Sample records for intergalactic stellar population

  1. Enrichment of intergalactic matter.

    NASA Technical Reports Server (NTRS)

    Silk, J.; Siluk, R. S.

    1972-01-01

    The primordial gas out of which the Galaxy condensed may have been significantly enriched in heavy elements. A specific mechanism of enrichment is described, in which quasi-stellar sources eject enriched matter into the intergalactic medium. This matter is recycled through successive generations of these sources, and is progressively enriched. The enriched intergalactic matter is accreted by the protogalaxy and we find, for rates of mass ejection by quasi-stellar sources equal to about one solar mass per year in heavy elements, that this mechanism can account for the heavy-element abundances in the oldest Population II stars. Expressions are given for the degree of enrichment of the intergalactic gas as a function of redshift, and we show that our hypothesis implies that the present density of intergalactic gas must be at least a factor 3 larger than the mean density in galaxies at the present epoch.

  2. Multifrequency survey of the intergalactic cloud in the M96 group

    NASA Technical Reports Server (NTRS)

    Schneider, Stephen E.; Skrutskie, M. F.; Hacking, Perry B.; Young, Judith S.; Dickman, Robert L.

    1989-01-01

    The intergalactic cloud of neutral hydrogen in the M96 group are examined for signs of emission over a wide range of frequencies, from radio waves to X rays. Past or present stellar activity in the gas might have been expected to produce detectable visual infrared, CO, OH, or radio recombination-line emission. None was detected. The limits are used to study physical conditions in the intergalactic gas. In particular, B and V band limits on starlight and IRAS limits on the presence of dust strongly constrain the presence of stars or stellar by-products. However, given the uncertainties about physical conditions in the intergalactic environment, it is difficult to rule out entirely the presence of stellar-processed materials. Results of neutral hydrogen mapping from a large-scale survey of the intergalactic cloud and surrounding region are also presented. These observations confirm that the gas is confined to a large ringlike structure. The simplest interpretation remains that the intergalactic gas in Leo is primordial.

  3. Accreting binary population synthesis and feedback prescriptions

    NASA Astrophysics Data System (ADS)

    Fragos, Tassos

    2016-04-01

    Studies of extagalactic X-ray binary populations have shown that the characteristics of these populations depend strongly on the characteristics of the host galaxy's parent stellar population (e.g. star-formation history and metallicity). These dependencies not only make X-ray binaries promising for aiding in the measurement of galaxy properties themselves, but they also have important astrophysical and cosmological implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that X-ray binaries were more luminous than today. The more energetic X-ray photons, because of their long mean-free paths, can escape the galaxies where they are produced, and interact at long distances with the intergalactic medium. This could result in a smoother spatial distribution of ionized regions, and more importantly in an overall warmer intergalactic medium. The energetic X-ray photons emitted from X-ray binaries dominate the X-ray radiation field over active galactic nuclei at z > 6 - 8, and hence Χ-ray binary feedback can be a non-negligible contributor to the heating and reionization of the inter-galactic medium in the early universe. The spectral energy distribution shape of the XRB emission does not change significantly with redshift, suggesting that the same XRB subpopulation, namely black-hole XRBs in the high-soft state, dominates the cumulative emission at all times. On the contrary, the normalization of the spectral energy distribution does evolve with redshift. To zeroth order, this evolution is driven by the cosmic star-formation rate evolution. However, the metallicity evolution of the universe and the mean stellar population age are two important factors that affect the X-ray emission from high-mass and low-mass XRBs, respectively. In this talk, I will review recent studies on the potential feedback from accreting binary populations in galactic and cosmological scales. Furthermore, I will discuss which are the next steps towards a more physically realisitc modelling of accreting compact object populations in the early Universe.

  4. Where is Population II?

    NASA Astrophysics Data System (ADS)

    Mould, J.; Bianchini, F.; Forbes, Duncan A.; Reichardt, C. L.

    2018-03-01

    The use of roman numerals for stellar populations represents a classification approach to galaxy formation which is now well behind us. Nevertheless, the concept of a pristine generation of stars, followed by a protogalactic era, and finally the mainstream stellar population is a plausible starting point for testing our physical understanding of early star formation. This will be observationally driven as never before in the coming decade. In this paper, we search out observational tests of an idealised coeval and homogeneous distribution of population II stars. We examine the spatial distribution of quasars, globular clusters, and the integrated free electron density of the intergalactic medium, in order to test the assumption of homogeneity. Any real inhomogeneity implies a population II that is not coeval.

  5. A Deep NuSTAR Survey of M31: Compact object types in our Nearest Neighbor Galaxy

    NASA Astrophysics Data System (ADS)

    Hornschemeier, Ann E.; Wik, Daniel R.; Yukita, Mihoko; Ptak, Andrew; Venters, Tonia M.; Lehmer, Bret; Maccarone, Thomas J.; Zezas, Andreas; Harrison, Fiona; Stern, Daniel; Williams, Benjamin F.; Vulic, Neven

    2017-08-01

    X-ray binaries (XRBs) trace young and old stellar populations in galaxies, and thus star formation rate and star formation history/stellar mass. X-ray emission from XRBs may be responsible for significant amounts of heating of the early Intergalactic Medium at Cosmic Dawn and may also play a significant role in reionization. Until recently, the E>10 keV (hard X-ray) emission from these populations could only be studied for XRBs in our own galaxy, where it is often difficult to measure accurate distances and thus luminosities. We have observed M31 in 4 NuSTAR fields for a total exposure of 1.4 Ms, covering the young stellar population in a swath of the disk (within the footprint of the Panchromatic Hubble Andromeda Treasury (PHAT) Survey) and older populations in the bulge. We detected more than 100 sources in the 4-25 keV band, where hard band (12-25 keV) emission has allowed us to discriminate between black holes and neutron stars in different accretion states. The luminosity function of the hard band detected sources are compared to Swift/BAT and INTEGRAL-derived luminosity functions of the Milky Way population, which reveals an excess of luminous sources in M31 when correcting for star formation rate and stellar mass.

  6. The evolution of the intergalactic medium and the origin of the galaxy luminosity function

    NASA Technical Reports Server (NTRS)

    Valls-Gabaud, David; Blanchard, Alain; Mamon, Gary

    1993-01-01

    The coupling of the Press and Schechter prescription with the CDM scenario and the Hoyle-Rees-Ostriker cooling criterion leads to a galaxy formation scenario in which galaxies are overproduced by a large factor. Although star formation might be suppressed in the smaller halos, a large amount of energy per galactic mass is needed to account for the present number density of galaxies. The evolution of the intergalactic medium (IGM) provides a simple criterion to prevent galaxy formation without requiring feedback, since halos with small virial temperatures are not able to retain the infalling hot gas of the IGM. If the ionizing background has decreased since z is approximately 1 - 2, then this criterion explains the slope of the luminosity function at the faint end. In addition, this scenario predicts two populations of dwarf galaxies, well differentiated in age, gas content, stellar populations, and clustering properties, which can be identified with dE and dIm galaxies.

  7. Intergalactic stellar populations in intermediate redshift clusters

    NASA Astrophysics Data System (ADS)

    Melnick, J.; Giraud, E.; Toledo, I.; Selman, F.; Quintana, H.

    2012-11-01

    A substantial fraction of the total stellar mass in rich clusters of galaxies resides in a diffuse intergalactic component usually referred to as the intracluster light (ICL). Theoretical models indicate that these intergalactic stars originate mostly from the tidal interaction of the cluster galaxies during the assembly history of the cluster, and that a significant fraction of these stars could have formed in situ from the late infall of cold metal-poor gas clouds on to the cluster. However, these models also overpredict the fraction of stellar mass in the ICL by a substantial margin, something that is still not well understood. The models also make predictions about the age distribution of the ICL stars, which may provide additional observational constraints. Here we present population synthesis models for the ICL of an intermediate redshift (z = 0.29) X-ray cluster that we have extensively studied in previous papers. The advantage of observing intermediate redshift clusters rather than nearby ones is that the former fit the field of view of multi-object spectrographs in 8-m telescopes and therefore permit us to encompass most of the ICL with only a few well-placed slits. In this paper we show that by stacking spectra at different locations within the ICL it is possible to reach sufficiently high signal-to-noise ratios to fit population synthesis models and derive meaningful results. The models provide ages and metallicities for the dominant populations at several different locations within the ICL and the brightest cluster galaxies (BCG) halo, as well as measures of the kinematics of the stars as a function of distance from the BCG. We thus find that the ICL in our cluster is dominated by old metal-rich stars, at odds with what has been found in nearby clusters where the stars that dominate the ICL are old and metal poor. While we see weak evidence of a young, metal-poor component, if real, these young stars would amount to less than 1 per cent of the total ICL mass, much less than the up to 30 per cent predicted by the models. We propose that the very metal-rich (i.e. 2.5× solar) stars in the ICL of our cluster, which comprise ˜40 per cent of the total mass, originate mostly from the central dumb-bell galaxy, while the remaining solar and metal-poor stars come from spiral, post-starburst (E+A) and metal-poor dwarf galaxies. About 16 per cent of the ICL stars are old and metal poor.

  8. Resolving the Formation of Protogalaxies. 3; Feedback from the First Stars

    NASA Technical Reports Server (NTRS)

    Wise, John H.; Abel, Tom

    2008-01-01

    The first stars form in dark matter halos of masses 106 M as suggested by an increasing number of numerical simulations. Radiation feedback from these stars expels most of the gas from the shallow potential well of their surrounding dark matter halos.We use cosmological adaptive mesh refinement simulations that include self-consistent Population III star formation and feedback to examine the properties of assembling early dwarf galaxies. Accurate radiative transport is modeled with adaptive ray tracing. We include supernova explosions and follow the metal enrichment of the intergalactic medium. The calculations focus on the formation of several dwarf galaxies and their progenitors. In these halos, baryon fractions in 10(exp 8) Stelar Mass halos decrease by a factor of 2 with stellar feedback and by a factor of 3 with supernova explosions.We find that radiation feedback and supernova explosions increase gaseous spin parameters up to a factor of 4 and vary with time. Stellar feedback, supernova explosions, and H2 cooling create a complex, multiphase interstellar medium whose densities and temperatures can span up to 6 orders of magnitude at a given radius. The pair-instability supernovae of Population III stars alone enrich the halos with virial temperatures of 10(exp 4) K to approximately 10(exp -3) of solar metallicity.We find that 40% of the heavy elements resides in the intergalactic medium (IGM) at the end of our calculations. The highest metallicity gas exists in supernova remnants and very dilute regions of the IGM.

  9. MOSAIC: A Multi-Object Spectrograph for the E-ELT

    NASA Astrophysics Data System (ADS)

    Kelz, A.; Hammer, F.; Jagourel, P.; MOSAIC Consortium

    2016-10-01

    The instrumentation plan for the European Extremely Large Telescope foresees a Multi-Object Spectrograph (E-ELT MOS). The MOSAIC project is proposed by a European-Brazilian consortium, to provide a unique MOS facility for astrophysics, studies of the inter-galactic medium and for cosmology. The science cases range from spectroscopy of the most distant galaxies, mass assembly and evolution of galaxies, via resolved stellar populations and galactic archaeology, to planet formation studies. A further strong driver is spectroscopic follow-up observations of targets that will be discovered with the James Webb Space Telescope.

  10. Exploring Stellar Populations in the Tidal Tails of NGC3256

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Konstantopoulos, Iraklis; Charlton, Jane C.

    2015-01-01

    Galaxy interactions can inject material into the intergalactic medium via violent gravitational dynamics, often visualized in tidal tails. The composition of these tails has remained a mystery, as previous studies have focused on detecting tidal features, rather than the composite material itself. With this in mind, we have developed an observing program using deep, multiband imaging to probe the chaotic regions of tidal tails in search for an underlying stellar population. NGC3256's Western and Eastern tidal tails serve as a case study for this new technique. Our results show median color values of u - g = 1.12 and r - i = 0.09 for the Western tail, and u - g = 1.29 and r - i = 0.21 for the Eastern tail, corresponding to ages of approximately 450 Myr and 900 Myr for the tails, respectively. A u - g color gradient is seen in the Western tail as well, running from 1.32 to 1.08 (~2000 Myr to 400 Myr), suggesting ages inside tidal tails can have significant variations.

  11. A Tale of Two Tails: Exploring Stellar Populations in the Tidal Tails of NGC 3256

    NASA Astrophysics Data System (ADS)

    Rodruck, Michael; Charlton, Jane C.; Konstantopoulos, Iraklis

    2016-01-01

    Galaxy interactions can inject material into the intergalactic medium via violent gravitational dynamics, often visualized in tidal tails. The composition of these tails has remained a mystery, as previous studies have focused on detecting tidal features, rather than the composite material itself. We have developed an observing program using deep, multiband imaging to probe the chaotic regions of tidal tails in search for an underlying stellar population. NGC 3256's twin tidal tails serve as a case study for this new technique. Our results show color values of u - g = 1.15 and r - i = 0.08 for the Western tail, and u - g = 1.33 and r - i = 0.22 for the Eastern tail, corresponding to discrepant ages between the tails of approximately 320 Myr and 785 Myr, respectively. With the interaction age of the system measured at 400 Myr, we find the stellar light in Western tail to be dominated by disrupted star clusters formed during and after the interaction, whereas the light from the Eastern tail is dominated by a 10 Gyr population originating from the host galaxies. We fit the Eastern tail color to a Mixed Stellar Population (MSP) model comprised 94% by mass of a 10 Gyr stellar population, and 6% of a 309 Myr population. We find 52% of the bolometric flux originating from this 10 Gyr population. We also detect a blue to red color gradient in each tail, running from galactic center to tail tip. In addition to tidal tail light, we detect 29 star cluster candidates (SCCs) in the Western tail and 19 in the Eastern, with mean ages of 282 Myr and 98 Myr respectively. Interestingly, we find an excess of very blue SCCs in the Eastern tail as compared to the Western tail, marking a recent, small episode of star formation.

  12. Revisiting The First Galaxies: The epoch of Population III stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratov, Alexander L.; Gnedin, Oleg Y.; Gnedin, Nickolay Y.

    2013-07-19

    We investigate the transition from primordial Population III (Pop III) star formation to normal Pop II star formation in the first galaxies using new cosmological hydrodynamic simulations. We find that while the first stars seed their host galaxies with metals, they cannot sustain significant outflows to enrich the intergalactic medium, even assuming a top-heavy initial mass function. This means that Pop III star formation could potentially continue until z 6 in different unenriched regions of the universe, before being ultimately shut off by cosmic reionization. Within an individual galaxy, the metal production and stellar feedback from Pop II stars overtake Pop III stars inmore » 20-200 Myr, depending on galaxy mass.« less

  13. Radiative feedback and cosmic molecular gas: the role of different radiative sources

    NASA Astrophysics Data System (ADS)

    Maio, Umberto; Petkova, Margarita; De Lucia, Gabriella; Borgani, Stefano

    2016-08-01

    We present results from multifrequency radiative hydrodynamical chemistry simulations addressing primordial star formation and related stellar feedback from various populations of stars, stellar spectral energy distributions (SEDs) and initial mass functions. Spectra for massive stars, intermediate-mass stars and regular solar-like stars are adopted over a grid of 150 frequency bins and consistently coupled with hydrodynamics, heavy-element pollution and non-equilibrium species calculations. Powerful massive Population III stars are found to be able to largely ionize H and, subsequently, He and He+, causing an inversion of the equation of state and a boost of the Jeans masses in the early intergalactic medium. Radiative effects on star formation rates are between a factor of a few and 1 dex, depending on the SED. Radiative processes are responsible for gas heating and photoevaporation, although emission from soft SEDs has minor impacts. These findings have implications for cosmic gas preheating, primordial direct-collapse black holes, the build-up of `cosmic fossils' such as low-mass dwarf galaxies, the role of active galactic nuclei during reionization, the early formation of extended discs and angular-momentum catastrophe.

  14. The Evolution of Normal Galaxy X-Ray Emission Through Cosmic History: Constraints from the 6 MS Chandra Deep Field-South

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Basu-Zych, A. R.; Mineo, S.; Brandt, W. N.; Eurfrasio, R. T.; Fragos, T.; Hornschemeier, A. E.; Lou, B.; Xue, Y. Q.; Bauer, F. E.; hide

    2016-01-01

    We present measurements of the evolution of normal-galaxy X-ray emission from z (is) approx. 0-7 using local galaxies and galaxy samples in the approx. 6 Ms Chandra Deep Field-South (CDF-S) survey. The majority of the CDF-S galaxies are observed at rest-frame energies above 2 keV, where the emission is expected to be dominated by X-ray binary (XRB) populations; however, hot gas is expected to provide small contributions to the observed-frame (is) less than 1 keV emission at z (is) less than 1. We show that a single scaling relation between X-ray luminosity (L(sub x)) and star-formation rate (SFR) literature, is insufficient for characterizing the average X-ray emission at all redshifts. We establish that scaling relations involving not only SFR, but also stellar mass and redshift, provide significantly improved characterizations of the average X-ray emission from normal galaxy populations at z (is) approx. 0-7. We further provide the first empirical constraints on the redshift evolution of X-ray emission from both low-mass XRB (LMXB) and high-mass XRB (HMXB) populations and their scalings with stellar mass and SFR, respectively. We find L2 -10 keV(LMXB)/stellar mass alpha (1+z)(sub 2-3) and L2 -10 keV(HMXB)/SFR alpha (1+z), and show that these relations are consistent with XRB population-synthesis model predictions, which attribute the increase in LMXB and HMXB scaling relations with redshift as being due to declining host galaxy stellar ages and metallicities, respectively. We discuss how emission from XRBs could provide an important source of heating to the intergalactic medium in the early universe, exceeding that of active galactic nuclei.

  15. Mapping the Supernova-Rich Fireworks Galaxy NGC 6946

    NASA Astrophysics Data System (ADS)

    Patton, Locke; Levesque, Emily

    2018-01-01

    Supernovae (SNe) are the spectacularly violent deaths of evolved young massive stars, which expel a shock wave into the intergalactic medium that in turn can spark star formation and disperse heavy elements into their host galaxy. While a SN event can be classified by its spectral signature, determining the nature of a SN progenitor depends upon chance photometry taken prior to the event. By turning to the study of SN host environments and their surrounding interstellar medium within the unique and rare population of galaxies that have hosted three or more SN events within the last century, we are granted the opportunity to study the locations and environmental properties of stellar populations prone to supernova progenitor production. Using moderate-resolution optical slit spectra taken with the Apache Point Observatory 3.5m DIS spectrograph, our goal is to map metallicity, ionization parameter, and star formation rates using emission line diagnostic ratios across each SN-rich galaxy. Dubbed the “Fireworks Galaxy” at a distance of 5.6 ± 1.5 Mpc, NGC 6946 is of particular interest as it has uniquely produced ten core-collapse supernovae (CCSNe) and several other massive star transients within the last century. We present spatially-resolved metallicity and star formation rate (SFR) maps of NGC 6946, tracing fifty-five slit orientations which span the face of the galaxy and cover all CCSN host sites. Future work will include both stellar population synthesis modelling to determine stellar populations, ages, and SFR histories in NGC 6946 and a further expansion of this analysis to the other SN-rich host galaxies in our sample.

  16. Experiment requirements document for reflight of the small helium-cooled infrared telescope experiment

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The four astronomical objectives addressed include: the measurement and mapping of extended low surface brightness infrared emission from the galaxy; the measurement of diffuse emission from intergalactic material and/or galaxies and quasi-stellar objects; the measurement of the zodiacal dust emission; and the measurement of a large number of discrete infrared sources.

  17. THE SPECTRAL EVOLUTION OF THE FIRST GALAXIES. I. JAMES WEBB SPACE TELESCOPE DETECTION LIMITS AND COLOR CRITERIA FOR POPULATION III GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zackrisson, Erik; Rydberg, Claes-Erik; Oestlin, Goeran

    The James Webb Space Telescope (JWST) is expected to revolutionize our understanding of the high-redshift universe, and may be able to test the prediction that the first, chemically pristine (Population III) stars are formed with very high characteristic masses. Since isolated Population III stars are likely to be beyond the reach of JWST, small Population III galaxies may offer the best prospects of directly probing the properties of metal-free stars. Here, we present Yggdrasil, a new spectral synthesis code geared toward the first galaxies. Using this model, we explore the JWST imaging detection limits for Population III galaxies and investigatemore » to what extent such objects may be identified based on their JWST colors. We predict that JWST should be able to detect Population III galaxies with stellar population masses as low as {approx}10{sup 5} M{sub sun} at z {approx} 10 in ultra deep exposures. Over limited redshift intervals, it may also be possible to use color criteria to select Population III galaxy candidates for follow-up spectroscopy. The colors of young Population III galaxies dominated by direct starlight can be used to probe the stellar initial mass function (IMF), but this requires almost complete leakage of ionizing photons into the intergalactic medium. The colors of objects dominated by nebular emission show no corresponding IMF sensitivity. We also note that a clean selection of Population III galaxies at z {approx} 7-8 can be achieved by adding two JWST/MIRI filters to the JWST/NIRCam filter sets usually discussed in the context of JWST ultra deep fields.« less

  18. Dense magnetized plasma associated with a fast radio burst.

    PubMed

    Masui, Kiyoshi; Lin, Hsiu-Hsien; Sievers, Jonathan; Anderson, Christopher J; Chang, Tzu-Ching; Chen, Xuelei; Ganguly, Apratim; Jarvis, Miranda; Kuo, Cheng-Yu; Li, Yi-Chao; Liao, Yu-Wei; McLaughlin, Maura; Pen, Ue-Li; Peterson, Jeffrey B; Roman, Alexander; Timbie, Peter T; Voytek, Tabitha; Yadav, Jaswant K

    2015-12-24

    Fast radio bursts are bright, unresolved, non-repeating, broadband, millisecond flashes, found primarily at high Galactic latitudes, with dispersion measures much larger than expected for a Galactic source. The inferred all-sky burst rate is comparable to the core-collapse supernova rate out to redshift 0.5. If the observed dispersion measures are assumed to be dominated by the intergalactic medium, the sources are at cosmological distances with redshifts of 0.2 to 1 (refs 10 and 11). These parameters are consistent with a wide range of source models. One fast burst revealed circular polarization of the radio emission, but no linear polarization was detected, and hence no Faraday rotation measure could be determined. Here we report the examination of archival data revealing Faraday rotation in the fast radio burst FRB 110523. Its radio flux and dispersion measure are consistent with values from previously reported bursts and, accounting for a Galactic contribution to the dispersion and using a model of intergalactic electron density, we place the source at a maximum redshift of 0.5. The burst has a much higher rotation measure than expected for this line of sight through the Milky Way and the intergalactic medium, indicating magnetization in the vicinity of the source itself or within a host galaxy. The pulse was scattered by two distinct plasma screens during propagation, which requires either a dense nebula associated with the source or a location within the central region of its host galaxy. The detection in this instance of magnetization and scattering that are both local to the source favours models involving young stellar populations such as magnetars over models involving the mergers of older neutron stars, which are more likely to be located in low-density regions of the host galaxy.

  19. Quasi-stellar objects in the intergalactic medium: Source for the cosmic X-ray background

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sherman, R.D.

    1980-06-15

    QSOs are regarded as sources of both electromagnetic radiation and ejected matter that heat and ionize a dense intergalactic medium (IGM). Using current estimates of QSO luminosity, number density, evolution, and spectral index, we study three viable models: the diffuse cosmic X-ray background is (1) due entirely to thermal Bremsstrahlung of the IGM, (2) completely supplied by QSO X-radiation, (3) or a combination of both. The upper limits on an IGM fractional density with respect to closure are ..cap omega..=0.26, 0.24, and 0.21 for pure collisional, photo/collisional mixture, and pure photoionization, respectively. These calculations give emission spectra, Compton distortion ofmore » the cosmic microwave background, and optical depths to distant OSOs for comparison with relevant data.« less

  20. Ionization in the local interstellar and intergalactic media

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cheng, K.

    1990-01-01

    Detailed photoionization calculations for the local interstellar medium (LISM) and the intergalactic medium (IGM) are presented. Constraints in the LISM are imposed by H I column density derived from IUE and Copernicus data toward nearby B stars and hot white dwarfs. The EUV radiation field is modeled including contributions from discrete stellar sources and from a thermal bremsstrahlung-radiative recombination spectrum emitted from the surrounding 10(exp 6) K coronal substrate. Lower limits to the fractional ionization of hydrogen and helium of 0.17 and 0.30 respectively are established. The derived limits have important implications for the interpretation of the H I andmore » He I backscattering results. The high He ionization fraction results primarily from very strong line emission below 500 A originating in the surrounding coronal substrate while the H ionization is dominated by the EUV radiation from the discrete stellar sources. The dual effects of thermal conduction and the EUV spectrum of the 10(exp 6) K plasma on ionization in the cloud skin are explored. The EUV radiation field and Auger ionization have insignificant effects on the resulting ionic column densities of Si IV, C IV, N V and O VI through the cloud skin. Calculations show that the abundances of these species are dominated by collisional ionization in the thermal conduction front. Because of a low charge exchange rate with hydrogen, the ionic column density ratios of N(C III)/N(C II) and N(N II)/N(N I) are dominated by the EUV radiation field in the local interstellar medium. These ratios should be important diagnostics for the EUV radiation field and serve as surrogate indicators of the interstellar He and H ionization fraction respectively. The same photoionization model is applied to the intergalactic medium.« less

  1. The Cosmic Baryon Cycle in the FIRE Simulations

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel

    2017-07-01

    The exchange of mass, energy, and metals between galaxies and their surrounding circumgalactic medium represents an integral part of the modern paradigm of galaxy formation. In this talk, I will present recent progress in understanding the cosmic baryon cycle using cosmological hydrodynamic simulations from the Feedback In Realistic Environments (FIRE) project. Local stellar feedback processes regulate star formation in galaxies and shape the multi-phase structure of the interstellar medium while driving large-scale outflows that connect galaxies with the circumgalactic medium. I will discuss the efficiency of winds evacuating gas from galaxies, the ubiquity and properties of wind recycling, and the importance of intergalactic transfer, i.e. the exchange of gas between galaxies via winds. I will show that intergalactic transfer can dominate late time gas accretion onto Milky Way-mass galaxies over fresh accretion and standard wind recycling.

  2. DERIVATION OF A RELATION FOR THE STEEPENING OF TeV-SELECTED BLAZAR {gamma}-RAY SPECTRA WITH ENERGY AND REDSHIFT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stecker, Floyd William; Scully, Sean T.

    2010-02-01

    We derive a relation for the steepening of blazar {gamma}-ray spectra between the multi-GeV Fermi energy range and the TeV energy range observed by atmospheric Cerenkov telescopes. The change in spectral index is produced by two effects: (1) an intrinsic steepening, independent of redshift, owing to the properties of emission and absorption in the source and (2) a redshift-dependent steepening produced by intergalactic pair production interactions of blazar {gamma}-rays with low-energy photons of the 'intergalactic background light' (IBL). Given this relation, with good enough data on the mean {gamma}-ray spectral energy distribution of TeV-selected BL Lac objects, the redshift evolutionmore » of the IBL can, in principle, be determined independently of stellar evolution models. We apply our relation to the results of new Fermi observations of TeV-selected blazars.« less

  3. Energy Feedback from X-ray Binaries in the Early Universe

    NASA Technical Reports Server (NTRS)

    Fragos, T.; Lehmer, B..; Naoz, S.; Zezas, A.; Basu-Zych, A.

    2013-01-01

    X-ray photons, because of their long mean-free paths, can easily escape the galactic environments where they are produced, and interact at long distances with the intergalactic medium, potentially having a significant contribution to the heating and reionization of the early universe. The two most important sources of X-ray photons in the universe are active galactic nuclei (AGNs) and X-ray binaries (XRBs). In this Letter we use results from detailed, large scale population synthesis simulations to study the energy feedback of XRBs, from the first galaxies (z (redshift) approximately equal to 20) until today.We estimate that X-ray emission from XRBs dominates over AGN at z (redshift) greater than or approximately equal to 6-8. The shape of the spectral energy distribution of the emission from XRBs shows little change with redshift, in contrast to its normalization which evolves by approximately 4 orders of magnitude, primarily due to the evolution of the cosmic star-formation rate. However, the metallicity and the mean stellar age of a given XRB population affect significantly its X-ray output. Specifically, the X-ray luminosity from high-mass XRBs per unit of star-formation rate varies an order of magnitude going from solar metallicity to less than 10% solar, and the X-ray luminosity from low-mass XRBs per unit of stellar mass peaks at an age of approximately 300 Myr (million years) and then decreases gradually at later times, showing little variation for mean stellar ages 3 Gyr (Giga years, or billion years). Finally, we provide analytical and tabulated prescriptions for the energy output of XRBs, that can be directly incorporated in cosmological simulations.

  4. A First Robust Measurement of the Aging of Field Low Mass X-ray Binary Populations from Hubble and Chandra

    NASA Astrophysics Data System (ADS)

    Lehmer, Bret

    Our understanding of X-ray binary (XRB) formation and evolution have been revolutionized by HST and Chandra by allowing us to study in detail XRBs in extragalactic environments. Theoretically, XRB formation is sensitive to parent stellar population properties like metallicity and stellar age. These dependencies not only make XRBs promising populations for aiding in the measurement of galaxy properties themselves, but also have important astrophysical implications. For example, due to the relatively young stellar ages and primordial metallicities in the early Universe (z > 3), it is predicted that XRBs were more luminous than today and played a significant role in the heating of the intergalactic medium. Unlocking the potential of XRBs as useful probes of galaxy properties and understanding in detail their evolutionary pathways critically requires empirical constraints using well-studied galaxies that span a variety of evolutionary stages. In this ADAP, we will use the combined power of archival observations from Hubble and Chandra data of 16 nearby early-type galaxies to study how low-mass XRBs (LMXBs) populations evolve with age. LMXBs are critically important since they are the most numerous XRBs in the MW and are expected to dominate the normal galaxy Xray emissivity of the Universe out to z ~ 2. Understanding separately LMXBs that form via dynamical interactions (e.g., in globular clusters; GCs) versus those that form in-situ in galactic fields is an important poorly constrained area of XRB astrophysics. We are guided by the following key questions: 1. How does the shape and normalization of the field LMXB X-ray luminosity function (XLF) evolve as parent stellar populations age? Using theoretical population synthesis models, what can we learn about the evolution of contributions from various LMXB donor stars (e.g., red-giant, main-sequence, and white dwarf donors)? 2. Is there any evidence that globular cluster (GC) LMXBs seeded field LMXB populations through the dissolving of GCs or LMXBs being kicked out of their parent GCs? 3. What implications do our results have for the evolution of LMXBs throughout cosmic history and X-ray emission observed in distant galaxy populations (e.g., in the Chandra Deep Field surveys)? The combination of HST and Chandra are critical for addressing these questions, as HST can be used to decipher between GC and field LMXBs and Chandra can detect the sources. We will make public HST and Chandra data and catalogs of X-ray sources and GCs, and will include basic properties (eg.., GC sizes, colors, LMXB spectral shapes, fluxes, luminosities).

  5. Stellar Populations of Lyα Emitters at z ~ 6-7: Constraints on the Escape Fraction of Ionizing Photons from Galaxy Building Blocks

    NASA Astrophysics Data System (ADS)

    Ono, Yoshiaki; Ouchi, Masami; Shimasaku, Kazuhiro; Dunlop, James; Farrah, Duncan; McLure, Ross; Okamura, Sadanori

    2010-12-01

    We investigate the stellar populations of Lyα emitters (LAEs) at z = 5.7 and 6.6 in a 0.65 deg2 sky of the Subaru/XMM-Newton Deep Survey (SXDS) Field, using deep images taken with the Subaru/Suprime-Cam, United Kingdom Infrared Telescope/Wide Field Infrared Camera, and Spitzer/Infrared Array Camera (IRAC). We produce stacked multiband images at each redshift from 165 (z = 5.7) and 91 (z = 6.6) IRAC-undetected objects to derive typical spectral energy distributions (SEDs) of z ~ 6-7 LAEs for the first time. The stacked LAEs have as blue UV continua as the Hubble Space Telescope (HST)/Wide Field Camera 3 (WFC3) z-dropout galaxies of similar M UV, with a spectral slope β ~ -3, but at the same time they have red UV-to-optical colors with detection in the 3.6 μm band. Using SED fitting we find that the stacked LAEs have low stellar masses of ~(3-10) × 107 M sun, very young ages of ~1-3 Myr, negligible dust extinction, and strong nebular emission from the ionized interstellar medium, although the z = 6.6 object is fitted similarly well with high-mass models without nebular emission; inclusion of nebular emission reproduces the red UV-to-optical colors while keeping the UV colors sufficiently blue. We infer that typical LAEs at z ~ 6-7 are building blocks of galaxies seen at lower redshifts. We find a tentative decrease in the Lyα escape fraction from z = 5.7 to 6.6, which may imply an increase in the intergalactic medium neutral fraction. From the minimum contribution of nebular emission required to fit the observed SEDs, we place an upper limit on the escape fraction of ionizing photons of f ion esc ~ 0.6 at z = 5.7 and ~0.9 at z = 6.6. We also compare the stellar populations of our LAEs with those of stacked HST/WFC3 z-dropout galaxies. Based on data collected at the Subaru Telescope, which is operated by the National Astronomical Observatory of Japan.

  6. On the deuterium abundance and the importance of stellar mass loss in the interstellar and intergalactic medium

    NASA Astrophysics Data System (ADS)

    van de Voort, Freeke; Quataert, Eliot; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Chan, T. K.; Feldmann, Robert; Hafen, Zachary

    2018-06-01

    We quantify the gas-phase abundance of deuterium and fractional contribution of stellar mass loss to the gas in cosmological zoom-in simulations from the Feedback In Realistic Environments project. At low metallicity, our simulations confirm that the deuterium abundance is very close to the primordial value. The chemical evolution of the deuterium abundance that we derive here agrees quantitatively with analytical chemical evolution models. We furthermore find that the relation between the deuterium and oxygen abundance exhibits very little scatter. We compare our simulations to existing high-redshift observations in order to determine a primordial deuterium fraction of (2.549 ± 0.033) × 10-5 and stress that future observations at higher metallicity can also be used to constrain this value. At fixed metallicity, the deuterium fraction decreases slightly with decreasing redshift, due to the increased importance of mass-loss from intermediate-mass stars. We find that the evolution of the average deuterium fraction in a galaxy correlates with its star formation history. Our simulations are consistent with observations of the Milky Way's interstellar medium (ISM): the deuterium fraction at the solar circle is 85-92 per cent of the primordial deuterium fraction. We use our simulations to make predictions for future observations. In particular, the deuterium abundance is lower at smaller galactocentric radii and in higher mass galaxies, showing that stellar mass loss is more important for fuelling star formation in these regimes (and can even dominate). Gas accreting on to galaxies has a deuterium fraction above that of the galaxies' ISM, but below the primordial fraction, because it is a mix of gas accreting from the intergalactic medium and gas previously ejected or stripped from galaxies.

  7. Modeling Physical Processes at Galactic Scales and Above

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gnedin, Nickolay Y.

    What should these lectures be? The subject is so broad that many books can be written about it. I decided to prepare these lectures as if I were teaching my own graduate student. Given my research interests, I selected what the student would need to know to be able to discuss science with me and to work on joint research projects. So, the story presented below is both personal and incomplete, but it does cover several subjects that are poorly represented in the existing textbooks (if at all). Some of topics I focus on below are closely connected, others aremore » disjoint, some are just side detours on specific technical questions. There is an overlapping theme, however. Our goal is to follow the cosmic gas from large scales, low densities, (relatively) simple physics to progressively smaller scales, higher densities, closer relation to galaxies, and more complex and uncertain physics. We follow a "yellow brick road" from the gas well beyond any galaxy confines to the actual sites of star formation and stellar feedback. On the way we will stop at some places for a tour and run without looking back through some others. So, the road will be uneven. The organization of the material is as follows: physics of the intergalactic medium, from intergalactic medium to circumgalactic medium, interstellar medium: gas in galaxies, star formation, and stellar feedback.« less

  8. Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies

    PubMed Central

    Qian, Yong-Zhong; Wasserburg, G. J.

    2012-01-01

    We present a general phenomenological model for the metallicity distribution (MD) in terms of [Fe/H] for dwarf spheroidal galaxies (dSphs). These galaxies appear to have stopped accreting gas from the intergalactic medium and are fossilized systems with their stars undergoing slow internal evolution. For a wide variety of infall histories of unprocessed baryonic matter to feed star formation, most of the observed MDs can be well described by our model. The key requirement is that the fraction of the gas mass lost by supernova-driven outflows is close to unity. This model also predicts a relationship between the total stellar mass and the mean metallicity for dSphs in accord with properties of their dark matter halos. The model further predicts as a natural consequence that the abundance ratios [E/Fe] for elements such as O, Mg, and Si decrease for stellar populations at the higher end of the [Fe/H] range in a dSph. We show that, for infall rates far below the net rate of gas loss to star formation and outflows, the MD in our model is very sharply peaked at one [Fe/H] value, similar to what is observed in most globular clusters. This result suggests that globular clusters may be end members of the same family as dSphs. PMID:22411827

  9. Supernova-driven outflows and chemical evolution of dwarf spheroidal galaxies.

    PubMed

    Qian, Yong-Zhong; Wasserburg, G J

    2012-03-27

    We present a general phenomenological model for the metallicity distribution (MD) in terms of [Fe/H] for dwarf spheroidal galaxies (dSphs). These galaxies appear to have stopped accreting gas from the intergalactic medium and are fossilized systems with their stars undergoing slow internal evolution. For a wide variety of infall histories of unprocessed baryonic matter to feed star formation, most of the observed MDs can be well described by our model. The key requirement is that the fraction of the gas mass lost by supernova-driven outflows is close to unity. This model also predicts a relationship between the total stellar mass and the mean metallicity for dSphs in accord with properties of their dark matter halos. The model further predicts as a natural consequence that the abundance ratios [E/Fe] for elements such as O, Mg, and Si decrease for stellar populations at the higher end of the [Fe/H] range in a dSph. We show that, for infall rates far below the net rate of gas loss to star formation and outflows, the MD in our model is very sharply peaked at one [Fe/H] value, similar to what is observed in most globular clusters. This result suggests that globular clusters may be end members of the same family as dSphs.

  10. Growth problems of stellar black holes in early galaxies

    NASA Astrophysics Data System (ADS)

    Orofino, M. C.; Ferrara, A.; Gallerani, S.

    2018-06-01

    The nature of the seeds of the observed high-z super-massive black holes (SMBH) is unknown. Although different options have been proposed, involving e.g. intermediate mass direct collapse black holes, BH remnants of massive stars remain the most natural explanation. To identify the most favorable conditions (if any) for their rapid growth, we study the accretion rate of a M• = 100M⊙ BH formed in a typical z = 10 galaxy under different conditions (e.g. galaxy structure, BH initial position and velocity). We model the galaxy baryonic content and follow the BH orbit and accretion history for 300 Myr (the time span in 10 > z > 7), assuming the radiation-regulated accretion model by Park & Ricotti (2013). We find that, within the limits of our model, BH seeds cannot grow by more than 30%, suggesting that accretion on light-seed models are inadequate to explain high-z SMBH. We also compute the X-ray emission from such accreting stellar BH population in the [0.5 - 8] keV band and find it comparable to the one produced by high-mass X-ray binaries. This study suggests that early BHs, by X-ray pre-heating of the intergalactic medium at cosmic dawn, might leave a specific signature on the HI 21 cm line power spectrum potentially detectable with SKA.

  11. A meeting with the universe: Science discoveries from the space program

    NASA Technical Reports Server (NTRS)

    French, B. M. (Editor); Maran, S. P. (Editor)

    1981-01-01

    A general history of space exploration is presented. The solar system is discussed. The Sun-Earth relationship is considered, including magnetic fields, solar wind, the magnetosphere, and the Sun-weather relationship. The universe beyond the solar system is discussed. Topics include stellar and galactic evolution, quasars and intergalactic space. The effects of weightlessness and ionizing radiation on human beings are considered. The possibility of extraterrestrial life is discussed. Lunar and planetary exploration, solar-terrestrial physics, astrophysics, biomedical research and exobiology are reviewed. Numerons color illustrations are included.

  12. A meeting with the universe: Science discoveries from the space program

    NASA Astrophysics Data System (ADS)

    French, Bevan M.; Maran, Stephen P.; Chipman, Eric G.

    A general history of space exploration is presented. The solar system is discussed. The Sun-Earth relationship is considered, including magnetic fields, solar wind, the magnetosphere, and the Sun-weather relationship. The universe beyond the solar system is discussed. Topics include stellar and galactic evolution, quasars and intergalactic space. The effects of weightlessness and ionizing radiation on human beings are considered. The possibility of extraterrestrial life is discussed. Lunar and planetary exploration, solar-terrestrial physics, astrophysics, biomedical research and exobiology are reviewed. Numerous color illustrations are included.

  13. Universe opacity and CMB

    NASA Astrophysics Data System (ADS)

    Vavryčuk, Václav

    2018-07-01

    A cosmological model, in which the cosmic microwave background (CMB) is a thermal radiation of intergalactic dust instead of a relic radiation of the big bang, is revived and revisited. The model suggests that a virtually transparent local Universe becomes considerably opaque at redshifts z > 2-3. Such opacity is hardly to be detected in the Type Ia supernova data, but confirmed using quasar data. The opacity steeply increases with redshift because of a high proper density of intergalactic dust in the previous epochs. The temperature of intergalactic dust increases as (1 + z) and exactly compensates the change of wavelengths due to redshift, so that the dust radiation looks apparently like the radiation of the blackbody with a single temperature. The predicted dust temperature is TD = 2.776 K, which differs from the CMB temperature by 1.9 per cent only, and the predicted ratio between the total CMB and extragalactic background light (EBL) intensities is 13.4 which is close to 12.5 obtained from observations. The CMB temperature fluctuations are caused by EBL fluctuations produced by galaxy clusters and voids in the Universe. The polarization anomalies of the CMB correlated with temperature anisotropies are caused by the polarized thermal emission of needle-shaped conducting dust grains aligned by large-scale magnetic fields around clusters and voids. A strong decline of the luminosity density for z > 4 is interpreted as the result of high opacity of the Universe rather than of a decline of the global stellar mass density at high redshifts.

  14. Universe opacity and CMB

    NASA Astrophysics Data System (ADS)

    Vavryčuk, Václav

    2018-04-01

    A cosmological model, in which the cosmic microwave background (CMB) is a thermal radiation of intergalactic dust instead of a relic radiation of the Big Bang, is revived and revisited. The model suggests that a virtually transparent local Universe becomes considerably opaque at redshifts z > 2 - 3. Such opacity is hardly to be detected in the Type Ia supernova data, but confirmed using quasar data. The opacity steeply increases with redshift because of a high proper density of intergalactic dust in the previous epochs. The temperature of intergalactic dust increases as (1 + z) and exactly compensates the change of wavelengths due to redshift, so that the dust radiation looks apparently like the radiation of the blackbody with a single temperature. The predicted dust temperature is TD = 2.776 K, which differs from the CMB temperature by 1.9% only, and the predicted ratio between the total CMB and EBL intensities is 13.4 which is close to 12.5 obtained from observations. The CMB temperature fluctuations are caused by EBL fluctuations produced by galaxy clusters and voids in the Universe. The polarization anomalies of the CMB correlated with temperature anisotropies are caused by the polarized thermal emission of needle-shaped conducting dust grains aligned by large-scale magnetic fields around clusters and voids. A strong decline of the luminosity density for z > 4 is interpreted as the result of high opacity of the Universe rather than of a decline of the global stellar mass density at high redshifts.

  15. Galaxy formation in an intergalactic medium dominated by explosions

    NASA Technical Reports Server (NTRS)

    Ostriker, J. P.; Cowie, L. L.

    1981-01-01

    The evolution of galaxies in an intergalactic medium dominated by explosions of star systems is considered analogously to star formation by nonlinearly interacting processes in the interstellar medium. Conditions for the existence of a hydrodynamic instability by which galaxy formation leads to more galaxy formation due to the propagation of the energy released at the death of massive stars are examined, and it is shown that such an explosive amplification is possible at redshifts less than about 5 and stellar system masses between 10 to the 8th and 10 to the 12th solar masses. Explosions before a redshift of about 5 are found to lead primarily to the formation of massive stars rather than galaxies, while those at a redshift close to 5 will result in objects of normal galactic scale. The model also predicts a dusty interstellar medium preventing the detection of objects of redshift greater than 3, numbers and luminosities of protogalaxies comparable to present observations, unvirialized groups of galaxies lying on two-dimensional surfaces, and a significant number of black holes in the mass range 1000-10,000 solar masses.

  16. A Physical Parameterization of the Evolution of X-ray Binary Emission

    NASA Astrophysics Data System (ADS)

    Gilbertson, Woodrow; Lehmer, Bret; Eufrasio, Rafael

    2018-01-01

    The Chandra Deep Field-South (CDF-S) and North (CDF-N) surveys, 7 Ms and 2 Ms respectively, contain measurements spanning a large redshift range of z = 0 to 7. These data-rich fields provide a unique window into the cosmic history of X-ray emission from normal galaxies (i.e., not dominated by AGN). Scaling relations between normal-galaxy X-ray luminosity and quantities, such as star formation rate (SFR) and stellar mass (M*), have been used to constrain the redshift evolution of the formation rates of low-mass X-ray binaries (LMXB) and high-mass X-ray binaries (HMXB). However, these measurements do not directly reveal the driving forces behind the redshift evolution of X-ray binaries (XRBs). We hypothesize that changes in the mean stellar age and metallicity of the Universe drive the evolution of LMXB and HMXB emission, respectively. We use star-formation histories, derived through fitting broad-band UV-to-far-IR spectra, to estimate the masses of stellar populations in various age bins for each galaxy. We then divide our galaxy samples into bins of metallicity, and use our star-formation history information and measured X-ray luminosities to determine for each metallicity bin a best model LX/M*(tage). We show that this physical model provides a more useful parameterization of the evolution of X-ray binary emission, as it can be extrapolated out to high redshifts with more sensible predictions. This meaningful relation can be used to better estimate the emission of XRBs in the early Universe, where XRBs are predicted to play an important role in heating the intergalactic medium.

  17. Physical properties and H-ionizing-photon production rates of extreme nearby star-forming regions

    NASA Astrophysics Data System (ADS)

    Chevallard, Jacopo; Charlot, Stéphane; Senchyna, Peter; Stark, Daniel P.; Vidal-García, Alba; Feltre, Anna; Gutkin, Julia; Jones, Tucker; Mainali, Ramesh; Wofford, Aida

    2018-06-01

    Measurements of the galaxy UV luminosity function at z ≳ 6 suggest that young stars hosted in low-mass star-forming galaxies produced the bulk of hydrogen-ionizing photons necessary to reionize the intergalactic medium (IGM) by redshift z ˜ 6. Whether star-forming galaxies dominated cosmic reionization, however, also depends on their stellar populations and interstellar medium properties, which set, among other things, the production rate of H-ionizing photons, ξ _{ion}^\\star, and the fraction of these escaping into the IGM. Given the difficulty of constraining with existing observatories the physical properties of z ≳ 6 galaxies, in this work we focus on a sample of ten nearby objects showing UV spectral features comparable to those observed at z ≳ 6. We use the new-generation BEAGLE tool to model the UV-to-optical photometry and UV/optical emission lines of these Local `analogues' of high-redshift galaxies, finding that our relatively simple, yet fully self-consistent, physical model can successfully reproduce the different observables considered. Our galaxies span a broad range of metallicities and are characterised by high ionization parameters, low dust attenuation, and very young stellar populations. Through our analysis, we derive a novel diagnostic of the production rate of H-ionizing photons per unit UV luminosity, ξ _{ion}^\\star, based on the equivalent width of the bright [O III]49595007 line doublet, which does not require measurements of H-recombination lines. This new diagnostic can be used to estimate ξ _{ion}^\\star from future direct measurements of the [O III]49595007 line using JWST/NIRSpec (out to z ˜ 9.5), and by exploiting the contamination by Hβ +[O III]{4959}{5007}} of photometric observations of distant galaxies, for instance from existing Spitzer/IRAC data and from future ones with JWST/NIRCam.

  18. The cosmic baryon cycle and galaxy mass assembly in the FIRE simulations

    NASA Astrophysics Data System (ADS)

    Anglés-Alcázar, Daniel; Faucher-Giguère, Claude-André; Kereš, Dušan; Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2017-10-01

    We use cosmological simulations from the FIRE (Feedback In Realistic Environments) project to study the baryon cycle and galaxy mass assembly for central galaxies in the halo mass range Mhalo ˜ 1010-1013 M⊙. By tracing cosmic inflows, galactic outflows, gas recycling and merger histories, we quantify the contribution of physically distinct sources of material to galaxy growth. We show that in situ star formation fuelled by fresh accretion dominates the early growth of galaxies of all masses, while the re-accretion of gas previously ejected in galactic winds often dominates the gas supply for a large portion of every galaxy's evolution. Externally processed material contributes increasingly to the growth of central galaxies at lower redshifts. This includes stars formed ex situ and gas delivered by mergers, as well as smooth intergalactic transfer of gas from other galaxies, an important but previously underappreciated growth mode. By z = 0, wind transfer, I.e. the exchange of gas between galaxies via winds, can dominate gas accretion on to ˜L* galaxies over fresh accretion and standard wind recycling. Galaxies of all masses re-accrete ≳50 per cent of the gas ejected in winds and recurrent recycling is common. The total mass deposited in the intergalactic medium per unit stellar mass formed increases in lower mass galaxies. Re-accretion of wind ejecta occurs over a broad range of time-scales, with median recycling times (˜100-350 Myr) shorter than previously found. Wind recycling typically occurs at the scale radius of the halo, independent of halo mass and redshift, suggesting a characteristic recycling zone around galaxies that scales with the size of the inner halo and the galaxy's stellar component.

  19. Effect of the star formation histories on the SFR-M∗ relation at z ≥ 2

    NASA Astrophysics Data System (ADS)

    Cassarà, L. P.; Maccagni, D.; Garilli, B.; Scodeggio, M.; Thomas, R.; Le Fèvre, O.; Zamorani, G.; Schaerer, D.; Lemaux, B. C.; Cassata, P.; Le Brun, V.; Pentericci, L.; Tasca, L. A. M.; Vanzella, E.; Zucca, E.; Amorín, R.; Bardelli, S.; Castellano, M.; Cimatti, A.; Cucciati, O.; Durkalec, A.; Fontana, A.; Giavalisco, M.; Grazian, A.; Hathi, N. P.; Ilbert, O.; Paltani, S.; Ribeiro, B.; Sommariva, V.; Talia, M.; Tresse, L.; Vergani, D.; Capak, P.; Charlot, S.; Contini, T.; de la Torre, S.; Dunlop, J.; Fotopoulou, S.; Guaita, L.; Koekemoer, A.; López-Sanjuan, C.; Mellier, Y.; Pforr, J.; Salvato, M.; Scoville, N.; Taniguchi, Y.; Wang, P. W.

    2016-08-01

    We investigate the effect of different star formation histories (SFHs) on the relation between stellar mass (M∗) and star formation rate (SFR) using a sample of galaxies with reliable spectroscopic redshift zspec> 2 drawn from the VIMOS Ultra-Deep Survey (VUDS). We produce an extensive database of dusty model galaxies, calculated starting from a new library of single stellar population (SSPs) models, weighted by a set of 28 different star formation histories based on the Schmidt function, and characterized by different ratios of the gas infall timescale τinfall to the star formation efficiency ν. Dust extinction and re-emission were treated by means of the radiative transfer calculation. The spectral energy distribution (SED) fitting technique was performed by using GOSSIP+, a tool able to combine both photometric and spectroscopic information to extract the best value of the physical quantities of interest, and to consider the intergalactic medium (IGM) attenuation as a free parameter. We find that the main contribution to the scatter observed in the SFR-M∗ plane is the possibility of choosing between different families of SFHs in the SED fitting procedure, while the redshift range plays a minor role. The majority of the galaxies, at all cosmic times, are best fit by models with SFHs characterized by a high τinfall/ν ratio. We discuss the reliability of a low percentage of dusty and highly star-forming galaxies in the context of their detection in the far infrared (FIR).

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jaskot, A. E.; Ravindranath, S.

    The increasing neutrality of the intergalactic medium at z  > 6 suppresses Ly α emission, and spectroscopic confirmation of galaxy redshifts requires the detection of alternative ultraviolet lines. The strong [C iii]  λ 1907+C iii]  λ 1909 doublet frequently observed in low-metallicity, actively star-forming galaxies is a promising emission feature. We present CLOUDY photoionization model predictions for C iii] equivalent widths (EWs) and line ratios as a function of starburst age, metallicity, and ionization parameter. Our models include a range of C/O abundances, dust content, and gas density. We also examine the effects of varying the nebular geometry and optical depth. Onlymore » the stellar models that incorporate binary interaction effects reproduce the highest observed C iii] EWs. The spectral energy distributions from the binary stellar population models also generate observable C iii] over a longer timescale relative to single-star models. We show that diagnostics using C iii] and nebular He ii  λ 1640 can separate star-forming regions from shock-ionized gas. We also find that density-bounded systems should exhibit weaker C iii] EWs at a given ionization parameter, and C iii] EWs could, therefore, select candidate Lyman continuum-leaking systems. In almost all models, C iii] is the next strongest line at <2700 Å after Ly α , and C iii] reaches detectable levels for a wide range of conditions at low metallicity. C iii] may therefore serve as an important diagnostic for characterizing galaxies at z  > 6.« less

  1. Finding the First Cosmic Explosions. II. Core-collapse Supernovae

    NASA Astrophysics Data System (ADS)

    Whalen, Daniel J.; Joggerst, Candace C.; Fryer, Chris L.; Stiavelli, Massimo; Heger, Alexander; Holz, Daniel E.

    2013-05-01

    Understanding the properties of Population III (Pop III) stars is prerequisite to elucidating the nature of primeval galaxies, the chemical enrichment and reionization of the early intergalactic medium, and the origin of supermassive black holes. While the primordial initial mass function (IMF) remains unknown, recent evidence from numerical simulations and stellar archaeology suggests that some Pop III stars may have had lower masses than previously thought, 15-50 M ⊙ in addition to 50-500 M ⊙. The detection of Pop III supernovae (SNe) by JWST, WFIRST, or the TMT could directly probe the primordial IMF for the first time. We present numerical simulations of 15-40 M ⊙ Pop III core-collapse SNe performed with the Los Alamos radiation hydrodynamics code RAGE. We find that they will be visible in the earliest galaxies out to z ~ 10-15, tracing their star formation rates and in some cases revealing their positions on the sky. Since the central engines of Pop III and solar-metallicity core-collapse SNe are quite similar, future detection of any Type II SNe by next-generation NIR instruments will in general be limited to this epoch.

  2. Stellar Photon Archaeology with Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2009-01-01

    Ongoing deep surveys of galaxy luminosity distribution functions, spectral energy distributions and backwards evolution models of star formation rates can be used to calculate the past history of intergalactic photon densities and, from them, the present and past optical depth of the Universe to gamma-rays from pair production interactions with these photons. The energy-redshift dependence of the optical depth of the Universe to gamma-rays has become known as the Fazio-Stecker relation (Fazio & Stecker 1970). Stecker, Malkan & Scully have calculated the densities of intergalactic background light (IBL) photons of energies from 0.03 eV to the Lyman limit at 13.6 eV and for 0$ < z < $6, using deep survey galaxy observations from Spitzer, Hubble and GALEX and have consequently predicted spectral absorption features for extragalactic gamma-ray sources. This procedure can also be reversed. Determining the cutoff energies of gamma-ray sources with known redshifts using the recently launched Fermi gamma-ray space telescope may enable a more precise determination of the IBL photon densities in the past, i.e., the "archaeo-IBL.", and therefore allow a better measure of the past history of the total star formation rate, including that from galaxies too faint to be observed.

  3. The dynamical origin of multiple populations in intermediate-age clusters in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Hong, Jongsuk; de Grijs, Richard; Askar, Abbas; Berczik, Peter; Li, Chengyuan; Wang, Long; Deng, Licai; Kouwenhoven, M. B. N.; Giersz, Mirek; Spurzem, Rainer

    2017-11-01

    Numerical simulations were carried out to study the origin of multiple stellar populations in the intermediate-age clusters NGC 411 and NGC 1806 in the Magellanic Clouds. We performed NBODY6++ simulations based on two different formation scenarios, an ad hoc formation model where second-generation (SG) stars are formed inside a cluster of first-generation (FG) stars using the gas accumulated from the external intergalactic medium and a minor merger model of unequal mass (MSG/MFG ∼ 5-10 per cent) clusters with an age difference of a few hundred million years. We compared our results such as the radial profile of the SG-to-FG number ratio with observations on the assumption that the SG stars in the observations are composed of cluster members, and confirmed that both the ad hoc formation and merger scenarios reproduce the observed radial trend of the SG-to-FG number ratio, which shows less centrally concentrated SG than FG stars. It is difficult to constrain the formation scenario for the multiple populations by only using the spatial distribution of the SG stars. SG stars originating from the merger scenario show a significant velocity anisotropy and rotational features compared to those from the ad hoc formation scenario. Thus, observations aimed at kinematic properties like velocity anisotropy or rotational velocities for SG stars should be obtained to better understand the formation of the multiple populations in these clusters. This is, however, beyond current instrumentation capabilities.

  4. Simulating the impact of X-ray heating during the cosmic dawn

    NASA Astrophysics Data System (ADS)

    Ross, Hannah E.; Dixon, Keri L.; Iliev, Ilian T.; Mellema, Garrelt

    2017-07-01

    Upcoming observations of the 21-cm signal from the epoch of reionization will soon provide the first direct detection of this era. This signal is influenced by many astrophysical effects, including long-range X-ray heating of the intergalactic gas. During the preceding cosmic dawn era, the impact of this heating on the 21-cm signal is particularly prominent, especially before spin temperature saturation. We present the largest volume (349 Mpc comoving = 244 h-1Mpc) full numerical radiative transfer simulations to date of this epoch which include the effects of helium and multifrequency heating, both with and without X-ray sources. We show that X-ray sources contribute significantly to early heating of the neutral intergalactic medium and, hence, to the corresponding 21-cm signal. The inclusion of hard, energetic radiation yields an earlier, extended transition from absorption to emission compared to the stellar-only case. The presence of X-ray sources decreases the absolute value of the mean 21-cm differential brightness temperature. These hard sources also significantly increase the 21-cm fluctuations compared to the common assumption of temperature saturation. The 21-cm differential brightness temperature power spectrum is initially boosted on large scales, before decreasing on all scales. Compared to the case of the cold, unheated intergalactic medium, the signal has lower rms fluctuations and increased non-Gaussianity, as measured by the skewness and kurtosis of the 21-cm probability distribution functions. Images of the 21-cm signal with resolution around 11 arcmin still show fluctuations well above the expected noise for deep integrations with the SKA1-Low, indicating that direct imaging of the X-ray heating epoch could be feasible.

  5. Origin and Evolution of the Elements

    NASA Astrophysics Data System (ADS)

    McWilliam, Andrew; Rauch, Michael

    2004-09-01

    Introduction; List of participants; 1. Mount Wilson Observatory contributions to the study of cosmic abundances of the chemical elements George W. Preston; 2. Synthesis of the elements in stars: B2FH and beyond E. Margaret Burbidge; 3. Stellar nucleosynthesis: a status report 2003 David Arnett; 4. Advances in r-process nucleosynthesis John J. Cowan and Christopher Sneden; 5. Element yields of intermediate-mass stars Richard B. C. Henry; 6. The impact of rotation on chemical abundances in red giant branch stars Corinne Charbonnel; 7. s-processing in AGB stars and the composition of carbon stars Maurizio Busso, Oscar Straniero, Roberto Gallino, and Carlos Abia; 8. Models of chemical evolution Francesca Matteucci; 9. Model atmospheres and stellar abundance analysis Bengt Gustafsson; 10. The light elements: lithium, beryllium, and boron Ann Merchant Boesgaard; 11. Extremely metal-poor stars John E. Norris; 12. Thin and thick galactic disks Poul E. Nissen; 13. Globular clusters and halo field stars Christopher Sneden, Inese I. Ivans and Jon P. Fulbright; 14. Chemical evolution in ω Centauri Verne V. Smith; 15. Chemical composition of the Magellanic Clouds, from young to old stars Vanessa Hill; 16. Detailed composition of stars in dwarf spheroidal galaxies Matthew D. Shetrone; 17. The evolutionary history of Local Group irregular galaxies Eva K. Grebel; 18. Chemical evolution of the old stellar populations of M31 R. Michael Rich; 19. Stellar winds of hot massive stars nearby and beyond the Local Group Fabio Bresolin and Rolf P. Kudritzki; 20. Presolar stardust grains Donald D. Clayton and Larry R. Nittler; 21. Interstellar dust B. T. Draine; 22. Interstellar atomic abundances Edward B. Jenkins; 23. Molecules in the interstellar medium Tommy Wiklind; 24. Metal ejection by galactic winds Crystal L. Martin; 25. Abundances from the integrated light of globular clusters and galaxies Scott C. Trager; 26. Abundances in spiral and irregular galaxies Donald R. Garnett; 27. Chemical composition of the intracluster medium Michael Loewenstein; 28. Quasar elemental abundances and host galaxy evolution Fred Hamann, Matthias Dietrich, Bassem M. Sabra, and Craig Warner; 29. Chemical abundances in the damped Lyα systems Jason X. Prochaska; 30. Intergalactic medium abundances Robert F. Carswell; 31. Conference summary Bernard E. J. Pagel.

  6. Formation of the first galaxies under Population III stellar feedback

    NASA Astrophysics Data System (ADS)

    Jeon, Myoungwon

    2015-01-01

    The first galaxies, which formed a few hundred million years after the big bang, are related to important cosmological questions. Given thatthey are thought to be the basic building blocks of large galaxies seen today, understanding their formation and properties is essentialto studying galaxy formation as a whole. In this dissertation talk, I will present the results of our highly-resolved cosmological ab-initio simulations to understand the assembly process of first galaxies under the feedback from the preceding generations of first stars, the so-called Population III (Pop III). The first stars formed at z≲30 in dark matter (DM) minihalos with M_{vir}=10^5-10^6Msun, predominately via molecular hydrogen (H_2) cooling. Radiation from Pop III stars dramatically altered the gas within their host minihalos, through photoionization, photoheating, and photoevaporation. Once a Pop III star explodes as a supernova (SN), heavy elements are dispersed, enriching the interstellar (ISM) and intergalactic medium (IGM), thus initiating the process of chemical evolution. I will begin by presenting how the SN explosion of the first stars influences early cosmic history, specifically assessing the time delay in further star formation and tracing the evolution of metal-enriched gas until the second episode star formation happens. These results will show the role of Pop III supernovae on the star formation transition from Pop III to Population II. Additionally, the more distant, diffuse IGM was heated by X-rays emitted by accreting black holes (BHs), or high-mass X-ray binaries (HMXBs), both remnants of Pop III stars. I will present results of a series of simulations where we study the impact of X-ray feedback from BHs and HMXBs on the star formation history in the early universe, and discuss the resulting implications on reionization. I will also present the role of X-rays on the early BH growth, providing constraints on models for supermassive black hole formation. Finally, I will discuss key physical quantities of the first galaxies derived from our simulations, such as their stellar population mix, star formation rates, metallicities, and resulting broad-band color and recombination spectra.

  7. Science with Constellation-X

    NASA Technical Reports Server (NTRS)

    Hornschemeier, Ann (Editor); Garcia, Michael (Editor)

    2005-01-01

    NASA's upcoming Constellation-X mission, one of two flagship missions in the Beyond Einstein program, will have more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass and will enable high-throughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This booklet, which was assembled during early 2005 using the contributions of a large team of Astrophysicists, outlines the important scientific questions for the decade following this one and describes the areas where Constellation-X is going to have a major impact. These areas include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants.

  8. Dark Energy, Dark Matter and Science with Constellation-X

    NASA Technical Reports Server (NTRS)

    Cardiff, Ann Hornschemeier

    2005-01-01

    Constellation-X, with more than 100 times the collecting area of any previous spectroscopic mission operating in the 0.25-40 keV bandpass, will enable highthroughput, high spectral resolution studies of sources ranging from the most luminous accreting supermassive black holes in the Universe to the disks around young stars where planets form. This talk will review the updated Constellation-X science case, released in booklet form during summer 2005. The science areas where Constellation-X will have major impact include the exploration of the space-time geometry of black holes spanning nine orders of magnitude in mass and the nature of the dark energy and dark matter which govern the expansion and ultimate fate of the Universe. Constellation-X will also explore processes referred to as "cosmic feedback" whereby mechanical energy, radiation, and chemical elements from star formation and black holes are returned to interstellar and intergalactic medium, profoundly affecting the development of structure in the Universe, and will also probe all the important life cycles of matter, from stellar and planetary birth to stellar death via supernova to stellar endpoints in the form of accreting binaries and supernova remnants. This talk will touch upon all these areas, with particular emphasis on Constellation-X's role in the study of Dark Energy.

  9. The Growth of Early Galaxies and Reionization of Hydrogen

    NASA Astrophysics Data System (ADS)

    Chary, Ranga Ram

    2012-07-01

    The reionization of the intergalactic medium about a billion years after the Big Bang was an important event which occurred due to the release of ionizing photons from the growth of stellar mass and black holes in the early Universe. By leveraging the benefits of field galaxy surveys, I will present some recent breakthroughs in our understanding of how the earliest galaxies in the Universe evolved. I will present evidence that unlike in the local Universe where galaxy growth occurs through intermittent cannibalism, star-formation in the distant Universe is a more continuous if violent process with an overabundance of massive stars. Implications for the reionization history of the Universe will also be discussed.

  10. X-ray astronomy in the Uhuru epoch and beyond /Newton Lacy Pierce Prize Lecture/

    NASA Technical Reports Server (NTRS)

    Kellogg, E. M.

    1975-01-01

    A review of results from the Uhuru satellite is presented. An intensive treatment of two subjects is given, rather than a broad review. First, Cyg X-1, a stellar X-ray source and a candidate for a black hole, is discussed; second, the X-ray source in the Perseus cluster of galaxies, which may be a cloud of hot intergalactic gas, is treated. In both cases, the train of logic used in establishing the nature of these objects is presented and evaluated. For both, while alternative explanations cannot be completely eliminated, they become more difficult to sustain when examined in detail, suggesting that the candidate explanations are more likely correct.

  11. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    NASA Astrophysics Data System (ADS)

    Madau, Piero; Fragos, Tassos

    2017-05-01

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass-metallicity relation, and a scheme for absorption by the IGM that accounts for the presence of ionized H II bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He I photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H II cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H II bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen may be observable in 21 cm emission against the CMB.

  12. Radiation Backgrounds at Cosmic Dawn: X-Rays from Compact Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madau, Piero; Fragos, Tassos

    We compute the expected X-ray diffuse background and radiative feedback on the intergalactic medium (IGM) from X-ray binaries prior to and during the epoch of reionization. The cosmic evolution of compact binaries is followed using a population synthesis technique that treats separately neutron stars and black hole binaries in different spectral states and is calibrated to reproduce the observed X-ray properties of galaxies at z ≲ 4. Together with an updated empirical determination of the cosmic history of star formation, recent modeling of the stellar mass–metallicity relation, and a scheme for absorption by the IGM that accounts for the presencemore » of ionized H ii bubbles during the epoch of reionization, our detailed calculations provide refined predictions of the X-ray volume emissivity and filtered radiation background from “normal” galaxies at z ≳ 6. Radiative transfer effects modulate the background spectrum, which shows a characteristic peak between 1 and 2 keV. Because of the energy dependence of photoabsorption, soft X-ray photons are produced by local sources, while more energetic radiation arrives unattenuated from larger cosmological volumes. While the filtering of X-ray radiation through the IGM slightly increases the mean excess energy per photoionization, it also weakens the radiation intensity below 1 keV, lowering the mean photoionization and heating rates. Numerical integration of the rate and energy equations shows that the contribution of X-ray binaries to the ionization of the bulk IGM is negligible, with the electron fraction never exceeding 1%. Direct He i photoionizations are the main source of IGM heating, and the temperature of the largely neutral medium in between H ii cavities increases above the temperature of the cosmic microwave background (CMB) only at z ≲ 10, when the volume filling factor of H ii bubbles is already ≳0.1. Therefore, in this scenario, it is only at relatively late epochs that neutral intergalactic hydrogen may be observable in 21 cm emission against the CMB.« less

  13. FINDING THE FIRST COSMIC EXPLOSIONS. II. CORE-COLLAPSE SUPERNOVAE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whalen, Daniel J.; Joggerst, Candace C.; Fryer, Chris L.

    2013-05-01

    Understanding the properties of Population III (Pop III) stars is prerequisite to elucidating the nature of primeval galaxies, the chemical enrichment and reionization of the early intergalactic medium, and the origin of supermassive black holes. While the primordial initial mass function (IMF) remains unknown, recent evidence from numerical simulations and stellar archaeology suggests that some Pop III stars may have had lower masses than previously thought, 15-50 M{sub Sun} in addition to 50-500 M{sub Sun }. The detection of Pop III supernovae (SNe) by JWST, WFIRST, or the TMT could directly probe the primordial IMF for the first time. Wemore » present numerical simulations of 15-40 M{sub Sun} Pop III core-collapse SNe performed with the Los Alamos radiation hydrodynamics code RAGE. We find that they will be visible in the earliest galaxies out to z {approx} 10-15, tracing their star formation rates and in some cases revealing their positions on the sky. Since the central engines of Pop III and solar-metallicity core-collapse SNe are quite similar, future detection of any Type II SNe by next-generation NIR instruments will in general be limited to this epoch.« less

  14. Eight per cent leakage of Lyman continuum photons from a compact, star-forming dwarf galaxy.

    PubMed

    Izotov, Y I; Orlitová, I; Schaerer, D; Thuan, T X; Verhamme, A; Guseva, N G; Worseck, G

    2016-01-14

    One of the key questions in observational cosmology is the identification of the sources responsible for ionization of the Universe after the cosmic 'Dark Ages', when the baryonic matter was neutral. The currently identified distant galaxies are insufficient to fully reionize the Universe by redshift z ≈ 6 (refs 1-3), but low-mass, star-forming galaxies are thought to be responsible for the bulk of the ionizing radiation. As direct observations at high redshift are difficult for a variety of reasons, one solution is to identify local proxies of this galaxy population. Starburst galaxies at low redshifts, however, generally are opaque to Lyman continuum photons. Small escape fractions of about 1 to 3 per cent, insufficient to ionize much surrounding gas, have been detected only in three low-redshift galaxies. Here we report far-ultraviolet observations of the nearby low-mass star-forming galaxy J0925+1403. The galaxy is leaking ionizing radiation with an escape fraction of about 8 per cent. The total number of photons emitted during the starburst phase is sufficient to ionize intergalactic medium material that is about 40 times as massive as the stellar mass of the galaxy.

  15. Quasar Feedback at the Peak of the Galaxy Formation Epoch

    NASA Astrophysics Data System (ADS)

    Liu, Guilin; Zakamska, Nadia L.; Strauss, Michael A.; Greene, Jenny E.; Alexandroff, Rachael

    2014-08-01

    The correlations between properties of supermassive black holes and stellar spheroids in galaxies imply a physical connection between these two components. Using Gemini GMOS IFU, we demonstrated that powerful ionized gas winds are ubiquitous in luminous radio-quiet z~ 0.5 quasars. We now extend this study to the era of peak galaxy formation and quasar activity when quasar feedback likely shaped the properties of massive galaxies. Our GMOS IFU observations of 5 quasars at z~ 3 are now underway, and we plan for fall observations. We propose a GMOS IFU survey to map the spatial distribution and kinematics of Ly(alpha) and N V 1240Aemission around 5 obscured quasars at z=3-3.3 that are extremely luminous (L_Ly(alpha)~10^45 erg s^- 1). Obscured quasars likely constitute the majority of the quasar population and represent the early enshrouded phase of black hole growth, luminous obscured quasars are thus the most likely sites of quasar feedback, as we found at low redshifts. We will look for quasar- driven outflows, and directly probe the effects of quasars on their galaxy-wide and intergalactic environments close to the peak of the galaxy formation epoch.

  16. Ionizing spectra of stars that lose their envelope through interaction with a binary companion: role of metallicity

    NASA Astrophysics Data System (ADS)

    Götberg, Y.; de Mink, S. E.; Groh, J. H.

    2017-11-01

    Understanding ionizing fluxes of stellar populations is crucial for various astrophysical problems including the epoch of reionization. Short-lived massive stars are generally considered as the main stellar sources. We examine the potential role of less massive stars that lose their envelope through interaction with a binary companion. Here, we focus on the role of metallicity (Z). For this purpose we used the evolutionary code MESA and created tailored atmosphere models with the radiative transfer code CMFGEN. We show that typical progenitors, with initial masses of 12 M⊙, produce hot and compact stars ( 4 M⊙, 60-80 kK, 1 R⊙). These stripped stars copiously produce ionizing photons, emitting 60-85% and 30-60% of their energy as HI and HeI ionizing radiation, for Z = 0.0001-0.02, respectively. Their output is comparable to what massive stars emit during their Wolf-Rayet phase, if we account for their longer lifetimes and the favorable slope of the initial mass function. Their relative importance for reionization may be further favored since they emit their photons with a time delay ( 20 Myr after birth in our fiducial model). This allows time for the dispersal of the birth clouds, allowing the ionizing photons to escape into the intergalactic medium. At low Z, we find that Roche stripping fails to fully remove the H-rich envelope, because of the reduced opacity in the subsurface layers. This is in sharp contrast with the assumption of complete stripping that is made in rapid population synthesis simulations, which are widely used to simulate the binary progenitors of supernovae and gravitational waves. Finally, we discuss the urgency to increase the observed sample of stripped stars to test these models and we discuss how our predictions can help to design efficient observational campaigns.

  17. High Angular Resolution and Lightweight X-Ray Optics for Astronomical Missions

    NASA Technical Reports Server (NTRS)

    Zhang, W. W.; Biskach, M. P.; Blake, P. N.; Chan, K. W.; Evans, T. C.; Hong, M.; Jones, W. D.; Jones, W. D.; Kolos, L. D.; Mazzarella, J. M.; hide

    2011-01-01

    X-ray optics with both high angular resolution and lightweight is essential for further progress in x-ray astronomy. High angular resolution is important in avoiding source confusion and reducing background to enable the observation of the most distant objects of the early Universe. It is also important in enabling the use of gratings to achieve high spectral resolution to study, among other things, the myriad plasmas that exist in planetary, stellar, galactic environments, as well as interplanetary, inter-stellar, and inter-galactic media. Lightweight is important for further increase in effective photon collection area, because x-ray observations must take place on space platforms and the amount of mass that can be launched into space has always been very limited and is expected to continue to be very limited. This paper describes an x-ray optics development program and reports on its status that meets these two requirements. The objective of this program is to enable Explorer type missions in the near term and to enable flagship missions in the long term.

  18. Metallicity of Young and Old Stars in Irregular Galaxies

    NASA Astrophysics Data System (ADS)

    Tikhonov, N. A.

    2018-01-01

    Based on archived images obtained with the Hubble Space Telescope, stellar photometry for 105 irregular galaxies has been conducted. We have shown the red supergiant and giant branches in the obtained Hertzsprung-Russel diagrams. Using the TRGB method, distances to galaxies and metallicity of red giants have been determined. The color index ( V - I) of the supergiant branch at the luminosity level M I = -7 was chosen as the metallicity index of red supergiants. For the galaxies under study, the diagrams have been built, in which the correlation can be seen between the luminosity of galaxies ( M B ) and metallicity of red giants and supergiants. The main source of variance of the results in the obtained diagrams is, in our opinion, uncertainty inmeasurements of galaxy luminosities and star-forming outburst. The relation between metallicity of young and old stars shows that main enrichment of galaxies with metals has taken place in the remote past. Deviations of some galaxies in the obtained relation can possibly be explained with the fall of the intergalactic gas on them, although, this inconsiderably affects metallicities of the stellar content.

  19. Reevaluating Old Stellar Populations

    NASA Astrophysics Data System (ADS)

    Stanway, E. R.; Eldridge, J. J.

    2018-05-01

    Determining the properties of old stellar populations (those with age >1 Gyr) has long involved the comparison of their integrated light, either in the form of photometry or spectroscopic indexes, with empirical or synthetic templates. Here we reevaluate the properties of old stellar populations using a new set of stellar population synthesis models, designed to incorporate the effects of binary stellar evolution pathways as a function of stellar mass and age. We find that single-aged stellar population models incorporating binary stars, as well as new stellar evolution and atmosphere models, can reproduce the colours and spectral indices observed in both globular clusters and quiescent galaxies. The best fitting model populations are often younger than those derived from older spectral synthesis models, and may also lie at slightly higher metallicities.

  20. The physics and early history of the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Barkana, Rennan; Loeb, Abraham

    2007-04-01

    The intergalactic medium—the cosmic gas that fills the great spaces between the galaxies—is affected by processes ranging from quantum fluctuations in the very early Universe to radiative emission from newly formed stars. This gives the intergalactic medium a dual role as a powerful probe both of fundamental physics and of astrophysics. The heading of fundamental physics includes conditions in the very early Universe and cosmological parameters that determine the age of the Universe and its matter content. The astrophysics refers to chapters of the long cosmic history of stars and galaxies that are being revealed through the effects of stellar feedback on the cosmic gas. This review describes the physics of the intergalactic medium, focusing on recent theoretical and observational developments in understanding early cosmic history. In particular, the earliest generation of stars is thought to have transformed the Universe from darkness to light and to have had an enormous impact on the intergalactic medium. Half a million years after the Big Bang the Universe was filled with atomic hydrogen. As gravity pulled gas clouds together, the first stars ignited and their radiation turned the surrounding atoms back into free electrons and ions. From the observed spectral absorption signatures of the gas between us and distant sources, we know that the process of reionization pervaded most of space a billion years after the Big Bang, so that only a small fraction of the primordial hydrogen atoms remained between galaxies. Knowing exactly when and how the reionization process happened is a primary goal of cosmologists, because this would tell us when the early stars and black holes formed and in what kinds of galaxies. The distribution and clustering of these galaxies is particularly interesting since it is driven by primordial density fluctuations in the dark matter. Cosmic reionization is beginning to be understood with the help of theoretical models and computer simulations. Numerical simulations of reionization are computationally challenging, as they require radiative transfer across large cosmological volumes as well as sufficiently high resolution to identify the sources of the ionizing radiation in the infant Universe. Rapid progress in our understanding is expected with additional observational input. A wide variety of instruments currently under design—including large-aperture infrared telescopes on the ground or in space (JWST), and low-frequency radio telescope arrays for the detection of redshifted 21 cm radiation—will probe the first sources of light during an epoch in cosmic history that has been largely unexplored so far. The new observations and the challenges for theoretical models and numerical simulations will motivate intense work in this field over the coming decade.

  1. Reionization of Hydrogen and Helium by Early Stars and Quasars

    NASA Astrophysics Data System (ADS)

    Wyithe, J. Stuart B.; Loeb, Abraham

    2003-04-01

    We compute the reionization histories of hydrogen and helium caused by the ionizing radiation fields produced by stars and quasars. For the quasars we use a model based on halo-merger rates that reproduces all known properties of the quasar luminosity function at high redshifts. The less constrained properties of the ionizing radiation produced by stars are modeled with two free parameters: (i) a transition redshift, ztran, above which the stellar population is dominated by massive, zero-metallicity stars and below which it is dominated by a Scalo mass function; and (ii) the product of the escape fraction of stellar ionizing photons from their host galaxies and the star formation efficiency, fescf*. We constrain the allowed range of these free parameters at high redshifts on the basis of the lack of the H I Gunn-Peterson trough at z<~6 and the upper limit on the total intergalactic optical depth for electron scattering, τes<0.18, from recent cosmic microwave background (CMB) experiments. We find that quasars ionize helium by a redshift z~4, but cannot reionize hydrogen by themselves before z~6. A major fraction of the allowed combinations of fescf* and ztran leads to an early peak in the ionized fraction because of the presence of metal-free stars at high redshifts. This sometimes results in two reionization epochs, namely, an early H II or He III overlap phase followed by recombination and a second overlap phase. Even if early overlap is not achieved, the peak in the visibility function for scattering of the CMB often coincides with the early ionization phase rather than with the actual reionization epoch. Consequently, τes does not correspond directly to the reionization redshift. We generically find values of τes>~7%, which should be detectable by the MAP satellite.

  2. Unresolved versus resolved: testing the validity of young simple stellar population models with VLT/MUSE observations of NGC 3603

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Galbany, L.; Anderson, J. P.; Krühler, T.; Hamuy, M.

    2016-09-01

    Context. Stellar populations are the building blocks of galaxies, including the Milky Way. The majority, if not all, extragalactic studies are entangled with the use of stellar population models given the unresolved nature of their observation. Extragalactic systems contain multiple stellar populations with complex star formation histories. However, studies of these systems are mainly based upon the principles of simple stellar populations (SSP). Hence, it is critical to examine the validity of SSP models. Aims: This work aims to empirically test the validity of SSP models. This is done by comparing SSP models against observations of spatially resolved young stellar population in the determination of its physical properties, that is, age and metallicity. Methods: Integral field spectroscopy of a young stellar cluster in the Milky Way, NGC 3603, was used to study the properties of the cluster as both a resolved and unresolved stellar population. The unresolved stellar population was analysed using the Hα equivalent width as an age indicator and the ratio of strong emission lines to infer metallicity. In addition, spectral energy distribution (SED) fitting using STARLIGHT was used to infer these properties from the integrated spectrum. Independently, the resolved stellar population was analysed using the colour-magnitude diagram (CMD) to determine age and metallicity. As the SSP model represents the unresolved stellar population, the derived age and metallicity were tested to determine whether they agree with those derived from resolved stars. Results: The age and metallicity estimate of NGC 3603 derived from integrated spectroscopy are confirmed to be within the range of those derived from the CMD of the resolved stellar population, including other estimates found in the literature. The result from this pilot study supports the reliability of SSP models for studying unresolved young stellar populations. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programme 60.A-9344.

  3. The UDF05 Follow-up of the HUDF: I. The Faint-End Slope of the Lyman-Break Galaxy Population at zeta approx. 5

    NASA Technical Reports Server (NTRS)

    Oesch, P. A.; Stiavelli, M.; Carollo, C. M.; Bergeron, L. E.; Koekemoer, A.; Lucas, R. A.; Pavlovsky, C. M.; Trenti, M.; Lilly, S. J.; Beckwith, S. V. W.; hide

    2007-01-01

    We present the UDF05 project, a HST Large Program of deep ACS (F606W, F775W, F850LP, and NICMOS (Fll0W, Fl60W) imaging of three fields, two of which coincide with the NICP1-4 NICMOS parallel observations of the Hubble Ultra Deep Field (HUDF). In this first paper we use the ACS data for the NICP12 field, as well as the original HUDF ACS data, to measure the UV Luminosity Function (LF) of z approximately 5 Lyman Break Galaxies (LBGs) down to very faint levels. Specifically, based on a V - i, i - z selection criterion, we identify a sample of 101 and 133 candidate z approximately 5 galaxies down to z(sub 850) = 28.5 and 29.25 magnitudes in the NICP12 field and in the HUDF, respectively. Using an extensive set of Monte Carlo simulations we derive corrections for observational biases and selection effects, and construct the rest-frame 1400 Angstroms LBG LF over the range M(sub 1400) = [-22.2, -17.1], i.e. down to approximately 0.04 L(sub *) at z = 5. We show that: (i) Different assumptions for the SED distribution of the LBG population, dust properties and intergalactic absorption result in a 25% variation in the number density of LBGs at z = 5 (ii) Under consistent assumptions for dust properties and intergalactic absorption, the HUDF is about 30% under-dense in z = 5 LBGs relative to the NICP12 field, a variation which is well explained by cosmic variance; (iii) The faint-end slope of the LF is independent of the specific assumptions for the input physical parameters, and has a value of alpha approximately -1.6, similar to the faint-end slope of the LF that has been measured for LBGs at z = 3 and z = 6. Our study therefore supports no variation in the faint-end of the LBG LF over the whole redshift range z = 3 to z = 6. The comparison with theoretical predictions suggests that (a,) the majority of the stars in the z = 5 LBG population are produced with a Top-Heavy IMF in merger-driven starbursts, and that (b) possibly, either the fraction of stellar mass produced in starburst, or the fraction of high mass stars in the bursts is increased towards the bright end of the LF.

  4. Estimating precise metallicity and stellar mass evolution of galaxies

    NASA Astrophysics Data System (ADS)

    Mosby, Gregory

    2018-01-01

    The evolution of galaxies can be conveniently broken down into the evolution of their contents. The changing dust, gas, and stellar content in addition to the changing dark matter potential and periodic feedback from a super-massive blackhole are some of the key ingredients. We focus on the stellar content that can be observed, as the stars reflect information about the galaxy when they were formed. We approximate the stellar content and star formation histories of unresolved galaxies using stellar population modeling. Though simplistic, this approach allows us to reconstruct the star formation histories of galaxies that can be used to test models of galaxy formation and evolution. These models, however, suffer from degeneracies at large lookback times (t > 1 Gyr) as red, low luminosity stars begin to dominate a galaxy’s spectrum. Additionally, degeneracies between stellar populations at different ages and metallicities often make stellar population modeling less precise. The machine learning technique diffusion k-means has been shown to increase the precision in stellar population modeling using a mono-metallicity basis set. However, as galaxies evolve, we expect the metallicity of stellar populations to vary. We use diffusion k-means to generate a multi-metallicity basis set to estimate the stellar mass and chemical evolution of unresolved galaxies. Two basis sets are formed from the Bruzual & Charlot 2003 and MILES stellar population models. We then compare the accuracy and precision of these models in recovering complete (stellar mass and metallicity) histories of mock data. Similarities in the groupings of stellar population spectra in the diffusion maps for each metallicity hint at fundamental age transitions common to both basis sets that can be used to identify stellar populations in a given age range.

  5. Stellar Populations. A User Guide from Low to High Redshift

    NASA Astrophysics Data System (ADS)

    Greggio, Laura; Renzini, Alvio

    2011-09-01

    This textbook is meant to illustrate the specific role played by stellar population diagnostics in our attempt to understand galaxy formation and evolution. The book starts with a rather unconventional summary of the results of stellar evolution theory (Chapter 1), as they provide the basis for the construction of synthetic stellar populations. Current limitations of stellar models are highlighted, which arise from the necessity to parametrize all those physical processes that involve bulk mass motions, such as convection, mixing, mass loss, etc. Chapter 2 deals with the foundations of the theory of synthetic stellar populations, and illustrates their energetics and metabolic functions, providing basic tools that will be used in subsequent chapters. Chapters 3 and 4 deal with resolved stellar populations, first addressing some general problems encountered in photometric studies of stellar fields. Then some highlights are presented illustrating our current capacity of measuring stellar ages in Galactic globular clusters, in the Galactic bulge and in nearby galaxies. Chapter 5 is dedicated to the exemplification of synthetic spectra of simple as well as composite stellar populations, drawing attention to those spectral features that may depend on less secure results of stellar evolution models. Chapter 6 illustrates how synthetic stellar populations are used to derive basic galaxy properties, such as star formation rates, stellar masses, ages and metallicities, and does so for galaxies at low as well as at high redshifts. Chapter 7 is dedicated to supernovae, distinguishing them in core collapse and thermonuclear cases, describing the evolution of their rates for various star formation histories, and estimating the supernova productivity of stellar populations and their chemical yields. In Chapter 8 the stellar initial mass function (IMF) is discussed, first showing how even apparently small IMF variations may have large effects on the demo! graphy of stellar populations, and then using galaxies at low ! and high redshifts and clusters of galaxies to set tight constraints on possible IMF variations in space or time. In Chapter 9 a phenomenological model of galaxy evolution is presented which illustrates a concrete application of the stellar population tools described in the previous chapters. Finally, Chapter 10 is dedicated to the chemical evolution on the scale of galaxies, clusters of galaxies and the whole Universe.

  6. CRITICAL STAR FORMATION RATES FOR REIONIZATION: FULL REIONIZATION OCCURS AT REDSHIFT z Almost-Equal-To 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Michael Shull, J.; Harness, Anthony; Trenti, Michele

    We assess the probable redshift (z{sub rei} Almost-Equal-To 7) for full reionization of the intergalactic medium (IGM) using a prescription for the comoving star formation rate (SFR) density ({rho}-dot{sub SFR}) required to maintain photoionization against recombination. Our newly developed online reionization simulator allows users to assess the required SFR and ionization histories, using a variety of assumptions for galactic and stellar populations, IGM clumping factor and temperature, and Lyman continuum (LyC) escape fraction. The decline in high-redshift galaxy candidates and Ly{alpha} emitters at z = 6-8 suggests a rising neutral fraction, with reionization at z {approx}> 7 increasingly difficult owingmore » to increased recombination rates and constraints from the ionizing background and LyC mean free path. The required rate is {rho}-dot{sub SFR}{approx}(.018 M{sub sun}yr{sup -1}Mpc{sup -3})[(1+z)/8]{sup 3}(C{sub H}/3)(0.2/f{sub esc})T{sub 4}{sup -0.845} scaled to fiducial values of clumping factor C{sub H} = 3, escape fraction f{sub esc} = 0.2, electron temperature T{sub e} = 10{sup 4} K, and low-metallicity initial mass functions (IMFs) and stellar atmospheres. Our hydrodynamical + N-body simulations find a mean clumping factor C{sub H} Almost-Equal-To (2.9)[(1 + z)/6]{sup -1.1} in the photoionized, photoheated filaments at z = 5-9. The critical SFR could be reduced by increasing the minimum stellar mass, invoking a top-heavy IMF, or systematically increasing f{sub esc} at high z. The cosmic microwave background optical depth, {tau}{sub e} = 0.088 {+-} 0.015, could be explained by full reionization, producing {tau}{sub e} = 0.050 back to z{sub rei} Almost-Equal-To 7, augmented by {Delta}{tau}{sub e} Almost-Equal-To 0.01-0.04 in a partially ionized IGM at z > 7. In this scenario, the strongest 21 cm signal should occur at redshifted frequencies 124-167 MHz owing to IGM heating over an interval {Delta}z Almost-Equal-To 3 in the range z Almost-Equal-To 7.5-10.5.« less

  7. Searching for Lyman-alpha Emitters as a Probe of Cosmic Reionization and Peering Inside Galaxies in the First Two Billion Years

    NASA Astrophysics Data System (ADS)

    Jung, Intae; Finkelstein, Steven; CANDELS team

    2018-01-01

    In the reionization era an immediately accessible method for studying the intergalactic medium is to measure the equivalent width distribution of Lyman-alpha emission from galaxies with follow-up spectroscopy. To search for Lyman-alpha emission from galaxies at z ~ 5-8, we perform spectroscopic observations of candidate galaxies from the Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS). We utilize data from the Keck DEIMOS (optical) and MOSFIRE (near-infrared) spectrographs, ensuring a comprehensive wavelength coverage of Lyman-alpha emission at z ~ 5-8. We have a total of 1170 object-hours of spectroscopic integration of galaxies at z > 5: 118 galaxies with DEIMOS and 69 galaxies with MOSFIRE. The equivalent width distribution of Lyman-alpha emission is constrained with the number of detected objects from our dataset by constructing detailed simulations of mock emission lines, which consider observational conditions and the photometric redshift probability distribution function. We present our robust measure of the evolution of the Lyman-alpha emission equivalent width distribution at z ~ 5-8.Understanding what drives star-formation quenching in the early universe is a long-standing puzzle. To reveal the hidden relation of quenching with galaxy structural properties, particularly central stellar mass density, we perform the first spatially resolved stellar population study of galaxies at z ~ 4, utilizing the CANDELS imaging data set over the GOODS-S field. We examine 166 photometric-redshift-selected galaxies at 3.5 < z < 4.0 with additional deep K-band survey data from the HAWK-I UDS and GOODS Survey which covers the 4000Å break at these redshifts. We estimate the stellar mass, star formation rate, and dust extinction for galaxy inner and outer regions via spatially resolved spectral energy distribution fitting based on a Markov Chain Monte Carlo algorithm. By comparing specific star formation rates (sSFRs) between inner and outer parts of the galaxies we find that the majority of galaxies with high central mass densities show evidence for a preferentially lower sSFR in their centers than in their outer regions, indicative of reduced sSFRs in their central regions.

  8. Second generation spectrograph for the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Woodgate, B. E.; Boggess, A.; Gull, T. R.; Heap, S. R.; Krueger, V. L.; Maran, S. P.; Melcher, R. W.; Rebar, F. J.; Vitagliano, H. D.; Green, R. F.; Wolff, S. C.; Hutchings, J. B.; Jenkins, E. B.; Linsky, J. L.; Moos, H. W.; Roesler, F.; Shine, R. A.; Timothy, J. G.; Weistrop, D. E.; Bottema, M.; Meyer, W.

    1986-01-01

    The preliminary design for the Space Telescope Imaging Spectrograph (STIS), which has been selected by NASA for definition study for future flight as a second-generation instrument on the Hubble Space Telescope (HST), is presented. STIS is a two-dimensional spectrograph that will operate from 1050 A to 11,000 A at the limiting HST resolution of 0.05 arcsec FWHM, with spectral resolutions of 100, 1200, 20,000, and 100,000 and a maximum field-of-view of 50 x 50 arcsec. Its basic operating modes include echelle model, long slit mode, slitless spectrograph mode, coronographic spectroscopy, photon time-tagging, and direct imaging. Research objectives are active galactic nuclei, the intergalactic medium, global properties of galaxies, the origin of stellar systems, stelalr spectral variability, and spectrographic mapping of solar system processes.

  9. The numerical frontier of the high-redshift Universe

    NASA Astrophysics Data System (ADS)

    Greif, Thomas H.

    2015-03-01

    The first stars are believed to have formed a few hundred million years after the big bang in so-called dark matter minihalos with masses . Their radiation lit up the Universe for the first time, and the supernova explosions that ended their brief lives enriched the intergalactic medium with the first heavy elements. Influenced by their feedback, the first galaxies assembled in halos with masses , and hosted the first metal-enriched stellar populations. In this review, I summarize the theoretical progress made in the field of high-redshift star and galaxy formation since the turn of the millennium, with an emphasis on numerical simulations. These have become the method of choice to understand the multi-scale, multi-physics problem posed by structure formation in the early Universe. In the first part of the review, I focus on the formation of the first stars in minihalos - in particular the post-collapse phase, where disk fragmentation, protostellar evolution, and radiative feedback become important. I also discuss the influence of additional physical processes, such as magnetic fields and streaming velocities. In the second part of the review, I summarize the various feedback mechanisms exerted by the first stars, followed by a discussion of the first galaxies and the various physical processes that operate in them.

  10. Absorption line indices in the UV. I. Empirical and theoretical stellar population models

    NASA Astrophysics Data System (ADS)

    Maraston, C.; Nieves Colmenárez, L.; Bender, R.; Thomas, D.

    2009-01-01

    Aims: Stellar absorption lines in the optical (e.g. the Lick system) have been extensively studied and constitute an important stellar population diagnostic for galaxies in the local universe and up to moderate redshifts. Proceeding towards higher look-back times, galaxies are younger and the ultraviolet becomes the relevant spectral region where the dominant stellar populations shine. A comprehensive study of ultraviolet absorption lines of stellar population models is however still lacking. With this in mind, we study absorption line indices in the far and mid-ultraviolet in order to determine age and metallicity indicators for UV-bright stellar populations in the local universe as well as at high redshift. Methods: We explore empirical and theoretical spectral libraries and use evolutionary population synthesis to compute synthetic line indices of stellar population models. From the empirical side, we exploit the IUE-low resolution library of stellar spectra and system of absorption lines, from which we derive analytical functions (fitting functions) describing the strength of stellar line indices as a function of gravity, temperature and metallicity. The fitting functions are entered into an evolutionary population synthesis code in order to compute the integrated line indices of stellar populations models. The same line indices are also directly evaluated on theoretical spectral energy distributions of stellar population models based on Kurucz high-resolution synthetic spectra, In order to select indices that can be used as age and/or metallicity indicators for distant galaxies and globular clusters, we compare the models to data of template globular clusters from the Magellanic Clouds with independently known ages and metallicities. Results: We provide synthetic line indices in the wavelength range ~1200 Å to ~3000 Å for stellar populations of various ages and metallicities.This adds several new indices to the already well-studied CIV and SiIV absorptions. Based on the comparison with globular cluster data, we select a set of 11 indices blueward of the 2000 Å rest-frame that allows us to recover well the ages and the metallicities of the clusters. These indices are ideal to study ages and metallicities of young galaxies at high redshift. We also provide the synthetic high-resolution stellar population SEDs.

  11. A census of Hα emitters in the intergalactic medium of the NGC 2865 system

    NASA Astrophysics Data System (ADS)

    Urrutia-Viscarra, F.; Arnaboldi, M.; Mendes de Oliveira, C.; Gerhard, O.; Torres-Flores, S.; Carrasco, E. R.; de Mello, D.

    2014-09-01

    Tidal debris, which are rich in HI gas and formed in interacting and merging systems, are suitable laboratories to study star formation outside galaxies. Recently, several such systems were observed, which contained many young star forming regions outside the galaxies. In previous works, we have studied young star forming regions outside galaxies in different systems with optical and/or gaseous tidal debris, in order to understand how often they occur and in which type of environments. In this paper, we searched for star forming regions around the galaxy NGC 2865, a shell galaxy that is circled by a ring of HI with a total mass of 1.2 × 109 M⊙. Using the multi-slit imaging spectroscopy technique with the Gemini telescope, we detected all Hα emitting sources in the surroundings of the galaxy NGC 2865, down to a flux limit of 10-18 erg cm-2 s-1 Å-1. With the spectra information and the near and far-ultraviolet flux, we characterize the star formation rates, masses, ages, and metallicities for these HII regions. In total, we found 26 emission-line sources in a 60 × 60 Kpc field centered over the southeastern tail of the HI gas present around the galaxy NGC 2865. Out of the 26 Hα emitters, 19 are in the satellite galaxy FGCE 0745, and seven are intergalactic HII regions scattered over the south tail of the HI gas around NGC 2865. We found that the intergalactic HII regions are young (<200 Myr) with stellar masses in the range 4 × 103 M⊙ to 17 × 106 M⊙. These are found in a region of low HI gas density, where the probability of forming stars is expected to be low. For one of the intergalactic HII regions, we estimated a solar oxygen abundance of 12 + log(O/H) ~ 8.7. We also were able to estimate the metallicity for the satellite galaxy FGCE 0745 to be 12 + log(O/H) ~ 8.0. Given these physical parameters, the intergalactic HII regions are consistent with young star forming regions (or clusters), which are born in situ outside the NGC 2865 galaxy from a pre-enriched gas removed from the host galaxies in a merger event. The relevance of these observations is discussed. Based on observations obtained at the Gemini Observatory, which is operated by the Association of Universities for Research in Astronomy, Inc., under a cooperative agreement with the NSF on behalf of the Gemini partnership: the National Science Foundation (United States), the Science and Technology Facilities Council (United Kingdom), the National Research Council (Canada), CONICYT (Chile), the Australian Research Council (Australia), Ministério da Ciência e Tecnologia (Brazil) and Ministerio de Ciencia, Tecnología e Innovación Productiva (Argentina) - Observing runs: GS-2008A-Q-35.

  12. Interaction effects on galaxy pairs with Gemini/GMOS- III: stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Krabbe, A. C.; Rosa, D. A.; Pastoriza, M. G.; Hägele, G. F.; Cardaci, M. V.; Dors, O. L., Jr.; Winge, C.

    2017-05-01

    We present an observational study of the impacts of interactions on the stellar population in a sample of galaxy pairs. Long-slit spectra in the wavelength range 3440-7300 Å obtained with the Gemini Multi-Object Spectrograph (GMOS) at Gemini South for 15 galaxies in nine close pairs were used. The spatial distributions of the stellar population contributions were obtained using the stellar population synthesis code starlight. Taking into account the different contributions to the emitted light, we found that most of the galaxies in our sample are dominated by young/intermediate stellar populations. This result differs from the one derived for isolated galaxies, where the old stellar population dominates the disc surface brightness. We interpreted such different behaviour as being due to the effect of gas inflows along the discs of interacting galaxies on the star formation over a time-scale of the order of about 2 Gyr. We also found that, in general, the secondary galaxy of a pair has a higher contribution from the young stellar population than the primary one. We compared the estimated values of stellar and nebular extinction derived from the synthesis method and the Hα/Hβ emission-line ratio, finding that nebular extinctions are systematically higher than stellar ones by about a factor of 2. We did not find any correlation between nebular and stellar metallicities. Neither did we find a correlation between stellar metallicities and ages, while a positive correlation between nebular metallicities and stellar ages was obtained, with older regions being the most metal-rich.

  13. The Magellanic Bridge Cluster NGC 796: Deep Optical AO Imaging Reveals the Stellar Content and Initial Mass Function of a Massive Open Cluster

    NASA Astrophysics Data System (ADS)

    Kalari, Venu M.; Carraro, Giovanni; Evans, Christopher J.; Rubio, Monica

    2018-04-01

    NGC 796 is a massive young cluster located 59 kpc from us in the diffuse intergalactic medium of the 1/5–1/10 Z⊙ Magellanic Bridge, allowing us to probe variations in star formation and stellar evolution processes as a function of metallicity in a resolved fashion, and providing a link between resolved studies of nearby solar-metallicity and unresolved distant metal-poor clusters located in high-redshift galaxies. In this paper, we present adaptive optics griHα imaging of NGC 796 (at 0.″5, which is ∼0.14 pc at the cluster distance) along with optical spectroscopy of two bright members to quantify the cluster properties. Our aim is to explore whether star formation and stellar evolution vary as a function of metallicity by comparing the properties of NGC 796 to higher-metallicity clusters. We find an age of {20}-5+12 Myr from isochronal fitting of the cluster main sequence in the color–magnitude diagram. Based on the cluster luminosity function, we derive a top-heavy stellar initial mass function (IMF) with a slope α = 1.99 ± 0.2, hinting at a metallicity and/or environmental dependence of the IMF, which may lead to a top-heavy IMF in the early universe. Study of the Hα emission-line stars reveals that classical Be stars constitute a higher fraction of the total B-type stars when compared with similar clusters at greater metallicity, providing some support to the chemically homogeneous theory of stellar evolution. Overall, NGC 796 has a total estimated mass of 990 ± 200 M⊙, and a core radius of 1.4 ± 0.3 pc, which classifies it as a massive young open cluster, unique in the diffuse interstellar medium of the Magellanic Bridge.

  14. Binary Population and Spectral Synthesis Version 2.1: Construction, Observational Verification, and New Results

    NASA Astrophysics Data System (ADS)

    Eldridge, J. J.; Stanway, E. R.; Xiao, L.; McClelland, L. A. S.; Taylor, G.; Ng, M.; Greis, S. M. L.; Bray, J. C.

    2017-11-01

    The Binary Population and Spectral Synthesis suite of binary stellar evolution models and synthetic stellar populations provides a framework for the physically motivated analysis of both the integrated light from distant stellar populations and the detailed properties of those nearby. We present a new version 2.1 data release of these models, detailing the methodology by which Binary Population and Spectral Synthesis incorporates binary mass transfer and its effect on stellar evolution pathways, as well as the construction of simple stellar populations. We demonstrate key tests of the latest Binary Population and Spectral Synthesis model suite demonstrating its ability to reproduce the colours and derived properties of resolved stellar populations, including well-constrained eclipsing binaries. We consider observational constraints on the ratio of massive star types and the distribution of stellar remnant masses. We describe the identification of supernova progenitors in our models, and demonstrate a good agreement to the properties of observed progenitors. We also test our models against photometric and spectroscopic observations of unresolved stellar populations, both in the local and distant Universe, finding that binary models provide a self-consistent explanation for observed galaxy properties across a broad redshift range. Finally, we carefully describe the limitations of our models, and areas where we expect to see significant improvement in future versions.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Imara, Nia; Loeb, Abraham, E-mail: nimara@cfa.harvard.edu

    Infrared emission from intergalactic dust might compromise the ability of future experiments to detect subtle spectral distortions in the Cosmic Microwave Background (CMB) from the early universe. We provide the first estimate of foreground contamination of the CMB signal due to diffuse dust emission in the intergalactic medium. We use models of the extragalactic background light to calculate the intensity of intergalactic dust emission and find that emission by intergalactic dust at z ≲ 0.5 exceeds the sensitivity of the planned Primordial Inflation Explorer to CMB spectral distortions by 1–3 orders of magnitude. In the frequency range ν = 150–2400more » GHz, we place an upper limit of 0.06% on the contribution to the far-infrared background from intergalactic dust emission.« less

  16. The imprint of the cosmic supermassive black hole growth history on the 21 cm background radiation

    NASA Astrophysics Data System (ADS)

    Tanaka, Takamitsu L.; O'Leary, Ryan M.; Perna, Rosalba

    2016-01-01

    The redshifted 21 cm transition line of hydrogen tracks the thermal evolution of the neutral intergalactic medium (IGM) at `cosmic dawn', during the emergence of the first luminous astrophysical objects (˜100 Myr after the big bang) but before these objects ionized the IGM (˜400-800 Myr after the big bang). Because X-rays, in particular, are likely to be the chief energy courier for heating the IGM, measurements of the 21 cm signature can be used to infer knowledge about the first astrophysical X-ray sources. Using analytic arguments and a numerical population synthesis algorithm, we argue that the progenitors of supermassive black holes (SMBHs) should be the dominant source of hard astrophysical X-rays - and thus the primary driver of IGM heating and the 21 cm signature - at redshifts z ≳ 20, if (I) they grow readily from the remnants of Population III stars and (II) produce X-rays in quantities comparable to what is observed from active galactic nuclei and high-mass X-ray binaries. We show that models satisfying these assumptions dominate over contributions to IGM heating from stellar populations, and cause the 21 cm brightness temperature to rise at z ≳ 20. An absence of such a signature in the forthcoming observational data would imply that SMBH formation occurred later (e.g. via so-called direct collapse scenarios), that it was not a common occurrence in early galaxies and protogalaxies, or that it produced far fewer X-rays than empirical trends at lower redshifts, either due to intrinsic dimness (radiative inefficiency) or Compton-thick obscuration close to the source.

  17. Servicing Mission 4 and the Extraordinary Science of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Wiseman, Jennifer J.

    2012-01-01

    Just two years ago, NASA astronauts performed a challenging and flawless final Space Shuttle servicing mission to the orbiting Hubble Space Telescope. With science instruments repaired on board and two new ones installed, the observatory. is more powerful now than ever before. I will show the dramatic highlights of the servicing mission and present some of the early scientific results from the refurbished telescope. Its high sensitivity and multi-wavelength capabilities are revealing the highest redshift galaxies ever seen, as well as details of the cosmic web of intergalactic medium, large scale structure formation, solar system bodies, and stellar evolution. Enlightening studies of dark matter, dark energy, and exoplanet atmospheres add to the profound contributions to astrophysics that are being made with Hubble, setting a critical stage for future observatories such as the James Webb Space Telescope.

  18. COSMIC-RAY POSITRONS FROM MILLISECOND PULSARS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Venter, C.; Kopp, A.; Büsching, I.

    2015-07-10

    Observations by the Fermi Large Area Telescope of γ-ray millisecond pulsar (MSP) light curves imply copious pair production in their magnetospheres, and not exclusively in those of younger pulsars. Such pair cascades may be a primary source of Galactic electrons and positrons, contributing to the observed enhancement in positron flux above ∼10 GeV. Fermi has also uncovered many new MSPs, impacting Galactic stellar population models. We investigate the contribution of Galactic MSPs to the flux of terrestrial cosmic-ray electrons and positrons. Our population synthesis code predicts the source properties of present-day MSPs. We simulate their pair spectra invoking an offset-dipolemore » magnetic field. We also consider positrons and electrons that have been further accelerated to energies of several TeV by strong intrabinary shocks in black widow (BW) and redback (RB) systems. Since MSPs are not surrounded by pulsar wind nebulae or supernova shells, we assume that the pairs freely escape and undergo losses only in the intergalactic medium. We compute the transported pair spectra at Earth, following their diffusion and energy loss through the Galaxy. The predicted particle flux increases for non-zero offsets of the magnetic polar caps. Pair cascades from the magnetospheres of MSPs are only modest contributors around a few tens of GeV to the lepton fluxes measured by the Alpha Magnetic Spectrometer, PAMELA, and Fermi, after which this component cuts off. The contribution by BWs and RBs may, however, reach levels of a few tens of percent at tens of TeV, depending on model parameters.« less

  19. Not-so-simple stellar populations in nearby, resolved massive star clusters

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan

    2018-02-01

    Around the turn of the last century, star clusters of all kinds were considered ‘simple’ stellar populations. Over the past decade, this situation has changed dramatically. At the same time, star clusters are among the brightest stellar population components and, as such, they are visible out to much greater distances than individual stars, even the brightest, so that understanding the intricacies of star cluster composition and their evolution is imperative for understanding stellar populations and the evolution of galaxies as a whole. In this review of where the field has moved to in recent years, we place particular emphasis on the properties and importance of binary systems, the effects of rapid stellar rotation, and the presence of multiple populations in Magellanic Cloud star clusters across the full age range. Our most recent results imply a reverse paradigm shift, back to the old simple stellar population picture for at least some intermediate-age (˜1-3 Gyr old) star clusters, opening up exciting avenues for future research efforts.

  20. The Anemic Stellar Halo of M101

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2014-10-01

    Models of galaxy formation in a cosmological context predict that massive disk galaxies should have richly-structured extended stellar halos, containing ~10% of a galaxy's stars, originating in large part from the tidal disruption of dwarf galaxies. Observations of a number of nearby disk galaxies have generally agreed with these expectations. Recent new observations in integrated light with a novel array of low scattered-light telephoto lenses have failed to convincingly detect a stellar halo in the nearby massive face-on disk galaxy M101 (van Dokkum et al. 2014). They argue that any halo has to have <0.3% of the mass of the galaxy. This halo would be the least massive of any massive disk galaxy in the local Universe (by factors of several) -- such a halo is not predicted or naturally interpreted by the models, and would present a critical challenge to the picture of ubiquitous stellar halos formed from the debris of disrupting dwarf galaxies.We propose to resolve the stellar populations of this uniquely anemic stellar halo for 6 orbits with HST (ACS and WFC3), allowing us to reach surface brightness limits sufficient to clearly detect and characterize M101's stellar halo if it carries more than 0.1% of M101's mass. With resolved stellar populations, we can use the gradient of stellar populations as a function of radius to separate stellar halo from disk, which is impossible using integrated light observations. The resolved stellar populations will reveal the halo mass to much greater accuracy, measure the halo radial profile, constrain any halo lopsidedness, estimate the halo's stellar metallicity, and permit an analysis of outer disk stellar populations.

  1. Compton scattering of the microwave background by quasar-blown bubbles

    NASA Technical Reports Server (NTRS)

    Voit, G. Mark

    1994-01-01

    At least 10% of quasars drive rapid outflows from the central regions of their host galaxies. The mass and energy flow rates in these winds are difficult to measure, but their kinetic luminosities probably exceed 10(exp 45) ergs/s. This kind of outflow easily sunders the interstellar medium of the host and blows a bubble in the intergalactic medium. After the quasar shuts off, the hot bubble continues to shock intergalactic gas until its leading edge merges with the Hubble flow. The interior hot gas Compton scatters microwave background photons, potentially providing a way to detect these bubbles. Assuming that quasar kinetic luminosities scale with their blue luminosities, we integrate over the quasar luminosity function to find the total distortion (y) of the microwave background produced by the entire population of quasar wind bubbles. This calculation of y distortion is remarkably insensitive to the properties of the intergalactic medium (IGM), quasar lifetimes, and cosmological parameters. Current Cosmic Background Explorer (COBE) limits on y constrain the kinetic luminosities of quasars to be less than several times their bolometric radiative luminosities. Within this constraint, quasars can still expel enough kinetic luminosity to shock the entire IGM by z = 0, but cannot heat and ionize the IGM by z = 4 unless omega(sub IGM) much less than 10(exp -2).

  2. The Universe's Most Extreme Star-forming Galaxies

    NASA Astrophysics Data System (ADS)

    Casey, Caitlin

    2017-06-01

    Dusty star-forming galaxies host the most intense stellar nurseries in the Universe. Their unusual characteristics (SFRs=200-2000Msun/yr, Mstar>1010 Msun) pose a unique challenge for cosmological simulations and galaxy formation theory, particularly at early times. Although rare today, they were factors of 1000 times more prevalent at z~2-5, contributing significantly to the buildup of the Universe's stellar mass and the formation of high-mass galaxies. At even earlier times (within 1Gyr post Big Bang) they could have played a pivotal role in enriching the IGM. However, an ongoing debate lingers as to their evolutionary origins at high-redshift, whether or not they are triggered by major mergers of gas-rich disk galaxies, or if they are solitary galaxies continually fed pristine gas from the intergalactic medium. Furthermore, their presence in early protoclusters, only revealed quite recently, pose intriguing questions regarding the collapse of large scale structure. I will discuss some of the latest observational programs dedicated to understanding dust-obscuration in and gas content of the early Universe, their context in the cosmic web, and future long-term observing campaigns that may reveal their relationship to `normal’ galaxies, thus teaching us valuable lessons on the physical mechanisms of galaxy growth and the collapse of large scale structure in an evolving Universe.

  3. PHAT+MaNGA: Using resolved stellar populations to improve the recovery of star formation histories from galaxy spectra

    NASA Astrophysics Data System (ADS)

    Byler, Nell

    2017-08-01

    Stellar Population Synthesis (SPS) models are routinely used to interpret extragalactic observations at all redshifts. Currently, the dominant source of uncertainty in SPS modeling lies in the degeneracies associated with synthesizing and fitting complex stellar populations to observed galaxy spectra. To remedy this, we propose an empirical calibration of SPS models using resolved stellar population observations from Hubble Space Telescope (HST) to constrain the stellar masses, ages, and star formation histories (SFHs) in regions matched to 2D spectroscopic observations from MaNGA. We will take advantage of the state of the art observations from the Panchromatic Hubble Andromeda Treasury (PHAT), which maps the dust content, history of chemical enrichment, and history of star formation across the disk of M31 in exquisite detail. Recently, we have coupled these observations with an unprecedented, spatially-resolved suite of IFU observations from MaNGA. With these two comprehensive data sets we can use the true underlying stellar properties from PHAT to properly interpret the aperture-matched integrated spectra from MaNGA. Our MaNGA observations target 20 regions within the PHAT footprint that fully sample the available range in metallicity, SFR, dust content, and stellar density. This transformative dataset will establish a comprehensive link between resolved stellar populations and the inferred properties of unresolved stellar populations across astrophysically important environments. The net data product will be a library of galaxy spectra matched to the true underlying stellar properties, a comparison set that has lasting legacy value for the extragalactic community.

  4. Colour pairs for constraining the age and metallicity of stellar populations

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Han, Zhanwen

    2008-04-01

    Using a widely used stellar-population synthesis model, we study the possibility of using pairs of AB system colours to break the well-known stellar age-metallicity degeneracy and to give constraints on two luminosity-weighted stellar-population parameters (age and metallicity). We present the relative age and metallicity sensitivities of the AB system colours that relate to the u,B,g,V,r,R,i, I,z,J,H and K bands, and we quantify the ability of various colour pairs to break the age-metallicity degeneracy. Our results suggest that a few pairs of colours can be used to constrain the above two stellar-population parameters. This will be very useful for exploring the stellar populations of distant galaxies. In detail, colour pairs [(r-K), (u-R)] and [(r-K), (u-r)] are shown to be the best pairs for estimating the luminosity-weighted stellar ages and metallicities of galaxies. They can constrain two stellar-population parameters on average with age uncertainties less than 3.89 Gyr and metallicity uncertainties less than 0.34 dex for typical colour uncertainties. The typical age uncertainties for young populations (age < 4.6 Gyr) and metal-rich populations (Z >= 0.001) are small (about 2.26 Gyr) while those for old populations (age >= 4.6 Gyr) and metal-poor populations (Z < 0.001) are much larger (about 6.88 Gyr). However, the metallicity uncertainties for metal-poor populations (about 0.0024) are much smaller than for other populations (about 0.015). Some other colour pairs can also possibly be used for constraining the two parameters. On the whole, the estimation of stellar-population parameters is likely to be reliable only for early-type galaxies with small colour errors and globular clusters, because such objects contain less dust. In fact, no galaxy is totally dust-free and early-type galaxies are also likely have some dust [e.g. E(B- V) ~ 0.05], which can change the stellar ages by about 2.5 Gyr and metallicities (Z) by about 0.015. When we compare the photometric estimates with previous spectroscopic estimates, we find some differences, especially when comparing the stellar ages determined by two methods. The differences mainly result from the young populations of galaxies. Therefore, it is difficult to obtain the absolute values of stellar ages and metallicities, but the results are useful for obtaining some relative values. In addition, our results suggest that colours relating to both UBVRIJHK and ugriz magnitudes are much better than either UBVRIJHK or ugriz colours for breaking the well-known degeneracy. The results also show that the stellar ages and metallicities of galaxies observed by the Sloan Digital Sky Survey and the Two-Micron All-Sky Survey can be estimated via photometry data. The data are available at the Centre de Données astronomiques de Strabourg (CDS) or on request to the authors. E-mail: zhongmu.li@gmail.com

  5. Eight luminous early-type galaxies in nearby pairs and sparse groups. I. Stellar populations spatially analysed

    NASA Astrophysics Data System (ADS)

    Rosa, D. A.; Milone, A. C.; Krabbe, A. C.; Rodrigues, I.

    2018-06-01

    We present a detailed spatial analysis of stellar populations based on long-slit optical spectra in a sample of eight luminous early-type galaxies selected from nearby sparse groups and pairs, three of them may have interaction with another galaxy of similar mass. We have spatially measured luminosity-weighted averages of age, [M/H], [Fe/H], and [α /Fe] in the sample galaxies to add empirical data relative to the influence of galaxy mass, environment, interaction, and AGN feedback in their formation and evolution. The stellar population of the individual galaxies were determined through the well-established stellar population synthesis code starlight using semi-empirical simple stellar population models. Radial variations of luminosity- weighted means of age, [M/H], [Fe/H], and [α /Fe] were quantified up to half of the effective radius of each galaxy. We found trends between representative values of age, [M/H], [α /Fe], and the nuclear stellar velocity dispersion. There are also relations between the metallicity/age gradients and the velocity dispersion. Contributions of 1-4 Gyr old stellar populations were quantified in IC 5328 and NGC 6758 as well as 4-8 Gyr old ones in NGC 5812. Extended gas is present in IC 5328, NGC 1052, NGC 1209, and NGC 6758, and the presence of a LINER is identified in all these galaxies. The regions up to one effective radius of all galaxies are basically dominated by α -enhanced metal-rich old stellar populations likely due to rapid star formation episodes that induced efficient chemical enrichment. On average, the age and [α /Fe] gradients are null and the [M/H] gradients are negative, although discordant cases were found. We found no correlation between the stellar population properties and the LINER presence as well as between the stellar properties and environment or gravitational interaction, suggesting that the influence of progenitor mass cannot be discarded in the formation and evolution of early-type galaxies.

  6. The Dual-channel Extreme Ultraviolet Continuum Experiment: Sounding Rocket EUV Observations of Local B Stars to Determine Their Potential for Supplying Intergalactic Ionizing Radiation

    NASA Astrophysics Data System (ADS)

    Erickson, Nicholas; Green, James C.; France, Kevin; Stocke, John T.; Nell, Nicholas

    2018-06-01

    We describe the scientific motivation and technical development of the Dual-channel Extreme Ultraviolet Continuum Experiment (DEUCE). DEUCE is a sounding rocket payload designed to obtain the first flux-calibrated spectra of two nearby B stars in the EUV 650-1150Å bandpass. This measurement will help in understanding the ionizing flux output of hot B stars, calibrating stellar models and commenting on the potential contribution of such stars to reionization. DEUCE consists of a grazing incidence Wolter II telescope, a normal incidence holographic grating, and the largest (8” x 8”) microchannel plate detector ever flown in space, covering the 650-1150Å band in medium and low resolution channels. DEUCE will launch on December 1, 2018 as NASA/CU sounding rocket mission 36.331 UG, observing Epsilon Canis Majoris, a B2 II star.

  7. Low-redshift Lyman limit systems as diagnostics of cosmological inflows and outflows

    NASA Astrophysics Data System (ADS)

    Hafen, Zachary; Faucher-Giguère, Claude-André; Anglés-Alcázar, Daniel; Kereš, Dušan; Feldmann, Robert; Chan, T. K.; Quataert, Eliot; Murray, Norman; Hopkins, Philip F.

    2017-08-01

    We use cosmological hydrodynamic simulations with stellar feedback from the FIRE (Feedback In Realistic Environments) project to study the physical nature of Lyman limit systems (LLSs) at z ≤ 1. At these low redshifts, LLSs are closely associated with dense gas structures surrounding galaxies, such as galactic winds, dwarf satellites and cool inflows from the intergalactic medium. Our analysis is based on 14 zoom-in simulations covering the halo mass range Mh ≈ 109-1013 M⊙ at z = 0, which we convolve with the dark matter halo mass function to produce cosmological statistics. We find that the majority of cosmologically selected LLSs are associated with haloes in the mass range 1010 ≲ Mh ≲ 1012 M⊙. The incidence and H I column density distribution of simulated absorbers with columns in the range 10^{16.2} ≤ N_{H I} ≤ 2× 10^{20} cm-2 are consistent with observations. High-velocity outflows (with radial velocity exceeding the halo circular velocity by a factor of ≳ 2) tend to have higher metallicities ([X/H] ˜ -0.5) while very low metallicity ([X/H] < -2) LLSs are typically associated with gas infalling from the intergalactic medium. However, most LLSs occupy an intermediate region in metallicity-radial velocity space, for which there is no clear trend between metallicity and radial kinematics. The overall simulated LLS metallicity distribution has a mean (standard deviation) [X/H] = -0.9 (0.4) and does not show significant evidence for bimodality, in contrast to recent observational studies, but consistent with LLSs arising from haloes with a broad range of masses and metallicities.

  8. The Nonbarred Double-Ringed Galaxy, PGC 1000714

    NASA Astrophysics Data System (ADS)

    Seigar, Marc; Mutlu Pakdil, Burcin; Mangedarage, Mithila; Treuthardt, Patrick M.

    2017-01-01

    Hoag-type galaxies are rare peculiar systems which bear strong resemblance to Hoag's Object with an elliptical-like core, a detached outer ring, and no signs of a bar or stellar disk. They represent extreme cases and help us understand the formation of galaxies in general by providing clues on formation mechanisms. The nature of outer rings in Hoag-type galaxies is still debated and may be related either to slow secular evolution, such as dissolution of a barlike structure or to environmental processes, such as galaxy-galaxy interactions or gas infall. Due to a fairly superficial resemblance to Hoag's Object, PGC 1000714 is a good target for detailed study of the peculiar structure of this type. We present the first photometric study of PGC 1000714 that has not yet been described in the literature. Our aim is to evaluate its structure and properties as well as understand the origin of outer rings in such galaxies. Surface photometry of the central body is performed using near-UV, BVRI and JHK images. Based on the photometric data, the nearly round central body follows a de Vaucouleurs profile almost all the way to the center. The detailed photometry reveals a reddish inner ring-shaped structure that shares the same center as the central body. However, no sign of a bar or stellar disk is detected. The outer ring appears as a bump in the surface brightness profile with a peak brightness of 25.8 mag/arcsec^{2} in the B-band and shows no sharp outer boundary. By reconstructing the observed SED for the central body and the rings, we recover the stellar population properties of the galaxy components. Our work suggests different formation histories for the inner and outer rings. We rule out the secular evolution model as being a formation mechanism for the outer ring. The colors of the outer ring are consistent with a feature that may have experienced a burst of star formation due to a possible recent accretion event. In addition, our work supports that the central body may be formed by a relatively dry major merger or in a single, short and highly effective star formation burst, and the inner ring may be formed as a result of intergalactic medium accretion or secular evolution of a possible gaseous disk

  9. Galactic Winds and the Role Played by Massive Stars

    NASA Astrophysics Data System (ADS)

    Heckman, Timothy M.; Thompson, Todd A.

    Galactic winds from star-forming galaxies play at key role in the evolution of galaxies and the intergalactic medium. They transport metals out of galaxies, chemically enriching the intergalactic medium and modifying the chemical evolution of galaxies. They affect the surrounding interstellar and circumgalactic media, thereby influencing the growth of galaxies though gas accretion and star formation. In this contribution we first summarize the physical mechanisms by which the momentum and energy output from a population of massive stars and associated supernovae can drive galactic winds. We use the prototypical example of M 82 to illustrate the multiphase nature of galactic winds. We then describe how the basic properties of galactic winds are derived from the data, and summarize how the properties of galactic winds vary systematically with the properties of the galaxies that launch them. We conclude with a brief discussion of the broad implications of galactic winds.

  10. The difference in age of the two counter-rotating stellar disks of the spiral galaxy NGC 4138

    NASA Astrophysics Data System (ADS)

    Pizzella, A.; Morelli, L.; Corsini, E. M.; Dalla Bontà, E.; Coccato, L.; Sanjana, G.

    2014-10-01

    Context. Galaxies accrete material from the environment through acquisitions and mergers. These processes contribute to the galaxy assembly and leave their fingerprints on the galactic morphology, internal kinematics of gas and stars, and stellar populations. Aims: The Sa spiral NGC 4138 is known to host two counter-rotating stellar disks, with the ionized gas co-rotating with one of them. We measured the kinematics and properties of the two counter-rotating stellar populations to constrain their formation scenario. Methods: A spectroscopic decomposition of the observed major-axis spectrum was performed to disentangle the relative contribution of the two counter-rotating stellar and one ionized-gas components. The line-strength indices of the two counter-rotating stellar components were measured and modeled with single stellar population models that account for the α/Fe overabundance. Results: The counter-rotating stellar population is younger, marginally more metal poor, and more α-enhanced than the main stellar component. The younger stellar component is also associated with a star-forming ring. Conclusions: The different properties of the counter-rotating stellar components of NGC 4138 rule out the idea that they formed because of bar dissolution. Our findings support the results of numerical simulations in which the counter-rotating component assembled from gas accreted on retrograde orbits from the environment or from the retrograde merging with a gas-rich dwarf galaxy. Based on observation carried out at the Galileo 1.22 m telescope at Padua University.

  11. Yonsei Evolutionary Population Synthesis (YEPS). II. Spectro-photometric Evolution of Helium-enhanced Stellar Populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chung, Chul; Yoon, Suk-Jin; Lee, Young-Wook, E-mail: chulchung@yonsei.ac.kr, E-mail: sjyoon0691@yonsei.ac.kr

    The discovery of multiple stellar populations in Milky Way globular clusters (GCs) has stimulated various follow-up studies on helium-enhanced stellar populations. Here we present the evolutionary population synthesis models for the spectro-photometric evolution of simple stellar populations (SSPs) with varying initial helium abundance ( Y {sub ini}). We show that Y {sub ini} brings about dramatic changes in spectro-photometric properties of SSPs. Like the normal-helium SSPs, the integrated spectro-photometric evolution of helium-enhanced SSPs is also dependent on metallicity and age for a given Y {sub ini}. We discuss the implications and prospects for the helium-enhanced populations in relation to themore » second-generation populations found in the Milky Way GCs. All of the models are available at http://web.yonsei.ac.kr/cosmic/data/YEPS.htm.« less

  12. An isochrone data base and a rapid model for stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Han, Zhanwen

    2008-06-01

    We first presented an isochrone data base that can be widely used for stellar population synthesis studies and colour-magnitude diagram (CMD) fitting. The data base consists of the isochrones of both single-star and binary-star simple stellar populations (ss-SSPs and bs-SSPs). The ranges for the age and metallicity of populations are 0-15 Gyr and 0.0001-0.03, respectively. All data are available for populations with two widely used initial mass functions (IMFs), that is, Salpeter IMF and Chabrier IMF. The uncertainty caused by the data base (about 0.81 per cent) is designed to be smaller than those caused by the Hurley code and widely used stellar spectra libraries (e.g. BaSeL 3.1) when it is used for stellar population synthesis. Based on the isochrone data base, we then built a rapid stellar population synthesis (RPS) model and calculated the high-resolution (0.3-Å) integrated spectral energy distributions, Lick indices and colour indices for bs-SSPs and ss-SSPs. In particular, we calculated the UBVRIJHKLM colours, ugriz colours and some composite colours that consist of magnitudes on different systems. These colours are useful for disentangling the well-known stellar age-metallicity degeneracy according to our previous work. As an example for applying the isochrone data base for CMD fitting, we fitted the CMDs of two star clusters (M67 and NGC1868) and obtained their distance moduli, colour excesses, stellar metallicities and ages. The results showed that the isochrones of bs-SSPs are closer to those of real star clusters. It suggests that we should take the effects of binary interactions into account in stellar population synthesis. We also discussed on the limitations of the application of the isochrone data base and the results of the RPS model. All the data are available at the CDS or on request to the authors. E-mail: zhongmu.li@gmail.com

  13. A search for extended radio emission from selected compact galaxy groups

    NASA Astrophysics Data System (ADS)

    Nikiel-Wroczyński, B.; Urbanik, M.; Soida, M.; Beck, R.; Bomans, D. J.

    2017-07-01

    Context. Studies on compact galaxy groups have led to the conclusion that a plenitude of phenomena take place in between galaxies that form them. However, radio data on these objects are extremely scarce and not much is known concerning the existence and role of the magnetic field in intergalactic space. Aims: We aim to study a small sample of galaxy groups that look promising as possible sources of intergalactic magnetic fields; for example data from radio surveys suggest that most of the radio emission is due to extended, diffuse structures in and out of the galaxies. Methods: We used the Effelsberg 100 m radio telescope at 4.85 GHz and NRAO VLA Sky Survey (NVSS) data at 1.40 GHz. After subtraction of compact sources we analysed the maps searching for diffuse, intergalactic radio emission. Spectral index and magnetic field properties were derived. Results: Intergalactic magnetic fields exist in groups HCG 15 and HCG 60, whereas there are no signs of them in HCG 68. There are also hints of an intergalactic bridge in HCG 44 at 4.85 GHz. Conclusions: Intergalactic magnetic fields exist in galaxy groups and their energy density may be comparable to the thermal (X-ray) density, suggesting an important role of the magnetic field in the intra-group medium, wherever it is detected.

  14. The Resolved Stellar Populations Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Gilbert, Karoline; Weisz, Daniel; Resolved Stellar Populations ERS Program Team

    2018-06-01

    The Resolved Stellar Populations Early Release Science Program (PI D. Weisz) will observe Local Group targets covering a range of stellar density and star formation histories, including a globular cluster, and ultra-faint dwarf galaxy, and a star-forming dwarf galaxy. Using observations of these diverse targets we will explore a broad science program: we will measure star formation histories, the sub-solar stellar initial mass function, and proper motions, perform studies of evolved stars, and map extinction in the target fields. Our observations will be of high archival value for other science such as calibrating stellar evolution models, studying variable stars, and searching for metal-poor stars. We will determine optimal observational setups and develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will also design, test, and release point spread function (PSF) fitting software specific to NIRCam and NIRISS, required for the crowded stellar regime. Prior to the Cycle 2 Call for Proposals, we will release PSF fitting software, matched HST and JWST catalogs, and clear documentation and step-by-step tutorials (such as Jupyter notebooks) for reducing crowded stellar field data and producing resolved stellar photometry catalogs, as well as for specific resolved stellar photometry science applications.

  15. Effects of binary stellar populations on direct collapse black hole formation

    NASA Astrophysics Data System (ADS)

    Agarwal, Bhaskar; Cullen, Fergus; Khochfar, Sadegh; Klessen, Ralf S.; Glover, Simon C. O.; Johnson, Jarrett

    2017-06-01

    The critical Lyman-Werner (LW) flux required for direct collapse blackholes (DCBH) formation, or Jcrit, depends on the shape of the irradiating spectral energy distribution (SED). The SEDs employed thus far have been representative of realistic single stellar populations. We study the effect of binary stellar populations on the formation of DCBH, as a result of their contribution to the LW radiation field. Although binary populations with ages > 10 Myr yield a larger LW photon output, we find that the corresponding values of Jcrit can be up to 100 times higher than single stellar populations. We attribute this to the shape of the binary SEDs as they produce a sub-critical rate of H- photodetaching 0.76 eV photons as compared to single stellar populations, reaffirming the role that H- plays in DCBH formation. This further corroborates the idea that DCBH formation is better understood in terms of a critical region in the H2-H- photodestruction rate parameter space, rather than a single value of LW flux.

  16. Connection between Dynamically Derived Initial Mass Function Normalization and Stellar Population Parameters

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Cappellari, Michele; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2014-09-01

    We report on empirical trends between the dynamically determined stellar initial mass function (IMF) and stellar population properties for a complete, volume-limited sample of 260 early-type galaxies from the ATLAS3D project. We study trends between our dynamically derived IMF normalization αdyn ≡ (M/L)stars/(M/L)Salp and absorption line strengths, and interpret these via single stellar population-equivalent ages, abundance ratios (measured as [α/Fe]), and total metallicity, [Z/H]. We find that old and alpha-enhanced galaxies tend to have on average heavier (Salpeter-like) mass normalization of the IMF, but stellar population does not appear to be a good predictor of the IMF, with a large range of αdyn at a given population parameter. As a result, we find weak αdyn-[α/Fe] and αdyn -Age correlations and no significant αdyn -[Z/H] correlation. The observed trends appear significantly weaker than those reported in studies that measure the IMF normalization via the low-mass star demographics inferred through stellar spectral analysis.

  17. Observing the First Stars in Luminous, Red Galaxies

    NASA Technical Reports Server (NTRS)

    Heap, Sally; Lindler, Don

    2010-01-01

    Modern cosmological simulations predict that the first stars are to be found today in luminous, red galaxies. Although observing such stars individually against a background of younger, metal-rich stars is impossible, the first stars should make their presence known by their strong, line-free ultraviolet flux. We have found evidence for a UV-bright stellar population in Sloan spectra of LRG's at z=0.4-0.5. We present arguments for interpreting this UV-bright stellar population as the oldest stars, rather than other types of stellar populations (e.g. young stars or blue straggler stars in the dominant, metal-rich stellar population

  18. The Andromeda Optical and Infrared Disk Survey

    NASA Astrophysics Data System (ADS)

    Sick, Jonathan

    The spectral energy distributions of galaxies inform us about a galaxy's stellar populations and interstellar medium, revealing stories of galaxy formation and evolution. How we interpret this light depends in part on our proximity to the galaxy. For nearby galaxies, detailed star formation histories can be extracted from the resolved stellar populations, while more distant galaxies feature the contributions of entire stellar populations within their integrated spectral energy distribution (SED). This thesis aims to resolve whether the techniques used to investigate stellar populations in distant galaxies are consistent with those available for nearby galaxies. As the nearest spiral galaxy, the Andromeda Galaxy (M31) is the ideal testbed for the joint study of resolved stellar populations and panchromatic SEDs. We present the Andromeda Optical and Infrared Disk Survey (ANDROIDS), which adds new near-UV to near-IR (u*g'r'i'JKs) imaging using the MegaCam and WIRCam cameras at the Canada-France-Hawaii telescope to the available M31 panchromatic dataset. To accurately subtract photometric background from our extremely wide-field (14 square degree) mosaics, we present observing and data reduction techniques with sky-target nodding, optimization of image-to-image surface brightness, and a novel hierarchical Bayesian model to trace the background signal while modelling the astrophysical SED. We model the spectral energy distributions of M31 pixels with MAGPHYS (da Cunha et al. 2008) and compare those results to resolved stellar population models of the same pixels from the Panchromatic Hubble Andromeda Treasury (PHAT) survey (Williams et al. 2017). We find substantial (0.3 dex) differences in stellar mass estimates despite a common use of the Chabrier (2003) initial mass function. Stellar mass estimated from the resolved stellar population is larger than any mass estimate from SED models or colour-M/L relations (CMLRs). There is also considerable diversity among CMLR estimators, largely driven by differences in the star formation history prior distribution. We find broad consistency between the star formation history estimated by integrated spectral energy distributions and resolved stars. Generally, spectral energy distribution models yield a stronger inside-out radial metallicity gradient and bias towards younger mean ages than resolved stellar population models.

  19. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS: THE INTERNAL KINEMATICS OF THE MULTIPLE STELLAR POPULATIONS IN NGC 2808

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bellini, A.; Anderson, J.; Marel, R. P. van der

    2015-09-01

    Numerous observational studies have revealed the ubiquitous presence of multiple stellar populations in globular clusters and cast many difficult challenges for the study of the formation and dynamical history of these stellar systems. In this Letter we present the results of a study of the kinematic properties of multiple populations in NGC 2808 based on high-precision Hubble Space Telescope proper-motion measurements. In a recent study, Milone et al. identified five distinct populations (A–E) in NGC 2808. Populations D and E coincide with the helium-enhanced populations in the middle and the blue main sequences (mMS and bMS) previously discovered by Piottomore » et al.; populations A–C correspond to the redder main sequence that, in Piotto et al., was associated with the primordial stellar population. Our analysis shows that, in the outermost regions probed (between about 1.5 and 2 times the cluster half-light radius), the velocity distribution of populations D and E is radially anisotropic (the deviation from an isotropic distribution is significant at the ∼3.5σ level). Stars of populations D and E have a smaller tangential velocity dispersion than those of populations A–C, while no significant differences are found in the radial velocity dispersion. We present the results of a numerical simulation showing that the observed differences between the kinematics of these stellar populations are consistent with the expected kinematic fingerprint of the diffusion toward the cluster outer regions of stellar populations initially more centrally concentrated.« less

  20. Auto-consistent test of Galaxy star formation histories derived from resolved stellar population and integral spectroscopy

    NASA Astrophysics Data System (ADS)

    Rodrigues, M.; Patricio, V.; Rothberg, B.; Sanchez-Janssen, R.; Vale Asari, N.

    We present the first results of our observational project 'Starfish' (STellar Population From Integrated Spectrum). The goal of this project is to calibrate, for the first time, the properties of stellar populations derived from integrated spectra with the same properties derived from direct imaging of stellar populations in the same set of galaxies. These properties include the star-formation history (SFH), stellar mass, age, and metallicity. To date, such calibrations have been demonstrated only in star clusters, globular clusters with single stellar populations, not in complex and composite objects such as galaxies. We are currently constructing a library of integrated spectra obtained from a sample of 38 nearby dwarf galaxies obtained with GEMINI/GMOS-N&S (25h) and VLT/VIMOS-IFU (43h). These are to be compared with color magnitude diagrams (CMDs) of the same galaxies constructed from archival HST imaging sensitive to at least 1.5 magnitudes below the tip of the red giant branch. From this comparison we will assess the systematics and uncertainties from integrated spectral techniques. The spectra library will be made publicly available to the community via a dedicated web-page and Vizier database. This dataset will provide a unique benchmark for testing fitting procedures and stellar population models for both nearby and distant galaxies. http://www.sc.eso.org/˜marodrig/Starfish/

  1. Chemical Abundances of Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Gratton, Raffaele G.; Bragaglia, Angela; Carretta, Eugenio; D'Orazi, Valentina; Lucatello, Sara

    A large fraction of stars form in clusters. According to a widespread paradigma, stellar clusters are prototypes of single stellar populations. According to this concept, they formed on a very short time scale, and all their stars share the same chemical composition. Recently it has been understood that massive stellar clusters (the globular clusters) rather host various stellar populations, characterized by different chemical composition: these stellar populations have also slightly different ages, stars of the second generations being formed from the ejecta of part of those of an earlier one. Furthermore, it is becoming clear that the efficiency of the process is quite low: many more stars formed within this process than currently present in the clusters. This implies that a significant, perhaps even dominant fraction of the ancient population of galaxies formed within the episodes that lead to formation the globular clusters.

  2. Cosmic Metal Production and the Contribution of QSO Absorption Systems to the Ionizing Background

    NASA Technical Reports Server (NTRS)

    Madau, Piero; Shull, J. Michael

    1996-01-01

    The recent discovery by Cowie et al. (1995) and Tytler et al. (1995) of metals in the Ly alpha clouds shows that the intergalactic medium (IGM) at high redshift is contaminated by the products of stars and suggests that ionizing photons from massive star formation may be a significant contributor to the UV background radiation at early epochs. We assess the validity of the stellar photoionization hypothesis. Based on recent computations of metal yields and 0-star Lyman continuum (Lyc) fluxes, we find that 0.2 percent of the rest-mass energy of the metals produced is radiated as Lyc. By modeling the transfer of ionizing radiation through the IGM and the rate of chemical enrichment, we demonstrate that the background intensity of photons at 1 ryd that accompanies the production of metals in the Ly alpha forest clouds may be significant, approaching 0.5 x 10(exp -21) ergs cm squared s(-1) Hz(-1) sr(-1) at z approximately equals 3 if the Lyc escape fraction is greater than of equal to 0.25. Together with quasars, massive stars could then, in principle, provide the hydrogen and helium Lyc photons required to ionize the universe at high redshifts. We propose that observations of the He2 Gunn-Peterson effect and of the metal ionization states of the Ly alpha forest and Lyman-limit absorbers should show the signature of a stellar spectrum. We also note that the stellar photoionization model fails if a large fraction of the UV radiation emitted from stars cannot escape into the IGM, as suggested by the recent Hopkins Ultraviolet Telescope observations by Leitherer et al. (1995) of low-redshift starburst galaxies, or if most of the metals observed at z is approximately 3 were produced at much earlier epochs.

  3. Stellar Populations and Nearby Galaxies with the LSST

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Olsen, K.; Monet, D. G.; LSST Stellar Populations Collaboration

    2009-01-01

    The LSST will produce a multi-color map and photometric object catalog of half the sky to r=27.6 (AB mag; 5-sigma). Time-space sampling of each field spanning ten years will allow variability, proper motion and parallax measurements for objects brighter than r=24.7. As part of providing an unprecedented map of the Galaxy, the accurate multi-band photometry will permit photometric parallaxes, chemical abundances and a handle on ages via colors at turn-off for main-sequence (MS) stars at all distances within the Galaxy as well as in the Magellanic Clouds, and dwarf satellites of the Milky Way. This will support comprehensive studies of star formation histories and chemical evolution for field stars. The structures of the Clouds and dwarf spheroidals will be traced with the MS stars, to equivalent surface densities fainter than 35 mag/square arc-second. With geometric parallax accuracy of 1 milli-arc-sec, comparable to HIPPARCOS but reaching more than 10 magnitudes fainter, a robust complete sample of solar neighborhood stars will be obtained. The LSST time sampling will identify and characterize variable stars of all types, from time scales of 1 hr to several years, a feast for variable star astrophysics. The combination of wide coverage, multi-band photometry, time sampling and parallax taken together will address several key problems: e.g. fine tuning the extragalactic distance scale by examining properties of RR Lyraes and Cepheids as a function of parent populations, extending the faint end of the galaxy luminosity function by discovering them using star count density enhancements on degree scales tracing, and indentifying inter-galactic stars through novae and Long Period Variables.

  4. A Luminosity Function of Ly(alpha)-Emitting Galaxies at Z [Approx. Equal to] 4.5(Sup 1),(Sup 2)

    NASA Technical Reports Server (NTRS)

    Dawson, Steve; Rhoads, James E.; Malhotra, Sangeeta; Stern, Daniel; Wang, JunXian; Dey, Arjun; Spinrad, Hyron; Jannuzi, Buell T.

    2007-01-01

    We present a catalog of 59 z [approx. equal to] 4:5 Ly(alpha)-emitting galaxies spectroscopically confirmed in a campaign of Keck DEIMOS follow-up observations to candidates selected in the Large Are (LALA) narrowband imaging survey.We targeted 97 candidates for spectroscopic follow-up; by accounting for the variety of conditions under which we performed spectroscopy, we estimate a selection reliability of approx.76%. Together with our previous sample of Keck LRIS confirmations, the 59 sources confirmed herein bring the total catalog to 73 spectroscopically confirmed z [approx. equal to] 4:5 Ly(alpha)- emitting galaxies in the [approx. equal to] 0.7 deg(exp 2) covered by the LALA imaging. As with the Keck LRIS sample, we find that a nonnegligible fraction of the co rest-frame equivalent widths (W(sub lambda)(sup rest)) that exceed the maximum predicted for normal stellar populations: 17%-31%(93%confidence) of the detected galaxies show (W(sub lambda)(sup rest)) 12%-27% (90% confidence) show (W(sub lambda)(sup rest)) > 240 A. We construct a luminosity function of z [approx. equal to] 4.5 Ly(alpha) emission lines for comparison to Ly(alpha) luminosity function < 6.6. We find no significant evidence for Ly(alpha) luminosity function evolution from z [approx. equal to] 3 to z [approx. equal to] 6. This result supports the conclusion that the intergalactic me largely reionized from the local universe out to z [approx. equal to] 6.5. It is somewhat at odds with the pronounced drop in the cosmic star formation rate density recently measured between z approx. 3 an z approx. 6 in continuum-selected Lyman-break galaxies, and therefore potentially sheds light on the relationship between the two populations.

  5. The Frequency of Circumnuclear Starbursts in Seyfert Galaxies --- Testing the Starburst-AGN Connection

    NASA Astrophysics Data System (ADS)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.; Heckman, T. M.

    We obtained sub-arcsecond medium resolution near-infrared spectra of a sample of nearby bright Seyfert galaxies (8 Seyfert 1s, 11 Seyfert 2s) using the KeckII telescope. The stellar absorption lines present in the spectra were used in conjunction with population synthesis models to determine the age of the circumnuclear stellar population. Initial analysis of a sub-sample of the Seyfert galaxies has provided no evidence for a connection between the age of the circumnuclear stellar population and the Seyfert type. The derived ages for the circumnuclear stellar population are in the range of 10 Myr to < 0.5 Gyr assuming an instantaneous starburst (using the STARBURST99 models).

  6. Old stellar populations. 5: Absorption feature indices for the complete LICK/IDS sample of stars

    NASA Technical Reports Server (NTRS)

    Worthey, Guy; Faber, S. M.; Gonzalez, J. Jesus; Burstein, D.

    1994-01-01

    Twenty-one optical absorption features, 11 of which have been previously defined, are automatically measured in a sample of 460 stars. Following Gorgas et al., the indices are summarized in fitting functions that give index strengths as functions of stellar temperature, gravity, and (Fe/H). This project was carried out with the purpose of predicting index strengths in the integrated light of stellar populations of different ages and metallicities, but the data should be valuable for stellar studies in the Galaxy as well. Several of the new indices appear to be promising indicators of metallicity for old stellar populations. A complete list of index data and atmospheric parameters is available in computer-readable form.

  7. The outskirts of spiral galaxies: touching stellar halos at z˜0 and z˜1

    NASA Astrophysics Data System (ADS)

    Bakos, J.; Trujillo, I.

    Taking advantage of ultra-deep imaging of SDSS Stripe82 and the Hubble Ultra Deep Field by HST, we explore the properties of stellar halos at two relevant epochs of cosmic history. At z˜0 we find that the radial surface brightness profiles of disks have a smooth continuation into the stellar halo that starts to affect the surface brightness profiles at mu r'˜28 {mag arcsec-2}, and at a radial distance of gtrsim 4-10 inner scale-lengths. The light contribution of the stellar halo to the total galaxy light varies from ˜1% to ˜5%, but in case of ongoing mergers, the halo light fraction can be as high as ˜10%. The integrated (g'-r') color of the stellar halo of our galaxies range from ˜0.4 to ˜1.2. By confronting these colors with model predictions, these halos can be attributed to moderately aged and metal-poor populations, however the extreme red colors (˜1) cannot be explained by populations of conventional IMFs. Very red halo colors can be attributed to stellar populations dominated by very low mass stars of low to intermediate metallicity produced by bottom-heavy IMFs. At z˜1 stellar halos appear to be ˜2 magnitudes brighter than their local counterparts, meanwhile they exhibit bluer colors ((g'-r')≲0.3 mag), as well. The stellar populations corresponding to these colors are compatible with having ages ≲1 Gyr. This latter observation strongly suggests the possibility that these halos were formed between z˜1 and z˜2. This result matches very well the theoretical predictions that locate most of the formation of the stellar halos at those early epochs. A pure passive evolutionary scenario, where the stellar populations of our high-z haloes simply fade to match the stellar halo properties found in the local universe, is consistent with our data.

  8. The Class of Jsolated Stars and Luminous Planetary Nebulae in old stellar populations

    NASA Astrophysics Data System (ADS)

    Sabach, Efrat; Soker, Noam

    2018-06-01

    We suggest that stars whose angular momentum (J) does not increase by a companion, star or planet, along their post-main sequence evolution have much lower mass loss rates along their giant branches. Their classification to a separate group can bring insight on their late evolution stages. We here term these Jsolated stars. We argue that the mass loss rate of Jsolated stars is poorly determined because the mass loss rate expressions on the giant branches are empirically based on samples containing stars that experience strong binary interaction, with stellar or sub-stellar companions, e.g., planetary nebula (PN) progenitors. We use our earlier claim for a low mass loss rate of asymptotic giant branch (AGB) stars that are not spun-up by a stellar or substellar companion to show that we can account for the enigmatic finding that the brightest PNe in old stellar populations reach the same luminosity as the brightest PNe in young populations. It is quite likely that the best solution to the existence of bright PNe in old stellar populations is the combination of higher AGB luminosities, as obtained in some new stellar models, and the lower mass loss rates invoked here.

  9. Cosmic distribution of highly ionized metals and their physical conditions in the EAGLE simulations

    NASA Astrophysics Data System (ADS)

    Rahmati, Alireza; Schaye, Joop; Crain, Robert A.; Oppenheimer, Benjamin D.; Schaller, Matthieu; Theuns, Tom

    2016-06-01

    We study the distribution and evolution of highly ionized intergalactic metals in the Evolution and Assembly of Galaxies and their Environment (EAGLE) cosmological, hydrodynamical simulations. EAGLE has been shown to reproduce a wide range of galaxy properties while its subgrid feedback was calibrated without considering gas properties. We compare the predictions for the column density distribution functions (CDDFs) and cosmic densities of Si IV, C IV, N V, O VI and Ne VIII absorbers with observations at redshift z = 0 to ˜6 and find reasonable agreement, although there are some differences. We show that the typical physical densities of the absorbing gas increase with column density and redshift, but decrease with the ionization energy of the absorbing ion. The typical metallicity increases with both column density and time. The fraction of collisionally ionized metal absorbers increases with time and ionization energy. While our results show little sensitivity to the presence or absence of AGN feedback, increasing/decreasing the efficiency of stellar feedback by a factor of 2 substantially decreases/increases the CDDFs and the cosmic densities of the metal ions. We show that the impact of the efficiency of stellar feedback on the CDDFs and cosmic densities is largely due to its effect on the metal production rate. However, the temperatures of the metal absorbers, particularly those of strong O VI, are directly sensitive to the strength of the feedback.

  10. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST/MIRI

    NASA Astrophysics Data System (ADS)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay; Glasse, Alistair

    2017-05-01

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope (JWST) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer-IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)-Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes to explore the JWST/MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.

  11. A new stellar spectrum interpolation algorithm and its application to Yunnan-III evolutionary population synthesis models

    NASA Astrophysics Data System (ADS)

    Cheng, Liantao; Zhang, Fenghui; Kang, Xiaoyu; Wang, Lang

    2018-05-01

    In evolutionary population synthesis (EPS) models, we need to convert stellar evolutionary parameters into spectra via interpolation in a stellar spectral library. For theoretical stellar spectral libraries, the spectrum grid is homogeneous on the effective-temperature and gravity plane for a given metallicity. It is relatively easy to derive stellar spectra. For empirical stellar spectral libraries, stellar parameters are irregularly distributed and the interpolation algorithm is relatively complicated. In those EPS models that use empirical stellar spectral libraries, different algorithms are used and the codes are often not released. Moreover, these algorithms are often complicated. In this work, based on a radial basis function (RBF) network, we present a new spectrum interpolation algorithm and its code. Compared with the other interpolation algorithms that are used in EPS models, it can be easily understood and is highly efficient in terms of computation. The code is written in MATLAB scripts and can be used on any computer system. Using it, we can obtain the interpolated spectra from a library or a combination of libraries. We apply this algorithm to several stellar spectral libraries (such as MILES, ELODIE-3.1 and STELIB-3.2) and give the integrated spectral energy distributions (ISEDs) of stellar populations (with ages from 1 Myr to 14 Gyr) by combining them with Yunnan-III isochrones. Our results show that the differences caused by the adoption of different EPS model components are less than 0.2 dex. All data about the stellar population ISEDs in this work and the RBF spectrum interpolation code can be obtained by request from the first author or downloaded from http://www1.ynao.ac.cn/˜zhangfh.

  12. Fluctuations of the intergalactic ionization field at redshift z ~ 2

    NASA Astrophysics Data System (ADS)

    Agafonova, I. I.; Levshakov, S. A.; Reimers, D.; Hagen, H.-J.; Tytler, D.

    2013-04-01

    Aims: To probe the spectral energy distribution (SED) of the ionizing background radiation at z ≲ 2 and to specify the sources contributing to the intergalactic radiation field. Methods: The spectrum of a bright quasar HS 1103+6416 (zem = 2.19) contains five successive metal-line absorption systems at zabs = 1.1923, 1.7193, 1.8873, 1.8916, and 1.9410. The systems are optically thin and reveal multiple lines of different metal ions with the ionization potentials lying in the extreme ultraviolet (EUV) range (~1 Ryd to ~0.2 keV). For each system, the EUV SED of the underlying ionization field is reconstructed by means of a special technique developed for solving the inverse problem in spectroscopy. For the zabs = 1.8916 system, the analysis also involves the He I resonance lines of the Lyman series and the He iλ504 Å continuum, which are seen for the first time in any cosmic object except the Sun. Results: From one system to another, the SED of the ionizing continuum changes significantly, indicating that the intergalactic ionization field at z ≲ 2 fluctuates at the scale of at least Δz ~ 0.004. This is consistent with Δz ≲ 0.01 estimated from He II and H I Lyman-α forest measurements between the redshifts 2 and 3. A radiation intensity break by approximately an order of magnitude at E = 4 Ryd in SEDs restored for the zabs = 1.1923, 1.8873, 1.8916, and 1.9410 systems points to quasars as the main sources of the ionizing radiation. The SED variability is mostly caused by a small number of objects contributing at any given redshift to the ionizing background; at scales Δz ≳ 0.05, the influence of local radiation sources becomes significant. A remarkable SED restored for the zabs = 1.7193 system, with a sharp break shifted to E ~ 3.5 Ryd and a subsequent intensity decrease by ~1.5 dex, indicates a source with comparable inputs of both hard (active galactic nuclei, AGN) and soft (stellar) radiation components. Such a continuum can be emitted by (ultra) luminous infrared galaxies, many of which reveal both a strong AGN activity and intense star formation in the circumnuclear regions.

  13. Intergalactic HI in the NGC5018 group

    NASA Technical Reports Server (NTRS)

    Guhathakurta, P.; Knapp, G. R.; Vangorkom, Jacqueline H.; Kim, D.-W.

    1990-01-01

    The cold interstellar and intergalactic medium is in the small group of galaxies whose brightest member is the elliptical galaxy NGC5018. Researchers' attention was first drawn to this galaxy as possibly containing cold interstellar gas by the detection by the Infrared Astronomy Satellite (IRAS) of emission at lambda 60 microns and lambda 100 microns at an intensity of about 1 Jy (Knapp et al. 1989), which is relatively strong for an elliptical (Jura et al. 1987). These data showed that the temperature of the infrared emission is less than 30K and that its likely source is therefore interstellar dust. A preliminary search for neutral hydrogen (HI) emission from this galaxy using the Very Large Array (VLA) showed that there appears to be HI flowing between NGC5018 and the nearby Sc galaxy NGC5022 (Kim et al. 1988). Since NGC5018 has a well-developed system of optical shells (cf. Malin and Carter 1983; Schweizer 1987) this observation suggests that NGC5018 may be in the process of forming its shell system by the merger of a cold stellar system with the elliptical, as suggested by Quinn (1984). Researchers describe follow-up HI observations of improved sensitivity and spatial resolution, and confirm that HI is flowing between NCG5022 and NGC5018, and around NGC5018. The data show, however, that the HI bridge actually connects NGC5022 and another spiral in the group, MCG03-34-013, both spatially and in radial velocity, and that in doing so it flows through and around NGC5018, which lies between the spiral galaxies. This is shown by the total HI map, with the optical positions of the above three galaxies labelled.

  14. The Next Generation Virgo Cluster Survey. XII. Stellar Populations and Kinematics of Compact, Low-mass Early-type Galaxies from Gemini GMOS-IFU Spectroscopy

    NASA Astrophysics Data System (ADS)

    Guérou, Adrien; Emsellem, Eric; McDermid, Richard M.; Côté, Patrick; Ferrarese, Laura; Blakeslee, John P.; Durrell, Patrick R.; MacArthur, Lauren A.; Peng, Eric W.; Cuillandre, Jean-Charles; Gwyn, Stephen

    2015-05-01

    We present Gemini Multi Object Spectrograph integral-field unit (GMOS-IFU) data of eight compact, low-mass early-type galaxies (ETGs) in the Virgo cluster. We analyze their stellar kinematics and stellar population and present two-dimensional maps of these properties covering the central 5″ × 7″ region. We find a large variety of kinematics, from nonrotating to highly rotating objects, often associated with underlying disky isophotes revealed by deep images from the Next Generation Virgo Cluster Survey. In half of our objects, we find a centrally concentrated younger and more metal-rich stellar population. We analyze the specific stellar angular momentum through the λR parameter and find six fast rotators and two slow rotators, one having a thin counterrotating disk. We compare the local galaxy density and stellar populations of our objects with those of 39 more extended low-mass Virgo ETGs from the SMAKCED survey and 260 massive (M > 1010 {{M}⊙ }) ETGs from the ATLAS3D sample. The compact low-mass ETGs in our sample are located in high-density regions, often close to a massive galaxy, and have, on average, older and more metal-rich stellar populations than less compact low-mass galaxies. We find that the stellar population parameters follow lines of constant velocity dispersion in the mass-size plane, smoothly extending the comparable trends found for massive ETGs. Our study supports a scenario where low-mass compact ETGs have experienced long-lived interactions with their environment, including ram-pressure stripping and gravitational tidal forces, that may be responsible for their compact nature.

  15. SPIDER. V. MEASURING SYSTEMATIC EFFECTS IN EARLY-TYPE GALAXY STELLAR MASSES FROM PHOTOMETRIC SPECTRAL ENERGY DISTRIBUTION FITTING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swindle, R.; Gal, R. R.; La Barbera, F.

    2011-10-15

    We present robust statistical estimates of the accuracy of early-type galaxy stellar masses derived from spectral energy distribution (SED) fitting as functions of various empirical and theoretical assumptions. Using large samples consisting of {approx}40,000 galaxies from the Sloan Digital Sky Survey (SDSS; ugriz), of which {approx}5000 are also in the UKIRT Infrared Deep Sky Survey (YJHK), with spectroscopic redshifts in the range 0.05 {<=} z {<=} 0.095, we test the reliability of some commonly used stellar population models and extinction laws for computing stellar masses. Spectroscopic ages (t), metallicities (Z), and extinctions (A{sub V} ) are also computed from fitsmore » to SDSS spectra using various population models. These external constraints are used in additional tests to estimate the systematic errors in the stellar masses derived from SED fitting, where t, Z, and A{sub V} are typically left as free parameters. We find reasonable agreement in mass estimates among stellar population models, with variation of the initial mass function and extinction law yielding systematic biases on the mass of nearly a factor of two, in agreement with other studies. Removing the near-infrared bands changes the statistical bias in mass by only {approx}0.06 dex, adding uncertainties of {approx}0.1 dex at the 95% CL. In contrast, we find that removing an ultraviolet band is more critical, introducing 2{sigma} uncertainties of {approx}0.15 dex. Finally, we find that the stellar masses are less affected by the absence of metallicity and/or dust extinction knowledge. However, there is a definite systematic offset in the mass estimate when the stellar population age is unknown, up to a factor of 2.5 for very old (12 Gyr) stellar populations. We present the stellar masses for our sample, corrected for the measured systematic biases due to photometrically determined ages, finding that age errors produce lower stellar masses by {approx}0.15 dex, with errors of {approx}0.02 dex at the 95% CL for the median stellar age subsample.« less

  16. Photon underproduction crisis and the redshift evolution of escape fraction of hydrogen ionizing photons from galaxies

    NASA Astrophysics Data System (ADS)

    Khaire, Vikram; Srianand, Raghunathan

    2016-01-01

    In the standard picture, the only sources of cosmic UV background are the quasars and the star forming galaxies. The hydrogen ionizing emissivity from galaxies depends on a parameter known as escape fraction (fesc). It is the ratio of the escaping hydrogen ionizing photons from galaxies to the total produced by their stellar population. Using available multi-wavelength and multi-epoch galaxy luminosity function measurements, we update the galaxy emissivity by estimating a self-consistent combination of the star formation rate density and dust attenuation. Using the recent quasar luminosity function measurements, we present an updated hydrogen ionizing emissivity from quasars which shows a factor of ~2 increase as compared to the previous estimates at z<2. We use these in a cosmological radiative transfer code developed by us to generate the UV background and show that the recently inferred high values of hydrogen photoionization rates at low redshifts can be easily obtained with reasonable values of fesc. This resolves the problem of 'photon underproduction crisis' and shows that there is no need to invoke non-standard sources of the UV background such as decaying dark matter particles. We will present the implications of this updated quasar and galaxy emissivity on the values of fesc at high redshifts and on the cosmic reionization. We will also present the effect of the updated UV background on the inferred properties of the intergalactic medium, especially on the Lyman alpha forest and the metal line absorption systems.

  17. Spectroscopic confirmation of an ultra-faint galaxy at the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Hoag, Austin; Bradač, Maruša; Trenti, Michele; Treu, Tommaso; Schmidt, Kasper B.; Huang, Kuang-Han; Lemaux, Brian C.; He, Julie; Bernard, Stephanie R.; Abramson, Louis E.; Mason, Charlotte A.; Morishita, Takahiro; Pentericci, Laura; Schrabback, Tim

    2017-04-01

    Within one billion years of the Big Bang, intergalactic hydrogen was ionized by sources emitting ultraviolet and higher energy photons. This was the final phenomenon to globally affect all the baryons (visible matter) in the Universe. It is referred to as cosmic reionization and is an integral component of cosmology. It is broadly expected that intrinsically faint galaxies were the primary ionizing sources due to their abundance in this epoch1,2. However, at the highest redshifts (z > 7.5 lookback time 13.1 Gyr), all galaxies with spectroscopic confirmations to date are intrinsically bright and, therefore, not necessarily representative of the general population3. Here, we report the unequivocal spectroscopic detection of a low luminosity galaxy at z > 7.5. We detected the Lyman-α emission line at ˜10,504 Å in two separate observations with MOSFIRE4 on the Keck I Telescope and independently with the Hubble Space Telescope's slitless grism spectrograph, implying a source redshift of z = 7.640 ± 0.001. The galaxy is gravitationally magnified by the massive galaxy cluster MACS J1423.8+2404 (z = 0.545), with an estimated intrinsic luminosity of MAB = -19.6 ± 0.2 mag and a stellar mass of M⊙=3.0-0.8+1.5×108 solar masses. Both are an order of magnitude lower than the four other Lyman-α emitters currently known at z > 7.5, making it probably the most distant representative source of reionization found to date.

  18. The resolved stellar populations around 12 Type IIP supernovae

    NASA Astrophysics Data System (ADS)

    Maund, Justyn R.

    2017-08-01

    Core-collapse supernovae (SNe) are found in regions associated with recent massive star formation. The stellar population observed around the location of a SN can be used as a probe of the origins of the progenitor star. We apply a Bayesian mixture model to fit isochrones to the massive star population around 12 Type IIP SNe, for which constraints on the progenitors are also available from fortuitous pre-explosion images. Using the high-resolution Hubble Space Telescope Advanced Camera for Surveys and Wide Field Camera 3, we study the massive star population found within 100 pc of each of our target SNe. For most of the SNe in our sample, we find that there are multiple age components in the surrounding stellar populations. In the cases of SNe 2003gd and 2005cs, we find that the progenitor does not come from the youngest stellar population component and, in fact, these relatively low mass progenitors (˜8 M⊙) are found in close proximity to stars as massive as 15 and 50-60 M⊙, respectively. Overall, the field extinction (Galactic and host) derived for these populations is ˜0.3 mag higher than the extinction that was generally applied in previously reported progenitor analyses. We also find evidence, in particular for SN 2004dj, for significant levels of differential extinction. Our analysis for SN 2008bk suggests a significantly lower extinction for the population than the progenitor, but the lifetime of the population and mass determined from pre-explosion images agree. Overall, assuming that the appropriate age component can be suitably identified from the multiple stellar population components present, we find that our Bayesian approach to studying resolved stellar populations can match progenitor masses determined from direct imaging to within ±3 M⊙.

  19. Galaxy And Mass Assembly (GAMA): the 0.013 < z < 0.1 cosmic spectral energy distribution from 0.1 μm to 1 mm

    NASA Astrophysics Data System (ADS)

    Driver, S. P.; Robotham, A. S. G.; Kelvin, L.; Alpaslan, M.; Baldry, I. K.; Bamford, S. P.; Brough, S.; Brown, M.; Hopkins, A. M.; Liske, J.; Loveday, J.; Norberg, P.; Peacock, J. A.; Andrae, E.; Bland-Hawthorn, J.; Bourne, N.; Cameron, E.; Colless, M.; Conselice, C. J.; Croom, S. M.; Dunne, L.; Frenk, C. S.; Graham, Alister W.; Gunawardhana, M.; Hill, D. T.; Jones, D. H.; Kuijken, K.; Madore, B.; Nichol, R. C.; Parkinson, H. R.; Pimbblet, K. A.; Phillipps, S.; Popescu, C. C.; Prescott, M.; Seibert, M.; Sharp, R. G.; Sutherland, W. J.; Taylor, E. N.; Thomas, D.; Tuffs, R. J.; van Kampen, E.; Wijesinghe, D.; Wilkins, S.

    2012-12-01

    We use the Galaxy And Mass Assembly survey (GAMA) I data set combined with GALEX, Sloan Digital Sky Survey (SDSS) and UKIRT Infrared Deep Sky Survey (UKIDSS) imaging to construct the low-redshift (z < 0.1) galaxy luminosity functions in FUV, NUV, ugriz and YJHK bands from within a single well-constrained volume of 3.4 × 105 (Mpc h-1)3. The derived luminosity distributions are normalized to the SDSS data release 7 (DR7) main survey to reduce the estimated cosmic variance to the 5 per cent level. The data are used to construct the cosmic spectral energy distribution (CSED) from 0.1 to 2.1 μm free from any wavelength-dependent cosmic variance for both the elliptical and non-elliptical populations. The two populations exhibit dramatically different CSEDs as expected for a predominantly old and young population, respectively. Using the Driver et al. prescription for the azimuthally averaged photon escape fraction, the non-ellipticals are corrected for the impact of dust attenuation and the combined CSED constructed. The final results show that the Universe is currently generating (1.8 ± 0.3) × 1035 h W Mpc-3 of which (1.2 ± 0.1) × 1035 h W Mpc-3 is directly released into the inter-galactic medium and (0.6 ± 0.1) × 1035 h W Mpc-3 is reprocessed and reradiated by dust in the far-IR. Using the GAMA data and our dust model we predict the mid- and far-IR emission which agrees remarkably well with available data. We therefore provide a robust description of the pre- and post-dust attenuated energy output of the nearby Universe from 0.1 μm to 0.6 mm. The largest uncertainty in this measurement lies in the mid- and far-IR bands stemming from the dust attenuation correction and its currently poorly constrained dependence on environment, stellar mass and morphology.

  20. Near-Field Cosmology with Resolved Stellar Populations Around Local Volume LMC Stellar-Mass Galaxies

    NASA Astrophysics Data System (ADS)

    Carlin, Jeffrey L.; Sand, David J.; Willman, Beth; Brodie, Jean P.; Crnojevic, Denija; Forbes, Duncan; Hargis, Jonathan R.; Peter, Annika; Pucha, Ragadeepika; Romanowsky, Aaron J.; Spekkens, Kristine; Strader, Jay

    2018-06-01

    We discuss our ongoing observational program to comprehensively map the entire virial volumes of roughly LMC stellar mass galaxies at distances of ~2-4 Mpc. The MADCASH (Magellanic Analog Dwarf Companions And Stellar Halos) survey will deliver the first census of the dwarf satellite populations and stellar halo properties within LMC-like environments in the Local Volume. Our results will inform our understanding of the recent DES discoveries of dwarf satellites tentatively affiliated with the LMC/SMC system. This program has already yielded the discovery of the faintest known dwarf galaxy satellite of an LMC stellar-mass host beyond the Local Group, based on deep Subaru+HyperSuprimeCam imaging reaching ~2 magnitudes below its TRGB, and at least two additional candidate satellites. We will summarize the survey results and status to date, highlighting some challenges encountered and lessons learned as we process the data for this program through a prototype LSST pipeline. Our program will examine whether LMC stellar mass dwarfs have extended stellar halos, allowing us to assess the relative contributions of in-situ stars vs. merger debris to their stellar populations and halo density profiles. We outline the constraints on galaxy formation models that will be provided by our observations of low-mass galaxy halos and their satellites.

  1. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-06-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  2. A relation between the characteristic stellar ages of galaxies and their intrinsic shapes

    NASA Astrophysics Data System (ADS)

    van de Sande, Jesse; Scott, Nicholas; Bland-Hawthorn, Joss; Brough, Sarah; Bryant, Julia J.; Colless, Matthew; Cortese, Luca; Croom, Scott M.; d'Eugenio, Francesco; Foster, Caroline; Goodwin, Michael; Konstantopoulos, Iraklis S.; Lawrence, Jon S.; McDermid, Richard M.; Medling, Anne M.; Owers, Matt S.; Richards, Samuel N.; Sharp, Rob

    2018-04-01

    Stellar population and stellar kinematic studies provide unique but complementary insights into how galaxies build-up their stellar mass and angular momentum1-3. A galaxy's mean stellar age reveals when stars were formed, but provides little constraint on how the galaxy's mass was assembled. Resolved stellar dynamics4 trace the change in angular momentum due to mergers, but major mergers tend to obscure the effect of earlier interactions5. With the rise of large multi-object integral field spectroscopic surveys, such as SAMI6 and MaNGA7, and single-object integral field spectroscopic surveys (for example, ATLAS3D (ref. 8), CALIFA9, MASSIVE10), it is now feasible to connect a galaxy's star formation and merger history on the same resolved physical scales, over a large range in galaxy mass, morphology and environment4,11,12. Using the SAMI Galaxy Survey, here we present a combined study of spatially resolved stellar kinematics and global stellar populations. We find a strong correlation of stellar population age with location in the (V/σ, ɛe) diagram that links the ratio of ordered rotation to random motions in a galaxy to its observed ellipticity. For the large majority of galaxies that are oblate rotating spheroids, we find that characteristic stellar age follows the intrinsic ellipticity of galaxies remarkably well.

  3. Kinematic and stellar population properties of the counter-rotating components in the S0 galaxy NGC 1366

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Pizzella, A.; Coccato, L.; Corsini, E. M.; Dalla Bontà, E.; Buson, L. M.; Ivanov, V. D.; Pagotto, I.; Pompei, E.; Rocco, M.

    2017-04-01

    Context. Many disk galaxies host two extended stellar components that rotate in opposite directions. The analysis of the stellar populations of the counter-rotating components provides constraints on the environmental and internal processes that drive their formation. Aims: The S0 NGC 1366 in the Fornax cluster is known to host a stellar component that is kinematically decoupled from the main body of the galaxy. Here we successfully separated the two counter-rotating stellar components to independently measure the kinematics and properties of their stellar populations. Methods: We performed a spectroscopic decomposition of the spectrum obtained along the galaxy major axis and separated the relative contribution of the two counter-rotating stellar components and of the ionized-gas component. We measured the line-strength indices of the two counter-rotating stellar components and modeled each of them with single stellar population models that account for the α/Fe overabundance. Results: We found that the counter-rotating stellar component is younger, has nearly the same metallicity, and is less α/Fe enhanced than the corotating component. Unlike most of the counter-rotating galaxies, the ionized gas detected in NGC 1366 is neither associated with the counter-rotating stellar component nor with the main galaxy body. On the contrary, it has a disordered distribution and a disturbed kinematics with multiple velocity components observed along the minor axis of the galaxy. Conclusions: The different properties of the counter-rotating stellar components and the kinematic peculiarities of the ionized gas suggest that NGC 1366 is at an intermediate stage of the acquisition process, building the counter-rotating components with some gas clouds still falling onto the galaxy. Based on observations made with ESO Telescopes at the La Silla-Paranal Observatory under programmes 075.B-0794 and 077.B-0767.

  4. BINARY ASTROMETRIC MICROLENSING WITH GAIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sajadian, Sedighe, E-mail: sajadian@ipm.ir; Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran

    2015-04-15

    We investigate whether or not Gaia can specify the binary fractions of massive stellar populations in the Galactic disk through astrometric microlensing. Furthermore, we study whether or not some information about their mass distributions can be inferred via this method. In this regard, we simulate the binary astrometric microlensing events due to massive stellar populations according to the Gaia observing strategy by considering (i) stellar-mass black holes, (ii) neutron stars, (iii) white dwarfs, and (iv) main-sequence stars as microlenses. The Gaia efficiency for detecting the binary signatures in binary astrometric microlensing events is ∼10%–20%. By calculating the optical depth duemore » to the mentioned stellar populations, the numbers of the binary astrometric microlensing events being observed with Gaia with detectable binary signatures, for the binary fraction of about 0.1, are estimated to be 6, 11, 77, and 1316, respectively. Consequently, Gaia can potentially specify the binary fractions of these massive stellar populations. However, the binary fraction of black holes measured with this method has a large uncertainty owing to a low number of the estimated events. Knowing the binary fractions in massive stellar populations helps with studying the gravitational waves. Moreover, we investigate the number of massive microlenses for which Gaia specifies masses through astrometric microlensing of single lenses toward the Galactic bulge. The resulting efficiencies of measuring the mass of mentioned populations are 9.8%, 2.9%, 1.2%, and 0.8%, respectively. The numbers of their astrometric microlensing events being observed in the Gaia era in which the lens mass can be inferred with the relative error less than 0.5 toward the Galactic bulge are estimated as 45, 34, 76, and 786, respectively. Hence, Gaia potentially gives us some information about the mass distribution of these massive stellar populations.« less

  5. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    NASA Astrophysics Data System (ADS)

    Sand, D. J.; Seth, A. C.; Crnojević, D.; Spekkens, K.; Strader, J.; Adams, E. A. K.; Caldwell, N.; Guhathakurta, P.; Kenney, J.; Randall, S.; Simon, J. D.; Toloba, E.; Willman, B.

    2017-07-01

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope. The color-magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ˜7-50 Myr, and is consistent with a metallicity of [Fe/H] ˜ -0.3 as previous work has measured via H II region spectroscopy. Additionally, the color-magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ˜1.‧6 (˜8 kpc) away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ˜7-50 Myr stellar population. The main body of AGC 226067 has a M V = -11.3 ± 0.3, or M stars = 5.4 ± 1.3 × 104 M ⊙ given the stellar population. We searched 20 deg2 of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ˜0.1 M ⊙ yr-1 in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (˜350 kpc away in projection) as it falls into the Virgo Cluster.

  6. Binary Populations and Stellar Dynamics in Young Clusters

    NASA Astrophysics Data System (ADS)

    Vanbeveren, D.; Belkus, H.; Van Bever, J.; Mennekens, N.

    2008-06-01

    We first summarize work that has been done on the effects of binaries on theoretical population synthesis of stars and stellar phenomena. Next, we highlight the influence of stellar dynamics in young clusters by discussing a few candidate UFOs (unconventionally formed objects) like intermediate mass black holes, η Car, ζ Pup, γ2 Velorum and WR 140.

  7. No sign (yet) of intergalactic globular clusters in the Local Group

    NASA Astrophysics Data System (ADS)

    Mackey, A. D.; Beasley, M. A.; Leaman, R.

    2016-07-01

    We present Gemini Multi-Object Spectrograph (GMOS) imaging of 12 candidate intergalactic globular clusters (IGCs) in the Local Group, identified in a recent survey of the Sloan Digital Sky Survey (SDSS) footprint by di Tullio Zinn & Zinn. Our image quality is sufficiently high, at ˜0.4-0.7 arcsec, that we are able to unambiguously classify all 12 targets as distant galaxies. To reinforce this conclusion we use GMOS images of globular clusters in the M31 halo, taken under very similar conditions, to show that any genuine clusters in the putative IGC sample would be straightforward to distinguish. Based on the stated sensitivity of the di Tullio Zinn & Zinn search algorithm, we conclude that there cannot be a significant number of IGCs with MV ≤ -6 lying unseen in the SDSS area if their properties mirror those of globular clusters in the outskirts of M31 - even a population of 4 would have only a ≈1 per cent chance of non-detection.

  8. Probing the Dusty Stellar Populations of the Local Volume Galaxies with JWST /MIRI

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, Olivia C.; Meixner, Margaret; Justtanont, Kay

    The Mid-Infrared Instrument (MIRI) for the James Webb Space Telescope ( JWST ) will revolutionize our understanding of infrared stellar populations in the Local Volume. Using the rich Spitzer -IRS spectroscopic data set and spectral classifications from the Surveying the Agents of Galaxy Evolution (SAGE)–Spectroscopic survey of more than 1000 objects in the Magellanic Clouds, the Grid of Red Supergiant and Asymptotic Giant Branch Star Model (grams), and the grid of YSO models by Robitaille et al., we calculate the expected flux densities and colors in the MIRI broadband filters for prominent infrared stellar populations. We use these fluxes tomore » explore the JWST /MIRI colors and magnitudes for composite stellar population studies of Local Volume galaxies. MIRI color classification schemes are presented; these diagrams provide a powerful means of identifying young stellar objects, evolved stars, and extragalactic background galaxies in Local Volume galaxies with a high degree of confidence. Finally, we examine which filter combinations are best for selecting populations of sources based on their JWST colors.« less

  9. AGES OF 70 DWARFS OF THREE POPULATIONS IN THE SOLAR NEIGHBORHOOD: CONSIDERING O AND C ABUNDANCES IN STELLAR MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Z. S.; Bi, S. L.; Liu, K.

    2016-12-20

    Oxygen and carbon are important elements in stellar populations. Their behavior refers to the formation history of the stellar populations. C and O abundances would also obviously influence stellar opacities and the overall metal abundance Z . With observed high-quality spectroscopic properties, we construct stellar models with C and O elements to give more accurate ages for 70 metal-poor dwarfs, which have been determined to be high- α halo, low- α halo, and thick-disk stars. Our results show that high- α halo stars are somewhat older than low- α halo stars by around 2.0 Gyr. The thick-disk population has anmore » age range in between the two halo populations. The age distribution profiles indicate that high- α halo and low- α halo stars match the in situ accretion simulation by Zolotov et al., and the thick-disk stars might be formed in a relatively quiescent and long-lasting process. We also note that stellar ages are very sensitive to O abundance, since the ages clearly increase with increasing [O/Fe] values. Additionally, we obtain several stars with peculiar ages, including 2 young thick-disk stars and 12 stars older than the universe age.« less

  10. Evolutionary synthesis of simple stellar populations. Colours and indices

    NASA Astrophysics Data System (ADS)

    Kurth, O. M.; Fritze-v. Alvensleben, U.; Fricke, K. J.

    1999-07-01

    We construct evolutionary synthesis models for simple stellar populations using the evolutionary tracks from the Padova group (1993, 1994), theoretical colour calibrations from \\cite[Lejeune et al. (1997, 1998)]{lejeune} and fit functions for stellar atmospheric indices from \\cite[Worthey et al. (1994)]{worthey}. A Monte-Carlo technique allows us to obtain a smooth time evolution of both broad band colours in UBVRIK and a series of stellar absorption features for Single Burst Stellar Populations (SSPs). We present colours and indices for SSPs with ages from 1 \\ 10(9) yrs to 1.6 \\ 10(10) yrs and metallicities [M/H]=-2.3, -1.7, -0.7, -0.4, 0.0 and 0.4. Model colours and indices at an age of about a Hubble time are in good agreement with observed colours and indices of the Galactic and M 31 GCs.

  11. The Birth of a Galaxy: Primordial Metal Enrichment and Stellar Populations

    NASA Astrophysics Data System (ADS)

    Wise, John H.; Turk, Matthew J.; Norman, Michael L.; Abel, Tom

    2012-01-01

    By definition, Population III stars are metal-free, and their protostellar collapse is driven by molecular hydrogen cooling in the gas phase, leading to large characteristic masses. Population II stars with lower characteristic masses form when the star-forming gas reaches a critical metallicity of 10-6-10-3.5 Z ⊙. We present an adaptive mesh refinement radiation hydrodynamics simulation that follows the transition from Population III to Population II star formation. The maximum spatial resolution of 1 comoving parsec allows for individual molecular clouds to be well resolved and their stellar associations to be studied in detail. We model stellar radiative feedback with adaptive ray tracing. A top-heavy initial mass function for the Population III stars is considered, resulting in a plausible distribution of pair-instability supernovae and associated metal enrichment. We find that the gas fraction recovers from 5% to nearly the cosmic fraction in halos with merger histories rich in halos above 107 M ⊙. A single pair-instability supernova is sufficient to enrich the host halo to a metallicity floor of 10-3 Z ⊙ and to transition to Population II star formation. This provides a natural explanation for the observed floor on damped Lyα systems metallicities reported in the literature, which is of this order. We find that stellar metallicities do not necessarily trace stellar ages, as mergers of halos with established stellar populations can create superpositions of t-Z evolutionary tracks. A bimodal metallicity distribution is created after a starburst occurs when the halo can cool efficiently through atomic line cooling.

  12. Ubiquitous time variability of integrated stellar populations.

    PubMed

    Conroy, Charlie; van Dokkum, Pieter G; Choi, Jieun

    2015-11-26

    Long-period variable stars arise in the final stages of the asymptotic giant branch phase of stellar evolution. They have periods of up to about 1,000 days and amplitudes that can exceed a factor of three in the I-band flux. These stars pulsate predominantly in their fundamental mode, which is a function of mass and radius, and so the pulsation periods are sensitive to the age of the underlying stellar population. The overall number of long-period variables in a population is directly related to their lifetimes, which is difficult to predict from first principles because of uncertainties associated with stellar mass-loss and convective mixing. The time variability of these stars has not previously been taken into account when modelling the spectral energy distributions of galaxies. Here we construct time-dependent stellar population models that include the effects of long-period variable stars, and report the ubiquitous detection of this expected 'pixel shimmer' in the massive metal-rich galaxy M87. The pixel light curves display a variety of behaviours. The observed variation of 0.1 to 1 per cent is very well matched to the predictions of our models. The data provide a strong constraint on the properties of variable stars in an old and metal-rich stellar population, and we infer that the lifetime of long-period variables in M87 is shorter by approximately 30 per cent compared to predictions from the latest stellar evolution models.

  13. Stellar Populations in BL Lac type Objects

    NASA Astrophysics Data System (ADS)

    Serote Roos, Margarida

    The relationship between an Active Galactic Nucleus (AGN) and its host galaxy is a crucial question in the study of galaxy evolution. We present an estimate of the stellar contribution in a sample of low luminosity BL Lac type objects. We have performed stellar population synthesis for a sample of 19 objects selected from Marchã et al. (1996, MNRAS 281, 425). The stellar content is quantified using the equivalent widths of all absorption features available throughout the spectrum. The synthesis is done by a variant of the GPG method (Pelat: 1997, MNRAS 284, 365).

  14. SLUG - stochastically lighting up galaxies - III. A suite of tools for simulated photometry, spectroscopy, and Bayesian inference with stochastic stellar populations

    NASA Astrophysics Data System (ADS)

    Krumholz, Mark R.; Fumagalli, Michele; da Silva, Robert L.; Rendahl, Theodore; Parra, Jonathan

    2015-09-01

    Stellar population synthesis techniques for predicting the observable light emitted by a stellar population have extensive applications in numerous areas of astronomy. However, accurate predictions for small populations of young stars, such as those found in individual star clusters, star-forming dwarf galaxies, and small segments of spiral galaxies, require that the population be treated stochastically. Conversely, accurate deductions of the properties of such objects also require consideration of stochasticity. Here we describe a comprehensive suite of modular, open-source software tools for tackling these related problems. These include the following: a greatly-enhanced version of the SLUG code introduced by da Silva et al., which computes spectra and photometry for stochastically or deterministically sampled stellar populations with nearly arbitrary star formation histories, clustering properties, and initial mass functions; CLOUDY_SLUG, a tool that automatically couples SLUG-computed spectra with the CLOUDY radiative transfer code in order to predict stochastic nebular emission; BAYESPHOT, a general-purpose tool for performing Bayesian inference on the physical properties of stellar systems based on unresolved photometry; and CLUSTER_SLUG and SFR_SLUG, a pair of tools that use BAYESPHOT on a library of SLUG models to compute the mass, age, and extinction of mono-age star clusters, and the star formation rate of galaxies, respectively. The latter two tools make use of an extensive library of pre-computed stellar population models, which are included in the software. The complete package is available at http://www.slugsps.com.

  15. A new method to unveil embedded stellar clusters

    NASA Astrophysics Data System (ADS)

    Lombardi, Marco; Lada, Charles J.; Alves, João

    2017-11-01

    In this paper we present a novel method to identify and characterize stellar clusters deeply embedded in a dark molecular cloud. The method is based on measuring stellar surface density in wide-field infrared images using star counting techniques. It takes advantage of the differing H-band luminosity functions (HLFs) of field stars and young stellar populations and is able to statistically associate each star in an image as a member of either the background stellar population or a young stellar population projected on or near the cloud. Moreover, the technique corrects for the effects of differential extinction toward each individual star. We have tested this method against simulations as well as observations. In particular, we have applied the method to 2MASS point sources observed in the Orion A and B complexes, and the results obtained compare very well with those obtained from deep Spitzer and Chandra observations where presence of infrared excess or X-ray emission directly determines membership status for every star. Additionally, our method also identifies unobscured clusters and a low resolution version of the Orion stellar surface density map shows clearly the relatively unobscured and diffuse OB 1a and 1b sub-groups and provides useful insights on their spatial distribution.

  16. Blue Stragglers in Clusters and Integrated Spectral Properties of Stellar Populations

    NASA Astrophysics Data System (ADS)

    Xin, Yu; Deng, Licai

    Blue straggler stars are the most prominent bright objects in the colour-magnitude diagram of a star cluster that challenges the theory of stellar evolution. Star clusters are the closest counterparts of the theoretical concept of simple stellar populations (SSPs) in the Universe. SSPs are widely used as the basic building blocks to interpret stellar contents in galaxies. The concept of an SSP is a group of coeval stars which follows a given distribution in mass, and has the same chemical property and age. In practice, SSPs are more conveniently made by the latest stellar evolutionary models of single stars. In reality, however, stars can be more complicated than just single either at birth time or during the course of evolution in a typical environment. Observations of star clusters show that there are always exotic objects which do not follow the predictions of standard theory of stellar evolution. Blue straggler stars (BSSs), as discussed intensively in this book both observationally and theoretically, are very important in our context when considering the integrated spectral properties of a cluster, or a simple stellar population. In this chapter, we are going to describe how important the contribution of BSSs is to the total light of a cluster.

  17. Stellar feedback in galaxies and the origin of galaxy-scale winds

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.; Quataert, Eliot; Murray, Norman

    2012-04-01

    Feedback from massive stars is believed to play a critical role in driving galactic super-winds that enrich the intergalactic medium and shape the galaxy mass function, mass-metallicity relation and other global galaxy properties. In previous papers, we have introduced new numerical methods for implementing stellar feedback on sub-giant molecular cloud (sub-GMC) through galactic scales in numerical simulations of galaxies; the key physical processes include radiation pressure in the ultraviolet through infrared, supernovae (Type I and Type II), stellar winds ('fast' O star through 'slow' asymptotic giant branch winds), and H II photoionization. Here, we show that these feedback mechanisms drive galactic winds with outflow rates as high as ˜10-20 times the galaxy star formation rate. The mass-loading efficiency (wind mass-loss rate divided by the star formation rate) scales roughly as ? (where Vc is the galaxy circular velocity), consistent with simple momentum-conservation expectations. We use our suite of simulations to study the relative contribution of each feedback mechanism to the generation of galactic winds in a range of galaxy models, from Small Magellanic Cloud like dwarfs and Milky Way (MW) analogues to z˜ 2 clumpy discs. In massive, gas-rich systems (local starbursts and high-z galaxies), radiation pressure dominates the wind generation. By contrast, for MW-like spirals and dwarf galaxies the gas densities are much lower and sources of shock-heated gas such as supernovae and stellar winds dominate the production of large-scale outflows. In all of our models, however, the winds have a complex multiphase structure that depends on the interaction between multiple feedback mechanisms operating on different spatial scales and time-scales: any single feedback mechanism fails to reproduce the winds observed. We use our simulations to provide fitting functions to the wind mass loading and velocities as a function of galaxy properties, for use in cosmological simulations and semi-analytic models. These differ from typically adopted formulae with an explicit dependence on the gas surface density that can be very important in both low-density dwarf galaxies and high-density gas-rich galaxies.

  18. Must is a Four Letter Word: The Role of Plasma Instabilities in the Intergalactic Magnetic Field Story

    NASA Astrophysics Data System (ADS)

    Broderick, Avery

    2014-06-01

    The detection of inverse Compton halos from cosmological TeV sources provide a direct means to constrain the putative intergalactic magnetic field. However, the converse may not be the case! The fate of the pairs generated by TeV gamma rays annihilating on the extragalactic background light is presently unclear, clouded by the possibility that cosmological scale plasma instabilities may dominate their energetic evolution. I will briefly motivate these plasma instabilities theoretically, summarize some empirical evidence that they may be occurring in practice, and assess their potential impact upon studies of intergalactic magnetic fields.

  19. Highlights of Astronomy, Vol. 16

    NASA Astrophysics Data System (ADS)

    Montmerle, Thierry

    2015-04-01

    Part I. Invited Discourses: 1. The Herschel view of star formation; 2. Past, present and future of Chinese astronomy; 3. The zoo of galaxies; 4. Supernovae, the accelerating cosmos, and dark energy; Part II. Joint Discussion: 5. Very massive stars in the local universe; 6. 3-D views of the cycling Sun in stellar context; 7. Ultraviolet emission in early-type galaxies; 8. From meteors and meteorites to their parent bodies: current status and future developments; 9. The connection between radio properties and high-energy emission in AGNs; 10. Space-time reference systems for future research; Part III. Special Sessions: 11. Origin and complexity of massive star clusters; 12. Cosmic evolution of groups and clusters of galaxies; 13. Galaxy evolution through secular processes; 14. New era for studying interstellar and intergalactic magnetic fields; 15. The IR view of massive stars: the main sequence and beyond; 16. Science with large solar telescopes; 17. The impact hazard: current activities and future plans; 18. Calibration of star-formation rate measurements across the electromagnetic spectrum; 19. Future large scale facilities; 20. Dynamics of the star-planet relations strategic plan and the Global Office of Astronomy for Development; 21. Strategic plan and the Global Office of Astronomy for Development; 22. Modern views of the interstellar medium; 23. High-precision tests of stellar physics from high-precision photometry; 24. Communicating astronomy with the public for scientists; 25. Data intensive astronomy; 26. Unexplained spectral phenomena in the interstellar medium; 27. Light pollution: protecting astronomical sites and increasing global awareness through education.

  20. Dark-ages reionization and galaxy formation simulation - XIII. AGN quenching of high-redshift star formation in ZF-COSMOS-20115

    NASA Astrophysics Data System (ADS)

    Qin, Yuxiang; Mutch, Simon J.; Duffy, Alan R.; Geil, Paul M.; Poole, Gregory B.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2017-11-01

    Massive quiescent galaxies (MQGs) are thought to have formed stars rapidly at early times followed by a long period of quiescence. The recent discovery of a MQG, ZF-COSMOS-20115 at z ˜ 4, only 1.5 Gyr after the big bang, places new constraints on galaxy growth and the role of feedback in early star formation. Spectroscopic follow-up confirmed ZF-COSMOS-20115 as a MQG at z = 3.717 with an estimated stellar mass of ˜1011 M⊙, showing no evidence of recent star formation. We use the Meraxes semi-analytic model to investigate how ZF-COSMOS-20115 analogues build stellar mass, and why they become quiescent. We identify three analogue galaxies with similar properties to ZF-COSMOS-20115. We find that ZF-COSMOS-20115 is likely hosted by a massive halo with virial mass of ˜1013 M⊙, having been through significant mergers at early times. These merger events drove intense growth of the nucleus, which later prevented cooling and quenched star formation. Therefore, ZF-COSMOS-20115 is unlikely to have experienced strong or extended star formation events at z < 3.7. We find that the analogues host the most massive black holes in our simulation and were luminous quasars at z ˜ 5, indicating that ZF-COSMOS-20115 and other MQGs may be the descendants of high-redshift quasars. In addition, the model suggests that ZF-COSMOS-20115 formed in a region of intergalactic medium that was reionized early.

  1. Hubble Space Telescope Imaging of the Ultra-compact High Velocity Cloud AGC 226067: A Stripped Remnant in the Virgo Cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, D. J.; Crnojević, D.; Seth, A. C.

    We analyze the optical counterpart to the ultra-compact high velocity cloud AGC 226067, utilizing imaging taken with the Advanced Camera for Surveys (ACS) on the Hubble Space Telescope . The color–magnitude diagram of the main body of AGC 226067 reveals an exclusively young stellar population, with an age of ∼7–50 Myr, and is consistent with a metallicity of [Fe/H] ∼ −0.3 as previous work has measured via H ii region spectroscopy. Additionally, the color–magnitude diagram is consistent with a distance of D ≈ 17 Mpc, suggesting an association with the Virgo cluster. A secondary stellar system located ∼1.′6 (∼8 kpc)more » away in projection has a similar stellar population. The lack of an old red giant branch (≳5 Gyr) is contrasted with a serendipitously discovered Virgo dwarf in the ACS field of view (Dw J122147+132853), and the total diffuse light from AGC 226067 is consistent with the luminosity function of the resolved ∼7–50 Myr stellar population. The main body of AGC 226067 has a M {sub V} = −11.3 ± 0.3, or M {sub stars} = 5.4 ± 1.3 × 10{sup 4} M {sub ⊙} given the stellar population. We searched 20 deg{sup 2} of imaging data adjacent to AGC 226067 in the Virgo Cluster, and found two similar stellar systems dominated by a blue stellar population, far from any massive galaxy counterpart—if this population has star-formation properties that are similar to those of AGC 226067, it implies ∼0.1 M {sub ⊙} yr{sup −1} in Virgo intracluster star formation. Given its unusual stellar population, AGC 226067 is likely a stripped remnant and is plausibly the result of compressed gas from the ram pressure stripped M86 subgroup (∼350 kpc away in projection) as it falls into the Virgo Cluster.« less

  2. The growth of discs and bulges during hierarchical galaxy formation - II. Metallicity, stellar populations and dynamical evolution

    NASA Astrophysics Data System (ADS)

    Tonini, C.; Mutch, S. J.; Wyithe, J. S. B.; Croton, D. J.

    2017-03-01

    We investigate the properties of the stellar populations of model galaxies as a function of galaxy evolutionary history and angular momentum content. We use the new semi-analytic model presented in Tonini et al. This new model follows the angular momentum evolution of gas and stars, providing the base for a new star formation recipe, and treatment of the effects of mergers that depends on the central galaxy dynamical structure. We find that the new recipes have the effect of boosting the efficiency of the baryonic cycle in producing and recycling metals, as well as preventing minor mergers from diluting the metallicity of bulges and ellipticals. The model reproduces the stellar mass-stellar metallicity relation for galaxies above 1010 solar masses, including Brightest Cluster Galaxies. Model discs, galaxies dominated by instability-driven components, and merger-driven objects each stem from different evolutionary channels. These model galaxies therefore occupy different loci in the galaxy mass-size relation, which we find to be in accord with the ATLAS 3D classification of disc galaxies, fast rotators and slow rotators. We find that the stellar populations' properties depend on the galaxy evolutionary type, with more evolved stellar populations being part of systems that have lost or dissipated more angular momentum during their assembly history.

  3. The ultraviolet morphology of evolved populations

    NASA Astrophysics Data System (ADS)

    Chávez, Miguel

    2009-04-01

    In this paper I present a summary of the recent investigations we have developed at the Stellar Atmospheres and Populations Research Group (GrAPEs-for its designation in Spanish) at INAOE and collaborators in Italy. These investigations have aimed at providing updated stellar tools for the analysis of the UV spectra of a variety of stellar aggregates, mainly evolved ones. The sequence of material here presented roughly corresponds to the steps we have identified as mandatory to properly establish the applicability of synthetic populations in the analyses of observational data of globular clusters and more complex aged aggregates. The sequence is composed of four main stages, namely, (a) the creation of a theoretical stellar data base that we have called UVBLUE, (b) the comparison of such data base with observational stellar data, (c) the calculation of a set of synthetic spectral energy distributions (SEDs) of simple stellar populations (SSPs) and their validation through a comparison with observations of a sample of galactic globular clusters (GGCs), (d) construction of models for dating local ellipticals and distant red-envelope galaxies. Most of the work relies on the analysis of absorption line spectroscopic indices. The global results are more than satisfactory in the sense that theoretical indices closely follow the overall trends with chemical composition depicted by their empirical counterparts (stars and GGCs).

  4. Mapping young stellar populations towards Orion with Gaia DR1

    NASA Astrophysics Data System (ADS)

    Zari, Eleonora; Brown, Anthony G. A.

    2018-04-01

    OB associations are prime sites for the study of star formation processes and of the interaction between young massive stars with the interstellar medium. Furthermore, the kinematics and structure of the nearest OB associations provide detailed insight into the properties and origin of the Gould Belt. In this context, the Orion complex has been extensively studied. However, the spatial distribution of the stellar population is still uncertain: in particular, the distances and ages of the various sub-groups composing the Orion OB association, and their connection to the surrounding interstellar medium, are not well determined. We used the first Gaia data release to characterize the stellar population in Orion, with the goal to obtain new distance and age estimates of the numerous stellar groups composing the Orion OB association. We found evidence of the existence of a young and rich population spread over the entire region, loosely clustered around some known groups. This newly discovered population of young stars provides a fresh view of the star formation history of the Orion region.

  5. How robust are our views of Milky Way stellar populations before Gaia?

    NASA Astrophysics Data System (ADS)

    Haywood, M.

    2014-07-01

    One year before the first release of the first data from Gaia, how robust are our views of the Milky Way stellar populations? Recent results have shown that limits, differences and/or continuities between populations are not where we thought they were just a few years ago. The outer disk (> 10kpc) has properties essentially different from the inner (thin+thick) disk, while the bulge is best explained in terms of disk populations, with a negligible or inexistent classical bulge, suggesting that the Milky Way is a pure disk galaxy. Much less contingent than previously envisaged, the thick disk is probably the main phase of stellar mass creation in the MW, and the parent population of the thin disk. These results lead to fundamental changes in our views on the stellar mass growth of the Galaxy, secular mass redistribution in the disk, and imply a change of paradigm of the chemical evolution. I review these different advances, and discuss some of the key questions.

  6. Resolving the Milky Way and Nearby Galaxies with WFIRST

    NASA Astrophysics Data System (ADS)

    Kalirai, Jasonjot

    High-resolution studies of nearby stellar populations have served as a foundation for our quest to understand the nature of galaxies. Today, studies of resolved stellar populations constrain fundamental relations -- such as the initial mass function of stars, the time scales of stellar evolution, the timing of mass loss and amount of energetic feedback, the color-magnitude relation and its dependency on age and metallicity, the stellar-dark matter connection in galaxy halos, and the build up of stellar populations over cosmic time -- that represent key ingredients in our prescription to interpret light from the Universe and to measure the physical state of galaxies. More than in any other area of astrophysics, WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way and nearby galaxies. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. Our WFIRST GO Science Investigation Team (F) will develop three WFIRST (notional) GO programs related to resolved stellar populations to fully stress WFIRST's Wide Field Instrument. The programs will include a Survey of the Milky Way, a Survey of Nearby Galaxy Halos, and a Survey of Star-Forming Galaxies. Specific science goals for each program will be validated through a wide range of observational data sets, simulations, and new algorithms. As an output of this study, our team will deliver optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of MW environments and galaxy halos; cosmological simulations of nearby galaxy halos matched to WFIRST observations; strategies and automated algorithms to find substructure and dwarf galaxies in WFIRST IR data sets; and documentation. Our team will work closely with the WFIRST Science Center to translate our notional programs into inputs that can help achieve readiness for WFIRST science operations. This includes building full observing programs with target definitions, observing sequences, scheduling constraints, data processing needs, and calibration requirements. Our team has been chosen carefully. Team members are leading scientists in stellar population work that will be a core science theme for WFIRST and are also involved in all large future astronomy projects that will operate in the WFIRST era. The team is intentionally small, and each member will "own" significant science projects. The team will aggressively advocate for WFIRST through innovative initiatives. The team is also diverse in geographical location, observers and theorists, and gender.

  7. Stellar populations in the Carina region. The Galactic plane at l = 291°

    NASA Astrophysics Data System (ADS)

    Molina-Lera, J. A.; Baume, G.; Gamen, R.; Costa, E.; Carraro, G.

    2016-08-01

    Context. Previous studies of the Carina region have revealed its complexity and richness as well as a significant number of early-type stars. However, in many cases, these studies only concentrated on the central region (Trumpler 14/16) or were not homogeneous. This latter aspect, in particular, is crucial because very different ages and distances for key clusters have been claimed in recent years. Aims: The aim of this work is to study in detail an area of the Galactic plane in Carina, eastward η Carina. We analyze the properties of different stellar populations and focus on a sample of open clusters and their population of young stellar objects and highly reddened early stars. We also studied the stellar mass distribution in these clusters and the possible scenario of their formation. Finally, we outline the Galactic spiral structure in this direction. Methods: We obtained deep and homogeneous photometric data (UBVIKC) for six young open clusters: NGC 3752, Trumpler 18, NGC 3590, Hogg 10, 11, and 12, located in Carina at l ~ 291°, and their adjacent stellar fields, which we complemented with spectroscopic observations of a few selected targets. We also culled additional information from the literature, which includes stellar spectral classifications and near-infrared photometry from 2MASS. We finally developed a numerical code that allowed us to perform a homogeneous and systematic analysis of the data. Our results provide more reliable estimates of distances, color excesses, masses, and ages of the stellar populations in this direction. Results: We estimate the basic parameters of the studied clusters and find that they identify two overdensities of young stellar populations located at about 1.8 kpc and 2.8 kpc, with EB - V ~ 0.1 - 0.6. We find evidence of pre-main-sequence populations inside them, with an apparent coeval stellar formation in the most conspicuous clusters. We also discuss apparent age and distance gradients in the direction NW-SE. We study the mass distributions of the covered clusters and several others in the region (which we took form the literature). They consistently show a canonical IMF slope (the Salpeter one). We discover and characterise an abnormally reddened massive stellar population, scattered between 6.6 and 11 kpc. Spectroscopic observations of ten stars of this latter population show that all selected targets were massive OB stars. Their location is consistent with the position of the Carina-Sagittarius spiral arm. The catalogue is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/592/A149

  8. THE STELLAR AGES AND MASSES OF SHORT GAMMA-RAY BURST HOST GALAXIES: INVESTIGATING THE PROGENITOR DELAY TIME DISTRIBUTION AND THE ROLE OF MASS AND STAR FORMATION IN THE SHORT GAMMA-RAY BURST RATE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leibler, C. N.; Berger, E.

    2010-12-10

    We present multi-band optical and near-infrared observations of 19 short {gamma}-ray burst (GRB) host galaxies, aimed at measuring their stellar masses and population ages. The goals of this study are to evaluate whether short GRBs track the stellar mass distribution of galaxies, to investigate the progenitor delay time distribution, and to explore any connection between long and short GRB progenitors. Using single stellar population models we infer masses of log(M{sub *}/M{sub sun}) {approx} 8.8-11.6, with a median of (log(M{sub *}/M{sub sun})) {approx} 10.1, and population ages of {tau}{sub *} {approx} 0.03-4.4 Gyr with a median of ({tau}{sub *}) {approx} 0.3more » Gyr. We further infer maximal masses of log(M{sub *}/M{sub sun}) {approx} 9.7-11.9 by assuming stellar population ages equal to the age of the universe at each host's redshift. Comparing the distribution of stellar masses to the general galaxy mass function, we find that short GRBs track the cosmic stellar mass distribution only if the late-type hosts generally have maximal masses. However, there is an apparent dearth of early-type hosts compared to the equal contribution of early- and late-type galaxies to the cosmic stellar mass budget. Similarly, the short GRB rate per unit old stellar mass appears to be elevated in the late-type hosts. These results suggest that stellar mass may not be the sole parameter controlling the short GRB rate, and raise the possibility of a two-component model with both mass and star formation playing a role (reminiscent of the case for Type Ia supernovae). If short GRBs in late-type galaxies indeed track the star formation activity, the resulting typical delay time is {approx}0.2 Gyr, while those in early-type hosts have a typical delay of {approx}3 Gyr. Using the same stellar population models, we fit the broadband photometry for 22 long GRB host galaxies in a similar redshift range and find that they have significantly lower masses and younger population ages, with (log(M{sub *}/M{sub sun})) {approx} 9.1 and ({tau}{sub *}) {approx} 0.06 Gyr, respectively; their maximal masses are similarly lower, (log(M{sub *}/M{sub sun})) {approx} 9.6, and as expected do not track the galaxy mass function. Most importantly, the two GRB host populations remain distinct even if we consider only the star-forming hosts of short GRBs, supporting our previous findings (based on star formation rates and metallicities) that the progenitors of long and short GRBs in late-type galaxies are distinct. Given the much younger stellar populations of long GRB hosts (and hence of long GRB progenitors), and the substantial differences in host properties, we caution against the use of Type I and II designations for GRBs since this may erroneously imply that all GRBs which track star formation activity share the same massive star progenitors.« less

  9. Voyager investigation of the cosmic diffuse background: Observations of rocket-studied locations with Voyager

    NASA Technical Reports Server (NTRS)

    Henry, Richard C.

    1994-01-01

    Attachments to this final report include 2 papers connected with the Voyager work: 'Voyager Observations of Dust Scattering Near the Coalsack Nebula' and 'Search for the Intergalactic Medium'. An appendix of 12 one-page write-ups prepared in connection with another program, UVISI, is also included. The one-page write-ups are: (1) Sky survey of UV point sources to 600 times fainter than previous (TD-1) survey; (2) Diffuse galactic light: starlight scattered from dust at high galactic latitude; (3) Optical properties of interstellar grains; (4) Fluorescence of molecular hydrogen in the interstellar medium; (5) Line emission from hot interstellar medium and/or hot halo of galaxy; (6) Integrated light of distant galaxies in the ultraviolet; (7) Intergalactic far-ultraviolet radiation field; (8) Radiation from recombining intergalactic medium; (9) Radiation from re-heating of intergalactic medium following recombination; (10) Radiation from radiative decay of dark matter candidates (neutrino, etc.); (11) Reflectivity of the asteroids in the Ultraviolet; and (12) Zodiacal light.

  10. Stellar population models in the Near-Infrared (Ph.D. thesis)

    NASA Astrophysics Data System (ADS)

    Meneses-Goytia, Sofia

    2015-11-01

    The study of early-type elliptical and lenticular galaxies provides important information about the formation and evolution of galaxies in the early Universe. These distant systems cannot be studied by looking at their individual stars but information can still be obtained by studying their unresolved spectrum in detail. During my PhD I have constructed accurate unresolved stellar population models for populations of a single age and metallicity in the near-infrared range. The extension to the NIR is important for the study of early-type galaxies, since these galaxies are predominantly old and therefore emit most of their light in this wavelength range. The models are based on the NASA IRTF library of empirical stellar spectra. Integrating these spectra along theoretical isochrones, while assuming an initial mass function, we have produced model spectra of single age-metallicity stellar populations at an intermediate resolution. Comparison to literature results show that our models are well suited for studying stellar populations in unresolved galaxies. They are particularly useful for studying the old and intermediate-age stellar populations in galaxies, relatively free from contamination of young stars and extinction by dust. Subsequently, we use the models to fit the observed spectra of globular clusters and galaxies, to derive their age distribution, chemical abundances and IMF properties. We show that the contribution of AGB stars to the galaxy spectrum is clearly larger in the field than it is in the Fornax cluster. This implies that the environment plays an important role in driving the evolutionary histories of the galaxies.

  11. Stellar metallicity variations across spiral arms in disk galaxies with multiple populations

    NASA Astrophysics Data System (ADS)

    Khoperskov, S.; Di Matteo, P.; Haywood, M.; Combes, F.

    2018-03-01

    This Letter studies the formation of azimuthal metallicity variations in the disks of spiral galaxies in the absence of initial radial metallicity gradients. Using high-resolution N-body simulations, we model composite stellar discs, made of kinematically cold and hot stellar populations, and study their response to spiral arm perturbations. We find that, as expected, disk populations with different kinematics respond differently to a spiral perturbation, with the tendency for dynamically cooler populations to show a larger fractional contribution to spiral arms than dynamically hotter populations. By assuming a relation between kinematics and metallicity, namely the hotter the population, the more metal-poor it is, this differential response to the spiral arm perturbations naturally leads to azimuthal variations in the mean metallicity of stars in the simulated disk. Thus, azimuthal variations in the mean metallicity of stars across a spiral galaxy are not necessarily a consequence of the reshaping, by radial migration, of an initial radial metallicity gradient. They indeed arise naturally also in stellar disks which have initially only a negative vertical metallicity gradient.

  12. Classification of stellar populations in globular clusters

    NASA Astrophysics Data System (ADS)

    Wang, Yue; Zhao, Gang; Li, Hai-Ning

    2017-04-01

    Possessing multiple stellar populations has been accepted as a common feature of globular clusters (GCs). Different stellar populations manifest themselves with different chemical features, e.g. the well-known O-Na anti-correlation. Generally, the first (primordial) population has O and Na abundances consistent with those of field stars with similar metallicity; while the second (polluted) population is identified by their Na overabundance and O deficiency. The fraction of the populations is an important constraint on the GC formation scenario. Several methods have been proposed for the classification of GC populations. Here we examine a criterion derived based on the distribution of Galactic field stars, which relies on Na abundance as a function of [Fe/H], to distinguish first and second stellar populations in GCs. By comparing the first population fractions of 17 GCs estimated by the field star criterion with those in the literature derived by methods related to individual GCs, we find that the field star criterion tends to overestimate the first population fractions. The population separation methods, which are related to an individual GC sample, are recommended because the diversity of GCs can be taken into consideration. Currently, more caution should be exercised if one wants to regard field stars as a reference for the identification of a GC population. However, further study on the connection between field stars and GCs populations is still needed.

  13. METALLICITY AND AGE OF THE STELLAR STREAM AROUND THE DISK GALAXY NGC 5907

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laine, Seppo; Grillmair, Carl J.; Capak, Peter

    2016-09-01

    Stellar streams have become central to studies of the interaction histories of nearby galaxies. To characterize the most prominent parts of the stellar stream around the well-known nearby ( d  = 17 Mpc) edge-on disk galaxy NGC 5907, we have obtained and analyzed new, deep gri Subaru/Suprime-Cam and 3.6 μ m Spitzer /Infrared Array Camera observations. Combining the near-infrared 3.6 μ m data with visible-light images allows us to use a long wavelength baseline to estimate the metallicity and age of the stellar population along an ∼60 kpc long segment of the stream. We have fitted the stellar spectral energy distributionmore » with a single-burst stellar population synthesis model and we use it to distinguish between the proposed satellite accretion and minor/major merger formation models of the stellar stream around this galaxy. We conclude that a massive minor merger (stellar mass ratio of at least 1:8) can best account for the metallicity of −0.3 inferred along the brightest parts of the stream.« less

  14. The ATLAS3D Project - XXX. Star formation histories and stellar population scaling relations of early-type galaxies

    NASA Astrophysics Data System (ADS)

    McDermid, Richard M.; Alatalo, Katherine; Blitz, Leo; Bournaud, Frédéric; Bureau, Martin; Cappellari, Michele; Crocker, Alison F.; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M.

    2015-04-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, R^maj_e), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 per cent of all stars formed within the first 2 Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5 M⊙), which themselves formed 90 per cent of their stars by z ˜ 2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions.

  15. SDSS-IV MaNGA: global stellar population and gradients for about 2000 early-type and spiral galaxies on the mass-size plane

    NASA Astrophysics Data System (ADS)

    Li, Hongyu; Mao, Shude; Cappellari, Michele; Ge, Junqiang; Long, R. J.; Li, Ran; Mo, H. J.; Li, Cheng; Zheng, Zheng; Bundy, Kevin; Thomas, Daniel; Brownstein, Joel R.; Roman Lopes, Alexandre; Law, David R.; Drory, Niv

    2018-05-01

    We perform full spectrum fitting stellar population analysis and Jeans Anisotropic modelling of the stellar kinematics for about 2000 early-type galaxies (ETGs) and spiral galaxies from the MaNGA DR14 sample. Galaxies with different morphologies are found to be located on a remarkably tight mass plane which is close to the prediction of the virial theorem, extending previous results for ETGs. By examining an inclined projection (`the mass-size' plane), we find that spiral and early-type galaxies occupy different regions on the plane, and their stellar population properties (i.e. age, metallicity, and stellar mass-to-light ratio) vary systematically along roughly the direction of velocity dispersion, which is a proxy for the bulge fraction. Galaxies with higher velocity dispersions have typically older ages, larger stellar mass-to-light ratios and are more metal rich, which indicates that galaxies increase their bulge fractions as their stellar populations age and become enriched chemically. The age and stellar mass-to-light ratio gradients for low-mass galaxies in our sample tend to be positive (centre < outer), while the gradients for most massive galaxies are negative. The metallicity gradients show a clear peak around velocity dispersion log10 σe ≈ 2.0, which corresponds to the critical mass ˜3 × 1010 M⊙ of the break in the mass-size relation. Spiral galaxies with large mass and size have the steepest gradients, while the most massive ETGs, especially above the critical mass Mcrit ≳ 2 × 1011 M⊙, where slow rotator ETGs start dominating, have much flatter gradients. This may be due to differences in their evolution histories, e.g. mergers.

  16. Particle tagging and its implications for stellar population dynamics

    NASA Astrophysics Data System (ADS)

    Le Bret, Theo; Pontzen, Andrew; Cooper, Andrew P.; Frenk, Carlos; Zolotov, Adi; Brooks, Alyson M.; Governato, Fabio; Parry, Owen H.

    2017-07-01

    We establish a controlled comparison between the properties of galactic stellar haloes obtained with hydrodynamical simulations and with 'particle tagging'. Tagging is a fast way to obtain stellar population dynamics: instead of tracking gas and star formation, it 'paints' stars directly on to a suitably defined subset of dark matter particles in a collisionless, dark-matter-only simulation. Our study shows that 'live' particle tagging schemes, where stellar masses are painted on to the dark matter particles dynamically throughout the simulation, can generate good fits to the hydrodynamical stellar density profiles of a central Milky Way-like galaxy and its most prominent substructure. Energy diffusion processes are crucial to reshaping the distribution of stars in infalling spheroidal systems and hence the final stellar halo. We conclude that the success of any particular tagging scheme hinges on this diffusion being taken into account, and discuss the role of different subgrid feedback prescriptions in driving this diffusion.

  17. Estimation of distances to stars with stellar parameters from LAMOST

    DOE PAGES

    Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo; ...

    2015-06-05

    Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less

  18. Estimation of distances to stars with stellar parameters from LAMOST

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlin, Jeffrey L.; Liu, Chao; Newberg, Heidi Jo

    Here, we present a method to estimate distances to stars with spectroscopically derived stellar parameters. The technique is a Bayesian approach with likelihood estimated via comparison of measured parameters to a grid of stellar isochrones, and returns a posterior probability density function for each star's absolute magnitude. We tailor this technique specifically to data from the Large Sky Area Multi-object Fiber Spectroscopic Telescope (LAMOST) survey. Because LAMOST obtains roughly 3000 stellar spectra simultaneously within each ~5-degree diameter "plate" that is observed, we can use the stellar parameters of the observed stars to account for the stellar luminosity function and targetmore » selection effects. This removes biasing assumptions about the underlying populations, both due to predictions of the luminosity function from stellar evolution modeling, and from Galactic models of stellar populations along each line of sight. Using calibration data of stars with known distances and stellar parameters, we show that our method recovers distances for most stars within ~20%, but with some systematic overestimation of distances to halo giants. We apply our code to the LAMOST database, and show that the current precision of LAMOST stellar parameters permits measurements of distances with ~40% error bars. This precision should improve as the LAMOST data pipelines continue to be refined.« less

  19. Overview and Recent Accomplishments of the Advanced Mirror Technology Development (AMTD) for Large Aperture UVOIR Space Telescopes Project

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2013-01-01

    Per Astro2010, a new, larger UVO telescope is needed to answer fundamental scientific questions, such as: is there life on Earth-like exoplanets; how galaxies assemble stellar populations; how baryonic matter interacts with intergalactic medium; and how solar systems form and evolve. And, present technology is not mature enough to affordably build and launch any potential UVO concept. Advanced Mirror Technology Development (AMTD) is a funded SAT project. Our objective is to mature to TRL-6 the critical technologies needed to produce 4-m or larger flight-qualified UVOIR mirrors by 2018 so that a viable mission can be considered by the 2020 Decadal Review. AMTD uses a science-driven systems engineering approach. We mature technologies required to enable the highest priority science AND result in a high-performance low-cost low-risk system. To provide the science community with options, we are pursuing multiple technology paths. We have assembled an outstanding team from academia, industry, and government with extensive expertise in astrophysics and exoplanet characterization, and in the design/manufacture of monolithic and segmented space telescopes. One of our key accomplishments is that we have derived engineering specifications for advanced normal-incidence monolithic and segmented mirror systems needed to enable both general astrophysics and ultra-high contrast observations of exoplanets missions as a function of potential launch vehicle and its inherent mass and volume constraints. We defined and initiated a program to mature 6 key technologies required to fabricate monolithic and segmented space mirrors.

  20. The Lyman continuum escape fraction of low mass star-forming galaxies at z~1.

    NASA Astrophysics Data System (ADS)

    Rutkowski, Michael J.; Scarlata, Claudia; Haardt, Francesco; Siana, Brian D.; Rafelski, Marc; Henry, Alaina L.; Hayes, Matthew; Salvato, Mara; Pahl, Anthony; Mehta, Vihang; Beck, Melanie; Malkan, Matthew Arnold; Teplitz, Harry I.

    2016-01-01

    Star-forming galaxies (SFGs) in the high redshift universe (z>6) are believed to ionize neutral hydrogen in the intergalactic medium during the epoch of reionization. We tested this assumption by studying likely analogs of these SFGs in archival HST grism spectroscopy with GALEX UV and ground-based optical images at the redshift range in which we can directly measure the rest-frame Lyman continuum (λ<912Å, LyC) emission. We selected ~1400 SFGs for study on the presence of strong Hα emission and strongly selected against those SFGs whose GALEX FUV photometry could be contaminated by low redshift interlopers along the line of sight to produce a sample of ~600 z~1 SFGs. We made no unambiguous detection of escaping Lyman continuum radiation in individual galaxies in this sample, and stacked the individual non-detections in order to constrain the absolute Lyman continuum escape fraction, fesc<2% (3σ). We sub-divided this sample and stacked SFGs to measure upper limits to fesc with respect to stellar mass,luminosity and relative orientation. For z~1 high Hα equivalent width (EW>200Å) SFGs, we found for the first time an upper limit to fesc<9%. We discuss the implications of these limits for the ionizing emissivity of high redshift SFGs during the epoch of reionization. We conclude that reionization by SFGs is only marginally consistent with independent Planck observations of the CMB electron scattering opacity unless the LyC escape fraction of SFGs increases with redshift and an unobserved population of faint (MUV<-13 AB) SFGs contributes significantly to the UV background.

  1. Agnostic stacking of intergalactic doublet absorption: measuring the Ne VIII population

    NASA Astrophysics Data System (ADS)

    Frank, Stephan; Pieri, Matthew M.; Mathur, Smita; Danforth, Charles W.; Shull, J. Michael

    2018-05-01

    We present a blind search for doublet intergalactic metal absorption with a method dubbed `agnostic stacking'. Using a forward-modelling framework, we combine this with direct detections in the literature to measure the overall metal population. We apply this novel approach to the search for Ne VIII absorption in a set of 26 high-quality COS spectra. We probe to an unprecedented low limit of log N>12.3 at 0.47≤z ≤1.34 over a path-length Δz = 7.36. This method selects apparent absorption without requiring knowledge of its source. Stacking this mixed population dilutes doublet features in composite spectra in a deterministic manner, allowing us to measure the proportion corresponding to Ne VIII absorption. We stack potential Ne VIII absorption in two regimes: absorption too weak to be significant in direct line studies (12.3 < log N < 13.7), and strong absorbers (log N > 13.7). We do not detect Ne VIII absorption in either regime. Combining our measurements with direct detections, we find that the Ne VIII population is reproduced with a power-law column density distribution function with slope β = -1.86 ^{+0.18 }_{ -0.26} and normalization log f_{13.7} = -13.99 ^{+0.20 }_{ -0.23}, leading to an incidence rate of strong Ne VIII absorbers dn/dz =1.38 ^{+0.97 }_{ -0.82}. We infer a cosmic mass density for Ne VIII gas with 12.3 < log N < 15.0 of Ω _{{{Ne {VIII}}}} = 2.2 ^{+1.6 }_{ _-1.2} × 10^{-8}, a value significantly lower that than predicted by recent simulations. We translate this density into an estimate of the baryon density Ωb ≈ 1.8 × 10-3, constituting 4 per cent of the total baryonic mass.

  2. GHOSTS: The Stellar Populations in the Outskirts of Massive Disk Galaxies

    NASA Astrophysics Data System (ADS)

    De Jong, Roelof; Radburn-Smith, D. J.; Seth, A. C.; GHOSTS Team

    2007-12-01

    In recent years we have started to appreciate that the outskirts of galaxies contain valuable information about the formation process of galaxies. In hierarchical galaxy formation the stellar halos and thick disks of galaxies are thought to be the result of accretion of minor satellites, predominantly in the earlier assembly phases. The size, metallicity, and amount of substructure in current day halos are therefore directly related to issues like the small scale properties of the primordial power spectrum of density fluctuations and the suppression of star formation in small dark matter halos. I will show highlights from our ongoing HST/ACS/WFPC2 GHOSTS survey of the resolved stellar populations of 14 nearby, massive disk galaxies. I will show that the smaller galaxies (Vrot 100 km/s) have very small halos, but that most massive disk galaxies (Vrot 200 km/s) have very extended stellar envelopes. The luminosity of these envelopes seems to correlate with Hubble type and bulge-to-disk ratio, calling into question whether these are very extended bulge populations or inner halo populations. The amount of substructure varies strongly between galaxies. Finally, I will present the stellar populations of a very low surface brightness stream around M83, showing that it is old and fairly metal rich.

  3. Luminosity and Stellar Mass Functions from the 6dF Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Colless, M.; Jones, D. H.; Peterson, B. A.; Campbell, L.; Saunders, W.; Lah, P.

    2007-12-01

    The completed 6dF Galaxy Survey includes redshifts for over 124,000 galaxies. We present luminosity functions in optical and near-infrared passbands that span a range of 10^4 in luminosity. These luminosity functions show systematic deviations from the Schechter form. The corresponding luminosity densities in the optical and near-infrared are consistent with an old stellar population and a moderately declining star formation rate. Stellar mass functions, derived from the K band luminosities and simple stellar population models selected by b_J-r_F colour, lead to an estimate of the present-day stellar mass density of ρ_* = (5.00 ± 0.11) × 10^8 h M_⊙ Mpc^{-3}, corresponding to Ω_* h = (1.80 ± 0.04) × 10^{-3}.

  4. Evolution of Optical Binary Fraction in Sparse Stellar Systems

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan

    2018-05-01

    This work studies the evolution of the fraction of optical binary stars (OBF; not including components such as neutron stars and black holes), which is caused by stellar evolution, and the contributions of various binaries to OBF via the stellar population synthesis technique. It is shown that OBF decreases from 1 to about 0.81 for stellar populations with the Salpeter initial mass function (IMF), and to about 0.85 for the case of the Kroupa IMF, on a timescale of 15 Gyr. This result depends on metallicity, slightly. The contributions of binaries varying with mass ratio, orbital period, separation, spectral types of primary and secondary, contact degree, and pair type to OBF are calculated for stellar populations with different ages and metallicities. The contribution of different kinds of binaries to OBF depends on age and metallicity. The results can be used for estimating the global OBF of star clusters or galaxies from the fraction of a kind of binary. It is also helpful for estimating the primordial and future binary fractions of sparse stellar systems from the present observations. Our results are suitable for studying field stars, open clusters, and the outer part of globular clusters, because the OBF of such objects is affected by dynamical processes, relatively slightly, but they can also be used for giving some limits for other populations.

  5. Comprehensive stellar population models and the disentanglement of age and metallicity effects

    NASA Technical Reports Server (NTRS)

    Worthey, Guy

    1994-01-01

    The construction of detailed models for intermediate and old stellar populations is described. Input parameters include metallicity (-2 less than (Fe/H) less than 0.5), single-burst age (between 1.5 and 17 Gyr), and initial mass function (IMF) exponent. Quantities output include broadband magnitudes, spectral energy distributions, surface brightness fluctuation magnitudes, and a suite of 21 absorption feature indices. The models are checked against a wide variety of available observations. Examinations of model output yield the following conclusions. (1) If the percentage change delta age/delta Z approximately equals 3/2 for two populations, they will appear almost identical in most indices. A few indices break this degeneracy by being either more abundance sensitive (Fe4668, Fe5015, Fe5709, and Fe5782) or more age sensitive (G4300, H beta, and presumably higher order Balmer lines) than usual. (2) Present uncertainties in stellar evolution are of the same magnitude as the effects of IMF and Y in the indices studied. (3) Changes in abundance ratios (like (Mg/Fe)) are predicted to be readily apparent in the spectra of old stellar populations. (4) The I-band flux of a stellar population is predicted to be nearly independent of metallicity and only modestly sensitive to age. The I band is therefore recommended for standard candle work or studies of M/L in galaxies. Other conclusions stem from this work. (1) Intercomparison of models and observations of two TiO indices seem to indicate variation of the (V/Ti) ratio among galaxies, but it is not clear how this observation ties into the standard picture of chemical enrichment. (2) Current estimates of (Fe/H) for the most metal-rich globulars that are based on integrated indices are probably slightly too high. (3) Colors of population models from different authors exhibit a substantial range. At solar metallicity and 13 Gyr, this range corresponds to an age error of roughly +/- 7 Gyr. Model colors from different authors applied in a differential sense have smaller uncertainties. (4) In the present models the dominant error for colors is probably the transformation from stellar atmospheric parameters to stellar colors. (5) Stellar B - V is difficult to model, and current spreads among different authors can reach 0.2 mag. (6) If known defects in the stellar flux library are corrected, the population model colors of this work in passbands redder than U would be accurate to roughly 0.03 mag in an absolute sense. These corrections are not made in the tables of model output.

  6. The Resolved Stellar Populations Early Release Science Program

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel; Anderson, J.; Boyer, M.; Cole, A.; Dolphin, A.; Geha, M.; Kalirai, J.; Kallivayalil, N.; McQuinn, K.; Sandstrom, K.; Williams, B.

    2017-11-01

    We propose to obtain deep multi-band NIRCam and NIRISS imaging of three resolved stellar systems within 1 Mpc (NOI 104). We will use this broad science program to optimize observational setups and to develop data reduction techniques that will be common to JWST studies of resolved stellar populations. We will combine our expertise in HST resolved star studies with these observations to design, test, and release point spread function (PSF) fitting software specific to JWST. PSF photometry is at the heart of resolved stellar populations studies, but is not part of the standard JWST reduction pipeline. Our program will establish JWST-optimized methodologies in six scientific areas: star formation histories, measurement of the sub-Solar mass stellar IMF, extinction maps, evolved stars, proper motions, and globular clusters, all of which will be common pursuits for JWST in the local Universe. Our observations of globular cluster M92, ultra-faint dwarf Draco II, and star-forming dwarf WLM, will be of high archival value for other science such as calibrating stellar evolution models, measuring properties of variable stars, and searching for metal-poor stars. We will release the results of our program, including PSF fitting software, matched HST and JWST catalogs, clear documentation, and step-by-step tutorials (e.g., Jupyter notebooks) for data reduction and science application, to the community prior to the Cycle 2 Call for Proposals. We will host a workshop to help community members plan their Cycle 2 observations of resolved stars. Our program will provide blueprints for the community to efficiently reduce and analyze JWST observations of resolved stellar populations.

  7. Young LMC clusters: the role of red supergiants and multiple stellar populations in their integrated light and CMDs

    NASA Astrophysics Data System (ADS)

    Asa'd, Randa S.; Vazdekis, Alexandre; Cerviño, Miguel; Noël, Noelia E. D.; Beasley, Michael A.; Kassab, Mahmoud

    2017-11-01

    The optical integrated spectra of three Large Magellanic Cloud young stellar clusters (NGC 1984, NGC 1994 and NGC 2011) exhibit concave continua and prominent molecular bands which deviate significantly from the predictions of single stellar population (SSP) models. In order to understand the appearance of these spectra, we create a set of young stellar population (MILES) models, which we make available to the community. We use archival International Ultraviolet Explorer integrated UV spectra to independently constrain the cluster masses and extinction, and rule out strong stochastic effects in the optical spectra. In addition, we also analyse deep colour-magnitude diagrams of the clusters to provide independent age determinations based on isochrone fitting. We explore hypotheses, including age spreads in the clusters, a top-heavy initial mass function, different SSP models and the role of red supergiant stars (RSG). We find that the strong molecular features in the optical spectra can be only reproduced by modelling an increased fraction of about ˜20 per cent by luminosity of RSG above what is predicted by canonical stellar evolution models. Given the uncertainties in stellar evolution at Myr ages, we cannot presently rule out the presence of Myr age spreads in these clusters. Our work combines different wavelengths as well as different approaches (resolved data as well as integrated spectra for the same sample) in order to reveal the complete picture. We show that each approach provides important information but in combination we can better understand the cluster stellar populations.

  8. The X-Ray Luminosity Functions of Field Low-Mass X-Ray Binaries in Early-Type Galaxies: Evidence for a Stellar Age Dependence

    NASA Technical Reports Server (NTRS)

    Lehmer, B. D.; Berkeley, M.; Zezas, A.; Alexander, D. M.; Basu-Zych, A.; Bauer, F. E.; Brandt, W. N.; Fragos, T.; Hornschemeier, A. E.; Kalogera, V.; hide

    2014-01-01

    We present direct constraints on how the formation of low-mass X-ray binary (LMXB) populations in galactic fields depends on stellar age. In this pilot study, we utilize Chandra and Hubble Space Telescope (HST) data to detect and characterize the X-ray point source populations of three nearby early-type galaxies: NGC 3115, 3379, and 3384. The luminosity-weighted stellar ages of our sample span approximately equal to 3-10 Gyr. X-ray binary population synthesis models predict that the field LMXBs associated with younger stellar populations should be more numerous and luminous per unit stellar mass than older populations due to the evolution of LMXB donor star masses. Crucially, the combination of deep Chandra and HST observations allows us to test directly this prediction by identifying and removing counterparts to X-ray point sources that are unrelated to the field LMXB populations, including LMXBs that are formed dynamically in globular clusters, Galactic stars, and background AGN/galaxies. We find that the "young" early-type galaxy NGC 3384 (approximately equals 2-5 Gyr) has an excess of luminous field LMXBs (L(sub x) approximately greater than (5-10) × 10(exp 37) erg s(exp -1)) per unit K-band luminosity (L(sub K); a proxy for stellar mass) than the "old" early-type galaxies NGC 3115 and 3379 (approximately equals 8-10 Gyr), which results in a factor of 2-3 excess of L(sub X)/L(sub K) for NGC 3384. This result is consistent with the X-ray binary population synthesis model predictions; however, our small galaxy sample size does not allow us to draw definitive conclusions on the evolution field LMXBs in general. We discuss how future surveys of larger galaxy samples that combine deep Chandra and HST data could provide a powerful new benchmark for calibrating X-ray binary population synthesis models.

  9. WHITE DWARFS IN LOCAL STAR STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuchs, Burkhard; Dettbarn, Christian

    2011-01-15

    We have studied the fine structure of the phase space distribution of white dwarfs in the solar neighborhood. White dwarfs have kinematics that are typical for the stellar population of the old thin disk of the Milky Way. Using a projection of the space velocities of stars onto vertical angular momentum components and eccentricities of the stellar orbits we demonstrate that stellar streams can be identified in the phase space distribution of the white dwarfs. These correspond to the well-known Sirius, Pleiades, and Hercules star streams. Membership of white dwarfs, which represent the oldest population in the Galaxy, in thesemore » streams lends support to the interpretation that the streams owe their existence to dynamical resonance effects of the stars with Galactic spiral arms or the Galactic bar, because these indiscriminately affect all stellar populations.« less

  10. Mid-Infrared Observations of Possible Intergalactic Star Forming Regions in the Leo Ring

    NASA Astrophysics Data System (ADS)

    Giroux, Mark; Smith, B.; Struck, C.

    2011-05-01

    Within the Leo group of galaxies lies a gigantic loop of intergalactic gas known as the Leo Ring. Not clearly associated with any particular galaxy, its origin remains uncertain. It may be a primordial intergalactic cloud alternatively, it may be a collision ring, or have a tidal origin. Combining archival Spitzer images of this structure with published UV and optical data, we investigate the mid-infrared properties of possible knots of star formation in the ring. These sources are very faint in the mid-infrared compared to star forming regions in the tidal features of interacting galaxies. This suggests they are either deficient in dust, or they may not be associated with the ring.

  11. OUTER-DISK POPULATIONS IN NGC 7793: EVIDENCE FOR STELLAR RADIAL MIGRATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Radburn-Smith, David J.; Dalcanton, Julianne J.; Roskar, Rok

    2012-07-10

    We analyzed the radial surface brightness profile of the spiral galaxy NGC 7793 using HST/ACS images from the GHOSTS survey and a new HST/WFC3 image across the disk break. We used the photometry of resolved stars to select distinct populations covering a wide range of stellar ages. We found breaks in the radial profiles of all stellar populations at 280'' ({approx}5.1 kpc). Beyond this disk break, the profiles become steeper for younger populations. This same trend is seen in numerical simulations where the outer disk is formed almost entirely by radial migration. We also found that the older stars ofmore » NGC 7793 extend significantly farther than the underlying H I disk. They are thus unlikely to have formed entirely at their current radii, unless the gas disk was substantially larger in the past. These observations thus provide evidence for substantial stellar radial migration in late-type disks.« less

  12. The ALHAMBRA survey: 2D analysis of the stellar populations in massive early-type galaxies at z < 0.3

    NASA Astrophysics Data System (ADS)

    San Roman, I.; Cenarro, A. J.; Díaz-García, L. A.; López-Sanjuan, C.; Varela, J.; González Delgado, R. M.; Sánchez-Blázquez, P.; Alfaro, E. J.; Ascaso, B.; Bonoli, S.; Borlaff, A.; Castander, F. J.; Cerviño, M.; Fernández-Soto, A.; Márquez, I.; Masegosa, J.; Muniesa, D.; Pović, M.; Viironen, K.; Aguerri, J. A. L.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Cepa, J.; Cristóbal-Hornillos, D.; Infante, L.; Martínez, V. J.; Moles, M.; del Olmo, A.; Perea, J.; Prada, F.; Quintana, J. M.

    2018-01-01

    We present a technique that permits the analysis of stellar population gradients in a relatively low-cost way compared to integral field unit (IFU) surveys. We developed a technique to analyze unresolved stellar populations of spatially resolved galaxies based on photometric multi-filter surveys. This technique allows the analysis of vastly larger samples and out to larger galactic radii. We derived spatially resolved stellar population properties and radial gradients by applying a centroidal Voronoi tessellation and performing a multicolor photometry spectral energy distribution fitting. This technique has been successfully applied to a sample of 29 massive (M⋆ > 1010.5M⊙) early-type galaxies at z < 0.3 from the ALHAMBRA survey. We produced detailed 2D maps of stellar population properties (age, metallicity, and extinction), which allow us to identify galactic features. Radial structures were studied, and luminosity-weighted and mass-weighted gradients were derived out to 2-3.5 Reff. We find that the spatially resolved stellar population mass, age, and metallicity are well represented by their integrated values. We find the gradients of early-type galaxies to be on average flat in age (∇log AgeL = 0.02 ± 0.06 dex/Reff) and negative in metallicity (∇[Fe/H]L = -0.09 ± 0.06 dex/Reff). Overall,the extinction gradients are flat (∇Av = -0.03 ± 0.09 mag/Reff ) with a wide spread. These results are in agreement with previous studies that used standard long-slit spectroscopy, and with the most recent IFU studies. According to recent simulations, these results are consistent with a scenario where early-type galaxies were formed through major mergers and where their final gradients are driven by the older ages and higher metallicity of the accreted systems. We demonstrate the scientific potential of multi-filter photometry to explore the spatially resolved stellar populations of local galaxies and confirm previous spectroscopic trends from a complementary technique. Based on observations collected at the German-Spanish Astronomical Center, Calar Alto, jointly operated by the Max-Planck-Institut für Astronomie (MPIA) at Heidelberg and the Instituto de Astrofísica de Andalucía (CSIC).

  13. Stochastic 2-D galaxy disk evolution models. Resolved stellar populations in the galaxy M33

    NASA Astrophysics Data System (ADS)

    Mineikis, T.; Vansevičius, V.

    We improved the stochastic 2-D galaxy disk models (Mineikis & Vansevičius 2014a) by introducing enriched gas outflows from galaxies and synthetic color-magnitude diagrams of stellar populations. To test the models, we use the HST/ACS stellar photometry data in four fields located along the major axis of the galaxy M33 (Williams et al. 2009) and demonstrate the potential of the models to derive 2-D star formation histories in the resolved disk galaxies.

  14. On the Matter Probed by Quasar Absorption Spectra

    NASA Astrophysics Data System (ADS)

    Peroux, Celine

    2010-10-01

    The intergalactic medium (IGM) constitutes a reservoir of baryons from which galaxies form and is, in turn, affected by the processes of galaxy formation. These latter processes are responsible for the reionisation of most of the hydrogen content of the intergalactic medium and later on, for the reionisation of helium with a contribution from quasars. Galactic winds due to massive stars and supernovae pollute the IGM with metals. The mechanical energy released by the collisional excitation due to galaxy and structure formation heats the medium into the Warm-Hot Intergalactic Medium (WHIM). Most of the baryons are probably in this hotter phase, since only a small fraction has been observed in galaxies and the ionised medium so far. In turn, these modifications of the IGM state impact the star formation history by providing a mechanism for global cold gas accretion. Therefore the interactions between galaxies and the intergalactic medium play a major role in the cosmological evolution of structures and the history of baryons, which cannot be solely traced by the starlight from galaxies (representing only 10% of the baryons).

  15. Evolution of the Stellar Mass–Metallicity Relation. I. Galaxies in the z ∼ 0.4 Cluster Cl0024

    NASA Astrophysics Data System (ADS)

    Leethochawalit, Nicha; Kirby, Evan N.; Moran, Sean M.; Ellis, Richard S.; Treu, Tommaso

    2018-03-01

    We present the stellar mass–stellar metallicity relationship (MZR) in the galaxy cluster Cl0024+1654 at z ∼ 0.4 using full-spectrum stellar population synthesis modeling of individual quiescent galaxies. The lower limit of our stellar mass range is M * = 109.7 M ⊙, the lowest galaxy mass at which individual stellar metallicity has been measured beyond the local universe. We report a detection of an evolution of the stellar MZR with observed redshift at 0.037 ± 0.007 dex per Gyr, consistent with the predictions from hydrodynamical simulations. Additionally, we find that the evolution of the stellar MZR with observed redshift can be explained by an evolution of the stellar MZR with the formation time of galaxies, i.e., when the single stellar population (SSP)-equivalent ages of galaxies are taken into account. This behavior is consistent with stars forming out of gas that also has an MZR with a normalization that decreases with redshift. Lastly, we find that over the observed mass range, the MZR can be described by a linear function with a shallow slope ([{Fe}/{{H}}]\\propto (0.16+/- 0.03){log}{M}* ). The slope suggests that galaxy feedback, in terms of mass-loading factor, might be mass-independent over the observed mass and redshift range.

  16. Galaxy structure from multiple tracers - III. Radial variations in M87's IMF

    NASA Astrophysics Data System (ADS)

    Oldham, Lindsay; Auger, Matthew

    2018-03-01

    We present the first constraints on stellar mass-to-light ratio gradients in an early-type galaxy (ETG) using multiple dynamical tracer populations to model the dark and luminous mass structure simultaneously. We combine the kinematics of the central starlight, two globular cluster populations and satellite galaxies in a Jeans analysis to obtain new constraints on M87's mass structure, employing a flexible mass model which allows for radial gradients in the stellar-mass-to-light ratio. We find that, in the context of our model, a radially declining stellar-mass-to-light ratio is strongly favoured. Modelling the stellar-mass-to-light ratio as following a power law, ϒ⋆ ˜ R-μ, we infer a power-law slope μ = -0.54 ± 0.05; equally, parametrizing the stellar-mass-to-light ratio via a central mismatch parameter relative to a Salpeter initial mass function (IMF), α, and scale radius RM, we find α > 1.48 at 95% confidence and RM = 0.35 ± 0.04 kpc. We use stellar population modelling of high-resolution 11-band HST photometry to show that such a steep gradient cannot be achieved by variations in only the metallicity, age, dust extinction and star formation history if the stellar IMF remains spatially constant. On the other hand, the stellar-mass-to-light ratio gradient that we find is consistent with an IMF whose inner slope changes such that it is Salpeter-like in the central ˜0.5 kpc and becomes Chabrier-like within the stellar effective radius. This adds to recent evidence that the non-universality of the IMF in ETGs may be confined to their core regions, and points towards a picture in which the stars in these central regions may have formed in fundamentally different physical conditions.

  17. Observing Stellar Clusters in the Computer

    NASA Astrophysics Data System (ADS)

    Borch, A.; Spurzem, R.; Hurley, J.

    2006-08-01

    We present a new approach to combine direct N-body simulations to stellar population synthesis modeling in order to model the dynamical evolution and color evolution of globular clusters at the same time. This allows us to model the spectrum, colors and luminosities of each star in the simulated cluster. For this purpose the NBODY6++ code (Spurzem 1999) is used, which is a parallel version of the NBODY code. J. Hurley implemented simple recipes to follow the changes of stellar masses, radii, and luminosities due to stellar evolution into the NBODY6++ code (Hurley et al. 2001), in the sense that each simulation particle represents one star. These prescriptions cover all evolutionary phases and solar to globular cluster metallicities. We used the stellar parameters obtained by this stellar evolution routine and coupled them to the stellar library BaSeL 2.0 (Lejeune et al. 1997). As a first application we investigated the integrated broad band colors of simulated clusters. We modeled tidally disrupted globular clusters and compared the results with isolated globular clusters. Due to energy equipartition we expected a relative blueing of tidally disrupted clusters, because of the higher escape probability of red, low-mass stars. This behaviour we actually observe for concentrated globular clusters. The mass-to-light ratio of isolated clusters follows exactly a color-M/L correlation, similar as described in Bell and de Jong (2001) in the case of spiral galaxies. At variance to this correlation, in tidally disrupted clusters the M/L ratio becomes significantly lower at the time of cluster dissolution. Hence, for isolated clusters the behavior of the stellar population is not influenced by dynamical evolution, whereas the stellar population of tidally disrupted clusters is strongly influenced by dynamical effects.

  18. THE STRUCTURE AND STELLAR CONTENT OF THE OUTER DISKS OF GALAXIES: A NEW VIEW FROM THE Pan-STARRS1 MEDIUM DEEP SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zheng, Zheng; Thilker, David A.; Heckman, Timothy M.

    2015-02-20

    We present the results of an analysis of Pan-STARRS1 Medium Deep Survey multi-band (grizy) images of a sample of 698 low-redshift disk galaxies that span broad ranges in stellar mass, star-formation rate, and bulge/disk ratio. We use population synthesis spectral energy distribution fitting techniques to explore the radial distribution of the light, color, surface mass density, mass/light ratio, and age of the stellar populations. We characterize the structure and stellar content of the galaxy disks out to radii of about twice Petrosian r {sub 90}, beyond which the halo light becomes significant. We measure normalized radial profiles for sub-samples ofmore » galaxies in three bins each of stellar mass and concentration. We also fit radial profiles to each galaxy. The majority of galaxies have down-bending radial surface brightness profiles in the bluer bands with a break radius at roughly r {sub 90}. However, they typically show single unbroken exponentials in the reddest bands and in the stellar surface mass density. We find that the mass/light ratio and stellar age radial profiles have a characteristic 'U' shape. There is a good correlation between the amplitude of the down-bend in the surface brightness profile and the rate of the increase in the M/L ratio in the outer disk. As we move from late- to early-type galaxies, the amplitude of the down-bend and the radial gradient in M/L both decrease. Our results imply a combination of stellar radial migration and suppression of recent star formation can account for the stellar populations of the outer disk.« less

  19. Little or no star formation in the central 30 pc of Seyfert 2s from STIS observations

    NASA Astrophysics Data System (ADS)

    Sarzi, Marc

    2011-11-01

    We present a study of the stellar populations in the central parsecs of a sample of 22 Seyfert 2 galaxies, based on a careful separation of nebular emission and stellar light in high-spatial resolution HST-STIS spectra. 14% of the surveyed nuclei display stellar populations of intermediate age, ~1-2~Gyr old, whereas the remaining targets appear to be evenly split between objects showing only very old stellar populations and nuclei requiring also an additional blue featureless component, which we initially characterise by means of very young, few-Myr-old stars. The small fraction of stellar population of intermediate age seems to argue against the presence of such a young component, however, since the short lifetime of O-stars would imply recurrent star-formation episodes and the build-up over the last 1-2~Gyr of a detectable intermediate-age population. Additionally, the doing of correlations between the luminosity of such a blue component and the strength of the nebular emission from highly-ionised species or broad-line regions, together with the general absence of Wolf-Rayet features, further indicate that the featureless continuum arises generally from the central engine rather than from star-forming regions. We discuss our results in the framework of the unification paradigm and of models for star formation close to supermassive black holes.

  20. Science with Synthetic Stellar Surveys

    NASA Astrophysics Data System (ADS)

    Sanderson, Robyn Ellyn

    2018-04-01

    A new generation of observational projects is poised to revolutionize our understanding of the resolved stellar populations of Milky-Way-like galaxies at an unprecedented level of detail, ushering in an era of precision studies of galaxy formation. In the Milky Way itself, astrometric, spectroscopic and photometric surveys will measure three-dimensional positions and velocities and numerous chemical abundances for stars from the disk to the halo, as well as for many satellite dwarf galaxies. In the Local Group and beyond, HST, JWST and eventually WFIRST will deliver pristine views of resolved stars. The groundbreaking scale and dimensionality of this new view of resolved stellar populations in galaxies challenge us to develop new theoretical tools to robustly compare these surveys to simulated galaxies, in order to take full advantage of our new ability to make detailed predictions for stellar populations within a cosmological context. I will describe a framework for generating realistic synthetic star catalogs and mock surveys from state-of-the-art cosmological-hydrodynamical simulations, and present several early scientific results from, and predictions for, resolved stellar surveys of our Galaxy and its neighbors.

  1. Scaling Stellar Mass Estimates of Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Carr, Brandon Michael; McQuinn, Kristen B.; Cannon, John M.; Dalcanton, Julianne; Dolphin, Andrew E.; Skillman, Evan D.; Williams, Benjamin F.; van Zee, Liese

    2017-01-01

    Hubble Space Telescope (HST) optical imaging of resolved stellar populations has been used to constrain the star formation history (SFH) and chemical evolution of many nearby dwarf galaxies. However, even for dwarf galaxies, the angle subtended by nearby systems can be greater than the HST field of view. Thus, estimates of stellar mass from the HST footprint do not accurately represent the total mass of the system, impacting how SFH results can be used in holistic comparisons of galaxy properties. Here, we use the SFHs of dwarfs combined with stellar population synthesis models to determine mass-to-light ratios for individual galaxies, and compare these values with measured infrared luminosities from Spitzer IRAC data. In this way, we determine what fraction of mass is not included in the HST field of view. To test our methodology, we focus on dwarfs whose stellar disks are contained within the HST observations. Then, we also apply this method to galaxies with larger angular sizes to scale the stellar masses accordingly.

  2. Implications of Stellar Feedback for Dynamical Modeling of the Milky Way and Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Wetzel, Andrew

    2018-04-01

    I will present recent results on dynamical modeling of stellar populations from the FIRE cosmological zoom-in baryonic simulations of Milky Way-like and dwarf galaxies. First, I will discuss the dynamical formation of the Milky Way, including the origin of thin+thick stellar disk morphology. I also will discuss the curious origin of metal-rich stars on halo-like orbits near the Sun, as recently measured by Gaia, with new insights from FIRE simulations on stellar radial migration/heating. Next, I will discuss role of stellar feedback in generating non-equilibrium fluctuations of the gravitational potential in low-mass 'dwarf' galaxies, which can explain the origin of cores in their dark-matter density profiles. In particular, we predict significant observable effects on stellar dynamics, including radial migration, size fluctuations, and population gradients, which can provide observational tests of feedback-driven core formation. Finally, this scenario can explain the formation of newly discovered 'ultra-diffuse' galaxies.

  3. Spectral synthesis in the ultraviolet. II - Stellar populations and star formation in blue compact galaxies

    NASA Technical Reports Server (NTRS)

    Fanelli, Michael N.; O'Connell, Robert W.; Thuan, Trinh X.

    1988-01-01

    An initial attempt to apply optimizing spectral synthesis techniques to the far-UV spectra of blue compact galaxies (BCGs) is presented. The far-UV absorption-line spectra of the galaxies are clearly composite, with the signatures of the main-sequence types between O3 and mid-A. Most of the low-ionization absorption lines have a stellar origin. The Si IV and C IV features in several objects have P Cygni profiles. In Haro I the strength of Si IV indicates a significant blue supergiant population. The metal-poor blue compact dwarf Mrk 209 displays weak absorption lines, evidence that the stellar component has the same low metallicity as observed in the ionized gas. Good fits to the data are obtained the technique of optimizing population synthesis. The solutions yield stellar luminosity functions which display large discontinuities, indicative of discrete star formation episodes or bursts. The amount of UV extinction is low.

  4. THE MILKY WAY HAS NO DISTINCT THICK DISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bovy, Jo; Rix, Hans-Walter; Hogg, David W., E-mail: bovy@ias.edu

    2012-06-01

    Different stellar sub-populations of the Milky Way's stellar disk are known to have different vertical scale heights, their thickness increasing with age. Using SEGUE spectroscopic survey data, we have recently shown that mono-abundance sub-populations, defined in the [{alpha}/Fe]-[Fe/H] space, are well described by single-exponential spatial-density profiles in both the radial and the vertical direction; therefore, any star of a given abundance is clearly associated with a sub-population of scale height h{sub z} . Here, we work out how to determine the stellar surface-mass density contributions at the solar radius R{sub 0} of each such sub-population, accounting for the survey selectionmore » function, and for the fraction of the stellar population mass that is reflected in the spectroscopic target stars given populations of different abundances and their presumed age distributions. Taken together, this enables us to derive {Sigma}{sub R{sub 0}}(h{sub z}), the surface-mass contributions of stellar populations with scale height h{sub z} . Surprisingly, we find no hint of a thin-thick disk bi-modality in this mass-weighted scale-height distribution, but a smoothly decreasing function, approximately {Sigma}{sub R{sub 0}}(h{sub z}){proportional_to} exp(-h{sub z}), from h{sub z} Almost-Equal-To 200 pc to h{sub z} Almost-Equal-To 1 kpc. As h{sub z} is ultimately the structurally defining property of a thin or thick disk, this shows clearly that the Milky Way has a continuous and monotonic distribution of disk thicknesses: there is no 'thick disk' sensibly characterized as a distinct component. We discuss how our result is consistent with evidence for seeming bi-modality in purely geometric disk decompositions or chemical abundances analyses. We constrain the total visible stellar surface-mass density at the solar radius to be {Sigma}{sub R{sub 0}}* = 30 {+-} 1 M{sub Sun} pc{sup -2}.« less

  5. Hierarchical Bayesian inference of the initial mass function in composite stellar populations

    NASA Astrophysics Data System (ADS)

    Dries, M.; Trager, S. C.; Koopmans, L. V. E.; Popping, G.; Somerville, R. S.

    2018-03-01

    The initial mass function (IMF) is a key ingredient in many studies of galaxy formation and evolution. Although the IMF is often assumed to be universal, there is continuing evidence that it is not universal. Spectroscopic studies that derive the IMF of the unresolved stellar populations of a galaxy often assume that this spectrum can be described by a single stellar population (SSP). To alleviate these limitations, in this paper we have developed a unique hierarchical Bayesian framework for modelling composite stellar populations (CSPs). Within this framework, we use a parametrized IMF prior to regulate a direct inference of the IMF. We use this new framework to determine the number of SSPs that is required to fit a set of realistic CSP mock spectra. The CSP mock spectra that we use are based on semi-analytic models and have an IMF that varies as a function of stellar velocity dispersion of the galaxy. Our results suggest that using a single SSP biases the determination of the IMF slope to a higher value than the true slope, although the trend with stellar velocity dispersion is overall recovered. If we include more SSPs in the fit, the Bayesian evidence increases significantly and the inferred IMF slopes of our mock spectra converge, within the errors, to their true values. Most of the bias is already removed by using two SSPs instead of one. We show that we can reconstruct the variable IMF of our mock spectra for signal-to-noise ratios exceeding ˜75.

  6. Stellar Populations of Highly Magnified Lensed Galaxies Young Starburst at Z to Approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2011-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 170, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76 and SGAS J12265L3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 magnitudes allow a detailed study of the stellar populations and physical conditions. We compare star formation rates as measured from the SED fit, the Ha and [O II] .(lambda)3727 emission lines, and the UV+IR bolometric luminosity where 24micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z approx. 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses 3 - 7 x 10(exp 9) Stellar mass, young ages approx. 100 Myr, little dust content E(B - V)=0.10-0.25, and star formation rates around 20- 100 Stellar mass/y. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the build-up of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx. 2. Subject headings: galaxies: high-redshift, strong gravitational lensing, infrared: galaxies

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heckman, Timothy; Borthakur, Sanchayeeta; Wild, Vivienne

    We report on observations made with the Cosmic Origins Spectrograph (COS) on the Hubble Space Telescope ( HST ) using background quasi-stellar objects to probe the circum-galactic medium (CGM) around 17 low-redshift galaxies that are undergoing or have recently undergone a strong starburst (the COS-Burst program). The sightlines extend out to roughly the virial radius of the galaxy halo. We construct control samples of normal star-forming low-redshift galaxies from the COS/ HST archive that match the starbursts in terms of galaxy stellar mass and impact parameter. We find clear evidence that the CGM around the starbursts differs systematically compared tomore » the control galaxies. The Ly α , Si iii, C iv, and possibly O vi absorption lines are stronger as a function of impact parameter, and the ratios of the equivalent widths of C iv/Ly α and Si iii/Ly α are both higher than in normal star-forming galaxies. We also find that the widths and the velocity offsets (relative to v {sub sys}) of the Ly α absorption lines are significantly larger in the CGM of the starbursts, implying velocities of the absorbing material that are roughly twice the halo virial velocity. We show that these properties can be understood as a consequence of the interaction between a starburst-driven wind and the preexisting CGM. These results underscore the importance of winds driven from intensely star-forming galaxies in helping drive the evolution of galaxies and the intergalactic medium. They also offer a new probe of the properties of starburst-driven winds and of the CGM itself.« less

  8. Cosmological simulation with dust formation and destruction

    NASA Astrophysics Data System (ADS)

    Aoyama, Shohei; Hou, Kuan-Chou; Hirashita, Hiroyuki; Nagamine, Kentaro; Shimizu, Ikkoh

    2018-06-01

    To investigate the evolution of dust in a cosmological volume, we perform hydrodynamic simulations, in which the enrichment of metals and dust is treated self-consistently with star formation and stellar feedback. We consider dust evolution driven by dust production in stellar ejecta, dust destruction by sputtering, grain growth by accretion and coagulation, and grain disruption by shattering, and treat small and large grains separately to trace the grain size distribution. After confirming that our model nicely reproduces the observed relation between dust-to-gas ratio and metallicity for nearby galaxies, we concentrate on the dust abundance over the cosmological volume in this paper. The comoving dust mass density has a peak at redshift z ˜ 1-2, coincident with the observationally suggested dustiest epoch in the Universe. In the local Universe, roughly 10 per cent of the dust is contained in the intergalactic medium (IGM), where only 1/3-1/4 of the dust survives against dust destruction by sputtering. We also show that the dust mass function is roughly reproduced at ≲ 108 M⊙, while the massive end still has a discrepancy, which indicates the necessity of stronger feedback in massive galaxies. In addition, our model broadly reproduces the observed radial profile of dust surface density in the circum-galactic medium (CGM). While our model satisfies the observational constraints for the dust extinction on cosmological scales, it predicts that the dust in the CGM and IGM is dominated by large (>0.03 μm) grains, which is in tension with the steep reddening curves observed in the CGM.

  9. A Foreground Masking Strategy for [C II] Intensity Mapping Experiments Using Galaxies Selected by Stellar Mass and Redshift

    NASA Astrophysics Data System (ADS)

    Sun, G.; Moncelsi, L.; Viero, M. P.; Silva, M. B.; Bock, J.; Bradford, C. M.; Chang, T.-C.; Cheng, Y.-T.; Cooray, A. R.; Crites, A.; Hailey-Dunsheath, S.; Uzgil, B.; Hunacek, J. R.; Zemcov, M.

    2018-04-01

    Intensity mapping provides a unique means to probe the epoch of reionization (EoR), when the neutral intergalactic medium was ionized by energetic photons emitted from the first galaxies. The [C II] 158 μm fine-structure line is typically one of the brightest emission lines of star-forming galaxies and thus a promising tracer of the global EoR star formation activity. However, [C II] intensity maps at 6 ≲ z ≲ 8 are contaminated by interloping CO rotational line emission (3 ≤ J upp ≤ 6) from lower-redshift galaxies. Here we present a strategy to remove the foreground contamination in upcoming [C II] intensity mapping experiments, guided by a model of CO emission from foreground galaxies. The model is based on empirical measurements of the mean and scatter of the total infrared luminosities of galaxies at z < 3 and with stellar masses {M}* > {10}8 {M}ȯ selected in the K-band from the COSMOS/UltraVISTA survey, which can be converted to CO line strengths. For a mock field of the Tomographic Ionized-carbon Mapping Experiment, we find that masking out the “voxels” (spectral–spatial elements) containing foreground galaxies identified using an optimized CO flux threshold results in a z-dependent criterion {m}{{K}}AB}≲ 22 (or {M}* ≳ {10}9 {M}ȯ ) at z < 1 and makes a [C II]/COtot power ratio of ≳10 at k = 0.1 h/Mpc achievable, at the cost of a moderate ≲8% loss of total survey volume.

  10. Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations

    NASA Astrophysics Data System (ADS)

    Hummels, Cameron B.; Smith, Britton D.; Silvia, Devin W.

    2017-09-01

    Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare them with the data sets produced by observers: spectra, photometry, etc. To address this problem, we have created trident, a Python-based open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. trident can (I) create absorption-line spectra for any trajectory through a simulated data set mimicking both background quasar and down-the-barrel configurations; (II) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph; (III) operate across the ultraviolet, optical, and infrared using customizable absorption-line lists; (IV) trace simulated physical structures directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (VI) generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical codes. trident was originally developed to aid in the interpretation of observations of the circumgalactic medium and intergalactic medium, but it remains a general tool applicable in other contexts.

  11. The origin of the scatter of the star forming main sequence at z=0

    NASA Astrophysics Data System (ADS)

    Shanahan, Clare; Somerville, Rachel S.; Saintonge, Amelie; Huang, Mei-Ling

    2016-01-01

    We investigate the origin of the dispersion in the relationship between star formation rate (SFR) and stellar mass, known as the star forming main sequence (SFMS). Our study includes predictions from a state-of-the-art semi-analytic model (SAM) as well as observations from the COLDGASS, Bluedisk, and GAMA surveys. Using a simple toy model we demonstrate that, in the absence of a correlation between gas fraction and galaxy size, we would expect more compact disks to live 'high' on the SFMS, and vice versa, due to the observational Kennicutt relation. We demonstrate that this correlation is not seen in the observations, nor is it predicted by the SAM. We find in both the model and the observations that extended disks have a higher fraction of their baryonic mass in total cold gas and in HI and $H_{2}$ gas separately, offsetting the dependence of SFR on disk size. We investigate the origin of the gas fraction-size correlation in the SAMs, and find that it is connected with the rate of cosmological accretion of gas from the intergalactic medium.

  12. Numerical Simulations of a Jet–Cloud Collision and Starburst: Application to Minkowski’s Object

    DOE PAGES

    Fragile, P. Chris; Anninos, Peter; Croft, Steve; ...

    2017-11-30

    In this work, we present results of three-dimensional, multi-physics simulations of an AGN jet colliding with an intergalactic cloud. The purpose of these simulations is to assess the degree of "positive feedback," i.e., jet-induced star formation, that results. We have specifically tailored our simulation parameters to facilitate a comparison with recent observations of Minkowski's Object (MO), a stellar nursery located at the termination point of a radio jet coming from galaxy NGC 541. As shown in our simulations, such a collision triggers shocks, which propagate around and through the cloud. These shocks condense the gas and under the right circumstancesmore » may trigger cooling instabilities, creating runaway increases in density, to the point that individual clumps can become Jeans unstable. Our simulations provide information about the expected star formation rate, total mass converted to H I, H 2, and stars, and the relative velocity of the stars and gas. Finally, our results confirm the possibility of jet-induced star formation, and agree well with the observations of MO.« less

  13. General Astrophysics Science Enabled by the HabEx Ultraviolet Spectrograph (UVS)

    NASA Astrophysics Data System (ADS)

    Scowen, Paul; Clarke, John; Gaudi, B. Scott; Kiessling, Alina; Martin, Stefan; Somerville, Rachel; Stern, Daniel; HabEx Science and Technology Definition Team

    2018-01-01

    The Habitable Exoplanet Imaging Mission (HabEx) is one of the four large mission concepts being studied by NASA as input to the upcoming 2020 Decadal Survey. The mission implements two world-class General Astrophysics instruments as part of its complement of instrumentation to enable compelling science using the 4m aperture. The Ultraviolet Spectrograph has been designed to address cutting edge far ultraviolet (FUV) science that has not been possible with the Hubble Space Telescope, and to open up a wide range of capabilities that will advance astrophysics as we look into the 2030s. Our poster discusses some of those science drivers and possible applications, which range from Solar System science, to nearby and more distant studies of star formation, to studies of the circumgalactic and intergalactic mediums where the ecology of mass and energy transfer are vital to understanding stellar and galactic evolution. We discuss the performance features of the instrument that include a large 3’x3’ field of view for multi-object spectroscopy, and some 20 grating modes for a variety of spectral resolution and coverage.

  14. Numerical Simulations of a Jet–Cloud Collision and Starburst: Application to Minkowski’s Object

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fragile, P. Chris; Anninos, Peter; Croft, Steve

    In this work, we present results of three-dimensional, multi-physics simulations of an AGN jet colliding with an intergalactic cloud. The purpose of these simulations is to assess the degree of "positive feedback," i.e., jet-induced star formation, that results. We have specifically tailored our simulation parameters to facilitate a comparison with recent observations of Minkowski's Object (MO), a stellar nursery located at the termination point of a radio jet coming from galaxy NGC 541. As shown in our simulations, such a collision triggers shocks, which propagate around and through the cloud. These shocks condense the gas and under the right circumstancesmore » may trigger cooling instabilities, creating runaway increases in density, to the point that individual clumps can become Jeans unstable. Our simulations provide information about the expected star formation rate, total mass converted to H I, H 2, and stars, and the relative velocity of the stars and gas. Finally, our results confirm the possibility of jet-induced star formation, and agree well with the observations of MO.« less

  15. The onset of star formation 250 million years after the Big Bang

    NASA Astrophysics Data System (ADS)

    Hashimoto, Takuya; Laporte, Nicolas; Mawatari, Ken; Ellis, Richard S.; Inoue, Akio K.; Zackrisson, Erik; Roberts-Borsani, Guido; Zheng, Wei; Tamura, Yoichi; Bauer, Franz E.; Fletcher, Thomas; Harikane, Yuichi; Hatsukade, Bunyo; Hayatsu, Natsuki H.; Matsuda, Yuichi; Matsuo, Hiroshi; Okamoto, Takashi; Ouchi, Masami; Pelló, Roser; Rydberg, Claes-Erik; Shimizu, Ikkoh; Taniguchi, Yoshiaki; Umehata, Hideki; Yoshida, Naoki

    2018-05-01

    A fundamental quest of modern astronomy is to locate the earliest galaxies and study how they influenced the intergalactic medium a few hundred million years after the Big Bang1-3. The abundance of star-forming galaxies is known to decline4,5 from redshifts of about 6 to 10, but a key question is the extent of star formation at even earlier times, corresponding to the period when the first galaxies might have emerged. Here we report spectroscopic observations of MACS1149-JD16, a gravitationally lensed galaxy observed when the Universe was less than four per cent of its present age. We detect an emission line of doubly ionized oxygen at a redshift of 9.1096 ± 0.0006, with an uncertainty of one standard deviation. This precisely determined redshift indicates that the red rest-frame optical colour arises from a dominant stellar component that formed about 250 million years after the Big Bang, corresponding to a redshift of about 15. Our results indicate that it may be possible to detect such early episodes of star formation in similar galaxies with future telescopes.

  16. Numerical Simulations of a Jet-Cloud Collision and Starburst: Application to Minkowski’s Object

    NASA Astrophysics Data System (ADS)

    Fragile, P. Chris; Anninos, Peter; Croft, Steve; Lacy, Mark; Witry, Jason W. L.

    2017-12-01

    We present results of three-dimensional, multi-physics simulations of an AGN jet colliding with an intergalactic cloud. The purpose of these simulations is to assess the degree of “positive feedback,” i.e., jet-induced star formation, that results. We have specifically tailored our simulation parameters to facilitate a comparison with recent observations of Minkowski’s Object (MO), a stellar nursery located at the termination point of a radio jet coming from galaxy NGC 541. As shown in our simulations, such a collision triggers shocks, which propagate around and through the cloud. These shocks condense the gas and under the right circumstances may trigger cooling instabilities, creating runaway increases in density, to the point that individual clumps can become Jeans unstable. Our simulations provide information about the expected star formation rate, total mass converted to H I, H2, and stars, and the relative velocity of the stars and gas. Our results confirm the possibility of jet-induced star formation, and agree well with the observations of MO.

  17. Stellar complexes in spiral arms of galaxies

    NASA Astrophysics Data System (ADS)

    Efremov, Yu. N.

    The history of the introduction and development of the star complexes conception is briefly described. These large groups of stars were picked out and named as such ones in our Galaxy with argumentation and evidence for their physical unity (using the Cepheid variables the distances and ages of which are easy determined from their periods); anyway earlier the complexes were noted along the spiral arms of the Andromeda galaxy, but were not recognized as a new kind of star group. The chains of complexes along the spiral arms are observed quite rarely; their origin is explained by magneto- gravitational or purely gravitational instability developing along the arm. It is not clear why these chains are quite a rare phenomenon - and more so why sometimes the regular chain of complexes are observed in one arm only. Probably intergalactic magnetic field participated in formation of such chains. Apart from the complexes located along the arms, there are isolated giant complexes known (up to 700 pc in diameter) which look like super-gigantic but rather rarefied globular clusters. Until now only two of these formations are studied, in NGC 6946 and M51.

  18. Science capabilities of the Maunakea Spectroscopic Explorer

    NASA Astrophysics Data System (ADS)

    Devost, Daniel; McConnachie, Alan; Flagey, Nicolas; Cote, Patrick; Balogh, Michael; Driver, Simon P.; Venn, Kim

    2017-01-01

    The Maunakea Spectroscopic Explorer (MSE) project will transform the CFHT 3.6m optical telescope into a 10m class dedicated multiobject spectroscopic facility, with an ability to simultaneously measure thousands of objects with a spectral resolution range spanning 2,000 to 20,000. The project is currently in design phase, with full science operations nominally starting in 2025. MSE will enable transformational science in areas as diverse as exoplanetary host characterization; stellar monitoring campaigns; tomographic mapping of the interstellar and intergalactic media; the in-situ chemical tagging of the distant Galaxy; connecting galaxies to the large scale structure of the Universe; measuring the mass functions of cold dark matter sub-halos in galaxy and cluster-scale hosts; reverberation mapping of supermassive black holes in quasars. MSE is an essential follow-up facility to current and next generations of multi-wavelength imaging surveys, including LSST, Gaia, Euclid, eROSITA, SKA, and WFIRST, and is an ideal feeder facility for E-ELT, TMT and GMT. I will give an update on the status of the project and review some of the most exciting scientific capabilities of the observatory.

  19. Large Magellanic Cloud Planetary Nebula Morphology: Probing Stellar Populations and Evolution.

    PubMed

    Stanghellini; Shaw; Balick; Blades

    2000-05-10

    Planetary nebulae (PNe) in the Large Magellanic Cloud (LMC) offer the unique opportunity to study both the population and evolution of low- and intermediate-mass stars, by means of the morphological type of the nebula. Using observations from our LMC PN morphological survey, and including images available in the Hubble Space Telescope Data Archive and published chemical abundances, we find that asymmetry in PNe is strongly correlated with a younger stellar population, as indicated by the abundance of elements that are unaltered by stellar evolution (Ne, Ar, and S). While similar results have been obtained for Galactic PNe, this is the first demonstration of the relationship for extragalactic PNe. We also examine the relation between morphology and abundance of the products of stellar evolution. We found that asymmetric PNe have higher nitrogen and lower carbon abundances than symmetric PNe. Our two main results are broadly consistent with the predictions of stellar evolution if the progenitors of asymmetric PNe have on average larger masses than the progenitors of symmetric PNe. The results bear on the question of formation mechanisms for asymmetric PNe-specifically, that the genesis of PNe structure should relate strongly to the population type, and by inference the mass, of the progenitor star and less strongly on whether the central star is a member of a close binary system.

  20. Stellar populations of bulges in galaxies with a low surface-brightness disc

    NASA Astrophysics Data System (ADS)

    Morelli, L.; Corsini, E. M.; Pizzella, A.; Dalla Bontà, E.; Coccato, L.; Méndez-Abreu, J.

    2015-03-01

    The radial profiles of the Hβ, Mg, and Fe line-strength indices are presented for a sample of eight spiral galaxies with a low surface-brightness stellar disc and a bulge. The correlations between the central values of the line-strength indices and velocity dispersion are consistent to those known for early-type galaxies and bulges of high surface-brightness galaxies. The age, metallicity, and α/Fe enhancement of the stellar populations in the bulge-dominated region are obtained using stellar population models with variable element abundance ratios. Almost all the sample bulges are characterized by a young stellar population, on-going star formation, and a solar α/Fe enhancement. Their metallicity spans from high to sub-solar values. No significant gradient in age and α/Fe enhancement is measured, whereas only in a few cases a negative metallicity gradient is found. These properties suggest that a pure dissipative collapse is not able to explain formation of all the sample bulges and that other phenomena, like mergers or acquisition events, need to be invoked. Such a picture is also supported by the lack of a correlation between the central value and gradient of the metallicity in bulges with very low metallicity. The stellar populations of the bulges hosted by low surface-brightness discs share many properties with those of high surface-brightness galaxies. Therefore, they are likely to have common formation scenarios and evolution histories. A strong interplay between bulges and discs is ruled out by the fact that in spite of being hosted by discs with extremely different properties, the bulges of low and high surface-brightness discs are remarkably similar.

  1. Variance in binary stellar population synthesis

    NASA Astrophysics Data System (ADS)

    Breivik, Katelyn; Larson, Shane L.

    2016-03-01

    In the years preceding LISA, Milky Way compact binary population simulations can be used to inform the science capabilities of the mission. Galactic population simulation efforts generally focus on high fidelity models that require extensive computational power to produce a single simulated population for each model. Each simulated population represents an incomplete sample of the functions governing compact binary evolution, thus introducing variance from one simulation to another. We present a rapid Monte Carlo population simulation technique that can simulate thousands of populations in less than a week, thus allowing a full exploration of the variance associated with a binary stellar evolution model.

  2. Low Metallicities and Old Ages for Three Ultra-diffuse Galaxies in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Gu, Meng; Conroy, Charlie; Law, David; van Dokkum, Pieter; Yan, Renbin; Wake, David; Bundy, Kevin; Merritt, Allison; Abraham, Roberto; Zhang, Jielai; Bershady, Matthew; Bizyaev, Dmitry; Brinkmann, Jonathan; Drory, Niv; Grabowski, Kathleen; Masters, Karen; Pan, Kaike; Parejko, John; Weijmans, Anne-Marie; Zhang, Kai

    2018-05-01

    A large population of ultra-diffuse galaxies (UDGs) was recently discovered in the Coma cluster. Here we present optical spectra of three such UDGs, DF 7, DF 44, and DF 17, which have central surface brightnesses of μ g ≈ 24.4–25.1 mag arcsec‑2. The spectra were acquired as part of an ancillary program within the SDSS-IV MaNGA Survey. We stacked 19 fibers in the central regions from larger integral field units (IFUs) per source. With over 13.5 hr of on-source integration, we achieved a mean signal-to-noise ratio in the optical of 9.5 Å‑1, 7.9 Å‑1, and 5.0 Å‑1, respectively, for DF 7, DF 44, and DF 17. Stellar population models applied to these spectra enable measurements of recession velocities, ages, and metallicities. The recession velocities of DF 7, DF 44, and DF 17 are {6599}-25+40 km s‑1, {6402}-39+41 km s‑1, and {8315}-43+43 km s‑1, spectroscopically confirming that all of them reside in the Coma cluster. The stellar populations of these three galaxies are old and metal-poor, with ages of {7.9}-2.5+3.6 Gyr, {8.9}-3.3+4.3 Gyr, and {9.1}-5.5+3.9 Gyr, and iron abundances of [Fe/H] -{1.0}-0.4+0.3, -{1.3}-0.4+0.4, and -{0.8}-0.5+0.5, respectively. Their stellar masses are (3–6) × 108 M ⊙. The UDGs in our sample are as old or older than galaxies at similar stellar mass or velocity dispersion (only DF 44 has an independently measured dispersion). They all follow the well-established stellar mass–stellar metallicity relation, while DF 44 lies below the velocity dispersion-metallicity relation. These results, combined with the fact that UDGs are unusually large for their stellar masses, suggest that stellar mass plays a more important role in setting stellar population properties for these galaxies than either size or surface brightness.

  3. The Origin of Stellar Species: constraining stellar evolution scenarios with Local Group galaxy surveys

    NASA Astrophysics Data System (ADS)

    Sarbadhicary, Sumit; Badenes, Carles; Chomiuk, Laura; Maldonado, Jessica; Caprioli, Damiano; Heger, Mairead; Huizenga, Daniel

    2018-01-01

    Our understanding of the progenitors of many stellar species, such as supernovae, massive and low-mass He-burning stars, is limited because of many poorly constrained aspects of stellar evolution theory. For my dissertation, I have focused on using Local Group galaxy surveys to constrain stellar evolution scenarios by measuring delay-time distributions (DTD). The DTD is the hypothetical occurrence rate of a stellar object per elapsed time after a brief burst of star formation. It is the measured distribution of timescales on which stars evolve, and therefore serves as a powerful observational constraint on theoretical progenitor models. The DTD can be measured from a survey of stellar objects and a set of star-formation histories of the host galaxy, and is particularly effective in the Local Group, where high-quality star-formation histories are available from resolved stellar populations. I am currently calculating a SN DTD with supernova remnants (SNRs) in order to provide the strongest constraints on the progenitors of thermonuclear and core-collapse supernovae. However, most SNRs do not have reliable age measurements and their evolution depends on the ambient environment. For this reason, I wrote a radio light curve model of an SNR population to extract the visibility times and rates of supernovae - crucial ingredients for the DTD - from an SNR survey. The model uses observational constraints on the local environments from multi-wavelength surveys, accounts for missing SNRs and employs the latest models of shock-driven particle acceleration. The final calculation of the SN DTD in the Local Group is awaiting completion of a systematic SNR catalog from deep radio-continuum images, now in preparation by a group led by Dr. Laura Chomiuk. I have also calculated DTDs for the LMC population of RR Lyrae and Cepheid variables, which serve as important distance calibrators and stellar population tracers. We find that Cepheids can have delay-times between 10 Myrs - 1 Gyr, while RR Lyrae can have delay-times < 10 Gyrs. These observations cannot be explained by models using mass and metallicity alone. In future projects, I will apply the DTD technique to constrain the supergiant and pre-supernova evolutionary models.

  4. Mutiple Stellar Populations in Blanco DECam Bulge Survey Globular Clusters

    NASA Astrophysics Data System (ADS)

    Miller, Doryan; Pilachowski, C. A.; Johnson, C. I.; Rich, R. Michael; Clarkson, William I.; Young, M.; Michael, S.

    2018-01-01

    Preliminary SDSS ugrizY photometric observations of globular cluster stars included in the Blanco DECam Bulge Survey (BDBS) were examined to determine the suitability of these data to characterize stellar populations within clusters. The BDBS fields include around two dozen globular clusters, including the iron-complex cluster M22 and the pulsar-rich cluster Terzan 5. Many globular clusters show evidence for multiple stellar populations as a spread in the u-g color of stars in a given phase of stellar evolution, and in some clusters, the populations have different radial distributions. BDBS clusters with low and/or non-variable reddening and long dynamical mixing time scales were selected for study, and photometry for RGB and main sequence stars within two half-light radii from the center of each cluster was extracted from the BDBS preliminary catalog. Field contamination was reduced in each candidate cluster by removing all stars more than a tenth of a magnitude from the best-fit fiducial curves following the g-r vs r color-magnitude diagram. The remaining stars were split into separate populations based on u-g color, and effective cumulative distribution functions vs. half-light radius were compared to identify differences in the populations’ radial distributions.

  5. Long-slit optical spectroscopy of powerful far-infrared galaxies - The nature of the nuclear energy source

    NASA Technical Reports Server (NTRS)

    Armus, Lee; Heckman, Timothy M.; Miley, George K.

    1989-01-01

    Optical spectroscopic data are presented for a sample of 47 powerful far-IR galaxies chosen for IR spectral shape, and for six other IR-bright galaxies. The stellar absorption lines expected from a population of old stars are generally very weak in the nuclei of the galaxies. Very weak Mg I absorption is found in regions well off the nucleus, implying that the visible spectrum is dominated by young stars and not by an AGN. At least one, and probably five, of the galaxies have detectable WR emission features, providing additional evidence for a young stellar population. About 20 percent of the galaxies have strong Balmer absorption lines, indicating the presence of a substantial intermediate-age stellar population. The equivalent width of the H-alpha emission line can be modeled as arising from a mixture of a large young population and an intermediate-age population of stars.

  6. The vertical metallicity gradients of mono-age stellar populations in the Milky Way with the RAVE and Gaia data

    NASA Astrophysics Data System (ADS)

    Ciucǎ, Ioana; Kawata, Daisuke; Lin, Jane; Casagrande, Luca; Seabroke, George; Cropper, Mark

    2018-03-01

    We investigate the vertical metallicity gradients of five mono-age stellar populations between 0 and 11 Gyr for a sample of 18 435 dwarf stars selected from the cross-matched Tycho-Gaia Astrometric Solution and Radial Velocity Experiment (RAVE) Data Release 5. We find a correlation between the vertical metallicity gradients and age, with no vertical metallicity gradient in the youngest population and an increasingly steeper negative vertical metallicity gradient for the older stellar populations. The metallicity at disc plane remains almost constant between 2 and 8 Gyr, and it becomes significantly lower for the 8 < τ ≤ 11 Gyr population. The current analysis also reveals that the intrinsic dispersion in metallicity increases steadily with age. We discuss that our results are consistent with a scenario that (thin) disc stars formed from a flaring (thin) star-forming disc.

  7. Understanding the formation and evolution of early-type galaxies based on newly developed single-burst stellar population synthesis models in the infrared

    NASA Astrophysics Data System (ADS)

    Roeck, Benjamin

    2015-12-01

    The detailed study of the different stellar populations which can be observed in galaxies is one of the most promising methods to shed light on the evolutionary histories of galaxies. So far, stellar population analysis has been carried out mainly in the optical wavelength range. The infrared spectral range, on the other hand, has been poorly studied so far, although it provides very important insights, particularly into the cooler stellar populations which are present in galaxies. However, in the last years, space telescopes like the Spitzer Space Telescope or the Wide-field Infrared Survey Explorer and instruments like the spectrograph X-Shooter on the Very Large Telescope have collected more and more photometric and spectroscopic data in this wavelength range. In order to analyze these observations, it is necessary to dispose of reliable and accurate stellar population models in the infrared. Only a small number of stellar population models in the infrared exist in the literature. They are mostly based on theoretical stellar libraries and very often cover only the near-infrared wavelength range at a rather low resolution. Hence, we developed new single-burst stellar population models between 8150 and 50000Å which are exclusively based on 180 spectra from the empirical Infrared Telescope Facility stellar library. We computed our single stellar population models for two different sets of isochrones and various types of initial mass functions of different slopes. Since the stars of the Infrared Telescope Facility library present only a limited coverage of the stellar atmospheric parameter space, our models are of sufficient quality only for ages larger than 1 Gyr and metallicities between [Fe/H] = 0.40 and 0.26. By combining our single stellar population models in the infrared with the extended medium-resolution Isaac Newton Telescope library of empirical spectra in the optical spectral range, we created the first single stellar population models covering the whole optical and infrared wavelength range between 3500 and 50000Å which are almost completely based on spectra of observed stars (apart from two gaps which were fitted with theoretical stellar spectra) . We analyze the behaviour of the near-infrared (J - K) and the Spitzer ([3.6]-[4.5]) colour calculated from our models. For ages older than 3 Gyr, both colours depend only slightly on age and metallicity. However, for younger ages, both colours become redder which is caused by the asymptotic giant branch stars contributing significantly to the light in the infrared at ages between 0.1 and 3 Gyr. Furthermore, we find a satisfactory agreement between the optical and near-infrared colours measured from our models and the colours observed from various samples of globular clusters and early-type x galaxies. However, our model predictions are only able to reproduce correctly the Spitzer ([3.6]-[4.5]) colours of older, more massive galaxies that resemble a single-burst population. Younger, less massive and more metal-poor galaxies show redder colours than our models. This mismatch can be explained by a more extended star formation history of these galaxies which includes a metal-poor or/and young population. The Spitzer ([3.6]-[4.5]) colours derived from our models also agree very well with those from most other models available in this wavelength range as long as they also correctly take into account a strong CO absorption band situated at 4.5 μm. The model predictions for colours in the near-infrared, such as (J - K), differ more between the different sets of models, depending on the underlying prescriptions for the asymptotic giant branch stellar evolutionary phase. Compared to other authors, we adopt only a moderate contribution of asymptotic giant branch stars to our models. Our stellar population models allow us also to determine mass-to-light ratios in different infrared bands. Consequently, we can confirm that the massto- light ratio determined in the Spitzer [3.6] μm band changes much less as a function of both age and metallicity than it does in the optical bands. However, it shows a non-negligible sensitivity to the initial mass function. Our models are of sufficient resolution to measure line strength indices up to the L-band. Hence, we redefined many indices in the near-infrared and identified new indicators for age, metallicity and the slope of the initial mass function. The equivalent widths of many indices which we computed from our stellar population models cannot be used to trace the large indices measured from observed early-type galaxies. While in the literature, this disagreement between the predicted and the observed line strength indices is usually attributed to a much enhanced contribution of asymptotic giant branch stars, we present a number of evidences which are at odds with such a view. Therefore, we propose an alternative scenario. We argue that a different abundance pattern in the early-type galaxies compared to that of the Milky Way which is characterized by an enhanced [C/Fe] ratio is able to account for this mismatch. The differences in the carbon enhancement between the galaxies can be attributed to the duration of their episodes of star formation which seem to be driven by galactic environment. In denser environments like in galaxy clusters, star formation takes place on a shorter characteristic timescale than in isolated galaxies. Hence, contrary to the situation in clusters, in isolated galaxies, the massive expulsion of carbon into the interstellar medium occurs before star formation has finished. Therefore, in the latter ones carbon is incorporated into the new generation of stars leading to enhanced carbon abundances with respect to cluster galaxies of a similar mass. We show that if we additionally include the effect of a bottom-heavy initial mass function in the case of the most massive early-type galaxies and assume enhanced abundance ratios for some other elements like sodium, we are able to simultaneously reproduce all of the studied line strength indices. Our analysis also shows that an active galactic nucleus does not seem to have any impact on the line strength indices which we measure for central stellar populations.

  8. Planetary nebulae populations as tracers of the stellar kinematics and light in the outer halos of galaxies and the intracluster regions in the nearby clusters

    NASA Astrophysics Data System (ADS)

    Arnaboldi, Magda

    2015-08-01

    Planetary nebulae have been used sucessfully to trace the kinematics of stars and the spatial distribution of the parent stellar populations in regions where the continuum of the integrated light is only 1% of the night sky. The observed wavelength of the PN strong emission in the [OIII] line at 5007 A measures the line-of-sight velocity of that single star and can be used to derive the two-dimensional velocity fields in these extreme outer regions of galaxies and their angular momentum content out to 10 effective radii. The specific frequency or the PN luminosity number and the morphology of the PN luminosity function are probes of the properties of the parent stellar population, like the star formation history and metallicity. I will present the latest results from the survey of PN population in external galaxies and in the Virgo cluster, and the implications on the coexistence of galaxy halos and intracluster light, and the constraints of their stellar motions and physical parameters.

  9. Plasma Effects on Fast Pair Beams. II. Reactive versus Kinetic Instability of Parallel Electrostatic Waves

    NASA Astrophysics Data System (ADS)

    Schlickeiser, R.; Krakau, S.; Supsar, M.

    2013-11-01

    The interaction of TeV gamma-rays from distant blazars with the extragalactic background light produces relativistic electron-positron pair beams by the photon-photon annihilation process. Using the linear instability analysis in the kinetic limit, which properly accounts for the longitudinal and the small but finite perpendicular momentum spread in the pair momentum distribution function, the growth rate of parallel propagating electrostatic oscillations in the intergalactic medium is calculated. Contrary to the claims of Miniati and Elyiv, we find that neither the longitudinal nor the perpendicular spread in the relativistic pair distribution function significantly affect the electrostatic growth rates. The maximum kinetic growth rate for no perpendicular spread is even about an order of magnitude greater than the corresponding reactive maximum growth rate. The reduction factors in the maximum growth rate due to the finite perpendicular spread in the pair distribution function are tiny and always less than 10-4. We confirm earlier conclusions by Broderick et al. and our group that the created pair beam distribution function is quickly unstable in the unmagnetized intergalactic medium. Therefore, there is no need to require the existence of small intergalactic magnetic fields to scatter the produced pairs, so that the explanation (made by several authors) for the Fermi non-detection of the inverse Compton scattered GeV gamma-rays by a finite deflecting intergalactic magnetic field is not necessary. In particular, the various derived lower bounds for the intergalactic magnetic fields are invalid due to the pair beam instability argument.

  10. An Extension of the EDGES Survey: Stellar Populations in Dark Matter Halos

    NASA Astrophysics Data System (ADS)

    van Zee, Liese

    The formation and evolution of galactic disks is one of the key questions in extragalactic astronomy today. We plan to use archival data from GALEX, Spitzer, and WISE to investigate the growth and evolution of the stellar component in a statistical sample of nearby galaxies. Data covering a broad wavelength range are critical for measurement of current star formation activity, stellar populations, and stellar distributions in nearby galaxies. In order to investigate the timescales associated with the growth of galactic disks, we will (1) investigate the structure of the underlying stellar distribution, (2) measure the ratio of current-to-past star formation activity as a function of radius, and (3) investigate the growth of the stellar disk as a function of baryon fraction and total dynamical mass. The proposed projects leverage the existing deep wide field-of-view near infrared imaging observations obtained with the Spitzer Space Telescope as part of the EDGES Survey, a Cycle 8 Exploration Science Program. The proposed analysis of multiwavelength imaging observations of a well-defined statistical sample will place strong constraints on hierarchical models of galaxy formation and evolution and will further our understanding of the stellar component of nearby galaxies.

  11. SDSS-IV MaNGA: stellar population gradients as a function of galaxy environment

    NASA Astrophysics Data System (ADS)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.

    2017-02-01

    We study the internal radial gradients of stellar population properties within 1.5 Re and analyse the impact of galaxy environment. We use a representative sample of 721 galaxies with masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV survey MaNGA. We split this sample by morphology into early-type and late-type galaxies. Using the full spectral fitting code FIREFLY, we derive the light and mass-weighted stellar population properties, age and metallicity, and calculate the gradients of these properties. We use three independent methods to quantify galaxy environment, namely the Nth nearest neighbour, the tidal strength parameter Q and distinguish between central and satellite galaxies. In our analysis, we find that early-type galaxies generally exhibit shallow light-weighted age gradients in agreement with the literature and mass-weighted median age gradients tend to be slightly positive. Late-type galaxies, instead, have negative light-weighted age gradients. We detect negative metallicity gradients in both early- and late-type galaxies that correlate with galaxy mass, with the gradients being steeper and the correlation with mass being stronger in late-types. We find, however, that stellar population gradients, for both morphological classifications, have no significant correlation with galaxy environment for all three characterizations of environment. Our results suggest that galaxy mass is the main driver of stellar population gradients in both early and late-type galaxies, and any environmental dependence, if present at all, must be very subtle.

  12. The Influence of Plasma Effects of Pair Beams on the Intergalactic Cascade Emission of Blazars

    NASA Astrophysics Data System (ADS)

    Menzler, Ulf; Schlickeiser, Reinhard

    2014-03-01

    The attenuation of TeV γ-rays from distant blazars by the extragalactic background light (EBL) produces relativistic electron-positron pair beams. It has been shown by Broderick et. al. (2012) and Schlickeiser et. al (2012) that a pair beam traversing the intergalactic medium is unstable to linear two-stream instabilities of both electrostatic and electromagnetic nature. While for strong blazars all free pair energy is dissipated in heating the intergalactic medium and a potential electromagnetic cascade via inverse-Compton scattering with the cosmic microwave background is suppressed, we investigate the case of weak blazars where the back reaction of generated electrostatic turbulence leads to a plateauing of the electron energy spectrum. In the ultra-relativistic Thomson limit we analytically calculate the inverse-Compton spectral energy distribution for both an unplateaued and a plateaued beam scenario, showing a peak reduction factor of Rpeak ≈ 0.345. This is consistent with the FERMI non-measurements of a GeV excess in the spectrum of EBL attenuated TeV blazars. Claims on the lower bound of the intergalactic magnetic field strengths, made by several authors neglecting plasma effects, are thus put into question.

  13. First Results on the Cluster Galaxy Population from the Subaru Hyper Suprime-Cam Survey. III. Brightest Cluster Galaxies, Stellar Mass Distribution, and Active Galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-Non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi

    2017-12-01

    The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z∼ 1 to date. In this exploratory study of cluster galaxy evolution from z = 1 to z = 0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), the evolution of stellar mass and luminosity distributions, the stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high-redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Over the 230 deg2 area of the current HSC-SSP footprint, selecting the top 100 clusters in each of the four redshift bins allows us to observe the buildup of galaxy population in descendants of clusters whose z≈ 1 mass is about 2× {10}14 {M}ȯ . Our stellar mass is derived from a machine-learning algorithm, which is found to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs (about 35% between z = 1 and 0.3), and no evidence for evolution in both the total stellar mass–cluster mass correlation and the shape of the stellar mass surface density profile. We also present the first measurement of the radio luminosity distribution in clusters out to z∼ 1, and show hints of changes in the dominant accretion mode powering the cluster radio galaxies at z∼ 0.8.

  14. ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias

    NASA Astrophysics Data System (ADS)

    Wang, Huiyuan; Mo, H. J.; Chen, Sihan; Yang, Yang; Yang, Xiaohu; Wang, Enci; van den Bosch, Frank C.; Jing, Yipeng; Kang, Xi; Lin, Weipeng; Lim, S. H.; Huang, Shuiyao; Lu, Yi; Li, Shijie; Cui, Weiguang; Zhang, Youcai; Tweed, Dylan; Wei, Chengliang; Li, Guoliang; Shi, Feng

    2018-01-01

    We examine the quenched fraction of central and satellite galaxies as a function of galaxy stellar mass, halo mass, and the matter density of their large-scale environment. Matter densities are inferred from our ELUCID simulation, a constrained simulation of the local universe sampled by SDSS, while halo masses and central/satellite classification are taken from the galaxy group catalog of Yang et al. The quenched fraction for the total population increases systematically with the three quantities. We find that the “environmental quenching efficiency,” which quantifies the quenched fraction as a function of halo mass, is independent of stellar mass. And this independence is the origin of the stellar mass independence of density-based quenching efficiency found in previous studies. Considering centrals and satellites separately, we find that the two populations follow similar correlations of quenching efficiency with halo mass and stellar mass, suggesting that they have experienced similar quenching processes in their host halo. We demonstrate that satellite quenching alone cannot account for the environmental quenching efficiency of the total galaxy population, and that the difference between the two populations found previously arises mainly from the fact that centrals and satellites of the same stellar mass reside, on average, in halos of different mass. After removing these effects of halo mass and stellar mass, there remains a weak, but significant, residual dependence on environmental density, which is eliminated when halo assembly bias is taken into account. Our results therefore indicate that halo mass is the prime environmental parameter that regulates the quenching of both centrals and satellites.

  15. The AIMSS Project - III. The stellar populations of compact stellar systems

    NASA Astrophysics Data System (ADS)

    Janz, Joachim; Norris, Mark A.; Forbes, Duncan A.; Huxor, Avon; Romanowsky, Aaron J.; Frank, Matthias J.; Escudero, Carlos G.; Faifer, Favio R.; Forte, Juan Carlos; Kannappan, Sheila J.; Maraston, Claudia; Brodie, Jean P.; Strader, Jay; Thompson, Bradley R.

    2016-02-01

    In recent years, a growing zoo of compact stellar systems (CSSs) have been found whose physical properties (mass, size, velocity dispersion) place them between classical globular clusters (GCs) and true galaxies, leading to debates about their nature. Here we present results using a so far underutilized discriminant, their stellar population properties. Based on new spectroscopy from 8-10m telescopes, we derive ages, metallicities, and [α/Fe] of 29 CSSs. These range from GCs with sizes of merely a few parsec to compact ellipticals (cEs) larger than M32. Together with a literature compilation, this provides a panoramic view of the stellar population characteristics of early-type systems. We find that the CSSs are predominantly more metal rich than typical galaxies at the same stellar mass. At high mass, the cEs depart from the mass-metallicity relation of massive early-type galaxies, which forms a continuous sequence with dwarf galaxies. At lower mass, the metallicity distribution of ultracompact dwarfs (UCDs) changes at a few times 107 M⊙, which roughly coincides with the mass where luminosity function arguments previously suggested the GC population ends. The highest metallicities in CSSs are paralleled only by those of dwarf galaxy nuclei and the central parts of massive early types. These findings can be interpreted as CSSs previously being more massive and undergoing tidal interactions to obtain their current mass and compact size. Such an interpretation is supported by CSSs with direct evidence for tidal stripping, and by an examination of the CSS internal escape velocities.

  16. Discovery of Extended Main-sequence Turnoffs in Four Young Massive Clusters in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Milone, Antonino P.

    2017-08-01

    An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color-magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turnoff regions in some YMCs. Here we present the ultraviolet-visual CMDs of four Large and Small Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turnoffs (MSTOs). The importance of age spreads and stellar rotation in reproducing the observations is investigated. The observed extended MSTOs cannot be explained by stellar rotation alone. Adopting an age spread of 35-50 Myr can alleviate this difficulty. We conclude that stars in these clusters are characterized by ranges in both their ages and rotation properties, but the origin of the age spread in these clusters remains unknown.

  17. A cosmic web filament revealed in Lyman-α emission around a luminous high-redshift quasar.

    PubMed

    Cantalupo, Sebastiano; Arrigoni-Battaia, Fabrizio; Prochaska, J Xavier; Hennawi, Joseph F; Madau, Piero

    2014-02-06

    Simulations of structure formation in the Universe predict that galaxies are embedded in a 'cosmic web', where most baryons reside as rarefied and highly ionized gas. This material has been studied for decades in absorption against background sources, but the sparseness of these inherently one-dimensional probes preclude direct constraints on the three-dimensional morphology of the underlying web. Here we report observations of a cosmic web filament in Lyman-α emission, discovered during a survey for cosmic gas fluorescently illuminated by bright quasars at redshift z ≈ 2.3. With a linear projected size of approximately 460 physical kiloparsecs, the Lyman-α emission surrounding the radio-quiet quasar UM 287 extends well beyond the virial radius of any plausible associated dark-matter halo and therefore traces intergalactic gas. The estimated cold gas mass of the filament from the observed emission-about 10(12.0 ± 0.5)/C(1/2) solar masses, where C is the gas clumping factor-is more than ten times larger than what is typically found in cosmological simulations, suggesting that a population of intergalactic gas clumps with subkiloparsec sizes may be missing in current numerical models.

  18. ON THE INCORPORATION OF METALLICITY DATA INTO MEASUREMENTS OF STAR FORMATION HISTORY FROM RESOLVED STELLAR POPULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dolphin, Andrew E., E-mail: adolphin@raytheon.com

    The combination of spectroscopic stellar metallicities and resolved star color–magnitude diagrams (CMDs) has the potential to constrain the entire star formation history (SFH) of a galaxy better than fitting CMDs alone (as is most common in SFH studies using resolved stellar populations). In this paper, two approaches to incorporating external metallicity information into CMD-fitting techniques are presented. Overall, the joint fitting of metallicity and CMD information can increase the precision of measured age–metallicity relationships (AMRs) and star formation rates by 10% over CMD fitting alone. However, systematics in stellar isochrones and mismatches between spectroscopic and photometric determinations of metallicity canmore » reduce the accuracy of the recovered SFHs. I present a simple mitigation of these systematics that can reduce their amplitude to the level obtained from CMD fitting alone, while ensuring that the AMR is consistent with spectroscopic metallicities. As is the case in CMD-fitting analysis, improved stellar models and calibrations between spectroscopic and photometric metallicities are currently the primary impediment to gains in SFH precision from jointly fitting stellar metallicities and CMDs.« less

  19. TWO-DIMENSIONAL MAPPING OF YOUNG STARS IN THE INNER 180 pc OF NGC 1068: CORRELATION WITH MOLECULAR GAS RING AND STELLAR KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Storchi-Bergmann, Thaisa; Riffel, Rogerio; Vale, Tiberio Borges

    We report the first two-dimensional mapping of the stellar population and non-stellar continua within the inner 180 pc (radius) of NGC 1068 at a spatial resolution of 8 pc, using integral field spectroscopy in the near-infrared. We have applied the technique of spectral synthesis to data obtained with the instrument NIFS and the adaptive optics module ALTAIR at the Gemini North Telescope. Two episodes of recent star formation are found to dominate the stellar population contribution: the first occurred 300 Myr ago, extending over most of the nuclear region; the second occurred just 30 Myr ago, in a ring-like structuremore » at Almost-Equal-To 100 pc from the nucleus, where it is coincident with an expanding ring of H{sub 2} emission. Inside the ring, where a decrease in the stellar velocity dispersion is observed, the stellar population is dominated by the 300 Myr age component. In the inner 35 pc, the oldest age component (age {>=} 2 Gyr) dominates the mass, while the flux is dominated by blackbody components with temperatures in the range 700 K {<=} T {<=} 800 K which we attribute to the dusty torus. We also find some contribution from blackbody and power-law components beyond the nucleus which we attribute to dust emission and scattered light.« less

  20. Comparison of stellar population model predictions using optical and infrared spectroscopy

    NASA Astrophysics Data System (ADS)

    Baldwin, C.; McDermid, R. M.; Kuntschner, H.; Maraston, C.; Conroy, C.

    2018-02-01

    We present Gemini/GNIRS cross-dispersed near-infrared spectra of 12 nearby early-type galaxies, with the aim of testing commonly used stellar population synthesis models. We select a subset of galaxies from the ATLAS3D sample which span a wide range of ages (single stellar population equivalent ages of 1-15 Gyr) at approximately solar metallicity. We derive star formation histories using four different stellar population synthesis models, namely those of Bruzual & Charlot, Conroy, Gunn & White, Maraston & Strömbäck and Vazdekis et al. We compare star formation histories derived from near-infrared spectra with those derived from optical spectra using the same models. We find that while all models agree in the optical, the derived star formation histories vary dramatically from model to model in the near-infrared. We find that this variation is largely driven by the choice of stellar spectral library, such that models including high-quality spectral libraries provide the best fits to the data, and are the most self-consistent when comparing optically derived properties with near-infrared ones. We also find the impact of age variation in the near-infrared to be subtle, and largely encoded in the shape of the continuum, meaning that the common approach of removing continuum information with a high-order polynomial greatly reduces our ability to constrain ages in the near-infrared.

  1. Nebular Continuum and Line Emission in Stellar Population Synthesis Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Byler, Nell; Dalcanton, Julianne J.; Conroy, Charlie

    Accounting for nebular emission when modeling galaxy spectral energy distributions (SEDs) is important, as both line and continuum emissions can contribute significantly to the total observed flux. In this work, we present a new nebular emission model integrated within the Flexible Stellar Population Synthesis code that computes the line and continuum emission for complex stellar populations using the photoionization code Cloudy. The self-consistent coupling of the nebular emission to the matched ionizing spectrum produces emission line intensities that correctly scale with the stellar population as a function of age and metallicity. This more complete model of galaxy SEDs will improvemore » estimates of global gas properties derived with diagnostic diagrams, star formation rates based on H α , and physical properties derived from broadband photometry. Our models agree well with results from other photoionization models and are able to reproduce observed emission from H ii regions and star-forming galaxies. Our models show improved agreement with the observed H ii regions in the Ne iii/O ii plane and show satisfactory agreement with He ii emission from z = 2 galaxies, when including rotating stellar models. Models including post-asymptotic giant branch stars are able to reproduce line ratios consistent with low-ionization emission regions. The models are integrated into current versions of FSPS and include self-consistent nebular emission predictions for MIST and Padova+Geneva evolutionary tracks.« less

  2. The PyCASSO database: spatially resolved stellar population properties for CALIFA galaxies

    NASA Astrophysics Data System (ADS)

    de Amorim, A. L.; García-Benito, R.; Cid Fernandes, R.; Cortijo-Ferrero, C.; González Delgado, R. M.; Lacerda, E. A. D.; López Fernández, R.; Pérez, E.; Vale Asari, N.

    2017-11-01

    The Calar Alto Legacy Integral Field Area (CALIFA) survey, a pioneer in integral field spectroscopy legacy projects, has fostered many studies exploring the information encoded on the spatially resolved data on gaseous and stellar features in the optical range of galaxies. We describe a value-added catalogue of stellar population properties for CALIFA galaxies analysed with the spectral synthesis code starlight and processed with the pycasso platform. Our public database (http://pycasso.ufsc.br/, mirror at http://pycasso.iaa.es/) comprises 445 galaxies from the CALIFA Data Release 3 with COMBO data. The catalogue provides maps for the stellar mass surface density, mean stellar ages and metallicities, stellar dust attenuation, star formation rates, and kinematics. Example applications both for individual galaxies and for statistical studies are presented to illustrate the power of this data set. We revisit and update a few of our own results on mass density radial profiles and on the local mass-metallicity relation. We also show how to employ the catalogue for new investigations, and show a pseudo Schmidt-Kennicutt relation entirely made with information extracted from the stellar continuum. Combinations to other databases are also illustrated. Among other results, we find a very good agreement between star formation rate surface densities derived from the stellar continuum and the H α emission. This public catalogue joins the scientific community's effort towards transparency and reproducibility, and will be useful for researchers focusing on (or complementing their studies with) stellar properties of CALIFA galaxies.

  3. Cluster galaxy population evolution from the Subaru Hyper Suprime-Cam survey: brightest cluster galaxies, stellar mass distribution, and active galaxies

    NASA Astrophysics Data System (ADS)

    Lin, Yen-Ting; Hsieh, Bau-Ching; Lin, Sheng-Chieh; Oguri, Masamune; Chen, Kai-Feng; Tanaka, Masayuki; Chiu, I.-non; Huang, Song; Kodama, Tadayuki; Leauthaud, Alexie; More, Surhud; Nishizawa, Atsushi J.; Bundy, Kevin; Lin, Lihwai; Miyazaki, Satoshi; HSC Collaboration

    2018-01-01

    The unprecedented depth and area surveyed by the Subaru Strategic Program with the Hyper Suprime-Cam (HSC-SSP) have enabled us to construct and publish the largest distant cluster sample out to z~1 to date. In this exploratory study of cluster galaxy evolution from z=1 to z=0.3, we investigate the stellar mass assembly history of brightest cluster galaxies (BCGs), and evolution of stellar mass and luminosity distributions, stellar mass surface density profile, as well as the population of radio galaxies. Our analysis is the first high redshift application of the top N richest cluster selection, which is shown to allow us to trace the cluster galaxy evolution faithfully. Our stellar mass is derived from a machine-learning algorithm, which we show to be unbiased and accurate with respect to the COSMOS data. We find very mild stellar mass growth in BCGs, and no evidence for evolution in both the total stellar mass-cluster mass correlation and the shape of the stellar mass surface density profile. The clusters are found to contain more red galaxies compared to the expectations from the field, even after the differences in density between the two environments have been taken into account. We also present the first measurement of the radio luminosity distribution in clusters out to z~1.

  4. A Study of The Binary and Anomalous Stellar Populations in Two Intermediate-Aged Open Clusters

    NASA Astrophysics Data System (ADS)

    Mathieu, Robert D.; Milliman, Katelyn; Geller, Aaron M.; Gosnell, Natalie

    2010-08-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. It is now clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, sophisticated N-body models show that stellar dynamical processes play a central role in the formation of such anomalous stars. These stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose to expand our highly successful radial-velocity survey to include two new rich open clusters NGC 7789 (1.8 Gyr, -0.1 dex) and NGC 2506 (2.1 Gyr, -0.4 dex) as part of the WIYN Open Cluster Study (WOCS). Though these two clusters are both of intermediate age and of similar richness, they have quite different blue straggler populations. NGC 2506 has only 10 known blue stragglers, while NGC 7789 has at least 27, among the largest known populations of blue stragglers in an open cluster. Defining the hard-binary populations in these two clusters is critical for understanding the factors that determine blue straggler production rates. Our proposed observations will establish the hard- binary fraction and frequency distributions of orbital parameters (periods, eccentricities, mass-ratios, etc.) for orbital periods approaching the hard-soft boundary, and will provide a comprehensive survey of the blue stragglers and other anomalous stars, including secure cluster memberships and binary properties. These data will then form direct constraints for detailed N-body open cluster simulations from which we will study the impact of the hard-binary population on the production rates and mechanisms of blue stragglers.

  5. First light - II. Emission line extinction, population III stars, and X-ray binaries

    NASA Astrophysics Data System (ADS)

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; O'Shea, Brian W.; Norman, Michael L.; Xu, Hao

    2018-02-01

    We produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of their rate of occurrence are Ly α, the C IV λλ1548, 1551 doublet, H α, and the Ca II λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w - J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.

  6. First Light II: Emission Line Extinction, Population III Stars, and X-ray Binaries

    DOE PAGES

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin; ...

    2017-11-17

    Here, we produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of theirmore » rate of occurrence are Ly α, the C iv λλ1548, 1551 doublet, H α, and the Ca ii λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w – J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.« less

  7. First Light II: Emission Line Extinction, Population III Stars, and X-ray Binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barrow, Kirk S. S.; Wise, John H.; Aykutalp, Aycin

    Here, we produce synthetic spectra and observations for metal-free stellar populations and high-mass X-ray binaries in the Renaissance Simulations at a redshift of 15. We extend our methodology from the first paper in the series by modelling the production and extinction of emission lines throughout a dusty and metal-enriched interstellar and circum-galactic media extracted from the simulation, using a Monte Carlo calculation. To capture the impact of high-energy photons, we include all frequencies from hard X-ray to far-infrared with enough frequency resolution to discern line emission and absorption profiles. The most common lines in our sample in order of theirmore » rate of occurrence are Ly α, the C iv λλ1548, 1551 doublet, H α, and the Ca ii λλλ8498, 8542, 8662 triplet. The best scenario for a direct observation of a metal-free stellar population is a merger between two Population III Galaxies. In mergers between metal-enriched and metal-free stellar populations, some characteristics may be inferred indirectly. Single Population III galaxies are too dim to be observed photometrically at z = 15. Ly α emission is discernible by JWST as an increase in J200w – J277w colour off the intrinsic stellar tracks. Observations of metal-free stars will be difficult, though not impossible, with the next generation of space telescopes.« less

  8. On the Spatially Resolved Star Formation History in M51. II. X-Ray Binary Population Evolution

    NASA Astrophysics Data System (ADS)

    Lehmer, B. D.; Eufrasio, R. T.; Markwardt, L.; Zezas, A.; Basu-Zych, A.; Fragos, T.; Hornschemeier, A. E.; Ptak, A.; Tzanavaris, P.; Yukita, M.

    2017-12-01

    We present a new technique for empirically calibrating how the X-ray luminosity function (XLF) of X-ray binary (XRB) populations evolves following a star formation event. We first utilize detailed stellar population synthesis modeling of far-UV-to-far-IR photometry of the nearby face-on spiral galaxy M51 to construct maps of the star formation histories (SFHs) on subgalactic (≈400 pc) scales. Next, we use the ≈850 ks cumulative Chandra exposure of M51 to identify and isolate 2-7 keV detected point sources within the galaxy, and we use our SFH maps to recover the local properties of the stellar populations in which each X-ray source is located. We then divide the galaxy into various subregions based on their SFH properties (e.g., star formation rate (SFR) per stellar mass ({M}\\star ) and mass-weighted stellar age) and group the X-ray point sources according to the characteristics of the regions in which they are found. Finally, we construct and fit a parameterized XLF model that quantifies how the XLF shape and normalization evolves as a function of the XRB population age Our best-fit model indicates that the XRB XLF per unit stellar mass declines in normalization, by ˜3-3.5 dex, and steepens in slope from ≈10 Myr to ≈10 Gyr. We find that our technique recovers results from past studies of how XRB XLFs and XRB luminosity scaling relations vary with age and provides a self-consistent picture for how XRB XLFs evolve with age.

  9. WINGS-SPE II: A catalog of stellar ages and star formation histories, stellar masses and dust extinction values for local clusters galaxies

    NASA Astrophysics Data System (ADS)

    Fritz, J.; Poggianti, B. M.; Cava, A.; Valentinuzzi, T.; Moretti, A.; Bettoni, D.; Bressan, A.; Couch, W. J.; D'Onofrio, M.; Dressler, A.; Fasano, G.; Kjærgaard, P.; Moles, M.; Omizzolo, A.; Varela, J.

    2011-02-01

    Context. The WIde-field Nearby Galaxy clusters Survey (wings) is a project whose primary goal is to study the galaxy populations in clusters in the local universe (z < 0.07) and of the influence of environment on their stellar populations. This survey has provided the astronomical community with a high quality set of photometric and spectroscopic data for 77 and 48 nearby galaxy clusters, respectively. Aims: In this paper we present the catalog containing the properties of galaxies observed by the wings SPEctroscopic (wings-spe) survey, which were derived using stellar populations synthesis modelling approach. We also check the consistency of our results with other data in the literature. Methods: Using a spectrophotometric model that reproduces the main features of observed spectra by summing the theoretical spectra of simple stellar populations of different ages, we derive the stellar masses, star formation histories, average age and dust attenuation of galaxies in our sample. Results: ~ 5300 spectra were analyzed with spectrophotometric techniques, and this allowed us to derive the star formation history, stellar masses and ages, and extinction for the wings spectroscopic sample that we present in this paper. Conclusions: The comparison with the total mass values of the same galaxies derived by other authors based on sdss data, confirms the reliability of the adopted methods and data. Based on observations taken at the Anglo Australian Telescope (3.9 m- AAT), and at the William Herschel Telescope (4.2 m- WHT).Full Table 2 is available in electronic form both at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/526/A45, and by querying the wings database at http://web.oapd.inaf.it/wings/new/index.html

  10. TESTING GALAXY FORMATION MODELS WITH THE GHOSTS SURVEY: THE COLOR PROFILE OF M81's STELLAR HALO

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monachesi, Antonela; Bell, Eric F.; Bailin, Jeremy

    2013-04-01

    We study the properties of the stellar populations in M81's outermost part, which hereafter we will call the stellar halo, using Hubble Space Telescope (HST) Advanced Camera for Surveys observations of 19 fields from the GHOSTS survey. The observed fields probe the stellar halo out to a projected distance of {approx}50 kpc from the galactic center. Each field was observed in both F606W and F814W filters. The 50% completeness levels of the color-magnitude diagrams (CMDs) are typically at 2 mag below the tip of the red giant branch (TRGB). Fields at distances closer than 15 kpc show evidence of disk-dominatedmore » populations whereas fields at larger distances are mostly populated by halo stars. The red giant branch (RGB) of the M81's halo CMDs is well matched with isochrones of {approx}10 Gyr and metallicities [Fe/H] {approx} - 1.2 dex, suggesting that the dominant stellar population of M81's halo has a similar age and metallicity. The halo of M81 is characterized by a color distribution of width {approx}0.4 mag and an approximately constant median value of (F606W - F814W) {approx}1 mag measured using stars within the magnitude range 23.7 {approx}< F814W {approx}< 25.5. When considering only fields located at galactocentric radius R > 15 kpc, we detect no color gradient in the stellar halo of M81. We place a limit of 0.03 {+-} 0.11 mag difference between the median color of RGB M81 halo stars at {approx}15 and at 50 kpc, corresponding to a metallicity difference of 0.08 {+-} 0.35 dex over that radial range for an assumed constant age of 10 Gyr. We compare these results with model predictions for the colors of stellar halos formed purely via accretion of satellite galaxies. When we analyze the cosmologically motivated models in the same way as the HST data, we find that they predict no color gradient for the stellar halos, in good agreement with the observations.« less

  11. Featured Image: A Looping Stellar Stream

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-11-01

    This negative image of NGC 5907 (originally published inMartinez-Delgadoet al. 2008; click for the full view!) reveals the faint stellar stream that encircles the galaxy, forming loops around it a fossil of a recent merger. Mergers between galaxies come in several different flavors: major mergers, in which the merging galaxies are within a 1:5 ratio in stellar mass; satellite cannibalism, in which a large galaxy destroys a small satellite less than a 50th of its size; and the in-between case of minor mergers, in which the merging galaxieshave stellar mass ratios between 1:5 and 1:50. These minor mergers are thought to be relatively common, and they can have a significant effect on the dynamics and structure of the primary galaxy. A team of scientists led by Seppo Laine (Spitzer Science Center Caltech) has recently analyzed the metallicity and age of the stellar population in the stream around NGC 5907. By fitting these observations with a stellar population synthesis model, they conclude that this stream is an example of a massive minor merger, with a stellar mass ratio of at least 1:8. For more information, check out the paper below!CitationSeppo Laine et al 2016 AJ 152 72. doi:10.3847/0004-6256/152/3/72

  12. Connecting Stellar Substructures to the Oscillating Disk: Monoceros and A13

    NASA Astrophysics Data System (ADS)

    Sheffield, Allyson; Tzanidakis, Anastasios; Johnston, Kathryn; Price-Whelan, Adrian

    2018-01-01

    Recent observations of stellar substructures in the Milky Way have challenged our view of where the traditional disk ends. By assessing the stellar populations in a stellar feature, particularly the fraction of RR Lyrae to M giant stars, an accretion scenario can be ruled out in favor of a kicked-out disk origin. A more definitive distinction can be made with the inclusion of high-resolution abundances. I will present evidence that two low latitude stellar substructures, the Monoceros Ring and A13, originated in the Galactic disk and were kicked out to their current location, in the outer regions of the stellar disk, due to a dynamic perturbation to the disk.

  13. The Evolution of the Intergalactic Medium

    NASA Astrophysics Data System (ADS)

    McQuinn, Matthew

    2016-09-01

    The bulk of cosmic matter resides in a dilute reservoir that fills the space between galaxies, the intergalactic medium (IGM). The history of this reservoir is intimately tied to the cosmic histories of structure formation, star formation, and supermassive black hole accretion. Our models for the IGM at intermediate redshifts (2≲z≲5) are a tremendous success, quantitatively explaining the statistics of Lyα absorption of intergalactic hydrogen. However, at both lower and higher redshifts (and around galaxies) much is still unknown about the IGM. We review the theoretical models and measurements that form the basis for the modern understanding of the IGM, and we discuss unsolved puzzles (ranging from the largely unconstrained process of reionization at high z to the missing baryon problem at low z), highlighting the efforts that have the potential to solve them.

  14. Shaping Disk Galaxy Stellar Populations via Internal and External Processes

    NASA Astrophysics Data System (ADS)

    Roškar, Rok

    2015-03-01

    In recent years, effects such as the radial migration of stars in disks have been recognized as important drivers of the properties of stellar populations. Radial migration arises due to perturbative effects of disk structures such as bars and spiral arms, and can deposit stars formed in disks to regions far from their birthplaces. Migrant stars can significantly affect the demographics of their new locales, especially in low-density regions such as in the outer disks. However, in the cosmological environment, other effects such as mergers and filamentary gas accretion also influence the disk formation process. Understanding the relative importance of these processes on the detailed evolution of stellar population signatures is crucial for reconstructing the history of the Milky Way and other nearby galaxies. In the Milky Way disk in particular, the formation of the thickened component has recently attracted much attention due to its potential to serve as a diagnostic of the galaxy's early history. Some recent work suggests, however, that the vertical structure of Milky Way stellar populations is consistent with models that build up the thickened component through migration. I discuss these developments in the context of cosmological galaxy formation.

  15. Ages of Massive Galaxies at 0.5 > z > 2.0 from 3D-HST Rest-frame Optical Spectroscopy

    NASA Astrophysics Data System (ADS)

    Fumagalli, Mattia; Franx, Marijn; van Dokkum, Pieter; Whitaker, Katherine E.; Skelton, Rosalind E.; Brammer, Gabriel; Nelson, Erica; Maseda, Michael; Momcheva, Ivelina; Kriek, Mariska; Labbé, Ivo; Lundgren, Britt; Rix, Hans-Walter

    2016-05-01

    We present low-resolution near-infrared stacked spectra from the 3D-HST survey up to z = 2.0 and fit them with commonly used stellar population synthesis models: BC03, FSPS10 (Flexible Stellar Population Synthesis), and FSPS-C3K. The accuracy of the grism redshifts allows the unambiguous detection of many emission and absorption features and thus a first systematic exploration of the rest-frame optical spectra of galaxies up to z = 2. We select massive galaxies ({log}({M}*/{M}⊙ )\\gt 10.8), we divide them into quiescent and star-forming via a rest-frame color-color technique, and we median-stack the samples in three redshift bins between z = 0.5 and z = 2.0. We find that stellar population models fit the observations well at wavelengths below the 6500 Å rest frame, but show systematic residuals at redder wavelengths. The FSPS-C3K model generally provides the best fits (evaluated with χ 2 red statistics) for quiescent galaxies, while BC03 performs the best for star-forming galaxies. The stellar ages of quiescent galaxies implied by the models, assuming solar metallicity, vary from 4 Gyr at z ˜ 0.75 to 1.5 Gyr at z ˜ 1.75, with an uncertainty of a factor of two caused by the unknown metallicity. On average, the stellar ages are half the age of the universe at these redshifts. We show that the inferred evolution of ages of quiescent galaxies is in agreement with fundamental plane measurements, assuming an 8 Gyr age for local galaxies. For star-forming galaxies, the inferred ages depend strongly on the stellar population model and the shape of the assumed star-formation history.

  16. The Phoenix stream: A cold stream in the southern hemisphere

    DOE PAGES

    Balbinot, E.

    2016-03-17

    In this study, we report the discovery of a stellar stream in the Dark Energy Survey (DES) Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with agemore » $$\\tau=11.5\\pm0.5$$ Gyr and $[Fe/H]<-1.6$ located 17.5$$\\pm$$0.9 kpc from the Sun gives an adequate description of the stream stellar population. The stream is detected over an extension of 8$$^{\\circ}.$$1 (2.5 kpc) and has a width of $$\\sim$$54 pc assuming a Gaussian profile, indicating that a globular cluster is a probable progenitor. There is no known globular cluster within 5 kpc compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities along the stream, however no obvious counterpart bound stellar system is visible in the coadded images. We also find overdensities along the stream that appear to be symmetrically distributed - consistent with the epicyclic overdensity scenario for the formation of cold streams - as well as a misalignment between the Northern and Southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe overdensity (Li et al. 2016).« less

  17. KINETyS II: Constraints on spatial variations of the stellar initial mass function from K-band spectroscopy

    NASA Astrophysics Data System (ADS)

    Alton, P. D.; Smith, R. J.; Lucey, J. R.

    2018-05-01

    We investigate the spatially resolved stellar populations of a sample of seven nearby massive Early-type galaxies (ETGs), using optical and near infrared data, including K-band spectroscopy. This data offers good prospects for mitigating the uncertainties inherent in stellar population modelling by making a wide variety of strong spectroscopic features available. We report new VLT-KMOS measurements of the average empirical radial gradients out to the effective radius in the strengths of the Ca I 1.98 μm and 2.26 μm features, the Na I 2.21 μm line, and the CO 2.30 μm bandhead. Following previous work, which has indicated an excess of dwarf stars in the cores of massive ETGs, we pay specific attention to radial variations in the stellar initial mass function (IMF) as well as modelling the chemical abundance patterns and stellar population ages in our sample. Using state-of-the-art stellar population models we infer an [Fe/H] gradient of -0.16±0.05 per dex in fractional radius and an average [Na/Fe] gradient of -0.35±0.09. We find a large but radially-constant enhancement to [Mg/Fe] of ˜ 0.4 and a much lower [Ca/Fe] enhancement of ˜ 0.1. Finally, we find no significant IMF radial gradient in our sample on average and find that most galaxies in our sample are consistent with having a Milky Way-like IMF, or at most a modestly bottom heavy IMF (e.g. less dwarf enriched than a single power law IMF with the Salpeter slope).

  18. VizieR Online Data Catalog: ATLAS3D Project. XXX (McDermid+, 2015)

    NASA Astrophysics Data System (ADS)

    McDermid, R. M.; Alatalo, K.; Blitz, L.; Bournaud, F.; Bureau, M.; Cappellari, M.; Crocker, A. F.; Davies, R. L.; Davis, T. A.; De Zeeuw, P. T.; Duc, P.-A.; Emsellem, E.; Khochfar, S.; Krajnovic, D.; Kuntschner, H.; Morganti, R.; Naab, T.; Oosterloo, T.; Sarzi, M.; Scott, N.; Serra, P.; Weijmans, A.-M.; Young, L. M.

    2015-09-01

    We present the stellar population content of early-type galaxies from the ATLAS3D survey. Using spectra integrated within apertures covering up to one effective radius, we apply two methods: one based on measuring line-strength indices and applying single stellar population (SSP) models to derive SSP-equivalent values of stellar age, metallicity, and alpha enhancement; and one based on spectral fitting to derive non-parametric star formation histories, mass-weighted average values of age, metallicity, and half-mass formation time-scales. Using homogeneously derived effective radii and dynamically determined galaxy masses, we present the distribution of stellar population parameters on the Mass Plane (MJAM, σe, Rmaje), showing that at fixed mass, compact early-type galaxies are on average older, more metal-rich, and more alpha-enhanced than their larger counterparts. From non-parametric star formation histories, we find that the duration of star formation is systematically more extended in lower mass objects. Assuming that our sample represents most of the stellar content of today's local Universe, approximately 50 percent of all stars formed within the first 2Gyr following the big bang. Most of these stars reside today in the most massive galaxies (>1010.5M⊙), which themselves formed 90 percent of their stars by z~2. The lower mass objects, in contrast, have formed barely half their stars in this time interval. Stellar population properties are independent of environment over two orders of magnitude in local density, varying only with galaxy mass. In the highest density regions of our volume (dominated by the Virgo cluster), galaxies are older, alpha-enhanced, and have shorter star formation histories with respect to lower density regions. (4 data files).

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balbinot, E.

    In this study, we report the discovery of a stellar stream in the Dark Energy Survey (DES) Year 1 (Y1A1) data. The discovery was made through simple color-magnitude filters and visual inspection of the Y1A1 data. We refer to this new object as the Phoenix stream, after its resident constellation. After subtraction of the background stellar population we detect a clear signal of a simple stellar population. By fitting the ridge line of the stream in color-magnitude space, we find that a stellar population with agemore » $$\\tau=11.5\\pm0.5$$ Gyr and $[Fe/H]<-1.6$ located 17.5$$\\pm$$0.9 kpc from the Sun gives an adequate description of the stream stellar population. The stream is detected over an extension of 8$$^{\\circ}.$$1 (2.5 kpc) and has a width of $$\\sim$$54 pc assuming a Gaussian profile, indicating that a globular cluster is a probable progenitor. There is no known globular cluster within 5 kpc compatible with being the progenitor of the stream, assuming that the stream traces its orbit. We examined overdensities along the stream, however no obvious counterpart bound stellar system is visible in the coadded images. We also find overdensities along the stream that appear to be symmetrically distributed - consistent with the epicyclic overdensity scenario for the formation of cold streams - as well as a misalignment between the Northern and Southern part of stream. Despite the close proximity we find no evidence that this stream and the halo cluster NGC 1261 have a common accretion origin linked to the recently found EriPhe overdensity (Li et al. 2016).« less

  20. Galaxy and mass assembly (GAMA): the consistency of GAMA and WISE derived mass-to-light ratios

    NASA Astrophysics Data System (ADS)

    Kettlety, T.; Hesling, J.; Phillipps, S.; Bremer, M. N.; Cluver, M. E.; Taylor, E. N.; Bland-Hawthorn, J.; Brough, S.; De Propris, R.; Driver, S. P.; Holwerda, B. W.; Kelvin, L. S.; Sutherland, W.; Wright, A. H.

    2018-01-01

    Recent work has suggested that mid-IR wavelengths are optimal for estimating the mass-to-light ratios of stellar populations and hence the stellar masses of galaxies. We compare stellar masses deduced from spectral energy distribution (SED) models, fitted to multiwavelength optical-NIR photometry, to luminosities derived from WISE photometry in the W1 and W2 bands at 3.6 and 4.5 μm for non-star forming galaxies. The SED-derived masses for a carefully selected sample of low-redshift (z ≤ 0.15) passive galaxies agree with the prediction from stellar population synthesis models such that M*/LW1 ≃ 0.6 for all such galaxies, independent of other stellar population parameters. The small scatter between masses predicted from the optical SED and from the WISE measurements implies that random errors (as opposed to systematic ones such as the use of different initial mass functions) are smaller than previous, deliberately conservative, estimates for the SED fits. This test is subtly different from simultaneously fitting at a wide range of optical and mid-IR wavelengths, which may just generate a compromised fit: we are directly checking that the best-fitting model to the optical data generates an SED whose M*/LW1 is also consistent with separate mid-IR data. We confirm that for passive low-redshift galaxies a fixed M*/LW1 = 0.65 can generate masses at least as accurate as those obtained from more complex methods. Going beyond the mean value, in agreement with expectations from the models, we see a modest change in M*/LW1 with SED fitted stellar population age but an insignificant one with metallicity.

  1. Machine-learning approaches to select Wolf-Rayet candidates

    NASA Astrophysics Data System (ADS)

    Marston, A. P.; Morello, G.; Morris, P.; van Dyk, S.; Mauerhan, J.

    2017-11-01

    The WR stellar population can be distinguished, at least partially, from other stellar populations by broad-band IR colour selection. We present the use of a machine learning classifier to quantitatively improve the selection of Galactic Wolf-Rayet (WR) candidates. These methods are used to separate the other stellar populations which have similar IR colours. We show the results of the classifications obtained by using the 2MASS J, H and K photometric bands, and the Spitzer/IRAC bands at 3.6, 4.5, 5.8 and 8.0μm. The k-Nearest Neighbour method has been used to select Galactic WR candidates for observational follow-up. A few candidates have been spectroscopically observed. Preliminary observations suggest that a detection rate of 50% can easily be achieved.

  2. The next generation of galaxy evolution models: A symbiosis of stellar populations and chemical abundances

    NASA Astrophysics Data System (ADS)

    Kotulla, Ralf

    2012-10-01

    Over its lifespan Hubble has invested significant effort into detailed observations of galaxies both in the local and distant universe. To extract the physical information from the observed {spectro-}photometry requires detailed and accurate models. Stellar population synthesis models are frequently used to obtain stellar masses, star formation rate, galaxy ages and star formation histories. Chemical evolution models offer another valuable and complementary approach to gain insight into many of the same aspects, yet these two methods have rarely been used in combination.Our proposed next generation of galaxy evolution models will help us improve our understanding of how galaxies form and evolve. Building on GALEV evolutionary synthesis models we incorporate state-of-the-art input physics for stellar evolution of binaries and rotating stars as well as new spectral libraries well matched to the modern observational capabilities. Our improved chemical evolution model allows us to self-consistently trace abundances of individual elements, fully accounting for the increasing initial abundances of successive stellar generations. GALEV will support variable Initial Mass Functions {IMF}, enabling us to test recent observational findings of a non-universal IMF by predicting chemical properties and integrated spectra in an integrated and consistent manner.HST is the perfect instrument for testing this approach. Its wide wavelength coverage from UV to NIR enables precise SED fitting, and with its spatial resolution we can compare the inferred chemical evolution to studies of star clusters and resolved stellar populations in nearby galaxies.

  3. Stellar Variability in the Intermediate Age Cluster NGC 1846

    NASA Astrophysics Data System (ADS)

    Pajkos, Michael A.; Salinas, Ricardo; Vivas, Anna Katherina; Strader, Jay; Contreras, Rodrigo

    2017-01-01

    The existence of multiple stellar populations in Galactic globular clusters is considered a widespread phenomenon, with only a few possible exceptions. In the LMC intermediate-age globular clusters, the presence of extended main sequence turn off points (MSTOs), initially interpreted as evidence for multiple stellar populations, is now under scrutiny and stellar rotation has emerged as an alternative explanation. Here we propose yet another ingredient to this puzzle: the fact that the MSTO of these clusters passes through the instability strip making stellar variability a new alternative to explain this phenomenon. We report the first in-depth characterization of the variability, at the MSTO level, in any LMC cluster, and assess the role of variability masquerading as multiple stellar populations. We used the Gemini-S/GMOS to obtain time series photometry of NGC 1846. Using differencing image analysis, we identified 90 variables in the r-band, 68 of which were also found in the g-band. Of these 68, 57 were δ-scuti—with 35 having full phase coverage and 22 without. The average full period (Pfull) was 1.93 ± 0.79 hours. Furthermore, two eclipsing binaries and two RR Lyrae identified by OGLE were recovered. We conclude that not enough variables were found to provide a statistically significant impact on the extended MSTO, nor to explain the bifurcation of MSTO in NGC 1846. But the effect of variable stars could still be a viable explanation on clusters where only a hint of a MS extension is seen.

  4. RX J0848.6+4453: The evolution of galaxy sizes and stellar populations in A z = 1.27 cluster

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jørgensen, Inger; Chiboucas, Kristin; Schiavon, Ricardo P.

    2014-12-01

    RX J0848.6+4453 (Lynx W) at redshift 1.27 is part of the Lynx Supercluster of galaxies. We present an analysis of the stellar populations and star formation history for a sample of 24 members of the cluster. Our study is based on deep optical spectroscopy obtained with Gemini North combined with imaging data from Hubble Space Telescope. Focusing on the 13 bulge-dominated galaxies for which we can determine central velocity dispersions, we find that these show a smaller evolution with redshift of sizes and velocity dispersions than reported for field galaxies and galaxies in poorer clusters. Our data show that themore » galaxies in RX J0848.6+4453 populate the fundamental plane (FP) similar to that found for lower-redshift clusters. The zero-point offset for the FP is smaller than expected if the cluster's galaxies are to evolve passively through the location of the FP we established in our previous work for z = 0.8-0.9 cluster galaxies and then to the present-day FP. The FP zero point for RX J0848.6+4453 corresponds to an epoch of last star formation at z{sub form}=1.95{sub −0.15}{sup +0.22}. Further, we find that the spectra of the galaxies in RX J0848.6+4453 are dominated by young stellar populations at all galaxy masses and in many cases show emission indicating low-level ongoing star formation. The average age of the young stellar populations as estimated from the strength of the high-order Balmer line Hζ is consistent with a major star formation episode 1-2 Gyr prior, which in turn agrees with z {sub form} = 1.95. These galaxies dominated by young stellar populations are distributed throughout the cluster. We speculate that low-level star formation has not yet been fully quenched in the center of this cluster, possibly because the cluster is significantly poorer than other clusters previously studied at similar redshifts, which appear to have very little ongoing star formation in their centers. The mixture in RX J0848.6+4453 of passive galaxies with young stellar populations and massive galaxies still experiencing some star formation appears similar to the galaxy populations recently identified in two z ≈ 2 clusters.« less

  5. Discovery of Extended Main-sequence Turnoffs in Four Young Massive Clusters in the Magellanic Clouds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chengyuan; De Grijs, Richard; Deng, Licai

    An increasing number of young massive clusters (YMCs) in the Magellanic Clouds have been found to exhibit bimodal or extended main sequences (MSs) in their color–magnitude diagrams (CMDs). These features are usually interpreted in terms of a coeval stellar population with different stellar rotational rates, where the blue and red MS stars are populated by non- (or slowly) and rapidly rotating stellar populations, respectively. However, some studies have shown that an age spread of several million years is required to reproduce the observed wide turnoff regions in some YMCs. Here we present the ultraviolet–visual CMDs of four Large and Smallmore » Magellanic Cloud YMCs, NGC 330, NGC 1805, NGC 1818, and NGC 2164, based on high-precision Hubble Space Telescope photometry. We show that they all exhibit extended main-sequence turnoffs (MSTOs). The importance of age spreads and stellar rotation in reproducing the observations is investigated. The observed extended MSTOs cannot be explained by stellar rotation alone. Adopting an age spread of 35–50 Myr can alleviate this difficulty. We conclude that stars in these clusters are characterized by ranges in both their ages and rotation properties, but the origin of the age spread in these clusters remains unknown.« less

  6. Snapshots in X-ray binary evolution: Using Hα Emitters and post-starburst galaxies to study the age-dependence of XRB populations

    NASA Astrophysics Data System (ADS)

    Basu-Zych, Antara; Hornschemeier, Ann; Fragkos, Anastasios; Lehmer, Bret; Zezas, Andreas; Yukita, Mihoko; Tzanavaris, Panayiotis

    2018-01-01

    The X-ray emission in galaxies, due to X-ray binaries (XRBs), appears to depend on global galaxy properties such as stellar mass (M*), star formation rate (SFR), metallicity, and stellar age. This poster will present unique galaxy populations with well-defined stellar ages to test current relations and models. Specifically, Hα emitters (HAEs), which are nearby analogs of galaxies in the early universe, trace how XRBs form and evolve in young, metal-poor environments. We find that HAEs have lower X-ray luminosities per SFR and metallicity compared to other normal galaxies. At such young ages (<10Myr), XRBs may not have fully formed. Therefore, these observations provide constraints for the expected X-ray emission from XRBs in the early Universe. Post-starburst galaxies, selected by the strength of the Hδ equivalent width (> 500 Å), probe the XRB population related to stellar ages of 0.1-1 Gyr. At these ages, the donor star is expected to be an A-star whose mass is ~2 M⊙ and similar to that of the compact object, which may potentially lead to high mass transfer rates and high X-ray luminosities. Together, these samples offer important constraints for the evolution of XRBs with stellar age.

  7. The abundance, distribution, and physical nature of highly ionized oxygen O VI, O VII, and O VIII in IllustrisTNG

    NASA Astrophysics Data System (ADS)

    Nelson, Dylan; Kauffmann, Guinevere; Pillepich, Annalisa; Genel, Shy; Springel, Volker; Pakmor, Rüdiger; Hernquist, Lars; Weinberger, Rainer; Torrey, Paul; Vogelsberger, Mark; Marinacci, Federico

    2018-06-01

    We explore the abundance, spatial distribution, and physical properties of the O VI, O VII, and O VIII ions of oxygen in circumgalactic and intergalactic media (the CGM, IGM, and WHIM). We use the TNG100 and TNG300 large volume cosmological magnetohydrodynamical simulations. Modelling the ionization states of simulated oxygen, we find good agreement with observations of the low-redshift O VI column density distribution function (CDDF), and present its evolution for all three ions from z = 0 to z = 4. Producing mock quasar absorption line spectral surveys, we show that the IllustrisTNG simulations are fully consistent with constraints on the O VI content of the CGM from COS-haloes and other low-redshift observations, producing columns as high as observed. We measure the total amount of mass and average column densities of each ion using hundreds of thousands of simulated galaxies spanning 10^{11} < {M}_halo/ M⊙<1015 corresponding to 109 < M⋆/ M⊙<1012 in stellar mass. Stacked radial profiles of O VI are computed in 3D number density and 2D projected column density, decomposing into 1-halo and 2-halo terms. Relating halo O VI to properties of the central galaxy, we find a correlation between the (g - r) colour of a galaxy and the total amount of O VI in its CGM. In comparison to the COS-Haloes finding, this leads to a dichotomy of columns around star-forming versus passive galaxies at fixed stellar (or halo) mass. We demonstrate that this correlation is a direct result of black hole feedback associated with quenching and represents a causal consequence of galactic-scale baryonic feedback impacting the physical state of the circumgalactic medium.

  8. THE BARYON CYCLE AT HIGH REDSHIFTS: EFFECTS OF GALACTIC WINDS ON GALAXY EVOLUTION IN OVERDENSE AND AVERAGE REGIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ∼ 6–12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (i) constant wind velocity (CW), (ii) variable wind scaling with galaxy properties (VW), and (iii) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region,more » and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR–stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.« less

  9. The Baryon Cycle at High Redshifts: Effects of Galactic Winds on Galaxy Evolution in Overdense and Average Regions

    NASA Astrophysics Data System (ADS)

    Sadoun, Raphael; Shlosman, Isaac; Choi, Jun-Hwan; Romano-Díaz, Emilio

    2016-10-01

    We employ high-resolution cosmological zoom-in simulations focusing on a high-sigma peak and an average cosmological field at z ˜ 6-12 in order to investigate the influence of environment and baryonic feedback on galaxy evolution in the reionization epoch. Strong feedback, e.g., galactic winds, caused by elevated star formation rates (SFRs) is expected to play an important role in this evolution. We compare different outflow prescriptions: (I) constant wind velocity (CW), (II) variable wind scaling with galaxy properties (VW), and (III) no outflows (NW). The overdensity leads to accelerated evolution of dark matter and baryonic structures, absent from the “normal” region, and to shallow galaxy stellar mass functions at the low-mass end. Although CW shows little dependence on the environment, the more physically motivated VW model does exhibit this effect. In addition, VW can reproduce the observed specific SFR (sSFR) and the sSFR-stellar mass relation, which CW and NW fail to satisfy simultaneously. Winds also differ substantially in affecting the state of the intergalactic medium (IGM). The difference lies in the volume-filling factor of hot, high-metallicity gas, which is near unity for CW, while such gas remains confined in massive filaments for VW, and locked up in galaxies for NW. Such gas is nearly absent from the normal region. Although all wind models suffer from deficiencies, the VW model seems to be promising in correlating the outflow properties with those of host galaxies. Further constraints on the state of the IGM at high z are needed to separate different wind models.

  10. Dark-ages reionization and galaxy formation simulation - III. Modelling galaxy formation and the epoch of reionization

    NASA Astrophysics Data System (ADS)

    Mutch, Simon J.; Geil, Paul M.; Poole, Gregory B.; Angel, Paul W.; Duffy, Alan R.; Mesinger, Andrei; Wyithe, J. Stuart B.

    2016-10-01

    We introduce MERAXES, a new, purpose-built semi-analytic galaxy formation model designed for studying galaxy growth during reionization. MERAXES is the first model of its type to include a temporally and spatially coupled treatment of reionization and is built upon a custom (100 Mpc)3 N-body simulation with high temporal and mass resolution, allowing us to resolve the galaxy and star formation physics relevant to early galaxy formation. Our fiducial model with supernova feedback reproduces the observed optical depth to electron scattering and evolution of the galaxy stellar mass function between z = 5 and 7, predicting that a broad range of halo masses contribute to reionization. Using a constant escape fraction and global recombination rate, our model is unable to simultaneously match the observed ionizing emissivity at z ≲ 6. However, the use of an evolving escape fraction of 0.05-0.1 at z ˜ 6, increasing towards higher redshift, is able to satisfy these three constraints. We also demonstrate that photoionization suppression of low-mass galaxy formation during reionization has only a small effect on the ionization history of the intergalactic medium. This lack of `self-regulation' arises due to the already efficient quenching of star formation by supernova feedback. It is only in models with gas supply-limited star formation that reionization feedback is effective at regulating galaxy growth. We similarly find that reionization has only a small effect on the stellar mass function, with no observationally detectable imprint at M* > 107.5 M⊙. However, patchy reionization has significant effects on individual galaxy masses, with variations of factors of 2-3 at z = 5 that correlate with environment.

  11. How much can we trust high-resolution spectroscopic stellar chemical abundances?

    NASA Astrophysics Data System (ADS)

    Blanco-Cuaresma, S.; Nordlander, T.; Heiter, U.; Jofré, P.; Masseron, T.; Casamiquela, L.; Tabernero, H. M.; Bhat, S. S.; Casey, A. R.; Meléndez, J.; Ramírez, I.

    2017-03-01

    To study stellar populations, it is common to combine chemical abundances from different spectroscopic surveys/studies where different setups were used. These inhomogeneities can lead us to inaccurate scientific conclusions. In this work, we studied one aspect of the problem: When deriving chemical abundances from high-resolution stellar spectra, what differences originate from the use of different radiative transfer codes?

  12. The stellar content of the nuclear regions of Sc galaxies

    NASA Technical Reports Server (NTRS)

    Turnrose, B. E.

    1976-01-01

    Stellar-population syntheses based on absolute spectral energy distributions over the wavelength range from 3300 to 10,400 A are used to determine the stellar content of the nuclear regions of seven nearby Sc galaxies (NGC 628, 1073, 1084, 1637, 2903, 4321, and 5194). A linear-programming procedure is employed to construct models of the overall stellar populations whose spectra closely match those of the seven galaxies. Absolute measurements of the emission-line spectra of the nuclear regions are also provided. It is found that: (1) intrinsic reddening is probably present in each nuclear region; (2) the upper main sequence is substantially populated in most of the models; (3) the lower main sequence contributes insignificantly to the luminosity in all optimal solutions; (4) substantial contributions are made by evolved M stars at long wavelengths in all the models; (5) the model photometric M/L ratios are low, of the order of unity; and (6) the O-B stars arising naturally in the population models are just sufficient to provide the observed nuclear ionization in all the galaxies except NGC 5194, which may be collisionally ionized. The properties of the nuclear regions are shown to be consistent with the existence of a common initial mass function for star formation and a variety of time dependences for the star-formation process. A possibly significant correlation is noted between nuclear stellar content and overall dynamical properties in four of the galaxies.

  13. Galaxy and Mass Assembly (GAMA): probing the merger histories of massive galaxies via stellar populations

    NASA Astrophysics Data System (ADS)

    Ferreras, I.; Hopkins, A. M.; Gunawardhana, M. L. P.; Sansom, A. E.; Owers, M. S.; Driver, S.; Davies, L.; Robotham, A.; Taylor, E. N.; Konstantopoulos, I.; Brough, S.; Norberg, P.; Croom, S.; Loveday, J.; Wang, L.; Bremer, M.

    2017-06-01

    The merging history of galaxies can be traced with studies of dynamically close pairs. These consist of a massive primary galaxy and a less massive secondary (or satellite) galaxy. The study of the stellar populations of secondary (lower mass) galaxies in close pairs provides a way to understand galaxy growth by mergers. Here we focus on systems involving at least one massive galaxy - with stellar mass above 1011M⊙ in the highly complete Galaxy and Mass Assembly (GAMA) survey. Our working sample comprises 2692 satellite galaxy spectra (0.1 ≤ z ≤ 0.3). These spectra are combined into high S/N stacks, and binned according to both an 'internal' parameter, the stellar mass of the satellite galaxy (I.e. the secondary), and an 'external' parameter, selecting either the mass of the primary in the pair, or the mass of the corresponding dark matter halo. We find significant variations in the age of the populations with respect to environment. At fixed mass, satellites around the most massive galaxies are older and possibly more metal-rich, with age differences ˜1-2 Gyr within the subset of lower mass satellites (˜1010 M⊙). These variations are similar when stacking with respect to the halo mass of the group where the pair is embedded. The population trends in the lower mass satellites are consistent with the old stellar ages found in the outer regions of massive galaxies.

  14. TRACING THE EVOLUTION OF HIGH-REDSHIFT GALAXIES USING STELLAR ABUNDANCES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Crosby, Brian D.; O’Shea, Brian W.; Beers, Timothy C.

    2016-03-20

    This paper presents the first results from a model for chemical evolution that can be applied to N-body cosmological simulations and quantitatively compared to measured stellar abundances from large astronomical surveys. This model convolves the chemical yield sets from a range of stellar nucleosynthesis calculations (including asymptotic giant branch stars, Type Ia and II supernovae, and stellar wind models) with a user-specified stellar initial mass function (IMF) and metallicity to calculate the time-dependent chemical evolution model for a “simple stellar population” (SSP) of uniform metallicity and formation time. These SSP models are combined with a semianalytic model for galaxy formation andmore » evolution that uses merger trees from N-body cosmological simulations to track several α- and iron-peak elements for the stellar and multiphase interstellar medium components of several thousand galaxies in the early (z ≥ 6) universe. The simulated galaxy population is then quantitatively compared to two complementary data sets of abundances in the Milky Way stellar halo and is capable of reproducing many of the observed abundance trends. The observed abundance ratio distributions are best reproduced with a Chabrier IMF, a chemically enriched star formation efficiency of 0.2, and a redshift of reionization of 7. Many abundances are qualitatively well matched by our model, but our model consistently overpredicts the carbon-enhanced fraction of stars at low metallicities, likely owing to incomplete coverage of Population III stellar yields and supernova models and the lack of dust as a component of our model.« less

  15. The Stellar Populations of Two Ultra-diffuse Galaxies from Optical and Near-infrared Photometry

    NASA Astrophysics Data System (ADS)

    Pandya, Viraj; Romanowsky, Aaron J.; Laine, Seppo; Brodie, Jean P.; Johnson, Benjamin D.; Glaccum, William; Villaume, Alexa; Cuillandre, Jean-Charles; Gwyn, Stephen; Krick, Jessica; Lasker, Ronald; Martín-Navarro, Ignacio; Martinez-Delgado, David; van Dokkum, Pieter

    2018-05-01

    We present observational constraints on the stellar populations of two ultra-diffuse galaxies (UDGs) using optical through near-infrared (NIR) spectral energy distribution (SED) fitting. Our analysis is enabled by new Spitzer-IRAC 3.6 and 4.5 μm imaging, archival optical imaging, and the prospector fully Bayesian SED fitting framework. Our sample contains one field UDG (DGSAT I), one Virgo cluster UDG (VCC 1287), and one Virgo cluster dwarf elliptical for comparison (VCC 1122). We find that the optical–NIR colors of the three galaxies are significantly different from each other. We infer that VCC 1287 has an old (≳7.7 Gyr) and surprisingly metal-poor ([Z/Z ⊙] ≲ ‑1.0) stellar population, even after marginalizing over uncertainties on diffuse interstellar dust. In contrast, the field UDG DGSAT I shows evidence of being younger than the Virgo UDG, with an extended star formation history and an age posterior extending down to ∼3 Gyr. The stellar metallicity of DGSAT I is sub-solar but higher than that of the Virgo UDG, with [Z/{Z}ȯ ]=-{0.63}-0.62+0.35; in the case of exactly zero diffuse interstellar dust, DGSAT I may even have solar metallicity. With VCC 1287 and several Coma UDGs, a general picture is emerging where cluster UDGs may be “failed” galaxies, but the field UDG DGSAT I seems more consistent with a stellar feedback-induced expansion scenario. In the future, our approach can be applied to a large and diverse sample of UDGs down to faint surface brightness limits, with the goal of constraining their stellar ages, stellar metallicities, and circumstellar and diffuse interstellar dust content.

  16. Analyzing the Signatures of High Red-shift Hydrogen: The Lyman Alpha and 21cm Emission Lines

    NASA Astrophysics Data System (ADS)

    Hansen, Matthew

    Hydrogen line emission is an important window on galaxy formation due to the large abundance of neutral hydrogen in the early Universe. This dissertation comprises two theoretical/computational studies of two types of hydrogen line emission: Lyman alpha emission and escape from young stellar populations, and 21cm radiation from neutral hydrogen clouds at the time of the first luminous objects. The Lyman alpha research concerns the radiative transfer of resonant line radiation from a central source escaping from a multi-phase medium appropriate to young star forming regions. To analyze the properties of this novel radiative transfer problem I develop new theoretical formulations of the problem, substantiated by physically accurate monte carlo simulations of photon scattering and absorption through multi-phase gas geometries. I find that the escape fraction of resonant line photons from young star forming regions--ionized gas filled with neutral hydrogen clouds with low dust content--can exceed the continuum photon escape fraction by up to an order of magnitude. Additionally, I study the effect of gas outflow on the line profile of escaping resonant photons. In light of these results, I discuss why a young normal stellar populations surrounded by a clumpy multi-phase gas outflow can explain the Lyman alpha spectra seen from high red-shift Lyman Alpha Emitters (LAEs). The 21cm research concerns the ionization evolution of the Intergalactic Medium (IGM) during the era of the first luminous objects in the Universe. Large radio-array observatories are currently being built to specifically detect the red-shifted 21cm radiation from neutral hydrogen at red-shifts z ˜ 12 - - 6; the output will be three dimensional maps of ionized regions across the plane of the sky at various red-shift depths. The signal in the resulting ionization maps will be limited by observational noise, mainly from foreground galactic emission in radio frequencies. The research presented here is a unique approach to data mining the planned observational ionization map data. I develop the one-point statistics of the observed 21cm intensity appropriate for the IGM at high red-shifts using a mixture model technique. I show that physically interesting parameters of such mixture models, such as the total ionized gas fraction at a given red-shift slice, can be estimated by applying Maximum Likelihood Expectation to the mixture model of the observed 21cm intensity distribution. The confidence intervals on the expected model parameters are rigorously calculated, and applied to expected detection capabilities of the planned radio-array observatories. I find that at least one of the observatories, the Low Frequency Array (LOFAR), will be able to statistically detect the evolution of the total ionized gas fraction with good precision.

  17. CHEMICAL ENRICHMENT OF DAMPED Ly{alpha} SYSTEMS AS A DIRECT CONSTRAINT ON POPULATION III STAR FORMATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kulkarni, Girish; Hennawi, Joseph F.; Rollinde, Emmanuel

    2013-08-01

    Observations of damped Ly{alpha} absorbers (DLAs) can be used to measure gas-phase metallicities at large cosmological look-back times with high precision. Furthermore, relative abundances can still be measured accurately deep into the reionization epoch (z > 6) using transitions redward of Ly{alpha}, even though Gunn-Peterson absorption precludes measurement of neutral hydrogen. In this paper, we study the chemical evolution of DLAs using a model for the coupled evolution of galaxies and the intergalactic medium (IGM), which is constrained by a variety of observations. Our goal is to explore the influence of Population III stars on the abundance patterns of DLAsmore » to determine the degree to which abundance measurements can discriminate between different Population III stellar initial mass functions (IMFs). We include effects, such as inflows onto galaxies due to cosmological accretion and outflows from galaxies due to supernova feedback. A distinct feature of our model is that it self-consistently calculates the effect of Population III star formation on the reionization of an inhomogeneous IGM, thus allowing us to calculate the thermal evolution of the IGM and implement photoionization feedback on low-mass galaxy formation. We find that if the critical metallicity of Population III to II/I transition is {approx}< 10{sup -4} Z{sub Sun }, then the cosmic Population III star formation rate drops to zero for z < 8. Nevertheless, at high redshift (z {approx} 6), chemical signatures of Population III stars remain in low-mass galaxies (halo mass {approx}< 10{sup 9} M{sub Sun }). This is because photoionization feedback suppresses star formation in these galaxies until relatively low redshift (z {approx} 10), and the chemical record of their initial generation of Population III stars is retained. We model DLAs as these low-mass galaxies, and assign to them a mass-dependent H I absorption cross-section in order to predict the expected distribution of DLA abundance ratios. We find that these distributions are anchored toward abundance ratios set by Population II supernova yields, but they exhibit a tail which depends significantly on the Population III IMF for z > 5. Thus, a sample of DLA metallicity and relative abundance measurements at high redshift holds the promise to constrain Population III enrichment and the Population III IMF. We find that a sample of just 10 DLAs with relative abundances measured to an accuracy of 0.1 dex is sufficient to constrain the Population III IMF at 4{sigma}. These constraints may prove stronger than other probes of Population III enrichment, such as metal-poor stars and individual metal-poor DLAs. Our results provide a global picture of the thermal, ionization, and chemical evolution of the universe, and have the potential to rule out certain Population III scenarios.« less

  18. Stellar density distribution along the minor axis of the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2018-02-01

    We studied the spatial distribution of young and old stellar populations along the western half part of the minor axis of the Large Magellanic Cloud (LMC) using Washington MT1 photometry of selected fields, which span a deprojected distance range from the LMC bar centre out to ∼31.6 kpc. We found that both stellar populations share a mean LMC limiting radius of 8.9 ± 0.4 kpc; old populations are three times more dense than young populations at that LMC limit. When comparing this result with recent values for the LMC extension due to north, the old populations resulted significantly more elongated than the young ones. Bearing in mind previous claims that the elongation of the outermost LMC regions may be due to the tidal effects of the Milky Way (MW), our findings suggest that such a tidal interaction should not have taken place recently. The existence of young populations in the outermost western regions also supports previous results about ram pressure stripping effects of the LMC gaseous disc due to the motion of the LMC in the MW halo.

  19. Merger-driven evolution of the effective stellar initial mass function of massive early-type galaxies

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Nipoti, Carlo; Treu, Tommaso

    2017-02-01

    The stellar initial mass function (IMF) of early-type galaxies is the combination of the IMF of the stellar population formed in situ and that of accreted stellar populations. Using as an observable the effective IMF αIMF, defined as the ratio between the true stellar mass of a galaxy and the stellar mass inferred assuming a Salpeter IMF, we present a theoretical model for its evolution as a result of dry mergers. We use a simple dry-merger evolution model, based on cosmological N-body simulations, together with empirically motivated prescriptions for the IMF to make predictions on how the effective IMF of massive early-type galaxies changes from z = 2 to z = 0. We find that the IMF normalization of individual galaxies becomes lighter with time. At fixed velocity dispersion, αIMF is predicted to be constant with redshift. Current dynamical constraints on the evolution of the IMF are in slight tension with this prediction, even though systematic uncertainties, including the effect of radial gradients in the IMF, prevent a conclusive statement. The correlation of αIMF with stellar mass becomes shallower with time, while the correlation between αIMF and velocity dispersion is mostly preserved by dry mergers. We also find that dry mergers can mix the dependence of the IMF on stellar mass and velocity dispersion, making it challenging to infer, from z = 0 observations of global galactic properties, what is the quantity that is originally coupled with the IMF.

  20. Stellar, remnant, planetary, and dark-object masses from astrometric microlensing

    NASA Technical Reports Server (NTRS)

    Boden, A.; Gould, A. P.; Bennett, D. P.; Depoy, D. L.; Gaudi, S. B.; Griest, K.; Han, C.; Paczynski, B.; Reid, I. N.

    2002-01-01

    With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We will thus develop a detailed census of the dark and luminous stellar population of the Galaxy.

  1. Advances in stellar evolution; Proceedings of the Workshop on Stellar Ecology, Marciana Marina, Italy, June 23-29, 1996

    NASA Astrophysics Data System (ADS)

    Rood, R. T.; Renzini, A.

    1997-01-01

    The present volume on stellar evolution discusses fundamentals of stellar evolution and star clusters, variable stars, AGB stars and planetary nebulae, white dwarfs, binary star evolution, and stars in galaxies. Attention is given to the stellar population in the Galactic bulge, a photometric study of NGC 458, and HST observations of high-density globular clusters. Other topics addressed include the Cepheid instability strip in external galaxies, Hyades cluster white dwarfs and the initial-final mass relation, element diffusion in novae, mass function of the stars in the solar neighborhood, synthetic spectral indices for elliptical galaxies, and stars at the Galactic center.

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferraro, F. R.; Dalessandro, E.; Lanzoni, B.

    The Galactic bulge is dominated by an old, metal-rich stellar population. The possible presence and the amount of a young (a few gigayears old) minor component is one of the major issues debated in the literature. Recently, the bulge stellar system Terzan 5 was found to harbor three sub-populations with iron content varying by more than one order of magnitude (from 0.2 up to two times the solar value), with chemical abundance patterns strikingly similar to those observed in bulge field stars. Here we report on the detection of two distinct main-sequence turnoff points in Terzan 5, providing the agemore » of the two main stellar populations: 12 Gyr for the (dominant) sub-solar component and 4.5 Gyr for the component at super-solar metallicity. This discovery classifies Terzan 5 as a site in the Galactic bulge where multiple bursts of star formation occurred, thus suggesting a quite massive progenitor possibly resembling the giant clumps observed in star-forming galaxies at high redshifts. This connection opens a new route of investigation into the formation process and evolution of spheroids and their stellar content.« less

  3. The Relationship Between Stellar Populations and Lyα Emission in Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Kornei, Katherine; Shapley, A. E.; Erb, D. K.; Steidel, C. C.; Reddy, N. A.; Pettini, M.; Bogosavljevic, M.

    2010-01-01

    We present the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z ˜ 3 to investigate systematically the relationship between Lyα emission and stellar populations. Lyα equivalent widths (EWs) were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. We directly compare the stellar populations of LBGs with and without strong Lyα emission, where we designate the former group (EW ≥ 20 angstroms) as Lyα-emitters (LAEs) and the latter group (EW < 20 angstroms) as non-LAEs. This controlled method of comparing objects from the same UV luminosity distribution represents an improvement over previous studies in which the stellar populations of LBGs and narrowband-selected LAEs were contrasted, where the latter were often intrinsically fainter in broadband filters by an order of magnitude simply due to different selection criteria. Using a variety of statistical tests, we find that Lyα equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lyα emission also tend to be older, lower in star formation rate, and less dusty than objects with weak Lyα emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lyα emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. We also examined the hypothesis that the attenuation of Lyα photons is lower than that of the continuum, as proposed by some, but found no evidence to support this picture.

  4. Not-so-simple stellar populations in the intermediate-age Large Magellanic Cloud star clusters NGC 1831 and NGC 1868

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chengyuan; De Grijs, Richard; Deng, Licai, E-mail: joshuali@pku.edu.cn, E-mail: grijs@pku.edu.cn

    2014-04-01

    Using a combination of high-resolution Hubble Space Telescope/Wide-Field and Planetary Camera-2 observations, we explore the physical properties of the stellar populations in two intermediate-age star clusters, NGC 1831 and NGC 1868, in the Large Magellanic Cloud based on their color-magnitude diagrams. We show that both clusters exhibit extended main-sequence turn offs. To explain the observations, we consider variations in helium abundance, binarity, age dispersions, and the fast rotation of the clusters' member stars. The observed narrow main sequence excludes significant variations in helium abundance in both clusters. We first establish the clusters' main-sequence binary fractions using the bulk of themore » clusters' main-sequence stellar populations ≳ 1 mag below their turn-offs. The extent of the turn-off regions in color-magnitude space, corrected for the effects of binarity, implies that age spreads of order 300 Myr may be inferred for both clusters if the stellar distributions in color-magnitude space were entirely due to the presence of multiple populations characterized by an age range. Invoking rapid rotation of the population of cluster members characterized by a single age also allows us to match the observed data in detail. However, when taking into account the extent of the red clump in color-magnitude space, we encounter an apparent conflict for NGC 1831 between the age dispersion derived from that based on the extent of the main-sequence turn off and that implied by the compact red clump. We therefore conclude that, for this cluster, variations in stellar rotation rate are preferred over an age dispersion. For NGC 1868, both models perform equally well.« less

  5. IN-SYNC. V. Stellar Kinematics and Dynamics in the Orion A Molecular Cloud

    NASA Astrophysics Data System (ADS)

    Da Rio, Nicola; Tan, Jonathan C.; Covey, Kevin R.; Cottaar, Michiel; Foster, Jonathan B.; Cullen, Nicholas C.; Tobin, John; Kim, Jinyoung S.; Meyer, Michael R.; Nidever, David L.; Stassun, Keivan G.; Chojnowski, S. Drew; Flaherty, Kevin M.; Majewski, Steven R.; Skrutskie, Michael F.; Zasowski, Gail; Pan, Kaike

    2017-08-01

    The kinematics and dynamics of young stellar populations enable us to test theories of star formation. With this aim, we continue our analysis of the SDSS-III/APOGEE IN-SYNC survey, a high-resolution near-infrared spectroscopic survey of young clusters. We focus on the Orion A star-forming region, for which IN-SYNC obtained spectra of ˜2700 stars. In Paper IV we used these data to study the young stellar population. Here we study the kinematic properties through radial velocities (v r ). The young stellar population remains kinematically associated with the molecular gas, following a ˜ 10 {km} {{{s}}}-1 gradient along the filament. However, near the center of the region, the v r distribution is slightly blueshifted and asymmetric; we suggest that this population, which is older, is slightly in the foreground. We find evidence for kinematic subclustering, detecting statistically significant groupings of colocated stars with coherent motions. These are mostly in the lower-density regions of the cloud, while the ONC radial velocities are smoothly distributed, consistent with it being an older, more dynamically evolved cluster. The velocity dispersion {σ }v varies along the filament. The ONC appears virialized, or just slightly supervirial, consistent with an old dynamical age. Here there is also some evidence for ongoing expansion, from a v r -extinction correlation. In the southern filament, {σ }v is ˜2-3 times larger than virial in the L1641N region, where we infer a superposition along the line of sight of stellar subpopulations, detached from the gas. In contrast, {σ }v decreases toward L1641S, where the population is again in agreement with a virial state.

  6. GalMod: the last frontier of Galaxy population synthesis models

    NASA Astrophysics Data System (ADS)

    Pasetto, Stefano; Kollmeier, Juna; Grebel, Eva K.; chiosi, cesare

    2018-01-01

    We present a novel Galaxy population synthesis model: GalMod (Pasetto et al. 2016, 2017a,b) is the only star-count model featuring an asymmetric bar/bulge as well as spiral arms as directly obtained by applying linear perturbative theory to self-consistent distribution function of the Galaxy stellar populations. Compared to previous literature models (e.g., Besancon, Trilegal), GalMod allows to generate full-sky mock catalogue, M31 surveys and provides a better match to observed Milky Way (MW) stellar fields.The model can generate synthetic mock catalogs of visible portions of the MW, external galaxies like M31, or N-body simulation initial conditions. At any given time, e.g., a chosen age of the Galaxy, the model contains a sum of discrete stellar populations, namely bulge/bar, disk, halo. The disk population is itself the sum of subpopulations: spiral arms, thin disk, thick disk, and gas component, while the halo is modeled as the sum of a stellar component, a hot coronal gas, and a dark matter component. The Galactic potential is computed from these subpopulations' density profiles and used to generate detailed kinematics by considering the first few moments of the Boltzmann collisionless equation for all the stellar subpopulations. The same density profiles are then used to define the observed color-magnitude diagrams within an input field of view from an arbitrary solar location. Several photometric systems have been included and made available on-line, e.g., SDSS, Gaia, 2MASS, HST WFC3, and others. Finally, we model the extinction with advanced ray tracing solutions.The model's web page (and tutorial) can be accessed at www.GalMod.org.

  7. VizieR Online Data Catalog: Structure of young stellar clusters. II. (Kuhn+, 2015)

    NASA Astrophysics Data System (ADS)

    Kuhn, M. A.; Getman, K. V.; Feigelson, E. D.

    2015-07-01

    We investigate the intrinsic stellar populations (estimated total numbers of OB and pre-main-sequence stars down to 0.1Mȯ) that are present in 17 massive star-forming regions (MSFRs) surveyed by the MYStIX project. The study is based on the catalog of >31000 MYStIX Probable Complex Members with both disk-bearing and disk-free populations, compensating for extinction, nebulosity, and crowding effects. Correction for observational sensitivities is made using the X-ray luminosity function and the near-infrared initial mass function --a correction that is often not made by infrared surveys of young stars. The resulting maps of the projected structure of the young stellar populations, in units of intrinsic stellar surface density, allow direct comparison between different regions. Several regions have multiple dense clumps, similar in size and density to the Orion Nebula Cluster. The highest projected density of ~34000 stars/pc2 is found in the core of the RCW 38 cluster. Histograms of surface density show different ranges of values in different regions, supporting the conclusion of Bressert et al. (B10; 2010MNRAS.409L..54B) that no universal surface-density threshold can distinguish between clustered and distributed star formation. However, a large component of the young stellar population of MSFRs resides in dense environments of 200-10000 stars/pc2 (including within the nearby Orion molecular clouds), and we find that there is no evidence for the B10 conclusion that such dense regions form an extreme "tail" of the distribution. Tables of intrinsic populations for these regions are used in our companion study of young cluster properties and evolution. (3 data files).

  8. Does Stellar Feedback Create H I Holes? A Hubble Space Telescope/Very Large Array Study of Holmberg II

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Skillman, Evan D.; Cannon, John M.; Dolphin, Andrew E.; Kennicutt, Robert C., Jr.; Lee, Janice; Walter, Fabian

    2009-10-01

    We use deep Hubble Space Telescope (HST)/Advanced Camera for Surveys (ACS) F555W and F814W photometry of resolved stars in the M81 Group dwarf irregular galaxy Ho II to study the hypothesis that the holes identified in the neutral interstellar medium (H I) are created by stellar feedback. From the deep photometry, we construct color-magnitude diagrams (CMDs) and measure the star formation histories (SFHs) for stars contained in H I holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of H I column densities. The CMDs reveal young (< 200 Myr) stellar populations inside all H I holes, which contain very few bright OB stars with ages less than 10 Myr, indicating they are not reliable tracers of H I hole locations while the recent SFHs confirm multiple episodes of star formation within most holes. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a timescale that is less than the estimated kinematic age of the hole. A similar analysis of stars in the control fields finds that the stellar populations of the control fields and H I holes are statistically indistinguishable. However, because we are only sensitive to holes ~100 pc in diameter, we cannot tell if there are smaller holes inside the control fields. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside H I holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of H I holes, we propose a potential new model: a viable mechanism for creating the observed H I holes in Ho II is stellar feedback from multiple generations of SF spread out over tens or hundreds of Myr, and thus, the concept of an age for an H I hole is intrinsically ambiguous. For H I holes in the outer parts of Ho II, located beyond the HST/ACS coverage, we use Monte Carlo simulations of expected stellar populations to show that low level SF could provide the energy necessary to form these holes. Applying the same method to the SMC, we find that the holes that appear to be void of stars could have formed via stellar feedback from low level SF. We further find that Hα and 24 μm emission, tracers of the most recent star formation, do not correlate well with the positions of the H I holes. However, UV emission, which traces star formation over roughly the last 100 Myr, shows a much better correlation with the locations of the H I holes.

  9. Chromospheric Activity in Cool Luminous Stars

    NASA Astrophysics Data System (ADS)

    Dupree, Andrea

    2018-04-01

    Spatially unresolved spectra of giant and supergiant stars demonstrate ubiquitous signatures of chromospheric activity, variable outflows, and winds. The advent of imaging techniques and spatially resolved spectra reveal complex structures in these extended stellar atmospheres that we do not understand. The presence and behavior of these atmospheres is wide ranging and impacts stellar activity, magnetic fields, angular momentum loss, abundance determinations, and the understanding of stellar cluster populations.

  10. The Apache Point Observatory Galactic Evolution Experiment (APOGEE) and its successor, APOGEE-2

    NASA Astrophysics Data System (ADS)

    Majewski, S. R.; APOGEE Team; APOGEE-2 Team

    2016-09-01

    The Apache Point Observatory Galactic Evolution Experiment (APOGEE) of Sloan Digital Sky Survey III (SDSS-III) has produced a large catalog of high resolution ({R = 22 500}), high quality (S/N > 100), infrared (H-band) spectra for stars throughout all stellar populations of the Milky Way, including in regions veiled by significant dust opacity. APOGEE's half million spectra collected on > 163 000 unique stars, with time series information via repeat visits to each star, are being applied to numerous problems in stellar populations, Galactic astronomy, and stellar astrophysics. From among the early results of the APOGEE project - which span from measurements of Galactic dynamics, to multi-element chemical maps of the disk and bulge, new views of the interstellar medium, explorations of stellar companions, the chemistry of star clusters, and the discovery of rare stellar species - I highlight a few results that demonstrate APOGEE's unique ability to sample and characterize the Galactic disk and bulge. Plans are now under way for an even more ambitious successor to APOGEE: the six-year, dual-hemisphere APOGEE-2 project. Both phases of APOGEE feature a strong focus on targets having asteroseismological measurements from either Kepler or {CoRoT}, from which it is possible to derive relatively precise stellar ages. The combined APOGEE and APOGEE-2 databases of stellar chemistry, dynamics and ages constitute an unusually comprehensive, systematic and homogeneous resource for constraining models of Galactic evolution.

  11. Diffuse Galactic antimatter from faint thermonuclear supernovae in old stellar populations

    NASA Astrophysics Data System (ADS)

    Crocker, Roland M.; Ruiter, Ashley J.; Seitenzahl, Ivo R.; Panther, Fiona H.; Sim, Stuart; Baumgardt, Holger; Möller, Anais; Nataf, David M.; Ferrario, Lilia; Eldridge, J. J.; White, Martin; Tucker, Brad E.; Aharonian, Felix

    2017-06-01

    Our Galaxy hosts the annihilation of a few 1043 low-energy positrons every second. Radioactive isotopes capable of supplying such positrons are synthesized in stars, stellar remnants and supernovae. For decades, however, there has been no positive identification of a main stellar positron source, leading to suggestions that many positrons originate from exotic sources like the Galaxy's central supermassive black hole or dark matter annihilation. Here we show that a single type of transient source, deriving from stellar populations of age 3-6 Gyr and yielding ∼0.03 M ⊙ of the positron emitter 44Ti, can simultaneously explain the strength and morphology of the Galactic positron annihilation signal and the Solar System abundance of the 44Ti decay product 44Ca. This transient is likely the merger of two low-mass white dwarfs, observed in external galaxies as the sub-luminous, thermonuclear supernova known as SN 1991bg-like.

  12. The Effects of Stellar Dynamics on the Evolution of Young, Dense Stellar Systems

    NASA Astrophysics Data System (ADS)

    Belkus, H.; van Bever, J.; Vanbeveren, D.

    In this paper, we report on first results of a project in Brussels in which we study the effects of stellar dynamics on the evolution of young dense stellar systems using 3 decades of expertise in massive-star evolution and our population (number and spectral) synthesis code. We highlight an unconventionally formed object scenario (UFO-scenario) for Wolf Rayet binaries and study the effects of a luminous blue variable-type instability wind mass-loss formalism on the formation of intermediate-mass black holes.

  13. Ensemble asteroseismology of solar-type stars with the NASA Kepler mission.

    PubMed

    Chaplin, W J; Kjeldsen, H; Christensen-Dalsgaard, J; Basu, S; Miglio, A; Appourchaux, T; Bedding, T R; Elsworth, Y; García, R A; Gilliland, R L; Girardi, L; Houdek, G; Karoff, C; Kawaler, S D; Metcalfe, T S; Molenda-Żakowicz, J; Monteiro, M J P F G; Thompson, M J; Verner, G A; Ballot, J; Bonanno, A; Brandão, I M; Broomhall, A-M; Bruntt, H; Campante, T L; Corsaro, E; Creevey, O L; Doğan, G; Esch, L; Gai, N; Gaulme, P; Hale, S J; Handberg, R; Hekker, S; Huber, D; Jiménez, A; Mathur, S; Mazumdar, A; Mosser, B; New, R; Pinsonneault, M H; Pricopi, D; Quirion, P-O; Régulo, C; Salabert, D; Serenelli, A M; Silva Aguirre, V; Sousa, S G; Stello, D; Stevens, I R; Suran, M D; Uytterhoeven, K; White, T R; Borucki, W J; Brown, T M; Jenkins, J M; Kinemuchi, K; Van Cleve, J; Klaus, T C

    2011-04-08

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.

  14. Trident: A Universal Tool for Generating Synthetic Absorption Spectra from Astrophysical Simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hummels, Cameron B.; Smith, Britton D.; Silvia, Devin W.

    Hydrodynamical simulations are increasingly able to accurately model physical systems on stellar, galactic, and cosmological scales; however, the utility of these simulations is often limited by our ability to directly compare them with the data sets produced by observers: spectra, photometry, etc. To address this problem, we have created trident, a Python-based open-source tool for post-processing hydrodynamical simulations to produce synthetic absorption spectra and related data. trident can (i) create absorption-line spectra for any trajectory through a simulated data set mimicking both background quasar and down-the-barrel configurations; (ii) reproduce the spectral characteristics of common instruments like the Cosmic Origins Spectrograph;more » (iii) operate across the ultraviolet, optical, and infrared using customizable absorption-line lists; (iv) trace simulated physical structures directly to spectral features; (v) approximate the presence of ion species absent from the simulation outputs; (vi) generate column density maps for any ion; and (vii) provide support for all major astrophysical hydrodynamical codes. trident was originally developed to aid in the interpretation of observations of the circumgalactic medium and intergalactic medium, but it remains a general tool applicable in other contexts.« less

  15. Figuring Out Gas and Galaxies in Enzo (FOGGIE): Simulating effects of feedback on galactic outflows

    NASA Astrophysics Data System (ADS)

    Morris, Melissa Elizabeth; Corlies, Lauren; Peeples, Molly; Tumlinson, Jason; O'Shea, Brian; Smith, Britton

    2018-01-01

    The circumgalactic medium (CGM) is the region beyond the galactic disk in which gas is accreted through pristine inflows from the intergalactic medium and expelled from the galaxy by stellar feedback in large outflows that can then be recycled back onto the disk. These gas cycles connect the galactic disk with its cosmic environment, making the CGM a vital component of galaxy evolution. However, the CGM is primarily observed in absorption, which can be difficult to interpret. In this study, we use high resolution cosmological hydrodynamic simulations of a Milky Way mass halo evolved with the code Enzo to aid the interpretation of these observations. In our simulations, we vary feedback strength and observe the effect it has on galactic outflows and the evolution of the galaxy’s CGM. We compare the star formation rate of the galaxy with the velocity flux and mass outflow rate as a function of height above the plane of the galaxy in order to measure the strength of the outflows and how far they extend outside of the galaxy.This work was supported by The Space Astronomy Summer Program at STScI and NSF grant AST-1517908.

  16. The onset of star formation 250 million years after the Big Bang.

    PubMed

    Hashimoto, Takuya; Laporte, Nicolas; Mawatari, Ken; Ellis, Richard S; Inoue, Akio K; Zackrisson, Erik; Roberts-Borsani, Guido; Zheng, Wei; Tamura, Yoichi; Bauer, Franz E; Fletcher, Thomas; Harikane, Yuichi; Hatsukade, Bunyo; Hayatsu, Natsuki H; Matsuda, Yuichi; Matsuo, Hiroshi; Okamoto, Takashi; Ouchi, Masami; Pelló, Roser; Rydberg, Claes-Erik; Shimizu, Ikkoh; Taniguchi, Yoshiaki; Umehata, Hideki; Yoshida, Naoki

    2018-05-01

    A fundamental quest of modern astronomy is to locate the earliest galaxies and study how they influenced the intergalactic medium a few hundred million years after the Big Bang 1-3 . The abundance of star-forming galaxies is known to decline 4,5 from redshifts of about 6 to 10, but a key question is the extent of star formation at even earlier times, corresponding to the period when the first galaxies might have emerged. Here we report spectroscopic observations of MACS1149-JD1 6 , a gravitationally lensed galaxy observed when the Universe was less than four per cent of its present age. We detect an emission line of doubly ionized oxygen at a redshift of 9.1096 ± 0.0006, with an uncertainty of one standard deviation. This precisely determined redshift indicates that the red rest-frame optical colour arises from a dominant stellar component that formed about 250 million years after the Big Bang, corresponding to a redshift of about 15. Our results indicate that it may be possible to detect such early episodes of star formation in similar galaxies with future telescopes.

  17. Chemical evolution in spiral and irregular galaxies

    NASA Technical Reports Server (NTRS)

    Torres-Peimbert, S.

    1986-01-01

    A brief review of models of chemical evolution of the interstellar medium in our galaxy and other galaxies is presented. These models predict the time variation and radial dependence of chemical composition in the gas as function of the input parameters; initial mass function, stellar birth rate, chemical composition of mass lost by stars during their evolution (yields), and the existence of large scale mass flows, like infall from the halo, outflow to the intergalactic medium or radial flows within a galaxy. At present there is a considerable wealth of observational data on the composition of HII regions in spiral and irregular galaxies to constrain the models. Comparisons are made between theory and the observed physical conditions. In particular, studies of helium, carbon, nitrogen and oxygen abundances are reviewed. In many molecular clouds the information we have on the amount of H2 is derived from the observed CO column density, and a standard CO/H2 ratio derived for the solar neighborhood. Chemical evolution models and the observed variations in O/H and N/O values, point out the need to include these results in a CO/H2 relation that should be, at least, a function of the O/H ratio. This aspect is also discussed.

  18. Constraints on core-collapse supernova progenitors from explosion site integral field spectroscopy

    NASA Astrophysics Data System (ADS)

    Kuncarayakti, H.; Anderson, J. P.; Galbany, L.; Maeda, K.; Hamuy, M.; Aldering, G.; Arimoto, N.; Doi, M.; Morokuma, T.; Usuda, T.

    2018-05-01

    Context. Observationally, supernovae (SNe) are divided into subclasses according to their distinct characteristics. This diversity naturally reflects the diversity in the progenitor stars. It is not entirely clear, however, how different evolutionary paths leading massive stars to become an SN are governed by fundamental parameters such as progenitor initial mass and metallicity. Aims: This paper places constraints on progenitor initial mass and metallicity in distinct core-collapse SN subclasses through a study of the parent stellar populations at the explosion sites. Methods: Integral field spectroscopy (IFS) of 83 nearby SN explosion sites with a median distance of 18 Mpc has been collected and analysed, enabling detection and spectral extraction of the parent stellar population of SN progenitors. From the parent stellar population spectrum, the initial mass and metallicity of the coeval progenitor are derived by means of comparison to simple stellar population models and strong-line methods. Additionally, near-infrared IFS was employed to characterise the star formation history at the explosion sites. Results: No significant metallicity differences are observed among distinct SN types. The typical progenitor mass is found to be highest for SN type Ic, followed by type Ib, then types IIb and II. Type IIn is the least associated with young stellar populations and thus massive progenitors. However, statistically significant differences in progenitor initial mass are observed only when comparing SNe IIn with other subclasses. Stripped-envelope SN progenitors with initial mass estimates lower than 25 M⊙ are found; they are thought to be the result of binary progenitors. Confirming previous studies, these results support the notion that core-collapse SN progenitors cannot arise from single-star channels only, and both single and binary channels are at play in the production of core-collapse SNe. Near-infrared IFS suggests that multiple stellar populations with different ages may be present in some of the SN sites. As a consequence, there could be a non-negligible amount of contamination from old populations, and therefore the individual age estimates are effectively lower limits. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere under ESO programmes 089.D-0367, 091.D-0482, 093.D-0318, 094.D-0290, and 095.D-0172

  19. The Dependence of Galaxy Clustering on Stellar-mass Assembly History for LRGs

    NASA Astrophysics Data System (ADS)

    Montero-Dorta, Antonio D.; Pérez, Enrique; Prada, Francisco; Rodríguez-Torres, Sergio; Favole, Ginevra; Klypin, Anatoly; Cid Fernandes, Roberto; González Delgado, Rosa M.; Domínguez, Alberto; Bolton, Adam S.; García-Benito, Rubén; Jullo, Eric; Niemiec, Anna

    2017-10-01

    We analyze the spectra of 300,000 luminous red galaxies (LRGs) with stellar masses {M}* ≳ {10}11 {M}⊙ from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS). By studying their star formation histories, we find two main evolutionary paths converging into the same quiescent galaxy population at z˜ 0.55. Fast-growing LRGs assemble 80% of their stellar mass very early on (z˜ 5), whereas slow-growing LRGs reach the same evolutionary state at z˜ 1.5. Further investigation reveals that their clustering properties on scales of ˜1-30 Mpc are, at a high level of significance, also different. Fast-growing LRGs are found to be more strongly clustered and reside in overall denser large-scale structure environments than slow-growing systems, for a given stellar-mass threshold. Our results show a dependence of clustering on a property that is directly related to the evolution of galaxies, I.e., the stellar-mass assembly history, for a homogeneous population of similar mass and color. In a forthcoming work, we will address the halo connection in the context of galaxy assembly bias.

  20. Failures no More: The Radical Consequences of Realistic Stellar Feedback for Dwarf Galaxies, the Milky Way, and Reionization

    NASA Astrophysics Data System (ADS)

    Hopkins, Philip F.

    2016-06-01

    Many of the most fundamental unsolved questions in star and galaxy formation revolve around star formation and "feedback" from massive stars, in-extricably linking galaxy formation and stellar evolution. I'll present simulations with un-precedented resolution of Milky-Way (MW) mass galaxies, followed cosmologically to redshift zero. For the first time, these simulations resolve the internal structure of small dwarf satellites around a MW-like host, with detailed models for stellar evolution including radiation pressure, supernovae, stellar winds, and photo-heating. I'll show that, without fine-tuning, these feedback processes naturally resolve the "missing satellites," "too big to fail," and "cusp-core" problems, and produce realistic galaxy populations. At high redshifts however, the realistic ISM structure predicted, coupled to standard stellar population models, naively leads to the prediction that only ~1-2% of ionizing photons can ever escape galaxies, insufficient to ionize the Universe. But these models assume all stars are single: if we account for binary evolution, the escape fraction increases dramatically to ~20% for the small, low-metallicity galaxies believed to ionize the Universe.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalessandro, E.; Lapenna, E.; Mucciarelli, A.

    We used a combination of optical and near-UV Hubble Space Telescope photometry and FLAMES/ESO-VLT high-resolution spectroscopy to characterize the stellar content of the old and massive globular cluster (GC) NGC 121 in the Small Magellanic Cloud (SMC). We report on the detection of multiple stellar populations, the first case in the SMC stellar cluster system. This result enforces the emerging scenario in which the presence of multiple stellar populations is a distinctive-feature of old and massive GCs regardless of the environment, as far as the light-element distribution is concerned. We find that second-generation (SG) stars are more centrally concentrated thanmore » first-generation (FG) ones. More interestingly, at odds with what is typically observed in Galactic GCs, we find that NGC 121 is the only cluster so far to be dominated by FG stars that account for more than 65% of the total cluster mass. In the framework where GCs were born with 90%–95% of FG stars, this observational finding would suggest that either NGC 121 experienced a milder stellar mass-loss with respect to Galactic GCs or it formed a smaller fraction of SG stars.« less

  2. An artificial Kepler dichotomy? Implications for the coplanarity of planetary systems

    NASA Astrophysics Data System (ADS)

    Bovaird, Timothy; Lineweaver, Charles H.

    2016-10-01

    We challenge the assumptions present in previous efforts to model the ensemble of detected Kepler systems, which require a dichotomous stellar population of `fertile' and `sterile' planet producing stars. We remove the assumption of Rayleigh distributed mutual inclinations between planets and show that the need for two distinct stellar populations disappears when the inner part of planetary disks are assumed to be flat, rather than flared.

  3. Gas expulsion vs gas retention in young stellar clusters II: effects of cooling and mass segregation

    NASA Astrophysics Data System (ADS)

    Silich, Sergiy; Tenorio-Tagle, Guillermo

    2018-05-01

    Gas expulsion or gas retention is a central issue in most of the models for multiple stellar populations and light element anti-correlations in globular clusters. The success of the residual matter expulsion or its retention within young stellar clusters has also a fundamental importance in order to understand how star formation proceeds in present-day and ancient star-forming galaxies and if proto-globular clusters with multiple stellar populations are formed in the present epoch. It is usually suggested that either the residual gas is rapidly ejected from star-forming clouds by stellar winds and supernova explosions, or that the enrichment of the residual gas and the formation of the second stellar generation occur so rapidly, that the negative stellar feedback is not significant. Here we continue our study of the early development of star clusters in the extreme environments and discuss the restrictions that strong radiative cooling and stellar mass segregation provide on the gas expulsion from dense star-forming clouds. A large range of physical initial conditions in star-forming clouds which include the star-forming cloud mass, compactness, gas metallicity, star formation efficiency and effects of massive stars segregation are discussed. It is shown that in sufficiently massive and compact clusters hot shocked winds around individual massive stars may cool before merging with their neighbors. This dramatically reduces the negative stellar feedback, prevents the development of the global star cluster wind and expulsion of the residual and the processed matter into the ambient interstellar medium. The critical lines which separate the gas expulsion and the gas retention regimes are obtained.

  4. Optical/Near-IR spatially resolved study of the H II galaxy Tol 02★

    NASA Astrophysics Data System (ADS)

    Torres-Campos, A.; Terlevich, E.; Rosa-González, D.; Terlevich, R.; Telles, E.; Díaz, A. I.

    2017-11-01

    The main goal of this study is to characterize the stellar populations in very low-metallicity galaxies. We have obtained broad U, B, R, I, J, H, K, intermediate Strömgren y and narrow H α and [O III] deep images of the Wolf-Rayet, blue compact dwarf, H II galaxy Tol 02. We have analysed the low surface brightness component, the stellar cluster complexes and the H II regions. The stellar populations in the galaxy have been characterized by comparing the observed broad-band colours with those of single stellar population models. The main results are consistent with Tol 02 being formed by a 1.5 Gyr old disc component at the centre of which a group of eight massive (>104 M⊙) stellar cluster clumps is located. Six of these clumps are 10 Myr old and their near-infrared colours suggest that their light is dominated by Red Supergiant (RSG) stars, the other two are young Wolf-Rayet cluster candidates of ages 3 and 5 Myr, respectively. 12 H II regions in the star-forming region of the galaxy are also identified. These are immersed in a diffuse H α and [O III] emission that spreads towards the north and south covering the old stellar disc. Our spatial-temporal analysis shows that star formation is more likely stochastic and simultaneous within short time-scales. The mismatch between observations and models cannot be attributed alone to a mistreat of the RSG phase and still needs to be further investigated.

  5. The imprints of bars on the vertical stellar population gradients of galactic bulges

    NASA Astrophysics Data System (ADS)

    Molaeinezhad, A.; Falcón-Barroso, J.; Martínez-Valpuesta, I.; Khosroshahi, H. G.; Vazdekis, A.; La Barbera, F.; Peletier, R. F.; Balcells, M.

    2017-05-01

    This is the second paper of a series aimed to study the stellar kinematics and population properties of bulges in highly inclined barred galaxies. In this work, we carry out a detailed analysis of the stellar age, metallicity and [Mg/Fe] of 28 highly inclined (I > 65°) disc galaxies, from S0 to S(B)c, observed with the SAURON integral-field spectrograph. The sample is divided into two clean samples of barred and unbarred galaxies, on the basis of the correlation between the stellar velocity and h3 profiles, as well as the level of cylindrical rotation within the bulge region. We find that while the mean stellar age, metallicity and [Mg/Fe] in the bulges of barred and unbarred galaxies are not statistically distinct, the [Mg/Fe] gradients along the minor axis (away from the disc) of barred galaxies are significantly different than those without bars. For barred galaxies, stars that are vertically further away from the mid-plane are in general more [Mg/Fe]-enhanced and thus the vertical gradients in [Mg/Fe] for barred galaxies are mostly positive, while for unbarred bulges the [Mg/Fe] profiles are typically negative or flat. This result, together with the old populations observed in the barred sample, indicates that bars are long-lasting structures, and therefore are not easily destroyed. The marked [Mg/Fe] differences with the bulges of unbarred galaxies indicate that different formation/evolution scenarios are required to explain their build-up, and emphasizes the role of bars in redistributing stellar material in the bulge-dominated regions.

  6. Revived STIS. II. Properties of Stars in the Next Generation Spectral Library

    NASA Technical Reports Server (NTRS)

    Heap, Sara R.; Lindler, D.

    2010-01-01

    Spectroscopic surveys of galaxies at high redshift will bring the rest-frame ultraviolet into view of large, ground-based telescopes. The UV-blue spectral region is rich in diagnostics, but these diagnostics have not yet been calibrated in terms of the properties of the responsible stellar population(s). Such calibrations are now possible with Hubble's Next Generation Spectral Library (NGSL). The NGSL contains UV-optical spectra (0.2 - 1.0 microns) of 374 stars having a wide range in temperature, luminosity, and metallicity. We will describe our work to derive basic stellar parameters from NGSL spectra using modern model spectra and to use these stellar parameters to develop UV-blue spectral diagnostics.

  7. The Age of the Young Bulge-like Population in the Stellar System Terzan 5: Linking the Galactic Bulge to the High-z Universe

    NASA Astrophysics Data System (ADS)

    Ferraro, F. R.; Massari, D.; Dalessandro, E.; Lanzoni, B.; Origlia, L.; Rich, R. M.; Mucciarelli, A.

    2016-09-01

    The Galactic bulge is dominated by an old, metal-rich stellar population. The possible presence and the amount of a young (a few gigayears old) minor component is one of the major issues debated in the literature. Recently, the bulge stellar system Terzan 5 was found to harbor three sub-populations with iron content varying by more than one order of magnitude (from 0.2 up to two times the solar value), with chemical abundance patterns strikingly similar to those observed in bulge field stars. Here we report on the detection of two distinct main-sequence turnoff points in Terzan 5, providing the age of the two main stellar populations: 12 Gyr for the (dominant) sub-solar component and 4.5 Gyr for the component at super-solar metallicity. This discovery classifies Terzan 5 as a site in the Galactic bulge where multiple bursts of star formation occurred, thus suggesting a quite massive progenitor possibly resembling the giant clumps observed in star-forming galaxies at high redshifts. This connection opens a new route of investigation into the formation process and evolution of spheroids and their stellar content. Based on data obtained with (1) the ESA/NASA HST, under programs GO-14061, GO-12933, GO-10845, (2) the Very Large Telescope of the European Southern Observatory during the Science Verification of the camera MAD; (3) the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and NASA.

  8. Reconstructing the stellar mass distributions of galaxies using S{sup 4}G IRAC 3.6 and 4.5 μm images. II. The conversion from light to mass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Meidt, Sharon E.; Schinnerer, Eva; Van de Ven, Glenn

    2014-06-20

    We present a new approach for estimating the 3.6 μm stellar mass-to-light (M/L) ratio Y{sub 3.6} in terms of the [3.6]-[4.5] colors of old stellar populations. Our approach avoids several of the largest sources of uncertainty in existing techniques using population synthesis models. By focusing on mid-IR wavelengths, we gain a virtually dust extinction-free tracer of the old stars, avoiding the need to adopt a dust model to correctly interpret optical or optical/near-IR colors normally leveraged to assign the mass-to-light ratio Y. By calibrating a new relation between near-IR and mid-IR colors of giant stars observed in GLIMPSE we alsomore » avoid the discrepancies in model predictions for the [3.6]-[4.5] colors of old stellar populations due to uncertainties in the molecular line opacities assumed in template spectra. We find that the [3.6]-[4.5] color, which is driven primarily by metallicity, provides a tight constraint on Y{sub 3.6}, which varies intrinsically less than at optical wavelengths. The uncertainty on Y{sub 3.6} of ∼0.07 dex due to unconstrained age variations marks a significant improvement on existing techniques for estimating the stellar M/L with shorter wavelength data. A single Y{sub 3.6} = 0.6 (assuming a Chabrier initial mass function (IMF)), independent of [3.6]-[4.5] color, is also feasible because it can be applied simultaneously to old, metal-rich and young, metal-poor populations, and still with comparable (or better) accuracy (∼0.1 dex) than alternatives. We expect our Y{sub 3.6} to be optimal for mapping the stellar mass distributions in S{sup 4}G galaxies, for which we have developed an independent component analysis technique to first isolate the old stellar light at 3.6 μm from nonstellar emission (e.g., hot dust and the 3.3 polycyclic aromatic hydrocarbon feature). Our estimate can also be used to determine the fractional contribution of nonstellar emission to global (rest-frame) 3.6 μm fluxes, e.g., in WISE imaging, and establishes a reliable basis for exploring variations in the stellar IMF.« less

  9. The effect of stellar evolution uncertainties on the rest-frame ultraviolet stellar lines of C IV and He II in high-redshift Lyman-break galaxies

    NASA Astrophysics Data System (ADS)

    Eldridge, John J.; Stanway, Elizabeth R.

    2012-01-01

    Young, massive stars dominate the rest-frame ultraviolet (UV) spectra of star-forming galaxies. At high redshifts (z > 2), these rest-frame UV features are shifted into the observed-frame optical and a combination of gravitational lensing, deep spectroscopy and spectral stacking analysis allows the stellar population characteristics of these sources to be investigated. We use our stellar population synthesis code Binary Population and Spectral Synthesis (BPASS) to fit two strong rest-frame UV spectral features in published Lyman-break galaxy spectra, taking into account the effects of binary evolution on the stellar spectrum. In particular, we consider the effects of quasi-homogeneous evolution (arising from the rotational mixing of rapidly rotating stars), metallicity and the relative abundance of carbon and oxygen on the observed strengths of He IIλ1640 Å and C IVλ1548, 1551 Å spectral lines. We find that Lyman-break galaxy spectra at z ˜ 2-3 are best fitted with moderately sub-solar metallicities, and with a depleted carbon-to-oxygen ratio. We also find that the spectra of the lowest metallicity sources are best fitted with model spectra in which the He II emission line is boosted by the inclusion of the effect of massive stars being spun-up during binary mass transfer so these rapidly rotating stars experience quasi-homogeneous evolution.

  10. The Stellar Mass of M31 as inferred by the Andromeda Optical & Infrared Disk Survey

    NASA Astrophysics Data System (ADS)

    Sick, Jonathan; Courteau, Stephane; Cuillandre, Jean-Charles; Dalcanton, Julianne; de Jong, Roelof; McDonald, Michael; Simard, Dana; Tully, R. Brent

    2015-04-01

    Our proximity and external vantage point make M31 an ideal testbed for understanding the structure of spiral galaxies. The Andromeda Optical and Infrared Disk Survey (ANDROIDS) has mapped M31's bulge and disk out to R=40 kpc in ugriJKs bands with CFHT using a careful sky calibration. We use Bayesian modelling of the optical-infrared spectral energy distribution (SED) to estimate profiles of M31's stellar populations and mass along the major axis. This analysis provides evidence for inside-out disk formation and a declining metallicity gradient. M31's i-band mass-to-light ratio (M/Li *) decreases from 0.5 dex in the bulge to ~ 0.2 dex at 40 kpc. The best-constrained stellar population models use the full ugriJKs SED but are also consistent with optical-only fits. Therefore, while NIR data can be successfully modelled with modern stellar population synthesis, NIR data do not provide additional constraints in this application. Fits to the gi-SED alone yield M/Li * that are systematically lower than the full SED fit by 0.1 dex. This is still smaller than the 0.3 dex scatter amongst different relations for M/Li via g - i colour found in the literature. We advocate a stellar mass of M *(30 kpc) = 10.3+2.3 -1.7 × 1010 M⊙ for the M31 bulge and disk.

  11. Chemical element transport in stellar evolution models

    PubMed Central

    Cassisi, Santi

    2017-01-01

    Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints. PMID:28878972

  12. Chemical element transport in stellar evolution models.

    PubMed

    Salaris, Maurizio; Cassisi, Santi

    2017-08-01

    Stellar evolution computations provide the foundation of several methods applied to study the evolutionary properties of stars and stellar populations, both Galactic and extragalactic. The accuracy of the results obtained with these techniques is linked to the accuracy of the stellar models, and in this context the correct treatment of the transport of chemical elements is crucial. Unfortunately, in many respects calculations of the evolution of the chemical abundance profiles in stars are still affected by sometimes sizable uncertainties. Here, we review the various mechanisms of element transport included in the current generation of stellar evolution calculations, how they are implemented, the free parameters and uncertainties involved, the impact on the models and the observational constraints.

  13. Theoretical Re-evaluations of Scaling Relations between SMBHs and Their Host Galaxies - 2. Importance of AGN Feedback Suggested by Stellar Age - Velocity Dispersion Relation

    NASA Astrophysics Data System (ADS)

    Shirakata, Hikari; Kawaguchi, Toshihiro; Okamoto, Takashi; Ishiyama, Tomoaki

    2017-09-01

    We present the galactic stellar age - velocity dispersion relation obtained from a semi-analytic model of galaxy formation. We divide galaxies into two populations: galaxies which have over-massive/under-massive black holes (BHs) against the best-fitting BH mass - velocity dispersion relation. We find that galaxies with larger velocity dispersion have older stellar ages. We also find that galaxies with over-massive BHs have older stellar ages. These results are consistent with observational results obtained from Martin-Navarro et al. (2016). We tested the model with weak AGN feedback and find that galaxies with larger velocity dispersion have a younger stellar age.

  14. Revealing Companions to Nearby Stars with Astrometric Acceleration

    DTIC Science & Technology

    2012-07-01

    objects, such as stellar -mass black holes or failed supernova (Gould & Salim 2002). Table 4 includes a sample of some of the most interesting dis...knowledge of binary and multiple star statistics is needed for the study of star formation, for stellar population synthesis, for predicting the...frequency of supernovae, blue stragglers, X-ray binaries, etc. The statistical properties of binaries strongly depend on stellar mass. Only for nearby solar

  15. HUNTING FOR YOUNG DISPERSING STAR CLUSTERS IN IC 2574

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pellerin, Anne; Meyer, Martin M.; Calzetti, Daniella

    2012-12-01

    Dissolving stellar groups are very difficult to detect using traditional surface photometry techniques. We have developed a method to find and characterize non-compact stellar systems in galaxies where the young stellar population can be spatially resolved. By carrying out photometry on individual stars, we are able to separate the luminous blue stellar population from the star field background. The locations of these stars are used to identify groups by applying the HOP algorithm, which are then characterized using color-magnitude and stellar density radial profiles to estimate age, size, density, and shape. We test the method on Hubble Space Telescope Advancedmore » Camera for Surveys archival images of IC 2574 and find 75 dispersed stellar groups. Of these, 20 highly dispersed groups are good candidates for dissolving systems. We find few compact systems with evidence of dissolution, potentially indicating that star formation in this galaxy occurs mostly in unbound clusters or groups. These systems indicate that the dispersion rate of groups and clusters in IC 2574 is at most 0.45 pc Myr{sup -1}. The location of the groups found with HOP correlate well with H I contour map features. However, they do not coincide with H I holes, suggesting that those holes were not created by star-forming regions.« less

  16. Extinction maps toward the Milky Way bulge: Two-dimensional and three-dimensional tests with apogee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schultheis, M.; Zasowski, G.; Allende Prieto, C.

    Galactic interstellar extinction maps are powerful and necessary tools for Milky Way structure and stellar population analyses, particularly toward the heavily reddened bulge and in the midplane. However, due to the difficulty of obtaining reliable extinction measures and distances for a large number of stars that are independent of these maps, tests of their accuracy and systematics have been limited. Our goal is to assess a variety of photometric stellar extinction estimates, including both two-dimensional and three-dimensional extinction maps, using independent extinction measures based on a large spectroscopic sample of stars toward the Milky Way bulge. We employ stellar atmosphericmore » parameters derived from high-resolution H-band Apache Point Observatory Galactic Evolution Experiment (APOGEE) spectra, combined with theoretical stellar isochrones, to calculate line-of-sight extinction and distances for a sample of more than 2400 giants toward the Milky Way bulge. We compare these extinction values to those predicted by individual near-IR and near+mid-IR stellar colors, two-dimensional bulge extinction maps, and three-dimensional extinction maps. The long baseline, near+mid-IR stellar colors are, on average, the most accurate predictors of the APOGEE extinction estimates, and the two-dimensional and three-dimensional extinction maps derived from different stellar populations along different sightlines show varying degrees of reliability. We present the results of all of the comparisons and discuss reasons for the observed discrepancies. We also demonstrate how the particular stellar atmospheric models adopted can have a strong impact on this type of analysis, and discuss related caveats.« less

  17. Constraining the Star-Formation and Metal-Enrichment Histories of Galaxies with the Next Generation Spectral Library

    NASA Astrophysics Data System (ADS)

    Heap, Sara

    2009-07-01

    Hubble's Next Generation Spectral Library {NGSL} comprises intermediate-resolution {R 1000} STIS spectra of 378 stars having a wide range in metallicity and age. Unique features of the NGSL include its broad wavelength coverage {1,800-10,100 ?} and high-S/N, absolute spectrophotometry. When incorporated in modern stellar population synthesis codes, the NGSL should enable us to constrain simultaneously the star-formation history and metal-enrichment history of galaxies over a wide redshift interval {z= 0-2}. In AR10659, we laid the foundation for tracing the spectral evolution of galaxies by putting the NGSL in order. We now propose to derive the atmospheric and fundamental parameters of the program stars, generate integrated spectra of stellar populations of different metallicities and initial mass functions, and derive spectral diagnostics of the age, metalllicity and E{B-V} of stellar populations.

  18. Stellar population in star formation regions of galaxies

    NASA Astrophysics Data System (ADS)

    Gusev, Alexander S.; Shimanovskaya, Elena V.; Shatsky, Nikolai I.; Sakhibov, Firouz; Piskunov, Anatoly E.; Kharchenko, Nina V.

    2018-05-01

    We developed techniques for searching young unresolved star groupings (clusters, associations, and their complexes) and of estimating their physical parameters. Our study is based on spectroscopic, spectrophotometric, and UBVRI photometric observations of 19 spiral galaxies. In the studied galaxies, we found 1510 objects younger than 10 Myr and present their catalogue. Having combined photometric and spectroscopic data, we derived extinctions, chemical abundances, sizes, ages, and masses of these groupings. We discuss separately the specific cases, when the gas extinction does not agree with the interstellar one. We assume that this is due to spatial offset of Hii clouds with respect to the related stellar population.We developed a method to estimate age of stellar population of the studied complexes using their morphology and the relation with associated H emission region. In result we obtained the estimates of chemical abundances for 80, masses for 63, and ages for 57 young objects observed in seven galaxies.

  19. The Rest-Frame Optical Spectra of Lyman Break Galaxies: Star Formation, Extinction, Abundances, and Kinematics

    NASA Astrophysics Data System (ADS)

    Pettini, Max; Shapley, Alice E.; Steidel, Charles C.; Cuby, Jean-Gabriel; Dickinson, Mark; Moorwood, Alan F. M.; Adelberger, Kurt L.; Giavalisco, Mauro

    2001-06-01

    We present the first results of a spectroscopic survey of Lyman break galaxies (LBGs) in the near-infrared aimed at detecting the emission lines of [O II], [O III], and Hβ from the H II regions of normal star-forming galaxies at z~=3. From observations of 15 objects with the Keck telescope and the Very Large Telescope augmented with data from the literature for an additional four objects, we reach the following main conclusions. The rest-frame optical properties of LBGs at the bright end of the luminosity function are remarkably uniform, their spectra are dominated by emission lines, [O III] is always stronger than Hβ and [O II], and projected velocity dispersions are between 50 and 115 km s-1. Contrary to expectations, the star formation rates deduced from the Hβ luminosity are on average no larger than those implied by the stellar continuum at 1500 Å presumably any differential extinction between rest-frame optical and UV wavelengths is small compared to the relative uncertainties in the calibrations of these two star formation tracers. For the galaxies in our sample, the abundance of oxygen can only be determined to within 1 order of magnitude without recourse to other emission lines ([N II] and Hα), which are generally not available. Even so, it seems well established that LBGs are the most metal-enriched structures at z~=3, apart from quasi-stellar objects, with abundances greater than about 1/10 solar and generally higher than those of damped Lyα systems at the same epoch. They are also significantly overluminous for their metallicities; this is probably an indication that their mass-to-light ratios are low compared to present-day galaxies. At face value, the measured velocity dispersions imply virial masses of about 1010 Msolar within half-light radii of 2.5 kpc. The corresponding mass-to-light ratios, M/L~0.15 in solar units, are indicative of stellar populations with ages between 108 and 109 yr, consistent with the UV-optical spectral energy distributions. However, we are unable to establish conclusively whether or not the widths of the emission lines reflect the motions of the H II regions within the gravitational potential of the galaxies, even though in two cases we see hints of rotation curves. All 19 LBGs observed show evidence for galactic-scale superwinds; such outflows have important consequences for regulating star formation, distributing metals over large volumes, and allowing Lyman continuum photons to escape and ionize the intergalactic medium. Based on data obtained at the European Southern Observatory on Paranal, Chile, and at the W. M. Keck Observatory on Mauna Kea, Hawaii. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA and was made possible by the generous financial support of the W. M. Keck Foundation.

  20. The Elusive Old Population of the Dwarf Spheroidal Galaxy Leo I.

    PubMed

    Held; Saviane; Momany; Carraro

    2000-02-20

    We report the discovery of a significant old population in the dwarf spheroidal (dSph) galaxy Leo I as a result of a wide-area search with the ESO New Technology Telescope. Studies of the stellar content of Local Group dwarf galaxies have shown the presence of an old stellar population in almost all of the dwarf spheroidal galaxies. The only exception was Leo I, which alone appeared to have delayed its initial star formation episode until just a few gigayears ago. The color-magnitude diagram of Leo I now reveals an extended horizontal branch, unambiguously indicating the presence of an old, metal-poor population in the outer regions of this galaxy. Yet we find little evidence for a stellar population gradient, at least outside R>2' (0.16 kpc), since the old horizontal branch stars of Leo I are radially distributed as their more numerous intermediate-age helium-burning counterparts. The discovery of a definitely old population in the predominantly young dwarf spheroidal galaxy Leo I points to a sharply defined first epoch of star formation common to all of the Local Group dSph galaxies as well as to the halo of the Milky Way.

  1. DirtyGrid I: 3D Dust Radiative Transfer Modeling of Spectral Energy Distributions of Dusty Stellar Populations

    NASA Astrophysics Data System (ADS)

    Law, Ka-Hei; Gordon, Karl D.; Misselt, Karl A.

    2018-06-01

    Understanding the properties of stellar populations and interstellar dust has important implications for galaxy evolution. In normal star-forming galaxies, stars and the interstellar medium dominate the radiation from ultraviolet (UV) to infrared (IR). In particular, interstellar dust absorbs and scatters UV and optical light, re-emitting the absorbed energy in the IR. This is a strongly nonlinear process that makes independent studies of the UV-optical and IR susceptible to large uncertainties and degeneracies. Over the years, UV to IR spectral energy distribution (SED) fitting utilizing varying approximations has revealed important results on the stellar and dust properties of galaxies. Yet the approximations limit the fidelity of the derived properties. There is sufficient computer power now available that it is now possible to remove these approximations and map out of landscape of galaxy SEDs using full dust radiative transfer. This improves upon previous work by directly connecting the UV, optical, and IR through dust grain physics. We present the DIRTYGrid, a grid of radiative transfer models of SEDs of dusty stellar populations in galactic environments designed to span the full range of physical parameters of galaxies. Using the stellar and gas radiation input from the stellar population synthesis model PEGASE, our radiative transfer model DIRTY self-consistently computes the UV to far-IR/sub-mm SEDs for each set of parameters in our grid. DIRTY computes the dust absorption, scattering, and emission from the local radiation field and a dust grain model, thereby physically connecting the UV-optical to the IR. We describe the computational method and explain the choices of parameters in DIRTYGrid. The computation took millions of CPU hours on supercomputers, and the SEDs produced are an invaluable tool for fitting multi-wavelength data sets. We provide the complete set of SEDs in an online table.

  2. The Photometric Properties of a Vast Stellar Substructure in the Outskirts of M33

    NASA Astrophysics Data System (ADS)

    McConnachie, Alan W.; Ferguson, Annette M. N.; Irwin, Michael J.; Dubinski, John; Widrow, Lawrence M.; Dotter, Aaron; Ibata, Rodrigo; Lewis, Geraint F.

    2010-11-01

    We have surveyed approximately 40 deg2 surrounding M33 with Canada-France-Hawaii Telescope MegaCam/MegaPrime in the g and i filters out to a maximum projected radius from this galaxy of 50 kpc, as part of the Pan-Andromeda Archaeological Survey (PAndAS). Our observations are deep enough to resolve the top ~4 mag of the red giant branch population in this galaxy. We have previously shown that the disk of M33 is surrounded by a large, irregular, low surface brightness substructure. Here, we quantify the stellar populations and structure of this feature using the PAndAS data. We show that the stellar populations of this feature are consistent with an old population with lang[Fe/H]rang ~ -1.6 dex and an interquartile range in metallicity of ~0.5 dex. We construct a surface brightness map of M33 that traces this feature to μ V ~= 33 mag arcsec-2. At these low surface brightness levels, the structure extends to projected radii of ~40 kpc from the center of M33 in both the northwest and southeast quadrants of the galaxy. Overall, the structure has an "S-shaped" appearance that broadly aligns with the orientation of the H I disk warp. We calculate a lower limit to the integrated luminosity of the structure of -12.7 ± 0.5 mag, comparable to a bright dwarf galaxy such as Fornax or Andromeda II and slightly less than 1% of the total luminosity of M33. Further, we show that there is tentative evidence for a distortion in the distribution of young stars near the edge of the H I disk that occurs at similar azimuth to the warp in H I. The data also hint at a low-level, extended stellar component at larger radius that may be an M33 halo component. We revisit studies of M33 and its stellar populations in light of these new results and discuss possible formation scenarios for the vast stellar structure. Our favored model is that of the tidal disruption of M33 in its orbit around M31.

  3. Stellar Absorption Line Analysis of Local Star-forming Galaxies: The Relation between Stellar Mass, Metallicity, Dust Attenuation, and Star Formation Rate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jabran Zahid, H.; Kudritzki, Rolf-Peter; Ho, I-Ting

    We analyze the optical continuum of star-forming galaxies in the Sloan Digital Sky Survey by fitting stacked spectra with stellar population synthesis models to investigate the relation between stellar mass, stellar metallicity, dust attenuation, and star formation rate. We fit models calculated with star formation and chemical evolution histories that are derived empirically from multi-epoch observations of the stellar mass–star formation rate and the stellar mass–gas-phase metallicity relations, respectively. We also fit linear combinations of single-burst models with a range of metallicities and ages. Star formation and chemical evolution histories are unconstrained for these models. The stellar mass–stellar metallicity relationsmore » obtained from the two methods agree with the relation measured from individual supergiant stars in nearby galaxies. These relations are also consistent with the relation obtained from emission-line analysis of gas-phase metallicity after accounting for systematic offsets in the gas-phase metallicity. We measure dust attenuation of the stellar continuum and show that its dependence on stellar mass and star formation rate is consistent with previously reported results derived from nebular emission lines. However, stellar continuum attenuation is smaller than nebular emission line attenuation. The continuum-to-nebular attenuation ratio depends on stellar mass and is smaller in more massive galaxies. Our consistent analysis of stellar continuum and nebular emission lines paves the way for a comprehensive investigation of stellar metallicities of star-forming and quiescent galaxies.« less

  4. Multiple populations within globular clusters in Early-type galaxies Exploring their effect on stellar initial mass function estimates

    NASA Astrophysics Data System (ADS)

    Chantereau, W.; Usher, C.; Bastian, N.

    2018-05-01

    It is now well-established that most (if not all) ancient globular clusters host multiple populations, that are characterised by distinct chemical features such as helium abundance variations along with N-C and Na-O anti-correlations, at fixed [Fe/H]. These very distinct chemical features are similar to what is found in the centres of the massive early-type galaxies and may influence measurements of the global properties of the galaxies. Additionally, recent results have suggested that M/L variations found in the centres of massive early-type galaxies might be due to a bottom-heavy stellar initial mass function. We present an analysis of the effects of globular cluster-like multiple populations on the integrated properties of early-type galaxies. In particular, we focus on spectral features in the integrated optical spectrum and the global mass-to-light ratio that have been used to infer variations in the stellar initial mass function. To achieve this we develop appropriate stellar population synthesis models and take into account, for the first time, an initial-final mass relation which takes into consideration a varying He abundance. We conclude that while the multiple populations may be present in massive early-type galaxies, they are likely not responsible for the observed variations in the mass-to-light ratio and IMF sensitive line strengths. Finally, we estimate the fraction of stars with multiple populations chemistry that come from disrupted globular clusters within massive ellipticals and find that they may explain some of the observed chemical patterns in the centres of these galaxies.

  5. On the Observability of Individual Population III Stars and Their Stellar-mass Black Hole Accretion Disks through Cluster Caustic Transits

    NASA Astrophysics Data System (ADS)

    Windhorst, Rogier A.; Timmes, F. X.; Wyithe, J. Stuart B.; Alpaslan, Mehmet; Andrews, Stephen K.; Coe, Daniel; Diego, Jose M.; Dijkstra, Mark; Driver, Simon P.; Kelly, Patrick L.; Kim, Duho

    2018-02-01

    We summarize panchromatic Extragalactic Background Light data to place upper limits on the integrated near-infrared surface brightness (SB) that may come from Population III stars and possible accretion disks around their stellar-mass black holes (BHs) in the epoch of First Light, broadly taken from z ≃ 7–17. Theoretical predictions and recent near-infrared power spectra provide tighter constraints on their sky signal. We outline the physical properties of zero-metallicity Population III stars from MESA stellar evolution models through helium depletion and of BH accretion disks at z≳ 7. We assume that second-generation non-zero-metallicity stars can form at higher multiplicity, so that BH accretion disks may be fed by Roche-lobe overflow from lower-mass companions. We use these near-infrared SB constraints to calculate the number of caustic transits behind lensing clusters that the James Webb Space Telescope and the next-generation ground-based telescopes may observe for both Population III stars and their BH accretion disks. Typical caustic magnifications can be μ ≃ {10}4{--}{10}5, with rise times of hours and decline times of ≲ 1 year for cluster transverse velocities of {v}T≲ 1000 km s‑1. Microlensing by intracluster-medium objects can modify transit magnifications but lengthen visibility times. Depending on BH masses, accretion-disk radii, and feeding efficiencies, stellar-mass BH accretion-disk caustic transits could outnumber those from Population III stars. To observe Population III caustic transits directly may require monitoring 3–30 lensing clusters to {AB}≲ 29 mag over a decade.

  6. Active Galactic Nuclei Feedback and the Origin and Fate of the Hot Gas in Early-type Galaxies

    NASA Astrophysics Data System (ADS)

    Pellegrini, Silvia; Ciotti, Luca; Negri, Andrea; Ostriker, Jeremiah P.

    2018-04-01

    A recent determination of the relationships between the X-ray luminosity of the ISM (L X) and the stellar and total mass for a sample of nearby early-type galaxies (ETGs) is used to investigate the origin of the hot gas, via a comparison with the results of hydrodynamical simulations of the ISM evolution for a large set of isolated ETGs. After the epoch of major galaxy formation (after z ≃ 2), the ISM is replenished by stellar mass losses and SN ejecta, at the rate predicted by stellar evolution, and is depleted by star formation; it is heated by the thermalization of stellar motions, SNe explosions, and the mechanical (from winds) and radiative AGN feedback. The models agree well with the observed relations, even for the largely different L X values at the same mass, thanks to the sensitivity of the gas flow to many galaxy properties; this holds for models including AGN feedback, and those without. Therefore, the mass input from the stellar population is able to account for a major part of the observed L X; and AGN feedback, while very important to maintain massive ETGs in a time-averaged quasi-steady state, keeping low star formation and the black hole mass, does not dramatically alter the gas content originating in stellar recycled material. These conclusions are based on theoretical predictions for the stellar population contributions in mass and energy, and on a self-consistent modeling of AGN feedback.

  7. The Stellar Populations of Ultra-Compact Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Karick, Arna; Gregg, M. D.

    2006-12-01

    We have discovered an intracluster population of ultra-luminous compact stellar systems in the Fornax cluster. Originally coined "ultra-compact dwarf galaxies" (UCDs), these objects were thought to be remnant nuclei of tidally stripped dE,Ns. Subsequent searches in Fornax (2dF+VLT) have revealed many fainter UCDs; making them the most numerous galaxy type in the cluster and fueling controversy over their origin. UCDs may be the bright tail of the globular cluster (GCs) population associated with NGC1399. Alternatively they may be real intracluster GCs, resulting from hierarchical cluster formation and merging in intracluster space. Determining the stellar populations of these enigmatic objects is challenging. UCDs are unresolved from the ground but our HST/STIS+ACS imaging reveals faint halos around the brightest UCDs. Here we present deep u'g'r'i'z' images of the cluster core using the CTIO 4m Mosaic. Combined with GALEX/UV imaging and using SSP isochrones, UCDs appear to be old, red and unlike cluster dEs. In contrast, our recent IMACS and Keck/LRIS+ESI spectroscopy shows that UCDs are unlike GCs and have intermediate stellar populations with significant variations in their Mg and Hβ line strength indices. This work is supported by National Science Foundation Grant No. 0407445 and was done at the Institute of Geophysics and Planetary Physics, under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract No. W-7405-Eng-48.

  8. Formation of new stellar populations from gas accreted by massive young star clusters.

    PubMed

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Geller, Aaron M; Xin, Yu; Hu, Yi; Faucher-Giguère, Claude-André

    2016-01-28

    Stars in clusters are thought to form in a single burst from a common progenitor cloud of molecular gas. However, massive, old 'globular' clusters--those with ages greater than ten billion years and masses several hundred thousand times that of the Sun--often harbour multiple stellar populations, indicating that more than one star-forming event occurred during their lifetimes. Colliding stellar winds from late-stage, asymptotic-giant-branch stars are often suggested to be triggers of second-generation star formation. For this to occur, the initial cluster masses need to be greater than a few million solar masses. Here we report observations of three massive relatively young star clusters (1-2 billion years old) in the Magellanic Clouds that show clear evidence of burst-like star formation that occurred a few hundred million years after their initial formation era. We show that such clusters could have accreted sufficient gas to form new stars if they had orbited in their host galaxies' gaseous disks throughout the period between their initial formation and the more recent bursts of star formation. This process may eventually give rise to the ubiquitous multiple stellar populations in globular clusters.

  9. Tracers of Stellar Mass-loss. II. Mid-IR Colors and Surface Brightness Fluctuations

    NASA Astrophysics Data System (ADS)

    González-Lópezlira, Rosa A.

    2018-04-01

    I present integrated colors and surface brightness fluctuation magnitudes in the mid-infrared (IR), derived from stellar population synthesis models that include the effects of the dusty envelopes around thermally pulsing asymptotic giant branch (TP-AGB) stars. The models are based on the Bruzual & Charlot CB* isochrones; they are single-burst, range in age from a few Myr to 14 Gyr, and comprise metallicities between Z = 0.0001 and Z = 0.04. I compare these models to mid-IR data of AGB stars and star clusters in the Magellanic Clouds, and study the effects of varying self-consistently the mass-loss rate, the stellar parameters, and the output spectra of the stars plus their dusty envelopes. I find that models with a higher than fiducial mass-loss rate are needed to fit the mid-IR colors of “extreme” single AGB stars in the Large Magellanic Cloud. Surface brightness fluctuation magnitudes are quite sensitive to metallicity for 4.5 μm and longer wavelengths at all stellar population ages, and powerful diagnostics of mass-loss rate in the TP-AGB for intermediate-age populations, between 100 Myr and 2–3 Gyr.

  10. Evolution of the stellar mass function in multiple-population globular clusters

    NASA Astrophysics Data System (ADS)

    Vesperini, Enrico; Hong, Jongsuk; Webb, Jeremy J.; D'Antona, Franca; D'Ercole, Annibale

    2018-05-01

    We present the results of a survey of N-body simulations aimed at studying the effects of the long-term dynamical evolution on the stellar mass function (MF) of multiple stellar populations in globular clusters. Our simulations show that if first-(1G) and second-generation (2G) stars have the same initial MF (IMF), the global MFs of the two populations are affected similarly by dynamical evolution and no significant differences between the 1G and 2G MFs arise during the cluster's evolution. If the two populations have different IMFs, dynamical effects do not completely erase memory of the initial differences. Should observations find differences between the global 1G and 2G MFs, these would reveal the fingerprints of differences in their IMFs. Irrespective of whether the 1G and 2G populations have the same global IMF or not, dynamical effects can produce differences between the local (measured at various distances from the cluster centre) 1G and 2G MFs; these differences are a manifestation of the process of mass segregation in populations with different initial structural properties. In dynamically old and spatially mixed clusters, however, differences between the local 1G and 2G MFs can reveal differences between the 1G and 2G global MFs. In general, for clusters with any dynamical age, large differences between the local 1G and 2G MFs are more likely to be associated with differences in the global MF. Our study also reveals a dependence of the spatial mixing rate on the stellar mass, another dynamical consequence of the multiscale nature of multiple-population clusters.

  11. Dynamical effects of stellar companions

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar

    2015-08-01

    The fraction of stellar binaries in the field is extremely high (about 40% - 70% for > 1 Msun stars), and thus, given this frequency, a large fraction of all exoplanetary systems may reside in binaries. While close-in giant planets tend to be found preferentially in binary stellar systems it seems that the frequency of giant planets in close binaries (<100 AU) is significantly lower than in the overall population. Stellar companions’ gravitational perturbations may significantly alter the planetary orbits around their partner on secular timescales. They can drive planets to large eccentric orbits which can either result in plunging these planets into the star or shrinking their orbits and forming short period planets. I will review the dynamical effects stellar binaries have on a planetary systems. I will also present new results on the influence that stellar evolution has on the dynamical processes in these systems.

  12. Does Stellar Feedback Create HI Holes? An HST/VLA Study of Holmberg II

    NASA Astrophysics Data System (ADS)

    Weisz, Daniel R.; Skillman, E. D.; Cannon, J. M.; Dolphin, A. E.; Kennicutt, R. C., Jr.; Lee, J.; Walter, F.

    2010-01-01

    We use deep HST/ACS F555W and F814W photometry of resolved stars in the M81 Group dwarf irregular galaxy Holmberg II to study the hypothesis that the holes identified in the neutral ISM (HI) are created by stellar feedback. From the deep photometry, we construct color-magnitude diagrams (CMDs) and measure the star formation histories (SFHs) for stars contained in HI holes from two independent holes catalogs, as well as select control fields, i.e., similar sized regions that span a range of HI column densities. The recent SFHs confirm multiple episodes of star formation within most holes. Converting the recent SFHs into stellar feedback energies, we find that enough energy has been generated to have created all holes. However, the required energy is not always produced over a time scale that is less than the estimated kinematic age of the hole. A similar analysis of stars in the control fields finds that the stellar populations of the control fields and HI holes are statistically indistinguishable. However, because we are only sensitive to holes ˜ 100 pc in diameter, we cannot tell if there are smaller holes inside the control fields. The combination of the CMDs, recent SFHs, and locations of young stars shows that the stellar populations inside HI holes are not coherent, single-aged, stellar clusters, as previously suggested, but rather multi-age populations distributed across each hole. From a comparison of the modeled and observed integrated magnitudes, and the locations and energetics of stars inside of HI holes, we propose a potential new model: a viable mechanism for creating the observed HI holes in Holmberg II is stellar feedback from multiple generations of SF spread out over tens or hundreds of Myr, and thus, the concept of an age for an HI hole is intrinsically ambiguous.

  13. A STELLAR-MASS-DEPENDENT DROP IN PLANET OCCURRENCE RATES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mulders, Gijs D.; Pascucci, Ilaria; Apai, Dániel

    2015-01-10

    The Kepler spacecraft has discovered a large number of planets with up to one-year periods and down to terrestrial sizes. While the majority of the target stars are main-sequence dwarfs of spectral type F, G, and K, Kepler covers stars with effective temperatures as low as 2500 K, which corresponds to M stars. These cooler stars allow characterization of small planets near the habitable zone, yet it is not clear if this population is representative of that around FGK stars. In this paper, we calculate the occurrence of planets around stars of different spectral types as a function of planetmore » radius and distance from the star and show that they are significantly different from each other. We further identify two trends. First, the occurrence of Earth- to Neptune-sized planets (1-4 R {sub ⊕}) is successively higher toward later spectral types at all orbital periods probed by Kepler; planets around M stars occur twice as frequently as around G stars, and thrice as frequently as around F stars. Second, a drop in planet occurrence is evident at all spectral types inward of a ∼10 day orbital period, with a plateau further out. By assigning to each spectral type a median stellar mass, we show that the distance from the star where this drop occurs is stellar mass dependent, and scales with semi-major axis as the cube root of stellar mass. By comparing different mechanisms of planet formation, trapping, and destruction, we find that this scaling best matches the location of the pre-main-sequence co-rotation radius, indicating efficient trapping of migrating planets or planetary building blocks close to the star. These results demonstrate the stellar-mass dependence of the planet population, both in terms of occurrence rate and of orbital distribution. The prominent stellar-mass dependence of the inner boundary of the planet population shows that the formation or migration of planets is sensitive to the stellar parameters.« less

  14. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    NASA Astrophysics Data System (ADS)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph; Johnson, Jennifer A.

    2017-02-01

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]-[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracks in [O/Fe]-[Fe/H] unlike the observed bimodality (separate high-α and low-α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]-[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α-elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.

  15. Inflow, Outflow, Yields, and Stellar Population Mixing in Chemical Evolution Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andrews, Brett H.; Weinberg, David H.; Schönrich, Ralph

    Chemical evolution models are powerful tools for interpreting stellar abundance surveys and understanding galaxy evolution. However, their predictions depend heavily on the treatment of inflow, outflow, star formation efficiency (SFE), the stellar initial mass function, the SN Ia delay time distribution, stellar yields, and stellar population mixing. Using flexCE, a flexible one-zone chemical evolution code, we investigate the effects of and trade-offs between parameters. Two critical parameters are SFE and the outflow mass-loading parameter, which shift the knee in [O/Fe]–[Fe/H] and the equilibrium abundances that the simulations asymptotically approach, respectively. One-zone models with simple star formation histories follow narrow tracksmore » in [O/Fe]–[Fe/H] unlike the observed bimodality (separate high- α and low- α sequences) in this plane. A mix of one-zone models with inflow timescale and outflow mass-loading parameter variations, motivated by the inside-out galaxy formation scenario with radial mixing, reproduces the two sequences better than a one-zone model with two infall epochs. We present [X/Fe]–[Fe/H] tracks for 20 elements assuming three different supernova yield models and find some significant discrepancies with solar neighborhood observations, especially for elements with strongly metallicity-dependent yields. We apply principal component abundance analysis to the simulations and existing data to reveal the main correlations among abundances and quantify their contributions to variation in abundance space. For the stellar population mixing scenario, the abundances of α -elements and elements with metallicity-dependent yields dominate the first and second principal components, respectively, and collectively explain 99% of the variance in the model. flexCE is a python package available at https://github.com/bretthandrews/flexCE.« less

  16. Axion-photon propagation in magnetized universe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Chen; Lai, Dong, E-mail: wangchen@nao.cas.cn, E-mail: dong@astro.cornell.edu

    Oscillations between photons and axion-like particles (ALP) travelling in intergalactic magnetic fields have been invoked to explain a number of astrophysical phenomena, or used to constrain ALP properties using observations. One example is the anomalous transparency of the universe to TeV gamma rays. The intergalactic magnetic field is usually modeled as patches of coherent domains, each with a uniform magnetic field, but the field orientation changes randomly from one domain to the next (''discrete-φ model''). We show in this paper that in more realistic situations, when the magnetic field direction varies continuously along the propagation path, the photon-to-ALP conversion probabilitymore » P can be significantly different from the discrete-φ model. In particular, P has a distinct dependence on the photon energy and ALP mass, and can be as large as 100%. This result can affect previous constraints on ALP properties based on ALP-photon propagation in intergalactic magnetic fields, such as TeV photons from distant Active Galactic Nucleus.« less

  17. Properties of the Intergalactic Magnetic Field Constrained by Gamma-Ray Observations of Gamma-Ray Bursts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veres, P.; Dermer, C. D.; Dhuga, K. S.

    The magnetic field in intergalactic space gives important information about magnetogenesis in the early universe. The properties of this field can be probed by searching for radiation of secondary e {sup +} e {sup −} pairs created by TeV photons that produce GeV range radiation by Compton-scattering cosmic microwave background photons. The arrival times of the GeV “echo” photons depend strongly on the magnetic field strength and coherence length. A Monte Carlo code that accurately treats pair creation is developed to simulate the spectrum and time-dependence of the echo radiation. The extrapolation of the spectrum of powerful gamma-ray bursts (GRBs)more » like GRB 130427A to TeV energies is used to demonstrate how the intergalactic magnetic field can be constrained if it falls in the 10{sup −21}–10{sup −17} G range for a 1 Mpc coherence length.« less

  18. DETECTING TRIAXIALITY IN THE GALACTIC DARK MATTER HALO THROUGH STELLAR KINEMATICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rojas-Nino, Armando; Valenzuela, Octavio; Pichardo, Barbara

    Assuming the dark matter halo of the Milky Way to be a non-spherical potential (i.e., triaxial, prolate, oblate), we show how the assembling process of the Milky Way halo may have left long-lasting stellar halo kinematic fossils due to the shape of the dark matter halo. In contrast with tidal streams, which are associated with recent satellite accretion events, these stellar kinematic groups will typically show inhomogeneous chemical and stellar population properties. However, they may be dominated by a single accretion event for certain mass assembling histories. If the detection of these peculiar kinematic stellar groups were confirmed, they wouldmore » be the smoking gun for the predicted triaxiality of dark halos in cosmological galaxy formation scenarios.« less

  19. Constraining Star Formation in Old Stellar Populations from Theoretical Spectra

    NASA Astrophysics Data System (ADS)

    Peterson, R. C.

    2007-12-01

    We are calculating stellar spectra using Kurucz codes, Castelli models, and Kurucz laboratory lines plus guesses; but must first finish adjusting gf values to match stars of solar metallicity and higher. We show that even now, 1D LTE spectral calculations fit a wide range of stellar spectra (from A to K types) over 2200 Å-9000Å once gf values are set to optimize them. Moreover, weighted coadditions of spectral calculations can be constructed that match M31 globular clusters over this entire wavelength range. Both stellar and composite grids will be archived on MAST. The age-metallicity degeneracy can be broken, but only with high-quality data, and only if rare stages of stellar evolution are incorporated where necessary.

  20. Simulating the interaction of galaxies and the intergalactic medium

    NASA Astrophysics Data System (ADS)

    Carin, Robert A.

    2008-11-01

    The co-evolution of galaxies and the intergalactic medium as a function of environment is studied using hydrodynamic simulations of the ΛCDM cosmogony. It is demonstrated with non-radiative calculations that, in the absence of non-gravitational mechanisms, dark matter haloes accrete a near-universal fraction (˜ 0.9Ω_{b}/&Omega_;{m}) of baryons. The absence of a mass or redshift dependence of this fraction augurs well for parameter tests that use X-ray clusters as cosmological probes. Moreover, this result indicates that non-gravitational processes must efficiently regulate the formation of stars in dark matter haloes if the halo mass function is to be reconciled with the observed galaxy luminosity function. Simulations featuring stellar evolution and non-gravitational feedback mechanisms (photo-heating by the ultraviolet background, and thermal and kinetic supernovae feedback) are used to follow the evolution of star formation, and the thermo- and chemo-dynamical evolution of baryons. The observed star formation history of the Universe is reproduced, except at low redshift where it is overestimated by a factor of a few, possibly indicating the need for feedback from active galactic nuclei to quench cooling flows around massive galaxies. The simulations more accurately reproduce the observed abundance of galaxies with late-type morphologies than has been reported elsewhere. The unique initial conditions of these simulations, based on the Millennium Simulation, allow an unprecedented study of the role of large-scale environment to be conducted. The cosmic star formation rate density is found to vary by an order of magnitude across the extremes of environment expected in the local Universe. The mass fraction of baryons in the observationally elusive warm-hot intergalactic medium (WHIM), and the volume filling factor that this gas occupies, is also shown to vary by a factor of a few across such environments. This variation is attributed to differences in the halo mass functions of the environments. Finally, we compare the X-ray properties of haloes from the simulations with the predictions of the tet{White_and_Frenk_91} analytic galaxy formation model, and demonstrate that deviations from the analytic prediction arise from the assumptions i) that haloes retain their cosmic share of baryons, and ii) their gas follows an isothermal density profile. The simulations indicate that a significant fraction of gas is ejected from low mass haloes by galactic superwinds, leading to a significant increase in their cooling time profiles and an associated drop in their soft X-ray luminosities, relative to the analytic model. Simulated X-ray luminosities remain greater than present observational upper limits, but it is argued that the observations provide only weak constraints and may suffer from a systematic bias, such that the mass of the halo hosting a given galaxy is overestimated. This bias also follows from the assumption that haloes exhibit isothermal density profiles.

  1. Effect of the Large Scale Environment on the Internal Dynamics of Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Maubon, G.; Prugniel, Ph.

    We have studied the population-density relation in very sparse environments, from poor clusters to isolated galaxies, and we find that early-type galaxies with a young stellar population are preferably found in the lowest density environments. We show a marginal indication that this effect is due to an enhancement of the stellar formation independent of the morphological segregation, but we failed to find any effect from the internal dynamics.

  2. Metal-rich, Metal-poor: Updated Stellar Population Models for Old Stellar Systems

    NASA Astrophysics Data System (ADS)

    Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter G.; Lind, Karin

    2018-02-01

    We present updated stellar population models appropriate for old ages (>1 Gyr) and covering a wide range in metallicities (‑1.5 ≲ [Fe/H] ≲ 0.3). These models predict the full spectral variation associated with individual element abundance variation as a function of metallicity and age. The models span the optical–NIR wavelength range (0.37–2.4 μm), include a range of initial mass functions, and contain the flexibility to vary 18 individual elements including C, N, O, Mg, Si, Ca, Ti, and Fe. To test the fidelity of the models, we fit them to integrated light optical spectra of 41 Galactic globular clusters (GCs). The value of testing models against GCs is that their ages, metallicities, and detailed abundance patterns have been derived from the Hertzsprung–Russell diagram in combination with high-resolution spectroscopy of individual stars. We determine stellar population parameters from fits to all wavelengths simultaneously (“full spectrum fitting”), and demonstrate explicitly with mock tests that this approach produces smaller uncertainties at fixed signal-to-noise ratio than fitting a standard set of 14 line indices. Comparison of our integrated-light results to literature values reveals good agreement in metallicity, [Fe/H]. When restricting to GCs without prominent blue horizontal branch populations, we also find good agreement with literature values for ages, [Mg/Fe], [Si/Fe], and [Ti/Fe].

  3. Photometric properties of stars clusters with young or mixed age stellar populations

    NASA Astrophysics Data System (ADS)

    Mollá, M.; García-Vargas, M. L.; Martín-Manjón, M. L.

    2013-05-01

    The main goal of this work is to present and discuss the synthetic photometrical properties of stellar clusters resulting from the PopStar code. Colors in Johnson and SDSS systems, Hα and Hβ luminosities and equivalent widths, and ionizing region size, have been computed for a wide range of metallicities Z = 0.0001, 0.0004, 0.004,0.008,0.02 and 0.05, and ages, from 0.1 Myr to 20 Gyr in Mollá, Garc{í}a-Vargas, & Bressan (2009, MNRAS, 398, 451). Emission lines are shown in Mart{í}n-Manj{ó}n et al. (2010, MNRAS, 403, 2012). Now we calculate colors with the emission lines contribution to the broad band color, so colors include stellar and nebular components, plus the emission lines following the evolution of the cluster and the region geometry in a consistent way. We compare the Single Stellar Populations contaminated and uncontaminated colors (in both Johnson and SDSS systems) and show the importance of emission lines contribution when photometry is used as a tool to characterize stellar populations. With these models we may determine the physical properties of young ionizing clusters when only photometrical observations are available and these correspond to the isolated star forming regions, subtracted the contribution of the underlying population In most cases, however, the ionizing population is usually embedded in a large and complex system, and the observed photometrical properties are the result of the combination of both the young star-forming burst and the host-underlying older population. The second objective of our work is therefore to provide a grid of models for nearby galaxies able to interpret mixed regions where the separation of young and old population is not possible or reliable enough. We obtain a set of PopStar Spectral Energy Distributions (available at PopStar site and also in VO) and derived colors for mixed populations where an underlying host population is combined in different mass ratios with a recent, metal-rich ionizing burst. These colors, together with other photometrical parameters, like Hα radius of the ionized region, and Balmer lines equivalent width and luminosity allow to infer the physical properties of star-forming regions without any spectroscopic information. For details and a complete set of tables and figures see Mollá, García-Vargas, & Martín-Manjón (2012, MNRAS, submitted).

  4. Stellar Populations of Highly Magnified Lensed Galaxies: Young Starbursts at Z approximately 2

    NASA Technical Reports Server (NTRS)

    Wuyts, Eva; Rigby, Jane R.; Gladders, Michael D.; Gilbank, David G.; Sharon, Keren; Gralla, Megan B.; Bayliss, Matthew B.

    2012-01-01

    We present a comprehensive analysis of the rest-frame UV to near-IR spectral energy distributions (SEDs) and rest-frame optical spectra of four of the brightest gravitationally lensed galaxies in the literature: RCSGA 032727-132609 at z = 1.70, MS1512-cB58 at z = 2.73, SGAS J152745.1+065219 at z = 2.76, and SGAS J122651.3+215220 at z = 2.92. This includes new Spitzer imaging for RCSGA0327 as well as new spectra, near-IR imaging and Spitzer imaging for SGAS1527 and SGAS1226. Lensing magnifications of 3-4 mag allow a detailed study of the stellar populations and physical conditions. We compare star formation rates (SFRs) as measured from the SED fit, the Ha and [O II] ?3727 emission lines, and the UV+IR bolometric luminosity where 24 micron photometry is available. The SFR estimate from the SED fit is consistently higher than the other indicators, which suggests that the Calzetti dust extinction law used in the SED fitting is too flat for young star-forming galaxies at z 2. Our analysis finds similar stellar population parameters for all four lensed galaxies: stellar masses (3-7) ? 10(exp 9)Solar M young ages approx 100 Myr, little dust content E(B - V) = 0.10-0.25, and SFRs around 20-100 solar M/ yr. Compared to typical values for the galaxy population at z approx. 2, this suggests we are looking at newly formed, starbursting systems that have only recently started the buildup of stellar mass. These results constitute the first detailed, uniform analysis of a sample of the growing number of strongly lensed galaxies known at z approx 2.

  5. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at z ~ 2

    NASA Astrophysics Data System (ADS)

    Whitaker, Katherine E.; van Dokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbé, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; Nelson, Erica J.; Patel, Shannon G.; Rix, Hans-Walter

    2013-06-01

    Quiescent galaxies at z ~ 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to Hβ (λ4861 Å), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (λ4304 Å), Mg I (λ5175 Å), and Na I (λ5894 Å). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was ~3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3^{+0.1}_{-0.3} Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6^{+0.5}_{-0.4} Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9^{+0.2}_{-0.1} Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hβ emission. Interestingly, this emission is more centrally concentrated than the continuum with {L_{{O}\\,\\scriptsize{III}}}=1.7+/- 0.3\\times 10^{40} erg s-1, indicating residual central star formation or nuclear activity.

  6. Searching for fossil fragments of the Galactic bulge formation process

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2017-08-01

    We have discovered that the stellar system Terzan5 (Ter5) in the Galactic bulge harbors stellar populations with very different IRON content (delta[Fe/H] 1 dex, Ferraro+09, Nature 462, 483) and AGES (12 Gyr and 4.5 Gyr for the sub-solar and super-solar metallicity populations, respectively, Ferraro+16, ApJ,828,75). This evidence demonstrates that Ter5 is not a globular cluster, and identifies it as (1) a site in the Galactic bulge where recent star formation occurred, and (2) the remnant of a massive system able to retain the iron-enriched gas ejected by violent supernova explosions. The striking chemical similarity between Ter5 and the bulge opens the fascinating possibility that we discovered the fossil remnant of a pristine massive structure that could have contributed to the Galactic bulge assembly.Prompted by this finding, here we propose to secure deep HST optical observations for the bulge stellar system Liller1, that shows a similar complexity as Ter5, with evidence of two stellar populations with different iron content. The immediate goal is to properly explore the main sequence turnoff region of the system for unveiling possible splits due to stellar populations of different ages. As demonstrated by our experience with Ter5, the requested HST observations, in combination with the K-band diffraction limited images that we already secured with GeMS-Gemini, are essential to achieve this goal.The project will allow us to establish if other fossil remnants of the bulge formation epoch do exist, thus probing that the merging of pre-evolved massive structures has been an important channel for the formation of the Galactic bulge.

  7. Highlights of Commission 37 Science Results

    NASA Astrophysics Data System (ADS)

    Carraro, Giovanni; de Grijs, Richard; Elmegreen, Bruce; Stetson, Peter; Anthony-Twarog, Barbara; Goodwin, Simon; Geisler, Douglas; Minniti, Dante

    2016-04-01

    It is widely accepted that stars do not form in isolation but result from the fragmentation of molecular clouds, which in turn leads to star cluster formation. Over time, clusters dissolve or are destroyed by interactions with molecular clouds or tidal stripping, and their members become part of the general field population. Star clusters are thus among the basic building blocks of galaxies. In turn, star cluster populations, from young associations and open clusters to old globulars, are powerful tracers of the formation, assembly, and evolutionary history of their parent galaxies. Although their importance (e.g., in mapping out the Milky Way) had been recognised for decades, major progress in this area has only become possible in recent years, both for Galactic and extragalactic cluster populations. Star clusters are the observational foundation for stellar astrophysics and evolution, provide essential tracers of galactic structure, and are unique stellar dynamical environments. Star formation, stellar structure, stellar evolution, and stellar nucleosynthesis continue to benefit and improve tremendously from the study of these systems. Additionally, fundamental quantities such as the initial mass function can be successfully derived from modelling either the Hertzsprung-Russell diagrams or the integrated velocity structures of, respectively, resolved and unresolved clusters and cluster populations. Star cluster studies thus span the fields of Galactic and extragalactic astrophysics, while heavily affecting our detailed understanding of the process of star formation in dense environments. This report highlights science results of the last decade in the major fields covered by IAU Commission 37: Star clusters and associations. Instead of focusing on the business meeting - the out-going president presentation can be found here: http://www.sc.eso.org/gcarraro/splinter2015.pdf - this legacy report contains highlights of the most important scientific achievements in the Commission science area, compiled by 5 well expert members.

  8. SDSS-IV MaNGA: Spatially resolved star formation histories in galaxies as a function of galaxy mass and type

    NASA Astrophysics Data System (ADS)

    Goddard, D.; Thomas, D.; Maraston, C.; Westfall, K.; Etherington, J.; Riffel, R.; Mallmann, N. D.; Zheng, Z.; Argudo-Fernández, M.; Lian, J.; Bershady, M.; Bundy, K.; Drory, N.; Law, D.; Yan, R.; Wake, D.; Weijmans, A.; Bizyaev, D.; Brownstein, J.; Lane, R. R.; Maiolino, R.; Masters, K.; Merrifield, M.; Nitschelm, C.; Pan, K.; Roman-Lopes, A.; Storchi-Bergmann, T.; Schneider, D. P.

    2017-04-01

    We study the internal gradients of stellar population properties within 1.5 Re for a representative sample of 721 galaxies, with stellar masses ranging between 109 M⊙ and 1011.5 M⊙ from the SDSS-IV MaNGA Integral-Field-Unit survey. Through the use of our full spectral fitting code firefly, we derive light- and mass-weighted stellar population properties and their radial gradients, as well as full star formation and metal enrichment histories. We also quantify the impact that different stellar population models and full spectral fitting routines have on the derived stellar population properties and the radial gradient measurements. In our analysis, we find that age gradients tend to be shallow for both early-type and late-type galaxies. Mass-weighted age gradients of early-types arepositive (˜0.09 dex/Re) pointing to 'outside-in' progression of star formation, while late-type galaxies have negative light-weighted age gradients (˜-0.11 dex/Re), suggesting an 'inside-out' formation of discs. We detect negative metallicity gradients in both early- and late-type galaxies, but these are significantly steeper in late-types, suggesting that the radial dependence of chemical enrichment processes and the effect of gas inflow and metal transport are far more pronounced in discs. Metallicity gradients of both morphological classes correlate with galaxy mass, with negative metallicity gradients becoming steeper with increasing galaxy mass. The correlation with mass is stronger for late-type galaxies, with a slope of d(∇[Z/H])/d(log M) ˜ -0.2 ± 0.05 , compared to d(∇[Z/H])/d(log M) ˜ -0.05 ± 0.05 for early-types. This result suggests that the merger history plays a relatively small role in shaping metallicity gradients of galaxies.

  9. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies With Relatively Old Stellar Populations at z Approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; vanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina; Skelton, Rosalind; Franx, Marijin; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; hide

    2013-01-01

    Quiescent galaxies at z approx. 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 < z < 2.2 from the 3D-HST grism survey. In addition to H (4861 ),we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (4304 ),Mgi (5175 ), and Na i (5894 ). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approx. 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3+0.10.3 Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80 of galaxies are dominated by metal lines and have a relatively old mean age of 1.6+0.50.4 Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9+0.20.1 Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O iii] and H emission. Interestingly, this emission is more centrally concentrated than the continuum with LOiii = 1.7+/- 0.3 x 10(exp 40) erg/s, indicating residual central star formation or nuclear activity.

  10. Quiescent Galaxies in the 3D-HST Survey: Spectroscopic Confirmation of a Large Number of Galaxies with Relatively Old Stellar Populations at Z approx. 2

    NASA Technical Reports Server (NTRS)

    Tease, Katherine Whitaker; VanDokkum, Pieter G.; Brammer, Gabriel; Momcheva, Ivelina G.; Skelton, Rosalind; Franx, Marijn; Kriek, Mariska; Labbe, Ivo; Fumagalli, Mattia; Lundgren, Britt F.; hide

    2013-01-01

    Quiescent galaxies at zeta approximately 2 have been identified in large numbers based on rest-frame colors, but only a small number of these galaxies have been spectroscopically confirmed to show that their rest-frame optical spectra show either strong Balmer or metal absorption lines. Here, we median stack the rest-frame optical spectra for 171 photometrically quiescent galaxies at 1.4 less than z less than 2.2 from the 3D-HST grism survey. In addition to H(Beta) (lambda 4861 Angstroms), we unambiguously identify metal absorption lines in the stacked spectrum, including the G band (lambda 4304 Angstroms), Mg I (lambda 5175 Angstroms), and Na i (lambda 5894 Angstroms). This finding demonstrates that galaxies with relatively old stellar populations already existed when the universe was approximately 3 Gyr old, and that rest-frame color selection techniques can efficiently select them. We find an average age of 1.3(+0.1/-0.3) Gyr when fitting a simple stellar population to the entire stack. We confirm our previous result from medium-band photometry that the stellar age varies with the colors of quiescent galaxies: the reddest 80% of galaxies are dominated by metal lines and have a relatively old mean age of 1.6(+0.5/-0.4) Gyr, whereas the bluest (and brightest) galaxies have strong Balmer lines and a spectroscopic age of 0.9(+0.2/-0.1) Gyr. Although the spectrum is dominated by an evolved stellar population, we also find [O III] and Hß emission. Interestingly, this emission is more centrally concentrated than the continuum with L(sub OIII) = 1.7 +/- 0.3 × 10(exp 40 erg s-1, indicating residual central star formation or nuclear activity.

  11. Multiple Stellar Populations in Star Clusters

    NASA Astrophysics Data System (ADS)

    Piotto, G.

    2013-09-01

    For half a century it had been astronomical dogma that a globular cluster (GC) consists of stars born at the same time out of the same material, and this doctrine has borne rich fruits. In recent years, high resolution spectroscopy and high precision photometry (from space and ground-based observations) have shattered this paradigm, and the study of GC populations has acquired a new life that is now moving it in new directions. Evidence of multiple stellar populations have been identified in the color-magnitude diagrams of several Galactic and Magellanic Cloud GCs where they had never been imagined before.

  12. The First Stars: A Low-Mass Formation Mode

    NASA Technical Reports Server (NTRS)

    Stacy, Athena; Bromm, Volker

    2014-01-01

    We perform numerical simulations of the growth of a Population III stellar system under photodissociating feedback. We start from cosmological initial conditions at z = 100, self-consistently following the formation of a minihalo at z = 15 and the subsequent collapse of its central gas to high densities. The simulations resolve scales as small as approx. 1 AU, corresponding to gas densities of 10(exp 16)/cu cm. Using sink particles to represent the growing protostars, we evolve the stellar system for the next 5000 yr. We find that this emerging stellar group accretes at an unusually low rate compared with minihalos which form at earlier times (z = 20-30), or with lower baryonic angular momentum. The stars in this unusual system will likely reach masses ranging from <1Stellar Mass to approx. 5 Stellar Mass by the end of their main-sequence lifetimes, placing them in the mass range for which stars will undergo an asymptotic giant branch (AGB) phase. Based upon the simulation, we predict the rare existence of Population III stars that have survived to the present day and have been enriched by mass overflow from a previous AGB companion.

  13. Radiative Feedback from Primordial Protostars and Final Mass of the First Stars

    NASA Technical Reports Server (NTRS)

    Hosokawa, Takashi; Omukai, Kazuyuki; Yoshida, Naoki; Yorke, Harold W.

    2012-01-01

    In this contribution, we review our efforts toward understanding the typical mass-scale of primordial stars. Our direct numerical simulations show that, in both of Population III.1 and III.2 cases, strong UV stellar radiative feedback terminatesmass accretion onto a protostar.AnHII region formed around the protostar very dynamically expands throughout the gas accreting envelope, which cuts off the gas supply to a circumstellar disk. The disk is exposed to the stellar UV radiation and loses its mass by photoevaporation. The derived final masses are 43 Stellar Mass and 17 Stellar Mass in our fiducial Population III.1 and III.2 cases. Much more massive stars should form in other exceptional conditions. In atomic-cooling halos where H2 molecules are dissociated, for instance, a protostar grows via very rapid mass accretion with the rates M* approx. 0.1 - 1 Stellar Mass/yr. Our newstellar evolution calculations show that the protostar significantly inflates and never contracts to reach the ZAMS stage in this case. Such the "supergiant protostars" have very low UV luminosity, which results in weak radiative feedback against the accretion flow. In the early universe, supermassive stars formed through this process might provide massive seeds of supermassive black holes.

  14. Impact of an AGN featureless continuum on estimation of stellar population properties

    NASA Astrophysics Data System (ADS)

    Cardoso, Leandro S. M.; Gomes, Jean Michel; Papaderos, Polychronis

    2017-08-01

    The effect of the featureless power-law (PL) continuum of an active galactic nucleus (AGN) on the estimation of physical properties of galaxies with optical population spectral synthesis (PSS) remains largely unknown. With the goal of a quantitative examination of this issue, we fit synthetic galaxy spectra representing a wide range of galaxy star formation histories (SFHs) and including distinct PL contributions of the form Fν ∝ ν- α with the PSS code Starlight to study to which extent various inferred quantities (e.g. stellar mass, mean age, and mean metallicity) match the input. The synthetic spectral energy distributions (SEDs) computed with our evolutionary spectral synthesis code include an AGN PL component with 0.5 ≤ α ≤ 2 and a fractional contribution 0.2 ≤ xAGN ≤ 0.8 to the monochromatic flux at 4020 Å. At the empirical AGN detection threshold xAGN ≃ 0.26 that we previously inferred in a pilot study on this subject, our results show that the neglect of a PL component in spectral fitting can lead to an overestimation by 2 dex in stellar mass and by up to 1 and 4 dex in the light- and mass-weighted mean stellar age, respectively, whereas the light- and mass-weighted mean stellar metallicity are underestimated by up to 0.3 and 0.6 dex, respectively. These biases, which become more severe with increasing xAGN, are essentially independent of the adopted SFH and show a complex behaviour with evolutionary time and α. Other fitting set-ups including either a single PL or multiple PLs in the base reveal, on average, much lower unsystematic uncertainties of the order of those typically found when fitting purely stellar SEDs with stellar templates, however, reaching locally up to 1, 3 and 0.4 dex in mass, age and metallicity, respectively. Our results underscore the importance of an accurate modelling of the AGN spectral contribution in PSS fits as a minimum requirement for the recovery of the physical and evolutionary properties of stellar populations in active galaxies. In particular, this study draws attention to the fact that the neglect of a PL in spectral modelling of these systems may lead to substantial overestimates in stellar mass and age, thereby leading to potentially significant biases in our understanding of the co-evolution of AGN with their galaxy hosts.

  15. Nuclear Star Formation in the Hot-Spot Galaxy NGC 2903

    NASA Technical Reports Server (NTRS)

    Alonso-Herrero, A.; Ryder, S. D.; Knapen, J. H.

    1994-01-01

    We present high-resolution near-infrared imaging obtained using adaptive optics and HST/NICMOS and ground-based spectroscopy of the hot-spot galaxy NGC 2903. Our near-infrared resolution imaging enables us to resolve the infrared hot spots into individual young stellar clusters or groups of these. The spatial distribution of the stellar clusters is not coincident with that of the bright H II regions, as revealed by the HST/NICMOS Pace image. Overall, the circumnuclear star formation in NGC 2903 shows a ring-like morphology with an approximate diameter of 625 pc. The SF properties of the stellar clusters and H II regions have been studied using the photometric and spectroscopic information in conjunction with evolutionary synthesis models. The population of bright stellar clusters shows a very narrow range of ages, 4 to 7 x 10(exp 6) yr after the peak of star formation, or absolute ages 6.5 to 9.5 x 10(exp 6) yr (for the assumed short-duration Gaussian bursts), and luminosities similar to the clusters found in the Antennae interacting galaxy. This population of young stellar clusters accounts for some 7 - 12% of the total stellar mass in the central 625 pc of NGC 2903. The H II regions in the ring of star formation have luminosities close to that of the super-giant H II region 30 Doradus, they are younger than the stellar clusters, and will probably evolve into bright infrared stellar clusters similar to those observed today. We find that the star formation efficiency in the central regions of NGC 2903 is higher than in normal galaxies, approaching the lower end of infrared luminous galaxies.

  16. Probing the galaxy-halo connection in UltraVISTA to z ˜ 2

    NASA Astrophysics Data System (ADS)

    McCracken, H. J.; Wolk, M.; Colombi, S.; Kilbinger, M.; Ilbert, O.; Peirani, S.; Coupon, J.; Dunlop, J.; Milvang-Jensen, B.; Caputi, K.; Aussel, H.; Béthermin, M.; Le Fèvre, O.

    2015-05-01

    We use percent-level precision photometric redshifts in the UltraVISTA-DR1 near-infrared survey to investigate the changing relationship between galaxy stellar mass and the dark matter haloes hosting them to z ˜ 2. We achieve this by measuring the clustering properties and abundances of a series of volume-limited galaxy samples selected by stellar mass and star formation activity. We interpret these results in the framework of a phenomenological halo model and numerical simulations. Our measurements span a uniquely large range in stellar mass and redshift and reach below the characteristic stellar mass to z ˜ 2. Our results are: (1) at fixed redshift and scale, clustering amplitude depends monotonically on sample stellar mass threshold; (2) at fixed angular scale, the projected clustering amplitude decreases with redshift but the comoving correlation length remains constant; (3) characteristic halo masses and galaxy bias increase with increasing median stellar mass of the sample; (4) the slope of these relationships is modified in lower mass haloes; (5) concerning the passive galaxy population, characteristic halo masses are consistent with a simply less-abundant version of the full galaxy sample, but at lower redshifts the fraction of satellite galaxies in the passive population is very different from the full galaxy sample; (6) finally, we find that the ratio between the characteristic halo mass and median stellar mass at each redshift bin reaches a peak at log (Mh/M⊙) ˜ 12.2 and the position of this peak remains constant out to z ˜ 2. The behaviour of the full and passively evolving galaxy samples can be understood qualitatively by considering the slow evolution of the characteristic stellar mass in the redshift range probed by our survey.

  17. Multiple stellar populations in Magellanic Cloud clusters - III. The first evidence of an extended main sequence turn-off in a young cluster: NGC 1856

    NASA Astrophysics Data System (ADS)

    Milone, A. P.; Bedin, L. R.; Piotto, G.; Marino, A. F.; Cassisi, S.; Bellini, A.; Jerjen, H.; Pietrinferni, A.; Aparicio, A.; Rich, R. M.

    2015-07-01

    Recent studies have shown that the extended main-sequence turn-off (eMSTO) is a common feature of intermediate-age star clusters in the Magellanic Clouds (MCs). The most simple explanation is that these stellar systems harbour multiple generations of stars with an age difference of a few hundred million years. However, while an eMSTO has been detected in a large number of clusters with ages between ˜1-2 Gyr, several studies of young clusters in both MCs and in nearby galaxies do not find any evidence for a prolonged star formation history, i. e. for multiple stellar generations. These results have suggested alternative interpretation of the eMSTOs observed in intermediate-age star clusters. The eMSTO could be due to stellar rotation mimicking an age spread or to interacting binaries. In these scenarios, intermediate-age MC clusters would be simple stellar populations, in close analogy with younger clusters. Here, we provide the first evidence for an eMSTO in a young stellar cluster. We exploit multiband Hubble Space Telescope photometry to study the ˜300-Myr old star cluster NGC 1856 in the Large Magellanic Cloud and detected a broadened MSTO that is consistent with a prolonged star formation which had a duration of about 150 Myr. Below the turn-off, the main sequence (MS) of NGC 1856 is split into a red and blue component, hosting 33 ± 5 and 67 ± 5 per cent of the total number of MS stars, respectively. We discuss these findings in the context of multiple-stellar-generation, stellar-rotation, and interacting-binary hypotheses.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sil’chenko, Olga K., E-mail: olga@sai.msu.su; Isaac Newton Institute, Chile, Moscow Branch

    I analyze statistics of the stellar population properties for stellar nuclei and bulges of nearby lenticular galaxies in different environments by using panoramic spectral data of the integral-field spectrograph SAURON retrieved from the open archive of the Isaac Newton Group. I also estimate the fraction of nearby lenticular galaxies having inner polar gaseous disks by exploring the volume-limited sample of early-type galaxies of the ATLAS-3D survey. By inspecting the two-dimensional velocity fields of the stellar and gaseous components with the running tilted-ring technique, I have found seven new cases of inner polar disks. Together with those, the frequency of inner polar disks in nearby S0 galaxiesmore » reaches 10%, which is much higher than the frequency of large-scale polar rings. Interestingly, the properties of the nuclear stellar populations in the inner polar ring hosts are statistically the same as those in the whole S0 sample, implying similar histories of multiple gas-accretion events from various directions.« less

  19. THE OBSERVED RELATION BETWEEN STELLAR MASS, DUST EXTINCTION, AND STAR FORMATION RATE IN LOCAL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zahid, H. J.; Kewley, L. J.; Kudritzki, R. P.

    In this study, we investigate the relation between stellar mass, dust extinction, and star formation rate (SFR) using {approx}150,000 star-forming galaxies from SDSS DR7. We show that the relation between dust extinction and SFR changes with stellar mass. For galaxies at the same stellar mass, dust extinction is anti-correlated with the SFR at stellar masses <10{sup 10} M {sub Sun }. There is a sharp transition in the relation at a stellar mass of 10{sup 10} M {sub Sun }. At larger stellar masses, dust extinction is positively correlated with the SFR for galaxies at the same stellar mass. Themore » observed relation between stellar mass, dust extinction, and SFR presented in this study helps to confirm similar trends observed in the relation between stellar mass, metallicity, and SFR. The relation reported in this study provides important new constraints on the physical processes governing the chemical evolution of galaxies. The correlation between SFR and dust extinction for galaxies with stellar masses >10{sup 10} M {sub Sun} is shown to extend to the population of quiescent galaxies suggesting that the physical processes responsible for the observed relation between stellar mass, dust extinction, and SFR may be related to the processes leading to the shutdown of star formation in galaxies.« less

  20. The SAMI Galaxy Survey: spatially resolving the main sequence of star formation

    NASA Astrophysics Data System (ADS)

    Medling, Anne M.; Cortese, Luca; Croom, Scott M.; Green, Andrew W.; Groves, Brent; Hampton, Elise; Ho, I.-Ting; Davies, Luke J. M.; Kewley, Lisa J.; Moffett, Amanda J.; Schaefer, Adam L.; Taylor, Edward; Zafar, Tayyaba; Bekki, Kenji; Bland-Hawthorn, Joss; Bloom, Jessica V.; Brough, Sarah; Bryant, Julia J.; Catinella, Barbara; Cecil, Gerald; Colless, Matthew; Couch, Warrick J.; Drinkwater, Michael J.; Driver, Simon P.; Federrath, Christoph; Foster, Caroline; Goldstein, Gregory; Goodwin, Michael; Hopkins, Andrew; Lawrence, J. S.; Leslie, Sarah K.; Lewis, Geraint F.; Lorente, Nuria P. F.; Owers, Matt S.; McDermid, Richard; Richards, Samuel N.; Sharp, Robert; Scott, Nicholas; Sweet, Sarah M.; Taranu, Dan S.; Tescari, Edoardo; Tonini, Chiara; van de Sande, Jesse; Walcher, C. Jakob; Wright, Angus

    2018-04-01

    We present the ˜800 star formation rate maps for the Sydney-AAO Multi-object Integral field spectrograph (SAMI) Galaxy Survey based on H α emission maps, corrected for dust attenuation via the Balmer decrement, that are included in the SAMI Public Data Release 1. We mask out spaxels contaminated by non-stellar emission using the [O III]/H β, [N II]/H α, [S II]/H α, and [O I]/H α line ratios. Using these maps, we examine the global and resolved star-forming main sequences of SAMI galaxies as a function of morphology, environmental density, and stellar mass. Galaxies further below the star-forming main sequence are more likely to have flatter star formation profiles. Early-type galaxies split into two populations with similar stellar masses and central stellar mass surface densities. The main-sequence population has centrally concentrated star formation similar to late-type galaxies, while galaxies >3σ below the main sequence show significantly reduced star formation most strikingly in the nuclear regions. The split populations support a two-step quenching mechanism, wherein halo mass first cuts off the gas supply and remaining gas continues to form stars until the local stellar mass surface density can stabilize the reduced remaining fuel against further star formation. Across all morphologies, galaxies in denser environments show a decreased specific star formation rate from the outside in, supporting an environmental cause for quenching, such as ram-pressure stripping or galaxy interactions.

  1. M101: Spectral Observations of H II Regions and Their Physical Properties

    NASA Astrophysics Data System (ADS)

    Hu, Ning; Wang, Enci; Lin, Zesen; Kong, Xu; Cheng, Fuzhen; Fan, Zou; Fang, Guangwen; Lin, Lin; Mao, Yewei; Wang, Jing; Zhou, Xu; Zhou, Zhiming; Zhu, Yinan; Zou, Hu

    2018-02-01

    By using the Hectospec 6.5 m Multiple Mirror Telescope and the 2.16 m telescope of the National Astronomical Observatories, of the Chinese Academy of Sciences, we obtained 188 high signal-to-noise ratio spectra of {{H}} {{II}} regions in the nearby galaxy M101, which is the largest spectroscopic sample of {{H}} {{II}} regions for this galaxy so far. These spectra cover a wide range of regions on M101, which enables us to analyze two-dimensional distributions of its physical properties. The physical parameters are derived from emission lines or stellar continua, including stellar population age, electron temperature, oxygen abundance, etc. The oxygen abundances are derived using two empirical methods based on O3N2 and R 23 indicators, as well as the direct {T}e method when [{{O}} {{III}}] λ 4363 is available. By applying the harmonic decomposition analysis to the velocity field, we obtained a line-of-sight rotation velocity of 71 {km} {{{s}}}-1 and a position angle of 36°. The stellar age profile shows an old stellar population in the galaxy center and a relatively young stellar population in outer regions, suggesting an old bulge and a young disk. The oxygen abundance profile exhibits a clear break at ∼18 kpc, with a gradient of ‑0.0364 dex kpc‑1 in the inner region and ‑0.00686 dex kpc‑1 in the outer region. Our results agree with the “inside-out” disk growth scenario of M101.

  2. Close Binaries in the Orion Nebula Cluster: On the Universality of Stellar Multiplicity and the Origin of Field Stars

    NASA Astrophysics Data System (ADS)

    Duchene, Gaspard; Lacour, Sylvestre; Moraux, Estelle; Bouvier, Jerome; Goodwin, Simon

    2018-01-01

    While stellar multiplicity is an ubiquitous outcome of star formation, there is a clear dichotomy between the multiplicity properties of young (~1 Myr-old) stellar clusters, like the ONC, which host a mostly field-like population of visual binaries, and those of equally young sparse populations, like the Taurus-Auriga region, which host twice as many stellar companions. Two distinct scenarios can account for this observation: one in which different star-forming regions form different number of stars, and one in which multiplicity properties are universal at birth but where internal cluster dynamics destroy many wide binaries. To solve this ambiguity, one must probe binaries that are sufficiently close so as not to be destroyed through interactions with other cluster members. To this end, we have conducted a survey for 10-100 au binaries in the ONC using the aperture masking technique with the VLT adaptive optics system. Among our sample of the 42 ONC members, we discovered 13 companions in this range of projected separations. This is consistent with the companion frequency observed in the Taurus population and twice as high as that observed among field stars. This survey thus strongly supports the idea that stellar multiplicity is characterized by near-universal initial properties that can later be dynamically altered. On the other hand, this exacerbates the question of the origin of field stars, since only clusters much denser than the ONC can effectively destroyed binaries closer than 100 au.

  3. OGLE-ing the Magellanic system: stellar populations in the Magellanic Bridge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skowron, D. M.; Jacyszyn, A. M.; Udalski, A.

    We report the discovery of a young stellar bridge that forms a continuous connection between the Magellanic Clouds. This finding is based on number density maps for stellar populations found in data gathered by OGLE-IV that fully cover over 270 deg{sup 2} of the sky in the Magellanic Bridge area. This is the most extensive optical survey of this region to date. We find that the young population is present mainly in the western half of the MBR, which, together with the newly discovered young population in the eastern Bridge, form a continuous stream of stars connecting both galaxies alongmore » δ ∼ –73.5 deg. The young population distribution is clumped, with one of the major densities close to the SMC and the other fairly isolated and located approximately mid-way between the Clouds, which we call the OGLE island. These overdensities are well matched by H I surface density contours, although the newly found young population in the eastern Bridge is offset by ∼2 deg north from the highest H I density contour. We observe a continuity of red clump stars between the Magellanic Clouds which represent an intermediate-age population. Red clump stars are present mainly in the southern and central parts of the Magellanic Bridge, below its gaseous part, and their presence is reflected by a strong deviation from the radial density profiles of the two galaxies. This may indicate either a tidal stream of stars, or that the stellar halos of the two galaxies overlap. On the other hand, we do not observe such an overlap within an intermediate-age population represented by the top of the red giant branch and the asymptotic giant branch stars. We also see only minor mixing of the old populations of the Clouds in the southern part of the Bridge, represented by the lowest part of the red giant branch.« less

  4. Chandra X-ray observation of the young stellar cluster NGC 3293 in the Carina Nebula Complex

    NASA Astrophysics Data System (ADS)

    Preibisch, T.; Flaischlen, S.; Gaczkowski, B.; Townsley, L.; Broos, P.

    2017-09-01

    Context. NGC 3293 is a young stellar cluster at the northwestern periphery of the Carina Nebula Complex that has remained poorly explored until now. Aims: We characterize the stellar population of NGC 3293 in order to evaluate key parameters of the cluster population such as the age and the mass function, and to test claims of an abnormal IMF and a deficit of M ≤ 2.5 M⊙ stars. Methods: We performed a deep (70 ks) X-ray observation of NGC 3293 with Chandra and detected 1026 individual X-ray point sources. These X-ray data directly probe the low-mass (M ≤ 2 M⊙) stellar population by means of the strong X-ray emission of young low-mass stars. We identify counterparts for 74% of the X-ray sources in our deep near-infrared images. Results: Our data clearly show that NGC 3293 hosts a large population of ≈solar-mass stars, refuting claims of a lack of M ≤ 2.5 M⊙ stars. The analysis of the color magnitude diagram suggests an age of 8-10 Myr for the low-mass population of the cluster. There are at least 511 X-ray detected stars with color magnitude positions that are consistent with young stellar members within 7 arcmin of the cluster center. The number ratio of X-ray detected stars in the [1-2 ] M⊙ range versus the M ≥ 5 M⊙ stars (known from optical spectroscopy) is consistent with the expectation from a normal field initial mass function. Most of the early B-type stars and ≈20% of the later B-type stars are detected as X-ray sources. Conclusions: Our data shows that NGC 3293 is one of the most populous stellar clusters in the entire Carina Nebula Complex (very similar to Tr 16 and Tr 15; only Tr 14 is more populous). The cluster probably harbored several O-type stars, whose supernova explosions may have had an important impact on the early evolution of the Carina Nebula Complex. The Chandra data described in this paper have been obtained in the open time project with ObsID 16648 (PI: T. Preibisch) ivo://ADS/Sa.CXO#obs/16648.Tables 1-3 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/605/A85

  5. Mapping a stellar disk into a boxy bulge: The outside-in part of the Milky Way bulge formation

    NASA Astrophysics Data System (ADS)

    Di Matteo, P.; Haywood, M.; Gómez, A.; van Damme, L.; Combes, F.; Hallé, A.; Semelin, B.; Lehnert, M. D.; Katz, D.

    2014-07-01

    By means of idealized, dissipationless N-body simulations that follow the formation and subsequent buckling of a stellar bar, we study the characteristics of boxy/peanut-shaped bulges and compare them with the properties of the stellar populations in the Milky Way (MW) bulge. The main results of our modeling, valid for the general family of boxy/peanut shaped bulges, are the following: (i) Because of the spatial redistribution in the disk initiated at the epoch of bar formation, stars from the innermost regions to the outer Lindblad resonance (OLR) of the stellar bar are mapped into a boxy bulge. (ii) The contribution of stars to the local bulge density depends on their birth radius: stars born in the innermost disk tend to dominate the innermost regions of the boxy bulge, while stars originating closer to the OLR are preferably found in the outer regions of the boxy/peanut structure. (iii) Stellar birth radii are imprinted in the bulge kinematics: the larger the birth radii of stars ending up in the bulge, the greater their rotational support and the higher their line-of-sight velocity dispersions (but note that this last trend depends on the bar viewing angle). (iv) The higher the classical bulge-over-disk ratio, the larger its fractional contribution of stars at large vertical distance from the galaxy midplane. Comparing these results with the properties of the stellar populations of the MW bulge recently revealed by the ARGOS survey, we conclude that (I) the two most metal-rich populations of the MW bulge, labeled A and B in the ARGOS survey, originate in the disk, with the population of A having formed on average closer to the Galaxy center than the population of component B; (II) a massive (B/D ~ 0.25) classical spheroid can be excluded for the MW, thus confirming previous findings that the MW bulge is composed of populations that mostly have a disk origin. On the basis of their chemical and kinematic characteristics, the results of our modeling suggest that the populations A, B, and C, as defined by the ARGOS survey, can be associated, respectively, with the inner thin disk, to the young thick and to the old thick disk, following the nomenclature that we recently suggested for stars in the solar neighborhood. Appendix A is available in electronic form at http://www.aanda.org

  6. Stellar-mass black holes and ultraluminous x-ray sources.

    PubMed

    Fender, Rob; Belloni, Tomaso

    2012-08-03

    We review the likely population, observational properties, and broad implications of stellar-mass black holes and ultraluminous x-ray sources. We focus on the clear empirical rules connecting accretion and outflow that have been established for stellar-mass black holes in binary systems in the past decade and a half. These patterns of behavior are probably the keys that will allow us to understand black hole feedback on the largest scales over cosmological time scales.

  7. THE STAR FORMATION HISTORIES OF z {approx} 2 DUST-OBSCURED GALAXIES AND SUBMILLIMETER-SELECTED GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bussmann, R. S.; Dey, Arjun; Jannuzi, B. T.

    The Spitzer Space Telescope has identified a population of ultraluminous infrared galaxies (ULIRGs) at z {approx} 2 that may play an important role in the evolution of massive galaxies. We measure the stellar masses (M{sub *}) of two populations of Spitzer-selected ULIRGs that have extremely red R - [24] colors (dust-obscured galaxies, or DOGs) and compare our results with submillimeter-selected galaxies (SMGs). One set of 39 DOGs has a local maximum in their mid-infrared (mid-IR) spectral energy distribution (SED) at rest frame 1.6 {mu}m associated with stellar emission ({sup b}ump DOGs{sup )}, while the other set of 51 DOGs havemore » power-law mid-IR SEDs that are typical of obscured active galactic nuclei ({sup p}ower-law DOGs{sup )}. We measure M{sub *} by applying Charlot and Bruzual stellar population synthesis models to broadband photometry in the rest-frame ultraviolet, optical, and near-infrared of each of these populations. Assuming a simple stellar population and a Chabrier initial mass function, we find that power-law DOGs and bump DOGs are on average a factor of 2 and 1.5 more massive than SMGs, respectively (median and inter-quartile M{sub *} values for SMGs, bump DOGs, and power-law DOGs are log(M{sub *}/M{sub Sun }) = 10.42{sup +0.42}{sub -0.36}, 10.62{sup +0.36}{sub -0.32}, and 10.71{sup +0.40}{sub -0.34}, respectively). More realistic star formation histories drawn from two competing theories for the nature of ULIRGs at z {approx} 2 (major merger versus smooth accretion) can increase these mass estimates by up to 0.5 dex. A comparison of our stellar masses with the instantaneous star formation rate (SFR) in these z {approx} 2 ULIRGs provides a preliminary indication supporting high SFRs for a given M{sub *}, a situation that arises more naturally in major mergers than in smooth accretion-powered systems.« less

  8. A Study of the Stellar Population in Selected SO Galaxies

    NASA Technical Reports Server (NTRS)

    Perez, M.; Danks, A.

    1997-01-01

    The goal of this program was to observe at least two SO galaxies with abnormal colors in the blue and clear optical signatures of dust and gas. The galaxies NGC 2217 and NGC 1808 were observed at least in one of the IUE cameras (1200-200 and 2000-3200 A) during the 13th episode, using the 4 US1 shifts assigned to this program. The galaxy NGC 2217 had been found to be part of a subgroup of SO galaxies with external gas rotating in retrograde motion with respect to the stars. This galaxy is a face-on object with indications of large amount of gas, quite rare for a SO galaxy. We observed this object on three different occasions with IUE at different positions of the large aperture (spacecraft roll angle) with respect to the nuclear region. These exposures allowed us to take full advantage of the spatial resolution of IUE by mapping nuclear and bulge region of this galaxy. We found that the data point to a marginally earlier stellar population toward the central region. The UV light as a whole is dominated by a late-type stellar population of principally G and K stars. The almost face-on view of this galaxy appears optically thick to UV light. It is conceivable that in analogy to out own Galaxy, the stellar populations weakly detected in NGC 2217, are mostly halo and late-type stars in the center with an increasing contribution of dust and early stellar populations (so far undetected) as we move outward along the faint spiral arms. This result is contrary to our initial expectation, since the counterrotating gas does not appear to be enhancing star formation in this galaxy. Even more interesting were the observations of NGC 1808; galaxy which has been classified, with a handful of other objects, both as a starburst and Seyfert galaxy. Attachment: 'The White-Dwarf Companions of 56 Persei and HR 3643.'

  9. Binaries, cluster dynamics and population studies of stars and stellar phenomena

    NASA Astrophysics Data System (ADS)

    Vanbeveren, Dany

    2005-10-01

    The effects of binaries on population studies of stars and stellar phenomena have been investigated over the past 3 decades by many research groups. Here we will focus mainly on the work that has been done recently in Brussels and we will consider the following topics: the effect of binaries on overall galactic chemical evolutionary models and on the rates of different types of supernova, the population of point-like X-ray sources where we distinguish the standard high mass X-ray binaries and the ULXs, a UFO-scenario for the formation of WR+OB binaries in dense star systems. Finally we critically discuss the possible effect of rotation on population studies.

  10. Spheroidal Populated Star Systems

    NASA Astrophysics Data System (ADS)

    Angeletti, Lucio; Giannone, Pietro

    2008-10-01

    Globular clusters and low-ellipticity early-type galaxies can be treated as systems populated by a large number of stars and whose structures can be schematized as spherically symmetric. Their studies profit from the synthesis of stellar populations. The computation of synthetic models makes use of various contributions from star evolution and stellar dynamics. In the first sections of the paper we present a short review of our results on the occurrence of galactic winds in star systems ranging from globular clusters to elliptical galaxies, and the dynamical evolution of a typical massive globular cluster. In the subsequent sections we describe our approach to the problem of the stellar populations in elliptical galaxies. The projected radial behaviours of spectro-photometric indices for a sample of eleven galaxies are compared with preliminary model results. The best agreement between observation and theory shows that our galaxies share a certain degree of heterogeneity. The gas energy dissipation varies from moderate to large, the metal yield ranges from solar to significantly oversolar, the dispersion of velocities is isotropic in most of the cases and anisotropic in the remaining instances.

  11. Stellar populations in local star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Perez-Gonzalez, P. G.

    2003-11-01

    The main goal of this thesis work is studying the main properties of the stellar populations embedded in a statistically complete sample of local active star-forming galaxies: the Universidad Complutense de Madrid (UCM) Survey of emission-line galaxies. This sample contains 191 local star-forming galaxies at an average redshift of 0.026. The survey was carried out using an objective-prism technique centered at the wavelength of the Halpha nebular emission-line (a common tracer of recent star formation). (continues)

  12. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time

    NASA Astrophysics Data System (ADS)

    Zhang, Zhi-Yu; Romano, D.; Ivison, R. J.; Papadopoulos, Padelis P.; Matteucci, F.

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses—the stellar initial mass function—in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum1. The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time2. Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies2,3, especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths4,5. The 13C/18O isotope abundance ratio in the cold molecular gas—which can be probed via the rotational transitions of the 13CO and C18O isotopologues—is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13CO and C18O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13CO/C18O ratio for all our targets—alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way6—implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the `main sequence' of star-forming galaxies7, although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  13. Stellar populations dominated by massive stars in dusty starburst galaxies across cosmic time.

    PubMed

    Zhang, Zhi-Yu; Romano, D; Ivison, R J; Papadopoulos, Padelis P; Matteucci, F

    2018-06-01

    All measurements of cosmic star formation must assume an initial distribution of stellar masses-the stellar initial mass function-in order to extrapolate from the star-formation rate measured for typically rare, massive stars (of more than eight solar masses) to the total star-formation rate across the full stellar mass spectrum 1 . The shape of the stellar initial mass function in various galaxy populations underpins our understanding of the formation and evolution of galaxies across cosmic time 2 . Classical determinations of the stellar initial mass function in local galaxies are traditionally made at ultraviolet, optical and near-infrared wavelengths, which cannot be probed in dust-obscured galaxies 2,3 , especially distant starbursts, whose apparent star-formation rates are hundreds to thousands of times higher than in the Milky Way, selected at submillimetre (rest-frame far-infrared) wavelengths 4,5 . The 13 C/ 18 O isotope abundance ratio in the cold molecular gas-which can be probed via the rotational transitions of the 13 CO and C 18 O isotopologues-is a very sensitive index of the stellar initial mass function, with its determination immune to the pernicious effects of dust. Here we report observations of 13 CO and C 18 O emission for a sample of four dust-enshrouded starbursts at redshifts of approximately two to three, and find unambiguous evidence for a top-heavy stellar initial mass function in all of them. A low 13 CO/C 18 O ratio for all our targets-alongside a well tested, detailed chemical evolution model benchmarked on the Milky Way 6 -implies that there are considerably more massive stars in starburst events than in ordinary star-forming spiral galaxies. This can bring these extraordinary starbursts closer to the 'main sequence' of star-forming galaxies 7 , although such main-sequence galaxies may not be immune to changes in initial stellar mass function, depending on their star-formation densities.

  14. Intergalactic Travel Bureau

    NASA Astrophysics Data System (ADS)

    Koski, Olivia; Rosin, Mark; Guerilla Science Team

    2014-03-01

    The Intergalactic Travel Bureau is an interactive theater outreach experience that engages the public in the incredible possibilities of space tourism. The Bureau is staffed by professional actors, who play the role of space travel agents, and professional astrophysicists, who play the role of resident scientists. Members of the public of all ages were invited to visit with bureau staff to plan the vacation of their dreams-to space. We describe the project's successful nine day run in New York in August 2013. Funded by the American Physical Society Public Outreach and Informing the Public Grants.

  15. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.

    2008-08-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  16. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Gosnell, Natalie; Latham, David W.

    2009-02-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  17. A Study Of Anomalous Stars and Binary Populations Within Open Clusters: Tests Of Theoretical Models

    NASA Astrophysics Data System (ADS)

    Geller, Aaron M.; Mathieu, Robert D.; Braden, Ella; Latham, David W.

    2008-02-01

    ``Anomalous'' stars, such as blue stragglers and more recently sub- subgiants, have been an enduring challenge for stellar evolution theory. Recently it has become clear that in star clusters these systems are closely linked to the binary star populations. Furthermore, through advances in N-body modeling, we have come to realize that stellar dynamical processes play a central role in the formation of such anomalous stars. Indeed, these stars trace the interface between the classical fields of stellar evolution and stellar dynamics. We propose a thesis study to directly probe this interface through high-precision radial-velocity measurements of the anomalous stars and the binary populations in four open clusters. We have selected NGC 188 (7 Gyr), M67 (NGC 2682; 4 Gyr), NGC 6819 (2.4 Gyr), and M35 (NGC 2168; 150 Myr), as these span a wide range in age, are rich enough to provide statistically significant conclusions, and already have an extensive base of kinematic, spectroscopic, and photometric observations from the WIYN Open Cluster Study. Our proposed observations will define the spectroscopic hard binary populations (fraction, frequency distributions of orbital parameters, mass ratios) for orbital periods approaching the hard-soft boundary. These observations will also provide a comprehensive survey for anomalous stars, including secure establishment of their cluster membership. These data will allow us to perform the first detailed comparison to predictions from open cluster simulations of the binary populations among normal and anomalous stars, and thereby to constrain the evolutionary paths from one to the other.

  18. Timing the formation and assembly of early-type galaxies via spatially resolved stellar populations analysis

    NASA Astrophysics Data System (ADS)

    Martín-Navarro, Ignacio; Vazdekis, Alexandre; Falcón-Barroso, Jesús; La Barbera, Francesco; Yıldırım, Akın; van de Ven, Glenn

    2018-04-01

    To investigate star formation and assembly processes of massive galaxies, we present here a spatially resolved stellar population analysis of a sample of 45 elliptical galaxies (Es) selected from the Calar Alto Legacy Integral Field Area survey. We find rather flat age and [Mg/Fe] radial gradients, weakly dependent on the effective velocity dispersion of the galaxy within half-light radius. However, our analysis shows that metallicity gradients become steeper with increasing galaxy velocity dispersion. In addition, we have homogeneously compared the stellar population gradients of our sample of Es to a sample of nearby relic galaxies, i.e. local remnants of the high-z population of red nuggets. This comparison indicates that, first, the cores of present-day massive galaxies were likely formed in gas-rich, rapid star formation events at high redshift (z ≳ 2). This led to radial metallicity variations steeper than observed in the local Universe, and positive [Mg/Fe] gradients. Secondly, our analysis also suggests that a later sequence of minor dry mergers, populating the outskirts of early-type galaxies (ETGs), flattened the pristine [Mg/Fe] and metallicity gradients. Finally, we find a tight age-[Mg/Fe] relation, supporting that the duration of the star formation is the main driver of the [Mg/Fe] enhancement in massive ETGs. However, the star formation time-scale alone is not able to fully explain our [Mg/Fe] measurements. Interestingly, our results match the expected effect that a variable stellar initial mass function would have on the [Mg/Fe] ratio.

  19. The Not So Simple Globular Cluster ω Cen. I. Spatial Distribution of the Multiple Stellar Populations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calamida, A.; Saha, A.; Strampelli, G.

    2017-04-01

    We present a multi-band photometric catalog of ≈1.7 million cluster members for a field of view of ≈2° × 2° across ω Cen. Photometry is based on images collected with the Dark Energy Camera on the 4 m Blanco telescope and the Advanced Camera for Surveys on the Hubble Space Telescope . The unprecedented photometric accuracy and field coverage allowed us, for the first time, to investigate the spatial distribution of ω Cen multiple populations from the core to the tidal radius, confirming its very complex structure. We found that the frequency of blue main-sequence stars is increasing compared to red main-sequencemore » stars starting from a distance of ≈25′ from the cluster center. Blue main-sequence stars also show a clumpy spatial distribution, with an excess in the northeast quadrant of the cluster pointing toward the direction of the Galactic center. Stars belonging to the reddest and faintest red-giant branch also show a more extended spatial distribution in the outskirts of ω Cen, a region never explored before. Both these stellar sub-populations, according to spectroscopic measurements, are more metal-rich compared to the cluster main stellar population. These findings, once confirmed, make ω Cen the only stellar system currently known where metal-rich stars have a more extended spatial distribution compared to metal-poor stars. Kinematic and chemical abundance measurements are now needed for stars in the external regions of ω Cen to better characterize the properties of these sub-populations.« less

  20. TESTING STELLAR POPULATION SYNTHESIS MODELS WITH SLOAN DIGITAL SKY SURVEY COLORS OF M31's GLOBULAR CLUSTERS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.

    2011-08-10

    Accurate stellar population synthesis models are vital in understanding the properties and formation histories of galaxies. In order to calibrate and test the reliability of these models, they are often compared with observations of star clusters. However, relatively little work has compared these models in the ugriz filters, despite the recent widespread use of this filter set. In this paper, we compare the integrated colors of globular clusters in the Sloan Digital Sky Survey (SDSS) with those predicted from commonly used simple stellar population (SSP) models. The colors are based on SDSS observations of M31's clusters and provide the largestmore » population of star clusters with accurate photometry available from the survey. As such, it is a unique sample with which to compare SSP models with SDSS observations. From this work, we identify a significant offset between the SSP models and the clusters' g - r colors, with the models predicting colors which are too red by g - r {approx} 0.1. This finding is consistent with previous observations of luminous red galaxies in the SDSS, which show a similar discrepancy. The identification of this offset in globular clusters suggests that it is very unlikely to be due to a minority population of young stars. The recently updated SSP model of Maraston and Stroembaeck better represents the observed g - r colors. This model is based on the empirical MILES stellar library, rather than theoretical libraries, suggesting an explanation for the g - r discrepancy.« less

  1. THE EVOLUTION OF THE STELLAR MASS FUNCTIONS OF STAR-FORMING AND QUIESCENT GALAXIES TO z = 4 FROM THE COSMOS/UltraVISTA SURVEY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muzzin, Adam; Franx, Marijn; Labbé, Ivo

    2013-11-01

    We present measurements of the stellar mass functions (SMFs) of star-forming and quiescent galaxies to z = 4 using a sample of 95,675 K{sub s} -selected galaxies in the COSMOS/UltraVISTA field. The SMFs of the combined population are in good agreement with previous measurements and show that the stellar mass density of the universe was only 50%, 10%, and 1% of its current value at z ∼ 0.75, 2.0, and 3.5, respectively. The quiescent population drives most of the overall growth, with the stellar mass density of these galaxies increasing as ρ{sub star}∝(1 + z){sup –4.7±0.4} since z = 3.5,more » whereas the mass density of star-forming galaxies increases as ρ{sub star}∝(1 + z){sup –2.3±0.2}. At z > 2.5, star-forming galaxies dominate the total SMF at all stellar masses, although a non-zero population of quiescent galaxies persists to z = 4. Comparisons of the K{sub s} -selected star-forming galaxy SMFs with UV-selected SMFs at 2.5 < z < 4 show reasonable agreement and suggest that UV-selected samples are representative of the majority of the stellar mass density at z > 3.5. We estimate the average mass growth of individual galaxies by selecting galaxies at fixed cumulative number density. The average galaxy with log(M{sub star}/M{sub ☉}) = 11.5 at z = 0.3 has grown in mass by only 0.2 dex (0.3 dex) since z = 2.0 (3.5), whereas those with log(M{sub star}/M{sub ☉}) = 10.5 have grown by >1.0 dex since z = 2. At z < 2, the time derivatives of the mass growth are always larger for lower-mass galaxies, which demonstrates that the mass growth in galaxies since that redshift is mass-dependent and primarily bottom-up. Lastly, we examine potential sources of systematic uncertainties in the SMFs and find that those from photo-z templates, stellar population synthesis modeling, and the definition of quiescent galaxies dominate the total error budget in the SMFs.« less

  2. FAKE STAR FORMATION BURSTS: BLUE HORIZONTAL BRANCH STARS MASQUERADE AS YOUNG MASSIVE STARS IN OPTICAL INTEGRATED LIGHT SPECTROSCOPY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ocvirk, P.

    2010-01-20

    Model color-magnitude diagrams of low-metallicity globular clusters (GCs) usually show a deficit of hot evolved stars with respect to observations. We investigate quantitatively the impact of such modeling inaccuracies on the significance of star formation history reconstructions obtained from optical integrated spectra. To do so, we analyze the sample of spectra of galactic globular clusters of Schiavon et al. with STECKMAP (Ocvirk et al.), and the stellar population models of Vazdekis et al. and Bruzual and Charlot, and focus on the reconstructed stellar age distributions. First, we show that background/foreground contamination correlates with E(B - V), which allows us tomore » define a clean subsample of uncontaminated GCs, on the basis of an E(B - V) filtering. We then identify a 'confusion zone' where fake young bursts of star formation pop up in the star formation history although the observed population is genuinely old. These artifacts appear for 70%-100% of cases depending on the population model used, and contribute up to 12% of the light in the optical. Their correlation with the horizontal branch (HB) ratio indicates that the confusion is driven by HB morphology: red HB clusters are well fitted by old stellar population models while those with a blue HB require an additional hot component. The confusion zone extends over [Fe/H] = [ - 2, - 1.2], although we lack the data to probe extreme high and low metallicity regimes. As a consequence, any young starburst superimposed on an old stellar population in this metallicity range could be regarded as a modeling artifact, if it weighs less than 12% of the optical light, and if no emission lines typical of an H II region are present. This work also provides a practical method for constraining HB morphology from high signal to noise integrated light spectroscopy in the optical. This will allow post-asymptotic giant branch evolution studies in a range of environments and at distances where resolving stellar populations is impossible with current and planned telescopes.« less

  3. THE STELLAR SPHEROID, THE DISK, AND THE DYNAMICS OF THE COSMIC WEB

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Domínguez-Tenreiro, R.; Obreja, A.; Brook, C. B.

    Models of the advanced stages of gravitational instability predict that baryons that form the stellar populations of current galaxies at z = 0 displayed a web-like structure at high z, as part of the cosmic web (CW). We explore details of these predictions using cosmological hydrodynamical simulations. When the stellar populations of the spheroid and disk components of simulated late-type galaxies are traced back separately to high zs we found CW-like structures where spheroid progenitors are more evolved than disk progenitors. The distinction between the corresponding stellar populations, as driven by their specific angular momentum content j, can be explainedmore » in terms of the CW evolution, extended to two processes occurring at lower z. First, the spheroid progenitors strongly lose j at collapse, which contrasts with the insignificant j loss of the disk progenitors. The second is related to the lack of alignment, at assembly, between the spheroid-to-be material and the already settled proto-disk, in contrast to the alignment of disk-to-be material, in some cases resulting from circumgalactic, disk-induced gravitational torques. The different final outcomes of these low-z processes have their origins in the different initial conditions driven by the CW dynamics.« less

  4. The planetary nebulae population in the nuclear regions of M31: the SAURON view

    NASA Astrophysics Data System (ADS)

    Pastorello, Nicola; Sarzi, Marc; Cappellari, Michele; Emsellem, Eric; Mamon, Gary A.; Bacon, Roland; Davies, Roger L.; de Zeeuw, P. Tim

    2013-04-01

    The study of extragalactic planetary nebulae (PNe) in the optical regions of galaxies, where the properties of their stellar population can be best characterized, is a promising ground to better understand the late evolution of stars across different galactic environments. Following a first study of the central regions of M32 that illustrated the power of integral field spectroscopy (IFS) in detecting and measuring the [O III] λ5007 emission of PNe against a strong stellar background, we turn to the very nuclear PN population of M31, within ˜80 pc of its centre. We show that PNe can also be found in the presence of emission from diffuse gas, as commonly observed in early-type galaxies and in the bulge of spirals, and further illustrate the excellent sensitivity of IFS in detecting extragalactic PNe through a comparison with narrow-band images obtained with the Hubble Space Telescope. Contrary to the case of the central regions of M32, the nuclear PNe population of M31 is only marginally consistent with the generally adopted form of the PNe luminosity function (PNLF). In particular, this is due to a lack of PNe with absolute magnitude M5007 brighter than -3, which would only result from a rather unfortunate draw from such a model PNLF. The nuclear stellar population of M31 is quite different from that of the central regions of M32, which is characterized in particular by a larger metallicity and a remarkable ultraviolet (UV) upturn. We suggest that the observed lack of bright PNe in the nuclear regions of M31 is due to a horizontal-branch population that is more tilted towards less massive and hotter He-burning stars, so that its progeny consists mostly of UV-bright stars that fail to climb back up the asymptotic giant branch (AGB) and only a few, if any, bright PNe powered by central post-AGB stars. These results are also consistent with recent reports on a dearth of bright post-AGB stars towards the nucleus of M31, and lend further support to the idea that the metallicity of a stellar population has an impact on the way the horizontal branch is populated and to the loose anticorrelation between the strength of the UV upturn and the specific number of PNe that is observed in early-type galaxies. Finally, our investigation also serves to stress the importance of considering the same spatial scales when comparing the PNe population of galaxies with the properties of their stellar populations.

  5. Galactic bulge preferred over dark matter for the Galactic centre gamma-ray excess

    NASA Astrophysics Data System (ADS)

    Macias, Oscar; Gordon, Chris; Crocker, Roland M.; Coleman, Brendan; Paterson, Dylan; Horiuchi, Shunsaku; Pohl, Martin

    2018-05-01

    An anomalous gamma-ray excess emission has been found in the Fermi Large Area Telescope data1 covering the centre of the Galaxy2,3. Several theories have been proposed for this `Galactic centre excess'. They include self-annihilation of dark-matter particles4, an unresolved population of millisecond pulsars5, an unresolved population of young pulsars6, or a series of burst events7. Here, we report on an analysis that exploits hydrodynamical modelling to register the position of interstellar gas associated with diffuse Galactic gamma-ray emission. We find evidence that the Galactic centre excess gamma rays are statistically better described by the stellar over-density in the Galactic bulge and the nuclear stellar bulge, rather than a spherical excess. Given its non-spherical nature, we argue that the Galactic centre excess is not a dark-matter phenomenon but rather associated with the stellar population of the Galactic bulge and the nuclear bulge.

  6. Results from the APOGEE IN-SYNC Orion: parameters and radial velocities for thousands of young stars in the Orion Complex.

    NASA Astrophysics Data System (ADS)

    Da Rio, Nicola; SDSS Apogee IN-SYNC ancillary program Team

    2015-01-01

    I will present the results of our characterization of the dynamical status of the young stellar population in the Orion A star forming region. This is based on radial velocity measurements obtained within the SDSS-III Apogee IN-SYNC Orion Survey, which obtained high-resolution spectroscopy of ~3000 objects in the region, from the dense Orion Nebula Cluster - the prototypical nearby region of active massive star formation - to the low-density environments of the L1641 region. We find evidence for kinematic subclustering along the star forming filament, where the stellar component remains kinematically associated to the gas; in the ONC we find that the stellar population is supervirial and currently expanding. We rule out the existence of a controversial candidate foreground cluster to the south of the ONC. These results, complemented with an analysis of the spatial structure of the population, enables critical tests of theories that describe the formation and early evolution of Orion and young clusters in general.

  7. The Reddening Curve below 1200 Angstroms.

    NASA Astrophysics Data System (ADS)

    Wofford, Aida; Leitherer, C.

    2012-05-01

    Thirty percent of the bolometric luminosity of star-forming galaxies is emitted in the wavelength range between 912 and 1200 Å. This wavelength range carries information about the stellar mass distribution and the star formation rate of the newly formed populations of massive (M > 8 M_sun) stars in these galaxies, and about the leakage of Lyman-continuum photons from these galaxies. This is also the wavelength range where the reddening curve peaks, and where our understanding of the reddening curve is the most fragmentary. We present preliminary results from a spectroscopic study aimed to characterize the reddening curve below 1200 Å. Our project is based on the analysis of archival HUT (830-1850 Å), FUSE (905-1187 Å), IUE (1150-3200 Å), and HST (1200-3200 Å) data of a sample of 70 low-redshift (z<0.1) star-forming galaxies, using synthetic spectra of stellar populations plus the ISM. The stellar population and nebula models were generated with STARBURST99 and CLOUDY, respectively. This work is supported by NASA J1401.

  8. Evidence for feedback and stellar-dynamically regulated bursty star cluster formation: the case of the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Kroupa, Pavel; Jeřábková, Tereza; Dinnbier, František; Beccari, Giacomo; Yan, Zhiqiang

    2018-04-01

    A scenario for the formation of multiple co-eval populations separated in age by about 1 Myr in very young clusters (VYCs, ages less than 10 Myr) and with masses in the range 600-20 000 M⊙ is outlined. It rests upon a converging inflow of molecular gas building up a first population of pre-main sequence stars. The associated just-formed O stars ionise the inflow and suppress star formation in the embedded cluster. However, they typically eject each other out of the embedded cluster within 106 yr, that is before the molecular cloud filament can be ionised entirely. The inflow of molecular gas can then resume forming a second population. This sequence of events can be repeated maximally over the life-time of the molecular cloud (about 10 Myr), but is not likely to be possible in VYCs with mass <300 M⊙, because such populations are not likely to contain an O star. Stellar populations heavier than about 2000 M⊙ are likely to have too many O stars for all of these to eject each other from the embedded cluster before they disperse their natal cloud. VYCs with masses in the range 600-2000 M⊙ are likely to have such multi-age populations, while VYCs with masses in the range 2000-20 000 M⊙ can also be composed solely of co-eval, mono-age populations. More massive VYCs are not likely to host sub-populations with age differences of about 1 Myr. This model is applied to the Orion Nebula Cluster (ONC), in which three well-separated pre-main sequences in the colour-magnitude diagram of the cluster have recently been discovered. The mass-inflow history is constrained using this model and the number of OB stars ejected from each population are estimated for verification using Gaia data. As a further consequence of the proposed model, the three runaway O star systems, AE Aur, μ Col and ι Ori, are considered as significant observational evidence for stellar-dynamical ejections of massive stars from the oldest population in the ONC. Evidence for stellar-dynamical ejections of massive stars in the currently forming population is also discussed.

  9. Stellar Streams Discovered in the Dark Energy Survey

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shipp, N.; et al.

    We perform a search for stellar streams around the Milky Way using the first three years of multi-band optical imaging data from the Dark Energy Survey (DES). We use DES data coveringmore » $$\\sim 5000$$ sq. deg. to a depth of $g > 23.5$ with a relative photometric calibration uncertainty of $$< 1 \\%$$. This data set yields unprecedented sensitivity to the stellar density field in the southern celestial hemisphere, enabling the detection of faint stellar streams to a heliocentric distance of $$\\sim 50$$ kpc. We search for stellar streams using a matched-filter in color-magnitude space derived from a synthetic isochrone of an old, metal-poor stellar population. Our detection technique recovers four previously known thin stellar streams: Phoenix, ATLAS, Tucana III, and a possible extension of Molonglo. In addition, we report the discovery of eleven new stellar streams. In general, the new streams detected by DES are fainter, more distant, and lower surface brightness than streams detected by similar techniques in previous photometric surveys. As a by-product of our stellar stream search, we find evidence for extra-tidal stellar structure associated with four globular clusters: NGC 288, NGC 1261, NGC 1851, and NGC 1904. The ever-growing sample of stellar streams will provide insight into the formation of the Galactic stellar halo, the Milky Way gravitational potential, as well as the large- and small-scale distribution of dark matter around the Milky Way.« less

  10. Influence of Stellar Multiplicity On Planet Formation. III. Adaptive Optics Imaging of Kepler Stars With Gas Giant Planets

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Fischer, Debra A.; Horch, Elliott P.; Xie, Ji-Wei

    2015-06-01

    As hundreds of gas giant planets have been discovered, we study how these planets form and evolve in different stellar environments, specifically in multiple stellar systems. In such systems, stellar companions may have a profound influence on gas giant planet formation and evolution via several dynamical effects such as truncation and perturbation. We select 84 Kepler Objects of Interest (KOIs) with gas giant planet candidates. We obtain high-angular resolution images using telescopes with adaptive optics (AO) systems. Together with the AO data, we use archival radial velocity data and dynamical analysis to constrain the presence of stellar companions. We detect 59 stellar companions around 40 KOIs for which we develop methods of testing their physical association. These methods are based on color information and galactic stellar population statistics. We find evidence of suppressive planet formation within 20 AU by comparing stellar multiplicity. The stellar multiplicity rate (MR) for planet host stars is {0}-0+5% within 20 AU. In comparison, the stellar MR is 18% ± 2% for the control sample, i.e., field stars in the solar neighborhood. The stellar MR for planet host stars is 34% ± 8% for separations between 20 and 200 AU, which is higher than the control sample at 12% ± 2%. Beyond 200 AU, stellar MRs are comparable between planet host stars and the control sample. We discuss the implications of the results on gas giant planet formation and evolution.

  11. Looking for Galaxies in All the Right Places: A Search for Stellar Populations in ALFALFA’s Ultra-compact High Velocity Clouds

    NASA Astrophysics Data System (ADS)

    Janesh, William; Rhode, Katherine L.; Salzer, John J.; Janowiecki, Steven; Adams, Elizabeth; Haynes, Martha P.; Giovanelli, Riccardo; Cannon, John M.

    2018-01-01

    Nearby gas-rich dwarf galaxies are excellent laboratories for investigating the baryonic feedback processes that govern star formation and galaxy evolution in galaxies at the extreme end of the mass function. Detecting and studying such objects may help resolve the well-known tension between cosmological model predictions for low-mass dark matter halos and observations. The ALFALFA neutral hydrogen (Hi) survey has detected a sample of isolated ultra-compact high-velocity Hi clouds (UCHVCs) with kinematic properties that make them likely members of the Local Volume, but that have no optical counterparts in existing optical surveys. This UCHVC sample possesses Hi properties (at 1 Mpc, Hi masses of ~105-106 M⊙, Hi diameters of ~2-3 kpc, and dynamical masses of ~107-108 M⊙) similar to other known ultra-faint dwarf galaxies like Leo T. Following the discovery of Leo P, an extremely metal-poor, gas-rich star-forming dwarf galaxy associated with an ALFALFA UCHVC, we have initiated a campaign to obtain deep optical imaging of 56 UCHVCs using the wide field-of-view, high-resolution ODI camera on the WIYN 3.5-m telescope. Here we present a brief overview of our campaign to search for resolved stellar populations associated with the UCHVCs in our optical images, and initial results from our survey.After creating a stellar catalog from the pipeline-reduced and stacked ODI g- and i-band images, we apply a color-magnitude filter tuned for old, metal-poor stellar populations to select red giant branch stars at distances between 250 kpc and 2 Mpc. The spatial distribution of the stars selected by the filter is then smoothed, and overdensities in the fields are identified. Of the 22 targets analyzed to date, seven have associated stellar populations detected at a high confidence (92% to 99.9% significance). The detected objects have a range of distances (from 350 kpc to 1.6 Mpc) and have optical properties similar to those of ultra-faint dwarf galaxies. These objects have extreme Hi-to-stellar mass ratios, and given their isolation, may represent a progenitor population to the ultra-faint dwarfs. They also help constrain the conditions needed for star formation in the lowest-mass galaxies.

  12. THE PHOTOMETRIC PROPERTIES OF A VAST STELLAR SUBSTRUCTURE IN THE OUTSKIRTS OF M33

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McConnachie, Alan W.; Ferguson, Annette M. N.; Irwin, Michael J.

    2010-11-10

    We have surveyed approximately 40 deg{sup 2} surrounding M33 with Canada-France-Hawaii Telescope MegaCam/MegaPrime in the g and i filters out to a maximum projected radius from this galaxy of 50 kpc, as part of the Pan-Andromeda Archaeological Survey (PAndAS). Our observations are deep enough to resolve the top {approx}4 mag of the red giant branch population in this galaxy. We have previously shown that the disk of M33 is surrounded by a large, irregular, low surface brightness substructure. Here, we quantify the stellar populations and structure of this feature using the PAndAS data. We show that the stellar populations ofmore » this feature are consistent with an old population with ([Fe/H]) {approx} -1.6 dex and an interquartile range in metallicity of {approx}0.5 dex. We construct a surface brightness map of M33 that traces this feature to {mu}{sub V} {approx_equal} 33 mag arcsec{sup -2}. At these low surface brightness levels, the structure extends to projected radii of {approx}40 kpc from the center of M33 in both the northwest and southeast quadrants of the galaxy. Overall, the structure has an 'S-shaped' appearance that broadly aligns with the orientation of the H I disk warp. We calculate a lower limit to the integrated luminosity of the structure of -12.7 {+-} 0.5 mag, comparable to a bright dwarf galaxy such as Fornax or Andromeda II and slightly less than 1% of the total luminosity of M33. Further, we show that there is tentative evidence for a distortion in the distribution of young stars near the edge of the H I disk that occurs at similar azimuth to the warp in H I. The data also hint at a low-level, extended stellar component at larger radius that may be an M33 halo component. We revisit studies of M33 and its stellar populations in light of these new results and discuss possible formation scenarios for the vast stellar structure. Our favored model is that of the tidal disruption of M33 in its orbit around M31.« less

  13. CHEMICAL SIGNATURES OF THE FIRST GALAXIES: CRITERIA FOR ONE-SHOT ENRICHMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frebel, Anna; Bromm, Volker, E-mail: afrebel@mit.edu, E-mail: vbromm@astro.as.utexas.edu

    We utilize metal-poor stars in the local, ultra-faint dwarf galaxies (UFDs; L {sub tot} {<=} 10{sup 5} L {sub Sun }) to empirically constrain the formation process of the first galaxies. Since UFDs have much simpler star formation histories than the halo of the Milky Way, their stellar populations should preserve the fossil record of the first supernova (SN) explosions in their long-lived, low-mass stars. Guided by recent hydrodynamical simulations of first galaxy formation, we develop a set of stellar abundance signatures that characterize the nucleosynthetic history of such an early system if it was observed in the present-day universe.more » Specifically, we argue that the first galaxies are the product of chemical 'one-shot' events, where only one (long-lived) stellar generation forms after the first, Population III, SN explosions. Our abundance criteria thus constrain the strength of negative feedback effects inside the first galaxies. We compare the stellar content of UFDs with these one-shot criteria. Several systems (Ursa Major II, and also Coma Berenices, Bootes I, Leo IV, Segue 1) largely fulfill the requirements, indicating that their high-redshift predecessors did experience strong feedback effects that shut off star formation. We term the study of the entire stellar population of a dwarf galaxy for the purpose of inferring details about the nature and origin of the first galaxies 'dwarf galaxy archaeology'. This will provide clues to the connection of the first galaxies, the surviving, metal-poor dwarf galaxies, and the building blocks of the Milky Way.« less

  14. Digging deeper into the Southern skies: A compact Milky Way companion discovered in first-year Dark Energy Survey data

    DOE PAGES

    Luque, E.

    2016-02-09

    Here, the Dark Energy Survey (DES) is a 5000 sq. degree survey in the southern hemisphere, which is rapidly reducing the existing north-south asymmetry in the census of MW satellites and other stellar substructure. We use the first-year DES data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the surveymore » area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES J0034-4902 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources at ~ 87 {kpc}.« less

  15. Digging deeper into the Southern skies: A compact Milky Way companion discovered in first-year Dark Energy Survey data

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Luque, E.

    Here, the Dark Energy Survey (DES) is a 5000 sq. degree survey in the southern hemisphere, which is rapidly reducing the existing north-south asymmetry in the census of MW satellites and other stellar substructure. We use the first-year DES data down to previously unprobed photometric depths to search for stellar systems in the Galactic halo, therefore complementing the previous analysis of the same data carried out by our group earlier this year. Our search is based on a matched filter algorithm that produces stellar density maps consistent with stellar population models of various ages, metallicities, and distances over the surveymore » area. The most conspicuous density peaks in these maps have been identified automatically and ranked according to their significance and recurrence for different input models. We report the discovery of one additional stellar system besides those previously found by several authors using the same first-year DES data. The object is compact, and consistent with being dominated by an old and metal-poor population. DES J0034-4902 is found at high significance and appears in the DES images as a compact concentration of faint blue point sources at ~ 87 {kpc}.« less

  16. Age and Mass for 920 Large Magellanic Cloud Clusters Derived from 100 Million Monte Carlo Simulations

    NASA Astrophysics Data System (ADS)

    Popescu, Bogdan; Hanson, M. M.; Elmegreen, Bruce G.

    2012-06-01

    We present new age and mass estimates for 920 stellar clusters in the Large Magellanic Cloud (LMC) based on previously published broadband photometry and the stellar cluster analysis package, MASSCLEANage. Expressed in the generic fitting formula, d 2 N/dMdtvpropM α t β, the distribution of observed clusters is described by α = -1.5 to -1.6 and β = -2.1 to -2.2. For 288 of these clusters, ages have recently been determined based on stellar photometric color-magnitude diagrams, allowing us to gauge the confidence of our ages. The results look very promising, opening up the possibility that this sample of 920 clusters, with reliable and consistent age, mass, and photometric measures, might be used to constrain important characteristics about the stellar cluster population in the LMC. We also investigate a traditional age determination method that uses a χ2 minimization routine to fit observed cluster colors to standard infinite-mass limit simple stellar population models. This reveals serious defects in the derived cluster age distribution using this method. The traditional χ2 minimization method, due to the variation of U, B, V, R colors, will always produce an overdensity of younger and older clusters, with an underdensity of clusters in the log (age/yr) = [7.0, 7.5] range. Finally, we present a unique simulation aimed at illustrating and constraining the fading limit in observed cluster distributions that includes the complex effects of stochastic variations in the observed properties of stellar clusters.

  17. Intergalactic Extinction of High Energy Gamma-Rays

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1998-01-01

    We discuss the determination of the intergalactic pair-production absorption coefficient as derived by Stecker and De Jager by making use of a new empirically based calculation of the spectral energy distribution of the intergalactic infrared radiation field as given by Malkan and Stecker. We show that the results of the Malkan and Stecker calculation agree well with recent data on the infrared background. We then show that Whipple observations of the flaring gamma-ray spectrum of Mrk 421 hint at extragalactic absorption and that the HEGRA observations of the flaring spectrum of Mrk 501 appear to strongly indicate extragalactic absorption. We also discuss the determination of the y-ray opacity at higher redshifts, following the treatment of Salamon and Stecker. We give a predicted spectrum, with absorption included for PKS 2155-304. This XBL lies at a redshift of 0.12, the highest redshift source yet observed at an energy above 0.3 TeV. This source should have its spectrum steepened by approx. 1 in its spectral index between approx. 0.3 and approx. 3 TeV and should show an absorption cutoff above approx. 6 TeV.

  18. The Ionization History of The Intergalactic Medium:

    NASA Technical Reports Server (NTRS)

    Madau, Piero

    2003-01-01

    The funded project seeked a unified description of the ionization, physical structure, and evolution of the intergalactic medium (IGM) and quasar intervening absorption systems. We proposed to conduct theoretical studies of the IGM and QSO absorbers in the context of current theories of galaxy formation, developing and using numerical and analytical techniques aimed at a detailed modeling of cosmological radiative transfer, gas dynamics, and thermal and ionization evolution. The ionization history of the IGM has important implications for the metagalactic UV background, intergalactic helium absorption 21-cm tomography, metal absorption systems, fluctuations in the microwave background, and the cosmic rate of structure and star formation. All the original objectives of our program have been achieved, and the results widely used and quoted by the community. Indeed, they remain relevant as the level and complexity of research in this area has increased substantially since our proposal was submitted, due to new discoveries on galaxy formation and evolution, a flood of high-quality data on the distant universe, new theoretical ideas and direct numerical simulations of structure formation in hierarchical clustering theories.

  19. Yunnan-III models for evolutionary population synthesis

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Li, L.; Han, Z.; Zhuang, Y.; Kang, X.

    2013-02-01

    We build the Yunnan-III evolutionary population synthesis (EPS) models by using the mesa stellar evolution code, BaSeL stellar spectra library and the initial mass functions (IMFs) of Kroupa and Salpeter, and present colours and integrated spectral energy distributions (ISEDs) of solar-metallicity stellar populations (SPs) in the range of 1 Myr to 15 Gyr. The main characteristic of the Yunnan-III EPS models is the usage of a set of self-consistent solar-metallicity stellar evolutionary tracks (the masses of stars are from 0.1 to 100 M⊙). This set of tracks is obtained by using the state-of-the-art mesa code. mesa code can evolve stellar models through thermally pulsing asymptotic giant branch (TP-AGB) phase for low- and intermediate-mass stars. By comparisons, we confirm that the inclusion of TP-AGB stars makes the V - K, V - J and V - R colours of SPs redder and the infrared flux larger at ages log(t/yr) ≳ 7.6 [the differences reach the maximum at log(t/yr) ˜ 8.6, ˜0.5-0.2 mag for colours, approximately two times for K-band flux]. We also find that the colour-evolution trends of Model with-TPAGB at intermediate and large ages are similar to those from the starburst99 code, which employs the Padova-AGB stellar library, BaSeL spectral library and the Kroupa IMF. At last, we compare the colours with the other EPS models comprising TP-AGB stars (such as CB07, M05, V10 and POPSTAR), and find that the B - V colour agrees with each other but the V-K colour shows a larger discrepancy among these EPS models [˜1 mag when 8 ≲ log(t/yr) ≲ 9]. The stellar evolutionary tracks, isochrones, colours and ISEDs can be obtained on request from the first author or from our website (http://www1.ynao.ac.cn/~zhangfh/). Using the isochrones, you can build your EPS models. Now the format of stellar evolutionary tracks is the same as that in the starburst99 code; you can put them into the starburst99 code and get the SP's results. Moreover, the colours involving other passbands or on other systems (e.g. HST F439W - F555W colour on AB system) can also be obtained on request.

  20. Introducing CUBES: the Cassegrain U-band Brazil-ESO spectrograph

    NASA Astrophysics Data System (ADS)

    Bristow, Paul; Barbuy, Beatriz; Macanhan, Vanessa B.; Castilho, Bruno; Dekker, Hans; Delabre, Bernard; Diaz, Marcos; Gneiding, Clemens; Kerber, Florian; Kuntschner, Harald; La Mura, Giovanni; Reiss, Roland; Vernet, J.

    2014-07-01

    CUBES is a high-efficiency, medium-resolution (R ≃ 20, 000) spectrograph dedicated to the "ground based UV" (approximately the wavelength range from 300 to 400nm) destined for the Cassegrain focus of one of ESO's VLT unit telescopes in 2018/19. The CUBES project is a joint venture between ESO and Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG) at the Universidade de São Paulo and the Brazilian Laboratório Nacional de Astrofísica (LNA). CUBES will provide access to a wealth of new and relevant information for stellar as well as extra-galactic sources. Principle science cases include the study of heavy elements in metal-poor stars, the direct determination of carbon, nitrogen and oxygen abundances by study of molecular bands in the UV range and the determination of the Beryllium abundance as well as the study of active galactic nuclei and the inter-galactic medium. With a streamlined modern instrument design, high efficiency dispersing elements and UV-sensitive detectors, it will enable a significant gain in sensitivity over existing ground based medium-high resolution spectrographs enabling vastly increased sample sizes accessible to the astronomical community. We present here a brief overview of the project, introducing the science cases that drive the design and discussing the design options and technological challenges.

  1. The mass-metallicity-star formation rate relation under the STARLIGHT microscope

    NASA Astrophysics Data System (ADS)

    Schlickmann, M.; Vale Asari, N.; Cid Fernandes, R.; Stasińska, G.

    2014-10-01

    The correlation between stellar mass and gas-phase oxygen abundance (M-Z relation) has been known for decades. The slope and scatter of this trend is strongly dependent on galaxy evolution: Chemical enrichment in a galaxy is driven by its star formation history, which in turn depends on its secular evolution and interaction with other galaxies and intergalactic gas. In last couple of years, the M-Z relation has been studied as a function of a third parameter: the recent star formation rate (SFR) as calibrated by the Hα luminosity, which traces stars formed in the last 10 Myr. This mass-metallicity-SFR relation has been reported to be very tight. This result puts strong constraints on galaxy evolution models in low and high redshifts, informing which models of infall and outflow of gas are acceptable. We explore the mass-metallicity-SFR relation in light of the SDSS-STARLIGHT database put together by our group. We find that we recover similar results as the ones reported by authors who use the MPA/JHU catalogue. We also present some preliminary results exploring the mass-metallicity-SFR relation in a more detailed fashion: starlight recovers a galaxy's full star formation history, and not only its recent SFR.

  2. High Energy Studies of Astrophysical Dust

    NASA Astrophysics Data System (ADS)

    Corrales, Lia Racquel

    Astrophysical dust---any condensed matter ranging from tens of atoms to micron sized grains---accounts for about one third of the heavy elements produced in stars and disseminated into space. These tiny pollutants are responsible for producing the mottled appearance in the spray of light we call the "Milky Way." However these seemingly inert particles play a strong role in the physics of the interstellar medium, aiding star and planet formation, and perhaps helping to guide galaxy evolution. Most dust grains are transparent to X-ray light, leaving a signature of atomic absorption, but also scattering the light over small angles. Bright X-ray objects serendipitously situated behind large columns of dust and gas provide a unique opportunity to study the dust along the line of sight. I focus primarily on X-ray scattering through dust, which produces a diffuse halo image around a central point source. Such objects have been observed around X-ray bright Galactic binaries and extragalactic objects that happen to shine through the plane of the Milky Way. I use the Chandra X-ray Observatory, a space-based laboratory operated by NASA, which has imaging resolution ideal for studying X-ray scattering halos. I examine several bright X-ray objects with dust-free sight lines to test their viability as templates and develop a parametric model for the Chandra HETG point spread function (PSF). The PSF describes the instrument's imaging response to a point source, an understanding of which is necessary for properly measuring the surface brightness of X-ray scattering halos. I use an HETG observation of Cygnus X-3, one of the brightest objects available in the Chandra archive, to derive a dust grain size distribution. There exist degenerate solutions for the dust scattering halo, but with the aid of Bayesian analytics I am able to apply prior knowledge about the Cyg X-3 sight line to measure the relative abundance of dust in intervening Milky Way spiral arms. I also demonstrate how information from a single scattering halo can be used in conjunction with X-ray spectroscopy to directly measure the dust-to-gas mass ratio, laying the groundwork for future scattering halo surveys. Distant quasars also produce X-rays that pierce the intergalactic medium. These sources invite the unique opportunity to search for extragalactic dust, whether distributed diffusely throughout intergalactic space, surrounding other galaxies, or occupying reservoirs of cool intergalactic gas. I review X-ray scattering in a cosmological context, examining the range and sensitivity of Chandra to detect the low surface brightness levels of intergalactic scattering. Of particular interest is large "grey" dust, which would cause systematic errors in precision cosmology experiments at a level comparable to the size of the error bars sought. This requires using the more exact Mie scattering treatment, which reduces the scattering cross-section for soft X-rays by a factor of about ten, compared to the Rayleigh-Gans approximation used for interstellar X-ray scattering studies. This allows me to relax the limit on intergalactic dust imposed by previous X-ray imaging of a z=4.3 quasar, QSO 1508+5714, which overestimated the scattering intensity. After implementing the Mie solution with the cosmological integral for scattering halo intensity, I found that intergalactic dust will scatter 1-3% of soft X-ray light. Unfortunately the wings of the Chandra PSF are brighter than the surface brightness expected for these intergalactic scattering halos. The X-ray signatures of intergalactic dust may only be visible if a distant quasar suddenly dimmed by a factor of 1000 or more, leaving behind an X-ray scattering echo, or "ghost" halo.

  3. The assembly histories of quiescent galaxies since z = 0.7 from absorption line spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, Jieun; Conroy, Charlie; Moustakas, John

    2014-09-10

    We present results from modeling the optical spectra of a large sample of quiescent galaxies between 0.1 < z < 0.7 from the Sloan Digital Sky Survey (SDSS) and the AGN and Galaxy Evolution Survey (AGES). We examine how the stellar ages and abundance patterns of galaxies evolve over time as a function of stellar mass from 10{sup 9.6}-10{sup 11.8} M {sub ☉}. Galaxy spectra are stacked in bins of mass and redshift and modeled over a wavelength range from 4000 Å to 5500 Å. Full spectrum stellar population synthesis modeling provides estimates of the age and the abundances ofmore » the elements Fe, Mg, C, N, and Ca. We find negligible evolution in elemental abundances at fixed stellar mass over roughly 7 Gyr of cosmic time. In addition, the increase in stellar ages with time for massive galaxies is consistent with passive evolution since z = 0.7. Taken together, these results favor a scenario in which the inner ∼0.3-3 R {sub e} of massive quiescent galaxies have been passively evolving over the last half of cosmic time. Interestingly, the derived stellar ages are considerably younger than the age of the universe at all epochs, consistent with an equivalent single-burst star formation epoch of z ≲ 1.5. These young stellar population ages coupled with the existence of massive quiescent galaxies at z > 1 indicate the inhomogeneous nature of the z ≲ 0.7 quiescent population. The data also permit the addition of newly quenched galaxies at masses below ∼10{sup 10.5} M {sub ☉} at z < 0.7. Additionally, we analyze very deep Keck DEIMOS spectra of the two brightest quiescent galaxies in a cluster at z = 0.83. There is tentative evidence that these galaxies are older than their counterparts in low-density environments. In the Appendix, we demonstrate that our full spectrum modeling technique allows for accurate and reliable modeling of galaxy spectra to low S/N (∼20 Å{sup –1}) and/or low spectral resolution (R ∼ 500).« less

  4. TRACING REJUVENATION EVENTS IN NEARBY S0 GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marino, Antonietta; Bianchi, Luciana; Thilker, David A.

    2011-08-01

    With the aim of characterizing rejuvenation processes in early-type galaxies, we analyzed five barred S0 galaxies showing a prominent outer ring in ultraviolet (UV) imaging. We analyzed Galaxy Evolution Explorer far-UV (FUV) and near-UV (NUV), and optical data using stellar population models and estimated the age and the stellar mass of the entire galaxies and the UV-bright ring structures. Outer rings consist of young ({approx}<200 Myr old) stellar populations, accounting for up to 70% of the FUV flux but containing only a few percent of the total stellar mass. Integrated photometry of the whole galaxies places four of these objectsmore » on the green valley, indicating a globally evolving nature. We suggest such galaxy evolution is likely driven by bar-induced instabilities, i.e., inner secular evolution, that conveys gas to the nucleus and the outer rings. At the same time, H I observations of NGC 1533 and NGC 2962 suggest external gas re-fueling can play a role in the rejuvenation processes of such galaxies.« less

  5. The Role Of Environment In Stellar Mass Growth

    NASA Astrophysics Data System (ADS)

    Thomas, Daniel

    2017-06-01

    In this talk I give a brief summary of methods to measure galaxy environment. I then discuss the dependence of stellar population properties on environmental density: it turns out that the latter are driven by galaxy mass, and galaxy environment only plays a secondary role, mostly at late times in low-mass galaxies. I show that this evidence has now been extended to stellar population gradients using the IFU survey SDSS/MaNGA that again turn out to be independent of environment, including central-satellite classification. Finally I present results from the DES, where the dependence of the stellar mass function with redshift and environmental density is explored. It is found that the fraction of massive galaxies is larger in high density environments than in low density environments. The low density and high density components converge with increasing redshift up to z 1.0 where the shapes of the mass function components are indistinguishable. This study shows how high density structures build up around massive galaxies through cosmic time, which sets new valuable constraints on galaxy formation models.

  6. Forming clusters within clusters: how 30 Doradus recollapsed and gave birth again

    NASA Astrophysics Data System (ADS)

    Rahner, Daniel; Pellegrini, Eric W.; Glover, Simon C. O.; Klessen, Ralf S.

    2018-01-01

    The 30 Doradus nebula in the Large Magellanic Cloud (LMC) contains the massive starburst cluster NGC 2070 with a massive and probably younger stellar sub clump at its centre: R136. It is not clear how such a massive inner cluster could form several million years after the older stars in NGC 2070, given that stellar feedback is usually thought to expel gas and inhibit further star formation. Using the recently developed 1D feedback scheme WARPFIELD to scan a large range of cloud and cluster properties, we show that an age offset of several million years between the stellar populations is in fact to be expected given the interplay between feedback and gravity in a giant molecular cloud with a density ≳500 cm-3 due to re-accretion of gas on to the older stellar population. Neither capture of field stars nor gas retention inside the cluster have to be invoked in order to explain the observed age offset in NGC 2070 as well as the structure of the interstellar medium around it.

  7. Simulated stellar kinematics studies of high-redshift galaxies with the HARMONI Integral Field Spectrograph

    NASA Astrophysics Data System (ADS)

    Kendrew, S.; Zieleniewski, S.; Houghton, R. C. W.; Thatte, N.; Devriendt, J.; Tecza, M.; Clarke, F.; O'Brien, K.; Häußler, B.

    2016-05-01

    We present a study into the capabilities of integrated and spatially resolved integral field spectroscopy of galaxies at z = 2-4 with the future HARMONI spectrograph for the European Extremely Large Telescope (E-ELT) using the simulation pipeline, HSIM. We focus particularly on the instrument's capabilities in stellar absorption line integral field spectroscopy, which will allow us to study the stellar kinematics and stellar population characteristics. Such measurements for star-forming and passive galaxies around the peak star formation era will provide a critical insight into the star formation, quenching and mass assembly history of high-z, and thus present-day galaxies. First, we perform a signal-to-noise study for passive galaxies at a range of stellar masses for z = 2-4, assuming different light profiles; for this population, we estimate that integrated stellar absorption line spectroscopy with HARMONI will be limited to galaxies with M* ≳ 1010.7 M⊙. Secondly, we use HSIM to perform a mock observation of a typical star-forming 1010 M⊙ galaxy at z = 3 generated from the high-resolution cosmological simulation NUTFB. We demonstrate that the input stellar kinematics of the simulated galaxy can be accurately recovered from the integrated spectrum in a 15-h observation, using common analysis tools. Whilst spatially resolved spectroscopy is likely to remain out of reach for this particular galaxy, we estimate HARMONI's performance limits in this regime from our findings. This study demonstrates how instrument simulators such as HSIM can be used to quantify instrument performance and study observational biases on kinematics retrieval; and shows the potential of making observational predictions from cosmological simulation output data.

  8. Stellar population gradients in galaxy discs from the CALIFA survey. The influence of bars

    NASA Astrophysics Data System (ADS)

    Sánchez-Blázquez, P.; Rosales-Ortega, F. F.; Méndez-Abreu, J.; Pérez, I.; Sánchez, S. F.; Zibetti, S.; Aguerri, J. A. L.; Bland-Hawthorn, J.; Catalán-Torrecilla, C.; Cid Fernandes, R.; de Amorim, A.; de Lorenzo-Caceres, A.; Falcón-Barroso, J.; Galazzi, A.; García Benito, R.; Gil de Paz, A.; González Delgado, R.; Husemann, B.; Iglesias-Páramo, Jorge; Jungwiert, B.; Marino, R. A.; Márquez, I.; Mast, D.; Mendoza, M. A.; Mollá, M.; Papaderos, P.; Ruiz-Lara, T.; van de Ven, G.; Walcher, C. J.; Wisotzki, L.

    2014-10-01

    While studies of gas-phase metallicity gradients in disc galaxies are common, very little has been done towards the acquisition of stellar abundance gradients in the same regions. We present here a comparative study of the stellar metallicity and age distributions in a sample of 62 nearly face-on, spiral galaxies with and without bars, using data from the CALIFA survey. We measure the slopes of the gradients and study their relation with other properties of the galaxies. We find that the mean stellar age and metallicity gradients in the disc are shallow and negative. Furthermore, when normalized to the effective radius of the disc, the slope of the stellar population gradients does not correlate with the mass or with the morphological type of the galaxies. In contrast to this, the values of both age and metallicity at ~2.5 scale lengths correlate with the central velocity dispersion in a similar manner to the central values of the bulges, although bulges show, on average, older ages and higher metallicities than the discs. One of the goals of the present paper is to test the theoretical prediction that non-linear coupling between the bar and the spiral arms is an efficient mechanism for producing radial migrations across significant distances within discs. The process of radial migration should flatten the stellar metallicity gradient with time and, therefore, we would expect flatter stellar metallicity gradients in barred galaxies. However, we do not find any difference in the metallicity or age gradients between galaxies with and without bars. We discuss possible scenarios that can lead to this lack of difference. Tables 1-3 and Appendices are available in electronic form at http://www.aanda.org

  9. Resolved Stellar Streams around NGC 4631 from a Subaru/Hyper Suprime-Cam Survey

    NASA Astrophysics Data System (ADS)

    Tanaka, Mikito; Chiba, Masashi; Komiyama, Yutaka

    2017-06-01

    We present the first results of the Subaru/Hyper Suprime-Cam survey of the interacting galaxy system, NGC 4631 and NGC 4656. From the maps of resolved stellar populations, we identify 11 dwarf galaxies (including already-known dwarfs) in the outer region of NGC 4631 and the two tidal stellar streams around NGC 4631, named Stream SE and Stream NW, respectively. This paper describes the fundamental properties of these tidal streams. Based on the tip of the red giant branch method and the Bayesian statistics, we find that Stream SE (7.10 Mpc in expected a posteriori, EAP, with 90% credible intervals of [6.22, 7.29] Mpc) and Stream NW (7.91 Mpc in EAP with 90% credible intervals of [6.44, 7.97] Mpc) are located in front of and behind NGC 4631, respectively. We also calculate the metallicity distribution of stellar streams by comparing the member stars with theoretical isochrones on the color-magnitude diagram. We find that both streams have the same stellar population based on the Bayesian model selection method, suggesting that they originated from a tidal interaction between NGC 4631 and a single dwarf satellite. The expected progenitor has a positively skewed metallicity distribution function with {[M/H]}{EAP}=-0.92, with 90% credible intervals of [-1.46, -0.51]. The stellar mass of the progenitor is estimated as 3.7× {10}8 {M}⊙ , with 90% credible intervals of [5.8× {10}6,8.6× {10}9] {M}⊙ based on the mass-metallicity relation for Local group dwarf galaxies. This is in good agreement with the initial stellar mass of the progenitor that was presumed in the previous N-body simulation.

  10. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Star formation history of passive red galaxies

    NASA Astrophysics Data System (ADS)

    Siudek, M.; Małek, K.; Scodeggio, M.; Garilli, B.; Pollo, A.; Haines, C. P.; Fritz, A.; Bolzonella, M.; de la Torre, S.; Granett, B. R.; Guzzo, L.; Abbas, U.; Adami, C.; Bottini, D.; Cappi, A.; Cucciati, O.; De Lucia, G.; Davidzon, I.; Franzetti, P.; Iovino, A.; Krywult, J.; Le Brun, V.; Le Fèvre, O.; Maccagni, D.; Marchetti, A.; Marulli, F.; Polletta, M.; Tasca, L. A. M.; Tojeiro, R.; Vergani, D.; Zanichelli, A.; Arnouts, S.; Bel, J.; Branchini, E.; Ilbert, O.; Gargiulo, A.; Moscardini, L.; Takeuchi, T. T.; Zamorani, G.

    2017-01-01

    Aims: We trace the evolution and the star formation history of passive red galaxies, using a subset of the VIMOS Public Extragalactic Redshift Survey (VIPERS). The detailed spectral analysis of stellar populations of intermediate-redshift passive red galaxies allows the build up of their stellar content to be followed over the last 8 billion years. Methods: We extracted a sample of passive red galaxies in the redshift range 0.4

  11. Probing reionization with the cross-power spectrum of 21 cm and near-infrared radiation backgrounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mao, Xiao-Chun, E-mail: xcmao@bao.ac.cn

    2014-08-01

    The cross-correlation between the 21 cm emission from the high-redshift intergalactic medium and the near-infrared (NIR) background light from high-redshift galaxies promises to be a powerful probe of cosmic reionization. In this paper, we investigate the cross-power spectrum during the epoch of reionization. We employ an improved halo approach to derive the distribution of the density field and consider two stellar populations in the star formation model: metal-free stars and metal-poor stars. The reionization history is further generated to be consistent with the electron-scattering optical depth from cosmic microwave background measurements. Then, the intensity of the NIR background is estimatedmore » by collecting emission from stars in first-light galaxies. On large scales, we find that the 21 cm and NIR radiation backgrounds are positively correlated during the very early stages of reionization. However, these two radiation backgrounds quickly become anti-correlated as reionization proceeds. The maximum absolute value of the cross-power spectrum is |Δ{sub 21,NIR}{sup 2}|∼10{sup −4} mK nW m{sup –2} sr{sup –1}, reached at ℓ ∼ 1000 when the mean fraction of ionized hydrogen is x-bar{sub i}∼0.9. We find that Square Kilometer Array can measure the 21 cm-NIR cross-power spectrum in conjunction with mild extensions to the existing CIBER survey, provided that the integration time independently adds up to 1000 and 1 hr for 21 cm and NIR observations, and that the sky coverage fraction of the CIBER survey is extended from 4 × 10{sup –4} to 0.1. Measuring the cross-correlation signal as a function of redshift provides valuable information on reionization and helps confirm the origin of the 'missing' NIR background.« less

  12. The Warm-Hot Intergalactic Medium Explorer (WHIMex) Mission Concept

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Cash, W. C.; McEntaffer, R. L.; Zhang, W.; O'Dell, S.; Bautz, M.; Elvis, M.

    2011-05-01

    WHIMEx is a low-cost, highly capable, single instrument X-ray observatory proposed as a NASA Explorer 2011 mission. WHIMEx will use high resolution X-ray spectroscopy (R ≥ 4000) to probe the hot, tenuous gas that populates the great stretches between the galaxies - the place where most of the baryons in the Universe reside. The bulk of this gas is so hot that it can only be studied in the soft X-ray region where the atomic diagnostics for highly ionized species reside. And this gas is so tenuous that it can only be observed in absorption. To detect the absorption lines of O VII and O VIII along the line of sight to distant AGN requires an order of magnitude improvement in both spectral resolution and collecting area over the current best X-ray spectrographs on Chandra and XMM-Newton. WHIMEx achieves this goal in a compact and affordable package through the application of technologies that were developed over the last decade for the International X-ray Observatory. WHIMex uses ultra-thin, light, densely nested parabolic-hyperbolic mirror pairs to create a telescope with a high collecting area and 15 arcsecond resolution. The X-ray beam is dispersed in wavelength by an array of radial gratings in the extreme off-plane mount. Spectral resolving power of 4000 (λ/δλ) is expected in the 0.15 to 2keV band to bring weak absorption lines out of the noise. A collecting area up to 360 cm2 will enable spectral observations of high red shift AGNs.If selected WHIMEx could be launched in mid- 2017 on a Taurus or Athena II from Vandenberg AFB into its 540 km, 70° inclination low earth orbit. In flight, it would open up a new field of exploration with high resolution observations of AGN outflows, the IGM, interstellar medium, mass transfer binaries, stellar coronae and much more

  13. The Warm-Hot Intergalactic Medium Explorer (WHIMex)

    NASA Astrophysics Data System (ADS)

    Lillie, Charles F.; Cash, W. C.; Science, WHIMex; Instrument Teams

    2011-09-01

    WHIMex is a low-cost, highly capable, single instrument X-ray observatory proposed as a NASA Explorer 2011 mission. WHIMex will use high resolution X-ray spectroscopy (R ≥ 4000) to probe the hot, tenuous gas that populates the great stretches between the galaxies - the place where most of the baryons in the Universe reside. The bulk of this gas is so hot that it can only be studied in the soft X-ray region where the atomic diagnostics for highly ionized species reside. And this gas is so tenuous that it can only be observed in absorption. To detect the absorption lines of O VII and O VIII along the line of sight to distant AGN requires an order of magnitude improvement in both spectral resolution and collecting area over the current best X-ray spectrographs on Chandra and XMM-Newton. WHIMex achieves this goal in a compact and affordable package through the application of technologies that were developed over the last decade for the International X-ray Observatory. WHIMex uses ultra-thin, light, densely nested parabolic-hyperbolic mirror pairs to create a telescope with a high collecting area and <15 arcsecond resolution. The X-ray s are dispersed in wavelength by an array of radial gratings in the extreme off-plane mount. Spectral resolving power of 4000 (λ/δλ) is expected in the 0.3 to 0.8 keV band to bring weak absorption lines out of the noise. A collecting area up to 360 cm2 will enable spectral observations of high red shift AGNs. If selected WHIMex could be launched in mid- 2017 on a Taurus or Athena II from Vandenberg AFB into a 540 km, 70° inclination low earth orbit. In flight, it would open a new field of exploration with high resolution observations of AGN outflows, the IGM, Interstellar Medium, mass transfer binaries, stellar coronae and much more.

  14. Stellar Populations with the LSST

    NASA Astrophysics Data System (ADS)

    Saha, Abhijit; Olsen, K.; LSST Stellar Populations Collaboration

    2006-12-01

    The LSST will produce a multi-color map and photometric object catalog of half the sky to g 27.5(5σ). Strategically cadenced time-space sampling of each field spanning ten years will allow variability, proper motion and parallax measurements for objects brighter than g 25. As part of providing an unprecedented map of the Galaxy, the accurate multi-band photometry will permit photometric parallaxes, chemical abundances and a handle on ages via colors at turn-off for main-sequence stars at all distances within the Galaxy, permitting a comprehensive study of star formation histories (SFH) and chemical evolution for field stars. With a geometric parallax accuracy of 1mas, LSST will produce a robust complete sample of the solar neighborhood stars. While delivering parallax accuracy comparable to HIPPARCOS, LSST will extend the catalog to more than a 10 magnitudes fainter limit, and will be complete to MV 15. In the Magellanic Clouds too, the photometry will reach MV +8, allowing the SFH and chemical signatures in the expansive outer extremities to be gleaned from their main sequence stars. This in turn will trace the detailed interaction of the Clouds with the Galaxy halo. The LSST time sampling will identify and characterize variable stars of all types, from time scales of 1hr to several years, a feast for variable star astrophysics. Cepheids and LPVs in all galaxies in the Sculptor, M83 and Cen-A groups are obvious data products: comparative studies will reveal systematic differences with galaxy properties, and help to fine tune the rungs of the distance ladder. Dwarf galaxies within 10Mpc that are too faint to find from surface brightness enhancements will be revealed via over-densities of their red giants: this systematic census will extend the luminosity function of galaxies to the faint limit. Novae discovered by LSST time sampling will trace intergalactic stars out to the Virgo and Fornax clusters.

  15. Wide-field Precision Kinematics of the M87 Globular Cluster System

    NASA Astrophysics Data System (ADS)

    Strader, Jay; Romanowsky, Aaron J.; Brodie, Jean P.; Spitler, Lee R.; Beasley, Michael A.; Arnold, Jacob A.; Tamura, Naoyuki; Sharples, Ray M.; Arimoto, Nobuo

    2011-12-01

    We present the most extensive combined photometric and spectroscopic study to date of the enormous globular cluster (GC) system around M87, the central giant elliptical galaxy in the nearby Virgo Cluster. Using observations from DEIMOS and the Low Resolution Imaging Spectrometer at Keck, and Hectospec on the Multiple Mirror Telescope, we derive new, precise radial velocities for 451 GCs around M87, with projected radii from ~5 to 185 kpc. We combine these measurements with literature data for a total sample of 737 objects, which we use for a re-examination of the kinematics of the GC system of M87. The velocities are analyzed in the context of archival wide-field photometry and a novel Hubble Space Telescope catalog of half-light radii, which includes sizes for 344 spectroscopically confirmed clusters. We use this unique catalog to identify 18 new candidate ultracompact dwarfs and to help clarify the relationship between these objects and true GCs. We find much lower values for the outer velocity dispersion and rotation of the GC system than in earlier papers and also differ from previous work in seeing no evidence for a transition in the inner halo to a potential dominated by the Virgo Cluster, nor for a truncation of the stellar halo. We find little kinematical evidence for an intergalactic GC population. Aided by the precision of the new velocity measurements, we see significant evidence for kinematical substructure over a wide range of radii, indicating that M87 is in active assembly. A simple, scale-free analysis finds less dark matter within ~85 kpc than in other recent work, reducing the tension between X-ray and optical results. In general, out to a projected radius of ~150 kpc, our data are consistent with the notion that M87 is not dynamically coupled to the Virgo Cluster; the core of Virgo may be in the earliest stages of assembly.

  16. Multi-scale, Hierarchically Nested Young Stellar Structures in LEGUS Galaxies

    NASA Astrophysics Data System (ADS)

    Thilker, David A.; LEGUS Team

    2017-01-01

    The study of star formation in galaxies has predominantly been limited to either young stellar clusters and HII regions, or much larger kpc-scale morphological features such as spiral arms. The HST Legacy ExtraGalactic UV Survey (LEGUS) provides a rare opportunity to link these scales in a diverse sample of nearby galaxies and obtain a more comprehensive understanding of their co-evolution for comparison against model predictions. We have utilized LEGUS stellar photometry to identify young, resolved stellar populations belonging to several age bins and then defined nested hierarchical structures as traced by these subsamples of stars. Analagous hierarchical structures were also defined using LEGUS catalogs of unresolved young stellar clusters. We will present our emerging results concerning the physical properties (e.g. area, star counts, stellar mass, star formation rate, ISM characteristics), occupancy statistics (e.g. clusters per substructure versus age and scale, parent/child demographics) and relation to overall galaxy morphology/mass for these building blocks of hierarchical star-forming structure.

  17. The Perseus Cluster: Bridging the Extremes of Stellar Systems

    NASA Astrophysics Data System (ADS)

    Harris, William

    2017-08-01

    The Perseus cluster (Abell 426) at d=75 Mpc is as massive and diverse as Virgo and Coma and displays a rich laboratory for studying galaxy evolution. Its massive X-ray halo gas component and its high proportion of large early-type galaxies point to a long history of dynamical interaction amongst the cluster members. The central supergiant, NGC 1275, is perhaps the most active galaxy in the local universe, with a spectacular network of H-alpha filaments, cooling flows, feedback, and prominent star formation in plain view. We propose to use the Globular Cluster (GC) populations in the Perseus region with two-band imaging to pursue three connected goals: the stellar Intracluster Medium (ICM); its Ultra-Diffuse Galaxies (UDGs); and the GC populations in the Perseus core galaxies. Our analysis of a few HST/ACS Archival images covering the Perseus core strongly indicates that a substantial Intragalactic GC component is present. Our newly discovered sample of UDGs in Perseus covers the entire parameter space of these intriguing galaxies and will be thoroughly sampled in our study: are they 'failed' underluminous galaxies with high masses, or are they a mixed bag? For all our goals, the GC populations will act as powerful tracers of the dominant old stellar populations - their metallicity distributions and total populations in the ICM, the UDGs, and the three largest E galaxies in Perseus. As a bonus, we expect to find 200 new Ultra-Compact Dwarfs (UCDs) and half a dozen rare compact ellipticals (cEs). The scientific payoffs will include a broader understanding of the nature and history of all these types of galaxies and their stripped stellar material.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuncarayakti, Hanindyo; Maeda, Keiichi; Doi, Mamoru

    Integral field spectroscopy of 11 Type Ib/Ic supernova (SN Ib/Ic) explosion sites in nearby galaxies has been obtained using UH88/SNIFS and Gemini-N/GMOS. The use of integral field spectroscopy enables us to obtain both spatial and spectral information about the explosion site, enabling the identification of the parent stellar population of the SN progenitor star. The spectrum of the parent population provides metallicity determination via strong-line method and age estimation obtained via comparison with simple stellar population models. We adopt this information as the metallicity and age of the SN progenitor, under the assumption that it was coeval with the parentmore » stellar population. The age of the star corresponds to its lifetime, which in turn gives the estimate of its initial mass. With this method we were able to determine both the metallicity and initial (zero-age main sequence) mass of the progenitor stars of SNe Ib and Ic. We found that on average SN Ic explosion sites are more metal-rich and younger than SN Ib sites. The initial mass of the progenitors derived from parent stellar population age suggests that SN Ic has more massive progenitors than SN Ib. In addition, we also found indication that some of our SN progenitors are less massive than {approx}25 M{sub Sun }, indicating that they may have been stars in a close binary system that have lost their outer envelope via binary interactions to produce SNe Ib/Ic, instead of single Wolf-Rayet stars. These findings support the current suggestions that both binary and single progenitor channels are in effect in producing SNe Ib/Ic. This work also demonstrates the power of integral field spectroscopy in investigating SN environments and active star-forming regions.« less

  19. IGMtransmission: Transmission curve computation

    NASA Astrophysics Data System (ADS)

    Harrison, Christopher M.; Meiksin, Avery; Stock, David

    2015-04-01

    IGMtransmission is a Java graphical user interface that implements Monte Carlo simulations to compute the corrections to colors of high-redshift galaxies due to intergalactic attenuation based on current models of the Intergalactic Medium. The effects of absorption due to neutral hydrogen are considered, with particular attention to the stochastic effects of Lyman Limit Systems. Attenuation curves are produced, as well as colors for a wide range of filter responses and model galaxy spectra. Photometric filters are included for the Hubble Space Telescope, the Keck telescope, the Mt. Palomar 200-inch, the SUBARU telescope and UKIRT; alternative filter response curves and spectra may be readily uploaded.

  20. Fluctuations in microwave background radiation due to secondary ionization of the intergalactic gas in the universe

    NASA Technical Reports Server (NTRS)

    Sunyayev, R. A.

    1979-01-01

    Secondary heating and ionization of the intergalactic gas at redshifts z approximately 10-30 could lead to the large optical depth of the Universe for Thomson scattering and could smooth the primordial fluctuations formed at z approximately 1500. It is shown that the gas motions connected with the large scale density perturbations at z approximately 10-15 must lead to the generation of secondary fluctuations of microwave background. The contribution of the rich clusters of galaxies and young galaxies to the fluctuations of microwave background is also estimated.

  1. Uncovering the Detailed Structure and Dynamics of Andromeda's Complex Stellar Disk

    NASA Astrophysics Data System (ADS)

    Dorman, Claire; Guhathakurta, Puragra; Seth, Anil; Dalcanton, Julianne; Widrow, Larry; Splash Team, Phat Team

    2015-01-01

    Lambda cold dark matter (LCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion ~150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with LCDM cosmological predictions.This research was funded by grants from the NSF and NASA/STScI.

  2. Structure and dynamics of Andromeda's stellar disk

    NASA Astrophysics Data System (ADS)

    Dorman, Claire Elise

    2015-10-01

    Lambda cold dark matter (LambdaCDM) cosmology predicts that the disks of Milky Way-mass galaxies should have undergone at least one merger with a large (mass ratio 1:10) satellite in the last several Gyr. However, the stellar disk in the solar neighborhood of the Milky Way is too thin and dynamically cold to have experienced such an impact. The dynamics of the nearby Andromeda galaxy can serve as a second data point, and help us understand whether the Milky Way may simply have had an unusually quiescent merger history, or whether LambdaCDM theory needs to be revisited. Over the last few years, we have carried out a detailed study of the resolved stellar populations in the disk of the Andromeda galaxy using data from two surveys: six-filter Hubble Space Telescope photometry from the recently-completed Panchromatic Hubble Andromeda Treasury (PHAT) survey, and radial velocities derived from Keck/DEIMOS optical spectra obtained as part of the Spectroscopic and Photometric Landscape of Andromeda's Stellar 0Halo (SPLASH) program. These detailed, multidimensional data sets allow us to decouple the structural subcomponents and characterize them individually. We find that an old, dynamically hot (velocity dispersion 150 km/s) RGB population extends out to 20 kpc (the edge of the visible disk) but has a disk-like surface brightness profile and luminosity function. This population may have originated in the disk but been kicked out subsequently in impacts with satellite galaxies. We also study the kinematics of the disk as a function of the age of stellar tracers, and find a direct correlation between age and velocity dispersion, indicating that Andromeda has undergone a continuous heating or disk settling process throughout its lifetime. Overall, both the velocity dispersion of Andromeda's disk and the slope of the velocity dispersion vs. stellar age curve are several times those of the Milky Way's, suggesting a more active merger history more in line with LambdaCDM cosmological predictions.

  3. Newborn Spheroidal Galaxies at High Redshift (1

    NASA Astrophysics Data System (ADS)

    Kaviraj, Sugata; Cohen, S. H.; Ellis, R. S.; O'Connell, R. W.; Windhorst, R. A.; Silk, J.; Science Organising Committee, WFC3

    2013-01-01

    While the majority 80%) of the stellar mass in today’s spheroidal galaxies (SGs) is old, surprisingly little is known about exactly when and how these stars formed in the early Universe. This requires a survey-scale study of primordial SGs in the early Universe, which is only now becoming possible. Exploiting rest-frame UV-optical data from the Wide Field Camera 3 Early-Release Science programme, we present a statistical study of primordial SGs around the epoch of peak cosmic star formation (1 1011.5 M⊙ are ~2 Gyrs older than their counterparts with M* < 1010.5 M⊙. Nevertheless, a smooth downsizing trend with galaxy mass is not observed, and the large scatter in starburst ages indicates that SGs are not a particularly coeval population. Around 50% of these primordial SGs do not build their stars via major mergers, and those that have experienced a recent major merger show only marginally bluer colours and mild enhancements in specific star formation rate of ~40%. This points (empirically) to processes other than major mergers (e.g. minor mergers and cold streams), as the dominant channel of mass assembly in primordial SGs and, by extension, the assembly of the old stellar populations that dominate today’s Universe.

  4. Constraining Stellar Population Models. I. Age, Metallicity and Abundance Pattern Compilation for Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Roediger, Joel C.; Courteau, Stéphane; Graves, Genevieve; Schiavon, Ricardo P.

    2014-01-01

    We present an extensive literature compilation of age, metallicity, and chemical abundance pattern information for the 41 Galactic globular clusters (GGCs) studied by Schiavon et al. Our compilation constitutes a notable improvement over previous similar work, particularly in terms of chemical abundances. Its primary purpose is to enable detailed evaluations of and refinements to stellar population synthesis models designed to recover the above information for unresolved stellar systems based on their integrated spectra. However, since the Schiavon sample spans a wide range of the known GGC parameter space, our compilation may also benefit investigations related to a variety of astrophysical endeavors, such as the early formation of the Milky Way, the chemical evolution of GGCs, and stellar evolution and nucleosynthesis. For instance, we confirm with our compiled data that the GGC system has a bimodal metallicity distribution and is uniformly enhanced in the α elements. When paired with the ages of our clusters, we find evidence that supports a scenario whereby the Milky Way obtained its globular clusters through two channels: in situ formation and accretion of satellite galaxies. The distributions of C, N, O, and Na abundances and the dispersions thereof per cluster corroborate the known fact that all GGCs studied so far with respect to multiple stellar populations have been found to harbor them. Finally, using data on individual stars, we verify that stellar atmospheres become progressively polluted by CN(O)-processed material after they leave the main sequence. We also uncover evidence which suggests that the α elements Mg and Ca may originate from more than one nucleosynthetic production site. We estimate that our compilation incorporates all relevant analyses from the literature up to mid-2012. As an aid to investigators in the fields named above, we provide detailed electronic tables of the data upon which our work is based at http://www.astro.queensu.ca/people/Stephane_Courteau/roediger2013/index.html.

  5. Planet population synthesis driven by pebble accretion in cluster environments

    NASA Astrophysics Data System (ADS)

    Ndugu, N.; Bitsch, B.; Jurua, E.

    2018-02-01

    The evolution of protoplanetary discs embedded in stellar clusters depends on the age and the stellar density in which they are embedded. Stellar clusters of young age and high stellar surface density destroy protoplanetary discs by external photoevaporation and stellar encounters. Here, we consider the effect of background heating from newly formed stellar clusters on the structure of protoplanetary discs and how it affects the formation of planets in these discs. Our planet formation model is built on the core accretion scenario, where we take the reduction of the core growth time-scale due to pebble accretion into account. We synthesize planet populations that we compare to observations obtained by radial velocity measurements. The giant planets in our simulations migrate over large distances due to the fast type-II migration regime induced by a high disc viscosity (α = 5.4 × 10-3). Cold Jupiters (rp > 1 au) originate preferably from the outer disc, due to the large-scale planetary migration, while hot Jupiters (rp < 0.1 au) preferably form in the inner disc. We find that the formation of gas giants via pebble accretion is in agreement with the metallicity correlation, meaning that more gas giants are formed at larger metallicity. However, our synthetic population of isolated stars host a significant amount of giant planets even at low metallicity, in contradiction to observations where giant planets are preferably found around high metallicity stars, indicating that pebble accretion is very efficient in the standard pebble accretion framework. On the other hand, discs around stars embedded in cluster environments hardly form any giant planets at low metallicity in agreement with observations, where these changes originate from the increased temperature in the outer parts of the disc, which prolongs the core accretion time-scale of the planet. We therefore conclude that the outer disc structure and the planet's formation location determines the giant planet occurrence rate and the formation efficiency of cold and hot Jupiters.

  6. Tracers of Star Formation in the Near Infrared

    NASA Astrophysics Data System (ADS)

    Martins, L.; Ardila, A.; Gruenwald, R.; de Souza, R.

    2010-04-01

    Starburst features in the optical are nowadays well known, but the use of this knowledge is not always possible (e.g. objects heavily obscured). In this case the near-IR is of unprecedented value. Recent models show that TP-AGB stars should dominate the NIR spectra of populations 0.3 to 2 Gyr old. While the optical spectra is insensitive to the presence of these stars, the near-IR changes dramatically. Not only does the absolute flux in the near-IR is affected, but also peculiar absorption features appear. These features can be used as indicators of 1 Gyr stellar population. In this work we used the IRTF Spex to create the first empirical database of NIR spectra of carefully selected starbursts, to test for the first time and in a consistent way the new stellar population models that account for the TP-AGB. The methodology used is to do stellar population synthesis in the optical and in the NIR, and compare the predictions of both spectral regions. We also compare the strength of important features of the TP-AGB stars, like the CN (1.1 microns) and CO (2.3 microns) bands with optical diagnostics.

  7. ASTEROSEISMIC CLASSIFICATION OF STELLAR POPULATIONS AMONG 13,000 RED GIANTS OBSERVED BY KEPLER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stello, Dennis; Bedding, Timothy R.; Benomar, Othman

    2013-03-10

    Of the more than 150,000 targets followed by the Kepler Mission, about 10% were selected as red giants. Due to their high scientific value, in particular for Galaxy population studies and stellar structure and evolution, their Kepler light curves were made public in late 2011. More than 13,000 (over 85%) of these stars show intrinsic flux variability caused by solar-like oscillations making them ideal for large-scale asteroseismic investigations. We automatically extracted individual frequencies and measured the period spacings of the dipole modes in nearly every red giant. These measurements naturally classify the stars into various populations, such as the redmore » giant branch, the low-mass (M/M{sub Sun} {approx}< 1.8) helium-core-burning red clump, and the higher-mass (M/M{sub Sun} {approx}> 1.8) secondary clump. The period spacings also reveal that a large fraction of the stars show rotationally induced frequency splittings. This sample of stars will undoubtedly provide an extremely valuable source for studying the stellar population in the direction of the Kepler field, in particular when combined with complementary spectroscopic surveys.« less

  8. Demographics of Starbursts in Nearby Seyfert Galaxies

    NASA Astrophysics Data System (ADS)

    Schinnerer, E.; Colbert, E.; Armus, L.; Scoville, N. Z.; Heckman, T.

    2002-12-01

    We investigate the frequency of circumnuclear starbursts in Seyfert galaxies using medium-resolution H and K band spectroscopy. An unbiased sample of ~20 nearby Seyfert galaxies was observed at the KeckII telescope with an average seeing of ~0.7''. Preliminary analysis shows strong stellar absorption lines for most galaxies in our sample. Comparison of stellar equivalent widths in the H and K band will allow us to determine the average age of the dominating stellar population. Evidence for an age trend with Seyfert type would provide a strong hint toward a starburst/AGN connection.

  9. No Evidence for Multiple Stellar Populations in the Low-mass Galactic Globular Cluster E 3

    NASA Astrophysics Data System (ADS)

    Salinas, Ricardo; Strader, Jay

    2015-08-01

    Multiple stellar populations are a widespread phenomenon among Galactic globular clusters. Even though the origin of the enriched material from which new generations of stars are produced remains unclear, it is likely that self-enrichment will be feasible only in clusters massive enough to retain this enriched material. We searched for multiple populations in the low mass (M˜ 1.4× {10}4 {M}⊙ ) globular cluster E3, analyzing SOAR/Goodman multi-object spectroscopy centered on the blue cyanogen (CN) absorption features of 23 red giant branch stars. We find that the CN abundance does not present the typical bimodal behavior seen in clusters hosting multistellar populations, but rather a unimodal distribution that indicates the presence of a genuine single stellar population, or a level of enrichment much lower than in clusters that show evidence for two populations from high-resolution spectroscopy. E3 would be the first bona fide Galactic old globular cluster where no sign of self-enrichment is found. Based on observations obtained at the Southern Astrophysical Research (SOAR) Telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the US National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  10. Probing star formation and feedback in dwarf galaxies. Integral field view of the blue compact galaxy Tololo 1937-423

    NASA Astrophysics Data System (ADS)

    Cairós, L. M.; González-Pérez, J. N.

    2017-12-01

    Context. Blue compact galaxies (BCG) are gas-rich, low-mass, small systems that form stars at unusually high rates. This makes them excellent laboratories for investigating the process of star-formation (SF) at galactic scales and the effects of massive stellar feedback on the interstellar (and intergalactic) medium. Aims: We analyzed the BCG Tololo 1937-423 using optical integral field spectroscopy to probe its morphology, stellar content, nebular excitation and ionization properties, and the kinematics of its warm ionized gas. Methods: Tololo 1937-423 was observed with the Visible Multi-Object Spectrograph at the Very Large Telescope. We took data in the wavelength range 4150-7400 Å, covering a field of view of 27″× 27″ on the sky with a spatial sampling of 0.̋67. From these data we built maps in the continuum and brighter emission lines, diagnostic line ratio maps, and velocity dispersion fields. We also generated the integrated spectrum of the main H II regions and young stellar clusters to determine reliable physical parameters and oxygen abundances. Results: We found that Tololo 1937-423 is currently undergoing an extended starburst. In the Hα maps we identified nine major clumps, aligned mostly northeast-southwest, and stretching to galactocentric distances ≥2 kpc. The galaxy presents a single continuum peak that is not cospatial with any knot in emission lines, indicating at least two relatively recent episodes of SF. The inhomogeneous dust distribution reachs its maximum (E(B-V) 0.97) roughly at the position of the continuum peak. We found shocked regions in the galaxy outer regions and at the edges of the SF knots. The oxygen abundance, 12 + log(O/H) 8.20 ± 0.1, is similar in all the SF regions, suggesting a chemically homogeneous ionized interstellar medium over spatial scales of several kpc. The ionized gas kinematics displays an overall regular rotation around a northwest-southeast axis, with a maximum velocity of 70 ± 7 km s-1. Conclusions: The morphology of the galaxy and the two different episodes of SF suggest a scenario of triggered (induced by supernova shock waves) SF acting in Tololo 1937-423. The inferred ages for the different SF episodes ( 13-80 Myr for the central post-starburst and 5-7 Myr for the ongoing SF) are consistent with triggered SF, with the most recent SF episode caused by the collective effect of stellar winds and supernova explosions from the central post-starburst. The velocity dispersion pattern, with higher velocity dispersions found at the edges of the SF regions, and shocked regions in the galaxy, also favor this scenario. Based on observations made with ESO Telescopes at Paranal Observatory under programme ID 079.B-0445.

  11. The Intermediate Stellar Population in R136 Determined from Hubble Space Telescope Images

    NASA Astrophysics Data System (ADS)

    Hunter, D. A.; WFPC1 IDT; WFPC2 IDT

    1994-12-01

    We have analyzed Hubble Space Telescope (HST) images of the compact, luminous star cluster R136 in the LMC that were taken with the refurbished HST and new Wide Field/Planetary Camera. These images allow us to examine the stellar population in a region of unusually intense star formation at a scale of 0.01 pc. We have detected stars to 23.5 in F555W and have quantified the stellar population to an M_{555,o} of 0.9 or a mass of 2.8 cal Msolar . Comparisons of HR diagrams with isochrones that were constructed for the HST flight filter system from theoretical stellar evolutionary tracks reveal massive stars, a main sequence to at least 2.8 cal Msolar , and stars with M_{555,o}>=0.5 still on pre-main sequence tracks. The average stellar population is fit with a 3--4 Myr isochrone. Contrary to expectations from star formation models, however, the formation period for the massive stars and lower mass stars appear to largely overlap. We have measured the IMF for stars 2.8--15 cal Msolar in three annuli from 0.5--4.7 pc from the center of the cluster. The slopes of the IMF in all three annuli are the same within the uncertainties, thus, showing no evidence for mass segregation beyond 0.5 pc. Furthermore, the combined IMF slope, -1.2+/-0.1, is close to a normal Salpeter IMF. The lower mass limit must be lower than the limits of our measurements: <=2.8 cal Msolar beyond 0.5 pc and <=7 cal Msolar within 0.1 pc. This is contrary to some predictions that the lower mass limit could be as high as 10 cal Msolar in regions of intense massive star formation. Integrated properties of R136 are consistent with its being comparable to a rather small globular cluster when such clusters were the same age as R136.

  12. The ATLAS3D project - XXVII. Cold gas and the colours and ages of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Young, Lisa M.; Scott, Nicholas; Serra, Paolo; Alatalo, Katherine; Bayet, Estelle; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, Martin; Crocker, Alison F.; Cappellari, Michele; Davies, Roger L.; Davis, Timothy A.; de Zeeuw, P. T.; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; McDermid, Richard M.; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Weijmans, Anne-Marie

    2014-11-01

    We present a study of the cold gas contents of the ATLAS3D early-type galaxies, in the context of their optical colours, near-ultraviolet colours and Hβ absorption line strengths. Early-type (elliptical and lenticular) galaxies are not as gas poor as previously thought, and at least 40 per cent of local early-type galaxies are now known to contain molecular and/or atomic gas. This cold gas offers the opportunity to study recent galaxy evolution through the processes of cold gas acquisition, consumption (star formation) and removal. Molecular and atomic gas detection rates range from 10 to 34 per cent in red sequence early-type galaxies, depending on how the red sequence is defined, and from 50 to 70 per cent in blue early-type galaxies. Notably, massive red sequence early-type galaxies (stellar masses >5 × 1010 M⊙, derived from dynamical models) are found to have H I masses up to M(H I)/M* ˜ 0.06 and H2 masses up to M(H2)/M* ˜ 0.01. Some 20 per cent of all massive early-type galaxies may have retained atomic and/or molecular gas through their transition to the red sequence. However, kinematic and metallicity signatures of external gas accretion (either from satellite galaxies or the intergalactic medium) are also common, particularly at stellar masses ≤5 × 1010 M⊙, where such signatures are found in ˜50 per cent of H2-rich early-type galaxies. Our data are thus consistent with a scenario in which fast rotator early-type galaxies are quenched former spiral galaxies which have undergone some bulge growth processes, and in addition, some of them also experience cold gas accretion which can initiate a period of modest star formation activity. We discuss implications for the interpretation of colour-magnitude diagrams.

  13. The Hubble Space Telescope UV Legacy Survey of Galactic globular clusters - XIV. Multiple stellar populations within M 15 and their radial distribution

    NASA Astrophysics Data System (ADS)

    Nardiello, D.; Milone, A. P.; Piotto, G.; Anderson, J.; Bedin, L. R.; Bellini, A.; Cassisi, S.; Libralato, M.; Marino, A. F.

    2018-06-01

    In the context of the Hubble Space Telescope UV Survey of Galactic globular clusters (GCs), we derived high-precision, multi-band photometry to investigate the multiple stellar populations in the massive and metal-poor GC M 15. By creating for red-giant branch (RGB) stars of the cluster a `chromosome map', which is a pseudo two-colour diagram made with appropriate combination of F275W, F336W, F438W, and F814W magnitudes, we revealed colour spreads around two of the three already known stellar populations. These spreads cannot be produced by photometric errors alone and could hide the existence of (two) additional populations. This discovery increases the complexity of the multiple-population phenomenon in M 15. Our analysis shows that M 15 exhibits a faint sub-giant branch (SGB), which is also detected in colour-magnitude diagrams (CMDs) made with optical magnitudes only. This poorly populated SGB includes about 5 per cent of the total number of SGB stars and evolves into a red RGB in the mF336W versus mF336W - mF814W CMD, suggesting that M 15 belongs to the class of Type II GCs. We measured the relative number of stars in each population at various radial distances from the cluster centre, showing that all of these populations share the same radial distribution within statistic uncertainties. These new findings are discussed in the context of the formation and evolution scenarios of the multiple populations.

  14. Observational constraints to boxy/peanut bulge formation time

    NASA Astrophysics Data System (ADS)

    Pérez, I.; Martínez-Valpuesta, I.; Ruiz-Lara, T.; de Lorenzo-Caceres, A.; Falcón-Barroso, J.; Florido, E.; González Delgado, R. M.; Lyubenova, M.; Marino, R. A.; Sánchez, S. F.; Sánchez-Blázquez, P.; van de Ven, G.; Zurita, A.

    2017-09-01

    Boxy/peanut bulges are considered to be part of the same stellar structure as bars and both could be linked through the buckling instability. The Milky Way is our closest example. The goal of this Letter is to determine if the mass assembly of the different components leaves an imprint in their stellar populations allowing the estimation the time of bar formation and its evolution. To this aim, we use integral field spectroscopy to derive the stellar age distributions, SADs, along the bar and disc of NGC 6032. The analysis clearly shows different SADs for the different bar areas. There is an underlying old (≥12 Gyr) stellar population for the whole galaxy. The bulge shows star formation happening at all times. The inner bar structure shows stars of ages older than 6 Gyr with a deficit of younger populations. The outer bar region presents an SAD similar to that of the disc. To interpret our results, we use a generic numerical simulation of a barred galaxy. Thus, we constrain, for the first time, the epoch of bar formation, the buckling instability period and the posterior growth from disc material. We establish that the bar of NGC 6032 is old, formed around 10 Gyr ago while the buckling phase possibly happened around 8 Gyr ago. All these results point towards bars being long-lasting even in the presence of gas.

  15. On the Nature of Ultra-faint Dwarf Galaxy Candidates. II. The Case of Cetus II

    NASA Astrophysics Data System (ADS)

    Conn, Blair C.; Jerjen, Helmut; Kim, Dongwon; Schirmer, Mischa

    2018-04-01

    We obtained deep Gemini GMOS-S g, r photometry of the ultra-faint dwarf galaxy candidate Cetus II with the aim of providing stronger constraints on its size, luminosity, and stellar population. Cetus II is an important object in the size–luminosity plane, as it occupies the transition zone between dwarf galaxies and star clusters. All known objects smaller than Cetus II (r h ∼ 20 pc) are reported to be star clusters, while most larger objects are likely dwarf galaxies. We found a prominent excess of main-sequence stars in the color–magnitude diagram of Cetus II, best described by a single stellar population with an age of 11.2 Gyr, metallicity of [Fe/H] = ‑1.28 dex, an [α/Fe] = 0.0 dex at a heliocentric distance of 26.3 ± 1.2 kpc. As well as being spatially located within the Sagittarius dwarf tidal stream, these properties are well matched to the Sagittarius galaxy’s Population B stars. Interestingly, like our recent findings on the ultra-faint dwarf galaxy candidate Tucana V, the stellar field in the direction of Cetus II shows no evidence of a concentrated overdensity despite tracing the main sequence for over six magnitudes. These results strongly support the picture that Cetus II is not an ultra-faint stellar system in the Milky Way halo, but made up of stars from the Sagittarius tidal stream.

  16. The Relationship between Stellar Populations and Lyα Emission in Lyman Break Galaxies

    NASA Astrophysics Data System (ADS)

    Kornei, Katherine A.; Shapley, Alice E.; Erb, Dawn K.; Steidel, Charles C.; Reddy, Naveen A.; Pettini, Max; Bogosavljević, Milan

    2010-03-01

    We present the results of a photometric and spectroscopic survey of 321 Lyman break galaxies (LBGs) at z~ 3 to investigate systematically the relationship between Lyα emission and stellar populations. Lyα equivalent widths (W Lyα) were calculated from rest-frame UV spectroscopy and optical/near-infrared/Spitzer photometry was used in population synthesis modeling to derive the key properties of age, dust extinction, star formation rate (SFR), and stellar mass. We directly compare the stellar populations of LBGs with and without strong Lyα emission, where we designate the former group (W Lyα>= 20 Å) as Lyα emitters (LAEs) and the latter group (W Lyα< 20 Å) as non-LAEs. This controlled method of comparing objects from the same UV luminosity distribution represents an improvement over previous studies in which the stellar populations of LBGs and narrowband-selected LAEs were contrasted, where the latter were often intrinsically fainter in broadband filters by an order of magnitude simply due to different selection criteria. Using a variety of statistical tests, we find that Lyα equivalent width and age, SFR, and dust extinction, respectively, are significantly correlated in the sense that objects with strong Lyα emission also tend to be older, lower in SFR, and less dusty than objects with weak Lyα emission, or the line in absorption. We accordingly conclude that, within the LBG sample, objects with strong Lyα emission represent a later stage of galaxy evolution in which supernovae-induced outflows have reduced the dust covering fraction. We also examined the hypothesis that the attenuation of Lyα photons is lower than that of the continuum, as proposed by some, but found no evidence to support this picture. Based, in part, on data obtained at the W.M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA, and was made possible by the generous financial support of the W.M. Keck Foundation.

  17. Chemical evolution and stellar populations in the Sagittarius dwarf Spheroidal Galaxy

    NASA Astrophysics Data System (ADS)

    Sbordone, L.; Bonifacio, P.; Giuffrida, G.; Marconi, G.; Monaco, L.; Zaggia, S.

    2007-05-01

    The closest neighbour of the Milky Way (MW), the Sagittarius dwarf Spheroidal Galaxy (Sgr dSph) is being tidally destroyed by the interaction with our Galaxy, losing its stellar content along a huge stream clearly detectable within the Halo. This makes the Sgr dSph an ideal laboratory to study at the same time the chemical evolution of dwarf galaxies and their role in building bigger structures such as the MW. Since some years we are studying the stellar populations of the Sgr main body and stream, with particular attention to their detailed chemical composition. We collected detailed abundances (up to 22 elements, O to Eu) for 27 stars in the Sgr dSph main body, 5 in the associated globular cluster Terzan 7, and 12 more in the trailing Sgr tidal arm (UVES@VLT and SARG@TNG data). We are also conducting a large FLAMES@VLT chemical and dynamical analysis aimed at obtaining metallicities, alpha-elements content and radial velocities from automated analysis of the spectra. Finally, we just completed the first large scale photometric and spectroscopic survey of the stellar populations across all the dSph main body extension with VIMOS@VLT, aimed at exploring the variations in stellar populations and at deriving radial velocity memberships for future high resolution spectroscopic analysis. The picture emerging from all these studies portraits a large and extremely complex object, with signs of a long and still unclear evolution. Metallicity varies across three orders of magnitude ([Fe/H] from -3 to 0), CMDs change surprisingly from the core to the outskirts of the galaxy, and the chemical composition of the most metal rich objects show a very characteristic signature, with underabundant alpha elements, deficient Na, underabundant Fe-peak Mn, Co, Ni, Cu and Zn, and strongly enhanced n-capture elements La and Nd. This highly peculiar "signature" can also be effectively used to recognized stripped populations lost by Sgr in favour of the MW system, as clearly showed by the globular Palomar 12, which shows the same chemical anomalies detected in Sgr dSph.

  18. VizieR Online Data Catalog: GAMA. Stellar mass budget (Moffett+, 2016)

    NASA Astrophysics Data System (ADS)

    Moffett, A. J.; Lange, R.; Driver, S. P.; Robotham, A. S. G.; Kelvin, L. S.; Alpaslan, M.; Andrews, S. K.; Bland-Hawthorn, J.; Brough, S.; Cluver, M. E.; Colless, M.; Davies, L. J. M.; Holwerda, B. W.; Hopkins, A. M.; Kafle, P. R.; Liske, J.; Meyer, M.

    2018-04-01

    Using the recently expanded Galaxy and Mass Assembly (GAMA) survey phase II visual morphology sample and the large-scale bulge and disc decomposition analysis of Lange et al. (2016MNRAS.462.1470L), we derive new stellar mass function fits to galaxy spheroid and disc populations down to log(M*/Mȯ)=8. (1 data file).

  19. Dynamical Effects of Stellar Companions

    NASA Astrophysics Data System (ADS)

    Naoz, Smadar

    2016-10-01

    The fraction of stellar binaries in the field is extremely high (about 40% - 70% forM > 1M⊙ stars), and thus, given this frequency, a high fraction of all exoplanetary systems may reside in binaries. While close-in giant planets tend to be found preferentially in binary stellar systems it seems that the frequency of giant planets in close binaries (>100-1000 AU) is significantly lower than in the overall population. Stellar companions gravitational perturbations may significantly alter the planetary orbits around their partner on secular timescales. They can drive planets to large eccentric orbits which can either result in plunging these planets into the star or shrinking their orbits and forming short period planets. These planets typically are misaligned with the parent star.

  20. A DEEPER LOOK AT LEO IV: STAR FORMATION HISTORY AND EXTENDED STRUCTURE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sand, David J.; Seth, Anil; Olszewski, Edward W.

    We present MMT/Megacam imaging of the Leo IV dwarf galaxy in order to investigate its structure and star formation history, and to search for signs of association with the recently discovered Leo V satellite. Based on parameterized fits, we find that Leo IV is round, with {epsilon} < 0.23 (at the 68% confidence limit) and a half-light radius of r{sub h} {approx_equal} 130 pc. Additionally, we perform a thorough search for extended structures in the plane of the sky and along the line of sight. We derive our surface brightness detection limit by implanting fake structures into our catalog withmore » stellar populations identical to that of Leo IV. We show that we are sensitive to stream-like structures with surface brightness {mu}{sub r} {approx}< 29.6 mag arcsec{sup -2}, and at this limit we find no stellar bridge between Leo IV (out to a radius of {approx}0.5 kpc) and the recently discovered, nearby satellite Leo V. Using the color-magnitude fitting package StarFISH, we determine that Leo IV is consistent with a single age ({approx}14 Gyr), single metallicity ([Fe/H] {approx} -2.3) stellar population, although we cannot rule out a significant spread in these values. We derive a luminosity of M{sub V} = -5.5 {+-} 0.3. Studying both the spatial distribution and frequency of Leo IV's 'blue plume' stars reveals evidence for a young ({approx}2 Gyr) stellar population which makes up {approx}2% of its stellar mass. This sprinkling of star formation, only detectable in this deep study, highlights the need for further imaging of the new Milky Way satellites along with theoretical work on the expected, detailed properties of these possible 'reionization fossils'.« less

  1. New PARSEC data base of α-enhanced stellar evolutionary tracks and isochrones - I. Calibration with 47 Tuc (NGC 104) and the improvement on RGB bump

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoting; Bressan, Alessandro; Marigo, Paola; Girardi, Léo; Montalbán, Josefina; Chen, Yang; Nanni, Ambra

    2018-05-01

    Precise studies on the Galactic bulge, globular cluster, Galactic halo, and Galactic thick disc require stellar models with α enhancement and various values of helium content. These models are also important for extra-Galactic population synthesis studies. For this purpose, we complement the existing PARSEC models, which are based on the solar partition of heavy elements, with α-enhanced partitions. We collect detailed measurements on the metal mixture and helium abundance for the two populations of 47 Tuc (NGC 104) from the literature, and calculate stellar tracks and isochrones with these α-enhanced compositions. By fitting the precise colour-magnitude diagram with HST ACS/WFC data, from low main sequence till horizontal branch (HB), we calibrate some free parameters that are important for the evolution of low mass stars like the mixing at the bottom of the convective envelope. This new calibration significantly improves the prediction of the red giant branch bump (RGBB) brightness. Comparison with the observed RGB and HB luminosity functions also shows that the evolutionary lifetimes are correctly predicted. As a further result of this calibration process, we derive the age, distance modulus, reddening, and the RGB mass-loss for 47 Tuc. We apply the new calibration and α-enhanced mixtures of the two 47 Tuc populations ([α/Fe] ˜ 0.4 and 0.2) to other metallicities. The new models reproduce the RGB bump observations much better than previous models. This new PARSEC data base, with the newly updated α-enhanced stellar evolutionary tracks and isochrones, will also be a part of the new stellar products for Gaia.

  2. A NEW GENERATION OF PARSEC-COLIBRI STELLAR ISOCHRONES INCLUDING THE TP-AGB PHASE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marigo, Paola; Aringer, Bernhard; Chen, Yang

    2017-01-20

    We introduce a new generation of PARSEC–COLIBRI stellar isochrones that includes a detailed treatment of the thermally pulsing asymptotic giant branch (TP-AGB) phase, covering a wide range of initial metallicities (0.0001 < Z {sub i} < 0.06). Compared to previous releases, the main novelties and improvements are use of new TP-AGB tracks and related atmosphere models and spectra for M and C-type stars; inclusion of the surface H+He+CNO abundances in the isochrone tables, accounting for the effects of diffusion, dredge-up episodes and hot-bottom burning; inclusion of complete thermal pulse cycles, with a complete description of the in-cycle changes in themore » stellar parameters; new pulsation models to describe the long-period variability in the fundamental and first-overtone modes; and new dust models that follow the growth of the grains during the AGB evolution, in combination with radiative transfer calculations for the reprocessing of the photospheric emission. Overall, these improvements are expected to lead to a more consistent and detailed description of properties of TP-AGB stars expected in resolved stellar populations, especially in regard to their mean photometric properties from optical to mid-infrared wavelengths. We illustrate the expected numbers of TP-AGB stars of different types in stellar populations covering a wide range of ages and initial metallicities, providing further details on the “C-star island” that appears at intermediate values of age and metallicity, and about the AGB-boosting effect that occurs at ages close to 1.6-Gyr for populations of all metallicities. The isochrones are available through a new dedicated web server.« less

  3. A Deeper Look at Leo IV: Star Formation History and Extended Structure

    NASA Astrophysics Data System (ADS)

    Sand, David J.; Seth, Anil; Olszewski, Edward W.; Willman, Beth; Zaritsky, Dennis; Kallivayalil, Nitya

    2010-07-01

    We present MMT/Megacam imaging of the Leo IV dwarf galaxy in order to investigate its structure and star formation history, and to search for signs of association with the recently discovered Leo V satellite. Based on parameterized fits, we find that Leo IV is round, with epsilon < 0.23 (at the 68% confidence limit) and a half-light radius of rh ~= 130 pc. Additionally, we perform a thorough search for extended structures in the plane of the sky and along the line of sight. We derive our surface brightness detection limit by implanting fake structures into our catalog with stellar populations identical to that of Leo IV. We show that we are sensitive to stream-like structures with surface brightness μ r <~ 29.6 mag arcsec-2, and at this limit we find no stellar bridge between Leo IV (out to a radius of ~0.5 kpc) and the recently discovered, nearby satellite Leo V. Using the color-magnitude fitting package StarFISH, we determine that Leo IV is consistent with a single age (~14 Gyr), single metallicity ([Fe/H] ~ -2.3) stellar population, although we cannot rule out a significant spread in these values. We derive a luminosity of MV = -5.5 ± 0.3. Studying both the spatial distribution and frequency of Leo IV's "blue plume" stars reveals evidence for a young (~2 Gyr) stellar population which makes up ~2% of its stellar mass. This sprinkling of star formation, only detectable in this deep study, highlights the need for further imaging of the new Milky Way satellites along with theoretical work on the expected, detailed properties of these possible "reionization fossils." Observations reported here were obtained at the MMT observatory, a joint facility of the Smithsonian Institution and the University of Arizona.

  4. The influence of galaxy environment on the stellar initial mass function of early-type galaxies

    NASA Astrophysics Data System (ADS)

    Rosani, Giulio; Pasquali, Anna; La Barbera, Francesco; Ferreras, Ignacio; Vazdekis, Alexandre

    2018-06-01

    In this paper, we investigate whether the stellar initial mass function (IMF) of early-type galaxies depends on their host environment. To this purpose, we have selected a sample of early-type galaxies from the SPIDER catalogue, characterized their environment through the group catalogue of Wang et al., and used their optical Sloan Digital Sky Survey (SDSS) spectra to constrain the IMF slope, through the analysis of IMF-sensitive spectral indices. To reach a high enough signal-to-noise ratio, we have stacked spectra in velocity dispersion (σ0) bins, on top of separating the sample by galaxy hierarchy and host halo mass, as proxies for galaxy environment. In order to constrain the IMF, we have compared observed line strengths and predictions of MIUSCAT/EMILES synthetic stellar population models, with varying age, metallicity, and `bimodal' (low-mass tapered) IMF slope (Γ _b). Consistent with previous studies, we find that Γ _b increases with σ0, becoming bottom-heavy (i.e. an excess of low-mass stars with respect to the Milky Way like IMF) at high σ0. We find that this result is robust against the set of isochrones used in the stellar population models, as well as the way the effect of elemental abundance ratios is taken into account. We thus conclude that it is possible to use currently state-of-the-art stellar population models and intermediate resolution spectra to consistently probe IMF variations. For the first time, we show that there is no dependence of Γb on environment or galaxy hierarchy, as measured within the 3 arcsec SDSS fibre, thus leaving the IMF as an intrinsic galaxy property, possibly set already at high redshift.

  5. The Evolution of the Type Ia Supernova Luminosity Function

    NASA Astrophysics Data System (ADS)

    Shen, Ken J.; Toonen, Silvia; Graur, Or

    2017-12-01

    Type Ia supernovae (SNe Ia) exhibit a wide diversity of peak luminosities and light curve shapes: the faintest SNe Ia are 10 times less luminous and evolve more rapidly than the brightest SNe Ia. Their differing characteristics also extend to their stellar age distributions, with fainter SNe Ia preferentially occurring in old stellar populations and vice versa. In this Letter, we quantify this SN Ia luminosity–stellar age connection using data from the Lick Observatory Supernova Search (LOSS). Our binary population synthesis calculations agree qualitatively with the observed trend in the > 1 {Gyr} old populations probed by LOSS if the majority of SNe Ia arise from prompt detonations of sub-Chandrasekhar-mass white dwarfs (WDs) in double WD systems. Under appropriate assumptions, we show that double WD systems with less massive primaries, which yield fainter SNe Ia, interact and explode at older ages than those with more massive primaries. We find that prompt detonations in double WD systems are capable of reproducing the observed evolution of the SN Ia luminosity function, a constraint that any SN Ia progenitor scenario must confront.

  6. Star-forming galaxies in intermediate-redshift clusters: stellar versus dynamical masses of luminous compact blue galaxies

    NASA Astrophysics Data System (ADS)

    Randriamampandry, S. M.; Crawford, S. M.; Bershady, M. A.; Wirth, G. D.; Cress, C. M.

    2017-10-01

    We investigate the stellar masses of the class of star-forming objects known as luminous compact blue galaxies (LCBGs) by studying a sample of galaxies in the distant cluster MS 0451.6-0305 at z ≈ 0.54 with ground-based multicolour imaging and spectroscopy. For a sample of 16 spectroscopically confirmed cluster LCBGs (colour B - V < 0.5, surface brightness μB < 21 mag arcsec-2 and magnitude MB < -18.5), we measure stellar masses by fitting spectral energy distribution (SED) models to multiband photometry, and compare with dynamical masses [determined from velocity dispersion in the range 10 < σv(km s- 1) < 80] we previously obtained from their emission-line spectra. We compare two different stellar population models that measure stellar mass in star-bursting galaxies, indicating correlations between the stellar age, extinction and stellar mass derived from the two different SED models. The stellar masses of cluster LCBGs are distributed similarly to those of field LCBGs, but the cluster LCBGs show lower dynamical-to-stellar mass ratios (Mdyn/M⋆ = 2.6) than their field LCBG counterparts (Mdyn/M⋆ = 4.8), echoing trends noted previously in low-redshift dwarf elliptical galaxies. Within this limited sample, the specific star formation rate declines steeply with increasing mass, suggesting that these cluster LCBGs have undergone vigorous star formation.

  7. Inferring Binary and Trinary Stellar Populations in Photometric and Astrometric Surveys

    NASA Astrophysics Data System (ADS)

    Widmark, Axel; Leistedt, Boris; Hogg, David W.

    2018-04-01

    Multiple stellar systems are ubiquitous in the Milky Way but are often unresolved and seen as single objects in spectroscopic, photometric, and astrometric surveys. However, modeling them is essential for developing a full understanding of large surveys such as Gaia and connecting them to stellar and Galactic models. In this paper, we address this problem by jointly fitting the Gaia and Two Micron All Sky Survey photometric and astrometric data using a data-driven Bayesian hierarchical model that includes populations of binary and trinary systems. This allows us to classify observations into singles, binaries, and trinaries, in a robust and efficient manner, without resorting to external models. We are able to identify multiple systems and, in some cases, make strong predictions for the properties of their unresolved stars. We will be able to compare such predictions with Gaia Data Release 4, which will contain astrometric identification and analysis of binary systems.

  8. A study of the stellar population in the Chamaeleon dark clouds

    NASA Technical Reports Server (NTRS)

    Gauvin, Lisa S.; Strom, Karen M.

    1992-01-01

    The properties of the stellar population in the Chamaeleon dark clouds are discussed. Spectral energy distributions, based on the extant photometric and spectroscopic data base and IRAS fluxes measured from coadded data taken at the position of each star, and spectral types allow placement of the stars in an H-R diagram. The age and mass distributions and the luminosity function for the Chamaeleon stars are compared to those in the Taurus-Auriga dark clouds and are found to be similar. A small subsample (eight of 36) of the Chamaeleon stars show unusual spectral energy distributions which seem best interpreted as arising from circumstellar disks whose inner regions (R(in)) is less than 30-50 stellar radii) area devoid of material. The X-ray properties of this sample of premain-sequence objects are compared to those of other premain-sequence samples, as well as to the Hyades and the Pleiades main-sequence stars.

  9. A Pipeline for the Analysis of APOGEE Spectra Based on Equivalent Widths

    NASA Astrophysics Data System (ADS)

    Arfon Williams, Rob; Bosley, Corinne; Jones, Hayden; Schiavon, Ricardo P.; Allende-Prieto, Carlos; Bizyaev, Dmitry; Carrera, Ricardo; Cunha, Katia M. L.; Nguyen, Duy; Feuillet, Diane; Frinchaboy, Peter M.; García Pérez, Ana; Hasselquist, Sten; Hayden, Michael R.; Hearty, Fred R.; Holtzman, Jon A.; Johnson, Jennifer; Majewski, Steven R.; Meszaros, Szabolcs; Nidever, David L.; Shetrone, Matthew D.; Smith, Verne V.; Sobeck, Jennifer; Troup, Nicholas William; Wilson, John C.; Zasowski, Gail

    2015-01-01

    The Apache Point Galactic Evolution Experiment (APOGEE) forms part of the third Sloan Digital Sky Survey and has obtained high resolution, high signal-to-noise infrared spectra for ~1.3 x 105 stars across the galactic bulge, disc and halo. From these, stellar parameters are derived together with abundances for various elements using the APOGEE Stellar Parameters and Chemical Abundance Pipeline (ASPCAP). In this poster we report preliminary results from application of an alternative stellar parameters and abundances pipeline, based on measurements of equivalent widths of absorption lines in APOGEE spectra. The method is based on a sequential grid inversion algorithm, originally designed for the derivation of ages and elemental abundances of stellar populations from line indices in their integrated spectra. It allows for the rapid processing of large spectroscopic data sets from both current and future surveys, such as APOGEE and APOGEE 2, and it is easily adaptable for application to other very large data sets that are being/will be generated by other massive surveys of the stellar populations of the Galaxy. It will also allow the cross checking of ASPCAP results using an independent method. In this poster we present preliminary results showing estimates of effective temperature and iron abundance [Fe/H] for a subset of the APOGEE sample, comparing with DR12 numbers produced by the ASPCAP pipeline.

  10. THE XMM CLUSTER SURVEY: THE STELLAR MASS ASSEMBLY OF FOSSIL GALAXIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Harrison, Craig D.; Miller, Christopher J.; Richards, Joseph W.

    This paper presents both the result of a search for fossil systems (FSs) within the XMM Cluster Survey and the Sloan Digital Sky Survey and the results of a study of the stellar mass assembly and stellar populations of their fossil galaxies. In total, 17 groups and clusters are identified at z < 0.25 with large magnitude gaps between the first and fourth brightest galaxies. All the information necessary to classify these systems as fossils is provided. For both groups and clusters, the total and fractional luminosity of the brightest galaxy is positively correlated with the magnitude gap. The brightestmore » galaxies in FSs (called fossil galaxies) have stellar populations and star formation histories which are similar to normal brightest cluster galaxies (BCGs). However, at fixed group/cluster mass, the stellar masses of the fossil galaxies are larger compared to normal BCGs, a fact that holds true over a wide range of group/cluster masses. Moreover, the fossil galaxies are found to contain a significant fraction of the total optical luminosity of the group/cluster within 0.5 R{sub 200}, as much as 85%, compared to the non-fossils, which can have as little as 10%. Our results suggest that FSs formed early and in the highest density regions of the universe and that fossil galaxies represent the end products of galaxy mergers in groups and clusters.« less

  11. On the extended stellar structure around NGC 288

    NASA Astrophysics Data System (ADS)

    Piatti, Andrés E.

    2018-01-01

    We report on observational evidence of an extra-tidal clumpy structure around NGC 288 from homogeneous coverage of a large area with the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) PS1 data base. The extra-tidal star population has been disentangled from that of the Milky Way (MW) field by using a cleaning technique that successfully reproduces the stellar density, luminosity function and colour distributions of MW field stars. We have produced the cluster stellar density radial profile and a stellar density map from independent approaches, and we found the results to be in excellent agreement - the feature extends up to 3.5 times further than the cluster tidal radius. Previous works based on shallower photometric data sets have speculated on the existence of several long tidal tails, similar to that found in Pal 5. The present outcome shows that NGC 288 could hardly have such tails, but it favours the notion that the use of interactions with the MW tidal field has been a relatively inefficient process for stripping stars off the cluster. These results point to the need for a renewed overall study of the external regions of Galactic globular clusters (GGCs) in order to reliably characterize them. It will then be possible to investigate whether there is any connection between detected tidal tails, extra-tidal stellar populations and extended diffuse halo-like structures, and the dynamical histories of GGCs in the Galaxy.

  12. Globular cluster chemistry in fast-rotating dwarf stars belonging to intermediate-age open clusters

    NASA Astrophysics Data System (ADS)

    Pancino, Elena

    2018-06-01

    The peculiar chemistry observed in multiple populations of Galactic globular clusters is not generally found in other systems such as dwarf galaxies and open clusters, and no model can currently fully explain it. Exploring the boundaries of the multiple-population phenomenon and the variation of its extent in the space of cluster mass, age, metallicity, and compactness has proven to be a fruitful line of investigation. In the framework of a larger project to search for multiple populations in open clusters that is based on literature and survey data, I found peculiar chemical abundance patterns in a sample of intermediate-age open clusters with publicly available data. More specifically, fast-rotating dwarf stars (v sin i ≥ 50 km s-1) that belong to four clusters (Pleiades, Ursa Major, Come Berenices, and Hyades) display a bimodality in either [Na/Fe] or [O/Fe], or both, with the low-Na and high-O peak more populated than the high-Na and low-O peak. Additionally, two clusters show a Na-O anti-correlation in the fast-rotating stars, and one cluster shows a large [Mg/Fe] variation in stars with high [Na/Fe], reaching the extreme Mg depletion observed in NGC 2808. Even considering that the sample sizes are small, these patterns call for attention in the light of a possible connection with the multiple population phenomenon of globular clusters. The specific chemistry observed in these fast-rotating dwarf stars is thought to be produced by a complex interplay of different diffusion and mixing mechanisms, such as rotational mixing and mass loss, which in turn are influenced by metallicity, binarity, mass, age, variability, and so on. However, with the sample in hand, it was not possible to identify which stellar parameters cause the observed Na and O bimodality and Na-O anti-correlation. This suggests that other stellar properties might be important in addition to stellar rotation. Stellar binarity might influence the rotational properties and enhance rotational mixing and mass loss of stars in a dense environment like that of clusters (especially globulars). In conclusion, rotation and binarity appear as a promising research avenue for better understanding multiple stellar populations in globular clusters; this is certainly worth exploring further.

  13. Young stellar populations in early-type galaxies in the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Nolan, Louisa A.; Raychaudhury, Somak; Kabán, Ata

    2007-02-01

    We use a purely data-driven rectified factor analysis to identify early-type galaxies with recent star formation in Data Release 4 of the Sloan Digital Sky Survey Spectroscopic Catalogue. We compare the spectra and environment of these galaxies with those of `normal' early-type galaxies, and a sample of independently selected E+A galaxies. We calculate the projected local galaxy surface density from the nearest five and 10 neighbours (Σ5 and Σ10) for each galaxy in our sample, and find that the dependence on projected local density, of the properties of E+A galaxies, is not significantly different from that of early-type galaxies with young stellar populations, dropping off rapidly towards denser environments, and flattening off at densities <~0.1-0.3 Mpc-2. The dearth of E+A galaxies in dense environments confirms that E+A galaxies are most likely the products of galaxy-galaxy merging or interactions, rather than star-forming galaxies whose star formation has been quenched by processes unique to dense environments, such as ram-pressure stripping or galaxy harassment. We see a tentative peak in the number of E+A galaxies at Σ10 ~ 0.1-0.3 Mpc-2, which may represent the local galaxy density at which the rate of galaxy-galaxy merging or interaction rate peaks. Analysis of the spectra of our early-type galaxies with young stellar populations suggests that they have a stellar component dominated by F stars, ~1-4 Gyr old, together with a mature, metal-rich population characteristic of `typical' early-type galaxies. The young stars represent >~10 per cent of the stellar mass in these galaxies. This, together with the similarity of the environments in which this `E+F' population and the E+A galaxy sample are found, suggests that E+F galaxies used to be E+A galaxies, but have evolved by a further ~ one to a few Gyr. Our rectified factor analysis is sensitive enough to identify this hidden population, which allows us to study the global and intrinsic properties of early-type galaxies created in major mergers or interactions, and compare them with those early-types which have had the bulk of their stars in place since a much earlier epoch.

  14. Diverse stellar haloes in nearby Milky Way mass disc galaxies

    NASA Astrophysics Data System (ADS)

    Harmsen, Benjamin; Monachesi, Antonela; Bell, Eric F.; de Jong, Roelof S.; Bailin, Jeremy; Radburn-Smith, David J.; Holwerda, Benne W.

    2017-04-01

    We have examined the resolved stellar populations at large galactocentric distances along the minor axis (from 10 kpc up to between 40 and 75 kpc), with limited major axis coverage, of six nearby highly inclined Milky Way (MW) mass disc galaxies using Hubble Space Telescope data from the Galaxy haloes, Outer discs, Substructure, Thick discs, and Star clusters (GHOSTS) survey. We select red giant branch stars to derive stellar halo density profiles. The projected minor axis density profiles can be approximated by power laws with projected slopes of -2 to -3.7 and a diversity of stellar halo masses of 1-6 × 109 M⊙, or 2-14 per cent of the total galaxy stellar masses. The typical intrinsic scatter around a smooth power-law fit is 0.05-0.1 dex owing to substructure. By comparing the minor and major axis profiles, we infer projected axis ratios c/a at ˜25 kpc between 0.4and0.75. The GHOSTS stellar haloes are diverse, lying between the extremes charted out by the (rather atypical) haloes of the MW and M31. We find a strong correlation between the stellar halo metallicities and the stellar halo masses. We compare our results with cosmological models, finding good agreement between our observations and accretion-only models where the stellar haloes are formed by the disruption of dwarf satellites. In particular, the strong observed correlation between stellar halo metallicity and mass is naturally reproduced. Low-resolution hydrodynamical models have unrealistically high stellar halo masses. Current high-resolution hydrodynamical models appear to predict stellar halo masses somewhat higher than observed but with reasonable metallicities, metallicity gradients, and density profiles.

  15. THE HUBBLE SPACE TELESCOPE UV LEGACY SURVEY OF GALACTIC GLOBULAR CLUSTERS. III. A QUINTUPLE STELLAR POPULATION IN NGC 2808

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milone, A. P.; Marino, A. F.; Jerjen, H.

    2015-07-20

    In this study we present the first results from multi-wavelength Hubble Space Telescope (HST) observations of the Galactic globular cluster (GC) NGC 2808 as an extension of the Hubble Space Telescope UV Legacy Survey of Galactic GCs (GO-13297 and previous proprietary and HST archive data). Our analysis allowed us to disclose a multiple-stellar-population phenomenon in NGC 2808 even more complex than previously thought. We have separated at least five different populations along the main sequence and the red giant branch (RGB), which we name A, B, C, D, and E (though an even finer subdivision may be suggested by themore » data). We identified the RGB bump in four out of the five RGBs. To explore the origin of this complex color–magnitude diagram, we have combined our multi-wavelength HST photometry with synthetic spectra, generated by assuming different chemical compositions. The comparison of observed colors with synthetic spectra suggests that the five stellar populations have different contents of light elements and helium. Specifically, if we assume that NGC 2808 is homogeneous in [Fe/H] (as suggested by spectroscopy for Populations B, C, D, E, but lacking for Population A) and that population A has a primordial helium abundance, we find that populations B, C, D, E are enhanced in helium by ΔY ∼ 0.03, 0.03, 0.08, 0.13, respectively. We obtain similar results by comparing the magnitude of the RGB bumps with models. Planned spectroscopic observations will test whether Population A also has the same metallicity, or whether its photometric differences with Population B can be ascribed to small [Fe/H] and [O/H] differences rather than to helium.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  17. A Survey of Stellar Populations in Ultra-Diffuse Galaxies

    NASA Astrophysics Data System (ADS)

    Romanowsky, Aaron; Laine, Seppo; Pandya, Viraj; Brodie, Jean; Glaccum, Bill; van Dokkum, Pieter; Alabi, Busola; Cohen, Yotam; Danieli, Shany; Abraham, Bob; Martinez-Delgado, David; Greco, Johnny; Greene, Jenny

    2018-05-01

    Ultra-diffuse galaxies (UDGs) are a recently identified, mysterious class of galaxies with luminosities like dwarfs, but sizes like giants. Quiescent UDGs are found in all environments from cluster to isolated, and intensive study has revealed three very distinctive sub-types: low surface brightness dwarfs, 'failed galaxies', and low-dark-matter UDGs. Following up on our recent, successful Spitzer pilot work to characterize the stellar populations (ages and metallicities) of UDGs, we propose a survey of 25 UDGs with a range of optical properties and environments, in order to understand the formation histories of different the different UDG sub-types.

  18. Stellar black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. R.; Hut, Piet; Mcmillan, Steve

    1993-01-01

    The recent discovery of large populations of millisec pulsars associated with neutron stars in globular clusters indicates that several hundred stellar black holes of about 10 solar masses each can form within a typical cluster. While, in clusters of high central density, the rapid dynamical evolution of the black-hole population leads to an ejection of nearly all holes on a short timescale, systems of intermediate density may involve a normal star's capture by one of the surviving holes to form a low-mass X-ray binary. One or more such binaries may be found in the globular clusters surrounding our galaxy.

  19. WINGS: WFIRST Infrared Nearby Galaxy Survey

    NASA Astrophysics Data System (ADS)

    Williams, Benjamin

    WFIRST's combination of wide field and high resolution will revolutionize the study of nearby galaxies. We propose to produce and analyze simulated WFIRST data of nearby galaxies and their halos to maximize the scientific yield in the limited observing time available, ensuring the legacy value of WFIRST's eventual archive. We will model both halo structure and resolved stellar populations to optimize WFIRST's constraints on both dark matter and galaxy formation models in the local universe. WFIRST can map galaxy structure down to ~35 mag/square arcsecond using individual stars. The resulting maps of stellar halos and accreting dwarf companions will provide stringent tests of galaxy formation and dark matter models on galactic (and even sub-galactic) scales, which is where the most theoretical tension exists with the Lambda-CDM model. With a careful, coordinated plan, WFIRST can be expected to improve current sample sizes by 2 orders of magnitude, down to surface brightness limits comparable to those currently reached only in the Local Group, and that are >4 magnitudes fainter than achievable from the ground due to limitations in star-galaxy separation. WFIRST's maps of galaxy halos will simultaneously produce photometry for billions of stars in the main bodies of galaxies within 10 Mpc. These data will transform studies of star formation histories that track stellar mass growth as a function of time and position within a galaxy. They also will constrain critical stellar evolution models of the near-infrared bright, rapidly evolving stars that can contribute significantly to the integrated light of galaxies in the near-infrared. Thus, with WFIRST we can derive the detailed evolution of individual galaxies, reconstruct the complete history of star formation in the nearby universe, and put crucial constraints on the theoretical models used to interpret near-infrared extragalactic observations. We propose a three-component work plan that will ensure these gains by testing and optimizing WFIRST observing strategies and providing science guidance to trade studies of observatory requirements such as field of view, pixel scale and filter selection. First, we will perform extensive simulations of galaxies' halo substructures and stellar populations that will be used as input for optimizing observing strategies and sample selection. Second, we will develop a pipeline that optimizes stellar photometry, proper motion, and variability measurements with WFIRST. This software will: maximize data quality & scientific yield; provide essential, independent calibrations to the larger WFIRST efforts; and rapidly provide accurate photometry and astrometry to the community. Third, we will derive quantitative performance metrics to fairly evaluate trade-offs between different survey strategies and WFIRST performance capabilities. The end result of this effort will be: (1) an efficient survey strategy that maximizes the scientific yield of what would otherwise be a chaotic archive of observations from small, un-coordinated programs; (2) a suite of analysis tools and a state-of-the-art pipeline that can be deployed after launch to rapidly deliver stellar photometry to the public; (3) a platform to independently verify the calibration and point spread function modeling that are essential to the primary WFIRST goals, but that are best tested from images of stellar populations. These activities will be carried out by a Science Investigation Team that has decades of experience in using nearby galaxies to inform fundamental topics in astrophysics. This team is composed of researchers who have led the charge in observational and theoretical studies of resolved stellar populations and stellar halos. With our combined background, we are poised to take full advantage of the large field of view and high spatial resolution WFIRST will offer.

  20. On the Stellar Population and Star-Forming History of the Orion Nebula Cluster

    NASA Astrophysics Data System (ADS)

    Hillenbrand, Lynne A.

    1997-05-01

    We report on the first phase of a study of the stellar population comprising the Orion Nebula Cluster (ONC). Approximately 50% of the ~ 3500 stars identified to date within ~ 2.5 pc of the namesake Trapezium stars are optically visible, and in this paper we focus on that sample with I < 17.5 mag. The large number and number density (npeak > 10(4) pc(-3) ) of stars, the wide range in stellar mass ( ~ 0.1-50 M_⊙), and the extreme youth (< 1-2 Myr) of the stellar population, make the ONC the best site for investigating: 1) the detailed shape of a truly ``initial'' mass spectrum; 2) the apparent age spread in a region thought to have undergone triggered star formation; 3) the time sequence of star formation as a function of stellar mass; and 4) trends of all of the above with cluster radius. Nearly 60% of the ~ 1600 optical stars have sufficient data (spectroscopy and photometry) for placement on a theoretical HR diagram; this subsample is unbiased with respect to apparent brightness or cluster radius, complete down to ~ 1 M_⊙, and representative of the total optical sample below ~ 1 M_⊙ for the age and extinction ranges characteristic of the cluster. Comparison of the derived HR diagram with traditional pre-main sequence evolutionary calculations shows a trend of increasing stellar age with increasing stellar mass. To avoid the implication of earlier characteristic formation times for higher-mass stars than for lower-mass stars, refinement of early evolutionary theory in a manner similar to the birthline hypothesis of Palla & Stahler (1993), is required. Subject to uncertainties in the tracks and isochrones, we can still investigate stellar mass and age distributions in the ONC. We find the ONC as a whole to be characterized by a mass spectrum which is not grossly inconsistent with ``standard'' stellar mass spectra. In particular, although there are structural differences between the detailed ONC mass spectrum and various models constructed from solar neighborhood data, the observed mass spectrum appears to a peak at ~ 0.2 M_⊙ and to fall off rapidly towards lower masses; several substellar objects are present. The abundance of low-mass stars relative to high-mass stars suggests that there is no bi-modal star formation mode; somewhat ironically, the ONC probably contains fractionally more low-mass stars than the solar neighborhood since the population not yet located on the HR diagram is dominated by sub-solar-mass stars. Nonetheless, the ONC mass spectrum is biased towards higher-mass stars within the innermost cluster radii (rprojected < 0.3 pc). We find the ONC as a whole to be characterized by a mean age of < 1 Myr and an age spread which is probably less than 2 Myr, but also by a bias towards younger stars at smaller projected cluster radii. Although the most massive stars and the youngest stars are found preferentially towards the center of the ONC it does not follow that the most massive stars are the youngest stars. A lower limit to the total cluster mass in stars is Mstars ~ 900 M_⊙ (probably a factor of < 2 underestimate). A lower limit to the recent star formation rate is ~ 10(-4) M_⊙ yr(-1) . All observational data in this study as well as stellar parameters derived from them are available in electronic format.

  1. A Determination of the Intergalactic Redshift Dependent UV-Optical-NIR Photon Density Using Deep Galaxy Survey Data and the Gamma-Ray Opacity of the Universe

    NASA Technical Reports Server (NTRS)

    Stecker, Floyd W.

    2012-01-01

    We calculate the intensity and photon spectrum of the intergalactic background light (IBL) as a function of red shift using an approach based on observational data obtained at in different wavelength bands from local to deep galaxy surveys. Our empirically based approach allows us, for the firs.t time, to obtain a completely model independent determination of the IBL and to quantify its uncertainties. Using our results on the IBL, we then place upper and lower limits on the opacity of the universe to gamma-rays, independent of previous constraints.

  2. Empirical calibration of the near-infrared CaII triplet - IV. The stellar population synthesis models

    NASA Astrophysics Data System (ADS)

    Vazdekis, A.; Cenarro, A. J.; Gorgas, J.; Cardiel, N.; Peletier, R. F.

    2003-04-01

    We present a new evolutionary stellar population synthesis model, which predicts spectral energy distributions for single-age single-metallicity stellar populations (SSPs) at resolution 1.5 Å (FWHM) in the spectral region of the near-infrared CaII triplet feature. The main ingredient of the model is a new extensive empirical stellar spectral library that has been recently presented by Cenarro et al., which is composed of more than 600 stars with an unprecedented coverage of the stellar atmospheric parameters. Two main products of interest for stellar population analysis are presented. The first is a spectral library for SSPs with metallicities -1.7 < [Fe/H] < +0.2, a large range of ages (0.1-18 Gyr) and initial mass function (IMF) types. They are well suited to modelling galaxy data, since the SSP spectra, with flux-calibrated response curves, can be smoothed to the resolution of the observational data, taking into account the internal velocity dispersion of the galaxy, allowing the user to analyse the observed spectrum in its own system. We also produce integrated absorption-line indices (namely CaT*, CaT and PaT) for the same SSPs in the form of equivalent widths. We find the following behaviour for the CaII triplet feature in old-aged SSPs: (i) the strength of the CaT* index does not change much with time for all metallicities for ages larger than ~3 Gyr; (ii) this index shows a strong dependence on metallicity for values below [M/H]~-0.5 and (iii) for larger metallicities this feature does not show a significant dependence either on age or on the metallicity, being more sensitive to changes in the slope of power-like IMF shapes. The SSP spectra have been calibrated with measurements for globular clusters by Armandroff & Zinn, which are well reproduced, probing the validity of using the integrated CaII triplet feature for determining the metallicities of these systems. Fitting the models to two early-type galaxies of different luminosities (NGC 4478 and 4365), we find that the CaII triplet measurements cannot be fitted unless a very dwarf-dominated IMF is imposed, or if the Ca abundance is even lower than the Fe abundance. More details can be found in work by Cenarro et al.

  3. Morphology and Structures of Nearby Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Seo, Mira; Ann, H. B.

    2016-08-01

    We applied GALFIT and STARLIGHT to the r-band images and spectra, respectively, of ~1,100 dwarf galaxies to analyze the structural properties and stellar populations. In most cases, single component with n = 1 ~ 1.5 well describes the luminosity distribution of dwarf galaxies. However, a large fraction of dS0, dE bc , and dE blue galaxies show sub-structures such as spiral arms and rings. There is a bimodal distributions of stellar ages in dS0 galaxies. But other sub-types of dwarf galaxies show a single peak in the stellar distributions.

  4. Abundance anomalies in RGB stars as probes of galactic chemical evolution

    NASA Astrophysics Data System (ADS)

    Charbonnel, C.; Palacios, A.

    During the last two decades, extensive spectroscopic studies have revealed chemical abundance anomalies exhibited by low mass RGB stars which bring a new light on some important aspects of stellar nucleosynthesis and chemical evolution. We underline the differences between field and globular cluster populations and discuss their possible origin both in terms of primordial pollution and stellar internal nucleosynthesis and mixing. We suggest some tests to help to understand the influence of metallicity and of a dense environment on abundance anomalies in connection with the second parameter problem and with the stellar yields.

  5. Rediscovering the Giant Low Surface Brightness Spiral Galaxy Malin 1

    NASA Astrophysics Data System (ADS)

    Galaz, Gaspar

    2018-01-01

    I summarize the latest discoveries regarding this ramarkable diffuse and giant galaxy, the largest single spiral in the universe so far. I describe how the latest discoveries could have been done easily 20 years ago, but an incredible summation of facts and some astronomical sociology, keeped many of them undisclosed. I present the most conspicuous features of the giant spiral arms of Malin 1, including stellar density, colors, stellar populations and some modeling describing their past evolution to the current state. I conclude with pending issues regarding stellar formation in Malin 1, and the efforts to detect its elusive molecular gas.

  6. A Panchromatic View of Star-Forming Regions in the Magellanic Clouds: Characterizing Physical and Evolutionary Parameters of 1,000 Young Stellar Objects

    NASA Astrophysics Data System (ADS)

    Carlson, Lynn R.

    2010-01-01

    I discuss newly discovered Young Stellar Objects (YSOs) in several star-forming regions in the Magellanic Clouds. I exploit the synergy between infrared photometry from the Spitzer SAGE (Surveying the Agents of Galaxy Evolution) legacy programs, near-infrared and optical photometry from ground-based surveys, and HST imaging to characterize young stellar populations. This reveals a variety of Main Sequence Stars and Proto-Stars over a wide range of evolutionary stages. Through SED fitting, I characterize the youngest, embedded, infrared-bright YSOs. Complementary color-Magnitude analysis and isochrone fitting of optical data allows a statistical description of more evolved, unembedded stellar and protostellar populations within these same regions. I examine the early evolution of Magellanic star clusters, including propagating and triggered star formation, and take a step toward characterizing evolutionary timescales for YSOs. In this talk, I present an overview of the project and exemplify the analysis by focusing on NGC 602 in the SMC and Henize 206 in the LMC as examples. The SAGE Project is supported by NASA/Spitzer grant 1275598 and NASA NAG5-12595.

  7. The History of the M31 Disk from Resolved Stellar Populations as Seen by PHAT

    NASA Astrophysics Data System (ADS)

    Lewis, A. R.; Dalcanton, J. J.; Dolphin, A. E.; Weisz, D. R.; Williams, B. F.; PHAT Collaboration

    2014-03-01

    The Panchromatic Hubble Andromeda Treasury (PHAT) is an HST multi-cycle treasury program that is mapping the resolved stellar populations of ˜1/3 of M31 from the UV through the near-IR. These data provide color and luminosity information for more than 150 million stars in the M31 disk. We use stellar evolution models to fit the luminous main sequence to derive spatially-resolved recent star formation histories (SFHs) over large areas of M31 with 50-100 pc resolution. These include individual star-forming regions as well as quiescent portions of the disk. We use the gridded SFHs to create movies of star formation activity to study the evolution of individual star-forming events across the disk. Outside of the star-forming regions, we use our resolved stellar photometry to derive the full SFHs of larger regions. These allow us to probe spatial and temporal trends in age and metallicity across a large radial baseline, providing constraints on the global formation and evolution of the disk over a Hubble time. M31 is the only large disk galaxy that is close enough to obtain the photometry necessary for this type of spatially-resolved SFH mapping.

  8. Stellar populations in the dwarf elliptical galaxy NGC 185

    NASA Technical Reports Server (NTRS)

    Lee, Myung G.; Freedman, Wendy L.; Madore, Barry F.

    1993-01-01

    The study presents BVRI CCD photometry of about 5300 stars in the central area of the dwarf elliptical galaxy NGC 185 in the Local Group. The color-magnitude diagram shows three distinct stellar populations: a dominant RGB population, AGB stars located above the tip of the RGB stars, and a small number of young stars having blue to yellow colors. The foreground reddening is estimated to be 0.19 +/- 0.03 mag using the (B - V) - (V - I) diagram for the bright foreground stars with good photometry. Surface photometry of the central area of NGC 185 is presented; it shows that the colors become rapidly bluer inside R of about 10 arcsec. Structural parameters indicate that the mass-to-luminosity ratio ranges from 3 to 5.

  9. DISCOVERY OF RR LYRAE STARS IN THE NUCLEAR BULGE OF THE MILKY WAY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Minniti, Dante; Ramos, Rodrigo Contreras; Zoccali, Manuela

    Galactic nuclei, such as that of the Milky Way, are extreme regions with high stellar densities, and in most cases, the hosts of a supermassive black hole. One of the scenarios proposed for the formation of the Galactic nucleus is merging of primordial globular clusters. An implication of this model is that this region should host stars that are characteristically found in old Milky Way globular clusters. RR Lyrae stars are primary distance indicators, well known representatives of old and metal-poor stellar populations, and therefore are regularly found in globular clusters. Here we report the discovery of a dozen RRmore » Lyrae type ab stars in the vicinity of the Galactic center, i.e., in the so-called nuclear stellar bulge of the Milky Way. This discovery provides the first direct observational evidence that the Galactic nuclear stellar bulge contains ancient stars (>10 Gyr old). Based on this we conclude that merging globular clusters likely contributed to the build-up of the high stellar density in the nuclear stellar bulge of the Milky Way.« less

  10. The MACHO Project 9 Million Star Color-Magnitude Diagram of the Large Magellanic Cloud: Probing the LMC Disk

    NASA Astrophysics Data System (ADS)

    Alves, D. R.; Alcock, C.; Allsman, R. A.; Axelrod, T. S.; Basu, A.; Becker, A. C.; Bennett, D. P.; Cook, K. H.; Drake, A. J.; Freeman, K. C.; Geha, M.; Griest, K.; King, L. J.; Lehner, M. J.; Marshall, S. L.; Minniti, D.; Peterson, B. A.; Popowski, P.; Pratt, M. R.; Quinn, P. J.; Rodgers, A. W.; Stubbs, C. W.; Sutherland, W.; Tomaney, A.; Vandehei, T.; Welch, D. L.; MACHO Collaboration

    1998-12-01

    We present a 9 million star color-magnitude diagram (9M CMD) of the Large Magellanic Cloud (LMC) bar. The 9M CMD reveals a complex superposition of different age and metallicity stellar populations. Young LMC stellar populations are prominent in the 9M CMD. Of these, the red and blue supergiants are potentially useful probes of the late stages of evolution in intermediate mass stars. Old LMC stellar populations are also evident in the 9M CMD. These are used to reconstruct the evolution of the LMC during cosmologically interesting epochs. We first build a plausible model for the old LMC populations consistent with features observed in the 9M CMD. We choose the 1.5 Gyr old cluster NGC 411 and the ancient globular cluster M3, with metal abundances of [Fe/H] = -0.7 and -1.5 dex respectively, as good representations of the giant branch and horizontal branch (HB) stars. The evolved asymptotic giant branch appears bimodal, which supports a model of two discrete older populations in the LMC field. We conclude the old populations in the LMC bar are likely a mix similar to NGC 411 and M3. Next, we infer the old and low metallicity LMC field population has a red HB morphology, which implies this population formed ~ 2 Gyr after the truly ancient LMC clusters formed. We find the surface density profile of this old LMC field population (traced by RRab variable stars) is exponential, favoring a disk-like rather than spheroidal distribution. We conclude the LMC disk formed ~ 10 Gyr ago, at the same time the Milky Way disk formed.

  11. Binaries at Birth: Stellar multiplicity in embedded clusters from radial velocity variations in the IN-SYNC survey

    NASA Astrophysics Data System (ADS)

    Oskar Jaehnig, Karl; Stassun, Keivan; Tan, Jonathan C.; Covey, Kevin R.; Da Rio, Nicola

    2016-01-01

    We study the nature of stellar multiplicity in young stellar systems using the INfrared Spectroscopy of Young Nebulous Clusters (IN-SYNC) survey, carried out in SDSS III with the APOGEE spectrograph. Multi-epoch observations of thousands of low-mass stars in Orion A, NGC2264, NGC1333 and IC348 have been carried out, yielding H-band spectra with R=22,500 for sources with H<12 mag. Radial velocity sensitivities ~0.3 km/s can be achieved, depending on the spectral type of the star. We search the IN-SYNC radial velocity catalog to identify sources with radial velocity variations indicative of spectroscopically undetected companions, analyze their spectral properties and discuss the implications for the overall multiplicity of stellar populations in young, embedded star clusters.

  12. APOKASC 2.0: Asteroseismology and Spectroscopy for Cool Stars

    NASA Astrophysics Data System (ADS)

    Pinsonneault, Marc H.; Elsworth, Yvonne P.; APOKASC

    2017-01-01

    The APOGEE survey has obtained and analyzed high resolution H band spectra of more than 10,000 cool dwarfs and giants in the original Kepler fields. The APOKASC effort combines this data with asteroseismology and star spot studies, resulting in more than 7,000 stellar mass estimates for dwarfs and giants with high quality abundances, temperatures, and surface gravities. We highlight the main results from this effort so far, which include a tight correlation between surface abundances in giants and stellar mass, precise absolute gravity calibrations, and the discovery of unexpected stellar populations, such as young alpha-enhanced stars. We discuss grid modeling estimates for stellar masses and compare the absolute asteroseismic mass scale to calibrators in star clusters and the halo Directions for future efforts are discussed.

  13. Quenching and ram pressure stripping of simulated Milky Way satellite galaxies

    NASA Astrophysics Data System (ADS)

    Simpson, Christine; Grand, Robert; Gomez, Facundo; Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Campbell, David; Frenk, Carlos; Auriga Project, Virgo Consortium

    2018-01-01

    We present predictions for the quenching of star formation in satellite galaxies of the Local Group from a suite of 30 cosmological zoom simulations of Milky Way-like host galaxies. The Auriga simulations resolve satellites down to the luminosity of the classical dwarf spheroidal galaxies of the Milky Way. We find strong mass-dependent and distance-dependent quenching signals, where dwarf systems beyond 600 kpc are only strongly quenched below a stellar mass of 107 M⊙. Ram pressure stripping appears to be the dominant quenching mechanism and 50% of quenched systems cease star formation within 1 Gyr of first infall. We demonstrate that systems within a host galaxy's R200 radius are comprised of two populations: (i) a first infall population that has entered the host halo within the past few Gyrs and (ii) a population of returning `backsplash' systems that have had a much more extended interaction with the host. Backsplash galaxies that do not return to the host galaxy by redshift zero exhibit quenching properties similar to galaxies within R200 and are distinct from other external systems. The simulated quenching trend with stellar mass has some tension with observations, but our simulations are able reproduce the range of quenching times measured from resolved stellar populations of Local Group dwarf galaxies.

  14. Quenching and ram pressure stripping of simulated Milky Way satellite galaxies

    NASA Astrophysics Data System (ADS)

    Simpson, Christine M.; Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Campbell, David J. R.; Frenk, Carlos S.

    2018-07-01

    We present predictions for the quenching of star formation in satellite galaxies of the Local Group from a suite of 30 cosmological zoom simulations of Milky Way-like host galaxies. The Auriga simulations resolve satellites down to the luminosity of the classical dwarf spheroidal galaxies of the Milky Way. We find strong mass-dependent and distance-dependent quenching signals, where dwarf systems beyond 600 kpc are only strongly quenched below a stellar mass of 107 M⊙. Ram pressure stripping appears to be the dominant quenching mechanism and 50 per cent of quenched systems cease star formation within 1 Gyr of first infall. We demonstrate that systems within a host galaxy's R200 radius are comprised of two populations: (i) a first infall population that has entered the host halo within the past few Gyrs and (ii) a population of returning `backsplash' systems that have had a much more extended interaction with the host. Backsplash galaxies that do not return to the host galaxy by redshift zero exhibit quenching properties similar to galaxies within R200 and are distinct from other external systems. The simulated quenching trend with stellar mass has some tension with observations, but our simulations are able reproduce the range of quenching times measured from resolved stellar populations of Local Group dwarf galaxies.

  15. Quenching and ram pressure stripping of simulated Milky Way satellite galaxies

    NASA Astrophysics Data System (ADS)

    Simpson, Christine M.; Grand, Robert J. J.; Gómez, Facundo A.; Marinacci, Federico; Pakmor, Rüdiger; Springel, Volker; Campbell, David J. R.; Frenk, Carlos S.

    2018-03-01

    We present predictions for the quenching of star formation in satellite galaxies of the Local Group from a suite of 30 cosmological zoom simulations of Milky Way-like host galaxies. The Auriga simulations resolve satellites down to the luminosity of the classical dwarf spheroidal galaxies of the Milky Way. We find strong mass-dependent and distance-dependent quenching signals, where dwarf systems beyond 600 kpc are only strongly quenched below a stellar mass of 107 M⊙. Ram pressure stripping appears to be the dominant quenching mechanism and 50% of quenched systems cease star formation within 1 Gyr of first infall. We demonstrate that systems within a host galaxy's R200 radius are comprised of two populations: (i) a first infall population that has entered the host halo within the past few Gyrs and (ii) a population of returning `backsplash' systems that have had a much more extended interaction with the host. Backsplash galaxies that do not return to the host galaxy by redshift zero exhibit quenching properties similar to galaxies within R200 and are distinct from other external systems. The simulated quenching trend with stellar mass has some tension with observations, but our simulations are able reproduce the range of quenching times measured from resolved stellar populations of Local Group dwarf galaxies.

  16. The incidence of stellar mergers and mass gainers among massive stars

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Mink, S. E.; Sana, H.; Langer, N.

    2014-02-10

    Because the majority of massive stars are born as members of close binary systems, populations of massive main-sequence stars contain stellar mergers and products of binary mass transfer. We simulate populations of massive stars accounting for all major binary evolution effects based on the most recent binary parameter statistics and extensively evaluate the effect of model uncertainties. Assuming constant star formation, we find that 8{sub −4}{sup +9}% of a sample of early-type stars are the products of a merger resulting from a close binary system. In total we find that 30{sub −15}{sup +10}% of massive main-sequence stars are the productsmore » of binary interaction. We show that the commonly adopted approach to minimize the effects of binaries on an observed sample by excluding systems detected as binaries through radial velocity campaigns can be counterproductive. Systems with significant radial velocity variations are mostly pre-interaction systems. Excluding them substantially enhances the relative incidence of mergers and binary products in the non-radial velocity variable sample. This poses a challenge for testing single stellar evolutionary models. It also raises the question of whether certain peculiar classes of stars, such as magnetic O stars, are the result of binary interaction and it emphasizes the need to further study the effect of binarity on the diagnostics that are used to derive the fundamental properties (star-formation history, initial mass function, mass-to-light ratio) of stellar populations nearby and at high redshift.« less

  17. A NEW METHOD FOR DERIVING THE STELLAR BIRTH FUNCTION OF RESOLVED STELLAR POPULATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gennaro, M.; Brown, T. M.; Gordon, K. D.

    We present a new method for deriving the stellar birth function (SBF) of resolved stellar populations. The SBF (stars born per unit mass, time, and metallicity) is the combination of the initial mass function (IMF), the star formation history (SFH), and the metallicity distribution function (MDF). The framework of our analysis is that of Poisson Point Processes (PPPs), a class of statistical models suitable when dealing with points (stars) in a multidimensional space (the measurement space of multiple photometric bands). The theory of PPPs easily accommodates the modeling of measurement errors as well as that of incompleteness. Our method avoidsmore » binning stars in the color–magnitude diagram and uses the whole likelihood function for each data point; combining the individual likelihoods allows the computation of the posterior probability for the population's SBF. Within the proposed framework it is possible to include nuisance parameters, such as distance and extinction, by specifying their prior distributions and marginalizing over them. The aim of this paper is to assess the validity of this new approach under a range of assumptions, using only simulated data. Forthcoming work will show applications to real data. Although it has a broad scope of possible applications, we have developed this method to study multi-band Hubble Space Telescope observations of the Milky Way Bulge. Therefore we will focus on simulations with characteristics similar to those of the Galactic Bulge.« less

  18. ARE SOME MILKY WAY GLOBULAR CLUSTERS HOSTED BY UNDISCOVERED GALAXIES?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaritsky, Dennis; Crnojević, Denija; Sand, David J., E-mail: dennis.zaritsky@gmail.com

    2016-07-20

    The confirmation of a globular cluster (GC) in the recently discovered ultrafaint galaxy Eridanus II (Eri II) motivated us to examine the question posed in the title. After estimating the halo mass of Eri II using a published stellar mass—halo mass relation, the one GC in this galaxy supports extending the relationship between the number of GCs hosted by a galaxy and the galaxy’s total mass about two orders of magnitude in stellar mass below the previous limit. For this empirically determined specific frequency of between 0.06 and 0.39 GCs per 10{sup 9} M {sub ⊙} of total mass, themore » surviving Milky Way (MW) subhalos with masses smaller than 10{sup 10} M {sub ⊙} could host as many as 5–31 GCs, broadly consistent with the actual population of outer halo MW GCs, although matching the radial distribution in detail remains a challenge. Using a subhalo mass function from published high-resolution numerical simulations and a Poissonian model for populating those halos with the aforementioned empirically constrained frequency, we find that about 90% of these GCs lie in lower-mass subhalos than that of Eri II. From what we know about the stellar mass–halo mass function, the subhalo mass function, and the mass-normalized GC specific frequency, we conclude that some of the MW’s outer halo GCs are likely to be hosted by undetected subhalos with extremely modest stellar populations.« less

  19. The low-metallicity starburst NGC346: massive-star population and feedback

    NASA Astrophysics Data System (ADS)

    Oskinova, Lida

    2017-08-01

    The Small Magellanic Cloud (SMC) is ideal to study young, massive stars at low metallicity. The compact cluster NGC346 contains about half of all O-type stars in the entire SMC. The massive-star population of this cluster powers N66, the brightest and largest HII region in the SMC. We propose to use HST-STIS to slice NGC346 with 20 long-slit exposures, in order to obtain the UV spectra of most of the massive early-type stars of this cluster. Archival data of 13 exposures that cover already a minor part of this cluster will be included in our analyses. Our aim is to quantitatively analyze virtually the whole massive-star population of NGC346. We have already secured the optical spectra of all massive stars in the field with the integral-field spectrograph MUSE at the ESO-VLT. However, for the determination of the stellar-wind parameters, i.e. the mass-loss rates and the wind velocities, ultraviolet spectra are indispensable. Our advanced Potsdam Wolf-Rayet (PoWR) code will be used for modeling the stellar and wind spectra in the course of the analysis. Finally, we will obtain:(a) the fundamental stellar and wind parameters of all stars brighter than spectral type B2V in the field, which, e,g,, will constrain the initial mass function in this young low-metallicity starburst;(b) mass-loss rates of many more OB-type stars at SMC metallicity than hitherto known, allowing to better constrain their metallicity dependence;(c) the integrated feedback by ionizing radiation and stellar winds of the whole massive-star population of NGC346, which will be used as input to model the ecology of the giant HII region N66.These HST UV data will be of high legacy value.

  20. Deep Spitzer/IRAC Imaging of the Subaru Deep Field

    NASA Astrophysics Data System (ADS)

    Jiang, Linhua; Egami, Eiichi; Cohen, Seth; Fan, Xiaohui; Ly, Chun; Mechtley, Matthew; Windhorst, Rogier

    2013-10-01

    The last decade saw great progress in our understanding of the distant Universe as a number of objects at z > 6 were discovered. The Subaru Deep Field (SDF) project has played an important role on study of high-z galaxies. The SDF is unique: it covers a large area of 850 sq arcmin; it has extremely deep optical images in a series of broad and narrow bands; it has the largest sample of spectroscopically-confirmed galaxies known at z >= 6, including ~100 Lyman alpha emitters (LAEs) and ~50 Lyman break galaxies (LBGs). Here we propose to carry out deep IRAC imaging observations of the central 75% of the SDF. The proposed observations together with those from our previous Spitzer programs will reach a depth of ~10 hours, and enable the first complete census of physical properties and stellar populations of spectroscopically-confirmed galaxies at the end of cosmic reionization. IRAC data is the key to measure stellar masses and constrain stellar populations in high-z galaxies. From SED modeling with secure redshifts, we will characterize the physical properties of these galaxies, and trace their mass assembly and star formation history. In particular, it allows us, for the first time, to study stellar populations in a large sample of z >=6 LAEs. We will also address some critical questions, such as whether LAEs and LBGs represent physically different galaxy populations. All these will help us to understand the earliest galaxy formation and evolution, and better constrain the galaxy contribution to reionization. The IRAC data will also cover 10,000 emission-line selected galaxies at z < 1.5, 50,000 UV and mass selected LBGs at 1.5 < z < 3, and more than 5,000 LBGs at 3 < z < 6. It will have a legacy value for SDF-related programs.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peacock, Mark B.; Strader, Jay; Romanowsky, Aaron J.

    We present the resolved stellar populations in the inner and outer halo of the nearby lenticular galaxy NGC 3115. Using deep Hubble Space Telescope observations, we analyze stars 2 mag fainter than the tip of the red giant branch (TRGB). We study three fields along the minor axis of this galaxy, 19, 37, and 54 kpc from its center—corresponding to 7, 14, and 21 effective radii (r{sub e} ). Even at these large galactocentric distances, all of the fields are dominated by a relatively enriched population, with the main peak in the metallicity distribution decreasing with radius from [Z/H] ∼ –0.5 tomore » –0.65. The fraction of metal-poor stars ([Z/H] < –0.95) increases from 17% at 16-37 kpc to 28% at ∼54 kpc. We observe a distinct low-metallicity population (peaked at [Z/H] ∼ –1.3 and with total mass 2 × 10{sup 10} M {sub ☉} ∼ 14% of the galaxy's stellar mass) and argue that this represents the detection of an underlying low-metallicity stellar halo. Such halos are generally predicted by galaxy formation theories and have been observed in several late-type galaxies, including the Milky Way and M31. The metallicity and spatial distribution of the stellar halo of NGC 3115 are consistent with the galaxy's globular cluster system, which has a similar low-metallicity population that becomes dominant at these large radii. This finding supports the use of globular clusters as bright chemodynamical tracers of galaxy halos. These data also allow us to make a precise measurement of the magnitude of the TRGB, from which we derive a distance modulus of NGC 3115 of 30.05 ± 0.05 ± 0.10{sub sys} (10.2 ± 0.2 ± 0.5{sub sys} Mpc)« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bianchi, Luciana; Efremova, Boryana; Hodge, Paul

    We present a comprehensive study of young stellar populations in six dwarf galaxies in or near the Local Group: Phoenix, Pegasus, Sextans A, Sextans B, WLM, and NGC 6822. Their star-forming regions, selected from GALEX wide-field far-UV imaging, were imaged (at sub-pc resolution) with the WFPC2 camera on board the Hubble Space Telescope (HST) in six bandpasses from far-UV to I to detect and characterize their hot massive star content. This study is part of HST treasury survey program HST-GO-11079; the general data characteristics and reduction procedures are detailed in this paper and results are presented for the first sixmore » galaxies. From a total of 180 HST images, we provide catalogs of the multi-band stellar photometry and derive the physical parameters of massive stars by analyzing it with model-atmosphere colors. We use the results to infer ages, number of massive stars, extinction, and spatial characteristics of the young stellar populations. The hot massive star content varies largely across our galaxy sample, from an inconspicuous presence in Phoenix and Pegasus to the highest relative abundance of young massive stars in Sextans A and WLM. Albeit to a largely varying extent, most galaxies show a very young population (a few Myrs, except for Phoenix), and older ones (a few 10{sup 7} years in Sextans A, Sextans B, NGC 6822, and WLM, {approx}10{sup 8}yr in Phoenix and Pegasus), suggesting discrete bursts of recent star formation in the mapped regions. The hot massive star content (indicative of the young populations) broadly correlates with the total galaxy stellar mass represented by the integrated optical magnitude, although it varies by a factor of {approx}3 between Sextans A, WLM, and Sextans B, which have similar M{sub V}. Extinction properties are also derived.« less

  3. Walter Baade: Father of the Two Stellar Populations and Pioneer Supernova Researcher

    NASA Astrophysics Data System (ADS)

    Osterbrock, D. E.

    2001-05-01

    Walter Baade was the great observational astronomer of the middle part of the past century. He lived and worked in Pasadena, where he ``discovered" the two stellar populations and did outstanding pioneer research on supernovae at Mount Wilson and Palomar Observatories from 1931 until 1959, when he returned to his native Germany, and died the following year. Baade was born in a little town in northwest Germany, and educated at Goettingen University, where he received his Ph.D. in 1919, just after the end of World War I. He got a research position at Hamburg Observatory, and quickly jumped into globular cluster and galactic structure work with its 40-in reflector, then the largest telescope in Europe. Baade recognized very early the great importance of the extremely rare ``highly luminous novae" which Heber D. Curtis and Knut Lundmark isolated in 1919-21. In 1929 Baade called these ``Hauptnovae" the key to measuring distances of faint galaxies. We call them supernovae today, a term he and Fritz Zwicky began using in 1932. Similarly Baade's first inkling that there was a spherically symmetric distribution of stars in our Galaxy, which he named Population II in his two great 1944 papers, came when he began picking up field RR Lyrae variables in 1926. Baade's research on the two stellar populations and supernovae was extremely important in opening up the whole fields of stellar and galactic evolution. His invited lectures at meetings and symposia, and his courses as a visiting professor inspired a whole generation of research astrophysicists. Baade's attractive personality made it possible for him to make his great discoveries in a land in which he was officially an enemy alien during World War II.

  4. Modeling and analysis of the spectrum of the globular cluster NGC 2419

    NASA Astrophysics Data System (ADS)

    Sharina, M. E.; Shimansky, V. V.; Davoust, E.

    2013-06-01

    The properties of the stellar population of the unusual object NGC 2419 are studied; this is the most distant high-mass globular cluster of the Galaxy's outer halo, and a spectrum taken with the 1.93-m telescope of the Haute Provence Observatory displays elemental abundance anomalies. Since traditional high-resolution spectroscopicmethods are applicable to bright stars only, spectroscopic information for the cluster's stellar population as a whole, integrated along the spectrograph slit placed in various positions, is used. Population synthesis is carried out for the spectrum of NGC 2419 using synthetic spectra calculated from a grid of stellar model atmospheres, based on the theoretical isochrone from the literature that best fits the color-magnitude diagram of the cluster. The derived age (12.6 billion years), metallicity ([Fe/H] = -2.25 dex), and abundances of helium ( Y = 0.26) and other chemical elements (a total of 14) are in a good qualitative agreement with estimates from the literature made from high-resolution spectra of eight red giants in the cluster. The influence on the spectrum of deviations from local thermodynamic equilibrium is considered for several elements. The derived abundance of α-elements ([ α/Fe] = 0.13 dex, as the mean of [O/Fe], [Mg/Fe], and [Ca/Fe]) differs from the mean value in the literature ([ α/Fe] = 0.4 for the eight brightest red giants) and may be explained by recently discovered in NGC2419 large [a/Fe] dispersion. Further studies of the integrated properties of the stellar population in NGC 2419 using higher-resolution spectrographs in various wavelength ranges should help improve our understanding of the cluster's chemical anomalies.

  5. How does star formation proceed in the circumnuclear starburst ring of NGC 6951?

    NASA Astrophysics Data System (ADS)

    van der Laan, T. P. R.; Schinnerer, E.; Emsellem, E.; Hunt, L. K.; McDermid, R. M.; Liu, G.

    2013-03-01

    Gas inflowing along stellar bars is often stalled at the location of circumnuclear rings, which form an effective reservoir for massive star formation and thus shape the central regions of galaxies. However, how exactly star formation proceeds within these circumnuclear starburst rings is the subject of debate. Two main scenarios for this process have been put forward. In the first, the onset of star formation is regulated by the total amount of gas present in the ring with star forming starting, once a mass threshold has been reached, in "random" positions within the ring like "popcorn". In the second, star formation primarily takes place near the locations where the gas enters the ring. This scenario has been dubbed "pearls-on-a-string". Here we combine new optical IFU data covering the full stellar bar with existing multiwavelength data to study the 580 pc radius circumnuclear starburst ring in detail in the nearby spiral galaxy NGC 6951. Using Hubble Space Telescope (HST) archival data together with SAURON and OASIS IFU data, we derive the ages and stellar masses of star clusters, as well as the total stellar content of the central region. Adding information on the molecular gas distribution, stellar and gaseous dynamics, and extinction, we find that the circumnuclear ring in NGC 6951 is ~1-1.5 Gyr old and has been forming stars for most of that time. We see evidence for preferred sites of star formation within the ring, consistent with the "pearls-on-a-string" scenario, when focusing on the youngest stellar populations. The ring's longevity means that this signature is washed out when older stellar populations are included in the analysis. Tables 4 and 5 are available in electronic form at http://www.aanda.orgOASIS maps and SAURON cube are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/551/A81

  6. Correlations among Galaxy Properties from the Sloan Digital Sky Survey

    NASA Astrophysics Data System (ADS)

    Li, Zhongmu; Mao, Caiyan

    2013-07-01

    Galaxies are complex systems with many properties. Correlations among galaxy properties can supply important clues for studying the formation and evolution of galaxies. Using principal component analysis and least-squares fitting, this paper investigates the correlations among galactic parameters involving more properties (color, morphology, stellar population, and absolute magnitude) than previous studies. We use a volume-limited sample (whole sample) of 75,423 galaxies that was selected from the Sloan Digital Sky Survey Data Release 2 and divided into two subsamples (blue and red samples) using a critical color of (g - r) = 0.70 mag. In addition to recovering some previous results, we also obtain some new results. First, all separators for dividing galaxies into two groups can be related via good parameter-first principal component (PC1) correlations. A critical PC1 that indicates whether or not stellar age (or the evolution of a stellar population over time) is important can be used to separate galaxies. This suggests that a statistical parameter, PC1, is helpful in understanding the physical separators of galaxies. In addition, stellar age is shown to be unimportant for red galaxies, while both stellar age and mass are dominating parameters of blue galaxies. This suggests that the various numbers of dominating parameters of galaxies may result from the use of different samples. Finally, some parameters are shown to be correlated, and quantitative fits for a few correlations are obtained, e.g., log(t) = 8.57 + 1.65 (g - r) for the age (log t) and color (g - r) of blue galaxies and log (M *) = 4.31 - 0.30 M r for the stellar mass (log M *) and absolute magnitude (M r) of red galaxies. The median relationships between various parameter pairs are also presented for comparison.

  7. ECRH and its effects on neoclassical transport in a stellarator

    NASA Astrophysics Data System (ADS)

    Seol, Jaechun

    The banana center orbit deviates significantly from the magnetic surface due to the symmetry-breaking term in the magnetic field configuration. Energetic electrons can escape the plasma without collision, since the drift speed is proportional to the perpendicular energy of electron and the collision frequency is reduced as the electron energy goes up. A direct loss flux can be generated from energetic electron population in a stellarator. Thus energetic electron populations can substantially modify the neoclassical transport properties in stellarators. A model accounting for this change in transport is developed assuming the presence of electron cyclotron resonance heating (ECRH). The quasilinear diffusion coefficient for second harmonic X-mode ECRH is developed for a bumpy stellarator. Care is taken in accounting for the pitch-angle dependence of the quasilinear diffusion coefficient since application to experiments with narrow resonance zones is of interest. Weakly relativistic effects are considered through the mass effect on the cyclotron frequency. For trapped particles in a three dimensional configuration, collisionless loss zones exist in velocity space. Radio-frequency (rf) waves accelerate trapped electrons into the direct loss zone in bumpy stellarators and produce a direct loss flux. An analytic expression for this loss flux is derived; it is proportional to the rf field strength and the value of the zeroth order distribution function at the minimum speed for collisionless loss. The direct loss flux of electrons is another source of a non-ambipolar particle flux in bumpy stellarators. This additional non-ambipolar flux modifies the ambipolarity equation which generally has multiple roots for the radial electric field. An electron root (large positive Er) is easily obtained if the electrons are in the 1/nu regime and the ions are in the nu regime.

  8. THE DUAL ORIGIN OF STELLAR HALOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zolotov, Adi; Hogg, David W.; Willman, Beth

    2009-09-10

    We investigate the formation of the stellar halos of four simulated disk galaxies using high-resolution, cosmological SPH + N-body simulations. These simulations include a self-consistent treatment of all the major physical processes involved in galaxy formation. The simulated galaxies presented here each have a total mass of {approx}10{sup 12} M{sub sun}, but span a range of merger histories. These simulations allow us to study the competing importance of in situ star formation (stars formed in the primary galaxy) and accretion of stars from subhalos in the building of stellar halos in a {lambda}CDM universe. All four simulated galaxies are surroundedmore » by a stellar halo, whose inner regions (r < 20 kpc) contain both accreted stars, and an in situ stellar population. The outer regions of the galaxies' halos were assembled through pure accretion and disruption of satellites. Most of the in situ halo stars formed at high redshift out of smoothly accreted cold gas in the inner 1 kpc of the galaxies' potential wells, possibly as part of their primordial disks. These stars were displaced from their central locations into the halos through a succession of major mergers. We find that the two galaxies with recently quiescent merger histories have a higher fraction of in situ stars ({approx}20%-50%) in their inner halos than the two galaxies with many recent mergers ({approx}5%-10% in situ fraction). Observational studies concentrating on stellar populations in the inner halo of the Milky Way will be the most affected by the presence of in situ stars with halo kinematics, as we find that their existence in the inner few tens of kpc is a generic feature of galaxy formation.« less

  9. Stellar Population Properties of Ultracompact Dwarfs in M87: A Mass–Metallicity Correlation Connecting Low-metallicity Globular Clusters and Compact Ellipticals

    NASA Astrophysics Data System (ADS)

    Zhang, Hong-Xin; Puzia, Thomas H.; Peng, Eric W.; Liu, Chengze; Côté, Patrick; Ferrarese, Laura; Duc, Pierre-Alain; Eigenthaler, Paul; Lim, Sungsoon; Lançon, Ariane; Muñoz, Roberto P.; Roediger, Joel; Sánchez-Janssen, Ruben; Taylor, Matthew A.; Yu, Jincheng

    2018-05-01

    We derive stellar population parameters for a representative sample of ultracompact dwarfs (UCDs) and a large sample of massive globular clusters (GCs) with stellar masses ≳ 106 M ⊙ in the central galaxy M87 of the Virgo galaxy cluster, based on model fitting to the Lick-index measurements from both the literature and new observations. After necessary spectral stacking of the relatively faint objects in our initial sample of 40 UCDs and 118 GCs, we obtain 30 sets of Lick-index measurements for UCDs and 80 for GCs. The M87 UCDs have ages ≳ 8 Gyr and [α/Fe] ≃ 0.4 dex, in agreement with previous studies based on smaller samples. The literature UCDs, located in lower-density environments than M87, extend to younger ages and smaller [α/Fe] (at given metallicities) than M87 UCDs, resembling the environmental dependence of the stellar nuclei of dwarf elliptical galaxies (dEs) in the Virgo cluster. The UCDs exhibit a positive mass–metallicity relation (MZR), which flattens and connects compact ellipticals at stellar masses ≳ 108 M ⊙. The Virgo dE nuclei largely follow the average MZR of UCDs, whereas most of the M87 GCs are offset toward higher metallicities for given stellar masses. The difference between the mass–metallicity distributions of UCDs and GCs may be qualitatively understood as a result of their different physical sizes at birth in a self-enrichment scenario or of galactic nuclear cluster star formation efficiency being relatively low in a tidal stripping scenario for UCD formation. The existing observations provide the necessary but not sufficient evidence for tidally stripped dE nuclei being the dominant contributors to the M87 UCDs.

  10. Age gradients in the stellar populations of massive star forming regions based on a new stellar chronometer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getman, Konstantin V.; Feigelson, Eric D.; Kuhn, Michael A.

    2014-06-01

    A major impediment to understanding star formation in massive star-forming regions (MSFRs) is the absence of a reliable stellar chronometer to unravel their complex star formation histories. We present a new estimation of stellar ages using a new method that employs near-infrared (NIR) and X-ray photometry, Age {sub JX} . Stellar masses are derived from X-ray luminosities using the L{sub X} -M relation from the Taurus cloud. J-band luminosities are compared to mass-dependent pre-main-sequence (PMS) evolutionary models to estimate ages. Age {sub JX} is sensitive to a wide range of evolutionary stages, from disk-bearing stars embedded in a cloud tomore » widely dispersed older PMS stars. The Massive Young Star-Forming Complex Study in Infrared and X-ray (MYStIX) project characterizes 20 OB-dominated MSFRs using X-ray, mid-infrared, and NIR catalogs. The Age {sub JX} method has been applied to 5525 out of 31,784 MYStIX Probable Complex Members. We provide a homogeneous set of median ages for over 100 subclusters in 15 MSFRs; median subcluster ages range between 0.5 Myr and 5 Myr. The important science result is the discovery of age gradients across MYStIX regions. The wide MSFR age distribution appears as spatially segregated structures with different ages. The Age {sub JX} ages are youngest in obscured locations in molecular clouds, intermediate in revealed stellar clusters, and oldest in distributed populations. The NIR color index J – H, a surrogate measure of extinction, can serve as an approximate age predictor for young embedded clusters.« less

  11. Modelling ultraviolet-line diagnostics of stars, the ionized and the neutral interstellar medium in star-forming galaxies

    NASA Astrophysics Data System (ADS)

    Vidal-García, A.; Charlot, S.; Bruzual, G.; Hubeny, I.

    2017-09-01

    We combine state-of-the-art models for the production of stellar radiation and its transfer through the interstellar medium (ISM) to investigate ultraviolet-line diagnostics of stars, the ionized and the neutral ISM in star-forming galaxies. We start by assessing the reliability of our stellar population synthesis modelling by fitting absorption-line indices in the ISM-free ultraviolet spectra of 10 Large Magellanic Cloud clusters. In doing so, we find that neglecting stochastic sampling of the stellar initial mass function in these young (∼10-100 Myr), low-mass clusters affects negligibly ultraviolet-based age and metallicity estimates but can lead to significant overestimates of stellar mass. Then, we proceed and develop a simple approach, based on an idealized description of the main features of the ISM, to compute in a physically consistent way the combined influence of nebular emission and interstellar absorption on ultraviolet spectra of star-forming galaxies. Our model accounts for the transfer of radiation through the ionized interiors and outer neutral envelopes of short-lived stellar birth clouds, as well as for radiative transfer through a diffuse intercloud medium. We use this approach to explore the entangled signatures of stars, the ionized and the neutral ISM in ultraviolet spectra of star-forming galaxies. We find that, aside from a few notable exceptions, most standard ultraviolet indices defined in the spectra of ISM-free stellar populations are prone to significant contamination by the ISM, which increases with metallicity. We also identify several nebular-emission and interstellar-absorption features, which stand out as particularly clean tracers of the different phases of the ISM.

  12. The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints

    NASA Astrophysics Data System (ADS)

    Newman, Andrew B.; Smith, Russell J.; Conroy, Charlie; Villaume, Alexa; van Dokkum, Pieter

    2017-08-01

    We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high-σ ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M */L using lensing and stellar dynamics. We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy & van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2-3σ tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08 M ⊙. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to <2σ. There is moderate evidence for a reduced number of low-mass stars in the SNELLS spectra, but no such evidence in a composite spectrum of matched-σ ETGs drawn from the SDSS. Such variation in the form of the IMF at low stellar masses (m ≲ 0.3 M ⊙), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M */L relative to the mean matched-σ ETG. We provide the spectra used in this study to facilitate future comparisons.

  13. The Initial Mass Function in the Nearest Strong Lenses from SNELLS: Assessing the Consistency of Lensing, Dynamical, and Spectroscopic Constraints

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, Andrew B.; Smith, Russell J.; Conroy, Charlie

    2017-08-20

    We present new observations of the three nearest early-type galaxy (ETG) strong lenses discovered in the SINFONI Nearby Elliptical Lens Locator Survey (SNELLS). Based on their lensing masses, these ETGs were inferred to have a stellar initial mass function (IMF) consistent with that of the Milky Way, not the bottom-heavy IMF that has been reported as typical for high- σ ETGs based on lensing, dynamical, and stellar population synthesis techniques. We use these unique systems to test the consistency of IMF estimates derived from different methods. We first estimate the stellar M {sub *}/ L using lensing and stellar dynamics.more » We then fit high-quality optical spectra of the lenses using an updated version of the stellar population synthesis models developed by Conroy and van Dokkum. When examined individually, we find good agreement among these methods for one galaxy. The other two galaxies show 2–3 σ tension with lensing estimates, depending on the dark matter contribution, when considering IMFs that extend to 0.08 M {sub ⊙}. Allowing a variable low-mass cutoff or a nonparametric form of the IMF reduces the tension among the IMF estimates to <2 σ . There is moderate evidence for a reduced number of low-mass stars in the SNELLS spectra, but no such evidence in a composite spectrum of matched- σ ETGs drawn from the SDSS. Such variation in the form of the IMF at low stellar masses ( m ≲ 0.3 M {sub ⊙}), if present, could reconcile lensing/dynamical and spectroscopic IMF estimates for the SNELLS lenses and account for their lighter M {sub *}/ L relative to the mean matched- σ ETG. We provide the spectra used in this study to facilitate future comparisons.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    El-Badry, Kareem; Geha, Marla; Wetzel, Andrew

    We examine the effects of stellar feedback and bursty star formation on low-mass galaxies (M{sub star} = 2 × 10{sup 6} − 5 × 10{sup 10} M{sub ⊙}) using the Feedback in Realistic Environments (FIRE) simulations. While previous studies emphasized the impact of feedback on dark matter profiles, we investigate the impact on the stellar component: kinematics, radial migration, size evolution, and population gradients. Feedback-driven outflows/inflows drive significant radial stellar migration over both short and long timescales via two processes: (1) outflowing/infalling gas can remain star-forming, producing young stars that migrate ∼1 kpc within their first 100 Myr, and (2) gas outflows/inflows drive strong fluctuations in the globalmore » potential, transferring energy to all stars. These processes produce several dramatic effects. First, galaxies’ effective radii can fluctuate by factors of >2 over ∼200 Myr, and these rapid size fluctuations can account for much of the observed scatter in the radius at fixed M{sub star}. Second, the cumulative effects of many outflow/infall episodes steadily heat stellar orbits, causing old stars to migrate outward most strongly. This age-dependent radial migration mixes—and even inverts—intrinsic age and metallicity gradients. Thus, the galactic-archaeology approach of calculating radial star formation histories from stellar populations at z = 0 can be severely biased. These effects are strongest at M{sub star} ≈ 10{sup 7–9.6} M{sub ⊙}, the same regime where feedback most efficiently cores galaxies. Thus, detailed measurements of stellar kinematics in low-mass galaxies can strongly constrain feedback models and test baryonic solutions to small-scale problems in ΛCDM.« less

  15. THE SL2S GALAXY-SCALE LENS SAMPLE. V. DARK MATTER HALOS AND STELLAR IMF OF MASSIVE EARLY-TYPE GALAXIES OUT TO REDSHIFT 0.8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.

    2015-02-20

    We investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. We find that the dark matter mass projected within the inner 5 kpc increasesmore » for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M {sub *} = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  16. The SL2S galaxy-scale lens sample. V. dark matter halos and stellar IMF of massive early-type galaxies out to redshift 0.8

    DOE PAGES

    Sonnenfeld, Alessandro; Treu, Tommaso; Marshall, Philip J.; ...

    2015-02-17

    Here, we investigate the cosmic evolution of the internal structure of massive early-type galaxies over half of the age of the universe. We also perform a joint lensing and stellar dynamics analysis of a sample of 81 strong lenses from the Strong Lensing Legacy Survey and Sloan ACS Lens Survey and combine the results with a hierarchical Bayesian inference method to measure the distribution of dark matter mass and stellar initial mass function (IMF) across the population of massive early-type galaxies. Lensing selection effects are taken into account. Furthermore, we found that the dark matter mass projected within the innermore » 5 kpc increases for increasing redshift, decreases for increasing stellar mass density, but is roughly constant along the evolutionary tracks of early-type galaxies. The average dark matter slope is consistent with that of a Navarro-Frenk-White profile, but is not well constrained. The stellar IMF normalization is close to a Salpeter IMF at log M * = 11.5 and scales strongly with increasing stellar mass. No dependence of the IMF on redshift or stellar mass density is detected. The anti-correlation between dark matter mass and stellar mass density supports the idea of mergers being more frequent in more massive dark matter halos.« less

  17. Division G Commission 35: Stellar Constitution

    NASA Astrophysics Data System (ADS)

    Limongi, Marco; Lattanzio, John C.; Charbonnel, Corinne; Dominguez, Inma; Isern, Jordi; Karakas, Amanda; Leitherer, Claus; Marconi, Marcella; Shaviv, Giora; van Loon, Jacco

    2016-04-01

    Commission 35 (C35), ``Stellar Constitution'', consists of members of the International Astronomical Union whose research spans many aspects of theoretical and observational stellar physics and it is mainly focused on the comprehension of the properties of stars, stellar populations and galaxies. The number of members of C35 increased progressively over the last ten years and currently C35 comprises about 400 members. C35 was part of Division IV (Stars) until 2014 and then became part of Division G (Stars and Stellar Physics), after the main IAU reorganisation in 2015. Four Working Groups have been created over the years under Division IV, initially, and Division G later: WG on Active B Stars, WG on Massive Stars, WG on Abundances in Red Giant and WG on Chemically Peculiar and Related Stars. In the last decade the Commission had 4 presidents, Wojciech Dziembowski (2003-2006), Francesca D'Antona (2006-2009), Corinne Charbonnel (2009-2012) and Marco Limongi (2012-2015), who were assisted by an Organizing Committee (OC), usually composed of about 10 members, all of them elected by the C35 members and holding their positions for three years. The C35 webpage (http://iau-c35.stsci.edu) has been designed and continuously maintained by Claus Leitherer from the Space Telescope Institute, who deserves our special thanks. In addition to the various general information on the Commission structure and activities, it contains links to various resources, of interest for the members, such as stellar models, evolutionary tracks and isochrones, synthetic stellar populations, stellar yields and input physics (equation of state, nuclear cross sections, opacity tables), provided by various groups. The main activity of the C35 OC is that of evaluating, ranking and eventually supporting the proposals for IAU sponsored meetings. In the last decade the Commission has supported several meetings focused on topics more or less relevant to C35. Since the primary aim of this document is to present the main activity of C35 over the last ten years, in the following we present some scientific highlights that emerged from the most relevant IAU Symposia and meetings supported and organized by C35 in the last decade.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auger, M. W.; Treu, T.; Marshall, P. J.

    We present the current photometric data set for the Sloan Lens ACS (SLACS) Survey, including Hubble Space Telescope (HST) photometry from Advanced Camera for Surveys, WFPC2, and NICMOS. These data have enabled the confirmation of an additional 15 grade 'A' (certain) lens systems, bringing the number of SLACS grade 'A' lenses to 85; including 13 grade 'B' (likely) systems, SLACS has identified nearly 100 lenses and lens candidates. Approximately 80% of the grade 'A' systems have elliptical morphologies while approx10% show spiral structure; the remaining lenses have lenticular morphologies. Spectroscopic redshifts for the lens and source are available for everymore » system, making SLACS the largest homogeneous data set of galaxy-scale lenses to date. We have created lens models using singular isothermal ellipsoid mass distributions for the 11 new systems that are dominated by a single mass component and where the multiple images are detected with sufficient signal to noise; these models give a high precision measurement of the mass within the Einstein radius of each lens. We have developed a novel Bayesian stellar population analysis code to determine robust stellar masses with accurate error estimates. We apply this code to deep, high-resolution HST imaging and determine stellar masses with typical statistical errors of 0.1 dex; we find that these stellar masses are unbiased compared to estimates obtained using SDSS photometry, provided that informative priors are used. The stellar masses range from 10{sup 10.5} to 10{sup 11.8} M{sub sun} and the typical stellar mass fraction within the Einstein radius is 0.4, assuming a Chabrier initial mass function. The ensemble properties of the SLACS lens galaxies, e.g., stellar masses and projected ellipticities, appear to be indistinguishable from other SDSS galaxies with similar stellar velocity dispersions. This further supports that SLACS lenses are representative of the overall population of massive early-type galaxies with M{sub *} approx> 10{sup 11} M{sub sun}, and are therefore an ideal data set to investigate the kpc-scale distribution of luminous and dark matter in galaxies out to z approx 0.5.« less

  19. The Next Generation Fornax Survey (NGFS). II. The Central Dwarf Galaxy Population

    NASA Astrophysics Data System (ADS)

    Eigenthaler, Paul; Puzia, Thomas H.; Taylor, Matthew A.; Ordenes-Briceño, Yasna; Muñoz, Roberto P.; Ribbeck, Karen X.; Alamo-Martínez, Karla A.; Zhang, Hongxin; Ángel, Simón; Capaccioli, Massimo; Côté, Patrick; Ferrarese, Laura; Galaz, Gaspar; Grebel, Eva K.; Hempel, Maren; Hilker, Michael; Lançon, Ariane; Mieske, Steffen; Miller, Bryan; Paolillo, Maurizio; Powalka, Mathieu; Richtler, Tom; Roediger, Joel; Rong, Yu; Sánchez-Janssen, Ruben; Spengler, Chelsea

    2018-03-01

    We present a photometric study of the dwarf galaxy population in the core region (≲r vir/4) of the Fornax galaxy cluster based on deep u‧g‧i‧ photometry from the Next Generation Fornax Cluster Survey. All imaging data were obtained with the Dark Energy Camera mounted on the 4 m Blanco telescope at the Cerro Tololo Interamerican Observatory. We identify 258 dwarf galaxy candidates with luminosities ‑17 ≲ M g‧ ≲ ‑8 mag, corresponding to typical stellar masses of 9.5≳ {log}{{ \\mathcal M }}\\star /{M}ȯ ≳ 5.5, reaching ∼3 mag deeper in point-source luminosity and ∼4 mag deeper in surface brightness sensitivity compared to the classic Fornax Cluster Catalog. Morphological analysis shows that the dwarf galaxy surface-brightness profiles are well represented by single-component Sérsic models with average Sérsic indices of < n{> }u\\prime ,g\\prime ,i\\prime =(0.78{--}0.83)+/- 0.02 and average effective radii of < {r}e{> }u\\prime ,g\\prime ,i\\prime =(0.67{--}0.70)+/- 0.02 {kpc}. Color–magnitude relations indicate a flattening of the galaxy red sequence at faint galaxy luminosities, similar to the one recently discovered in the Virgo cluster. A comparison with population synthesis models and the galaxy mass–metallicity relation reveals that the average faint dwarf galaxy is likely older than ∼5 Gyr. We study galaxy scaling relations between stellar mass, effective radius, and stellar mass surface density over a stellar mass range covering six orders of magnitude. We find that over the sampled stellar mass range several distinct mechanisms of galaxy mass assembly can be identified: (1) dwarf galaxies assemble mass inside the half-mass radius up to {log}{{ \\mathcal M }}\\star ≈ 8.0, (2) isometric mass assembly occurs in the range 8.0 ≲ {log}{{ \\mathcal M }}\\star /{M}ȯ ≲ 10.5, and (3) massive galaxies assemble stellar mass predominantly in their halos at {log}{{ \\mathcal M }}\\star ≈ 10.5 and above.

  20. THE EVOLUTION OF EARLY- AND LATE-TYPE GALAXIES IN THE COSMIC EVOLUTION SURVEY UP TO z {approx} 1.2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pannella, Maurilio; Gabasch, Armin; Drory, Niv

    2009-08-10

    The Cosmic Evolution Survey (COSMOS) allows for the first time a highly significant census of environments and structures up to redshift 1, as well as a full morphological description of the galaxy population. In this paper we present a study aimed to constrain the evolution, in the redshift range 0.2 < z < 1.2, of the mass content of different morphological types and its dependence on the environmental density. We use a deep multicolor catalog, covering an area of {approx}0.7 deg{sup 2} inside the COSMOS field, with accurate photometric redshifts (i {approx}< 26.5 and {delta}z/(z {sub spec} + 1) {approx}more » 0.035). We estimate galaxy stellar masses by fitting the multicolor photometry to a grid of composite stellar population models. We quantitatively describe the galaxy morphology by fitting point-spread function convolved Sersic profiles to the galaxy surface brightness distributions down to F814 = 24 mag for a sample of 41,300 objects. We confirm an evolution of the morphological mix with redshift: the higher the redshift the more disk-dominated galaxies become important. We find that the morphological mix is a function of the local comoving density: the morphology density relation extends up to the highest redshift explored. The stellar mass function of disk-dominated galaxies is consistent with being constant with redshift. Conversely, the stellar mass function of bulge-dominated systems shows a decline in normalization with redshift. Such different behaviors of late-types and early-types stellar mass functions naturally set the redshift evolution of the transition mass. We find a population of relatively massive, early-type galaxies, having high specific star formation rate (SSFR) and blue colors which live preferentially in low-density environments. The bulk of massive (>7 x 10{sup 10} M {sub sun}) early-type galaxies have similar characteristic ages, colors, and SSFRs independently of the environment they belong to, with those hosting the oldest stars in the universe preferentially belonging to the highest density regions. The whole catalog including morphological information and stellar mass estimates analyzed in this work is made publicly available.« less

  1. Stellar Streams in the Andromeda Halo

    NASA Astrophysics Data System (ADS)

    Fardal, Mark A.; PAndAS Collaboration

    2011-05-01

    The PAndAS survey detects RGB and AGB stars in our neighbor galaxy M31, out to 150 kpc from the galaxy center with an extension to M33. Maps of this survey display a spectacular collection of stellar streams extending tens to hundreds of kpc in length. Many of these streams overlap with each other or with M31's central regions, making it difficult to disentangle the different streams. I discuss what is currently known about the nature, origin, significance, and eventual fate of these stellar streams. Photometric observations from the PAndAS survey and follow-up work constrain the metallicity, age, luminosity, and stellar mass of the stellar population. I discuss scenarios for how some of these streams formed, while for others their origin remains a mystery. I present observationally constrained numerical simulations for the formation of some of the streams. The streams also are probes of the mass profile and lumpiness of M31's dark matter halo. Spectroscopic samples are used to constrain M31's halo mass at large radius.

  2. What shapes stellar metallicity gradients of massive galaxies at large radii?

    NASA Astrophysics Data System (ADS)

    Hirschmann, Michaela

    2017-03-01

    We investigate the differential impact of physical mechanisms, mergers and internal energetic phenomena, on the evolution of stellar metallicity gradients in massive, present-day galaxies employing sets of high-resolution, cosmological zoom simulations. We demonstrate that negative metallicity gradients at large radii (>2Reff) originate from the accretion of metal-poor stellar systems. At larger radii, galaxies become typically more dominated by stars accreted from satellite galaxies in major and minor mergers. However, only strong galactic, stellar-driven winds can sufficiently reduce the metallicity content of the accreted stars to realistically steepen the outer metallicity gradients in agreement with observations. In contrast, the gradients of the models without winds are inconsistent with observations. Moreover, we discuss the impact of additional AGN feedback. This analysis greatly highlights the importance of both energetic processes and merger events for stellar population properties of massive galaxies at large radii. Our results are expected to significantly contribute to the interpretation of current and up-coming IFU surveys (e.g. MaNGA, CALIFA).

  3. Observations of Pre-Stellar Cores

    NASA Astrophysics Data System (ADS)

    Tafalla, M.

    2005-08-01

    Our understanding of the physical and chemical structure of pre-stellar cores, the simplest star-forming sites, has significantly improved since the last IAU Symposium on Astrochemistry (South Korea, 1999). Research done over these years has revealed that major molecular species like CO and CS systematically deplete onto dust grains in the interior of pre-stellar cores, while species like N2H+ and NH3 survive in the gas phase and can usually be detected toward the core centers. Such a selective behavior of molecular species gives rise to a differentiated (onion-like) chemical composition, and manifests itself in molecular maps as a dichotomy between centrally peaked and ring-shaped distributions. From the point of view of star-formation studies, the identification of molecular inhomogeneities in cores helps to resolve past discrepancies between observations made using different tracers, and brings the possibility of self-consistent modelling of the core internal structure. Here I present recent work on determining the physical and chemical structure of two pre-stellar cores, L1498 and L1517B, using observations in a large number of molecules and Monte Carlo radiative transfer analysis. These two cores are typical examples of the pre-stellar core population, and their chemical composition is characterized by the presence of large `freeze out holes' in most molecular species. In contrast with these chemically processed objects, a new population of chemically young cores has begun to emerge. The characteristics of its most extreme representative, L1521E, are briefly reviewed.

  4. The massive end of the luminosity and stellar mass functions and clustering from CMASS to SDSS: evidence for and against passive evolution

    NASA Astrophysics Data System (ADS)

    Bernardi, M.; Meert, A.; Sheth, R. K.; Huertas-Company, M.; Maraston, C.; Shankar, F.; Vikram, V.

    2016-02-01

    We describe the luminosity function, based on Sérsic fits to the light profiles, of CMASS galaxies at z ˜ 0.55. Compared to previous estimates, our Sérsic-based reductions imply more luminous, massive galaxies, consistent with the effects of Sérsic- rather than Petrosian or de Vaucouleur-based photometry on the Sloan Digital Sky Survey (SDSS) main galaxy sample at z ˜ 0.1. This implies a significant revision of the high-mass end of the correlation between stellar and halo mass. Inferences about the evolution of the luminosity and stellar mass functions depend strongly on the assumed, and uncertain, k + e corrections. In turn, these depend on the assumed age of the population. Applying k + e corrections taken from fitting the models of Maraston et al. to the colours of both SDSS and CMASS galaxies, the evolution of the luminosity and stellar mass functions appears impressively passive, provided that the fits are required to return old ages. However, when matched in comoving number- or luminosity-density, the SDSS galaxies are less strongly clustered compared to their counterparts in CMASS. This rules out the passive evolution scenario, and, indeed, any minor merger scenarios which preserve the rank ordering in stellar mass of the population. Potential incompletenesses in the CMASS sample would further enhance this mismatch. Our analysis highlights the virtue of combining clustering measurements with number counts.

  5. First evidence of multiple populations along the AGB from Strömgren photometry

    NASA Astrophysics Data System (ADS)

    Gruyters, Pieter; Casagrande, Luca; Milone, Antonino P.; Hodgkin, Simon T.; Serenelli, Aldo; Feltzing, Sofia

    2017-07-01

    Spectroscopic studies have demonstrated that nearly all Galactic globular clusters (GCs) harbour multiple stellar populations with different chemical compositions. Moreover, colour-magnitude diagrams based exclusively on Strömgrem photometry have allowed us to identify and characterise multiple populations along the RGB of a large number of clusters. In this paper we show for the first time that Strömgren photometry is also very efficient at identifying multiple populations along the AGB, and demonstrate that the AGB of M 3, M 92, NGC 362, NGC 1851, and NGC 6752 are not consistent with a single stellar population. We also provide a catalogue of RGB and AGB stars photometrically identified in these clusters for further spectroscopic follow-up studies. We combined photometry and elemental abundances from the literature for RGB and AGB stars in NGC 6752 where the presence of multiple populations along the AGB has been widely debated. We find that, while the MS, SGB, and RGB host three stellar populations with different helium and light element abundances, only two populations of AGB stars are present in the cluster. These results are consistent with standard evolutionary theory. Based on observations made with the Isaac Newton Telescope operated on the island of La Palma by the Isaac Newton Group in the Spanish Observatorio del Roque de los Muchachos of the Instituto de Astrofísica de Canarias.Full Tables B.1 and B.2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/603/A37

  6. The Cluster Population of UGC 2885

    NASA Astrophysics Data System (ADS)

    Holwerda, Benne

    2017-08-01

    UGC 2885 was discoverd to be the most extended disk galaxy [250 kpc diameter] by Vera Rubin in the 1980's. We ask for HST observations of UGC 2885 as it is close enough to resolve the GC population with HST but it is a substantially more extended disk than any studied before. LCDM galaxy assembly implies that the GC population comes from small accreted systems and the disk -and the clusters associated with it- predominantly from gas accretion (matching angular momentum to the disk). Several scaling relations between the GC population and parent galaxy have been observed but these differ for disk and spheroidal (massive) galaxies.We propose to observe this galaxy with HST in 4 point WFC3 mosaic with coordinated ACS parallels to probe both the disk and outer halo component of the GC population. GC populations have been studied extensively using HST color mosaics of local disk galaxies and these can serve as comparison samples. How UGC 2885 cluster populations relate to its stellar and halo mass, luminosity and with radius will reveal the formation history of extra-ordinary disk.Our goals are twofold: our science goal is to map the luminosity, (some) size, and color distributions of the stellar and globular clusters in and around this disk. In absolute terms, we expect to find many GC but the relative relation of the GC population to this galaxy's mass (stellar and halo) and size will shed light on its formation history; similar to a group or cluster central elliptical or to a field galaxy (albeit one with a disk 10x the Milky Way's size)? Our secondary motive is to make an HST tribute image to the late Vera Rubin.

  7. Multiple Populations in Globular Clusters - The Spectroscopic View

    NASA Astrophysics Data System (ADS)

    Cohen, Judith G.

    2015-03-01

    I review the evidence supporting and characterizing multiple populations within globular clusters (GCs) based on spectroscopy, i.e. on abundance variations within the stellar population of an individual GC, which dates back to almost 40 years ago. I discuss some of my recent work in this area.

  8. The Not So Simple Globular Cluster ω Cen. I. Spatial Distribution of the Multiple Stellar Populations

    NASA Astrophysics Data System (ADS)

    Calamida, A.; Strampelli, G.; Rest, A.; Bono, G.; Ferraro, I.; Saha, A.; Iannicola, G.; Scolnic, D.; James, D.; Smith, C.; Zenteno, A.

    2017-04-01

    We present a multi-band photometric catalog of ≈1.7 million cluster members for a field of view of ≈2° × 2° across ω Cen. Photometry is based on images collected with the Dark Energy Camera on the 4 m Blanco telescope and the Advanced Camera for Surveys on the Hubble Space Telescope. The unprecedented photometric accuracy and field coverage allowed us, for the first time, to investigate the spatial distribution of ω Cen multiple populations from the core to the tidal radius, confirming its very complex structure. We found that the frequency of blue main-sequence stars is increasing compared to red main-sequence stars starting from a distance of ≈25‧ from the cluster center. Blue main-sequence stars also show a clumpy spatial distribution, with an excess in the northeast quadrant of the cluster pointing toward the direction of the Galactic center. Stars belonging to the reddest and faintest red-giant branch also show a more extended spatial distribution in the outskirts of ω Cen, a region never explored before. Both these stellar sub-populations, according to spectroscopic measurements, are more metal-rich compared to the cluster main stellar population. These findings, once confirmed, make ω Cen the only stellar system currently known where metal-rich stars have a more extended spatial distribution compared to metal-poor stars. Kinematic and chemical abundance measurements are now needed for stars in the external regions of ω Cen to better characterize the properties of these sub-populations. Based on observations made with the Dark Energy Camera (DECam) on the 4 m Blanco telescope (NOAO) under programs 2014A-0327, 2015A-0151, 2016A-0189, PIs: A. Calamida, A. Rest, and on observations made with the NASA/ESA Hubble Space Telescope, obtained by the Space Telescope Science Institute. STScI is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS 5-26555.

  9. Systematic variation of the stellar initial mass function in early-type galaxies.

    PubMed

    Cappellari, Michele; McDermid, Richard M; Alatalo, Katherine; Blitz, Leo; Bois, Maxime; Bournaud, Frédéric; Bureau, M; Crocker, Alison F; Davies, Roger L; Davis, Timothy A; de Zeeuw, P T; Duc, Pierre-Alain; Emsellem, Eric; Khochfar, Sadegh; Krajnović, Davor; Kuntschner, Harald; Lablanche, Pierre-Yves; Morganti, Raffaella; Naab, Thorsten; Oosterloo, Tom; Sarzi, Marc; Scott, Nicholas; Serra, Paolo; Weijmans, Anne-Marie; Young, Lisa M

    2012-04-25

    Much of our knowledge of galaxies comes from analysing the radiation emitted by their stars, which depends on the present number of each type of star in the galaxy. The present number depends on the stellar initial mass function (IMF), which describes the distribution of stellar masses when the population formed, and knowledge of it is critical to almost every aspect of galaxy evolution. More than 50 years after the first IMF determination, no consensus has emerged on whether it is universal among different types of galaxies. Previous studies indicated that the IMF and the dark matter fraction in galaxy centres cannot both be universal, but they could not convincingly discriminate between the two possibilities. Only recently were indications found that massive elliptical galaxies may not have the same IMF as the Milky Way. Here we report a study of the two-dimensional stellar kinematics for the large representative ATLAS(3D) sample of nearby early-type galaxies spanning two orders of magnitude in stellar mass, using detailed dynamical models. We find a strong systematic variation in IMF in early-type galaxies as a function of their stellar mass-to-light ratios, producing differences of a factor of up to three in galactic stellar mass. This implies that a galaxy's IMF depends intimately on the galaxy's formation history.

  10. The Future of Stellar Populations Studies in the Milky Way and the Local Group

    NASA Astrophysics Data System (ADS)

    Majewski, Steven R.

    2010-04-01

    The last decade has seen enormous progress in understanding the structure of the Milky Way and neighboring galaxies via the production of large-scale digital surveys of the sky like 2MASS and SDSS, as well as specialized, counterpart imaging surveys of other Local Group systems. Apart from providing snaphots of galaxy structure, these “cartographic” surveys lend insights into the formation and evolution of galaxies when supplemented with additional data (e.g., spectroscopy, astrometry) and when referenced to theoretical models and simulations of galaxy evolution. These increasingly sophisticated simulations are making ever more specific predictions about the detailed chemistry and dynamics of stellar populations in galaxies. To fully exploit, test and constrain these theoretical ventures demands similar commitments of observational effort as has been plied into the previous imaging surveys to fill out other dimensions of parameter space with statistically significant intensity. Fortunately the future of large-scale stellar population studies is bright with a number of grand projects on the horizon that collectively will contribute a breathtaking volume of information on individual stars in Local Group galaxies. These projects include: (1) additional imaging surveys, such as Pan-STARRS, SkyMapper and LSST, which, apart from providing deep, multicolor imaging, yield time series data useful for revealing variable stars (including critical standard candles, like RR Lyrae variables) and creating large-scale, deep proper motion catalogs; (2) higher accuracy, space-based astrometric missions, such as Gaia and SIM-Lite, which stand to provide critical, high precision dynamical data on stars in the Milky Way and its satellites; and (3) large-scale spectroscopic surveys provided by RAVE, APOGEE, HERMES, LAMOST, and the Gaia spectrometer, which will yield not only enormous numbers of stellar radial velocities, but extremely comprehensive views of the chemistry of stellar populations. Meanwhile, previously dust-obscured regions of the Milky Way will continue to be systematically exposed via large infrared surveys underway or on the way, such as the various GLIMPSE surveys from Spitzer's IRAC instrument, UKIDSS, APOGEE, JASMINE and WISE.

  11. Stellar, Remnant, Planetary, and Dark-Object Masses from Astrometric Microlensing

    NASA Technical Reports Server (NTRS)

    Gould, Andrew P.; Bennett, David P.; Boden, Andrew; Depoy, Darren L.; Gaudi, Scott B.; Griest, Kim; Han, Cheongho; Paczynski, Bohdan; Reid, I. Neill

    2004-01-01

    The primary goal of our project is to make a complete census of the stellar population of the Galaxy. We are broadening the term stellar here to include both ordinary stars and dark stars. Ordinary stars, burning their nuclear fuel and shining, can perhaps best be studied with traditional astronomical techniques, but dark stars, by which we include old brown dwarfs, black holes, old white dwarfs, neutron stars, and perhaps exotic objects such as mirror matter stars or primordial black holes, can only be studied by their gravitational effects. Traditionally, these objects have been probed in binaries, and thus selected in a way that may or may not be representative of their respective field populations. The only way to examine the field population of these stars is through microlensing, the deflection of light from a visible star in the background by an object (dark or not) in the foreground. When lensed, there are two images of the background star. Although these images cannot be resolved when the lens has a stellar mass, the lensing effect can be detected in two ways: photometrically, i.e. by measuring the magnification of the source by the lens, and astrometrically, i.e. by measuring the shift in the centroid of the two images. Photometric microlensing experiments have detected hundreds of microlensing events over the past decade. Despite its successes, photometric microlensing has so far been somewhat frustrating because these events are difficult to interpret. Almost nothing is known about the masses of individual lenses and very little is known about the statistical properties of the lenses treated as a whole, such as their average mass. Although probably over 100 of the lenses are in fact dark objects, we can't determine which they are, let alone investigate finer details such as what their masses are, and where they are in the Galaxy. With SIM, we will break the microlensing degeneracy, and allow detailed interpretation of individual microlensing events. We will thus develop a detailed census of the dark and luminous stellar population of the Galaxy.

  12. Hubble's Next Generation Spectral Library

    NASA Astrophysics Data System (ADS)

    Heap, Sara R.; Lindler, D.

    2008-03-01

    Spectroscopic surveys of galaxies at z 1 or more bring the rest-frame ultraviolet into view of large, ground-based telescopes. This spectral region is rich in diagnostics, but these diagnostics have not yet been calibrated in terms of the properties of the responsible stellar population(s). Such calibrations are now possible with Hubble's Next Generation Spectral Library (NGSL). This library contains UV-optical spectra (0.2-1.0 microns) of 378 stars having a wide range in temperature, luminosity, and metallicity. We have derived the basic stellar parameters from the optical spectral region (0.35 - 1.0 microns) and are using them to calibrate UV spectral diagnostic indices and colors.

  13. Images in the rocket ultraviolet - The stellar population in the central bulge of M31

    NASA Technical Reports Server (NTRS)

    Bohlin, R. C.; Cornett, R. H.; Hill, J. K.; Hill, R. S.; Oconnell, R. W.; Stecher, T. P.

    1985-01-01

    Imagery of the bulge of M31 obtained with a rocket-borne telescope in two broad bands centered at 1460 A and 2380 A is discussed. The UV spatial profiles over a region about 200 arcsec wide are identical with those at visible wavelengths. The absence of detectable point sources indicates that main-sequence stars hotter than B0 V are not present in the bulge. It is suggested that the far-UV flux in old stellar populations originates in post-AGB stars. The UV flux from such stars is extremely sensitive to age and the physics of their previous mass loss.

  14. The VMC Survey. XI. Radial Stellar Population Gradients in the Galactic Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Li, Chengyuan; de Grijs, Richard; Deng, Licai; Rubele, Stefano; Wang, Chuchu; Bekki, Kenji; Cioni, Maria-Rosa L.; Clementini, Gisella; Emerson, Jim; For, Bi-Qing; Girardi, Leo; Groenewegen, Martin A. T.; Guandalini, Roald; Gullieuszik, Marco; Marconi, Marcella; Piatti, Andrés E.; Ripepi, Vincenzo; van Loon, Jacco Th.

    2014-07-01

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K s survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ~0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.

  15. Radial Stellar Population Gradients in the Galactic Globular Cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    de Grijs, Richard; Li, Chengyuan; Deng, Licai

    2015-01-01

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, Ks survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red-giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant-branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ~0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from Y = 0.28, Z = 0.005 in the cluster core to Y = 0.25, Z = 0.003 in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.

  16. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-04-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion, and mass-loss rates during the luminous blue variable and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  17. Accuracy of inference on the physics of binary evolution from gravitational-wave observations

    NASA Astrophysics Data System (ADS)

    Barrett, Jim W.; Gaebel, Sebastian M.; Neijssel, Coenraad J.; Vigna-Gómez, Alejandro; Stevenson, Simon; Berry, Christopher P. L.; Farr, Will M.; Mandel, Ilya

    2018-07-01

    The properties of the population of merging binary black holes encode some of the uncertain physics underlying the evolution of massive stars in binaries. The binary black hole merger rate and chirp-mass distribution are being measured by ground-based gravitational-wave detectors. We consider isolated binary evolution, and explore how accurately the physical model can be constrained with such observations by applying the Fisher information matrix to the merging black hole population simulated with the rapid binary-population synthesis code COMPAS. We investigate variations in four COMPAS parameters: common-envelope efficiency, kick-velocity dispersion and mass-loss rates during the luminous blue variable, and Wolf-Rayet stellar-evolutionary phases. We find that ˜1000 observations would constrain these model parameters to a fractional accuracy of a few per cent. Given the empirically determined binary black hole merger rate, we can expect gravitational-wave observations alone to place strong constraints on the physics of stellar and binary evolution within a few years. Our approach can be extended to use other observational data sets; combining observations at different evolutionary stages will lead to a better understanding of stellar and binary physics.

  18. WFIRST: Resolving the Milky Way Galaxy

    NASA Astrophysics Data System (ADS)

    Kalirai, Jason; Conroy, Charlie; Dressler, Alan; Geha, Marla; Levesque, Emily; Lu, Jessica; Tumlinson, Jason

    2018-01-01

    WFIRST will yield a transformative impact in measuring and characterizing resolved stellar populations in the Milky Way. The proximity and level of detail that such populations need to be studied at directly map to all three pillars of WFIRST capabilities - sensitivity from a 2.4 meter space based telescope, resolution from 0.1" pixels, and large 0.3 degree field of view from multiple detectors. In this poster, we describe the activities of the WFIRST Science Investigation Team (SIT), "Resolving the Milky Way with WFIRST". Notional programs guiding our analysis include targeting sightlines to establish the first well-resolved large scale maps of the Galactic bulge aand central region, pockets of star formation in the disk, benchmark star clusters, and halo substructure and ultra faint dwarf satellites. As an output of this study, our team is building optimized strategies and tools to maximize stellar population science with WFIRST. This will include: new grids of IR-optimized stellar evolution and synthetic spectroscopic models; pipelines and algorithms for optimal data reduction at the WFIRST sensitivity and pixel scale; wide field simulations of Milky Way environments including new astrometric studies; and strategies and automated algorithms to find substructure and dwarf galaxies in the Milky Way through the WFIRST High Latitude Survey.

  19. The VMC survey. XI. Radial stellar population gradients in the galactic globular cluster 47 Tucanae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Chengyuan; De Grijs, Richard; Deng, Licai

    2014-07-20

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K{sub s} survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can verymore » well be described by adopting an age spread of ∼0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.« less

  20. Globular clusters as tracers of stellar bimodality in elliptical galaxies: the case of NGC 1399

    NASA Astrophysics Data System (ADS)

    Forte, Juan C.; Faifer, Favio; Geisler, Doug

    2005-02-01

    Globular cluster systems (GCSs) frequently show a bimodal distribution of cluster integrated colours. This work explores the arguments to support the idea that the same feature is shared by the diffuse stellar population of the galaxy they are associated with. The particular case of NGC 1399, one of the dominant central galaxies in the Fornax cluster, for which a new B surface brightness profile and (B-RKC) colours are presented, is discussed taking advantage of a recently published wide-field study of its GCS. The results show that the galaxy brightness profile and colour gradient, as well as the behaviour of the cumulative globular cluster specific frequency, are compatible with the presence of two dominant stellar populations, associated with the so-called `blue' and `red' globular cluster families. These globular families are characterized by different intrinsic specific frequencies (defined in terms of each stellar population): Sn= 3.3 +/- 0.3 in the case of the red globulars and Sn= 14.3 +/- 2.5 for the blue ones. We stress that this result does not necessarily conflict with recent works that point out a clear difference between the metallicity distribution of (resolved) halo stars and globulars when comparing their number statistics. The region within 0.5arcmin of the centre shows a deviation from the model profile (in both surface brightness and colour) that may be explained in terms of the presence of a bulge-like high-metallicity component. Otherwise, the model gives an excellent fit up to 12arcmin (or 66.5Kpc) from the centre, the galactocentric limit of our blue brightness profile. The inferred specific frequencies imply that, in terms of their associated stellar populations, the formation of the blue globulars took place with an efficiency about six times higher than that corresponding to their red counterparts. The similarity of the spatial distribution of the blue globulars with that inferred for dark matter, as well as with that of the X-ray-emitting hot gas associated with NGC 1399, is emphasized. The impact of a relatively inconspicuous low-metallicity population, that shares the properties of the blue globulars, as a possible source of chemical enrichment early in the formation history of the galaxy is also briefly discussed.

Top