transfer, gas dynamics, and thermal and ionization evolution. The ionization history of the IGM has important implications for the metagalactic UV background, intergalactic helium absorption 21-cm tomography, metal absorption systems, fluctuations in the microwave background, and the cosmic rate of structure and star formation. All the original objectives of our program have been achieved, and the results widely used and quoted by the community. Indeed, they remain relevant as the level and complexity of research in this area has increased substantially since our proposal was submitted, due to new discoveries on galaxy formation and evolution, a flood of high-quality data on the distant universe, new theoretical ideas and direct numerical simulations of structure formation in hierarchical clustering theories.

  12. A NEW WAY OF DETECTING INTERGALACTIC BARYONS

    SciTech Connect

    Lieu, Richard; Duan Lingze

    2013-02-01

    For each photon wave packet of extragalactic light, the dispersion by line-of-sight intergalactic plasma causes an increase in the envelope width and a chirp (drift) in the carrier frequency. It is shown that for continuous emission of many temporally overlapping wave packets with random epoch phases such as quasars in the radio band, this in turn leads to quasi-periodic variations in the intensity of the arriving light on timescales between the coherence time (defined as the reciprocal of the bandwidth of frequency selection, taken here as of order 0.01 GHz for radio observations) and the stretched envelope, with most of the fluctuation power on the latter scale which is typically in the millisecond range for intergalactic dispersion. Thus, by monitoring quasar light curves on such short scales, it should be possible to determine the line-of-sight plasma column along the many directions and distances to the various quasars, affording one a three-dimensional picture of the ionized baryons in the near universe.

  13. Intergalactic magnetogenesis at Cosmic Dawn by photoionization

    NASA Astrophysics Data System (ADS)

    Durrive, J.-B.; Langer, M.

    2015-10-01

    We present a detailed analysis of an astrophysical mechanism that generates cosmological magnetic fields during the Epoch of Reionization. It is based on the photoionization of the intergalactic medium by the first sources formed in the Universe. First the induction equation is derived, then the characteristic length and time-scales of the mechanism are identified, and finally numerical applications are carried out for first stars, primordial galaxies and distant powerful quasars. In these simple examples, the strength of the generated magnetic fields varies between the order of 10-23 G on hundreds of kiloparsecs and 10-19 G on hundreds of parsecs in the neutral intergalactic medium between the Strömgren spheres of the sources. Thus, this mechanism contributes to the premagnetization of the whole Universe before large-scale structures are in place. It operates with any ionizing source, at any time during the Epoch of Reionization. Finally, the generated fields possess a characteristic spatial configuration which may help discriminate these seeds from those produced by different mechanisms.

  14. Ensemble fluctuations of the cosmic ray energy spectrum and the intergalactic magnetic field

    NASA Astrophysics Data System (ADS)

    Supanitsky, A. D.; Medina-Tanco, G.

    2015-06-01

    The origin of the most energetic cosmic ray particles is one of the most important open problems in astrophysics. Despite a big experimental effort done in the past years, the sources of these very energetic particles remain unidentified. Therefore, their distribution on the Universe and even their space density are still unknown. It has been shown that different spatial configurations of the sources lead to different energy spectra and composition profiles (in the case of sources injecting heavy nuclei) at Earth. These ensemble fluctuations are more important at the highest energies, because only nearby sources, which are necessarily few, can contribute to the flux observed at Earth. This is due to the interaction of the cosmic rays with the low energy photons of the radiation field, present in the intergalactic medium, during propagation. It is believed that the intergalactic medium is permeated by a turbulent magnetic field. Although at present it is still unknown, there are several constraints for its intensity and coherence length obtained from different observational techniques. Charged cosmic rays are affected by the intergalactic magnetic field because of the bending of their trajectories during propagation through the intergalactic medium. In this work, the influence of the intergalactic magnetic field on the ensemble fluctuations is studied. Sources injecting only protons and only iron nuclei are considered. The ensemble fluctuations are studied for different values of the density of sources compatible with the constraints recently obtained from cosmic ray data. Also, the possible detection of the ensemble fluctuations in the context of the future JEM-EUSO mission is discussed.

  15. The Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Hayes, Jeffrey (Technical Monitor)

    2005-01-01

    This grant is associated to a 5-year LTSA grant, on "Studying the Largest Reservoir of Baryons in the Universe: The Warm-Hot Intergalactic Medium". The first year of work within this program has been very rich, and has already produced several important results, as detailed in this paper. Table 2 of our original proposal justification, listed the planned year-by-year program, divided into two sub-fields: (A) the study of the z=0 (or Local Group WHIM) system, and (B) the study of the z greater than 0 (i.e- intervening WHIM) systems. For each of the two sub-fields we had planned to analyze, in the first year, a number of archival (Chandra, XMM and FUSE) and new (if observed) sightlines. Moreover, the plan for the z=0 system included the search for new interesting sightlines. We have accomplished all these tasks.

  16. Constraints on dark matter from intergalactic radiation

    NASA Technical Reports Server (NTRS)

    Overduin, J. M.; Wesson, P. S.

    1992-01-01

    Several of the dark matter candidates that have been proposed are believed to be unstable to decay, which would contribute photons to the radiation field between galaxies. The main candidates of this type are light neutrinos and axions, primordial mini-black holes, and a nonzero 'vacuum' energy. All of these can be constrained in nature by observational data on the extragalactic background light and the microwave background radiation. Black holes and the vacuum can be ruled out as significant contributors to the 'missing mass'. Light axions are also unlikely candidates; however, those with extremely small rest energies (the so-called 'invisible' axions) remain feasible. Light neutrinos, like those proposed by Sciama, are marginally viable. In general, we believe that the intergalactic radiation field is an important way of constraining all types of dark matter.

  17. Fundamental implications of intergalactic magnetic field observations

    NASA Astrophysics Data System (ADS)

    Vachaspati, Tanmay

    2017-03-01

    Helical intergalactic magnetic fields at the ˜10-14 G level on ˜10 Mpc length scales are indicated by current gamma ray observations. The existence of magnetic fields in cosmic voids and their nontrivial helicity suggest that they must have originated in the early Universe and thus have implications for the fundamental interactions. We derive the spectrum of the cosmological magnetic field as implied by observations and MHD evolution, yielding order nano Gauss fields on kiloparsec scales and a "large helicity puzzle" that needs to be resolved by the fundamental interactions. The importance of C P violation and a possible crucial role for chiral effects or axions in the early Universe are pointed out.

  18. Effects of a hot intergalactic medium

    NASA Technical Reports Server (NTRS)

    Taylor, Gregory B.; Wright, Edward L.

    1989-01-01

    One effect a hot intergalactic medium (IGM) would have would be to produce an isotropic X-ray background through thermal bremsstrahlung. Such a background was modeled including both relativistic electron-ion and electron-electron emission; the observed X-ray measurements could be fit with a current temperature of 10.2 keV and Omega (IGM) of 0.27, assuming that the IGM was instantaneously heated at a redshift of 5 and cools by relativistic adiabatic expansion and Compton cooling. Such a hot IGM would also distort the cosmic microwave background spectrum by inverse Compton scattering off relativistic electrons. This distortion was modeled using the relativistic treatment. When including the recent data of Matsumoto et al., an undistorted radiation temperature of 2.86 K and an Omega (IGM) of 0.41 was found.

  19. Intergalactic medium metal enrichment through dust sputtering

    NASA Astrophysics Data System (ADS)

    Bianchi, Simone; Ferrara, Andrea

    2005-04-01

    We study the motion of dust grains into the intergalactic medium (IGM) around redshift z= 3, to test the hypothesis that grains can efficiently pollute the gas with metals through sputtering. We use the results available in the literature for radiation-driven dust ejection from galaxies as initial conditions and follow the motion onwards. Via this mechanism, grains are ejected into the IGM with velocities >100 km s-1 as they move supersonically, grains can be efficiently eroded by non-thermal sputtering. However, Coulomb and collisional drag forces effectively reduce the charged grain velocity. Up-to-date sputtering yields for graphite and silicate (olivine) grains have been derived using the code TRANSPORT OF IONS IN MATTER (TRIM), for which we provide analytic fits. After training our method on a homogeneous density case, we analyse the grain motion and sputtering in the IGM density field as derived from a Λ cold dark matter (CDM) cosmological simulation at z= 3.27. We found that only large (a>~ 0.1μm) grains can travel up to considerable distances (few ×100 kpc physical) before being stopped. Resulting metallicities show a well-defined trend with overdensity δ. The maximum metallicities are reached for 10 < δ < 100[corresponding to systems, in quasi-stellar object (QSO) absorption spectra, with 14.5 < log N(HI) < 16]. However the distribution of sputtered metals is very inhomogeneous, with only a small fraction of the IGM volume polluted by dust sputtering (filling factors of 18 per cent for Si and 6 per cent for C). For the adopted size distribution, grains are never completely destroyed; nevertheless, the extinction and gas photoelectric heating effects resulting from this population of intergalactic grains are well below current detection limits.

  20. A population of very diffuse Lyman-α clouds as the origin of the He+ absorption signal in the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Songaila, A.; Hu, E. M.; Cowie, L. L.

    1995-05-01

    KNOWLEDGE of the physical state of the relatively uniform component of the intergalactic medium (the 'substrate') is critical to understanding the propagation of ionizing radiation and dynamical energy through intergalactic space, and for establishing the boundary conditions for the formation of the intergalactic gas clouds and galaxies that are assumed to have condensed from it. Uniformly distributed hydrogen, and, even more so, He+ will produce characteristic smooth absorption in the spectra of high-redshift quasars1-4, but at low spectral resolution it is difficult to distinguish such an absorption trough from the cumulative effect of absorption by the Lyman-α 'forest' of clouds. We report the detection of a population of weak 'forest' clouds with column density down to 2 x 1012 cm-2, and show that absorption in these clouds can account for a recent measurement1 of strong He+ absorption without necessarily having to invoke a diffuse intergalactic medium.

  1. Intergalactic stellar populations in intermediate redshift clusters

    NASA Astrophysics Data System (ADS)

    Melnick, J.; Giraud, E.; Toledo, I.; Selman, F.; Quintana, H.

    2012-11-01

    A substantial fraction of the total stellar mass in rich clusters of galaxies resides in a diffuse intergalactic component usually referred to as the intracluster light (ICL). Theoretical models indicate that these intergalactic stars originate mostly from the tidal interaction of the cluster galaxies during the assembly history of the cluster, and that a significant fraction of these stars could have formed in situ from the late infall of cold metal-poor gas clouds on to the cluster. However, these models also overpredict the fraction of stellar mass in the ICL by a substantial margin, something that is still not well understood. The models also make predictions about the age distribution of the ICL stars, which may provide additional observational constraints. Here we present population synthesis models for the ICL of an intermediate redshift (z = 0.29) X-ray cluster that we have extensively studied in previous papers. The advantage of observing intermediate redshift clusters rather than nearby ones is that the former fit the field of view of multi-object spectrographs in 8-m telescopes and therefore permit us to encompass most of the ICL with only a few well-placed slits. In this paper we show that by stacking spectra at different locations within the ICL it is possible to reach sufficiently high signal-to-noise ratios to fit population synthesis models and derive meaningful results. The models provide ages and metallicities for the dominant populations at several different locations within the ICL and the brightest cluster galaxies (BCG) halo, as well as measures of the kinematics of the stars as a function of distance from the BCG. We thus find that the ICL in our cluster is dominated by old metal-rich stars, at odds with what has been found in nearby clusters where the stars that dominate the ICL are old and metal poor. While we see weak evidence of a young, metal-poor component, if real, these young stars would amount to less than 1 per cent of the total ICL

  2. Characterizing Intergalactic Dust with X-ray Halos

    NASA Astrophysics Data System (ADS)

    Corrales, Lia; Paerels, F.

    2011-01-01

    By estimating the total mass of metals produced through star formation versus the amount of metals locked up in galaxies and intergalactic gas, researchers have concluded that about half of the metals in the intergalactic medium are locked up in dust grains, with Omega 10-5 (Aguirre 1999). Large dust grains are more likely to survive the processes, such as wind and radiation pressure, that enrich the intergalactic medium. Thus intergalactic dust is likely to be gray, leaving no trace of optical reddening that is typical of interstellar dust. We explore the possibility of detecting large ( 1 micron) intergalactic dust grains through small angle X-ray scattering. A bright X-ray point source, when imaged, will appear surrounded by a halo 10-100 arcseconds wide. The scattering cross section for X-rays increases with the grain radius to the fourth power. For a power law distribution of grain sizes, the optical depth of the universe to soft X-ray scattering reaches 20% for sources out to z=2. We present models of X-ray halos with various grain size distributions and explore the limits a dust-suffused universe places on current and future X-ray missions, the determination of cosmological parameters, and intergalactic enrichment models.

  3. The intergalactic medium in the cosmic web

    NASA Astrophysics Data System (ADS)

    Tejos, Nicolas

    2016-10-01

    The intergalactic medium (IGM) accounts for >~ 90% of baryons at all epochs and yet its three dimensional distribution in the cosmic web remains mostly unknown. This is so because the only feasible way to observe the bulk of the IGM is through intervening absorption line systems in the spectra of bright background sources, which limits its characterization to being one-dimensional. Still, an averaged three dimensional picture can be obtained by combining and cross-matching multiple one-dimensional IGM information with three-dimensional galaxy surveys. Here, we present our recent and current efforts to map and characterize the IGM in the cosmic web using galaxies as tracers of the underlying mass distribution. In particular, we summarize our results on: (i) IGM around star-forming and non-star-forming galaxies; (ii) IGM within and around galaxy voids; and (iii) IGM in intercluster filaments. With these datasets, we can directly test the modern paradigm of structure formation and evolution of baryonic matter in the Universe.

  4. Athena and the Missing Baryons in a Warm-Hot Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Nicastro, Fabrizio; Kaastra, Jelle; Finoguenov, Alexis

    Baryons are missing at all astronomical scales in the Universe, from galaxies to the large scales of structure formation and the Universe as a whole. Hydro-dynamical simulations for the formation of structures, tend to reconcile the different 'missing-baryon' problems and predict that most of the baryonic matter of the Universe is hiding in a hot and tenuous gaseous phase (dubbed the 'Warm-Hot Intergalactic Medium, or WHIM), surrounding virialized structures and more at large in the low-redshift inter-galactic space. The only way to secure the detection of this important and highly elusive baryonic component of the Universe, to constrain its physical, chemical and dynamical states, and so to measure its cosmological mass density, is by observing the intergalactic medium with instruments characterized by large collecting areas at the energies at which these baryons are supposed to shine, the soft X-ray band, and spectral resolution sufficient to resolve the weak emission and absorption lines produced by the hot light metals (mainly C, O, Ne) in the WHIM. The X-IFU of Athena, with its 2 m2 effective area at 1 keV and its superb 2.5 eV spectral resolution, will be a powerful WHIM machine. Here I will first summarize the current state of the art and will then focus on the large impulse that Athena will provide for such a rich and still relatively unexplored field of research.

  5. DIOS: the diffuse intergalactic oxygen surveyor: status and prospects

    NASA Astrophysics Data System (ADS)

    Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Sasaki, S.; Kawahara, H.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Ishida, M.; Tawara, Y.; Sakurai, I.; Furuzawa, A.; Suto, Y.; Yoshikawa, K.; Kawai, N.; Fujimoto, R.; Tsuru, T. G.; Matsushita, K.; Kitayama, T.

    2010-07-01

    DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small scientific satellite with a main aim for the search of warm-hot intergalactic medium using redshifted OVII and OVIII lines. The instrument will consist of a 4-stage X-ray telescope and an array of TES microcalorimeters with 256 pixels, cooled with mechanical coolers. Hardware development of DIOS and the expected results are described. Survey observations over about 5° x 5° area will reveal new filamentary structures. DIOS will be proposed to the 3rd mission in JAXA's small satellite series in 2011, aiming for launch around 2016 if it will be selected.

  6. Characterizing the Pressure Smoothing Scale of the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Kulkarni, Girish; Hennawi, Joseph F.; Oñorbe, Jose; Rorai, Alberto; Springel, Volker

    2015-10-01

    The thermal state of the intergalactic medium (IGM) at z < 6 constrains the nature and timing of cosmic reionization events, but its inference from the Lyα forest is degenerate with the 3D structure of the IGM on ˜100 kpc scales, where, analogous to the classical Jeans argument, the pressure of the T ≃ 104 K gas supports it against gravity. We simulate the IGM using smoothed particle hydrodynamics, and find that, at z < 6, the gas density power spectrum does not exhibit the expected filtering scale cutoff, because dense gas in collapsed halos dominates the small-scale power masking pressure smoothing effects. We introduce a new statistic, the real-space Lyα flux, Freal, which naturally suppresses dense gas, and is thus robust against the poorly understood physics of galaxy formation, revealing pressure smoothing in the diffuse IGM. The Freal power spectrum is accurately described by a simple fitting function with cutoff at λF, allowing us to rigorously quantify the pressure smoothing scale for the first time: we find λF = 79 kpc (comoving) at z = 3 for our fiducial thermal model. This statistic has the added advantage that it directly relates to observations of correlated Lyα forest absorption in close quasar pairs, recently proposed as a method to measure the pressure smoothing scale. Our results enable one to quantify the pressure smoothing scale in simulations, and ask meaningful questions about its dependence on reionization and thermal history. Accordingly, the standard description of the IGM in terms of the amplitude T0 and slope γ of the temperature-density relation T={T}0{(ρ /\\bar{ρ })}γ -1 should be augmented with a third pressure smoothing scale parameter λF.

  7. Giant Intergalactic Gas Stream Longer Than Thought

    NASA Astrophysics Data System (ADS)

    2010-01-01

    A giant stream of gas flowing from neighbor galaxies around our own Milky Way is much longer and older than previously thought, astronomers have discovered. The new revelations provide a fresh insight on what started the gaseous intergalactic streamer. The astronomers used the National Science Foundation's Robert C. Byrd Green Bank Telescope (GBT) to fill important gaps in the picture of gas streaming outward from the Magellanic Clouds. The first evidence of such a flow, named the Magellanic Stream, was discovered more than 30 years ago, and subsequent observations added tantalizing suggestions that there was more. However, the earlier picture showed gaps that left unanswered whether this other gas was part of the same system. "We now have answered that question. The stream is continuous," said David Nidever, of the University of Virginia. "We now have a much more complete map of the Magellanic Stream," he added. The astronomers presented their findings to the American Astronomical Society's meeting in Washington, DC. The Magellanic Clouds are the Milky Way's two nearest neighbor galaxies, about 150,000 to 200,000 light-years distant from the Milky Way. Visible in the Southern Hemisphere, they are much smaller than our Galaxy and may have been distorted by its gravity. Nidever and his colleagues observed the Magellanic Stream for more than 100 hours with the GBT. They then combined their GBT data with that from earlier studies with other radio telescopes, including the Arecibo telescope in Puerto Rico, the Parkes telescope in Australia, and the Westerbork telescope in the Netherlands. The result shows that the stream is more than 40 percent longer than previously known with certainty. One consequence of the added length of the gas stream is that it must be older, the astronomers say. They now estimate the age of the stream at 2.5 billion years. The revised size and age of the Magellanic Stream also provides a new potential explanation for how the flow got started

  8. Intergalactic Helium Absorption toward High-Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Fardal, Mark A.; Shull, J. Michael

    1995-01-01

    The recent Hubble Space Telescope (HST) observations of the z(q) = 3.286 quasar Q0302-003 (Jakobsen et at. 1994) and the z(q) = 3.185 quasar Q1935-67 by Tytler (1995) show absorption edges at the redshifted wavelength of He II 304 A. A key goal is to distinguish between contributions from discrete Ly-alpha forest clouds and a smoothly distributed intergalactic medium (IGM). We model the contributions from each of these sources of He II absorption, including the distribution of line Doppler widths and column densities, the 'He II proximity effect' from the quasar, and a self-consistent derivation of the He II opacity of the universe as a function of the spectrum of ionizing sources, with the assumption that both the clouds and the IGM are photoionized. The He II edge can be fully accounted for by He II line blanketing for reasonable distributions of line widths and column densities in the Ly-alpha forest, provided that the ionizing sources have spectral index alpha(s) greater than 1.5, and any He II proximity effect is neglected. Even with some contribution from a diffuse IGM, it is difficult to account for the edge observed by Jakobsen et al. (1994) with a 'hard' source spectrum (alpha(s) less than 1.3). The proximity effect modifies the relative contributions of the clouds and IGM to tau(He II) near the quasar (z approx. less than z(q)) and markedly increases the amount of He II absorption required. This implies, for example, that to account for the He II edge with line blanketing alone, the minimum spectral index alpha(s) must be increased from 1.5 to 1.9. We demonstrate the need for higher resolution observations that characterize the change in transmission as z approaches z(q) and resolve line-free gaps in the continuum. We set limits on the density of the diffuse IGM and suggest that the IGM and Ly-alpha clouds are likely to be a significant repository for dark baryons.

  9. Future Japanese X-ray TES Calorimeter Satellite: DIOS (Diffuse Intergalactic Oxygen Surveyor)

    NASA Astrophysics Data System (ADS)

    Yamada, S.; Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Miyazaki, N.; Kuwabara, K.; Kuromaru, G.; Suzuki, S.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.; Sakai, K.; Nagayoshi, K.; Yamamoto, R.; Hayashi, T.; Muramatsu, H.; Tawara, Y.; Mitsuishi, I.; Babazaki, Y.; Nakamichi, R.; Bandai, A.; Yuasa, T.; Ota, N.

    2016-08-01

    We present the latest update and progress on the future Japanese X-ray satellite mission Diffuse Intergalactic Oxygen Surveyor (DIOS). DIOS is proposed to JAXA as a small satellite mission, and would be launched with an Epsilon rocket. DIOS would carry on the legacy of ASTRO-H, which carries semiconductor-based microcalorimeters and is scheduled to be launched in 2016, in high-resolution X-ray spectroscopy. A 400-pixel array of transition-edge sensors (TESs) would be employed, so DIOS would also provide valuable lessons for the next ESA X-ray mission ATHENA on TES operation and cryogen-free cooling in space. We have been sophisticating the entire design of the satellite to meet the requirement for the Epsilon payload for the next call. The primary goal of the mission is to search for warm-hot intergalactic medium with high-resolution X-ray spectroscopy by detecting redshifted emission lines from OVII and OVIII ions. The results would have significant impacts on our understanding of the nature of "dark baryons," their total amount and spatial distribution, as well as their evolution over cosmological timescales.

  10. Status of the Diffuse Intergalactic Oxygen Surveyor (DIOS)

    NASA Astrophysics Data System (ADS)

    Ohashi, T.; Ishisaki, Y.; Ezoe, Y.; Tawara, Y.; Mitsuda, K.; Yamasaki, N. Y.; Takei, Y.

    2012-09-01

    DIOS (Diffuse Intergalactic Oxygen Surveyor) is a small scientific satellite with the main aim of searching warm-hot intergalactic medium using redshifted OVII and OVIII lines. The wide-field spectroscopic capability of DIOS will also bring rich science about the dynamics of cosmic hot plasmas in all spatial scales. The instrument will consist of a 4-stage X-ray telescope and an array of TES microcalorimeters with up to 400 pixels, cooled with mechanical coolers. Hardware development of DIOS and outstanding issues about the payload are described. DIOS will be further developed with international collaboration and will be proposed to the earliest call of JAXA’s small scientific satellite series.

  11. Current Status of the DIOS (diffuse intergalactic oxygen surveyor) Mission

    NASA Astrophysics Data System (ADS)

    Tawara, Yuzuru; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Ezoe, Yuichiro; Ishisaki, Yoshitaka; Ohashi, Takaya

    The Diffuse Intergalactic Oxygen Surveyor (DIOS) mission will conduct a high-sensitivity soft X-ray survey over a wide solid angle of the sky to search warm hot intergalactic medium using redshifted OVII and OVIII lines. Together with very high spectroscopic capability, DIOS will bring rich science about the dynamics of cosmic hot plasmas in all spatial scales. Key instruments of the DIOS are a 4-stage X-ray telescope (FXT) and an array of TES micro-calorimeter (XSA), cooled with mechanical coolers. FXT uses the conical approximation of the Wolter I optic extended to four-fold reflection, which can provide very short focal length to be suited to small detector of XSA to cover wide field of view. In this paper, hardware development of DIOS and outstanding issues about the payload are described. DIOS will be further developed with international collaboration and will be proposed to the call of JAXA’s scientific satellite.

  12. Intergalactic Magnetic Field Observations and their Fundamental Implications

    NASA Astrophysics Data System (ADS)

    Vachaspati, Tanmay

    2017-01-01

    I will review current observational evidence for helical intergalactic magnetic fields at the 10-14 G level on 10 Mpc length scales. The existence of magnetic fields in cosmic voids and their non-trivial helical structure suggest that they might have originated in the early universe due to CP violating fundamental interactions. The large helicity of the magnetic field suggests a possible crucial role for chiral MHD effects in the early universe. Supported by the DOE.

  13. Detecting and Mapping Hidden Baryons in the Intergalactic Medium in the Ultraviolet

    NASA Astrophysics Data System (ADS)

    Martin, Christopher

    I discuss several experimental projects underway or proposed designed to discover and map emission from the Intergalactic Medium in the rest ultraviolet. The Cosmic Web Imager (CWI) is a ground-based high resolution spectrometer designed to detect low surface brightness emission from redshifted Lyman alpha, OVI and CIV at Palomar and Keck Observatories, over 2space UV. I will report on preliminary results from FIREBALL and CWI and on technology developments that will support a UV IGM mapping mission in next decade. :

  14. Intergalactic Dust and Observations of Type IA Supernovae

    NASA Astrophysics Data System (ADS)

    Aguirre, Anthony

    1999-11-01

    Estimates of the cosmic star formation rate and of cluster metallicities independently imply that at z<~0.5 the gas in the universe has substantial average metallicity: 1/10<~Z/Zsolar<~1/3 for Ωgas=0.05. This metal density probably cannot be contained in known solar-metallicity galaxies of density parameter Ω*~0.004, implying significant enrichment of the intergalactic medium (IGM) by ejection of metals and dust from galaxies via winds, in mergers or in dust efflux driven by radiation pressure. Galaxies have a dust-to-metal ratio of ~0.5 in their interstellar media, but some fraction (1-f)>0 of this must be destroyed in the IGM or during the ejection process. Assuming the Draine & Lee dust model and preferential destruction of small grains (as destruction by sputtering would provide), I calculate the reddening and extinction of a uniform cosmological dust component in terms of f and the minimum grain size amin. Very small grains provide most of the reddening but less than half of the opacity for optical extinction. For f>~0.3 and amin>~0.1 μm, the intergalactic dust would be too gray to have been detected by its reddening, yet dense enough to be cosmologically important: it could account for the recently observed Type Ia supernova dimming at z~0.5 without cosmic acceleration. It would also have implications for galaxy counts and evolutionary studies and would contribute significantly to the cosmic infrared background (CIB). The importance of gray intergalactic dust of the described type can be tested by observations of z=0.5 supernovae in (rest) R-band or longer wavelengths and by the fluxes of a large sample of supernovae at z>1.

  15. Current QSO statistics - Implications for the intergalactic medium

    NASA Technical Reports Server (NTRS)

    Sherman, R. D.

    1981-01-01

    The results of numerous QSO surveys have been compiled and analyzed to form a single spatially averaged QSO ionizing function that is independent of evolution mode (number density or luminosity). An intergalactic medium (IGM) that satisfies the observational constraints may now have a density with respect to closure of approximately 0.1, which is substantially less than hitherto modeled. The aggregate of QSO data also indicate that if evolution is due to number density, then, when split into luminosity classes, an exponential in look-back time fits the data better than a power law, and the evolution rates increase roughly with absolute luminosity if analyzed by the exponential.

  16. Metallicity of the Intergalactic Medium Using Pixel Statistics. III. Silicon

    NASA Astrophysics Data System (ADS)

    Aguirre, Anthony; Schaye, Joop; Kim, Tae-Sun; Theuns, Tom; Rauch, Michael; Sargent, Wallace L. W.

    2004-02-01

    We study the abundance of silicon in the intergalactic medium by analyzing the statistics of Si IV, C IV, and H I pixel optical depths in a sample of 19 high-quality quasar absorption spectra, which we compare with realistic spectra drawn from a hydrodynamical simulation. Simulations with a constant and uniform Si/C ratio, a C distribution as derived in Paper II of this series, and a UV background (UVB) model from Haardt & Madau reproduce the observed trends in the ratio of Si IV and C IV optical depths, τSiIV/τCIV. The ratio τSiIV/τCIV depends strongly on τCIV, but it is nearly independent of redshift for fixed τCIV and is inconsistent with a sharp change in the hardness of the UVB at z~3. Scaling the simulated optical depth ratios gives a measurement of the global Si/C ratio (using our fiducial UVB, which includes both galaxy and quasar contributions) of [Si/C]=0.77+/-0.05, with a possible systematic error of ~0.1 dex. The inferred [Si/C] depends on the shape of the UVB (harder backgrounds leading to higher [Si/C]), ranging from [Si/C]~=1.5 for a quasar-only UVB to [Si/C]~=0.25 for a UVB including both galaxies and artificial softening; this provides the dominant uncertainty in the overall [Si/C]. Examination of the full τSiIV/τCIV distribution yields no evidence for inhomogeneity in [Si/C] and constrains the width of a lognormal probability distribution in [Si/C] to be much smaller than that of [C/H]; this implies a common origin for Si and C. Since the inferred [Si/C] depends on the UVB shape, this also suggests that inhomogeneities in the hardness of the UVB are small. There is no evidence for evolution in [Si/C]. Variation in the inferred [Si/C] with density depends on the UVB and rules out the quasar-only model unless [Si/C] increases sharply at low density. Comparisons with low-metallicity halo stars and nucleosynthetic yields suggest either that our fiducial UVB is too hard or that supermassive Population III stars might have to be included. The

  17. Hydrodynamic Simulations and Tomographic Reconstructions of the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Stark, Casey William

    The Intergalactic Medium (IGM) is the dominant reservoir of matter in the Universe from which the cosmic web and galaxies form. The structure and physical state of the IGM provides insight into the cosmological model of the Universe, the origin and timeline of the reionization of the Universe, as well as being an essential ingredient in our understanding of galaxy formation and evolution. Our primary handle on this information is a signal known as the Lyman-alpha forest (or Ly-alpha forest) -- the collection of absorption features in high-redshift sources due to intervening neutral hydrogen, which scatters HI Ly-alpha photons out of the line of sight. The Ly-alpha forest flux traces density fluctuations at high redshift and at moderate overdensities, making it an excellent tool for mapping large-scale structure and constraining cosmological parameters. Although the computational methodology for simulating the Ly-alpha forest has existed for over a decade, we are just now approaching the scale of computing power required to simultaneously capture large cosmological scales and the scales of the smallest absorption systems. My thesis focuses on using simulations at the edge of modern computing to produce precise predictions of the statistics of the Ly-alpha forest and to better understand the structure of the IGM. In the first part of my thesis, I review the state of hydrodynamic simulations of the IGM, including pitfalls of the existing under-resolved simulations. Our group developed a new cosmological hydrodynamics code to tackle the computational challenge, and I developed a distributed analysis framework to compute flux statistics from our simulations. I present flux statistics derived from a suite of our large hydrodynamic simulations and demonstrate convergence to the per cent level. I also compare flux statistics derived from simulations using different discretizations and hydrodynamic schemes (Eulerian finite volume vs. smoothed particle hydrodynamics) and

  18. The Connection between Galaxies and Intergalactic Absorption Lines at Redshift 2<~z<~3

    NASA Astrophysics Data System (ADS)

    Adelberger, Kurt L.; Shapley, Alice E.; Steidel, Charles C.; Pettini, Max; Erb, Dawn K.; Reddy, Naveen A.

    2005-08-01

    Absorption-line spectroscopy of 23 background QSOs and numerous background galaxies has let us measure the spatial distribution of metals and neutral hydrogen around 1044 UV-selected galaxies at redshifts 1.8<~z<~3.3. The typical galaxy is surrounded to radii r~40 proper kpc by gas that has a large velocity spread (Δv>260 km s-1) and produces very strong absorption lines (NCIV>>1014 cm-2) in the spectra of background objects. These absorption lines are almost as strong as those produced by a typical galaxy's own interstellar gas. Absorption with an average column density of NCIV~=1014 cm-2 extends out to ~80 kpc, a radius large enough to imply that most strong intergalactic C IV absorption is associated with star-forming galaxies like those in our sample. Our measurement of the galaxy-C IV spatial correlation function shows that even the weakest detectable C IV systems are found in the same regions as galaxies; we find that the cross-correlation length increases with C IV column density and is similar to the galaxy autocorrelation length (r0~4 h-1 Mpc) for NCIV>~1012.5 cm-2. Distortions in the redshift-space galaxy-C IV correlation function on small scales may imply that some of the C IV systems have large peculiar velocities. Four of the five detected O VI absorption systems in our sample lie within 400 proper kpc of a known galaxy. Strong Lyα absorption is produced by the intergalactic gas within 1 h-1 comoving Mpc of most galaxies, but for a significant minority (~1/3) the absorption is weak or absent. This is not observed in smooth-particle hydrodynamic simulations that omit the effects of ``feedback'' from galaxy formation. We were unable to identify any statistically significant differences in age, dust reddening, environment, or kinematics between galaxies with weak nearby H I absorption and the rest, although galaxies with weak absorption may have higher star formation rates. Galaxies near intergalactic C IV systems appear to reside in relatively dense

  19. Probing intergalactic magnetic fields with simulations of electromagnetic cascades

    NASA Astrophysics Data System (ADS)

    Alves Batista, Rafael; Saveliev, Andrey; Sigl, Günter; Vachaspati, Tanmay

    2016-10-01

    We determine the effect of intergalactic magnetic fields on the distribution of high-energy gamma rays by performing three-dimensional Monte Carlo simulations of the development of gamma-ray-induced electromagnetic cascades in the magnetized intergalactic medium. We employ the so-called "Large Sphere Observer" method to efficiently simulate blazar gamma ray halos. We study magnetic fields with a Batchelor spectrum and with maximal left- and right-handed helicities. We also consider the case of sources whose jets are tilted with respect to the line of sight. We verify the formation of extended gamma ray halos around the source direction, and observe spiral-like patterns if the magnetic field is helical. We apply the Q -statistics to the simulated halos to extract their spiral nature and also propose an alternative method, the S -statistics. Both methods provide a quantitative way to infer the helicity of the intervening magnetic fields from the morphology of individual blazar halos for magnetic field strengths B ≳10-15 G and magnetic coherence lengths Lc≳100 Mpc . We show that the S -statistics has a better performance than the Q -statistics when assessing magnetic helicity from the simulated halos.

  20. Physics of the Intergalactic Medium During the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Lidz, Adam

    A major goal of observational and theoretical cosmology is to observe the largely unexplored time period in the history of our universe when the first galaxies form, and to interpret these measurements. Early galaxies dramatically impacted the gas around them in the surrounding intergalactic medium (IGM) by photoionzing the gas during the "Epoch of Reionization" (EoR). This epoch likely spanned an extended stretch in cosmic time: ionized regions formed and grew around early generations of galaxies, gradually filling a larger and larger fraction of the volume of the universe. At some time—thus far uncertain, but within the first billion years or so after the big bang—essentially the entire volume of the universe became filled with ionized gas. The properties of the IGM provide valuable information regarding the formation time and nature of early galaxy populations, and many approaches for studying the first luminous sources are hence based on measurements of the surrounding intergalactic gas. The prospects for improved reionization-era observations of the IGM and early galaxy populations over the next decade are outstanding. Motivated by this, we review the current state of models of the IGM during reionization. We focus on a few key aspects of reionization-era phenomenology and describe: the redshift evolution of the volume-averaged ionization fraction, the properties of the sources and sinks of ionizing photons, along with models describing the spatial variations in the ionization fraction, the ultraviolet radiation field, the temperature of the IGM, and the gas density distribution.

  1. Probing the intergalactic medium with fast radio bursts

    SciTech Connect

    Zheng, Z.; Ofek, E. O.; Kulkarni, S. R.; Neill, J. D.; Juric, M.

    2014-12-10

    The recently discovered fast radio bursts (FRBs), presumably of extragalactic origin, have the potential to become a powerful probe of the intergalactic medium (IGM). We point out a few such potential applications. We provide expressions for the dispersion measure and rotation measure as a function of redshift, and we discuss the sensitivity of these measures to the He II reionization and the IGM magnetic field. Finally, we calculate the microlensing effect from an isolated, extragalactic stellar-mass compact object on the FRB spectrum. The time delays between the two lensing images will induce constructive and destructive interference, leaving a specific imprint on the spectra of FRBs. With a high all-sky rate, a large statistical sample of FRBs is expected to make these applications feasible.

  2. Implications for High Energy Blazar Spectra from Intergalactic Absorption Calculations

    NASA Technical Reports Server (NTRS)

    Stecker, F

    2008-01-01

    Given a knowledge of the density spectra intergalactic low energy photons as a function of redshift, one can derive the intrinsic gamma-ray spectra and luminosities of blazars over a range of redshifts and look for possible trends in blazar evolution. Stecker, Baring & Summerlin have found some evidence hinting that TeV blazars with harder spectra have higher intrinsic TeV gamma-ray luminosities and indicating that there may be a correlation of spectral hardness and luminosity with redshift. Further work along these lines, treating recent observations of the blazers lES02291+200 and 3C279 in the TeV and sub-TeV energy ranges, has recently been explored by Stecker & Scully. GLAST will observe and investigate many blazars in the GeV energy range and will be sensitive to blazers at higher redshifts. I examine the implications high redshift gamma-ray absorption for both theoretical and observational blazer studies.

  3. Observational Search for Negative Matter in Intergalactic Voids

    NASA Technical Reports Server (NTRS)

    Forward, Robert L.

    1999-01-01

    Negative matter is a hypothetical form of matter with negative rest mass, inertial mass, and gravitational mass. It is not antimatter. If negative matter could be collected in macroscopic amounts, its negative inertial property could be used to make an continuously operating propulsion system which requires neither energy nor reaction mass, yet still violates no laws of physics. Negative matter has never been observed, but its existence is not forbidden by the laws of physics. We propose that NASA support an extension to an ongoing astrophysical observational effort by da Costa, et al. (1996) which could possibly determine whether or not negative matter exists in the well-documented but little-understood intergalactic voids.

  4. Galaxy formation in an intergalactic medium dominated by explosions

    NASA Technical Reports Server (NTRS)

    Ostriker, J. P.; Cowie, L. L.

    1981-01-01

    The evolution of galaxies in an intergalactic medium dominated by explosions of star systems is considered analogously to star formation by nonlinearly interacting processes in the interstellar medium. Conditions for the existence of a hydrodynamic instability by which galaxy formation leads to more galaxy formation due to the propagation of the energy released at the death of massive stars are examined, and it is shown that such an explosive amplification is possible at redshifts less than about 5 and stellar system masses between 10 to the 8th and 10 to the 12th solar masses. Explosions before a redshift of about 5 are found to lead primarily to the formation of massive stars rather than galaxies, while those at a redshift close to 5 will result in objects of normal galactic scale. The model also predicts a dusty interstellar medium preventing the detection of objects of redshift greater than 3, numbers and luminosities of protogalaxies comparable to present observations, unvirialized groups of galaxies lying on two-dimensional surfaces, and a significant number of black holes in the mass range 1000-10,000 solar masses.

  5. A model for the distribution of the intergalactic medium

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1990-01-01

    The evolution and distribution of the intergalactic medium (IGM) in a universe dominated by cold dark matter with Omega(0) = 1 and h = 0.5 are investigated. Galaxies form and eject energy into the IGM from z about 20 up to the present, and the distribution of the IGM is dominated by large connected structures. The power spectrum and two-point correlation function of the IGM show a suppressed growth due to the energy injected from galaxies and the mass subtraction to form galaxies. The high-temperature regions of the IGM correspond to the low-density regions and the low-temperature regions correspond to the high-density regions. The temperature of the IGM increases from z = 1 to z = 0, while the prsssure decreases. The present temperature distribution shows a peak at about 10 million K. The mass fraction of the IGM with temperature below 100,000 K is negligible, indicating almost all the hydrogen is ionized.

  6. Cosmological Halos: a Search for the Ionized Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Geller, Robert Maurice

    Standard big bang nucleosynthesis predicts the average baryon density of the Universe to be a few percent of the critical density. Only about one tenth of the predicted baryons have been seen. A plausible repository for the missing baryons is in a diffuse ionized intergalactic medium (IGM). In an attempt to measure the IGM we searched for Thomson-scattered halos around strong high redshift radio sources. Observations of the radio source 1935-692 were made with the Australia Telescope Compact Array. We assumed a uniform IGM, and isotropic steady emission of 1935-692 for a duration between 107-108 years. A model of the expected halo visibility function was used in χ2 fits to place upper limits on Ω IGM. The upper limits varied depending on the methods used to characterize systematic errors in the data. The results are 2σ limits of Ω IGM < 0.65. While not yet at the sensitivity level to test primordial nucleosynthesis, improvements on the technique will probably allow this in future studies.

  7. Cosmological Halos: A Search for the Ionized Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Geller, Robert M.; Sault, Robert J.; Antonucci, Robert; Killeen, Neil E. B.; Ekers, Ron; Desai, Ketan; Whysong, David

    2000-08-01

    Standard big bang nucleosynthesis predicts the average baryon density of the universe to be a few percent of the critical density. Only about one-tenth of the predicted baryons have been seen. A plausible repository for the missing baryons is in a diffuse ionized intergalactic medium (IGM). In an attempt to measure the IGM, we searched for Thomson-scattered halos around strong high-redshift radio sources. Observations of the radio source 1935-692 were made with the Australia Telescope Compact Array. We assumed a uniform IGM, and isotropic steady emission of 1935-692 for a duration between 107 and 108 yr. A model of the expected halo visibility function was used in χ2 fits to place upper limits on ΩIGM. The upper limits varied depending on the methods used to characterize systematic errors in the data. The results are 2 σ limits of ΩIGM<0.65. While not yet at the sensitivity level to test primordial nucleosynthesis, improvements in the technique will probably allow this in future studies.

  8. 3D Spatial Distribution of the Intergalactic Medium: The ESO Blues?

    NASA Astrophysics Data System (ADS)

    Rollinde, Emmanuel; Petitjean, Patrick; Pichon, Christophe; Colombi, Stéphane; Aracil, Bastien

    The numerous absorption lines seen in the spectra of distant quasars (the so-called Lyman-α forest) reveal the intergalactic medium (IGM) up to redshifts larger than 5. It is believed that the space distribution of the gas traces the potential wells of the dark matter. Indeed, recent numerical N-body simulations have been successful at reproducing the observed characteristics of the Lyman-α forest (e.g. [1][12][5]). The IGM is therefore seen as a smooth pervasive medium which can be used to study the spatial distribution of the mass on scales larger than the Jeans' length. This idea is reinforced by observations of multiple lines of sight. It is observed that the Lyman-α forest is fairly homogeneous on scale smaller than 100 kpc (e.g. [11]) and highly correlated on scale up to one megaparsec (e.g. [13][3]). The number of suitable multiple lines of sight is small however and the sample need to be significantly enlarged before any firm conclusion can be drawn (see Section 3.3).

  9. Intergalactic Lyman continuum photon budget in the past 5 billion years

    NASA Astrophysics Data System (ADS)

    Gaikwad, Prakash; Khaire, Vikram; Choudhury, Tirthankar Roy; Srianand, Raghunathan

    2017-04-01

    We constrain the H I photoionization rate (Γ _{H I}) at z ≲ 0.45 by comparing the flux probability distribution function and power spectrum of the Lyα forest data along 82 Quasi-Stellar Object (QSO) sightlines obtained using Cosmic Origins Spectrograph with models generated from smoothed particle hydrodynamic simulations. We have developed a module named 'Code for Ionization and Temperature Evolution (CITE)' for calculating the intergalactic medium (IGM) temperature evolution from high to low redshifts by post-processing the GADGET-2 simulation outputs. Our method, that produces results consistent with other simulations, is computationally less expensive thus allowing us to explore a large parameter space. It also allows rigorous estimation of the error covariance matrix for various statistical quantities of interest. We find that the best-fitting Γ _{H I}(z) increases with z and follows (4 ± 0.1) × 10-14 (1 + z)4.99 ± 0.12 s-1. At any given z, the typical uncertainties Δ Γ _{H I} / Γ _{H I} are ∼25 per cent that contains not only the statistical errors but also those arising from possible degeneracy with the thermal history of the IGM and cosmological parameters and uncertainties in fitting the QSO continuum. These values of Γ _{H I} favour the scenario where only QSOs contribute to the ionizing background at z < 2. Our derived 3σ upper limit on average escape fraction is 0.008, consistent with measurements of low-z galaxies.

  10. Measuring the Sources of the Intergalactic Ionizing Flux

    NASA Astrophysics Data System (ADS)

    Cowie, L. L.; Barger, A. J.; Trouille, L.

    2009-02-01

    We use a wide-field (0.9 deg2) X-ray sample with optical and Galaxy Evolution Explorer (GALEX) ultraviolet observations to measure the contribution of active galactic nuclei (AGNs) to the ionizing flux as a function of redshift. Our analysis shows that the AGN contribution to the metagalactic ionizing background peaks at around z = 2. The measured values of the ionizing background from the AGNs are lower than previous estimates and confirm that ionization from AGNs is insufficient to maintain the observed ionization of the intergalactic medium (IGM) at z > 3. We show that only X-ray sources with broad lines in their optical spectra have detectable ionizing flux and that the ionizing flux seen in an AGN is not correlated with its X-ray color. We also use the GALEX observations of the GOODS-N region to place a 2σ upper limit of 0.008 on the average ionization fraction f ν(700 Å)/f ν(1500 Å) for 626 UV selected galaxies in the redshift range z = 0.9-1.4. We then use this limit to estimate an upper bound to the galaxy contribution in the redshift range z = 0-5. If the z ~ 1.15 ionization fraction is appropriate for higher-redshift galaxies, then contributions from the galaxy population are also too low to account for the IGM ionization at the highest redshifts (z > 4). Based in part on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  11. Studying the Warm-hot Intergalactic Medium in Emission

    NASA Astrophysics Data System (ADS)

    Takei, Y.; Ursino, E.; Branchini, E.; Ohashi, T.; Kawahara, H.; Mitsuda, K.; Piro, L.; Corsi, A.; Amati, L.; den Herder, J. W.; Galeazzi, M.; Kaastra, J.; Moscardini, L.; Nicastro, F.; Paerels, F.; Roncarelli, M.; Viel, M.

    2011-06-01

    We assess the possibility of detecting the warm-hot intergalactic medium in emission and characterizing its physical conditions and spatial distribution through spatially resolved X-ray spectroscopy, in the framework of the recently proposed DIOS, EDGE, Xenia, and ORIGIN missions, all of which are equipped with microcalorimeter-based detectors. For this purpose, we analyze a large set of mock emission spectra, extracted from a cosmological hydrodynamical simulation. These mock X-ray spectra are searched for emission features showing both the O VII Kα triplet and O VIII Lyα line, which constitute a typical signature of the warm-hot gas. Our analysis shows that 1 Ms long exposures and energy resolution of 2.5 eV will allow us to detect about 400 such features per deg2 with a significance >=5σ and reveals that these emission systems are typically associated with density ~100 above the mean. The temperature can be estimated from the line ratio with a precision of ~20%. The combined effect of contamination from other lines, variation in the level of the continuum, and degradation of the energy resolution reduces these estimates. Yet, with an energy resolution of 7 eV and all these effects taken into account, one still expects about 160 detections per deg2. These line systems are sufficient for tracing the spatial distribution of the line-emitting gas, which constitute an additional information, independent from line statistics, to constrain the poorly known cosmic chemical enrichment history and the stellar feedback processes.

  12. Multifrequency survey of the intergalactic cloud in the M96 group

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Skrutskie, M. F.; Hacking, Perry B.; Young, Judith S.; Dickman, Robert L.

    1989-01-01

    The intergalactic cloud of neutral hydrogen in the M96 group are examined for signs of emission over a wide range of frequencies, from radio waves to X rays. Past or present stellar activity in the gas might have been expected to produce detectable visual infrared, CO, OH, or radio recombination-line emission. None was detected. The limits are used to study physical conditions in the intergalactic gas. In particular, B and V band limits on starlight and IRAS limits on the presence of dust strongly constrain the presence of stars or stellar by-products. However, given the uncertainties about physical conditions in the intergalactic environment, it is difficult to rule out entirely the presence of stellar-processed materials. Results of neutral hydrogen mapping from a large-scale survey of the intergalactic cloud and surrounding region are also presented. These observations confirm that the gas is confined to a large ringlike structure. The simplest interpretation remains that the intergalactic gas in Leo is primordial.

  13. Multifrequency survey of the intergalactic cloud in the M96 group

    SciTech Connect

    Schneider, S.E.; Skrutskie, M.F.; Hacking, P.B.; Young, J.S.; Dickman, R.L.

    1989-03-01

    The intergalactic cloud of neutral hydrogen in the M96 group are examined for signs of emission over a wide range of frequencies, from radio waves to X rays. Past or present stellar activity in the gas might have been expected to produce detectable visual infrared, CO, OH, or radio recombination-line emission. None was detected. The limits are used to study physical conditions in the intergalactic gas. In particular, B and V band limits on starlight and IRAS limits on the presence of dust strongly constrain the presence of stars or stellar by-products. However, given the uncertainties about physical conditions in the intergalactic environment, it is difficult to rule out entirely the presence of stellar-processed materials. Results of neutral hydrogen mapping from a large-scale survey of the intergalactic cloud and surrounding region are also presented. These observations confirm that the gas is confined to a large ringlike structure. The simplest interpretation remains that the intergalactic gas in Leo is primordial. 36 references.

  14. Evolution of the intergalactic medium - What happened during the epoch z = 3-10?

    NASA Technical Reports Server (NTRS)

    Ikeuchi, S.; Ostriker, J. P.

    1986-01-01

    An attempt is made to model consistently the thermal and dynamic history of the intergalactic medium (IGM) from the era of reheating (z = 10-5) to the present, and to provide a unified explanation for the origin of ordinary galaxies, blue compact objects, and Lyman-alpha clouds. The evolution of the intergalactic gas is analyzed, treating the IGM as perfectly homogeneous at every epoch and taking into account radiative and Compton cooling, adiabatic cooling, shock heating, and heating produced by the diffuse UV flux. It is suggested that the IGM must have been heated to higher than a 10 to the 6th K by shock heasting caused either by explosions of pregalactic objects or expanding voids. The formation of intergalactic clouds by fragmentation of the resulting shells and the subsequent collapse of the shells to form galaxies are studied. An attempt is made to determine model parameters on the basis of an analysis of Lyman-alpha absorption lines.

  15. Cosmic far-ultraviolet background radiation - Probe of a dense hot intergalactic medium

    NASA Technical Reports Server (NTRS)

    Sherman, R. D.; Silk, J.

    1979-01-01

    Line and continuum radiation fluxes have been computed for a wide range of enriched intergalactic medium (IGM) models. Observations of the diffuse extragalactic light at optical and far-ultraviolet wavelengths are found to provide a potentially important probe of a dense hot intergalactic medium. If the diffuse X-ray background is produced by this gas, the models constrain the cosmological density parameter (Omega) to be less than 0.4. The associated Compton distortions of the cosmic blackbody background radiation and the optical depths to distant quasars at X-ray wavelengths are also evaluated.

  16. Navy Space and Astronautics Orientation.

    ERIC Educational Resources Information Center

    Herron, R. G.

    Fundamental concepts of the spatial environment, technologies, and applications are presented in this manual prepared for senior officers and key civilian employees. Following basic information on the atmosphere, solar system, and intergalactic space, a detailed review is included of astrodynamics, rocket propulsion, bioastronautics, auxiliary…

  17. THE RELATIONSHIP BETWEEN INTERGALACTIC H I/O VI AND NEARBY (z < 0.017) GALAXIES

    SciTech Connect

    Wakker, B. P.; Savage, B. D.

    2009-05-15

    We analyze intergalactic H I and O VI absorbers with v < 5000 km s{sup -1} in Hubble Space Telescope and Far Ultraviolet Spectroscopic Explorer spectra of 76 active galactic nuclei. The baryons traced by H I/O VI absorption are clearly associated with the extended surroundings of galaxies; for impact parameters <400 kpc they are 2-4 times more numerous as those inside the galaxies. This large reservoir of matter likely plays a major role in galaxy evolution. We tabulate the fraction of absorbers having a galaxy of a given luminosity within a given impact parameter ({rho}) and velocity difference ({delta}v), as well as the fraction of galaxies with an absorber closer than a given {rho} and {delta}v. We identify possible 'void absorbers' ({rho} > 3 Mpc to the nearest L{sub *} galaxy), although at v < 2500 km s{sup -1} all absorbers are within 1.5 Mpc of an L>0.1 L{sub *} galaxy. The absorber properties depend on {rho}, but the relations are not simple correlations. For four absorbers with {rho} = 50-350 kpc from an edge-on galaxy with known orientation of its rotation, we find no clear relation between absorber velocities and the rotation curve of the underlying galaxy. For {rho} < 350 kpc, the covering factor of Ly{alpha} (O VI) around L>0.1 L {sub *} galaxies is 100% (70%) for field galaxies and 65% (10%) for group galaxies; 50% of galaxy groups have associated Ly{alpha}. All O VI absorbers occur within 550 kpc of an L>0.25 L{sub *} galaxy. The properties of three of 14 O VI absorbers are consistent with photoionization, for five the evidence points to collisional ionization; the others are ambiguous. The fraction of broad Ly{alpha} lines increases from z = 3 to z = 0 and with decreasing impact parameter, consistent with the idea that gas inside {approx}500 kpc from galaxies is heating up, although alternative explanations cannot be clearly excluded.

  18. Hubble/COS Observations of Intergalactic Gas Toward PKS 0405-123

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael; Danforth, C.; Froning, C.; Green, J.; Keeney, B.; Stocke, J.; Yao, Y.; Savage, B.; Narayanan, A.; Sembach, K.

    2010-01-01

    We present an overview of far-UV Hubble Space Telescope observations (1150-1780 A, at 17 km/s resolution) taken by the Cosmic Origins Spectrograph (COS) of the QSO PKS 0405-123 at redshift zem = 0.5726 and FUV flux 3.5x10-14 erg/s/cm2/A. This spectrum illustrates the the power of COS for studying metal-enriched gas between the galaxies, distributed throughout the multiphase intergalactic medium (IGM). We used 7 orbits with 9 FP-split positions, obtained S/N = 35-45 over much of the G130M band (1150-1440 A), and detected numerous absorption features of hydrogen (Lya, Lyb) and heavy-element probes of metallicity. Ions that can be studied include lines (O VI, N V, Ne VIII) sensitive to hot gas produced by strong shocks produced in gravitational inflows to the Cosmic Web, in circumgalactic gas, and in galactic winds. The high S/N allows a search for broad Ly-alpha possibly associated with O VI in hot gas (105 to 106 K). This sight line also intercepts a high-velocity cloud seen in Si III at 110-170 km/s (LSR) and b = -37.55 in the Galactic halo. In the absorption system at z = 0.495, the Ne VIII doublet (770.41, 780.32 A) shifts into the COS band, allowing us to probe the warm-hot IGM at log T = 5.5-6.0, several times deeper than previous (STIS) studies (Prochaska et al. 2004; Howk et al. 2009). In other posters, members of the COS science team describe the detection of O VI absorbers at redshifts z = 0.16710, 0.18292, 0.36156, 0.36332, and 0.49501, including a Lyman Limit system at z = 0.16710 with log N(HI) = 16.45 +/- 0.05. The high S/N observations allow us to measure important ions previously not detected and to evaluate the kinematical relationships and physical conditions among the detected ions.

  19. Intergalactic Hydrogen Clouds at Low Redshift: Connections to Voids and Dwarf Galaxies

    NASA Technical Reports Server (NTRS)

    Shull, J. Michael; Stocke, John T.; Penton, Steve

    1996-01-01

    We provide new post-COSTAR data on one sightline (Mrk 421) and updated data from another (I Zw 1) from our Hubble Space Telescope (HST) survey of intergalactic Ly(alpha) clouds located along sightlines to four bright quasars passing through well-mapped galaxy voids (16000 km/s pathlength) and superclusters (18000 km/s). We report two more definite detections of low-redshift Ly(alpha) clouds in voids: one at 3047 km/s (heliocentric) toward Mrk 421 and a second just beyond the Local Supercluster at 2861 km/s toward I Zw 1, confirming our earlier discovery of Ly(alpha) absorption clouds in voids (Stocke et al., ApJ, 451, 24). We have now identified ten definite and one probable low-redshift neutral hydrogen absorption clouds toward four targets, a frequency of approximately one absorber every 3400 km/s above 10(exp 12.7/sq cm column density. Of these ten absorption systems, three lie within voids; the probable absorber also lies in a void. Thus, the tendency of Ly(alpha) absorbers to 'avoid the voids' is not as clear as we found previously. If the Ly(alpha) clouds are approximated as homogeneous spheres of 100 kpc radius, their masses are approximately 10(exp 9)solar mass (about 0.01 times that of bright L* galaxies) and they are 40 times more numerous, comparable to the density of dwarf galaxies and of low-mass halos in numerical CDM simulations. The Ly(alpha) clouds contribute a fraction Omega(sub cl)approximately equals 0.003/h(sub 75) to the closure density of the universe, comparable to that of luminous matter. These clouds probably require a substantial amount of nonbaryonic dark matter for gravitational binding. They may represent extended haloes of low-mass protogalaxies which have not experienced significant star formation or low-mass dwarf galaxies whose star formation ceased long ago, but blew out significant gaseous material.

  20. PAPER-64 CONSTRAINTS ON REIONIZATION. II. THE TEMPERATURE OF THE z = 8.4 INTERGALACTIC MEDIUM

    SciTech Connect

    Pober, Jonathan C.; Ali, Zaki S.; Parsons, Aaron R.; Cheng, Carina; Liu, Adrian; McQuinn, Matthew; Aguirre, James E.; Kohn, Saul A.; Bernardi, Gianni; Grobbelaar, Jasper; Horrell, Jasper; Maree, Matthys; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E.; Furlanetto, Steven R.; Jacobs, Daniel C.; Klima, Patricia J.; and others

    2015-08-10

    We present constraints on both the kinetic temperature of the intergalactic medium (IGM) at z = 8.4, and on models for heating the IGM at high-redshift with X-ray emission from the first collapsed objects. These constraints are derived using a semi-analytic method to explore the new measurements of the 21 cm power spectrum from the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER), which were presented in a companion paper, Ali et al. Twenty-one cm power spectra with amplitudes of hundreds of mK{sup 2} can be generically produced if the kinetic temperature of the IGM is significantly below the temperature of the cosmic microwave background (CMB); as such, the new results from PAPER place lower limits on the IGM temperature at z = 8.4. Allowing for the unknown ionization state of the IGM, our measurements find the IGM temperature to be above ≈5 K for neutral fractions between 10% and 85%, above ≈7 K for neutral fractions between 15% and 80%, or above ≈10 K for neutral fractions between 30% and 70%. We also calculate the heating of the IGM that would be provided by the observed high redshift galaxy population, and find that for most models, these galaxies are sufficient to bring the IGM temperature above our lower limits. However, there are significant ranges of parameter space that could produce a signal ruled out by the PAPER measurements; models with a steep drop-off in the star formation rate density at high redshifts or with relatively low values for the X-ray to star formation rate efficiency of high redshift galaxies are generally disfavored. The PAPER measurements are consistent with (but do not constrain) a hydrogen spin temperature above the CMB temperature, a situation which we find to be generally predicted if galaxies fainter than the current detection limits of optical/NIR surveys are included in calculations of X-ray heating.

  1. Cosmic gamma-ray propagation as a probe for intergalactic media and interactions

    NASA Astrophysics Data System (ADS)

    Huan, Hao

    2012-05-01

    Very-high-energy (VHE) gamma rays beyond 100 GeV, coming from galactic and extragalactic sources, reflect the most energetic non-thermal processes in the universe. The emission of these photons indicates the acceleration of charged particles to very high energies or the existence of exotic particles that annihilate or decay to photons. Observations of VHE gamma rays probing this highest energy window of electromagnetic waves thus can reveal the underlying acceleration processes or new astrophysical particles. The fluxes tend to be power-law spectra and this poses a difficulty for direct observation due to the low flux at the high-energy end and to the limited effective area of space-borne instruments. Ground-based VHE gamma-ray observatories therefore take advantage of the earth atmosphere as a calorimeter and observe the gamma rays indirectly via the electromagnetic cascade shower particles they produce. The shower particles are detected either directly or via the Cherenkov radiation they emit while propagating through the air. The current-generation telescopes adopting this ground-based methodology have confirmed several source categories and are starting to answer various physical and astronomical questions, e.g., the origin of cosmic rays, the nature of dark matter, the black hole accretion processes, etc. Together with multi-wavelength observations covering the full electromagnetic spectrum and astrophysical observatories of other particles (cosmic rays, neutrinos, etc.) VHE gamma-ray astronomy contributes as an indispensable part of the recently emerging field of multi-messenger particle astrophysics. When emitted by extragalactic sources, the VHE gamma rays undergo various interactions in the intergalactic medium as they propagate toward the earth. There is a guaranteed interaction, where the VHE gamma-ray photons are absorbed by the extragalactic background light (EBL), an isotropic background of optical-to-infrared photons coming from starlight or dust re

  2. Expanding hydrodynamical jets crossing a galactic halo/intergalactic medium interface

    NASA Technical Reports Server (NTRS)

    Wiita, Paul J.; Rosen, Alexander; Norman, Michael L.

    1990-01-01

    Parameters within ranges that are plausible for radio sources are presently used to perform two-dimensional hydrodynamical calculations of axisymmetric, initially conical, jets whose initial propagation is through isothermal galactic halos with power-law density distributions; these emerge across a pressure-matched interface into a hotter, but less dense medium whose parameters are typical of an intracluster or intergalactic gas. Upon crossing this interface, the jets accelerate and focused toward cylindrical shapes having long, narrow cocoons.

  3. Angular Broadening of Intraday Variable AGNs II. Interstellar and Intergalactic Scattering

    DTIC Science & Technology

    2008-01-01

    scattering from any possible intergalactic contribution, we have searched for pulsars within 1 of theAGNs in our sample.We find no pulsars this close to any...of our sources.Given the relatively low density of pulsars on the sky, a significantly larger sample of AGNs would be required in order to make such a...in pulsar dynamic spectra (Hill et al. 2005). We can also use the difference between the scintillating and nonscintillating sources to set

  4. Studies of X-ray clusters of galaxies/intergalactic plasmas

    NASA Technical Reports Server (NTRS)

    Scott, J. S.

    1984-01-01

    Intergalactic plasmas were investigated from both an observational and theoretical point of view. A multiobject spectrometer, the MX spectrograph was used to obtain detailed dynamical information on clusters of galaxies; this information was then compared with X ray emission from hot gas in these clusters. Several spectra of galaxies are presented, and data reduction of the spectra was discussed. The existence of quasar winds in Seyfert galaxies and the interaction between such a wind and the interstellar medium also were considered.

  5. Intergalactic Photon Spectra from the Far-IR to the UV Lyman Limit for 0 < z < 6 and the Optical Depth of the Universe to High-Energy Gamma Rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; Malkan, M. A.; Scully, S. T.

    2006-01-01

    We calculate the intergalactic photon density as a function of both energy and redshift for 0intergalactic photon densities to extend previous work on the absorption of high-energy Gamma-rays in intergalactic space owing to interactions with low-energy photons and the 2.7 K cosmic microwave background radiation. We calculate the optical depth of the universe, Tau , for Gamma-rays having energies from 4 GeV to 100 TeV emitted by sources at redshifts from 0 to 5. We also give an analytic fit with numerical coefficients for approximating (E(Gamma), z). As an example of the application of our results, we calculate the absorbed spectrum of the blazar PKS 2155-304 at z=0.117 and compare it with the spectrum observed by the HESS air Cerenkov Gamma-ray telescope array.

  6. Evidence for Gamma-ray Halos Around Active Galactic Nuclei and the First Measurement of Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Ando, Shin'ichiro; Kusenko, Alexander

    2010-10-01

    Intergalactic magnetic fields (IGMFs) can cause the appearance of halos around the gamma-ray images of distant objects because an electromagnetic cascade initiated by a high-energy gamma-ray interaction with the photon background is broadened by magnetic deflections. We report evidence of such gamma-ray halos in the stacked images of the 170 brightest active galactic nuclei (AGNs) in the 11 month source catalog of the Fermi Gamma-Ray Space Telescope. Excess over the point-spread function in the surface brightness profile is statistically significant at 3.5σ (99.95% confidence level), for the nearby, hard population of AGNs. The halo size and brightness are consistent with IGMF, B IGMF ≈ 10-15 G. The knowledge of IGMF will facilitate the future gamma-ray and charged-particle astronomy. Furthermore, since IGMFs are likely to originate from the primordial seed fields created shortly after the big bang, this potentially opens a new window on the origin of cosmological magnetic fields, inflation, and the phase transitions in the early universe.

  7. Metallicity of the Intergalactic Medium Using Pixel Statistics. IV. Oxygen

    NASA Astrophysics Data System (ADS)

    Aguirre, Anthony; Dow-Hygelund, Corey; Schaye, Joop; Theuns, Tom

    2008-12-01

    We have studied the abundance of oxygen in the IGM by analyzing O VI, C IV, Si IV, and H I pixel optical depths derived from a set of high-quality VLT and Keck spectra of 17 QSOs at 2.1lesssim zlesssim 3.6. Comparing ratios τO VI/τC IV(τC IV) to those in realistic, synthetic spectra drawn from a hydrodynamical simulation and comparing to existing constraints on [Si/C] places strong constraints on the ultraviolet background (UVB) model using weak priors on allowed values of [Si/O]: for example, a quasar-only background yields [ Si/O ] ≈ 1.4, which is highly inconsistent with the [ Si/O ] ≈ 0 expected from nucleosynthetic yields and with observations of metal-poor stars. Assuming a fiducial quasar+galaxy UVB consistent with these constraints yields a primary result that [ O/C ] = 0.66 +/- 0.06 +/- 0.2; this result pertains to gas with overdensity δ gtrsim 2. Consistent results are obtained by similarly comparing τO VI/τH I(τH I) and τO VI/τSi IV(τSi IV) to simulation values, and also by directly ionization-correcting τO VI/τH I as a function of τH I into [O/H] as a function of density. Subdividing the sample reveals no evidence for evolution, but low- and high-τH I samples are inconsistent, suggesting either density dependence of [O/C] or—more likely—prevalence of collisionally ionized gas at high density. Based on public data obtained from the ESP archive of observations from the UVES spectrograph at the VLT, Paranal, Chile, and on data obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The W. M. Keck Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  8. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.; Malkan, Matthew A.; Scully, Sean T.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of redshift using an approach based on observational data obtained in many different wavelength bands from local to deep galaxy surveys. This allows us to obtain an empirical determination of the IBL and to quantify its observationally based uncertainties. Using our results on the IBL, we then place 68% confidence upper and lower limits on the opacity of the universe to gamma-rays, free of the theoretical assumptions that were needed for past calculations. We compare our results with measurements of the extragalactic background light and upper limits obtained from observations made by the Fermi Gamma-ray Space Telescope.

  9. Generation of galactic disc warps due to intergalactic accretion flows onto the disc

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; Betancort-Rijo, J.; Beckman, J. E.

    2002-04-01

    A new method is developed to calculate the amplitude of the galactic warps generated by a torque due to external forces. This takes into account that the warp is produced as a reorientation of the different rings which constitute the disc in order to compensate the differential precession generated by the external force, yielding a uniform asymptotic precession for all rings. Application of this method to gravitational tidal forces in the Milky Way due to the Magellanic Clouds leads to a very low amplitude of the warp, as has been inferred in previous studies; so, tidal forces are unlikely to generate warps, at least in the Milky Way. If the force were due to an extragalactic magnetic field, its intensity would have to be very high, greater than 1 mu G, to generate the observed warps. An alternative hypothesis is explored: the accretion of the intergalactic medium over the disk. A cup-shaped distortion is expected, due to the transmission of the linear momentum; but, this effect is small and the predominant effect turns out to be the transmission of angular momentum, i.e. a torque giving an integral-sign shape warp. The torque produced by a flow of velocity ~ 100 km s-1 and baryon density ~ 10-25 kg/m3 is enough to generate the observed warps and this mechanism offers quite a plausible explanation. First, because this order of accretion rate is inferred from other processes observed in the Galaxy, notably its chemical evolution. The inferred rate of infall of matter, ~ 1 M_sun/yr, to the Galactic disc that this theory predicts agrees with the quantitative predictions of this chemical evolution resolving key issues, notably the G-dwarf problem. Second, the required density of the intergalactic medium is within the range of values compatible with observation. By this mechanism, we can explain the warp phenomenon in terms of intergalactic accretion flows onto the disk of the galaxy.

  10. Fluctuations in microwave background radiation due to secondary ionization of the intergalactic gas in the universe

    NASA Technical Reports Server (NTRS)

    Sunyayev, R. A.

    1979-01-01

    Secondary heating and ionization of the intergalactic gas at redshifts z approximately 10-30 could lead to the large optical depth of the Universe for Thomson scattering and could smooth the primordial fluctuations formed at z approximately 1500. It is shown that the gas motions connected with the large scale density perturbations at z approximately 10-15 must lead to the generation of secondary fluctuations of microwave background. The contribution of the rich clusters of galaxies and young galaxies to the fluctuations of microwave background is also estimated.

  11. Tracing the cosmic metal evolution in the low-redshift intergalactic medium

    SciTech Connect

    Michael Shull, J.; Danforth, Charles W.; Tilton, Evan M. E-mail: danforth@colorado.edu

    2014-11-20

    Using the Cosmic Origins Spectrograph aboard the Hubble Space Telescope, we measured the abundances of six ions (C III, C IV, Si III, Si IV, N V, and O VI) in the low-redshift (z ≤ 0.4) intergalactic medium (IGM). Both C IV and Si IV have increased in abundance by a factor of ∼10 from z ≈ 5.5 to the present. We derive ion mass densities, ρ{sub ion} ≡ Ω{sub ion}ρ{sub cr}, with Ω{sub ion} expressed relative to the closure density. Our models of mass-abundance ratios, (Si III/Si IV) =0.67{sub −0.19}{sup +0.35}, (C III/C IV) =0.70{sub −0.20}{sup +0.43}, and (Ω{sub C} {sub III}+Ω{sub C} {sub IV})/(Ω{sub Si} {sub III}+Ω{sub Si} {sub IV})=4.9{sub −1.1}{sup +2.2}, are consistent with the photoionization parameter log U = –1.5 ± 0.4, hydrogen photoionization rate Γ{sub H} = (8 ± 2) × 10{sup –14} s{sup –1} at z < 0.4, and specific intensity I {sub 0} = (3 ± 1) × 10{sup –23} erg cm{sup –2} s{sup –1} Hz{sup –1} sr{sup –1} at the Lyman limit. Consistent ionization corrections for C and Si are scaled to an ionizing photon flux Φ{sub 0} = 10{sup 4} cm{sup –2} s{sup –1}, baryon overdensity Δ {sub b} ≈ 200 ± 50, and ''alpha-enhancement'' (Si/C enhanced to three times its solar ratio). We compare these metal abundances to the expected IGM enrichment and abundances in higher photoionized states of carbon (C V) and silicon (Si V, Si VI, and Si VII). Our ionization modeling infers IGM metal densities of (5.4 ± 0.5) × 10{sup 5} M {sub ☉} Mpc{sup –3} in the photoionized Lyα forest traced by the C and Si ions and (9.1 ± 0.6) × 10{sup 5} M {sub ☉} Mpc{sup –3} in hotter gas traced by O VI. Combining both phases, the heavy elements in the IGM have mass density ρ {sub Z} = (1.5 ± 0.8) × 10{sup 6} M {sub ☉} Mpc{sup –3} or Ω {sub Z} ≈ 10{sup –5}. This represents 10% ± 5% of the metals produced by (6 ± 2) × 10{sup 8} M {sub ☉} Mpc{sup –3} of integrated star formation with yield y{sub m} = 0.025 ± 0.010. The

  12. An HST/COS Survey of the Low-redshift Intergalactic Medium. I. Survey, Methodology, and Overall Results

    NASA Astrophysics Data System (ADS)

    Danforth, Charles W.; Keeney, Brian A.; Tilton, Evan M.; Shull, J. Michael; Stocke, John T.; Stevans, Matthew; Pieri, Matthew M.; Savage, Blair D.; France, Kevin; Syphers, David; Smith, Britton D.; Green, James C.; Froning, Cynthia; Penton, Steven V.; Osterman, Steven N.

    2016-02-01

    We use high-quality, medium-resolution Hubble Space Telescope/Cosmic Origins Spectrograph (HST/COS) observations of 82 UV-bright active galactic nuclei (AGNs) at redshifts zAGN < 0.85 to construct the largest survey of the low-redshift intergalactic medium (IGM) to date: 5138 individual extragalactic absorption lines in H i and 25 different metal-ion species grouped into 2611 distinct redshift systems at zabs < 0.75 covering total redshift pathlengths ΔzH i = 21.7 and ΔzO vi = 14.5. Our semi-automated line-finding and measurement technique renders the catalog as objectively defined as possible. The cumulative column density distribution of H i systems can be parametrized d{ N }(\\gt N)/{dz} = {C}14{(N/{10}14{{cm}}-2)}-(β -1), with C14 = 25 ± 1 and β = 1.65 ± 0.02. This distribution is seen to evolve both in amplitude, {C}14\\propto {(1+z)}2.3+/- 0.1, and slope β(z) = 1.75-0.31 z for z ≤ 0.47. We observe metal lines in 418 systems, and find that the fraction of IGM absorbers detected in metals is strongly dependent on {N}{{H}{{I}}}. The distribution of O vi absorbers appears to evolve in the same sense as the Lyα forest. We calculate contributions to Ωb from different components of the low-z IGM and determine the Lyα decrement as a function of redshift. IGM absorbers are analyzed via a two-point correlation function in velocity space. We find substantial clustering of H i absorbers on scales of Δv = 50-300 km s-1 with no significant clustering at Δv ≳ 1000 km s-1. Splitting the sample into strong and weak absorbers, we see that most of the clustering occurs in strong, NH i ≳ 1013.5 cm-2, metal-bearing IGM systems. The full catalog of absorption lines and fully reduced spectra is available via the Mikulski Archive for Space Telescopes (MAST) as a high-level science product at http://archive.stsci.edu/prepds/igm/. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the data archive at the Space Telescope Science

  13. On Modeling and Measuring the Temperature of the z ~ 5 Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Lidz, Adam; Malloy, Matthew

    2014-06-01

    The temperature of the low-density intergalactic medium (IGM) at high redshift is sensitive to the timing and nature of hydrogen and He II reionization, and can be measured from Lyman-alpha (Lyα) forest absorption spectra. Since the memory of intergalactic gas to heating during reionization gradually fades, measurements as close as possible to reionization are desirable. In addition, measuring the IGM temperature at sufficiently high redshifts should help to isolate the effects of hydrogen reionization since He II reionization starts later, at lower redshift. Motivated by this, we model the IGM temperature at z >~ 5 using semi-numeric models of patchy reionization. We construct mock Lyα forest spectra from these models and consider their observable implications. We find that the small-scale structure in the Lyα forest is sensitive to the temperature of the IGM even at redshifts where the average absorption in the forest is as high as 90%. We forecast the accuracy at which the z >~ 5 IGM temperature can be measured using existing samples of high resolution quasar spectra, and find that interesting constraints are possible. For example, an early reionization model in which reionization ends at z ~ 10 should be distinguishable—at high statistical significance—from a lower redshift model where reionization completes at z ~ 6. We discuss improvements to our modeling that may be required to robustly interpret future measurements.

  14. The First Science Flight of the Faint Intergalactic medium Redshifted Emission Balloon (FIREBALL)

    NASA Astrophysics Data System (ADS)

    Martin, Christopher; Milliard, Bruno; Schiminovich, David; Tuttle, Sarah; Matuszewski, Matt; Rahman, Shahin; Evrard, Jean; Frank, Stephan; Deharveng, Jean-Michel; Peroux, Celine

    We have completed the second flight of the path-finding experiment, the Faint Intergalactic medium Redshifted Emission Balloon (FIREBALL), designed to discover and map faint emis-sion from the Intergalactic Medium (IGM). The second flight was fully successful, proving a fully functional fine pointing gondola with arcsec level capability, a 1 meter diameter (fixed) parabola primary telescope with planar sidereostat for pointing, a complete closed loop guide camera and control software, and a fiber fed UV integral field spectrograph feeding a spare GALEX Near UV detector. Three scientific targets were observed, and analysis of the data shows that the instrument performed as expected. The flux measurements obtained will be compared to models for IGM emission. We discuss future modifications to the payload that will achieve a 10-to 30-fold increase in sensitivity over science flight 1. We also discuss other instrument configurations that can utilize the 1-meter UV telescope and arcsecond pointing platform, and their corresponding science objectives. FIREBALL is a collaboration of NASA, Caltech, Columbia University, CNES, and Laboratorie Astrophysique Marseille, and is sup-ported by NASA, CNES, and CNRS.

  15. Intergalactic matter and radiation and its bearing on galaxy formation and evolution

    NASA Technical Reports Server (NTRS)

    Burbidge, G. R.

    1974-01-01

    An up-dated review is given of the evidence for the presence of intergalactic matter and radiation in the Universe. It is concluded that the only important constituents which may make a sizable contribution to the total mass-energy are intergalactic gas and condensed objects with a very high mass-to-light ratio. If the QSOs are not at cosmological distances, cold atomic hydrogen may still be the most important constituent and may contribute much more mass than do the galaxies. The X-ray observations still do not unambiguously show that very hot gas is present, though it is very likely on general grounds that some hot gas is present in clusters of galaxies. The question of whether or not large amounts of matter, enough to close the Universe, are present, remains unsettled. From the theoretical standpoint the answer depends almost completely on the approach taken to the problem of galaxy formation and to the cosmological model which is favored.

  16. A uniform metal distribution in the intergalactic medium of the Perseus cluster of galaxies.

    PubMed

    Werner, Norbert; Urban, Ondrej; Simionescu, Aurora; Allen, Steven W

    2013-10-31

    Most of the metals (elements heavier than helium) produced by stars in the member galaxies of clusters currently reside within the hot, X-ray-emitting intra-cluster gas. Observations of X-ray line emission from this intergalactic medium have suggested a relatively small cluster-to-cluster scatter outside the cluster centres and enrichment with iron out to large radii, leading to the idea that the metal enrichment occurred early in the history of the Universe. Models with early enrichment predict a uniform metal distribution at large radii in clusters, whereas those with late-time enrichment are expected to introduce significant spatial variations of the metallicity. To discriminate clearly between these competing models, it is essential to test for potential inhomogeneities by measuring the abundances out to large radii along multiple directions in clusters, which has not hitherto been done. Here we report a remarkably uniform iron abundance, as a function of radius and azimuth, that is statistically consistent with a constant value of ZFe = 0.306 ± 0.012 in solar units out to the edge of the nearby Perseus cluster. This homogeneous distribution requires that most of the metal enrichment of the intergalactic medium occurred before the cluster formed, probably more than ten billion years ago, during the period of maximal star formation and black hole activity.

  17. Galactic Disk Warps due to Intergalactic Accretion Flows onto the Disk

    NASA Astrophysics Data System (ADS)

    López-Corredoira, M.; Betancort-Rijo, J.; Beckman, J. E.

    2008-06-01

    The accretion of the intergalactic medium onto the gaseous disc is used to explain the generation of galactic warps. A cup-shaped distortion is expected, due to the transmission of the linear momentum; but, this effect is small for most incident inflow angles and the predominant effect turns out to be the transmission of angular momentum, i.e. a torque giving an integral-sign shaped warp. The torque produced by a flow of velocity ˜ 100 km/s and baryon density ˜ 10-25 kg/m3, which is within the possible values for the intergalactic medium, is enough to generate the observed warps and this mechanism offers quite a plausible explanation. The inferred rate of infall of matter, ˜ 1 M⊙/yr, to the Galactic disc that this theory predicts agrees with the quantitative predictions of chemical evolution resolving key issues, notably the G-dwarf problem. Sánchez-Salcedo (2006) suggests that this mechanism is not plausible because it would produce a dependence of the scaleheight of the disc with the Galactocentric azimuth in the outer disc, but rather than being an objection this is another argument in favour of the mechanism because this dependence is actually observed in our Galaxy.

  18. Fast Radio Bursts as Probes of Magnetic Fields in the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Akahori, Takuya; Ryu, Dongsu; Gaensler, B. M.

    2016-06-01

    We examine the proposal that the dispersion measures (DMs) and Faraday rotation measures (RMs) of extragalactic linearly polarized fast radio bursts (FRBs) can be used to probe the intergalactic magnetic field (IGMF) in filaments of galaxies. The DM through the cosmic web is dominated by contributions from the warm-hot intergalactic medium (WHIM) in filaments and from the gas in voids. On the other hand, RM is induced mostly by the hot medium in galaxy clusters, and only a fraction of it is produced in the WHIM. We show that if one excludes FRBs whose sightlines pass through galaxy clusters, the line of sight (LOS) strength of the IGMF in filaments, {B}| | , is approximately C(< 1+z> /{f}{DM})({RM}/{DM}), where C is a known constant. Here, the redshift of the FRB is not required to be known; f DM is the fraction of total DM due to the WHIM, while < 1+z> is the redshift of interevening gas weighted by the WHIM gas density, both of which can be evaluated for a given cosmology model solely from the DM of an FRB. Using data on structure formation simulations and a model IGMF, we show that C(< 1+z> /{f}{DM})({RM}/{DM}) closely reproduces the density-weighted LOS strength of the IGMF in filaments of the large-scale structure.

  19. Must is a Four Letter Word: The Role of Plasma Instabilities in the Intergalactic Magnetic Field Story

    NASA Astrophysics Data System (ADS)

    Broderick, Avery

    2014-06-01

    The detection of inverse Compton halos from cosmological TeV sources provide a direct means to constrain the putative intergalactic magnetic field. However, the converse may not be the case! The fate of the pairs generated by TeV gamma rays annihilating on the extragalactic background light is presently unclear, clouded by the possibility that cosmological scale plasma instabilities may dominate their energetic evolution. I will briefly motivate these plasma instabilities theoretically, summarize some empirical evidence that they may be occurring in practice, and assess their potential impact upon studies of intergalactic magnetic fields.

  20. Soft X-Ray Transmission Spectroscopy of a Warm/Hot Intergalactic Medium with XEUS

    NASA Astrophysics Data System (ADS)

    Kawahara, Hajime; Yoshikawa, Kohji; Sasaki, Shin; Suto, Yasushi; Kawai, Nobuyuki; Mitsuda, Kazuhisa; Ohashi, Takaya; Yamasaki, Noriko Y.

    2006-08-01

    We discuss the detectability of a Warm/Hot Intergalactic Medium (WHIM) via absorption lines toward bright point sources with a future X-ray satellite mission, XEUS. While we consider bright QSOs as specific examples, the methodology can be applied to bright gamma-ray burst afterglows. We created mock absorption spectra for bright QSOs (more than 20 QSOs over all sky) using the light-cone output of a cosmological hydrodynamic simulation. We assumed that the WHIM is under collisional and photo-ionization equilibrium. If WHIM has a constant metallicity of Z = 0.1Zodot, approximately 2 O VII absorption line systems with > 3σ will be detected on average along a random line-of-sight toward bright QSOs up to z = 0.3 for a 30ks exposure.

  1. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-Ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2012-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the anisotropy properties of the extragalactic gamma-ray background, through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thus inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that the two extreme cases (zero IGMF and IGMF strong enough to completely isotropize cascade photons) would be separable by ten years of Fermi observations and reasonable model parameters for the gamma-ray background. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  2. Energy Dissipation of Energetic Electrons in the Inhomogeneous Intergalactic Medium during the Epoch of Reionization

    NASA Astrophysics Data System (ADS)

    Kaurov, Alexander A.

    2016-06-01

    We explore a time-dependent energy dissipation of the energetic electrons in the inhomogeneous intergalactic medium (IGM) during the epoch of cosmic reionization. In addition to the atomic processes, we take into account the inverse Compton (IC) scattering of the electrons on the cosmic microwave background photons, which is the dominant channel of energy loss for electrons with energies above a few MeV. We show that: (1) the effect on the IGM has both local (atomic processes) and non-local (IC radiation) components; (2) the energy distribution between hydrogen and helium ionizations depends on the initial energy of an electron; (3) the local baryon overdensity significantly affects the fractions of energy distributed in each channel; and (4) the relativistic effect of the atomic cross-section becomes important during the epoch of cosmic reionization. We release our code as open source for further modification by the community.

  3. A census of Hα emitters in the intergalactic medium of the NGC 2865 system

    NASA Astrophysics Data System (ADS)

    Urrutia-Viscarra, F.; Arnaboldi, M.; Mendes de Oliveira, C.; Gerhard, O.; Torres-Flores, S.; Carrasco, E. R.; de Mello, D.

    2014-09-01

    Tidal debris, which are rich in HI gas and formed in interacting and merging systems, are suitable laboratories to study star formation outside galaxies. Recently, several such systems were observed, which contained many young star forming regions outside the galaxies. In previous works, we have studied young star forming regions outside galaxies in different systems with optical and/or gaseous tidal debris, in order to understand how often they occur and in which type of environments. In this paper, we searched for star forming regions around the galaxy NGC 2865, a shell galaxy that is circled by a ring of HI with a total mass of 1.2 × 109 M⊙. Using the multi-slit imaging spectroscopy technique with the Gemini telescope, we detected all Hα emitting sources in the surroundings of the galaxy NGC 2865, down to a flux limit of 10-18 erg cm-2 s-1 Å-1. With the spectra information and the near and far-ultraviolet flux, we characterize the star formation rates, masses, ages, and metallicities for these HII regions. In total, we found 26 emission-line sources in a 60 × 60 Kpc field centered over the southeastern tail of the HI gas present around the galaxy NGC 2865. Out of the 26 Hα emitters, 19 are in the satellite galaxy FGCE 0745, and seven are intergalactic HII regions scattered over the south tail of the HI gas around NGC 2865. We found that the intergalactic HII regions are young (<200 Myr) with stellar masses in the range 4 × 103 M⊙ to 17 × 106 M⊙. These are found in a region of low HI gas density, where the probability of forming stars is expected to be low. For one of the intergalactic HII regions, we estimated a solar oxygen abundance of 12 + log(O/H) ~ 8.7. We also were able to estimate the metallicity for the satellite galaxy FGCE 0745 to be 12 + log(O/H) ~ 8.0. Given these physical parameters, the intergalactic HII regions are consistent with young star forming regions (or clusters), which are born in situ outside the NGC 2865 galaxy from a pre

  4. The evolution of the intergalactic medium and the origin of the galaxy luminosity function

    NASA Technical Reports Server (NTRS)

    Valls-Gabaud, David; Blanchard, Alain; Mamon, Gary

    1993-01-01

    The coupling of the Press and Schechter prescription with the CDM scenario and the Hoyle-Rees-Ostriker cooling criterion leads to a galaxy formation scenario in which galaxies are overproduced by a large factor. Although star formation might be suppressed in the smaller halos, a large amount of energy per galactic mass is needed to account for the present number density of galaxies. The evolution of the intergalactic medium (IGM) provides a simple criterion to prevent galaxy formation without requiring feedback, since halos with small virial temperatures are not able to retain the infalling hot gas of the IGM. If the ionizing background has decreased since z is approximately 1 - 2, then this criterion explains the slope of the luminosity function at the faint end. In addition, this scenario predicts two populations of dwarf galaxies, well differentiated in age, gas content, stellar populations, and clustering properties, which can be identified with dE and dIm galaxies.

  5. Probing the Intergalactic Magnetic Field with the Anisotropy of the Extragalactic Gamma-ray Background

    NASA Technical Reports Server (NTRS)

    Venters, T. M.; Pavlidou, V.

    2013-01-01

    The intergalactic magnetic field (IGMF) may leave an imprint on the angular anisotropy of the extragalactic gamma-ray background through its effect on electromagnetic cascades triggered by interactions between very high energy photons and the extragalactic background light. A strong IGMF will deflect secondary particles produced in these cascades and will thus tend to isotropize lower energy cascade photons, thereby inducing a modulation in the anisotropy energy spectrum of the gamma-ray background. Here we present a simple, proof-of-concept calculation of the magnitude of this effect and demonstrate that current Fermi data already seem to prefer nonnegligible IGMF values. The anisotropy energy spectrum of the Fermi gamma-ray background could thus be used as a probe of the IGMF strength.

  6. The reionization of the universe: The feedback of galaxy formation on the intergalactic medium

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.; Giroux, Mark L.

    1993-01-01

    The thermal and ionization evolution of a uniform intergalactic medium (IGM) composed of H and He, undergoing reionization, including the mean effect of gas clumps embedded in a smoothly distributed ambient gas were calculated. The rate equations for ionization and recombination were solved together with the equations of energy conservation, including the effects of cosmological expansion, radiative and Compton cooling, and the diffuse flux emitted by the gas, and radiative transfer. The contribution to the continuum opacity of the universe due to the observed quasar absorption line clouds (QALC'S) were included. A variety of sources of photoionization, including quasars and primeval galaxies, as well as the possibility that hydrodynamical processes deposit thermal energy in the IGM were considered. Applications of these calculations including the evolution of the Ly-alpha forest clouds are described. A self-consistent treatment of the thermal and ionization history of the intergalactic medium (IGM) must take account of the growth of structure in the universe, since the mean density of the IGM corresponds primarily to the time-varying uncollapsed fraction of the baryon-electron component of the matter, and the collapsed fraction, in turn, can have a feedback effect on this uncollapsed fraction by releasing ionizing radiation and thermal energy and by contributing to the opacity of the universe. The coupled evolution of the IGM and the emerging structure with a special focus on the reionization of the IGM, which is believed to have been completed by some redshift z is approximately greater than 4, as inferred from the absence of the Gunn-Peterson effect in the spectra of high z quasars, are studied. The results and implications of detailed, numerical calculations of the thermal and ionization balance and radiative transfer in a uniform IGM of H and He, including the mean effect of an evolving distribution of gas clumps embedded in a smoothly distributed ambient gas

  7. The Column Density Distribution and Continuum Opacity of the Intergalactic and Circumgalactic Medium at Redshift langzrang = 2.4

    NASA Astrophysics Data System (ADS)

    Rudie, Gwen C.; Steidel, Charles C.; Shapley, Alice E.; Pettini, Max

    2013-06-01

    We present new high-precision measurements of the opacity of the intergalactic and circumgalactic medium (IGM; CGM) at langzrang = 2.4. Using Voigt profile fits to the full Lyα and Lyβ forests in 15 high-resolution high-S/N spectra of hyperluminous QSOs, we make the first statistically robust measurement of the frequency of absorbers with H I column densities 14 \\lesssim log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\lesssim 17.2. We also present the first measurements of the frequency distribution of H I absorbers in the volume surrounding high-z galaxies (the CGM, 300 pkpc), finding that the incidence of absorbers in the CGM is much higher than in the IGM. In agreement with Rudie et al., we find that there are fractionally more high-N H I absorbers than low-N H I absorbers in the CGM compared to the IGM, leading to a shallower power law fit to the CGM frequency distribution. We use these new measurements to calculate the total opacity of the IGM and CGM to hydrogen-ionizing photons, finding significantly higher opacity than most previous studies, especially from absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) < 17.2. Reproducing the opacity measured in our data as well as the incidence of absorbers with log (N_H\\,\\scriptsize{ I}/ {cm}^{-2}) \\gt 17.2 requires a broken power law parameterization of the frequency distribution with a break near N H I ≈1015 cm-2. We compute new estimates of the mean free path (λmfp) to hydrogen-ionizing photons at z em = 2.4, finding λmfp = 147 ± 15 Mpc when considering only IGM opacity. If instead, we consider photons emanating from a high-z star-forming galaxy and account for the local excess opacity due to the surrounding CGM of the galaxy itself, the mean free path is reduced to λmfp = 121 ± 15 Mpc. These λmfp measurements are smaller than recent estimates and should inform future studies of the metagalactic UV background and of ionizing sources at z ≈ 2-3. Based on data obtained at the W. M. Keck Observatory

  8. Diagnosing the reionization of the universe - The absorption spectrum of the intergalactic medium and Lyman alpha clouds

    NASA Technical Reports Server (NTRS)

    Giroux, Mark L.; Shapiro, Paul R.

    1991-01-01

    The thermal and ionization evolution of a uniform intergalactic medium composed of H and He and undergoing reionization is studied. The diagnosis of the metagalactic ionizing radiation background at z of about three using metal line ratios for Lyman limit quasar absorption line systems is addressed. The use of the He II Gunn-Peterson effect to diagnose the reionization source and/or nature of the Hy-alpha forest clouds is considered.

  9. Intergalactic magnetic fields and gamma-ray observations of extreme TeV blazars

    SciTech Connect

    Arlen, Timothy C.; Vassilev, Vladimir V.; Weisgarber, Thomas; Wakely, Scott P.; Shafi, S. Yusef

    2014-11-20

    The intergalactic magnetic field (IGMF) in cosmic voids can be indirectly probed through its effect on electromagnetic cascades initiated by a source of teraelectronvolt (TeV) gamma-rays, such as active galactic nuclei (AGNs). AGNs that are sufficiently luminous at TeV energies, 'extreme TeV blazars', can produce detectable levels of secondary radiation from inverse Compton scattering of the electrons in the cascade, provided that the IGMF is not too large. We review recent work in the literature that utilizes this idea to derive constraints on the IGMF for three TeV-detected blazars, 1ES 0229+200, 1ES 1218+304, and RGB J0710+591, and we also investigate four other hard-spectrum TeV blazars in the same framework. Through a recently developed, detailed, three-dimensional particle-tracking Monte Carlo code, incorporating all major effects of QED and cosmological expansion, we research the effects of major uncertainties, such as the spectral properties of the source, uncertainty in the ultraviolet and far-infrared extragalactic background light, undersampled very high energy (energy ≥100 GeV) coverage, past history of gamma-ray emission, source versus observer geometry, and the jet AGN Doppler factor. The implications of these effects on the recently reported lower limits of the IGMF are thoroughly examined to conclude that the presently available data are compatible with a zero-IGMF hypothesis.

  10. CONSTRAINTS ON THE INTERGALACTIC MAGNETIC FIELD WITH GAMMA-RAY OBSERVATIONS OF BLAZARS

    SciTech Connect

    Finke, Justin D.; Reyes, Luis C.; Reynolds, Kaeleigh; Georganopoulos, Markos; McCann, Kevin; Ajello, Marco; Fegan, Stephen J. E-mail: lreyes04@calpoly.edu

    2015-11-20

    Distant BL Lacertae objects emit γ-rays that interact with the extragalactic background light (EBL), creating electron–positron pairs, and reducing the flux measured by ground-based imaging atmospheric Cherenkov telescopes (IACTs) at very-high energies (VHE). These pairs can Compton-scatter the cosmic microwave background, creating a γ-ray signature at slightly lower energies that is observable by the Fermi Large Area Telescope (LAT). This signal is strongly dependent on the intergalactic magnetic field (IGMF) strength (B) and its coherence length (L{sub B}). We use IACT spectra taken from the literature for 5 VHE-detected BL Lac objects and combine them with LAT spectra for these sources to constrain these IGMF parameters. Low B values can be ruled out by the constraint that the cascade flux cannot exceed that observed by the LAT. High values of B can be ruled out from the constraint that the EBL-deabsorbed IACT spectrum cannot be greater than the LAT spectrum extrapolated into the VHE band, unless the cascade spectrum contributes a sizable fraction of the LAT flux. We rule out low B values (B ≲ 10{sup −19} G for L{sub B} ≥ 1 Mpc) at >5σ in all trials with different EBL models and data selection, except when using >1 GeV spectra and the lowest EBL models. We were not able to constrain high values of B.

  11. The evolving intergalactic medium - The uncollapsed baryon fraction in a cold dark matter universe

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif

    1991-01-01

    The time-varying density of the intergalactic medium (IGM) is calculated by coupling detailed numerical calculations of the thermal and ionization balance and radiative transfer in a uniform IGM of H and He to the linearized equations for the growth of density fluctuations in both gases and a dark component in a cold dark matter universe. The IGM density is identified with the collapsed baryon fraction. It is found that even if the IGM is never reheated, a significant fraction of the baryons remain uncollapsed at redshifts of four. If instead the collapsed fraction releases enough ionizing radiation or thermal energy to reionize the IGM by z greater than four as required by the Gunn-Peterson (GP) constraint, the uncollapsed fraction at z of four is even higher. The known quasar distribution is insufficient to supply the ionizing radiation necessary to satisfy the GP constraint in this case and, if stars are instead responsible, a substantial metallicity must have been produced by z of four.

  12. Constraints on the Intergalactic Magnetic Field with Gamma-Ray Observations of Blazars

    NASA Astrophysics Data System (ADS)

    Finke, Justin D.; Reyes, Luis C.; Georganopoulos, Markos; Reynolds, Kaeleigh; Ajello, Marco; Fegan, Stephen J.; McCann, Kevin

    2015-11-01

    Distant BL Lacertae objects emit γ-rays that interact with the extragalactic background light (EBL), creating electron-positron pairs, and reducing the flux measured by ground-based imaging atmospheric Cherenkov telescopes (IACTs) at very-high energies (VHE). These pairs can Compton-scatter the cosmic microwave background, creating a γ-ray signature at slightly lower energies that is observable by the Fermi Large Area Telescope (LAT). This signal is strongly dependent on the intergalactic magnetic field (IGMF) strength (B) and its coherence length (LB). We use IACT spectra taken from the literature for 5 VHE-detected BL Lac objects and combine them with LAT spectra for these sources to constrain these IGMF parameters. Low B values can be ruled out by the constraint that the cascade flux cannot exceed that observed by the LAT. High values of B can be ruled out from the constraint that the EBL-deabsorbed IACT spectrum cannot be greater than the LAT spectrum extrapolated into the VHE band, unless the cascade spectrum contributes a sizable fraction of the LAT flux. We rule out low B values (B ≲ 10-19 G for LB ≥ 1 Mpc) at >5σ in all trials with different EBL models and data selection, except when using >1 GeV spectra and the lowest EBL models. We were not able to constrain high values of B.

  13. A study of galaxy groups and clusters - The case for a clumpy intergalactic medium.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Tarter, J.

    1973-01-01

    A nonuniform model for a dense intergalactic medium is constructed under the assumption that all groups and clusters of galaxies are gravitationally bound by ionized gas. Catalogs by de Vaucouleurs and Abell are utilized to provide an almost complete sample of the spatial distribution of groups and clusters over a wide range of richness, and a distribution function is derived for galaxy groups and clusters as a function of velocity dispersion. A simple scaling law is applied to predict velocity dispersions for the very rich Abell clusters. Thermal bremsstrahlung emission from the intracluster gas accounts for the observed emission over 2 to 10 keV from several rich clusters, and also contributes up to 20% of the diffuse X-ray background over a considerable fraction of the observed range. The amount of X-ray emitting gas is restricted to a small fraction of the virial mass, with the remainder of the binding mass present as cooler ionized clouds. Available soft X-ray and ultraviolet diffuse background observations are used to define a narrow range of permissible temperatures and densities for these clouds.

  14. Strength of the spontaneously emitted collective aperiodic magnetic field fluctuations in the reionized early intergalactic medium

    SciTech Connect

    Schlickeiser, R.; Felten, T. E-mail: tim.felten@rub.de

    2013-11-20

    Nonmagnetized, fully ionized plasmas spontaneously emit aperiodic turbulent magnetic field fluctuations. Its fluctuation intensities are dominated by the contribution from a recently discovered collective, damped mode, which modifies the earlier estimate of the total magnetic field strength in a thermal nonrelativistic electron-proton plasma to |δB|=24β{sub e}{sup 1/4}(gn{sub e}m{sub e}c{sup 2}){sup 1/2} G, where g denotes the plasma parameter and β {sub e} the thermal electron velocity in units of the speed of light, in the case of no collisional damping. Accounting for simultaneous viscous damping reduces the estimate to |δB|{sub eq} = 2305g(n{sub e}m{sub e}c {sup 2}){sup 1/2} G, depending only on the plasma parameter g and the electron density n{sub e} . For the unmagnetized intergalactic medium, immediately after the reionization onset the field strengths from this mechanism are about 6.8 × 10{sup –13} G for no collisional damping and 1.5 × 10{sup –16} G for viscous damping. Maximum spatial scales of 10{sup 15} cm of the emitted aperiodic fluctuations in cosmic voids are possible.

  15. Morphology of blazar-induced gamma ray halos due to a helical intergalactic magnetic field

    SciTech Connect

    Long, Andrew J.; Vachaspati, Tanmay E-mail: tvachasp@asu.edu

    2015-09-01

    We study the characteristic size and shape of idealized blazar-induced cascade halos in the 1–100,GeV energy range assuming various non-helical and helical configurations for the intergalactic magnetic field (IGMF). While the magnetic field creates an extended halo, the helicity provides the halo with a twist. Under simplifying assumptions, we assess the parameter regimes for which it is possible to measure the size and shape of the halo from a single source and then to deduce properties of the IGMF. We find that blazar halo measurements with an experiment similar to Fermi-LAT are best suited to probe a helical magnetic field with strength and coherence length today in the ranges 10{sup −17} ∼< B{sub 0} / Gauss ∼< 10{sup −13} and 10 Mpc ∼< λ ∼< 10 Gpc where H ∼ B{sub 0}{sup 2} / λ is the magnetic helicity density. Stronger magnetic fields or smaller coherence scales can still potentially be investigated, but the connection between the halo morphology and the magnetic field properties is more involved. Weaker magnetic fields or longer coherence scales require high photon statistics or superior angular resolution.

  16. No sign (yet) of intergalactic globular clusters in the Local Group

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Beasley, M. A.; Leaman, R.

    2016-07-01

    We present Gemini Multi-Object Spectrograph (GMOS) imaging of 12 candidate intergalactic globular clusters (IGCs) in the Local Group, identified in a recent survey of the Sloan Digital Sky Survey (SDSS) footprint by di Tullio Zinn & Zinn. Our image quality is sufficiently high, at ˜0.4-0.7 arcsec, that we are able to unambiguously classify all 12 targets as distant galaxies. To reinforce this conclusion we use GMOS images of globular clusters in the M31 halo, taken under very similar conditions, to show that any genuine clusters in the putative IGC sample would be straightforward to distinguish. Based on the stated sensitivity of the di Tullio Zinn & Zinn search algorithm, we conclude that there cannot be a significant number of IGCs with MV ≤ -6 lying unseen in the SDSS area if their properties mirror those of globular clusters in the outskirts of M31 - even a population of 4 would have only a ≈1 per cent chance of non-detection.

  17. The Intergalactic and Circumgalactic Medium surrounding Star-Forming Galaxies at Redshifts 2 < z < 3

    NASA Astrophysics Data System (ADS)

    Rudie, Gwen C.

    We present measurements of the spatial distribution, kinematics, and physical properties of gas in the circumgalactic medium (CGM) of 2.0 < z < 2.8 UV color-selected galaxies as well as within the 2 < z < 3 intergalactic medium (IGM). These measurements are derived from Voigt profile decomposition of the full Lyalpha and Lybeta forest in 15 high-resolution, high signal-to-noise ratio QSO spectra resulting in a catalog of ˜ 6000 H I absorbers. Chapter 2 of this thesis focuses on H I surrounding high-z star-forming galaxies drawn from the Keck Baryonic Structure Survey (KBSS). The KBSS is a unique spectroscopic survey of the distant universe designed to explore the details of the connection between galaxies and intergalactic baryons within the same survey volumes. The KBSS combines high-quality background QSO spectroscopy with large densely-sampled galaxy redshift surveys to probe the CGM at scales of ˜ 50 kpc to a few Mpc. Based on these data, Chapter 2 presents the first quantitative measurements of the distribution, column density, kinematics, and absorber line widths of neutral hydrogen surrounding high-z star-forming galaxies. Chapter 3 focuses on the thermal properties of the diffuse IGM. This analysis relies on measurements of the ˜ 6000 absorber line widths to constrain the thermal and turbulent velocities of absorbing "clouds." A positive correlation between the column density of H I and the minimum line width is recovered and implies a temperature-density relation within the low-density IGM for which higher-density regions are hotter, as is predicted by simple theoretical arguments. Chapter 4 presents new measurements of the opacity of the IGM and CGM to hydrogen-ionizing photons. The chapter begins with a revised measurement of the H I column density distribution based on this new absorption line catalog that, due to the inclusion of high-order Lyman lines, provides the first statistically robust measurement of the frequency of absorbers with H I column

  18. Far Ultraviolet Spectroscopy of the Intergalactic and Interstellar Absorption Toward 3C 273

    NASA Technical Reports Server (NTRS)

    Sembach, Kenneth R.; Howk, J. Christopher; Savage, Blair D.; Shull, J. Michael; Oegerle, William R.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We present Far Ultraviolet Spectroscopic Explorer observations of the molecular, neutral atomic, weakly ionized, and highly ionized components of the interstellar and intergalactic material toward the quasar 3C273. We identify Ly-beta absorption in eight of the known intergalactic Ly-alpha absorbers along the sight line with the rest-frame equivalent widths W(sub r)(Ly-alpha) > 50 micro-angstroms. Refined estimates of the H(I) column densities and Doppler parameters (b) of the clouds are presented. We find a range of b = 16-46 km/s. We detect multiple H(I) lines (Ly-beta - Ly-theta) in the 1590 km/s Virgo absorber and estimate logN(H(I)) = 15.85 +/- 0.10, ten times more H(I) than all of the other absorbers along the sight line combined. The Doppler width of this absorber, b = 16 km/s, implies T < 15,000 K. We detect O(VI) absorption at 1015 km/s at the 2-3(sigma) level that may be associated with hot, X-ray emitting gas in the Virgo Cluster. We detect weak C(III) and O(VI) absorption in the IGM at z=0.12007; this absorber is predominantly ionized and has N(H+)/N(H(I)) > 4000/Z, where Z is the metallicity. Strong Galactic interstellar O(VI) is present between -100 and +100 km/s with an additional high-velocity wing containing about 13% of the total O(VI) between +100 and +240 km/s. The Galactic O(VI), N(V), and C(IV) lines have similar shapes, with roughly constant ratios across the -100 to +100 km/s velocity range. The high velocity O(VI) wing is not detected in other species. Much of the interstellar high ion absorption probably occurs within a highly fragmented medium within the Loop IV remnant or in the outer cavity walls of the remnant. Multiple hot gas production mechanisms are required. The broad O(VI) absorption wing likely traces the expulsion of hot gas out of the Galactic disk into the halo. A flux limit of 5.4 x 10(epx -16) erg/sq cm/s on the amount of diffuse O(VI) emission present = 3.5' off the 3C273 sight line combined with the observed O(VI) column

  19. THE OPACITY OF THE INTERGALACTIC MEDIUM DURING REIONIZATION: RESOLVING SMALL-SCALE STRUCTURE

    SciTech Connect

    Emberson, J. D.; Thomas, Rajat M.; Alvarez, Marcelo A.

    2013-02-15

    Early in the reionization process, the intergalactic medium (IGM) would have been quite inhomogeneous on small scales, due to the low Jeans mass in the neutral IGM and the hierarchical growth of structure in a cold dark matter universe. This small-scale structure acted as an important sink during the epoch of reionization, impeding the progress of the ionization fronts that swept out from the first sources of ionizing radiation. Here we present results of high-resolution cosmological hydrodynamics simulations that resolve the cosmological Jeans mass of the neutral IGM in representative volumes several Mpc across. The adiabatic hydrodynamics we follow are appropriate in an unheated IGM, before the gas has had a chance to respond to the photoionization heating. Our focus is determination of the resolution required in cosmological simulations in order to sufficiently sample and resolve small-scale structure regulating the opacity of an unheated IGM. We find that a dark matter particle mass of m {sub dm} {approx}< 50 M {sub Sun} and box size of L {approx}> 1 Mpc are required. With our converged results we show how the mean free path of ionizing radiation and clumping factor of ionized hydrogen depend on the ultraviolet background flux and redshift. We find, for example at z = 10, clumping factors typically of 10-20 for an ionization rate of {Gamma} {approx} (0.3-3) Multiplication-Sign 10{sup -12} s{sup -1}, with corresponding mean free paths of {approx}3-15 Mpc, extending previous work on the evolving mean free path to considerably smaller scales and earlier times.

  20. X-Ray Constraints on the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Kuntz, K. D.; Snowden, S. I.; Mushotzky, R. F.; White, Nicholas E. (Technical Monitor)

    2000-01-01

    Three observational constraints can be placed on a warm-hot intergalactic medium (WHIM) using ROSAT Position Sensitive Proportional Counter (PSPC) pointed and survey data, the emission strength, the energy spectrum, and the fluctuation spectrum. The upper limit to the emission strength of the WHIM is 7.5 +/- 1.0 keV/(s*sq cm*sr*keV) in the 3/4 keV band, an unknown portion of which value may be due to our own Galactic halo. The spectral stape of the WHIM emission can be described as thermal emission with logT = 6.42, although the true spectrum is more likely to come from a range of temperatures. The values of emission strength and spectral shape are in reasonable agreement with hydrodynamical cosmological models. The autocorrelation function in the 0.44 keV < E < 1.21 keV band range, w(theta), for the extragalactic soft X-ray background (SXRB) which includes both the WHIM and contributions due to point sources, is approx. < 0.002 for 10 min < 0 < 20 min in the 3/4 keV band. This value is lower than the Croft et al. (2000) cosmological model by a factor of approx. 5, but is still not inconsistent with cosmological models. It is also found that the normalization of the extragalactic power law component of the soft X-ray background spectrum must be 9.5 +/- 0.9 keV/(s*sq cm*sr*keV) to be consistent with the ROSAT All-Sky Survey.

  1. A Search for Intergalactic Ne VIII in the COS Spectrum of PKS0405-123

    NASA Astrophysics Data System (ADS)

    Narayanan, Anand; Savage, B.; Wakker, B.; Yao, Y.; Danforth, C.; Froning, C.; Green, J.; Keeney, B.; Sembach, K.; Shull, M.

    2010-01-01

    The high S/N COS spectrum of the UV bright quasar PKS0405-123 provides the sensitivity required for a search of Ne VIII in QSO metal line absorption systems at z > 0.47. The EUV lines of Ne VIII 770,780 A are ideal tracers of hot collisionally ionized gas at T (0.5 - 1) x 106 K. However, detecting these weak lines require spectra of good S/N in which the effects of detector fixed pattern noise are well understood. The z = 0.49510 O VI multiphase metal line absorption system along this sight line is ideally suited for a search for Ne VIII. Chen & Mulchaey (2009) have identified an emission line galaxy of extended morphology at a projected physical separation of 77 kpc from this absorber. The COS spectrum provides coverage of O II 834, O III 833, O IV 788, C III 977 and higher order Lyman series lines associated with this absorber at a much higher S/N than the FUSE and STIS observations for this target. The improved line measurement based on the COS spectrum, combined with the information on O VI from STIS is used to derive detailed physical conditions in the multiple gas phases of this absorber. Evidence for the presence of shock-heated gas would imply that the absorber is tracing either transition temperature gas in the galaxy's halo or an intergalactic WHIM filament connecting galaxies as part of the large scale structure. This research has been supported by the NASA Cosmic Origins Spectrograph Program through a sub-contract to the University of Wisconsin from the University of Colorado.

  2. Absorption in the Cosmic Web: Characterizing the Intergalactic Medium in Cosmological Filaments

    NASA Astrophysics Data System (ADS)

    Tejos, Nicolas

    2014-10-01

    We propose to observe and characterize the IGM associated with cosmological filaments in a statistical manner up to redshift ~0.4. For this purpose, we have used a published cluster catalog (Hao et al. 2010) to identify massive nodes in the cosmic web. We used cluster-pairs separated by < 20 Mpc (transverse) and < 2000 km/s (along the LOS) to identify zones where filaments should reside with high probabilities. We have selected a single QSO whose sightline passess through a total of 9 independent cluster-pairs (8 of which having spectroscopic redshifts) at impact parameters <10 Mpc (7 of which at < 5 Mpc). We propose to observe the QSO with HST/COS using the G130M and G160M gratings to cover the full FUV spectral range at medium resolution (R~20000). We require observations at S/N>10 to ensure a full characterization of HI and OVI lines at column densities N~10^13 cm^-2. This setup will allow us to detect broad and shallow HI and OVI lines (if any) at the redshifts of these filaments, believed to trace portions of the warm-hot intergalactic medium (WHIM). Combining these new observations with those from our pilot study carried out in cycle 20 (ID 12958, PI Tejos), we aim to provide a firm detection of the WHIM in cosmological filaments, at the 95% confidence level. Our findings will test our understanding of galaxy formation and the role of AGN/supernova feedback by comparing them with state-of-the-art hydrodynamical simulations. We will also test the the hypothesis which states that the majority of OVI absorbers at low-z are confined within <300 kpc from galaxies (i.e. circumgalactic medium) thus not related to the WHIM (Prochaska et al. 2011; Tumlinson et al. 2011).

  3. Characterizing the Low-Redshift Intergalactic Medium toward PKS 1302-102

    NASA Astrophysics Data System (ADS)

    Cooksey, Kathy L.; Prochaska, Jason X.; Chen, Hsiao-Wen; Mulchaey, John S.; Weiner, Benjamin J.

    2008-03-01

    We present a detailed analysis of the intergalactic metal-line absorption systems in the archival HST STIS and FUSE ultraviolet spectra of the low-redshift quasar PKS 1302-102 (zQSO = 0.2784). We supplement the archive data with CLOUDY ionization models and a survey of galaxies in the quasar field. There are 15 strong Lyα absorbers with column densities NH I > 14. Of these, six are associated with at least C III λ977 absorption [log N(C+ +) > 13]; this implies a redshift density dNC III/dz = 36-9+13 (68% confidence limits) for the five detections with rest equivalent width Wr > 50 mÅ. Two systems show O VI λλ1031, 1037 absorption in addition to C III [log N(O+ 5) > 14]. One is a partial Lyman limit system ( log NH I = 17) with associated C III, O VI, and Si III λ1206 absorption. There are three tentative O VI systems that do not have C III detected. For one O VI doublet with both lines detected at 3 σ with Wr > 50 mÅ, dNO VI/dz = 7-4+9. We also search for O VI doublets without Lyα absorption but identify none. From CLOUDY modeling, these metal-line systems have metallicities spanning the range -4 lesssim [ M/H ] lesssim - 0.3. The two O VI systems with associated C III absorption cannot be single-phase, collisionally ionized media based on the relative abundances of the metals and kinematic arguments. From the galaxy survey, we discover that the absorption systems are in a diverse set of galactic environments. Each metal-line system has at least one galaxy within 500 km s-1 and 600 h-175 kpc with L > 0.1L*.

  4. Bringing Simulation and Observation Together to Better Understand the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Egan, Hilary; Smith, Britton D.; O'Shea, Brian W.; Shull, J. Michael

    2014-08-01

    The methods by which one characterizes the distribution of matter in cosmological simulations is intrinsically different from how one performs the same task observationally. In this paper, we make substantial steps toward comparing simulations and observations of the intergalactic medium (IGM) in a more sensible way. We present a pipeline that generates and fits synthetic QSO absorption spectra using sight lines cast through a cosmological simulation, and simultaneously identifies structure by directly analyzing the variations in H I and O VI number density. We compare synthetic absorption spectra with a less observationally motivated, but more straightforward density threshold-based method for finding absorbers. Our efforts focus on H I and O VI to better characterize the warm/hot IGM, a subset of the IGM that is challenging to conclusively identify observationally. We find that the two methods trace roughly the same quantities of H I and O VI above observable column density limits, but the synthetic spectra typically identify more substructure in absorbers. We use both methods to characterize H I and O VI absorber properties. We find that both integrated and differential column density distributions from both methods generally agree with observations. The distribution of Doppler parameters between the two methods are similar for Lyα and compare reasonably with observational results, but while the two methods agree with each other with O VI systems, they both are systematically different from observations. We find a strong correlation between O VI baryon fraction and O VI column density. We also discuss a possible bimodality in the temperature distribution of the gas traced by O VI.

  5. PATCHY BLAZAR HEATING: DIVERSIFYING THE THERMAL HISTORY OF THE INTERGALACTIC MEDIUM

    SciTech Connect

    Lamberts, Astrid; Chang, Philip; Pfrommer, Christoph; Puchwein, Ewald; Broderick, Avery E.; Shalaby, Mohamad

    2015-09-20

    TeV-blazars potentially heat the intergalactic medium (IGM) as their gamma rays interact with photons of the extragalactic background light to produce electron–positron pairs, which lose their kinetic energy to the surrounding medium through plasma instabilities. This results in a heating mechanism that is only weakly sensitive to the local density, and therefore approximately spatially uniform, naturally producing an inverted temperature–density relation in underdense regions. In this paper we go beyond the approximation of uniform heating and quantify the heating rate fluctuations due to the clustered distribution of blazars and how this impacts the thermal history of the IGM. We analytically compute a filtering function that relates the heating rate fluctuations to the underlying dark matter density field. We implement it in the cosmological code GADGET-3 and perform large-scale simulations to determine the impact of inhomogeneous heating. We show that because of blazar clustering, blazar heating is inhomogeneous for z ≳ 2. At high redshift, the temperature–density relation shows an important scatter and presents a low temperature envelope of unheated regions, in particular at low densities and within voids. However, the median temperature of the IGM is close to that in the uniform case, albeit slightly lower at low redshift. We find that blazar heating is more complex than initially assumed and that the temperature–density relation is not unique. Our analytic model for the heating rate fluctuations couples well with large-scale simulations and provides a cost-effective alternative to subgrid models.

  6. Cosmological Simulations of Intergalactic Medium Evolution. I. Test of the Subgrid Chemical Enrichment Model

    NASA Astrophysics Data System (ADS)

    Côté, Benoit; Martel, Hugo; Drissen, Laurent

    2013-11-01

    We present a one-zone galactic chemical enrichment model that takes into account the contribution of stellar winds from massive stars under the effect of rotation, Type II supernovae, hypernovae, stellar winds from low- and intermediate-mass stars, and Type Ia supernovae. This enrichment model will be implemented in a galactic model designed to be used as a subgrid treatment for galaxy evolution and outflow generation in large-scale cosmological simulations, in order to study the evolution of the intergalactic medium. We test our enrichment prescription by comparing its predictions with the metallicity distribution function and the abundance patterns of 14 chemical elements observed in the Milky Way stars. To do so, we combine the effect of many stellar populations created from the star formation history of the Galaxy in the solar neighborhood. For each stellar population, we keep track of its specific mass, initial metallicity, and age. We follow the time evolution of every population in order to respect the time delay between the various stellar phases. Our model is able to reproduce the observed abundances of C, O, Na, Mg, Al, S, and Ca. For Si, Cr, Mn, Ni, Cu, and Zn, the fits are still reasonable, but improvements are needed. We marginally reproduce the nitrogen abundance in very low metallicity stars. Overall, our results are consistent with the predicted abundance ratios seen in previous studies of the enrichment history of the Milky Way. We have demonstrated that our semi-analytic one-zone model, which cannot deal with spatial information such as the metallicity gradient, can nevertheless successfully reproduce the global Galactic enrichment evolution obtained by more complex models, at a fraction of the computational cost. This model is therefore suitable for a subgrid treatment of chemical enrichment in large-scale cosmological simulations.

  7. The Baryon Census in a Multiphase Intergalactic Medium: 30% of the Baryons May Still be Missing

    NASA Astrophysics Data System (ADS)

    Shull, J. Michael; Smith, Britton D.; Danforth, Charles W.

    2012-11-01

    Although galaxies, groups, and clusters contain ~10% of the baryons, many more reside in the photoionized and shocked-heated intergalactic medium (IGM) and in the circumgalactic medium (CGM). We update the baryon census in the (H I) Lyα forest and warm-hot IGM (WHIM) at 105-6 K traced by O VI λ1032, 1038 absorption. From Enzo cosmological simulations of heating, cooling, and metal transport, we improve the H I and O VI baryon surveys using spatially averaged corrections for metallicity (Z/Z ⊙) and ionization fractions (f H I , f O VI ). Statistically, the O VI correction product correlates with column density, (Z/Z ⊙)f O VI ≈ (0.015)(N O VI /1014 cm-2)0.70, with an N O VI -weighted mean of 0.01, which doubles previous estimates of WHIM baryon content. We also update the Lyα forest contribution to baryon density out to z = 0.4, correcting for the (1 + z)3 increase in absorber density, the (1 + z)4.4 rise in photoionizing background, and cosmological proper length dl/dz. We find substantial baryon fractions in the photoionized Lyα forest (28% ± 11%) and WHIM traced by O VI and broad-Lyα absorbers (25% ± 8%). The collapsed phase (galaxies, groups, clusters, CGM) contains 18% ± 4%, leaving an apparent baryon shortfall of 29% ± 13%. Our simulations suggest that ~15% reside in hotter WHIM (T >= 106 K). Additional baryons could be detected in weaker Lyα and O VI absorbers. Further progress requires higher-precision baryon surveys of weak absorbers, down to minimum column densities N H I >= 1012.0 cm-2, N O VI >= 1012.5 cm-2, N O VII >= 1014.5 cm-2, using high signal-to-noise data from high-resolution UV and X-ray spectrographs.

  8. Studying the History of the Intergalactic Medium with the SCI-HI Experiment

    NASA Astrophysics Data System (ADS)

    Voytek, Tabitha Christine

    The Cosmic Dawn (z ˜ 15 -- 35) is the period in the history of our universe when stars first began to form in small Dark Matter minihalos. Light from these first stars is too dim for telescopes to see, which means that the Cosmic Dawn has never been directly measured. However, the first stars impacted the gas, or intergalactic medium (IGM), around them. The impact of the first stars was heating and eventual ionization of the IGM. The process of heating and ionization creates a spectrum that varies over redshift, namely the spatially averaged brightness temperature spectrum of 21-cm light from the IGM. Measurement of this spectrum will give us a first glimpse of the Cosmic Dawn. The "Sonda Cosmologica de las Islas para la Deteccion de Hidrogeno Neutro" (SCIHI) experiment is a collaboration between Carnegie Mellon University (CMU) and Instituto Nacional de Astrofisica, Optica y Electronica (INAOE) in Mexico and was designed to make this measurement. The SCI-HI experiment is a small-scale system which travels with the team to remote locations for deployments. These remote locations are necessary to avoid radio frequency interference and other environmental impacts on the system. This thesis describes the development and deployment of the SCI-HI experiment. It starts with the original design and covers development of the system over time. Deployment location selection is then discussed, including the results of site evaluations. In addition, the thesis outlines the data analysis process used for the system and shows results from data collected during the June 2013 deployment of the experiment. Finally, the thesis describes plans for the future of the SCI-HI experiment, including deployment to South Africa in 2015.

  9. COSMOLOGICAL SIMULATIONS OF INTERGALACTIC MEDIUM EVOLUTION. I. TEST OF THE SUBGRID CHEMICAL ENRICHMENT MODEL

    SciTech Connect

    Côté, Benoit; Martel, Hugo; Drissen, Laurent

    2013-11-10

    We present a one-zone galactic chemical enrichment model that takes into account the contribution of stellar winds from massive stars under the effect of rotation, Type II supernovae, hypernovae, stellar winds from low- and intermediate-mass stars, and Type Ia supernovae. This enrichment model will be implemented in a galactic model designed to be used as a subgrid treatment for galaxy evolution and outflow generation in large-scale cosmological simulations, in order to study the evolution of the intergalactic medium. We test our enrichment prescription by comparing its predictions with the metallicity distribution function and the abundance patterns of 14 chemical elements observed in the Milky Way stars. To do so, we combine the effect of many stellar populations created from the star formation history of the Galaxy in the solar neighborhood. For each stellar population, we keep track of its specific mass, initial metallicity, and age. We follow the time evolution of every population in order to respect the time delay between the various stellar phases. Our model is able to reproduce the observed abundances of C, O, Na, Mg, Al, S, and Ca. For Si, Cr, Mn, Ni, Cu, and Zn, the fits are still reasonable, but improvements are needed. We marginally reproduce the nitrogen abundance in very low metallicity stars. Overall, our results are consistent with the predicted abundance ratios seen in previous studies of the enrichment history of the Milky Way. We have demonstrated that our semi-analytic one-zone model, which cannot deal with spatial information such as the metallicity gradient, can nevertheless successfully reproduce the global Galactic enrichment evolution obtained by more complex models, at a fraction of the computational cost. This model is therefore suitable for a subgrid treatment of chemical enrichment in large-scale cosmological simulations.

  10. THE INTERGALACTIC STELLAR POPULATION FROM MERGERS OF ELLIPTICAL GALAXIES WITH DARK MATTER HALOS

    SciTech Connect

    Gonzalez-Garcia, A. Cesar; Stanghellini, Letizia; Manchado, Arturo

    2010-02-20

    We present simulations of dry-merger encounters between pairs of elliptical galaxies with dark matter halos. The aim of these simulations is to study the intergalactic (IG) stellar populations produced in both parabolic and hyperbolic encounters. We model progenitor galaxies with total-to-luminous mass ratios M{sub T} /M{sub L}= 3 and 11. The initial mass of the colliding galaxies are chosen so that M{sub 1}/M{sub 2} = 1 and 10. The model galaxies are populated by particles representing stars, as in Stanghellini et al., and dark matter. Merger remnants resulting from these encounters display a population of unbounded particles, both dark and luminous. The number of particles becoming unbounded depends on orbital configuration, with hyperbolic encounters producing a larger luminous intracluster population than parabolic encounters. Furthermore, in simulations with identical orbital parameters, a lower M{sub T} /M{sub L} of the colliding galaxies produces a larger fraction of unbounded luminous particles. For each modeled collision, the fraction of unbounded to initial stellar mass is the same in all mass bins considered, similarly to what we found previously by modeling encounters of galaxies without dark halos. The fraction of IG to total luminosity resulting from our simulations is {approx}4% and {approx}6% for dark-to-bright mass ratios of 10 and 2, respectively. These unbounded-to-total luminous fractions are down from the 17% that we had previously found in the case of no dark halos. Our results are in broad agreement with IG light observed in groups of galaxies, while the results of our previous models without dark halos better encompass observed intracluster populations. We suggest a possible formation scenario of IG stars.

  11. Metallicity of the Intergalactic Medium Using Pixel Statistics. II. The Distribution of Metals as Traced by C IV

    NASA Astrophysics Data System (ADS)

    Schaye, Joop; Aguirre, Anthony; Kim, Tae-Sun; Theuns, Tom; Rauch, Michael; Sargent, Wallace L. W.

    2003-10-01

    We measure the distribution of carbon in the intergalactic medium as a function of redshift z and overdensity δ. Using a hydrodynamical simulation to link the H I absorption to the density and temperature of the absorbing gas, and a model for the UV background radiation, we convert ratios of C IV to H I pixel optical depths into carbon abundances. For the median metallicity this technique was described and tested in Paper I of this series. Here we generalize it to reconstruct the full probability distribution of the carbon abundance and apply it to 19 high-quality quasar absorption spectra. We find that the carbon abundance is spatially highly inhomogeneous and is well described by a lognormal distribution for fixed δ and z. Using data in the range logδ=-0.5-1.8 and z=1.8-4.1, and a renormalized version of the 2001 Haardt & Madau model for the UV background radiation from galaxies and quasars, we measure a median metallicity of [C/H]=-3.47+0.07-0.06+0.08+0.09-0.10(z-3)+0.65+0.10-0.14(logδ-0.5) and a lognormal scatter of σ([C/H])=0.76+0.05-0.08+0.02+0.08-0.12(z-3)-0.23+0.09-0.07(logδ-0.5). Thus, we find significant trends with overdensity but no evidence for evolution. These measurements imply that gas in this density range accounts for a cosmic carbon abundance of [C/H]=-2.80+/-0.13 (ΩC~2×10-7), with no evidence for evolution. The dominant source of systematic error is the spectral shape of the UV background, with harder spectra yielding higher carbon abundances. While the systematic errors due to uncertainties in the spectral hardness may exceed the quoted statistical errors for δ<10, we stress that UV backgrounds that differ significantly from our fiducial model give unphysical results. The measured lognormal scatter is strictly independent of the spectral shape, provided the background radiation is uniform. We also present measurements of the C III/C IV ratio (which rule out temperatures high enough for collisional ionization to be important for the

  12. THE BARYON CENSUS IN A MULTIPHASE INTERGALACTIC MEDIUM: 30% OF THE BARYONS MAY STILL BE MISSING

    SciTech Connect

    Shull, J. Michael; Danforth, Charles W.; Smith, Britton D. E-mail: smit1685@msu.edu

    2012-11-01

    Although galaxies, groups, and clusters contain {approx}10% of the baryons, many more reside in the photoionized and shocked-heated intergalactic medium (IGM) and in the circumgalactic medium (CGM). We update the baryon census in the (H I) Ly{alpha} forest and warm-hot IGM (WHIM) at 10{sup 5-6} K traced by O VI {lambda}1032, 1038 absorption. From Enzo cosmological simulations of heating, cooling, and metal transport, we improve the H I and O VI baryon surveys using spatially averaged corrections for metallicity (Z/Z {sub Sun }) and ionization fractions (f {sub HI}, f {sub OVI}). Statistically, the O VI correction product correlates with column density, (Z/Z {sub Sun })f {sub OVI} Almost-Equal-To (0.015)(N {sub OVI}/10{sup 14} cm{sup -2}){sup 0.70}, with an N {sub OVI}-weighted mean of 0.01, which doubles previous estimates of WHIM baryon content. We also update the Ly{alpha} forest contribution to baryon density out to z = 0.4, correcting for the (1 + z){sup 3} increase in absorber density, the (1 + z){sup 4.4} rise in photoionizing background, and cosmological proper length dl/dz. We find substantial baryon fractions in the photoionized Ly{alpha} forest (28% {+-} 11%) and WHIM traced by O VI and broad-Ly{alpha} absorbers (25% {+-} 8%). The collapsed phase (galaxies, groups, clusters, CGM) contains 18% {+-} 4%, leaving an apparent baryon shortfall of 29% {+-} 13%. Our simulations suggest that {approx}15% reside in hotter WHIM (T {>=} 10{sup 6} K). Additional baryons could be detected in weaker Ly{alpha} and O VI absorbers. Further progress requires higher-precision baryon surveys of weak absorbers, down to minimum column densities N {sub HI} {>=} 10{sup 12.0} cm{sup -2}, N {sub OVI} {>=} 10{sup 12.5} cm{sup -2}, N {sub OVII} {>=} 10{sup 14.5} cm{sup -2}, using high signal-to-noise data from high-resolution UV and X-ray spectrographs.

  13. The scattering of Lyα radiation in the intergalactic medium: numerical methods and solutions

    NASA Astrophysics Data System (ADS)

    Higgins, Jonathan; Meiksin, Avery

    2012-11-01

    Two methods are developed for solving the steady-state spherically symmetric radiative transfer equation for resonance line radiation emitted by a point source in the intergalactic medium, in the context of the Wouthuysen-Field mechanism for coupling the hyperfine structure spin temperature of hydrogen to the gas temperature. One method is based on solving the ray and moment equations using finite differences. The second uses a Monte Carlo approach incorporating methods that greatly improve the accuracy compared with previous approaches in this context. Several applications are presented serving as test problems for both a static medium and an expanding medium, including inhomogeneities in the density and velocity fields. Solutions are obtained in the coherent scattering limit and for Doppler RII redistribution with and without recoils. We find generally that the radiation intensity is linear in the cosine of the azimuthal angle with respect to radius to high accuracy over a broad frequency region across the line centre for both linear and perturbed velocity fields, yielding the Eddington factors fν ≃ 1/3 and gν ≃ 3/5. The radiation field produced by a point source divides into three spatial regimes for a uniformly expanding homogeneous medium. The regimes are governed by the fraction of the distance r from the source in terms of the distance r* required for a photon to redshift from line centre to the frequency needed to escape from the expanding gas. For a standard cosmology, before the Universe was reionized r* takes on the universal value independent of redshift of 1.1 Mpc, depending only on the ratio of the baryon to dark matter density. At r/r* < 1, the radiation field is accurately described in the diffusion approximation, with the scattering rate declining with the distance from the source as r-7/3, except at r/r* ≪ 1 where frequency redistribution nearly doubles the mean intensity around line centre. At r/r* > 1, the diffusion approximation breaks

  14. Faint Intergalactic Redshifted Emission Balloon (FIREBALL)-2: Flight Test of Next Generation UV Detector and Spectrograph (Lead Institution)

    NASA Astrophysics Data System (ADS)

    Martin, Christopher

    We have developed and successfully flown a path-finding experiment, for which this is the lead proposal, the Faint Intergalactic-medium Redshifted Emission Balloon (FIREBALL), designed to discover and map faint emission from the Intergalactic Medium (IGM). Our successful science flight in June 2009, proved every aspect of the complex instrument performance, and provided the strongest measurements and constraints on IGM emission available from any instrument. We are preparing a significantly upgraded experiment, FIREBALL-2, for launch in Fall 2015 at Ft. Sumner, New Mexico. We have made progress in spectrograph, detector, and payload design and development. CNES is providing the spectrograph, gondola, and gondola flight support team. Because of a CNES balloon mishap and funding constraints, support for a FIREBALL launch was delayed from Fall 2013 to Fall 2015. We propose 18 months of bridge funding to support the FIREBALL team that includes two female graduate students and one female Post Doctoral scholar (separately supported by NSF and Caltech Millikan Fellowships). FIREBALL directly supports NASA Science Plan Objectives to "Understand the many phenom-ena and processes associated with galaxy, stellar, and planetary system formation and evolution from the earliest epochs to today." FIREBALL directly addresses four Core Science Questions from the Astrophysics 2010 Decadal Survey (New Worlds New Horizons). FIREBALL provides flight and science testing of new UV technologies directly called out by NWNH as high priority for the next decade as a precursor to a 4-m class UV/optical future mission.

  15. Faint Intergalactic Redshifted Emission Balloon (FIREBALL)-2: Flight Test of Next Generation UV Detector and Spectrograph (Co-I Proposal)

    NASA Astrophysics Data System (ADS)

    Schiminovich, David

    Columbia University is a Co-I institution in a collaborative research program with Caltech, the Lead Institution (PI: Christopher Martin). We have developed and successfully flown a path-finding experiment, the Faint Intergalactic-medium Redshifted Emission Balloon (FIREBALL), designed to discover and map faint emission from the Intergalactic Medium (IGM). Our successful science flight in June 2009, proved every aspect of the complex instrument performance, and provided the strongest measurements and constraints on IGM emission available from any instrument. We are preparing a significantly upgraded experiment, FIREBALL-2, for launch in Fall 2015 at Ft. Sumner, New Mexico. We have made progress in spectrograph, detector, and payload design and development. CNES is providing the spectrograph, gondola, and gondola flight support team. Because of a CNES balloon mishap and funding constraints, support for a FIREBALL launch was delayed from Fall 2013 to Fall 2015. We propose 18 months of bridge funding to support the FIREBALL team that includes one woman Ph.D. student at Columbia University. FIREBALL directly supports NASA Science Plan Objectives to "Understand the many phenomena and processes associated with galaxy, stellar, and planetary system formation and evolution from the earliest epochs to today." FIREBALL directly addresses four Core Science Questions from the Astrophysics 2010 Decadal Survey (New Worlds New Horizons). FIREBALL provides flight and science testing of new UV technologies directly called out by NWNH as high priority for the next decade as a precursor to a 4-m class UV/optical future mission.

  16. The Missing Baryon Explorer: A Proposed SMEX Mission to Map the X-ray Emission from the Warm-Hot Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    Sanders, W. T.; Missing Baryon Explorer Team

    2003-12-01

    The Missing Baryon Explorer was proposed to NASA in the most recent round of SMEX proposals. It is dedicated to high-resolution x-ray spectroscopy, with medium-resolution x-ray imaging, of the diffuse plasmas in the hot intergalactic medium, the hot Galactic halo, the hot interstellar medium, and from highly-ionized species within the solar system. The highest priority science goal is tracing the structure of the emission from the missing baryonic matter in the local universe, with a secondary science goal of understanding the role of hot material in the in the life cycles of galaxies and stars. To achieve these goals, we propose an imaging x-ray spectrometer, an array of microcalorimeters, to provide 4-eV spectral resolution over the 40 - 2000 eV energy range. A conical-foil optic with a 1.4-meter focal length provides large collecting area and 5-arcminute image quality that matches the spatial resolution of the detectors. Observations are carried out either in pointed mode (first 4 months and after the all-sky survey) or in all-sky survey mode (months 5-10). The final 7 months of the mission combine additional science team pointed observations and guest observer pointings. The Missing Baryon Explorer team includes major hardware contributions from the NASA/Goddard Space Flight Center, Lockheed-Martin, and Spectrum Astro in addition to the University of Wisconsin-Madison. The science team in addition includes members from Yale Univ., SRON, SAO, Princeton Univ., Univ. of Michigan, Univ. of Miami, Johns Hopkins Univ., Carnegie Mellon Univ., California Inst. of Tech., Univ. of California-Berkeley, and Univ. of Alabama-Huntsville.

  17. Reionization in a cold dark matter universe: The feedback of galaxy formation on the intergalactic medium

    NASA Technical Reports Server (NTRS)

    Shapiro, Paul R.; Giroux, Mark L.; Babul, Arif

    1994-01-01

    We study the coupled evolution of the intergalactic medium (IGM) and the emerging structure in the universe in the context of the cold dark matter (CDM) model, with a special focus on the consequences of imposing reionization and the Gunn-Peterson constraint as a boundary condition on the model. We have calculated the time-varying density of the IGM by coupling our detailed, numerical calculations of the thermal and ionization balance and radiative transfer in a uniform, spatially averaged IGM of H and He, including the mean opacity of an evolving distribution of gas clumps which correspond to quasar absorption line clouds, to the linearized equations for the growth of density fluctuations in both the gaseous and dark matter components in a CDM universe. We use the linear growth equations to identify the fraction of the gas which must have collapsed out at each epoch, an approach similar in spirit to the so-called Press-Schechter formalism. We identify the IGM density with the uncollapsed baryon fraction. The collapsed fraction is postulated to be a source of energy injection into the IGM, by radiation or bulk hydrodynamical heating (e.g., via shocks) or both, at a rate which is marginally enough to satisfy the Gunn-Peterson constraint at z less than 5. Our results include the following: (1) We find that the IGM in a CDM model must have contained a substantial fraction of the total baryon density of the universe both during and after its reionization epoch. (2) As a result, our previous conclusion that the observed Quasi-Stellar Objects (QSOs) at high redshift are not sufficient to ionize the IGM enough to satisfy the Gunn-Peterson constraint is confirmed. (3) We predict a detectable He II Gunn-Peterson effect at 304(1 + z) A in the spectra of quasars at a range of redshift z greater than or approx. 3, depending on the nature of the sources of IGM reionization. (4) We find, moreover, that a CDM model with high bias parameter b (i.e., b greater than or approx. 2

  18. Probing the chemical composition of the Z < 1 intergalactic medium with observations and simulations

    NASA Astrophysics Data System (ADS)

    Cooksey, Kathy L.

    2009-09-01

    Metals are produced in the stars in the galaxies, and a variety of feedback processes move metals from the sites of production into the intergalactic medium (IGM), enriching the material for future generations of stars. The signature of this process is etched in the recycled gas: its metallicity, elemental abundances, density, distribution, etc. The study of the low- redshift, z <, IGM is the study of the last eight-billion years of cosmic chemical evolution and all prior enrichment. In this thesis, I characterize the cosmic enrichment cycle with the use of observations and simulations. The gas is observed through quasar absorption- line spectroscopy. As the light of a distant quasar travels to us, intervening clouds of gas absorb the light at wavelengths characteristic, albeit redshifted, of the elements in the clouds. By identifying and modeling the elements associated with the absorption systems, I learn the ionic composition and density of the cosmic web (voids, filaments, and/or groups) along the line of sight. >From a detailed study of a single sightline, I observe a multi-phase IGM, with kinematically-distinct, hot and warm components ( T [approximate] 10 5.5 K and 10 4 K, respectively). By correlating the absorption systems with a complementary galaxy survey of the field around the background quasar, I find that the IGM systems arise in a variety of galactic environments. The metal- lines systems all have L > 0.1 L [low *] galaxies within a few hundred kiloparsecs, which suggests this is the distance to which galactic feedback processes typically disperse metals. I conduct a large, blind survey for triply-ionized carbon (C IV) absorption at z < 1 in the spectra of 49 low-redshift quasars and compare their propertie with those detected at z > 1. The mass density in C IV doublets with 13 < = log N (C +3 ) <= 15 at z < 1 has increased by a factor of 2.8 ± 0.7 over the error- weighted mean of the 1.5 < z < 5 measurements, where the mass density has not evolved

  19. High redshift in greatness scale caused by Interstellar and Intergalactic Media

    NASA Astrophysics Data System (ADS)

    Chen, Shao-Guang

    gravitational wave of dipole radiation will be produced from the change in masses of A and B caused by the nonlinearity of Einstein's equation or by mass renormalization of QFT. The change in period of energy loss of pulsar binary PSR1913+16 calculated with Eq. (4) is consistent with the observation value of Taylar et al. The change in mass of photons on the way calculated from F Q or F G is the redshift ratio: Red=(E-Ei)/Ei= F G ds / Ei = - 4 GM / c 2 D (5) Where E is actual energy, Ei is in inertial system energy, which is just the metrical definition of redshift. The redshift ratio of Eq. (5) is numerically equal to the deflection ratio of GR, which is consistent with relativistic combination of energy and momentum. When light sweep the sun once maximal redshift ratio is 4GM / c2 R =-8×10-6 . When photons pass through greatness scale interstellar and intergalactic media high gravitational redshift will arises, e.g., if universal luminosity mass density ( about 10-31 g cm -3 )is entirely constituted by stars with M in homogeneous distribution, the distance of two stars is about 800 PC, maximal redshift constant is 3000 km s-1 / MPC, average value is 62.5 km s-1 / MPC ( near the observational Hubble's constant ), which will influence astronomical distance estimated by redshift and many astrophysical parameter.

  20. Turbulent Molecular Gas and Star Formation in the Shocked Intergalactic Medium of Stephan's Quintet

    NASA Astrophysics Data System (ADS)

    Guillard, P.; Boulanger, F.; Pineau des Forêts, G.; Falgarone, E.; Gusdorf, A.; Cluver, M. E.; Appleton, P. N.; Lisenfeld, U.; Duc, P.-A.; Ogle, P. M.; Xu, C. K.

    2012-04-01

    The Stephan's Quintet (hereafter SQ) is a template source to study the impact of galaxies interaction on the physical state and energetics of their gas. We report on IRAM single-dish CO observations of the SQ compact group of galaxies. These observations follow up the Spitzer discovery of bright mid-IR H2 rotational line emission (L(H2) ≈ 1035 W) from warm (102 - 3 K) molecular gas, associated with a 30 kpc long shock between a galaxy, NGC 7318b, and NGC 7319's tidal arm. We detect CO(1-0), (2-1) and (3-2) line emission in the inter-galactic medium (IGM) with complex profiles, spanning a velocity range of ≈1000 km s-1. The spectra exhibit the pre-shock recession velocities of the two colliding gas systems (5700 and 6700 km s-1), but also intermediate velocities. This shows that much of the molecular gas has formed out of diffuse gas accelerated by the galaxy-tidal arm collision. CO emission is also detected in a bridge feature that connects the shock to the Seyfert member of the group, NGC 7319, and in the northern star forming region, SQ-A, where a new velocity component is identified at 6900 km s-1, in addition to the two velocity components already known. Assuming a Galactic CO(1-0) emission to H2 mass conversion factor, a total H2 mass of ≈5 × 109 M ⊙ is detected in the shock. The ratio between the warm H2 mass derived from Spitzer spectroscopy, and the H2 mass derived from CO fluxes is ≈0.3 in the IGM of SQ, which is 10--100 times higher than in star-forming galaxies. The molecular gas carries a large fraction of the gas kinetic energy involved in the collision, meaning that this energy has not been thermalized yet. The kinetic energy of the H2 gas derived from CO observations is comparable to that of the warm H2 gas from Spitzer spectroscopy, and a factor ≈5 greater than the thermal energy of the hot plasma heated by the collision. In the shock and bridge regions, the ratio of the PAH-to-CO surface luminosities, commonly used to measure the star

  1. TeV gamma rays from 3C 279 - A possible probe of origin and intergalactic infrared radiation fields

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.; De Jager, O. C.; Salamon, M. H.

    1992-01-01

    The gamma-ray spectrum of 3C 279 during 1991 June exhibited a near-perfect power law between 50 MeV and over 5 GeV with a differential spectral index of -(2.02 +/- 0.07). If extrapolated, the gamma-ray spectrum of 3C 279 should be easily detectable with first-generation air Cerenkov detectors operating above about 0.3 TeV provided there is no intergalactic absorption. However, by using model-dependent lower and upper limits for the extragalactic infrared background radiation field, a sharp cutoff of the 3C 279 spectrum is predicted at between about 0.1 and about 1 TeV. The sensitivity of present air Cerenkov detectors is good enough to measure such a cutoff, which would provide the first opportunity to obtain a measurement of the extragalactic background infrared radiation field.

  2. Towards the statistical detection of the warm-hot intergalactic medium in intercluster filaments of the cosmic web

    NASA Astrophysics Data System (ADS)

    Tejos, Nicolas; Prochaska, J. Xavier; Crighton, Neil H. M.; Morris, Simon L.; Werk, Jessica K.; Theuns, Tom; Padilla, Nelson; Bielby, Rich M.; Finn, Charles W.

    2016-01-01

    Modern analyses of structure formation predict a universe tangled in a `cosmic web' of dark matter and diffuse baryons. These theories further predict that at low z, a significant fraction of the baryons will be shock-heated to T ˜ 105-107 K yielding a warm-hot intergalactic medium (WHIM), but whose actual existence has eluded a firm observational confirmation. We present a novel experiment to detect the WHIM, by targeting the putative filaments connecting galaxy clusters. We use HST/COS to observe a remarkable quasi-stellar object (QSO) sightline that passes within Δd = 3 Mpc from the seven intercluster axes connecting seven independent cluster pairs at redshifts 0.1 ≤ z ≤ 0.5. We find tentative excesses of total H I, narrow H I (NLA; Doppler parameters b < 50 km s-1), broad H I (BLA; b ≥ 50 km s-1) and O VI absorption lines within rest-frame velocities of Δv ≲ 1000 km s-1 from the cluster-pairs redshifts, corresponding to ˜2, ˜1.7, ˜6 and ˜4 times their field expectations, respectively. Although the excess of O VI likely comes from gas close to individual galaxies, we conclude that most of the excesses of NLAs and BLAs are truly intergalactic. We find the covering fractions, fc, of BLAs close to cluster pairs are ˜4-7 times higher than the random expectation (at the ˜2σ c.l.), whereas the fc of NLAs and O VI are not significantly enhanced. We argue that a larger relative excess of BLAs compared to those of NLAs close to cluster pairs may be a signature of the WHIM in intercluster filaments. By extending this analysis to tens of sightlines, our experiment offers a promising route to detect the WHIM.

  3. The distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter dominated universe

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1988-01-01

    The evolution and distribution of galaxies and the intergalactic medium (IGM) have been studied, along with collisionless dark matter in a Universe dominated by cold dark matter. The Einstein-deSitter universe with omega sub 0 = 1 and h = 0.5 was considered (here h = H sub 0 bar 100/kms/Mpc and H sub 0 is the present value of the Hubble constant). It is assumed that initially dark matter composes 90 pct and baryonic matter composes 10 pct of total mass, and that the primordial baryonic matter is comprised of H and He, with the abundance of He equal to 10 pct of H by number. Galaxies are allowed to form out of the IGM, if the total density and baryonic density satisfy an overdensity criterion. Subsequently, the newly formed galaxies release 10 to the 60th ergs of energy into the IGM over a period of 10 to the 8th years. Calculations have been performed with 32 to the 3rd dark matter particles and 32 to the 3rd cells in a cube with comoving side length L = 9.6/h Mpc. Dark matter particles and galaxies have been followed with an N-body code, while the IGM has been followed with a fluid code.

  4. ON THE BEAM INDUCED QUASI-INSTABILITY TRANSFORMATION OF THE DAMPED APERIODIC MODE IN THE INTERGALACTIC MEDIUM

    SciTech Connect

    Kolberg, U.; Schlickeiser, R.; Yoon, P. H. E-mail: rsch@tp4.rub.de

    2016-02-01

    Highly relativistic electron–positron pair beams considerably affect the spontaneously emitted field fluctuations in the unmagnetized intergalactic medium (IGM). In view of the considered small density ratio of beam and background plasma, a perturbative treatment is employed in order to derive the spectral balance equations for the fluctuating fields from first principles of plasma kinetic theory that are covariantly correct within the limits of special relativity. They self-consistently account for the competing effects of spontaneous and induced emission and absorption in the perturbed thermal plasma. It is found that the presence of the beam transforms the growth rate of the dominating transverse damped aperiodic mode into an effective growth rate that displays positive values in certain spectral regions if beam velocity and wave vector are perpendicular or almost perpendicular to each other. This corresponds to a quasi-instability that induces an amplification of the fluctuations for these wavenumbers. Such an effect can greatly influence the cosmic magnetogenesis as it affects the strengths of the spontaneously emitted magnetic seed fields in the IGM, thereby possibly lowering the required growth time and effectivity of any further amplification mechanism such as an astrophysical dynamo.

  5. Eternity in six hours: Intergalactic spreading of intelligent life and sharpening the Fermi paradox

    NASA Astrophysics Data System (ADS)

    Armstrong, Stuart; Sandberg, Anders

    2013-08-01

    The Fermi paradox is the discrepancy between the strong likelihood of alien intelligent life emerging (under a wide variety of assumptions) and the absence of any visible evidence for such emergence. In this paper, we extend the Fermi paradox to not only life in this galaxy, but to other galaxies as well. We do this by demonstrating that travelling between galaxies - indeed even launching a colonisation project for the entire reachable universe - is a relatively simple task for a star-spanning civilisation, requiring modest amounts of energy and resources. We start by demonstrating that humanity itself could likely accomplish such a colonisation project in the foreseeable future, should we want to. Given certain technological assumptions, such as improved automation, the task of constructing Dyson spheres, designing replicating probes, and launching them at distant galaxies, become quite feasible. We extensively analyse the dynamics of such a project, including issues of deceleration and collision with particles in space. Using similar methods, there are millions of galaxies that could have reached us by now. This results in a considerable sharpening of the Fermi paradox.

  6. A Snapshot Survey of AGNS/QSOS for Intergalactic Medium Studies

    NASA Technical Reports Server (NTRS)

    Sonneborn, George (Technical Monitor); Sembach, George

    2005-01-01

    This spectroscopic program with the Far Ultraviolet Spectroscopic Explorer (FUSE) program was designed to identify ultraviolet-bright active galactic nuclei (AGNs) and quasi-stellar objects (QSOs) for follow-up spectroscopy with FUSE and the Hubble Space Telescope (HST). All of the FUSE spectra obtained for this snapshot program (FUSE identifier D808) have been examined for data quality and flux levels. As expected, only a small number of objects observed (4/19) have flux levels suitable for follow-up spectroscopy. A portion of our effort in this program was devoted to comparing the spectra obtained in these snapshot exposures to others to determine if the spectra could be used for detailed scientific analyses. The resulting effort demonstrated that some of the brighter sources are relatively stable (non- variable), as determined through comparisons of the spectra at multiple epochs. For these brighter sources, the exposure times are simply too short to perform meaningful detailed analyses. Comparisons of the absorption lines in these spectra with those of higher signal-to-noise spectra, like those of PG1116+215 and H1821+643, showed that many of the lines of interest could not be characterized adequately at the S/N levels reached in the short snapshot exposures. As a result, the FUSE D808 observations are suitable only for their original purpose - flux determination. Several bright objects identified as part of this program include: HE0153-4520, flux >2x10E-14 erg cm^-2s^-1 at 1000 Angstroms IRASF04250-5718, flux >4x10E-14 erg cm^-2s^-1 A^-1 at 1000 Angstroms RXJ2154.1-4414, flux > 1.6x10E-14 erg cm^-2s^-1 A^-1 at 1000 Angstroms S50716+714, flux >2.5x10E-14 erg cm^-2s^-1 A^-1 at 1000 Angstroms. All of these objects have been incorporated into the primary target lists for the HST Cosmic Origins Spectrograph. Identifying such objects for follow-up observations with HST/COS was the primary goal of this program, so the program wa successful. In addition, some of the

  7. Tomography of the intergalactic medium with Lyα forests in close QSO pairs

    NASA Astrophysics Data System (ADS)

    D'Odorico, V.; Viel, M.; Saitta, F.; Cristiani, S.; Bianchi, S.; Boyle, B.; Lopez, S.; Maza, J.; Outram, P.

    2006-11-01

    We study the three-dimensional distribution of non-virialized matter at z ~ 2 using high-resolution spectra of quasi-stellar object (QSO) pairs and simulated spectra drawn from cosmological hydrodynamical simulations. We have collected the largest sample of QSO pairs ever observed with Ultraviolet and Visual Echelle Spectrograph (UVES) at the European Southern Observatory-Very Large Telescope (ESO-VLT), with angular separations between ~1 and 14arcmin. The observed correlation functions of the transmitted flux in the HI Lyman α forest along and transverse to the lines of sight are in good agreement implying that the distortions in redshift space due to peculiar velocities are small. The clustering signal is significant up to velocity separations of ~200kms-1, or about 3h-1 comoving Mpc. The regions at lower overdensity are still clustered but on smaller scales (Δv <~ 100kms-1). The observed and simulated correlation functions are compatible at the 3σ level. A better concordance is obtained when only the low overdensity regions are selected for the analysis or when the effective optical depth of the simulated spectra is increased artificially, suggesting a deficiency of strong lines in the simulated spectra. We found that also a lower value of the power-law index of the temperature-density relation for the Lyman α forest gas improves the agreement between observed and simulated results. If confirmed, this would be consistent with other observations favouring a late HeII reionization epoch (at z ~ 3). We remark the detection of a significant clustering signal in the cross-correlation coefficient at a transverse velocity separation Δv⊥ ~ 500kms-1 whose origin needs further investigation. Based on observations collected at the European Southern Observatory Very Large Telescope, Cerro Paranal, Chile - Programs 65.O-0299(A), 68.A-0216(A), 69.A-0204(A), 69.A-0586(A), 70.A-0031(A), 166.A-0106(A). E-mail: dodorico@oats.inaf.it

  8. Heating the intergalactic medium by X-rays from population III binaries in high-redshift galaxies

    SciTech Connect

    Xu, Hao; Norman, Michael L.; Ahn, Kyungjin; Wise, John H.; O'Shea, Brian W. E-mail: mlnorman@ucsd.edu E-mail: jwise@gatech.edu

    2014-08-20

    Due to their long mean free path, X-rays are expected to have an important impact on cosmic reionization by heating and ionizing the intergalactic medium (IGM) on large scales, especially after simulations have suggested that Population III (Pop III) stars may form in pairs at redshifts as high as 20-30. We use the Pop III distribution and evolution from a self-consistent cosmological radiation hydrodynamic simulation of the formation of the first galaxies and a simple Pop III X-ray binary model to estimate their X-ray output in a high-density region larger than 100 comoving (Mpc){sup 3}. We then combine three different methods—ray tracing, a one-zone model, and X-ray background modeling—to investigate the X-ray propagation, intensity distribution, and long-term effects on the IGM thermal and ionization state. The efficiency and morphology of photoheating and photoionization are dependent on the photon energies. The sub-kiloelectronvolt X-rays only impact the IGM near the sources, while the kiloelectronvolt photons contribute significantly to the X-ray background and heat and ionize the IGM smoothly. The X-rays just below 1 keV are most efficient in heating and ionizing the IGM. We find that the IGM might be heated to over 100 K by z = 10 and the high-density source region might reach 10{sup 4} K, limited by atomic hydrogen cooling. This may be important for predicting the 21 cm neutral hydrogen signals. On the other hand, the free electrons from X-ray ionizations are not enough to contribute significantly to the optical depth of the cosmic microwave background to the Thomson scattering.

  9. Observations of metals in the z ≈ 3.5 intergalactic medium and comparison to the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Turner, Monica L.; Schaye, Joop; Crain, Robert A.; Theuns, Tom; Wendt, Martin

    2016-11-01

    We study the z ≈ 3.5 intergalactic medium (IGM) by comparing new, high-quality absorption spectra of eight QSOs with = 3.75, to virtual observations of the Evolution and Assembly of Galaxies and their Environments (EAGLE) cosmological hydrodynamical simulations. We employ the pixel optical depth method and uncover strong correlations between various combinations of H I, C III, C IV, Si III, Si IV, and O VI. We find good agreement between many of the simulated and observed correlations, including τ_{O VI}(τ_{H I}). However, the observed median optical depths for the τ_{C IV}}(τ_{H I}) and τ_{Si IV}(τ_{H I}) relations are higher than those measured from the mock spectra. The discrepancy increases from up to ≈0.1 dex at τ_{H I}=1 to ≈1 dex at τ_{H I}=10^2, where we are likely probing dense regions at small galactocentric distances. As possible solutions, we invoke (a) models of ionizing radiation softened above 4 Ryd to account for delayed completion of He II reionization; (b) simulations run at higher resolution; (c) the inclusion of additional line broadening due to unresolved turbulence; and (d) increased elemental abundances; however, none of these factors can fully explain the observed differences. Enhanced photoionization of H I by local sources, which was not modelled, could offer a solution. However, the much better agreement with the observed O VI(H I) relation, which we find probes a hot and likely collisionally ionized gas phase, indicates that the simulations are not in tension with the hot phase of the IGM, and suggests that the simulated outflows may entrain insufficient cool gas.

  10. Heating the Intergalactic Medium by X-Rays from Population III Binaries in High-redshift Galaxies

    NASA Astrophysics Data System (ADS)

    Xu, Hao; Ahn, Kyungjin; Wise, John H.; Norman, Michael L.; O'Shea, Brian W.

    2014-08-01

    Due to their long mean free path, X-rays are expected to have an important impact on cosmic reionization by heating and ionizing the intergalactic medium (IGM) on large scales, especially after simulations have suggested that Population III (Pop III) stars may form in pairs at redshifts as high as 20-30. We use the Pop III distribution and evolution from a self-consistent cosmological radiation hydrodynamic simulation of the formation of the first galaxies and a simple Pop III X-ray binary model to estimate their X-ray output in a high-density region larger than 100 comoving (Mpc)3. We then combine three different methods—ray tracing, a one-zone model, and X-ray background modeling—to investigate the X-ray propagation, intensity distribution, and long-term effects on the IGM thermal and ionization state. The efficiency and morphology of photoheating and photoionization are dependent on the photon energies. The sub-kiloelectronvolt X-rays only impact the IGM near the sources, while the kiloelectronvolt photons contribute significantly to the X-ray background and heat and ionize the IGM smoothly. The X-rays just below 1 keV are most efficient in heating and ionizing the IGM. We find that the IGM might be heated to over 100 K by z = 10 and the high-density source region might reach 104 K, limited by atomic hydrogen cooling. This may be important for predicting the 21 cm neutral hydrogen signals. On the other hand, the free electrons from X-ray ionizations are not enough to contribute significantly to the optical depth of the cosmic microwave background to the Thomson scattering.

  11. The Last Eight-billion Years of Intergalactic Si IV Evolution

    NASA Astrophysics Data System (ADS)

    Cooksey, Kathy L.; Prochaska, J. Xavier; Thom, Christopher; Chen, Hsiao-Wen

    2011-03-01

    We identified 24 Si IV absorption systems with z <~ 1 from a blind survey of 49 low-redshift quasars with archival Hubble Space Telescope ultraviolet spectra. We relied solely on the characteristic wavelength separation of the doublet to automatically detect candidates. After visual inspection, we defined a sample of 20 definite (group G = 1) and 4 "highly likely" (G = 2) doublets with rest equivalent widths Wr for both lines detected at ≥ 3{σ_{{W_{r}}}}. The absorber line density of the G = 1 doublets was {{{d}}{{N}}_{Si IV}}/{{d}X} = 1.4^{+0.4}_{-0.3} for log N(Si+3)>12.9. The best-fit power law to the G = 1 frequency distribution of column densities f(N(Si+3)) had normalization k = (1.2+0.5 -0.4) × 10-14 cm2 and slope α N = -1.6+0.3 -0.3. Using the power-law model of f(N(Si+3)), we measured the Si+3 mass density relative to the critical density: {Ω_{{{Si^{+3}}}}}= (3.7^{+2.8}_{-1.7}) × 10^{-8} for 13 <= log N(Si+3) <= 15. From Monte Carlo sampling of the distributions, we estimated our value to be a factor of 4.8+3.0 -1.9 higher than the 2 <= z <= 4.5 < {Ω_{{{Si^{+3}}}}}>. From a simple linear fit to {Ω_{{{Si^{+3}}}}} over the age of the universe, we estimated a slow and steady increase from z = 5.5 → 0 with {{d}}{Ω_{{{Si^{+3}}}}}/{{d}}t_age = (0.61± 0.23) × 10^{-8} Gyr^{-1}. We compared our ionic ratios {{N({{Si^{+3}}})}/{N({C^{+3}})}} to a 2 < z < 4.5 sample and concluded, from survival analysis, that the two populations are similar, with median < {{N({{Si^{+3}}})}/{N({C^{+3}})}}> = 0.16.

  12. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-Ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of red shift using an approach based on observational data obtained at in different wavelength bands from local to deep galaxy surveys. Our empirically based approach allows us, for the firs.t time, to obtain a completely model independent determination of the IBL and to quantify its uncertainties. Using our results on the IBL, we then place upper and lower limits on the opacity of the universe to gamma-rays, independent of previous constraints.

  13. A model for the distribution of dark matter, galaxies, and the intergalactic medium in a cold dark matter-dominated universe

    NASA Technical Reports Server (NTRS)

    Ryu, Dongsu; Vishniac, Ethan T.; Chiang, Wei-Hwan

    1989-01-01

    The spatial distribution of the cold-dark-matter (CDM) and baryonic components of CDM-dominated cosmological models are characterized, summarizing the results of recent theoretical investigations. The evolution and distribution of matter in an Einstein-de Sitter universe on length scales small enough so that the Newtonian approximation is valid is followed chronologically, assuming (1) that the galaxies, CDM, and the intergalactic medium (IGM) are coupled by gravity, (2) that galaxies form by taking mass and momentum from the IGM, and (3) that the IGM responds to the energy input from the galaxies. The results of the numerical computations are presented in extensive graphs and discussed in detail.

  14. The intergalactic magnetic field constrained by Fermi/Large Area Telescope observations of the TeV blazar 1ES0229+200

    NASA Astrophysics Data System (ADS)

    Tavecchio, F.; Ghisellini, G.; Foschini, L.; Bonnoli, G.; Ghirlanda, G.; Coppi, P.

    2010-07-01

    TeV photons from blazars at relatively large distances, interacting with the optical-infrared cosmic background, are efficiently converted into electron-positron pairs. The produced pairs are extremely relativistic (Lorentz factors of the order of 106- 107) and promptly lose their energy through inverse Compton scatterings with the photons of the microwave cosmic background, producing emission in the GeV band. The spectrum and the flux level of this reprocessed emission are critically dependent on the intensity of the intergalactic magnetic field, B, that can deflect the pairs diluting the intrinsic emission over a large solid angle. We derive a simple relation for the reprocessed spectrum expected from a steady source. We apply this treatment to the blazar 1ES0229+200, whose intrinsic, very hard TeV spectrum is expected to be approximately steady. Comparing the predicted reprocessed emission with the upper limits measured by the Fermi/Large Area Telescope, we constrain the value of the intergalactic magnetic field to be larger than B ~= 5 × 10-15 G, depending on the model of extragalactic background light.

  15. A NEW METHOD TO DIRECTLY MEASURE THE JEANS SCALE OF THE INTERGALACTIC MEDIUM USING CLOSE QUASAR PAIRS

    SciTech Connect

    Rorai, Alberto; Hennawi, Joseph F.; White, Martin

    2013-10-01

    Although the baryons in the intergalactic medium (IGM) trace dark matter fluctuations on megaparsec scales, on smaller scales ∼100 kpc, fluctuations are suppressed because the finite temperature gas is pressure supported against gravity, analogous to the classical Jeans argument. This Jeans filtering scale, which quantifies the small-scale structure of the IGM, has fundamental cosmological implications. First, it provides a thermal record of heat injected by ultraviolet photons during cosmic reionization events, and thus constrains the thermal and reionization history of the universe. Second, the Jeans scale determines the clumpiness of the IGM, a critical ingredient in models of cosmic reionization. Third, it sets the minimum mass scale for gravitational collapse from the IGM, and hence plays a pivotal role in galaxy formation. Unfortunately, it is extremely challenging to measure the Jeans scale via the standard technique of analyzing purely longitudinal Lyα forest spectra, because the thermal Doppler broadening of absorption lines along the line-of-sight, is highly degenerate with Jeans smoothing. In this work, we show that the Jeans filtering scale can be directly measured by characterizing the coherence of correlated Lyα forest absorption in close quasar pairs, with separations small enough ∼100 kpc to resolve it. We present a novel technique for this purpose, based on the probability density function (PDF) of phase angle differences of homologous longitudinal Fourier modes in close quasar pair spectra. A Bayesian formalism is introduced based on the phase angle PDF, and Markov Chain Monte Carlo techniques are used to characterize the precision of a hypothetical Jeans scale measurement, and explore degeneracies with other thermal parameters governing the IGM. A semi-analytical model of the Lyα forest is used to generate a large grid (500) of thermal models from a dark matter only simulation. Our full parameter study indicates that a realistic sample of

  16. High Resolution Spectroscopy of X-ray Quasars: Searching for the X-ray Absorption from the Warm-Hot Intergalactic Medium

    NASA Technical Reports Server (NTRS)

    Fang, Taotao; Canizares, Claude R.; Marshall, Herman L.

    2004-01-01

    We present a survey of six low to moderate redshift quasars with Chandra and XMM-Newton. The primary goal is to search for the narrow X-ray absorption lines produced by highly ionized metals in the Warm-Hot Intergalactic Medium. All the X-ray spectra can be well fitted by a power law with neutral hydrogen absorption. Only one feature is detected at above 3-sigma level in all the spectra, which is consistent with statistic fluctuation. We discuss the implications in our understanding of the baryon content of the universe. We also discuss the implication of the non-detection of the local (z approx. 0) X-ray absorption.

  17. A meeting with the universe: Science discoveries from the space program

    NASA Technical Reports Server (NTRS)

    French, B. M. (Editor); Maran, S. P. (Editor)

    1981-01-01

    A general history of space exploration is presented. The solar system is discussed. The Sun-Earth relationship is considered, including magnetic fields, solar wind, the magnetosphere, and the Sun-weather relationship. The universe beyond the solar system is discussed. Topics include stellar and galactic evolution, quasars and intergalactic space. The effects of weightlessness and ionizing radiation on human beings are considered. The possibility of extraterrestrial life is discussed. Lunar and planetary exploration, solar-terrestrial physics, astrophysics, biomedical research and exobiology are reviewed. Numerons color illustrations are included.

  18. A meeting with the universe: Science discoveries from the space program

    SciTech Connect

    French, B.M.; Maran, S.P.

    1981-01-01

    A general history of space exploration is presented. The solar system is discussed. The Sun-Earth relationship is considered, including magnetic fields, solar wind, the magnetosphere, and the Sun-weather relationship. The universe beyond the solar system is discussed. Topics include stellar and galactic evolution, quasars and intergalactic space. The effects of weightlessness and ionizing radiation on human beings are considered. The possibility of extraterrestrial life is discussed. Lunar and planetary exploration, solar-terrestrial physics, astrophysics, biomedical research and exobiology are reviewed. Numerous color illustrations are included.

  19. Survey of Atmospheric Radiation Components for the Gamma and Cosmic Ray Astrophysics Branch of the Space Science Division of the Naval Research Laboratory.

    DTIC Science & Technology

    1985-05-31

    intergalactic propagation of ultraheavy cosmic rays. Elemental abundances of several rare earth elements can vary by factors of two or three if electron...RadiationComponents at Near- Earth Orbits," Advances in Space Research, 4, 143 (1984) *n * III II III NRL Final Report -9- 31 May 1985 List of Conferences...and elemental source composition has to be inferred from the observed composition near the earth . The uncertainty in the inferred source composition is

  20. Laboratory spectroscopy and space astrophysics: A tribute to Joe Reader

    NASA Astrophysics Data System (ADS)

    Leckrone, David S.

    2013-07-01

    Beginning with the launch of the Copernicus Satellite in 1973, and continuing with the International Ultraviolet Explorer (IUE), and the state-of-the-art spectrographs on the Hubble Space Telescope (GHRS, FOS, STIS and COS), astrophysics experienced dramatic advancements in capabilities to study the composition and physical properties of planets, comets, stars, nebulae, the interstellar medium, galaxies, quasars and the intergalactic medium at visible and ultraviolet wavelengths. It became clear almost immediately that the available atomic data needed to calibrate and quantitatively analyze these superb spectroscopic observations, obtained at great cost from space observatories, was not up to that task. Over the past 3+ decades, Joe Reader and his collaborators at NIST have provided, essentially "on demand", laboratory observations and analyses of extraordinary quality to help astrophysicists extract the maximum possible physical understanding of objects in the cosmos from their space observations. This talk is one scientist's grateful retrospective about these invaluable collaborations.

  1. Exploring the thermal state of the low-density intergalactic medium at z = 3 with an ultrahigh signal-to-noise QSO spectrum

    NASA Astrophysics Data System (ADS)

    Rorai, A.; Becker, G. D.; Haehnelt, M. G.; Carswell, R. F.; Bolton, J. S.; Cristiani, S.; D'Odorico, V.; Cupani, G.; Barai, P.; Calura, F.; Kim, T.-S.; Pomante, E.; Tescari, E.; Viel, M.

    2017-04-01

    At low densities, the standard ionization history of the intergalactic medium (IGM) predicts a decreasing temperature of the IGM with decreasing density once hydrogen (and helium) reionization is complete. Heating the high-redshift, low-density IGM above the temperature expected from photoheating is difficult, and previous claims of high/rising temperatures in low-density regions of the Universe based on the probability density function (PDF) of the opacity in Ly α forest data at 2 < z < 4 have been met with considerable scepticism, particularly since they appear to be in tension with other constraints on the temperature-density relation (TDR). We utilize here an ultrahigh signal-to-noise spectrum of the Quasi-stellar object HE0940-1050 and a novel technique to study the low opacity part of the PDF. We show that there is indeed evidence (at 90 per cent confidence level) that a significant volume fraction of the underdense regions at z ∼ 3 has temperatures as high or higher than those at densities comparable to the mean and above. We further demonstrate that this conclusion is nevertheless consistent with measurements of a slope of the TDR in overdense regions that imply a decreasing temperature with decreasing density, as expected if photoheating of ionized hydrogen is the dominant heating process. We briefly discuss implications of our findings for the need to invoke either spatial temperature fluctuations, as expected during helium reionization, or additional processes that heat a significant volume fraction of the low-density IGM.

  2. Line-emitting galaxies beyond a redshift of 7: an improved method for estimating the evolving neutrality of the intergalactic medium

    SciTech Connect

    Schenker, Matthew A.; Ellis, Richard S.; Konidaris, Nick P.; Stark, Daniel P.

    2014-11-01

    The redshift-dependent fraction of color-selected galaxies revealing Lyman alpha (Lyα) emission, x {sub Lyα} has become the most valuable constraint on the evolving neutrality of the early intergalactic medium. However, in addition to resonant scattering by neutral gas, the visibility of Lyα is also dependent on the intrinsic properties of the host galaxy, including its stellar population, dust content, and the nature of outflowing gas. Taking advantage of significant progress we have made in determining the line-emitting properties of z ≅ 4-6 galaxies, we propose an improved method, based on using the measured slopes of the rest-frame ultraviolet continua of galaxies, to interpret the growing body of near-infrared spectra of z > 7 galaxies in order to take into account these host galaxy dependencies. In a first application of our new method, we demonstrate its potential via a new spectroscopic survey of 7 < z < 8 galaxies undertaken with the Keck MOSFIRE spectrograph. Together with earlier published data, our data provide improved estimates of the evolving visibility of Lyα, particularly at redshift z ≅ 8. As a by-product, we also present a promising new line-emitting galaxy candidate, detected at 4.0σ at redshift z = 7.62. We discuss the improving constraints on the evolving neutral fraction over 6 < z < 8 and the implications for cosmic reionization.

  3. Metals in the z ˜ 3 intergalactic medium: results from an ultra-high signal-to-noise ratio UVES quasar spectrum

    NASA Astrophysics Data System (ADS)

    D'Odorico, V.; Cristiani, S.; Pomante, E.; Carswell, R. F.; Viel, M.; Barai, P.; Becker, G. D.; Calura, F.; Cupani, G.; Fontanot, F.; Haehnelt, M. G.; Kim, T.-S.; Miralda-Escudé, J.; Rorai, A.; Tescari, E.; Vanzella, E.

    2016-12-01

    In this work, we investigate the abundance and distribution of metals in the intergalactic medium (IGM) at ≃ 2.8 through the analysis of an ultra-high signal-to-noise ratio UVES spectrum of the quasar HE0940-1050. In the C IV forest, our deep spectrum is sensitive at 3σ to lines with column density down to log NCIV ≃ 11.4 and in 60 per cent of the considered redshift range down to ≃11.1. In our sample, all H I lines with log NHI ≥ 14.8 show an associated C IV absorption. In the range 14.0 ≤ log NHI < 14.8, 43 per cent of H I lines has an associated C IV absorption. At log NHI < 14.0, the detection rates drop to <10 per cent, possibly due to our sensitivity limits and not to an actual variation of the gas abundance properties. In the range log NHI ≥ 14, we observe a fraction of H I lines with detected C IV a factor of 2 larger than the fraction of H I lines lying in the circumgalactic medium (CGM) of relatively bright Lyman-break galaxies hosted by dark matter haloes with ˜ 1012 M⊙. The comparison of our results with the output of a grid of photoionization models and of two cosmological simulations implies that the volume filling factor of the IGM gas enriched to a metallicity log Z/Z_{⊙} ≳-3 should be of the order of ˜10-13 per cent. In conclusion, our results favour a scenario in which metals are found also outside the CGM of bright star-forming galaxies, possibly due to pollution by lower mass objects and/or to an early enrichment by the first sources.

  4. New limits on 21 cm epoch of reionization from paper-32 consistent with an x-ray heated intergalactic medium at z = 7.7

    SciTech Connect

    Parsons, Aaron R.; Liu, Adrian; Ali, Zaki S.; Pober, Jonathan C.; Aguirre, James E.; Moore, David F.; Bradley, Richard F.; Carilli, Chris L.; DeBoer, David R.; Dexter, Matthew R.; MacMahon, David H. E.; Gugliucci, Nicole E.; Jacobs, Daniel C.; Klima, Pat; Manley, Jason R.; Walbrugh, William P.; Stefan, Irina I.

    2014-06-20

    We present new constraints on the 21 cm Epoch of Reionization (EoR) power spectrum derived from three months of observing with a 32 antenna, dual-polarization deployment of the Donald C. Backer Precision Array for Probing the Epoch of Reionization in South Africa. In this paper, we demonstrate the efficacy of the delay-spectrum approach to avoiding foregrounds, achieving over eight orders of magnitude of foreground suppression (in mK{sup 2}). Combining this approach with a procedure for removing off-diagonal covariances arising from instrumental systematics, we achieve a best 2σ upper limit of (41 mK){sup 2} for k = 0.27 h Mpc{sup –1} at z = 7.7. This limit falls within an order of magnitude of the brighter predictions of the expected 21 cm EoR signal level. Using the upper limits set by these measurements, we generate new constraints on the brightness temperature of 21 cm emission in neutral regions for various reionization models. We show that for several ionization scenarios, our measurements are inconsistent with cold reionization. That is, heating of the neutral intergalactic medium (IGM) is necessary to remain consistent with the constraints we report. Hence, we have suggestive evidence that by z = 7.7, the H I has been warmed from its cold primordial state, probably by X-rays from high-mass X-ray binaries or miniquasars. The strength of this evidence depends on the ionization state of the IGM, which we are not yet able to constrain. This result is consistent with standard predictions for how reionization might have proceeded.

  5. Intergalactic Medium Emission Observations with the Cosmic Web Imager. II. Discovery of Extended, Kinematically Linked Emission around SSA22 Lyα Blob 2

    NASA Astrophysics Data System (ADS)

    Martin, D. Christopher; Chang, Daphne; Matuszewski, Matt; Morrissey, Patrick; Rahman, Shahin; Moore, Anna; Steidel, Charles C.; Matsuda, Yuichi

    2014-05-01

    The intergalactic medium (IGM) is the dominant reservoir of baryons, delineates the large-scale structure of the universe at low to moderate overdensities, and provides gas from which galaxies form and evolve. Simulations of a cold-dark-matter- (CDM-) dominated universe predict that the IGM is distributed in a cosmic web of filaments and that galaxies should form along and at the intersections of these filaments. While observations of QSO absorption lines and the large-scale distribution of galaxies have confirmed the CDM paradigm, the cosmic web of IGM has never been confirmed by direct imaging. Here we report our observation of the Lyα blob 2 (LAB2) in SSA22 with the Cosmic Web Imager (CWI). This is an integral field spectrograph optimized for low surface brightness, extended emission. With 22 hr of total on- and off-source exposure, CWI has revealed that LAB2 has extended Lyα emission that is organized into azimuthal zones consistent with filaments. We perform numerous tests with simulations and the data to secure the robustness of this result, which relies on data with modest signal-to-noise ratios. We have developed a smoothing algorithm that permits visualization of data cube slices along image or spectral image planes. With both raw and smoothed data cubes we demonstrate that the filaments are kinematically associated with LAB2 and display double-peaked profiles characteristic of optically thick Lyα emission. The flux is 10-20 times brighter than expected for the average emission from the IGM but is consistent with boosted fluorescence from a buried QSO or gravitation cooling radiation. Using simple emission models, we infer a baryon mass in the filaments of at least 1-4 × 1011 M ⊙, and the dark halo mass is at least 2 × 1012 M ⊙. The spatial-kinematic morphology is more consistent with inflow from the cosmic web than outflow from LAB2, although an outflow feature maybe present at one azimuth. LAB2 and the surrounding gas have significant and

  6. CHANDRA VIEW OF THE WARM-HOT INTERGALACTIC MEDIUM TOWARD 1ES 1553+113: ABSORPTION-LINE DETECTIONS AND IDENTIFICATIONS. I

    SciTech Connect

    Nicastro, F.; Zappacosta, L.; Elvis, M.; Krongold, Y.; Mathur, S.; Gupta, A.; Danforth, C.; Shull, J. M.; Barcons, X.; Borgani, S.; Branchini, E.; Cen, R.; Dave, R.; Kaastra, J.; Paerels, F.; Piro, L.; Takei, Y.

    2013-06-01

    We present the first results from our pilot 500 ks Chandra Low Energy Transmission Grating Large Program observation of the soft X-ray brightest source in the z {approx}> 0.4 sky, the blazar 1ES 1553+113, aimed to secure the first uncontroversial detections of the missing baryons in the X-rays. We identify a total of 11 possible absorption lines, with single-line statistical significances between 2.2{sigma} and 4.1{sigma}. Six of these lines are detected at high single-line statistical significance (3.6 {<=} {sigma} {<=} 4.1), while the remaining five are regarded as marginal detections in association with either other X-ray lines detected at higher significance and/or far-ultraviolet (FUV) signposts. Three of these lines are consistent with metal absorption at z {approx_equal} 0, and we identify them with Galactic O I and C II. The remaining eight lines may be imprinted by intervening absorbers and are all consistent with being high-ionization counterparts of FUV H I and/or O VI intergalactic medium signposts. In particular, five of these eight possible intervening absorption lines (single-line statistical significances of 4.1{sigma}, 4.1{sigma}, 3.9{sigma}, 3.8{sigma}, and 2.7{sigma}), are identified as C V and C VI K{alpha} absorbers belonging to three WHIM systems at z{sub X} = 0.312, z{sub X} = 0.237, and (z{sub X} ) = 0.133, which also produce broad H I (and O VI for the z{sub X} = 0.312 system) absorption in the FUV. For two of these systems (z{sub X} = 0.312 and 0.237), the Chandra X-ray data led the a posteriori discovery of physically consistent broad H I associations in the FUV (for the third system the opposite applies), so confirming the power of the X-ray-FUV synergy for WHIM studies. The true statistical significances of these three X-ray absorption systems, after properly accounting for the number of redshift trials, are 5.8{sigma} (z{sub X} = 0.312; 6.3{sigma} if the low-significance O V and C V K{beta} associations are considered), 3.9{sigma} (z

  7. GRB 130606A AS A PROBE OF THE INTERGALACTIC MEDIUM AND THE INTERSTELLAR MEDIUM IN A STAR-FORMING GALAXY IN THE FIRST Gyr AFTER THE BIG BANG

    SciTech Connect

    Chornock, Ryan; Berger, Edo; Lunnan, Ragnhild; Drout, Maria R.; Fong Wenfai; Laskar, Tanmoy; Fox, Derek B.; Roth, Katherine C.

    2013-09-01

    We present high signal-to-noise ratio Gemini and MMT spectroscopy of the optical afterglow of the gamma-ray burst (GRB) 130606A at redshift z = 5.913, discovered by Swift. This is the first high-redshift GRB afterglow to have spectra of comparable quality to those of z Almost-Equal-To 6 quasars. The data exhibit a smooth continuum at near-infrared wavelengths that is sharply cut off blueward of 8410 A due to absorption from Ly{alpha} at redshift z Almost-Equal-To 5.91, with some flux transmitted through the Ly{alpha} forest between 7000 and 7800 A. We use column densities inferred from metal absorption lines to constrain the metallicity of the host galaxy between a lower limit of [Si/H] {approx}> -1.7 and an upper limit of [S/H] {approx}< -0.5 set by the non-detection of S II absorption. We demonstrate consistency between the dramatic evolution in the transmission fraction of Ly{alpha} seen in this spectrum over the redshift range z = 4.9-5.85 with that previously measured from observations of high-redshift quasars. There is an extended redshift interval of {Delta}z = 0.12 in the Ly{alpha} forest at z = 5.77 with no detected transmission, leading to a 3{sigma} upper limit on the mean Ly{alpha} transmission fraction of {approx}<0.2% (or {tau}{sub GP}{sup eff} (Ly{alpha}) > 6.4). This is comparable to the lowest-redshift Gunn-Peterson troughs found in quasar spectra. Some Ly{beta} and Ly{gamma} transmission is detected in this redshift window, indicating that it is not completely opaque, and hence that the intergalactic medium (IGM) is nonetheless mostly ionized at these redshifts. We set a 2{sigma} upper limit of 0.11 on the neutral fraction of the IGM at the redshift of the GRB from the lack of a Ly{alpha} red damping wing, assuming a model with a constant neutral density. GRB 130606A thus for the first time realizes the promise of GRBs as probes of the first galaxies and cosmic reionization.

  8. Intergalactic medium emission observations with the cosmic web imager. II. Discovery of extended, kinematically linked emission around SSA22 Lyα BLOB 2

    SciTech Connect

    Christopher Martin, D.; Chang, Daphne; Matuszewski, Matt; Morrissey, Patrick; Rahman, Shahin; Moore, Anna; Steidel, Charles C.; Matsuda, Yuichi

    2014-05-10

    The intergalactic medium (IGM) is the dominant reservoir of baryons, delineates the large-scale structure of the universe at low to moderate overdensities, and provides gas from which galaxies form and evolve. Simulations of a cold-dark-matter- (CDM-) dominated universe predict that the IGM is distributed in a cosmic web of filaments and that galaxies should form along and at the intersections of these filaments. While observations of QSO absorption lines and the large-scale distribution of galaxies have confirmed the CDM paradigm, the cosmic web of IGM has never been confirmed by direct imaging. Here we report our observation of the Lyα blob 2 (LAB2) in SSA22 with the Cosmic Web Imager (CWI). This is an integral field spectrograph optimized for low surface brightness, extended emission. With 22 hr of total on- and off-source exposure, CWI has revealed that LAB2 has extended Lyα emission that is organized into azimuthal zones consistent with filaments. We perform numerous tests with simulations and the data to secure the robustness of this result, which relies on data with modest signal-to-noise ratios. We have developed a smoothing algorithm that permits visualization of data cube slices along image or spectral image planes. With both raw and smoothed data cubes we demonstrate that the filaments are kinematically associated with LAB2 and display double-peaked profiles characteristic of optically thick Lyα emission. The flux is 10-20 times brighter than expected for the average emission from the IGM but is consistent with boosted fluorescence from a buried QSO or gravitation cooling radiation. Using simple emission models, we infer a baryon mass in the filaments of at least 1-4 × 10{sup 11} M {sub ☉}, and the dark halo mass is at least 2 × 10{sup 12} M {sub ☉}. The spatial-kinematic morphology is more consistent with inflow from the cosmic web than outflow from LAB2, although an outflow feature maybe present at one azimuth. LAB2 and the surrounding gas

  9. Star formation and the interstellar medium in nearby tidal streams (SAINTS): Spitzer mid-infrared spectroscopy and imaging of intergalactic star-forming objects

    SciTech Connect

    Higdon, S. J. U.; Higdon, J. L.; Smith, B. J.; Hancock, M.

    2014-06-01

    A spectroscopic analysis of 10 intergalactic star-forming objects (ISFOs) and a photometric analysis of 67 ISFOs in a sample of 14 interacting systems is presented. The majority of the ISFOs have relative polycyclic aromatic hydrocarbon (PAH) band strengths similar to those of nearby spiral and starburst galaxies. In contrast to what is observed in blue compact dwarfs (BCDs) and local giant H II regions in the Milky Way (NGC 3603) and the Magellanic Clouds (30 Doradus and N 66), the relative PAH band strengths in ISFOs correspond to models with a significant PAH ion fraction (<50%) and bright emission from large PAHs (∼100 carbon atoms). The [Ne III]/[Ne II] and [S IV]/[S III] line flux ratios indicate moderate levels of excitation with an interstellar radiation field that is harder than the majority of the Spitzer Infrared Nearby Galaxies Survey and starburst galaxies, but softer than BCDs and local giant H II regions. The ISFO neon line flux ratios are consistent with a burst of star formation ≲6 million years ago. Most of the ISFOs have ∼10{sup 6} M {sub ☉} of warm H{sub 2} with a likely origin in photo-dissociation regions (PDRs). Infrared Array Camera photometry shows the ISFOs to be bright at 8 μm, with one-third having [4.5] – [8.0] > 3.7, i.e., enhanced non-stellar emission, most likely due to PAHs, relative to normal spirals, dwarf irregulars, and BCD galaxies. The relative strength of the 8 μm emission compared to that at 3.6 μm or 24 μm separates ISFOs from dwarf galaxies in Spitzer two-color diagrams. The infrared power in two-thirds of the ISFOs is dominated by emission from grains in a diffuse interstellar medium. One in six ISFOs have significant emission from PDRs, contributing ∼30%-60% of the total power. ISFOs are young knots of intense star formation.

  10. Galactic and Intergalactic Magnetic Fields

    NASA Astrophysics Data System (ADS)

    Klein, U.; Fletcher, A.

    This course-tested textbook conveys the fundamentals of magnetic fields and relativistic plasma in diffuse cosmic media, with a primary focus on phenomena that have been observed at different wavelengths. Theoretical concepts are addressed wherever necessary, with derivations presented in sufficient detail to be generally accessible. In the first few chapters the authors present an introduction to various astrophysical phenomena related to cosmic magnetism, with scales ranging from molecular clouds in star-forming regions and supernova remnants in the Milky Way, to clusters of galaxies. Later chapters address the role of magnetic fields in the evolution of the interstellar medium, galaxies and galaxy clusters. The book is intended for advanced undergraduate and postgraduate students in astronomy and physics and will serve as an entry point for those starting their first research projects in the field.

  11. Servicing Mission 4 and the Extraordinary Science of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.

    2012-01-01

    Just two years ago, NASA astronauts performed a challenging and flawless final Space Shuttle servicing mission to the orbiting Hubble Space Telescope. With science instruments repaired on board and two new ones installed, the observatory. is more powerful now than ever before. I will show the dramatic highlights of the servicing mission and present some of the early scientific results from the refurbished telescope. Its high sensitivity and multi-wavelength capabilities are revealing the highest redshift galaxies ever seen, as well as details of the cosmic web of intergalactic medium, large scale structure formation, solar system bodies, and stellar evolution. Enlightening studies of dark matter, dark energy, and exoplanet atmospheres add to the profound contributions to astrophysics that are being made with Hubble, setting a critical stage for future observatories such as the James Webb Space Telescope.

  12. The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer

    2010-01-01

    The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.

  13. Space Discovery.

    ERIC Educational Resources Information Center

    Blackman, Joan

    1998-01-01

    Describes one teacher's experience taking Space Discovery courses that were sponsored by the United States Space Foundation (USSF). These courses examine the history of space science, theory of orbits and rocketry, the effects of living in outer space on humans, and space weather. (DDR)

  14. An Empirical Determination of the Intergalactic Background Light Using Near-Infrared Deep Galaxy Survey Data Out to 5 Micrometers and the Gamma-Ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Scully, Sean T.; Malkan, Matthew A.; Stecker, Floyd W.

    2014-01-01

    We extend our previous model-independent determination of the intergalactic background light, based purely on galaxy survey data, out to a wavelength of 5 micrometers. Our approach enables us to constrain the range of photon densities, based on the uncertainties from observationally determined luminosity densities and colors. We further determine a 68% confidence upper and lower limit on the opacity of the universe to gamma-rays up to energies of 1.6/(1 + z) terraelectron volts. A comparison of our lower limit redshift-dependent opacity curves to the opacity limits derived from the results of both ground-based air Cerenkov telescope and Fermi-LAT observations of PKS 1424+240 allows us to place a new upper limit on the redshift of this source, independent of IBL modeling.

  15. An empirical determination of the intergalactic background light using near-infrared deep galaxy survey data out to 5 μm and the gamma-ray opacity of the universe

    SciTech Connect

    Scully, Sean T.; Malkan, Matthew A.; Stecker, Floyd W.

    2014-04-01

    We extend our previous model-independent determination of the intergalactic background light, based purely on galaxy survey data, out to a wavelength of 5 μm. Our approach enables us to constrain the range of photon densities, based on the uncertainties from observationally determined luminosity densities and colors. We further determine a 68% confidence upper and lower limit on the opacity of the universe to γ-rays up to energies of 1.6/(1 + z) TeV. A comparison of our lower limit redshift-dependent opacity curves to the opacity limits derived from the results of both ground-based air Cerenkov telescope and Fermi-LAT observations of PKS 1424+240 allows us to place a new upper limit on the redshift of this source, independent of IBL modeling.

  16. Space Station

    NASA Technical Reports Server (NTRS)

    Anderton, D. A.

    1985-01-01

    The official start of a bold new space program, essential to maintain the United States' leadership in space was signaled by a Presidential directive to move aggressively again into space by proceeding with the development of a space station. Development concepts for a permanently manned space station are discussed. Reasons for establishing an inhabited space station are given. Cost estimates and timetables are also cited.

  17. A LYMAN BREAK GALAXY IN THE EPOCH OF REIONIZATION FROM HUBBLE SPACE TELESCOPE GRISM SPECTROSCOPY

    SciTech Connect

    Rhoads, James E.; Malhotra, Sangeeta; Cohen, Seth; Zheng Zhenya; Stern, Daniel; Dickinson, Mark; Pirzkal, Norbert; Grogin, Norman; Koekemoer, Anton; Peth, Michael A.; Spinrad, Hyron; Reddy, Naveen; Hathi, Nimish; Budavari, Tamas; Ferreras, Ignacio; Gardner, Jonathan P.; Gronwall, Caryl; Haiman, Zoltan; Kuemmel, Martin; Meurer, Gerhardt; and others

    2013-08-10

    We present observations of a luminous galaxy at z = 6.573-the end of the reionization epoch-which has been spectroscopically confirmed twice. The first spectroscopic confirmation comes from slitless Hubble Space Telescope Advanced Camera for Surveys grism spectra from the PEARS survey (Probing Evolution And Reionization Spectroscopically), which show a dramatic continuum break in the spectrum at rest frame 1216 A. The second confirmation is done with Keck + DEIMOS. The continuum is not clearly detected with ground-based spectra, but high wavelength resolution enables the Ly{alpha} emission line profile to be determined. We compare the line profile to composite line profiles at z = 4.5. The Ly{alpha} line profile shows no signature of a damping wing attenuation, confirming that the intergalactic gas is ionized at z = 6.57. Spectra of Lyman breaks at yet higher redshifts will be possible using comparably deep observations with IR-sensitive grisms, even at redshifts where Ly{alpha} is too attenuated by the neutral intergalactic medium to be detectable using traditional spectroscopy from the ground.

  18. Sensitivity of a proposed space-based Cherenkov astrophysical-neutrino telescope

    NASA Astrophysics Data System (ADS)

    Neronov, Andrii; Semikoz, Dmitri V.; Anchordoqui, Luis A.; Adams, James H.; Olinto, Angela V.

    2017-01-01

    Neutrinos with energies in the PeV to EeV range produce upgoing extensive air showers when they interact underground close enough to the surface of the Earth. We study the possibility for detection of such showers with a system of very wide field-of-view imaging atmospheric Cherenkov telescopes, named CHANT (Cherenkov from astrophysical neutrinos telescope), pointing down to a strip below the Earth's horizon from space. We find that CHANT provides sufficient sensitivity for the study of the astrophysical neutrino flux in a wide energy range, from 10 PeV to 10 EeV. A space-based CHANT system can discover and study in detail the cosmogenic neutrino flux originating from interactions of ultra-high-energy cosmic rays in the intergalactic medium.

  19. Space station

    NASA Technical Reports Server (NTRS)

    Stewart, Donald F.; Hayes, Judith

    1989-01-01

    The history of American space flight indicates that a space station is the next logical step in the scientific pursuit of greater knowledge of the universe. The Space Station and its complement of space vehicles, developed by NASA, will add new dimensions to an already extensive space program in the United States. The Space Station offers extraordinary benefits for a comparatively modest investment (currently estimated at one-ninth the cost of the Apollo Program). The station will provide a permanent multipurpose facility in orbit necessary for the expansion of space science and technology. It will enable significant advancements in life sciences research, satellite communications, astronomy, and materials processing. Eventually, the station will function in support of the commercialization and industrialization of space. Also, as a prerequisite to manned interplanetary exploration, the long-duration space flights typical of Space Station missions will provide the essential life sciences research to allow progressively longer human staytime in space.

  20. Space Power

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Appropriate directions for the applied research and technology programs that will develop space power systems for U.S. future space missions beyond 1995 are explored. Spacecraft power supplies; space stations, space power reactors, solar arrays, thermoelectric generators, energy storage, and communication satellites are among the topics discussed.

  1. Themed Space

    ERIC Educational Resources Information Center

    Lynch, Christopher O.

    2010-01-01

    This article presents a classroom activity that introduces students to the concept of themed space. Students learn to think critically about the spaces they encounter on a regular basis by analyzing existing spaces and by working in groups to create their own themed space. This exercise gives students the chance to see the relevance of critical…

  2. Space colonization.

    PubMed

    2002-12-01

    NASA interest in colonization encompasses space tourism; space exploration; space bases in orbit, at L1, on the Moon, or on Mars; in-situ resource utilization; and planetary terraforming. Activities progressed during 2002 in areas such as Mars colonies, hoppers, and biomass; space elevators and construction; and in-situ consumables.

  3. Space Industry

    DTIC Science & Technology

    2006-01-01

    invest in and support commercial efforts. In testimony before the House Committee on Space and Aeronautics in April of 2005, Elon Musk provided the...Response Launch Vehicle. Space Daily. Retrieved April 9, 2006 from www.spacedaily.com. 81 Musk , Elon (2005, April 20). Commercialization of Space...Space Transportation Policy. (2006, January 5). Retrieved May 30, 2006 from http://www.ostp.gov/html/SpaceTransFactSheetJan2005.pdf. 86 Musk , Elon

  4. Marshall Space Flight Center Faculty Fellowship Program

    NASA Technical Reports Server (NTRS)

    Six, N. F. (Compiler)

    2015-01-01

    The Faculty Fellowship program was revived in the summer of 2015 at NASA Marshall Space Flight Center, following a period of diminished faculty research activity here since 2006 when budget cuts in the Headquarters' Education Office required realignment. Several senior Marshall managers recognized the need to involve the Nation's academic research talent in NASA's missions and projects to the benefit of both entities. These managers invested their funds required to establish the renewed Faculty Fellowship program in 2015, a 10-week residential research involvement of 16 faculty in the laboratories and offices at Marshall. These faculty engineers and scientists worked with NASA collaborators on NASA projects, bringing new perspectives and solutions to bear. This Technical Memorandum is a compilation of the research reports of the 2015 Marshall Faculty Fellowship program, along with the Program Announcement (appendix A) and the Program Description (appendix B). The research touched on seven areas-propulsion, materials, instrumentation, fluid dynamics, human factors, control systems, and astrophysics. The propulsion studies included green propellants, gas bubble dynamics, and simulations of fluid and thermal transients. The materials investigations involved sandwich structures in composites, plug and friction stir welding, and additive manufacturing, including both strength characterization and thermosets curing in space. The instrumentation projects involved spectral interfero- metry, emissivity, and strain sensing in structures. The fluid dynamics project studied the water hammer effect. The human factors project investigated the requirements for close proximity operations in confined spaces. Another team proposed a controls system for small launch vehicles, while in astrophysics, one faculty researcher estimated the practicality of weather modification by blocking the Sun's insolation, and another found evidence in satellite data of the detection of a warm

  5. Space prospects. [european space programs

    NASA Technical Reports Server (NTRS)

    1980-01-01

    A strategy for keeping the Common Market's space effort independent of and competitive with NASA and the space shuttle is discussed. Limited financing is the chief obstacle to this. Proposals include an outer space materials processing project and further development of the Ariane rocket. A manned space program is excluded for the foreseeable future.

  6. Space Shuttle.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The plans for utilizing reusable space shuttles which could replace almost all present expendable launch vehicles are briefly described. Many illustrations are included showing the artists' concepts of various configurations proposed for space shuttles. (PR)

  7. Space Basics

    NASA Technical Reports Server (NTRS)

    Herbert, Dexter (Editor)

    1991-01-01

    In this education video series, 'Liftoff to Learning', astronauts (Bruce Melnick, Thomas Akers, William Shepherd, Robert Cabana, and Richard Richards) describe the historical beginnings of space exploration from the time of Robert H. Goddard (considered the Father of Rocketry), who, in 1929, invented the first propellant rocket, the prototype of modern liquid propellant rockets, up to the modern Space Shuttles. The questions - where is space, what is space, and how do astronauts get to, stay in, and come back from space are answered through historical footage, computer graphics, and animation. The space environment effects, temperature effects, and gravitational effects on the launching, orbiting, and descent of the Shuttles are discussed. Included is historical still photos and film footage of past space programs and space vehicles.

  8. Space medicine

    NASA Technical Reports Server (NTRS)

    Johnson, P. C., Jr.

    1984-01-01

    The medical aspects of space flight are briefly discussed. The problems of space adaptation syndrome, commonly known as space sickness, are described, and its cause is shown. The adaptation of the cardiovascular system to weightlessness, the problems of radiation in space, atrophy of bones and muscles, and loss of blood volume are addressed. The difficulties associated with the reexperience of gravity on return to earth are briefly considered.

  9. Space Operations

    DTIC Science & Technology

    2013-05-29

    as the Solar Heliospheric Observatory —a joint European Space Agency-NASA mission) (Ka) was launched in December 1995 and NASA’s Advanced Composition...Command, United States Central Command, United States European Command, and others. The US has missile defense cooperative programs with a number of...Therefore, civilian space agencies have often taken the leadership role for space. Agencies such as the European Space Agency, the United Kingdom

  10. Space Battery

    DTIC Science & Technology

    2008-06-13

    Space Command SPACE AND MISSILE SYSTEMS CENTER STANDARD SPACE BATTERY APPROVED FOR PUBLIC RELEASE ...person shall be subject to a penalty for failing to comply with a collection of information if it does not display a currently valid OMB control ... release , distribution unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT

  11. Space Law

    NASA Astrophysics Data System (ADS)

    Hermida, Julian

    2006-01-01

    This chapter examines the salient characteristics of Space Law. It analyzes the origins and evolution of Space Law, its main international principles, and some current topics of interest to the scientific community: the delimitation of airspace and outer space, intellectual property, and criminal responsibility.

  12. Constructing Space

    NASA Astrophysics Data System (ADS)

    Henderson, Austin

    This chapter chronicles the growth of the author's understanding of Media Space through his 20-year experience with coupling spaces, using video. It is a “technology-first” understanding of the construction of space. Key ideas from research studies and practice are presented, and contrasts with other genres of communication are made. The implications for distributed collaboration are explored.

  13. FIREBALL-2: Pioneering Space UV Baryon Mapping (Lead Institution)

    NASA Astrophysics Data System (ADS)

    Schiminovich, David

    This is the lead proposal of a multi-institutional submission. The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the Intergalactic Medium (IGM) for low redshift galaxies. This balloon is a modification of FIREBall-1 (FB-1), a path-finding mission built by our team with two successful flights. FB-1 provided the strongest constrains on IGM emission available from any instrument at the time. FIREBall-2 has been significantly upgraded compared to FB-1, and is nearly ready for integration and testing before an anticipated Spring 2016 launch from Ft. Sumner, New Mexico. The spectrograph has been redesigned and an upgraded detector system including a groundbreaking high QE, low-noise, UV CCD detector is under final testing and will improve instrument performance by more than an order of magnitude. CNES is providing the spectrograph, gondola, and flight support team, with construction of all components nearly complete. The initial FIREBall-2 launch is now scheduled for Spring 2016. FIREBall-2 combines several innovations: -First ever multi-object UV spectrograph -Arcsecond quality balloon pointing system, developed from scratch, improved from FB-1 -Partnership of national space agencies (NASA & CNES); highly leveraged NASA resources -A Schmidt corrector built into the UV grating for better optical performance and throughput -A total of four women trained in space experimental astrophysics, including 3 Columbia Ph.Ds. and 1 Caltech Ph.D. -A total of 7 graduate students trained on FIREBall-1 (3) and FIREBall-2 (4), with opportunities for more in future flights. FIREBall-2 will test key technologies and science strategies for a future mission to map IGM emission. Its flights will provide important training for the next generation of space astrophysicists working in UV instrumentation. Most importantly, FIREBall-2 will detect emission from the CGM of nearby galaxies, providing the first census of the

  14. Space Commercialization

    NASA Technical Reports Server (NTRS)

    Martin, Gary L.

    2011-01-01

    A robust and competitive commercial space sector is vital to continued progress in space. The United States is committed to encouraging and facilitating the growth of a U.S. commercial space sector that supports U.S. needs, is globally competitive, and advances U.S. leadership in the generation of new markets and innovation-driven entrepreneurship. Energize competitive domestic industries to participate in global markets and advance the development of: satellite manufacturing; satellite-based services; space launch; terrestrial applications; and increased entrepreneurship. Purchase and use commercial space capabilities and services to the maximum practical extent Actively explore the use of inventive, nontraditional arrangements for acquiring commercial space goods and services to meet United States Government requirements, including measures such as public-private partnerships, . Refrain from conducting United States Government space activities that preclude, discourage, or compete with U.S. commercial space activities. Pursue potential opportunities for transferring routine, operational space functions to the commercial space sector where beneficial and cost-effective.

  15. Space law and space resources

    NASA Technical Reports Server (NTRS)

    Goldman, Nathan C.

    1992-01-01

    Space industrialization is confronting space law with problems that are changing old and shaping new legal principles. The return to the Moon, the next logical step beyond the space station, will establish a permanent human presence there. Science and engineering, manufacturing and mining will involve the astronauts in the settlement of the solar system. These pioneers, from many nations, will need a legal, political, and social framework to structure their lives and interactions. International and even domestic space law are only the beginning of this framework. Dispute resolution and simple experience will be needed in order to develop, over time, a new social system for the new regime of space.

  16. Space Telescopes

    NASA Technical Reports Server (NTRS)

    Clampin, Mark; Flanagan, Kathryn A.

    2012-01-01

    Space telescopes have been a dominant force in astrophysics and astronomy over the last two decades. As Lyman Spitzer predicted in 1946, space telescopes have opened up much of the electromagnetic spectrum to astronomers, and provided the opportunity to exploit the optical performance of telescopes uncompromised by the turbulent atmosphere. This special section of Optical Engineering is devoted to space telescopes. It focuses on the design and implementation of major space observatories from the gamma-ray to far-infrared, and highlights the scientific and technical breakthroughs enabled by these telescopes. The papers accepted for publication include reviews of major space telescopes spanning the last two decades, in-depth discussions of the design considerations for visible and x-ray telescopes, and papers discussing concepts and technical challenges for future space telescopes.

  17. Hubble space telescope/cosmic origins spectrograph observations of the quasar Q0302–003: Probing the He II reionization epoch and QSO proximity effects

    SciTech Connect

    Syphers, David; Shull, J. Michael

    2014-03-20

    Q0302–003 (z = 3.2860 ± 0.0005) was the first quasar discovered that showed a He II Gunn-Peterson trough, a sign of incomplete helium reionization at z ≳ 2.9. We present its Hubble Space Telescope/Cosmic Origins Spectrograph far-UV medium-resolution spectrum, which resolves many spectral features for the first time, allowing study of the quasar itself, the intergalactic medium, and quasar proximity effects. Q0302–003 has a harder intrinsic extreme-UV spectral index than previously claimed, as determined from both a direct fit to the spectrum (yielding α{sub ν} ≈ –0.8) and the helium-to-hydrogen ion ratio in the quasar's line-of-sight proximity zone. Intergalactic absorption along this sightline shows that the helium Gunn-Peterson trough is largely black in the range 2.87 < z < 3.20, apart from ionization due to local sources, indicating that helium reionization has not completed at these redshifts. However, we tentatively report a detection of nonzero flux in the high-redshift trough when looking at low-density regions, but zero flux in higher-density regions. This constrains the He II fraction to be about 1% in the low-density intergalactic medium (IGM) and possibly a factor of a few higher in the IGM as a whole, suggesting helium reionization has progressed substantially by z ∼ 3.1. The Gunn-Peterson trough recovers to a He II Lyα forest at z < 2.87. We confirm a transmission feature due to the ionization zone around a z = 3.05 quasar just off the sightline, and resolve the feature for the first time. We discover a similar such feature possibly caused by a luminous z = 3.23 quasar further from the sightline, which suggests that this quasar has been luminous for >34 Myr.

  18. Space Operations

    DTIC Science & Technology

    2009-01-06

    adversaries’ perceptions of US space capabilities and makes them less confident of success in interfering with those capabilities. DSC is built on...Responsibilities IV-17 transportation and space-based tourism , are no longer out of reach. Due to the demand for space-based products and services, the USG has...1) A well-organized missile warning system structure allows commanders to maximize detection and warning of inbound ballistic missiles, thereby

  19. Space suit

    NASA Technical Reports Server (NTRS)

    Shepard, L. F.; Durney, G. P.; Case, M. C.; Kenneway, A. J., III; Wise, R. C.; Rinehart, D.; Bessette, R. J.; Pulling, R. C. (Inventor)

    1973-01-01

    A pressure suit for high altitude flights, particularly space missions is reported. The suit is designed for astronauts in the Apollo space program and may be worn both inside and outside a space vehicle, as well as on the lunar surface. It comprises an integrated assembly of inner comfort liner, intermediate pressure garment, and outer thermal protective garment with removable helmet, and gloves. The pressure garment comprises an inner convoluted sealing bladder and outer fabric restraint to which are attached a plurality of cable restraint assemblies. It provides versitility in combination with improved sealing and increased mobility for internal pressures suitable for life support in the near vacuum of outer space.

  20. Space Medicine

    NASA Technical Reports Server (NTRS)

    Pool, Sam L.

    2000-01-01

    The National Academy of Sciences Committee on Space Biology and Medicine points out that space medicine is unique among space sciences, because in addition to addressing questions of fundamental scientific interest, it must address clinical or human health and safety issues as well. Efforts to identify how microgravity affects human physiology began in earnest by the United States in 1960 with the establishment of the National Aeronautics and Space Administration (NASA's) Life Sciences program. Before the first human space missions, prediction about the physiological effects of microgravity in space ranged from extremely severe to none at all. The understanding that has developed from our experiences in space to date allows us to be guardedly optimistic about the ultimate accommodations of humans to space flight. Only by our travels into the microgravity environment of space have we begun to unravel the mysteries associated with gravity's role in shaping human physiology. Space medicine is still at its very earliest stages. Development of this field has been slow for several reasons, including the limited number of space flights, the small number of research subjects, and the competition within the life sciences community and other disciplines for flight opportunities. The physiological changes incurred during space flight may have a dramatic effect on the course of an injury or illness. These physiological changes present an exciting challenge for the field of space medicine: how to best preserve human health and safety while simultaneously deciphering the effects of microgravity on human performance. As the United States considers the future of humans in long-term space travel, it is essential that the many mysteries as to how microgravity affects human systems be addressed with vigor. Based on the current state of our knowledge, the justification is excellent indeed compelling- for NASA to develop a sophisticated capability in space medicine. Teams of physicians

  1. Space Telescope.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Huntsville, AL. George C. Marshall Space Flight Center.

    This pamphlet describes the Space Telescope, an unmanned multi-purpose telescope observatory planned for launch into orbit by the Space Shuttle in the 1980s. The unique capabilities of this telescope are detailed, the major elements of the telescope are described, and its proposed mission operations are outlined. (CS)

  2. Space Microbiology

    PubMed Central

    Horneck, Gerda; Klaus, David M.; Mancinelli, Rocco L.

    2010-01-01

    Summary: The responses of microorganisms (viruses, bacterial cells, bacterial and fungal spores, and lichens) to selected factors of space (microgravity, galactic cosmic radiation, solar UV radiation, and space vacuum) were determined in space and laboratory simulation experiments. In general, microorganisms tend to thrive in the space flight environment in terms of enhanced growth parameters and a demonstrated ability to proliferate in the presence of normally inhibitory levels of antibiotics. The mechanisms responsible for the observed biological responses, however, are not yet fully understood. A hypothesized interaction of microgravity with radiation-induced DNA repair processes was experimentally refuted. The survival of microorganisms in outer space was investigated to tackle questions on the upper boundary of the biosphere and on the likelihood of interplanetary transport of microorganisms. It was found that extraterrestrial solar UV radiation was the most deleterious factor of space. Among all organisms tested, only lichens (Rhizocarpon geographicum and Xanthoria elegans) maintained full viability after 2 weeks in outer space, whereas all other test systems were inactivated by orders of magnitude. Using optical filters and spores of Bacillus subtilis as a biological UV dosimeter, it was found that the current ozone layer reduces the biological effectiveness of solar UV by 3 orders of magnitude. If shielded against solar UV, spores of B. subtilis were capable of surviving in space for up to 6 years, especially if embedded in clay or meteorite powder (artificial meteorites). The data support the likelihood of interplanetary transfer of microorganisms within meteorites, the so-called lithopanspermia hypothesis. PMID:20197502

  3. Collaborative Spaces

    ERIC Educational Resources Information Center

    Lippman, Peter C.

    2013-01-01

    When architects discuss the educational facilities of the next century and beyond, the conversation turns to collaborative spaces. They envision flexible and fluid spaces that will encourage creative and critical thinking, and free students to communicate clearly about the task at hand. While these are admirable ideals, there are some fundamental…

  4. Space psychology

    NASA Technical Reports Server (NTRS)

    Parin, V. V.; Gorbov, F. D.; Kosmolinskiy, F. P.

    1974-01-01

    Psychological selection of astronauts considers mental responses and adaptation to the following space flight stress factors: (1) confinement in a small space; (2) changes in three dimensional orientation; (3) effects of altered gravity and weightlessness; (4) decrease in afferent nerve pulses; (5) a sensation of novelty and danger; and (6) a sense of separation from earth.

  5. Space Jurisdiction

    NASA Astrophysics Data System (ADS)

    O'Donnell, Declan

    United Societies In Space (USIS) marks its official beginning at Georgetown University Law School in October, 1992. The setting was the Moot Court proceedings of the International Institute of Space Lawyers at the law school. Dr. George S. Robinson, III was presiding over the Court Competition. Dr. Robinson was Associate General Counsel for the Smithsonian Institution at that time…

  6. FIREBall-2: Trailblazing observations of the space UV circumgalactic medium

    NASA Astrophysics Data System (ADS)

    Martin, Christopher

    The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3intergalactic and circumgalactic (IGM, CGM) emission available from any instrument at the time. FIREBall-2 has been significantly upgraded compared to FB-1, and is in the final stages of integration for a September 2016 flight from Ft. Sumner, New Mexico. The spectrograph has been redesigned with a wider field of view and greater efficiency. An upgraded detector system including a groundbreaking high QE, low-noise, UV optimized CCD detector is under final dark current and noise testing and will improve instrument performance by more than an order of magnitude. CNES is providing the spectrograph, gondola, and gondola flight support team, with construction of all components complete and final alignment and testing ongoing. We propose three additional years of funding to support the FIREBall-2 team in one additional flight in 2018 to fully utilize the upgraded spectrograph. This second flight, along with the funded 2016 flight, will conduct an initial blind CGM survey of dense fields at z 0.7, conduct a targeted search of circumquasar (CQM) media for selected targets, and conduct follow up on likely tar-gets selected via GALEX and a pilot survey conducted by our group. We will also conduct a statistical search for the faint IGM via statistical stacking of our data. The FIREBall-2 team includes two female graduate students in key roles (both of whom are finishing their PhDs in 2016) and is overseen by a female Postdoctoral scholar (supported by NSF AAPF and Caltech Millikan Fellowships, in addition to a recent Roman Technology Fellowship award). Additional funding is necessary to keep this

  7. Space engineering

    NASA Technical Reports Server (NTRS)

    Alexander, Harold L.

    1991-01-01

    Human productivity was studied for extravehicular tasks performed in microgravity, particularly including in-space assembly of truss structures and other large objects. Human factors research probed the anthropometric constraints imposed on microgravity task performance and the associated workstation design requirements. Anthropometric experiments included reach envelope tests conducted using the 3-D Acoustic Positioning System (3DAPS), which permitted measuring the range of reach possible for persons using foot restraints in neutral buoyancy, both with and without space suits. Much neutral buoyancy research was conducted using the support of water to simulate the weightlessness environment of space. It became clear over time that the anticipated EVA requirement associated with the Space Station and with in-space construction of interplanetary probes would heavily burden astronauts, and remotely operated robots (teleoperators) were increasingly considered to absorb the workload. Experience in human EVA productivity led naturally to teleoperation research into the remote performance of tasks through human controlled robots.

  8. Space smarts

    NASA Astrophysics Data System (ADS)

    Colucci, Frank

    1991-02-01

    A review is presented of design and development work in space data processors at the Honeywell Space Systems Group in Florida. Space computers, some hardened for the first time against radiation from both man-made nuclear events and the natural space environment, are described. A specific illustration of this is the Space Shuttle main engine control which monitors some 120 engine parameters 50 times per second and operates the actuators that control the liquid-fueled engine through its eight minute burn. It is further pointed out that Space Station processors will be tied together by three different data buses, each with its own protocol, while the backbone of the data management system will be an optical fiber distributed data interface handling up to 100 Mbits/sec. Radiation hardening without heavy shielding can be accomplished in several ways, i.e., at the materials level, by insulating substrates which can limit the photo-currents generated by a nuclear event, and at the topological level, by spacing transistors so that photocurrents cannot concentrate at any particular node.

  9. Space polypropulsion

    NASA Astrophysics Data System (ADS)

    Kellett, B. J.; Griffin, D. K.; Bingham, R.; Campbell, R. N.; Forbes, A.; Michaelis, M. M.

    2008-05-01

    Hybrid space propulsion has been a feature of most space missions. Only the very early rocket propulsion experiments like the V2, employed a single form of propulsion. By the late fifties multi-staging was routine and the Space Shuttle employs three different kinds of fuel and rocket engines. During the development of chemical rockets, other forms of propulsion were being slowly tested, both theoretically and, relatively slowly, in practice. Rail and gas guns, ion engines, "slingshot" gravity assist, nuclear and solar power, tethers, solar sails have all seen some real applications. Yet the earliest type of non-chemical space propulsion to be thought of has never been attempted in space: laser and photon propulsion. The ideas of Eugen Saenger, Georgii Marx, Arthur Kantrowitz, Leik Myrabo, Claude Phipps and Robert Forward remain Earth-bound. In this paper we summarize the various forms of nonchemical propulsion and their results. We point out that missions beyond Saturn would benefit from a change of attitude to laser-propulsion as well as consideration of hybrid "polypropulsion" - which is to say using all the rocket "tools" available rather than possibly not the most appropriate. We conclude with three practical examples, two for the next decades and one for the next century; disposal of nuclear waste in space; a grand tour of the Jovian and Saturnian moons - with Huygens or Lunoxod type, landers; and eventually mankind's greatest space dream: robotic exploration of neighbouring planetary systems.

  10. Space medicine

    NASA Technical Reports Server (NTRS)

    Pool, Sam L.

    1988-01-01

    This paper attempts to underscore the importance of continued studies on the effects of space on human physiology. With particular reference to the Space Station, it is pointed out that there are two aspects which are challenging to life scientists: first is the development of a research capability for the life sciences which will be used to conduct investigations necessary to extend the time humans can remain in space; second is the challenge to develop a medical capability to provide prevention, diagnosis, and therapy. A discussion of physiological changes that have been observed in spacecrews follows along the lines of the two aspects mentioned.

  11. Space Resources

    NASA Technical Reports Server (NTRS)

    McKay, Mary Fae (Editor); McKay, David S. (Editor); Duke, Michael S. (Editor)

    1992-01-01

    Space resources must be used to support life on the Moon and exploration of Mars. Just as the pioneers applied the tools they brought with them to resources they found along the way rather than trying to haul all their needs over a long supply line, so too must space travelers apply their high technology tools to local resources. The pioneers refilled their water barrels at each river they forded; moonbase inhabitants may use chemical reactors to combine hydrogen brought from Earth with oxygen found in lunar soil to make their water. The pioneers sought temporary shelter under trees or in the lee of a cliff and built sod houses as their first homes on the new land; settlers of the Moon may seek out lava tubes for their shelter or cover space station modules with lunar regolith for radiation protection. The pioneers moved further west from their first settlements, using wagons they had built from local wood and pack animals they had raised; space explorers may use propellant made at a lunar base to take them on to Mars. The concept for this report was developed at a NASA-sponsored summer study in 1984. The program was held on the Scripps campus of the University of California at San Diego (UCSD), under the auspices of the American Society for Engineering Education (ASEE). It was jointly managed under the California Space Inst. and the NASA Johnson Space Center, under the direction of the Office of Aeronautics and Space Technology (OAST) at NASA Headquarters. The study participants (listed in the addendum) included a group of 18 university teachers and researchers (faculty fellows) who were present for the entire 10-week period and a larger group of attendees from universities, Government, and industry who came for a series of four 1-week workshops. The organization of this report follows that of the summer study. Space Resources consists of a brief overview and four detailed technical volumes: (1) Scenarios; (2) Energy, Power, and Transport; (3) Materials; (4

  12. Space Shuttle

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A general description of the space shuttle program is presented, with emphasis on its application to the use of space for commercial, scientific, and defense needs. The following aspects of the program are discussed: description of the flight system (orbiter, external tank, solid rocket boosters) and mission profile, direct benefits related to life on earth (both present and expected), description of the space shuttle vehicle and its associated supporting systems, economic impacts (including indirect benefits such as lower inflation rates), listing of participating organizations.

  13. Origins Space Telescope: Cosmology and Reionization

    NASA Astrophysics Data System (ADS)

    Vieira, Joaquin D.; Origins Space Telescope Study Team

    2017-01-01

    The Origins Space Telescope (OST) is the mission concept for the Far-Infrared Surveyor, a study in development by NASA in preparation for the 2020 Astronomy and Astrophysics Decadal Survey. Origins is planned to be a large aperture, actively-cooled telescope covering a wide span of the mid- to far-infrared spectrum. Its imagers and spectrographs will enable a variety of surveys of the sky that will discover and characterize the most distant galaxies, Milky-Way, exoplanets, and the outer reaches of our Solar system. Origins will enable flagship-quality general observing programs led by the astronomical community in the 2030s. The Science and Technology Definition Team (STDT) would like to hear your science needs and ideas for this mission. The team can be contacted at firsurveyor_info@lists.ipac.caltech.edu.A core science goal of the OST mission is to study the the cosmological history of star, galaxy, and structure formation into the epoch of reionization (EoR). OST will probe the birth of galaxies through warm molecular hydrogen emission during the cosmic dark ages. Utilizing the unique power of the infrared fine-structure emission lines, OST will trace the rise of metals from the first galaxies until today. It will quantify the dust enrichment history of the Universe, uncover its composition and physical conditions, reveal the first cosmic sources of dust, and probe the properties of the earliest star formation. OST will provide a detailed astrophysical probe into the condition of the intergalactic medium at z > 6 and the galaxies which dominate the epoch of reionization.

  14. Patchy intergalactic He II absorption in HE 2347-4342. II. The possible discovery of the epoch of He-reionization

    NASA Astrophysics Data System (ADS)

    Reimers, D.; Kohler, S.; Wisotzki, L.; Groote, D.; Rodriguez-Pascual, P.; Wamsteker, W.

    1997-11-01

    ) , respectively. We also discuss partially resolved Heii absorption of a high-ionization associated absorption system. Despite its high luminosity HE2347-4342 does not show a Heii proximity effect. A possible reason is that the strong associated system shields the Heii ionizing continuum. Based on observations collected at the European Southern Observatory, La Silla, Chile (ESO No.\\ 58.B--0116). Based on IUE observations collected at the ESA VILSPA ground station near Madrid, Spain. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by Aura, Inc., under NASA contract NAS 5--26\\,555.

  15. On the connection between the intergalactic medium and galaxies: the H I-galaxy cross-correlation at z ≲ 1

    NASA Astrophysics Data System (ADS)

    Tejos, Nicolas; Morris, Simon L.; Finn, Charles W.; Crighton, Neil H. M.; Bechtold, Jill; Jannuzi, Buell T.; Schaye, Joop; Theuns, Tom; Altay, Gabriel; Le Fèvre, Olivier; Ryan-Weber, Emma; Davé, Romeel

    2014-01-01

    We present a new optical spectroscopic survey of 1777 `star-forming' (`SF') and 366 `non-star-forming' (`non-SF') galaxies at redshifts z ˜ 0-1 (2143 in total), 22 AGN and 423 stars, observed by instruments such as the Deep Imaging Multi-Object Spectrograph, the Visible Multi-Object Spectrograph and the Gemini Multi-Object Spectrograph, in three fields containing five quasi-stellar objects (QSOs) with Hubble Space Telescope (HST) ultraviolet spectroscopy. We also present a new spectroscopic survey of 173 `strong' (1014 ≤ NHI≲ 1017 cm-2) and 496 `weak' (1013 ≲ NHI < 1014 cm-2) intervening H I (Lyα) absorption-line systems at z ≲ 1 (669 in total), observed in the spectra of eight QSOs at z ˜ 1 by the Cosmic Origins Spectrograph and the Faint Object Spectrograph on the HST. Combining these new data with previously published galaxy catalogues such as the Very Large Telescope Visible Multi-Object Spectrograph Deep Survey and the Gemini Deep Deep Survey, we have gathered a sample of 654 H I absorption systems and 17 509 galaxies at transverse scales ≲50 Mpc, suitable for a two-point correlation function analysis. We present observational results on the H I-galaxy (ξag) and galaxy-galaxy (ξgg) correlations at transverse scales r⊥ ≲ 10 Mpc, and the H I-H I autocorrelation (ξaa) at transverse scales r⊥ ≲ 2 Mpc. The two-point correlation functions are measured both along and transverse to the line of sight, ξ(r⊥, r∥). We also infer the shape of their corresponding `real-space' correlation functions, ξ(r), from the projected along the line-of-sight correlations, assuming power laws of the form ξ(r) = (r/r0)-γ. Comparing the results from ξag, ξgg and ξaa, we constrain the H I-galaxy statistical connection, as a function of both H I column density and galaxy star formation activity. Our results are consistent with the following conclusions: (i) the bulk of H I systems on ˜ Mpc scales have little velocity dispersion (≲120 km s-1) with

  16. Space Shuttle.

    ERIC Educational Resources Information Center

    Bierly, Ken; Dalheim, Mary

    1981-01-01

    Presents an elementary teaching unit on NASA's space program, including teacher background information, suggested student activities, and a list of resources. Appended is a transcript of an interview conducted by elementary children with astronaut candidate Sherwood (Woody) Spring. (SJL)

  17. Space science

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A fact sheet on the NASA space science program is presented. Some of the subjects considered include the following: (1) the Orbiting Astronomical Observatory, (2) the Orbiting Solar Observatory, (3) the Small Astronomy Satellite, (4) lunar programs, (5) planetary programs using the Mariner, Pioneer 10, and Viking space probes, and (6) the Scout, Thor-Delta, and Atlas-Centaur launch vehicles. For each program there is a description of the effort, the schedule, management, program officials, and funding aspects in outline form.

  18. Space Robotics

    DTIC Science & Technology

    1982-08-01

    ACCESSION NO 3. RECIPIENTS CATALOG NUIA3.R CMU-RI-TR-82-10 I4 1 (. 4. ;,;-LL (and Sublitle) S. TYPE OF REPORT & PERIOD CovEREO SPACE ROBOTICS Interim... Robotics Institute Pittsburgh, PA. 15213 It. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE Office of Naval Research -August 1982 Arlington, VA 22217...SXnet.eE . Space Robotics Richard E. Korf Department of Computer Science and The Robotics Institute Carnegie-Mellon University Pittsburgh, Oetusylvania

  19. Space Resources

    NASA Technical Reports Server (NTRS)

    McKay, Mary Fae (Editor); McKay, David S. (Editor); Duke, Michael S. (Editor)

    1992-01-01

    Space resources must be used to support life on the Moon and exploration of Mars. Just as the pioneers applied the tools they brought with them to resources they found along the way rather than trying to haul all their needs over a long supply line, so too must space travelers apply their high technology tools to local resources. The pioneers refilled their water barrels at each river they forded; moonbase inhabitants may use chemical reactors to combine hydrogen brought from Earth with oxygen found in lunar soil to make their water. The pioneers sought temporary shelter under trees or in the lee of a cliff and built sod houses as their first homes on the new land; settlers of the Moon may seek out lava tubes for their shelter or cover space station modules with lunar regolith for radiation protection. The pioneers moved further west from their first settlements, using wagons they had built from local wood and pack animals they had raised; space explorers may use propellant made at a lunar base to take them on to Mars. The concept for this report was developed at a NASA-sponsored summer study in 1984. The program was held on the Scripps campus of the University of California at San Diego (UCSD), under the auspices of the American Society for Engineering Education (ASEE). It was jointly managed under the California Space Inst. and the NASA Johnson Space Center, under the direction of the Office of Aeronautics and Space Technology (OAST) at NASA Headquarters. The study participants (listed in the addendum) included a group of 18 university teachers and researchers (faculty fellows) who were present for the entire 10-week period and a larger group of attendees from universities, Government, and industry who came for a series of four 1-week workshops. The organization of this report follows that of the summer study. Space Resources consists of a brief overview and four detailed technical volumes: (1) Scenarios; (2) Energy, Power, and Transport; (3) Materials; (4

  20. Space Rescue

    NASA Technical Reports Server (NTRS)

    Muratore, John F.

    2007-01-01

    Space Rescue has been a topic of speculation for a wide community of people for decades. Astronauts, aerospace engineers, diplomats, medical and rescue professionals, inventors and science fiction writers have all speculated on this problem. Martin Caidin's 1964 novel Marooned dealt with the problems of rescuing a crew stranded in low earth orbit. Legend at the Johnson Space Center says that Caidin's portrayal of a Russian attempt to save the American crew played a pivotal role in convincing the Russians to join the real joint Apollo-Soyuz mission. Space Rescue has been a staple in science fiction television and movies portrayed in programs such as Star Trek, Stargate-SG1 and Space 1999 and movies such as Mission To Mars and Red Planet. As dramatic and as difficult as rescue appears in fictional accounts, in the real world it has even greater drama and greater difficulty. Space rescue is still in its infancy as a discipline and the purpose of this chapter is to describe the issues associated with space rescue and the work done so far in this field. For the purposes of this chapter, the term space rescue will refer to any system which allows for rescue or escape of personnel from situations which endanger human life in a spaceflight operation. This will span the period from crew ingress prior to flight through crew egress postlanding. For the purposes of this chapter, the term primary system will refer to the spacecraft system that a crew is either attempting to escape from or from which an attempt is being made to rescue the crew.

  1. Space Resources and Space Settlements

    NASA Technical Reports Server (NTRS)

    Billingham, J. (Editor); Gilbreath, W. P. (Editor); Oleary, B. (Editor); Gosset, B. (Editor)

    1979-01-01

    The technical papers from the five tasks groups that took part in the 1977 Ames Summer Study on Space Settlements and Industrialization Using Nonterrestrial Materials are presented. The papers are presented under the following general topics: (1) research needs for regenerative life-support systems; (2) habitat design; (3) dynamics and design of electromagnetic mass drivers; (4) asteroids as resources for space manufacturing; and (5) processing of nonterrestrial materials.

  2. Space Exploration

    NASA Technical Reports Server (NTRS)

    Davis, Jeffrey R.

    2006-01-01

    This abstract covers a one hour presentation on Space Exploration. The audience is elementary students; therefore there are few words on the slides, mostly pictures of living and working in space. The presentation opens with a few slides describing a day in the life of a space explorer. It begins with a launch, discussions of day-night cycles, eating, exercising, housekeeping, EVA, relaxation, and sleeping. The next section of the presentation shows photos of astronauts performing experiments on the ISS. Yokomi Elementary School launched this fall with the most advanced educational technology tools available in schools today. The science and technology magnet school is equipped with interactive white boards, digital projectors, integrated sound systems and several computers for use by teachers and students. The only elementary school in Fresno Unified with a science focus also houses dedicated science classrooms equipped specifically for elementary students to experience hands-on science instruction in addition to the regular elementary curriculum.

  3. Entering Space

    NASA Astrophysics Data System (ADS)

    Zubrin, Robert

    The authors is giving a classification of civilisations depending on the degree of colonisation of the Earth, Solar System and Our Galaxy. The problems of: History of geographic discoveries (The great geographical discoveries during the Middle Age, the concurence of Chinnese and Europeans in this Area); The Astrophysics, such as: Asteroids, Water and Atmosphere on outer planets, Planet Mars Planet, Agriculture on outer planets, Minerals on outer planets; Cosmic flights: Fuels, Robotics, Moon (as an intermediary basis for interplanetary flights), Mars colonisation; Interstellar flights, Space research costs, strategy and tactics of the space colonisation; Policy: War and Peace, International Collaboration are discussed.

  4. Space vehicle

    NASA Technical Reports Server (NTRS)

    Vonpragenau, G. L. (Inventor)

    1975-01-01

    A space vehicle having an improved ascent configuration for use in traveling in space is presented. Components of the vehicle are: (1) a winged orbiter having an elongater fuselage and rearwardly directed main engines fixed to the fuselage; (2) an elongated tank assembly of an improved configuration disposed forwardly of the fuselage and connected with the main engines of the vehicle for supplying liquid propellants; and (3) a booster stage comprising a pair of integrated solid rocket boosters connected with the orbiter immediately beneath the fuselage and extended in substantial parallelism.

  5. An Evolvable Space Telescope for NASA’s Next UVOIR Flagship Mission

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Breckinridge, James B.; MacEwen, Howard A.; Polidan, Ronald S.; Flannery, Martin; Dailey, Dean

    2015-01-01

    NASA has sponsored several studies to develop conceptual designs for the next UVOIR Flagship mission, including an Advanced Technology Large Space Telescope (ATLAST). These studies concluded that a space observatory launched in ~2030 will require a telescope aperture of 8 to 16 meters to address the most compelling astrophysical questions raised by missions such as HST, Kepler, TESS, JWST and WFIRST as well as the large ground based telescopes that will coming on-line in the next decade. This telescope will be designed to search for the bio-signatures of life in the universe as well as to study the physics of star formation and to unravel the complex interactions between dark matter, galaxies and the intergalactic medium.Unfortunately, telescopes with this aperture will have a long development time with peak funding requirements that will absorb most NASA's Astrophysics budget for many years. To minimize this impact on NASA's budget and to drastically shorten the time between program start and 'first light' for this UVOIR space observatory we have been developing conceptual designs for an Evolvable Space Telescope (EST) that would be assembled on-orbit in three stages, beginning with the launch of a 2 mirror 4 x 12 meter telescope with 2 instruments 5 to 7 years after program start, and then adding mirror segments and instruments ay ~ 5 year intervals to obtain a 12-m filled aperture, and then a 20-m filled aperture telescope. We describe our approach in this presentation.

  6. Space Communications

    DTIC Science & Technology

    1977-03-15

    sponsored Survivability Analysis Group (SAG), (b) Reviewing for the Air Force some spacecraft radioisotope - thermoelectric - generator (RTG) and... Thermoelectric Generator SADA Solar Array Drive Assembly SAG Survivahilily Analysis Group SAMSO Space and Missile Systems Organization SAOS Solar Array Drive...over was accomplished without incident except that the third- generation gyro (TGG) drift-rate compensation was observed to have changed sometime after

  7. Found Space

    ERIC Educational Resources Information Center

    Haug, Ted; Ogurek, Douglas J.

    2006-01-01

    When education providers confront obstacles such as shrinking budgets and swelling enrollments, a multi-million-dollar new facility or major additions probably are not feasible. Converting vacant and underused buildings into school facilities enables administrators to acquire additional space quickly and cheaply. In this article, the authors…

  8. Training Spaces

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2010-01-01

    Creating a balanced learning space for employees is about more than trying different types of seating. It is a challenge that an affect how well employees absorb the lessons and whether they will be able to product better results for the company. The possible solutions are as diverse as the learners. This article describes how three companies…

  9. Space Gerontology

    NASA Technical Reports Server (NTRS)

    Miquel, J. (Editor); Economos, A. C. (Editor)

    1982-01-01

    Presentations are given which address the effects of space flght on the older person, the parallels between the physiological responses to weightlessness and the aging process, and experimental possibilities afforded by the weightless environment to fundamental research in gerontology and geriatrics.

  10. Friendly Spaces.

    ERIC Educational Resources Information Center

    D'Elia, William

    1996-01-01

    The creation of usable space for gatherings and socializing is an important consideration in any campus planning program. The University of California-San Diego has a large outdoor assembly area. An addition at Cal Poly-San Luis Obispo encompasses an existing pedestrian path. A new building at the University of Alaska, Fairbanks, is designed as a…

  11. Space languages

    NASA Technical Reports Server (NTRS)

    Hays, Dan

    1987-01-01

    Applications of linguistic principles to potential problems of human and machine communication in space settings are discussed. Variations in language among speakers of different backgrounds and change in language forms resulting from new experiences or reduced contact with other groups need to be considered in the design of intelligent machine systems.

  12. Second Symposium on Space Industrialization. [space commercialization

    NASA Technical Reports Server (NTRS)

    Jernigan, C. M. (Editor)

    1984-01-01

    The policy, legal, and economic aspects of space industrialization are considered along with satellite communications, material processing, remote sensing, and the role of space carriers and a space station in space industrialization.

  13. Inherit Space

    NASA Technical Reports Server (NTRS)

    Giarratano, Joseph C.; Jenks, K. C.

    1997-01-01

    The objective of the proposed research was to begin development of a unique educational tool targeted at educating and inspiring young people 12-16 years old about NASA and the Space Program. Since these young people are the future engineers, scientists and space pioneers, the nurturing of their enthusiasm and interest is of critical importance to the Nation. This summer the basic infrastructure of the tool was developed in the context of an educational game paradigm. The game paradigm has achieved remarkable success in maintaining the interest of young people in a self-paced, student-directed learning environment. This type of environment encourages student exploration and curiosity which are exactly the traits that future space pioneers need to develop to prepare for the unexpected. The Inherit Space Educational Tool is an open-ended learning environment consisting of a finite-state machine classic adventure game paradigm. As the young person explores this world, different obstacles must be overcome. Rewards will be offered such as using the flight simulator to fly around and explore Titan. This simulator was modeled on conventional Earth flight simulators but has been considerably enhanced to add texture mapping of Titan's atmosphere utilizing the latest information from the NASA Galileo Space Probe. Additional scenery was added to provide color VGA graphics of a futuristic research station on Titan as well as an interesting story to keep the youngster's attention. This summer the game infrastructure has been developed as well as the Titan Flight Simulator. A number of other enhancements are planned.

  14. Space Toxicology

    NASA Technical Reports Server (NTRS)

    James, John T.

    2011-01-01

    Safe breathing air for space faring crews is essential whether they are inside an Extravehicular Mobility Suit (EMU), a small capsule such as Soyuz, or the expansive International Space Station (ISS). Sources of air pollution can include entry of propellants, excess offgassing from polymeric materials, leakage of systems compounds, escape of payload compounds, over-use of utility compounds, microbial metabolism, and human metabolism. The toxicological risk posed by a compound is comprised of the probability of escaping to cause air pollution and the magnitude of adverse effects on human health if escape occurs. The risk from highly toxic compounds is controlled by requiring multiple levels of containment to greatly reduce the probability of escape; whereas compounds that are virtually non-toxic may require little or no containment. The potential for toxicity is determined by the inherent toxicity of the compound and the amount that could potentially escape into the breathing air.

  15. Communication spaces

    PubMed Central

    Coiera, Enrico

    2014-01-01

    Background and objective Annotations to physical workspaces such as signs and notes are ubiquitous. When densely annotated, work areas become communication spaces. This study aims to characterize the types and purpose of such annotations. Methods A qualitative observational study was undertaken in two wards and the radiology department of a 440-bed metropolitan teaching hospital. Images were purposefully sampled; 39 were analyzed after excluding inferior images. Results Annotation functions included signaling identity, location, capability, status, availability, and operation. They encoded data, rules or procedural descriptions. Most aggregated into groups that either created a workflow by referencing each other, supported a common workflow without reference to each other, or were heterogeneous, referring to many workflows. Higher-level assemblies of such groupings were also observed. Discussion Annotations make visible the gap between work done and the capability of a space to support work. Annotations are repairs of an environment, improving fitness for purpose, fixing inadequacy in design, or meeting emergent needs. Annotations thus record the missing information needed to undertake tasks, typically added post-implemented. Measuring annotation levels post-implementation could help assess the fit of technology to task. Physical and digital spaces could meet broader user needs by formally supporting user customization, ‘programming through annotation’. Augmented reality systems could also directly support annotation, addressing existing information gaps, and enhancing work with context sensitive annotation. Conclusions Communication spaces offer a model of how work unfolds. Annotations make visible local adaptation that makes technology fit for purpose post-implementation and suggest an important role for annotatable information systems and digital augmentation of the physical environment. PMID:24005797

  16. Spaced Armor

    DTIC Science & Technology

    1950-11-20

    less resistance to the penetration of a projectile than does the midsection of the plate. This is so because the front and rear surfaces of the armor ...Front -7idsectio " Aberdeen Proving Ground Report .AD-943, "Ballistic Test of Spaced Armor Arrangements which can be used for Increasing the Protection of... Ground . The target was to be a 100 • thick cast armor plate which can be quite easily penetrated by this carbide cored projectile at O0 obliquity

  17. Space Telescopes

    DTIC Science & Technology

    2010-01-01

    the Kirkpatrick–Baez type systems and the focussing colli- mator or ‘ lobster -eye’ systems. 1http://henke.lbl.gov/optical constants/ 176 9. Space...mirror requires a longer telescope. Focussing collimator or ‘ lobster -eye’ telescopes The Wolter and the Kirkpatrick–Baez systems have in common a...9.13: Flat-mirror two-dimensional focussing collimator or detached lobster - eye configuration (Schmidt 1975). within one tube but from adjacent walls a

  18. Space colonization.

    PubMed

    Parrish, Clyde F

    2003-12-01

    A series of workshops were sponsored by the Physical Science Division of NASA's Office of Biological and Physical Research to address operational gravity-compliant in-situ resource utilization and life support techologies. Workshop participants explored a Mars simulation study on Devon Island, Canada; the processing of carbon dioxide in regenerative life support systems; space tourism; rocket technology; plant growth research for closed ecological systems; and propellant extraction of planetary regoliths.

  19. Space Nutrition

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    2009-01-01

    Optimal nutrition will be critical for crew members who embark on space exploration missions. Nutritional assessment provides an opportunity to ensure that crewmembers begin their missions in optimal nutritional status, to document changes during a mission and, if necessary, to provide intervention to maintain that status throughout the mission, and to assesses changes after landing in order to facilitate the return to their normal status as soon as possible after landing. We report here the findings from our nutritional assessment of astronauts who participated in the International Space Station (ISS) missions, along with flight and ground-based research findings. We also present ongoing and planned nutrition research activities. These studies provide evidence that bone loss, compromised vitamin status, and oxidative damage are the critical nutritional concerns for space travelers. Other nutrient issues exist, including concerns about the stability of nutrients in the food system, which are exposed to longterm storage and radiation during flight. Defining nutrient requirements, and being able to provide and maintain those nutrients on exploration missions, will be critical for maintaining crew member health.

  20. Digicon photometry of an intergalactic bridge

    NASA Technical Reports Server (NTRS)

    Beaver, E. A.; Harms, R. J.; Tifft, W. G.; Sargent, T. A.

    1974-01-01

    Surface brightness and color data are derived for two points in the bridge and tail structure of Arp 295. The best observed point has a surface brightness in V of 25.9 magnitudes per square arc second and (B-V) = +1.00 m. A point on the tail is brighter with the same color.

  1. America plans for space

    SciTech Connect

    Not Available

    1986-01-01

    Contents include: pursuing a balanced space program; the space defense initiative; warfare in space; the lunar laboratory; the role of space in preserving the peace; living off the land - the use of resources in space for future civilian space operations; the military uses of space; C3I(command control communications and intelligence); aspects of space technology; arms control in space: preserving critical strategic space systems without weapons in space; space and arms control: a skeptical view; options for space arms control; space arms control.

  2. Space Handbook,

    DTIC Science & Technology

    1985-01-01

    thle early life * of" the system. Figure 4-2 shows the variation in power output for polonium - 210 (Po- 210 ) with a 138-day half-life, curium-242 (Cm...can move large payloads through space. The radioisotope heat cycle engines use high-energy particle sources such as plutonium and polonium . The walls...place inI January 1959, when researchers tested and delive .red to the AEC’ the 2.5 v. att SNAI’-3. aI polonium -2 10-f’ueled’ radioisotope generator

  3. Space Technospheres

    NASA Astrophysics Data System (ADS)

    Vidmachenko, A. P.; Steklov, A. F.; Primak, N. V.

    2000-01-01

    Two main tendencies of making the Solar System habitable are regarding nowadays: (1) making objects of the Solar System habitable; and (2) making the space of the Solar System habitable. We think that it's better to combine them. We should dezine and build settlements ('technospheres') on such objects as asteroids and comets, using their resources. That is, it is necessary to create 'space technospheres' - a long-termed human settlements in the space. To save energy resources it is necessary to use Near-Earth asteroids enriched with water ice (i. e. extinguished comets) with Near-Earth orbits. To realize listed conceptions it is necessary to decrease (up to 100 times) the cost price of the long-termed settlements. That's why even average UN country will be able to create it's own space house - artificial planet ('technosphere') and maintain life activities there. About 50-100 such artificial planets will represent the future civilization of our Solar System. At the same time Earth will stay basic, maternal planet. There is an interesting problem of correcting orbits of that objects. Orbits can be changed into circular or elongated to make them comfortable for living activities of 5000-10000 settlers, and to maintain connection with maternal planet. Technospheres with the elongated orbits are more advantageous to assimilate the Solar System. While technospheres with circular orbits suit to the industrial cycle with certain specialization. The specialization of the technosphere will depend on mine-workings and/or chosen high-technology industrial process. Because it is profitable to convert raw materials at the technosphere and then to transport finished products to the maternal planet. It worth to be mentioned that because of the low gravitation and changed life cycle technosphere settlers, new 'Columb' of the Solar System will transform into new mankind. It will happen though it is difficult to imaging this. Because long ago, when fish left the ocean, they didn

  4. Space Food

    NASA Technical Reports Server (NTRS)

    1994-01-01

    In planning for the long duration Apollo missions, NASA conducted extensive research into space food. One of the techniques developed was freeze drying. Action Products commercialized this technique, concentrating on snack food including the first freeze-dried ice cream. The foods are cooked, quickly frozen and then slowly heated in a vacuum chamber to remove the ice crystals formed by the freezing process. The final product retains 98 percent of its nutrition and weighs only 20 percent of its original weight. Action snacks are sold at museums, NASA facilities and are exported to a number of foreign countries. Sales run to several million dollars annually.

  5. Space Radiation

    NASA Technical Reports Server (NTRS)

    Wu, Honglu

    2006-01-01

    Astronauts receive the highest occupational radiation exposure. Effective protections are needed to ensure the safety of astronauts on long duration space missions. Increased cancer morbidity or mortality risk in astronauts may be caused by occupational radiation exposure. Acute and late radiation damage to the central nervous system (CNS) may lead to changes in motor function and behavior, or neurological disorders. Radiation exposure may result in degenerative tissue diseases (non-cancer or non-CNS) such as cardiac, circulatory, or digestive diseases, as well as cataracts. Acute radiation syndromes may occur due to occupational radiation exposure.

  6. Commercial Space Tourism and Space Weather

    NASA Astrophysics Data System (ADS)

    Turner, Ronald

    2007-08-01

    Space tourism, a concept which even a few years ago was perveived as science fantasy, is now a credible industry. Five individuals have paid up to $25 M to spend more than a week on the International Space Station. Several enterprises are working toward viable suborbital and orbital private space operations. while operational space weather support to human space flight has been the domain of government entities the emergence of space tourism now presents a new opportunity for the commercial space weather community. This article examines the space weather impact on crews and passengers of the future space tourism industry.

  7. How can laboratory plasma experiments contribute to space and &astrophysics?

    NASA Astrophysics Data System (ADS)

    Yamada, M.

    Plasma physics plays key role in a wide range of phenomena in the universe, from laboratory plasmas to the magnetosphere, the solar corona, and to the tenuous interstellar and intergalactic gas. Despite the huge difference in physical scales, there are striking similarities in plasma behavior of laboratory and space plasmas. Similar plasma physics problems have been investigated independently by both laboratory plasma physicists and astrophysicists. Since 1991, cross fertilization has been increased among laboratory plasma physicists and space physicists through meeting such as IPELS [Interrelationship between Plasma Experiments in the Laboratory and Space] meeting. The advances in laboratory plasma physics, along with the recent surge of astronomical data from satellites, make this moment ripe for research collaboration to further advance plasma physics and to obtain new understanding of key space and astrophysical phenomena. The recent NRC review of astronomy and astrophysics notes the benefit that can accrue from stronger connection to plasma physics. The present talk discusses how laboratory plasma studies can contribute to the fundamental understandings of the space and astrophysical phenomena by covering common key physics topics such as magnetic reconnection, dynamos, angular momentum transport, ion heating, and magnetic self-organization. In particular, it has recently been recognized that "physics -issue- dedicated" laboratory experiments can contribute significantly to the understanding of the fundamental physics for space-astrophysical phenomena since they can create fundamental physics processes in controlled manner and provide well-correlated plasma parameters at multiple plasma locations simultaneously. Such dedicated experiments not only can bring about better understanding of the fundamental physics processes but also can lead to findings of new physics principles as well as new ideas for fusion plasma confinement. Several dedicated experiments have

  8. Large size space construction for space exploitation

    NASA Astrophysics Data System (ADS)

    Kondyurin, Alexey

    2016-07-01

    Space exploitation is impossible without large space structures. We need to make sufficient large volume of pressurized protecting frames for crew, passengers, space processing equipment, & etc. We have to be unlimited in space. Now the size and mass of space constructions are limited by possibility of a launch vehicle. It limits our future in exploitation of space by humans and in development of space industry. Large-size space construction can be made with using of the curing technology of the fibers-filled composites and a reactionable matrix applied directly in free space. For curing the fabric impregnated with a liquid matrix (prepreg) is prepared in terrestrial conditions and shipped in a container to orbit. In due time the prepreg is unfolded by inflating. After polymerization reaction, the durable construction can be fitted out with air, apparatus and life support systems. Our experimental studies of the curing processes in the simulated free space environment showed that the curing of composite in free space is possible. The large-size space construction can be developed. A project of space station, Moon base, Mars base, mining station, interplanet space ship, telecommunication station, space observatory, space factory, antenna dish, radiation shield, solar sail is proposed and overviewed. The study was supported by Humboldt Foundation, ESA (contract 17083/03/NL/SFe), NASA program of the stratospheric balloons and RFBR grants (05-08-18277, 12-08-00970 and 14-08-96011).

  9. Space Science in Action: Space Exploration [Videotape].

    ERIC Educational Resources Information Center

    1999

    In this videotape recording, students learn about the human quest to discover what is out in space. Students see the challenges and benefits of space exploration including the development of rocket science, a look back at the space race, and a history of manned space travel. A special section on the Saturn V rocket gives students insight into the…

  10. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2009-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z greater than 6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z greater than 10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (less than 50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth-Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems, and discuss recent progress in constructing the observatory.

  11. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2x3, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>lO, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  12. Studying Galaxy Formation and Reionization with the James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2008-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z>6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. I will review the current status of the project.

  13. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan P.

    2007-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts z>6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (<50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 28.5 microns. In addition to JWST's ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  14. Studying Galaxy Formation with the Hubble, Spitzer and James Webb Space Telescopes

    NASA Technical Reports Server (NTRS)

    Gardner, Jonathan F.; Barbier, L. M.; Barthelmy, S. D.; Cummings, J. R.; Fenimore, E. E.; Gehrels, N.; Hullinger, D. D.; Markwardt, C. B.; Palmer, D. M.; Parsons, A. M.; Sakamoto, T.

    2006-01-01

    The deepest optical to infrared observations of the universe include the Hubble Deep Fields, the Great Observatories Origins Deep Survey and the recent Hubble Ultra-Deep Field. Galaxies are seen in these surveys at redshifts 2-6, less than 1 Gyr after the Big Bang, at the end of a period when light from the galaxies has reionized Hydrogen in the inter-galactic medium. These observations, combined with theoretical understanding, indicate that the first stars and galaxies formed at z>10, beyond the reach of the Hubble and Spitzer Space Telescopes. To observe the first galaxies, NASA is planning the James Webb Space Telescope (JWST), a large (6.5m), cold (50K), infrared-optimized observatory to be launched early in the next decade into orbit around the second Earth- Sun Lagrange point. JWST will have four instruments: The Near-Infrared Camera, the Near-Infrared multi-object Spectrograph, and the Tunable Filter Imager will cover the wavelength range 0.6 to 5 microns, while the Mid-Infrared Instrument will do both imaging and spectroscopy from 5 to 27 microns. In addition to JWST s ability to study the formation and evolution of galaxies, I will also briefly review its expected contributions to studies of the formation of stars and planetary systems.

  15. 8 Meter Advanced Technology Large-Aperture Space Telescope (ATLAST-8m)

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2010-01-01

    ATLAST-8m (Advanced Technology Large Aperture Space Telescope) is a proposed 8-meter monolithic UV/optical/NIR space observatory (wavelength range 110 to 2500 nm) to be placed in orbit at Sun-Earth L2 by NASA's planned Ares V heavy lift vehicle. Given its very high angular resolution (15 mas @ 500 nm), sensitivity and performance stability, ATLAST-8m is capable of achieving breakthroughs in a broad range of astrophysics including: Is there life elsewhere in the Galaxy? An 8-meter UVOIR observatory has the performance required to detect habitability (H2O, atmospheric column density) and biosignatures (O2, O3, CH4) in terrestrial exoplanet atmospheres, to reveal the underlying physics that drives star formation, and to trace the complex interactions between dark matter, galaxies, and intergalactic medium. The ATLAST Astrophysics Strategic Mission Concept Study developed a detailed point design for an 8-m monolithic observatory including optical design; structural design/analysis including primary mirror support structure, sun shade and secondary mirror support structure; thermal analysis; spacecraft including structure, propulsion, GN&C, avionics, power systems and reaction wheels; mass and power budgets; and system cost. The results of which were submitted by invitation to NRC's 2010 Astronomy & Astrophysics Decadal Survey.

  16. Soft Mappings Space

    PubMed Central

    Ozturk, Taha Yasin; Bayramov, Sadi

    2014-01-01

    Various soft topologies are being introduced on a given function space soft topological spaces. In this paper, soft compact-open topology is defined in functional spaces of soft topological spaces. Further, these functional spaces are studied and interrelations between various functional spaces with soft compact-open topology are established. PMID:25374936

  17. Space physiology and medicine

    SciTech Connect

    Nicogossian, A.E.; Parker J.F. Jr.

    1982-01-01

    The state of knowledge in space physiology and medicine are reviewed. Overviews of manned space flight, the space environment, spaceflight systems and procedures, physiological adaptation to space flight, health maintenance of space crew members, and medical problems of space flight are presented.

  18. Preparing future space leaders - International Space University

    NASA Technical Reports Server (NTRS)

    Stone, Barbara A.; Van Reeth, George P.

    1992-01-01

    The International Space University (ISU) concept of developing a cadre of space professionals that will lead the universities and industries into space is discussed. ISU is an innovative, permanent worldwide organization for training and academic instruction in all aspects of space studies. ISU's major goal is to provide the young professional academic instruction in technical and nontechnical areas of modern space exploration and research, and a forum to exchange ideas and develop both personal and professional ties at an international level.

  19. Space habitats. [prognosis for space colonization

    NASA Technical Reports Server (NTRS)

    Johnson, R. D.

    1978-01-01

    Differences between space industrialization and space colonization are outlined along with the physiological, psychological, and esthetic needs of the inhabitants of a space habitat. The detrimental effects of zero gravity on human physiology are reviewed, and the necessity of providing artificial gravity, an acceptable atmosphere, and comfortable relative humidity and temperature in a space habitat is discussed. Consideration is also given to social organization and governance, supply of food and water, and design criteria for space colonies.

  20. FIREBall-2: Trailblazing observations of the space UV circumgalactic medium (Columbia University, Co-I Proposal)

    NASA Astrophysics Data System (ADS)

    Schiminovich, David

    Columbia University is a Co-I institution in a collaborative research program with Caltech, the Lead Institution (PI: Christopher Martin). The Faint Intergalactic-medium Redshifted Emission Balloon (FIREBall-2) is designed to discover and map faint emission from the circumgalactic medium of low redshift galaxies (0.3intergalactic and circumgalactic (IGM, CGM) emission available from any instrument at the time. FIREBall-2 has been significantly upgraded compared to FB-1, and is in the final stages of integration for a September 2016 flight from Ft. Sumner, New Mexico. The spectrograph has been redesigned with a wider field of view and greater efficiency. An upgraded detector system including a groundbreaking high QE, low-noise, UV optimized CCD detector is under final dark current and noise testing and will improve instrument performance by more than an order of magnitude. CNES is providing the spectrograph, gondola, and gondola flight support team, with construction of all components complete and final alignment and testing ongoing. We propose three additional years of funding to support the FIREBall-2 team in one additional flight in 2018 to fully utilize the upgraded spectrograph. This second flight, along with the funded 2016 flight, will conduct an initial blind CGM survey of dense fields at z 0.7, conduct a targeted search of circumquasar (CQM) media for selected targets, and conduct follow up on likely tar-gets selected via GALEX and a pilot survey conducted by our group. We will also conduct a statistical search for the faint IGM via statistical stacking of our data. The FIREBall-2 team includes two female graduate students in key roles (both of whom are finishing their PhDs in 2016) and is overseen by a female Postdoctoral scholar (supported by NSF AAPF

  1. Space Biosciences, Space-X, and the International Space Station

    NASA Technical Reports Server (NTRS)

    Wigley, Cecilia

    2014-01-01

    Space Biosciences Research on the International Space Station uses living organisms to study a variety of research questions. To enhance our understanding of fundamental biological processes. To develop the fundations for a safe, productive human exploration of space. To improve the quality of life on earth.

  2. "Space, the Final Frontier"; Books on Space and Space Exploration.

    ERIC Educational Resources Information Center

    Jordan, Anne Devereaux

    1997-01-01

    Advocates play in a child's life. Describes how science fiction seizes the imaginations of young readers with its tales of the future and of outer space. Talks about various nonfiction books about space. Elaborates a workshop on books about space exploration. Gives 10 questions about stimulating student response. (PA)

  3. Space on Earth.

    ERIC Educational Resources Information Center

    Leder, Sandra J.

    1992-01-01

    Describes ideas for applying research from space programs to life science instruction including plants in space, exercise and diet on space flights, environmental advantages from space exploration, and the effects of microgravity on health. Discusses space spinoffs used in medicine including digital imaging processing and the Ingestible Thermal…

  4. Canada in Space.

    ERIC Educational Resources Information Center

    de Paz, Shoshana

    1991-01-01

    Discusses the history of the Canadian Space Agency. Explains that Canada's space program grew out of the need to manage resources and communicate over large distances. Reports that the small Canadian space industry is growing rapidly. Describes Canadian cooperation in international space programs. Identifies space careers and examines the future…

  5. Test spaces and characterizations of quadratic spaces

    NASA Astrophysics Data System (ADS)

    Dvurečenskij, Anatolij

    1996-10-01

    We show that a test space consisting of nonzero vectors of a quadratic space E and of the set all maximal orthogonal systems in E is algebraic iff E is Dacey or, equivalently, iff E is orthomodular. In addition, we present another orthomodularity criteria of quadratic spaces, and using the result of Solèr, we show that they can imply that E is a real, complex, or quaternionic Hilbert space.

  6. Space Science and Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Spann, James

    2005-01-01

    Space Science a t Marshall Space Flight Center is diverse and very interesting. It ranges from high energy astrophysics to astrobiology, from solar physics to space weather to dusty plasmas. I will present some of the more interesting investigations regarding auroral physics, what it takes to build a space camera, and laboratory investigations of dust. There will be time for questions and answers at the conclusion.

  7. Space Station - Implications for space manufacturing

    NASA Technical Reports Server (NTRS)

    Tingey, D. L.; Willenberg, H. J.; Atkins, H. L.

    1985-01-01

    Space-based materials processing R&D is examined. It is proposed that the Space Station's Microgravity and Materials Processing Facility will be utilized by academic, government, and commercial customers. Users requirements for materials processing in space are discussed. Consideration is given to the time allocation of the facility, charges to users, and the property rights of the users.

  8. Space history, space policy, and executive leadership

    NASA Technical Reports Server (NTRS)

    Kraemer, Sylvia K.

    1993-01-01

    A lecture that attempts to establish the role of space historians in formulating space policy is presented. The discussion focusses on two adages and their relevance to space policy. The adages are as follows: 'write about what you know;' and 'good managers do things right; good executives do the right things.'

  9. The partnership: Space shuttle, space science, and space station

    NASA Technical Reports Server (NTRS)

    Culbertson, Philip E.; Freitag, Robert F.

    1989-01-01

    An overview of the NASA Space Station Program functions, design, and planned implementation is presented. The discussed functions for the permanently manned space facility include: (1) development of new technologies and related commercial products; (2) observations of the Earth and the universe; (3) provision of service facilities for resupply, maintenance, upgrade and repair of payloads and spacecraft; (4) provision of a transportation node for stationing, processing and dispatching payloads and vehicles; (5) provision of manufacturing and assembly facilities; (6) provision of a storage depot for parts and payloads; and (7) provision of a staging base for future space endeavors. The fundamental concept for the Space Station, as given, is that it be designed, operated, and evolved in response to a broad variety of scientific, technological, and commercial user interests. The Space Shuttle's role as the principal transportation system for the construction and maintenance of the Space Station and the servicing and support of the station crew is also discussed.

  10. International Space Apps Challenge

    NASA Video Gallery

    During the 2013 Space Apps Challenge, space enthusiasts with diverse backgrounds gathered April 20-21 for a collaborative, global problem-solving effort. Held at Kennedy Space Center Visitor Comple...

  11. International Space Station Overview

    NASA Technical Reports Server (NTRS)

    Bates, William V., Jr.

    1999-01-01

    The overview of the International Space Station (ISS) is comprised of the program vision and mission; Space Station uses; definition of program phases; as well as descriptions and status of several scheduled International Space Station Overview assembly flights.

  12. Angry Birds in Space

    NASA Video Gallery

    Aboard the International Space Station, Flight Engineer Don Pettit of NASA created a video using Angry Birds Space to explain how physics works in space, including demonstrating trajectories in mic...

  13. Exploring turbulent energy dissipation and particle energization in space plasmas: the science of THOR mission

    NASA Astrophysics Data System (ADS)

    Retinò, Alessandro

    2016-04-01

    The Universe is permeated by hot, turbulent magnetized plasmas. They are found in active galactic nuclei, supernova remnants, the intergalactic and interstellar medium, as well as in the solar corona, the solar wind and the Earth's magnetosphere. Turbulent plasmas are also found in laboratory devices such as e.g. tokamaks. Our comprehension of the plasma Universe is largely based on measurements of electromagnetic radiation such as light or X-rays which originate from particles that are heated and accelerated as a result of energy dissipation in turbulent environments. Therefore it is of key importance to study and understand how plasma is energized by turbulence. Most of the energy dissipation occurs at kinetic scales, where plasma no longer behaves as a fluid and the properties of individual plasma species (electrons, protons and other ions) become important. THOR (Turbulent Heating ObserveR - http://thor.irfu.se/) is a space mission currently in Study Phase as candidate for M-class mission within the Cosmic Vision program of the European Space Agency. The scientific theme of the THOR mission is turbulent energy dissipation and particle energization in space plasmas, which ties in with ESA's Cosmic Vision science. The main focus is on turbulence and shock processes, however areas where the different fundamental processes interact, such as reconnection in turbulence or shock generated turbulence, are also of high importance. The THOR mission aims to address fundamental questions such as how plasma is heated and particles are accelerated by turbulent fluctuations at kinetic scales, how energy is partitioned among different plasma components and how dissipation operates in different regimes of turbulence. To reach the goal, a careful design of the THOR spacecraft and its payload is ongoing, together with a strong interaction with numerical simulations. Here we present the science of THOR mission and we discuss implications of THOR observations for space

  14. Space Probe Launch

    NASA Technical Reports Server (NTRS)

    1970-01-01

    Managed by Marshall Space Flight Center, the Space Tug was a reusable multipurpose space vehicle designed to transport payloads to different orbital inclinations. Utilizing mission-specific combinations of its three primary modules (crew, propulsion, and cargo) and a variety of supplementary kits, the Space Tug was capable of numerous space applications. This 1970 artist's concept depicts the Tug's propulsion module launching a space probe into lunar orbit.

  15. Nutrition in space

    NASA Technical Reports Server (NTRS)

    Smith, S. M.; Davis-Street, J.; Rice, B. L.; Lane, H. W.

    1997-01-01

    The authors review studies conducted to define nutritional requirements for astronauts during space flight and to assess nutrition before, during, and after space flight. Topics include space food systems, research and limitations on spacecraft, physiological adaptation to weightlessness, energy requirements, dietary intake during space flight, bone demineralization, gastrointestinal function, blood volume, and nutrition requirements for space flight. Benefits of space-related nutrition research are highlighted.

  16. The International Space Station in Space Exploration

    NASA Technical Reports Server (NTRS)

    Gerstenmaier, William H.; McKay, Meredith M.

    2006-01-01

    The International Space Station (ISS) Program has many lessons to offer for the future of space exploration. Among these lessons of the ISS Program, three stand out as instrumental for the next generation of explorers. These include: 1) resourcefulness and the value of a strong international partnership; 2) flexibility as illustrated by the evolution of the ISS Program and 3) designing with dissimilar redundancy and simplicity of sparing. These lessons graphically demonstrate that the ISS Program can serve as a test bed for future programs. As the ISS Program builds upon the strong foundation of previous space programs, it can provide insight into the prospects for continued growth and cooperation in space exploration. As the capacity for spacefaring increases worldwide and as more nations invest in space exploration and space sector development, the potential for advancement in space exploration is unlimited. By building on its engineering and research achievements and international cooperation, the ISS Program is inspiring tomorrow s explorers today.

  17. Spaced Retrieval: Absolute Spacing Enhances Learning Regardless of Relative Spacing

    ERIC Educational Resources Information Center

    Karpicke, Jeffrey D.; Bauernschmidt, Althea

    2011-01-01

    Repeated retrieval enhances long-term retention, and spaced repetition also enhances retention. A question with practical and theoretical significance is whether there are particular schedules of spaced retrieval (e.g., gradually expanding the interval between tests) that produce the best learning. In the present experiment, subjects studied and…

  18. The FUV detector for the cosmic origins spectrograph on the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Vallerga, J.; Zaninovich, J.; Welsh, B.; Siegmund, O.; McPhate, J.; Hull, J.; Gaines, G.; Buzasi, D.

    2002-01-01

    The Cosmic Origins Spectrograph (COS) is a high throughput spectrometer that will be placed on the Hubble Space Telescope (HST) during the last servicing mission in the year 2003. COS will be the most sensitive UV spectrograph ever flown aboard HST and will investigate such fundamental issues as the ionization and baryon content of the intergalactic medium and the origin of large-scale structure of the Universe. The driving design goal for COS is to maximize throughput at a moderate spectral resolution of />20,000 using optics with very few reflections and detectors with high quantum efficiency in two bandpass channels: FUV (1150-1775Å) and NUV (1750-3200Å). The COS FUV detector, a windowless microchannel plate (MCP) detector, consists of two segments each 85mm×10mm concatenated end to end with a 9mm gap between them. The design is based on the Far Ultraviolet Spectroscopic Explorer detectors with identical format and front surface radius of curvature that matches the grating focal plane of the spectrograph. However, enhancements have been made in the design and fabrication of the MCPs, the photocathode, the delay line anode and the readout electronics. We discuss these design enhancements and their significance.

  19. Space weather: European Space Agency perspectives

    NASA Astrophysics Data System (ADS)

    Daly, E. J.; Hilgers, A.

    Spacecraft and payloads have become steadily more sophisticated and therefore more susceptible to space weather effects. ESA has long been active in applying models and tools to the problems associated with such effects on its spacecraft. In parallel, ESA and European agencies have built a highly successful solar-terrestrial physics capability. ESA is now investigating the marriage of these technological and scientific capabilities to address perceived user needs for space weather products and services. Two major ESA-sponsored studies are laying the groundwork for a possible operational European space weather service. The wide-ranging activities of ESA in the Space Weather/Space Environment domain are summarized and recent important examples of space weather concerns given.

  20. Space Toxicology: Human Health during Space Operations

    NASA Technical Reports Server (NTRS)

    Khan-Mayberry, Noreen; James, John T.; Tyl, ROchelle; Lam, Chiu-Wing

    2010-01-01

    Space Toxicology is a unique and targeted discipline for spaceflight, space habitation and occupation of celestial bodies including planets, moons and asteroids. Astronaut explorers face distinctive health challenges and limited resources for rescue and medical care during space operation. A central goal of space toxicology is to protect the health of the astronaut by assessing potential chemical exposures during spaceflight and setting safe limits that will protect the astronaut against chemical exposures, in a physiologically altered state. In order to maintain sustained occupation in space on the International Space Station (ISS), toxicological risks must be assessed and managed within the context of isolation continuous exposures, reuse of air and water, limited rescue options, and the need to use highly toxic compounds for propulsion. As we begin to explore other celestial bodies in situ toxicological risks, such as inhalation of reactive mineral dusts, must also be managed.

  1. Using space resources

    NASA Technical Reports Server (NTRS)

    Sullivan, Thomas A.; Mckay, David S.

    1991-01-01

    The topics covered include the following: reducing the cost of space exploration; the high cost of shipping; lunar raw materials; some useful space products; energy from the moon; ceramic, glass, and concrete construction materials; mars atmosphere resources; relationship to the Space Exploration Initiative (SEI); an evolutionary approach to using space resources; technology development; and oxygen and metal coproduction.

  2. TCLS Arm for Space

    NASA Astrophysics Data System (ADS)

    Leroy, Benoit; Helfers, Tim; Poupat, Jean-Luc

    2015-09-01

    The TCLS ARM FOR SPACE proposal was an answer to the H2020 topic “COMPET-6-2014: Bottom-up Space Technologies at low TRL”. This paper presents this H2020 TCLS ARM FOR SPACE initiative led by Airbus DS and which aims at fostering the use of European technology such as ARM processing for Space.

  3. Space Flight. Teacher Resources.

    ERIC Educational Resources Information Center

    2001

    This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4)…

  4. Space: The New Frontier.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    This document is designed primarily to describe the U.S. Space Program, its history, its current state of development, and its goals for the future. Chapter headings include: Space and You; The Early History of Space Flight; The Solar System; Space Probes and Satellites; Scientific Satellites and Sounding Rockets; Application Satellites, Unmanned…

  5. Space Guidelines for Libraries.

    ERIC Educational Resources Information Center

    Wisconsin Coordinating Committee for Higher Education, Madison.

    The following guidelines are recommended: stack space--for each 10 volumes, one square foot of space; reading room--25 square feet per station x 20% of the total undergraduate population; carrel space--25% of the graduate enrollment x 45 square feet; office and auxilliary space--135 square feet x full time equivalent staff. (NI)

  6. Budgeting Academic Space

    ERIC Educational Resources Information Center

    Harris, Watson

    2011-01-01

    There are many articles about space management, including those that discuss space calculations, metrics, and categories. Fewer articles discuss the space budgeting processes used by administrators to allocate space. The author attempts to fill this void by discussing her administrative experiences with Middle Tennessee State University's (MTSU)…

  7. Organic chemistry in space

    NASA Technical Reports Server (NTRS)

    Johnson, R. D.

    1977-01-01

    Organic cosmochemistry, organic materials in space exploration, and biochemistry of man in space are briefly surveyed. A model of Jupiter's atmosphere is considered, and the search for organic molecules in the solar system and in interstellar space is discussed. Materials and analytical techniques relevant to space exploration are indicated, and the blood and urine analyses performed on Skylab are described.

  8. The Space Shuttle

    NASA Technical Reports Server (NTRS)

    Moffitt, William L.

    2003-01-01

    As missions have become increasingly more challenging over the years, the most adaptable and capable element of space shuttle operations has proven time and again to be human beings. Human space flight provides unique aspects of observation. interaction and intervention that can reduce risk and improve mission success. No other launch vehicle - in development or in operation today - can match the space shuttle's human space flight capabilities. Preserving U.S. leadership in human space flight requires a strategy to meet those challenges. The ongoing development of next generation vehicles, along with upgrades to the space shuttle, is the most effective means for assuring our access to space.

  9. Bioprocessing in Space

    NASA Technical Reports Server (NTRS)

    Morrison, D. R. (Compiler)

    1977-01-01

    Proceedings are presented of the 1976 NASA Colloquium on bioprocessing in space. The program included general sessions and formal presentations on the following topics: NASA's Space Shuttle, Spacelab, and space-processing programs; the known unusual behavior of materials in space; space-processing experiment results; cell biology, gravity sensors in cells, space electrophoresis of living cells, new approaches to biosynthesis of biologicals from cell culture in space, and zero-g fermentation concepts; and upcoming flight opportunities and industrial application planning studies already underway.

  10. Space educators' handbook

    NASA Technical Reports Server (NTRS)

    Woodfill, Jerry

    1992-01-01

    The Space Educators' Handbook is a collection of space exploration information available on Hypercard as a space education reference book. Ranging from early dreams of space ships to current manned missions, the more than four thousand cards include entries of statistics, historical facts and anecdotes, technical articles, accounts of NASA missions from Mercury through the space shuttle, biographical information on women and men who have contributed to space exploration, scientific facts, and various other space-related data. The means of presenting the data range from cartoons and drawings to lists and narratives, some briefly quoted and some reproduced in full.

  11. Space Physiology and Operational Space Medicine

    NASA Technical Reports Server (NTRS)

    Scheuring, Richard A.

    2009-01-01

    The objectives of this slide presentation are to teach a level of familiarity with: the effects of short and long duration space flight on the human body, the major medical concerns regarding future long duration missions, the environmental issues that have potential medical impact on the crew, the role and capabilities of the Space Medicine Flight Surgeon and the environmental impacts experienced by the Apollo crews. The main physiological effects of space flight on the human body reviewed in this presentation are: space motion sickness (SMS), neurovestibular, cardiovascular, musculoskeletal, immune/hematopoietic system and behavioral/psycho-social. Some countermeasures are discussed to these effects.

  12. Space Science Curricula

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Johnson High School, Huntsville, Alabama started an international magnet program in 1987. One of the courses in the curriculum was in space science. They appealed to Marshall Space Flight Center (MSFC) when they couldn't find a suitable textbook, nor locate other classes in space science to provide a guideline. MSFC agreed to help and placed the school under an official 'Adopt-A-School' program. MSFC's chief scientist and others at the space center helped prepare a very comprehensive space science program. Examples of the subjects covered include problems of space travel, materials processing in space, technology utilization, robotics, space colonization, etc. MSFC followed up by working with Johnson High to determine if the curriculum is generally usable and workable. If it is, MSFC may make it available to other schools. MSFC not only developed the space science curriculum; they continue to support the program by sponsoring hands- on activities and tours of space research facilities.

  13. Overview and Recent Accomplishments of the Advanced Mirror Technology Development (AMTD) for Large Aperture UVOIR Space Telescopes Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Per Astro2010, a new, larger UVO telescope is needed to answer fundamental scientific questions, such as: is there life on Earth-like exoplanets; how galaxies assemble stellar populations; how baryonic matter interacts with intergalactic medium; and how solar systems form and evolve. And, present technology is not mature enough to affordably build and launch any potential UVO concept. Advanced Mirror Technology Development (AMTD) is a funded SAT project. Our objective is to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. We defined and initiated a program to mature 6 key technologies required to fabricate monolithic and segmented space mirrors.

  14. Space Shuttle Familiarization

    NASA Technical Reports Server (NTRS)

    Mellett, Kevin

    2006-01-01

    This slide presentation visualizes the NASA space center and research facility sites, as well as the geography, launching sites, launching pads, rocket launching, pre-flight activities, and space shuttle ground operations located at NASA Kennedy Space Center. Additionally, highlights the international involvement behind the International Space Station and the space station mobile servicing system. Extraterrestrial landings, surface habitats and habitation systems, outposts, extravehicular activity, and spacecraft rendezvous with the Earth return vehicle are also covered.

  15. The Austrian Space Plan

    NASA Astrophysics Data System (ADS)

    Pseiner, K.; Balogh, W.

    2002-01-01

    After several years of preparation and discussion among the involved players, the Austrian Space Plan was approved for implementation in November 2001. Based on careful benchmarking and analysis of the capabilities of the Austrian space sector it aims to create excellent conditions for the sector's further development. The new space strategy embraces Austria's participation in the mandatory and optional programmes of the European Space Agency and establishes a National Space Programme supported by separate funding opportunities. A set of clearly-defined indicators ensures that the progress in implementing the Space Plan can be objectively judged through independent, annual reviews. The National Space Programme promotes international cooperation in space research and space activities with the aim to strengthen the role of space science and to better prepare Austrian space industry for the commercial space market. In the framework of the Space Plan the Austrian Space Agency has been tasked with integrating the industry's growing involvement in aeronautics activities to better utilize synergies with the space sector. This paper reviews the various steps leading to the approval of the new space strategy and discusses the hurdles mastered in this process. It reports on the Space Plan's first results, specifically taking into account projects involving international cooperation. For the first the Austria aerospace-sector can rely on an integrated strategy for aeronautics- and space activities which is firmly rooted in the efforts to enhance the country's R&D activities. It may also act as a useful example for other small space- using countries planning to enhance their involvement in space activities.

  16. National Space Agencies vs. Commercial Space: Towards Improved Space Safety

    NASA Astrophysics Data System (ADS)

    Pelton, J.

    2013-09-01

    Traditional space policies as developed at the national level includes many elements but they are most typically driven by economic and political objectives. Legislatively administered programs apportion limited public funds to achieve "gains" that can involve employment, stimulus to the economy, national defense or other advancements. Yet political advantage is seldom far from the picture.Within the context of traditional space policies, safety issues cannot truly be described as "afterthoughts", but they are usually, at best, a secondary or even tertiary consideration. "Space safety" is often simply assumed to be "in there" somewhere. The current key question is can "safety and risk minimization", within new commercial space programs actually be elevated in importance and effectively be "designed in" at the outset. This has long been the case with commercial aviation and there is at least reasonable hope that this could also be the case for the commercial space industry in coming years. The cooperative role that the insurance industry has now played for centuries in the shipping industry and for decades in aviation can perhaps now play a constructive role in risk minimization in the commercial space domain as well. This paper begins by examining two historical case studies in the context of traditional national space policy development to see how major space policy decisions involving "manned space programs" have given undue primacy to "political considerations" over "safety" and other factors. The specific case histories examined here include first the decision to undertake the Space Shuttle Program (i.e. 1970-1972) and the second is the International Space Station. In both cases the key and overarching decisions were driven by political, schedule and cost considerations, and safety seems absence as a prime consideration. In publicly funded space programs—whether in the United States, Europe, Russia, Japan, China, India or elsewhere—it seems realistic to

  17. Man in Space, Space in the Seventies.

    ERIC Educational Resources Information Center

    Froehlich, Walter

    Included is a summary of the Apollo lunar program to date. Projected future NASA programs planned for the 1970's are discussed under the headings Skylab, Space Shuttle, and Space Station. Possibilities for the 1980's are outlined in the final section. (Author/AL)

  18. Esrange Space Center, a Gate to Space

    NASA Astrophysics Data System (ADS)

    Widell, Ola

    Swedish Space Corporation (SSC) is operating the Esrange Space Center in northern Sweden. Space operations have been performed for more than 40 years. We have a unique combination of maintaining balloon and rocket launch operations, and building payloads, providing space vehicles and service systems. Sub-orbital rocket flights with land recovery and short to long duration balloon flights up to weeks are offered. The geographical location, land recovery area and the long term experience makes Swedish Space Corporation and Esrange to an ideal gate for space activities. Stratospheric balloons are primarily used in supporting atmospheric research, validation of satellites and testing of space systems. Balloon operations have been carried out at Esrange since 1974. A large number of balloon flights are yearly launched in cooperation with CNES, France. Since 2005 NASA/CSBF and Esrange provide long duration balloon flights to North America. Flight durations up to 5 days with giant balloons (1.2 Million cubic metres) carrying heavy payload (up to 2500kg) with astronomical instruments has been performed. Balloons are also used as a crane for lifting space vehicles or parachute systems to be dropped and tested from high altitude. Many scientific groups both in US, Europe and Japan have indicated a great need of long duration balloon flights. Esrange will perform a technical polar circum balloon flight during the summer 2008 testing balloon systems and flight technique. We are also working on a permission giving us the opportunity on a circular stratospheric balloon flight around the North Pole.

  19. SpaceTech—Postgraduate space education

    NASA Astrophysics Data System (ADS)

    de Bruijn, Ferdi J.; Ashford, Edward W.; Larson, Wiley J.

    2008-07-01

    SpaceTech is a postgraduate program geared primarily for mid-career space professionals seeking to gain or improve their expertise in space systems engineering and in business engineering. SpaceTech provides a lifelong impact on its participants by broadening their capabilities, encouraging systematic "end-to-end" thinking and preparing them for any technical or business-related engineering challenges they may encounter. This flexible 1-year program offers high competency gain and increased business skills. It is held in attractive locations in a flexible, multi-cultural environment. SpaceTech is a highly effective master's program certified by the esteemed Technical University of Delft (TUD), Netherlands. SpaceTech provides expert instructors who place no barriers between themselves and participants. The program combines innovative and flexible new approaches with time-tested methods to give participants the skills required for future missions and new business, while allowing participants to meet their work commitments at the same time as they study for their master's degree. The SpaceTech program is conducted in separate sessions, generally each of 2-week duration, separated by periods of some 6-8 weeks, during which time participants may return to their normal jobs. It also includes introductory online course material that the participants can study at their leisure. The first session is held at the TUD, with subsequent sessions held at strategic space agency locations. By participating at two or more of these sessions, attendees can earn certificates of satisfactory completion from TU Delft. By participating in all of the sessions, as well as taking part in the companion Central Case Project (CCP), participants earn an accredited and highly respected master's degree in Space Systems Engineering from the TUD. Seven distinct SpaceTech modules are provided during these sessions: Space Mission Analysis and Design, Systems Engineering, Business Engineering

  20. Section 2: The Space of Media Space

    NASA Astrophysics Data System (ADS)

    Harrison, Steve

    We began our study of media space with the social aspects of mediated communication because many in the computer-supported cooperative work (CSCW) realm are familiar with models, theories, frameworks, issues, and design approaches related to sociality. But the first media space research came from another set of traditions — the ordering of space and the making of place. Formally, these are the professional and intellectual provinces of architecture, which are probably remote from the disciplinary backgrounds of most readers. However, remoteness in terms of rhetoric and training does not prevent proximity to everyday human experience. The meaning of media space with respect to human experience is the focus of the articles in this section. The spaces are designed to have meaning, and the meaning of the design derives from spatial experience.

  1. Space Station Spartan study

    NASA Technical Reports Server (NTRS)

    Lane, J. H.; Schulman, J. R.; Neupert, W. M.

    1985-01-01

    The required extension, enhancement, and upgrading of the present Spartan concept are described to conduct operations from the space station using the station's unique facilities and operational features. The space station Spartan (3S), the free flyer will be deployed from and returned to the space station and will conduct scientific missions of much longer duration than possible with the current Spartan. The potential benefits of a space station Spartan are enumerated. The objectives of the study are: (1) to develop a credible concept for a space station Spartan; and (2) to determine the associated requirements and interfaces with the space station to help ensure that the 3S can be properly accommodated.

  2. Deep Space Communication

    NASA Technical Reports Server (NTRS)

    Manshadi, Farzin

    2012-01-01

    ITU defines deep space as the volume of Space at distances from the Earth equal to, or greater than, 2 106 km. Deep Space Spacecraft have to travel tens of millions of km from Earth to reach the nearest object in deep space. Spacecraft mass and power are precious. Large ground-based antennas and very high power transmitters are needed to overcome large space loss and spacecraft's small antennas and low power transmitters. Navigation is complex and highly dependent on measurements from the Earth. Every deep space mission is unique and therefore very costly to develop.

  3. Brazil in space

    NASA Astrophysics Data System (ADS)

    de Oliveira, Fabiola

    1993-10-01

    Brazil's National Space Research Institute (INPE) was born out of the desire of a number of Brazilians to see their country participating in the conquest of space. On 3 August 1961, President Janio Quadros signed a decree, creating the Organising Group for the National Space Commission (GOCNAE) as a part of the National Research Council (CNPq). CNAE, as the institution became known later gave birth to INPE. The present activities of INPE - concentrated in the areas of Space and Atmospheric Sciences, Earth Observation, and Space Technology - and showing that space science and technology can exert an important influence on the quality of life of the general population, and on Brazil's future national development.

  4. [Reflections on physical spaces and mental spaces].

    PubMed

    Chen, Hung-Yi

    2013-08-01

    This article analyzes certain reciprocal impacts from physical spaces to mental spaces. If the epistemological construction and the spatial imagination from the subject of cogito or the social collectivities are able to influence the construction and creation of the physical spaces of that subject, then the context of that physical space may also affect the cognitive or social subject's mental cognition. This article applies the methodology of iconology from art history (E. Panofsky) and sociology (P. Bourdieu) to explore correlations between the creation of imaginative and physical spaces from the collective consciousness and mental cognition. The author uses Gilles Deleuses's opinion regarding the 17th-century Baroque style and contemporary social collective symptoms as an explanation. From these theoretical studies, the author analyzes the differences of spatial epistemology generated by Taiwan's special geological text. Finally, the author applies Michel Foucault's studies on spatial context to assess the possible application of this thesis of reciprocal impacts from mental spaces to physical spaces in a nursing context.

  5. The Classroom Space Project.

    ERIC Educational Resources Information Center

    Verbickas, Sarah

    2002-01-01

    Introduces the Classroom Space project aimed at revitalizing science education at Key Stages 3 and 4 by using exciting examples from Space Science and Astronomy to illustrate key science concepts. (Author/YDS)

  6. Space processing: A projection

    NASA Technical Reports Server (NTRS)

    Mccreight, L. R.; Griffin, R. N.

    1972-01-01

    Estimates concerning space manufacturing, which might well become the largest and most specific application of space technology by the end of the century are given. Two classes of materials are considered - electronic crystals and biologicals.

  7. Space Radiation Program Element

    NASA Technical Reports Server (NTRS)

    Krenek, Sam

    2008-01-01

    This poster presentation shows the various elements of the Space Radiation Program. It reviews the program requirements: develop and validate standards, quantify space radiation human health risks, mitigate risks through countermeasures and technologies, and treat and monitor unmitigated risks.

  8. French space activities

    NASA Technical Reports Server (NTRS)

    Blanc, R.

    1982-01-01

    The four main points of research and development of space programs by France are explained. The National Center of Space Studies is discussed, listing the missions of the Center and describing the activities of the staff.

  9. Occupational Space Medicine

    NASA Technical Reports Server (NTRS)

    Tarver, William J.

    2012-01-01

    Learning Objectives are: (1) Understand the unique work environment of astronauts. (2) Understand the effect microgravity has on human physiology (3) Understand how NASA Space Medicine Division is mitigating the health risks of space missions.

  10. Space spider crane

    NASA Technical Reports Server (NTRS)

    Macconochie, Ian O. (Inventor); Mikulas, Martin M., Jr. (Inventor); Pennington, Jack E. (Inventor); Kinkead, Rebecca L. (Inventor); Bryan, Charles F., Jr. (Inventor)

    1988-01-01

    A space spider crane for the movement, placement, and or assembly of various components on or in the vicinity of a space structure is described. As permanent space structures are utilized by the space program, a means will be required to transport cargo and perform various repair tasks. A space spider crane comprising a small central body with attached manipulators and legs fulfills this requirement. The manipulators may be equipped with constant pressure gripping end effectors or tools to accomplish various repair tasks. The legs are also equipped with constant pressure gripping end effectors to grip the space structure. Control of the space spider crane may be achieved either by computer software or a remotely situated human operator, who maintains visual contact via television cameras mounted on the space spider crane. One possible walking program consists of a parallel motion walking program whereby the small central body alternatively leans forward and backward relative to end effectors.

  11. The Space Station Chronicles

    NASA Video Gallery

    As early as the nineteenth century, writers and artists and scientists around the world began to publish their visions of a crewed outpost in space. Learn about the history of space stations, from ...

  12. Welding in Space Workshop

    NASA Technical Reports Server (NTRS)

    Workman, Gary L.

    1990-01-01

    The potential was discussed for welding in space, its advantages and disadvantages, and what type of programs can benefit from the capability. Review of the various presentations and comments made in the course of the workshop suggests several routes to obtaining a better understanding of how welding processes can be used in NASA's initiatives in space. They are as follows: (1) development of a document identifying well processes and equipment requirements applicable to space and lunar environments; (2) more demonstrations of welding particular hardware which are to be used in the above environments, especially for space repair operations; (3) increased awareness among contractors responsible for building space equipment as to the potential for welding operations in space and on other planetary bodies; and (4) continuation of space welding research projects is important to maintain awareness within NASA that welding in space is viable and beneficial.

  13. Stereotype locally convex spaces

    NASA Astrophysics Data System (ADS)

    Akbarov, S. S.

    2000-08-01

    We give complete proofs of some previously announced results in the theory of stereotype (that is, reflexive in the sense of Pontryagin duality) locally convex spaces. These spaces have important applications in topological algebra and functional analysis.

  14. Space Studies Board, 1994

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This 1994 report of the Space Studies Board of the National Research Council summarizes the charter and organization of the board, activities and membership, major and short reports, and congressional testimony. A cumulative bibliography of the Space Studies (formerly Space Science) Board and its committees is provided. An appendix contains reports of the panel to review Earth Observing System Data and Information System (EOSDIS) plans. Major reports cover scientific opportunities in the human exploration of space, the dichotomy between funding and effectiveness in space physics, an integrated strategy for the planetary sciences for the years 1995-2010, and Office of Naval Research (ONR) research opportunities in upper atmospheric sciences. Short reports cover utilization of the space station, life and microgravity sciences and the space station program, Space Infrared Telescope Facility and the Stratospheric Observatory for Infrared Astronomy, and the Advanced X-ray Astrophysics Facility and Cassini Saturn Probe.

  15. Space Traveler Project.

    ERIC Educational Resources Information Center

    Instructor, 1981

    1981-01-01

    Describes the winners of the Space Traveler Project, a contest jointly sponsored by Rockwell International, NASA, and this magazine to identify worthwhile elementary science programs relating to the Space Shuttle. (SJL)

  16. Traveling Space Museum

    NASA Video Gallery

    In an effort to inspire and motivate the next generation of space explorers, NASA’s Ames Research Center teamed up with the Traveling Space Museum to teach students the way astronauts are taughtâ...

  17. Pathfinder: Humans in space

    NASA Technical Reports Server (NTRS)

    Anderson, John L.

    1988-01-01

    Viewgraphs are presented on the Pathfinder program. Information is given on human exploration of the solar system, technical requirements interfaces, program objectives, space suits, human performance, man-machine systems, space habitats, life support systems, and artificial gravity

  18. What's Your Favorite Space?

    NASA Video Gallery

    The crew of STS-135, NASA's final space shuttle mission, and Sesame Street's Elmo welcomed visitors to "What's Your Favorite Space?" in New York City. The free, public event was presented by NASA a...

  19. Plants in Space

    NASA Video Gallery

    This student plant growth investigation on the International Space Station compares plant growth on the ground with plant growth in space. Brassica rapa seeds, commonly known as a turnip mustard, w...

  20. Angry Birds Space Encounter

    NASA Video Gallery

    At NASA's Kennedy Space Center Visitor Complex in Florida, a grand opening celebration was held for the new Angry Birds Space Encounter, March 22. Finland-based Rovio Entertainment, the creator of ...

  1. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  2. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  3. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  4. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  5. 46 CFR 154.1210 - Hold space, void space, cofferdam, and spaces containing cargo piping.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Hold space, void space, cofferdam, and spaces containing... Design, Construction and Equipment Cargo Area: Mechanical Ventilation System § 154.1210 Hold space, void space, cofferdam, and spaces containing cargo piping. (a) Each hold space, void space, cofferdam,...

  6. Space Fence Overview

    NASA Astrophysics Data System (ADS)

    Haimerl, J.; Fonder, G.

    Space is no longer a vast, empty void. Unprecedented quantities of new satellites, derelict satellites, and debris litter the skies, posing an imminent threat to America's space assets. The Space Fence System is a ground-based system of S-band radars designed to greatly enhance the Air Force Space Surveillance network. Space Fence provides unprecedented sensitivity, coverage and tracking accuracy, and contributes to key mission threads with the ability to detect, track and catalog small objects in LEO, MEO and GEO. Space Fence capabilities will revolutionize space situational awareness. Space Fence includes up to two minimally-manned radar sites and the Space Fence Operations Center. Each radar site features a design with closely-spaced, but separate, Transmit and Receive Arrays that are mission-optimized for high availability and low lifetime support costs, including prime power. The radar architecture is based on Digital Beam-forming. This capability permits tremendous user-defined flexibility to customize volume surveillance and track sectors instantaneously without impacting routine surveillance functions. Space Fence offers assured surveillance coverage for improved custody and features the capability to develop long arc tracks for accurate orbit determination, while simultaneously maintaining a persistent surveillance volume. Space Fence allows operators to reconstruct recent events such as collisions or satellite break-ups and accurately predict future events. For high-interest objects, a micro fence can be electronically constructed to gather more track data, focusing radar resources specifically on that object, providing more timely and accurate information. The Space Fence System is net-centric and will seamlessly integrate into the existing Space Surveillance Network, providing services to external users such as JSpOC and coordinating handoffs to other SSN sites. Space Fence is a robust, flexible, advanced end-to-end system that will meet the warfighters

  7. Animals in space

    NASA Technical Reports Server (NTRS)

    White, Angela

    1988-01-01

    Animals are indispensable to the space program. Their continued use could have many significant results. Those who are opposed to using animals in space should remember that space animals are treated humanely; they are necessary because results can be obtained from them that would be unobtainable from humans; and results from animal experiments can be applied to human systems. Therefore, NASA should continue to use animals in space research.

  8. Space Shuttle Endeavour launch

    NASA Technical Reports Server (NTRS)

    1992-01-01

    A smooth countdown culminated in a picture-perfect launch as the Space Shuttle Endeavour (STS-47) climbed skyward atop a ladder of billowing smoke. Primary payload for the plarned seven-day flight was Spacelab-J science laboratory. The second flight of Endeavour marks a number of historic firsts: the first space flight of an African-American woman, the first Japanese citizen to fly on a Space Shuttle, and the first married couple to fly in space.

  9. Humans in space.

    PubMed

    White, R J; Averner, M

    2001-02-22

    Many successful space missions over the past 40 years have highlighted the advantages and necessity of humans in the exploration of space. But as space travel becomes ever more feasible in the twenty-first century, the health and safety of future space explorers will be paramount. In particular, understanding the risks posed by exposure to radiation and extended weightlessness will be crucial if humans are to travel far from Earth.

  10. Clinical Space Medicine Panel

    NASA Technical Reports Server (NTRS)

    Baisden, Denise L.; Billica, Roger (Technical Monitor)

    2000-01-01

    The practice of space medicine is diverse. It includes routine preventive medical care of astronauts and pilots, the development of inflight medical capability and training of flight crews as well as the preflight, inflight, and postflight medical assessment and monitoring. The Johnson Space Center Medical Operations Branch is a leader in the practice of space medicine. The papers presented in this panel will demonstrate some of the unique aspects of space medicine.

  11. Space solar cell research

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.

    1989-01-01

    A brief overview is given of the scope of the NASA space solar cell research and development program. Silicon cells, gallium arsenide cells, indium phosphide cells, and superlattice solar cells are addressed, indicating the state of the art of each type in outer space and their advantages and drawbacks for use in outer space. Contrasts between efficiency in space and on earth are pointed out.

  12. Space, Wargames and Displays

    DTIC Science & Technology

    1987-04-01

    manual space wargames, and possibly a computerized sp&Ace wargame will help both students and researchers explorT new strategies and doctrines. V...practical experience and the tremendous costs involved with exercising such capabilities (84:156; 64:5). A space wargame could model uncertainty which is...atellite’s performance within the engineering confines. the complexity of the designs adde," to the cost of the booster or Space Shuttle ride makes for

  13. US space commerce, 1991

    NASA Technical Reports Server (NTRS)

    Pace, Scott

    1992-01-01

    The topics are presented in viewgraph form and include the following: the US share of commercial payloads in comparison with Ariane's share; world communications satellite orders; the US share of prime contracts for construction of commercial communications satellites; emerging markets; space activities at the Commerce Department (DOC); Office of Space Commerce (OSC) mission description; key drivers for commercial space; and general DOC space policy themes.

  14. Man's future in space

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1975-01-01

    Studies evaluating potential operational and commercial uses of space are being conducted, taking into account astronomy, astrophysics, manned bases and laboratories in earth orbit, space colonization, terrestrial communications, space processing and manufacturing, interstellar probes, planetary exploration, and the use of space for terrestrial energy supply. The present status in the exploration of the solar system is examined, giving attention to Jupiter, Venus, Mars, and Mercury. A brief outline of the development of human colonies on Mars is presented.

  15. Deep Space Telecommunications

    NASA Technical Reports Server (NTRS)

    Kuiper, T. B. H.; Resch, G. M.

    2000-01-01

    The increasing load on NASA's deep Space Network, the new capabilities for deep space missions inherent in a next-generation radio telescope, and the potential of new telescope technology for reducing construction and operation costs suggest a natural marriage between radio astronomy and deep space telecommunications in developing advanced radio telescope concepts.

  16. Radiation effects in space

    SciTech Connect

    Fry, R.J.M.

    1987-07-01

    As more people spend more time in space, and the return to the moon and exploratory missions are considered, the risks require continuing examination. The effects of microgravity and radiation are two potential risks in space. These risks increase with increasing mission duration. This document considers the risk of radiation effects in space workers and explorers. 17 refs., 1 fig., 4 tabs.

  17. Dependent Probability Spaces

    ERIC Educational Resources Information Center

    Edwards, William F.; Shiflett, Ray C.; Shultz, Harris

    2008-01-01

    The mathematical model used to describe independence between two events in probability has a non-intuitive consequence called dependent spaces. The paper begins with a very brief history of the development of probability, then defines dependent spaces, and reviews what is known about finite spaces with uniform probability. The study of finite…

  18. Pseudoneglect in Back Space

    ERIC Educational Resources Information Center

    Cocchini, Gianna; Watling, Rosamond; Della Sala, Sergio; Jansari, Ashok

    2007-01-01

    Successful interaction with the environment depends upon our ability to retain and update visuo-spatial information of both front and back egocentric space. Several studies have observed that healthy people tend to show a displacement of the egocentric frame of reference towards the left. However representation of space behind us (back space) has…

  19. Space methods in oceanology

    NASA Technical Reports Server (NTRS)

    Bolshakov, A. A.

    1985-01-01

    The study of Earth from space with specialized satellites, and from manned orbiting stations, has become important in the space programs. The broad complex of methods used for probing Earth from space are different methods of the study of ocean, dynamics. The different methods of ocean observation are described.

  20. Space processing applications bibliography

    NASA Technical Reports Server (NTRS)

    1978-01-01

    This special bibliography lists 724 articles, papers, and reports which discuss various aspects of the use of the space environment for materials science research or for commercial enterprise. The potentialities of space processing and the improved materials processes that are made possible by the unique aspects of the space environment are emphasized. References identified in April, 1978 are cited.

  1. Economical space power systems

    NASA Technical Reports Server (NTRS)

    Burkholder, J. H.

    1980-01-01

    A commercial approach to design and fabrication of an economical space power system is investigated. Cost projections are based on a 2 kW space power system conceptual design taking into consideration the capability for serviceability, constraints of operation in space, and commercial production engineering approaches. A breakdown of the system design, documentation, fabrication, and reliability and quality assurance estimated costs are detailed.

  2. Space Photography 1977 Index

    NASA Technical Reports Server (NTRS)

    1976-01-01

    An index is provided to representative photographs and transparencies available from NASA. Subjects include spacecraft, astronauts, lunar surface, planets and outer space phenomena, earth observations, and aviation. High altitude aircraft infrared photographs are included along with artists' conceptions of space shuttle and space colonies.

  3. Space based OTV servicing

    NASA Technical Reports Server (NTRS)

    Mcallister, J. G.

    1984-01-01

    Space based servicing of an orbit transfer vehicle (OTV) was previously outlined in sufficient detail to arrive at OTV and support system servicing requirements. Needed space station facilities and their functional requirements were identified. The impact of logistics and space serviceable design on the OTV design is detailed herein. RL10 derivative rocket engine inspection task times are enumerated.

  4. Teacher in Space Project.

    ERIC Educational Resources Information Center

    Social Education, 1986

    1986-01-01

    Prepared by NASA, this guide contains lessons dealing with space for use in elementary and secondary social studies classes. Activities are many and varied. For example, students analyze the costs and benefits of space travel, develop their own space station, and explore the decision-making processes involved in the shuttle. (RM)

  5. Radars in space

    NASA Technical Reports Server (NTRS)

    Delnore, Victor E.

    1990-01-01

    The capabilities of active microwave devices operating from space (typically, radar, scatterometers, interferometers, and altimeters) are discussed. General radar parameters and basic radar principles are explained. Applications of these parameters and principles are also explained. Trends in space radar technology, and where space radars and active microwave sensors in orbit are going are discussed.

  6. My Place, My Space

    ERIC Educational Resources Information Center

    Kostal, Heather

    2011-01-01

    Five- and six-year-olds know a lot about their own homes. Besides school, home is probably where they spend most of their time. But have they ever really thought about their space? Using students' knowledge of their current space will help them design new spaces and think about all the areas that surround them. In this project, students design…

  7. History of Space Policy

    DTIC Science & Technology

    2012-03-22

    2012), 1. 2 Winston Churchill, http://www.brainyquote.com/quotes/keywords/history.html (accessed January 8, 2012). 3 Deborah Cadbury , Space Race... Cadbury , Space Race, The Epic Battle Between America and the Soviet Union for Dominion of Space (New York: Harper Collins, 2006), 4. 22 7 Ibid., 5

  8. Affordable Space Tourism: SpaceStationSim

    NASA Technical Reports Server (NTRS)

    2006-01-01

    For over 5 years, people have been living and working in space on the International Space Station (ISS), a state-of-the-art laboratory complex orbiting high above the Earth. Offering a large, sustained microgravity environment that cannot be duplicated on Earth, the ISS furthers humankind s knowledge of science and how the body functions for extended periods of time in space all of which will prove vital on long-duration missions to Mars. On-orbit construction of the station began in November 1998, with the launch of the Russian Zarya Control Module, which provided battery power and fuel storage. This module was followed by additional components and supplies over the course of several months. In November 2000, the first ISS Expedition crew moved in. Since then, the ISS has continued to change and evolve. The space station is currently 240 feet wide, measured across the solar arrays, and 171 feet long, from the NASA Destiny Laboratory to the Russian Zvezda Habitation Module. It is 90 feet tall, and it weighs approximately 404,000 pounds. Crews inhabit a living space of about 15,000 cubic feet. To date, 90 scientific investigations have been conducted on the space station. New results from space station research, from basic science to exploration research, are being published each month, and more breakthroughs are likely to come. It is not all work on the space station, though. The orbiting home affords many of the comforts one finds on Earth. There is a weightless "weight room" and even a musical keyboard alongside research facilities. Holidays are observed, and with them, traditional foods such as turkey and cobbler are eaten, with lemonade to wash them down

  9. The Ninth National Space Symposium

    NASA Astrophysics Data System (ADS)

    Lipskin, Beth Ann; Patterson, Sara; Brescia, David A.; Burk, Donna; Flannery, Jack; St. John, Pat; Zimkas, Chuck

    Proceedings of the Ninth National Space Symposium held 13-16 April 1993 by the United States Space Foundation are presented. Presentations made at the symposium are included. Topics discussed include: Change, Challenge and Opportunity; Washington Insiders: National Space Policy and Budget Issues; Civil Space: a Vision for the Future; Space Power for an Expanded Vision; Unparalled Launch Vehicle Propulsion Capabilities; National Security Space Issues; Perspectives on the Air Force in Space; Future Technology: Space Propulsion, Earth Observation and International Cooperation; Achieving Efficient Space Transportation; the Future in Space Exploration; Kids, Parents and Teachers are into Space; and Public Congressional Forum on Space - International Space Issues.

  10. {kappa}-Rindler space

    SciTech Connect

    Kowalski-Glikman, J.

    2009-08-15

    In this paper we construct, and investigate some thermal properties of, the noncommutative counterpart of Rindler space, which we call {kappa}-Rindler space. This space is obtained by changing variables in the defining commutators of {kappa}-Minkowski space. We then rederive the commutator structure of {kappa}-Rindler space with the help of an appropriate star product, obtained from the {kappa}-Minkowski one. Using this star product, following the idea of Padmanabhan, we find the leading order, 1/{kappa} correction to the Hawking thermal spectrum.

  11. Space Acquired Photography

    USGS Publications Warehouse

    ,

    2008-01-01

    Interested in a photograph of the first space walk by an American astronaut, or the first photograph from space of a solar eclipse? Or maybe your interest is in a specific geologic, oceanic, or meteorological phenomenon? The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center is making photographs of the Earth taken from space available for search, download, and ordering. These photographs were taken by Gemini mission astronauts with handheld cameras or by the Large Format Camera that flew on space shuttle Challenger in October 1984. Space photographs are distributed by EROS only as high-resolution scanned or medium-resolution digital products.

  12. Suited for Space

    NASA Technical Reports Server (NTRS)

    Kosmo, Joseph J.

    2006-01-01

    This viewgraph presentation describes the basic functions of space suits for EVA astronauts. Space suits are also described from the past, present and future space missions. The contents include: 1) Why Do You Need A Space Suit?; 2) Generic EVA System Requirements; 3) Apollo Lunar Surface Cycling Certification; 4) EVA Operating Cycles for Mars Surface Missions; 5) Mars Surface EVA Mission Cycle Requirements; 6) Robustness Durability Requirements Comparison; 7) Carry-Weight Capabilities; 8) EVA System Challenges (Mars); 9) Human Planetary Surface Exploration Experience; 10) NASA Johnson Space Center Planetary Analog Activities; 11) Why Perform Remote Field Tests; and 12) Other Reasons Why We Perform Remote Field Tests.

  13. Space Station habitability research

    NASA Technical Reports Server (NTRS)

    Clearwater, Y. A.

    1986-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Cente is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  14. Space Station Habitability Research

    NASA Technical Reports Server (NTRS)

    Clearwater, Yvonne A.

    1988-01-01

    The purpose and scope of the Habitability Research Group within the Space Human Factors Office at the NASA/Ames Research Center is described. Both near-term and long-term research objectives in the space human factors program pertaining to the U.S. manned Space Station are introduced. The concept of habitability and its relevancy to the U.S. space program is defined within a historical context. The relationship of habitability research to the optimization of environmental and operational determinants of productivity is discussed. Ongoing habitability research efforts pertaining to living and working on the Space Station are described.

  15. Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview of the mission of the Hubble Space Telescope, a joint project between NASA and the European Space Agency which will be used to study deep space, as well as our solar system is presented. The video contains animations depicting the Hubble Space Telescope in orbit, as well as footage of scientists at the Space Telescope Science Institute making real time observations. The images Hubble acquires will be downloaded into a database that contains images of over 19,000,000 celestial objects called the Star Catalog.

  16. Low cost space.

    NASA Technical Reports Server (NTRS)

    Tischler, A. O.

    1973-01-01

    It is pointed out that a contradiction between boundless space and limited resources has put the space program in the distressing position of cutting good and worthy projects from its activities during this decade. One approach to ameliorate the situation is to increase the productivity of space activities by greater utilization of the equipment developed for its projects. The Space Shuttle constitutes the first big step in that direction. The reusable character of the Shuttle orbiter will cut operational costs by permitting recovery and reuse of payload equipment through routine round-trip operations to space.

  17. Madrid space station

    NASA Technical Reports Server (NTRS)

    Fahnestock, R. J.; Renzetti, N. A.

    1975-01-01

    The Madrid space station, operated under bilateral agreements between the governments of the United States and Spain, is described in both Spanish and English. The space station utilizes two tracking and data acquisition networks: the Deep Space Network (DSN) of the National Aeronautics and Space Administration and the Spaceflight Tracking and Data Network (STDN) operated under the direction of the Goddard Space Flight Center. The station, which is staffed by Spanish employees, comprises four facilities: Robledo 1, Cebreros, and Fresnedillas-Navalagamella, all with 26-meter-diameter antennas, and Robledo 2, with a 64-meter antenna.

  18. Virasoro model space

    NASA Astrophysics Data System (ADS)

    La, Hoseong; Nelson, Philip; Schwarz, A. S.

    1990-12-01

    The representations of a compact Lie group G can be studied via the construction of an associated “model space.” This space has the property that when geometrically quantized its Hilbert space contains every irreducible representation of G just once. We construct an analogous space for the group Diff S 1. It is naturally a complex manifold with a holomorphic, free action of Diff S 1 preserving a family of pseudo-Kahler structures. All of the “good” coadjoint orbits are obtained from our space by Hamiltonian constraint reduction. We briefly discuss the connection to the work of Alekseev and Shatashvili.

  19. Swamp to Space exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The menacing-looking alligator is really harmless. It is one of the realistic props to help convince visitors that the feel of the swamp is real in StenniSphere's Swamp to Space exhibit at John C. Stennis Space Center in Hancock County, Miss. The historical section of the Swamp to Space exhibit tells the story of why and how Stennis Space Center came to be. It also pays tribute to the families who moved their homes to make way for the space age in Mississippi.

  20. Space acquired photography

    USGS Publications Warehouse

    ,

    2008-01-01

    Interested in a photograph of the first space walk by an American astronaut, or the first photograph from space of a solar eclipse? Or maybe your interest is in a specific geologic, oceanic, or meteorological phenomenon? The U.S. Geological Survey (USGS) Earth Resources Observation and Science (EROS) Center is making photographs of the Earth taken from space available for search, download, and ordering. These photographs were taken by Gemini mission astronauts with handheld cameras or by the Large Format Camera that flew on space shuttle Challenger in October 1984. Space photographs are distributed by EROS only as high-resolution scanned or medium-resolution digital products.

  1. Developments in space medicine.

    NASA Technical Reports Server (NTRS)

    Warren, S.

    1973-01-01

    The principal directions and results of space medicine studies are reviewed, starting with the early 1950s. The effects of prolonged inaction, a gravity-free environment, and isolation on the survival and functioning of man in space are examined. Quarantine and other measures developed to guard the health of astronauts during space missions are described. Space radiation hazards and means of overcoming them are discussed. The development of exobiology as a new field of science from our increasing knowledge of the universe is noted, together with some technological and medical advances resulting from space research.

  2. TANK SPACE OPTIONS REPORT

    SciTech Connect

    WILLIS WL; AHRENDT MR

    2009-08-11

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  3. Center for Space Construction

    NASA Technical Reports Server (NTRS)

    Su, Renjeng

    1998-01-01

    The Center for Space Construction (CSC) at University of Colorado at Boulder is one of eight University Space Engineering Research Centers established by NASA in 1988. The mission of the Center is to conduct research into space technology and to directly contribute to space engineering education. The Center reports to the Department of Aerospace Engineering Sciences and resides in the College of Engineering and Applied Sciences. The College has a long and successful track record of cultivating multi-disciplinary research and education programs. The Center for Space Construction represents prominent evidence of this record. The basic concept on which the Center was founded is the in-space construction of large space systems, such as space stations, interplanetary space vehicles, and extraterrestrial space structures. Since 1993, the scope of CSC research has evolved to include the design and construction of all spacecraft, large and small. With the broadened scope our research projects seek to impact the technological basis for spacecraft such as remote sensing satellites, communication satellites and other special-purpose spacecraft, as well as large space platforms. A summary of accomplishments, including student participation and degrees awarded, during the contract period is presented.

  4. Life in space

    NASA Technical Reports Server (NTRS)

    West, John B.

    1992-01-01

    The scope of space life sciences and current research on the physiology of man in space are reviewed by examining Spacelab SLS-1. Milestones of space life sciences are discussed, with emphasis on the Skylab facility, the Space Shuttle program, and the Soviet Mir space station. Attention is given to the topic of the origins of life as it relates to space life sciences. The discovery of amino acids in meteorites and the question of whether the earth was seeded with life from space are discussed. A brief overview of efforts in the search for extraterrestrial intelligence is presented. Consideration is also given to the effects of gravity on cells, the effects of radiation, plant biology, CELSS, and the effects of gravity on humans.

  5. Space Food Systems Laboratory

    NASA Technical Reports Server (NTRS)

    Perchonok, Michele; Russo, Dane M. (Technical Monitor)

    2001-01-01

    The Space Food Systems Laboratory (SFSL) is a multipurpose laboratory responsible for space food and package research and development. It is located on-site at Johnson Space Center in Building 17. The facility supports the development of flight food, menus, packaging and food related hardware for Shuttle, International Space Station, and Advanced Life Support food systems. All foods used to support NASA ground tests and/or missions must meet the highest standards before they are 'accepted' for use on actual space flights. The foods are evaluated for nutritional content, sensory acceptability, safety, storage and shelf life, and suitability for use in micro-gravity. The food packaging is also tested to determine its functionality and suitability for use in space. Food Scientist, Registered Dieticians, Packaging Engineers, Food Systems Engineers, and Technicians staff the Space Food Systems Laboratory.

  6. Polluting Black space.

    PubMed

    Bonam, Courtney M; Bergsieker, Hilary B; Eberhardt, Jennifer L

    2016-11-01

    Social psychologists have long demonstrated that people are stereotyped on the basis of race. Researchers have conducted extensive experimental studies on the negative stereotypes associated with Black Americans in particular. Across 4 studies, we demonstrate that the physical spaces associated with Black Americans are also subject to negative racial stereotypes. Such spaces, for example, are perceived as impoverished, crime-ridden, and dirty (Study 1). Moreover, these space-focused stereotypes can powerfully influence how connected people feel to a space (Studies 2a, 2b, and 3), how they evaluate that space (Studies 2a and 2b), and how they protect that space from harm (Study 3). Indeed, processes related to space-focused stereotypes may contribute to social problems across a range of domains-from racial disparities in wealth to the overexposure of Blacks to environmental pollution. Together, the present studies broaden the scope of traditional stereotyping research and highlight promising new directions. (PsycINFO Database Record

  7. Ion chemistry in space.

    PubMed

    Larsson, M; Geppert, W D; Nyman, G

    2012-06-01

    We review the gas-phase chemistry in extraterrestrial space that is driven by reactions with atomic and molecular ions. Ions are ubiquitous in space and are potentially responsible for the formation of increasingly complex interstellar molecules. Until recently, positively charged atoms and molecules were the only ions known in space; however, this situation has changed with the discovery of various molecular anions. This review covers not only the observation, distribution and reactions of ions in space, but also laboratory-based experimental and theoretical methods for studying these ions. Recent results from space-based instruments, such as those on the Cassini-Huygens space mission and the Herschel Space Observatory, are highlighted.

  8. Space Suit Thermal Dynamics

    NASA Technical Reports Server (NTRS)

    Campbell, Anthony B.; Nair, Satish S.; Miles, John B.; Iovine, John V.; Lin, Chin H.

    1998-01-01

    The present NASA space suit (the Shuttle EMU) is a self-contained environmental control system, providing life support, environmental protection, earth-like mobility, and communications. This study considers the thermal dynamics of the space suit as they relate to astronaut thermal comfort control. A detailed dynamic lumped capacitance thermal model of the present space suit is used to analyze the thermal dynamics of the suit with observations verified using experimental and flight data. Prior to using the model to define performance characteristics and limitations for the space suit, the model is first evaluated and improved. This evaluation includes determining the effect of various model parameters on model performance and quantifying various temperature prediction errors in terms of heat transfer and heat storage. The observations from this study are being utilized in two future design efforts, automatic thermal comfort control design for the present space suit and design of future space suit systems for Space Station, Lunar, and Martian missions.

  9. China's Space Policy

    NASA Astrophysics Data System (ADS)

    Wen, Y.

    2002-01-01

    The scope of mankind's explorations has expanded from the land to the ocean, from the ocean to the air and from the air to outer space. Space technology, which emerged in the 1950's, opened up a new era of human exploration of outer space. Having developed rapidly for the last half century, mankind's activities in space have come a long way, greatly promoted social progress and had profound and far-reaching effects. Space technology is the field of high technology that has exerted the most profound influence on modern society. The continuous development and application of space technology has become an important endeavor in the modernization drives of countries all over the world. After the People's Republic of China was founded in 1949, China carried out space activities on its own. It succeed in developing and launching its first man-made satellite in 1970. China has made notable achievements and now ranks among the world's most advanced countries in some important fields of space technology. In the 21st century, China will continue to promote the development of its space industry in accordance with its national conditions, and make due contributions to the peaceful use of outer space and to the civilization and progress of all the human beings. At the turn of the century, it is important to give a brief introduction to the aims and principles, the present situation, future development plans and international co-operation concerning China's space activities. This paper covers the following aspects: development strategy, and held that the exploration and utilization of outer space should be for peaceful purposes and for the benefit of all human beings. China is drafting a space development strategy for the 21st century according to the actual demands and long-term targets of national development and to encourage growth of the space industry.

  10. [Space medicine and life sciences in space].

    PubMed

    Gerstenbrand, F; Muigg, A

    1993-01-01

    The examination of pathophysiological disturbances and the process of adaptation in man during space flight is not for optimizing of the biological systems during the training of cosmonauts and astronauts for their stay in space only. These results are also important for medical application on patients. In real microgravity disturbances of motor performances, coordination of movements, accuracy of movements, muscle function as well as structural changes in muscles is found in real microgravity. Spinal reflexes and the control of vestibular system on eye movements are also afflicted. Higher brain functions, especially associative reactions, critical abilities, memory, as well as high brain function like space orientation, body scheme control, geometric and arithmetic analysis and its reproduction, at last speech production, writing and reading are decreased. Vegetative disorders, bone decalcification, primary muscular atrophy occur as well as changes in sleep--wake regulation and diminishing of vigility. Disturbances of blood and body fluid circulation and biologic radiation damage are further effects of man space flight. Several problems of space adaptation can be studied with the methods of the simulated microgravity using the dry water immersion, examination and the bed rest model in special laboratories. The routine medicine is learning from the scientific results of the research in real and simulated microgravity.

  11. Kinematic space and wormholes

    NASA Astrophysics Data System (ADS)

    Zhang, Jian-dong; Chen, Bin

    2017-01-01

    The kinematic space could play a key role in constructing the bulk geometry from dual CFT. In this paper, we study the kinematic space from geometric points of view, without resorting to differential entropy. We find that the kinematic space could be intrinsically defined in the embedding space. For each oriented geodesic in the Poincaré disk, there is a corresponding point in the kinematic space. This point is the tip of the causal diamond of the disk whose intersection with the Poincaré disk determines the geodesic. In this geometric construction, the causal structure in the kinematic space can be seen clearly. Moreover, we find that every transformation in the SL(2,R) leads to a geodesic in the kinematic space. In particular, for a hyperbolic transformation defining a BTZ black hole, it is a timelike geodesic in the kinematic space. We show that the horizon length of the static BTZ black hole could be computed by the geodesic length of corresponding points in the kinematic space. Furthermore, we discuss the fundamental regions in the kinematic space for the BTZ blackhole and multi-boundary wormholes.

  12. International space station

    NASA Astrophysics Data System (ADS)

    DeLucas, Lawrence J.

    1996-02-01

    The International Space Station represents the largest scientific and technological cooperative program in history, drawing on the resources of thirteen nations. The early stages of construction will involve significant participation from the Russian Space Agency (RSA), numerous nations of the European Space Agency (ESA), and the space agencies of Canada (CSA), Japan (NASDA) and the United States Space Agency (NASA). Its purpose is to place a unique, highly capable laboratory in tower orbit, where high value scientific research can be performed in microgravity. In addition to providing facilities where an international crew of six astronaut-scientists can live and work in space, it will provide important laboratory research facilities for performing basic research in life science, biomedical and material sciences, as well as space and engineering technology development which cannot be accomplished on Earth. The Space Station will be comprised of numerous interlocking components which are currently being constructed on Earth. Space Station will be assembled in orbit over a period of time and will provide several experimentation modules as well as habitation modules and interfaces for logistic modules. Including the four extensive solar rays from which it will draw electrical power, the Station will measure more than 300 feet wide by 200 feet long. This paper will present an overview of the various phases of construction of the Space Station and the planned science thought will be performed during the construction phase and after completion.

  13. Quantum spaces are modular

    NASA Astrophysics Data System (ADS)

    Freidel, Laurent; Leigh, Robert G.; Minic, Djordje

    2016-11-01

    At present, our notion of space is a classical concept. Taking the point of view that quantum theory is more fundamental than classical physics, and that space should be given a purely quantum definition, we revisit the notion of Euclidean space from the point of view of quantum mechanics. Since space appears in physics in the form of labels on relativistic fields or Schrödinger wave functionals, we propose to define Euclidean quantum space as a choice of polarization for the Heisenberg algebra of quantum theory. We show, following Mackey, that generically, such polarizations contain a fundamental length scale and that contrary to what is implied by the Schrödinger polarization, they possess topologically distinct spectra. These are the modular spaces. We show that they naturally come equipped with additional geometrical structures usually encountered in the context of string theory or generalized geometry. Moreover, we show how modular space reconciles the presence of a fundamental scale with translation and rotation invariance. We also discuss how the usual classical notion of space comes out as a form of thermodynamical limit of modular space while the Schrödinger space is a singular limit.

  14. 46 CFR 108.205 - Wash spaces; toilet spaces; and shower spaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Wash spaces; toilet spaces; and shower spaces. 108.205... DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.205 Wash spaces; toilet spaces; and shower spaces. (a) For the purposes of this section— (1) “Private facility” means...

  15. 46 CFR 108.205 - Wash spaces; toilet spaces; and shower spaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Wash spaces; toilet spaces; and shower spaces. 108.205... DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.205 Wash spaces; toilet spaces; and shower spaces. (a) For the purposes of this section— (1) “Private facility” means...

  16. 46 CFR 108.205 - Wash spaces; toilet spaces; and shower spaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Wash spaces; toilet spaces; and shower spaces. 108.205... DRILLING UNITS DESIGN AND EQUIPMENT Construction and Arrangement Accommodation Spaces § 108.205 Wash spaces; toilet spaces; and shower spaces. (a) For the purposes of this section— (1) “Private facility” means...

  17. Science in space with the Space Station

    NASA Technical Reports Server (NTRS)

    Banks, Peter M.

    1987-01-01

    The potential of the Space Station as a versatile scientific laboratory is discussed, reviewing plans under consideration by the NASA Task Force on Scientific Uses of the Space Station. The special advantages offered by the Station for expanding the scope of 'space science' beyond astrophysics, geophysics, and terrestrial remote sensing are stressed. Topics examined include the advantages of a manned presence, the scientific value and cost effectiveness of smaller, more quickly performable experiments, improved communications for ground control of Station experiments, the international nature of the Station, the need for more scientist astronauts for the Station crew, Station on-orbit maintenance and repair services for coorbiting platforms, and the need for Shuttle testing of proposed Station laboratory equipment and procedures.

  18. Space Resources Roundtable 2

    NASA Technical Reports Server (NTRS)

    Ignatiev, A.

    2000-01-01

    Contents include following: Developing Technologies for Space Resource Utilization - Concept for a Planetary Engineering Research Institute. Results of a Conceptual Systems Analysis of Systems for 200 m Deep Sampling of the Martian Subsurface. The Role of Near-Earth Asteroids in Long-Term Platinum Supply. Core Drilling for Extra-Terrestrial Mining. Recommendations by the "LSP and Manufacturing" Group to the NSF-NASA Workshop on Autonomous Construction and Manufacturing for Space Electrical Power Systems. Plasma Processing of Lunar and Planetary Materials. Percussive Force Magnitude in Permafrost. Summary of the Issues Regarding the Martian Subsurface Explorer. A Costing Strategy for Manufacturing in Orbit Using Extraterrestrial Resources. Mine Planning for Asteroid Orebodies. Organic-based Dissolution of Silicates: A New Approach to Element Extraction from LunarRegohth. Historic Frontier Processes Active in Future Space-based Mineral Extraction. The Near-Earth Space Surveillance (NIESS) Mission: Discovery, Tracking, and Characterization of Asteroids, Comets, and Artificial Satellites with a microsatellite. Privatized Space Resource Property Ownership. The Fabrication of Silicon Solar Cells on the Moon Using In-Situ Resources. A New Strategy for Exploration Technology Development: The Human Exploration and Development of Space (HEDS) Exploratiori/Commercialization Technology Initiative. Space Resources for Space Tourism. Recovery of Volatiles from the Moon and Associated Issues. Preliminary Analysis of a Small Robot for Martian Regolith Excavation. The Registration of Space-based Property. Continuous Processing with Mars Gases. Drilling and Logging in Space; An Oil-Well Perspective. LORPEX for Power Surges: Drilling, Rock Crushing. An End-To-End Near-Earth Asteroid Resource Exploitation Plan. An Engineering and Cost Model for Human Space Settlement Architectures: Focus on Space Hotels and Moon/Mars Exploration. The Development and Realization of a Silicon-60-based

  19. Space 2010. [Space Station Freedom future explorations

    NASA Technical Reports Server (NTRS)

    Fordyce, J. Stuart; Grisaffe, Salvatore J.; Stephens, Joseph R.

    1989-01-01

    An account is given of the thrust of the NASA-Lewis Research Center's developmental activities in advanced materials for aerospace propulsion and space power systems; these materials must have exceptional strength/weight values, possess high operating temperature capabilities, exhibit long-term property stability, and be affordable within program budgetary constraints. Metal-matrix composites are prominent among emerging materials for space propulsion systems; representative of current interest in this field are the tungsten fiber-reinforced superalloys, which are applicable to liquid rocket propulsion systems' turbomachinery.

  20. Space resources. Overview

    NASA Technical Reports Server (NTRS)

    Mckay, Mary Fae (Editor); Mckay, David S. (Editor); Duke, Michael B. (Editor)

    1992-01-01

    Space resources must be used to support life on the Moon and in the exploration of Mars. Just as the pioneers applied the tools they brought with them to resources they found along the way rather than trying to haul all their needs over a long supply line, so too must space travelers apply their high technology tools to local resources. This overview describes the findings of a study on the use of space resources in the development of future space activities and defines the necessary research and development that must precede the practical utilization of these resources. Space resources considered included lunar soil, oxygen derived from lunar soil, material retrieved from near-Earth asteroids, abundant sunlight, low gravity, and high vacuum. The study participants analyzed the direct use of these resources, the potential demand for products from them, the techniques for retrieving and processing space resources, the necessary infrastructure, and the economic tradeoffs.

  1. Gymnastics in Phase Space

    SciTech Connect

    Chao, Alexander Wu; /SLAC

    2012-03-01

    As accelerator technology advances, the requirements on accelerator beam quality become increasingly demanding. Facing these new demands, the topic of phase space gymnastics is becoming a new focus of accelerator physics R&D. In a phase space gymnastics, the beam's phase space distribution is manipulated and precision tailored to meet the required beam qualities. On the other hand, all realization of such gymnastics will have to obey accelerator physics principles as well as technological limitations. Recent examples of phase space gymnastics include Emittance exchanges, Phase space exchanges, Emittance partitioning, Seeded FELs and Microbunched beams. The emittance related topics of this list are reviewed in this report. The accelerator physics basis, the optics design principles that provide these phase space manipulations, and the possible applications of these gymnastics, are discussed. This fascinating new field promises to be a powerful tool of the future.

  2. Ultrasound in space

    NASA Technical Reports Server (NTRS)

    Martin, David S.; South, Donna A.; Garcia, Kathleen M.; Arbeille, Philippe

    2003-01-01

    Physiology of the human body in space has been a major concern for space-faring nations since the beginning of the space era. Ultrasound (US) is one of the most cost effective and versatile forms of medical imaging. As such, its use in characterizing microgravity-induced changes in physiology is being realized. In addition to the use of US in related ground-based studies, equipment has also been modified to fly in space. This involves alteration to handle the stresses of launch and different power and cooling requirements. Study protocols also have been altered to accommodate the microgravity environment. Ultrasound studies to date have shown a pattern of adaptation to microgravity that includes changes in cardiac chamber sizes and vertebral spacing. Ultrasound has been and will continue to be an important component in the investigation of physiological and, possibly, pathologic changes occurring in space or as a result of spaceflight.

  3. The International Space University

    NASA Technical Reports Server (NTRS)

    Davidian, Kenneth J.

    1990-01-01

    The International Space University (ISU) was founded on the premise that any major space program in the future would require international cooperation as a necessary first step toward its successful completion. ISU is devoted to being a leading center for educating future authorities in the world space industry. ISU's background, goals, current form, and future plans are described. The results and benefits of the type of education and experience gained from ISU include technical reports describing the design projects undertaken by the students, an exposure to the many different disciplines which are a part of a large space project, an awareness of the existing activities from around the world in the space community, and an international professional network which spans all aspects of space activities and covers the globe.

  4. Hubble Space Telescope Assembly

    NASA Technical Reports Server (NTRS)

    1986-01-01

    This photograph shows the Hubble Space Telescope (HST) flight article assembly with multilayer insulation, high gain anterna, and solar arrays in a clean room of the Lockheed Missile and Space Company. The HST is the first of NASA's great observatories and the most complex and sensitive optical telescope ever made. The purpose of the HST is to study the cosmos from a low-Earth orbit by placing the telescope in space, enabling astronomers to collect data that is free of the Earth's atmosphere. The HST was deployed from the Space Shuttle Discovery (STS-31 mission) into Earth orbit in April 1990. The Marshall Space Flight Center had overall responsibility for design, development, and construction of the HST. The Perkin-Elmer Corporation, in Danbury, Connecticut, developed the optical system and guidance sensors. The Lockheed Missile and Space Company, Sunnyvale, California, produced the protective outer shroud and spacecraft systems, and assembled and tested the finished telescope.

  5. Flat-space singletons

    SciTech Connect

    Fronsdal, C.

    1987-02-15

    Singletons exist, as particles and as local fields, only in 3+2 de Sitter space. Their kinematical properties make them natural candidates for constituents of massless fields, and perhaps for quarks. It is interesting to find out how to describe this type of compositeness in flat space. A theory of interacting singleton fields in de Sitter space is now available, and in this paper we study the flat-space limit of the Green's functions of that theory. The flat-space limit is an autonomous theory of Green's functions, but is not an operator field theory. The three-point function is calculated and its flat-space limit is found to reveal glimpses of a physical interpretation. Causal and spectral properties are in accord with the tenets of axiomatic field theory. The theory is a generalization of local field theory, in which photons appear as composite objects although the physical S matrix is the same as in conventional QED.

  6. Space biology research development

    NASA Technical Reports Server (NTRS)

    Bonting, Sjoerd L.

    1993-01-01

    The purpose of the Search for Extraterrestrial Intelligence (SETI) Institute is to conduct and promote research related activities regarding the search for extraterrestrial life, particularly intelligent life. Such research encompasses the broad discipline of 'Life in the Universe', including all scientific and technological aspects of astronomy and the planetary sciences, chemical evolution, the origin of life, biological evolution, and cultural evolution. The primary purpose was to provide funding for the Principal Investigator to collaborate with the personnel of the SETI Institute and the NASA-Ames Research center in order to plan and develop space biology research on and in connection with Space Station Freedom; to promote cooperation with the international partners in the space station; to conduct a study on the use of biosensors in space biology research and life support system operation; and to promote space biology research through the initiation of an annual publication 'Advances in Space Biology and Medicine'.

  7. Space construction data base

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Construction of large systems in space is a technology requiring the development of construction methods to deploy, assemble, and fabricate the elements comprising such systems. A construction method is comprised of all essential functions and operations and related support equipment necessary to accomplish a specific construction task in a particular way. The data base objective is to provide to the designers of large space systems a compendium of the various space construction methods which could have application to their projects.

  8. Space applications of superconductivity

    NASA Technical Reports Server (NTRS)

    Sullivan, D. B.; Vorreiter, J. W.

    1979-01-01

    Some potential applications of superconductivity in space are summarized, e.g., the use of high field magnets for cosmic ray analysis or energy storage and generation, space applications of digital superconducting devices, such as the Josephson switch and, in the future, a superconducting computer. Other superconducting instrumentation which could be used in space includes: low frequency superconducting sensors, microwave and infrared detectors, instruments for gravitational studies, and high-Q cavities for use as stabilizing elements in clocks and oscillators.

  9. Challenges for space medicine.

    PubMed

    Sri Kantha, S

    1994-03-01

    Since April 1961, when Yuri Gagarin first orbited the earth about 270 astronauts (predominantly males) have lived in space. More than 90 percent of these astronauts were natives of the USA and the ex-USSR. In this commentary, the challenges confronting the discipline of space medicine are reviewed. These include, (1) space sickness, (2) wasting of the musculoskeletal system and (3) developing a longterm life support system.

  10. Space Mechanisms Technology Workshop

    NASA Technical Reports Server (NTRS)

    Oswald, Fred B. (Editor)

    2001-01-01

    The Mechanical Components Branch at NASA Glenn Research Center hosted a workshop to discuss the state of drive systems technology needed for space exploration. The Workshop was held Thursday, November 2, 2000. About 70 space mechanisms experts shared their experiences from working in this field and considered technology development that will be needed to support future space exploration in the next 10 to 30 years.

  11. Lyophilization process design space.

    PubMed

    Patel, Sajal Manubhai; Pikal, Michael J

    2013-11-01

    The application of key elements of quality by design (QbD), such as risk assessment, process analytical technology, and design space, is discussed widely as it relates to freeze-drying process design and development. However, this commentary focuses on constructing the Design and Control Space, particularly for the primary drying step of the freeze-drying process. Also, practical applications and considerations of claiming a process Design Space under the QbD paradigm have been discussed.

  12. Space technology research plans

    NASA Technical Reports Server (NTRS)

    Hook, W. Ray

    1992-01-01

    Development of new technologies is the primary purpose of the Office of Aeronautics and Space Technology (OAST). OAST's mission includes the following two goals: (1) to conduct research to provide fundamental understanding, develop advanced technology and promote technology transfer to assure U.S. preeminence in aeronautics and to enhance and/or enable future civil space missions: and (2) to provide unique facilities and technical expertise to support national aerospace needs. OAST includes both NASA Headquarters operations as well as programmatic and institutional management of the Ames Research Center, the Langley Research Center and the Lewis Research Center. In addition. a considerable portion of OAST's Space R&T Program is conducted through the flight and science program field centers of NASA. Within OAST, the Space Technology Directorate is responsible for the planning and implementation of the NASA Space Research and Technology Program. The Space Technology Directorate's mission is 'to assure that OAST shall provide technology for future civil space missions and provide a base of research and technology capabilities to serve all national space goals.' Accomplishing this mission entails the following objectives: y Identify, develop, validate and transfer technology to: (1) increase mission safety and reliability; (2) reduce flight program development and operations costs; (3) enhance mission performance; and (4) enable new missions. Provide the capability to: (1) advance technology in critical disciplines; and (2) respond to unanticipated mission needs. In-space experiments are an integral part of OAST's program and provides for experimental studies, development and support for in-space flight research and validation of advanced space technologies. Conducting technology experiments in space is a valuable and cost effective way to introduce advanced technologies into flight programs. These flight experiments support both the R&T base and the focussed programs

  13. NASA develops Space Station

    NASA Technical Reports Server (NTRS)

    Freitag, R. F.

    1985-01-01

    The NASA Space Station program's planning stage began in 1982, with a view to development funding in FY1987 and initial operations within a decade. An initial cost of $8 billion is projected for the continuously habitable, Space Shuttle-dependent system, not including either operational or scientific and commercial payload-development costs. As a customer-oriented facility, the Space Station will be available to foreign countries irrespective of their participation in the development phase.

  14. Space Odyssey Gift Shop

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Space Odyssey Gift Shop located in StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., offers every visitor the opportunity to go home with 'the right stuff' from his or her StenniSphere visit. The gift shop is located just inside the front doors to StenniSphere and offers a wide range of space-related apparel, memorabilia, toys, books, mission patches and more.

  15. Aging and space travel

    NASA Technical Reports Server (NTRS)

    Mohler, S. R.

    1982-01-01

    The matter of aging and its relation to space vehicle crewmembers undertaking prolonged space missions is addressed. The capabilities of the older space traveler to recover from bone demineralization and muscle atrophy are discussed. Certain advantages of the older person are noted, for example, a greater tolerance of monotony and repetitious activities. Additional parameters are delineated including the cardiovascular system, the reproductive system, ionizing radiation, performance, and group dynamics.

  16. Space Transportation Propulsion Systems

    NASA Technical Reports Server (NTRS)

    Liou, Meng-Sing; Stewart, Mark E.; Suresh, Ambady; Owen, A. Karl

    2001-01-01

    This report outlines the Space Transportation Propulsion Systems for the NPSS (Numerical Propulsion System Simulation) program. Topics include: 1) a review of Engine/Inlet Coupling Work; 2) Background/Organization of Space Transportation Initiative; 3) Synergy between High Performance Computing and Communications Program (HPCCP) and Advanced Space Transportation Program (ASTP); 4) Status of Space Transportation Effort, including planned deliverables for FY01-FY06, FY00 accomplishments (HPCCP Funded) and FY01 Major Milestones (HPCCP and ASTP); and 5) a review current technical efforts, including a review of the Rocket-Based Combined-Cycle (RBCC), Scope of Work, RBCC Concept Aerodynamic Analysis and RBCC Concept Multidisciplinary Analysis.

  17. The deep space network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    Presented is Deep Space Network (DSN) progress in flight project support, tracking and data acquisition (TDA) research and technology, network engineering, hardware and software implementation, and operations.

  18. Control of space stations

    NASA Technical Reports Server (NTRS)

    Lee, K. Y.

    1983-01-01

    A study is made to develop controllers for the NASA-JSC Triangular Space Station and evaluate their performances to make recommendations for structural design and/or control alternatives. The control system design assumes the rigid body of the Space Station and developes the lumped parameter control system by using the Inverse Optimal Control Theory. In order to evaluate the performance of the control system, a Parameter Estimation algorithm is being developed which will be used in modeling an equivalent but simpler Space Station model. Finally, a scaled version of the Space Station is being built for the purpose of physical experiments to evaluate the control system performance.

  19. Space Exploration Initiative

    NASA Technical Reports Server (NTRS)

    1990-01-01

    An overview of President Bush's Space Exploration Initiative (SEI) and it's three main components, Space Station Freedom, a Permanent Lunar Base, and a Manned Mission to Mars is provided. Computer simulations of the Space Station Freedom and Permanent Lunar Base are shown, and an animated sequence describes a Mars mission where heavy lift vehicle will bring components of a Mars Spacecraft into orbit, where it will be put together by astronauts using a robotic arm. The Mars spacecraft is shown orbiting Mars and discharging a lander to the surface, carrying human explorers. The video also details the SEI's Outreach Program, designed to garner interest in and ideas for Space Exploration.

  20. Growing plant in space

    NASA Technical Reports Server (NTRS)

    Tibbitts, T. W.; Bula, R. J.; Tibbits, T. W.

    1989-01-01

    Space agencies in several countries are planning for the culture of plants in long duration space bases. The challenge of developing crop production procedures suitable for space projects will result in a new approach of problems we may meet today or in the near future in our common production systems. You may keep in mind subjects as: minimizing wastes or pollution problems, saving materials, introductions robotic helps. Discussion between scientists involved with food production for space programmes and protected horticultural cultivation may open new perspectives.

  1. Behavioral science space contributions.

    PubMed

    Harris, P R

    1989-07-01

    In anticipation of longer missions on the space stations, Mir and Freedom, as well as a potential return to the Moon and the exploration of Mars, human survival and the quality of life aloft will be increasingly dependent upon research in the behavioral and biological sciences. This article reviews the possible contributions to space habitation of the behavioral sciences--especially anthropology, psychology, and sociology. Before space settlements become a reality, the author makes a case for the broadening of the engineering approach to human factor studies, and consideration of the integrative living systems theory in space planning and management.

  2. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Griffin, Amanda

    2012-01-01

    Among 2011's many accomplishments, we safely retired the Space Shuttle Program after 30 incredible years; completed the International Space Station and are taking steps to enable it to reach its full potential as a multi-purpose laboratory; and helped to expand scientific knowledge with missions like Aquarius, GRAIL, and the Mars Science Laboratory. Responding to national budget challenges, we are prioritizing critical capabilities and divesting ourselves of assets no longer needed for NASA's future exploration programs. Since these facilities do not have to be maintained or demolished, the government saves money. At the same time, our commercial partners save money because they do not have to build new facilities. It is a win-win for everyone. Moving forward, 2012 will be even more historically significant as we celebrate the 50th Anniversary of Kennedy Space Center. In the coming year, KSC will facilitate commercial transportation to low-Earth orbit and support the evolution of the Space Launch System and Orion crew vehicle as they ready for exploration missions, which will shape how human beings view the universe. While NASA's Vision is to lead scientific and technological advances in aeronautics and space for a Nation on the frontier of discovery KSC's vision is to be the world's preeminent launch complex for government and commercial space access, enabling the world to explore and work in space. KSC's Mission is to safely manage, develop, integrate, and sustain space systems through partnerships that enable innovative, diverse access to space and inspires the Nation's future explorers.

  3. Microtechnology in space bioreactors.

    PubMed

    Walther, I; van der Schoot, B; Boillat, M; Muller, O; Cogoli, A

    1999-03-01

    Space biology is a young and rapidly developing discipline comprising basic research and biotechnology. In the next decades it will play a prominent role in the International Space Station (ISS). Therefore, there is an increasing demand for sophisticated instrumentation to satisfy the requirements of the future projects in space biology. Bioreactors will be needed to supply fresh living material (cells and tissues) either to study still obscure basic biological mechanisms or to develop profitable bioprocesses which will take advantage of the peculiar microgravity conditions. Since more than twenty years, the Space Biology Group of the ETHZ is carrying out research projects in space (Space Shuttle/Spacelab, MIR Station, satellites, and sounding rockets) that involve also the development of space-qualified instrumentation. In the last ten years we have developed, in collaboration with Mecanex SA, Nyon, and the Institute of Microtechnology of the University of Neuchatel, a space bioreactor for the continuous culture of yeast cells under controlled conditions. Sensors, pH control, nutrients pump and fluid flowmeter are based on state-of-the-art silicon technology. After two successful space flights, a further improved version is presently prepared for a flight in the year 2000.

  4. The deep space network

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Summaries are given of Deep Space Network progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations.

  5. Multimegawatt space power reactors

    SciTech Connect

    Dearien, J.A.; Whitbeck, J.F.

    1989-01-01

    In response to the need of the Strategic Defense Initiative (SDI) and long range space exploration and extra-terrestrial basing by the National Air and Space Administration (NASA), concepts for nuclear power systems in the multi-megawatt levels are being designed and evaluated. The requirements for these power systems are being driven primarily by the need to minimize weight and maximize safety and reliability. This paper will discuss the present requirements for space based advanced power systems, technological issues associated with the development of these advanced nuclear power systems, and some of the concepts proposed for generating large amounts of power in space. 31 figs.

  6. The space station

    NASA Technical Reports Server (NTRS)

    Munoz, Abraham

    1988-01-01

    Conceived since the beginning of time, living in space is no longer a dream but rather a very near reality. The concept of a Space Station is not a new one, but a redefined one. Many investigations on the kinds of experiments and work assignments the Space Station will need to accommodate have been completed, but NASA specialists are constantly talking with potential users of the Station to learn more about the work they, the users, want to do in space. Present configurations are examined along with possible new ones.

  7. Space construction activities

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The Center for Space Construction at the University of Colorado at Boulder was established in 1988 as a University Space Engineering Research Center. The mission of the Center is to conduct interdisciplinary engineering research which is critical to the construction of future space structures and systems and to educate students who will have the vision and technical skills to successfully lead future space construction activities. The research activities are currently organized around two central projects: Orbital Construction and Lunar Construction. Summaries of the research projects are included.

  8. Space Shuttle Cockpit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. Stennisphere is open free of charge from 9 a.m. to 5 p.m. daily.

  9. Space Shuttle Cockpit exhibit

    NASA Technical Reports Server (NTRS)

    2000-01-01

    Want to sit in the cockpit of the Space Shuttle and watch astronauts work in outer space? At StenniSphere, you can do that and much more. StenniSphere, the visitor center at John C. Stennis Space Center in Hancock County, Miss., presents 14,000-square-feet of interactive exhibits that depict America's race for space as well as a glimpse of the future. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  10. Space support forum

    NASA Astrophysics Data System (ADS)

    Posvar, Wesley W.; Laidlaw, Donald A.; Brown, Robert; King, Douglas; Graham, Daniel O.; Strine, Linda; Hopkins, Mark; McNair, Carl

    This is a report of the discussions held by the Space Support Forum on the subject of education as an investment in the future. The Space Support Forum is a gathering of representatives of various space-related organizations that interact or overlap with the mission of the Space Foundation. They reported that an international science assessment in 17 countries ranked the United States either near or at the bottom in biology, chemistry, and physics. The U.S. Department of Education has laid out 6 National Education Goals to turn this status around and is helping hundreds of communities to work towards these goals, referred to as America 2000.

  11. Start of space tourism

    NASA Astrophysics Data System (ADS)

    Nagatomo, Makoto

    1993-03-01

    Space tourism means commercialization of manned space flight. From the early stage of space development, space commercialization is a profound theme in multidisciplinary fields, on the basis of a principle that the outcomes of advanced technique developed by tax should be returned to citizens. In these days, space satellite system in which users pay a fee for utilization has succeeded commercially in business such as communication network or broadcasting, and an attempt has been made to observe the earth from outer space to resolve global problems, such as environmental destruction. There is also an increasing interest in space tourism, however, many obstacles should be overcome for the realization, especially the medical problems such as effect of acceleration, cosmic ray, noise or weightless condition. In addition, the space flight business should be managed on the commercial base so that reasonable cost and large number of passengers are essential. It is necessary to design rockets suitable for tourism. For attractive design, the policy of space tourism should be clarified.

  12. Adventures in Space Medicine

    NASA Technical Reports Server (NTRS)

    Billica, Roger D.

    1999-01-01

    Human space flight experience has demonstrated a variety of hazards and risks to health and performance. In developing ways to help respond to these issues, the field of space medicine has developed a comprehensive program of space flight health risk management that has resulted in positive contributions to medicine and society in general. Examples include accelerated focus on critical health issues such as aging and osteoporosis, and development of new technologies such as non-invasive diagnostic testing for diabetics. The role of health care professionals in human space exploration represents a fulfillment of new adventures and expanding frontiers.

  13. Space station structures development

    NASA Technical Reports Server (NTRS)

    Teller, V. B.

    1986-01-01

    A study of three interrelated tasks focusing on deployable Space Station truss structures is discussed. Task 1, the development of an alternate deployment system for linear truss, resulted in the preliminary design of an in-space reloadable linear motor deployer. Task 2, advanced composites deployable truss development, resulted in the testing and evaluation of composite materials for struts used in a deployable linear truss. Task 3, assembly of structures in space/erectable structures, resulted in the preliminary design of Space Station pressurized module support structures. An independent, redundant support system was developed for the common United States modules.

  14. Space industrialization opportunities

    NASA Technical Reports Server (NTRS)

    Jernigan, C. M. (Editor); Pentecost, E. (Editor)

    1985-01-01

    The current status of efforts to develop commercial space projects is surveyed, with a focus on US programs, in reviews and reports presented at the Second Symposium on Space Industrialization held in Huntsville in February 1984. Areas explored include policy, legal, and economic aspects; communications; materials processing; earth-resources observation; and the role of space carriers and a space station. Also included in the volume are 132 brief descriptions of the NASA Microgravity Science and Applications Program Tasks as of December 1984. These tasks cover the fields electronics materials; solidification of metals, alloys, and composites; fields and transport phenomena; biotechnology; glass and ceramics; combustion science; and experimental technology.

  15. Android in Space

    NASA Video Gallery

    Can smartphones control robots in space? The Nexus-S upgrade of Synchronized Position Hold, Engage, Reorient, Experimental Satellites -- SPHERES -- makes this a reality. By connecting a smartphone ...

  16. Space Radiation Protection, Space Weather, and Exploration

    NASA Technical Reports Server (NTRS)

    Zapp, Neal; Fry, Dan; Lee, Kerry

    2010-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during a deep space exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and on the surface of the Moon may differ by multiple orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for our ability to conduct exploration operations. With these differences in risk to crew, vehicle and mission in mind, we present the status of the efforts currently underway as the required development to enable exploration operations. The changes in the operating environment as crewed operations begin to stretch away from the Earth are changing the way we think about the lines between research and operations . The real, practical work to enable a permanent human presence away from Earth has already begun

  17. Physiologic adaptation to space - Space adaptation syndrome

    NASA Technical Reports Server (NTRS)

    Vanderploeg, J. M.

    1985-01-01

    The adaptive changes of the neurovestibular system to microgravity, which result in space motion sickness (SMS), are studied. A list of symptoms, which range from vomiting to drowsiness, is provided. The two patterns of symptom development, rapid and gradual, and the duration of the symptoms are described. The concept of sensory conflict and rearrangements to explain SMS is being investigated.

  18. Space Operations in the Eighties.

    ERIC Educational Resources Information Center

    Aviation/Space, 1982

    1982-01-01

    Highlights activities/accomplishments and future endeavors related to space operations. Topics discussed include the Space Shuttle, recovery/refurbishment operations, payload manipulator, upper stages operations, tracking and data relay, spacelab, space power systems, space exposure facility, space construction, and space station. (JN)

  19. Space Station Freedom Utilization Conference

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The topics addressed in Space Station Freedom Utilization Conference are: (1) space station freedom overview and research capabilities; (2) space station freedom research plans and opportunities; (3) life sciences research on space station freedom; (4) technology research on space station freedom; (5) microgravity research and biotechnology on space station freedom; and (6) closing plenary.

  20. Cognitive Neuroscience in Space

    PubMed Central

    De la Torre, Gabriel G.

    2014-01-01

    Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond. PMID:25370373

  1. Cognitive neuroscience in space.

    PubMed

    De la Torre, Gabriel G

    2014-07-03

    Humans are the most adaptable species on this planet, able to live in vastly different environments on Earth. Space represents the ultimate frontier and a true challenge to human adaptive capabilities. As a group, astronauts and cosmonauts are selected for their ability to work in the highly perilous environment of space, giving their best. Terrestrial research has shown that human cognitive and perceptual motor performances deteriorate under stress. We would expect to observe these effects in space, which currently represents an exceptionally stressful environment for humans. Understanding the neurocognitive and neuropsychological parameters influencing space flight is of high relevance to neuroscientists, as well as psychologists. Many of the environmental characteristics specific to space missions, some of which are also present in space flight simulations, may affect neurocognitive performance. Previous work in space has shown that various psychomotor functions degrade during space flight, including central postural functions, the speed and accuracy of aimed movements, internal timekeeping, attentional processes, sensing of limb position and the central management of concurrent tasks. Other factors that might affect neurocognitive performance in space are illness, injury, toxic exposure, decompression accidents, medication side effects and excessive exposure to radiation. Different tools have been developed to assess and counteract these deficits and problems, including computerized tests and physical exercise devices. It is yet unknown how the brain will adapt to long-term space travel to the asteroids, Mars and beyond. This work represents a comprehensive review of the current knowledge and future challenges of cognitive neuroscience in space from simulations and analog missions to low Earth orbit and beyond.

  2. Space Resource Roundtable Rationale

    NASA Astrophysics Data System (ADS)

    Duke, Michael

    1999-01-01

    Recent progress in the U.S. Space Program has renewed interest in space resource issues. The Lunar Prospector mission conducted in NASA's Discovery Program has yielded interesting new insights into lunar resource issues, particularly the possibility that water is concentrated in cold traps at the lunar poles. This finding has not yet triggered a new program of lunar exploration or development, however it opens the possibility that new Discovery Missions might be viable. Several asteroid missions are underway or under development and a mission to return samples from the Mars satellite, Phobos, is being developed. These exploration missions are oriented toward scientific analysis, not resource development and utilization, but can provide additional insight into the possibilities for mining asteroids. The Mars Surveyor program now includes experiments on the 2001 lander that are directly applicable to developing propellants from the atmosphere of Mars, and the program has solicited proposals for the 2003/2005 missions in the area of resource utilization. These are aimed at the eventual human exploration of Mars. The beginning of construction of the International Space Station has awakened interest in follow-on programs of human exploration, and NASA is once more studying the human exploration of Moon, Mars and asteroids. Resource utilization will be included as objectives by some of these human exploration programs. At the same time, research and technology development programs in NASA such as the Microgravity Materials Science Program and the Cross-Enterprise Technology Development Program are including resource utilization as a valid area for study. Several major development areas that could utilize space resources, such as space tourism and solar power satellite programs, are actively under study. NASA's interests in space resource development largely are associated with NASA missions rather than the economic development of resources for industrial processes. That

  3. Access to space: The Space Shuttle's evolving rolee

    NASA Astrophysics Data System (ADS)

    Duttry, Steven R.

    1993-04-01

    Access to space is of extreme importance to our nation and the world. Military, civil, and commercial space activities all depend on reliable space transportation systems for access to space at a reasonable cost. The Space Transportation System or Space Shuttle was originally planned to provide transportation to and from a manned Earth-orbiting space station. To justify the development and operations costs, the Space Shuttle took on other space transportation requirements to include DoD, civil, and a growing commercial launch market. This research paper or case study examines the evolving role of the Space Shuttle as our nation's means of accessing space. The case study includes a review of the events leading to the development of the Space Shuttle, identifies some of the key players in the decision-making process, examines alternatives developed to mitigate the risks associated with sole reliance on the Space Shuttle, and highlights the impacts of this national space policy following the Challenger accident.

  4. Space Shuttle news reference

    NASA Technical Reports Server (NTRS)

    1981-01-01

    A detailed description of the space shuttle vehicle and associated subsystems is given. Space transportation system propulsion, power generation, environmental control and life support system and avionics are among the topics. Also, orbiter crew accommodations and equipment, mission operations and support, and flight crew complement and crew training are addressed.

  5. Next generation space robot

    NASA Technical Reports Server (NTRS)

    Iwata, Tsutomu; Oda, Mitsushige; Imai, Ryoichi

    1989-01-01

    The recent research effort on the next generation space robots is presented. The goals of this research are to develop the fundamental technologies and to acquire the design parameters of the next generation space robot. Visual sensing and perception, dexterous manipulation, man machine interface and artificial intelligence techniques such as task planning are identified as the key technologies.

  6. Language, Gesture, and Space.

    ERIC Educational Resources Information Center

    Emmorey, Karen, Ed.; Reilly, Judy S., Ed.

    A collection of papers addresses a variety of issues regarding the nature and structure of sign language, gesture, and gesture systems. Articles include: "Theoretical Issues Relating Language, Gesture, and Space: An Overview" (Karen Emmorey, Judy S. Reilly); "Real, Surrogate, and Token Space: Grammatical Consequences in ASL American…

  7. Dedicated Space | Poster

    Cancer.gov

    The three-story, 330,000-square-foot Advanced Technology Research Facility has nearly 40,000 square feet designated as partnership space (shown in blue) for co-location of collaborators from industry, academia, nonprofit sectors, and other government agencies. The partnership space, combined with multiple conference rooms and meeting areas, encourages both internal and external collaborations.

  8. Solar space vehicle

    SciTech Connect

    Lee, R.E.

    1982-10-19

    This invention relates to space vehicle where solar energy is used to generate steam, which in turn, propels the vehicle in space. A copper boiler is provided and a novel solar radiation condensing means is used to focus the sunlight on said boiler. Steam generated in said boiler is exhausted to the environment to provide a thrust for the vehicle.

  9. Space Shuttle Overview

    NASA Technical Reports Server (NTRS)

    McNutt, Leslie

    2006-01-01

    Many students are not even aware of the many activities related to the US Space Program. The intent of this presentation is to introduce students to the world of space exploration and encourage them to pursue math, science, and engineering careers. If this is not their particular interest, I want to encourage them to pursue their dream.

  10. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Deep Space Network progress in flight project support, tracking and data acquisition, research and technology, network engineering, hardware and software implementation, and operations is cited. Topics covered include: tracking and ground based navigation; spacecraft/ground communication; station control and operations technology; ground communications; and deep space stations.

  11. NASA Facts, Space Shuttle.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC. Educational Programs Div.

    This newsletter from the National Aeronautics and Space Administration (NASA) contains a description of the purposes and potentials of the Space Shuttle craft. The illustrated document explains some of the uses for which the shuttle is designed; how the shuttle will be launched from earth, carry out its mission, and land again on earth; and what a…

  12. Displays in space.

    PubMed

    Colford, Nicholas

    2002-04-01

    This chapter describes the human and environmental factors that dictate the way that displays must be designed for, and used in space. A brief history of the evolution of such display systems covers developments from the Mercury rockets to the International Space Station.

  13. The deep space network

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The progress is reported of Deep Space Network (DSN) research in the following areas: (1) flight project support, (2) spacecraft/ground communications, (3) station control and operations technology, (4) network control and processing, and (5) deep space stations. A description of the DSN functions and facilities is included.

  14. Space station dynamics

    NASA Technical Reports Server (NTRS)

    Berka, Reg

    1990-01-01

    Structural dynamic characteristics and responses of the Space Station due to the natural and induced environment are discussed. Problems that are peculiar to the Space Station are also discussed. These factors lead to an overall acceleration environment that users may expect. This acceleration environment can be considered as a loading, as well as a disturbance environment.

  15. Space and Atmospheric Environments

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.; Day, John H. (Technical Monitor)

    2002-01-01

    This viewgraph presentation provides information on space environments and the protection of materials and structures from their harsh conditions. Space environments are complex, and the complexity of spacecraft systems is increasing. Design accommodation must be realistic. Environmental problems can be limited at low cost relative to spacecraft cost.

  16. Vision for Space Exploration

    NASA Technical Reports Server (NTRS)

    Smith, Bryan K.

    2007-01-01

    Vision tasks include: a) Complete the International Space Station; b) Safely fly the Space Shuttle until 2010; c) Develop and fly the Crew Exploration Vehicle (by 2014); d) Return to the moon (by 2020); e) Sustained and affordable human and robotic program; f) Develop innovative technologies, knowledge, and infrastructures; and g) Promote international and commercial participation.

  17. Law in Outer Space.

    ERIC Educational Resources Information Center

    Schmidt, William G.

    1997-01-01

    Provides an overview of the current practice and fascinating future of legal issues involved in outer space exploration and colonization. Current space law, by necessity, addresses broad principles rather than specific incidents. Nonetheless, it covers a variety of issues including commercial development, rescue agreements, object registration,…

  18. Space Transportation Systems Technologies

    NASA Technical Reports Server (NTRS)

    Laue, Jay H.

    2001-01-01

    This document is the final report by the Science Applications International Corporation (SAIC) on contracted support provided to the National Aeronautics and Space Administration (NASA) under Contract NAS8-99060, 'Space Transportation Systems Technologies'. This contract, initiated by NASA's Marshall Space Flight Center (MSFC) on February 8, 1999, was focused on space systems technologies that directly support NASA's space flight goals. It was awarded as a Cost-Plus-Incentive-Fee (CPIF) contract to SAIC, following a competitive procurement via NASA Research Announcement, NRA 8-21. This NRA was specifically focused on tasks related to Reusable Launch Vehicles (RLVs). Through Task Area 3 (TA-3), "Other Related Technology" of this NRA contract, SAIC extensively supported the Space Transportation Directorate of MSFC in effectively directing, integrating, and setting its mission, operations, and safety priorities for future RLV-focused space flight. Following an initially contracted Base Year (February 8, 1999 through September 30, 1999), two option years were added to the contract. These were Option Year 1 (October 1, 1999 through September 30, 2000) and Option Year 2 (October 1, 2000 through September 30, 2001). This report overviews SAIC's accomplishments for the Base Year, Option Year 1, and Option Year 2, and summarizes the support provided by SAIC to the Space Transportation Directorate, NASA/MSFC.

  19. How to Manage Space.

    ERIC Educational Resources Information Center

    Cavanaugh, R. B.

    Major institutions and organizations are increasingly recognizing the need for organized and structured action on space administration. In large organizations the successful administration of space matters requires a committee that includes an architect; an engineer; and ranking persons from personnel, planning, and finance departments. Procedures…

  20. Electrostatic space radiation shielding

    NASA Astrophysics Data System (ADS)

    Tripathi, Ram K.; Wilson, John W.; Youngquist, Robert C.

    2008-09-01

    For the success of NASA’s new vision for space exploration to Moon, Mars and beyond, exposures from the hazards of severe space radiation in deep space long duration missions is ‘a must solve’ problem. The payload penalty demands a very stringent requirement on the design of the spacecrafts for human deep space missions. The exploration beyond low Earth orbit (LEO) to enable routine access of space will require protection from the hazards of the accumulated exposures of space radiation, Galactic Cosmic Rays (GCR) and Solar Particle Events (SPE), and minimizing the production of secondary radiation is a great advantage. There is a need to look to new horizons for newer technologies. The present investigation revisits electrostatic active radiation shielding and explores the feasibility of using the electrostatic shielding in concert with the state-of-the-art materials shielding and protection technologies. The full space radiation environment has been used, for the first time, to explore the feasibility of electrostatic shielding. The goal is to repel enough positive charge ions so that they miss the spacecraft without attracting thermal electrons. Conclusions are drawn for the future directions of space radiation protection.

  1. A Space for Memory

    ERIC Educational Resources Information Center

    Charman, Karen

    2015-01-01

    In this article I examine the possibilities of reparation in an era of privatisation and de-industrialisation. I examine the effect of a recent project Sunshine Memory Space, a space, designed to evoke memories of a de-industrialised urban Melbourne suburb Sunshine. This project offered the opportunity for the effects of industrial change to be…

  2. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Mount, Frances

    2004-01-01

    The first human space flight, in the early 1960s, was aimed primarily at determining whether humans could indeed survive and function in micro-gravity. Would eating and sleeping be possible? What mental and physical tasks could be performed? Subsequent programs increased the complexity of the tasks the crew performed. Table 1 summarizes the history of U.S. space flight, showing the projects, their dates, crew sizes, and mission durations. With over forty years of experience with human space flight, the emphasis now is on how to design space vehicles, habitats, and missions to produce the greatest returns to human knowledge. What are the roles of the humans in space flight in low earth orbit, on the moon, and in exploring Mars?

  3. Commercial space services

    NASA Technical Reports Server (NTRS)

    Christensen, D. L.

    1984-01-01

    An overview of space service opportunities as identified by a Wyle Laboratories' research team is given. Through the use of a baseline space scenario, a variety of space hardware, services, and commercial activities are identified and related on a time-phased basis. A model is presented to relate the potential functions of government and the private sector in a commercialized space environment during the period 1984 to 2004. Barriers, incentives and key issues are likewise identified and addressed to aid in the implementation of private sector activities for spacerelated programs. Broader awareness, legislative actions, incentive development and benefit analyses are considered in the presentation. The time-phased plan provides a useful planning and management tool, allows broader communication, and supports overall space commercialization program assessment.

  4. Space in the classroom

    NASA Astrophysics Data System (ADS)

    MacDaniel, William E.

    1986-08-01

    As we enter into the space age we must realize that our space activities are likely to constitute germinal input to an extraterrestrial society and its culture which will be uniquely different from any found on Earth. It is vital that the current generation of students have the opportunity to learn as much as possible about the nature of the changes which the space age will necessitate in both terrestrial and extraterrestrial society and culture, and the impact that such changes are likely to have upon career and lifestyle. To these ends I introduced a space related course into the Niagara University curriculum with the two goals of fostering student understanding of the sociocultural forces which shape their lives and of helping to prepare them for life in the space age. This paper describes the course, its difficulties and its prospects.

  5. Wireless Communications in Space

    NASA Technical Reports Server (NTRS)

    2004-01-01

    In 1992, NASA and the U.S. Department of Defense jointly commissioned the research and development of a technology solution to address the challenges and requirements of communicating with their spacecraft. The project yielded an international consortium composed of representatives from the space science community, industry, and academia. This group of experts developed a broad suite of protocols specifically designed for space-based communications, known today as Space Communications Protocol Standards (SCPS). Having been internationally standardized by the Consultative Committee on Space Data Systems and the International Standards Organization, SCPS is distributed as open source technology by NASA s Jet Propulsion Laboratory (JPL). The protocols are used for every national space mission that takes place today.

  6. Space Station Food System

    NASA Technical Reports Server (NTRS)

    Thurmond, Beverly A.; Gillan, Douglas J.; Perchonok, Michele G.; Marcus, Beth A.; Bourland, Charles T.

    1986-01-01

    A team of engineers and food scientists from NASA, the aerospace industry, food companies, and academia are defining the Space Station Food System. The team identified the system requirements based on an analysis of past and current space food systems, food systems from isolated environment communities that resemble Space Station, and the projected Space Station parameters. The team is resolving conflicts among requirements through the use of trade-off analyses. The requirements will give rise to a set of specifications which, in turn, will be used to produce concepts. Concept verification will include testing of prototypes, both in 1-g and microgravity. The end-item specification provides an overall guide for assembling a functional food system for Space Station.

  7. Space station data flow

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The results of the space station data flow study are reported. Conceived is a low cost interactive data dissemination system for space station experiment data that includes facility and personnel requirements and locations, phasing requirements and implementation costs. Each of the experiments identified by the operating schedule is analyzed and the support characteristics identified in order to determine data characteristics. Qualitative and quantitative comparison of candidate concepts resulted in a proposed data system configuration baseline concept that includes a data center which combines the responsibility of reprocessing, archiving, and user services according to the various agencies and their responsibility assignments. The primary source of data is the space station complex which provides through the Tracking Data Relay Satellite System (TDRS) and by space shuttle delivery data from experiments in free flying modules and orbiting shuttles as well as from the experiments in the modular space station itself.

  8. Atoms for space

    SciTech Connect

    Buden, D.

    1990-10-01

    Nuclear technology offers many advantages in an expanded solar system space exploration program. These cover a range of possible applications such as power for spacecraft, lunar and planetary surfaces, and electric propulsion; rocket propulsion for lunar and Mars vehicles; space radiation protection; water and sewage treatment; space mining; process heat; medical isotopes; and self-luminous systems. In addition, space offers opportunities to perform scientific research and develop systems that can solve problems here on Earth. These might include fusion and antimatter research, using the Moon as a source of helium-3 fusion fuel, and manufacturing perfect fusion targets. In addition, nuclear technologies can be used to reduce risk and costs of the Space Exploration Initiative. 1 fig.

  9. Lubrication of space systems

    NASA Technical Reports Server (NTRS)

    Fusaro, Robert L.

    1994-01-01

    NASA has many high-technology programs plannned for the future, such as the space station, Mission to Planet Earth (a series of Earth-observing satellites), space telescopes, and planetary orbiters. These missions will involve advanced mechanical moving components, space mechanisms that will need wear protection and lubrication. The tribology practices used in space today are primarily based on a technology that is more than 20 years old. The question is the following: Is this technology base good enough to meet the needs of these future long-duration NASA missions? This paper examines NASA's future space missions, how mechanisms are currently lubricated, some of the mechanism and tribology challenges that may be encountered in future missions, and some potential solutions to these future challenges.

  10. Space qualified laser sources

    NASA Astrophysics Data System (ADS)

    Heine, Frank; Schwander, Thomas; Lange, Robert; Smutny, Berry

    2006-04-01

    Tesat-Spacecom has developed a series of fiber coupled single frequency lasers for space applications ranging from onboard metrology for space borne FTIR spectrometers to step tunable seed lasers for LIDAR applications. The cw-seed laser developed for the ESA AEOLUS Mission shows a 3* 10 -11 Allen variance from 1 sec time intervals up to 1000 sec. Q-switched lasers with stable beam pointing under space environments are another field of development. One important aspect of a space borne laser system is a reliable fiber coupled laser diode pump source around 808nm. A dedicated development concerning chip design and packaging yielded in a 5*10 6h MTTF (mean time to failure) for the broad area emitters. Qualification and performance test results for the different laser assemblies will be presented and their application in the different space programs.

  11. Space Experiment Module (SEM)

    NASA Technical Reports Server (NTRS)

    Brodell, Charles L.

    1999-01-01

    The Space Experiment Module (SEM) Program is an education initiative sponsored by the National Aeronautics and Space Administration (NASA) Shuttle Small Payloads Project. The program provides nationwide educational access to space for Kindergarten through University level students. The SEM program focuses on the science of zero-gravity and microgravity. Within the program, NASA provides small containers or "modules" for students to fly experiments on the Space Shuttle. The experiments are created, designed, built, and implemented by students with teacher and/or mentor guidance. Student experiment modules are flown in a "carrier" which resides in the cargo bay of the Space Shuttle. The carrier supplies power to, and the means to control and collect data from each experiment.

  12. Cassava For Space Diet

    NASA Astrophysics Data System (ADS)

    Katayama, Naomi; Yamashita, Masamichi; Njemanze, Philip; Nweke, Felix; Mitsuhashi, Jun; Hachiya, Natumi; Miyashita, Sachiko; Hotta, Atuko

    Space agriculture is an advanced life support enginnering concept based on biological and ecological system ot drive the materials recycle loop and create pleasant life environment on distant planetary bodies. Choice of space diet is one of primary decision required ot be made at designing space agriculture. We propose cassava, Manihot esculenta and, for one major composition of space food materials, and evaluate its value and feasibility of farming and processing it for space diet. Criteria to select space crop species could be stated as follows. 1) Fill th enutritional requirements. There is no perfect food material to meet this requirements without making a combination with others. A set of food materials which are adopted inthe space recipe shall fit to the nutritional requirement. 2) Space food is not just for maintaining physiological activities of human, but an element of human culture. We shall consider joy of dining in space life. In this context, space foos or recipe should be accepted by future astronauts. Food culture is diverse in the world, and has close relatioship to each cultural background. Cassava root tuber is a material to supply mainly energy in the form of carbohydrate, same as cereals and other tuber crops. Cassava leaf is rich in protein high as 5.1 percents about ten times higher content than its tuber. In the food culture in Africa, cassava is a major component. Cassava root tuber in most of its strain contains cyanide, it should be removed during preparation for cooking. However certain strain are less in this cyanogenic compound, and genetically modified cassava can also aboid this problem safely.

  13. Canadian space robotic activities

    NASA Astrophysics Data System (ADS)

    Sallaberger, Christian; Space Plan Task Force, Canadian Space Agency

    The Canadian Space Agency has chosen space robotics as one of its key niche areas, and is currently preparing to deliver the first flight elements for the main robotic system of the international space station. The Mobile Servicing System (MSS) is the Canadian contribution to the international space station. It consists of three main elements. The Space Station Remote Manipulator System (SSRMS) is a 7-metre, 7-dof, robotic arm. The Special Purpose Dextrous Manipulator (SPDM), a smaller 2-metre, 7-dof, robotic arm can be used independently, or attached to the end of the SSRMS. The Mobile Base System (MBS) will be used as a support platform and will also provide power and data links for both the SSRMS and the SPDM. A Space Vision System (SVS) has been tested on Shuttle flights, and is being further developed to enhance the autonomous capabilities of the MSS. The CSA also has a Strategic Technologies in Automation and Robotics Program which is developing new technologies to fulfill future robotic space mission needs. This program is currently developing in industry technological capabilities in the areas of automation of operations, autonomous robotics, vision systems, trajectory planning and object avoidance, tactile and proximity sensors, and ground control of space robots. Within the CSA, a robotic testbed and several research programs are also advancing technologies such as haptic devices, control via head-mounted displays, predictive and preview displays, and the dynamic characterization of robotic arms. Canada is also now developing its next Long Term Space Plan. In this context, a planetary exploration program is being considered, which would utilize Canadian space robotic technologies in this new arena.

  14. Space 2000 Symposium

    NASA Technical Reports Server (NTRS)

    1999-01-01

    The purpose of the Space 2000 Symposium is to present the creativity and achievements of key figures of the 20th century. It offers a retrospective discussion on space exploration. It considers the future of the enterprise, and the legacy that will be left for future generations. The symposium includes panel discussions, smaller session meetings with some panelists, exhibits, and displays. The first session entitled "From Science Fiction to Science Facts" commences after a brief overview of the symposium. The panel discussions include talks on space exploration over many decades, and the missions of the millennium to search for life on Mars. The second session, "Risks and Rewards of Human Space Exploration," focuses on the training and health risks that astronauts face on their exploratory mission to space. Session three, "Messages and Messengers Informing and Inspire Space Exploration and the Public," focuses on the use of TV medium by educators and actors to inform and inspire a wide variety of audiences with adventures of space exploration. Session four, "The Legacy of Carl Sagan," discusses the influences made by Sagan to scientific research and the general public. In session five, "Space Exploration for a new Generation," two student speakers and the NASA Administrator Daniel S. Goldin address the group. Session six, "Destiny or Delusion? -- Humankind's Place in the Cosmos," ends the symposium with issues of space exploration and some thought provoking questions. Some of these issues and questions are: what will be the societal implications if we discover the origin of the universe, stars, or life; what will be the impact if scientists find clear evidence of life outside the domains of the Earth; should there be limits to what humans can or should learn; and what visionary steps should space-faring people take now for future generations.

  15. Kennedy Space Center - "America's Gateway to Space"

    NASA Technical Reports Server (NTRS)

    Petro, Janet; Chevalier, Mary Ann; Hurst, Chery

    2011-01-01

    KSC fits into the overall NASA vision and mission by moving forward so that what we do and learn will benefit all here on Earth. In January of last year, KSC revised its Mission and Vision statements to articulate our identity as we align with this new direction the Agency is heading. Currently KSC is endeavoring to form partnerships with industry, , Government, and academia, utilizing institutional assets and technical capabilities to support current and future m!issions. With a goal of safe, low-cost, and readily available access to space, KSC seeks to leverage emerging industries to initiate development of a new space launch system, oversee the development of a multipurpose crew vehicle, and assist with the efficient and timely evolution of commercial crew transportation capabilities. At the same time, KSC is pursuing modernizing the Center's infrastructure and creating a multi-user launch complex with increased onsite processing and integration capabilities.

  16. Space station thermal control surfaces. [space radiators

    NASA Technical Reports Server (NTRS)

    Maag, C. R.; Millard, J. M.; Jeffery, J. A.; Scott, R. R.

    1979-01-01

    Mission planning documents were used to analyze the radiator design and thermal control surface requirements for both space station and 25-kW power module, to analyze the missions, and to determine the thermal control technology needed to satisfy both sets of requirements. Parameters such as thermal control coating degradation, vehicle attitude, self eclipsing, variation in solar constant, albedo, and Earth emission are considered. Four computer programs were developed which provide a preliminary design and evaluation tool for active radiator systems in LEO and GEO. Two programs were developed as general programs for space station analysis. Both types of programs find the radiator-flow solution and evaluate external heat loads in the same way. Fortran listings are included.

  17. The Rocks From Space 'Space Safari

    NASA Astrophysics Data System (ADS)

    Pearson, Victoria; Brooks, Val

    2010-05-01

    We describe an integrated online science programme incorporating Moodle virtual learning environments (VLEs) and Elluminate Live! virtual classrooms. The "Space Safari" was run as part of the Rocks From Space (RFS) programme hosted at The Open University (OU) and in partnership with Stockton City Learning Centre (SCLC). Schools used these resources for direct science teaching or to incorporate them into the wider curriculum (arts/literature etc), after which they produce an output. Emphasis was on providing links between schools and scientists within the higher education sector. Live sessions with experts via Elluminate Live! were held regularly, including sessions with NASA scientists and astronomers in Mallorca. Teachers and students have used Space Safari resources as part of the school science curriculum and to develop key skills and additional curriculum skills. They have also used it for informal (forums, online discussions) opportunities to engage with science. Over 3 years of the project, over 1500 students have engaged, with the project. The use of virtual classrooms enabled direct interaction with many students; one session alone involved over 100 students. This project is now hosted on the eTwinning portal to enable sustainability and widen access.

  18. Space Radiation Protection, Space Weather, and Exploration

    NASA Technical Reports Server (NTRS)

    Zapp, Neal; Rutledge, R.; Semones, E. J.; Johnson, A. S.; Guetersloh, S.; Fry, D.; Stoffle, N.; Lee, K.

    2008-01-01

    Management of crew exposure to radiation is a major concern for manned spaceflight -- and will be even more important for the modern concept of longer-duration exploration. The inherent protection afforded to astronauts by the magnetic field of the Earth in Low Earth Orbit (LEO) makes operations on the space shuttle or space station very different from operations during an exploration mission. In order to experience significant radiation-derived Loss of Mission (LOM) or Loss of Crew (LOC) risk for LEO operations, one is almost driven to dictate extreme duration or to dictate an extreme sequence of solar activity. Outside of the geo-magnetosphere, however, this scenario changes dramatically. Exposures to the same event on the ISS and on the surface of the Moon may differ by multiple orders of magnitude. This change in magnitude, coupled with the logistical constraints present in implementing any practical operational mitigation make situational awareness with regard to space weather a limiting factor for our ability to conduct exploration operations. With these differences in risk to crew, vehicle and mission in mind, we present the status of the efforts currently underway as the required development to enable exploration operations. The changes in the operating environment as crewed operations begin to stretch away from the Earth are changing the way we think about the lines between "research" and "operations". The real, practical work to enable a permanent human presence away from Earth has already begun.

  19. Space Debris & its Mitigation

    NASA Astrophysics Data System (ADS)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  20. Fundamentals of Space Systems

    NASA Astrophysics Data System (ADS)

    Pisacane, Vincent L.

    2005-06-01

    Fundamentals of Space Systems was developed to satisfy two objectives: the first is to provide a text suitable for use in an advanced undergraduate or beginning graduate course in both space systems engineering and space system design. The second is to be a primer and reference book for space professionals wishing to broaden their capabilities to develop, manage the development, or operate space systems. The authors of the individual chapters are practicing engineers that have had extensive experience in developing sophisticated experimental and operational spacecraft systems in addition to having experience teaching the subject material. The text presents the fundamentals of all the subsystems of a spacecraft missions and includes illustrative examples drawn from actual experience to enhance the learning experience. It included a chapter on each of the relevant major disciplines and subsystems including space systems engineering, space environment, astrodynamics, propulsion and flight mechanics, attitude determination and control, power systems, thermal control, configuration management and structures, communications, command and telemetry, data processing, embedded flight software, survuvability and reliability, integration and test, mission operations, and the initial conceptual design of a typical small spacecraft mission.

  1. The manned space station

    NASA Astrophysics Data System (ADS)

    Kovit, B.

    The development and establishment of a manned space station represents the next major U.S. space program after the Space Shuttle. If all goes according to plan, the space station could be in orbit around the earth by 1992. A 'power tower' station configuration has been selected as a 'reference' design. This configuration involves a central truss structure to which various elements are attached. An eight-foot-square truss forms the backbone of a structure about 400 feet long. At its lower end, nearest the earth, are attached pressurized manned modules. These modules include two laboratory modules and two so-called 'habitat/command' modules, which provide living and working space for the projected crew of six persons. Later, the station's pressurized space would be expanded to accommodate up to 18 persons. By comparison, the Soviets will provide habitable space for 12 aboard a 300-ton station which they are expected to place in orbit. According to current plans the six U.S. astronauts will work in two teams of three persons each. A ninety-day tour of duty is considered.

  2. The Swedish space programme

    NASA Astrophysics Data System (ADS)

    Helger, Arne

    The Swedish National Space Board (SNSB) under the Ministry of Industry is the central governmental agency responsible for the goverment-funded Swedish national and international space and remote sensing activities. The technical implementation is mainly contracted by the Board to the state-owned Swedish Space Corporation (SSC). International cooperation is a cornerstone in the Swedish space activities, absorbing more than 80% of the total national budget. Within ESA, Sweden participates in practically all infrastructure and applications programs. Basic research, mainly concentrated to the near earth space physics, microgravity and remote sensing are important elements in the Swedish space program. Sweden participates in the French Spot program. At Esrange, data reception, and satellite control, and tracking, telemetry command (TT&C) are performed for many international satellite projects. An SSC subsidiary, SATELLITBILD, is archiving, processing and distributing remote sensing data worldwide. The National Space Development Agency of Japan (NASDA) has established a portable TT&C station for JERS-1 at Esrange, Kiruna. A center for international research on the ozone problem has been established at Esrange and Kiruna. A new sounding rocket for 15 minutes of microgravity research, MAXUS, has been developed by SSC in cooperation with Germany. A national scientific satellite, FREJA, is planned to be launched late 1992.

  3. Managing the space sciences

    NASA Technical Reports Server (NTRS)

    1995-01-01

    In April 1994 the National Research Council received a request from NASA that the NRC's Space Studies Board provide guidance on questions relating to the management of NASA's programs in the space sciences. The issues raised in the request closely reflect questions posed in the agency's fiscal year 1994 Senate appropriations report. These questions included the following: Should all the NASA space science programs be gathered into a 'National Institute for Space Science'? What other organizational changes might be made to improve the coordination and oversight of NASA space science programs? What processes should be used for establishing interdisciplinary science priorities based on scientific merit and other criteria, while ensuring opportunities for newer fields and disciplines to emerge? And what steps could be taken to improve utilization of advanced technologies in future space scienc missions? This report details the findings of the Committee on the Future of Space Science (FOSS) and its three task groups: the Task Group on Alternative Organizations, Task Group on Research Prioritization, and the Task Group on Technology.

  4. Space to Space Advanced EMU Radio

    NASA Technical Reports Server (NTRS)

    Maicke, Andrew

    2016-01-01

    The main task for this project was the development of a prototype for the Space to Space Advanced EMU Radio (SSAER). The SSAER is an updated version of the Space to Space EMU Radio (SSER), which is the current radio used by EMUs (Extravehicular Mobility Unit) for communication between suits and with the ISS. The SSER was developed in 1999, and it was desired to update the design used in the system. Importantly, besides replacing out-of-production parts it was necessary to decrease the size of the radio due to increased volume constraints with the updated Portable Life Support System (PLSS) 2.5, which will be attached on future space suits. In particular, it was desired to fabricate a PCB for the front-end of the prototype SSAER system. Once this board was manufactured and all parts assembled, it could then be tested for quality of operation as well as compliancy with the SSER required specifications. Upon arrival, a small outline of the target system was provided, and it was my responsibility to take that outline to a finished, testable board. This board would include several stages, including frequency mixing, amplification, modulation, demodulation, and handled both the transmit and receive lines of the radio. I developed a new design based on the old SSER system and the outline provided to me, and found parts to fit the tasks in my design. It was also important to consider the specifications of the SSER, which included the system noise figure, gain, and power consumption. Further, all parts needed to be impedance matched, and spurious signals needed to be avoided. In order to fulfill these two requirements, it was necessary to perform some calculations using a Smith Chart and excel analysis. Once all parts were selected, I drew the schematics for the system in Altium Designer. This included developing schematic symbols, as well as layout. Once the schematic was finished, it was then necessary to lay the parts out onto a PCB using Altium. Similar to the schematic

  5. Skylab, Space Shuttle, Space Benefits Today and Tomorrow.

    ERIC Educational Resources Information Center

    National Aeronautics and Space Administration, Washington, DC.

    The pamphlet "Skylab" describes very generally the kinds of activities to be conducted with the Skylab, America's first manned space station. "Space Shuttle" is a pamphlet which briefly states the benefits of the Space Shuttle, and a concise review of present and future benefits of space activities is presented in the pamphlet "Space Benefits…

  6. Advanced space transportation technologies

    NASA Technical Reports Server (NTRS)

    Raj, Rishi S.

    1989-01-01

    A wide range of propulsion technologies for space transportation are discussed in the literature. It is clear from the literature review that a single propulsion technology cannot satisfy the many mission needs in space. Many of the technologies tested, proposed, or in experimental stages relate to: chemical and nuclear fuel; radiative and corpuscular external energy source; tethers; cannons; and electromagnetic acceleration. The scope and limitation of these technologies is well tabulated in the literature. Prior experience has shown that an extensive amount of fuel needs to be carried along for the return mission. This requirement puts additional constraints on the lift off rocket technology and limits the payload capacity. Consider the possibility of refueling in space. If the return fuel supply is guaranteed, it will not only be possible to lift off more payload but also to provide security and safety of the mission. Exploration to deep space where solar sails and thermal effects fade would also be possible. Refueling would also facilitate travel on the planet of exploration. This aspect of space transportation prompts the present investigation. The particle emissions from the Sun's corona will be collected under three different conditions: in space closer to the Sun, in the Van Allen Belts; and on the Moon. It is proposed to convert the particle state into gaseous, liquid, or solid state and store it for refueling space vehicles. These facilities may be called space pump stations and the fuel collected as space fuel. Preliminary estimates of fuel collection at all three sites will be made. Future work will continue towards advancing the art of collection rate and design schemes for pumping stations.

  7. A green flash from the Moon; BOSS measures the distant universe in 3D; Cuts in Parliament; When asteroids collide; SpaceX to beat China

    NASA Astrophysics Data System (ADS)

    2011-06-01

    The biggest 3D map of the distant universe, based on the intergalactic hydrogen distribution as well as on the distribution of visible galaxies, has been produced by the Sloan Digital Sky Survey (SDSS-III).

  8. Views from Space

    NASA Astrophysics Data System (ADS)

    Kitmacher, Gary H.

    2002-01-01

    Only in the last century have human beings flown in space and men and machines have explored the worlds of our solar system. Robots have gone to most of the our neighboring worlds, the valleys of Mars and the clouds and moons of Jupiter. Instruments like the Hubble Space Telescope have looked into deep space. Those of us on the earth have been able to participate as vicarious explorers through the records, and experiences and the photographs that have been returned. At the beginning of the space program hardly anyone thought of photographs from space as anything more than a branch of industrial photography. There were pictures of the spaceships, and launches and of astronauts in training, but these were all pictures taken on the ground. When John Glenn became America's first man in orbit, bringing a camera was an afterthought. An Ansco Autoset was purchased in a drug store and hastily modified so the astronaut could use it more easily while in his pressure suit. In 1962, everything that Glenn did was deemed an experiment. At the beginning of the program, no one knew for certain whether weightlessness would prevent a man from seeing, or from breathing, or from eating and swallowing. Photography was deemed nothing more than a recreational extra. Not only was little expected of those first pictures taken from space, but there was serious concern that taking pictures of other nations from orbit would be seen as an act of ill will and even one of war- as sovereign sensitive nations would resent having pictures taken by Americans orbiting overhead. A few years earlier, in 1957, in reaction to the Soviet launch of the first Sputnik satellite, scientists told congressman of the necessity of orbiting our own robot spacecraft-they predicted that one day we would take daily pictures of the world's weather. Congressman were incredulous. But space photography developed quickly. For security purposes, spy satellites took over many of the responsibilities we had depended upon

  9. Fundamentals of Space Medicine

    NASA Astrophysics Data System (ADS)

    Clément, Gilles

    2005-03-01

    A total of more than 240 human space flights have been completed to date, involving about 450 astronauts from various countries, for a combined total presence in space of more than 70 years. The seventh long-duration expedition crew is currently in residence aboard the International Space Station, continuing a permanent presence in space that began in October 2000. During that time, investigations have been conducted on both humans and animal models to study the bone demineralization and muscle deconditioning, space motion sickness, the causes and possible treatment of postflight orthostatic intolerance, the changes in immune function, crew and crew-ground interactions, and the medical issues of living in a space environment, such as the effects of radiation or the risk of developing kidney stones. Some results of these investigations have led to fundamental discoveries about the adaptation of the human body to the space environment. Gilles Clément has been active in this research. This readable text presents the findings from the life science experiments conducted during and after space missions. Topics discussed in this book include: adaptation of sensory-motor, cardio-vascular, bone, and muscle systems to the microgravity of spaceflight; psychological and sociological issues of living in a confined, isolated, and stressful environment; operational space medicine, such as crew selection, training and in-flight health monitoring, countermeasures and support; results of space biology experiments on individual cells, plants, and animal models; and the impact of long-duration missions such as the human mission to Mars. The author also provides a detailed description of how to fly a space experiment, based on his own experience with research projects conducted onboard Salyut-7, Mir, Spacelab, and the Space Shuttle. Now is the time to look at the future of human spaceflight and what comes next. The future human exploration of Mars captures the imagination of both the

  10. Space Station Induced Monitoring

    NASA Technical Reports Server (NTRS)

    Spann, James F. (Editor); Torr, Marsha R. (Editor)

    1988-01-01

    This report contains the results of a conference convened May 10-11, 1988, to review plans for monitoring the Space Station induced environment, to recommend primary components of an induced environment monitoring package, and to make recommendations pertaining to suggested modifications of the Space Station External Contamination Control Requirements Document JSC 30426. The contents of this report are divided as Follows: Monitoring Induced Environment - Space Station Work Packages Requirements, Neutral Environment, Photon Emission Environment, Particulate Environment, Surface Deposition/Contamination; and Contamination Control Requirements.

  11. Advanced materials for space

    NASA Technical Reports Server (NTRS)

    Tenney, D. R.; Slemp, W. S.; Long, E. R., Jr.; Sykes, G. F.

    1980-01-01

    The principal thrust of the LSST program is to develop the materials technology required for confident design of large space systems such as antennas and platforms. Areas of research in the FY-79 program include evaluation of polysulfones, measurement of the coefficient of thermal expansion of low expansion composite laminates, thermal cycling effects, and cable technology. The development of new long thermal control coatings and adhesives for use in space is discussed. The determination of radiation damage mechanisms of resin matrix composites and the formulation of new polymer matrices that are inherently more stable in the space environment are examined.

  12. Space Shuttle Aging Elastomers

    NASA Technical Reports Server (NTRS)

    Curtis, Cris E.

    2007-01-01

    The reusable Manned Space Shuttle has been flying into Space and returning to earth for more than 25 years. The Space Shuttle's uses various types of elastomers and they play a vital role in mission success. The Orbiter has been in service well past its design life of 10 years or 100 missions. As part of the aging vehicle assessment one question under evaluation is how the elastomers are performing. This paper will outline a strategic assessment plan, how identified problems were resolved and the integration activities between subsystems and Aging Orbiter Working Group.

  13. The Space Block

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Ciba-Geigy Corporation's "Space Block," technically known as TDT-177-51 Ren Shape epoxy model block, is a two-foot by two-foot by five- inch plastic block from which master models of the Space Shuttle protective tiles are cut by NC machines. Space Block is made of epoxy resin with low viscosity and slow curing time, enabling the large block to cure uniformly without cracking. Rockwell International uses master models of Shuttle tiles to check accuracy of NC machines accurately by comparing model dimensions with specifications. New epoxy resins are attracting broad interest as a replacement for traditional materials used in modeling auto, aerospace or other parts.

  14. Detroit space odessey

    NASA Technical Reports Server (NTRS)

    Allen, H., Jr.

    1983-01-01

    The symposium included personal appearances by NASA astronauts, NASA exhibits, aerospace science lecture demonstrations (Spacemobile Lectures), and talks on job opportunities in aerospace and on the benefits of the Space Program. The program was directed mainly at (public, parochial and private) student groups, each of which spent three hours at the symposium site, Wayne State University campus, to participate in the symposium activities. The symposium was open to the general public and consisted of the NASA exhibits, aerospace science lecture demonstrations, films, talks on the benefits of the space program, and a special tasting demonstration of ""space food'' meal systems.

  15. Climate engineering and space

    NASA Astrophysics Data System (ADS)

    Schrogl, K.-U.; Summerer, L.

    2016-12-01

    This article provides a comprehensive look at climate engineering and space. Its starting point is that the States are failing to slow down global warming. The consequences for the environment and the economic and societal burden are uncontested. The priority to maintain the use of fossil resources might soon lead to the implementation of deliberate engineering measures to alter the climate instead of reducing the greenhouse gases. The article describes these currently discussed measures for such climate engineering. It will particularly analyse the expected contributions from space to these concepts. Based on this it evaluates the economic and political implications and finally tests the conformity of these concepts with space law.

  16. Evolution to Space

    NASA Technical Reports Server (NTRS)

    Cohen, Jacob

    2013-01-01

    This presentation will discuss recent space exploration results (LCROSS, KEPLER, etc.), increase access to space and the small and cube satellites platform as it relates to the future of space exploration. It will highlight the concept of modularization and the use of biology, and specifically synthetic biology in the future. The presentation will be a general public presentation. When speaking to a younger audience, I will discuss my background. All slides contain only public information. No technical ITAR/Export controlled material will be discussed.

  17. Detecting Space Dust Particles

    NASA Technical Reports Server (NTRS)

    Kinard, William H.; Humes, Donald H.; Kassel, Philip C., Jr.; Wortman, Jim; Singer, S. Fred; Stanley, John

    1988-01-01

    Technique records times specific craters formed in targets exposed in space and permits determination of direction in which impacting particles traveled at times of impacts. MOS capacitor is short-circuited by impact of particle striking at high speed. After recovery of targets from space, compositions of impacting particles established through post-flight laboratory analyses of residual materials in craters. On earth technique has industrial and military uses in detection of fragments driven by explosions. Studies of orbital dynamics of particles produced by solid-propellant rocket-motor firings in space made using technique.

  18. Space Station operations

    NASA Technical Reports Server (NTRS)

    Gray, R. H.

    1985-01-01

    An evaluation of the success of the Space Station will be based on the service provided to the customers by the Station crew, the productivity of the crew, and the costs of operation. Attention is given to details regarding Space Station operations, a summary of operational philosophies and requirements, logistics and resupply operations, prelaunch processing and launch operations, on-orbit operations, aspects of maintainability and maintenance, habitability, and questions of medical care. A logistics module concept is considered along with a logistics module processing timeline, a habitability module concept, and a Space Station rescue mission.

  19. Fundamentals of Space Medicine

    NASA Astrophysics Data System (ADS)

    Clément, G.

    2003-10-01

    As of today, a total of more than 240 human space flights have been completed, involving about 450 astronauts from various countries, for a combined total presence in space of more than 70 years. The seventh long-duration expedition crew is currently in residence aboard the International Space Station, continuing a permanent presence in space that began in October 2000. During that time, investigations have been conducted on both humans and animal models to study the bone demineralization and muscle deconditioning, space motion sickness, the causes and possible treatment of postflight orthostatic intolerance, the changes in immune function, crew and crew-ground interactions, and the medical issues of living in a space environment, such as the effects of radiation or the risk of developing kidney stones. Some results of these investigations have led to fundamental discoveries about the adaptation of the human body to the space environment. Gilles Clément has been active in this research. This book presents in a readable text the findings from the life science experiments conducted during and after space missions. Topics discussed in this book include: adaptation of sensory-motor, cardiovascular, bone and muscle systems to the microgravity of spaceflight; psychological and sociological issues of living in a confined, isolated and stressful environment; operational space medicine, such as crew selection, training and in-flight health monitoring, countermeasures and support; results of space biology experiments on individual cells, plants, and animal models; and the impact of long-duration missions such as the human mission to Mars. The author also provides a detailed description of how to fly a space experiment, based on his own experience with research projects conducted onboard Salyut-7, Mir, Spacelab, and the Space Shuttle. Now is the time to look at the future of human spaceflight and what comes next. The future human exploration of Mars captures the imagination

  20. Space engine safety system

    NASA Technical Reports Server (NTRS)

    Maul, William A.; Meyer, Claudia M.

    1991-01-01

    A rocket engine safety system is designed to initiate control procedures which will minimize damage to the engine and vehicle or test stand in the event of an engine failure. This report describes the features and the implementation issues associated with rocket engine safety systems. Specific concerns of safety systems applied to a space-based engine and long duration space missions are discussed. Examples of safety system features and architectures are given from recent safety monitoring investigations conducted for the Space Shuttle Main Engine and for future liquid rocket engines. Also, a general design and implementation process for rocket engine safety systems is presented.

  1. Space Weather Workshop

    NASA Technical Reports Server (NTRS)

    Gallagher, D. L.

    2004-01-01

    This workshop will focus on what space weather is about and its impact on society. An overall picture will be "painted" describing the Sun's influence through the solar wind on the near-Earth space environment, including the aurora, killer electrons at geosynchronous orbit, million ampere electric currents through the ionosphere and along magnetic field lines, and the generation of giga-Watts of natural radio waves. Reference material in the form of Internet sites will be provided so that teachers can discuss space weather in the classroom and enable students to learn more about this topic.

  2. Transportation - Space Station interfaces

    NASA Technical Reports Server (NTRS)

    Macconchie, Ian O.; Eide, D. G.; Witcofski, R. D.; Pennington, J. E.; Rhodes, M. D.; Melfi, L. T.; Jones, W. R.; Morris, W. D.

    1984-01-01

    A study aimed at identifying conceptual mechanisms for the transfer and manipulation of various masses in the vicinity of or on the Space Station is presented. These transfers encompass mass transfers involved in the arrivals or departures of various vehicles including the Shuttle, Orbital Manuever Vehicles (OMVs), and Orbital Transfer Vehicles (OTVs); point-to-point mass transfer of a nonroutine nature around the Space Station; and routine transfer of cargo and spacecraft around the Space Station, including the mating and processing of OMVs, OTVs, propellants, and payloads.

  3. Space station operations management

    NASA Technical Reports Server (NTRS)

    Cannon, Kathleen V.

    1989-01-01

    Space Station Freedom operations management concepts must be responsive to the unique challenges presented by the permanently manned international laboratory. Space Station Freedom will be assembled over a three year period where the operational environment will change as significant capability plateaus are reached. First Element Launch, Man-Tended Capability, and Permanent Manned Capability, represent milestones in operational capability that is increasing toward mature operations capability. Operations management concepts are being developed to accomodate the varying operational capabilities during assembly, as well as the mature operational environment. This paper describes operations management concepts designed to accomodate the uniqueness of Space Station Freedoom, utilizing tools and processes that seek to control operations costs.

  4. SpaceCube Mini

    NASA Technical Reports Server (NTRS)

    Lin, Michael; Petrick, David; Geist, Alessandro; Flatley, Thomas

    2012-01-01

    This version of the SpaceCube will be a full-fledged, onboard space processing system capable of 2500+ MIPS, and featuring a number of plug-andplay gigabit and standard interfaces, all in a condensed 3x3x3 form factor [less than 10 watts and less than 3 lb (approximately equal to 1.4 kg)]. The main processing engine is the Xilinx SIRF radiation- hardened-by-design Virtex-5 FX-130T field-programmable gate array (FPGA). Even as the SpaceCube 2.0 version (currently under test) is being targeted as the platform of choice for a number of the upcoming Earth Science Decadal Survey missions, GSFC has been contacted by customers who wish to see a system that incorporates key features of the version 2.0 architecture in an even smaller form factor. In order to fulfill that need, the SpaceCube Mini is being designed, and will be a very compact and low-power system. A similar flight system with this combination of small size, low power, low cost, adaptability, and extremely high processing power does not otherwise exist, and the SpaceCube Mini will be of tremendous benefit to GSFC and its partners. The SpaceCube Mini will utilize space-grade components. The primary processing engine of the Mini is the Xilinx Virtex-5 SIRF FX-130T radiation-hardened-by-design FPGA for critical flight applications in high-radiation environments. The Mini can also be equipped with a commercial Xilinx Virtex-5 FPGA with integrated PowerPCs for a low-cost, high-power computing platform for use in the relatively radiation- benign LEOs (low-Earth orbits). In either case, this version of the Space-Cube will weigh less than 3 pounds (.1.4 kg), conform to the CubeSat form-factor (10x10x10 cm), and will be low power (less than 10 watts for typical applications). The SpaceCube Mini will have a radiation-hardened Aeroflex FPGA for configuring and scrubbing the Xilinx FPGA by utilizing the onboard FLASH memory to store the configuration files. The FLASH memory will also be used for storing algorithm and

  5. Space Guiding Us

    NASA Astrophysics Data System (ADS)

    Primikiri, Athina

    2016-04-01

    Taking into consideration the fact that general education provides the passport for a successful career the charting of Space consists of a constructive instrument available to every single teacher. Activities touching directly upon Space comprise a source of inspiration that encourages pupils to get acquainted with natural sciences and technology while consolidating their cross-curriculum knowledge. The applications and endeavors arising out of Space play a vital role for the further development and growth of our societies. Moreover, the prosperity of people is inextricably bound up with the implementation of Space policies adapted to different sectors such as the Environment, the phenomenon of climate change, matters affecting public or private safety, humanitarian aid and other technological issues. Therefore, the thorough analysis of Space endows us with insights about new products and innovative forms of industrial collaboration. As a teacher, I have consciously chosen to utilize the topic of Space in class as an instructive tool during the last 4 years. The lure of Space combined with the fascination provided by Space flights contributes to the enrichment of children's knowledge in the field of STEM. Space consists of the perfect cross-curriculum tool for the teaching of distinct subjects such as History, Geography, Science, Environment, Literature, Music, Religion and Physical Education. Following the Curriculum for pupils aged 9-10 I opted to teach the topic of Space under the title 'Space Guiding Us' as well as its subunits: • International Space Station • Cassini/Huygens, Mission to Titan • Rosetta & Philae • European Union and Space • Mission X: Train like an Astronaut The main purpose of choosing the module of 'Space' is to stimulate the scientific and critical thought of the pupils, to foster the co-operative spirit among them and to make them aware of how the application of Science affects their everyday lives. Aims • To incite pupils

  6. The Future of UV-Visible Astronomy from Space - the NASA COPAG SIG

    NASA Astrophysics Data System (ADS)

    Scowen, Paul

    2015-08-01

    The ultraviolet (92-320nm) and visible (320-1000nm) (UVV) regions of the spectrum contain a vital suite of diagnostic lines that can be used to study diverse astronomical objects and phenomena that shape and energize the interstellar medium. It is a critical spectral range for tracing the physics of interstellar and intergalactic gas, the ionization of nebulae, the properties of shocks, the atmospheres and winds of hot stars, energy transfer between galaxies and their surrounding environments, and the engines of active galactic nuclei. This spectral range contains diagnostics that measure gas density, electron temperature, and energy balance between various modes of cooling. It is an unfortunate truth that many, if not most, of these diagnostics can only be observed outside the Earth’s atmosphere, requiring facilities in space. Space-based observations also provide access to diffraction-limited optical performance to achieve high spatial resolution. Such spatial resolutions cannot currently be achieved from the ground over wide fields, a capability that many science programs need for sampling and survey work.In order to provide continuing access in the future, new space-based missions will be needed to provide the core imaging and spectroscopic information in this important part of the electromagnetic spectrum. The technology that enables such access has been a high priority in technology development plans that have been developed by both the Cosmic Origins Program Office and Astrophysics Division at NASA, but a holistic approach to considering what is needed for a long-term technology roadmap has not yet been discussed widely within the community. This UVV Science Interest Group [SIG #2] has been established to collect community input and define long-term Cosmic Origins science objectives of the UVV astronomy community that can be addressed by space-based observations. The SIG facilitates communication to merge the needs and desires of the science community with

  7. The deep space network

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress is reported in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations. The functions and facilities of the Deep Space Network are emphasized.

  8. Emergency medicine in space.

    PubMed

    Stewart, Lowan H; Trunkey, Donald; Rebagliati, G Steve

    2007-01-01

    Recent events, including the development of space tourism and commercial spaceflight, have increased the need for specialists in space medicine. With increased duration of missions and distance from Earth, medical and surgical events will become inevitable. Ground-based medical support will no longer be adequate when return to Earth is not an option. Pending the inclusion of sub-specialists, clinical skills and medical expertise will be required that go beyond those of current physician-astronauts, yet are well within the scope of Emergency Medicine. Emergency physicians have the necessary broad knowledge base as well as proficiency in basic surgical skills and management of the critically ill and injured. Space medicine shares many attributes with extreme conditions and environments that many emergency physicians already specialize in. This article is an introduction to space medicine, and a review of current issues in the emergent management of medical and surgical disease during spaceflight.

  9. Space Vehicle Valve System

    NASA Technical Reports Server (NTRS)

    Kelley, Anthony R. (Inventor); Lindner, Jeffrey L. (Inventor)

    2014-01-01

    The present invention is a space vehicle valve system which controls the internal pressure of a space vehicle and the flow rate of purged gases at a given internal pressure and aperture site. A plurality of quasi-unique variable dimension peaked valve structures cover the purge apertures on a space vehicle. Interchangeable sheet guards configured to cover valve apertures on the peaked valve structure contain a pressure-activated surface on the inner surface. Sheet guards move outwardly from the peaked valve structure when in structural contact with a purge gas stream flowing through the apertures on the space vehicle. Changing the properties of the sheet guards changes the response of the sheet guards at a given internal pressure, providing control of the flow rate at a given aperture site.

  10. The Space Shuttle

    NASA Technical Reports Server (NTRS)

    Faget, M. A.

    1979-01-01

    Design and configurations of the Space Shuttle are examined. Attention is given to such features as the Orbiter, the guidance systems, design avionics, system design, and the flight control system centered about a redundant set of general purpose computers.

  11. Aboard the Space Shuttle

    NASA Technical Reports Server (NTRS)

    Steinberg, F. S.

    1980-01-01

    Livability aboard the space shuttle orbiter makes it possible for men and women scientists and technicians in reasonably good health to join superbly healthy astronauts as space travelers and workers. Features of the flight deck, the mid-deck living quarters, and the subfloor life support and house-keeping equipment are illustrated as well as the provisions for food preparation, eating, sleeping, exercising, and medical care. Operation of the personal hygiene equipment and of the air revitalization system for maintaining sea level atmosphere in space is described. Capabilities of Spacelab, the purpose and use of the remote manipulator arm, and the design of a permanent space operations center assembled on-orbit by shuttle personnel are also depicted.

  12. Outlook for space

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Future space activities within the context of national needs were examined, and directions that the United States should take in the civilian use and exploration of space for the time period from 1980 to 2000 were identified. It was decided that the following activities should be pursued: (1) those related to the continuing struggle to improve the quality of life (food production and distribution, new energy sources, etc., (2) those meeting the need for intellectual challenge, for exploration, and for the knowledge by which man can better understand the universe and his relationship to it, (3) those related to research and development in areas applicable to future space systems and missions. A continuing emphasis should be placed on orienting the space program to the physical needs of mankind, to the quest of the mind and spirit, to the vitality of the nation and to the relationship between this nation and other nations of the world.

  13. Space and national security

    SciTech Connect

    Stares, P.B.

    1987-01-01

    In this timely volume, the author assesses the long-term costs and benefits of developing ASAT weapons and the feasibility of alternative policies. He examines in detail the military space programs of the United States and Soviet Union and explores the potential military uses of space. He also addresses the threats to space systems and how they can be defended, the impact of ASAT attacks in wartime, and the utility of arms control. The author concludes that current U.S. policy is both shortsighted and unbalanced in stressing ASAT development over meaningful limitations on space weaponry. He presents a list of unilateral and negotiated measures as an alternative strategy for the United States.

  14. Quantum Space-Times

    NASA Astrophysics Data System (ADS)

    Ashtekar, Abhay

    In general relativity space-time ends at singularities. The big bang is considered as the Beginning and the big crunch, the End. However these conclusions are arrived at by using general relativity in regimes which lie well beyond its physical domain of validity. Examples where detailed analysis is possible show that these singularities are naturally resolved by quantum geometry effects. Quantum space-times can be vastly larger than what Einstein had us believe. These non-trivial space-time extensions enable us to answer of some long standing questions and resolve of some puzzles in fundamental physics. Thus, a century after Minkowski's revolutionary ideas on the nature of space and time, yet another paradigm shift appears to await us in the wings.

  15. Electrophoresis experiments for space

    NASA Astrophysics Data System (ADS)

    Snyder, Robert S.; Rhodes, Percy H.

    2000-01-01

    It has long been hoped that space could alleviate the problems of large-scale, high-capacity electrophoresis. Support media and reduced chamber dimensions of capillary electrophoresis have established the physical boundaries for Earth-based systems. Ideally, electrophoresis conducted in a virtual weightless environment in an unrestricted ``free'' fluid should have great potential. The electrophoresis and isoelectric focusing experiments done in the reduced gravity over the past twenty-five years have demonstrated the absence of thermal convection and sedimentation as well as the presence of electrohydrodynamics that requires careful control. One commercial venture produced gram amounts of an electrophoretically purified protein during seven Space Shuttle flights but the market disappeared in the six years between experiment conception and performance on the Space Shuttle. Our accumulated experience in microgravity plus theoretical models predict improvements that should be possible with electrophoresis if past problems are considered and both invention of new technologies and innovation of procedures on the Space Station are encouraged. .

  16. Space Station Live! Tour

    NASA Video Gallery

    NASA is using the Internet and smartphones to provide the public with a new inside look at what happens aboard the International Space Station and in the Mission Control Center. NASA Public Affairs...

  17. Space processing economics

    NASA Technical Reports Server (NTRS)

    Bredt, J. H.

    1974-01-01

    Two types of space processing operations may be considered economically justified; they are manufacturing operations that make profits and experiment operations that provide needed applied research results at lower costs than those of alternative methods. Some examples from the Skylab experiments suggest that applied research should become cost effective soon after the space shuttle and Spacelab become operational. In space manufacturing, the total cost of space operations required to process materials must be repaid by the value added to the materials by the processing. Accurate estimates of profitability are not yet possible because shuttle operational costs are not firmly established and the markets for future products are difficult to estimate. However, approximate calculations show that semiconductor products and biological preparations may be processed on a scale consistent with market requirements and at costs that are at least compatible with profitability using the Shuttle/Spacelab system.

  18. Space Food and Nutrition

    NASA Video Gallery

    This is an introduction to the Space Food System and Nutritional Biochemistry Laboratory. Topics cover food systems of programs past, present and future, and issues surrounding food systems and foo...

  19. Space robotics in Japan

    NASA Astrophysics Data System (ADS)

    Whittaker, William; Lowrie, James W.; McCain, Harry; Bejczy, Antal; Sheridan, Tom; Kanade, Takeo; Allen, Peter

    1994-03-01

    Japan has been one of the most successful countries in the world in the realm of terrestrial robot applications. The panel found that Japan has in place a broad base of robotics research and development, ranging from components to working systems for manufacturing, construction, and human service industries. From this base, Japan looks to the use of robotics in space applications and has funded work in space robotics since the mid-1980's. The Japanese are focusing on a clear image of what they hope to achieve through three objectives for the 1990's: developing long-reach manipulation for tending experiments on Space Station Freedom, capturing satellites using a free-flying manipulator, and surveying part of the moon with a mobile robot. This focus and a sound robotics infrastructure is enabling the young Japanese space program to develop relevant systems for extraterrestrial robotics applications.

  20. Future space transport

    NASA Technical Reports Server (NTRS)

    Grishin, S. D.; Chekalin, S. V.

    1984-01-01

    Prospects for the mastery of space and the basic problems which must be solved in developing systems for both manned and cargo spacecraft are examined. The achievements and flaws of rocket boosters are discussed as well as the use of reusable spacecraft. The need for orbiting satellite solar power plants and related astrionics for active control of large space structures for space stations and colonies in an age of space industrialization is demonstrated. Various forms of spacecraft propulsion are described including liquid propellant rocket engines, nuclear reactors, thermonuclear rocket engines, electrorocket engines, electromagnetic engines, magnetic gas dynamic generators, electromagnetic mass accelerators (rail guns), laser rocket engines, pulse nuclear rocket engines, ramjet thermonuclear rocket engines, and photon rockets. The possibilities of interstellar flight are assessed.

  1. The deep space network

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The functions and facilities of the Deep Space Network are considered. Progress in flight project support, tracking and data acquisition research and technology, network engineering, hardware and software implementation, and operations is reported.

  2. Telescopes and space exploration

    NASA Technical Reports Server (NTRS)

    Brandt, J. C.; Maran, S. P.

    1982-01-01

    Progress in contemporary astronomy and astrophysics is shown to depend on complementary investigations with sensitive telescopes operating in several wavelength regions, some of which can be on the Earth's surface and others of which must be in space.

  3. Space tug thermal control

    NASA Technical Reports Server (NTRS)

    Ward, T. L.

    1975-01-01

    The future development of full capability Space Tug will impose strict requirements upon the thermal design. While requiring a reliable and reusable design, Space Tug must be capable of steady-state and transient thermal operation during any given mission for mission durations of up to seven days and potentially longer periods of time. Maximum flexibility and adaptability of Space Tug to the mission model requires that the vehicle operate within attitude constraints throughout any specific mission. These requirements were translated into a preliminary design study for a geostationary deploy and retrieve mission definition for Space Tug to determine the thermal control design requirements. Results of the study are discussed with emphasis given to some of the unique avenues pursued during the study, as well as the recommended thermal design configuration.

  4. Earth study from space

    NASA Technical Reports Server (NTRS)

    Sidorenko, A. V.

    1981-01-01

    The significance that space studies are making to all Earth sciences in the areas of geography, geodesy, cartography, geology, meteorology, oceanology, agronomy, and ecology is discussed. It is predicted that cosmonautics will result in a revolution in science and technology.

  5. Space Station Software Recommendations

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor)

    1985-01-01

    Four panels of invited experts and NASA representatives focused on the following topics: software management, software development environment, languages, and software standards. Each panel deliberated in private, held two open sessions with audience participation, and developed recommendations for the NASA Space Station Program. The major thrusts of the recommendations were as follows: (1) The software management plan should establish policies, responsibilities, and decision points for software acquisition; (2) NASA should furnish a uniform modular software support environment and require its use for all space station software acquired (or developed); (3) The language Ada should be selected for space station software, and NASA should begin to address issues related to the effective use of Ada; and (4) The space station software standards should be selected (based upon existing standards where possible), and an organization should be identified to promulgate and enforce them. These and related recommendations are described in detail in the conference proceedings.

  6. Testing weapons in space

    SciTech Connect

    Carter, A.B.

    1989-07-01

    The Antiballistic-Missile Treaty seems to forbid the testing of ABM weapons in space, but the US has pushed for a broad interpretation of the language. Would a more permissive regime really serve US interests This paper reviews the rationale of the treaty's provisions to help answer this question. Four modes of testing a space weapon are treated differently by the ABM treaty: (1) an orbiting weapon intercepts a ballistic weapon is flight; (2) intercepting weapon is launched on a suborbital flight; (3) both weapon and target are placed in space; and (4) orbiting weapon is aimed at an aircraft in flight or a target on the ground. Three approaches to negotiating an agreement to limit testing weapons in space are discussed. They differ in the strictness of the limits.

  7. Space Station Software Issues

    NASA Technical Reports Server (NTRS)

    Voigt, S. (Editor); Beskenis, S. (Editor)

    1985-01-01

    Issues in the development of software for the Space Station are discussed. Software acquisition and management, software development environment, standards, information system support for software developers, and a future software advisory board are addressed.

  8. Space Smackdown 101

    NASA Technical Reports Server (NTRS)

    Hasan, David A.

    2011-01-01

    Space Smackdown is a competition that involves a collaborative multi-team exercise that engages in constructive simulation of a world with simulation of vehicles deployed in that world including stand-alone and integrated missions.

  9. The deep space network

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The facilities, programming system, and monitor and control system for the deep space network are described. Ongoing planetary and interplanetary flight projects are reviewed, along with tracking and ground-based navigation, communications, and network and facility engineering.

  10. Technologies. [space power sources

    NASA Technical Reports Server (NTRS)

    Brandhorst, Henry W., Jr.

    1992-01-01

    Energy technologies to meet the power requirements of future space missions are reviewed. Photovoltaic, solar dynamic, and solar thermal technologies are discussed along with techniques for energy storage and power management and distribution.

  11. The quantum space race

    NASA Astrophysics Data System (ADS)

    Jennewein, Thomas; Higgins, Brendon

    2013-03-01

    Sending satellites equipped with quantum technologies into space will be the first step towards a global quantum-communication network. As Thomas Jennewein and Brendon Higgins explain, these systems will also enable physicists to test fundamental physics in new regimes.

  12. Automated assembly in space

    NASA Technical Reports Server (NTRS)

    Srivastava, Sandanand; Dwivedi, Suren N.; Soon, Toh Teck; Bandi, Reddy; Banerjee, Soumen; Hughes, Cecilia

    1989-01-01

    The installation of robots and their use of assembly in space will create an exciting and promising future for the U.S. Space Program. The concept of assembly in space is very complicated and error prone and it is not possible unless the various parts and modules are suitably designed for automation. Certain guidelines are developed for part designing and for an easy precision assembly. Major design problems associated with automated assembly are considered and solutions to resolve these problems are evaluated in the guidelines format. Methods for gripping and methods for part feeding are developed with regard to the absence of gravity in space. The guidelines for part orientation, adjustments, compliances and various assembly construction are discussed. Design modifications of various fasteners and fastening methods are also investigated.

  13. Liquid lubrication in space

    NASA Technical Reports Server (NTRS)

    Zaretsky, Erwin V.

    1990-01-01

    The requirement for long-term, reliable operation of aerospace mechanisms has, with a few exceptions, pushed the state of the art in tribology. Space mission life requirements in the early 1960s were generally 6 months to a year. The proposed U.S. space station schedule to be launched in the 1990s must be continuously usable for 10 to 20 years. Liquid lubrication systems are generally used for mission life requirements longer than a year. Although most spacecraft or satellites have reached their required lifetimes without a lubrication-related failure, the application of liquid lubricants in the space environment presents unique challenges. The state of the art of liquid lubrication in space as well as the problems and their solutions are reviewed.

  14. The Deep Space Network

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Progress on the Deep Space Network (DSN) supporting research and technology, advanced development, engineering and implementation, and DSN operations is presented. The functions and facilities of the DSN are described.

  15. Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    Simpkins, Patrick A.

    2010-01-01

    This slide presentation reviews the importance of the Kennedy Space Center both in terms to the economy of Florida and to spaceflight. It reviews the general NASA direction,the challenges of the coming year and the accomplishments.

  16. Composite Space Telescope Truss

    NASA Video Gallery

    NASA engineers are recycling an idea for a lightweight, compact space telescope structure from the early 1990s. The 315 struts and 84 nodes were originally designed to enable spacewalking astronaut...

  17. Space Flute Duet

    NASA Video Gallery

    Harmony reaches new heights as NASA Astronaut Cady Coleman, circling Earth aboard the International Space Station, and musician Ian Anderson, founder of the rock band Jethro Tull, join together for...

  18. Space Medicine Medical Operations

    NASA Video Gallery

    This is an overview of the Space and Clinical Operations Division whose mission is to optimize the health, fitness and well-being of flight crews, their dependents and employees of the Johnson Spac...

  19. Nuclear Power in Space

    DOE R&D Accomplishments Database

    1994-01-01

    In the early years of the United States space program, lightweight batteries, fuel cells, and solar modules provided electric power for space missions. As missions became more ambitious and complex, power needs increased and scientists investigated various options to meet these challenging power requirements. One of the options was nuclear energy. By the mid-1950s, research had begun in earnest on ways to use nuclear power in space. These efforts resulted in the first radioisotope thermoelectric generators (RTGs), which are nuclear power generators build specifically for space and special terrestrial uses. These RTGs convert the heat generated from the natural decay of their radioactive fuel into electricity. RTGs have powered many spacecraft used for exploring the outer planets of the solar system and orbiting the sun and Earth. They have also landed on Mars and the moon. They provide the power that enables us to see and learn about even the farthermost objects in our solar system.

  20. Radiation effects in space

    SciTech Connect

    Fry, R.J.M.

    1986-01-01

    The paper discusses the radiation environment in space that astronauts are likely to be exposed to. Emphasis is on proton and HZE particle effects. Recommendations for radiation protection guidelines are presented. (ACR)