Terminator Detection by Support Vector Machine Utilizing aStochastic Context-Free Grammar
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis-Lyon, Patricia; Cristianini, Nello; Holbrook, Stephen
2006-12-30
A 2-stage detector was designed to find rho-independent transcription terminators in the Escherichia coli genome. The detector includes a Stochastic Context Free Grammar (SCFG) component and a Support Vector Machine (SVM) component. To find terminators, the SCFG searches the intergenic regions of nucleotide sequence for local matches to a terminator grammar that was designed and trained utilizing examples of known terminators. The grammar selects sequences that are the best candidates for terminators and assigns them a prefix, stem-loop, suffix structure using the Cocke-Younger-Kasaami (CYK) algorithm, modified to incorporate energy affects of base pairing. The parameters from this inferred structure aremore » passed to the SVM classifier, which distinguishes terminators from non-terminators that score high according to the terminator grammar. The SVM was trained with negative examples drawn from intergenic sequences that include both featureless and RNA gene regions (which were assigned prefix, stem-loop, suffix structure by the SCFG), so that it successfully distinguishes terminators from either of these. The classifier was found to be 96.4% successful during testing.« less
Novel mechanism of conjoined gene formation in the human genome.
Kim, Ryong Nam; Kim, Aeri; Choi, Sang-Haeng; Kim, Dae-Soo; Nam, Seong-Hyeuk; Kim, Dae-Won; Kim, Dong-Wook; Kang, Aram; Kim, Min-Young; Park, Kun-Hyang; Yoon, Byoung-Ha; Lee, Kang Seon; Park, Hong-Seog
2012-03-01
Recently, conjoined genes (CGs) have emerged as important genetic factors necessary for understanding the human genome. However, their formation mechanism and precise structures have remained mysterious. Based on a detailed structural analysis of 57 human CG transcript variants (CGTVs, discovered in this study) and all (833) known CGs in the human genome, we discovered that the poly(A) signal site from the upstream parent gene region is completely removed via the skipping or truncation of the final exon; consequently, CG transcription is terminated at the poly(A) signal site of the downstream parent gene. This result led us to propose a novel mechanism of CG formation: the complete removal of the poly(A) signal site from the upstream parent gene is a prerequisite for the CG transcriptional machinery to continue transcribing uninterrupted into the intergenic region and downstream parent gene. The removal of the poly(A) signal sequence from the upstream gene region appears to be caused by a deletion or truncation mutation in the human genome rather than post-transcriptional trans-splicing events. With respect to the characteristics of CG sequence structures, we found that intergenic regions are hot spots for novel exon creation during CGTV formation and that exons farther from the intergenic regions are more highly conserved in the CGTVs. Interestingly, many novel exons newly created within the intergenic and intragenic regions originated from transposable element sequences. Additionally, the CGTVs showed tumor tissue-biased expression. In conclusion, our study provides novel insights into the CG formation mechanism and expands the present concepts of the genetic structural landscape, gene regulation, and gene formation mechanisms in the human genome.
Mayán, Maria D
2013-01-01
Three RNA polymerases coexist in the ribosomal DNA of Saccharomyces cerevisiae. RNAP-I transcribes the 35S rRNA, RNAP-III transcribes the 5S rRNA and RNAP-II is found in both intergenic non-coding regions. Previously, we demonstrated that RNAP-II molecules bound to the intergenic non-coding regions (IGS) of the ribosomal locus are mainly found in a stalled conformation, and the stalled polymerase mediates chromatin interactions, which isolate RNAP-I from the RNAP-III transcriptional domain. Besides, RNAP-II transcribes both IGS regions at low levels, using different cryptic promoters. This report demonstrates that RNAP-II also transcribes two sequences located in the 5'- and 3'-ends of the 35S rRNA gene that overlap with the sequences of the 35S rRNA precursor transcribed by RNAP-I. The sequence located at the promoter region of RNAP-I, called the p-RNA transcript, binds to the transcription termination-related protein, Reb1p, while the T-RNA sequence, located in the termination sites of RNAP-I gene, contains the stem-loop recognized by Rtn1p, which is necessary for proper termination of RNAP-I. Because of their location, these small RNAs may play a key role in the initiation and termination of RNAP-I transcription. To correctly synthesize proteins, eukaryotic cells may retain a mechanism that connects the three main polymerases. This report suggests that cryptic transcription by RNAP-II may be required for normal transcription by RNAP-I in the ribosomal locus of S. cerevisiae. Copyright © 2012 John Wiley & Sons, Ltd.
Sequences in the intergenic spacer influence RNA Pol I transcription from the human rRNA promoter
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, W.M.; Sylvester, J.E.
1994-09-01
In most eucaryotic species, ribosomal genes are tandemly repeated about 100-5000 times per haploid genome. The 43 Kb human rDNA repeat consists of a 13 Kb coding region for the 18S, 5.8S, 28S ribosomal RNAs (rRNAs) and transcribed spacers separated by a 30 Kb intergenic spacer. For species such as frog, mouse and rat, sequences in the intergenic spacer other than the gene promoter have been shown to modulate transcription of the ribosomal gene. These sequences are spacer promoters, enhancers and the terminator for spacer transcription. We are addressing whether the human ribosomal gene promoter is similarly influenced. In-vitro transcriptionmore » run-off assays have revealed that the 4.5 kb region (CBE), directly upstream of the gene promoter, has cis-stimulation and trans-competition properties. This suggests that the CBE fragment contains an enhancer(s) for ribosomal gene transcription. Further experiments have shown that a fragment ({approximately}1.6 kb) within the CBE fragment also has trans-competition function. Deletion subclones of this region are being tested to delineate the exact sequences responsible for these modulating activities. Previous sequence analysis and functional studies have revealed that CBE contains regions of DNA capable of adopting alternative structures such as bent DNA, Z-DNA, and triple-stranded DNA. Whether these structures are required for modulating transcription remains to be determined as does the specific DNA-protein interaction involved.« less
Sequence analysis and expression of the M1 and M2 matrix protein genes of hirame rhabdovirus (HIRRV)
Nishizawa, T.; Kurath, G.; Winton, J.R.
1997-01-01
We have cloned and sequenced a 2318 nucleotide region of the genomic RNA of hirame rhabdovirus (HIRRV), an important viral pathogen of Japanese flounder Paralichthys olivaceus. This region comprises approximately two-thirds of the 3' end of the nucleocapsid protein (N) gene and the complete matrix protein (M1 and M2) genes with the associated intergenic regions. The partial N gene sequence was 812 nucleotides in length with an open reading frame (ORF) that encoded the carboxyl-terminal 250 amino acids of the N protein. The M1 and M2 genes were 771 and 700 nucleotides in length, respectively, with ORFs encoding proteins of 227 and 193 amino acids. The M1 gene sequence contained an additional small ORF that could encode a highly basic, arginine-rich protein of 25 amino acids. Comparisons of the N, M1, and M2 gene sequences of HIRRV with the corresponding sequences of the fish rhabdoviruses, infectious hematopoietic necrosis virus (IHNV) or viral hemorrhagic septicemia virus (VHSV) indicated that HIRRV was more closely related to IHNV than to VHSV, but was clearly distinct from either. The putative consensus gene termination sequence for IHNV and VHSV, AGAYAG(A)(7), was present in the N-M1, M1-M2, and M2-G intergenic regions of HIRRV as were the putative transcription initiation sequences YGGCAC and AACA. An Escherichia coli expression system was used to produce recombinant proteins from the M1 and M2 genes of HIRRV. These were the same size as the authentic M1 and M2 proteins and reacted with anti-HIRRV rabbit serum in western blots. These reagents can be used for further study of the fish immune response and to test novel control methods.
Kraakman, L S; Mager, W H; Maurer, K T; Nieuwint, R T; Planta, R J
1989-01-01
Transcription of the majority of the ribosomal protein (rp) genes in yeast is activated through common cis-acting elements, designated RPG-boxes. These elements have been shown to act as specific binding sites for the protein factor TUF/RAP1/GRF1 in vitro. Two such elements occur in the intergenic region separating the divergently transcribed genes encoding L46 and S24. To investigate whether the two RPG-boxes mediate transcription activation of both the L46 and S24 gene, two experimental strategies were followed: cloning of the respective genes on multicopy vectors and construction of fusion genes. Cloning of the L46 + S24 gene including the intergenic region in a multicopy yeast vector indicated that both genes are transcriptionally active. Using constructs in which only the S24 or the L46 gene is present, with or without the intergenic region, we obtained evidence that the intergenic region is indispensable for transcription activation of either gene. To demarcate the element(s) responsible for this activation, fusions of the intergenic region in either orientation to the galK reporter gene were made. Northern analysis of the levels of hybrid mRNA demonstrated that the intergenic region can serve as an heterologous promoter when it is in the 'S24-orientation'. Surprisingly, however, when fused in the reverse orientation the intergenic region did hardly confer transcription activity on the fusion gene. Furthermore, a 274 bp FnuDII-FnuDII fragment from the intergenic region that contains the RPG-boxes, could replace the naturally occurring upstream activation site (UASrpg) of the L25 rp-gene only when inserted in the 'S24-orientation'. Removal of 15 bp from the FnuDII fragment appeared to be sufficient to obtain transcription activation in the 'L46 orientation' as well. Analysis of a construct in which the RPG-boxes were selectively deleted from the promoter region of the L46 gene indicated that the RPG-boxes are needed for efficient transcriptional activation of the L46 gene. We conclude that all promoter elements for the S24 gene are located within the intergenic region, where the RPG-boxes are the most likely UAS-elements. However, the intergenic region (including the RPG-boxes) is required but not sufficient to confer transcription activity on the L46 gene. Images PMID:2602141
Kraakman, L S; Mager, W H; Maurer, K T; Nieuwint, R T; Planta, R J
1989-12-11
Transcription of the majority of the ribosomal protein (rp) genes in yeast is activated through common cis-acting elements, designated RPG-boxes. These elements have been shown to act as specific binding sites for the protein factor TUF/RAP1/GRF1 in vitro. Two such elements occur in the intergenic region separating the divergently transcribed genes encoding L46 and S24. To investigate whether the two RPG-boxes mediate transcription activation of both the L46 and S24 gene, two experimental strategies were followed: cloning of the respective genes on multicopy vectors and construction of fusion genes. Cloning of the L46 + S24 gene including the intergenic region in a multicopy yeast vector indicated that both genes are transcriptionally active. Using constructs in which only the S24 or the L46 gene is present, with or without the intergenic region, we obtained evidence that the intergenic region is indispensable for transcription activation of either gene. To demarcate the element(s) responsible for this activation, fusions of the intergenic region in either orientation to the galK reporter gene were made. Northern analysis of the levels of hybrid mRNA demonstrated that the intergenic region can serve as an heterologous promoter when it is in the 'S24-orientation'. Surprisingly, however, when fused in the reverse orientation the intergenic region did hardly confer transcription activity on the fusion gene. Furthermore, a 274 bp FnuDII-FnuDII fragment from the intergenic region that contains the RPG-boxes, could replace the naturally occurring upstream activation site (UASrpg) of the L25 rp-gene only when inserted in the 'S24-orientation'. Removal of 15 bp from the FnuDII fragment appeared to be sufficient to obtain transcription activation in the 'L46 orientation' as well. Analysis of a construct in which the RPG-boxes were selectively deleted from the promoter region of the L46 gene indicated that the RPG-boxes are needed for efficient transcriptional activation of the L46 gene. We conclude that all promoter elements for the S24 gene are located within the intergenic region, where the RPG-boxes are the most likely UAS-elements. However, the intergenic region (including the RPG-boxes) is required but not sufficient to confer transcription activity on the L46 gene.
CDK regulation of transcription by RNAP II: Not over 'til it's over?
Fisher, Robert P
2017-03-15
Transcription by RNA polymerase (RNAP) II is regulated at multiple steps by phosphorylation, catalyzed mainly by members of the cyclin-dependent kinase (CDK) family. The CDKs involved in transcription have overlapping substrate specificities, but play largely non-redundant roles in coordinating gene expression. Novel functions and targets of CDKs have recently emerged at the end of the transcription cycle, when the primary transcript is cleaved, and in most cases polyadenylated, and transcription is terminated by the action of the "torpedo" exonuclease Xrn2, which is a CDK substrate. Collectively, various functions have been ascribed to CDKs or CDK-mediated phosphorylation: recruiting cleavage and polyadenylation factors, preventing premature termination within gene bodies while promoting efficient termination of full-length transcripts, and preventing extensive readthrough transcription into intergenic regions or neighboring genes. The assignment of precise functions to specific CDKs is still in progress, but recent advances suggest ways in which the CDK network and RNAP II machinery might cooperate to ensure timely exit from the transcription cycle.
CDK regulation of transcription by RNAP II: Not over ‘til it's over?
Fisher, Robert P.
2017-01-01
ABSTRACT Transcription by RNA polymerase (RNAP) II is regulated at multiple steps by phosphorylation, catalyzed mainly by members of the cyclin-dependent kinase (CDK) family. The CDKs involved in transcription have overlapping substrate specificities, but play largely non-redundant roles in coordinating gene expression. Novel functions and targets of CDKs have recently emerged at the end of the transcription cycle, when the primary transcript is cleaved, and in most cases polyadenylated, and transcription is terminated by the action of the “torpedo” exonuclease Xrn2, which is a CDK substrate. Collectively, various functions have been ascribed to CDKs or CDK-mediated phosphorylation: recruiting cleavage and polyadenylation factors, preventing premature termination within gene bodies while promoting efficient termination of full-length transcripts, and preventing extensive readthrough transcription into intergenic regions or neighboring genes. The assignment of precise functions to specific CDKs is still in progress, but recent advances suggest ways in which the CDK network and RNAP II machinery might cooperate to ensure timely exit from the transcription cycle. PMID:28005463
Morimoto, Tomomi; Arii, Jun; Akashi, Hiroomi; Kawaguchi, Yasushi
2009-03-01
Information on sites in HSV genomes at which foreign gene(s) can be inserted without disrupting viral genes or affecting properties of the parental virus are important for basic research on HSV and development of HSV-based vectors for human therapy. The intergenic region between HSV-1 UL3 and UL4 genes has been reported to satisfy the requirements for such an insertion site. The UL3 and UL4 genes are oriented toward the intergenic region and, therefore, insertion of a foreign gene(s) into the region between the UL3 and UL4 polyadenylation signals should not disrupt any viral genes or transcriptional units. HSV-1 and HSV-2 each have more than 10 additional regions structurally similar to the intergenic region between UL3 and UL4. In the studies reported here, it has been demonstrated that insertion of a reporter gene expression cassette into several of the HSV-1 and HSV-2 intergenic regions has no effect on viral growth in cell culture or virulence in mice, suggesting that these multiple intergenic regions may be suitable HSV sites for insertion of foreign genes.
2012-01-01
Background Glutamyl queuosine-tRNAAsp synthetase (GluQ-RS) is a paralog of the catalytic domain of glutamyl-tRNA synthetase and catalyzes the formation of glutamyl-queuosine on the wobble position of tRNAAsp. Here we analyze the transcription of its gene in Shigella flexneri, where it is found downstream of dksA, which encodes a transcriptional regulator involved in stress responses. Results The genomic organization, dksA-gluQ-rs, is conserved in more than 40 bacterial species. RT-PCR assays show co-transcription of both genes without a significant change in transcript levels during growth of S. flexneri. However, mRNA levels of the intergenic region changed during growth, increasing at stationary phase, indicating an additional level of control over the expression of gluQ-rs gene. Transcriptional fusions with lacZ as a reporter gene only produced β-galactosidase activity when the constructs included the dksA promoter, indicating that gluQ-rs do not have a separate promoter. Using bioinformatics, we identified a putative transcriptional terminator between dksA and gluQ-rs. Deletion or alteration of the predicted terminator resulted in increased expression of the lacZ reporter compared with cells containing the wild type terminator sequence. Analysis of the phenotype of a gluQ-rs mutant suggested that it may play a role in some stress responses, since growth of the mutant was impaired in the presence of osmolytes. Conclusions The results presented here, show that the expression of gluQ-rs depends on the dksA promoter, and strongly suggest the presence and the functionality of a transcriptional terminator regulating its expression. Also, the results indicate a link between glutamyl-queuosine synthesis and stress response in Shigella flexneri. PMID:23035718
Caballero, Valeria C; Toledo, Viviana P; Maturana, Cristian; Fisher, Carolyn R; Payne, Shelley M; Salazar, Juan Carlos
2012-10-05
Glutamyl queuosine-tRNA(Asp) synthetase (GluQ-RS) is a paralog of the catalytic domain of glutamyl-tRNA synthetase and catalyzes the formation of glutamyl-queuosine on the wobble position of tRNA(Asp). Here we analyze the transcription of its gene in Shigella flexneri, where it is found downstream of dksA, which encodes a transcriptional regulator involved in stress responses. The genomic organization, dksA-gluQ-rs, is conserved in more than 40 bacterial species. RT-PCR assays show co-transcription of both genes without a significant change in transcript levels during growth of S. flexneri. However, mRNA levels of the intergenic region changed during growth, increasing at stationary phase, indicating an additional level of control over the expression of gluQ-rs gene. Transcriptional fusions with lacZ as a reporter gene only produced β-galactosidase activity when the constructs included the dksA promoter, indicating that gluQ-rs do not have a separate promoter. Using bioinformatics, we identified a putative transcriptional terminator between dksA and gluQ-rs. Deletion or alteration of the predicted terminator resulted in increased expression of the lacZ reporter compared with cells containing the wild type terminator sequence. Analysis of the phenotype of a gluQ-rs mutant suggested that it may play a role in some stress responses, since growth of the mutant was impaired in the presence of osmolytes. The results presented here, show that the expression of gluQ-rs depends on the dksA promoter, and strongly suggest the presence and the functionality of a transcriptional terminator regulating its expression. Also, the results indicate a link between glutamyl-queuosine synthesis and stress response in Shigella flexneri.
Ulianov, Sergey V; Galitsyna, Aleksandra A; Flyamer, Ilya M; Golov, Arkadiy K; Khrameeva, Ekaterina E; Imakaev, Maxim V; Abdennur, Nezar A; Gelfand, Mikhail S; Gavrilov, Alexey A; Razin, Sergey V
2017-07-11
In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing topologically associating domain.
Characteristics and significance of intergenic polyadenylated RNA transcription in Arabidopsis.
Moghe, Gaurav D; Lehti-Shiu, Melissa D; Seddon, Alex E; Yin, Shan; Chen, Yani; Juntawong, Piyada; Brandizzi, Federica; Bailey-Serres, Julia; Shiu, Shin-Han
2013-01-01
The Arabidopsis (Arabidopsis thaliana) genome is the most well-annotated plant genome. However, transcriptome sequencing in Arabidopsis continues to suggest the presence of polyadenylated (polyA) transcripts originating from presumed intergenic regions. It is not clear whether these transcripts represent novel noncoding or protein-coding genes. To understand the nature of intergenic polyA transcription, we first assessed its abundance using multiple messenger RNA sequencing data sets. We found 6,545 intergenic transcribed fragments (ITFs) occupying 3.6% of Arabidopsis intergenic space. In contrast to transcribed fragments that map to protein-coding and RNA genes, most ITFs are significantly shorter, are expressed at significantly lower levels, and tend to be more data set specific. A surprisingly large number of ITFs (32.1%) may be protein coding based on evidence of translation. However, our results indicate that these "translated" ITFs tend to be close to and are likely associated with known genes. To investigate if ITFs are under selection and are functional, we assessed ITF conservation through cross-species as well as within-species comparisons. Our analysis reveals that 237 ITFs, including 49 with translation evidence, are under strong selective constraint and relatively distant from annotated features. These ITFs are likely parts of novel genes. However, the selective pressure imposed on most ITFs is similar to that of randomly selected, untranscribed intergenic sequences. Our findings indicate that despite the prevalence of ITFs, apart from the possibility of genomic contamination, many may be background or noisy transcripts derived from "junk" DNA, whose production may be inherent to the process of transcription and which, on rare occasions, may act as catalysts for the creation of novel genes.
Sun, Yu; Chen, Chen; Gao, Jin; Abbas, Muhammad Nadeem; Kausar, Saima; Qian, Cen; Wang, Lei; Wei, Guoqing; Zhu, Bao-Jian
2017-01-01
In the present study, the complete sequence of the mitochondrial genome (mitogenome) of Daphnis nerii (Lepidoptera: Sphingidae) is described. The mitogenome (15,247 bp) of D.nerii encodes13 protein-coding genes (PCGs), 22 transfer RNA genes (tRNAs), two ribosomal RNA genes (rRNAs) and an adenine (A) + thymine (T)-rich region. Its gene complement and order is similar to that of other sequenced lepidopterans. The 12 PCGs initiated by ATN codons except for cytochrome c oxidase subunit 1 (cox1) gene that is seemingly initiated by the CGA codon as documented in other insect mitogenomes. Four of the 13 PCGs have the incomplete termination codon T, while the remainder terminated with the canonical stop codon. This mitogenome has six major intergenic spacers, with the exception of A+T-rich region, spanning at least 10 bp. The A+T-rich region is 351 bp long, and contains some conserved regions, including ‘ATAGA’ motif followed by a 17 bp poly-T stretch, a microsatellite-like element (AT)9 and also a poly-A element. Phylogenetic analyses based on 13 PCGs using maximum likelihood (ML) and Bayesian inference (BI) revealed that D. nerii resides in the Sphingidae family. PMID:28598968
Piggy: a rapid, large-scale pan-genome analysis tool for intergenic regions in bacteria.
Thorpe, Harry A; Bayliss, Sion C; Sheppard, Samuel K; Feil, Edward J
2018-04-01
The concept of the "pan-genome," which refers to the total complement of genes within a given sample or species, is well established in bacterial genomics. Rapid and scalable pipelines are available for managing and interpreting pan-genomes from large batches of annotated assemblies. However, despite overwhelming evidence that variation in intergenic regions in bacteria can directly influence phenotypes, most current approaches for analyzing pan-genomes focus exclusively on protein-coding sequences. To address this we present Piggy, a novel pipeline that emulates Roary except that it is based only on intergenic regions. A key utility provided by Piggy is the detection of highly divergent ("switched") intergenic regions (IGRs) upstream of genes. We demonstrate the use of Piggy on large datasets of clinically important lineages of Staphylococcus aureus and Escherichia coli. For S. aureus, we show that highly divergent (switched) IGRs are associated with differences in gene expression and we establish a multilocus reference database of IGR alleles (igMLST; implemented in BIGSdb).
Sugai, Akihiro; Sato, Hiroki; Yoneda, Misako; Kai, Chieko
2017-08-01
The regulation of transcription during Nipah virus (NiV) replication is poorly understood. Using a bicistronic minigenome system, we investigated the involvement of non-coding regions (NCRs) in the transcriptional re-initiation efficiency of NiV RNA polymerase. Reporter assays revealed that attenuation of NiV gene expression was not constant at each gene junction, and that the attenuating property was controlled by the 3' NCR. However, this regulation was independent of the gene-end, gene-start and intergenic regions. Northern blot analysis indicated that regulation of viral gene expression by the phosphoprotein (P) and large protein (L) 3' NCRs occurred at the transcription level. We identified uridine-rich tracts within the L 3' NCR that are similar to gene-end signals. These gene-end-like sequences were recognized as weak transcription termination signals by the viral RNA polymerase, thereby reducing downstream gene transcription. Thus, we suggest that NiV has a unique mechanism of transcriptional regulation. Copyright © 2017 Elsevier Inc. All rights reserved.
Differential accumulation of nif structural gene mRNA in Azotobacter vinelandii.
Hamilton, Trinity L; Jacobson, Marty; Ludwig, Marcus; Boyd, Eric S; Bryant, Donald A; Dean, Dennis R; Peters, John W
2011-09-01
Northern analysis was employed to investigate mRNA produced by mutant strains of Azotobacter vinelandii with defined deletions in the nif structural genes and in the intergenic noncoding regions. The results indicate that intergenic RNA secondary structures effect the differential accumulation of transcripts, supporting the high Fe protein-to-MoFe protein ratio required for optimal diazotrophic growth.
Zhu, Bo; Zhang, Wenli; Jiang, Jiming
2015-01-01
Enhancers are important regulators of gene expression in eukaryotes. Enhancers function independently of their distance and orientation to the promoters of target genes. Thus, enhancers have been difficult to identify. Only a few enhancers, especially distant intergenic enhancers, have been identified in plants. We developed an enhancer prediction system based exclusively on the DNase I hypersensitive sites (DHSs) in the Arabidopsis thaliana genome. A set of 10,044 DHSs located in intergenic regions, which are away from any gene promoters, were predicted to be putative enhancers. We examined the functions of 14 predicted enhancers using the β-glucuronidase gene reporter. Ten of the 14 (71%) candidates were validated by the reporter assay. We also designed 10 constructs using intergenic sequences that are not associated with DHSs, and none of these constructs showed enhancer activities in reporter assays. In addition, the tissue specificity of the putative enhancers can be precisely predicted based on DNase I hypersensitivity data sets developed from different plant tissues. These results suggest that the open chromatin signature-based enhancer prediction system developed in Arabidopsis may serve as a universal system for enhancer identification in plants. PMID:26373455
Intergenic mRNA molecules resulting from trans-splicing.
Finta, Csaba; Zaphiropoulos, Peter G
2002-02-22
Accumulated recent evidence is indicating that alternative splicing represents a generalized process that increases the complexity of human gene expression. Here we show that mRNA production may not necessarily be limited to single genes, as human liver also has the potential to produce a variety of hybrid cytochrome P450 3A mRNA molecules. The four known cytochrome P450 3A genes in humans, CYP3A4, CYP3A5, CYP3A7, and CYP3A43, share a high degree of similarity, consist of 13 exons with conserved exon-intron boundaries, and form a cluster on chromosome 7. The chimeric CYP3A mRNA molecules described herein are characterized by CYP3A43 exon 1 joined at canonical splice sites to distinct sets of CYP3A4 or CYP3A5 exons. Because the CYP3A43 gene is in a head-to-head orientation with the CYP3A4 and CYP3A5 genes, bypassing transcriptional termination can not account for the formation of hybrid CYP3A mRNAs. Thus, the mechanism generating these molecules has to be an RNA processing event that joins exons of independent pre-mRNA molecules, i.e. trans-splicing. Using quantitative real-time polymerase chain reaction, the ratio of one CYP3A43/3A4 intergenic combination was estimated to be approximately 0.15% that of the CYP3A43 mRNAs. Moreover, trans-splicing has been found not to interfere with polyadenylation. Heterologous expression of the chimeric species composed of CYP3A43 exon 1 joined to exons 2-13 of CYP3A4 revealed catalytic activity toward testosterone.
Jenks, M Harley; O'Rourke, Thomas W; Reines, Daniel
2008-06-01
The IMD2 gene in Saccharomyces cerevisiae is regulated by intracellular guanine nucleotides. Regulation is exerted through the choice of alternative transcription start sites that results in synthesis of either an unstable short transcript terminating upstream of the start codon or a full-length productive IMD2 mRNA. Start site selection is dictated by the intracellular guanine nucleotide levels. Here we have mapped the polyadenylation sites of the upstream, unstable short transcripts that form a heterogeneous family of RNAs of approximately 200 nucleotides. The switch from the upstream to downstream start sites required the Rpb9 subunit of RNA polymerase II. The enzyme's ability to locate the downstream initiation site decreased exponentially as the start was moved downstream from the TATA box. This suggests that RNA polymerase II's pincer grip is important as it slides on DNA in search of a start site. Exosome degradation of the upstream transcripts was highly dependent upon the distance between the terminator and promoter. Similarly, termination was dependent upon the Sen1 helicase when close to the promoter. These findings extend the emerging concept that distinct modes of termination by RNA polymerase II exist and that the distance of the terminator from the promoter, as well as its sequence, is important for the pathway chosen.
NASA Astrophysics Data System (ADS)
Karakatsanis, L. P.; Pavlos, G. P.; Iliopoulos, A. C.; Pavlos, E. G.; Clark, P. M.; Duke, J. L.; Monos, D. S.
2018-09-01
This study combines two independent domains of science, the high throughput DNA sequencing capabilities of Genomics and complexity theory from Physics, to assess the information encoded by the different genomic segments of exonic, intronic and intergenic regions of the Major Histocompatibility Complex (MHC) and identify possible interactive relationships. The dynamic and non-extensive statistical characteristics of two well characterized MHC sequences from the homozygous cell lines, PGF and COX, in addition to two other genomic regions of comparable size, used as controls, have been studied using the reconstructed phase space theorem and the non-extensive statistical theory of Tsallis. The results reveal similar non-linear dynamical behavior as far as complexity and self-organization features. In particular, the low-dimensional deterministic nonlinear chaotic and non-extensive statistical character of the DNA sequences was verified with strong multifractal characteristics and long-range correlations. The nonlinear indices repeatedly verified that MHC sequences, whether exonic, intronic or intergenic include varying levels of information and reveal an interaction of the genes with intergenic regions, whereby the lower the number of genes in a region, the less the complexity and information content of the intergenic region. Finally we showed the significance of the intergenic region in the production of the DNA dynamics. The findings reveal interesting content information in all three genomic elements and interactive relationships of the genes with the intergenic regions. The results most likely are relevant to the whole genome and not only to the MHC. These findings are consistent with the ENCODE project, which has now established that the non-coding regions of the genome remain to be of relevance, as they are functionally important and play a significant role in the regulation of expression of genes and coordination of the many biological processes of the cell.
Busby, Jason N.; Fritz, Georg; Moreland, Nicole J.; Cook, Gregory M.; Lott, J. Shaun; Baker, Edward N.
2014-01-01
Bacterial uptake of phosphate is usually accomplished via high-affinity transporters that are commonly regulated by two-component systems, which are activated when the concentration of phosphate is low. Mycobacterium smegmatis possesses two such transporters, the widely distributed PstSCAB system and PhnDCE, a transporter that in other bacteria mediates the uptake of alternative phosphorus sources. We previously reported that the transcriptional regulator PhnF controls the production of the Phn system, acting as a repressor under high-phosphate conditions. Here we show that the phnDCE genes are common among environmental mycobacteria, where they are often associated with phnF-like genes. In contrast, pathogenic mycobacteria were not found to encode Phn-like systems but instead were found to possess multiple copies of the pst genes. A detailed biochemical analysis of PhnF binding to its identified binding sites in the phnD-phnF intergenic region of M. smegmatis has allowed us to propose a quantitative model for repressor binding, which shows that a PhnF dimer binds independently to each site. We present the crystal structure of M. smegmatis PhnF at 1.8-Å resolution, showing a homodimer with a helix-turn-helix N-terminal domain and a C-terminal domain with a UbiC transcription regulator-associated fold. The C-terminal domain crystallized with a bound sulfate ion instead of the so far unidentified physiological ligand, allowing the identification of residues involved in effector binding. Comparison of the positioning of the DNA binding domains in PhnF with that in homologous proteins suggests that its DNA binding activity is regulated via a conformational change in the linker region, triggering a movement of the N-terminal domains. PMID:25049090
Towers, Rebecca J.; Fagan, Peter K.; Talay, Susanne R.; Currie, Bart J.; Sriprakash, Kadaba S.; Walker, Mark J.; Chhatwal, Gursharan S.
2003-01-01
Streptococcal fibronectin-binding protein is an important virulence factor involved in colonization and invasion of epithelial cells and tissues by Streptococcus pyogenes. In order to investigate the mechanisms involved in the evolution of sfbI, the sfbI genes from 54 strains were sequenced. Thirty-four distinct alleles were identified. Three principal mechanisms appear to have been involved in the evolution of sfbI. The amino-terminal aromatic amino acid-rich domain is the most variable region and is apparently generated by intergenic recombination of horizontally acquired DNA cassettes, resulting in a genetic mosaic in this region. Two distinct and divergent sequence types that shared only 61 to 70% identity were identified in the central proline-rich region, while variation at the 3′ end of the gene is due to deletion or duplication of defined repeat units. Potential antigenic and functional variabilities in SfbI imply significant selective pressure in vivo with direct implications for the microbial pathogenesis of S. pyogenes. PMID:14662917
The recX gene product is involved in the SOS response in Herbaspirillum seropedicae.
Galvão, Carolina W; Pedrosa, Fábio O; Souza, Emanuel M; Yates, M Geoffrey; Chubatsu, Leda S; Steffens, Maria Berenice R
2003-02-01
The recA and the recX genes of Herbaspirillum seropedicae were sequenced. The recX is located 359 bp downstream from recA. Sequence analysis indicated the presence of a putative operator site overlapping a probable sigma70-dependent promoter upstream of recA and a transcription terminator downstream from recX, with no apparent promoter sequence in the intergenic region. Transcriptional analysis using lacZ promoter fusions indicated that recA expression increased three- to fourfold in the presence of methyl methanesulfonate (MMS). The roles of recA and recX genes in the SOS response were determined from studies of chromosomal mutants. The recA mutant showed the highest sensitivity to MMS and UV, and the recX mutant had an intermediate sensitivity, compared with the wild type (SMR1), confirming the essential role of the RecA protein in cell viability in the presence of mutagenic agents and also indicating a role for RecX in the SOS response.
Similar Ratios of Introns to Intergenic Sequence across Animal Genomes
Wörheide, Gert
2017-01-01
Abstract One central goal of genome biology is to understand how the usage of the genome differs between organisms. Our knowledge of genome composition, needed for downstream inferences, is critically dependent on gene annotations, yet problems associated with gene annotation and assembly errors are usually ignored in comparative genomics. Here, we analyze the genomes of 68 species across 12 animal phyla and some single-cell eukaryotes for general trends in genome composition and transcription, taking into account problems of gene annotation. We show that, regardless of genome size, the ratio of introns to intergenic sequence is comparable across essentially all animals, with nearly all deviations dominated by increased intergenic sequence. Genomes of model organisms have ratios much closer to 1:1, suggesting that the majority of published genomes of nonmodel organisms are underannotated and consequently omit substantial numbers of genes, with likely negative impact on evolutionary interpretations. Finally, our results also indicate that most animals transcribe half or more of their genomes arguing against differences in genome usage between animal groups, and also suggesting that the transcribed portion is more dependent on genome size than previously thought. PMID:28633296
Fission yeast retrotransposon Tf1 integration is targeted to 5' ends of open reading frames.
Behrens, R; Hayles, J; Nurse, P
2000-12-01
Target site selection of transposable elements is usually not random but involves some specificity for a DNA sequence or a DNA binding host factor. We have investigated the target site selection of the long terminal repeat-containing retrotransposon Tf1 from the fission yeast Schizosaccharomyces pombe. By monitoring induced transposition events we found that Tf1 integration sites were distributed throughout the genome. Mapping these insertions revealed that Tf1 did not integrate into open reading frames, but occurred preferentially in longer intergenic regions with integration biased towards a region 100-420 bp upstream of the translation start site. Northern blot analysis showed that transcription of genes adjacent to Tf1 insertions was not significantly changed.
Fission yeast retrotransposon Tf1 integration is targeted to 5′ ends of open reading frames
Behrens, Ralf; Hayles, Jacky; Nurse, Paul
2000-01-01
Target site selection of transposable elements is usually not random but involves some specificity for a DNA sequence or a DNA binding host factor. We have investigated the target site selection of the long terminal repeat-containing retrotransposon Tf1 from the fission yeast Schizosaccharomyces pombe. By monitoring induced transposition events we found that Tf1 integration sites were distributed throughout the genome. Mapping these insertions revealed that Tf1 did not integrate into open reading frames, but occurred preferentially in longer intergenic regions with integration biased towards a region 100–420 bp upstream of the translation start site. Northern blot analysis showed that transcription of genes adjacent to Tf1 insertions was not significantly changed. PMID:11095681
Korde, Asawari; Rosselot, Jessica M.; Donze, David
2014-01-01
The major function of eukaryotic RNA polymerase III is to transcribe transfer RNA, 5S ribosomal RNA, and other small non-protein-coding RNA molecules. Assembly of the RNA polymerase III complex on chromosomal DNA requires the sequential binding of transcription factor complexes TFIIIC and TFIIIB. Recent evidence has suggested that in addition to producing RNA transcripts, chromatin-assembled RNA polymerase III complexes may mediate additional nuclear functions that include chromatin boundary, nucleosome phasing, and general genome organization activities. This study provides evidence of another such “extratranscriptional” activity of assembled RNA polymerase III complexes, which is the ability to block progression of intergenic RNA polymerase II transcription. We demonstrate that the RNA polymerase III complex bound to the tRNA gene upstream of the Saccharomyces cerevisiae ATG31 gene protects the ATG31 promoter against readthrough transcriptional interference from the upstream noncoding intergenic SUT467 transcription unit. This protection is predominately mediated by binding of the TFIIIB complex. When TFIIIB binding to this tRNA gene is weakened, an extended SUT467–ATG31 readthrough transcript is produced, resulting in compromised ATG31 translation. Since the ATG31 gene product is required for autophagy, strains expressing the readthrough transcript exhibit defective autophagy induction and reduced fitness under autophagy-inducing nitrogen starvation conditions. Given the recent discovery of widespread pervasive transcription in all forms of life, protection of neighboring genes from intergenic transcriptional interference may be a key extratranscriptional function of assembled RNA polymerase III complexes and possibly other DNA binding proteins. PMID:24336746
Meinhardt, Lyndel W; Ribeiro, Milena P M A; Coletta-Filho, Helvécio D; Dumenyo, C Korsi; Tsai, Sui M; De M Bellato, Cláudia
2003-09-01
SUMMARY This is the first report of a genotypic analysis of the phytopathogenic bacteria Xylella fastidiosa (Xf) using differences within intra- and intergenic regions of pathogenic genes. Orthologous sequences from the genome of Xf were identified for genes involved in the regulation of pathogenicity factors (rpf) from Xanthomonas campestris pv. campestris (Xcc). While the rpf genes were conserved, the chromosomal region revealed differences in gene sizes and intergenic spacings and a major translocational event when compared to Xcc. Primers were designed to amplify three regions: the intragenic region of rpfA (2354 bp), the intergenic region between rpfA and rpfB (5772 bp), and the intergenic region between rpfC and rpfF (2314 bp). Amplicons were obtained for all three regions from 32 of the 33 Xf isolates tested from citrus, grape, coffee, plum, hibiscus and periwinkle. Three Xcc isolates from cruciferous plants only generated PCR products for the rpfC-F region. Cleaved amplified polymorphic sequences (CAPS) (Taq(alpha)I) revealed differential banding profiles for the rpfA-B and rpfC-F regions. Xylella isolates were separated into seven groups via rpfA-B, of which five contained only citrus, while the other two had citrus, grape and coffee, and citrus, coffee, plum and hibiscus isolates. rpfC-F separated the isolates into three host-related groups. Citrus, coffee and hibiscus isolates formed one group, while the other two groups were comprised solely of grape and plum isolates. Xcc isolates formed an out-group. In silico analysis supports these results, which reveal the potential of the rpf genes for genotypic analysis of Xylella fastidiosa.
Guo, Yabin; Levin, Henry L
2010-02-01
The biological impact of transposons on the physiology of the host depends greatly on the frequency and position of integration. Previous studies of Tf1, a long terminal repeat retrotransposon in Schizosaccharomyces pombe, showed that integration occurs at the promoters of RNA polymerase II (Pol II) transcribed genes. To determine whether specific promoters are preferred targets of integration, we sequenced large numbers of insertions using high-throughput pyrosequencing. In four independent experiments we identified a total of 73,125 independent integration events. These data provided strong support for the conclusion that Pol II promoters are the targets of Tf1 integration. The size and number of the integration experiments resulted in reproducible measures of integration for each intergenic region and ORF in the S. pombe genome. The reproducibility of the integration activity from experiment to experiment demonstrates that we have saturated the full set of insertion sites that are actively targeted by Tf1. We found Tf1 integration was highly biased in favor of a specific set of Pol II promoters. The overwhelming majority (76%) of the insertions were distributed in intergenic sequences that contained 31% of the promoters of S. pombe. Interestingly, there was no correlation between the amount of integration at these promoters and their level of transcription. Instead, we found Tf1 had a strong preference for promoters that are induced by conditions of stress. This targeting of stress response genes coupled with the ability of Tf1 to regulate the expression of adjacent genes suggests Tf1 may improve the survival of S. pombe when cells are exposed to environmental stress.
Guo, Yabin; Levin, Henry L.
2010-01-01
The biological impact of transposons on the physiology of the host depends greatly on the frequency and position of integration. Previous studies of Tf1, a long terminal repeat retrotransposon in Schizosaccharomyces pombe, showed that integration occurs at the promoters of RNA polymerase II (Pol II) transcribed genes. To determine whether specific promoters are preferred targets of integration, we sequenced large numbers of insertions using high-throughput pyrosequencing. In four independent experiments we identified a total of 73,125 independent integration events. These data provided strong support for the conclusion that Pol II promoters are the targets of Tf1 integration. The size and number of the integration experiments resulted in reproducible measures of integration for each intergenic region and ORF in the S. pombe genome. The reproducibility of the integration activity from experiment to experiment demonstrates that we have saturated the full set of insertion sites that are actively targeted by Tf1. We found Tf1 integration was highly biased in favor of a specific set of Pol II promoters. The overwhelming majority (76%) of the insertions were distributed in intergenic sequences that contained 31% of the promoters of S. pombe. Interestingly, there was no correlation between the amount of integration at these promoters and their level of transcription. Instead, we found Tf1 had a strong preference for promoters that are induced by conditions of stress. This targeting of stress response genes coupled with the ability of Tf1 to regulate the expression of adjacent genes suggests Tf1 may improve the survival of S. pombe when cells are exposed to environmental stress. PMID:20040583
Pauler, Florian M.; Sloane, Mathew A.; Huang, Ru; Regha, Kakkad; Koerner, Martha V.; Tamir, Ido; Sommer, Andreas; Aszodi, Andras; Jenuwein, Thomas; Barlow, Denise P.
2009-01-01
In mammals, genome-wide chromatin maps and immunofluorescence studies show that broad domains of repressive histone modifications are present on pericentromeric and telomeric repeats and on the inactive X chromosome. However, only a few autosomal loci such as silent Hox gene clusters have been shown to lie in broad domains of repressive histone modifications. Here we present a ChIP-chip analysis of the repressive H3K27me3 histone modification along chr 17 in mouse embryonic fibroblast cells using an algorithm named broad local enrichments (BLOCs), which allows the identification of broad regions of histone modifications. Our results, confirmed by BLOC analysis of a whole genome ChIP-seq data set, show that the majority of H3K27me3 modifications form BLOCs rather than focal peaks. H3K27me3 BLOCs modify silent genes of all types, plus flanking intergenic regions and their distribution indicates a negative correlation between H3K27me3 and transcription. However, we also found that some nontranscribed gene-poor regions lack H3K27me3. We therefore performed a low-resolution analysis of whole mouse chr 17, which revealed that H3K27me3 is enriched in mega-base-pair-sized domains that are also enriched for genes, short interspersed elements (SINEs) and active histone modifications. These genic H3K27me3 domains alternate with similar-sized gene-poor domains. These are deficient in active histone modifications, as well as H3K27me3, but are enriched for long interspersed elements (LINEs) and long-terminal repeat (LTR) transposons and H3K9me3 and H4K20me3. Thus, an autosome can be seen to contain alternating chromatin bands that predominantly separate genes from one retrotransposon class, which could offer unique domains for the specific regulation of genes or the silencing of autonomous retrotransposons. PMID:19047520
[Novel bidirectional promoter from human genome].
Orekhova, A S; Sverdlova, P S; Spirin, P V; Leonova, O G; Popenko, V I; Prasolov, V S; Rubtsov, P M
2011-01-01
In human and other mammalian genomes a number of closely linked gene pairs transcribed in opposite directions are found. According to bioinformatic analysis up to 10% of human genes are arranged in this way. In present work the fragment of human genome was cloned that separates genes localized at 2p13.1 and oriented "head-to-head", coding for hypothetical proteins with unknown functions--CCDC (Coiled Coil Domain Containing) 142 and TTC (TetraTricopeptide repeat Containing) 31. Intergenic CCDC142-TTC31 region overlaps with CpG-island and contains a number of potential binding sites for transcription factors. This fragment functions as bidirectional promoter in the system ofluciferase reporter gene expression upon transfection of human embryonic kidney (HEK293) cells. The vectors containing genes of two fluorescent proteins--green (EGFP) and red (DsRed2) in opposite orientations separated by the fragment of CCDC142-TTC31 intergenic region were constructed. In HEK293 cells transfected with these vectors simultaneous expression of two fluorescent proteins is observed. Truncated versions of intergenic region were obtained and their promoter activity measured. Minimal promoter fragment contains elements Inr, BRE, DPE characteristic for TATA-less promoters. Thus, from the human genome the novel bidirectional promoter was cloned that can be used for simultaneous constitutive expression of two genes in human cells.
Yang, Huirong; Zhang, Jia-En; Luo, Hao; Luo, Mingzhu; Guo, Jing; Deng, Zhixin; Zhao, Benliang
2016-05-01
We present the complete mitochondrial genome of Cipangopaludina cathayensis in this study. The mitochondrial genome is 17,157 bp in length, containing 13 protein-coding genes, 2 rRNA genes, 22 tRNA genes. All of them are encoded on the heavy strand except 7 tRNA genes on the light strand. Overall nucleotide compositions of the light strand are 44.51% of A, 26.74% of T, 20.48% of C and 8.28% of G. All the protein-coding genes start with ATG initiation codon except ATP6 with ATA and ND4 with TTG, and 2 types of termination codons are TAA (ATP6, ND2, COX1, COX2, ATP8, ND1, ND6, Cytb, COX3, ND4) and TAG (ND4L, ND5, ND3). There are 29 intergenic spacers and 5 gene overlaps. The tandem repeat sequences are observed in COX2, tRNA(Asp), ATP6, tRNA(Cys), S-rRNA, ND1, Cytb, ND4 and COX3 genes. Gene arrangement and distribution are different from the typical vertebrates. The absence of D-loop is consistent with the Gastropoda, but at least one lengthy non-coding region is essential regulatory element for the initiation of transcription and replication.
A Functional Element Necessary for Fetal Hemoglobin Silencing
Sankaran, Vijay G.; Xu, Jian; Byron, Rachel; Greisman, Harvey A.; Fisher, Chris; Weatherall, David J.; Sabath, Daniel E.; Groudine, Mark; Orkin, Stuart H.; Premawardhena, Anuja; Bender, M.A.
2011-01-01
BACKGROUND An improved understanding of the regulation of the fetal hemoglobin genes holds promise for the development of targeted therapeutic approaches for fetal hemoglobin induction in the β-hemoglobinopathies. Although recent studies have uncovered trans-acting factors necessary for this regulation, limited insight has been gained into the cis-regulatory elements involved. METHODS We identified three families with unusual patterns of hemoglobin expression, suggestive of deletions in the locus of the β-globin gene (β-globin locus). We performed array comparative genomic hybridization to map these deletions and confirmed breakpoints by means of polymerase-chain-reaction assays and DNA sequencing. We compared these deletions, along with previously mapped deletions, and studied the trans-acting factors binding to these sites in the β-globin locus by using chromatin immunoprecipitation. RESULTS We found a new (δβ)0-thalassemia deletion and a rare hereditary persistence of fetal hemoglobin deletion with identical downstream breakpoints. Comparison of the two deletions resulted in the identification of a small intergenic region required for γ-globin (fetal hemoglobin) gene silencing. We mapped a Kurdish β0-thalassemia deletion, which retains the required intergenic region, deletes other surrounding sequences, and maintains fetal hemoglobin silencing. By comparing these deletions and other previously mapped deletions, we elucidated a 3.5-kb intergenic region near the 5′ end of the δ-globin gene that is necessary for γ-globin silencing. We found that a critical fetal hemoglobin silencing factor, BCL11A, and its partners bind within this region in the chromatin of adult erythroid cells. CONCLUSIONS By studying three families with unusual deletions in the β-globin locus, we identified an intergenic region near the δ-globin gene that is necessary for fetal hemoglobin silencing. (Funded by the National Institutes of Health and others.) PMID:21879898
Similar Ratios of Introns to Intergenic Sequence across Animal Genomes.
Francis, Warren R; Wörheide, Gert
2017-06-01
One central goal of genome biology is to understand how the usage of the genome differs between organisms. Our knowledge of genome composition, needed for downstream inferences, is critically dependent on gene annotations, yet problems associated with gene annotation and assembly errors are usually ignored in comparative genomics. Here, we analyze the genomes of 68 species across 12 animal phyla and some single-cell eukaryotes for general trends in genome composition and transcription, taking into account problems of gene annotation. We show that, regardless of genome size, the ratio of introns to intergenic sequence is comparable across essentially all animals, with nearly all deviations dominated by increased intergenic sequence. Genomes of model organisms have ratios much closer to 1:1, suggesting that the majority of published genomes of nonmodel organisms are underannotated and consequently omit substantial numbers of genes, with likely negative impact on evolutionary interpretations. Finally, our results also indicate that most animals transcribe half or more of their genomes arguing against differences in genome usage between animal groups, and also suggesting that the transcribed portion is more dependent on genome size than previously thought. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Biophysical Constraints Arising from Compositional Context in Synthetic Gene Networks.
Yeung, Enoch; Dy, Aaron J; Martin, Kyle B; Ng, Andrew H; Del Vecchio, Domitilla; Beck, James L; Collins, James J; Murray, Richard M
2017-07-26
Synthetic gene expression is highly sensitive to intragenic compositional context (promoter structure, spacing regions between promoter and coding sequences, and ribosome binding sites). However, much less is known about the effects of intergenic compositional context (spatial arrangement and orientation of entire genes on DNA) on expression levels in synthetic gene networks. We compare expression of induced genes arranged in convergent, divergent, or tandem orientations. Induction of convergent genes yielded up to 400% higher expression, greater ultrasensitivity, and dynamic range than divergent- or tandem-oriented genes. Orientation affects gene expression whether one or both genes are induced. We postulate that transcriptional interference in divergent and tandem genes, mediated by supercoiling, can explain differences in expression and validate this hypothesis through modeling and in vitro supercoiling relaxation experiments. Treatment with gyrase abrogated intergenic context effects, bringing expression levels within 30% of each other. We rebuilt the toggle switch with convergent genes, taking advantage of supercoiling effects to improve threshold detection and switch stability. Copyright © 2017 Elsevier Inc. All rights reserved.
Differential transcriptional control of the two tRNA(fMet) genes of Escherichia coli K-12.
Nagase, T; Ishii, S; Imamoto, F
1988-07-15
The metZ gene of Escherichia coli, which encodes the tRNA(f1Met), was cloned. Using the nucleotide sequence, in vitro transcription, and S1 nuclease mapping analyses, we identified the promoter region, transcriptional start point, the two tandem tRNA(f1Met) structural genes separated by an intergenic space of 33 bp, and the two Rho-independent transcriptional termination sites, in that order. We compared the promoter region of the metZ gene with that of the metY gene, which encodes the tRNA(f2Met) and is located in the promoter-proximal portion of the nusA operon. A G + C-rich sequence (5'-GCGCATCCAC-3'), similar to the corresponding sequence of the rrn promoters that are under stringent control, was found between the Pribnow box and the transcriptional start point of the metZ promoter, but not in the metY promoter region. We therefore examined the effect of guanosine 3'-diphosphate, 5'-diphosphate (ppGpp), the chemical mediator of stringent control, and found that ppGpp inhibited the transcription of the metZ gene, but not that of the metY gene. These data suggested that the promoters for metZ and metY have different physiological functions and are regulated by different mechanisms.
Bae, Esther; Calhoun, Vincent C.; Levine, Michael; Lewis, Edward B.; Drewell, Robert A.
2002-01-01
The correct spatial expression of two Drosophila bithorax complex (BX-C) genes, abdominal-A (abdA) and Abdominal-B (AbdB), is dependent on the 100-kb intergenic infraabdominal (iab) region. The iab region is known to contain a number of different domains (iab2 through iab8) that harbor cis-regulatory elements responsible for directing expression of abdA and AbdB in the second through eighth abdominal segments. Here, we use in situ hybridization to perform high-resolution mapping of the transcriptional activity in the iab control regions. We show that transcription of the control regions themselves is abundant and precedes activation of the abdA and AbdB genes. As with the homeotic genes of the BX-C, the transcription patterns of the RNAs from the iab control regions demonstrate colinearity with the sequence of the iab regions along the chromosome and the domains in the embryo under the control of the specific iab regions. These observations suggest that the intergenic RNAs may play a role in initiating cis regulation at the BX-C early in development. PMID:12481037
Veldman, G M; Klootwijk, J; van Heerikhuizen, H; Planta, R J
1981-01-01
We have determined the nucleotide sequence of part of a cloned yeast ribosomal RNA operon extending from the 5.8S RNA gene downstream into the 5' -terminal region of the 26S RNA gene. We mapped the pertinent processing sites, viz. the 5' end of 26S rRNA and the 3'ends of 5.8S rRNA and its immediate precursor, 7S RNA. At the 3' end of 7S RNA we find the sequence UCGUUU which is very similar to the type I consensus sequence UCAUUA/U present at the 3' ends of 17S, 5.8S and 26S rRNA as well as 18S precursor rRNA in yeast. At the 5' end of the 26S RNA gene we find a sequence of thirteen nucleotides which is homologous to the type II sequence present at the 5' termini of both the 17S and the 5.8S RNA gene. These findings further support the suggestion put forward earlier (G.M. Veldman et al. (1980) Nucl. Acids Res. 8, 2907-2920) that both consensus sequences are involved in the recognition of precursor rRNA by the processing nuclease(s). We discuss a model for the processing of yeast rRNA in which a processing enzyme sequentially recognizes several combinations of a type I and a type II consensus sequence. We also describe the existence of a significant base complementarity between sequences in the 5' -terminal region of 26S rRNA and the 3' -terminal region of 5.8S rRNA. We suggest that base pairing between these sequences contributes to the binding between 5.8S and 26S rRNA. Images PMID:7312619
Sarin, Hemant
2017-03-01
To study the conserved basis for gene expression in comparative cell types at opposite ends of the cell pressuromodulation spectrum, the lymphatic endothelial cell and the blood microvascular capillary endothelial cell. The mechanism for gene expression is studied in terms of the 5' -> 3' direction paired point tropy quotients ( prpT Q s) and the final 5' -> 3' direction episodic sub-episode block sums split-integrated weighted average-averaged gene overexpression tropy quotient ( esebssiwaagoT Q ). The final 5' -> 3' esebssiwaagoT Q classifies an lymphatic endothelial cell overexpressed gene as a supra-pressuromodulated gene ( esebssiwaagoT Q ≥ 0.25 < 0.75) every time and classifies a blood microvascular capillary endothelial cell overexpressed gene every time as an infra-pressuromodulated gene ( esebssiwaagoT Q < 0.25) (100% sensitivity; 100% specificity). Horizontal alignment of 5' -> 3' intergene distance segment tropy wrt the gene is the basis for DNA transcription in the pressuromodulated state.
NASA Astrophysics Data System (ADS)
Tang, Le; Zhu, Songling; Mastriani, Emilio; Fang, Xin; Zhou, Yu-Jie; Li, Yong-Guo; Johnston, Randal N.; Guo, Zheng; Liu, Gui-Rong; Liu, Shu-Lin
2017-03-01
Highly conserved short sequences help identify functional genomic regions and facilitate genomic annotation. We used Salmonella as the model to search the genome for evolutionarily conserved regions and focused on the tetranucleotide sequence CTAG for its potentially important functions. In Salmonella, CTAG is highly conserved across the lineages and large numbers of CTAG-containing short sequences fall in intergenic regions, strongly indicating their biological importance. Computer modeling demonstrated stable stem-loop structures in some of the CTAG-containing intergenic regions, and substitution of a nucleotide of the CTAG sequence would radically rearrange the free energy and disrupt the structure. The postulated degeneration of CTAG takes distinct patterns among Salmonella lineages and provides novel information about genomic divergence and evolution of these bacterial pathogens. Comparison of the vertically and horizontally transmitted genomic segments showed different CTAG distribution landscapes, with the genome amelioration process to remove CTAG taking place inward from both terminals of the horizontally acquired segment.
De Feyter, R; Yang, Y; Gabriel, D W
1993-01-01
Six plasmid-borne avirulence (avr) genes were previously cloned from strain XcmH of the cotton pathogen, Xanthomonas campestris pv. malvacearum. We have now localized all six avr genes on the cloned fragments by subcloning and Tn5-gusA insertional mutagenesis. None of these avr genes appeared to exhibit exclusively gene-for-gene patterns of interactions with cotton R genes, and avrB4 was demonstrated to confer avr gene-for-R genes (plural) avirulence to X. c. pv. malvacearum on congenic cotton lines carrying either of two different resistance loci, B1 or B4. Furthermore, the B1 locus appeared to confer R gene-for-avr genes resistance to cotton against isogenic X. c. pv. malvacearum strains carrying any one of three avr genes: avrB4, avrb6, or avrB102. Restriction enzyme, Southern blot hybridization, and DNA sequence analyses showed that the XcmH avr genes are all highly similar to each other, to avrBs3 and avrBsP from the pepper pathogen X. c. pv. vesicatoria, and to the host-specific virulence gene pthA from the citrus pathogen X. citri. The XcmH avr genes differed primarily in the multiplicity of a tandemly repeated 102-base pair motif within the central portions of the genes, repeated from 14 to 23 times in members of this gene family. The complete nucleotide sequence of avrb6 revealed that it is 97% identical in DNA sequence to avrB4, avrBs3, avrBsP, and pthA and that 62-bp inverted terminal repeats mark the boundaries of homology between avrb6 and all members of this Xanthomonas virulence/avirulence gene family sequenced to date. The terminal 38 bp of both inverted repeats are highly similar to the 38-bp consensus terminal sequence of the Tn3 family of transposons. Up to 11 members of the avr gene family appear to be present in North American strains of X. c. pv. malvacearum, including XcmH. The high level of homology observed among these avr genes and their presence in multiple copies may explain the gene-for-genes interactions and also the observed high frequencies (10(-3) to 10(-4) per locus) of X. c. pv. malvacearum race change mutations. Five spontaneous race change mutants of XcmH suffered avr locus deletions, strongly indicating intergenic recombination as the primary mechanism for generating new races in X. c. pv. malvacearum.
Functional characterization of SNPs in CHRNA3/B4 intergenic region associated with drug behaviors
Flora, Amber V; Zambrano, Cristian A; Gallego, Xavier; Miyamoto, Jill H; Johnson, Krista A; Cowan, Katelyn A; Stitzel, Jerry A; Ehringer, Marissa A
2013-01-01
The cluster of human neuronal nicotinic receptor genes (CHRNA5/A3/B4) (15q25.1) has been associated with a variety of smoking and drug-related behaviors, as well as risk for lung cancer. CHRNA3/B4 intergenic single nucleotide polymorphisms (SNPs) rs1948 and rs8023462 have been associated with early initiation of alcohol and tobacco use, and rs6495309 has been associated with nicotine dependence and risk for lung cancer. An in vitro luciferase expression assay was used to determine whether these SNPs and surrounding sequences contribute to differences in gene expression using cell lines either expressing proteins characteristic of neuronal tissue or derived from lung cancers. Electrophoretic mobility shift assays (EMSAs) were performed to investigate whether nuclear proteins from these cell lines bind SNP alleles differentially. Results from expression assays were dependent on cell culture type and haplotype. EMSAs indicated that rs8023462 and rs6495309 bind nuclear proteins in an allele-specific way. Additionally, GATA transcription factors appeared to bind rs8023462 only when the minor/risk allele was present. Much work has been done to describe the rat Chrnb4/a3 intergenic region, but few studies have examined the human intergenic region effects on expression; therefore, these studies greatly aid human genetic research as it relates to observed nicotine phenotypes, lung cancer risk and potential underlying genetic mechanisms. Data from these experiments support the hypothesis that SNPs associated with human addiction-related phenotypes and lung cancer risk can affect gene expression, and are potential therapeutic targets. Additionally, this is the first evidence that rs8023462 interacts with GATA transcription factors to influence gene expression. PMID:23872218
Santos-Aberturas, Javier; Vicente, Cláudia M.; Payero, Tamara D.; Martín-Sánchez, Lara; Cañibano, Carmen; Martín, Juan F.; Aparicio, Jesús F.
2012-01-01
Control of polyene macrolide production in Streptomyces natalensis is mediated by the transcriptional activator PimR. This regulator combines an N-terminal domain corresponding to the Streptomyces antibiotic regulatory protein (SARP) family of transcriptional activators with a C-terminal half homologous to guanylate cyclases and large ATP-binding regulators of the LuxR family. The PimR SARP domain (PimRSARP) was expressed in Escherichia coli as a glutathione S-transferase (GST)–fused protein. Electrophoretic mobility shift assays showed that GST-PimRSARP binds a single target, the intergenic region between the regulatory genes pimR and pimMs in the pimaricin cluster. The PimRSARP-binding site was investigated by DNaseI protection studies, revealing that it contains three heptameric direct repeats adjusting to the consensus 5′-CGGCAAG-3′. Transcription start points of pimM and pimR promoters were identified by 5′-RACE, revealing that unlike other SARPs, PimRSARP does not interact with the -35 region of its target promoter. Quantitative transcriptional analysis of these regulatory genes on mutants on each of them has allowed the identification of the pimM promoter as the transcriptional target for PimR. Furthermore, the constitutive expression of pimM restored pimaricin production in a pimaricin-deficient strain carrying a deletion mutant of pimR. These results reveal that PimR exerts its positive effect on pimaricin production by controlling pimM expression level, a regulator whose gene product activates transcription from eight different promoters of pimaricin structural genes directly. PMID:22693644
Hamilton, P T; Reeve, J N
1985-01-01
DNA fragments cloned from the methanogenic archaebacterium Methanobrevibacter smithii which complement mutations in the purE and proC genes of E. coli have been sequenced. Sequence analyses, transposon mutagenesis and expression in E. coli minicells indicate that purE and proC complementations result from the synthesis of M. smithii polypeptides with molecular weights of 36,697 and 27,836 respectively. The encoding genes appear to be located in operons. The M. smithii genome contains 69% A/T basepairs (bp) which is reflected in unusual codon usages and intergenic regions containing approximately 85% A/T bp. An insertion element, designated ISM1, was found within the cloned M. smithii DNA located adjacent to the proC complementing region. ISM1 is 1381 bp in length, has 29 bp terminal inverted repeat sequences and contains one major ORF encoded in 87% of the ISM1 sequence. ISM1 is mobile, present in approximately 10 copies per genome and integration duplicates 8 bp at the site of insertion. The duplicated sequences show homology with sequences within the 29 bp terminal repeat sequence of ISM1. Comparison of our data with sequences from halophilic archaebacteria suggests that 5'GAANTTTCA and 5'TTTTAATATAAA may be consensus promoter sequences for archaebacteria. These sequences closely resemble the consensus sequences which precede Drosophila heat-shock genes (Pelham 1982; Davidson et al. 1983). Methanogens appear to employ the eubacterial system of mRNA: 16SrRNA hybridization to ensure initiation of translation; the consensus ribosome binding sequence is 5'AGGTGA.
Guard, Jean; Sanchez-Ingunza, Roxana; Morales, Cesar; Stewart, Tod; Liljebjelke, Karen; Kessel, JoAnn; Ingram, Kim; Jones, Deana; Jackson, Charlene; Fedorka-Cray, Paula; Frye, Jonathan; Gast, Richard; Hinton, Arthur
2012-01-01
Two DNA-based methods were compared for the ability to assign serotype to 139 isolates of Salmonella enterica ssp. I. Intergenic sequence ribotyping (ISR) evaluated single nucleotide polymorphisms occurring in a 5S ribosomal gene region and flanking sequences bordering the gene dkgB. A DNA microarray hybridization method that assessed the presence and the absence of sets of genes was the second method. Serotype was assigned for 128 (92.1%) of submissions by the two DNA methods. ISR detected mixtures of serotypes within single colonies and it cost substantially less than Kauffmann–White serotyping and DNA microarray hybridization. Decreasing the cost of serotyping S. enterica while maintaining reliability may encourage routine testing and research. PMID:22998607
Shendre, Aditi; Wiener, Howard W.; Irvin, Marguerite R.; Aouizerat, Bradley E.; Overton, Edgar T.; Lazar, Jason; Liu, Chenglong; Hodis, Howard N.; Limdi, Nita A.; Weber, Kathleen M.; Zhi, Degui; Floris-Moore, Michelle A.; Ofotokun, Ighovwerha; Qi, Qibin; Hanna, David B.; Kaplan, Robert C.
2017-01-01
Cardiovascular disease (CVD) is a major comorbidity among HIV-infected individuals. Common carotid artery intima-media thickness (cCIMT) is a valid and reliable subclinical measure of atherosclerosis and is known to predict CVD. We performed genome-wide association (GWA) and admixture analysis among 682 HIV-positive and 288 HIV-negative Black, non-Hispanic women from the Women’s Interagency HIV study (WIHS) cohort using a combined and stratified analysis approach. We found some suggestive associations but none of the SNPs reached genome-wide statistical significance in our GWAS analysis. The top GWAS SNPs were rs2280828 in the region intergenic to mediator complex subunit 30 and exostosin glycosyltransferase 1 (MED30 | EXT1) among all women, rs2907092 in the catenin delta 2 (CTNND2) gene among HIV-positive women, and rs7529733 in the region intergenic to family with sequence similarity 5, member C and regulator of G-protein signaling 18 (FAM5C | RGS18) genes among HIV-negative women. The most significant local European ancestry associations were in the region intergenic to the zinc finger and SCAN domain containing 5D gene and NADH: ubiquinone oxidoreductase complex assembly factor 1 (ZSCAN5D | NDUF1) pseudogene on chromosome 19 among all women, in the region intergenic to vomeronasal 1 receptor 6 pseudogene and zinc finger protein 845 (VN1R6P | ZNF845) gene on chromosome 19 among HIV-positive women, and in the region intergenic to the SEC23-interacting protein and phosphatidic acid phosphatase type 2 domain containing 1A (SEC23IP | PPAPDC1A) genes located on chromosome 10 among HIV-negative women. A number of previously identified SNP associations with cCIMT were also observed and included rs2572204 in the ryanodine receptor 3 (RYR3) and an admixture region in the secretion-regulating guanine nucleotide exchange factor (SERGEF) gene. We report several SNPs and gene regions in the GWAS and admixture analysis, some of which are common across HIV-positive and HIV-negative women as demonstrated using meta-analysis, and also across the two analytic approaches (i.e., GWA and admixture). These findings suggest that local European ancestry plays an important role in genetic associations of cCIMT among black women from WIHS along with other environmental factors that are related to CVD and may also be triggered by HIV. These findings warrant confirmation in independent samples. PMID:29206233
Capel, Elena; Zomer, Aldert L.; Nussbaumer, Thomas; Bole, Christine; Izac, Brigitte; Frapy, Eric; Meyer, Julie; Bouzinba-Ségard, Haniaa; Bille, Emmanuelle; Jamet, Anne; Cavau, Anne; Letourneur, Franck; Bourdoulous, Sandrine; Rattei, Thomas; Coureuil, Mathieu
2016-01-01
ABSTRACT Neisseria meningitidis is a leading cause of bacterial meningitis and septicemia, affecting infants and adults worldwide. N. meningitidis is also a common inhabitant of the human nasopharynx and, as such, is highly adapted to its niche. During bacteremia, N. meningitidis gains access to the blood compartment, where it adheres to endothelial cells of blood vessels and causes dramatic vascular damage. Colonization of the nasopharyngeal niche and communication with the different human cell types is a major issue of the N. meningitidis life cycle that is poorly understood. Here, highly saturated random transposon insertion libraries of N. meningitidis were engineered, and the fitness of mutations during routine growth and that of colonization of endothelial and epithelial cells in a flow device were assessed in a transposon insertion site sequencing (Tn-seq) analysis. This allowed the identification of genes essential for bacterial growth and genes specifically required for host cell colonization. In addition, after having identified the small noncoding RNAs (sRNAs) located in intergenic regions, the phenotypes associated with mutations in those sRNAs were defined. A total of 383 genes and 8 intergenic regions containing sRNA candidates were identified to be essential for growth, while 288 genes and 33 intergenic regions containing sRNA candidates were found to be specifically required for host cell colonization. PMID:27486197
Schnare, Murray N.; Collings, James C.; Spencer, David F.; Gray, Michael W.
2000-01-01
In Crithidia fasciculata, the ribosomal RNA (rRNA) gene repeats range in size from ∼11 to 12 kb. This length heterogeneity is localized to a region of the intergenic spacer (IGS) that contains tandemly repeated copies of a 19mer sequence. The IGS also contains four copies of an ∼55 nt repeat that has an internal inverted repeat and is also present in the IGS of Leishmania species. We have mapped the C.fasciculata transcription initiation site as well as two other reverse transcriptase stop sites that may be analogous to the A0 and A′ pre-rRNA processing sites within the 5′ external transcribed spacer (ETS) of other eukaryotes. Features that could influence processing at these sites include two stretches of conserved primary sequence and three secondary structure elements present in the 5′ ETS. We also characterized the C.fasciculata U3 snoRNA, which has the potential for base-pairing with pre-rRNA sequences. Finally, we demonstrate that biosynthesis of large subunit rRNA in both C.fasciculata and Trypanosoma brucei involves 3′-terminal addition of three A residues that are not present in the corresponding DNA sequences. PMID:10982863
Knief, Claudia; Frances, Lisa; Cantet, Franck; Vorholt, Julia A.
2008-01-01
Bacteria of the genus Methylobacterium are widespread in the environment, but their ecological role in ecosystems, such as the plant phyllosphere, is not very well understood. To gain better insight into the distribution of different Methylobacterium species in diverse ecosystems, a rapid and specific cultivation-independent method for detection of these organisms and analysis of their community structure is needed. Therefore, 16S rRNA gene-targeted primers specific for this genus were designed and evaluated. These primers were used in PCR in combination with a reverse primer that binds to the tRNAAla gene, which is located upstream of the 23S rRNA gene in the 16S-23S intergenic spacer (IGS). PCR products that were of different lengths were obtained due to the length heterogeneity of the IGS of different Methylobacterium species. This length variation allowed generation of fingerprints of Methylobacterium communities in environmental samples by automated ribosomal intergenic spacer analysis. The Methylobacterium communities on leaves of different plant species in a natural field were compared using this method. The new method allows rapid comparisons of Methylobacterium communities and is thus a useful tool to study Methylobacterium communities in different ecosystems. PMID:18263752
Yang, Huirong; Zhang, Jia-En; Guo, Jing; Deng, Zhixin; Luo, Hao; Luo, Mingzhu; Zhao, Benliang
2016-05-01
We present the complete mitochondrial genome of the Achatina fulica in this study. The results show that the mitochondrial genome is 15,057 bp in length, which is comprised of 13 protein-coding genes, 2 rRNA genes, 21 tRNA genes. The nucleotide compositions of the light strand are 35.47% of A, 27.97% of T 19.46% of C, and 17.10% of G. Except the ND3, 7 tRNA, ATP6, ATP8, COX3 and 12S-rRNA on the light strand, the rest are encoded on the heavy strand. Five types of inferred initiation codons are ATA (ND1, ND5), GTG (ND6), ATG (COX3, COX2), ATT (ND4) and TTG (COX1, ND2, ND3, ND4L, ATP6, ATP8, Cytb), and 3 types of inferred termination codons are T (COX3, ND2), TAA (ND1, ND4L, ND5, ND6, ATP6), and TAG (ND3, ND4, COX1, COX2, Cytb, ATP8). There are 24 intergenic spacers and 6 gene overlaps. The tandem repeat sequence (total 52 bp) of (AATAATT)n is observed in 16S-rRNA. Gene arrangement and distribution are inconsistent with the typical vertebrates.
Consistency of gene starts among Burkholderia genomes
2011-01-01
Background Evolutionary divergence in the position of the translational start site among orthologous genes can have significant functional impacts. Divergence can alter the translation rate, degradation rate, subcellular location, and function of the encoded proteins. Results Existing Genbank gene maps for Burkholderia genomes suggest that extensive divergence has occurred--53% of ortholog sets based on Genbank gene maps had inconsistent gene start sites. However, most of these inconsistencies appear to be gene-calling errors. Evolutionary divergence was the most plausible explanation for only 17% of the ortholog sets. Correcting probable errors in the Genbank gene maps decreased the percentage of ortholog sets with inconsistent starts by 68%, increased the percentage of ortholog sets with extractable upstream intergenic regions by 32%, increased the sequence similarity of intergenic regions and predicted proteins, and increased the number of proteins with identifiable signal peptides. Conclusions Our findings highlight an emerging problem in comparative genomics: single-digit percent errors in gene predictions can lead to double-digit percentages of inconsistent ortholog sets. The work demonstrates a simple approach to evaluate and improve the quality of gene maps. PMID:21342528
The evolutionary landscape of intergenic trans-splicing events in insects
Kong, Yimeng; Zhou, Hongxia; Yu, Yao; Chen, Longxian; Hao, Pei; Li, Xuan
2015-01-01
To explore the landscape of intergenic trans-splicing events and characterize their functions and evolutionary dynamics, we conduct a mega-data study of a phylogeny containing eight species across five orders of class Insecta, a model system spanning 400 million years of evolution. A total of 1,627 trans-splicing events involving 2,199 genes are identified, accounting for 1.58% of the total genes. Homology analysis reveals that mod(mdg4)-like trans-splicing is the only conserved event that is consistently observed in multiple species across two orders, which represents a unique case of functional diversification involving trans-splicing. Thus, evolutionarily its potential for generating proteins with novel function is not broadly utilized by insects. Furthermore, 146 non-mod trans-spliced transcripts are found to resemble canonical genes from different species. Trans-splicing preserving the function of ‘breakup' genes may serve as a general mechanism for relaxing the constraints on gene structure, with profound implications for the evolution of genes and genomes. PMID:26521696
Ou, Jing; Liu, Jin-Bo; Yao, Fu-Jiao; Wang, Xin-Guo; Wei, Zhao-Ming
2016-01-01
Flour beetles of the genus Tribolium are all pests of stored products and cause severe economic losses every year. The American black flour beetle Tribolium audax is one of the important pest species of flour beetle, and it is also an important quarantine insect. Here we sequenced and characterized the complete mitochondrial genome of T. audax, which was intercepted by Huangpu Custom in maize from America. The complete circular mitochondrial genome (mitogenome) of T. audax was 15,924 bp in length, containing 37 typical coding genes and one non-coding AT-rich region. The mitogenome of T. audax exhibits a gene arrangement and content identical to the most common type in insects. All protein coding genes (PCGs) are start with a typical ATN initiation codon, except for the cox1, which use AAC as its start codon instead of ATN. Eleven genes use standard complete termination codon (nine TAA, two TAG), whereas the nad4 and nad5 genes end with single T. Except for trnS1 (AGN), all tRNA genes display typical secondary cloverleaf structures as those of other insects. The sizes of the large and small ribosomal RNA genes are 1288 and 780 bp, respectively. The AT content of the AT-rich region is 81.36%. The 5 bp conserved motif TACTA was found in the intergenic region between trnS2 (UCN) and nad1.
USDA-ARS?s Scientific Manuscript database
Newcastle disease virus (NDV) has been developed as a vector for vaccine and gene therapy purposes. However, the optimal insertion site for foreign gene expression remained to be determined. In the present study, we inserted the green fluorescence protein (GFP) gene into five different intergenic ...
Laura K Muller; Jeffrey M. Lorch; Daniel L. Lindner; Michael O' Connor; Andrea Gargas; David S. Blehert
2013-01-01
The fungus Geomyces destructans is the causative agent of white-nose syndrome (WNS), a disease that has killed millions of North American hibernating bats. We describe a real-time TaqMan PCR test that detects DNA from G. destructans by targeting a portion of the multicopy intergenic spacer region of the rRNA gene complex. The...
Burguete-García, Ana Isabel; Bonnefond, Amélie; Peralta-Romero, Jesús; Froguel, Philippe
2017-01-01
Introduction. Increase in body weight is a gradual process that usually begins in childhood and in adolescence as a result of multiple interactions among environmental and genetic factors. This study aimed to analyze the relationship between copy number variants (CNVs) in five genes and four intergenic regions with obesity in Mexican children. Methods. We studied 1423 children aged 6–12 years. Anthropometric measurements and blood levels of biochemical parameters were obtained. Identification of CNVs was performed by real-time PCR. The effect of CNVs on obesity or body composition was assessed using regression models adjusted for age, gender, and family history of obesity. Results. Gains in copy numbers of LEPR and NEGR1 were associated with decreased body mass index (BMI), waist circumference (WC), and risk of abdominal obesity, whereas gain in ARHGEF4 and CPXCR1 and the intergenic regions 12q15c, 15q21.1a, and 22q11.21d and losses in INS were associated with increased BMI and WC. Conclusion. Our results indicate a possible contribution of CNVs in LEPR, NEGR1, ARHGEF4, and CPXCR1 and the intergenic regions 12q15c, 15q21.1a, and 22q11.21d to the development of obesity, particularly abdominal obesity in Mexican children. PMID:28428959
Gong, Chenguang; Li, Zhizhong; Ramanujan, Krishnan; Clay, Ieuan; Zhang, Yunyu; Lemire-Brachat, Sophie; Glass, David J
2015-07-27
Increasing evidence suggests that long non-coding RNAs (LncRNAs) represent a new class of regulators of stem cells. However, the roles of LncRNAs in stem cell maintenance and myogenesis remain largely unexamined. For this study, hundreds of intergenic LncRNAs were identified that are expressed in myoblasts and regulated during differentiation. One of these LncRNAs, termed LncMyoD, is encoded next to the Myod gene and is directly activated by MyoD during myoblast differentiation. Knockdown of LncMyoD strongly inhibits terminal muscle differentiation, largely due to a failure to exit the cell cycle. LncMyoD directly binds to IGF2-mRNA-binding protein 2 (IMP2) and negatively regulates IMP2-mediated translation of proliferation genes such as N-Ras and c-Myc. While the RNA sequence of LncMyoD is not well conserved between human and mouse, its locus, gene structure, and function are preserved. The MyoD-LncMyoD-IMP2 pathway elucidates a mechanism as to how MyoD blocks proliferation to create a permissive state for differentiation. Copyright © 2015 Elsevier Inc. All rights reserved.
Ma, Xin-Ye; Xie, Cai-Xiang; Liu, Chang; Song, Jing-Yuan; Yao, Hui; Luo, Kun; Zhu, Ying-Jie; Gao, Ting; Pang, Xiao-Hui; Qian, Jun; Chen, Shi-Lin
2010-01-01
Medicinal pteridophytes are an important group used in traditional Chinese medicine; however, there is no simple and universal way to differentiate various species of this group by morphological traits. A novel technology termed "DNA barcoding" could discriminate species by a standard DNA sequence with universal primers and sufficient variation. To determine whether DNA barcoding would be effective for differentiating pteridophyte species, we first analyzed five DNA sequence markers (psbA-trnH intergenic region, rbcL, rpoB, rpoC1, and matK) using six chloroplast genomic sequences from GeneBank and found psbA-trnH intergenic region the best candidate for availability of universal primers. Next, we amplified the psbA-trnH region from 79 samples of medicinal pteridophyte plants. These samples represented 51 species from 24 families, including all the authentic pteridophyte species listed in the Chinese pharmacopoeia (2005 version) and some commonly used adulterants. We found that the sequence of the psbA-trnH intergenic region can be determined with both high polymerase chain reaction (PCR) amplification efficiency (94.1%) and high direct sequencing success rate (81.3%). Combined with GeneBank data (54 species cross 12 pteridophyte families), species discriminative power analysis showed that 90.2% of species could be separated/identified successfully by the TaxonGap method in conjunction with the Basic Local Alignment Search Tool 1 (BLAST1) method. The TaxonGap method results further showed that, for 37 out of 39 separable species with at least two samples each, between-species variation was higher than the relevant within-species variation. Thus, the psbA-trnH intergenic region is a suitable DNA marker for species identification in medicinal pteridophytes.
Bloyet, Louis-Marie; Brunel, Joanna; Dosnon, Marion; Hamon, Véronique; Erales, Jenny; Gruet, Antoine; Lazert, Carine; Bignon, Christophe; Roche, Philippe; Longhi, Sonia; Gerlier, Denis
2016-12-01
Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3'end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region.
Hamon, Véronique; Erales, Jenny; Bignon, Christophe; Roche, Philippe
2016-01-01
Measles virus (MeV) and all Paramyxoviridae members rely on a complex polymerase machinery to ensure viral transcription and replication. Their polymerase associates the phosphoprotein (P) and the L protein that is endowed with all necessary enzymatic activities. To be processive, the polymerase uses as template a nucleocapsid made of genomic RNA entirely wrapped into a continuous oligomer of the nucleoprotein (N). The polymerase enters the nucleocapsid at the 3’end of the genome where are located the promoters for transcription and replication. Transcription of the six genes occurs sequentially. This implies ending and re-initiating mRNA synthesis at each intergenic region (IGR). We explored here to which extent the binding of the X domain of P (XD) to the C-terminal region of the N protein (NTAIL) is involved in maintaining the P/L complex anchored to the nucleocapsid template during the sequential transcription. Amino acid substitutions introduced in the XD-binding site on NTAIL resulted in a wide range of binding affinities as determined by combining protein complementation assays in E. coli and human cells and isothermal titration calorimetry. Molecular dynamics simulations revealed that XD binding to NTAIL involves a complex network of hydrogen bonds, the disruption of which by two individual amino acid substitutions markedly reduced the binding affinity. Using a newly designed, highly sensitive dual-luciferase reporter minigenome assay, the efficiency of re-initiation through the five measles virus IGRs was found to correlate with NTAIL/XD KD. Correlatively, P transcript accumulation rate and F/N transcript ratios from recombinant viruses expressing N variants were also found to correlate with the NTAIL to XD binding strength. Altogether, our data support a key role for XD binding to NTAIL in maintaining proper anchor of the P/L complex thereby ensuring transcription re-initiation at each intergenic region. PMID:27936158
Gaitán-Espitia, Juan Diego; Nespolo, Roberto F.; Opazo, Juan C.
2013-01-01
The complete sequences of three mitochondrial genomes from the land snail Cornu aspersum were determined. The mitogenome has a length of 14050 bp, and it encodes 13 protein-coding genes, 22 transfer RNA genes and two ribosomal RNA genes. It also includes nine small intergene spacers, and a large AT-rich intergenic spacer. The intra-specific divergence analysis revealed that COX1 has the lower genetic differentiation, while the most divergent genes were NADH1, NADH3 and NADH4. With the exception of Euhadra herklotsi, the structural comparisons showed the same gene order within the family Helicidae, and nearly identical gene organization to that found in order Pulmonata. Phylogenetic reconstruction recovered Basommatophora as polyphyletic group, whereas Eupulmonata and Pulmonata as paraphyletic groups. Bayesian and Maximum Likelihood analyses showed that C. aspersum is a close relative of Cepaea nemoralis, and with the other Helicidae species form a sister group of Albinaria caerulea, supporting the monophyly of the Stylommatophora clade. PMID:23826260
2010-01-01
Background Vampire bat related rabies harms both livestock industry and public health sector in central Brazil. The geographical distributions of vampire bat-transmitted rabies virus variants are delimited by mountain chains. These findings were elucidated by analyzing a high conserved nucleoprotein gene. This study aims to elucidate the detailed epidemiological characters of vampire bat-transmitted rabies virus by phylogenetic methods based on 619-nt sequence including unconserved G-L intergenic region. Findings The vampire bat-transmitted rabies virus isolates divided into 8 phylogenetic lineages in the previous nucleoprotein gene analysis were divided into 10 phylogenetic lineages with significant bootstrap values. The distributions of most variants were reconfirmed to be delimited by mountain chains. Furthermore, variants in undulating areas have narrow distributions and are apparently separated by mountain ridges. Conclusions This study demonstrates that the 619-nt sequence including G-L intergenic region is more useful for a state-level phylogenetic analysis of rabies virus than the partial nucleoprotein gene, and simultaneously that the distribution of vampire bat-transmitted RABV variants tends to be separated not only by mountain chains but also by mountain ridges, thus suggesting that the diversity of vampire bat-transmitted RABV variants was delimited by geographical undulations. PMID:21059233
del Val, Coral; Rivas, Elena; Torres-Quesada, Omar; Toro, Nicolás; Jiménez-Zurdo, José I
2007-01-01
Bacterial small non-coding RNAs (sRNAs) are being recognized as novel widespread regulators of gene expression in response to environmental signals. Here, we present the first search for sRNA-encoding genes in the nitrogen-fixing endosymbiont Sinorhizobium meliloti, performed by a genome-wide computational analysis of its intergenic regions. Comparative sequence data from eight related α-proteobacteria were obtained, and the interspecies pairwise alignments were scored with the programs eQRNA and RNAz as complementary predictive tools to identify conserved and stable secondary structures corresponding to putative non-coding RNAs. Northern experiments confirmed that eight of the predicted loci, selected among the original 32 candidates as most probable sRNA genes, expressed small transcripts. This result supports the combined use of eQRNA and RNAz as a robust strategy to identify novel sRNAs in bacteria. Furthermore, seven of the transcripts accumulated differentially in free-living and symbiotic conditions. Experimental mapping of the 5′-ends of the detected transcripts revealed that their encoding genes are organized in autonomous transcription units with recognizable promoter and, in most cases, termination signatures. These findings suggest novel regulatory functions for sRNAs related to the interactions of α-proteobacteria with their eukaryotic hosts. PMID:17971083
Zhao, A; Guo, A; Liu, Z; Pape, L
1997-01-01
The coding sequences for a Schizosaccharomyces pombe sequence-specific DNA binding protein, Reb1p, have been cloned. The predicted S. pombe Reb1p is 24-29% identical to mouse TTF-1 (transcription termination factor-1) and Saccharomyces cerevisiae REB1 protein, both of which direct termination of RNA polymerase I catalyzed transcripts. The S.pombe Reb1 cDNA encodes a predicted polypeptide of 504 amino acids with a predicted molecular weight of 58.4 kDa. The S. pombe Reb1p is unusual in that the bipartite DNA binding motif identified originally in S.cerevisiae and Klyveromyces lactis REB1 proteins is uninterrupted and thus S.pombe Reb1p may contain the smallest natural REB1 homologous DNA binding domain. Its genomic coding sequences were shown to be interrupted by two introns. A recombinant histidine-tagged Reb1 protein bearing the rDNA binding domain has two homologous, sequence-specific binding sites in the S. pomber DNA intergenic spacer, located between 289 and 480 nt downstream of the end of the approximately 25S rRNA coding sequences. Each binding site is 13-14 bp downstream of two of the three proposed in vivo termination sites. The core of this 17 bp site, AGGTAAGGGTAATGCAC, is specifically protected by Reb1p in footprinting analysis. PMID:9016645
Oh, So-Young; Shin, Jung-Ho; Roe, Jung-Hye
2007-01-01
Organic hydroperoxide resistance in bacteria is achieved primarily through reducing oxidized membrane lipids. The soil-inhabiting aerobic bacterium Streptomyces coelicolor contains three paralogous genes for organic hydroperoxide resistance: ohrA, ohrB, and ohrC. The ohrA gene is transcribed divergently from ohrR, which encodes a putative regulator of MarR family. Both the ohrA and ohrR genes were induced highly by various organic hydroperoxides. The ohrA gene was induced through removal of repression by OhrR, whereas the ohrR gene was induced through activation by OhrR. Reduced OhrR bound to the ohrA-ohrR intergenic region, which contains a central (primary) and two adjacent (secondary) inverted-repeat motifs that overlap with promoter elements. Organic peroxide decreased the binding affinity of OhrR for the primary site, with a concomitant decrease in cooperative binding to the adjacent secondary sites. The single cysteine C28 in OhrR was involved in sensing oxidants, as determined by substitution mutagenesis. The C28S mutant of OhrR bound to the intergenic region without any change in binding affinity in response to organic peroxides. These results lead us to propose a model for the dual action of OhrR as a repressor and an activator in S. coelicolor. Under reduced conditions, OhrR binds cooperatively to the intergenic region, repressing transcription from both genes. Upon oxidation, the binding affinity of OhrR decreases, with a concomitant loss of cooperative binding, which allows RNA polymerase to bind to both the ohrA and ohrR promoters. The loosely bound oxidized OhrR can further activate transcription from the ohrR promoter. PMID:17586628
Treviño-Quintanilla, Luis Gerardo; Escalante, Adelfo; Caro, Alma Delia; Martínez, Alfredo; González, Ricardo; Puente, José Luis; Bolívar, Francisco; Gosset, Guillermo
2007-01-01
The capacity to utilize sucrose as a carbon and energy source (Scr(+) phenotype) is a highly variable trait among Escherichia coli strains. In this study, seven enteropathogenic E. coli (EPEC) strains from different sources were studied for their capacity to grow using sucrose. Liquid media cultures showed that all analyzed strains have the Scr(+) phenotype and two distinct groups were defined: one of five and another of two strains displaying doubling times of 67 and 125 min, respectively. The genes conferring the Scr(+) phenotype in one of the fast-growing strains (T19) were cloned and sequenced. Comparative sequence analysis revealed that this strain possesses the scr regulon genes scrKYABR, encoding phosphoenolpyruvate:phosphotransferase system-dependent sucrose transport and utilization activities. Transcript level quantification revealed sucrose-dependent induction of scrK and scrR genes in fast-growing strains, whereas no transcripts were detected in slow-growing strains. Sequence comparison analysis revealed that the scr genes in strain T19 are almost identical to those present in the scr regulon of prototype EPEC E2348/69 and in both strains, the scr genes are inserted in the chromosomal intergenic region of hypothetical genes ygcE and ygcF. Comparison of the ygcE-ygcF intergenic region sequence of strains MG1655, enterohemorrhagic EDL933, uropathogenic ECFT073 and EPEC T19-E2348/69 revealed that the number of extragenic highly repeated iap sequences corresponded to nine, four, two and none, respectively. These results show that the iap sequence-containing chromosomal ygcE-ygcF intergenic region is highly variable in E. coli. Copyright (c) 2007 S. Karger AG, Basel.
Liu, Qiu-Ning; Chai, Xin-Yue; Bian, Dan-Dan; Zhou, Chun-Lin; Tang, Bo-Ping
2016-01-01
The mitochondrial (mt) genome can provide important information for the understanding of phylogenetic relationships. The complete mt genome of Plodia interpunctella (Lepidoptera: Pyralidae) has been sequenced. The circular genome is 15 287 bp in size, encoding 13 protein-coding genes (PCGs), 2 rRNA genes, 22 tRNA genes, and a control region. The AT skew of this mt genome is slightly negative, and the nucleotide composition is biased toward A+T nucleotides (80.15%). All PCGs start with the typical ATN (ATA, ATC, ATG, and ATT) codons, except for the cox1 gene which may start with the CGA codon. Four of the 13 PCGs harbor the incomplete termination codon T or TA. All the tRNA genes are folded into the typical clover-leaf structure of mitochondrial tRNA, except for trnS1 (AGN) in which the DHU arm fails to form a stable stem-loop structure. The overlapping sequences are 35 bp in total and are found in seven different locations. A total of 240 bp of intergenic spacers are scattered in 16 regions. The control region of the mt genome is 327 bp in length and consisted of several features common to the sequenced lepidopteran insects. Phylogenetic analysis based on 13 PCGs using the Maximum Likelihood method shows that the placement of P. interpunctella was within the Pyralidae.
Hao, Jiasheng; Sun, Qianqian; Zhao, Huabin; Sun, Xiaoyan; Gai, Yonghua; Yang, Qun
2012-01-01
We here report the first complete mitochondrial (mt) genome of a skipper, Ctenoptilum vasava Moore, 1865 (Lepidoptera: Hesperiidae: Pyrginae). The mt genome of the skipper is a circular molecule of 15,468 bp, containing 2 ribosomal RNA genes, 24 putative transfer RNA (tRNA), genes including an extra copy of trnS (AGN) and a tRNA-like insertion trnL (UUR), 13 protein-coding genes and an AT-rich region. All protein-coding genes (PCGs) are initiated by ATN codons and terminated by the typical stop codon TAA or TAG, except for COII which ends with a single T. The intergenic spacer sequence between trnS (AGN) and ND1 genes also contains the ATACTAA motif. The AT-rich region of 429 bp is comprised of nonrepetitive sequences, including the motif ATAGA followed by an 19 bp poly-T stretch, a microsatellite-like (AT)3 (TA)9 element next to the ATTTA motif, an 11 bp poly-A adjacent to tRNAs. Phylogenetic analyses (ML and BI methods) showed that Papilionoidea is not a natural group, and Hesperioidea is placed within the Papilionoidea as a sister to ((Pieridae + Lycaenidae) + Nymphalidae) while Papilionoidae is paraphyletic to Hesperioidea. This result is remarkably different from the traditional view where Papilionoidea and Hesperioidea are considered as two distinct superfamilies. PMID:22577351
Machida, I; Saeki, T; Nakai, S
1986-03-01
The effects of far (254 nm) and near (290-350 nm) ultraviolet (UV) light on mutations, intragenic and intergenic recombinations were compared in diploid strains of Saccharomyces cerevisiae. At equivalent survival levels there was not much difference in the induction of nonsense and missense mutations between far- and near-UV radiations. However, frameshift mutations were induced more frequently by near-UV than by far-UV radiation. Near-UV radiation induced intragenic recombination (gene conversion) as efficiently as far-UV radiation and the induced levels were similar in both radiations at equitoxic doses. A strikingly higher frequency was observed for the intergenic recombination induced by near-UV radiation than by far-UV radiation when compared at equivalent survival levels. Photoreactivation reduced the frequency only slightly in far-UV induced intergenic recombination and not at all in near-UV induction. These results indicate that near-UV damage involves strand breakage in addition to pyrimidine dimers and other lesions induced, whereas far-UV damage consists largely of photoreactivable lesions, pyrimidine dimers, and near-UV induced damage is more efficient for the induction of crossing-over.
Fungal Genes in Context: Genome Architecture Reflects Regulatory Complexity and Function
Noble, Luke M.; Andrianopoulos, Alex
2013-01-01
Gene context determines gene expression, with local chromosomal environment most influential. Comparative genomic analysis is often limited in scope to conserved or divergent gene and protein families, and fungi are well suited to this approach with low functional redundancy and relatively streamlined genomes. We show here that one aspect of gene context, the amount of potential upstream regulatory sequence maintained through evolution, is highly predictive of both molecular function and biological process in diverse fungi. Orthologs with large upstream intergenic regions (UIRs) are strongly enriched in information processing functions, such as signal transduction and sequence-specific DNA binding, and, in the genus Aspergillus, include the majority of experimentally studied, high-level developmental and metabolic transcriptional regulators. Many uncharacterized genes are also present in this class and, by implication, may be of similar importance. Large intergenic regions also share two novel sequence characteristics, currently of unknown significance: they are enriched for plus-strand polypyrimidine tracts and an information-rich, putative regulatory motif that was present in the last common ancestor of the Pezizomycotina. Systematic consideration of gene UIR in comparative genomics, particularly for poorly characterized species, could help reveal organisms’ regulatory priorities. PMID:23699226
NASA Astrophysics Data System (ADS)
Mackiewicz, P.; Gierlik, A.; Kowalczuk, M.; Szczepanik, D.; Dudek, M. R.; Cebrat, S.
1999-12-01
We have analysed protein coding and intergenic sequences in the Borrelia burgdorferi (the Lyme disease bacterium) genome using different kinds of DNA walks. Genes occupying the leading strand of DNA have significantly different nucleotide composition from genes occupying the lagging strand. Nucleotide compositional bias of the two DNA strands reflects the aminoacid composition of proteins. 96% of genes coding for ribosomal proteins lie on the leading DNA strand, which suggests that the positions of these as well as other genes are non-random. In the B. burgdorferi genome, the asymmetry in intergenic DNA sequences is lower than the asymmetry in the third positions in codons. All these characters of the B. burgdorferi genome suggest that both replication-associated mutational pressure and recombination mechanisms have established the specific structure of the genome and now any recombination leading to inversion of a gene in respect to the direction of replication is forbidden. This property of the genome allows us to assume that it is in a steady state, which enables us to fix some parameters for simulations of DNA evolution.
Unprecedented high-resolution view of bacterial operon architecture revealed by RNA sequencing.
Conway, Tyrrell; Creecy, James P; Maddox, Scott M; Grissom, Joe E; Conkle, Trevor L; Shadid, Tyler M; Teramoto, Jun; San Miguel, Phillip; Shimada, Tomohiro; Ishihama, Akira; Mori, Hirotada; Wanner, Barry L
2014-07-08
We analyzed the transcriptome of Escherichia coli K-12 by strand-specific RNA sequencing at single-nucleotide resolution during steady-state (logarithmic-phase) growth and upon entry into stationary phase in glucose minimal medium. To generate high-resolution transcriptome maps, we developed an organizational schema which showed that in practice only three features are required to define operon architecture: the promoter, terminator, and deep RNA sequence read coverage. We precisely annotated 2,122 promoters and 1,774 terminators, defining 1,510 operons with an average of 1.98 genes per operon. Our analyses revealed an unprecedented view of E. coli operon architecture. A large proportion (36%) of operons are complex with internal promoters or terminators that generate multiple transcription units. For 43% of operons, we observed differential expression of polycistronic genes, despite being in the same operons, indicating that E. coli operon architecture allows fine-tuning of gene expression. We found that 276 of 370 convergent operons terminate inefficiently, generating complementary 3' transcript ends which overlap on average by 286 nucleotides, and 136 of 388 divergent operons have promoters arranged such that their 5' ends overlap on average by 168 nucleotides. We found 89 antisense transcripts of 397-nucleotide average length, 7 unannotated transcripts within intergenic regions, and 18 sense transcripts that completely overlap operons on the opposite strand. Of 519 overlapping transcripts, 75% correspond to sequences that are highly conserved in E. coli (>50 genomes). Our data extend recent studies showing unexpected transcriptome complexity in several bacteria and suggest that antisense RNA regulation is widespread. Importance: We precisely mapped the 5' and 3' ends of RNA transcripts across the E. coli K-12 genome by using a single-nucleotide analytical approach. Our resulting high-resolution transcriptome maps show that ca. one-third of E. coli operons are complex, with internal promoters and terminators generating multiple transcription units and allowing differential gene expression within these operons. We discovered extensive antisense transcription that results from more than 500 operons, which fully overlap or extensively overlap adjacent divergent or convergent operons. The genomic regions corresponding to these antisense transcripts are highly conserved in E. coli (including Shigella species), although it remains to be proven whether or not they are functional. Our observations of features unearthed by single-nucleotide transcriptome mapping suggest that deeper layers of transcriptional regulation in bacteria are likely to be revealed in the future. Copyright © 2014 Conway et al.
Gene expression patterns are correlated with genomic and genic structure in soybean
USDA-ARS?s Scientific Manuscript database
Studies have indicated that exon and intron size, and intergenic distance are correlated with gene expression levels and expression breadth. Previous studies on these correlations in plants and animals have been conflicting. In this study next-generation sequence data of the soybean transcriptome wa...
A global analysis of adaptive evolution of operons in cyanobacteria.
Memon, Danish; Singh, Abhay K; Pakrasi, Himadri B; Wangikar, Pramod P
2013-02-01
Operons are an important feature of prokaryotic genomes. Evolution of operons is hypothesized to be adaptive and has contributed significantly towards coordinated optimization of functions. Two conflicting theories, based on (i) in situ formation to achieve co-regulation and (ii) horizontal gene transfer of functionally linked gene clusters, are generally considered to explain why and how operons have evolved. Furthermore, effects of operon evolution on genomic traits such as intergenic spacing, operon size and co-regulation are relatively less explored. Based on the conservation level in a set of diverse prokaryotes, we categorize the operonic gene pair associations and in turn the operons as ancient and recently formed. This allowed us to perform a detailed analysis of operonic structure in cyanobacteria, a morphologically and physiologically diverse group of photoautotrophs. Clustering based on operon conservation showed significant similarity with the 16S rRNA-based phylogeny, which groups the cyanobacterial strains into three clades. Clade C, dominated by strains that are believed to have undergone genome reduction, shows a larger fraction of operonic genes that are tightly packed in larger sized operons. Ancient operons are in general larger, more tightly packed, better optimized for co-regulation and part of key cellular processes. A sub-clade within Clade B, which includes Synechocystis sp. PCC 6803, shows a reverse trend in intergenic spacing. Our results suggest that while in situ formation and vertical descent may be a dominant mechanism of operon evolution in cyanobacteria, optimization of intergenic spacing and co-regulation are part of an ongoing process in the life-cycle of operons.
Banerjee, Joydeep; Sahoo, Dipak Kumar; Dey, Nrisingha; Houtz, Robert L.; Maiti, Indu Bhushan
2013-01-01
On chromosome 4 in the Arabidopsis genome, two neighboring genes (calmodulin methyl transferase At4g35987 and senescence associated gene At4g35985) are located in a head-to-head divergent orientation sharing a putative bidirectional promoter. This 1258 bp intergenic region contains a number of environmental stress responsive and tissue specific cis-regulatory elements. Transcript analysis of At4g35985 and At4g35987 genes by quantitative real time PCR showed tissue specific and stress inducible expression profiles. We tested the bidirectional promoter-function of the intergenic region shared by the divergent genes At4g35985 and At4g35987 using two reporter genes (GFP and GUS) in both orientations in transient tobacco protoplast and Agro-infiltration assays, as well as in stably transformed transgenic Arabidopsis and tobacco plants. In transient assays with GFP and GUS reporter genes the At4g35985 promoter (P85) showed stronger expression (about 3.5 fold) compared to the At4g35987 promoter (P87). The tissue specific as well as stress responsive functional nature of the bidirectional promoter was evaluated in independent transgenic Arabidopsis and tobacco lines. Expression of P85 activity was detected in the midrib of leaves, leaf trichomes, apical meristemic regions, throughout the root, lateral roots and flowers. The expression of P87 was observed in leaf-tip, hydathodes, apical meristem, root tips, emerging lateral root tips, root stele region and in floral tissues. The bidirectional promoter in both orientations shows differential up-regulation (2.5 to 3 fold) under salt stress. Use of such regulatory elements of bidirectional promoters showing spatial and stress inducible promoter-functions in heterologous system might be an important tool for plant biotechnology and gene stacking applications. PMID:24260266
Explaining the disease phenotype of intergenic SNP through predicted long range regulation
Chen, Jingqi; Tian, Weidong
2016-01-01
Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. PMID:27280978
Baurens, Franc-Christophe; Bocs, Stéphanie; Rouard, Mathieu; Matsumoto, Takashi; Miller, Robert N G; Rodier-Goud, Marguerite; MBéguié-A-MBéguié, Didier; Yahiaoui, Nabila
2010-07-16
Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana.
Origins and Structural Properties of Novel and De Novo Protein Domains During Insect Evolution.
Klasberg, Steffen; Bitard-Feildel, Tristan; Callebaut, Isabelle; Bornberg-Bauer, Erich
2018-05-26
Over long time scales, protein evolution is characterised by modular rearrangements of protein domains. Such rearrangements are mainly caused by gene duplication, fusion and terminal losses. To better understand domain emergence mechanisms we investigated 32 insect genomes covering a speciation gradient ranging from ~ 2 to ~ 390 my. We use established domain models and foldable domains delineated by Hydrophobic-Cluster-Analysis (HCA), which does not require homologous sequences, to also identify domains which have likely arisen de novo, i.e. from previously non-coding DNA. Our results indicate that most novel domains emerge terminally as they originate from ORF extensions while fewer arise in middle arrangements, resulting from exonisation of intronic or intergenic regions. Many novel domains rapidly migrate between terminal or middle positions and single- and multi-domain arrangements. Young domains, such as most HCA defined domains, are under strong selection pressure as they show signals of purifying selection. De novo domains, linked to ancient domains or defined by HCA, have higher degrees of intrinsic disorder and disorder-to-order transition upon binding than ancient domains. However, the corresponding DNA sequences of the novel domains of denovo origins could only rarely be found in sister genomes. We conclude that novel domains are often recruited by other proteins and undergo important structural modifications shortly after their emergence, but evolve too fast to be characterised by cross-species comparisons alone. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Previous research identified that the 5S ribosomal (rrn) gene and associated flanking sequences that are closely linked to the dkgB gene of Salmonella enterica were highly variable between serotypes, but not between subpopulations within the same serotype (PMID: 17005008). The degree of variability ...
Zimmerman, Carl-Ulrich R; Rosengarten, Renate; Spergser, Joachim
2011-01-01
Phase variation of the major ureaplasma surface membrane protein, the multiple-banded antigen (MBA), with its counterpart, the UU376 protein, was recently discussed as a result of DNA inversion occurring at specific inverted repeats. Two similar inverted repeats to the ones within the mba locus were found in the genome of Ureaplasma parvum serovar 3; one within the MBA N-terminal paralogue UU172 and another in the adjacent intergenic spacer region. In this report, we demonstrate on both genomic and protein level that DNA inversion at these inverted repeats leads to alternating expression between UU172 and the neighbouring conserved hypothetical ORF UU171. Sequence analysis of this phase-variable ‘UU172 element’ from both U. parvum and U. urealyticum strains revealed that it is highly conserved among both species and that it also includes the orthologue of UU144. A third inverted repeat region in UU144 is proposed to serve as an additional potential inversion site from which chimeric genes can evolve. Our results indicate that site-specific recombination events in the genome of U. parvum serovar 3 are dynamic and frequent, leading to a broad spectrum of antigenic variation by which the organism may evade host immune responses. PMID:21255110
McKee, B. D.; Habera, L.; Vrana, J. A.
1992-01-01
In Drosophila melanogaster males, X-Y meiotic chromosome pairing is mediated by the nucleolus organizers (NOs) which are located in the X heterochromatin (Xh) and near the Y centromere. Deficiencies for Xh disrupt X-Y meiotic pairing and cause high frequencies of X-Y nondisjunction. Insertion of cloned rRNA genes on an Xh(-) chromosome partially restores normal X-Y pairing and disjunction. To map the sequences within an inserted, X-linked rRNA gene responsible for stimulating X-Y pairing, partial deletions were generated by P element-mediated destabilization of the insert. Complete deletions of the rRNA transcription unit did not interfere with the ability to stimulate X-Y pairing as long as most of the intergenic spacer (IGS) remained. Within groups of deletions that lacked the entire transcription unit and differed only in length of residual IGS material, pairing ability was proportional to the dose of 240-bp intergenic spacer repeats. Deletions of the complete rRNA transcription unit or of the 28S sequences alone blocked nucleolus formation, as determined by binding of an antinucleolar antibody, yet did not interfere with pairing ability, suggesting that X-Y pairing may not be mechanistically related to nucleolus formation. A model for achiasmatic pairing in Drosophila males based upon the combined action of topoisomerase I and a strand transferase is proposed. PMID:1330825
2018-01-01
FAM230C, a long intergenic non-coding RNA (lincRNA) gene in human chromosome 13 (chr13) is a member of lincRNA genes termed family with sequence similarity 230. An analysis using bioinformatics search tools and alignment programs was undertaken to determine properties of FAM230C and its related genes. Results reveal that the DNA translocation element, the Translocation Breakpoint Type A (TBTA) sequence, which consists of satellite DNA, Alu elements, and AT-rich sequences is embedded in the FAM230C gene. Eight lincRNA genes related to FAM230C also carry the TBTA sequences. These genes were formed from a large segment of the 3’ half of the FAM230C sequence duplicated in chr22, and are specifically in regions of low copy repeats (LCR22)s, in or close to the 22q.11.2 region. 22q11.2 is a chromosomal segment that undergoes a high rate of DNA translocation and is prone to genetic deletions. FAM230C-related genes present in other chromosomes do not carry the TBTA motif and were formed from the 5’ half region of the FAM230C sequence. These findings identify a high specificity in lincRNA gene formation by gene sequence duplication in different chromosomes. PMID:29668722
The human cytochrome P450 3A locus. Gene evolution by capture of downstream exons.
Finta, C; Zaphiropoulos, P G
2000-12-30
Using a bacterial artificial chromosome (BAC) clone, we have mapped the human cytochrome P450 3A (CYP3A) locus containing the genes encoding for CYP3A4, CYP3A5 and CYP3A7. The genes lie in a head-to-tail orientation in the order of 3A4, 3A7 and 3A5. In both intergenic regions (3A4-3A7 and 3A7-3A5), we have detected several additional cytochrome P450 3A exons, forming two CYP3A pseudogenes. These pseudogenes have the same orientation as the CYP3A genes. To our surprise, a 3A7 mRNA species has been detected in which the exons 2 and 13 of one of the pseudogenes (the one that is downstream of 3A7) are spliced after the 3A7 terminal exon. This results in an mRNA molecule that consists of the 13 3A7 exons and two additional exons at the 3' end. The additional two exons originating from the pseudogene are in an altered reading frame and consequently have the capability to code a completely different amino acid sequence than the canonical CYP3A exons 2 and 13. These findings may represent a generalized evolutionary process with genes having the potential to capture neighboring sequences and use them as functional exons.
Automated Discovery of Long Intergenic RNAs Associated with Breast Cancer Progression
2012-02-01
manuscript in preparation), (2) development and publication of an algorithm for detecting gene fusions in RNA-Seq data [1], and (3) discovery of outlier long...subjected to de novo assembly algorithms to discover novel transcripts representing either unannotated genes or novel somatic mutations such as gene...fusions. To this end the P.I. developed and published a novel algorithm called ChimeraScan to facilitate the discovery and validation of gene
Zhu, Luchang; Olsen, Randall J; Horstmann, Nicola; Shelburne, Samuel A; Fan, Jia; Hu, Ye; Musser, James M
2016-07-01
Variable-number tandem-repeat (VNTR) polymorphisms are ubiquitous in bacteria. However, only a small fraction of them has been functionally studied. Here, we report an intergenic VNTR polymorphism that confers an altered level of toxin production and increased virulence in Streptococcus pyogenes The nature of the polymorphism is a one-unit deletion in a three-tandem-repeat locus upstream of the rocA gene encoding a sensor kinase. S. pyogenes strains with this type of polymorphism cause human infection and produce significantly larger amounts of the secreted cytotoxins S. pyogenes NADase (SPN) and streptolysin O (SLO). Using isogenic mutant strains, we demonstrate that deleting one or more units of the tandem repeats abolished RocA production, reduced CovR phosphorylation, derepressed multiple CovR-regulated virulence factors (such as SPN and SLO), and increased virulence in a mouse model of necrotizing fasciitis. The phenotypic effect of the VNTR polymorphism was nearly the same as that of inactivating the rocA gene. In summary, we identified and characterized an intergenic VNTR polymorphism in S. pyogenes that affects toxin production and virulence. These new findings enhance understanding of rocA biology and the function of VNTR polymorphisms in S. pyogenes. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
A Molecular Portrait of De Novo Genes in Yeasts.
Vakirlis, Nikolaos; Hebert, Alex S; Opulente, Dana A; Achaz, Guillaume; Hittinger, Chris Todd; Fischer, Gilles; Coon, Joshua J; Lafontaine, Ingrid
2018-03-01
New genes, with novel protein functions, can evolve "from scratch" out of intergenic sequences. These de novo genes can integrate the cell's genetic network and drive important phenotypic innovations. Therefore, identifying de novo genes and understanding how the transition from noncoding to coding occurs are key problems in evolutionary biology. However, identifying de novo genes is a difficult task, hampered by the presence of remote homologs, fast evolving sequences and erroneously annotated protein coding genes. To overcome these limitations, we developed a procedure that handles the usual pitfalls in de novo gene identification and predicted the emergence of 703 de novo gene candidates in 15 yeast species from 2 genera whose phylogeny spans at least 100 million years of evolution. We validated 85 candidates by proteomic data, providing new translation evidence for 25 of them through mass spectrometry experiments. We also unambiguously identified the mutations that enabled the transition from noncoding to coding for 30 Saccharomyces de novo genes. We established that de novo gene origination is a widespread phenomenon in yeasts, only a few being ultimately maintained by selection. We also found that de novo genes preferentially emerge next to divergent promoters in GC-rich intergenic regions where the probability of finding a fortuitous and transcribed ORF is the highest. Finally, we found a more than 3-fold enrichment of de novo genes at recombination hot spots, which are GC-rich and nucleosome-free regions, suggesting that meiotic recombination contributes to de novo gene emergence in yeasts.
Ehrlich, Kenneth C.; Paterson, Heather L.; Lacey, Michelle; Ehrlich, Melanie
2016-01-01
Tissue-specific enhancers are critical for gene regulation. In this study, we help elucidate the contribution of muscle-associated differential DNA methylation to the enhancer activity of highly muscle-specific genes. By bioinformatic analysis of 44 muscle-associated genes, we show that preferential gene expression in skeletal muscle (SkM) correlates with SkM-specific intragenic and intergenic enhancer chromatin and overlapping foci of DNA hypomethylation. Some genes, e.g., CASQ1 and FBXO32, displayed broad regions of both SkM- and heart-specific enhancer chromatin but exhibited focal SkM-specific DNA hypomethylation. Half of the genes had SkM-specific super-enhancers. In contrast to simple enhancer/gene-expression correlations, a super-enhancer was associated with the myogenic MYOD1 gene in both SkM and myoblasts even though SkM has < 1 percent as much MYOD1 expression. Local chromatin differences in this super-enhancer probably contribute to the SkM/myoblast differential expression. Transfection assays confirmed the tissue-specificity of the 0.3-kb core enhancer within MYOD1’s super-enhancer and demonstrated its repression by methylation of its three CG dinucleotides. Our study suggests that DNA hypomethylation increases enhancer tissue-specificity and that SkM super-enhancers sometimes are poised for physiologically important, rapid up-regulation. PMID:28018137
Pérez-Doria, Alveiro; Bejarano, Eduar Elías; Sierra, Diana; Vélez, Iván Darío
2008-07-01
The phlebotomine sand flies Lutzomyia pia (Fairchild & Hertig 1961) and Lutzomyia tihuiliensis Le Pont, Torrez-Espejo & Dujardin 1997 (Diptera: Psychodidae) belong to the pia series of the Lu. verrucarum species group, which includes several species that bite humans in Andean foci of leishmaniasis. The females of these two species exhibit isometry and isomorphism in anatomical structures of the head and terminalia commonly used in taxonomic identification of sand flies. They can only be differentiated based on subtle differences in the pigmentation of the pleura. In Lu. tihuiliensis, this is restricted to the basal portions of the katepimeron and katepisternum, whereas in Lu. pia both structures are totally pigmented. Taking into account the subtle morphological differences between these species, the objective of the current study was to evaluate the specific taxonomic status of Lu. tihuiliensis with respect to Lu. pia. A 475-bp portion of the mitochondrial genome was sequenced, composed of the 3' end of the cytochrome b gene, intergenic spacer 1, the transfer RNA gene for serine, intergenic spacer 2, and the 3' end of the gene NAD dehydrogenase 1. Genetic analysis confirms that Lu. tihuiliensis and Lu. pia constitute two distinct species and this is supported by four strong lines of evidence, i.e., the paired genetic distances, size differences and amino acid composition of the cytochrome b protein, presence and absence of intergenic spacer one and divergence observed in the sequence of the transfer RNA gene for serine. It also confirms the validity of the pleural pigmentation pattern as a species diagnostic character and the importance of performing a detailed examination of this character during morphological determination of phlebotomine sand flies in the series pia.
SUMIYAMA, KENTA; MIYAKE, TSUTOMU; GRIMWOOD, JANE; STUART, ANDREW; DICKSON, MARK; SCHMUTZ, JEREMY; RUDDLE, FRANK H.; MYERS, RICHARD M.; AMEMIYA, CHRIS T.
2013-01-01
The mammalian Dlx3 and Dlx4 genes are configured as a bigene cluster, and their respective expression patterns are controlled temporally and spatially by cis-elements that largely reside within the intergenic region of the cluster. Previous work revealed that there are conspicuously conserved elements within the intergenic region of the Dlx3–4 bigene clusters of mouse and human. In this paper we have extended these analyses to include 12 additional mammalian taxa (including a marsupial and a monotreme) in order to better define the nature and molecular evolutionary trends of the coding and non-coding functional elements among morphologically divergent mammals. Dlx3–4 regions were fully sequenced from 12 divergent taxa of interest. We identified three theria-specific amino acid replacements in homeodomain of Dlx4 gene that functions in placenta. Sequence analyses of constrained nucleotide sites in the intergenic non-coding region showed that many of the intergenic conserved elements are highly conserved and have evolved slowly within the mammals. In contrast, a branchial arch/craniofacial enhancer I37-2 exhibited accelerated evolution at the branch between the monotreme and therian common ancestor despite being highly conserved among therian species. Functional analysis of I37-2 in transgenic mice has shown that the equivalent region of the platypus fails to drive transcriptional activity in branchial arches. These observations, taken together with our molecular evolutionary data, suggest that theria-specific episodic changes in the I37-2 element may have contributed to craniofacial innovation at the base of the mammalian lineage. PMID:22951979
Molecular analysis of the glucocerebrosidase gene locus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Winfield, S.L.; Martin, B.M.; Fandino, A.
1994-09-01
Gaucher disease is due to a deficiency in the activity of the lysosomal enzyme glucocerebrosidase. Both the functional gene for this enzyme and a pseudogene are located in close proximity on chromosome 1q21. Analysis of the mutations present in patient samples has suggested interaction between the functional gene and the pseudogene in the origin of mutant genotypes. To investigate the involvement of regions flanking the functional gene and pseudogene in the origin of mutations found in Gaucher disease, a YAC clone containing DNA from this locus has been subcloned and characterized. The original YAC containing {approximately}360 kb was truncated withmore » the use of fragmentation plasmids to about 85 kb. A lambda library derived from this YAC was screened to obtain clones containing glucocerebrosidase sequences. PCR amplification was used to identify subclones containing 5{prime}, central, or 3{prime} sequences of the functional gene or of the pseudogene. Clones spanning the entire distance from the last exon of the functional gene to intron 1 of the pseudogene, the 5{prime} end of the functional gene and 16 kb of 5{prime} flanking region and approximately 15 kb of 3{prime} flanking region of the pseudogene were sequenced. Sequence data from 48 kb of intergenic and flanking regions of the glucocerebrosidase gene and its pseudogene has been generated. A large number of Alu sequences and several simple repeats have been found. Two of these repeats exhibit fragment length polymorphism. There is almost 100% homology between the 3{prime} flanking regions of the functional gene and the pseudogene, extending to about 4 kb past the termination codons. A much lower degree of homology is observed in the 5{prime} flanking region. Patient samples are currently being screened for polymorphisms in these flanking regions.« less
Evolutionary conservation of regulatory elements in vertebrate HOX gene clusters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Santini, Simona; Boore, Jeffrey L.; Meyer, Axel
2003-12-31
Due to their high degree of conservation, comparisons of DNA sequences among evolutionarily distantly-related genomes permit to identify functional regions in noncoding DNA. Hox genes are optimal candidate sequences for comparative genome analyses, because they are extremely conserved in vertebrates and occur in clusters. We aligned (Pipmaker) the nucleotide sequences of HoxA clusters of tilapia, pufferfish, striped bass, zebrafish, horn shark, human and mouse (over 500 million years of evolutionary distance). We identified several highly conserved intergenic sequences, likely to be important in gene regulation. Only a few of these putative regulatory elements have been previously described as being involvedmore » in the regulation of Hox genes, while several others are new elements that might have regulatory functions. The majority of these newly identified putative regulatory elements contain short fragments that are almost completely conserved and are identical to known binding sites for regulatory proteins (Transfac). The conserved intergenic regions located between the most rostrally expressed genes in the developing embryo are longer and better retained through evolution. We document that presumed regulatory sequences are retained differentially in either A or A clusters resulting from a genome duplication in the fish lineage. This observation supports both the hypothesis that the conserved elements are involved in gene regulation and the Duplication-Deletion-Complementation model.« less
Explaining the disease phenotype of intergenic SNP through predicted long range regulation.
Chen, Jingqi; Tian, Weidong
2016-10-14
Thousands of disease-associated SNPs (daSNPs) are located in intergenic regions (IGR), making it difficult to understand their association with disease phenotypes. Recent analysis found that non-coding daSNPs were frequently located in or approximate to regulatory elements, inspiring us to try to explain the disease phenotypes of IGR daSNPs through nearby regulatory sequences. Hence, after locating the nearest distal regulatory element (DRE) to a given IGR daSNP, we applied a computational method named INTREPID to predict the target genes regulated by the DRE, and then investigated their functional relevance to the IGR daSNP's disease phenotypes. 36.8% of all IGR daSNP-disease phenotype associations investigated were possibly explainable through the predicted target genes, which were enriched with, were functionally relevant to, or consisted of the corresponding disease genes. This proportion could be further increased to 60.5% if the LD SNPs of daSNPs were also considered. Furthermore, the predicted SNP-target gene pairs were enriched with known eQTL/mQTL SNP-gene relationships. Overall, it's likely that IGR daSNPs may contribute to disease phenotypes by interfering with the regulatory function of their nearby DREs and causing abnormal expression of disease genes. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
High variability of mitochondrial gene order among fungi.
Aguileta, Gabriela; de Vienne, Damien M; Ross, Oliver N; Hood, Michael E; Giraud, Tatiana; Petit, Elsa; Gabaldón, Toni
2014-02-01
From their origin as an early alpha proteobacterial endosymbiont to their current state as cellular organelles, large-scale genomic reorganization has taken place in the mitochondria of all main eukaryotic lineages. So far, most studies have focused on plant and animal mitochondrial (mt) genomes (mtDNA), but fungi provide new opportunities to study highly differentiated mtDNAs. Here, we analyzed 38 complete fungal mt genomes to investigate the evolution of mtDNA gene order among fungi. In particular, we looked for evidence of nonhomologous intrachromosomal recombination and investigated the dynamics of gene rearrangements. We investigated the effect that introns, intronic open reading frames (ORFs), and repeats may have on gene order. Additionally, we asked whether the distribution of transfer RNAs (tRNAs) evolves independently to that of mt protein-coding genes. We found that fungal mt genomes display remarkable variation between and within the major fungal phyla in terms of gene order, genome size, composition of intergenic regions, and presence of repeats, introns, and associated ORFs. Our results support previous evidence for the presence of mt recombination in all fungal phyla, a process conspicuously lacking in most Metazoa. Overall, the patterns of rearrangements may be explained by the combined influences of recombination (i.e., most likely nonhomologous and intrachromosomal), accumulated repeats, especially at intergenic regions, and to a lesser extent, mobile element dynamics.
Shiue, Chiou-Nan; Nematollahi-Mahani, Amir; Wright, Anthony P.H.
2014-01-01
Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously. PMID:24609384
Shiue, Chiou-Nan; Nematollahi-Mahani, Amir; Wright, Anthony P H
2014-05-01
Chromatin domain organization and the compartmentalized distribution of chromosomal regions are essential for packaging of deoxyribonucleic acid (DNA) in the eukaryotic nucleus as well as regulated gene expression. Nucleoli are the most prominent morphological structures of cell nuclei and nucleolar organization is coupled to cell growth. It has been shown that nuclear scaffold/matrix attachment regions often define the base of looped chromosomal domains in vivo and that they are thereby critical for correct chromosome architecture and gene expression. Here, we show regulated organization of mammalian ribosomal ribonucleic acid genes into distinct chromatin loops by tethering to nucleolar matrix via the non-transcribed inter-genic spacer region of the ribosomal DNA (rDNA). The rDNA gene loop structures are induced specifically upon growth stimulation and are dependent on the activity of the c-Myc protein. Matrix-attached rDNA genes are hypomethylated at the promoter and are thus available for transcriptional activation. rDNA genes silenced by methylation are not recruited to the matrix. c-Myc, which has been shown to induce rDNA transcription directly, is physically associated with rDNA gene looping structures and the intergenic spacer sequence in growing cells. Such a role of Myc proteins in gene activation has not been reported previously. © 2014 The Author(s). Published by Oxford University Press [on behalf of Nucleic Acids Research].
Wang, Deguo; Liu, Yanhong
2015-05-26
Streptococcus dysgalactiae, Streptococcus uberis and Streptococcus agalactiae are the three main pathogens causing bovine mastitis, with great losses to the dairy industry. Rapid and specific loop-mediated isothermal amplification methods (LAMP) for identification and differentiation of these three pathogens are not available. With the 16S rRNA gene and 16S-23S rRNA intergenic spacers as targets, four sets of LAMP primers were designed for identification and differentiation of S. dysgalactiae, S. uberis and S. agalactiae. The detection limit of all four LAMP primer sets were 0.1 pg DNA template per reaction, the LAMP method with 16S rRNA gene and 16S-23S rRNA intergenic spacers as the targets can differentiate the three pathogens, which is potentially useful in epidemiological studies.
2010-01-01
Background Comparative sequence analysis of complex loci such as resistance gene analog clusters allows estimating the degree of sequence conservation and mechanisms of divergence at the intraspecies level. In banana (Musa sp.), two diploid wild species Musa acuminata (A genome) and Musa balbisiana (B genome) contribute to the polyploid genome of many cultivars. The M. balbisiana species is associated with vigour and tolerance to pests and disease and little is known on the genome structure and haplotype diversity within this species. Here, we compare two genomic sequences of 253 and 223 kb corresponding to two haplotypes of the RGA08 resistance gene analog locus in M. balbisiana "Pisang Klutuk Wulung" (PKW). Results Sequence comparison revealed two regions of contrasting features. The first is a highly colinear gene-rich region where the two haplotypes diverge only by single nucleotide polymorphisms and two repetitive element insertions. The second corresponds to a large cluster of RGA08 genes, with 13 and 18 predicted RGA genes and pseudogenes spread over 131 and 152 kb respectively on each haplotype. The RGA08 cluster is enriched in repetitive element insertions, in duplicated non-coding intergenic sequences including low complexity regions and shows structural variations between haplotypes. Although some allelic relationships are retained, a large diversity of RGA08 genes occurs in this single M. balbisiana genotype, with several RGA08 paralogs specific to each haplotype. The RGA08 gene family has evolved by mechanisms of unequal recombination, intragenic sequence exchange and diversifying selection. An unequal recombination event taking place between duplicated non-coding intergenic sequences resulted in a different RGA08 gene content between haplotypes pointing out the role of such duplicated regions in the evolution of RGA clusters. Based on the synonymous substitution rate in coding sequences, we estimated a 1 million year divergence time for these M. balbisiana haplotypes. Conclusions A large RGA08 gene cluster identified in wild banana corresponds to a highly variable genomic region between haplotypes surrounded by conserved flanking regions. High level of sequence identity (70 to 99%) of the genic and intergenic regions suggests a recent and rapid evolution of this cluster in M. balbisiana. PMID:20637079
Jheng, Cheng-Fong; Chen, Tien-Chih; Lin, Jhong-Yi; Chen, Ting-Chieh; Wu, Wen-Luan; Chang, Ching-Chun
2012-07-01
The chloroplast genome of Phalaenopsis equestris was determined and compared to those of Phalaenopsis aphrodite and Oncidium Gower Ramsey in Orchidaceae. The chloroplast genome of P. equestris is 148,959 bp, and a pair of inverted repeats (25,846 bp) separates the genome into large single-copy (85,967 bp) and small single-copy (11,300 bp) regions. The genome encodes 109 genes, including 4 rRNA, 30 tRNA and 75 protein-coding genes, but loses four ndh genes (ndhA, E, F and H) and seven other ndh genes are pseudogenes. The rate of inter-species variation between the two moth orchids was 0.74% (1107 sites) for single nucleotide substitution and 0.24% for insertions (161 sites; 1388 bp) and deletions (189 sites; 1393 bp). The IR regions have a lower rate of nucleotide substitution (3.5-5.8-fold) and indels (4.3-7.1-fold) than single-copy regions. The intergenic spacers are the most divergent, and based on the length variation of the three intergenic spacers, 11 native Phalaenopsis orchids could be successfully distinguished. The coding genes, IR junction and RNA editing sites are relatively more conserved between the two moth orchids than between those of Phalaenopsis and Oncidium spp. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Ranjard, Lionel; Brothier, Elisabeth; Nazaret, Sylvie
2000-01-01
Two major emerging bands (a 350-bp band and a 650-bp band) within the RISA (ribosomal intergenic spacer analysis) profile of a soil bacterial community spiked with Hg(II) were selected for further identification of the populations involved in the response of the community to the added metal. The bands were cut out from polyacrylamide gels, cloned, characterized by restriction analysis, and sequenced for phylogenetic affiliation of dominant clones. The sequences were the intergenic spacer between the rrs and rrl genes and the first 130 nucleotides of the rrl gene. Comparison of sequences derived from the 350-bp band to The GenBank database permitted us to identify the bacteria as being mostly close relatives to low G+C firmicutes (Clostridium-like genera), while the 650-bp band permitted us to identify the bacteria as being mostly close relatives to β-proteobacteria (Ralstonia-like genera). Oligonucleotide probes specific for the identified dominant bacteria were designed and hybridized with the RISA profiles derived from the control and spiked communities. These studies confirmed the contribution of these populations to the community response to the metal. Hybridization of the RISA profiles from subcommunities (bacterial pools associated with different soil microenvironments) also permitted to characterize the distribution and the dynamics of these populations at a microscale level following mercury spiking. PMID:11097911
Bacillus sp. CDB3 isolated from cattle dip-sites possesses two ars gene clusters.
Bhat, Somanath; Luo, Xi; Xu, Zhiqiang; Liu, Lixia; Zhang, Ren
2011-01-01
Contamination of soil and water by arsenic is a global problem. In Australia, the dipping of cattle in arsenic-containing solution to control cattle ticks in last centenary has left many sites heavily contaminated with arsenic and other toxicants. We had previously isolated five soil bacterial strains (CDB1-5) highly resistant to arsenic. To understand the resistance mechanism, molecular studies have been carried out. Two chromosome-encoded arsenic resistance (ars) gene clusters have been cloned from CDB3 (Bacillus sp.). They both function in Escherichia coli and cluster 1 exerts a much higher resistance to the toxic metalloid. Cluster 2 is smaller possessing four open reading frames (ORFs) arsRorf2BC, similar to that identified in Bacillus subtilis Skin element. Among the eight ORFs in cluster 1 five are analogs of common ars genes found in other bacteria, however, organized in a unique order arsRBCDA instead of arsRDABC. Three other putative genes are located directly downstream and designated as arsTIP based on the homologies of their theoretical translation sequences respectively to thioredoxin reductases, iron-sulphur cluster proteins and protein phosphatases. The latter two are novel of any known ars operons. The arsD gene from Bacillus species was cloned for the first time and the predict protein differs from the well studied E. coli ArsD by lacking two pairs of C-terminal cysteine residues. Its functional involvement in arsenic resistance has been confirmed by a deletion experiment. There exists also an inverted repeat in the intergenic region between arsC and arsD implying some unknown transcription regulation.
Boeri, Eduardo J.; Wanke, María M.; Madariaga, María J.; Teijeiro, María L.; Elena, Sebastian A.; Trangoni, Marcos D.
2018-01-01
Aim: This study aimed to compare the sensitivity (S), specificity (Sp), and positive likelihood ratios (LR+) of four polymerase chain reaction (PCR) assays for the detection of Brucella spp. in dog’s clinical samples. Materials and Methods: A total of 595 samples of whole blood, urine, and genital fluids were evaluated between October 2014 and November 2016. To compare PCR assays, the gold standard was defined using a combination of different serological and microbiological test. Bacterial isolation from urine and blood cultures was carried out. Serological methods such as rapid slide agglutination test, indirect enzyme-linked immunosorbent assay, agar gel immunodiffusion test, and buffered plate antigen test were performed. Four genes were evaluated: (i) The gene coding for the BCSP31 protein, (ii) the ribosomal gene coding for the 16S-23S intergenic spacer region, (iii) the gene coding for porins omp2a/omp2b, and (iv) the gene coding for the insertion sequence IS711. Results: The results obtained were as follows: (1) For the primers that amplify the gene coding for the BCSP31 protein: S: 45.64% (confidence interval [CI] 39.81-51.46), Sp: 95.62% (CI 93.13-98.12), and LR+: 10.43 (CI 6.04-18); (2) for the primers that amplify the ribosomal gene of the 16S-23S rDNA intergenic spacer region: S: 69.80% (CI 64.42-75.18), Sp: 95.62 % (CI 93.13-98.12), and LR+: 11.52 (CI 7.31-18.13); (3) for the primers that amplify the omp2a and omp2b genes: S: 39.26% (CI 33.55-44.97), Sp: 97.31% (CI 95.30-99.32), and LR+ 14.58 (CI 7.25-29.29); and (4) for the primers that amplify the insertion sequence IS711: S: 22.82% (CI 17.89 - 27.75), Sp: 99.66% (CI 98.84-100), and LR+ 67.77 (CI 9.47-484.89). Conclusion: We concluded that the gene coding for the 16S-23S rDNA intergenic spacer region was the one that best detected Brucella spp. in canine clinical samples. PMID:29657404
Hücker, Sarah M.; Ardern, Zachary; Goldberg, Tatyana; Schafferhans, Andrea; Bernhofer, Michael; Vestergaard, Gisle; Nelson, Chase W.; Schloter, Michael; Rost, Burkhard; Scherer, Siegfried
2017-01-01
In the past, short protein-coding genes were often disregarded by genome annotation pipelines. Transcriptome sequencing (RNAseq) signals outside of annotated genes have usually been interpreted to indicate either ncRNA or pervasive transcription. Therefore, in addition to the transcriptome, the translatome (RIBOseq) of the enteric pathogen Escherichia coli O157:H7 strain Sakai was determined at two optimal growth conditions and a severe stress condition combining low temperature and high osmotic pressure. All intergenic open reading frames potentially encoding a protein of ≥ 30 amino acids were investigated with regard to coverage by transcription and translation signals and their translatability expressed by the ribosomal coverage value. This led to discovery of 465 unique, putative novel genes not yet annotated in this E. coli strain, which are evenly distributed over both DNA strands of the genome. For 255 of the novel genes, annotated homologs in other bacteria were found, and a machine-learning algorithm, trained on small protein-coding E. coli genes, predicted that 89% of these translated open reading frames represent bona fide genes. The remaining 210 putative novel genes without annotated homologs were compared to the 255 novel genes with homologs and to 250 short annotated genes of this E. coli strain. All three groups turned out to be similar with respect to their translatability distribution, fractions of differentially regulated genes, secondary structure composition, and the distribution of evolutionary constraint, suggesting that both novel groups represent legitimate genes. However, the machine-learning algorithm only recognized a small fraction of the 210 genes without annotated homologs. It is possible that these genes represent a novel group of genes, which have unusual features dissimilar to the genes of the machine-learning algorithm training set. PMID:28902868
Luis F. Larrondo; Bernardo Gonzalez; Dan Cullen; Rafael Vicuna
2004-01-01
A cluster of multicopper oxidase genes (mco1, mco2, mco3, mco4) from the lignin-degrading basidiomycete Phanerochaete chrysosporium is described. The four genes share the same transcriptional orientation within a 25 kb region. mco1, mco2 and mco3 are tightly grouped, with intergenic regions of 2.3 and 0.8 kb, respectively, whereas mco4 is located 11 kb upstream of mco1...
Fan, SiGang; Hu, ChaoQun; Wen, Jing; Zhang, LvPing
2011-05-01
The complete mitochondrial DNA sequence contains useful information for phylogenetic analyses of metazoa. In this study, the complete mitochondrial DNA sequence of sea cucumber Stichopus horrens (Holothuroidea: Stichopodidae: Stichopus) is presented. The complete sequence was determined using normal and long PCRs. The mitochondrial genome of Stichopus horrens is a circular molecule 16257 bps long, composed of 13 protein-coding genes, two ribosomal RNA genes and 22 transfer RNA genes. Most of these genes are coded on the heavy strand except for one protein-coding gene (nad6) and five tRNA genes (tRNA ( Ser(UCN) ), tRNA ( Gln ), tRNA ( Ala ), tRNA ( Val ), tRNA ( Asp )) which are coded on the light strand. The composition of the heavy strand is 30.8% A, 23.7% C, 16.2% G, and 29.3% T bases (AT skew=0.025; GC skew=-0.188). A non-coding region of 675 bp was identified as a putative control region because of its location and AT richness. The intergenic spacers range from 1 to 50 bp in size, totaling 227 bp. A total of 25 overlapping nucleotides, ranging from 1 to 10 bp in size, exist among 11 genes. All 13 protein-coding genes are initiated with an ATG. The TAA codon is used as the stop codon in all the protein coding genes except nad3 and nad4 that use TAG as their termination codon. The most frequently used amino acids are Leu (16.29%), Ser (10.34%) and Phe (8.37%). All of the tRNA genes have the potential to fold into typical cloverleaf secondary structures. We also compared the order of the genes in the mitochondrial DNA from the five holothurians that are now available and found a novel gene arrangement in the mitochondrial DNA of Stichopus horrens.
Epistasis in intra- and inter-gene pool crosses of the common bean.
Borel, J C; Ramalho, M A P; Abreu, A F B
2016-02-26
Epistasis has been shown to have an important role in the genetic control of several quantitative traits in the common bean. This study aimed to investigate the occurrence of epistasis in intra- and inter-pool gene crosses of the common bean. Four elite lines adapted to Brazilian conditions were used as parents, two from the Andean gene pool (ESAL 686; BRS Radiante) and two from the Mesoamerican gene pool (BRSMG Majestoso; BRS Valente). Four F2 populations were obtained: "A" (ESAL 686 x BRS Radiante), "B" (BRSMG Majestoso x BRS Valente), "C" (BRS Radiante x BRSMG Majestoso), and "D" (BRS Valente x ESAL 686). A random sample of F2 plants from each population was backcrossed to parents and F1 individuals, according to the triple test cross. Three types of progenies from each population were evaluated in contiguous trials. Seed yield and 100-seed weight were evaluated. Dominance genetic variance was predominant in most cases. However, the estimates of genetic variance may be biased by the occurrence of linkage disequilibrium and epistasis. Epistasis was detected for both traits; however, the occurrence differed among the populations and between the two traits. The results of this study reinforce the hypothesis that epistasis is present in the genetic control of traits in the common bean and suggest that the phenomenon is more frequent in inter-gene pool crosses than in intra-gene pool crosses.
2013-01-01
protein conserved in Actinobacteria M206‡ AoriK_010100005764 ZP_08125978 Hypothetical protein AoriK_010100005769 ZP_08125979 TransRDD family protein M155...conserved in Actinobacteria . In mutant 4 (designated strain M206), we found that EZ-Tn5 was integrated into an intergenic region between 2 genes in divergent
Generation of a Recombinant Akabane Virus Expressing Enhanced Green Fluorescent Protein
Takenaka-Uema, Akiko; Murata, Yousuke; Gen, Fumihiro; Ishihara-Saeki, Yukari; Watanabe, Ken-ichi; Uchida, Kazuyuki; Kato, Kentaro; Murakami, Shin; Haga, Takeshi
2015-01-01
ABSTRACT We generated a recombinant Akabane virus (AKAV) expressing enhanced green fluorescence protein (eGFP-AKAV) by using reverse genetics. We artificially constructed an ambisense AKAV S genome encoding N/NSs on the negative-sense strand, and eGFP on the positive-sense strand with an intergenic region (IGR) derived from the Rift Valley fever virus (RVFV) S genome. The recombinant virus exhibited eGFP fluorescence and had a cytopathic effect in cell cultures, even after several passages. These results indicate that the gene encoding eGFP in the ambisense RNA could be stably maintained. Transcription of N/NSs and eGFP mRNAs of eGFP-AKAV was terminated within the IGR. The mechanism responsible for this appears to be different from that in RVFV, where the termination sites for N and NSs are determined by a defined signal sequence. We inoculated suckling mice intraperitoneally with eGFP-AKAV, which resulted in neurological signs and lethality equivalent to those seen for the parent AKAV. Fluorescence from eGFP in frozen brain slices from the eGFP-AKAV-infected mice was localized to the cerebellum, pons, and medulla oblongata. Our approach to producing a fluorescent virus, using an ambisense genome, helped obtain eGFP-AKAV, a fluorescent bunyavirus whose viral genes are intact and which can be easily visualized. IMPORTANCE AKAV is the etiological agent of arthrogryposis-hydranencephaly syndrome in ruminants, which causes considerable economic loss to the livestock industry. We successfully generated a recombinant enhanced green fluorescent protein-tagged AKAV containing an artificial ambisense S genome. This virus could become a useful tool for analyzing AKAV pathogenesis in host animals. In addition, our approach of using an ambisense genome to generate an orthobunyavirus stably expressing a foreign gene could contribute to establishing alternative vaccine strategies, such as bivalent vaccine virus constructs, for veterinary use against infectious diseases. PMID:26157127
The essential gene set of a photosynthetic organism
Rubin, Benjamin E.; Wetmore, Kelly M.; Price, Morgan N.; ...
2015-10-27
Synechococcus elongatus PCC 7942 is a model organism used for studying photosynthesis and the circadian clock, and it is being developed for the production of fuel, industrial chemicals, and pharmaceuticals. To identify a comprehensive set of genes and intergenic regions that impacts fitness in S. elongatus, we created a pooled library of ~250,000 transposon mutants and used sequencing to identify the insertion locations. By analyzing the distribution and survival of these mutants, we identified 718 of the organism's 2,723 genes as essential for survival under laboratory conditions. The validity of the essential gene set is supported by its tight overlapmore » with wellconserved genes and its enrichment for core biological processes. The differences noted between our dataset and these predictors of essentiality, however, have led to surprising biological insights. One such finding is that genes in a large portion of the TCA cycle are dispensable, suggesting that S. elongatus does not require a cyclic TCA process. Furthermore, the density of the transposon mutant library enabled individual and global statements about the essentiality of noncoding RNAs, regulatory elements, and other intergenic regions. In this way, a group I intron located in tRNA Leu , which has been used extensively for phylogenetic studies, was shown here to be essential for the survival of S. elongatus. Our survey of essentiality for every locus in the S. elongatus genome serves as a powerful resource for understanding the organism's physiology and defines the essential gene set required for the growth of a photosynthetic organism.« less
Cryptic tRNAs in chaetognath mitochondrial genomes.
Barthélémy, Roxane-Marie; Seligmann, Hervé
2016-06-01
The chaetognaths constitute a small and enigmatic phylum of little marine invertebrates. Both nuclear and mitochondrial genomes have numerous originalities, some phylum-specific. Until recently, their mitogenomes seemed containing only one tRNA gene (trnMet), but a recent study found in two chaetognath mitogenomes two and four tRNA genes. Moreover, apparently two conspecific mitogenomes have different tRNA gene numbers (one and two). Reanalyses by tRNAscan-SE and ARWEN softwares of the five available complete chaetognath mitogenomes suggest numerous additional tRNA genes from different types. Their total number never reaches the 22 found in most other invertebrates using that genetic code. Predicted error compensation between codon-anticodon mismatch and tRNA misacylation suggests translational activity by tRNAs predicted solely according to secondary structure for tRNAs predicted by tRNAscan-SE, not ARWEN. Numbers of predicted stop-suppressor (antitermination) tRNAs coevolve with predicted overlapping, frameshifted protein coding genes including stop codons. Sequence alignments in secondary structure prediction with non-chaetognath tRNAs suggest that the most likely functional tRNAs are in intergenic regions, as regular mt-tRNAs. Due to usually short intergenic regions, generally tRNA sequences partially overlap with flanking genes. Some tRNA pairs seem templated by sense-antisense strands. Moreover, 16S rRNA genes, but not 12S rRNAs, appear as tRNA nurseries, as previously suggested for multifunctional ribosomal-like protogenomes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Cho, Otomi; Sugita, Takashi
2016-12-01
As DNA sequences of the intergenic spacer (IGS) region in the rRNA gene show remarkable intraspecies diversity compared with the small subunit, large subunit, and internal transcribed spacer region, the IGS region has been used as an epidemiological tool in studies on Malassezia globosa and M. restricta, which are responsible for the exacerbation of atopic dermatitis (AD) and seborrheic dermatitis (SD). However, the IGS regions of M. sympodialis and M. dermatis obtained from the skin of patients with AD and SD, as well as healthy subjects, lacked sequence diversity. Of the 105 M. sympodialis strains and the 40 M. dermatis strains, the sequences of 103 (98.1 %) and 39 (97.5 %), respectively, were identical. Thus, given the lack of intraspecies diversity in the IGS regions of M. sympodialis and M. dermatis, studies of the diversity of these species should be performed using appropriate genes and not the IGS.
Lin, H; Rao, V B; Black, L W
1999-06-04
Bacteriophage DNA packaging results from an ATP-driven translocation of concatemeric DNA into the prohead by the phage terminase complexed with the portal vertex dodecamer of the prohead. Functional domains of the bacteriophage T4 terminase and portal gene 20 product (gp20) were determined by mutant analysis and sequence localization within the structural genes. Interaction regions of the portal vertex and large terminase subunit (gp17) were determined by genetic (terminase-portal intergenic suppressor mutations), biochemical (column retention of gp17 and inhibition of in vitro DNA packaging by gp20 peptides), and immunological (co-immunoprecipitation of polymerized gp20 peptide and gp17) studies. The specificity of the interaction was tested by means of a phage T4 HOC (highly antigenicoutercapsid protein) display system in which wild-type, cs20, and scrambled portal peptide sequences were displayed on the HOC protein of phage T4. Binding affinities of these recombinant phages as determined by the retention of these phages by a His-tag immobilized gp17 column, and by co-immunoprecipitation with purified terminase supported the specific nature of the portal protein and terminase interaction sites. In further support of specificity, a gp20 peptide corresponding to a portion of the identified site inhibited packaging whereas the scrambled sequence peptide did not block DNA packaging in vitro. The portal interaction site is localized to 28 residues in the central portion of the linear sequence of gp20 (524 residues). As judged by two pairs of intergenic portal-terminase suppressor mutations, two separate regions of the terminase large subunit gp17 (central and COOH-terminal) interact through hydrophobic contacts at the portal site. Although the terminase apparently interacts with this gp20 portal peptide, polyclonal antibody against the portal peptide appears unable to access it in the native structure, suggesting intimate association of gp20 and gp17 possibly internalizes terminase regions within the portal in the packasome complex. Both similarities and differences are seen in comparison to analogous sites which have been identified in phages T3 and lambda. Copyright 1999 Academic Press.
Robinett, C C; O'Connor, A; Dunaway, M
1997-01-01
We have identified a novel activity for the region of the intergenic spacer of the Xenopus laevis rRNA genes that contains the 35- and 100-bp repeats. We devised a new assay for this region by constructing DNA plasmids containing a tandem repeat of rRNA reporter genes that were separated by the 35- and 100-bp repeat region and a rRNA gene enhancer. When the 35- and 100-bp repeat region is present in its normal position and orientation at the 3' end of the rRNA reporter genes, the enhancer activates the adjacent downstream promoter but not the upstream rRNA promoter on the same plasmid. Because this element can restrict the range of an enhancer's activity in the context of tandem genes, we have named it the repeat organizer (RO). The ability to restrict enhancer action is a feature of insulator elements, but unlike previously described insulator elements the RO does not block enhancer action in a simple enhancer-blocking assay. Instead, the activity of the RO requires that it be in its normal position and orientation with respect to the other sequence elements of the rRNA genes. The enhancer-binding transcription factor xUBF also binds to the repetitive sequences of the RO in vitro, but these sequences do not activate transcription in vivo. We propose that the RO is a specialized insulator element that organizes the tandem array of rRNA genes into single-gene expression units by promoting activation of a promoter by its proximal enhancers. PMID:9111359
Zou, Cheng; Li, Jingxuan; Luo, Wenzhe; Li, Long; Hu, An; Fu, Yuhua; Hou, Ye; Li, Changchun
2017-08-18
Long intergenic non-coding RNAs (lincRNAs) play essential roles in numerous biological processes and are widely studied. The skeletal muscle is an important tissue that plays an essential role in individual movement ability. However, lincRNAs in pig skeletal muscles are largely undiscovered and their biological functions remain elusive. In this study, we assembled transcriptomes using RNA-seq data published in previous studies of our laboratory group and identified 323 lincRNAs in porcine leg muscle. We found that these lincRNAs have shorter transcript length, fewer exons and lower expression level than protein-coding genes. Gene ontology and pathway analyses indicated that many potential target genes (PTGs) of lincRNAs were involved in skeletal-muscle-related processes, such as muscle contraction and muscle system process. Combined our previous studies, we found a potential regulatory mechanism in which the promoter methylation of lincRNAs can negatively regulate lincRNA expression and then positively regulate PTG expression, which can finally result in abnormal phenotypes of cloned piglets through a certain unknown pathway. This work detailed a number of lincRNAs and their target genes involved in skeletal muscle growth and development and can facilitate future studies on their roles in skeletal muscle growth and development.
Genome-wide recombination dynamics are associated with phenotypic variation in maize.
Pan, Qingchun; Li, Lin; Yang, Xiaohong; Tong, Hao; Xu, Shutu; Li, Zhigang; Li, Weiya; Muehlbauer, Gary J; Li, Jiansheng; Yan, Jianbing
2016-05-01
Meiotic recombination is a major driver of genetic diversity, species evolution, and agricultural improvement. Thus, an understanding of the genetic recombination landscape across the maize (Zea mays) genome will provide insight and tools for further study of maize evolution and improvement. Here, we used c. 50 000 single nucleotide polymorphisms to precisely map recombination events in 12 artificial maize segregating populations. We observed substantial variation in the recombination frequency and distribution along the ten maize chromosomes among the 12 populations and identified 143 recombination hot regions. Recombination breakpoints were partitioned into intragenic and intergenic events. Interestingly, an increase in the number of genes containing recombination events was accompanied by a decrease in the number of recombination events per gene. This kept the overall number of intragenic recombination events nearly invariable in a given population, suggesting that the recombination variation observed among populations was largely attributed to intergenic recombination. However, significant associations between intragenic recombination events and variation in gene expression and agronomic traits were observed, suggesting potential roles for intragenic recombination in plant phenotypic diversity. Our results provide a comprehensive view of the maize recombination landscape, and show an association between recombination, gene expression and phenotypic variation, which may enhance crop genetic improvement. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Raibaud, A; Zalacain, M; Holt, T G; Tizard, R; Thompson, C J
1991-01-01
Nucleotide sequence analysis of a 5,000-bp region of the bialaphos antibiotic production (bap) gene cluster defined five open reading frames (ORFs) which predicted structural genes in the order bah, ORF1, ORF2, and ORF3 followed by the regulatory gene, brpA (H. Anzai, T. Murakami, S. Imai, A. Satoh, K. Nagaoka, and C.J. Thompson, J. Bacteriol. 169:3482-3488, 1987). The four structural genes were translationally coupled and apparently cotranscribed from an undefined promoter(s) under the positive control of the brpA gene product. S1 mapping experiments indicated that brpA was transcribed by two promoters (brpAp1 and brpAp2) which initiate transcription 150 and 157 bp upstream of brp A within an intergenic region and at least one promoter further upstream within the bap gene cluster (brpAp3). All three transcripts were present at low levels during exponential growth and increased just before the stationary phase. The levels of the brpAp3 band continued to increase at the onset of stationary phase, whereas brpAp1-and brpAp2-protected fragments showed no further change. BrpA contained a possible helix-turn-helix motif at its C terminus which was similar to the C-terminal regulatory motif found in the receiver component of a family of two-component transcriptional activator proteins. This motif was not associated with the N-terminal domain conserved in other members of the family. The structural gene cluster sequenced began with bah, encoding a bialaphos acetylhydrolase which removes the N-acetyl group from bialaphos as one of the final steps in the biosynthetic pathway. The observation that Bah was similar to a rat and to a bacterial (Acinetobacter calcoaceticus) lipase probably reflects the fact that the ester bonds of triglycerides and the amide bond linking acetate to phosphinothricin are similar and hydrolysis is catalyzed by structurally related enzymes. This was followed by two regions encoding ORF1 and ORF2 which were similar to each other (48% nucleotide identity, 31% amino acid identity), as well as to GrsT, a protein encoded by a gene located adjacent to gramicidin S synthetase in Bacillus brevis, and to vertebrate (mallard duck and rat) thioesterases. The amino acid sequence and hydrophobicity profile of ORF3 indicated that it was related to a family of membrane transport proteins. It was strikingly similar to the citrate uptake protein encoded by the transposon Tn3411. Images PMID:2066341
Linder, Tomas
2018-04-01
A new expression cassette ( EC0 ) consisting of the fused 5' and 3' intergenic regions (IGRs) of the Eremothecium cymbalariae translational elongation factor 1α ( EcTEF1 ) gene was evaluated through expression of the bacterial hygromycin B phosphotransferase ( hph ) resistance gene in the common baker's yeast Saccharomyces cerevisiae . Progressively shorter versions of the hph -containing EC cassette ( hphEC1 though hphEC6 ) with trimmed 5' and 3' EcTEF1 IGRs were tested for their ability to confer resistance to hygromycin B in S. cerevisiae . Hygromycin B resistance was retained in all six generated hphEC variants up to a concentration of 400 mg/L. The hphEC6 cassette was the shortest cassette to be assayed in this study with 366 and 155 bp of the EcTEF1 5' and 3' IGRs, respectively. When tested for deletion of the S. cerevisiae proline oxidase gene PUT1 , the hphEC6 cassette was shown to successfully act as a selection marker on hygromycin B-containing medium. The hphEC6 cassette could be placed immediately adjacent to a kanMX4 G418 disulfate resistance marker without any discernable effect on the ability of the yeast to grow in the presence of both hygromycin B and G418 disulfate. Co-cultivation experiments under non-selective conditions demonstrated that a PUT1 deletion strain carrying the hphEC6 cassette displayed equivalent fitness to an otherwise isogenic PUT1 deletion strain carrying the kanMX4 cassette.
Moreno-Vivian, C; Hennecke, S; Pühler, A; Klipp, W
1989-01-01
DNA sequence analysis of a 1,600-base-pair fragment located downstream of nifENX in nif region A of Rhodobacter capsulatus revealed two additional open reading frames (ORFs): ORF5, encoding a ferredoxinlike protein, and nifQ. The ferredoxinlike gene product contained two cysteine motifs, typical of ferredoxins coordinating two 4Fe-4S clusters, but the distance between these two motifs was unusual for low-molecular-weight ferredoxins. The R. capsulatus nifQ gene product shared a high degree of homology with Klebsiella pneumoniae and Azotobacter vinelandii NifQ, including a typical cysteine motif located in the C-terminal part. nifQ insertion mutants and also an ORF5-nifQ double deletion mutant showed normal diazotrophic growth only in the presence of high concentrations of molybdate. This demonstrated that the gene encoding the ferredoxinlike protein is not essential for nitrogen fixation. No NifA-activated consensus promoter could be found in the intergenic region between nifENX-ORF4 and ORF5-nifQ. Analyses of a nifQ-lacZYA fusion revealed that transcription of nifQ was initiated at a promoter in front of nifE. In contrast to other nitrogen-fixing organisms, R. capsulatus nifE, nifN, nifX, ORF4, ORF5, and nifQ were organized in one transcriptional unit. PMID:2708314
Huang, Hao; Mackel, Brian J; Grove, Anne
2013-11-01
Many transcriptional regulators control gene activity by responding to specific ligands. Members of the multiple-antibiotic resistance regulator (MarR) family of transcriptional regulators feature prominently in this regard, and they frequently function as repressors in the absence of their cognate ligands. Plant pathogens such as Dickeya dadantii encode a MarR homolog named PecS that controls expression of a gene encoding the efflux pump PecM in addition to other virulence genes. We report here that the soil bacterium Streptomyces coelicolor also encodes a PecS homolog (SCO2647) that regulates a pecM gene (SCO2646). S. coelicolor PecS, which exists as a homodimer, binds the intergenic region between pecS and pecM genes with high affinity. Several potential PecS binding sites were found in this intergenic region. The binding of PecS to its target DNA can be efficiently attenuated by the ligand urate, which also quenches the intrinsic fluorescence of PecS, indicating a direct interaction between urate and PecS. In vivo measurement of gene expression showed that activity of pecS and pecM genes is significantly elevated after exposure of S. coelicolor cultures to urate. These results indicate that S. coelicolor PecS responds to the ligand urate by attenuated DNA binding in vitro and upregulation of gene activity in vivo. Since production of urate is associated with generation of reactive oxygen species by xanthine dehydrogenase, we propose that PecS functions under conditions of oxidative stress.
Huang, Hao; Mackel, Brian J.
2013-01-01
Many transcriptional regulators control gene activity by responding to specific ligands. Members of the multiple-antibiotic resistance regulator (MarR) family of transcriptional regulators feature prominently in this regard, and they frequently function as repressors in the absence of their cognate ligands. Plant pathogens such as Dickeya dadantii encode a MarR homolog named PecS that controls expression of a gene encoding the efflux pump PecM in addition to other virulence genes. We report here that the soil bacterium Streptomyces coelicolor also encodes a PecS homolog (SCO2647) that regulates a pecM gene (SCO2646). S. coelicolor PecS, which exists as a homodimer, binds the intergenic region between pecS and pecM genes with high affinity. Several potential PecS binding sites were found in this intergenic region. The binding of PecS to its target DNA can be efficiently attenuated by the ligand urate, which also quenches the intrinsic fluorescence of PecS, indicating a direct interaction between urate and PecS. In vivo measurement of gene expression showed that activity of pecS and pecM genes is significantly elevated after exposure of S. coelicolor cultures to urate. These results indicate that S. coelicolor PecS responds to the ligand urate by attenuated DNA binding in vitro and upregulation of gene activity in vivo. Since production of urate is associated with generation of reactive oxygen species by xanthine dehydrogenase, we propose that PecS functions under conditions of oxidative stress. PMID:23995633
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rubin, Benjamin E.; Wetmore, Kelly M.; Price, Morgan N.
Synechococcus elongatus PCC 7942 is a model organism used for studying photosynthesis and the circadian clock, and it is being developed for the production of fuel, industrial chemicals, and pharmaceuticals. To identify a comprehensive set of genes and intergenic regions that impacts fitness in S. elongatus, we created a pooled library of ~250,000 transposon mutants and used sequencing to identify the insertion locations. By analyzing the distribution and survival of these mutants, we identified 718 of the organism's 2,723 genes as essential for survival under laboratory conditions. The validity of the essential gene set is supported by its tight overlapmore » with wellconserved genes and its enrichment for core biological processes. The differences noted between our dataset and these predictors of essentiality, however, have led to surprising biological insights. One such finding is that genes in a large portion of the TCA cycle are dispensable, suggesting that S. elongatus does not require a cyclic TCA process. Furthermore, the density of the transposon mutant library enabled individual and global statements about the essentiality of noncoding RNAs, regulatory elements, and other intergenic regions. In this way, a group I intron located in tRNA Leu , which has been used extensively for phylogenetic studies, was shown here to be essential for the survival of S. elongatus. Our survey of essentiality for every locus in the S. elongatus genome serves as a powerful resource for understanding the organism's physiology and defines the essential gene set required for the growth of a photosynthetic organism.« less
Zhang, Hong-Li; Ye, Fei
2017-01-01
Praying mantises are a diverse group of predatory insects. Although some Mantodea mitogenomes have been reported, a comprehensive comparative and evolutionary genomic study is lacking for this group. In the present study, four new mitogenomes were sequenced, annotated, and compared to the previously published mitogenomes of other Mantodea species. Most Mantodea mitogenomes share a typical set of mitochondrial genes and a putative control region (CR). Additionally, and most intriguingly, another large non-coding region (LNC) was detected between trnM and ND2 in all six Paramantini mitogenomes examined. The main section in this common region of Paramantini may have initially originated from the corresponding control region for each species, whereas sequence differences between the LNCs and CRs and phylogenetic analyses indicate that LNC and CR are largely independently evolving. Namely, the LNC (the duplicated CR) may have subsequently degenerated during evolution. Furthermore, evidence suggests that special intergenic gaps have been introduced in some species through gene rearrangement and duplication. These gaps are actually the original abutting sequences of migrated or duplicated genes. Some gaps (G5 and G6) are homologous to the 5' and 3' surrounding regions of the duplicated gene in the original gene order, and another specific gap (G7) has tandem repeats. We analysed the phylogenetic relationships of fifteen Mantodea species using 37 concatenated mitochondrial genes and detected several synapomorphies unique to species in some clades. PMID:28367101
Kang, J J; Yokoi, T J; Holland, M J
1995-12-01
The 190-base pair (bp) rDNA enhancer within the intergenic spacer sequences of Saccharomyces cerevisiae rRNA cistrons activates synthesis of the 35S-rRNA precursor about 20-fold in vivo (Mestel,, R., Yip, M., Holland, J. P., Wang, E., Kang, J., and Holland, M. J. (1989) Mol. Cell. Biol. 9, 1243-1254). We now report identification and analysis of transcriptional activities mediated by three cis-acting sites within a 90-bp portion of the rDNA enhancer designated the modulator region. In vivo, these sequences mediated termination of transcription by RNA polymerase I and potentiated the activity of the rDNA enhancer element. Two trans-acting factors, REB1 and REB2, bind independently to sites within the modulator region (Morrow, B. E., Johnson, S. P., and Warner, J. R. (1989) J. Biol. Chem. 264, 9061-9068). We show that REB2 is identical to the ABF1 protien. Site-directed mutagenesis of REB1 and ABF1 binding sites demonstrated uncoupling of RNA polymerase I-dependent termination from transcriptional activation in vivo. We conclude that REB1 and ABF1 are required for RNA polymerase I-dependent termination and enhancer function, respectively, Since REB1 and ABF1 proteins also regulate expression of class II genes and other nuclear functions, our results suggest further similarities between RNA polymerase I and II regulatory mechanisms. Two rDNA enhancers flanking a rDNA minigene stimulated RNA polymerase I transcription in a "multiplicative" fashion. Deletion mapping analysis showed that similar cis-acting sequences were required for enhancer function when positioned upstream or downstream from a rDNA minigene.
Ma, Shibin; Ming, Zhenping; Gong, Ai-Yu; Wang, Yang; Chen, Xiqiang; Hu, Guoku; Zhou, Rui; Shibata, Annemarie; Swanson, Patrick C; Chen, Xian-Ming
2017-03-01
Long intergenic noncoding RNAs (lincRNAs) are long noncoding transcripts (>200 nt) from the intergenic regions of annotated protein-coding genes. We report here that the lincRNA gene lincRNA-Tnfaip3 , located at mouse chromosome 10 proximal to the tumor necrosis factor α-induced protein 3 ( Tnfaip3 ) gene, is an early-primary response gene controlled by nuclear factor-κB (NF-κB) signaling in murine macrophages. Functionally, lincRNA- Tnfaip3 appears to mediate both the activation and repression of distinct classes of inflammatory genes in macrophages. Specifically, induction of lincRNA-Tnfaip3 is required for the transactivation of NF-κB-regulated inflammatory genes in response to bacterial LPSs stimulation. LincRNA-Tnfaip3 physically interacts with the high-mobility group box 1 (Hmgb1), assembling a NF-κB/Hmgb1/lincRNA-Tnfaip3 complex in macrophages after LPS stimulation. This resultant NF-κB/Hmgb1/lincRNA-Tnfaip3 complex can modulate Hmgb1-associated histone modifications and, ultimately, transactivation of inflammatory genes in mouse macrophages in response to microbial challenge. Therefore, our data indicate a new regulatory role of NF-κB-induced lincRNA-Tnfaip3 to act as a coactivator of NF-κB for the transcription of inflammatory genes in innate immune cells through modulation of epigenetic chromatin remodeling.-Ma, S., Ming, Z., Gong, A.-Y., Wang, Y., Chen, X., Hu, G., Zhou, R., Shibata, A., Swanson, P. C., Chen, X.-M. A long noncoding RNA, LincRNA-Tnfaip3, acts as a coregulator of NF-κB to modulate inflammatory gene transcription in mouse macrophages. © FASEB.
The CRISPR/Cas9 system enables genome editing and somatic cell genetic screens in mammalian cells. We performed genome-scale loss-of-function screens in 33 cancer cell lines to identify genes essential for proliferation/survival and found a strong correlation between increased gene copy number and decreased cell viability after genome editing. Within regions of copy-number gain, CRISPR/Cas9 targeting of both expressed and unexpressed genes, as well as intergenic loci, led to significantly decreased cell proliferation through induction of a G2 cell-cycle arrest.
Collery, Mark M; Smyth, Cyril J
2007-02-01
The egc locus of Staphylococus aureus harbours two enterotoxin genes (seg and sei) and three enterotoxin-like genes (selm, seln and selo). Between the sei and seln genes are located two pseudogenes, psient1 and psient2, or the selu or seluv gene. While these two alternative sei-seln intergenic regions can be distinguished by PCR, to date, DNA sequencing has been the only confirmatory option because of the very high degree of sequence similarity between egc loci bearing the pseudogenes and the selu or seluv gene. In silico restriction enzyme digestion of genomic regions encompassing the egc locus from the 3' end of the sei gene through the 5' first quarter of the seln gene allowed pseudogene- and selu- or seluv-bearing egc loci to be distinguished by PCR-RFLP. Experimental application of these findings demonstrated that endonuclease HindIII cleaved PCR amplimers bearing pseudogenes but not those with a selu or seluv gene, while selu- or seluv-bearing amplimers were susceptible to cleavage by endonuclease HphI, but not by endonuclease HindIII. The restriction enzyme BccI cleaved selu- or seluv-harbouring amplimers at a unique restriction site created by their signature 15 bp insertion compared with pseudogene-bearing amplimers, thereby allowing distinction of these egc loci. PCR-RFLP analysis using these restriction enzymes provides a rapid, easy to interpret alternative to DNA sequencing for verification of PCR findings on the nature of an egc locus type, and can also be used for the primary identification of the intergenic sei-seln egc locus type.
Global Shifts in Genome and Proteome Composition Are Very Tightly Coupled
Brbić, Maria; Warnecke, Tobias; Kriško, Anita; Supek, Fran
2015-01-01
The amino acid composition (AAC) of proteomes differs greatly between microorganisms and is associated with the environmental niche they inhabit, suggesting that these changes may be adaptive. Similarly, the oligonucleotide composition of genomes varies and may confer advantages at the DNA/RNA level. These influences overlap in protein-coding sequences, making it difficult to gauge their relative contributions. We disentangle these effects by systematically evaluating the correspondence between intergenic nucleotide composition, where protein-level selection is absent, the AAC, and ecological parameters of 909 prokaryotes. We find that G + C content, the most frequently used measure of genomic composition, cannot capture diversity in AAC and across ecological contexts. However, di-/trinucleotide composition in intergenic DNA predicts amino acid frequencies of proteomes to the point where very little cross-species variability remains unexplained (91% of variance accounted for). Qualitatively similar results were obtained for 49 fungal genomes, where 80% of the variability in AAC could be explained by the composition of introns and intergenic regions. Upon factoring out oligonucleotide composition and phylogenetic inertia, the residual AAC is poorly predictive of the microbes’ ecological preferences, in stark contrast with the original AAC. Moreover, highly expressed genes do not exhibit more prominent environment-related AAC signatures than lowly expressed genes, despite contributing more to the effective proteome. Thus, evolutionary shifts in overall AAC appear to occur almost exclusively through factors shaping the global oligonucleotide content of the genome. We discuss these results in light of contravening evidence from biophysical data and further reading frame-specific analyses that suggest that adaptation takes place at the protein level. PMID:25971281
Bergman, C M; Kreitman, M
2001-08-01
Comparative genomic approaches to gene and cis-regulatory prediction are based on the principle that differential DNA sequence conservation reflects variation in functional constraint. Using this principle, we analyze noncoding sequence conservation in Drosophila for 40 loci with known or suspected cis-regulatory function encompassing >100 kb of DNA. We estimate the fraction of noncoding DNA conserved in both intergenic and intronic regions and describe the length distribution of ungapped conserved noncoding blocks. On average, 22%-26% of noncoding sequences surveyed are conserved in Drosophila, with median block length approximately 19 bp. We show that point substitution in conserved noncoding blocks exhibits transition bias as well as lineage effects in base composition, and occurs more than an order of magnitude more frequently than insertion/deletion (indel) substitution. Overall, patterns of noncoding DNA structure and evolution differ remarkably little between intergenic and intronic conserved blocks, suggesting that the effects of transcription per se contribute minimally to the constraints operating on these sequences. The results of this study have implications for the development of alignment and prediction algorithms specific to noncoding DNA, as well as for models of cis-regulatory DNA sequence evolution.
Comparative sequence analysis of the X-inactivation center region in mouse, human, and bovine.
Chureau, Corinne; Prissette, Marine; Bourdet, Agnès; Barbe, Valérie; Cattolico, Laurence; Jones, Louis; Eggen, André; Avner, Philip; Duret, Laurent
2002-06-01
We have sequenced to high levels of accuracy 714-kb and 233-kb regions of the mouse and bovine X-inactivation centers (Xic), respectively, centered on the Xist gene. This has provided the basis for a fully annotated comparative analysis of the mouse Xic with the 2.3-Mb orthologous region in human and has allowed a three-way species comparison of the core central region, including the Xist gene. These comparisons have revealed conserved genes, both coding and noncoding, conserved CpG islands and, more surprisingly, conserved pseudogenes. The distribution of repeated elements, especially LINE repeats, in the mouse Xic region when compared to the rest of the genome does not support the hypothesis of a role for these repeat elements in the spreading of X inactivation. Interestingly, an asymmetric distribution of LINE elements on the two DNA strands was observed in the three species, not only within introns but also in intergenic regions. This feature is suggestive of important transcriptional activity within these intergenic regions. In silico prediction followed by experimental analysis has allowed four new genes, Cnbp2, Ftx, Jpx, and Ppnx, to be identified and novel, widespread, complex, and apparently noncoding transcriptional activity to be characterized in a region 5' of Xist that was recently shown to attract histone modification early after the onset of X inactivation.
Shendre, Aditi; Wiener, Howard W.; Zhi, Degui; Vazquez, Ana I; Portman, Michael A.; Shrestha, Sadeep
2014-01-01
Kawasaki disease (KD) is a diffuse and acute small-vessel vasculitis observed in children and has genetic and autoimmune components. We genotyped 112 case-parent trios of European decent (confirmed by AIMS) using the ImmunoChip array and performed association analyses with susceptibility to KD and IVIG non-response. KD susceptibility was assessed using the transmission disequilibrium test whereas IVIG non-response was evaluated using multivariable logistic regression analysis. We replicated SNPs in three gene regions (FCGR, CD40/CDH22, and HLA-DQB2/HLA-DOB) that have been previously associated with KD and provide support to other findings of several novel SNPs in genes with potential pathway in KD pathogenesis. SNP rs838143 in the 3′ UTR of FUT1 gene (2.7×10-5) and rs9847915 in the intergenic region of LOC730109 ∣ BRD7P2 (6.81×10-7) were the top hits for KD susceptibility in additive and dominant models, respectively. The top hits for IVIG responsiveness were rs1200332 in the intergenic region of BAZ1A ∣ C14orf19 (1.4×10-4) and rs4889606 in the intron of the STX1B gene (6.95×10-5) in additive and dominant models, respectively. Our study suggests that genes and biological pathways involved in autoimmune diseases play an important role in the pathogenesis of KD and IVIG response mechanism. PMID:25101798
Cellular dissection of psoriasis for transcriptome analyses and the post-GWAS era
2014-01-01
Background Genome-scale studies of psoriasis have been used to identify genes of potential relevance to disease mechanisms. For many identified genes, however, the cell type mediating disease activity is uncertain, which has limited our ability to design gene functional studies based on genomic findings. Methods We identified differentially expressed genes (DEGs) with altered expression in psoriasis lesions (n = 216 patients), as well as candidate genes near susceptibility loci from psoriasis GWAS studies. These gene sets were characterized based upon their expression across 10 cell types present in psoriasis lesions. Susceptibility-associated variation at intergenic (non-coding) loci was evaluated to identify sites of allele-specific transcription factor binding. Results Half of DEGs showed highest expression in skin cells, although the dominant cell type differed between psoriasis-increased DEGs (keratinocytes, 35%) and psoriasis-decreased DEGs (fibroblasts, 33%). In contrast, psoriasis GWAS candidates tended to have highest expression in immune cells (71%), with a significant fraction showing maximal expression in neutrophils (24%, P < 0.001). By identifying candidate cell types for genes near susceptibility loci, we could identify and prioritize SNPs at which susceptibility variants are predicted to influence transcription factor binding. This led to the identification of potentially causal (non-coding) SNPs for which susceptibility variants influence binding of AP-1, NF-κB, IRF1, STAT3 and STAT4. Conclusions These findings underscore the role of innate immunity in psoriasis and highlight neutrophils as a cell type linked with pathogenetic mechanisms. Assignment of candidate cell types to genes emerging from GWAS studies provides a first step towards functional analysis, and we have proposed an approach for generating hypotheses to explain GWAS hits at intergenic loci. PMID:24885462
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Yongyan; Key Laboratory of Animal Biotechnology, Ministry of Agriculture, Northwest A and F University, Yangling 712100, Shaanxi; Ai, Zhiying
2013-10-15
Embryonic stem cells (ESCs) can proliferate indefinitely in vitro and differentiate into cells of all three germ layers. These unique properties make them exceptionally valuable for drug discovery and regenerative medicine. However, the practical application of ESCs is limited because it is difficult to derive and culture ESCs. It has been demonstrated that CHIR99021 (CHIR) promotes self-renewal and enhances the derivation efficiency of mouse (m)ESCs. However, the downstream targets of CHIR are not fully understood. In this study, we identified CHIR-regulated genes in mESCs using microarray analysis. Our microarray data demonstrated that CHIR not only influenced the Wnt/β-catenin pathway bymore » stabilizing β-catenin, but also modulated several other pluripotency-related signaling pathways such as TGF-β, Notch and MAPK signaling pathways. More detailed analysis demonstrated that CHIR inhibited Nodal signaling, while activating bone morphogenetic protein signaling in mESCs. In addition, we found that pluripotency-maintaining transcription factors were up-regulated by CHIR, while several developmental-related genes were down-regulated. Furthermore, we found that CHIR altered the expression of epigenetic regulatory genes and long intergenic non-coding RNAs. Quantitative real-time PCR results were consistent with microarray data, suggesting that CHIR alters the expression pattern of protein-encoding genes (especially transcription factors), epigenetic regulatory genes and non-coding RNAs to establish a relatively stable pluripotency-maintaining network. - Highlights: • Combined use of CHIR with LIF promotes self-renewal of J1 mESCs. • CHIR-regulated genes are involved in multiple pathways. • CHIR inhibits Nodal signaling and promotes Bmp4 expression to activate BMP signaling. • Expression of epigenetic regulatory genes and lincRNAs is altered by CHIR.« less
Novel primers for detection of genetically diverse virulent Agrobacterium tumefaciens bv1 strains
USDA-ARS?s Scientific Manuscript database
Novel primers were developed to amplify a 243 bp fragment of an intergenic region between gene5 and tms2 on the T-DNA of Agrobacterium tumefaciens. These primers exhibit 100% positive correlation with strain virulence, 100% negative correlation with avirulence and did not generate extraneous bands,...
Transcriptome map of plant mitochondria reveals islands of unexpected transcribed regions.
Fujii, Sota; Toda, Takushi; Kikuchi, Shunsuke; Suzuki, Ryutaro; Yokoyama, Koji; Tsuchida, Hiroko; Yano, Kentaro; Toriyama, Kinya
2011-06-01
Plant mitochondria contain a relatively large amount of genetic information, suggesting that their functional regulation may not be as straightforward as that of metazoans. We used a genomic tiling array to draw a transcriptomic atlas of Oryza sativa japonica (rice) mitochondria, which was predicted to be approximately 490-kb long. Whereas statistical analysis verified the transcription of all previously known functional genes such as the ones related to oxidative phosphorylation, a similar extent of RNA expression was frequently observed in the inter-genic regions where none of the previously annotated genes are located. The newly identified open reading frames (ORFs) predicted in these transcribed inter-genic regions were generally not conserved among flowering plant species, suggesting that these ORFs did not play a role in mitochondrial principal functions. We also identified two partial fragments of retrotransposon sequences as being transcribed in rice mitochondria. The present study indicated the previously unexpected complexity of plant mitochondrial RNA metabolism. Our transcriptomic data (Oryza sativa Mitochondrial rna Expression Server: OsMES) is publicly accessible at [http://bioinf.mind.meiji.ac.jp/cgi-bin/gbrowse/OsMes/#search].
The candidate histocompatibility locus of a Basal chordate encodes two highly polymorphic proteins.
Nydam, Marie L; Netuschil, Nikolai; Sanders, Erin; Langenbacher, Adam; Lewis, Daniel D; Taketa, Daryl A; Marimuthu, Arumugapradeep; Gracey, Andrew Y; De Tomaso, Anthony W
2013-01-01
The basal chordate Botryllus schlosseri undergoes a natural transplantation reaction governed by a single, highly polymorphic locus called the fuhc. Our initial characterization of this locus suggested it encoded a single gene alternatively spliced into two transcripts: a 555 amino acid-secreted form containing the first half of the gene, and a full-length, 1008 amino acid transmembrane form, with polymorphisms throughout the ectodomain determining outcome. We have now found that the locus encodes two highly polymorphic genes which are separated by a 227 bp intergenic region: first, the secreted form as previously described, and a second gene encoding a 531 amino acid membrane-bound gene containing three extracellular immunoglobulin domains. While northern blotting revealed only these two mRNAs, both PCR and mRNA-seq detect a single capped and polyadenylated transcript that encodes processed forms of both genes linked by the intergenic region, as well as other transcripts in which exons of the two genes are spliced together. These results might suggest that the two genes are expressed as an operon, during which both genes are co-transcribed and then trans-spliced into two separate messages. This type of transcriptional regulation has been described in tunicates previously; however, the membrane-bound gene does not encode a typical Splice Leader (SL) sequence at the 5' terminus that usually accompanies trans-splicing. Thus, the presence of stable transcripts encoding both genes may suggest a novel mechanism of regulation, or conversely may be rare but stable transcripts in which the two mRNAs are linked due to a small amount of read-through by RNA polymerase. Both genes are highly polymorphic and co-expressed on tissues involved in histocompatibility. In addition, polymorphisms on both genes correlate with outcome, although we have found a case in which it appears that the secreted form may be major allorecognition determinant.
DNA methylation and differentiation: HOX genes in muscle cells
2013-01-01
Background Tight regulation of homeobox genes is essential for vertebrate development. In a study of genome-wide differential methylation, we recently found that homeobox genes, including those in the HOX gene clusters, were highly overrepresented among the genes with hypermethylation in the skeletal muscle lineage. Methylation was analyzed by reduced representation bisulfite sequencing (RRBS) of postnatal myoblasts, myotubes and adult skeletal muscle tissue and 30 types of non-muscle-cell cultures or tissues. Results In this study, we found that myogenic hypermethylation was present in specific subregions of all four HOX gene clusters and was associated with various chromatin epigenetic features. Although the 3′ half of the HOXD cluster was silenced and enriched in polycomb repression-associated H3 lysine 27 trimethylation in most examined cell types, including myoblasts and myotubes, myogenic samples were unusual in also displaying much DNA methylation in this region. In contrast, both HOXA and HOXC clusters displayed myogenic hypermethylation bordering a central region containing many genes preferentially expressed in myogenic progenitor cells and consisting largely of chromatin with modifications typical of promoters and enhancers in these cells. A particularly interesting example of myogenic hypermethylation was HOTAIR, a HOXC noncoding RNA gene, which can silence HOXD genes in trans via recruitment of polycomb proteins. In myogenic progenitor cells, the preferential expression of HOTAIR was associated with hypermethylation immediately downstream of the gene. Other HOX gene regions also displayed myogenic DNA hypermethylation despite being moderately expressed in myogenic cells. Analysis of representative myogenic hypermethylated sites for 5-hydroxymethylcytosine revealed little or none of this base, except for an intragenic site in HOXB5 which was specifically enriched in this base in skeletal muscle tissue, whereas myoblasts had predominantly 5-methylcytosine at the same CpG site. Conclusions Our results suggest that myogenic hypermethylation of HOX genes helps fine-tune HOX sense and antisense gene expression through effects on 5′ promoters, intragenic and intergenic enhancers and internal promoters. Myogenic hypermethylation might also affect the relative abundance of different RNA isoforms, facilitate transcription termination, help stop the spread of activation-associated chromatin domains and stabilize repressive chromatin structures. PMID:23916067
Diagnosis of clinical samples spotted on FTA cards using PCR-based methods.
Jamjoom, Manal; Sultan, Amal H
2009-04-01
The broad clinical presentation of Leishmaniasis makes the diagnosis of current and past cases of this disease rather difficult. Differential diagnosis is important because diseases caused by other aetiologies and a clinical spectrum similar to that of leishmaniasis (e.g. leprosy, skin cancers and tuberculosis for CL; malaria and schistosomiasis for VL) are often present in endemic areas of endemicity. Presently, a variety of methods have been developed and tested to aid the identification and diagnosis of Leishmania. The advent of the PCR technology has opened new channels for the diagnosis of leishmaniasis in a variety of clinical materials. PCR is a simple, rapid procedure that has been adapted for diagnosis of leishmaniasis. A range of tools is currently available for the diagnosis and identification of leishmaniasis and Leishmania species, respectively. However, none of these diagnostic tools are examined and tested using samples spotted on FTA cards. Three different PCR-based approaches were examined including: kDNA minicircle, Leishmania 18S rRNA gene and PCR-RFLP of Intergenic region of ribosomal protein. PCR primers were designed that sit within the coding sequences of genes (relatively well conserved) but which amplify across the intervening intergenic sequence (relatively variable). These were used in PCR-RFLP on reference isolates of 10 of the most important Leishmania species: L. donovani, L. infantum, L. major & L. tropica. Digestion of PCR products with restriction enzymes produced species-specific restriction patterns allowed discrimination of reference isolates. The kDNA minicircle primers are highly sensitive in diagnosis of both bone marrow and skin smears from FTA cards. Leishmania 18S rRNA gene conserved region is sensitive in identification of bone marrow smear but less sensitive in diagnosing skin smears. The intergenic nested PCR-RFLP using P5 & P6 as well as P1 & P2 newly designed primers showed high level of reproducibility and sensitivity. Though, it was less sensitive than kDNA minicircle primers, but easily discriminated between Leishmania species.
Mokhtar, Morad M; Adawy, Sami S; El-Assal, Salah El-Din S; Hussein, Ebtissam H A
2016-01-01
The present investigation was carried out aiming to use the bioinformatics tools in order to identify and characterize, simple sequence repeats within the third Version of the date palm genome and develop a new SSR primers database. In addition single nucleotide polymorphisms (SNPs) that are located within the SSR flanking regions were recognized. Moreover, the pathways for the sequences assigned by SSR primers, the biological functions and gene interaction were determined. A total of 172,075 SSR motifs was identified on date palm genome sequence with a frequency of 450.97 SSRs per Mb. Out of these, 130,014 SSRs (75.6%) were located within the intergenic regions with a frequency of 499 SSRs per Mb. While, only 42,061 SSRs (24.4%) were located within the genic regions with a frequency of 347.5 SSRs per Mb. A total of 111,403 of SSR primer pairs were designed, that represents 291.9 SSR primers per Mb. Out of the 111,403, only 31,380 SSR primers were in the genic regions, while 80,023 primers were in the intergenic regions. A number of 250,507 SNPs were recognized in 84,172 SSR flanking regions, which represents 75.55% of the total SSR flanking regions. Out of 12,274 genes only 463 genes comprising 896 SSR primers were mapped onto 111 pathways using KEGG data base. The most abundant enzymes were identified in the pathway related to the biosynthesis of antibiotics. We tested 1031 SSR primers using both publicly available date palm genome sequences as templates in the in silico PCR reactions. Concerning in vitro validation, 31 SSR primers among those used in the in silico PCR were synthesized and tested for their ability to detect polymorphism among six Egyptian date palm cultivars. All tested primers have successfully amplified products, but only 18 primers detected polymorphic amplicons among the studied date palm cultivars.
Sayols-Baixeras, S; Subirana, I; Lluis-Ganella, C; Civeira, F; Roquer, J; Do, A N; Absher, D; Cenarro, A; Muñoz, D; Soriano-Tárraga, C; Jiménez-Conde, J; Ordovas, J M; Senti, M; Aslibekyan, S; Marrugat, J; Arnett, D K; Elosua, R
2016-10-15
Lipid traits (total, low-density and high-density lipoprotein cholesterol, and triglycerides) are risk factors for cardiovascular disease. DNA methylation is not only an inherited but also modifiable epigenetic mark that has been related to cardiovascular risk factors. Our aim was to identify loci showing differential DNA methylation related to serum lipid levels. Blood DNA methylation was assessed using the Illumina Human Methylation 450 BeadChip. A two-stage epigenome-wide association study was performed, with a discovery sample in the REGICOR study (n = 645) and validation in the Framingham Offspring Study (n = 2,542). Fourteen CpG sites located in nine genes (SREBF1, SREBF2, PHOSPHO1, SYNGAP1, ABCG1, CPT1A, MYLIP, TXNIP and SLC7A11) and 2 intergenic regions showed differential methylation in association with lipid traits. Six of these genes and 1 intergenic region were new discoveries showing differential methylation related to total cholesterol (SREBF2), HDL-cholesterol (PHOSPHO1, SYNGAP1 and an intergenic region in chromosome 2) and triglycerides (MYLIP, TXNIP and SLC7A11). These CpGs explained 0.7%, 9.5% and 18.9% of the variability of total cholesterol, HDL cholesterol and triglycerides in the Framingham Offspring Study, respectively. The expression of the genes SREBF2 and SREBF1 was inversely associated with methylation of their corresponding CpGs (P-value = 0.0042 and 0.0045, respectively) in participants of the GOLDN study (n = 98). In turn, SREBF1 expression was directly associated with HDL cholesterol (P-value = 0.0429). Genetic variants in SREBF1, PHOSPHO1, ABCG1 and CPT1A were also associated with lipid profile. Further research is warranted to functionally validate these new loci and assess the causality of new and established associations between these differentially methylated loci and lipid metabolism.
González, Ana M; Yuste-Lisbona, Fernando J; Saburido, Soledad; Bretones, Sandra; De Ron, Antonio M; Lozano, Rafael; Santalla, Marta
2016-01-01
Determinacy growth habit and accelerated flowering traits were selected during or after domestication in common bean. Both processes affect several presumed adaptive traits such as the rate of plant production. There is a close association between flowering initiation and vegetative growth; however, interactions among these two crucial developmental processes and their genetic bases remain unexplored. In this study, with the aim to establish the genetic relationships between these complex processes, a multi-environment quantitative trait locus (QTL) mapping approach was performed in two recombinant inbred line populations derived from inter-gene pool crosses between determinate and indeterminate genotypes. Additive and epistatic QTLs were found to regulate flowering time, vegetative growth, and rate of plant production. Moreover, the pleiotropic patterns of the identified QTLs evidenced that regions controlling time to flowering traits, directly or indirectly, are also involved in the regulation of plant production traits. Further QTL analysis highlighted one QTL, on the lower arm of the linkage group Pv01, harboring the Phvul.001G189200 gene, homologous to the Arabidopsis thaliana TERMINAL FLOWER1 ( TFL1 ) gene, which explained up to 32% of phenotypic variation for time to flowering, 66% for vegetative growth, and 19% for rate of plant production. This finding was consistent with previous results, which have also suggested Phvul.001G189200 (PvTFL1y ) as a candidate gene for determinacy locus. The information here reported can also be applied in breeding programs seeking to optimize key agronomic traits, such as time to flowering, plant height and an improved reproductive biomass, pods, and seed size, as well as yield.
González, Ana M.; Yuste-Lisbona, Fernando J.; Saburido, Soledad; Bretones, Sandra; De Ron, Antonio M.; Lozano, Rafael; Santalla, Marta
2016-01-01
Determinacy growth habit and accelerated flowering traits were selected during or after domestication in common bean. Both processes affect several presumed adaptive traits such as the rate of plant production. There is a close association between flowering initiation and vegetative growth; however, interactions among these two crucial developmental processes and their genetic bases remain unexplored. In this study, with the aim to establish the genetic relationships between these complex processes, a multi-environment quantitative trait locus (QTL) mapping approach was performed in two recombinant inbred line populations derived from inter-gene pool crosses between determinate and indeterminate genotypes. Additive and epistatic QTLs were found to regulate flowering time, vegetative growth, and rate of plant production. Moreover, the pleiotropic patterns of the identified QTLs evidenced that regions controlling time to flowering traits, directly or indirectly, are also involved in the regulation of plant production traits. Further QTL analysis highlighted one QTL, on the lower arm of the linkage group Pv01, harboring the Phvul.001G189200 gene, homologous to the Arabidopsis thaliana TERMINAL FLOWER1 (TFL1) gene, which explained up to 32% of phenotypic variation for time to flowering, 66% for vegetative growth, and 19% for rate of plant production. This finding was consistent with previous results, which have also suggested Phvul.001G189200 (PvTFL1y) as a candidate gene for determinacy locus. The information here reported can also be applied in breeding programs seeking to optimize key agronomic traits, such as time to flowering, plant height and an improved reproductive biomass, pods, and seed size, as well as yield. PMID:28082996
The mini-exon genes of three Phytomonas isolates that differ in plant tissue tropism.
Sturm, N R; Fernandes, O; Campbell, D A
1995-08-01
The tandem mini-exon gene repeat is an ideal diagnostic target for trypanosomatids because it includes sequences that are conserved absolutely coupled with regions of extreme variability. We have exploited these features and the polymerase chain reaction to differentiate Phytomonas strains isolated from phloem, fruit or latex of various host plants. While the transcribed regions are nearly identical, the intergenic sequences are variable in size and content (130-332 base pairs). The mini-exon genes of these phytomonads can therefore be distinguished from each other and from the corresponding genes in insect trypanosomes, with which they are oft confused.
Insertion of a self-splicing intron into the mtDNA of atriploblastic animal
DOE Office of Scientific and Technical Information (OSTI.GOV)
Valles, Y.; Halanych, K.; Boore, J.L.
2006-04-14
Nephtys longosetosa is a carnivorous polychaete worm that lives in the intertidal and subtidal zones with worldwide distribution (pleijel&rouse2001). Its mitochondrial genome has the characteristics typical of most metazoans: 37 genes; circular molecule; almost no intergenic sequence; and no significant gene rearrangements when compared to other annelid mtDNAs (booremoritz19981995). Ubiquitous features as small intergenic regions and lack of introns suggested that metazoan mtDNAs are under strong selective pressures to reduce their genome size allowing for faster replication requirements (booremoritz19981995Lynch2005). Yet, in 1996 two type I introns were found in the mtDNA of the basal metazoan Metridium senile (FigureX). Breaking amore » long-standing rule (absence of introns in metazoan mtDNA), this finding was later supported by the further presence of group I introns in other cnidarians. Interestingly, only the class Anthozoa within cnidarians seems to harbor such introns. Although several hundreds of triploblastic metazoan mtDNAs have been sequenced, this study is the first evidence of mitochondrial introns in triploblastic metazoans. The cox1 gene of N. longosetosa has an intron of almost 2 kbs in length. This finding represents as well the first instance of a group II intron (anthozoans harbor group I introns) in all metazoan lineages. Opposite trends are observed within plants, fungi and protist mtDNAs, where introns (both group I and II) and other non-coding sequences are widespread. Plant, fungal and protist mtDNA structure and organization differ enormously from that of metazoan mtDNA. Both, plant and fungal mtDNA are dynamic molecules that undergo high rates of recombination, contain long intergenic spacer regions and harbor both group I and group II introns. However, as metazoans they have a conserved gene content. Protists, on the other hand have a striking variation of gene content and introns that account for the genome size variation. In contrast to this mtDNA structure and organization diversity, current genome level studies point to a monophyletic origin of the mitochondria (REFS), raising questions such as: what are the pressures at work shaping the evolution of the mitochondrial genome at 'higher' levels? What drives the absence of introns and other non-coding spacers in metazoan mtDNA? What characteristics must have an intron to be maintained in an environment where 'extra chromosomes' are usually selected against?« less
USDA-ARS?s Scientific Manuscript database
Plant disease resistance is often mediated by nucleotide binding-leucine rich repeat (NB-LRR or NLR) proteins, which trigger a hypersensitive response (HR), a rapid, localized cell death upon recognition of specific pathogens. The maize NLR-encoding Rp1-D21 gene is the result of an intergenic recomb...
Benthic bacterial diversity in submerged sinkhole ecosystems.
Nold, Stephen C; Pangborn, Joseph B; Zajack, Heidi A; Kendall, Scott T; Rediske, Richard R; Biddanda, Bopaiah A
2010-01-01
Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities.
Identification of Small RNAs in Desulfovibrio vulgaris Hildenborough
DOE Office of Scientific and Technical Information (OSTI.GOV)
Burns, Andrew; Joachimiak, Marcin; Deutschbauer, Adam
2010-05-17
Desulfovibrio vulgaris is an anaerobic sulfate-reducing bacterium capable of facilitating the removal of toxic metals such as uranium from contaminated sites via reduction. As such, it is essential to understand the intricate regulatory cascades involved in how D. vulgaris and its relatives respond to stressors in such sites. One approach is the identification and analysis of small non-coding RNAs (sRNAs); molecules ranging in size from 20-200 nucleotides that predominantly affect gene regulation by binding to complementary mRNA in an anti-sense fashion and therefore provide an immediate regulatory response. To identify sRNAs in D. vulgaris, a bacterium that does not possessmore » an annotated hfq gene, RNA was pooled from stationary and exponential phases, nitrate exposure, and biofilm conditions. The subsequent RNA was size fractionated, modified, and converted to cDNA for high throughput transcriptomic deep sequencing. A computational approach to identify sRNAs via the alignment of seven separate Desulfovibrio genomes was also performed. From the deep sequencing analysis, 2,296 reads between 20 and 250 nt were identified with expression above genome background. Analysis of those reads limited the number of candidates to ~;;87 intergenic, while ~;;140 appeared to be antisense to annotated open reading frames (ORFs). Further BLAST analysis of the intergenic candidates and other Desulfovibrio genomes indicated that eight candidates were likely portions of ORFs not previously annotated in the D. vulgaris genome. Comparison of the intergenic and antisense data sets to the bioinformatical predicted candidates, resulted in ~;;54 common candidates. Current approaches using Northern analysis and qRT-PCR are being used toverify expression of the candidates and to further develop the role these sRNAs play in D. vulgaris regulation.« less
Wen, Dong-Yue; Lin, Peng; Pang, Yu-Yan; Chen, Gang; He, Yun; Dang, Yi-Wu; Yang, Hong
2018-05-05
BACKGROUND Long non-coding RNAs (lncRNAs) have a role in physiological and pathological processes, including cancer. The aim of this study was to investigate the expression of the long intergenic non-protein coding RNA 665 (LINC00665) gene and the cell cycle in hepatocellular carcinoma (HCC) using database analysis including The Cancer Genome Atlas (TCGA), the Gene Expression Omnibus (GEO), and quantitative real-time polymerase chain reaction (qPCR). MATERIAL AND METHODS Expression levels of LINC00665 were compared between human tissue samples of HCC and adjacent normal liver, clinicopathological correlations were made using TCGA and the GEO, and qPCR was performed to validate the findings. Other public databases were searched for other genes associated with LINC00665 expression, including The Atlas of Noncoding RNAs in Cancer (TANRIC), the Multi Experiment Matrix (MEM), Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction (PPI) networks. RESULTS Overexpression of LINC00665 in patients with HCC was significantly associated with gender, tumor grade, stage, and tumor cell type. Overexpression of LINC00665 in patients with HCC was significantly associated with overall survival (OS) (HR=1.47795%; CI: 1.046-2.086). Bioinformatics analysis identified 469 related genes and further analysis supported a hypothesis that LINC00665 regulates pathways in the cell cycle to facilitate the development and progression of HCC through ten identified core genes: CDK1, BUB1B, BUB1, PLK1, CCNB2, CCNB1, CDC20, ESPL1, MAD2L1, and CCNA2. CONCLUSIONS Overexpression of the lncRNA, LINC00665 may be involved in the regulation of cell cycle pathways in HCC through ten identified hub genes.
A Novel Intergenic ETnII-β Insertion Mutation Causes Multiple Malformations in Polypodia Mice
Lehoczky, Jessica A.; Thomas, Peedikayil E.; Patrie, Kevin M.; Owens, Kailey M.; Villarreal, Lisa M.; Galbraith, Kenneth; Washburn, Joe; Johnson, Craig N.; Gavino, Bryant; Borowsky, Alexander D.; Millen, Kathleen J.; Wakenight, Paul; Law, William; Van Keuren, Margaret L.; Gavrilina, Galina; Hughes, Elizabeth D.; Saunders, Thomas L.; Brihn, Lesil; Nadeau, Joseph H.; Innis, Jeffrey W.
2013-01-01
Mouse early transposon insertions are responsible for ∼10% of spontaneous mutant phenotypes. We previously reported the phenotypes and genetic mapping of Polypodia, (Ppd), a spontaneous, X-linked dominant mutation with profound effects on body plan morphogenesis. Our new data shows that mutant mice are not born in expected Mendelian ratios secondary to loss after E9.5. In addition, we refined the Ppd genetic interval and discovered a novel ETnII-β early transposon insertion between the genes for Dusp9 and Pnck. The ETn inserted 1.6 kb downstream and antisense to Dusp9 and does not disrupt polyadenylation or splicing of either gene. Knock-in mice engineered to carry the ETn display Ppd characteristic ectopic caudal limb phenotypes, showing that the ETn insertion is the Ppd molecular lesion. Early transposons are actively expressed in the early blastocyst. To explore the consequences of the ETn on the genomic landscape at an early stage of development, we compared interval gene expression between wild-type and mutant ES cells. Mutant ES cell expression analysis revealed marked upregulation of Dusp9 mRNA and protein expression. Evaluation of the 5′ LTR CpG methylation state in adult mice revealed no correlation with the occurrence or severity of Ppd phenotypes at birth. Thus, the broad range of phenotypes observed in this mutant is secondary to a novel intergenic ETn insertion whose effects include dysregulation of nearby interval gene expression at early stages of development. PMID:24339789
Lessard, Laurent; Liu, Michelle; Marzese, Diego M.; Wang, Hongwei; Chong, Kelly; Kawas, Neal; Donovan, Nicholas C; Kiyohara, Eiji; Hsu, Sandy; Nelson, Nellie; Izraely, Sivan; Sagi-Assif, Orit; Witz, Isaac P; Ma, Xiao-Jun; Luo, Yuling; Hoon, Dave SB
2015-01-01
In recent years, considerable advances have been made in the characterization of protein-coding alterations involved in the pathogenesis of melanoma. However, despite their growing implication in cancer, little is known about the role of long non-coding RNAs in melanoma progression. We hypothesized that copy number alterations of intergenic non-protein coding domains could help identify long intergenic non-coding RNAs (lincRNAs) associated with metastatic cutaneous melanoma. Among several candidates, our approach uncovered the chromosome 6p22.3 CASC15 lincRNA locus as a frequently gained genomic segment in metastatic melanoma tumors and cell lines. The locus was actively transcribed in metastatic melanoma cells, and up-regulation of CASC15 expression was associated with metastatic progression to brain metastasis in a mouse xenograft model. In clinical specimens, CASC15 levels increased during melanoma progression and were independent predictors of disease recurrence in a cohort of 141 patients with AJCC stage III lymph node metastasis. Moreover, siRNA knockdown experiments revealed that CASC15 regulates melanoma cell phenotype switching between proliferative and invasive states. Accordingly, CASC15 levels correlated with known gene signatures corresponding to melanoma proliferative and invasive phenotypes. These findings support a key role for CASC15 in metastatic melanoma. PMID:26016895
Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki
2014-01-01
ABSTRACT Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. IMPORTANCE Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3′ end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined the regulatory role of the structurally unique EBOV gene borders during viral transcription. Our data suggest that transcriptional regulation in EBOV is highly complex and differs from that in prototype viruses and further the understanding of this most fundamental process in the filovirus replication cycle. Moreover, our results with recombinant EBOVs suggest a novel role of the long IR found in all filovirus genomes during the viral replication cycle. PMID:25142600
Brauburger, Kristina; Boehmann, Yannik; Tsuda, Yoshimi; Hoenen, Thomas; Olejnik, Judith; Schümann, Michael; Ebihara, Hideki; Mühlberger, Elke
2014-11-01
Ebola virus (EBOV) belongs to the group of nonsegmented negative-sense RNA viruses. The seven EBOV genes are separated by variable gene borders, including short (4- or 5-nucleotide) intergenic regions (IRs), a single long (144-nucleotide) IR, and gene overlaps, where the neighboring gene end and start signals share five conserved nucleotides. The unique structure of the gene overlaps and the presence of a single long IR are conserved among all filoviruses. Here, we sought to determine the impact of the EBOV gene borders during viral transcription. We show that readthrough mRNA synthesis occurs in EBOV-infected cells irrespective of the structure of the gene border, indicating that the gene overlaps do not promote recognition of the gene end signal. However, two consecutive gene end signals at the VP24 gene might improve termination at the VP24-L gene border, ensuring efficient L gene expression. We further demonstrate that the long IR is not essential for but regulates transcription reinitiation in a length-dependent but sequence-independent manner. Mutational analysis of bicistronic minigenomes and recombinant EBOVs showed no direct correlation between IR length and reinitiation rates but demonstrated that specific IR lengths not found naturally in filoviruses profoundly inhibit downstream gene expression. Intriguingly, although truncation of the 144-nucleotide-long IR to 5 nucleotides did not substantially affect EBOV transcription, it led to a significant reduction of viral growth. Our current understanding of EBOV transcription regulation is limited due to the requirement for high-containment conditions to study this highly pathogenic virus. EBOV is thought to share many mechanistic features with well-analyzed prototype nonsegmented negative-sense RNA viruses. A single polymerase entry site at the 3' end of the genome determines that transcription of the genes is mainly controlled by gene order and cis-acting signals found at the gene borders. Here, we examined the regulatory role of the structurally unique EBOV gene borders during viral transcription. Our data suggest that transcriptional regulation in EBOV is highly complex and differs from that in prototype viruses and further the understanding of this most fundamental process in the filovirus replication cycle. Moreover, our results with recombinant EBOVs suggest a novel role of the long IR found in all filovirus genomes during the viral replication cycle. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
Wolf, Timo; Droste, Julian; Gren, Tetiana; Ortseifen, Vera; Schneiker-Bekel, Susanne; Zemke, Till; Pühler, Alfred; Kalinowski, Jörn
2017-07-25
Acarbose is used in the treatment of diabetes mellitus type II and is produced by Actinoplanes sp. SE50/110. Although the biosynthesis of acarbose has been intensively studied, profound knowledge about transcription factors involved in acarbose biosynthesis and their binding sites has been missing until now. In contrast to acarbose biosynthetic gene clusters in Streptomyces spp., the corresponding gene cluster of Actinoplanes sp. SE50/110 lacks genes for transcriptional regulators. The acarbose regulator C (AcrC) was identified through an in silico approach by aligning the LacI family regulators of acarbose biosynthetic gene clusters in Streptomyces spp. with the Actinoplanes sp. SE50/110 genome. The gene for acrC, located in a head-to-head arrangement with the maltose/maltodextrin ABC transporter malEFG operon, was deleted by introducing PCR targeting for Actinoplanes sp. SE50/110. Characterization was carried out through cultivation experiments, genome-wide microarray hybridizations, and RT-qPCR as well as electrophoretic mobility shift assays for the elucidation of binding motifs. The results show that AcrC binds to the intergenic region between acbE and acbD in Actinoplanes sp. SE50/110 and acts as a transcriptional repressor on these genes. The transcriptomic profile of the wild type was reconstituted through a complementation of the deleted acrC gene. Additionally, regulatory sequence motifs for the binding of AcrC were identified in the intergenic region of acbE and acbD. It was shown that AcrC expression influences acarbose formation in the early growth phase. Interestingly, AcrC does not regulate the malEFG operon. This study characterizes the first known transcription factor of the acarbose biosynthetic gene cluster in Actinoplanes sp. SE50/110. It therefore represents an important step for understanding the regulatory network of this organism. Based on this work, rational strain design for improving the biotechnological production of acarbose can now be implemented.
2011-01-01
Background The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor (TF) that mediates responses to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). Integration of TCDD-induced genome-wide AhR enrichment, differential gene expression and computational dioxin response element (DRE) analyses further elucidate the hepatic AhR regulatory network. Results Global ChIP-chip and gene expression analyses were performed on hepatic tissue from immature ovariectomized mice orally gavaged with 30 μg/kg TCDD. ChIP-chip analysis identified 14,446 and 974 AhR enriched regions (1% false discovery rate) at 2 and 24 hrs, respectively. Enrichment density was greatest in the proximal promoter, and more specifically, within ± 1.5 kb of a transcriptional start site (TSS). AhR enrichment also occurred distal to a TSS (e.g. intergenic DNA and 3' UTR), extending the potential gene expression regulatory roles of the AhR. Although TF binding site analyses identified over-represented DRE sequences within enriched regions, approximately 50% of all AhR enriched regions lacked a DRE core (5'-GCGTG-3'). Microarray analysis identified 1,896 number of TCDD-responsive genes (|fold change| ≥ 1.5, P1(t) > 0.999). Integrating this gene expression data with our ChIP-chip and DRE analyses only identified 625 differentially expressed genes that involved an AhR interaction at a DRE. Functional annotation analysis of differentially regulated genes associated with AhR enrichment identified overrepresented processes related to fatty acid and lipid metabolism and transport, and xenobiotic metabolism, which are consistent with TCDD-elicited steatosis in the mouse liver. Conclusions Details of the AhR regulatory network have been expanded to include AhR-DNA interactions within intragenic and intergenic genomic regions. Moreover, the AhR can interact with DNA independent of a DRE core suggesting there are alternative mechanisms of AhR-mediated gene regulation. PMID:21762485
Franco, Bernardo; Hernández, Roberto; López-Villaseñor, Imelda
2012-09-01
Trichomonas vaginalis is a parasitic protozoan of both medical and biological relevance. Transcriptional studies in this organism have focused mainly on type II pol promoters, whereas the elements necessary for transcription by polI or polIII have not been investigated. Here, with the aid of a transient transcription system, we characterised the rDNA intergenic region, defining both the promoter and the terminator sequences required for transcription. We defined the promoter as a compact region of approximately 180 bp. We also identified a potential upstream control element (UCE) that was located 80 bp upstream of the transcription start point (TSP). A transcription termination element was identified within a 34 bp region that was located immediately downstream of the 28S coding sequence. The function of this element depends upon polarity and the presence of both a stretch of uridine residues (U's) and a hairpin structure in the transcript. Our observations provide a strong basis for the study of DNA recognition by the polI transcriptional machinery in this early divergent organism. Copyright © 2012 Elsevier B.V. All rights reserved.
Benthic Bacterial Diversity in Submerged Sinkhole Ecosystems▿ †
Nold, Stephen C.; Pangborn, Joseph B.; Zajack, Heidi A.; Kendall, Scott T.; Rediske, Richard R.; Biddanda, Bopaiah A.
2010-01-01
Physicochemical characterization, automated ribosomal intergenic spacer analysis (ARISA) community profiling, and 16S rRNA gene sequencing approaches were used to study bacterial communities inhabiting submerged Lake Huron sinkholes inundated with hypoxic, sulfate-rich groundwater. Photosynthetic cyanobacterial mats on the sediment surface were dominated by Phormidium autumnale, while deeper, organically rich sediments contained diverse and active bacterial communities. PMID:19880643
Kwenda, Stanford; Birch, Paul R J; Moleleki, Lucy N
2016-08-11
Long noncoding RNAs (lncRNAs) represent a class of RNA molecules that are implicated in regulation of gene expression in both mammals and plants. While much progress has been made in determining the biological functions of lncRNAs in mammals, the functional roles of lncRNAs in plants are still poorly understood. Specifically, the roles of long intergenic nocoding RNAs (lincRNAs) in plant defence responses are yet to be fully explored. In this study, we used strand-specific RNA sequencing to identify 1113 lincRNAs in potato (Solanum tuberosum) from stem tissues. The lincRNAs are expressed from all 12 potato chromosomes and generally smaller in size compared to protein-coding genes. Like in other plants, most potato lincRNAs possess single exons. A time-course RNA-seq analysis between a tolerant and a susceptible potato cultivar showed that 559 lincRNAs are responsive to Pectobacterium carotovorum subsp. brasiliense challenge compared to mock-inoculated controls. Moreover, coexpression analysis revealed that 17 of these lincRNAs are highly associated with 12 potato defence-related genes. Together, these results suggest that lincRNAs have potential functional roles in potato defence responses. Furthermore, this work provides the first library of potato lincRNAs and a set of novel lincRNAs implicated in potato defences against P. carotovorum subsp. brasiliense, a member of the soft rot Enterobacteriaceae phytopathogens.
Yao, Yao; Wang, Rui; Lu, Jun Kun; Wang, En Tao; Chen, Wen Xin
2014-01-01
The nodulation of Erythrophleum fordii has been recorded recently, but its microsymbionts have never been studied. To investigate the diversity and biogeography of rhizobia associated with this leguminous evergreen tree, root nodules were collected from the southern subtropical region of China. A total of 166 bacterial isolates were obtained from the nodules and characterized. In a PCR-based restriction fragment length polymorphism (RFLP) analysis of ribosomal intergenic sequences, the isolates were classified into 22 types within the genus Bradyrhizobium. Sequence analysis of 16S rRNA, ribosomal intergenic spacer (IGS), and the housekeeping genes recA and glnII classified the isolates into four groups: the Bradyrhizobium elkanii and Bradyrhizobium pachyrhizi groups, comprising the dominant symbionts, Bradyrhizobium yuanmingense, and an unclassified group comprising the minor symbionts. The nodC and nifH phylogenetic trees defined five or six lineages among the isolates, which was largely consistent with the definition of genomic species. The phylogenetic results and evolutionary analysis demonstrated that mutation and vertical transmission of genes were the principal processes for the divergent evolution of Bradyrhizobium species associated with E. fordii, while lateral transfer and recombination of housekeeping and symbiotic genes were rare. The distribution of the dominant rhizobial populations was affected by soil pH and effective phosphorus. This is the first report to characterize E. fordii rhizobia. PMID:25085491
Etebari, Kayvan; Furlong, Michael J.; Asgari, Sassan
2015-01-01
Long non-coding RNAs (lncRNAs) play important roles in genomic imprinting, cancer, differentiation and regulation of gene expression. Here, we identified 3844 long intergenic ncRNAs (lincRNA) in Plutella xylostella, which is a notorious pest of cruciferous plants that has developed field resistance to all classes of insecticides, including Bacillus thuringiensis (Bt) endotoxins. Further, we found that some of those lincRNAs may potentially serve as precursors for the production of small ncRNAs. We found 280 and 350 lincRNAs that are differentially expressed in Chlorpyrifos and Fipronil resistant larvae. A survey on P. xylostella midgut transcriptome data from Bt-resistant populations revealed 59 altered lincRNA in two resistant strains compared with the susceptible population. We validated the transcript levels of a number of putative lincRNAs in deltamethrin-resistant larvae that were exposed to deltamethrin, which indicated that this group of lincRNAs might be involved in the response to xenobiotics in this insect. To functionally characterize DBM lincRNAs, gene ontology (GO) enrichment of their associated protein-coding genes was extracted and showed over representation of protein, DNA and RNA binding GO terms. The data presented here will facilitate future studies to unravel the function of lincRNAs in insecticide resistance or the response to xenobiotics of eukaryotic cells. PMID:26411386
Willkomm, Dagmar K.; Minnerup, Jens; Hüttenhofer, Alexander; Hartmann, Roland K.
2005-01-01
By an experimental RNomics approach, we have generated a cDNA library from small RNAs expressed from the genome of the hyperthermophilic bacterium Aquifex aeolicus. The library included RNAs that were antisense to mRNAs and tRNAs as well as RNAs encoded in intergenic regions. Substantial steady-state levels in A.aeolicus cells were confirmed for several of the cloned RNAs by northern blot analysis. The most abundant intergenic RNA of the library was identified as the 6S RNA homolog of A.aeolicus. Although shorter in size (150 nt) than its γ-proteobacterial homologs (∼185 nt), it is predicted to have the most stable structure among known 6S RNAs. As in the γ-proteobacteria, the A.aeolicus 6S RNA gene (ssrS) is located immediately upstream of the ygfA gene encoding a widely conserved 5-formyltetrahydrofolate cyclo-ligase. We identifed novel 6S RNA candidates within the γ-proteobacteria but were unable to identify reasonable 6S RNA candidates in other bacterial branches, utilizing mfold analyses of the region immediately upstream of ygfA combined with 6S RNA blastn searches. By RACE experiments, we mapped the major transcription initiation site of A.aeolicus 6S RNA primary transcripts, located within the pheT gene preceding ygfA, as well as three processing sites. PMID:15814812
Kim, Shin-Hee; Nayak, Subhashree; Paldurai, Anandan; Nayak, Baibaswata; Samuel, Arthur; Aplogan, Gilbert L.; Awoume, Kodzo A.; Webby, Richard J.; Ducatez, Mariette F.; Collins, Peter L.
2012-01-01
The complete genome sequence of an African Newcastle disease virus (NDV) strain isolated from a chicken in Togo in 2009 was determined. The genome is 15,198 nucleotides (nt) in length and is classified in genotype VII in the class II cluster. Compared to common vaccine strains, the African strain contains a previously described 6-nt insert in the downstream untranslated region of the N gene and a novel 6-nt insert in the HN-L intergenic region. Genome length differences are a marker of the natural history of NDV. This is the first description of a class II NDV strain with a genome of 15,198 nt and a 6-nt insert in the HN-L intergenic region. Sequence divergence relative to vaccine strains was substantial, likely contributes to outbreaks, and illustrates the continued evolution of new NDV strains in West Africa. PMID:22997417
Molecular analysis of the anaerobic rumen fungus Orpinomyces - insights into an AT-rich genome.
Nicholson, Matthew J; Theodorou, Michael K; Brookman, Jayne L
2005-01-01
The anaerobic gut fungi occupy a unique niche in the intestinal tract of large herbivorous animals and are thought to act as primary colonizers of plant material during digestion. They are the only known obligately anaerobic fungi but molecular analysis of this group has been hampered by difficulties in their culture and manipulation, and by their extremely high A+T nucleotide content. This study begins to answer some of the fundamental questions about the structure and organization of the anaerobic gut fungal genome. Directed plasmid libraries using genomic DNA digested with highly or moderately rich AT-specific restriction enzymes (VspI and EcoRI) were prepared from a polycentric Orpinomyces isolate. Clones were sequenced from these libraries and the breadth of genomic inserts, both genic and intergenic, was characterized. Genes encoding numerous functions not previously characterized for these fungi were identified, including cytoskeletal, secretory pathway and transporter genes. A peptidase gene with no introns and having sequence similarity to a gene encoding a bacterial peptidase was also identified, extending the range of metabolic enzymes resulting from apparent trans-kingdom transfer from bacteria to fungi, as previously characterized largely for genes encoding plant-degrading enzymes. This paper presents the first thorough analysis of the genic, intergenic and rDNA regions of a variety of genomic segments from an anaerobic gut fungus and provides observations on rules governing intron boundaries, the codon biases observed with different types of genes, and the sequence of only the second anaerobic gut fungal promoter reported. Large numbers of retrotransposon sequences of different types were found and the authors speculate on the possible consequences of any such transposon activity in the genome. The coding sequences identified included several orphan gene sequences, including one with regions strongly suggestive of structural proteins such as collagens and lampirin. This gene was present as a single copy in Orpinomyces, was expressed during vegetative growth and was also detected in genomes from another gut fungal genus, Neocallimastix.
Mota, Rodrigo M; Moreira, João Luiz S; Souza, Marcelo R; Fátima Horta, M; Teixeira, Santuza MR; Neumann, Elisabeth; Nicoli, Jacques R; Nunes, Álvaro C
2006-01-01
Background The use of lactic acid bacteria as vehicles to delivery antigens to immunize animals is a promising issue. When genetically modified, these bacteria can induce a specific local and systemic immune response against selected pathogens. Gastric acid and bile salts tolerance, production of antagonistic substances against pathogenic microorganisms, and adhesive ability to gut epithelium are other important characteristics that make these bacteria useful for oral immunization. Results Bacteria isolated on de Man, Rogosa and Sharpe medium (MRS) from different gastrointestinal portions of broiler chicks were evaluated for their resistance to artificial gastric acid and bile salts, production of hydrogen peroxide, and cell surface hydrophobicity. Thirty-eight isolates were first typed at species level by PCR amplification of 16S-23S rRNA intergenic spacers using universal primers that anneal within 16S and 23S genes, followed by restriction digestion analyses of PCR amplicons (PCR-ARDRA). An expression cassette was assembled onto the pCR2.1-Topo vector by cloning the promoter, leader peptide, cell wall anchor and terminator sequences derived from the laminin binding S-layer protein gene of L. crispatus strain F5.7 (lbs gene). A sequence encoding the green fluorescent protein (GFP) was inserted as reporter gene, and an erythromycin resistance gene was added as selective marker. All constructs were able to express GFP in the cloning host E. coli XL1-Blue and different Lactobacillus strains as verified by FACS and laser scanning confocal microscopy. Conclusion Lactobacillus isolated from gastrointestinal tract of broiler chickens and selected for probiotic characteristics can be genetically modified by introducing an expression cassette into the lbs locus. The transformed bacteria expressed on its cell wall surface different fluorescent proteins used as reporters of promoter function. It is possible then that similar bacterial model expressing pathogen antigens can be used as live oral vaccines to immunize broilers against infectious diseases. PMID:16396687
Lin, Min; Dan, Hanhong; Li, Yijing
2004-02-01
Leptospira borgpetersenii, one of the causative agents of leptospirosis in both animals and humans, is a bacterial pathogen with characteristic motility that is mediated by the rotation of two periplasmic flagella (PF). The flaB gene coding for a core polypeptide subunit of PF was previously characterized by sequence analysis of its open reading frame (ORF) (M. Lin, J Biochem Mol Biol Biophys 2:181-187, 1999). The present study was undertaken to isolate and clone the uncharacterized sequence upstream of the flaB gene by using a PCR-based genome walking procedure. This has resulted in a 1470-bp genomic DNA sequence in which an 846-bp ORF coding for a 281-amino acid polypeptide (31.3 kDa) is identified 455 bp upstream from the flaB start codon. The encoded protein exhibits 72% amino acid identity to the deduced FlaB protein sequence of L. borgpetersenii and a high degree of sequence homology to the FlaB proteins of other spirochaetes. This has demonstrated for the first time that a second flaB gene homolog is present in a Leptospira species. The newly identified gene is designated flaB1, and the previously cloned flaB renamed flaB2. Within the intergenic sequence between flaB1 and flaB2, a potential stem-loop structure (12-bp inverted repeats) was identified 25 bp downstream of the flaB1 stop codon; this could serve as a transcription terminator for the flaB1 mRNA. Three E. coli-like promoter regions (I, II, and III) for binding Esigma(70), a regulatory sequence uncommonly found in flagellar genes, were predicted upstream of the flaB2 ORF. Only promoter region II contains a promoter that is functional in E. coli, as revealed at phenotypic and transcriptional levels by its capability of directing the expression of the chloramphenicol acetyltransferase (CAT) gene in the promoter probe vector pKK232-8. These observations may suggest that flaB1 and flaB2 are transcribed separately and do not form a transcriptional operon controlled by a single promoter.
Salvato, Paola; Simonato, Mauro; Battisti, Andrea; Negrisolo, Enrico
2008-01-01
Background Knowledge of animal mitochondrial genomes is very important to understand their molecular evolution as well as for phylogenetic and population genetic studies. The Lepidoptera encompasses more than 160,000 described species and is one of the largest insect orders. To date only nine lepidopteran mitochondrial DNAs have been fully and two others partly sequenced. Furthermore the taxon sampling is very scant. Thus advance of lepidopteran mitogenomics deeply requires new genomes derived from a broad taxon sampling. In present work we describe the mitochondrial genome of the moth Ochrogaster lunifer. Results The mitochondrial genome of O. lunifer is a circular molecule 15593 bp long. It includes the entire set of 37 genes usually present in animal mitochondrial genomes. It contains also 7 intergenic spacers. The gene order of the newly sequenced genome is that typical for Lepidoptera and differs from the insect ancestral type for the placement of trnM. The 77.84% A+T content of its α strand is the lowest among known lepidopteran genomes. The mitochondrial genome of O. lunifer exhibits one of the most marked C-skew among available insect Pterygota genomes. The protein-coding genes have typical mitochondrial start codons except for cox1 that present an unusual CGA. The O. lunifer genome exhibits the less biased synonymous codon usage among lepidopterans. Comparative genomics analysis study identified atp6, cox1, cox2 as cox3, cob, nad1, nad2, nad4, and nad5 as potential markers for population genetics/phylogenetics studies. A peculiar feature of O. lunifer mitochondrial genome it that the intergenic spacers are mostly made by repetitive sequences. Conclusion The mitochondrial genome of O. lunifer is the first representative of superfamily Noctuoidea that account for about 40% of all described Lepidoptera. New genome shares many features with other known lepidopteran genomes. It differs however for its low A+T content and marked C-skew. Compared to other lepidopteran genomes it is less biased in synonymous codon usage. Comparative evolutionary analysis of lepidopteran mitochondrial genomes allowed the identification of previously neglected coding genes as potential phylogenetic markers. Presence of repetitive elements in intergenic spacers of O. lunifer genome supports the role of DNA slippage as possible mechanism to produce spacers during replication. PMID:18627592
Dong, Yan; Sun, Hongying; Guo, Hua; Pan, Da; Qian, Changyuan; Hao, Sijing; Zhou, Kaiya
2012-08-15
Myriapods are among the earliest arthropods and may have evolved to become part of the terrestrial biota more than 400 million years ago. A noticeable lack of mitochondrial genome data from Pauropoda hampers phylogenetic and evolutionary studies within the subphylum Myriapoda. We sequenced the first complete mitochondrial genome of a microscopic pauropod, Pauropus longiramus (Arthropoda: Myriapoda), and conducted comprehensive mitogenomic analyses across the Myriapoda. The pauropod mitochondrial genome is a circular molecule of 14,487 bp long and contains the entire set of thirty-seven genes. Frequent intergenic overlaps occurred between adjacent tRNAs, and between tRNA and protein-coding genes. This is the first example of a mitochondrial genome with multiple intergenic overlaps and reveals a strategy for arthropods to effectively compact the mitochondrial genome by overlapping and truncating tRNA genes with neighbor genes, instead of only truncating tRNAs. Phylogenetic analyses based on protein-coding genes provide strong evidence that the sister group of Pauropoda is Symphyla. Additionally, approximately unbiased (AU) tests strongly support the Progoneata and confirm the basal position of Chilopoda in Myriapoda. This study provides an estimation of myriapod origins around 555 Ma (95% CI: 444-704 Ma) and this date is comparable with that of the Cambrian explosion and candidate myriapod-like fossils. A new time-scale suggests that deep radiations during early myriapod diversification occurred at least three times, not once as previously proposed. A Carboniferous origin of pauropods is congruent with the idea that these taxa are derived, rather than basal, progoneatans. Copyright © 2012 Elsevier B.V. All rights reserved.
Habtom, Habteab; Demanèche, Sandrine; Dawson, Lorna; Azulay, Chen; Matan, Ofra; Robe, Patrick; Gafny, Ron; Simonet, Pascal; Jurkevitch, Edouard; Pasternak, Zohar
2017-01-01
The ubiquity and transferability of soil makes it a resource for the forensic investigator, as it can provide a link between agents and scenes. However, the information contained in soils, such as chemical compounds, physical particles or biological entities, is seldom used in forensic investigations; due mainly to the associated costs, lack of available expertise, and the lack of soil databases. The microbial DNA in soil is relatively easy to access and analyse, having thus the potential to provide a powerful means for discriminating soil samples or linking them to a common origin. We compared the effectiveness and reliability of multiple methods and genes for bacterial characterisation in the differentiation of soil samples: ribosomal intergenic spacer analysis (RISA), terminal restriction fragment length polymorphism (TRFLP) of the rpoB gene, and five methods using the 16S rRNA gene: phylogenetic microarrays, TRFLP, and high throughput sequencing with Roche 454, Illumina MiSeq and IonTorrent PGM platforms. All these methods were also compared to long-chain hydrocarbons (n-alkanes) and fatty alcohol profiling of the same soil samples. RISA, 16S TRFLP and MiSeq performed best, reliably and significantly discriminating between adjacent, similar soil types. As TRFLP employs the same capillary electrophoresis equipment and procedures used to analyse human DNA, it is readily available for use in most forensic laboratories. TRFLP was optimized for forensic usage in five parameters: choice of primer pair, fluorescent tagging, concentrating DNA after digestion, number of PCR amplifications per sample and number of capillary electrophoresis runs per PCR amplification. This study shows that molecular microbial ecology methodologies are robust in discriminating between soil samples, illustrating their potential usage as an evaluative forensic tool. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.
Astuti, D; Latif, F; Wagner, K; Gentle, D; Cooper, W N; Catchpoole, D; Grundy, R; Ferguson-Smith, A C; Maher, E R
2005-01-01
Epigenetic alterations in the 11p15.5 imprinted gene cluster are frequent in human cancers and are associated with disordered imprinting of insulin-like growth factor (IGF)2 and H19. Recently, an imprinted gene cluster at 14q32 has been defined and includes two closely linked but reciprocally imprinted genes, DLK1 and GTL2, that have similarities to IGF2 and H19, respectively. Both GTL2 and H19 are maternally expressed RNAs with no protein product and display paternal allele promoter region methylation, and DLK1 and IGF2 are both paternally expressed. To determine whether methylation alterations within the 14q32 imprinted domain occur in human tumorigenesis, we investigated the status of the GTL2 promoter differentially methylated region (DMR) in 20 neuroblastoma tumours, 20 phaeochromocytomas and, 40 Wilms' tumours. Hypermethylation of the GTL2 promoter DMR was detected in 25% of neuroblastomas, 10% of phaeochromocytoma and 2.5% of Wilms' tumours. Tumours with GTL2 promoter DMR hypermethylation also demonstrated hypermethylation at an upstream intergenic DMR thought to represent a germline imprinting control element. Analysis of neuroblastoma cell lines revealed that GTL2 DMR hypermethylation was associated with transcriptional repression of GTL2. These epigenetic findings are similar to those reported in Wilms' tumours in which H19 repression and DMR hypermethylation is associated with loss of imprinting (LOI, biallelic expression) of IGF2. However, a neuroblastoma cell line with hypermethylation of the GTL2 promoter and intergenic DMR did not show LOI of DLK1 and although treatment with a demethylating agent restored GTL2 expression and reduced DLK1 expression. As described for IGF2/H19, epigenetic changes at DLK1/GTL2 occur in human cancers. However, these changes are not associated with DLK1 LOI highlighting differences in the imprinting control mechanisms operating in the IGF2-H19 and DLK1-GTL2 domains. GTL2 promoter and intergenic DMR hypermethylation is associated with the loss of GTL2 expression and this may contribute to tumorigenesis in a subset of human cancers. PMID:15798773
A draft sequence of the rice genome (Oryza sativa L. ssp. indica).
Yu, Jun; Hu, Songnian; Wang, Jun; Wong, Gane Ka-Shu; Li, Songgang; Liu, Bin; Deng, Yajun; Dai, Li; Zhou, Yan; Zhang, Xiuqing; Cao, Mengliang; Liu, Jing; Sun, Jiandong; Tang, Jiabin; Chen, Yanjiong; Huang, Xiaobing; Lin, Wei; Ye, Chen; Tong, Wei; Cong, Lijuan; Geng, Jianing; Han, Yujun; Li, Lin; Li, Wei; Hu, Guangqiang; Huang, Xiangang; Li, Wenjie; Li, Jian; Liu, Zhanwei; Li, Long; Liu, Jianping; Qi, Qiuhui; Liu, Jinsong; Li, Li; Li, Tao; Wang, Xuegang; Lu, Hong; Wu, Tingting; Zhu, Miao; Ni, Peixiang; Han, Hua; Dong, Wei; Ren, Xiaoyu; Feng, Xiaoli; Cui, Peng; Li, Xianran; Wang, Hao; Xu, Xin; Zhai, Wenxue; Xu, Zhao; Zhang, Jinsong; He, Sijie; Zhang, Jianguo; Xu, Jichen; Zhang, Kunlin; Zheng, Xianwu; Dong, Jianhai; Zeng, Wanyong; Tao, Lin; Ye, Jia; Tan, Jun; Ren, Xide; Chen, Xuewei; He, Jun; Liu, Daofeng; Tian, Wei; Tian, Chaoguang; Xia, Hongai; Bao, Qiyu; Li, Gang; Gao, Hui; Cao, Ting; Wang, Juan; Zhao, Wenming; Li, Ping; Chen, Wei; Wang, Xudong; Zhang, Yong; Hu, Jianfei; Wang, Jing; Liu, Song; Yang, Jian; Zhang, Guangyu; Xiong, Yuqing; Li, Zhijie; Mao, Long; Zhou, Chengshu; Zhu, Zhen; Chen, Runsheng; Hao, Bailin; Zheng, Weimou; Chen, Shouyi; Guo, Wei; Li, Guojie; Liu, Siqi; Tao, Ming; Wang, Jian; Zhu, Lihuang; Yuan, Longping; Yang, Huanming
2002-04-05
We have produced a draft sequence of the rice genome for the most widely cultivated subspecies in China, Oryza sativa L. ssp. indica, by whole-genome shotgun sequencing. The genome was 466 megabases in size, with an estimated 46,022 to 55,615 genes. Functional coverage in the assembled sequences was 92.0%. About 42.2% of the genome was in exact 20-nucleotide oligomer repeats, and most of the transposons were in the intergenic regions between genes. Although 80.6% of predicted Arabidopsis thaliana genes had a homolog in rice, only 49.4% of predicted rice genes had a homolog in A. thaliana. The large proportion of rice genes with no recognizable homologs is due to a gradient in the GC content of rice coding sequences.
Genome-wide survey by ChIP-seq reveals YY1 regulation of lincRNAs in skeletal myogenesis
Lu, Leina; Sun, Kun; Chen, Xiaona; Zhao, Yu; Wang, Lijun; Zhou, Liang; Sun, Hao; Wang, Huating
2013-01-01
Skeletal muscle differentiation is orchestrated by a network of transcription factors, epigenetic regulators, and non-coding RNAs. The transcription factor Yin Yang 1 (YY1) silences multiple target genes in myoblasts (MBs) by recruiting Ezh2 (Enhancer of Zeste Homologue2). To elucidate genome-wide YY1 binding in MBs, we performed chromatin immunoprecipitation (ChIP)-seq and found 1820 specific binding sites in MBs with a large portion residing in intergenic regions. Detailed analysis demonstrated that YY1 acts as an activator for many loci in addition to its known repressor function. No significant co-occupancy was found between YY1 and Ezh2, suggesting an additional Ezh2-independent function for YY1 in MBs. Further analysis of intergenic binding sites showed that YY1 potentially regulates dozens of large intergenic non-coding RNAs (lincRNAs), whose function in myogenesis is underexplored. We characterized a novel muscle-associated lincRNA (Yam-1) that is positively regulated by YY1. Yam-1 is downregulated upon differentiation and acts as an inhibitor of myogenesis. We demonstrated that Yam-1 functions through in cis regulation of miR-715, which in turn targets Wnt7b. Our findings not only provide the first genome-wide picture of YY1 association in muscle cells, but also uncover the functional role of lincRNA Yam-1. PMID:23942234
Maillard, Julien; Schumacher, Wolfram; Vazquez, Francisco; Regeard, Christophe; Hagen, Wilfred R.; Holliger, Christof
2003-01-01
The membrane-bound tetrachloroethene reductive dehalogenase (PCE-RDase) (PceA; EC 1.97.1.8), the terminal component of the respiratory chain of Dehalobacter restrictus, was purified 25-fold to apparent electrophoretic homogeneity. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis revealed a single band with an apparent molecular mass of 60 ± 1 kDa, whereas the native molecular mass was 71 ± 8 kDa according to size exclusion chromatography in the presence of the detergent octyl-β-d-glucopyranoside. The monomeric enzyme contained (per mol of the 60-kDa subunit) 1.0 ± 0.1 mol of cobalamin, 0.6 ± 0.02 mol of cobalt, 7.1 ± 0.6 mol of iron, and 5.8 ± 0.5 mol of acid-labile sulfur. Purified PceA catalyzed the reductive dechlorination of tetrachloroethene and trichloroethene to cis-1,2-dichloroethene with a specific activity of 250 ± 12 nkat/mg of protein. In addition, several chloroethanes and tetrachloromethane caused methyl viologen oxidation in the presence of PceA. The Km values for tetrachloroethene, trichloroethene, and methyl viologen were 20.4 ± 3.2, 23.7 ± 5.2, and 47 ± 10 μM, respectively. The PceA exhibited the highest activity at pH 8.1 and was oxygen sensitive, with a half-life of activity of 280 min upon exposure to air. Based on the almost identical N-terminal amino acid sequences of PceA of Dehalobacter restrictus, Desulfitobacterium hafniense strain TCE1 (formerly Desulfitobacterium frappieri strain TCE1), and Desulfitobacterium hafniense strain PCE-S (formerly Desulfitobacterium frappieri strain PCE-S), the pceA genes of the first two organisms were cloned and sequenced. Together with the pceA genes of Desulfitobacterium hafniense strains PCE-S and Y51, the pceA genes of Desulfitobacterium hafniense strain TCE1 and Dehalobacter restrictus form a coherent group of reductive dehalogenases with almost 100% sequence identity. Also, the pceB genes, which may code for a membrane anchor protein of PceA, and the intergenic regions of Dehalobacter restrictus and the three desulfitobacteria had identical sequences. Whereas the cprB (chlorophenol reductive dehalogenase) genes of chlorophenol-dehalorespiring bacteria are always located upstream of cprA, all pceB genes known so far are located downstream of pceA. The possible consequences of this feature for the annotation of putative reductive dehalogenase genes are discussed, as are the sequence around the iron-sulfur cluster binding motifs and the type of iron-sulfur clusters of the reductive dehalogenases of Dehalobacter restrictus and Desulfitobacterium dehalogenans identified by electron paramagnetic resonance spectroscopy. PMID:12902251
Recombination in feline immunodeficiency virus from feral and companion domestic cats.
Hayward, Jessica J; Rodrigo, Allen G
2008-06-17
Recombination is a relatively common phenomenon in retroviruses. We investigated recombination in Feline Immunodeficiency Virus from naturally-infected New Zealand domestic cats (Felis catus) by sequencing regions of the gag, pol and env genes. The occurrence of intragenic recombination was highest in env, with evidence of recombination in 6.4% (n = 156) of all cats. A further recombinant was identified in each of the gag (n = 48) and pol (n = 91) genes. Comparisons of phylogenetic trees across genes identified cases of incongruence, indicating intergenic recombination. Three (7.7%, n = 39) of these incongruencies were found to be significantly different using the Shimodaira-Hasegawa test.Surprisingly, our phylogenies from the gag and pol genes showed that no New Zealand sequences group with reference subtype C sequences within intrasubtype pairwise distances. Indeed, we find one and two distinct unknown subtype groups in gag and pol, respectively. These observations cause us to speculate that these New Zealand FIV strains have undergone several recombination events between subtype A parent strains and undefined unknown subtype strains, similar to the evolutionary history hypothesised for HIV-1 "subtype E".Endpoint dilution sequencing was used to confirm the consensus sequences of the putative recombinants and unknown subtype groups, providing evidence for the authenticity of these sequences. Endpoint dilution sequencing also resulted in the identification of a dual infection event in the env gene. In addition, an intrahost recombination event between variants of the same subtype in the pol gene was established. This is the first known example of naturally-occurring recombination in a cat with infection of the parent strains. Evidence of intragenic recombination in the gag, pol and env regions, and complex intergenic recombination, of FIV from naturally-infected domestic cats in New Zealand was found. Strains of unknown subtype were identified in all three gene regions. These results have implications for the use of the current FIV vaccine in New Zealand.
Lv, Yuanda; Liang, Zhikai; Ge, Min; Qi, Weicong; Zhang, Tifu; Lin, Feng; Peng, Zhaohua; Zhao, Han
2016-05-11
Nitrogen (N) is an essential and often limiting nutrient to plant growth and development. Previous studies have shown that the mRNA expressions of numerous genes are regulated by nitrogen supplies; however, little is known about the expressed non-coding elements, for example long non-coding RNAs (lncRNAs) that control the response of maize (Zea mays L.) to nitrogen. LncRNAs are a class of non-coding RNAs larger than 200 bp, which have emerged as key regulators in gene expression. In this study, we surveyed the intergenic/intronic lncRNAs in maize B73 leaves at the V7 stage under conditions of N-deficiency and N-sufficiency using ribosomal RNA depletion and ultra-deep total RNA sequencing approaches. By integration with mRNA expression profiles and physiological evaluations, 7245 lncRNAs and 637 nitrogen-responsive lncRNAs were identified that exhibited unique expression patterns. Co-expression network analysis showed that the nitrogen-responsive lncRNAs were enriched mainly in one of the three co-expressed modules. The genes in the enriched module are mainly involved in NADH dehydrogenase activity, oxidative phosphorylation and the nitrogen compounds metabolic process. We identified a large number of lncRNAs in maize and illustrated their potential regulatory roles in response to N stress. The results lay the foundation for further in-depth understanding of the molecular mechanisms of lncRNAs' role in response to nitrogen stresses.
Santangelo, G M; Tornow, J; McLaughlin, C S; Moldave, K
1991-08-30
Two promoters (A7 and A23), isolated at random from the Saccharomyces cerevisiae genome by virtue of their capacity to activate transcription, are identical to known intergenic bidirectional promoters. Sequence analysis of the genomic DNA adjacent to the A7 promoter identified a split gene encoding ribosomal (r) protein L37, which is homologous to the tRNA-binding r-proteins, L35a (from human and rat) and L32 (from frogs).
Variability and molecular typing of the woody-tree infecting prunus necrotic ringspot ilarvirus.
Vasková, D; Petrzik, K; Karesová, R
2000-01-01
The 3'-part of the movement protein gene, the intergenic region and the complete coat protein gene of sixteen isolates of Prunus necrotic ringspot virus (PNRSV) from five different host species from the Czech Republic were sequenced in order to search for the bases of extensive variability of viroses caused by this pathogen. According to phylogenetic analyses all the 46 isolates sequenced to date split into three main groups, which correlated to a certain extend with their geographic origin. Modelled serological properties showed that all the new isolates belong to one serotype.
Terragni, Jolyon; Zhang, Guoqiang; Sun, Zhiyi; Pradhan, Sriharsa; Song, Lingyun; Crawford, Gregory E; Lacey, Michelle; Ehrlich, Melanie
2014-01-01
Notch intercellular signaling is critical for diverse developmental pathways and for homeostasis in various types of stem cells and progenitor cells. Because Notch gene products need to be precisely regulated spatially and temporally, epigenetics is likely to help control expression of Notch signaling genes. Reduced representation bisulfite sequencing (RRBS) indicated significant hypomethylation in myoblasts, myotubes, and skeletal muscle vs. many nonmuscle samples at intragenic or intergenic regions of the following Notch receptor or ligand genes: NOTCH1, NOTCH2, JAG2, and DLL1. An enzymatic assay of sites in or near these genes revealed unusually high enrichment of 5-hydroxymethylcytosine (up to 81%) in skeletal muscle, heart, and cerebellum. Epigenetics studies and gene expression profiles suggest that hypomethylation and/or hydroxymethylation help control expression of these genes in heart, brain, myoblasts, myotubes, and within skeletal muscle myofibers. Such regulation could promote cell renewal, cell maintenance, homeostasis, and a poised state for repair of tissue damage. PMID:24670287
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum.
VanBuren, Robert; Bryant, Doug; Edger, Patrick P; Tang, Haibao; Burgess, Diane; Challabathula, Dinakar; Spittle, Kristi; Hall, Richard; Gu, Jenny; Lyons, Eric; Freeling, Michael; Bartels, Dorothea; Ten Hallers, Boudewijn; Hastie, Alex; Michael, Todd P; Mockler, Todd C
2015-11-26
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetium genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a 'near-complete' draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. The Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.
Placental Hypomethylation Is More Pronounced in Genomic Loci Devoid of Retroelements
Chatterjee, Aniruddha; Macaulay, Erin C.; Rodger, Euan J.; Stockwell, Peter A.; Parry, Matthew F.; Roberts, Hester E.; Slatter, Tania L.; Hung, Noelyn A.; Devenish, Celia J.; Morison, Ian M.
2016-01-01
The human placenta is hypomethylated compared to somatic tissues. However, the degree and specificity of placental hypomethylation across the genome is unclear. We assessed genome-wide methylation of the human placenta and compared it to that of the neutrophil, a representative homogeneous somatic cell. We observed global hypomethylation in placenta (relative reduction of 22%) compared to neutrophils. Placental hypomethylation was pronounced in intergenic regions and gene bodies, while the unmethylated state of the promoter remained conserved in both tissues. For every class of repeat elements, the placenta showed lower methylation but the degree of hypomethylation differed substantially between these classes. However, some retroelements, especially the evolutionarily younger Alu elements, retained high levels of placental methylation. Surprisingly, nonretrotransposon-containing sequences showed a greater degree of placental hypomethylation than retrotransposons in every genomic element (intergenic, introns, and exons) except promoters. The differentially methylated fragments (DMFs) in placenta and neutrophils were enriched in gene-poor and CpG-poor regions. The placentally hypomethylated DMFs were enriched in genomic regions that are usually inactive, whereas hypermethylated DMFs were enriched in active regions. Hypomethylation of the human placenta is not specific to retroelements, indicating that the evolutionary advantages of placental hypomethylation go beyond those provided by expression of retrotransposons and retrogenes. PMID:27172225
RNA processing in Neurospora crassa mitochondria: use of transfer RNA sequences as signals.
Breitenberger, C A; Browning, K S; Alzner-DeWeerd, B; RajBhandary, U L
1985-01-01
We have used RNA gel transfer hybridization, S1 nuclease mapping and primer extension to analyze transcripts derived from several genes in Neurospora crassa mitochondria. The transcripts studied include those for cytochrome oxidase subunit III, 17S rRNA and an unidentified open reading frame. In all three cases, initial transcripts are long, include tRNA sequences, and are subsequently processed to generate the mature RNAs. We find that endpoints of the most abundant transcripts generally coincide with those of tRNA sequences. We therefore conclude that tRNA sequences in long transcripts act as primary signals for RNA processing in N. crassa mitochondria. The situation is somewhat analogous to that observed in mammalian mitochondrial systems. The difference, however, is that in mammalian mitochondria, noncoding spacers between tRNA, rRNA and protein genes are very short and in many cases non-existent, allowing no room for intergenic RNA processing signals whereas, in N. crassa mtDNA, intergenic non-coding sequences are usually several hundred nucleotides long and contain highly conserved GC-rich palindromic sequences. Since these GC-rich palindromic sequences are retained in the processed mature RNAs, we conclude that they do not serve as signals for RNA processing. Images Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:2990893
Kakou, Bidénam; Angers, Bernard; Glémet, Hélène
2016-03-01
The intergenic spacer (IGS) is located between ribosomal RNA (rRNA) gene copies. Within the IGS, regulatory elements for rRNA gene transcription are found, as well as a varying number of other repetitive elements that are at the root of IGS length heterogeneity. This heterogeneity has been shown to have a functional significance through its effect on growth rate. Here, we present the structural organization of yellow perch (Perca flavescens) IGS based on its entire sequence, as well as the IGS length variation within a natural population. Yellow perch IGS structure has four discrete regions containing tandem repeat elements. For three of these regions, no specific length class was detected as allele size was seemingly normally distributed. However, for one repeat region, PCR amplification uncovered the presence of two distinctive IGS variants representing a length difference of 1116 bp. This repeat region was also devoid of any CpG sites despite a high GC content. Balanced selection may be holding the alleles in the population and would account for the high diversity of length variants observed for adjacent regions. Our study is an important precursor for further work aiming to assess the role of IGS length variation in influencing growth rate in fish.
Wyszynski, Asaf; Hong, Chi-Chen; Lam, Kristin; Michailidou, Kyriaki; Lytle, Christian; Yao, Song; Zhang, Yali; Bolla, Manjeet K; Wang, Qin; Dennis, Joe; Hopper, John L; Southey, Melissa C; Schmidt, Marjanka K; Broeks, Annegien; Muir, Kenneth; Lophatananon, Artitaya; Fasching, Peter A; Beckmann, Matthias W; Peto, Julian; Dos-Santos-Silva, Isabel; Sawyer, Elinor J; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E; Nordestgaard, Børge G; González-Neira, Anna; Benitez, Javier; Neuhausen, Susan L; Brenner, Hermann; Dieffenbach, Aida Karina; Meindl, Alfons; Schmutzler, Rita K; Brauch, Hiltrud; Nevanlinna, Heli; Khan, Sofia; Matsuo, Keitaro; Ito, Hidemi; Dörk, Thilo; Bogdanova, Natalia V; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Wu, Anna H; Van Den Berg, David; Lambrechts, Diether; Wildiers, Hans; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Peterlongo, Paolo; Couch, Fergus J; Olson, Janet E; Giles, Graham G; Milne, Roger L; Haiman, Christopher A; Henderson, Brian E; Dumont, Martine; Teo, Soo Hwang; Wong, Tien Y; Kristensen, Vessela; Zheng, Wei; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Andrulis, Irene L; Knight, Julia A; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Figueroa, Jonine; Klevebring, Daniel; Czene, Kamila; Hooning, Maartje J; van den Ouweland, Ans M W; Darabi, Hatef; Shu, Xiao-Ou; Gao, Yu-Tang; Cox, Angela; Blot, William; Signorello, Lisa B; Shah, Mitul; Kang, Daehee; Choi, Ji-Yeob; Hartman, Mikael; Miao, Hui; Hamann, Ute; Jakubowska, Anna; Lubinski, Jan; Sangrajrang, Suleeporn; McKay, James; Toland, Amanda E; Yannoukakos, Drakoulis; Shen, Chen-Yang; Wu, Pei-Ei; Swerdlow, Anthony; Orr, Nick; Simard, Jacques; Pharoah, Paul D P; Dunning, Alison M; Chenevix-Trench, Georgia; Hall, Per; Bandera, Elisa; Amos, Chris; Ambrosone, Christine; Easton, Douglas F; Cole, Michael D
2016-09-01
Breast cancer is the most diagnosed malignancy and the second leading cause of cancer mortality in females. Previous association studies have identified variants on 2q35 associated with the risk of breast cancer. To identify functional susceptibility loci for breast cancer, we interrogated the 2q35 gene desert for chromatin architecture and functional variation correlated with gene expression. We report a novel intergenic breast cancer risk locus containing an enhancer copy number variation (enCNV; deletion) located approximately 400Kb upstream to IGFBP5, which overlaps an intergenic ERα-bound enhancer that loops to the IGFBP5 promoter. The enCNV is correlated with modified ERα binding and monoallelic-repression of IGFBP5 following oestrogen treatment. We investigated the association of enCNV genotype with breast cancer in 1,182 cases and 1,362 controls, and replicate our findings in an independent set of 62,533 cases and 60,966 controls from 41 case control studies and 11 GWAS. We report a dose-dependent inverse association of 2q35 enCNV genotype (percopy OR = 0.68 95%CI 0.55-0.83, P = 0.0002; replication OR = 0.77 95% CI 0.73-0.82, P = 2.1 × 10 -19 ) and identify 13 additional linked variants (r 2 > 0.8) in the 20Kb linkage block containing the enCNV (P = 3.2 × 10 -15 - 5.6 × 10 -17 ). These associations were independent of previously reported 2q35 variants, rs13387042/rs4442975 and rs16857609, and were stronger for ER-positive than ER-negative disease. Together, these results suggest that 2q35 breast cancer risk loci may be mediating their effect through IGFBP5. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Wyszynski, Asaf; Hong, Chi-Chen; Lam, Kristin; Michailidou, Kyriaki; Lytle, Christian; Yao, Song; Zhang, Yali; Bolla, Manjeet K.; Wang, Qin; Dennis, Joe; Hopper, John L.; Southey, Melissa C.; Schmidt, Marjanka K.; Broeks, Annegien; Muir, Kenneth; Lophatananon, Artitaya; Fasching, Peter A.; Beckmann, Matthias W.; Peto, Julian; dos-Santos-Silva, Isabel; Sawyer, Elinor J.; Tomlinson, Ian; Burwinkel, Barbara; Marme, Frederik; Guénel, Pascal; Truong, Thérèse; Bojesen, Stig E.; Nordestgaard, Børge G.; González-Neira, Anna; Benitez, Javier; Neuhausen, Susan L.; Brenner, Hermann; Dieffenbach, Aida Karina; Meindl, Alfons; Schmutzler, Rita K.; Brauch, Hiltrud; Nevanlinna, Heli; Khan, Sofia; Matsuo, Keitaro; Ito, Hidemi; Dörk, Thilo; Bogdanova, Natalia V.; Lindblom, Annika; Margolin, Sara; Mannermaa, Arto; Kosma, Veli-Matti; Wu, Anna H.; Van Den Berg, David; Lambrechts, Diether; Wildiers, Hans; Chang-Claude, Jenny; Rudolph, Anja; Radice, Paolo; Peterlongo, Paolo; Couch, Fergus J.; Olson, Janet E.; Giles, Graham G.; Milne, Roger L.; Haiman, Christopher A.; Henderson, Brian E.; Dumont, Martine; Teo, Soo Hwang; Wong, Tien Y.; Kristensen, Vessela; Zheng, Wei; Long, Jirong; Winqvist, Robert; Pylkäs, Katri; Andrulis, Irene L.; Knight, Julia A.; Devilee, Peter; Seynaeve, Caroline; García-Closas, Montserrat; Figueroa, Jonine; Klevebring, Daniel; Czene, Kamila; Hooning, Maartje J.; van den Ouweland, Ans M.W.; Darabi, Hatef; Shu, Xiao-Ou; Gao, Yu-Tang; Cox, Angela; Blot, William; Signorello, Lisa B.; Shah, Mitul; Kang, Daehee; Choi, Ji-Yeob; Hartman, Mikael; Miao, Hui; Hamann, Ute; Jakubowska, Anna; Lubinski, Jan; Sangrajrang, Suleeporn; McKay, James; Toland, Amanda E.; Yannoukakos, Drakoulis; Shen, Chen-Yang; Wu, Pei-Ei; Swerdlow, Anthony; Orr, Nick; Simard, Jacques; Pharoah, Paul D.P.; Dunning, Alison M.; Chenevix-Trench, Georgia; Hall, Per; Bandera, Elisa; Amos, Chris; Ambrosone, Christine; Easton, Douglas F.; Cole, Michael D.
2016-01-01
Breast cancer is the most diagnosed malignancy and the second leading cause of cancer mortality in females. Previous association studies have identified variants on 2q35 associated with the risk of breast cancer. To identify functional susceptibility loci for breast cancer, we interrogated the 2q35 gene desert for chromatin architecture and functional variation correlated with gene expression. We report a novel intergenic breast cancer risk locus containing an enhancer copy number variation (enCNV; deletion) located approximately 400Kb upstream to IGFBP5, which overlaps an intergenic ERα-bound enhancer that loops to the IGFBP5 promoter. The enCNV is correlated with modified ERα binding and monoallelic-repression of IGFBP5 following oestrogen treatment. We investigated the association of enCNV genotype with breast cancer in 1,182 cases and 1,362 controls, and replicate our findings in an independent set of 62,533 cases and 60,966 controls from 41 case control studies and 11 GWAS. We report a dose-dependent inverse association of 2q35 enCNV genotype (percopy OR = 0.68 95%CI 0.55–0.83, P = 0.0002; replication OR = 0.77 95% CI 0.73-0.82, P = 2.1 × 10−19) and identify 13 additional linked variants (r2 > 0.8) in the 20Kb linkage block containing the enCNV (P = 3.2 × 10−15 − 5.6 × 10−17). These associations were independent of previously reported 2q35 variants, rs13387042/rs4442975 and rs16857609, and were stronger for ER-positive than ER-negative disease. Together, these results suggest that 2q35 breast cancer risk loci may be mediating their effect through IGFBP5. PMID:27402876
Kim, Hyoung Tae; Kim, Ki-Joong
2014-01-01
Comparative analyses of complete chloroplast (cp) DNA sequences within a species may provide clues to understand the population dynamics and colonization histories of plant species. Equisetum arvense (Equisetaceae) is a widely distributed fern species in northeastern Asia, Europe, and North America. The complete cp DNA sequences from Asian and American E. arvense individuals were compared in this study. The Asian E. arvense cp genome was 583 bp shorter than that of the American E. arvense. In total, 159 indels were observed between two individuals, most of which were concentrated on the hypervariable trnY-trnE intergenic spacer (IGS) in the large single-copy (LSC) region of the cp genome. This IGS region held a series of 19 bp repeating units. The numbers of the 19 bp repeat unit were responsible for 78% of the total length difference between the two cp genomes. Furthermore, only other closely related species of Equisetum also show the hypervariable nature of the trnY-trnE IGS. By contrast, only a single indel was observed in the gene coding regions: the ycf1 gene showed 24 bp differences between the two continental individuals due to a single tandem-repeat indel. A total of 165 single-nucleotide polymorphisms (SNPs) were recorded between the two cp genomes. Of these, 52 SNPs (31.5%) were distributed in coding regions, 13 SNPs (7.9%) were in introns, and 100 SNPs (60.6%) were in intergenic spacers (IGS). The overall difference between the Asian and American E. arvense cp genomes was 0.12%. Despite the relatively high genetic diversity between Asian and American E. arvense, the two populations are recognized as a single species based on their high morphological similarity. This indicated that the two regional populations have been in morphological stasis. PMID:25157804
PCR-based 'serotyping' of Legionella pneumophila.
Thürmer, Alexander; Helbig, Jürgen Herbert; Jacobs, Enno; Lück, Paul Christian
2009-05-01
Currently, several PCR assays based on 16S rRNA and virulence-associated genes are available for detection of Legionella pneumophila. So far, no genotyping method has been published that can discriminate between serogroups and monoclonal subgroups of the most common L. pneumophila serogroup 1. Our first approach was to analyse LPS-associated genes of seven L. pneumophila serogroup 1 strains, and we developed two PCR-based methods specific for serogroup 1. Specific DNA fragments could be amplified from all the serogroup 1 strains (n=43) including the strains from the American Type Culture Collection. In contrast, none of the strains from serogroups 2-15 (n=41) contained these specific gene regions. In a second approach, primers specific for the lag-1 gene, encoding an O-acetyltransferase, which is responsible for the presence of the LPS epitope recognized by mAb 3/1, were designed and tested for their ability to differentiate between mAb 3/1-positive and -negative strains. All mAb 3/1-positive strains (n=30) contained the lag-1 gene, but in turn 4 of 13 tested mAb 3/1-negative strains were also positive in the PCR. Thus, the discrimination between mAb 3/1-positive and mAb 3/1-negative subgroups could not be achieved for all strains. In a third approach, two intergenic regions expected to be specific for monoclonal subgroup Knoxville and closely related subgroups Benidorm/Bellingham were identified and used for selective genotyping. These intergenic regions could not only be amplified in every tested strain belonging to the subgroups Knoxville, Benidorm and Bellingham, but also in some strains of other unrelated subgroups. The two PCR approaches with primers specific for serogroup 1 genes definitely represent a valuable tool in outbreak investigations and for risk assessment. They also might be used for culture-independent diagnosis of legionellosis caused by L. pneumophila serogroup 1.
Venieraki, Anastasia; Dimou, Maria; Vezyri, Eleni; Vamvakas, Alexandros; Katinaki, Pagona-Artemis; Chatzipavlidis, Iordanis; Tampakaki, Anastasia; Katinakis, Panagiotis
2014-01-01
The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI) in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS) and glutathione peroxidise (gshP). The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution. PMID:25251496
Venieraki, Anastasia; Dimou, Maria; Vezyri, Eleni; Vamvakas, Alexandros; Katinaki, Pagona-Artemis; Chatzipavlidis, Iordanis; Tampakaki, Anastasia; Katinakis, Panagiotis
2014-01-01
The presence of nitrogen fixers within the genus Pseudomonas has been established and so far most isolated strains are phylogenetically affiliated to Pseudomonas stutzeri. A gene ortholog neighborhood analysis of the nitrogen fixation island (NFI) in four diazotrophic P. stutzeri strains and Pseudomonas azotifigens revealed that all are flanked by genes coding for cobalamin synthase (cobS) and glutathione peroxidise (gshP). The putative NFIs lack all the features characterizing a mobilizable genomic island. Nevertheless, bioinformatic analysis P. stutzeri DSM 4166 NFI demonstrated the presence of short inverted and/or direct repeats within both flanking regions. The other P. stutzeri strains carry only one set of repeats. The genetic diversity of eleven diazotrophic Pseudomonas isolates was also investigated. Multilocus sequence typing grouped nine isolates along with P. stutzeri and two isolates are grouped in a separate clade. A Rep-PCR fingerprinting analysis grouped the eleven isolates into four distinct genotypes. We also provided evidence that the putative NFI in our diazotrophic Pseudomonas isolates is flanked by cobS and gshP genes. Furthermore, we demonstrated that the putative NFI of Pseudomonas sp. Gr65 is flanked by inverted repeats identical to those found in P. stutzeri DSM 4166 and while the other P. stutzeri isolates harbor the repeats located in the intergenic region between cobS and glutaredoxin genes as in the case of P. stutzeri A1501. Taken together these data suggest that all putative NFIs of diazotrophic Pseudomonas isolates are anchored in an intergenic region between cobS and gshP genes and their flanking regions are designated by distinct repeats patterns. Moreover, the presence of almost identical NFIs in diazotrophic Pseudomonas strains isolated from distal geographical locations around the world suggested that this horizontal gene transfer event may have taken place early in the evolution.
Rai, M F; Sandell, L J; Cheverud, J M; Brophy, R H
2013-09-01
Aging and obesity contribute to the initiation and progression of osteoarthritis with little information on their relation to gene expression in joint tissues, particularly the meniscus. Here, we test the hypothesis that patient age and body mass index (BMI) correlate with the expression of osteoarthritis- and obesity-related gene signatures in the meniscus. Meniscus was obtained from patients (N=68) undergoing arthroscopic partial meniscectomy. The mRNA expression of 24 osteoarthritis-related and 4 obesity-related genes in meniscus was assessed by quantitative real-time PCR. The relationship between gene expression and patient age and BMI was analyzed using Spearman's rank-order correlation. Hierarchical cluster dendrogram and heat map were generated to study inter-gene associations. Age was negatively correlated (P<0.05) with the expression of MMP-1 (r=-0.447), NFκB2 (r=-0.361), NFκBIA (r=-0.312), IκBA (r=-0.308), IL-8 (r=-0.305), ADAMTS-4 (r=-0.294), APLN (apelin) (r=-0.250) and IL-6 (r=-0.244). Similarly, BMI was negatively correlated with the expression of APLN (r=-0.328), ACAN (r=-0.268) and MMP-1 (r=-0.261). After adjusting for the correlation between age and BMI (r=0.310; P=0.008), the only independent effect of BMI on gene expression was for APLN (r=-0.272). However, age had an independent effect on the expression on ADAMTS-4 (r=-0.253), MMP-1 (r=-0.399), IL-8 (r=-0.327), COL1A1 (r=-0.287), NFκBIA (r=-0.278), NFκB2 (r=-0.312) and IκBA (r=-0.299). The gene correlation analysis identified four clusters of potentially relevant genes: transcription factors, matrix-degrading enzymes, cytokines and chemokines, and obesity genes. Age and BMI were negatively correlated with several osteoarthritis- and obesity-related genes. Although the bulk of these changes appeared to be driven by age, expression of APLN was related to BMI. Inter-gene correlation analysis implicated a common role for strongly correlated genes. Although age-related variations in gene expression appear to be more relevant than obesity-related differences for the role of the meniscus in osteoarthritis development, further investigation into the role of APLN in meniscus and joint health is warranted.
Muller, Laura K.; Lorch, Jeffrey M.; Lindner, Daniel L.; O'Connor, Michael; Gargas, Andrea; Blehert, David S.
2013-01-01
The fungus Geomyces destructans is the causative agent of white-nose syndrome (WNS), a disease that has killed millions of North American hibernating bats. We describe a real-time TaqMan PCR test that detects DNA from G. destructans by targeting a portion of the multicopy intergenic spacer region of the rRNA gene complex. The test is highly sensitive, consistently detecting as little as 3.3 fg of genomic DNA from G. destructans. The real-time PCR test specifically amplified genomic DNA from G. destructans but did not amplify target sequence from 54 closely related fungal isolates (including 43 Geomyces spp. isolates) associated with bats. The test was further qualified by analyzing DNA extracted from 91 bat wing skin samples, and PCR results matched histopathology findings. These data indicate the real-time TaqMan PCR method described herein is a sensitive, specific, and rapid test to detect DNA from G. destructans and provides a valuable tool for WNS diagnostics and research.
Zhi, Shuai; Li, Qiaozhi; Yasui, Yutaka; Edge, Thomas; Topp, Edward; Neumann, Norman F
2015-11-01
Host specificity in E. coli is widely debated. Herein, we used supervised learning logic-regression-based analysis of intergenic DNA sequence variability in E. coli in an attempt to identify single nucleotide polymorphism (SNP) biomarkers of E. coli that are associated with natural selection and evolution toward host specificity. Seven-hundred and eighty strains of E. coli were isolated from 15 different animal hosts. We utilized logic regression for analyzing DNA sequence data of three intergenic regions (flanked by the genes uspC-flhDC, csgBAC-csgDEFG, and asnS-ompF) to identify genetic biomarkers that could potentially discriminate E. coli based on host sources. Across 15 different animal hosts, logic regression successfully discriminated E. coli based on animal host source with relatively high specificity (i.e., among the samples of the non-target animal host, the proportion that correctly did not have the host-specific marker pattern) and sensitivity (i.e., among the samples from a given animal host, the proportion that correctly had the host-specific marker pattern), even after fivefold cross validation. Permutation tests confirmed that for most animals, host specific intergenic biomarkers identified by logic regression in E. coli were significantly associated with animal host source. The highest level of biomarker sensitivity was observed in deer isolates, with 82% of all deer E. coli isolates displaying a unique SNP pattern that was 98% specific to deer. Fifty-three percent of human isolates displayed a unique biomarker pattern that was 98% specific to humans. Twenty-nine percent of cattle isolates displayed a unique biomarker that was 97% specific to cattle. Interestingly, even within a related host group (i.e., Family: Canidae [domestic dogs and coyotes]), highly specific SNP biomarkers (98% and 99% specificity for dog and coyotes, respectively) were observed, with 21% of dog E. coli isolates displaying a unique dog biomarker and 61% of coyote isolates displaying a unique coyote biomarker. Application of a supervised learning method, such as logic regression, to DNA sequence analysis at certain intergenic regions demonstrates that some E. coli strains may evolve to become host-specific. Copyright © 2015 Elsevier Inc. All rights reserved.
Comparative Sequence Analysis of the X-Inactivation Center Region in Mouse, Human, and Bovine
Chureau, Corinne; Prissette, Marine; Bourdet, Agnès; Barbe, Valérie; Cattolico, Laurence; Jones, Louis; Eggen, André; Avner, Philip; Duret, Laurent
2002-01-01
We have sequenced to high levels of accuracy 714-kb and 233-kb regions of the mouse and bovine X-inactivation centers (Xic), respectively, centered on the Xist gene. This has provided the basis for a fully annotated comparative analysis of the mouse Xic with the 2.3-Mb orthologous region in human and has allowed a three-way species comparison of the core central region, including the Xist gene. These comparisons have revealed conserved genes, both coding and noncoding, conserved CpG islands and, more surprisingly, conserved pseudogenes. The distribution of repeated elements, especially LINE repeats, in the mouse Xic region when compared to the rest of the genome does not support the hypothesis of a role for these repeat elements in the spreading of X inactivation. Interestingly, an asymmetric distribution of LINE elements on the two DNA strands was observed in the three species, not only within introns but also in intergenic regions. This feature is suggestive of important transcriptional activity within these intergenic regions. In silico prediction followed by experimental analysis has allowed four new genes, Cnbp2, Ftx, Jpx, and Ppnx, to be identified and novel, widespread, complex, and apparently noncoding transcriptional activity to be characterized in a region 5′ of Xist that was recently shown to attract histone modification early after the onset of X inactivation. [The sequence data described in this paper have been submitted to the EMBL data library under accession nos. AJ421478, AJ421479, AJ421480, and AJ421481. Online supplemental data are available at http://pbil.univ-lyon1.fr/datasets/Xic2002/data.html and www.genome.org.] PMID:12045143
Conversion at large intergenic regions of mitochondrial DNA in Saccharomyces cerevisiae.
Skelly, P J; Clark-Walker, G D
1990-04-01
Saccharomyces cerevisiae mitochondrial DNA deletion mutants have been used to examine whether base-biased intergenic regions of the genome influence mitochondrial biogenesis. One strain (delta 5.0) lacks a 5-kilobase (kb) segment extending from the proline tRNA gene to the small rRNA gene that includes ori1, while a second strain (delta 3.7) is missing a 3.7-kb region between the genes for ATPase subunit 6 and glutamic acid tRNA that encompasses ori7 plus ori2. Growth of these strains on both fermentable and nonfermentable substrates does not differ from growth of the wild-type strain, indicating that the deletable regions of the genome do not play a direct role in the expression of mitochondrial genes. Examination of whether the 5- or 3.7-kb regions influence mitochondrial DNA transmission was undertaken by crossing strains and examining mitochondrial genotypes in zygotic colonies. In a cross between strain delta 5.0, harboring three active ori elements (ori2, ori3, and ori5), and strain delta 3.7, containing only two active ori elements (ori3 and ori5), there is a preferential recovery of the genome containing two active ori elements (37% of progeny) over that containing three active elements (20%). This unexpected result, suggesting that active ori elements do not influence transmission of respiratory-competent genomes, is interpreted to reflect a preferential conversion of the delta 5.0 genome to the wild type (41% of progeny). Supporting evidence for conversion over biased transmission is shown by preferential recovery of a nonparental genome in the progeny of a heterozygous cross in which both parental molecules can be identified by size polymorphisms.
Yuan, Yongbo; Bi, Changhao; Nicolaou, Sergios A; Zingaro, Kyle A; Ralston, Matthew; Papoutsakis, Eleftherios T
2014-10-01
A major challenge in producing chemicals and biofuels is to increase the tolerance of the host organism to toxic products or byproducts. An Escherichia coli strain with superior ethanol and more generally alcohol tolerance was identified by screening a library constructed by randomly integrating Lactobacillus plantarum genomic DNA fragments into the E. coli chromosome via Cre-lox recombination. Sequencing identified the inserted DNA fragment as the murA2 gene and its upstream intergenic 973-bp sequence, both coded on the negative genomic DNA strand. Overexpression of this murA2 gene and its upstream 973-bp sequence significantly enhanced ethanol tolerance in both E. coli EC100 and wild type E. coli MG1655 strains by 4.1-fold and 2.0-fold compared to control strains, respectively. Tolerance to n-butanol and i-butanol in E. coli MG1655 was increased by 1.85-fold and 1.91-fold, respectively. We show that the intergenic 973-bp sequence contains a native promoter for the murA2 gene along with a long 5' UTR (286 nt) on the negative strand, while a noncoding, small RNA, named MurA2S, is expressed off the positive strand. MurA2S is expressed in E. coli and may interact with murA2, but it does not affect murA2's ability to enhance alcohol tolerance in E. coli. Overexpression of murA2 with its upstream region in the ethanologenic E. coli KO11 strain significantly improved ethanol production in cultures that simulate the industrial Melle-Boinot fermentation process.
Conversion at large intergenic regions of mitochondrial DNA in Saccharomyces cerevisiae.
Skelly, P J; Clark-Walker, G D
1990-01-01
Saccharomyces cerevisiae mitochondrial DNA deletion mutants have been used to examine whether base-biased intergenic regions of the genome influence mitochondrial biogenesis. One strain (delta 5.0) lacks a 5-kilobase (kb) segment extending from the proline tRNA gene to the small rRNA gene that includes ori1, while a second strain (delta 3.7) is missing a 3.7-kb region between the genes for ATPase subunit 6 and glutamic acid tRNA that encompasses ori7 plus ori2. Growth of these strains on both fermentable and nonfermentable substrates does not differ from growth of the wild-type strain, indicating that the deletable regions of the genome do not play a direct role in the expression of mitochondrial genes. Examination of whether the 5- or 3.7-kb regions influence mitochondrial DNA transmission was undertaken by crossing strains and examining mitochondrial genotypes in zygotic colonies. In a cross between strain delta 5.0, harboring three active ori elements (ori2, ori3, and ori5), and strain delta 3.7, containing only two active ori elements (ori3 and ori5), there is a preferential recovery of the genome containing two active ori elements (37% of progeny) over that containing three active elements (20%). This unexpected result, suggesting that active ori elements do not influence transmission of respiratory-competent genomes, is interpreted to reflect a preferential conversion of the delta 5.0 genome to the wild type (41% of progeny). Supporting evidence for conversion over biased transmission is shown by preferential recovery of a nonparental genome in the progeny of a heterozygous cross in which both parental molecules can be identified by size polymorphisms. Images PMID:2181277
Reclassification of Borrelia spp. isolated in South Korea using Multilocus Sequence Typing.
Park, Kyung-Hee; Choi, Yeon-Joo; Kim, Jeoungyeon; Park, Hye-Jin; Song, Dayoung; Jang, Won-Jong
2018-05-31
Using Borrelia isolated from South Korea, we evaluated by MLST and three intergenic genes (16S rRNA, ospA, and 5S-23S IGS) typing to analyze the relationship between host and vector and molecular background. Using the MLST analysis, we identified B. afzelii, B. yangtzensis, B. garinii, and B. bavariensis. This study was first report of the identification of B. yangtzensis using the MLST in South Korea.
Romero, J; García-Varela, M; Laclette, J P; Espejo, R T
2002-11-01
To explore the bacterial microbiota in Chilean oyster (Tiostrea chilensis), a molecular approach that permits detection of different bacteria, independently of their capacity to grow in culture media, was used. Bacterial diversity was assessed by analysis of both the 16S rDNA and the 16S-23S intergenic region, obtained by PCR amplifications of DNA extracted from depurated oysters. RFLP of the PCR amplified 16S rDNA showed a prevailing pattern in most of the individuals analyzed, indicating that a few bacterial species were relatively abundant and common in oysters. Cloning and sequencing of the 16S rDNA with the prevailing RFLP pattern indicated that this rRNA was most closely related to Arcobacter spp. However, analysis by the size of the amplified 16S-23S rRNA intergenic regions revealed not Arcobacter spp. but Staphylococcus spp. related bacteria as a major and common component in oyster. These different results may be caused by the absence of target for one of the primers employed for amplification of the intergenic region. Neither of the two bacteria species found in large abundance was recovered after culturing under aerobic, anaerobic, or microaerophilic conditions. This result, however, is expected because the number of bacteria recovered after cultivation was less than 0.01% of the total. All together, these observations suggest that Arcobacter-related strains are probably abundant and common in the Chilean oyster bacterial microbiota.
Voels, Brent; Wang, Liping; Sens, Donald A; Garrett, Scott H; Zhang, Ke; Somji, Seema
2017-05-25
The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell's ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation.
Complete mitochondrial genome of the Yellow-spotted skate Okamejei hollandi (Rajiformes: Rajidae).
Li, Weidong; Chen, Xiao; Liu, Wenai; Sun, Renjie; Zhou, Haolang
2016-07-01
The complete mitochondrial genome of the Yellow-spotted skate Okamejei hollandi was determined in this study. It is 16,974 bp in length and contains 13 protein-coding genes, two rRNA genes, 22 tRNA genes, and one putative control region. The overall base composition is 30.5% A, 27.8% C, 14.0% G, and 27.8% T. There are 28 bp short intergenic spaces located in 12 gene junctions and 31 bp overlaps located in nine gene junctions in the whole mitogenome. Two start codons (ATG and GTG) and two stop codons (TAG and TAA/T) were used in the protein-coding genes. The lengths of 22 tRNA genes range from 68 (tRNA-Ser2) to 75 (tRNA-Leu1) bp. The origin of L-strand replication (OL) sequence (37 bp) was identified between the tRNA-Asn and tRNA-Cys genes. The control region is 1311 bp in length with high A + T and poor G content.
Tu, Tieyao; Volis, Sergei; Dillon, Michael O; Sun, Hang; Wen, Jun
2010-12-01
The cosmopolitan Solanaceae contains 21 tribes and has the greatest diversity in South America. Hyoscyameae and Mandragoreae are the only tribes of this family distributed exclusively in Eurasia with two centers of diversity: the Mediterranean-Turanian (MT) region and the Tibetan Plateau (TP). In this study, we examined the origins and biogeographical diversifications of the two tribes based on the phylogenetic framework and chronogram inferred from a combined data set of six plastid DNA regions (the atpB gene, the ndhF gene, the rps16-trnK intergenic spacer, the rbcL gene, the trnC-psbM region and the psbA-trnH intergenic spacer) with two fossil calibration points. Our data suggest that Hyoscyameae and Mandragoreae each forms a monophyletic group independently derived from different New World lineages in the early Miocene. Phylogenetic relationships within both tribes are generally well resolved. All genera of Hyoscyameae are found to be monophyletic and they diversified in middle to late Miocene. At nearly the same time, Mandragoreae split into two clades, corresponding to the MT region and the TP region, respectively. Both the phylogenetic relationships and the estimated ages of Hyoscyameae and Mandragoreae support two independent dispersal events of their ancestors from the New World into Eurasia. After their arrivals in Eurasia, the two tribes diversified primarily in the MT region and in the TP region via multiple biogeographic processes including vicariance, dispersal, recolonization or being preserved as relicts, from the mid Miocene to the late Quaternary. Published by Elsevier Inc.
Linking maternal and somatic 5S rRNA types with different sequence-specific non-LTR retrotransposons
Pagano, Johanna F.B.; Ensink, Wim A.; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P.; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J.; Dekker, Rob J.
2017-01-01
5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. PMID:28003516
The HSP terminator of Arabidopsis thaliana increases gene expression in plant cells.
Nagaya, Shingo; Kawamura, Kazue; Shinmyo, Atsuhiko; Kato, Ko
2010-02-01
To express a foreign gene in plants effectively, a good expression system is required. Here we describe the identification of a transcriptional terminator that supports increased levels of expression. The terminators of several Arabidopsis genes were examined in transfected Arabidopsis T87 protoplasts. The heat shock protein 18.2 (HSP) terminator was the most effective in supporting increased levels of expression. The HSP terminator increases mRNA levels of both transiently and stably expressed transgenes approximately 2-fold more than the NOS (nopaline synthase) terminator. When combined with the HSP terminator, a translational enhancer increased gene expression levels approximately 60- to 100-fold in transgenic plants.
Complete mitochondrial genome of the Freshwater Whipray Himantura dalyensis.
Feutry, Pierre; Kyne, Peter M; Peng, Zaiqing; Pan, Lianghao; Chen, Xiao
2016-05-01
The complete mitochondrial genome of the Freshwater Whipray Himantura dalyensis is presented in this study. It is 17,693 bp in length and contains 37 genes in typical gene order and transcriptional orientation observed in vertebrates. There were a total of 86 bp short intergenic spacers and 22 bp overlaps in the genome. The overall base composition was 31.4% A, 25.5% C, 13.2% G and 29.9% T. Two start codons (GTG and ATG) and two stop codons (TAG and TAA/T) were found in 13 protein-coding genes. The length of 22 tRNA genes ranged from 68 (tRNA-Cys and tRNA-Ser2) to 75 bp (tRNA-Leu1). The origin of L-strand replication (OL) was found between the tRNA-Asn and tRNA-Cys genes. The base composition of the control region (1940 bp) was similar to the whole mitogenome.
Copy Number Variation in the Horse Genome
Ghosh, Sharmila; Qu, Zhipeng; Das, Pranab J.; Fang, Erica; Juras, Rytis; Cothran, E. Gus; McDonell, Sue; Kenney, Daniel G.; Lear, Teri L.; Adelson, David L.; Chowdhary, Bhanu P.; Raudsepp, Terje
2014-01-01
We constructed a 400K WG tiling oligoarray for the horse and applied it for the discovery of copy number variations (CNVs) in 38 normal horses of 16 diverse breeds, and the Przewalski horse. Probes on the array represented 18,763 autosomal and X-linked genes, and intergenic, sub-telomeric and chrY sequences. We identified 258 CNV regions (CNVRs) across all autosomes, chrX and chrUn, but not in chrY. CNVs comprised 1.3% of the horse genome with chr12 being most enriched. American Miniature horses had the highest and American Quarter Horses the lowest number of CNVs in relation to Thoroughbred reference. The Przewalski horse was similar to native ponies and draft breeds. The majority of CNVRs involved genes, while 20% were located in intergenic regions. Similar to previous studies in horses and other mammals, molecular functions of CNV-associated genes were predominantly in sensory perception, immunity and reproduction. The findings were integrated with previous studies to generate a composite genome-wide dataset of 1476 CNVRs. Of these, 301 CNVRs were shared between studies, while 1174 were novel and require further validation. Integrated data revealed that to date, 41 out of over 400 breeds of the domestic horse have been analyzed for CNVs, of which 11 new breeds were added in this study. Finally, the composite CNV dataset was applied in a pilot study for the discovery of CNVs in 6 horses with XY disorders of sexual development. A homozygous deletion involving AKR1C gene cluster in chr29 in two affected horses was considered possibly causative because of the known role of AKR1C genes in testicular androgen synthesis and sexual development. While the findings improve and integrate the knowledge of CNVs in horses, they also show that for effective discovery of variants of biomedical importance, more breeds and individuals need to be analyzed using comparable methodological approaches. PMID:25340504
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum
DOE Office of Scientific and Technical Information (OSTI.GOV)
VanBuren, Robert; Bryant, Doug; Edger, Patrick P.
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less
Single-molecule sequencing of the desiccation-tolerant grass Oropetium thomaeum
VanBuren, Robert; Bryant, Doug; Edger, Patrick P.; ...
2015-11-11
Plant genomes, and eukaryotic genomes in general, are typically repetitive, polyploid and heterozygous, which complicates genome assembly1. The short read lengths of early Sanger and current next-generation sequencing platforms hinder assembly through complex repeat regions, and many draft and reference genomes are fragmented, lacking skewed GC and repetitive intergenic sequences, which are gaining importance due to projects like the Encyclopedia of DNA Elements (ENCODE). Here we report the whole-genome sequencing and assembly of the desiccation-tolerant grass Oropetium thomaeum. Using only single-molecule real-time sequencing, which generates long (>16 kilobases) reads with random errors, we assembled 99% (244 megabases) of the Oropetiummore » genome into 625 contigs with an N50 length of 2.4 megabases. Oropetium is an example of a ‘near-complete’ draft genome which includes gapless coverage over gene space as well as intergenic sequences such as centromeres, telomeres, transposable elements and rRNA clusters that are typically unassembled in draft genomes. Oropetium has 28,466 protein-coding genes and 43% repeat sequences, yet with 30% more compact euchromatic regions it is the smallest known grass genome. As a result, the Oropetium genome demonstrates the utility of single-molecule real-time sequencing for assembling high-quality plant and other eukaryotic genomes, and serves as a valuable resource for the plant comparative genomics community.« less
Schwab, Stefan; Souza, Emanuel M; Yates, Marshall G; Persuhn, Darlene C; Steffens, M Berenice R; Chubatsu, Leda S; Pedrosa, Fábio O; Rigo, Liu U
2007-01-01
Herbaspirillum seropedicae is an endophytic bacterium that fixes nitrogen under microaerophilic conditions. The putative promoter sequences glnAp1 (sigma70-dependent) and glnAp2 (sigma54), and two NtrC-binding sites were identified upstream from the glnA, ntrB and ntrC genes of this microorganism. To study their transcriptional regulation, we used lacZ fusions to the H. seropedicae glnA gene, and the glnA-ntrB and ntrB-ntrC intergenic regions. Expression of glnA was up-regulated under low ammonium, but no transcription activity was detected from the intergenic regions under any condition tested, suggesting that glnA, ntrB and ntrC are co-transcribed from the promoters upstream of glnA. Ammonium regulation was lost in the ntrC mutant strain. A point mutation was introduced in the conserved -25/-24 dinucleotide (GG-->TT) of the putative sigma54-dependent promoter (glnAp2). Contrary to the wild-type promoter, glnA expression with the mutant glnAp2 promoter was repressed in the wild-type strain under low ammonium levels, but this repression was abolished in an ntrC background. Together our results indicate that the H. seropedicae glnAntrBC operon is regulated from two functional promoters upstream from glnA, which are oppositely regulated by the NtrC protein.
Zhu, Aiwei; Jiang, Tinglei; Hu, Tingsong; Mi, Shijiang; Zhao, Zihan; Zhang, Fuqiang; Feng, Jiang; Fan, Quanshui; He, Biao; Tu, Changchun
2018-05-02
The family Circoviridae comprises a large group of small circular single-stranded DNA viruses with several members causing severe pig and poultry diseases. In recent years the number of new viruses within the family has had an explosive increase showing a high level of genetic diversity and a broad host range. In this report we describe two more circoviruses identified from bats in Yunnan and Heilongjiang provinces in China. Full genome sequencing has revealed that these bat associated circoviruses (bat ACV) should be classified as new species within the genus Circovirus based on the demarcation criteria of the International Committee on the Taxonomy of Viruses (ICTV). The most striking result is the novel finding of a 21-28 nt polythymidine (poly-T) tract in the 3' terminal intergenic region of bat ACV isolates from Heilongjiang province. To understand its role in viral replication, a wild type bat ACV and a mutated version with the entire poly-T deleted were rescued through construction of infectious clones. Replication comparison in vitro showed that the poly-T is not essential for viral replication. Identification of additional bat ACV isolates and study of their biological characteristics will be the main task in future to understand the potential roles of bats in transmission of circoviruses to terrestrial mammals and humans. Copyright © 2018 Elsevier B.V. All rights reserved.
Narang, Pooja; Wilson Sayres, Melissa A.
2016-01-01
Male mutation bias, when more mutations are passed on via the male germline than via the female germline, is observed across mammals. One common way to infer the magnitude of male mutation bias, α, is to compare levels of neutral sequence divergence between genomic regions that spend different amounts of time in the male and female germline. For great apes, including human, we show that estimates of divergence are reduced in putatively unconstrained regions near genes relative to unconstrained regions far from genes. Divergence increases with increasing distance from genes on both the X chromosome and autosomes, but increases faster on the X chromosome than autosomes. As a result, ratios of X/A divergence increase with increasing distance from genes and corresponding estimates of male mutation bias are significantly higher in intergenic regions near genes versus far from genes. Future studies in other species will need to carefully consider the effect that genomic location will have on estimates of male mutation bias. PMID:27702816
Walter, J.; Tannock, G. W.; Tilsala-Timisjarvi, A.; Rodtong, S.; Loach, D. M.; Munro, K.; Alatossava, T.
2000-01-01
Denaturing gradient gel electrophoresis (DGGE) of DNA fragments obtained by PCR amplification of the V2-V3 region of the 16S rRNA gene was used to detect the presence of Lactobacillus species in the stomach contents of mice. Lactobacillus isolates cultured from human and porcine gastrointestinal samples were identified to the species level by using a combination of DGGE and species-specific PCR primers that targeted 16S-23S rRNA intergenic spacer region or 16S rRNA gene sequences. The identifications obtained by this approach were confirmed by sequencing the V2-V3 region of the 16S rRNA gene and by a BLAST search of the GenBank database. PMID:10618239
Luz, Bruna Louise Pereira; Capel, Kátia Cristina Cruz; Stampar, Sérgio Nascimento; Kitahara, Marcelo Visentini
2016-07-01
Dendrophylliidae is one of the few monophyletic families within the Scleractinia that embraces zooxanthellate and azooxanthellate species represented by both solitary and colonial forms. Among the exclusively azooxanthellate genera, Dendrophyllia is reported worldwide from 1 to 1200 m deep. To date, although three complete mitochondrial (mt) genomes from representatives of the family are available, only that from Turbinaria peltata has been formally published. Here we describe the complete nucleotide sequence of the mt genome from Dendrophyllia arbuscula that is 19 069 bp in length and comprises two rDNAs, two tRNAs, and 13 protein-coding genes arranged in the canonical scleractinian mt gene order. No genes overlap, resulting in the presence of 18 intergenic spacers and one of the longest scleractinian mt genome sequenced to date.
Chow, Cheryl-Emiliane T; Kim, Diane Y; Sachdeva, Rohan; Caron, David A; Fuhrman, Jed A
2014-01-01
Characterizing ecological relationships between viruses, bacteria and protists in the ocean are critical to understanding ecosystem function, yet these relationships are infrequently investigated together. We evaluated these relationships through microbial association network analysis of samples collected approximately monthly from March 2008 to January 2011 in the surface ocean (0–5 m) at the San Pedro Ocean Time series station. Bacterial, T4-like myoviral and protistan communities were described by Automated Ribosomal Intergenic Spacer Analysis and terminal restriction fragment length polymorphism of the gene encoding the major capsid protein (g23) and 18S ribosomal DNA, respectively. Concurrent shifts in community structure suggested similar timing of responses to environmental and biological parameters. We linked T4-like myoviral, bacterial and protistan operational taxonomic units by local similarity correlations, which were then visualized as association networks. Network links (correlations) potentially represent synergistic and antagonistic relationships such as viral lysis, grazing, competition or other interactions. We found that virus–bacteria relationships were more cross-linked than protist–bacteria relationships, suggestive of increased taxonomic specificity in virus–bacteria relationships. We also found that 80% of bacterial–protist and 74% of bacterial–viral correlations were positive, with the latter suggesting that at monthly and seasonal timescales, viruses may be following their hosts more often than controlling host abundance. PMID:24196323
Balcázar-López, Edgar; Méndez-Lorenzo, Luz Helena; Batista-García, Ramón Alberto; Esquivel-Naranjo, Ulises; Ayala, Marcela; Kumar, Vaidyanathan Vinoth; Savary, Olivier; Cabana, Hubert; Herrera-Estrella, Alfredo; Folch-Mallol, Jorge Luis
2016-01-01
Fungal laccases are enzymes that have been studied because of their ability to decolorize and detoxify effluents; they are also used in paper bleaching, synthesis of polymers, bioremediation, etc. In this work we were able to express a laccase from Trametes (Pycnoporus) sanguineus in the filamentous fungus Trichoderma atroviride. For this purpose, a transformation vector was designed to integrate the gene of interest in an intergenic locus near the blu17 terminator region. Although monosporic selection was still necessary, stable integration at the desired locus was achieved. The native signal peptide from T. sanguineus laccase was successful to secrete the recombinant protein into the culture medium. The purified, heterologously expressed laccase maintained similar properties to those observed in the native enzyme (Km and kcat and kcat/km values for ABTS, thermostability, substrate range, pH optimum, etc). To determine the bioremediation potential of this modified strain, the laccase-overexpressing Trichoderma strain was used to remove xenobiotic compounds. Phenolic compounds present in industrial wastewater and bisphenol A (an endocrine disruptor) from the culture medium were more efficiently removed by this modified strain than with the wild type. In addition, the heterologously expressed laccase was able to decolorize different dyes as well as remove benzo[α]pyrene and phenanthrene in vitro, showing its potential for xenobiotic compound degradation. PMID:26849129
Yamanishi, Mamoru; Ito, Yoichiro; Kintaka, Reiko; Imamura, Chie; Katahira, Satoshi; Ikeuchi, Akinori; Moriya, Hisao; Matsuyama, Takashi
2013-06-21
The terminator regions of eukaryotes encode functional elements in the 3' untranslated region (3'-UTR) that influence the 3'-end processing of mRNA, mRNA stability, and translational efficiency, which can modulate protein production. However, the contribution of these terminator regions to gene expression remains unclear, and therefore their utilization in metabolic engineering or synthetic genetic circuits has been limited. Here, we comprehensively evaluated the activity of 5302 terminator regions from a total of 5880 genes in the budding yeast Saccharomyces cerevisiae by inserting each terminator region downstream of the P TDH3 - green fluorescent protein (GFP) reporter gene and measuring the fluorescent intensity of GFP. Terminator region activities relative to that of the PGK1 standard terminator ranged from 0.036 to 2.52, with a mean of 0.87. We thus could isolate the most and least active terminator regions. The activities of the terminator regions showed a positive correlation with mRNA abundance, indicating that the terminator region is a determinant of mRNA abundance. The least active terminator regions tended to encode longer 3'-UTRs, suggesting the existence of active degradation mechanisms for those mRNAs. The terminator regions of ribosomal protein genes tended to be the most active, suggesting the existence of a common regulator of those genes. The ″terminatome″ (the genome-wide set of terminator regions) thus not only provides valuable information to understand the modulatory roles of terminator regions on gene expression but also serves as a useful toolbox for the development of metabolically and genetically engineered yeast.
Structural analysis of two length variants of the rDNA intergenic spacer from Eruca sativa.
Lakshmikumaran, M; Negi, M S
1994-03-01
Restriction enzyme analysis of the rRNA genes of Eruca sativa indicated the presence of many length variants within a single plant and also between different cultivars which is unusual for most crucifers studied so far. Two length variants of the rDNA intergenic spacer (IGS) from a single individual E. sativa (cv. Itsa) plant were cloned and characterized. The complete nucleotide sequences of both the variants (3 kb and 4 kb) were determined. The intergenic spacer contains three families of tandemly repeated DNA sequences denoted as A, B and C. However, the long (4 kb) variant shows the presence of an additional repeat, denoted as D, which is a duplication of a 224 bp sequence just upstream of the putative transcription initiation site. Repeat units belonging to the three different families (A, B and C) were in the size range of 22 to 30 bp. Such short repeat elements are present in the IGS of most of the crucifers analysed so far. Sequence analysis of the variants (3 kb and 4 kb) revealed that the length heterogeneity of the spacer is located at three different regions and is due to the varying copy numbers of repeat units belonging to families A and B. Length variation of the spacer is also due to the presence of a large duplication (D repeats) in the 4 kb variant which is absent in the 3 kb variant. The putative transcription initiation site was identified by comparisons with the rDNA sequences from other plant species.
Walworth, Nathan; Pfreundt, Ulrike; Nelson, William C.; ...
2015-03-23
Understanding the evolution of the free-living, cyanobacterial, diazotroph Trichodesmium is of great importance because of its critical role in oceanic biogeochemistry and primary production. Unlike the other >150 available genomes of free-living cyanobacteria, only 63.8% of the Trichodesmium erythraeum (strain IMS101) genome is predicted to encode protein, which is 20–25% less than the average for other cyanobacteria and nonpathogenic, free-living bacteria. In this paper, we use distinctive isolates and metagenomic data to show that low coding density observed in IMS101 is a common feature of the Trichodesmium genus, both in culture and in situ. Transcriptome analysis indicates that 86% ofmore » the noncoding space is expressed, although the function of these transcripts is unclear. The density of noncoding, possible regulatory elements predicted in Trichodesmium, when normalized per intergenic kilobase, was comparable and twofold higher than that found in the gene-dense genomes of the sympatric cyanobacterial genera Synechococcus and Prochlorococcus, respectively. Conserved Trichodesmium noncoding RNA secondary structures were predicted between most culture and metagenomic sequences, lending support to the structural conservation. Conservation of these intergenic regions in spatiotemporally separated Trichodesmium populations suggests possible genus-wide selection for their maintenance. These large intergenic spacers may have developed during intervals of strong genetic drift caused by periodic blooms of a subset of genotypes, which may have reduced effective population size. Finally, our data suggest that transposition of selfish DNA, low effective population size, and high-fidelity replication allowed the unusual “inflation” of noncoding sequence observed in Trichodesmium despite its oligotrophic lifestyle.« less
Walworth, Nathan G.; Pfreundt, Ulrike; Nelson, William C.; ...
2015-04-07
Understanding the evolution of the free-living, cyanobacterial, diazotroph Trichodesmium is of great importance due to its critical role in oceanic biogeochemistry and primary production. Unlike the other >150 available genomes of free-living cyanobacteria, only 63.8% of the Trichodesmium erythraeum (strain IMS101) genome is predicted to encode protein, which is 20-25% less than the average for other cyanobacteria and non-pathogenic, free-living bacteria. We use distinctive isolates and metagenomic data to show that low coding density observed in IMS101 is a common feature of the Trichodesmium genus both in culture and in situ. Transcriptome analysis indicates that 86% of the non-coding spacemore » is expressed, although the function of these transcripts is unclear. The density of noncoding, possible regulatory elements predicted in Trichodesmium, when normalized per intergenic kilobase, was comparable and two fold higher than that found in the gene dense genomes of the sympatric cyanobacterial genera Synechococcus and Prochlorococcus, respectively. Conserved Trichodesmium ncRNA secondary structures were predicted between most culture and metagenomic sequences lending support to the structural conservation. Conservation of these intergenic regions in spatiotemporally separated Trichodesmium populations suggests possible genus-wide selection for their maintenance. These large intergenic spacers may have developed during intervals of strong genetic drift caused by periodic blooms of a subset of genotypes, which may have reduced effective population size. Our data suggest that transposition of selfish DNA, low effective population size, and high fidelity replication allowed the unusual ‘inflation’ of noncoding sequence observed in Trichodesmium despite its oligotrophic lifestyle.« less
Wang, Yejun; MacKenzie, Keith D; White, Aaron P
2015-05-07
As sequencing costs are being lowered continuously, RNA-seq has gradually been adopted as the first choice for comparative transcriptome studies with bacteria. Unlike microarrays, RNA-seq can directly detect cDNA derived from mRNA transcripts at a single nucleotide resolution. Not only does this allow researchers to determine the absolute expression level of genes, but it also conveys information about transcript structure. Few automatic software tools have yet been established to investigate large-scale RNA-seq data for bacterial transcript structure analysis. In this study, 54 directional RNA-seq libraries from Salmonella serovar Typhimurium (S. Typhimurium) 14028s were examined for potential relationships between read mapping patterns and transcript structure. We developed an empirical method, combined with statistical tests, to automatically detect key transcript features, including transcriptional start sites (TSSs), transcriptional termination sites (TTSs) and operon organization. Using our method, we obtained 2,764 TSSs and 1,467 TTSs for 1331 and 844 different genes, respectively. Identification of TSSs facilitated further discrimination of 215 putative sigma 38 regulons and 863 potential sigma 70 regulons. Combining the TSSs and TTSs with intergenic distance and co-expression information, we comprehensively annotated the operon organization in S. Typhimurium 14028s. Our results show that directional RNA-seq can be used to detect transcriptional borders at an acceptable resolution of ±10-20 nucleotides. Technical limitations of the RNA-seq procedure may prevent single nucleotide resolution. The automatic transcript border detection methods, statistical models and operon organization pipeline that we have described could be widely applied to RNA-seq studies in other bacteria. Furthermore, the TSSs, TTSs, operons, promoters and unstranslated regions that we have defined for S. Typhimurium 14028s may constitute valuable resources that can be used for comparative analyses with other Salmonella serotypes.
Qurrat-ul-Ain; Seemab, Umair; Nawaz, Sulaman; Rashid, Sajid
2011-01-01
In human, WNT gene clusters are highly conserved at specie level and associated with carcinogenesis. Among them, WNT-10A and WNT-6 genes clustered in chromosome 2q35 are homologous to WNT-10B and WNT-1 located in chromosome 12q13, respectively. In an attempt to study co-regulation, the coordinated expression of these genes was monitored in human breast cancer tissues. As compared to normal tissue, both WNT-10A and WNT-10B genes exhibited lower expression while WNT-6 and WNT-1 showed increased expression in breast cancer tissues. The co-expression pattern was elaborated by detailed phylogenetic and syntenic analyses. Moreover, the intergenic and intragenic regions for these gene clusters were analyzed for studying the transcriptional regulation. In this context, adequate conserved binding sites for SOX and TCF family of transcriptional factors were observed. We propose that SOX9 and TCF4 may compete for binding at the promoters of WNT family genes thus regulating the disease phenotype. PMID:22355234
Chromosomal arrangement of leghemoglobin genes in soybean.
Lee, J S; Brown, G G; Verma, D P
1983-01-01
A cluster of four different leghemoglobin (Lb) genes was isolated from AluI-HaeIII and EcoRI genomic libraries of soybean in a set of overlapping clones which together include 45 kilobases (kb) of contiguous DNA. These four genes, including a pseudogene, are present in the same orientation and are arranged in the order: 5'-Lba-Lbc1-Lb psi-Lbc3-3'. The intergenic regions average 2.5 kb. In addition to this main Lb locus, there are other Lb genes which do not appear to be contiguous to this locus. A sequence probably common to the 3' region of Lb loci was found flanking the Lbc3 gene. The 3' flanking region of the main Lb locus also contains a sequence that appears to be expressed more abundantly in root tissue. Another sequence which is primarily expressed in root and leaf is found 5' to two Lb loci. Overall, the main leghemoglobin locus is similar in structure to the mammalian globin gene loci. Images PMID:6310504
Low-copy nuclear primers and ycf1 primers in Cactaceae.
Franck, Alan R; Cochrane, Bruce J; Garey, James R
2012-10-01
To increase the number of variable regions available for phylogenetic study in the Cactaceae, primers were developed for a portion of the plastid ycf1 gene and intron-spanning regions of two low-copy nuclear genes (isi1, nhx1). • Primers were tested on several families within Caryophyllales, focusing on the Cactaceae. Gel electrophoresis indicated positive amplification in most samples. Sequences of these three regions (isi1, nhx1, ycf1) from Harrisia exhibited variation similar to or greater than two plastid regions (atpB-rbcL intergenic spacer and rpl16 intron). • The isi, nhx, and ycf1 primers amplify phylogenetically useful information applicable to the Cactaceae and other families in the Caryophyllales.
Bolado-Martínez, Enrique; Pérez-Mendoza, Ansix; Alegría-Morquecho, Francisco Monserrat; Candia-Plata, María del Carmen; Aguayo-Verdugo, María del Rosario; Alvarez-Hernández, Gerardo
2012-01-01
To perform the analysis of specific regions of the major genes associated with resistance to isoniazid or rifampin. Twenty two M. tuberculosis strains, isolated from human samples obtained in Sonora, Mexico. Specific primers for hotspots of the rpoB, katG, inhA genes and the ahpC-oxyR intergenic region were used. The purified PCR products were sequenced. Mutations in the promoter of inhA, the ahpC-oxyR region, and codon 315 of katG and in 451 or 456 codons of rpoB, were identified. Detection of mutations not previously reported requires further genotypic analysis of Mycobacterium tuberculosis isolates in Sonora.
Huynh, A D; Leblon, G; Zickler, D
1986-01-01
Six ultra violet (UV) mutageneses were performed on the spo76 UV-sensitive mutant of Sordaria macrospora. Spo76 shows an early centromere cleavage associated with an arrest at the first meiotic division and therefore does not form ascospores. Moreover, it exhibits altered pairing structure (synaptonemal complex), revealing a defect in the sister-chromatid cohesiveness. From 37 revertants which partially restored sporulation, 34 extragenic suppressors of spo76 were isolated. All suppressors are altered in chromosomal pairing but, unlike spo76, show a wild type centromere cleavage. The 34 suppressors were assigned to six different genes and mapped. Only one of the suppressor genes is involved in repair functions.
Properties of promoters cloned randomly from the Saccharomyces cerevisiae genome.
Santangelo, G M; Tornow, J; McLaughlin, C S; Moldave, K
1988-01-01
Promoters were isolated at random from the genome of Saccharomyces cerevisiae by using a plasmid that contains a divergently arrayed pair of promoterless reporter genes. A comprehensive library was constructed by inserting random (DNase I-generated) fragments into the intergenic region upstream from the reporter genes. Simple in vivo assays for either reporter gene product (alcohol dehydrogenase or beta-galactosidase) allowed the rapid identification of promoters from among these random fragments. Poly(dA-dT) homopolymer tracts were present in three of five randomly cloned promoters. With two exceptions, each RNA start site detected was 40 to 100 base pairs downstream from a TATA element. All of the randomly cloned promoters were capable of activating reporter gene transcription bidirectionally. Interestingly, one of the promoter fragments originated in a region of the S. cerevisiae rDNA spacer; regulated divergent transcription (presumably by RNA polymerase II) initiated in the same region. Images PMID:2847031
Diversity and evolution of the emerging Pandoraviridae family.
Legendre, Matthieu; Fabre, Elisabeth; Poirot, Olivier; Jeudy, Sandra; Lartigue, Audrey; Alempic, Jean-Marie; Beucher, Laure; Philippe, Nadège; Bertaux, Lionel; Christo-Foroux, Eugène; Labadie, Karine; Couté, Yohann; Abergel, Chantal; Claverie, Jean-Michel
2018-06-11
With DNA genomes reaching 2.5 Mb packed in particles of bacterium-like shape and dimension, the first two Acanthamoeba-infecting pandoraviruses remained up to now the most complex viruses since their discovery in 2013. Our isolation of three new strains from distant locations and environments is now used to perform the first comparative genomics analysis of the emerging worldwide-distributed Pandoraviridae family. Thorough annotation of the genomes combining transcriptomic, proteomic, and bioinformatic analyses reveals many non-coding transcripts and significantly reduces the former set of predicted protein-coding genes. Here we show that the pandoraviruses exhibit an open pan-genome, the enormous size of which is not adequately explained by gene duplications or horizontal transfers. As most of the strain-specific genes have no extant homolog and exhibit statistical features comparable to intergenic regions, we suggest that de novo gene creation could contribute to the evolution of the giant pandoravirus genomes.
Agrawal, Renuka; Agrawal, Nitin; Tandon, Rajesh; Raina, Soom Nath
2013-01-01
Assessment of phylogenetic relationships is an important component of any successful crop improvement programme, as wild relatives of the crop species often carry agronomically beneficial traits. Since its domestication in East Africa, Eleusine coracana (2n = 4x = 36), a species belonging to the genus Eleusine (x = 8, 9, 10), has held a prominent place in the semi-arid regions of India, Nepal and Africa. The patterns of variation between the cultivated and wild species reported so far and the interpretations based upon them have been considered primarily in terms of nuclear events. We analysed, for the first time, the phylogenetic relationship between finger millet (E. coracana) and its wild relatives by species-specific chloroplast deoxyribonucleic acid (cpDNA) polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) and chloroplast simple sequence repeat (cpSSR) markers/sequences. Restriction fragment length polymorphism of the seven amplified chloroplast genes/intergenic spacers (trnK, psbD, psaA, trnH–trnK, trnL–trnF, 16S and trnS–psbC), nucleotide sequencing of the chloroplast trnK gene and chloroplast microsatellite polymorphism were analysed in all nine known species of Eleusine. The RFLP of all seven amplified chloroplast genes/intergenic spacers and trnK gene sequences in the diploid (2n = 16, 18, 20) and allotetraploid (2n = 36, 38) species resulted in well-resolved phylogenetic trees with high bootstrap values. Eleusine coracana, E. africana, E. tristachya, E. indica and E. kigeziensis did not show even a single change in restriction site. Eleusine intermedia and E. floccifolia were also shown to have identical cpDNA fragment patterns. The cpDNA diversity in Eleusine multiflora was found to be more extensive than that of the other eight species. The trnK gene sequence data complemented the results obtained by PCR–RFLP. The maternal lineage of all three allotetraploid species (AABB, AADD) was the same, with E. indica being the maternal diploid progenitor species. The markers specific to certain species were also identified. PMID:24790119
Agrawal, Renuka; Agrawal, Nitin; Tandon, Rajesh; Raina, Soom Nath
2014-01-01
Assessment of phylogenetic relationships is an important component of any successful crop improvement programme, as wild relatives of the crop species often carry agronomically beneficial traits. Since its domestication in East Africa, Eleusine coracana (2n = 4x = 36), a species belonging to the genus Eleusine (x = 8, 9, 10), has held a prominent place in the semi-arid regions of India, Nepal and Africa. The patterns of variation between the cultivated and wild species reported so far and the interpretations based upon them have been considered primarily in terms of nuclear events. We analysed, for the first time, the phylogenetic relationship between finger millet (E. coracana) and its wild relatives by species-specific chloroplast deoxyribonucleic acid (cpDNA) polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and chloroplast simple sequence repeat (cpSSR) markers/sequences. Restriction fragment length polymorphism of the seven amplified chloroplast genes/intergenic spacers (trnK, psbD, psaA, trnH-trnK, trnL-trnF, 16S and trnS-psbC), nucleotide sequencing of the chloroplast trnK gene and chloroplast microsatellite polymorphism were analysed in all nine known species of Eleusine. The RFLP of all seven amplified chloroplast genes/intergenic spacers and trnK gene sequences in the diploid (2n = 16, 18, 20) and allotetraploid (2n = 36, 38) species resulted in well-resolved phylogenetic trees with high bootstrap values. Eleusine coracana, E. africana, E. tristachya, E. indica and E. kigeziensis did not show even a single change in restriction site. Eleusine intermedia and E. floccifolia were also shown to have identical cpDNA fragment patterns. The cpDNA diversity in Eleusine multiflora was found to be more extensive than that of the other eight species. The trnK gene sequence data complemented the results obtained by PCR-RFLP. The maternal lineage of all three allotetraploid species (AABB, AADD) was the same, with E. indica being the maternal diploid progenitor species. The markers specific to certain species were also identified.
Garbuz, David G; Yushenova, Irina A; Zatsepina, Olga G; Przhiboro, Andrey A; Bettencourt, Brian R; Evgen'ev, Michael B
2011-03-22
Previously, we described the heat shock response in dipteran species belonging to the family Stratiomyidae that develop in thermally and chemically contrasting habitats including highly aggressive ones. Although all species studied exhibit high constitutive levels of Hsp70 accompanied by exceptionally high thermotolerance, we also detected characteristic interspecies differences in heat shock protein (Hsp) expression and survival after severe heat shock. Here, we analyzed genomic libraries from two Stratiomyidae species from thermally and chemically contrasting habitats and determined the structure and organization of their hsp70 clusters. Although the genomes of both species contain similar numbers of hsp70 genes, the spatial distribution of hsp70 copies differs characteristically. In a population of the eurytopic species Stratiomys singularior, which exists in thermally variable and chemically aggressive (hypersaline) conditions, the hsp70 copies form a tight cluster with approximately equal intergenic distances. In contrast, in a population of the stenotopic Oxycera pardalina that dwells in a stable cold spring, we did not find hsp70 copies in tandem orientation. In this species, the distance between individual hsp70 copies in the genome is very large, if they are linked at all. In O. pardalina we detected the hsp68 gene located next to a hsp70 copy in tandem orientation. Although the hsp70 coding sequences of S. singularior are highly homogenized via conversion, the structure and general arrangement of the hsp70 clusters are highly polymorphic, including gross aberrations, various deletions in intergenic regions, and insertion of incomplete Mariner transposons in close vicinity to the 3'-UTRs. The hsp70 gene families in S. singularior and O. pardalina evolved quite differently from one another. We demonstrated clear evidence of homogenizing gene conversion in the S. singularior hsp70 genes, which form tight clusters in this species. In the case of the other species, O. pardalina, we found no clear trace of concerted evolution for the dispersed hsp70 genes. Furthermore, in the latter species we detected hsp70 pseudogenes, representing a hallmark of the birth-and-death process.
2011-01-01
Background Previously, we described the heat shock response in dipteran species belonging to the family Stratiomyidae that develop in thermally and chemically contrasting habitats including highly aggressive ones. Although all species studied exhibit high constitutive levels of Hsp70 accompanied by exceptionally high thermotolerance, we also detected characteristic interspecies differences in heat shock protein (Hsp) expression and survival after severe heat shock. Here, we analyzed genomic libraries from two Stratiomyidae species from thermally and chemically contrasting habitats and determined the structure and organization of their hsp70 clusters. Results Although the genomes of both species contain similar numbers of hsp70 genes, the spatial distribution of hsp70 copies differs characteristically. In a population of the eurytopic species Stratiomys singularior, which exists in thermally variable and chemically aggressive (hypersaline) conditions, the hsp70 copies form a tight cluster with approximately equal intergenic distances. In contrast, in a population of the stenotopic Oxycera pardalina that dwells in a stable cold spring, we did not find hsp70 copies in tandem orientation. In this species, the distance between individual hsp70 copies in the genome is very large, if they are linked at all. In O. pardalina we detected the hsp68 gene located next to a hsp70 copy in tandem orientation. Although the hsp70 coding sequences of S. singularior are highly homogenized via conversion, the structure and general arrangement of the hsp70 clusters are highly polymorphic, including gross aberrations, various deletions in intergenic regions, and insertion of incomplete Mariner transposons in close vicinity to the 3'-UTRs. Conclusions The hsp70 gene families in S. singularior and O. pardalina evolved quite differently from one another. We demonstrated clear evidence of homogenizing gene conversion in the S. singularior hsp70 genes, which form tight clusters in this species. In the case of the other species, O. pardalina, we found no clear trace of concerted evolution for the dispersed hsp70 genes. Furthermore, in the latter species we detected hsp70 pseudogenes, representing a hallmark of the birth-and-death process. PMID:21426536
Cremonesi, P; Zottola, T; Locatelli, C; Pollera, C; Castiglioni, B; Scaccabarozzi, L; Moroni, P
2013-01-01
Staphylococcus aureus is an important human and animal pathogen, and is regarded as an important cause of intramammary infection (IMI) in ruminants. Staphylococcus aureus genetic variability and virulence factors have been well studied in veterinary medicine, especially in cows as support for control and management of IMI. The aim of the present study was to genotype 71 Staph. aureus isolates from the bulk tank and foremilk of water buffaloes (n=40) and from udder tissue (n=7) and foremilk (n=24) from small ruminants. The method used was previously applied to bovine Staph. aureus and is based on the amplification of the 16S-23S rRNA intergenic spacer region. The technique applied was able to identify different Staph. aureus genotypes isolated from dairy species other than the bovine species, and cluster the genotypes according to species and herds. Virulence gene distribution was consistent with genotype differentiation. The isolates were also characterized through determination of the presence of 19 virulence-associated genes by specific PCR. Enterotoxins A, C, D, G, I, J, and L were associated with Staph. aureus isolates from buffaloes, whereas enterotoxins C and L were linked to small ruminants. Genes coding for methicillin resistance, Panton-Valentine leukocidin, exfoliative toxins A and B, and enterotoxins B, E, and H were undetected. These findings indicate that RNA template-specific PCR is a valid technique for typing Staph. aureus from buffaloes and small ruminants and is a useful tool for understanding udder infection epidemiology. Copyright © 2013 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
The Evolution of Dark Matter in the Mitogenome of Seed Beetles
Sayadi, Ahmed; Immonen, Elina; Tellgren-Roth, Christian
2017-01-01
Abstract Animal mitogenomes are generally thought of as being economic and optimized for rapid replication and transcription. We use long-read sequencing technology to assemble the remarkable mitogenomes of four species of seed beetles. These are the largest circular mitogenomes ever assembled in insects, ranging from 24,496 to 26,613 bp in total length, and are exceptional in that some 40% consists of non-coding DNA. The size expansion is due to two very long intergenic spacers (LIGSs), rich in tandem repeats. The two LIGSs are present in all species but vary greatly in length (114–10,408 bp), show very low sequence similarity, divergent tandem repeat motifs, a very high AT content and concerted length evolution. The LIGSs have been retained for at least some 45 my but must have undergone repeated reductions and expansions, despite strong purifying selection on protein coding mtDNA genes. The LIGSs are located in two intergenic sites where a few recent studies of insects have also reported shorter LIGSs (>200 bp). These sites may represent spaces that tolerate neutral repeat array expansions or, alternatively, the LIGSs may function to allow a more economic translational machinery. Mitochondrial respiration in adult seed beetles is based almost exclusively on fatty acids, which reduces the need for building complex I of the oxidative phosphorylation pathway (NADH dehydrogenase). One possibility is thus that the LIGSs may allow depressed transcription of NAD genes. RNA sequencing showed that LIGSs are partly transcribed and transcriptional profiling suggested that all seven mtDNA NAD genes indeed show low levels of transcription and co-regulation of transcription across sexes and tissues. PMID:29048527
Locati, Mauro D; Pagano, Johanna F B; Ensink, Wim A; van Olst, Marina; van Leeuwen, Selina; Nehrdich, Ulrike; Zhu, Kongju; Spaink, Herman P; Girard, Geneviève; Rauwerda, Han; Jonker, Martijs J; Dekker, Rob J; Breit, Timo M
2017-04-01
5S rRNA is a ribosomal core component, transcribed from many gene copies organized in genomic repeats. Some eukaryotic species have two 5S rRNA types defined by their predominant expression in oogenesis or adult tissue. Our next-generation sequencing study on zebrafish egg, embryo, and adult tissue identified maternal-type 5S rRNA that is exclusively accumulated during oogenesis, replaced throughout the embryogenesis by a somatic-type, and thus virtually absent in adult somatic tissue. The maternal-type 5S rDNA contains several thousands of gene copies on chromosome 4 in tandem repeats with small intergenic regions, whereas the somatic-type is present in only 12 gene copies on chromosome 18 with large intergenic regions. The nine-nucleotide variation between the two 5S rRNA types likely affects TFIII binding and riboprotein L5 binding, probably leading to storage of maternal-type rRNA. Remarkably, these sequence differences are located exactly at the sequence-specific target site for genome integration by the 5S rRNA-specific Mutsu retrotransposon family. Thus, we could define maternal- and somatic-type MutsuDr subfamilies. Furthermore, we identified four additional maternal-type and two new somatic-type MutsuDr subfamilies, each with their own target sequence. This target-site specificity, frequently intact maternal-type retrotransposon elements, plus specific presence of Mutsu retrotransposon RNA and piRNA in egg and adult tissue, suggest an involvement of retrotransposons in achieving the differential copy number of the two types of 5S rDNA loci. © 2017 Locati et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Ferchichi, M; Valcheva, R; Prévost, H; Onno, B; Dousset, X
2008-06-01
Species-specific primers targeting the 16S-23S ribosomal DNA (rDNA) intergenic spacer region (ISR) were designed to rapidly discriminate between Lactobacillus mindensis, Lactobacillus panis, Lactobacillus paralimentarius, Lactobacillus pontis and Lactobacillus frumenti species recently isolated from French sourdough. The 16S-23S ISRs were amplified using primers 16S/p2 and 23S/p7, which anneal to positions 1388-1406 of the 16S rRNA gene and to positions 207-189 of the 23S rRNA gene respectively, Escherichia coli numbering (GenBank accession number V00331). Clone libraries of the resulting amplicons were constructed using a pCR2.1 TA cloning kit and sequenced. Species-specific primers were designed based on the sequences obtained and were used to amplify the 16S-23S ISR in the Lactobacillus species considered. For all of them, two PCR amplicons, designated as small ISR (S-ISR) and large ISR (L-ISR), were obtained. The L-ISR is composed of the corresponding S-ISR, interrupted by a sequence containing tRNA(Ile) and tRNA(Ala) genes. Based on these sequences, species-specific primers were designed and proved to identify accurately the species considered among 30 reference Lactobacillus species tested. Designed species-specific primers enable a rapid and accurate identification of L. mindensis, L. paralimentarius, L. panis, L. pontis and L. frumenti species among other lactobacilli. The proposed method provides a powerful and convenient means of rapidly identifying some sourdough lactobacilli, which could be of help in large starter culture surveys.
2011-01-01
Background The rpoB-psbZ (BZ) region of some fern plastid genomes (plastomes) has been noted to go through considerable genomic changes. Unraveling its evolutionary dynamics across all fern lineages will lead to clarify the fundamental process shaping fern plastome structure and organization. Results A total of 24 fern BZ sequences were investigated with taxon sampling covering all the extant fern orders. We found that: (i) a tree fern Plagiogyria japonica contained a novel gene order that can be generated from either the ancestral Angiopteris type or the derived Adiantum type via a single inversion; (ii) the trnY-trnE intergenic spacer (IGS) of the filmy fern Vandenboschia radicans was expanded 3-fold due to the tandem 27-bp repeats which showed strong sequence similarity with the anticodon domain of trnY; (iii) the trnY-trnE IGSs of two horsetail ferns Equisetum ramosissimum and E. arvense underwent an unprecedented 5-kb long expansion, more than a quarter of which was consisted of a single type of direct repeats also relevant to the trnY anticodon domain; and (iv) ycf66 has independently lost at least four times in ferns. Conclusions Our results provided fresh insights into the evolutionary process of fern BZ regions. The intermediate BZ gene order was not detected, supporting that the Adiantum type was generated by two inversions occurring in pairs. The occurrence of Vandenboschia 27-bp repeats represents the first evidence of partial tRNA gene duplication in fern plastomes. Repeats potentially forming a stem-loop structure play major roles in the expansion of the trnY-trnE IGS. PMID:21486489
Gao, Lei; Zhou, Yuan; Wang, Zhi-Wei; Su, Ying-Juan; Wang, Ting
2011-04-13
The rpoB-psbZ (BZ) region of some fern plastid genomes (plastomes) has been noted to go through considerable genomic changes. Unraveling its evolutionary dynamics across all fern lineages will lead to clarify the fundamental process shaping fern plastome structure and organization. A total of 24 fern BZ sequences were investigated with taxon sampling covering all the extant fern orders. We found that: (i) a tree fern Plagiogyria japonica contained a novel gene order that can be generated from either the ancestral Angiopteris type or the derived Adiantum type via a single inversion; (ii) the trnY-trnE intergenic spacer (IGS) of the filmy fern Vandenboschia radicans was expanded 3-fold due to the tandem 27-bp repeats which showed strong sequence similarity with the anticodon domain of trnY; (iii) the trnY-trnE IGSs of two horsetail ferns Equisetum ramosissimum and E. arvense underwent an unprecedented 5-kb long expansion, more than a quarter of which was consisted of a single type of direct repeats also relevant to the trnY anticodon domain; and (iv) ycf66 has independently lost at least four times in ferns. Our results provided fresh insights into the evolutionary process of fern BZ regions. The intermediate BZ gene order was not detected, supporting that the Adiantum type was generated by two inversions occurring in pairs. The occurrence of Vandenboschia 27-bp repeats represents the first evidence of partial tRNA gene duplication in fern plastomes. Repeats potentially forming a stem-loop structure play major roles in the expansion of the trnY-trnE IGS.
HBS1L-MYB intergenic variants modulate fetal hemoglobin via long-range MYB enhancers
Stadhouders, Ralph; Aktuna, Suleyman; Thongjuea, Supat; Aghajanirefah, Ali; Pourfarzad, Farzin; van IJcken, Wilfred; Lenhard, Boris; Rooks, Helen; Best, Steve; Menzel, Stephan; Grosveld, Frank; Thein, Swee Lay; Soler, Eric
2014-01-01
Genetic studies have identified common variants within the intergenic region (HBS1L-MYB) between GTP-binding elongation factor HBS1L and myeloblastosis oncogene MYB on chromosome 6q that are associated with elevated fetal hemoglobin (HbF) levels and alterations of other clinically important human erythroid traits. It is unclear how these noncoding sequence variants affect multiple erythrocyte characteristics. Here, we determined that several HBS1L-MYB intergenic variants affect regulatory elements that are occupied by key erythroid transcription factors within this region. These elements interact with MYB, a critical regulator of erythroid development and HbF levels. We found that several HBS1L-MYB intergenic variants reduce transcription factor binding, affecting long-range interactions with MYB and MYB expression levels. These data provide a functional explanation for the genetic association of HBS1L-MYB intergenic polymorphisms with human erythroid traits and HbF levels. Our results further designate MYB as a target for therapeutic induction of HbF to ameliorate sickle cell and β-thalassemia disease severity. PMID:24614105
Mumbach, Maxwell R; Satpathy, Ansuman T; Boyle, Evan A; Dai, Chao; Gowen, Benjamin G; Cho, Seung Woo; Nguyen, Michelle L; Rubin, Adam J; Granja, Jeffrey M; Kazane, Katelynn R; Wei, Yuning; Nguyen, Trieu; Greenside, Peyton G; Corces, M Ryan; Tycko, Josh; Simeonov, Dimitre R; Suliman, Nabeela; Li, Rui; Xu, Jin; Flynn, Ryan A; Kundaje, Anshul; Khavari, Paul A; Marson, Alexander; Corn, Jacob E; Quertermous, Thomas; Greenleaf, William J; Chang, Howard Y
2018-01-01
The challenge of linking intergenic mutations to target genes has limited molecular understanding of human diseases. Here we show that H3K27ac HiChIP generates high-resolution contact maps of active enhancers and target genes in rare primary human T cell subtypes and coronary artery smooth muscle cells. Differentiation of naive T cells into T helper 17 cells or regulatory T cells creates subtype-specific enhancer–promoter interactions, specifically at regions of shared DNA accessibility. These data provide a principled means of assigning molecular functions to autoimmune and cardiovascular disease risk variants, linking hundreds of noncoding variants to putative gene targets. Target genes identified with HiChIP are further supported by CRISPR interference and activation at linked enhancers, by the presence of expression quantitative trait loci, and by allele-specific enhancer loops in patient-derived primary cells. The majority of disease-associated enhancers contact genes beyond the nearest gene in the linear genome, leading to a fourfold increase in the number of potential target genes for autoimmune and cardiovascular diseases. PMID:28945252
Symonová, Radka; Ocalewicz, Konrad; Kirtiklis, Lech; Delmastro, Giovanni Battista; Pelikánová, Šárka; Garcia, Sonia; Kovařík, Aleš
2017-05-18
Pikes represent an important genus (Esox) harbouring a pre-duplication karyotype (2n = 2x = 50) of economically important salmonid pseudopolyploids. Here, we have characterized the 5S ribosomal RNA genes (rDNA) in Esox lucius and its closely related E. cisalpinus using cytogenetic, molecular and genomic approaches. Intragenomic homogeneity and copy number estimation was carried out using Illumina reads. The higher-order structure of rDNA arrays was investigated by the analysis of long PacBio reads. Position of loci on chromosomes was determined by FISH. DNA methylation was analysed by methylation-sensitive restriction enzymes. The 5S rDNA loci occupy exclusively (peri)centromeric regions on 30-38 acrocentric chromosomes in both E. lucius and E. cisalpinus. The large number of loci is accompanied by extreme amplification of genes (>20,000 copies), which is to the best of our knowledge one of the highest copy number of rRNA genes in animals ever reported. Conserved secondary structures of predicted 5S rRNAs indicate that most of the amplified genes are potentially functional. Only few SNPs were found in genic regions indicating their high homogeneity while intergenic spacers were more heterogeneous and several families were identified. Analysis of 10-30 kb-long molecules sequenced by the PacBio technology (containing about 40% of total 5S rDNA) revealed that the vast majority (96%) of genes are organised in large several kilobase-long blocks. Dispersed genes or short tandems were less common (4%). The adjacent 5S blocks were directly linked, separated by intervening DNA and even inverted. The 5S units differing in the intergenic spacers formed both homogeneous and heterogeneous (mixed) blocks indicating variable degree of homogenisation between the loci. Both E. lucius and E. cisalpinus 5S rDNA was heavily methylated at CG dinucleotides. Extreme amplification of 5S rRNA genes in the Esox genome occurred in the absence of significant pseudogenisation suggesting its recent origin and/or intensive homogenisation processes. The dense methylation of units indicates that powerful epigenetic mechanisms have evolved in this group of fish to silence amplified genes. We discuss how the higher-order repeat structures impact on homogenisation of 5S rDNA in the genome.
Turmel, Monique; Otis, Christian; Lemieux, Claude
2005-01-01
Background The Streptophyta comprise all land plants and six monophyletic groups of charophycean green algae. Phylogenetic analyses of four genes from three cellular compartments support the following branching order for these algal lineages: Mesostigmatales, Chlorokybales, Klebsormidiales, Zygnematales, Coleochaetales and Charales, with the last lineage being sister to land plants. Comparative analyses of the Mesostigma viride (Mesostigmatales) and land plant chloroplast genome sequences revealed that this genome experienced many gene losses, intron insertions and gene rearrangements during the evolution of charophyceans. On the other hand, the chloroplast genome of Chaetosphaeridium globosum (Coleochaetales) is highly similar to its land plant counterparts in terms of gene content, intron composition and gene order, indicating that most of the features characteristic of land plant chloroplast DNA (cpDNA) were acquired from charophycean green algae. To gain further insight into when the highly conservative pattern displayed by land plant cpDNAs originated in the Streptophyta, we have determined the cpDNA sequences of the distantly related zygnematalean algae Staurastrum punctulatum and Zygnema circumcarinatum. Results The 157,089 bp Staurastrum and 165,372 bp Zygnema cpDNAs encode 121 and 125 genes, respectively. Although both cpDNAs lack an rRNA-encoding inverted repeat (IR), they are substantially larger than Chaetosphaeridium and land plant cpDNAs. This increased size is explained by the expansion of intergenic spacers and introns. The Staurastrum and Zygnema genomes differ extensively from one another and from their streptophyte counterparts at the level of gene order, with the Staurastrum genome more closely resembling its land plant counterparts than does Zygnema cpDNA. Many intergenic regions in Zygnema cpDNA harbor tandem repeats. The introns in both Staurastrum (8 introns) and Zygnema (13 introns) cpDNAs represent subsets of those found in land plant cpDNAs. They represent 16 distinct insertion sites, only five of which are shared by the two zygnematalean genomes. Three of these insertions sites have not been identified in Chaetosphaeridium cpDNA. Conclusion The chloroplast genome experienced substantial changes in overall structure, gene order, and intron content during the evolution of the Zygnematales. Most of the features considered earlier as typical of land plant cpDNAs probably originated before the emergence of the Zygnematales and Coleochaetales. PMID:16236178
Melia, Tisha; Hao, Pengying; Yilmaz, Feyza
2015-01-01
Long intergenic noncoding RNAs (lincRNAs) are increasingly recognized as key chromatin regulators, yet few studies have characterized lincRNAs in a single tissue under diverse conditions. Here, we analyzed 45 mouse liver RNA sequencing (RNA-Seq) data sets collected under diverse conditions to systematically characterize 4,961 liver lincRNAs, 59% of them novel, with regard to gene structures, species conservation, chromatin accessibility, transcription factor binding, and epigenetic states. To investigate the potential for functionality, we focused on the responses of the liver lincRNAs to growth hormone stimulation, which imparts clinically relevant sex differences to hepatic metabolism and liver disease susceptibility. Sex-biased expression characterized 247 liver lincRNAs, with many being nuclear RNA enriched and regulated by growth hormone. The sex-biased lincRNA genes are enriched for nearby and correspondingly sex-biased accessible chromatin regions, as well as sex-biased binding sites for growth hormone-regulated transcriptional activators (STAT5, hepatocyte nuclear factor 6 [HNF6], FOXA1, and FOXA2) and transcriptional repressors (CUX2 and BCL6). Repression of female-specific lincRNAs in male liver, but not that of male-specific lincRNAs in female liver, was associated with enrichment of H3K27me3-associated inactive states and poised (bivalent) enhancer states. Strikingly, we found that liver-specific lincRNA gene promoters are more highly species conserved and have a significantly higher frequency of proximal binding by liver transcription factors than liver-specific protein-coding gene promoters. Orthologs for many liver lincRNAs were identified in one or more supraprimates, including two rat lincRNAs showing the same growth hormone-regulated, sex-biased expression as their mouse counterparts. This integrative analysis of liver lincRNA chromatin states, transcription factor occupancy, and growth hormone regulation provides novel insights into the expression of sex-specific lincRNAs and their potential for regulation of sex differences in liver physiology and disease. PMID:26459762
Wenderska, Iwona B; Latos, Andrew; Pruitt, Benjamin; Palmer, Sara; Spatafora, Grace; Senadheera, Dilani B; Cvitkovitch, Dennis G
2017-01-01
In the cariogenic Streptococcus mutans , competence development is regulated by the ComRS signaling system comprised of the ComR regulator and the ComS prepeptide to the competence signaling peptide XIP (ComX-inducing peptide). Aside from competence development, XIP signaling has been demonstrated to regulate cell lysis, and recently, the expression of bacteriocins, small antimicrobial peptides used by bacteria to inhibit closely related species. Our study further explores the effect of XIP signaling on the S. mutans transcriptome. RNA sequencing revealed that XIP induction resulted in a global change in gene expression that was consistent with a stress response. An increase in several membrane-bound regulators, including HdrRM and BrsRM, involved in bacteriocin production, and the VicRKX system, involved in acid tolerance and biofilm formation, was observed. Furthermore, global changes in gene expression corresponded to changes observed during the stringent response to amino acid starvation. Effects were also observed on genes involved in sugar transport and carbon catabolite repression and included the levQRST and levDEFG operons. Finally, our work identified a novel heat shock-responsive intergenic region, encoding a small RNA, with a potential role in competence shutoff. IMPORTANCE Genetic competence provides bacteria with an opportunity to increase genetic diversity or acquire novel traits conferring a survival advantage. In the cariogenic pathogen Streptococcus mutans , DNA transformation is regulated by the competence stimulating peptide XIP (ComX-inducing peptide). The present study utilizes high-throughput RNA sequencing (RNAseq) to provide a greater understanding of how global gene expression patterns change in response to XIP. Overall, our work demonstrates that in S. mutans , XIP signaling induces a response that resembles the stringent response to amino acid starvation. We further identify a novel heat shock-responsive intergenic region with a potential role in competence shutoff. Together, our results provide further evidence that multiple stress response mechanisms are linked through the genetic competence signaling pathway in S. mutans .
RNA Sequencing of the Exercise Transcriptome in Equine Athletes
Verini-Supplizi, Andrea; Barcaccia, Gianni; Albiero, Alessandro; D'Angelo, Michela; Campagna, Davide; Valle, Giorgio; Felicetti, Michela; Silvestrelli, Maurizio; Cappelli, Katia
2013-01-01
The horse is an optimal model organism for studying the genomic response to exercise-induced stress, due to its natural aptitude for athletic performance and the relative homogeneity of its genetic and environmental backgrounds. Here, we applied RNA-sequencing analysis through the use of SOLiD technology in an experimental framework centered on exercise-induced stress during endurance races in equine athletes. We monitored the transcriptional landscape by comparing gene expression levels between animals at rest and after competition. Overall, we observed a shift from coding to non-coding regions, suggesting that the stress response involves the differential expression of not annotated regions. Notably, we observed significant post-race increases of reads that correspond to repeats, especially the intergenic and intronic L1 and L2 transposable elements. We also observed increased expression of the antisense strands compared to the sense strands in intronic and regulatory regions (1 kb up- and downstream) of the genes, suggesting that antisense transcription could be one of the main mechanisms for transposon regulation in the horse under stress conditions. We identified a large number of transcripts corresponding to intergenic and intronic regions putatively associated with new transcriptional elements. Gene expression and pathway analysis allowed us to identify several biological processes and molecular functions that may be involved with exercise-induced stress. Ontology clustering reflected mechanisms that are already known to be stress activated (e.g., chemokine-type cytokines, Toll-like receptors, and kinases), as well as “nucleic acid binding” and “signal transduction activity” functions. There was also a general and transient decrease in the global rates of protein synthesis, which would be expected after strenuous global stress. In sum, our network analysis points toward the involvement of specific gene clusters in equine exercise-induced stress, including those involved in inflammation, cell signaling, and immune interactions. PMID:24391776
Bojanovič, Klara; D'Arrigo, Isotta
2017-01-01
ABSTRACT Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings. IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one condition, suggesting their involvement in adaptation to stress conditions and identifying interesting candidates for further functional characterization. PMID:28130298
Li, Shan; Dong, Xia; Su, Zhengchang
2013-07-30
Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA-seq short reads.
2013-01-01
Background Although prokaryotic gene transcription has been studied over decades, many aspects of the process remain poorly understood. Particularly, recent studies have revealed that transcriptomes in many prokaryotes are far more complex than previously thought. Genes in an operon are often alternatively and dynamically transcribed under different conditions, and a large portion of genes and intergenic regions have antisense RNA (asRNA) and non-coding RNA (ncRNA) transcripts, respectively. Ironically, similar studies have not been conducted in the model bacterium E coli K12, thus it is unknown whether or not the bacterium possesses similar complex transcriptomes. Furthermore, although RNA-seq becomes the major method for analyzing the complexity of prokaryotic transcriptome, it is still a challenging task to accurately assemble full length transcripts using short RNA-seq reads. Results To fill these gaps, we have profiled the transcriptomes of E. coli K12 under different culture conditions and growth phases using a highly specific directional RNA-seq technique that can capture various types of transcripts in the bacterial cells, combined with a highly accurate and robust algorithm and tool TruHMM (http://bioinfolab.uncc.edu/TruHmm_package/) for assembling full length transcripts. We found that 46.9 ~ 63.4% of expressed operons were utilized in their putative alternative forms, 72.23 ~ 89.54% genes had putative asRNA transcripts and 51.37 ~ 72.74% intergenic regions had putative ncRNA transcripts under different culture conditions and growth phases. Conclusions As has been demonstrated in many other prokaryotes, E. coli K12 also has a highly complex and dynamic transcriptomes under different culture conditions and growth phases. Such complex and dynamic transcriptomes might play important roles in the physiology of the bacterium. TruHMM is a highly accurate and robust algorithm for assembling full-length transcripts in prokaryotes using directional RNA-seq short reads. PMID:23899370
Toro, N; Martínez-Rodríguez, L; Martínez-Abarca, F
2014-10-01
Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3' terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species.
Toro, N; Martínez-Rodríguez, L; Martínez-Abarca, F
2014-01-01
Group II introns are self-splicing catalytic RNAs that act as mobile retroelements. In bacteria, they are thought to be tolerated to some extent because they self-splice and home preferentially to sites outside of functional genes, generally within intergenic regions or in other mobile genetic elements, by mechanisms including the divergence of DNA target specificity to prevent target site saturation. RmInt1 is a mobile group II intron that is widespread in natural populations of Sinorhizobium meliloti and was first described in the GR4 strain. Like other bacterial group II introns, RmInt1 tends to evolve toward an inactive form by fragmentation, with loss of the 3′ terminus. We identified genomic evidence of a fragmented intron closely related to RmInt1 buried in the genome of the extant S. meliloti/S. medicae species. By studying this intron, we obtained evidence for the occurrence of intron insertion before the divergence of ancient rhizobial species. This fragmented group II intron has thus existed for a long time and has provided sequence variation, on which selection can act, contributing to diverse genetic rearrangements, and to generate pan-genome divergence after strain differentiation. The data presented here suggest that fragmented group II introns within intergenic regions closed to functionally important neighboring genes may have been microevolutionary forces driving adaptive evolution of these rhizobial species. PMID:24736785
Liu, Feng; Pang, Shaojun; Luo, Minbo
2016-01-01
Sargassum fusiforme (Harvey) Setchell (=Hizikia fusiformis (Harvey) Okamura) is one of the most important economic seaweeds for mariculture in China. In this study, we present the complete mitochondrial genome of S. fusiforme. The genome is 34,696 bp in length with circular organization, encoding the standard set of three ribosomal RNA genes (rRNA), 25 transfer RNA genes (tRNA), 35 protein-coding genes, and two conserved open reading frames (ORFs). Its total AT content is 62.47%, lower than other brown algae except Pylaiella littoralis. The mitogenome carries 1571 bp of intergenic region constituting 4.53% of the genome, and 13 pairs of overlapping genes with the overlap size from 1 to 90 bp. The phylogenetic analyses based on 35 protein-coding genes reveal that S. fusiforme has a closer evolutionary relationship with Sargassum muticum than Sargassum horneri, indicating Hizikia are not distinct evolutionary entity and should be reduced to synonymy with Sargassum.
High-throughput annotation of full-length long noncoding RNAs with capture long-read sequencing.
Lagarde, Julien; Uszczynska-Ratajczak, Barbara; Carbonell, Silvia; Pérez-Lluch, Sílvia; Abad, Amaya; Davis, Carrie; Gingeras, Thomas R; Frankish, Adam; Harrow, Jennifer; Guigo, Roderic; Johnson, Rory
2017-12-01
Accurate annotation of genes and their transcripts is a foundation of genomics, but currently no annotation technique combines throughput and accuracy. As a result, reference gene collections remain incomplete-many gene models are fragmentary, and thousands more remain uncataloged, particularly for long noncoding RNAs (lncRNAs). To accelerate lncRNA annotation, the GENCODE consortium has developed RNA Capture Long Seq (CLS), which combines targeted RNA capture with third-generation long-read sequencing. Here we present an experimental reannotation of the GENCODE intergenic lncRNA populations in matched human and mouse tissues that resulted in novel transcript models for 3,574 and 561 gene loci, respectively. CLS approximately doubled the annotated complexity of targeted loci, outperforming existing short-read techniques. Full-length transcript models produced by CLS enabled us to definitively characterize the genomic features of lncRNAs, including promoter and gene structure, and protein-coding potential. Thus, CLS removes a long-standing bottleneck in transcriptome annotation and generates manual-quality full-length transcript models at high-throughput scales.
Mineralogical Control on Microbial Diversity in a Weathered Granite?
NASA Astrophysics Data System (ADS)
Gleeson, D.; Clipson, N.; McDermott, F.
2003-12-01
Mineral transformation reactions and the behaviour of metals in rock and soils are affected not only by physicochemical parameters but also by biological factors, particularly by microbial activity. Microbes inhabit a wide range of niches in surface and subsurface environments, with mineral-microbe interactions being generally poorly understood. The focus of this study is to elucidate the role of microbial activity in the weathering of common silicate minerals in granitic rocks. A site in the Wicklow Mountains (Ireland) has been identified that consists of an outcrop surface of Caledonian (ca. 400 million years old) pegmatitic granite from which large intact crystals of variably weathered muscovite, plagioclase, K-feldspar and quartz were sampled, together with whole-rock granite. Culture-based microbial approaches have been widely used to profile microbial communities, particularly from copiotrophic environments, but it is now well established that for oligotrophic environments such as those that would be expected on weathering faces, perhaps less than 1% of microbial diversity can be profiled by cultural means. A number of culture-independent molecular based approaches have been developed to profile microbial diversity and community structure. These rely on successfully isolating environmental DNA from a given environment, followed by the use of the polymerase chain reaction (PCR) to amplify the typically small quantities of extracted DNA. Amplified DNA can then be analysed using cloning based approaches as well as community fingerprinting systems such as denaturing gradient gel electrophoresis (DGGE), terminal restriction fragment length polymorphism (TRFLP) and ribosomal intergenic spacer analysis (RISA). Community DNA was extracted and the intergenic spacer region (ITS) between small (16S) and large (23S) bacterial subunit rRNA genes was amplified. RISA fragments were then electrophoresed on a non-denaturing polyacrylamide gel. Banding patterns suggest that the bacterial population in whole rock, which contained approximately 30 separated bands (indicative of the number of bacterial ribotypes), is greater than muscovite (20), K-feldspar (15), and plagioclase feldspar (12) with quartz exhibiting the lowest number (6). These bands were excised from the gel for sequencing, allowing identification of the major populations. An automated approach was also used to assess similarity of bacterial communities present on each sample type, and this allowed for a statistical evaluation of bacterial diversity. Petrographic studies were carried out to assess mineral alteration effects. Scanning electron microscopy (SEM) was used to visualise in-situ bacterial cells.
Bråte, Jon; Adamski, Marcin; Neumann, Ralf S; Shalchian-Tabrizi, Kamran; Adamska, Maja
2015-12-22
Long non-coding RNAs (lncRNAs) play important regulatory roles during animal development, and it has been hypothesized that an RNA-based gene regulation was important for the evolution of developmental complexity in animals. However, most studies of lncRNA gene regulation have been performed using model animal species, and very little is known about this type of gene regulation in non-bilaterians. We have therefore analysed RNA-Seq data derived from a comprehensive set of embryogenesis stages in the calcareous sponge Sycon ciliatum and identified hundreds of developmentally expressed intergenic lncRNAs (lincRNAs) in this species. In situ hybridization of selected lincRNAs revealed dynamic spatial and temporal expression during embryonic development. More than 600 lincRNAs constitute integral parts of differentially expressed gene modules, which also contain known developmental regulatory genes, e.g. transcription factors and signalling molecules. This study provides insights into the non-coding gene repertoire of one of the earliest evolved animal lineages, and suggests that RNA-based gene regulation was probably present in the last common ancestor of animals. © 2015 The Authors.
Foox, Jonathan; Brugler, Mercer; Siddall, Mark Edward; Rodríguez, Estefanía
2016-07-01
Six complete and three partial actiniarian mitochondrial genomes were amplified in two semi-circles using long-range PCR and pyrosequenced in a single run on a 454 GS Junior, doubling the number of complete mitogenomes available within the order. Typical metazoan mtDNA features included circularity, 13 protein-coding genes, 2 ribosomal RNA genes, and length ranging from 17,498 to 19,727 bp. Several typical anthozoan mitochondrial genome features were also observed including the presence of only two transfer RNA genes, elevated A + T richness ranging from 54.9 to 62.4%, large intergenic regions, and group 1 introns interrupting NADH dehydrogenase subunit 5 and cytochrome c oxidase subunit I, the latter of which possesses a homing endonuclease gene. Within the sea anemone Alicia sansibarensis, we report the first mitochondrial gene order rearrangement within the Actiniaria, as well as putative novel non-canonical protein-coding genes. Phylogenetic analyses of all 13 protein-coding and 2 ribosomal genes largely corroborated current hypotheses of sea anemone interrelatedness, with a few lower-level differences.
Definition of RNA Polymerase II CoTC Terminator Elements in the Human Genome
Nojima, Takayuki; Dienstbier, Martin; Murphy, Shona; Proudfoot, Nicholas J.; Dye, Michael J.
2013-01-01
Summary Mammalian RNA polymerase II (Pol II) transcription termination is an essential step in protein-coding gene expression that is mediated by pre-mRNA processing activities and DNA-encoded terminator elements. Although much is known about the role of pre-mRNA processing in termination, our understanding of the characteristics and generality of terminator elements is limited. Whereas promoter databases list up to 40,000 known and potential Pol II promoter sequences, fewer than ten Pol II terminator sequences have been described. Using our knowledge of the human β-globin terminator mechanism, we have developed a selection strategy for mapping mammalian Pol II terminator elements. We report the identification of 78 cotranscriptional cleavage (CoTC)-type terminator elements at endogenous gene loci. The results of this analysis pave the way for the full understanding of Pol II termination pathways and their roles in gene expression. PMID:23562152
Lee, Tzuu-fen; Gurazada, Sai Guna Ranjan; Zhai, Jixian; Li, Shengben; Simon, Stacey A; Matzke, Marjori A; Chen, Xuemei; Meyers, Blake C
2012-07-01
In plants, heterochromatin is maintained by a small RNA-based gene silencing mechanism known as RNA-directed DNA methylation (RdDM). RdDM requires the non-redundant functions of two plant-specific DNA-dependent RNA polymerases (RNAP), RNAP IV and RNAP V. RNAP IV plays a major role in siRNA biogenesis, while RNAP V may recruit DNA methylation machinery to target endogenous loci for silencing. Although small RNA-generating regions that are dependent on both RNAP IV and RNAP V have been identified previously, the genomic loci targeted by RNAP V for siRNA accumulation and silencing have not been described extensively. To characterize the RNAP V-dependent, heterochromatic siRNA-generating regions in the Arabidopsis genome, we deeply sequenced the small RNA populations of wild-type and RNAP V null mutant (nrpe1) plants. Our results showed that RNAP V-dependent siRNA-generating loci are associated predominately with short repetitive sequences in intergenic regions. Suppression of small RNA production from short repetitive sequences was also prominent in RdDM mutants including dms4, drd1, dms3 and rdm1, reflecting the known association of these RdDM effectors with RNAP V. The genomic regions targeted by RNAP V were small, with an estimated average length of 238 bp. Our results suggest that RNAP V affects siRNA production from genomic loci with features dissimilar to known RNAP IV-dependent loci. RNAP V, along with RNAP IV and DRM1/2, may target and silence a set of small, intergenic transposable elements located in dispersed genomic regions for silencing. Silencing at these loci may be actively reinforced by RdDM.
Comparison of Ultra-Conserved Elements in Drosophilids and Vertebrates
Makunin, Igor V.; Shloma, Viktor V.; Stephen, Stuart J.; Pheasant, Michael; Belyakin, Stepan N.
2013-01-01
Metazoan genomes contain many ultra-conserved elements (UCEs), long sequences identical between distant species. In this study we identified UCEs in drosophilid and vertebrate species with a similar level of phylogenetic divergence measured at protein-coding regions, and demonstrated that both the length and number of UCEs are larger in vertebrates. The proportion of non-exonic UCEs declines in distant drosophilids whilst an opposite trend was observed in vertebrates. We generated a set of 2,126 Sophophora UCEs by merging elements identified in several drosophila species and compared these to the eutherian UCEs identified in placental mammals. In contrast to vertebrates, the Sophophora UCEs are depleted around transcription start sites. Analysis of 52,954 P-element, piggyBac and Minos insertions in the D. melanogaster genome revealed depletion of the P-element and piggyBac insertions in and around the Sophophora UCEs. We examined eleven fly strains with transposon insertions into the intergenic UCEs and identified associated phenotypes in five strains. Four insertions behave as recessive lethals, and in one case we observed a suppression of the marker gene within the transgene, presumably by silenced chromatin around the integration site. To confirm the lethality is caused by integration of transposons we performed a phenotype rescue experiment for two stocks and demonstrated that the excision of the transposons from the intergenic UCEs restores viability. Sequencing of DNA after the transposon excision in one fly strain with the restored viability revealed a 47 bp insertion at the original transposon integration site suggesting that the nature of the mutation is important for the appearance of the phenotype. Our results suggest that the UCEs in flies and vertebrates have both common and distinct features, and demonstrate that a significant proportion of intergenic drosophila UCEs are sensitive to disruption. PMID:24349264
Gene finding in metatranscriptomic sequences.
Ismail, Wazim Mohammed; Ye, Yuzhen; Tang, Haixu
2014-01-01
Metatranscriptomic sequencing is a highly sensitive bioassay of functional activity in a microbial community, providing complementary information to the metagenomic sequencing of the community. The acquisition of the metatranscriptomic sequences will enable us to refine the annotations of the metagenomes, and to study the gene activities and their regulation in complex microbial communities and their dynamics. In this paper, we present TransGeneScan, a software tool for finding genes in assembled transcripts from metatranscriptomic sequences. By incorporating several features of metatranscriptomic sequencing, including strand-specificity, short intergenic regions, and putative antisense transcripts into a Hidden Markov Model, TranGeneScan can predict a sense transcript containing one or multiple genes (in an operon) or an antisense transcript. We tested TransGeneScan on a mock metatranscriptomic data set containing three known bacterial genomes. The results showed that TranGeneScan performs better than metagenomic gene finders (MetaGeneMark and FragGeneScan) on predicting protein coding genes in assembled transcripts, and achieves comparable or even higher accuracy than gene finders for microbial genomes (Glimmer and GeneMark). These results imply, with the assistance of metatranscriptomic sequencing, we can obtain a broad and precise picture about the genes (and their functions) in a microbial community. TransGeneScan is available as open-source software on SourceForge at https://sourceforge.net/projects/transgenescan/.
Zampini, Massimiliano; Mur, Luis A J; Rees Stevens, Pauline; Pachebat, Justin A; Newbold, C James; Hayes, Finbarr; Kingston-Smith, Alison
2016-05-25
Synthetic biology is characterized by the development of novel and powerful DNA fabrication methods and by the application of engineering principles to biology. The current study describes Terminator Operon Reporter (TOR), a new gene assembly technology based on the conditional activation of a reporter gene in response to sequence errors occurring at the assembly stage of the synthetic element. These errors are monitored by a transcription terminator that is placed between the synthetic gene and reporter gene. Switching of this terminator between active and inactive states dictates the transcription status of the downstream reporter gene to provide a rapid and facile readout of the accuracy of synthetic assembly. Designed specifically and uniquely for the synthesis of protein coding genes in bacteria, TOR allows the rapid and cost-effective fabrication of synthetic constructs by employing oligonucleotides at the most basic purification level (desalted) and without the need for costly and time-consuming post-synthesis correction methods. Thus, TOR streamlines gene assembly approaches, which are central to the future development of synthetic biology.
Targeting Conserved Genes in Fusarium Species.
Gil-Serna, Jéssica; Patiño, Belén; Jurado, Miguel; Mirete, Salvador; Vázquez, Covadonga; González-Jaén, M Teresa
2017-01-01
Fumonisins are important mycotoxins contaminating foods and feeds which are mainly produced by F. verticillioides and F. proliferatum. Additionally, both are pathogens of maize and other cereals. We describe two highly sensitive, rapid, and species-specific PCR protocols which enable detection and discrimination of these closely related species in cereal flour or grain samples. The specific primer pairs of these assays were based on the intergenic spacer region of the multicopy rDNA unit which highly improves the sensitivity of the PCR assay in comparison with single-copy target regions.
Chalker, Victoria J; Waller, Andrew; Webb, Katy; Spearing, Emma; Crosse, Patricia; Brownlie, Joe; Erles, Kerstin
2012-06-01
The genetic diversity and antibiotic resistance profiles of 38 Streptococcus equi subsp. zooepidemicus isolates were determined from a kennelled canine population during two outbreaks of hemorrhagic pneumonia (1999 to 2002 and 2007 to 2010). Analysis of the szp gene hypervariable region and the 16S-23S rRNA intergenic spacer region and multilocus sequence typing (MLST) indicated a predominant tetO-positive, doxycycline-resistant ST-10 strain during 1999 to 2002 and a predominant tetM-positive doxycycline-resistant ST-62 strain during 2007 to 2010.
Chalker, Victoria J.; Waller, Andrew; Webb, Katy; Spearing, Emma; Crosse, Patricia; Brownlie, Joe
2012-01-01
The genetic diversity and antibiotic resistance profiles of 38 Streptococcus equi subsp. zooepidemicus isolates were determined from a kennelled canine population during two outbreaks of hemorrhagic pneumonia (1999 to 2002 and 2007 to 2010). Analysis of the szp gene hypervariable region and the 16S-23S rRNA intergenic spacer region and multilocus sequence typing (MLST) indicated a predominant tetO-positive, doxycycline-resistant ST-10 strain during 1999 to 2002 and a predominant tetM-positive doxycycline-resistant ST-62 strain during 2007 to 2010. PMID:22495558
Meyer, K; Rosa, C; Hischenhuber, C; Meyer, R
2001-01-01
A polymerase chain reaction (PCR) was developed to differentiate the thickening agents locust bean gum (LBG) and the cheaper guar gum in finished food products. Universal primers for amplification of the intergenic spacer region between trnL 3' (UAA) exon and trnF (GAA) gene in the chloroplast (cp) genome and subsequent restriction analysis were applied to differentiate guar gum and LBG. The presence of <5% (w/w) guar gum powder added to LBG powder was detectable. Based on data obtained from sequencing this intergenic spacer region, a second PCR method for the specific detection of guar gum DNA was also developed. This assay detected guar gum powder in LBG in amounts as low as 1% (w/w). Both methods successfully detected guar gum and/or LBG in ice cream stabilizers and in foodstuffs, such as dairy products, ice cream, dry seasoning mixes, a finished roasting sauce, and a fruit jelly product, but not in products with highly degraded DNA, such as tomato ketchup and sterilized chocolate cream. Both methods detected guar gum and LBG in ice cream and fresh cheese at levels <0.1%.
Centromeres: long intergenic spaces with adaptive features.
Kanizay, Lisa; Dawe, R Kelly
2009-08-01
Centromeres are composed of inner kinetochore proteins, which are largely conserved across species, and repetitive DNA, which shows comparatively little sequence conservation. Due to this fundamental paradox the formation and maintenance of centromeres remains largely a mystery. However, it has become increasingly clear that a long-standing balance between epigenetic and genetic control governs the interactions of centromeric DNA and inner kinetochore proteins. The comparison of classical neocentromeres in plants, which are entirely genetic in their mode of operation, and clinical neocentromeres, which are sequence-independent, illustrates the conflict between genetics and epigenetics in regions that control their own transmission to progeny. Tandem repeat arrays present in centromeres may have an origin in meiotic drive or other selfish patterns of evolution, as is the case for the CENP-B box and CENP-B protein in human. In grasses retrotransposons have invaded centromeres to the point of complete domination, consequently breaking genetic regulation at these centromeres. The accumulation of tandem repeats and transposons causes centromeres to expand in size, effectively pushing genes to the sides and opening the centromere to ever fewer constraints on the DNA sequence. On genetic maps centromeres appear as long intergenic spaces that evolve rapidly and apparently without regard to host fitness.
Blaiotta, Giuseppe; Pepe, Olimpia; Mauriello, Gianluigi; Villani, Francesco; Andolfi, Rosamaria; Moschetti, Giancarlo
2002-12-01
The intergenic spacer region (ISR) between the 16S and 23S rRNA genes was tested as a tool for differentiating lactococci commonly isolated in a dairy environment. 17 reference strains, representing 11 different species belonging to the genera Lactococcus, Streptococcus, Lactobacillus, Enterococcus and Leuconostoc, and 127 wild streptococcal strains isolated during the whole fermentation process of "Fior di Latte" cheese were analyzed. After 16S-23S rDNA ISR amplification by PCR, species or genus-specific patterns were obtained for most of the reference strains tested. Moreover, results obtained after nucleotide analysis show that the 16S-23S rDNA ISR sequences vary greatly, in size and sequence, among Lactococcus garvieae, Lactococcus raffinolactis, Lactococcus lactis as well as other streptococci from dairy environments. Because of the high degree of inter-specific polymorphism observed, 16S-23S rDNA ISR can be considered a good potential target for selecting species-specific molecular assays, such as PCR primer or probes, for a rapid and extremely reliable differentiation of dairy lactococcal isolates.
Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex.
Konermann, Silvana; Brigham, Mark D; Trevino, Alexandro E; Joung, Julia; Abudayyeh, Omar O; Barcena, Clea; Hsu, Patrick D; Habib, Naomi; Gootenberg, Jonathan S; Nishimasu, Hiroshi; Nureki, Osamu; Zhang, Feng
2015-01-29
Systematic interrogation of gene function requires the ability to perturb gene expression in a robust and generalizable manner. Here we describe structure-guided engineering of a CRISPR-Cas9 complex to mediate efficient transcriptional activation at endogenous genomic loci. We used these engineered Cas9 activation complexes to investigate single-guide RNA (sgRNA) targeting rules for effective transcriptional activation, to demonstrate multiplexed activation of ten genes simultaneously, and to upregulate long intergenic non-coding RNA (lincRNA) transcripts. We also synthesized a library consisting of 70,290 guides targeting all human RefSeq coding isoforms to screen for genes that, upon activation, confer resistance to a BRAF inhibitor. The top hits included genes previously shown to be able to confer resistance, and novel candidates were validated using individual sgRNA and complementary DNA overexpression. A gene expression signature based on the top screening hits correlated with markers of BRAF inhibitor resistance in cell lines and patient-derived samples. These results collectively demonstrate the potential of Cas9-based activators as a powerful genetic perturbation technology.
Generation of Chimeric RNAs by cis-splicing of adjacent genes (cis-SAGe) in mammals.
Zhuo, Jian-Shu; Jing, Xiao-Yan; Du, Xin; Yang, Xiu-Qin
2018-02-20
Chimeric RNA molecules, possessing exons from two or more independent genes, are traditionally believed to be produced by chromosome rearrangement. However, recent studies revealed that cis-splicing of adjacent genes (cis- SAGe) is one of the major mechanisms underlying the formation of chimeric RNAs. cis-SAGe refers to intergenic splicing of directly adjacent genes with the same transcriptional orientation, resulting in read-through transcripts, termed chimeric RNAs, which contain sequences from two or more parental genes. cis-SAGe was first identified in tumor cells, since then its potential in carcinogenesis has attracted extensive attention. More and more scientists are focusing on it. With the development of research, cis-SAGe was found to be ubiquitous in various normal tissues, and might make a crucial contribution to the formation of novel genes in the evolution of genomes. In this review, we summarize the splicing pattern, expression characteristics, possible mechanisms, and significance of cis-SAGe in mammals. This review will be helpful for general understanding of the current status and development tendency of cis-SAGe.
Histone and ribosomal RNA repetitive gene clusters of the boll weevil are linked in a tandem array.
Roehrdanz, R; Heilmann, L; Senechal, P; Sears, S; Evenson, P
2010-08-01
Histones are the major protein component of chromatin structure. The histone family is made up of a quintet of proteins, four core histones (H2A, H2B, H3 & H4) and the linker histones (H1). Spacers are found between the coding regions. Among insects this quintet of genes is usually clustered and the clusters are tandemly repeated. Ribosomal DNA contains a cluster of the rRNA sequences 18S, 5.8S and 28S. The rRNA genes are separated by the spacers ITS1, ITS2 and IGS. This cluster is also tandemly repeated. We found that the ribosomal RNA repeat unit of at least two species of Anthonomine weevils, Anthonomus grandis and Anthonomus texanus (Coleoptera: Curculionidae), is interspersed with a block containing the histone gene quintet. The histone genes are situated between the rRNA 18S and 28S genes in what is known as the intergenic spacer region (IGS). The complete reiterated Anthonomus grandis histone-ribosomal sequence is 16,248 bp.
Piccin-Santos, Viviane; Brandão, Marcelo Mendes; Bittencourt-Oliveira, Maria Do Carmo
2014-08-01
Selection of genes that have not been horizontally transferred for prokaryote phylogenetic inferences is regarded as a challenging task. The markers internal transcribed spacer of ribosomal genes (16S-23S ITS) and phycocyanin intergenic spacer (PC-IGS), based on the operons of ribosomal and phycocyanin genes respectively, are among the most used markers in cyanobacteria. The region of the ribosomal genes has been considered stable, whereas the phycocyanin operon may have undergone horizontal transfer. To investigate the occurrence of horizontal transfer of PC-IGS, phylogenetic trees of Geitlerinema and Microcystis strains were generated using PC-IGS and 16S-23S ITS and compared. Phylogenetic trees based on the two markers were mostly congruent for Geitlerinema and Microcystis, indicating a common evolutionary history among ribosomal and phycocyanin genes with no evidence for horizontal transfer of PC-IGS. Thus, PC-IGS is a suitable marker, along with 16S-23S ITS for phylogenetic studies of cyanobacteria. © 2014 Phycological Society of America.
Walline, Heather M; Komarck, Christine M; McHugh, Jonathan B; Tang, Alice L; Owen, John H; Teh, Bin T; McKean, Erin; Glover, Thomas; Graham, Martin P; Prince, Mark E; Chepeha, Douglas B; Chinn, Steven B; Ferris, Robert L; Gollin, Susanne M; Hoffmann, Thomas K; Bier, Henning; Brakenhoff, Ruud; Bradford, Carol R; Carey, Thomas E
2017-01-01
Background HPV-positive oropharyngeal cancer is generally associated with excellent response to therapy, but some HPV-positive tumors progress despite aggressive therapy. This study evaluates viral oncogene expression and viral integration sites in HPV16 and HPV18-positive squamous carcinoma cell lines. Methods E6-E7 alternate transcripts were assessed by RT-PCR. Detection of integrated papillomavirus sequences (DIPS-PCR) and sequencing identified viral insertion sites and affected host genes. Cellular gene expression was assessed across viral integration sites. Results All HPV-positive cell lines expressed alternate HPVE6/E7 splicing indicative of active viral oncogenesis. HPV integration occurred within cancer-related genes TP63, DCC, JAK1, TERT, ATR, ETV6, PGR, PTPRN2, and TMEM237 in 8 HNSCC lines but UM-SCC-105 and UM-GCC-1 had only intergenic integration. Conclusions HPV integration into cancer-related genes occurred in 7/9 HPV-positive cell lines and of these six were from tumors that progressed. HPV integration into cancer-related genes may be a secondary carcinogenic driver in HPV-driven tumors. PMID:28236344
Cellulose synthase (CesA) genes in the green alga Mesotaenium caldariorum.
Roberts, Alison W; Roberts, Eric M; Delmer, Deborah P
2002-12-01
Cellulose, a microfibrillar polysaccharide consisting of bundles of beta-1,4-glucan chains, is a major component of plant and most algal cell walls and is also synthesized by some prokaryotes. Seed plants and bacteria differ in the structures of their membrane terminal complexes that make cellulose and, in turn, control the dimensions of the microfibrils produced. They also differ in the domain structures of their CesA gene products (the catalytic subunit of cellulose synthase), which have been localized to terminal complexes and appear to help maintain terminal complex structure. Terminal complex structures in algae range from rosettes (plant-like) to linear forms (bacterium-like). Thus, algal CesA genes may reveal domains that control terminal complex assembly and microfibril structure. The CesA genes from the alga Mesotaenium caldariorum, a member of the order Zygnematales, which have rosette terminal complexes, are remarkably similar to seed plant CesAs, with deduced amino acid sequence identities of up to 59%. In addition to the putative transmembrane helices and the D-D-D-QXXRW motif shared by all known CesA gene products, M. caldariorum and seed plant CesAs share a region conserved among plants, an N-terminal zinc-binding domain, and a variable or class-specific region. This indicates that the domains that characterize seed plant CesAs arose prior to the evolution of land plants and may play a role in maintaining the structures of rosette terminal complexes. The CesA genes identified in M. caldariorum are the first reported for any eukaryotic alga and will provide a basis for analyzing the CesA genes of algae with different types of terminal complexes.
A Gibbs sampler for motif detection in phylogenetically close sequences
NASA Astrophysics Data System (ADS)
Siddharthan, Rahul; van Nimwegen, Erik; Siggia, Eric
2004-03-01
Genes are regulated by transcription factors that bind to DNA upstream of genes and recognize short conserved ``motifs'' in a random intergenic ``background''. Motif-finders such as the Gibbs sampler compare the probability of these short sequences being represented by ``weight matrices'' to the probability of their arising from the background ``null model'', and explore this space (analogous to a free-energy landscape). But closely related species may show conservation not because of functional sites but simply because they have not had sufficient time to diverge, so conventional methods will fail. We introduce a new Gibbs sampler algorithm that accounts for common ancestry when searching for motifs, while requiring minimal ``prior'' assumptions on the number and types of motifs, assessing the significance of detected motifs by ``tracking'' clusters that stay together. We apply this scheme to motif detection in sporulation-cycle genes in the yeast S. cerevisiae, using recent sequences of other closely-related Saccharomyces species.
[Late-replicating regions in salivary gland polytene chromosomes of Drosophila melanogaster].
Kolesnikov, T D; Andreenkova, N G; Beliaeva, E S; Goncharov, F P; Zykova, T Iu; Boldyreva, L V; Pokholkova, g V; Zhimulev, I F
2013-01-01
About 240 specific regions that are replicated at the very end of the S-phase have been identified in D. melanogaster polytene chromosomes. These regions have a repressive chromatine state, low gene density, long intergenic distances and are enriched in tissue specific genes. In polytene chromosomes, about a quarter of these regions have no enough time to complete replication. As a result, underreplication zones represented by fewer DNA copy number, appear. We studied 60 chromosome regions that demonstrated the most pronounced under-replication. By comparing the location of these regions on a molecular map with syntenic blocks found earlier for Drosophila species by von Grotthuss et al., 2010, we have shown that across the genus Drosophila, these regions tend to have conserved gene order. This forces us to assume the existence of evolutionary mechanisms aimed at maintaining the integrity of these regions.
Definition of RNA polymerase II CoTC terminator elements in the human genome.
Nojima, Takayuki; Dienstbier, Martin; Murphy, Shona; Proudfoot, Nicholas J; Dye, Michael J
2013-04-25
Mammalian RNA polymerase II (Pol II) transcription termination is an essential step in protein-coding gene expression that is mediated by pre-mRNA processing activities and DNA-encoded terminator elements. Although much is known about the role of pre-mRNA processing in termination, our understanding of the characteristics and generality of terminator elements is limited. Whereas promoter databases list up to 40,000 known and potential Pol II promoter sequences, fewer than ten Pol II terminator sequences have been described. Using our knowledge of the human β-globin terminator mechanism, we have developed a selection strategy for mapping mammalian Pol II terminator elements. We report the identification of 78 cotranscriptional cleavage (CoTC)-type terminator elements at endogenous gene loci. The results of this analysis pave the way for the full understanding of Pol II termination pathways and their roles in gene expression. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Chiang-Ni, Chuan; Tsou, Chih-Cheng; Lin, Yee-Shin; Chuang, Woei-Jer; Lin, Ming-T; Liu, Ching-Chuan; Wu, Jiunn-Jong
2008-12-31
CovR/S is an important two component regulatory system, which regulates about 15% of the gene expression in Streptococcus pyogenes. The covR/S locus was identified as an operon generating an RNA transcript around 2.5-kb in size. In this study, we found the covR/S operon produced three RNA transcripts (around 2.5-, 1.0-, and 0.8-kb in size). Using RNA transcriptional terminator sequence prediction and transcriptional terminator analysis, we identified two atypical rho-independent terminator sequences downstream of the covR gene and showed these terminator sequences terminate RNA transcription efficiently. These results indicate that covR/S operon generates covR/S transcript and monocistronic covR transcripts.
Dynamic interactions between the promoter and terminator regions of the mammalian BRCA1 gene.
Tan-Wong, Sue Mei; French, Juliet D; Proudfoot, Nicholas J; Brown, Melissa A
2008-04-01
The 85-kb breast cancer-associated gene BRCA1 is an established tumor suppressor gene, but its regulation is poorly understood. We demonstrate by gene conformation analysis in both human cell lines and mouse mammary tissue that gene loops are imposed on BRCA1 between the promoter, introns, and terminator region. Significantly, association between the BRCA1 promoter and terminator regions change upon estrogen stimulation and during lactational development. Loop formation is transcription-dependent, suggesting that transcriptional elongation plays an active role in BRCA1 loop formation. We show that the BRCA1 terminator region can suppress estrogen-induced transcription and so may regulate BRCA1 expression. Significantly, BRCA1 promoter and terminator interactions vary in different breast cancer cell lines, indicating that defects in BRCA1 chromatin structure may contribute to dysregulated expression of BRCA1 seen in breast tumors.
Loya, Travis J; O'Rourke, Thomas W; Reines, Daniel
2012-08-01
The yeast IMD2 gene encodes an enzyme involved in GTP synthesis. Its expression is controlled by guanine nucleotides through a set of alternate start sites and an intervening transcriptional terminator. In the off state, transcription results in a short non-coding RNA that starts upstream of the gene. Transcription terminates via the Nrd1-Nab3-Sen1 complex and is degraded by the nuclear exosome. Using a sensitive terminator read-through assay, we identified trans-acting Terminator Override (TOV) genes that operate this terminator. Four genes were identified: the RNA polymerase II phosphatase SSU72, the RNA polymerase II binding protein PCF11, the TRAMP subunit TRF4 and the hnRNP-like, NAB3. The TOV phenotype can be explained by the loss of function of these gene products as described in models in which termination and RNA degradation are coupled to the phosphorylation state of RNA polymerase II's repeat domain. The most interesting mutations were those found in NAB3, which led to the finding that the removal of merely three carboxy-terminal amino acids compromised Nab3's function. This region of previously unknown function is distant from the protein's well-known RNA binding and Nrd1 binding domains. Structural homology modeling suggests this Nab3 'tail' forms an α-helical multimerization domain that helps assemble it onto an RNA substrate.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Li, Dongfang; Voigt, Thomas B.; Kent, Angela D.
Here, bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M. × giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M. × giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soilmore » conditions and plant compartments on assembly of the M. × giganteus-associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T-RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M. × giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.« less
Shao, Jun-Li; Long, Yue-Sheng; Chen, Gu; Xie, Jun; Xu, Zeng-Fu
2010-06-01
Agrobacterium tumefaciens transfers DNA from its Ti plasmid to plant host cells. The genes located within the transferred DNA of Ti plasmid including the octopine synthase gene (OCS) are expressed in plant host cells. The 3'-flanking region of OCS gene, known as OCS terminator, is widely used as a transcriptional terminator of the transgenes in plant expression vectors. In this study, we found the reversed OCS terminator (3'-OCS-r) could drive expression of hygromycin phosphotransferase II gene (hpt II) and beta-glucuronidase gene in Escherichia coli, and expression of hpt II in A. tumefaciens. Furthermore, reverse transcription-polymerase chain reaction analysis revealed that an open reading frame (ORF12) that is located downstream to the 3'-OCS-r was transcribed in A. tumefaciens, which overlaps in reverse with the coding region of the OCS gene in octopine Ti plasmid.
Dolz, Roser; Pujols, Joan; Ordóñez, German; Porta, Ramon; Majó, Natàlia
2008-04-25
An in-depth molecular study of infectious bronchitis viruses (IBV) with particular interest in evolutionary aspects of IBV in Spain was carried out in the present study based on the S1 gene molecular characterization of twenty-six Spanish strains isolated over a fourteen-year period. Four genotypes were identified based on S1 gene sequence analyses and phylogenetic studies. A drastic virus population shift was demonstrated along time and the novel Italy 02 serotype was shown to have displaced the previous predominant serotype 4/91 in the field. Detailed analyses of synonymous to non-synonymous ratio of the S1 gene sequences of this new serotype Italy 02 suggested positive selection pressures might have contributed to the successful establishment of Italy 02 serotype in our country. In addition, differences on the fitness abilities of new emergent genotypes were indicated. Furthermore, intergenic sequences (IGs)-like motifs within S1 gene sequences of IBV isolates were suggested to enhance the recombination abilities of certain serotypes.
Sequence Analysis of Mitochondrial Genome of Toxascaris leonina from a South China Tiger.
Li, Kangxin; Yang, Fang; Abdullahi, A Y; Song, Meiran; Shi, Xianli; Wang, Minwei; Fu, Yeqi; Pan, Weida; Shan, Fang; Chen, Wu; Li, Guoqing
2016-12-01
Toxascaris leonina is a common parasitic nematode of wild mammals and has significant impacts on the protection of rare wild animals. To analyze population genetic characteristics of T. leonina from South China tiger, its mitochondrial (mt) genome was sequenced. Its complete circular mt genome was 14,277 bp in length, including 12 protein-coding genes, 22 tRNA genes, 2 rRNA genes, and 2 non-coding regions. The nucleotide composition was biased toward A and T. The most common start codon and stop codon were TTG and TAG, and 4 genes ended with an incomplete stop codon. There were 13 intergenic regions ranging 1 to 10 bp in size. Phylogenetically, T. leonina from a South China tiger was close to canine T. leonina . This study reports for the first time a complete mt genome sequence of T. leonina from the South China tiger, and provides a scientific basis for studying the genetic diversity of nematodes between different hosts.
Chromatin Insulators: A Role in Nuclear Organization and Gene Expression
Yang, Jingping; Corces, Victor G.
2011-01-01
Chromatin insulators are DNA-protein complexes with broad functions in nuclear biology. Based on the ability of insulator proteins to interact with each other, it was originally thought that insulators form loops that could constitute functional domains of co-regulated gene expression. Nevertheless, data from genome-wide localization studies indicate that insulator proteins can be present in intergenic regions as well as at the 5′, introns or 3′ of genes, suggesting a broader role in chromosome biology. Cells have developed mechanisms to control insulator activity by recruiting specialized proteins or by covalent modification of core components. Recent results suggest that insulators mediate intra- and inter-chromosomal interactions to affect transcription, imprinting and recombination. It is possible that these interactions set up cell-specific blueprints of nuclear organization that may contribute to the establishment of different patterns of gene expression during cell differentiation. As a consequence, disruption of insulator activity could result in the development of cancer or other disease states. PMID:21704228
Deppe, Veronika Maria; Klatte, Stephanie; Bongaerts, Johannes; Maurer, Karl-Heinz; O'Connell, Timothy; Meinhardt, Friedhelm
2011-01-01
Bacillus subtilis is capable of degrading fructosamines. The phosphorylation and the cleavage of the resulting fructosamine 6-phosphates is catalyzed by the frlD and frlB gene products, respectively. This study addresses the physiological importance of the frlBONMD genes (formerly yurPONML), revealing the necessity of their expression for growth on fructosamines and focusing on the complex regulation of the corresponding transcription unit. In addition to the known regulation by the global transcriptional regulator CodY, the frl genes are repressed by the convergently transcribed FrlR (formerly YurK). The latter causes repression during growth on substrates other than fructosamines. Additionally, we identified in the first intergenic region of the operon an FrlR binding site which is centrally located within a 38-bp perfect palindromic sequence. There is genetic evidence that this sequence, in combination with FrlR, contributes to the remarkable decrease in the transcription downstream of the first gene of the frl operon. PMID:21398478
Schmidt-Chanasit, Jonas; Bialonski, Alexandra; Heinemann, Patrick; Ulrich, Rainer G; Günther, Stephan; Rabenau, Holger F; Doerr, Hans Wilhelm
2010-07-01
Recently two different herpes simplex virus type 2 (HSV-2) clades (A and B) were described on DNA sequence data of the glycoprotein E (gE), G (gG) and I (gI) genes. To type the circulating HSV-2 wild-type strains in Germany by a novel approach and to monitor potential changes in the molecular epidemiology between 1997 and 2008. A total of 64 clinical HSV-2 isolates were analyzed by a novel approach using the DNA sequences of the complete open reading frames of glycoprotein B (gB) and gG. Recombination analysis of the gB and gG gene sequences was performed to reveal intragenic recombinants. Based on the phylogenetic analysis of the gB coding DNA sequence 8 of 64 (12%) isolates were classified as clade A strains and 56 of 64 (88%) isolates were classified as clade B strains. Analysis of the gG coding DNA sequence classified 4 (6%) isolates as clade A strains and 60 (94%) isolates as clade B strains. In comparison, the 8 isolates classified as clade A strains using the gB sequence data were classified as clade B strains when using the gG coding DNA sequence, suggesting intergenic recombination events. Intragenic recombination events were not detected. The first molecular survey of clinical HSV-2 isolates from Germany demonstrated the circulation of clade A and B strains and of intergenic recombinants over a period of 12 years. Copyright (c) 2010 Elsevier B.V. All rights reserved.
White, A. P.; Sibley, K. A.; Sibley, C. D.; Wasmuth, J. D.; Schaefer, R.; Surette, M. G.; Edge, T. A.; Neumann, N. F.
2011-01-01
Establishing the risk of human infection is one of the goals of public health. For bacterial pathogens, the virulence and zoonotic potential can often be related to their host source. Escherichia coli bacteria are common contaminants of water associated with human recreation and consumption, and many strains are pathogenic. In this study, we analyzed three promoter-containing intergenic regions from 284 diverse E. coli isolates in an attempt to identify molecular signatures associated with specific host types. Promoter sequences controlling production of curli fimbriae, flagella, and nutrient import yielded a phylogenetic tree with isolates clustered by established phylogenetic grouping (A, B1, B2, and D) but not by host source. Virulence genes were more prevalent in groups B2 and D isolates and in human isolates. Group B1 isolates, primarily from nonhuman sources, were the most genetically similar, indicating that they lacked molecular adaptations to specific host environments and were likely host generalists. Conversely, B2 isolates, primarily from human sources, displayed greater genetic distances and were more likely to be host adapted. In agreement with these hypotheses, prevalence of σS activity and the rdar morphotype, phenotypes associated with environmental survival, were significantly higher in B1 isolates than in B2 isolates. Based on our findings, we speculate that E. coli host specificity is not defined by genome-wide sequence changes but, rather, by the presence or absence of specific genes and associated promoter elements. Furthermore, the requirements for colonization of the human gastrointestinal tract may lead to E. coli lifestyle changes along with selection for increased virulence. PMID:21908635
de Vin, Filip; Rådström, Peter; Herman, Lieve; De Vuyst, Luc
2005-01-01
Lactose-limited fermentations of 49 dairy Streptococcus thermophilus strains revealed four distinct fermentation profiles with respect to galactose consumption after lactose depletion. All the strains excreted galactose into the medium during growth on lactose, except for strain IMDOST40, which also displayed extremely high galactokinase (GalK) activity. Among this strain collection eight galactose-positive phenotypes sensu stricto were found and their fermentation characteristics and Leloir enzyme activities were measured. As the gal promoter seems to play an important role in the galactose phenotype, the galR-galK intergenic region was sequenced for all strains yielding eight different nucleotide sequences (NS1 to NS8). The gal promoter played an important role in the Gal-positive phenotype but did not determine it exclusively. Although GalT and GalE activities were detected for all Gal-positive strains, GalK activity could only be detected for two out of eight Gal-positive strains. This finding suggests that the other six S. thermophilus strains metabolize galactose via an alternative route. For each type of fermentation profile obtained, a representative strain was chosen and four complete Leloir gene clusters were sequenced. It turned out that Gal-positive strains contained more amino acid differences within their gal genes than Gal-negative strains. Finally, the biodiversity regarding lactose-galactose utilization among the different S. thermophilus strains used in this study was shown by RAPD-PCR. Five Gal-positive strains that contain nucleotide sequence NS2 in their galR-galK intergenic region were closely related. PMID:16000774
2011-01-01
Background The heterotrophic dinoflagellate Oxyrrhis marina is increasingly studied in experimental, ecological and evolutionary contexts. Its basal phylogenetic position within the dinoflagellates make O. marina useful for understanding the origin of numerous unusual features of the dinoflagellate lineage; its broad distribution has lent O. marina to the study of protist biogeography; and nutritive flexibility and eurytopy have made it a common lab rat for the investigation of physiological responses of marine heterotrophic flagellates. Nevertheless, genome-scale resources for O. marina are scarce. Here we present a 454-based transcriptome survey for this organism. In addition, we assess sequence read abundance, as a proxy for gene expression, in response to salinity, an environmental factor potentially important in determining O. marina spatial distributions. Results Sequencing generated ~57 Mbp of data which assembled into 7, 398 contigs. Approximately 24% of contigs were nominally identified by BLAST. A further clustering of contigs (at ≥ 90% identity) revealed 164 transcript variant clusters, the largest of which (Phosphoribosylaminoimidazole-succinocarboxamide synthase) was composed of 28 variants displaying predominately synonymous variation. In a genomic context, a sample of 5 different genes were demonstrated to occur as tandem repeats, separated by short (~200-340 bp) inter-genic regions. For HSP90 several intergenic variants were detected suggesting a potentially complex genomic arrangement. In response to salinity, analysis of 454 read abundance highlighted 9 and 20 genes over or under expressed at 50 PSU, respectively. However, 454 read abundance and subsequent qPCR validation did not correlate well - suggesting that measures of gene expression via ad hoc analysis of sequence read abundance require careful interpretation. Conclusion Here we indicate that tandem gene arrangements and the occurrence of multiple transcribed gene variants are common and indicate potentially complex genomic arrangements in O. marina. Comparison of the reported data set with existing O. marina and other dinoflagellates ESTs indicates little sequence overlap likely as a result of the relatively limited extent of genome scale sequence data currently available for the dinoflagellates. This is one of the first 454-based transcriptome surveys of an ancestral dinoflagellate taxon and will undoubtedly prove useful for future comparative studies aimed at reconstructing the origin of novel features of the dinoflagellates. PMID:22014029
Wang, Mingling; Qiu, Jian-Wen
2016-05-01
We report the complete mitochondrial genome (mitogenome) of the giant ramshorn snail Marisa cornuarietis, a biocontrol agent of freshwater weeds and snail vectors of schistosomes. The mitogenome is 15,923 bp in length, encoding 13 protein-coding genes, 22 transfer RNAs and 2 ribosomal RNAs. The mitogenome is A+T biased (70.0%), with 28.9% A, 41.1% T, 16.7% G, and 13.3% C. A comparison with Pomacea canaliculata, the other member in the same family (Ampullariidae) with a sequenced mitogenome, shows that the two species have an identical gene order, but their intergenic regions vary substantially in sequence length. The mitogenome data can be used to understand the population genetics of M. cornuarietis, and resolve the phylogenetic relationship of various genera in Ampullariidae.
Loya, Travis J.; O’Rourke, Thomas W.; Reines, Daniel
2012-01-01
The yeast IMD2 gene encodes an enzyme involved in GTP synthesis. Its expression is controlled by guanine nucleotides through a set of alternate start sites and an intervening transcriptional terminator. In the off state, transcription results in a short non-coding RNA that starts upstream of the gene. Transcription terminates via the Nrd1-Nab3-Sen1 complex and is degraded by the nuclear exosome. Using a sensitive terminator read-through assay, we identified trans-acting Terminator Override (TOV) genes that operate this terminator. Four genes were identified: the RNA polymerase II phosphatase SSU72, the RNA polymerase II binding protein PCF11, the TRAMP subunit TRF4 and the hnRNP-like, NAB3. The TOV phenotype can be explained by the loss of function of these gene products as described in models in which termination and RNA degradation are coupled to the phosphorylation state of RNA polymerase II's repeat domain. The most interesting mutations were those found in NAB3, which led to the finding that the removal of merely three carboxy-terminal amino acids compromised Nab3's function. This region of previously unknown function is distant from the protein's well-known RNA binding and Nrd1 binding domains. Structural homology modeling suggests this Nab3 ‘tail’ forms an α-helical multimerization domain that helps assemble it onto an RNA substrate. PMID:22564898
Morita, Teppei; Ueda, Masaki; Kubo, Kento; Aiba, Hiroji
2015-01-01
The genes encoding Hfq-dependent sRNAs possess a typical Rho-independent transcription terminator. Here, we have studied the molecular events occurring at Rho-independent terminators of sRNA genes, focusing on two well-characterized Hfq-binding sRNAs, SgrS and RyhB. We constructed several hybrid genes in which the DNA sequence corresponding to a strong Rho-independent terminator was placed just downstream from the Rho-independent terminators of sRNA genes. By using this system, we demonstrate that transcripts frequently read through the Rho-independent terminators of sgrS and ryhB in normally growing cells. We show that Hfq does not affect the transcriptional readthrough event itself. We also find that the readthrough products no longer bind to Hfq in vivo. We have developed a competition assay based on a biotin–streptavidin system to analyze the interaction of Hfq and a particular RNA molecule in vitro. By using this method, we verify that the 3′-extended form of SgrS does not bind to Hfq in vitro. Finally, we demonstrate that transcription termination is significantly enhanced under stress conditions where transcription initiation of sRNA genes on the chromosome is induced. We conclude that the production of sRNAs is regulated not only at the step of transcription initiation but also at the step of transcription termination. The mechanism by which transcription termination is enhanced under stress conditions remains to be understood. PMID:26106215
Setoguchi, H; Watanabe, I
2000-06-01
Hybridization and introgression play important roles in plant evolution, and their occurrence on the oceanic islands provides good examples of plant speciation and diversification. Restriction fragment length polymorphisms (RFLPs) and trnL (UAA) 3'exon-trnF (GAA) intergenic spacer (IGS) sequences of chloroplast DNA (cpDNA), and the sequences of internal transcribed spacer (ITS) of nuclear ribosomal DNA were examined to investigate the occurrence of gene transfer in Ilex species on the Bonin Islands and the Ryukyu Islands in Japan. A gene phylogeny for the plastid genome is in agreement with the morphologically based taxonomy, whereas the nuclear genome phylogeny clusters putatively unrelated endemics both on the Bonin and the Ryukyu Islands. Intersectional hybridization and nuclear gene flow were independently observed in insular endemics of Ilex on both sets of islands without evidence of plastid introgression. Gene flow observed in these island systems can be explained by ecological features of insular endemics, i.e., limits of distribution range or sympatric distribution in a small land area.
Ulbegi-Mohyla, H; Hijazin, M; Alber, J; Lämmler, C; Hassan, A A; Abdulmawjood, A; Prenger-Berninghoff, E; Weiss, R; Zschöck, M
2010-09-01
The present study was designed to identify phenotypically and genotypically two Arcanobacterium (A.) pyogenes strains isolated by post mortem examinations of a bearded dragon and a gecko. The A. pyogenes strains showed the typical biochemical properties and displayed CAMP-like synergistic hemolytic activities with various indicator strains. The species identity could be confirmed genotypically by amplification and sequencing of the 16S rDNA gene and, as novel target gene, by sequencing of the beta subunit of RNA polymerase encoding gene rpoB, of both strains and of reference strains representing nine species of the genus Arcanobacterium. The species identity of the two A. pyogenes strains could additionally be confirmed by PCR mediated amplification of species specific parts of the 16S-23S rDNA intergenic spacer region, the pyolysin encoding gene plo and by amplification of the collagen-binding protein encoding gene cbpA. All these molecular targets might help to improve the future identification and further characterization of A. pyogenes which, as demonstrated in the present study, could also be isolated from reptile specimens.
Li, Peng; Bai, Juan; Li, Jun-xing; Zhang, Guo-long; Song, Yan-hua; Li, Yu-feng; Wang, Xian-wei; Jiang, Ping
2012-10-01
Haemophilus parasuis is the etiological agent of Glässer's disease characterized by fibrinous polyserositis, polyarthritis, and meningitis in young pigs. But it is difficult to develop universal serological diagnostic tools and effective vaccines against this disease because of the serovar diversity of the isolates. In this study, enterobacterial repetitive intergenic consensus-polymerase chain reaction, were performed to investigate the gene profile of 111 isolates of H. parasuis from China. And a specific common gene of H. parasuis was cloned and identified as the outer-membrane protein (OMP) P2 gene. Sequencing results of OMP P2 genes of 22 isolates showed that they had high homology and could be divided into 2 genetic types. Moreover, the OMPP2 protein was expressed in Escherichia coli expressing system. And the purified recombinant protein provided partial protection against H. parasuis infection in mice. It suggested the OMP P2 was an immunogenic protein and had great potential to serve as a vaccine and diagnostic antigen. Copyright © 2011 Elsevier Ltd. All rights reserved.
Plastome Evolution in Hemiparasitic Mistletoes
Petersen, Gitte; Cuenca, Argelia; Seberg, Ole
2015-01-01
Santalales is an order of plants consisting almost entirely of parasites. Some, such as Osyris, are facultative root parasites whereas others, such as Viscum, are obligate stem parasitic mistletoes. Here, we report the complete plastome sequences of one species of Osyris and three species of Viscum, and we investigate the evolutionary aspects of structural changes and changes in gene content in relation to parasitism. Compared with typical angiosperms plastomes, the four Santalales plastomes are all reduced in size (10–22% compared with Vitis), and they have experienced rearrangements, mostly but not exclusively in the border areas of the inverted repeats. Additionally, a number of protein-coding genes (matK, infA, ccsA, rpl33, and all 11 ndh genes) as well as two transfer RNA genes (trnG-UCC and trnV-UAC) have been pseudogenized or completely lost. Most of the remaining plastid genes have a significantly changed selection pattern compared with other dicots, and the relaxed selection of photosynthesis genes is noteworthy. Although gene loss obviously reduces plastome size, intergenic regions were also shortened. As plastome modifications are generally most prominent in Viscum, they are most likely correlated with the increased nutritional dependence on the host compared with Osyris. PMID:26319577
Deng, Changwang; Li, Ying; Zhou, Lei; Cho, Joonseok; Patel, Bhavita; Terada, Nao; Li, Yangqiu; Bungert, Jörg; Qiu, Yi; Huang, Suming
2015-01-01
Summary Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1+ mesoderm and then promotes hematopoietic differentiation through regulating hoxb gene pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated KD or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb gene expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2-b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1+ precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1+ precursors and differentiation of Flk1+ cells into hematopoietic lineages. PMID:26725110
Narang, Pooja; Wilson Sayres, Melissa A
2016-12-31
Male mutation bias, when more mutations are passed on via the male germline than via the female germline, is observed across mammals. One common way to infer the magnitude of male mutation bias, α, is to compare levels of neutral sequence divergence between genomic regions that spend different amounts of time in the male and female germline. For great apes, including human, we show that estimates of divergence are reduced in putatively unconstrained regions near genes relative to unconstrained regions far from genes. Divergence increases with increasing distance from genes on both the X chromosome and autosomes, but increases faster on the X chromosome than autosomes. As a result, ratios of X/A divergence increase with increasing distance from genes and corresponding estimates of male mutation bias are significantly higher in intergenic regions near genes versus far from genes. Future studies in other species will need to carefully consider the effect that genomic location will have on estimates of male mutation bias. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Targeted gene deletion of miRNAs in mice by TALEN system.
Takada, Shuji; Sato, Tempei; Ito, Yoshiaki; Yamashita, Satoshi; Kato, Tomoko; Kawasumi, Miyuri; Kanai-Azuma, Masami; Igarashi, Arisa; Kato, Tomomi; Tamano, Moe; Asahara, Hiroshi
2013-01-01
Mice are among the most valuable model animal species with an enormous amount of heritage in genetic modification studies. However, targeting genes in mice is sometimes difficult, especially for small genes, such as microRNAs (miRNAs) and targeting genes in repeat sequences. Here we optimized the application of TALEN system for mice and successfully obtained gene targeting technique in mice for intergenic region and series of microRNAs. Microinjection of synthesized RNA of TALEN targeting each gene in one cell stage of embryo was carried out and injected oocytes were transferred into pseudopregnant ICR female mice, producing a high success rate of the targeted deletion of miRNA genes. In our condition, TALEN RNA without poly(A) tail worked better than that of with poly(A) tail. This mutated allele in miRNA was transmitted to the next generation, suggesting the successful germ line transmission of this targeting method. Consistent with our notion of miRNAs maturation mechanism, in homozygous mutant mice of miR-10a, the non- mutated strand of miRNAs expression was completely diminished. This method will lead us to expand and accelerate our genetic research using mice in a high throughput way.
Two Drosophila chorion genes terminate transcription in discrete regions near their poly(A) sites.
Osheim, Y N; Miller, O L; Beyer, A L
1986-01-01
We have examined transcription termination of two closely linked Drosophila melanogaster chorion genes, s36-1 and s38-1, using the electron microscope. Our method is unusual and is independent of in vitro nuclear run-on transcription. By measuring transcription unit lengths in chromatin spreads, we can localize efficient termination sites to a region of approximately 210 bp for s36-1 and approximately 365 bp for s38-1. The center of this region is approximately 105 nucleotides downstream of the poly(A) site for the s36-1 gene, and approximately 400 nucleotides downstream for the s38-1 gene. Thus, these two Drosophila chorion genes terminate more closely to their poly(A) addition sites and in a shorter region than many other polyadenylated genes examined to date. Images Fig. 1. Fig. 2. PMID:3104029
Curran, Kathleen A.; Karim, Ashty S.; Gupta, Akash; Alper, Hal S.
2013-01-01
Control of gene and protein expression of both endogenous and heterologous genes is a key component of metabolic engineering. While a large amount of work has been published characterizing promoters for this purpose, less effort has been exerted to elucidate the role of terminators in yeast. In this study, we characterize over 30 terminators for use in metabolic engineering applications in Saccharomyces cerevisiae and determine mRNA half-life changes to be the major cause of the varied protein and transcript expression level. We demonstrate that the difference in transcript level can be over 6.5-fold even for high strength promoters. The influence of terminator selection is magnified when coupled with a low-expression promoter, with a maximum difference in protein expression of 11-fold between a high-capacity terminator and the parent plasmid terminator and over 35-fold difference when compared with a no-terminator baseline. This is the first time that terminators have been investigated in the context of multiple promoters spanning orders of magnitude in activity. Finally, we demonstrate the utility of terminator selection for metabolic engineering by using a mutant xylose isomerase gene as a proof-of-concept. Through pairing a high-capacity terminator with a low-expression promoter, we were able to achieve the same phenotypic result as with a promoter considerably higher in strength. Moreover, we can further boost the phenotype of the high-strength promoter by pairing it with a high-capacity terminator. This work highlights how terminator elements can be used to control metabolic pathways in the same way that promoters are traditionally used in yeast. Together, this work demonstrates that terminators will be an important part of heterologous gene expression and metabolic engineering for yeast in the future. PMID:23856240
Cloning and determination of the transcription termination site of ribosomal RNA gene of the mouse.
Kominami, R; Mishima, Y; Urano, Y; Sakai, M; Muramatsu, M
1982-01-01
A Eco RI 6.6 kb DNA fragment containing the 3'-end of 28S ribosomal RNA gene of the mouse was detected by Southern blot hybridization, and cloned in a lambda-phage vector. The site of transcription termination and the processed 3'-end of 28S RNA were determined on the cloned fragment and the surrounding nucleotide sequence determined. The 3'-terminal nucleotides of mouse 28S RNA are similar to those of yeast, Drosophila and Xenopus although the homology was lost drastically beyond the 3'-end of 28S RNA. 45S precursor RNA terminated at 30 nucleotides downstream from the 3'-end of 28S RNA gene. A structure of a dyad symmetry with a loop was found immediately prior to the termination site of 45S RNA. The rDNA termination site thus shares some common features with termination sites recognized by other RNA polymerases. Images PMID:6281727
Ramazanzadeh, Rashid; Rouhi, Samaneh; Shakib, Pegah; Shahbazi, Babak; Bidarpour, Farzam; Karimi, Mohammad
2015-05-01
Vibrio cholerae causes diarrhoeal disease that afflicts thousands of people annually. V. cholerae is classified on the basis of somatic antigens into serovars or serogroups and there are at least 200 known serogroup. Two serogroups, O1 and O139 have been associated with epidemic diseases. Virulence genes of these bacteria are OmpW, ctxA and tcpA. Due to the importance of V. cholerae infection and developing molecular diagnostics of this organism in medical and microbiology sciences, this study aimed to describe molecular characterization of V. cholerae isolated from clinical samples using a molecular method. In this study, 48 samples were provided during summer 2013 (late August and early September) by reference laboratory. Samples were assessed using biochemical tests initially. The primer of OmpW, ctxA and tcpA genes was used in Polymerase Chain Reaction (PCR) protocols. Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR and Repetitive Extragenic Palindromic (REP)-PCR methods were used to subtype V. cholerae. In this study, from a total of 48 clinical stool samples 39 (81.2 %) were positive for V. cholerae in biochemical tests and bacteria culture tests. The PCR results showed that of 39 positive isolates 35 (89.7%), 34 (87.1%) and 37 (94.8%) were positive for ctxA, tcpA and OmpW gene, respectively. Also, in the REP-PCR method with ERIC primer strains were divided into 10 groups. In the REP-PCR method with REP primer, strains were divided into 13 groups. Polymerase chain reaction has specificity and accuracy for identification of the organism and is able to differentiate biotypes. Enterobacterial repetitive intergenic consensus sequence is one of the informative and discriminative methods for the analysis of V. cholerae diversity. The REP-PCR is a less informative and discriminative method compared to other methods for the analysis of V. cholerae diversity.
Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.
2008-11-11
The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.
Dai, Ziyu; Lasure, Linda L.; Magnuson, Jon K.
2008-11-11
The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.
Dai, Ziyu; Lasure, Linda L; Magnuson, Jon K
2014-05-27
The present invention encompasses isolated gene regulatory elements and gene transcription terminators that are differentially expressed in a native fungus exhibiting a first morphology relative to the native fungus exhibiting a second morphology. The invention also encompasses a method of utilizing a fungus for protein or chemical production. A transformed fungus is produced by transforming a fungus with a recombinant polynucleotide molecule. The recombinant polynucleotide molecule contains an isolated polynucleotide sequence linked operably to another molecule comprising a coding region of a gene of interest. The gene regulatory element and gene transcription terminator may temporally and spatially regulate expression of particular genes for optimum production of compounds of interest in a transgenic fungus.
TPS1 terminator increases mRNA and protein yield in a Saccharomyces cerevisiae expression system.
Yamanishi, Mamoru; Katahira, Satoshi; Matsuyama, Takashi
2011-01-01
Both terminators and promoters regulate gene expression. In Saccharomyces cerevisiae, the TPS1 terminator (TPS1t), coupled to a gene encoding a fluorescent protein, produced more transgenic mRNA and protein than did similar constructs containing other terminators, such as CYC1t, TDH3t, and PGK1t. This suggests that TPS1t can be used as a general terminator in the development of metabolically engineered yeast in high-yield systems.
Van Damme, Els J.M.; Charels, Diana; Roy, Soma; Tierens, Koenraad; Barre, Annick; Martins, José C.; Rougé, Pierre; Van Leuven, Fred; Does, Mirjam; Peumans, Willy J.
1999-01-01
We isolated SN-HLPf (Sambucus nigra hevein-like fruit protein), a hevein-like chitin-binding protein, from mature elderberry fruits. Cloning of the corresponding gene demonstrated that SN-HLPf is synthesized as a chimeric precursor consisting of an N-terminal chitin-binding domain corresponding to the mature elderberry protein and an unrelated C-terminal domain. Sequence comparisons indicated that the N-terminal domain of this precursor has high sequence similarity with the N-terminal domain of class I PR-4 (pathogenesis-related) proteins, whereas the C terminus is most closely related to that of class V chitinases. On the basis of these sequence homologies the gene encoding SN-HLPf can be considered a hybrid between a PR-4 and a class V chitinase gene. PMID:10198114
Gaines, William A.; Marcotte, William R.
2010-01-01
Spider dragline silk is primarily composed of proteins called major ampullate spidroins (MaSp) that consist of a large repeat array flanked by non-repetitive N- and C-terminal domains. Until recently, there has been little evidence for more than one gene encoding each of the two major spidroin silk proteins, MaSp1 and MaSp2. Here, we report the deduced N-terminal domain sequences for two distinct MaSp1 genes from Nephila clavipes (MaSp1A and MaSp1B) and for MaSp2. All three MaSp genes are co-expressed in the major ampullate gland. A search of the GenBank database also revealed two distinct MaSp1 C-terminal domain sequences. Sequencing confirmed that both MaSp1 genes are present in all seven Nephila clavipes spiders examined. The presence of nucleotide polymorphisms in these genes confirmed that MaSp1A and MaSp1B are distinct genetic loci and not merely alleles of the same gene. We have experimentally determined the transcription start sites for all three MaSp genes and established preliminary pairing between the two MaSp1 N- and C-terminal domains. Phylogenetic analysis of these new sequences and other published MaSp N- and C-terminal domain sequences illustrated that duplications of MaSp genes may be widespread among spider species. PMID:18828837
Genetic Modification of Oncolytic Newcastle Disease Virus for Cancer Therapy.
Cheng, Xing; Wang, Weijia; Xu, Qi; Harper, James; Carroll, Danielle; Galinski, Mark S; Suzich, JoAnn; Jin, Hong
2016-06-01
Clinical development of a mesogenic strain of Newcastle disease virus (NDV) as an oncolytic agent for cancer therapy has been hampered by its select agent status due to its pathogenicity in avian species. Using reverse genetics, we have generated a lead candidate oncolytic NDV based on the mesogenic NDV-73T strain that is no longer classified as a select agent for clinical development. This recombinant NDV has a modification at the fusion protein (F) cleavage site to reduce the efficiency of F protein cleavage and an insertion of a 198-nucleotide sequence into the HN-L intergenic region, resulting in reduced viral gene expression and replication in avian cells but not in mammalian cells. In mammalian cells, except for viral polymerase (L) gene expression, viral gene expression is not negatively impacted or increased by the HN-L intergenic insertion. Furthermore, the virus can be engineered to express a foreign gene while still retaining the ability to grow to high titers in cell culture. The recombinant NDV selectively replicates in and kills tumor cells and is able to drive potent tumor growth inhibition following intratumoral or intravenous administration in a mouse tumor model. The candidate is well positioned for clinical development as an oncolytic virus. Avian paramyxovirus type 1, NDV, has been an attractive oncolytic agent for cancer virotherapy. However, this virus can cause epidemic disease in poultry, and concerns about the potential environmental and economic impact of an NDV outbreak have precluded its clinical development. Here we describe generation and characterization of a highly potent oncolytic NDV variant that is unlikely to cause Newcastle disease in its avian host, representing an essential step toward moving NDV forward as an oncolytic agent. Several attenuation mechanisms have been genetically engineered into the recombinant NDV that reduce chicken pathogenicity to a level that is acceptable worldwide without impacting viral production in cell culture. The selective tumor replication of this recombinant NDV, both in vitro and in vivo, along with efficient tumor cell killing makes it an attractive oncolytic virus candidate that may provide clinical benefit to patients. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Bojanovič, Klara; D'Arrigo, Isotta; Long, Katherine S
2017-04-01
Bacteria cope with and adapt to stress by modulating gene expression in response to specific environmental cues. In this study, the transcriptional response of Pseudomonas putida KT2440 to osmotic, oxidative, and imipenem stress conditions at two time points was investigated via identification of differentially expressed mRNAs and small RNAs (sRNAs). A total of 440 sRNA transcripts were detected, of which 10% correspond to previously annotated sRNAs, 40% to novel intergenic transcripts, and 50% to novel transcripts antisense to annotated genes. Each stress elicits a unique response as far as the extent and dynamics of the transcriptional changes. Nearly 200 protein-encoding genes exhibited significant changes in all stress types, implicating their participation in a general stress response. Almost half of the sRNA transcripts were differentially expressed under at least one condition, suggesting possible functional roles in the cellular response to stress conditions. The data show a larger fraction of differentially expressed sRNAs than of mRNAs with >5-fold expression changes. The work provides detailed insights into the mechanisms through which P. putida responds to different stress conditions and increases understanding of bacterial adaptation in natural and industrial settings. IMPORTANCE This study maps the complete transcriptional response of P. putida KT2440 to osmotic, oxidative, and imipenem stress conditions at short and long exposure times. Over 400 sRNA transcripts, consisting of both intergenic and antisense transcripts, were detected, increasing the number of identified sRNA transcripts in the strain by a factor of 10. Unique responses to each type of stress are documented, including both the extent and dynamics of the gene expression changes. The work adds rich detail to previous knowledge of stress response mechanisms due to the depth of the RNA sequencing data. Almost half of the sRNAs exhibit significant expression changes under at least one condition, suggesting their involvement in adaptation to stress conditions and identifying interesting candidates for further functional characterization. Copyright © 2017 American Society for Microbiology.
Hiwasa-Tanase, Kyoko; Nyarubona, Mpanja; Hirai, Tadayoshi; Kato, Kazuhisa; Ichikawa, Takanari; Ezura, Hiroshi
2011-01-01
In our previous study, a transgenic tomato line that expressed the MIR gene under control of the cauliflower mosaic virus 35S promoter and the nopaline synthase terminator (tNOS) produced the taste-modifying protein miraculin (MIR). However, the concentration of MIR in the tomatoes was lower than that in the MIR gene's native miracle fruit. To increase MIR production, the native MIR terminator (tMIR) was used and a synthetic gene encoding MIR protein (sMIR) was designed to optimize its codon usage for tomato. Four different combinations of these genes and terminators (MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR) were constructed and used for transformation. The average MIR concentrations in MIR-tNOS, MIR-tMIR, sMIR-tNOS and sMIR-tMIR fruits were 131, 197, 128 and 287 μg/g fresh weight, respectively. The MIR concentrations using tMIR were higher than those using tNOS. The highest MIR accumulation was detected in sMIR-tMIR fruits. On the other hand, the MIR concentration was largely unaffected by sMIR-tNOS. The expression levels of both MIR and sMIR mRNAs terminated by tMIR tended to be higher than those terminated by tNOS. Read-through mRNA transcripts terminated by tNOS were much longer than those terminated by tMIR. These results suggest that tMIR enhances mRNA expression and permits the multiplier effect of optimized codon usage.
Role of the terminator hairpin in the biogenesis of functional Hfq-binding sRNAs
Morita, Teppei; Nishino, Ryo; Aiba, Hiroji
2017-01-01
Rho-independent transcription terminators of the genes encoding bacterial Hfq-binding sRNAs possess a set of seven or more T residues at the 3′ end, as noted in previous studies. Here, we have studied the role of the terminator hairpin in the biogenesis of sRNAs focusing on SgrS and RyhB in Escherichia coli. We constructed variant sRNA genes in which the GC-rich inverted repeat sequences are extended to stabilize the terminator hairpins. We demonstrate that the extension of the hairpin stem leads to generation of heterogeneous transcripts in which the poly(U) tail is shortened. The transcripts with shortened poly(U) tails no longer bind to Hfq and lose the ability to repress the target mRNAs. The shortened transcripts are generated in an in vitro transcription system with purified RNA polymerase, indicating that the generation of shortened transcripts is caused by premature transcription termination. We conclude that the terminator structure of sRNA genes is optimized to generate functional sRNAs. Thus, the Rho-independent terminators of sRNA genes possess two common features: a long T residue stretch that is a prerequisite for generation of functional sRNAs and a moderate strength of hairpin structure that ensures the termination at the seventh or longer position within the consecutive T stretch. The modulation of the termination position at the Rho-independent terminators is critical for biosynthesis of functional sRNAs. PMID:28606943
Ashraf, Muhammad Aleem; Shahid, Ahmad Ali; Rao, Abdul Qayyum; Bajwa, Kamran Shehzad; Husnain, Tayyab
2014-01-01
The C1 promoter expressing the AC1 gene, and V1 promoter expressing the AV1 gene are located in opposite orientations in the large intergenic region of the Cotton leaf curl Burewala virus (CLCuBuV) genome. Agro-infiltration was used to transiently express putative promoter constructs in Nicotiana tabacum and Gossypium hirsutum leaves, which was monitored by a GUS reporter gene, and revealed that the bidirectional promoter of CLCuBuV transcriptionally regulates both the AC1 and AV1 genes. The CLCuBuV C1 gene promoter showed a strong, consistent transient expression of the reporter gene (GUS) in N. tabacum and G. hirsutum leaves and exhibited GUS activity two- to three-fold higher than the CaMV 35S promoter. The CLCuBuV bidirectional genepromoter is a nearly constitutive promoter that contains basic conserved elements. Many cis-regulatory elements (CREs) were also analyzed within the bidirectional plant promoters of CLCuBuV and closely related geminiviruses, which may be helpful in understanding the transcriptional regulation of both the virus and host plant. PMID:24424501
Kim, Kyunghee; Lee, Sang-Choon; Lee, Junki; Lee, Hyun Oh; Joh, Ho Jun; Kim, Nam-Hoon; Park, Hyun-Seung; Yang, Tae-Jin
2015-01-01
We report complete sequences of chloroplast (cp) genome and 45S nuclear ribosomal DNA (45S nrDNA) for 11 Panax ginseng cultivars. We have obtained complete sequences of cp and 45S nrDNA, the representative barcoding target sequences for cytoplasm and nuclear genome, respectively, based on low coverage NGS sequence of each cultivar. The cp genomes sizes ranged from 156,241 to 156,425 bp and the major size variation was derived from differences in copy number of tandem repeats in the ycf1 gene and in the intergenic regions of rps16-trnUUG and rpl32-trnUAG. The complete 45S nrDNA unit sequences were 11,091 bp, representing a consensus single transcriptional unit with an intergenic spacer region. Comparative analysis of these sequences as well as those previously reported for three Chinese accessions identified very rare but unique polymorphism in the cp genome within P. ginseng cultivars. There were 12 intra-species polymorphisms (six SNPs and six InDels) among 14 cultivars. We also identified five SNPs from 45S nrDNA of 11 Korean ginseng cultivars. From the 17 unique informative polymorphic sites, we developed six reliable markers for analysis of ginseng diversity and cultivar authentication. PMID:26061692
Bélanger-Lépine, Frédérique; Leung, Christelle; Glémet, Hélène; Angers, Bernard
2018-01-01
The ribosomal intergenic spacer (IGS), responsible for the rate of transcription of rRNA genes, is associated with the growth and fecundity of individuals. A previous study of IGS length variants in a yellow perch (Perca flavescens) population revealed the presence of two predominant alleles differing by 1 kb due to variation in the number of repeat units. This study aims to assess whether length variation of IGS is the result of selection in natural populations. Length variation of IGS and 11 neutral microsatellite loci were assessed in geographically distant yellow perch populations. Most populations displayed the very same IGS alleles; they did not differ in frequencies among populations and the F ST was not significantly different from zero. In contrast, diversity at microsatellite loci was high and differed among populations (F ST = 0.18). Selection test based on F ST identified IGS as a significant outlier from neutral expectations for population differentiation. Heterozygote excess was also detected in one specific cohort, suggesting temporal variation in the selection regime. While the exact mechanism remains to be specified, together the results of this study support the contention that balancing selection is acting to maintain two distinct IGS alleles in natural fish populations.
Rosenthal, Sun Hee; Diamos, Andrew G; Mason, Hugh S
2018-03-01
We have found interesting features of a plant gene (extensin) 3' flanking region, including extremely efficient polyadenylation which greatly improves transient expression of transgenes when an intron is removed. Its use will greatly benefit studies of gene expression in plants, research in molecular biology, and applications for recombinant proteins. Plants are a promising platform for the production of recombinant proteins. To express high-value proteins in plants efficiently, the optimization of expression cassettes using appropriate regulatory sequences is critical. Here, we characterize the activity of the tobacco extensin (Ext) gene terminator by transient expression in Nicotiana benthamiana, tobacco, and lettuce. Ext is a member of the hydroxyproline-rich glycoprotein (HRGP) superfamily and constitutes the major protein component of cell walls. The present study demonstrates that the Ext terminator with its native intron removed increased transient gene expression up to 13.5-fold compared to previously established terminators. The enhanced transgene expression was correlated with increased mRNA accumulation and reduced levels of read-through transcripts, which could impair gene expression. Analysis of transcript 3'-ends found that the majority of polyadenylated transcripts were cleaved at a YA dinucleotide downstream from a canonical AAUAAA motif and a UG-rich region, both of which were found to be highly conserved among related extensin terminators. Deletion of either of these regions eliminated most of the activity of the terminator. Additionally, a 45 nt polypurine sequence ~ 175 nt upstream from the polyadenylation sites was found to also be necessary for the enhanced expression. We conclude that the use of Ext terminator has great potential to benefit the production of recombinant proteins in plants.
USDA-ARS?s Scientific Manuscript database
Long noncoding RNAs (lncRNAs) have been recognized in recent years as key regulators of diverse cellular processes. Genome-wide large-scale projects have uncovered thousands of lncRNAs in many model organisms. Large intergenic noncoding RNAs (lincRNAs) are lncRNAs that are transcribed from intergeni...
[Identification of medicinal plant Dendrobium based on the chloroplast psbK-psbI intergenic spacer].
Yao, Hui; Yang, Pei; Zhou, Hong; Ma, Shuang-jiao; Song, Jing-yuan; Chen, Shi-lin
2015-06-01
In this paper, the chloroplast psbK-psbI intergenic spacers of 18 species of Dendrobium and their adulterants were amplified and sequenced, and then the sequence characteristics were analyzed. The sequence lengths of chloroplast psbK-psbI regions of Dendrobium ranged from 474 to 513 bp and the GC contents were 25.4%-27.6%. The variable sites were 71 while the informative sites were 46. The inter-specific genetic distances calculated by Kimura 2-parameter (K2P) of Dendrobium were 0.006 1-0.058 1, with an average of 0.028 4. The K2P genetic distances between Dendrobium species and Bulbophyllum odoratissimum were 0.093 2-0.120 4. The NJ tree showed that the Dendrobium species can be easily differentiated from each other and 6 samples of the inspected Dendrobium species were identified successfully through sequencing the psbK-psbI intergenic spacer. Therefore, the chloroplast psbK-psbI intergenic spacer can be used as a candidate marker to identify Dendrobium species and its adulterants.
2011-01-01
Background One member of the W family of human endogenous retroviruses (HERV) appears to have been functionally adopted by the human host. Nevertheless, a highly diversified and regulated transcription from a range of HERV-W elements has been observed in human tissues and cells. Aberrant expression of members of this family has also been associated with human disease such as multiple sclerosis (MS) and schizophrenia. It is not known whether this broad expression of HERV-W elements represents transcriptional leakage or specific transcription initiated from the retroviral promoter in the long terminal repeat (LTR) region. Therefore, potential influences of genomic context, structure and orientation on the expression levels of individual HERV-W elements in normal human tissues were systematically investigated. Results Whereas intronic HERV-W elements with a pseudogene structure exhibited a strong anti-sense orientation bias, intronic elements with a proviral structure and solo LTRs did not. Although a highly variable expression across tissues and elements was observed, systematic effects of context, structure and orientation were also observed. Elements located in intronic regions appeared to be expressed at higher levels than elements located in intergenic regions. Intronic elements with proviral structures were expressed at higher levels than those elements bearing hallmarks of processed pseudogenes or solo LTRs. Relative to their corresponding genes, intronic elements integrated on the sense strand appeared to be transcribed at higher levels than those integrated on the anti-sense strand. Moreover, the expression of proviral elements appeared to be independent from that of their corresponding genes. Conclusions Intronic HERV-W provirus integrations on the sense strand appear to have elicited a weaker negative selection than pseudogene integrations of transcripts from such elements. Our current findings suggest that the previously observed diversified and tissue-specific expression of elements in the HERV-W family is the result of both directed transcription (involving both the LTR and internal sequence) and leaky transcription of HERV-W elements in normal human tissues. PMID:21226900
The complete mitochondrial genome of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae)
Liao, Fang; Wang, Lin; Wu, Song; Li, Yu-Ping; Zhao, Lei; Huang, Guo-Ming; Niu, Chun-Jing; Liu, Yan-Qun; Li, Ming-Gang
2010-01-01
The complete mitochondrial genome (mitogenome) of the fall webworm, Hyphantria cunea (Lepidoptera: Arctiidae) was determined. The genome is a circular molecule 15 481 bp long. It presents a typical gene organization and order for completely sequenced lepidopteran mitogenomes, but differs from the insect ancestral type for the placement of tRNAMet. The nucleotide composition of the genome is also highly A + T biased, accounting for 80.38%, with a slightly positive AT skewness (0.010), indicating the occurrence of more As than Ts, as found in the Noctuoidea species. All protein-coding genes (PCGs) are initiated by ATN codons, except for COI, which is tentatively designated by the CGA codon as observed in other lepidopterans. Four of 13 PCGs harbor the incomplete termination codon, T or TA. All tRNAs have a typical clover-leaf structure of mitochondrial tRNAs, except for tRNASer(AGN), the DHU arm of which could not form a stable stem-loop structure. The intergenic spacer sequence between tRNASer(AGN) and ND1 also contains the ATACTAA motif, which is conserved across the Lepidoptera order. The H. cunea A+T-rich region of 357 bp is comprised of non-repetitive sequences, but harbors several features common to the Lepidoptera insects, including the motif ATAGA followed by an 18 bp poly-T stretch, a microsatellite-like (AT)8 element preceded by the ATTTA motif, an 11 bp poly-A present immediately upstream tRNAMet. The phylogenetic analyses support the view that the H. cunea is closerly related to the Lymantria dispar than Ochrogaster lunifer, and support the hypothesis that Noctuoidea (H. cunea, L. dispar, and O. lunifer) and Geometroidea (Phthonandria atrilineata) are monophyletic. However, in the phylogenetic trees based on mitogenome sequences among the lepidopteran superfamilies, Papillonoidea (Artogeia melete, Acraea issoria, and Coreana raphaelis) joined basally within the monophyly of Lepidoptera, which is different to the traditional classification. PMID:20376208
Promoter and Terminator Discovery and Engineering.
Deaner, Matthew; Alper, Hal S
Control of gene expression is crucial to optimize metabolic pathways and synthetic gene networks. Promoters and terminators are stretches of DNA upstream and downstream (respectively) of genes that control both the rate at which the gene is transcribed and the rate at which mRNA is degraded. As a result, both of these elements control net protein expression from a synthetic construct. Thus, it is highly important to discover and engineer promoters and terminators with desired characteristics. This chapter highlights various approaches taken to catalogue these important synthetic elements. Specifically, early strategies have focused largely on semi-rational techniques such as saturation mutagenesis to diversify native promoters and terminators. Next, in an effort to reduce the length of the synthetic biology design cycle, efforts in the field have turned towards the rational design of synthetic promoters and terminators. In this vein, we cover recently developed methods such as hybrid engineering, high throughput characterization, and thermodynamic modeling which allow finer control in the rational design of novel promoters and terminators. Emphasis is placed on the methodologies used and this chapter showcases the utility of these methods across multiple host organisms.
Le, Tu N.; Miyazaki, Yuji; Takuno, Shohei; Saze, Hidetoshi
2015-01-01
Genomes of higher eukaryotes, including plants, contain numerous transposable elements (TEs), that are often silenced by epigenetic mechanisms, such as histone modifications and DNA methylation. Although TE silencing adversely affects expression of nearby genes, recent studies reveal the presence of intragenic TEs marked by repressive heterochromatic epigenetic marks within transcribed genes. However, even for the well-studied plant model Arabidopsis thaliana, the abundance of intragenic TEs, how they are epigenetically regulated, and their potential impacts on host gene expression, remain unexplored. In this study, we comprehensively analyzed genome-wide distribution and epigenetic regulation of intragenic TEs in A. thaliana. Our analysis revealed that about 3% of TEs are located within gene bodies, dominantly at intronic regions. Most of them are shorter and less methylated than intergenic TEs, but they are still targeted by RNA-directed DNA methylation-dependent and independent pathways. Surprisingly, the heterochromatic epigenetic marks at TEs are maintained within actively transcribed genes. Moreover, the heterochromatic state of intronic TEs is critical for proper transcription of associated genes. Our study provides the first insight into how intragenic TEs affect the transcriptional landscape of the A. thaliana genome, and suggests the importance of epigenetic mechanisms for regulation of TEs within transcriptional gene units. PMID:25813042
Variation of 45S rDNA intergenic spacers in Arabidopsis thaliana.
Havlová, Kateřina; Dvořáčková, Martina; Peiro, Ramon; Abia, David; Mozgová, Iva; Vansáčová, Lenka; Gutierrez, Crisanto; Fajkus, Jiří
2016-11-01
Approximately seven hundred 45S rRNA genes (rDNA) in the Arabidopsis thaliana genome are organised in two 4 Mbp-long arrays of tandem repeats arranged in head-to-tail fashion separated by an intergenic spacer (IGS). These arrays make up 5 % of the A. thaliana genome. IGS are rapidly evolving sequences and frequent rearrangements inside the rDNA loci have generated considerable interspecific and even intra-individual variability which allows to distinguish among otherwise highly conserved rRNA genes. The IGS has not been comprehensively described despite its potential importance in regulation of rDNA transcription and replication. Here we describe the detailed sequence variation in the complete IGS of A. thaliana WT plants and provide the reference/consensus IGS sequence, as well as genomic DNA analysis. We further investigate mutants dysfunctional in chromatin assembly factor-1 (CAF-1) (fas1 and fas2 mutants), which are known to have a reduced number of rDNA copies, and plant lines with restored CAF-1 function (segregated from a fas1xfas2 genetic background) showing major rDNA rearrangements. The systematic rDNA loss in CAF-1 mutants leads to the decreased variability of the IGS and to the occurrence of distinct IGS variants. We present for the first time a comprehensive and representative set of complete IGS sequences, obtained by conventional cloning and by Pacific Biosciences sequencing. Our data expands the knowledge of the A. thaliana IGS sequence arrangement and variability, which has not been available in full and in detail until now. This is also the first study combining IGS sequencing data with RFLP analysis of genomic DNA.
Analysis of 16S-23S rRNA intergenic spacer regions of Vibrio cholerae and Vibrio mimicus.
Chun, J; Huq, A; Colwell, R R
1999-05-01
Vibrio cholerae identification based on molecular sequence data has been hampered by a lack of sequence variation from the closely related Vibrio mimicus. The two species share many genes coding for proteins, such as ctxAB, and show almost identical 16S DNA coding for rRNA (rDNA) sequences. Primers targeting conserved sequences flanking the 3' end of the 16S and the 5' end of the 23S rDNAs were used to amplify the 16S-23S rRNA intergenic spacer regions of V. cholerae and V. mimicus. Two major (ca. 580 and 500 bp) and one minor (ca. 750 bp) amplicons were consistently generated for both species, and their sequences were determined. The largest fragment contains three tRNA genes (tDNAs) coding for tRNAGlu, tRNALys, and tRNAVal, which has not previously been found in bacteria examined to date. The 580-bp amplicon contained tDNAIle and tDNAAla, whereas the 500-bp fragment had single tDNA coding either tRNAGlu or tRNAAla. Little variation, i.e., 0 to 0.4%, was found among V. cholerae O1 classical, O1 El Tor, and O139 epidemic strains. Slightly more variation was found against the non-O1/non-O139 serotypes (ca. 1% difference) and V. mimicus (2 to 3% difference). A pair of oligonucleotide primers were designed, based on the region differentiating all of V. cholerae strains from V. mimicus. The PCR system developed was subsequently evaluated by using representatives of V. cholerae from environmental and clinical sources, and of other taxa, including V. mimicus. This study provides the first molecular tool for identifying the species V. cholerae.
Pringle, Märit; Bergsten, Christer; Fernström, Lise-Lotte; Höök, Helena; Johansson, Karl-Erik
2008-10-20
Digital dermatitis in cattle is an emerging infectious disease. Ulcerative lesions are typically located on the plantar skin between the heel bulbs and adjacent to the coronet. Spirochetes of the genus Treponema are found in high numbers in the lesions and are likely to be involved in the pathogenesis. The aim of this study was to obtain pure cultures of spirochetes from cattle with digital dermatitis and to describe them further. Tissue samples and swabs from active digital dermatitis lesions were used for culturing. Pure isolates were subjected to, molecular typing through 16S rRNA gene sequencing, pulsed-field gel electrophoresis (PFGE), random amplified polymorphic DNA (RAPD) and an intergenic spacer PCR developed for Treponema spp. as well as API-ZYM and antimicrobial susceptibility tests. The antimicrobial agents used were tiamulin, valnemulin, tylosin, aivlosin, lincomycin and doxycycline. Seven spirochete isolates from five herds were obtained. Both 16S rRNA gene sequences, which were identical except for three polymorphic nucleotide positions, and the intergenic spacer PCR indicated that all isolates were of one yet unnamed species, most closely related to Treponema phagedenis. The enzymatic profile and antimicrobial susceptibility pattern were also similar for all isolates. However it was possible to separate the isolates through their PFGE and RAPD banding pattern. This is the first report on isolation of a Treponema sp. from cattle with digital dermatitis in Scandinavia. The phylotype isolated has previously been cultured from samples from cattle in the USA and the UK and is closely related to T. phagedenis. While very similar, the isolates in this study were possible to differentiate through PFGE and RAPD indicating that these methods are suitable for subtyping of this phylotype. No antimicrobial resistance could be detected among the tested isolates.
Ginkgo and Welwitschia Mitogenomes Reveal Extreme Contrasts in Gymnosperm Mitochondrial Evolution.
Guo, Wenhu; Grewe, Felix; Fan, Weishu; Young, Gregory J; Knoop, Volker; Palmer, Jeffrey D; Mower, Jeffrey P
2016-06-01
Mitochondrial genomes (mitogenomes) of flowering plants are well known for their extreme diversity in size, structure, gene content, and rates of sequence evolution and recombination. In contrast, little is known about mitogenomic diversity and evolution within gymnosperms. Only a single complete genome sequence is available, from the cycad Cycas taitungensis, while limited information is available for the one draft sequence, from Norway spruce (Picea abies). To examine mitogenomic evolution in gymnosperms, we generated complete genome sequences for the ginkgo tree (Ginkgo biloba) and a gnetophyte (Welwitschia mirabilis). There is great disparity in size, sequence conservation, levels of shared DNA, and functional content among gymnosperm mitogenomes. The Cycas and Ginkgo mitogenomes are relatively small, have low substitution rates, and possess numerous genes, introns, and edit sites; we infer that these properties were present in the ancestral seed plant. By contrast, the Welwitschia mitogenome has an expanded size coupled with accelerated substitution rates and extensive loss of these functional features. The Picea genome has expanded further, to more than 4 Mb. With regard to structural evolution, the Cycas and Ginkgo mitogenomes share a remarkable amount of intergenic DNA, which may be related to the limited recombinational activity detected at repeats in Ginkgo Conversely, the Welwitschia mitogenome shares almost no intergenic DNA with any other seed plant. By conducting the first measurements of rates of DNA turnover in seed plant mitogenomes, we discovered that turnover rates vary by orders of magnitude among species. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Helicobacter pylori HP1512 Is a Nickel-Responsive NikR-Regulated Outer Membrane Protein▿
Davis, Gregg S.; Flannery, Erika L.; Mobley, Harry L. T.
2006-01-01
Helicobacter pylori is dependent upon the production of the highly abundant and active metalloenzyme urease for colonization of the human stomach. Thus, H. pylori has an absolute requirement for the transition metal nickel, a required cofactor for urease. To investigate the contribution of genes that are factors in this process, microarray analysis comparing the transcriptome of wild-type H. pylori 26695 cultured in brucella broth containing fetal calf serum (BBF) alone or supplemented with 100 μM NiCl2 suggested that HP1512 is repressed in the presence of 100 μM supplemental nickel. When measured by comparative real-time quantitative PCR (qPCR), HP1512 transcription was reduced 43-fold relative to the value for the wild type when cultured in BBF supplemented with 10 μM NiCl2. When grown in unsupplemented BBF, urease activity of an HP1512::cat mutant was significantly reduced compared to the wild type, 4.9 ± 0.5 μmol/min/mg of protein (n = 7) and 17.1 ± 4.9 μmol/min/mg of protein (n = 13), respectively (P < 0.0001). In silico analysis of the HP1511-HP1512 (HP1511-1512) intergenic region identified a putative NikR operator upstream of HP1512. Gel shift analysis with purified recombinant NikR verified nickel-dependent binding of H. pylori NikR to the HP1511-1512 intergenic region. Furthermore, comparative real-time qPCR of four nickel-related genes suggests that mutation of HP1512 results in reduced intracellular nickel concentration relative to wild-type H. pylori 26695. Taken together, these data suggest that HP1512 encodes a NikR-nickel-regulated outer membrane protein. PMID:17030579
DOE Office of Scientific and Technical Information (OSTI.GOV)
Labbe, Jessy L; Murat, Claude; Morin, Emmanuelle
It is becoming clear that simple sequence repeats (SSRs) play a significant role in fungal genome organization, and they are a large source of genetic markers for population genetics and meiotic maps. We identified SSRs in the Laccaria bicolor genome by in silico survey and analyzed their distribution in the different genomic regions. We also compared the abundance and distribution of SSRs in L. bicolor with those of the following fungal genomes: Phanerochaete chrysosporium, Coprinopsis cinerea, Ustilago maydis, Cryptococcus neoformans, Aspergillus nidulans, Magnaporthe grisea, Neurospora crassa and Saccharomyces cerevisiae. Using the MISA computer program, we detected 277,062 SSRs in themore » L. bicolor genome representing 8% of the assembled genomic sequence. Among the analyzed basidiomycetes, L. bicolor exhibited the highest SSR density although no correlation between relative abundance and the genome sizes was observed. In most genomes the short motifs (mono- to trinucleotides) were more abundant than the longer repeated SSRs. Generally, in each organism, the occurrence, relative abundance, and relative density of SSRs decreased as the repeat unit increased. Furthermore, each organism had its own common and longest SSRs. In the L. bicolor genome, most of the SSRs were located in intergenic regions (73.3%) and the highest SSR density was observed in transposable elements (TEs; 6,706 SSRs/Mb). However, 81% of the protein-coding genes contained SSRs in their exons, suggesting that SSR polymorphism may alter gene phenotypes. Within a L. bicolor offspring, sequence polymorphism of 78 SSRs was mainly detected in non-TE intergenic regions. Unlike previously developed microsatellite markers, these new ones are spread throughout the genome; these markers could have immediate applications in population genetics.« less
Fu, Jianmin; Liu, Huimin; Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng
2016-01-01
Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros 'Jinzaoshi' were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. 'Jinzaoshi', support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales.
Hu, Jingjing; Liang, Yuqin; Liang, Jinjun; Wuyun, Tana; Tan, Xiaofeng
2016-01-01
Diospyros is the largest genus in Ebenaceae, comprising more than 500 species with remarkable economic value, especially Diospyros kaki Thunb., which has traditionally been an important food resource in China, Korea, and Japan. Complete chloroplast (cp) genomes from D. kaki, D. lotus L., D. oleifera Cheng., D. glaucifolia Metc., and Diospyros ‘Jinzaoshi’ were sequenced using Illumina sequencing technology. This is the first cp genome reported in Ebenaceae. The cp genome sequences of Diospyros ranged from 157,300 to 157,784 bp in length, presenting a typical quadripartite structure with two inverted repeats each separated by one large and one small single-copy region. For each cp genome, 134 genes were annotated, including 80 protein-coding, 31 tRNA, and 4 rRNA unique genes. In all, 179 repeats and 283 single sequence repeats were identified. Four hypervariable regions, namely, intergenic region of trnQ_rps16, trnV_ndhC, and psbD_trnT, and intron of ndhA, were identified in the Diospyros genomes. Phylogenetic analyses based on the whole cp genome, protein-coding, and intergenic and intron sequences indicated that D. oleifera is closely related to D. kaki and could be used as a model plant for future research on D. kaki; to our knowledge, this is proposed for the first time. Further, these analyses together with two large deletions (301 and 140 bp) in the cp genome of D. ‘Jinzaoshi’, support its placement as a new species in Diospyros. Both maximum parsimony and likelihood analyses for 19 taxa indicated the basal position of Ericales in asterids and suggested that Ebenaceae is monophyletic in Ericales. PMID:27442423
Su, Yingjuan; Wang, Ting; Zheng, Bo; Jiang, Yu; Chen, Guopei; Gu, Hongya
2004-11-01
Sequences of chloroplast DNA (cpDNA) atpB- rbcL intergenic spacers of individuals of a tree fern species, Alsophila spinulosa, collected from ten relict populations distributed in the Hainan and Guangdong provinces, and the Guangxi Zhuang region in southern China, were determined. Sequence length varied from 724 bp to 731 bp, showing length polymorphism, and base composition was with high A+T content between 63.17% and 63.95%. Sequences were neutral in terms of evolution (Tajima's criterion D=-1.01899, P>0.10 and Fu and Li's test D*=-1.39008, P>0.10; F*=-1.49775, P>0.10). A total of 19 haplotypes were identified based on nucleotide variation. High levels of haplotype diversity (h=0.744) and nucleotide diversity (Dij=0.01130) were detected in A. spinulosa, probably associated with its long evolutionary history, which has allowed the accumulation of genetic variation within lineages. Both the minimum spanning network and neighbor-joining trees generated for haplotypes demonstrated that current populations of A. spinulosa existing in Hainan, Guangdong, and Guangxi were subdivided into two geographical groups. An analysis of molecular variance indicated that most of the genetic variation (93.49%, P<0.001) was partitioned among regions. Wright's isolation by distance model was not supported across extant populations. Reduced gene flow by the Qiongzhou Strait and inbreeding may result in the geographical subdivision between the Hainan and Guangdong + Guangxi populations (FST=0.95, Nm=0.03). Within each region, the star-like pattern of phylogeography of haplotypes implied a population expansion process during evolutionary history. Gene genealogies together with coalescent theory provided significant information for uncovering phylogeography of A. spinulosa.
Sun, Zhifu; Wu, Yanhong; Ordog, Tamas; Baheti, Saurabh; Nie, Jinfu; Duan, Xiaohui; Hojo, Kaori; Kocher, Jean-Pierre; Dyck, Peter J; Klein, Christopher J
2014-08-01
DNA methyltransferase 1 (DNMT1) is essential for DNA methylation, gene regulation and chromatin stability. We previously discovered DNMT1 mutations cause hereditary sensory and autonomic neuropathy type 1 with dementia and hearing loss (HSAN1E; OMIM 614116). HSAN1E is the first adult-onset neurodegenerative disorder caused by a defect in a methyltransferase gene. HSAN1E patients appear clinically normal until young adulthood, then begin developing the characteristic symptoms involving central and peripheral nervous systems. Some HSAN1E patients also develop narcolepsy and it has recently been suggested that HSAN1E is allelic to autosomal dominant cerebellar ataxia, deafness, with narcolepsy (ADCA-DN; OMIM 604121), which is also caused by mutations in DNMT1. A hotspot mutation Y495C within the targeting sequence domain of DNMT1 has been identified among HSAN1E patients. The mutant DNMT1 protein shows premature degradation and reduced DNA methyltransferase activity. Herein, we investigate genome-wide DNA methylation at single-base resolution through whole-genome bisulfite sequencing of germline DNA in 3 pairs of HSAN1E patients and their gender- and age-matched siblings. Over 1 billion 75-bp single-end reads were generated for each sample. In the 3 affected siblings, overall methylation loss was consistently found in all chromosomes with X and 18 being most affected. Paired sample analysis identified 564,218 differentially methylated CpG sites (DMCs; P<0.05), of which 300 134 were intergenic and 264 084 genic CpGs. Hypomethylation was predominant in both genic and intergenic regions, including promoters, exons, most CpG islands, L1, L2, Alu, and satellite repeats and simple repeat sequences. In some CpG islands, hypermethylated CpGs outnumbered hypomethylated CpGs. In 201 imprinted genes, there were more DMCs than in non-imprinted genes and most were hypomethylated. Differentially methylated region (DMR) analysis identified 5649 hypomethylated and 1872 hypermethylated regions. Importantly, pathway analysis revealed 1693 genes associated with the identified DMRs were highly associated in diverse neurological disorders and NAD+/NADH metabolism pathways is implicated in the pathogenesis. Our results provide novel insights into the epigenetic mechanism of neurodegeneration arising from a hotspot DNMT1 mutation and reveal pathways potentially important in a broad category of neurological and psychological disorders.
Sun, Zhifu; Wu, Yanhong; Ordog, Tamas; Baheti, Saurabh; Nie, Jinfu; Duan, Xiaohui; Hojo, Kaori; Kocher, Jean-Pierre; Dyck, Peter J; Klein, Christopher J
2014-01-01
DNA methyltransferase 1 (DNMT1) is essential for DNA methylation, gene regulation and chromatin stability. We previously discovered DNMT1 mutations cause hereditary sensory and autonomic neuropathy type 1 with dementia and hearing loss (HSAN1E; OMIM 614116). HSAN1E is the first adult-onset neurodegenerative disorder caused by a defect in a methyltransferase gene. HSAN1E patients appear clinically normal until young adulthood, then begin developing the characteristic symptoms involving central and peripheral nervous systems. Some HSAN1E patients also develop narcolepsy and it has recently been suggested that HSAN1E is allelic to autosomal dominant cerebellar ataxia, deafness, with narcolepsy (ADCA-DN; OMIM 604121), which is also caused by mutations in DNMT1. A hotspot mutation Y495C within the targeting sequence domain of DNMT1 has been identified among HSAN1E patients. The mutant DNMT1 protein shows premature degradation and reduced DNA methyltransferase activity. Herein, we investigate genome-wide DNA methylation at single-base resolution through whole-genome bisulfite sequencing of germline DNA in 3 pairs of HSAN1E patients and their gender- and age-matched siblings. Over 1 billion 75-bp single-end reads were generated for each sample. In the 3 affected siblings, overall methylation loss was consistently found in all chromosomes with X and 18 being most affected. Paired sample analysis identified 564,218 differentially methylated CpG sites (DMCs; P < 0.05), of which 300 134 were intergenic and 264 084 genic CpGs. Hypomethylation was predominant in both genic and intergenic regions, including promoters, exons, most CpG islands, L1, L2, Alu, and satellite repeats and simple repeat sequences. In some CpG islands, hypermethylated CpGs outnumbered hypomethylated CpGs. In 201 imprinted genes, there were more DMCs than in non-imprinted genes and most were hypomethylated. Differentially methylated region (DMR) analysis identified 5649 hypomethylated and 1872 hypermethylated regions. Importantly, pathway analysis revealed 1693 genes associated with the identified DMRs were highly associated in diverse neurological disorders and NAD+/NADH metabolism pathways is implicated in the pathogenesis. Our results provide novel insights into the epigenetic mechanism of neurodegeneration arising from a hotspot DNMT1 mutation and reveal pathways potentially important in a broad category of neurological and psychological disorders. PMID:25033457
RISSC: a novel database for ribosomal 16S–23S RNA genes spacer regions
García-Martínez, Jesús; Bescós, Ignacio; Rodríguez-Sala, Jesús Javier; Rodríguez-Valera, Francisco
2001-01-01
A novel database, under the acronym RISSC (Ribosomal Intergenic Spacer Sequence Collection), has been created. It compiles more than 1600 entries of edited DNA sequence data from the 16S–23S ribosomal spacers present in most prokaryotes and organelles (e.g. mitochondria and chloroplasts) and is accessible through the Internet (http://ulises.umh.es/RISSC), where systematic searches for specific words can be conducted, as well as BLAST-type sequence searches. Additionally, a characteristic feature of this region, the presence/absence and nature of tRNA genes within the spacer, is included in all the entries, even when not previously indicated in the original database. All these combined features could provide a useful documentation tool for studies on evolution, identification, typing and strain characterization, among others. PMID:11125084
Dynamic gene expression response to altered gravity in human T cells.
Thiel, Cora S; Hauschild, Swantje; Huge, Andreas; Tauber, Svantje; Lauber, Beatrice A; Polzer, Jennifer; Paulsen, Katrin; Lier, Hartwin; Engelmann, Frank; Schmitz, Burkhard; Schütte, Andreas; Layer, Liliana E; Ullrich, Oliver
2017-07-12
We investigated the dynamics of immediate and initial gene expression response to different gravitational environments in human Jurkat T lymphocytic cells and compared expression profiles to identify potential gravity-regulated genes and adaptation processes. We used the Affymetrix GeneChip® Human Transcriptome Array 2.0 containing 44,699 protein coding genes and 22,829 non-protein coding genes and performed the experiments during a parabolic flight and a suborbital ballistic rocket mission to cross-validate gravity-regulated gene expression through independent research platforms and different sets of control experiments to exclude other factors than alteration of gravity. We found that gene expression in human T cells rapidly responded to altered gravity in the time frame of 20 s and 5 min. The initial response to microgravity involved mostly regulatory RNAs. We identified three gravity-regulated genes which could be cross-validated in both completely independent experiment missions: ATP6V1A/D, a vacuolar H + -ATPase (V-ATPase) responsible for acidification during bone resorption, IGHD3-3/IGHD3-10, diversity genes of the immunoglobulin heavy-chain locus participating in V(D)J recombination, and LINC00837, a long intergenic non-protein coding RNA. Due to the extensive and rapid alteration of gene expression associated with regulatory RNAs, we conclude that human cells are equipped with a robust and efficient adaptation potential when challenged with altered gravitational environments.
Nakamura, Mikiko; Suzuki, Ayako; Akada, Junko; Tomiyoshi, Keisuke; Hoshida, Hisashi; Akada, Rinji
2015-12-01
Mammalian gene expression constructs are generally prepared in a plasmid vector, in which a promoter and terminator are located upstream and downstream of a protein-coding sequence, respectively. In this study, we found that front terminator constructs-DNA constructs containing a terminator upstream of a promoter rather than downstream of a coding region-could sufficiently express proteins as a result of end joining of the introduced DNA fragment. By taking advantage of front terminator constructs, FLAG substitutions, and deletions were generated using mutagenesis primers to identify amino acids specifically recognized by commercial FLAG antibodies. A minimal epitope sequence for polyclonal FLAG antibody recognition was also identified. In addition, we analyzed the sequence of a C-terminal Ser-Lys-Leu peroxisome localization signal, and identified the key residues necessary for peroxisome targeting. Moreover, front terminator constructs of hepatitis B surface antigen were used for deletion analysis, leading to the identification of regions required for the particle formation. Collectively, these results indicate that front terminator constructs allow for easy manipulations of C-terminal protein-coding sequences, and suggest that direct gene expression with PCR-amplified DNA is useful for high-throughput protein analysis in mammalian cells.
Chatterjee, Aniruddha; Lagisz, Malgorzata; Rodger, Euan J; Zhen, Li; Stockwell, Peter A; Duncan, Elizabeth J; Horsfield, Julia A; Jeyakani, Justin; Mathavan, Sinnakaruppan; Ozaki, Yuichi; Nakagawa, Shinichi
2016-09-30
The sex drive hypothesis predicts that stronger selection on male traits has resulted in masculinization of the genome. Here we test whether such masculinizing effects can be detected at the level of the transcriptome and methylome in the adult zebrafish brain. Although methylation is globally similar, we identified 914 specific differentially methylated CpGs (DMCs) between males and females (435 were hypermethylated and 479 were hypomethylated in males compared to females). These DMCs were prevalent in gene body, intergenic regions and CpG island shores. We also discovered 15 distinct CpG clusters with striking sex-specific DNA methylation differences. In contrast, at transcriptome level, more female-biased genes than male-biased genes were expressed, giving little support for the male sex drive hypothesis. Our study provides genome-wide methylome and transcriptome assessment and sheds light on sex-specific epigenetic patterns and in zebrafish for the first time. Copyright © 2016 Elsevier B.V. All rights reserved.
Cooperative interactions enable singular olfactory receptor expression in mouse olfactory neurons
Monahan, Kevin; Schieren, Ira; Cheung, Jonah; Mumbey-Wafula, Alice; Monuki, Edwin S
2017-01-01
The monogenic and monoallelic expression of only one out of >1000 mouse olfactory receptor (ORs) genes requires the formation of large heterochromatic chromatin domains that sequester the OR gene clusters. Within these domains, intergenic transcriptional enhancers evade heterochromatic silencing and converge into interchromosomal hubs that assemble over the transcriptionally active OR. The significance of this nuclear organization in OR choice remains elusive. Here, we show that transcription factors Lhx2 and Ebf specify OR enhancers by binding in a functionally cooperative fashion to stereotypically spaced motifs that defy heterochromatin. Specific displacement of Lhx2 and Ebf from OR enhancers resulted in pervasive, long-range, and trans downregulation of OR transcription, whereas pre-assembly of a multi-enhancer hub increased the frequency of OR choice in cis. Our data provide genetic support for the requirement and sufficiency of interchromosomal interactions in singular OR choice and generate general regulatory principles for stochastic, mutually exclusive gene expression programs. PMID:28933695
Naghdi, Mohammad Reza; Smail, Katia; Wang, Joy X; Wade, Fallou; Breaker, Ronald R; Perreault, Jonathan
2017-03-15
The discovery of noncoding RNAs (ncRNAs) and their importance for gene regulation led us to develop bioinformatics tools to pursue the discovery of novel ncRNAs. Finding ncRNAs de novo is challenging, first due to the difficulty of retrieving large numbers of sequences for given gene activities, and second due to exponential demands on calculation needed for comparative genomics on a large scale. Recently, several tools for the prediction of conserved RNA secondary structure were developed, but many of them are not designed to uncover new ncRNAs, or are too slow for conducting analyses on a large scale. Here we present various approaches using the database RiboGap as a primary tool for finding known ncRNAs and for uncovering simple sequence motifs with regulatory roles. This database also can be used to easily extract intergenic sequences of eubacteria and archaea to find conserved RNA structures upstream of given genes. We also show how to extend analysis further to choose the best candidate ncRNAs for experimental validation. Copyright © 2017 Elsevier Inc. All rights reserved.
Evidence for regulation of columnar habit in apple by a putative 2OG-Fe(II) oxygenase.
Wolters, Pieter J; Schouten, Henk J; Velasco, Riccardo; Si-Ammour, Azeddine; Baldi, Paolo
2013-12-01
Understanding the genetic mechanisms controlling columnar-type growth in the apple mutant 'Wijcik' will provide insights on how tree architecture and growth are regulated in fruit trees. In apple, columnar-type growth is controlled by a single major gene at the Columnar (Co) locus. By comparing the genomic sequence of the Co region of 'Wijcik' with its wild-type 'McIntosh', a novel non-coding DNA element of 1956 bp specific to Pyreae was found to be inserted in an intergenic region of 'Wijcik'. Expression analysis of selected genes located in the vicinity of the insertion revealed the upregulation of the MdCo31 gene encoding a putative 2OG-Fe(II) oxygenase in axillary buds of 'Wijcik'. Constitutive expression of MdCo31 in Arabidopsis thaliana resulted in compact plants with shortened floral internodes, a phenotype reminiscent of the one observed in columnar apple trees. We conclude that MdCo31 is a strong candidate gene for the control of columnar growth in 'Wijcik'. No claim to original European Union works. New Phytologist © 2013 New Phytologist Trust.
Smith, Gilbert; Smith, Carl; Kenny, John G; Chaudhuri, Roy R; Ritchie, Michael G
2015-04-01
Epigenetic marks such as DNA methylation play important biological roles in gene expression regulation and cellular differentiation during development. To examine whether DNA methylation patterns are potentially associated with naturally occurring phenotypic differences, we examined genome-wide DNA methylation within Gasterosteus aculeatus, using reduced representation bisulfite sequencing. First, we identified highly methylated regions of the stickleback genome, finding such regions to be located predominantly within genes, and associated with genes functioning in metabolism and biosynthetic processes, cell adhesion, signaling pathways, and blood vessel development. Next, we identified putative differentially methylated regions (DMRs) of the genome between complete and low lateral plate morphs of G. aculeatus. We detected 77 DMRs that were mainly located in intergenic regions. Annotations of genes associated with these DMRs revealed potential functions in a number of known divergent adaptive phenotypes between G. aculeatus ecotypes, including cardiovascular development, growth, and neuromuscular development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Li, Dongfang; Voigt, Thomas B.; Kent, Angela D.
2015-02-11
Here, bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M. × giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M. × giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soilmore » conditions and plant compartments on assembly of the M. × giganteus-associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T-RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M. × giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.« less
Li, Dongfang; Voigt, Thomas B.; Kent, Angela D.
2015-04-30
Here, bacterial assemblages, especially diazotroph assemblages residing in the rhizomes and the rhizosphere soil of Miscanthus × giganteus, contribute to plant growth and nitrogen use efficiency. However, the composition of these microbial communities has not been adequately explored nor have the potential ecological drivers for these communities been sufficiently studied. This knowledge is needed for understanding and potentially improving M. × giganteus – microbe interactions, and further enhancing sustainability of M. × giganteus production. In this study, cultivated M. × giganteus from four sites in Illinois, Kentucky, Nebraska, and New Jersey were collected to examine the relative influences of soilmore » conditions and plant compartments on assembly of the M. × giganteus-associated microbiome. Automated ribosomal intergenic spacer (ARISA) and terminal restriction fragment length polymorphism (T-RFLP) targeting the nifH gene were applied to examine the total bacterial communities and diazotroph assemblages that reside in the rhizomes and the rhizosphere. Distinct microbial assemblages were detected in the endophytic and rhizosphere compartments. Site soil conditions had strong correlation with both total bacterial and diazotroph assemblages, but in different ways. Nitrogen treatments showed no significant effect on the composition of diazotroph assemblages in most sites. Endophytic compartments of different M. × giganteus plants tended to harbor similar microbial communities across all sites, whereas the rhizosphere soil of different plant tended to harbor diverse microbial assemblages that were distinct among sites. These observations offer insight into better understanding of the associative interactions between M. × giganteus and diazotrophs, and how this relationship is influenced by agronomic and edaphic factors.« less
Role of the terminator hairpin in the biogenesis of functional Hfq-binding sRNAs.
Morita, Teppei; Nishino, Ryo; Aiba, Hiroji
2017-09-01
Rho-independent transcription terminators of the genes encoding bacterial Hfq-binding sRNAs possess a set of seven or more T residues at the 3' end, as noted in previous studies. Here, we have studied the role of the terminator hairpin in the biogenesis of sRNAs focusing on SgrS and RyhB in Escherichia coli. We constructed variant sRNA genes in which the GC-rich inverted repeat sequences are extended to stabilize the terminator hairpins. We demonstrate that the extension of the hairpin stem leads to generation of heterogeneous transcripts in which the poly(U) tail is shortened. The transcripts with shortened poly(U) tails no longer bind to Hfq and lose the ability to repress the target mRNAs. The shortened transcripts are generated in an in vitro transcription system with purified RNA polymerase, indicating that the generation of shortened transcripts is caused by premature transcription termination. We conclude that the terminator structure of sRNA genes is optimized to generate functional sRNAs. Thus, the Rho-independent terminators of sRNA genes possess two common features: a long T residue stretch that is a prerequisite for generation of functional sRNAs and a moderate strength of hairpin structure that ensures the termination at the seventh or longer position within the consecutive T stretch. The modulation of the termination position at the Rho-independent terminators is critical for biosynthesis of functional sRNAs. © 2017 Morita et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
USDA-ARS?s Scientific Manuscript database
The Kauffman White (KW) serotyping method requires more than 250 antisera to characterize more than 2,500 Salmonella serovars. The complexity of serotyping could be overcome using molecular methods. In this study, a dkgB-linked intergenic sequence ribotyping (ISR) method that generates sequence occu...
Fail-safe transcription termination: Because one is never enough.
Lemay, Jean-François; Bachand, François
2015-01-01
Termination of RNA polymerase II (RNAPII) transcription is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of RNAPII from the DNA template. As transcription termination is intimately linked to RNA 3' end processing, termination pathways have a key decisive influence on the fate of the transcribed RNA. Quite remarkably, when reaching the 3' end of genes, a substantial fraction of RNAPII fail to terminate transcription, requiring the contribution of alternative or "fail-safe" mechanisms of termination to release the polymerase. This point of view covers redundant mechanisms of transcription termination and how they relate to conventional termination models. In particular, we expand on recent findings that propose a reverse torpedo model of termination, in which the 3'5' exonucleolytic activity of the RNA exosome targets transcription events associated with paused and backtracked RNAPII.
Lyubetsky, Vassily; Gershgorin, Roman; Gorbunov, Konstantin
2017-12-06
Chromosome structure is a very limited model of the genome including the information about its chromosomes such as their linear or circular organization, the order of genes on them, and the DNA strand encoding a gene. Gene lengths, nucleotide composition, and intergenic regions are ignored. Although highly incomplete, such structure can be used in many cases, e.g., to reconstruct phylogeny and evolutionary events, to identify gene synteny, regulatory elements and promoters (considering highly conserved elements), etc. Three problems are considered; all assume unequal gene content and the presence of gene paralogs. The distance problem is to determine the minimum number of operations required to transform one chromosome structure into another and the corresponding transformation itself including the identification of paralogs in two structures. We use the DCJ model which is one of the most studied combinatorial rearrangement models. Double-, sesqui-, and single-operations as well as deletion and insertion of a chromosome region are considered in the model; the single ones comprise cut and join. In the reconstruction problem, a phylogenetic tree with chromosome structures in the leaves is given. It is necessary to assign the structures to inner nodes of the tree to minimize the sum of distances between terminal structures of each edge and to identify the mutual paralogs in a fairly large set of structures. A linear algorithm is known for the distance problem without paralogs, while the presence of paralogs makes it NP-hard. If paralogs are allowed but the insertion and deletion operations are missing (and special constraints are imposed), the reduction of the distance problem to integer linear programming is known. Apparently, the reconstruction problem is NP-hard even in the absence of paralogs. The problem of contigs is to find the optimal arrangements for each given set of contigs, which also includes the mutual identification of paralogs. We proved that these problems can be reduced to integer linear programming formulations, which allows an algorithm to redefine the problems to implement a very special case of the integer linear programming tool. The results were tested on synthetic and biological samples. Three well-known problems were reduced to a very special case of integer linear programming, which is a new method of their solutions. Integer linear programming is clearly among the main computational methods and, as generally accepted, is fast on average; in particular, computation systems specifically targeted at it are available. The challenges are to reduce the size of the corresponding integer linear programming formulations and to incorporate a more detailed biological concept in our model of the reconstruction.
Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Tian, Chang Fu; Chen, Wen Xin
2014-02-01
In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons.
Changes in RNA polymerase II progression influence somatic hypermutation of Ig-related genes by AID
Kodgire, Prashant; Mukkawar, Priyanka; Ratnam, Sarayu; Martin, Terence E.
2013-01-01
Somatic hypermutation (SHM) of Ig genes is initiated by the activation-induced cytidine deaminase (AID), and requires target gene transcription. We previously proposed that AID may associate with the RNA polymerase II (Pol). Here, to determine aspects of the transcription process required for SHM, we knocked-in a transcription terminator into an Ig gene variable region in DT40 chicken B cell line. We found that the human β-globin terminator was an efficient inhibitor of downstream transcription in these cells. The terminator reduced mutations downstream of the poly(A) signal, suggesting that the process of transcription is essential for efficient SHM and that AID has better access to its target when Pol is in the elongating rather than terminating mode. Mutations upstream of the poly(A) site were almost doubled in the active terminator clones compared with an inactivated terminator, and this region showed more single-stranded DNA, indicating that Pol pausing assists SHM. Moreover, the nontranscribed DNA strand was the preferred SHM target upstream of the active terminator. Pol pausing during poly(A) site recognition may facilitate persistence of negative supercoils, exposing the coding single strand and possibly allowing the nascent RNA intermittent reannealing with the template strand, for prolonged access of AID. PMID:23752228
Li, Rui; Zhang, Qing; Li, Junbai; Shi, Hualin
2016-01-01
An experimental system was designed to measure in vivo termination efficiency (TE) of the Rho-independent terminator and position–function relations were quantified for the terminator tR2 in Escherichia coli. The terminator function was almost completely repressed when tR2 was located several base pairs downstream from the gene, and TE gradually increased to maximum values with the increasing distance between the gene and terminator. This TE–distance relation reflected a stochastic coupling of the ribosome and RNA polymerase (RNAP). Terminators located in the first 100 bp of the coding region can function efficiently. However, functional repression was observed when the terminator was located in the latter part of the coding region, and the degree of repression was determined by transcriptional and translational dynamics. These results may help to elucidate mechanisms of Rho-independent termination and reveal genomic locations of terminators and functions of the sequence that precedes terminators. These observations may have important applications in synthetic biology. PMID:26602687
A highly divergent gene cluster in honey bees encodes a novel silk family.
Sutherland, Tara D; Campbell, Peter M; Weisman, Sarah; Trueman, Holly E; Sriskantha, Alagacone; Wanjura, Wolfgang J; Haritos, Victoria S
2006-11-01
The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1-4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins.
A recombinant rabies virus carrying GFP between N and P affects viral transcription in vitro.
Luo, Jun; Zhao, Jing; Tian, Qin; Mo, Weiyu; Wang, Yifei; Chen, Hao; Guo, Xiaofeng
2016-06-01
Several studies have demonstrated the rabies virus to be a perfect potential vaccine vector to insert foreign genes into the target genome. For this study, a green fluorescent protein (GFP) gene was cloned into the rabies virus (RABV) genome between the N and P gene. CT dinucleotide was inserted as intergenic region. The recombinant high egg passage Flury strain (HEP-Flury) of RABV, carrying GFP (rHEP-NP-GFP), was generated in BHK-21 cells using reverse genetics. According to the viral growth kinetics assay, the addition of GFP between N and P gene has little effect on the viral growth compared to the parental strain HEP-Flury. Quantitative real-time PCR (qPCR) indicated that rHEP-NP-GFP showed different viral gene transcription, especially for G gene, compared to HEP-Flury. The same is true for one other recombinant RABV carrying GFP between G and L gene in NA cells. In addition, parent HEP-Flury showed more expression of innate immune-related molecules in NA cells. Compared to HEP-Flury, Western blotting (WB) indicated that insertion of a foreign gene following N gene enhanced the expression of M and G proteins. According to the qPCR and WB, GFP expression levels of rHEP-NP-GFP were significantly higher than rHEP-GFP. This study indicates HEP-Flury as valid vector to express exogenous genes between N and P.
The Complete Mitochondrial Genome of the Rice Moth, Corcyra cephalonica
Wu, Yu-Peng; Li, Jie; Zhao, Jin-Liang; Su, Tian-Juan; Luo, A-Rong; Fan, Ren-Jun; Chen, Ming-Chang; Wu, Chun-Sheng; Zhu, Chao-Dong
2012-01-01
The complete mitochondrial genome (mitogenome) of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) was determined as a circular molecular of 15,273 bp in size. The mitogenome composition (37 genes) and gene order are the same as the other lepidopterans. Nucleotide composition of the C. cephalonica mitogenome is highly A+T biased (80.43%) like other insects. Twelve protein-coding genes start with a typical ATN codon, with the exception of coxl gene, which uses CGA as the initial codon. Nine protein-coding genes have the common stop codon TAA, and the nad2, cox1, cox2, and nad4 have single T as the incomplete stop codon. 22 tRNA genes demonstrated cloverleaf secondary structure. The mitogenome has several large intergenic spacer regions, the spacer1 between trnQ gene and nad2 gene, which is common in Lepidoptera. The spacer 3 between trnE and trnF includes microsatellite-like repeat regions (AT)18 and (TTAT)3. The spacer 4 (16 bp) between trnS2 gene and nad1 gene has a motif ATACTAT; another species, Sesamia inferens encodes ATCATAT at the same position, while other lepidopteran insects encode a similar ATACTAA motif. The spacer 6 is A+T rich region, include motif ATAGA and a 20-bp poly(T) stretch and two microsatellite (AT)9, (AT)8 elements. PMID:23413968
The complete mitochondrial genome of the rice moth, Corcyra cephalonica.
Wu, Yu-Peng; Li, Jie; Zhao, Jin-Liang; Su, Tian-Juan; Luo, A-Rong; Fan, Ren-Jun; Chen, Ming-Chang; Wu, Chun-Sheng; Zhu, Chao-Dong
2012-01-01
The complete mitochondrial genome (mitogenome) of the rice moth, Corcyra cephalonica Stainton (Lepidoptera: Pyralidae) was determined as a circular molecular of 15,273 bp in size. The mitogenome composition (37 genes) and gene order are the same as the other lepidopterans. Nucleotide composition of the C. cephalonica mitogenome is highly A+T biased (80.43%) like other insects. Twelve protein-coding genes start with a typical ATN codon, with the exception of coxl gene, which uses CGA as the initial codon. Nine protein-coding genes have the common stop codon TAA, and the nad2, cox1, cox2, and nad4 have single T as the incomplete stop codon. 22 tRNA genes demonstrated cloverleaf secondary structure. The mitogenome has several large intergenic spacer regions, the spacer1 between trnQ gene and nad2 gene, which is common in Lepidoptera. The spacer 3 between trnE and trnF includes microsatellite-like repeat regions (AT)18 and (TTAT)(3). The spacer 4 (16 bp) between trnS2 gene and nad1 gene has a motif ATACTAT; another species, Sesamia inferens encodes ATCATAT at the same position, while other lepidopteran insects encode a similar ATACTAA motif. The spacer 6 is A+T rich region, include motif ATAGA and a 20-bp poly(T) stretch and two microsatellite (AT)(9), (AT)(8) elements.
Gasanov, N B; Toshchakov, S V; Georgiev, P G; Maksimenko, O G
2015-01-01
Mammalian cell lines are widely used to produce recombinant proteins. Stable transgenic cell lines usually contain many insertions of the expression vector in one genomic region. Transcription through transgene can be one of the reasons for target gene repression after prolonged cultivation of cell lines. In the present work, we used the known transcription terminators from the SV40 virus, as well as the human β- and γ-globin genes, to prevent transcription through transgene. The transcription terminators were shown to increase and stabilize the expression of the EGFP reporter gene in transgenic lines of Chinese hamster ovary (CHO) cells. Hence, transcription terminators can be used to create stable mammalian cells with a high and stable level of recombinant protein production.
Langkjær, R. B.; Casaregola, S.; Ussery, D. W.; Gaillardin, C.; Piškur, J.
2003-01-01
The complete sequences of mitochondrial DNA (mtDNA) from the two budding yeasts Saccharomyces castellii and Saccharomyces servazzii, consisting of 25 753 and 30 782 bp, respectively, were analysed and compared to Saccharomyces cerevisiae mtDNA. While some of the traits are very similar among Saccharomyces yeasts, others have highly diverged. The two mtDNAs are much more compact than that of S.cerevisiae and contain fewer introns and intergenic sequences, although they have almost the same coding potential. A few genes contain group I introns, but group II introns, otherwise found in S.cerevisiae mtDNA, are not present. Surprisingly, four genes (ATP6, COX2, COX3 and COB) in the mtDNA of S.servazzii contain, in total, five +1 frameshifts. mtDNAs of S.castellii, S.servazzii and S.cerevisiae contain all genes on the same strand, except for one tRNA gene. On the other hand, the gene order is very different. Several gene rearrangements have taken place upon separation of the Saccharomyces lineages, and even a part of the transcription units have not been preserved. It seems that the mechanism(s) involved in the generation of the rearrangements has had to ensure that all genes stayed encoded by the same DNA strand. PMID:12799436
Kernif, Tahar; Aissi, Meriem; Doumandji, Salah-Eddine; Chomel, Bruno B.; Raoult, Didier; Bitam, Idir
2010-01-01
Bartonella species are being recognized as important bacterial human and canine pathogens, and are associated with multiple arthropod vectors. Bartonella DNA extracted from blood samples was obtained from domestic dogs in Algiers, Algeria. Polymerase chain reaction (PCR) and DNA sequence analyses of the ftsZ gene and the 16S-23S intergenic spacer region (ITS) were performed. Three Bartonella species: Bartonella vinsonii subsp. berkhoffii, Bartonella clarridgeiae, and Bartonells elizabethae were detected infecting Algerian dogs. To our knowledge, this study is the first report of detection by PCR amplification of Bartonella in dogs in North Africa. PMID:20682871
Ülbegi-Mohyla, H.; Hijazin, M.; Alber, J.; Hassan, A. A.; Abdulmawjood, A.; Prenger-Berninghoff, E.; Weiß, R.; Zschöck, M.
2010-01-01
The present study was designed to identify phenotypically and genotypically two Arcanobacterium (A.) pyogenes strains isolated by post mortem examinations of a bearded dragon and a gecko. The A. pyogenes strains showed the typical biochemical properties and displayed CAMP-like synergistic hemolytic activities with various indicator strains. The species identity could be confirmed genotypically by amplification and sequencing of the 16S rDNA gene and, as novel target gene, by sequencing of the beta subunit of RNA polymerase encoding gene rpoB, of both strains and of reference strains representing nine species of the genus Arcanobacterium. The species identity of the two A. pyogenes strains could additionally be confirmed by PCR mediated amplification of species specific parts of the 16S-23S rDNA intergenic spacer region, the pyolysin encoding gene plo and by amplification of the collagen-binding protein encoding gene cbpA. All these molecular targets might help to improve the future identification and further characterization of A. pyogenes which, as demonstrated in the present study, could also be isolated from reptile specimens. PMID:20706035
Deng, Changwang; Li, Ying; Zhou, Lei; Cho, Joonseok; Patel, Bhavita; Terada, Naohiro; Li, Yangqiu; Bungert, Jörg; Qiu, Yi; Huang, Suming
2016-01-05
Trithorax proteins and long-intergenic noncoding RNAs are critical regulators of embryonic stem cell pluripotency; however, how they cooperatively regulate germ layer mesoderm specification remains elusive. We report here that HoxBlinc RNA first specifies Flk1(+) mesoderm and then promotes hematopoietic differentiation through regulation of hoxb pathways. HoxBlinc binds to the hoxb genes, recruits Setd1a/MLL1 complexes, and mediates long-range chromatin interactions to activate transcription of the hoxb genes. Depletion of HoxBlinc by shRNA-mediated knockdown or CRISPR-Cas9-mediated genetic deletion inhibits expression of hoxb genes and other factors regulating cardiac/hematopoietic differentiation. Reduced hoxb expression is accompanied by decreased recruitment of Set1/MLL1 and H3K4me3 modification, as well as by reduced chromatin loop formation. Re-expression of hoxb2-b4 genes in HoxBlinc-depleted embryoid bodies rescues Flk1(+) precursors that undergo hematopoietic differentiation. Thus, HoxBlinc plays an important role in controlling hoxb transcription networks that mediate specification of mesoderm-derived Flk1(+) precursors and differentiation of Flk1(+) cells into hematopoietic lineages. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.
Hollerer, Ina; Curk, Tomaz; Haase, Bettina; Benes, Vladimir; Hauer, Christian; Neu-Yilik, Gabriele; Bhuvanagiri, Madhuri; Hentze, Matthias W; Kulozik, Andreas E
2016-09-01
Stress adaptation plays a pivotal role in biological processes and requires tight regulation of gene expression. In this study, we explored the effect of cellular stress on mRNA polyadenylation and investigated the implications of regulated polyadenylation site usage on mammalian gene expression. High-confidence polyadenylation site mapping combined with global pre-mRNA and mRNA expression profiling revealed that stress induces an accumulation of genes with differentially expressed polyadenylated mRNA isoforms in human cells. Specifically, stress provokes a global trend in polyadenylation site usage toward decreased utilization of promoter-proximal poly(A) sites in introns or ORFs and increased utilization of promoter-distal polyadenylation sites in intergenic regions. This extensively affects gene expression beyond regulating mRNA abundance by changing mRNA length and by altering the configuration of open reading frames. Our study highlights the impact of post-transcriptional mechanisms on stress-dependent gene regulation and reveals the differential expression of alternatively polyadenylated transcripts as a common stress-induced mechanism in mammalian cells. © 2016 Hollerer et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
Persistent organic pollutants alter DNA methylation during human adipocyte differentiation.
van den Dungen, Myrthe W; Murk, Albertinka J; Kok, Dieuwertje E; Steegenga, Wilma T
2017-04-01
Ubiquitous persistent organic pollutants (POPs) can accumulate in humans where they might influence differentiation of adipocytes. The aim of this study was to investigate whether DNA methylation is one of the underlying mechanisms by which POPs affect adipocyte differentiation, and to what extent DNA methylation can be related to gene transcription. Adipocyte differentiation was induced in two human cell models with continuous exposure to different POPs throughout differentiation. From the seven tested POPs, perfluorooctanesulfonic acid (PFOS) and 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) decreased lipid accumulation, while tributyltin (TBT) increased lipid accumulation. In human mesenchymal stem cells (hMSCs), TCDD and TBT induced opposite gene expression profiles, whereas after PFOS exposure gene expression remained relatively stable. Genome-wide DNA methylation analysis showed that all three POPs affected DNA methylation patterns in adipogenic and other genes, possibly related to the phenotypic outcome, but without concomitant gene expression changes. Differential methylation was predominantly detected in intergenic regions, where the biological relevance of alterations in DNA methylation is unclear. This study demonstrates that POPs, at environmentally relevant levels, are able to induce differential DNA methylation in human differentiating adipocytes. Copyright © 2017 Wageningen University. Published by Elsevier Ltd.. All rights reserved.
Xu, Kai Wei; Zou, Lan; Penttinen, Petri; Wang, Ke; Heng, Nan Nan; Zhang, Xiao Ping; Chen, Qiang; Zhao, Ke; Chen, Yuan Xue
2015-10-01
A total of 54 rhizobial strains were isolated from faba bean root nodules in 21 counties of Sichuan hilly areas in China, and their symbiotic effectiveness, genetic diversity and phylogeny were assessed. Only six strains increased the shoot dry mass of the host plant significantly (P ≤ 0.05). Based on the cluster analysis of combined 16S rDNA and intergenic spacer region (IGS) PCR-RFLP, the strains were divided into 31 genotypes in 11 groups, indicating a high degree of genetic diversity among the strains. The sequence analysis of three housekeeping genes (atpD, glnII and recA) and 16S rDNA indicated that the strains represented two R. leguminosarum, two Rhizobium spp., R. mesosinicum, Agrobacterium sp. and A. tumefaciens. The strains representing four Rhizobium species were divided into two distinct nodC and nifH genotypes. However, the phylogeny of housekeeping genes and symbiotic genes was not congruent, implying that the strains had been shaped by vertical evolution of the housekeeping genes and lateral evolution of the symbiotic genes. Copyright © 2015 Elsevier GmbH. All rights reserved.
Molecular evolution of the HoxA cluster in the three major gnathostome lineages
Chiu, Chi-hua; Amemiya, Chris; Dewar, Ken; Kim, Chang-Bae; Ruddle, Frank H.; Wagner, Günter P.
2002-01-01
The duplication of Hox clusters and their maintenance in a lineage has a prominent but little understood role in chordate evolution. Here we examined how Hox cluster duplication may influence changes in cluster architecture and patterns of noncoding sequence evolution. We sequenced the entire duplicated HoxAa and HoxAb clusters of zebrafish (Danio rerio) and extended the 5′ (posterior) part of the HoxM (HoxA-like) cluster of horn shark (Heterodontus francisci) containing the hoxa11 and hoxa13 orthologs as well as intergenic and flanking noncoding sequences. The duplicated HoxA clusters in zebrafish each house considerably fewer genes and are dramatically shorter than the single HoxA clusters of human and horn shark. We compared the intergenic sequences of the HoxA clusters of human, horn shark, zebrafish (Aa, Ab), and striped bass and found extensive conservation of noncoding sequence motifs, i.e., phylogenetic footprints, between the human and horn shark, representing two of the three gnathostome lineages. These are putative cis-regulatory elements that may play a role in the regulation of the ancestral HoxA cluster. In contrast, homologous regions of the duplicated HoxAa and HoxAb clusters of zebrafish and the HoxA cluster of striped bass revealed a striking loss of conservation of these putative cis-regulatory sequences in the 3′ (anterior) segment of the cluster, where zebrafish only retains single representatives of group 1, 3, 4, and 5 (HoxAa) and group 2 (HoxAb) genes and in the 5′ part of the clusters, where zebrafish retains two copies of the group 13, 11, and 9 genes, i.e., AbdB-like genes. In analyzing patterns of cis-sequence evolution in the 5′ part of the clusters, we explicitly looked for evidence of complementary loss of conserved noncoding sequences, as predicted by the duplication-degeneration-complementation model in which genetic redundancy after gene duplication is resolved because of the fixation of complementary degenerative mutations. Our data did not yield evidence supporting this prediction. We conclude that changes in the pattern of cis-sequence conservation after Hox cluster duplication are more consistent with being the outcome of adaptive modification rather than passive mechanisms that erode redundancy created by the duplication event. These results support the view that genome duplications may provide a mechanism whereby master control genes undergo radical modifications conducive to major alterations in body plan. Such genomic revolutions may contribute significantly to the evolutionary process. PMID:11943847
Fail-safe transcription termination: Because one is never enough
Lemay, Jean-François; Bachand, François
2015-01-01
Termination of RNA polymerase II (RNAPII) transcription is a fundamental step of gene expression that involves the release of the nascent transcript and dissociation of RNAPII from the DNA template. As transcription termination is intimately linked to RNA 3′ end processing, termination pathways have a key decisive influence on the fate of the transcribed RNA. Quite remarkably, when reaching the 3′ end of genes, a substantial fraction of RNAPII fail to terminate transcription, requiring the contribution of alternative or “fail-safe” mechanisms of termination to release the polymerase. This point of view covers redundant mechanisms of transcription termination and how they relate to conventional termination models. In particular, we expand on recent findings that propose a reverse torpedo model of termination, in which the 3′5′ exonucleolytic activity of the RNA exosome targets transcription events associated with paused and backtracked RNAPII. PMID:26273910
USDA-ARS?s Scientific Manuscript database
The phylogenetic utility of sequence variation from five chloroplast DNA intergenic spacer (IGS) regions: trnT-trnF, psbA-trnH, atpB-rbcL, trnV-16S rRNA, and trnS-trnfM was examined in the genus Juglans. A total of seventeen taxa representing the four sections within Juglans and an outgroup taxon, ...
Barvkar, Vitthal T; Pardeshi, Varsha C; Kale, Sandip M; Qiu, Shuqing; Rollins, Meaghen; Datla, Raju; Gupta, Vidya S; Kadoo, Narendra Y
2013-04-01
MicroRNAs (miRNAs) are small (20-24 nucleotide long) endogenous regulatory RNAs that play important roles in plant growth and development. They regulate gene expression at the post-transcriptional level by translational repression or target degradation and gene silencing. In this study, we identified 116 conserved miRNAs belonging to 23 families from the flax (Linum usitatissimum L.) genome using a computational approach. The precursor miRNAs varied in length; while most of the mature miRNAs were 21 nucleotide long, intergenic and showed conserved signatures of RNA polymerase II transcripts in their upstream regions. Promoter region analysis of the flax miRNA genes indicated prevalence of MYB transcription factor binding sites. Four miRNA gene clusters containing members of three phylogenetic groups were identified. Further, 142 target genes were predicted for these miRNAs and most of these represent transcriptional regulators. The miRNA encoding genes were expressed in diverse tissues as determined by digital expression analysis as well as real-time PCR. The expression of fourteen miRNAs and nine target genes was independently validated using the quantitative reverse transcription PCR (qRT-PCR). This study suggests that a large number of conserved plant miRNAs are also found in flax and these may play important roles in growth and development of flax.
Whalen, Courtney; Tuohy, Christine; Tallo, Thomas; Kaufman, James W; Moore, Claire; Kuehner, Jason N
2018-04-23
Termination of RNA Polymerase II (Pol II) activity serves a vital cellular function by separating ubiquitous transcription units and influencing RNA fate and function. In the yeast Saccharomyces cerevisiae , Pol II termination is carried out by cleavage and polyadenylation factor (CPF-CF) and Nrd1-Nab3-Sen1 (NNS) complexes, which operate primarily at mRNA and non-coding RNA genes, respectively. Premature Pol II termination (attenuation) contributes to gene regulation, but there is limited knowledge of its prevalence and biological significance. In particular, it is unclear how much crosstalk occurs between CPF-CF and NNS complexes and how Pol II attenuation is modulated during stress adaptation. In this study, we have identified an attenuator in the DEF1 DNA repair gene, which includes a portion of the 5'-untranslated region (UTR) and upstream open reading frame (ORF). Using a plasmid-based reporter gene system, we conducted a genetic screen of 14 termination mutants and their ability to confer Pol II read-through defects. The DEF1 attenuator behaved as a hybrid terminator, relying heavily on CPF-CF and Sen1 but without Nrd1 and Nab3 involvement. Our genetic selection identified 22 cis -acting point mutations that clustered into four regions, including a polyadenylation site efficiency element that genetically interacts with its cognate binding-protein Hrp1. Outside of the reporter gene context, a DEF1 attenuator mutant increased mRNA and protein expression, exacerbating the toxicity of a constitutively active Def1 protein. Overall, our data support a biologically significant role for transcription attenuation in regulating DEF1 expression, which can be modulated during the DNA damage response. Copyright © 2018, G3: Genes, Genomes, Genetics.
Acosta, Nidia; Miret, Jorge; López, Elsa; Schinini, Alicia
2016-08-29
To verify the occurrence of natural Trypanosoma cruzi infection in non-human primates from a rural endemic area of the east region of Paraguay, xenodiagnosis was performed in 35 animals belonging to two species. For genotyping and T. cruzi discrete typing unit (DTU) assignment, a combination of four markers was used, including amplification products of the small (18S) and large (24Sα) subunits of ribosomal ribonucleic acid gene, the intergenic region of mini-exon gene and the heat shock protein 60 Eco-RV polymerase chain reaction-restriction fragment length polymorphism (HSP60/EcoRV-PCR-RFLP). One specimen of Sapajus cay was found positive and infected by the DTU TcII. This result constitutes the first record of natural T. cruzi infection in a sylvatic monkey in Paraguay, harbouring a DTU associated with severe Chagas disease in humans.
Whole genome sequencing: an efficient approach to ensuring food safety
NASA Astrophysics Data System (ADS)
Lakicevic, B.; Nastasijevic, I.; Dimitrijevic, M.
2017-09-01
Whole genome sequencing is an effective, powerful tool that can be applied to a wide range of public health and food safety applications. A major difference between WGS and the traditional typing techniques is that WGS allows all genes to be included in the analysis, instead of a well-defined subset of genes or variable intergenic regions. Also, the use of WGS can facilitate the understanding of contamination/colonization routes of foodborne pathogens within the food production environment, and can also afford efficient tracking of pathogens’ entry routes and distribution from farm-to-consumer. Tracking foodborne pathogens in the food processing-distribution-retail-consumer continuum is of the utmost importance for facilitation of outbreak investigations and rapid action in controlling/preventing foodborne outbreaks. Therefore, WGS likely will replace most of the numerous workflows used in public health laboratories to characterize foodborne pathogens into one consolidated, efficient workflow.
Egg phenotype differentiation in sympatric cuckoo Cuculus canorus gentes.
Antonov, Anton; Stokke, B G; Vikan, J R; Fossøy, F; Ranke, P S; Røskaft, E; Moksnes, A; Møller, A P; Shykoff, J A
2010-06-01
The brood parasitic common cuckoo Cuculus canorus consists of gentes, which typically parasitize only a single host species whose eggs they often mimic. Where multiple cuckoo gentes co-exist in sympatry, we may expect variable but generally poorer mimicry because of host switches or inter-gens gene flow via males if these also contribute to egg phenotypes. Here, we investigated egg trait differentiation and mimicry in three cuckoo gentes parasitizing great reed warblers Acrocephalus arundinaceus, marsh warblers Acrocephalus palustris and corn buntings Miliaria calandra breeding in close sympatry in partially overlapping habitat types. The three cuckoo gentes showed a remarkable degree of mimicry to their three host species in some but not all egg features, including egg size, a hitherto largely ignored feature of egg mimicry. Egg phenotype matching for both background and spot colours as well as for egg size has been maintained in close sympatry despite the possibility for gene flow.
Discovery of SCORs: Anciently derived, highly conserved gene-associated repeats in stony corals.
Qiu, Huan; Zelzion, Ehud; Putnam, Hollie M; Gates, Ruth D; Wagner, Nicole E; Adams, Diane K; Bhattacharya, Debashish
2017-10-01
Stony coral (Scleractinia) genomes are still poorly explored and many questions remain about their evolution and contribution to the success and longevity of reefs. We analyzed transcriptome and genome data from Montipora capitata, Acropora digitifera, and transcriptome data from 20 other coral species. To our surprise, we found highly conserved, anciently derived, Scleractinia COral-specific Repeat families (SCORs) that are abundant in all the studied lineages. SCORs form complex secondary structures and are located in untranslated regions and introns, but most abundant in intergenic DNA. These repeat families have undergone frequent duplication and degradation, suggesting a 'boom and bust' cycle of invasion and loss. We speculate that due to their surprisingly high sequence identities across deeply diverged corals, physical association with genes, and dynamic evolution, SCORs might have adaptive functions in corals that need to be explored using population genomic and function-based approaches. Copyright © 2017 Elsevier Inc. All rights reserved.
Cell type-specific termination of transcription by transposable element sequences.
Conley, Andrew B; Jordan, I King
2012-09-30
Transposable elements (TEs) encode sequences necessary for their own transposition, including signals required for the termination of transcription. TE sequences within the introns of human genes show an antisense orientation bias, which has been proposed to reflect selection against TE sequences in the sense orientation owing to their ability to terminate the transcription of host gene transcripts. While there is evidence in support of this model for some elements, the extent to which TE sequences actually terminate transcription of human gene across the genome remains an open question. Using high-throughput sequencing data, we have characterized over 9,000 distinct TE-derived sequences that provide transcription termination sites for 5,747 human genes across eight different cell types. Rarefaction curve analysis suggests that there may be twice as many TE-derived termination sites (TE-TTS) genome-wide among all human cell types. The local chromatin environment for these TE-TTS is similar to that seen for 3' UTR canonical TTS and distinct from the chromatin environment of other intragenic TE sequences. However, those TE-TTS located within the introns of human genes were found to be far more cell type-specific than the canonical TTS. TE-TTS were much more likely to be found in the sense orientation than other intragenic TE sequences of the same TE family and TE-TTS in the sense orientation terminate transcription more efficiently than those found in the antisense orientation. Alu sequences were found to provide a large number of relatively weak TTS, whereas LTR elements provided a smaller number of much stronger TTS. TE sequences provide numerous termination sites to human genes, and TE-derived TTS are particularly cell type-specific. Thus, TE sequences provide a powerful mechanism for the diversification of transcriptional profiles between cell types and among evolutionary lineages, since most TE-TTS are evolutionarily young. The extent of transcription termination by TEs seen here, along with the preference for sense-oriented TE insertions to provide TTS, is consistent with the observed antisense orientation bias of human TEs.
The complexity of gene expression dynamics revealed by permutation entropy
2010-01-01
Background High complexity is considered a hallmark of living systems. Here we investigate the complexity of temporal gene expression patterns using the concept of Permutation Entropy (PE) first introduced in dynamical systems theory. The analysis of gene expression data has so far focused primarily on the identification of differentially expressed genes, or on the elucidation of pathway and regulatory relationships. We aim to study gene expression time series data from the viewpoint of complexity. Results Applying the PE complexity metric to abiotic stress response time series data in Arabidopsis thaliana, genes involved in stress response and signaling were found to be associated with the highest complexity not only under stress, but surprisingly, also under reference, non-stress conditions. Genes with house-keeping functions exhibited lower PE complexity. Compared to reference conditions, the PE of temporal gene expression patterns generally increased upon stress exposure. High-complexity genes were found to have longer upstream intergenic regions and more cis-regulatory motifs in their promoter regions indicative of a more complex regulatory apparatus needed to orchestrate their expression, and to be associated with higher correlation network connectivity degree. Arabidopsis genes also present in other plant species were observed to exhibit decreased PE complexity compared to Arabidopsis specific genes. Conclusions We show that Permutation Entropy is a simple yet robust and powerful approach to identify temporal gene expression profiles of varying complexity that is equally applicable to other types of molecular profile data. PMID:21176199
Ueyama, Hisao; Li, Yao-Hua; Fu, Gui-Lian; Lertrit, Patcharee; Atchaneeyasakul, La-ongsri; Oda, Sanae; Tanabe, Shoko; Nishida, Yasuhiro; Yamade, Shinichi; Ohkubo, Iwao
2003-01-01
We studied 247 Japanese males with congenital deutan color-vision deficiency and found that 37 subjects (15.0%) had a normal genotype of a single red gene followed by a green gene(s). Two of them had missense mutations in the green gene(s), but the other 35 subjects had no mutations in either the exons or their flanking introns. However, 32 of the 35 subjects, including all 8 subjects with pigment-color defect, a special category of deuteranomaly, had a nucleotide substitution, A−71C, in the promoter of a green gene at the second position in the red/green visual-pigment gene array. Although the −71C substitution was also present in color-normal Japanese males at a frequency of 24.3%, it was never at the second position but always found further downstream. The substitution was found in 19.4% of Chinese males and 7.7% of Thai males but rarely in Caucasians or African Americans. These results suggest that the A−71C substitution in the green gene at the second position is closely associated with deutan color-vision deficiency. In Japanese and presumably other Asian populations further downstream genes with −71C comprise a reservoir of the visual-pigment genes that cause deutan color-vision deficiency by unequal crossing over between the intergenic regions. PMID:12626747
Expression of bacteriocin LsbB is dependent on a transcription terminator.
Uzelac, Gordana; Miljkovic, Marija; Lozo, Jelena; Radulovic, Zorica; Tosic, Natasa; Kojic, Milan
2015-10-01
The production of LsbB, leaderless class II bacteriocin, is encoded by genes (lsbB and lmrB) located on plasmid pMN5 in Lactococcus lactis BGMN1-5. Heterologous expression of the lsbB gene using the pAZIL vector (pAZIL-lsbB) in L. lactis subsp. cremoris MG7284 resulted in a significant reduction (more than 30 times) of bacteriocin LsbB expression. Subcloning and deletion experiments with plasmid pMN5 revealed that full expression of LsbB requires the presence of a complete transcription terminator located downstream of the lsbB gene. RNA stability analysis revealed that the presence of a transcription terminator increased the RNA stability by three times and the expression of LsbB by 30 times. The study of the influence of transcription terminator on the expression of other bacteriocin genes (lcnB, for lactococcin B production) indicated that this translational terminator likely functions in a lsbB-specific manner rather than in a general manner. Copyright © 2015 Elsevier GmbH. All rights reserved.
Li, Rui; Zhang, Qing; Li, Junbai; Shi, Hualin
2016-04-07
An experimental system was designed to measure in vivo termination efficiency (TE) of the Rho-independent terminator and position-function relations were quantified for the terminator tR2 in Escherichia coli The terminator function was almost completely repressed when tR2 was located several base pairs downstream from the gene, and TE gradually increased to maximum values with the increasing distance between the gene and terminator. This TE-distance relation reflected a stochastic coupling of the ribosome and RNA polymerase (RNAP). Terminators located in the first 100 bp of the coding region can function efficiently. However, functional repression was observed when the terminator was located in the latter part of the coding region, and the degree of repression was determined by transcriptional and translational dynamics. These results may help to elucidate mechanisms of Rho-independent termination and reveal genomic locations of terminators and functions of the sequence that precedes terminators. These observations may have important applications in synthetic biology. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Functional annotation of the vlinc class of non-coding RNAs using systems biology approach
Laurent, Georges St.; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J.L.; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R.R.; Nicolas, Estelle; McCaffrey, Timothy A.; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp
2016-01-01
Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlincRNAs genes likely function in cis to activate nearby genes. This effect while most pronounced in closely spaced vlincRNA–gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlincRNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. PMID:27001520
Aversano, Riccardo; Contaldi, Felice; Ercolano, Maria Raffaella; Grosso, Valentina; Iorizzo, Massimo; Tatino, Filippo; Xumerle, Luciano; Dal Molin, Alessandra; Avanzato, Carla; Ferrarini, Alberto; Delledonne, Massimo; Sanseverino, Walter; Cigliano, Riccardo Aiese; Capella-Gutierrez, Salvador; Gabaldón, Toni; Frusciante, Luigi; Bradeen, James M.; Carputo, Domenico
2015-01-01
Here, we report the draft genome sequence of Solanum commersonii, which consists of ∼830 megabases with an N50 of 44,303 bp anchored to 12 chromosomes, using the potato (Solanum tuberosum) genome sequence as a reference. Compared with potato, S. commersonii shows a striking reduction in heterozygosity (1.5% versus 53 to 59%), and differences in genome sizes were mainly due to variations in intergenic sequence length. Gene annotation by ab initio prediction supported by RNA-seq data produced a catalog of 1703 predicted microRNAs, 18,882 long noncoding RNAs of which 20% are shown to target cold-responsive genes, and 39,290 protein-coding genes with a significant repertoire of nonredundant nucleotide binding site-encoding genes and 126 cold-related genes that are lacking in S. tuberosum. Phylogenetic analyses indicate that domesticated potato and S. commersonii lineages diverged ∼2.3 million years ago. Three duplication periods corresponding to genome enrichment for particular gene families related to response to salt stress, water transport, growth, and defense response were discovered. The draft genome sequence of S. commersonii substantially increases our understanding of the domesticated germplasm, facilitating translation of acquired knowledge into advances in crop stability in light of global climate and environmental changes. PMID:25873387
Asaf, Sajjad; Khan, Abdul Latif; Khan, Muhammad Aaqil; Waqas, Muhammad; Kang, Sang-Mo; Yun, Byung-Wook; Lee, In-Jung
2017-08-08
We investigated the complete chloroplast (cp) genomes of non-model Arabidopsis halleri ssp. gemmifera and Arabidopsis lyrata ssp. petraea using Illumina paired-end sequencing to understand their genetic organization and structure. Detailed bioinformatics analysis revealed genome sizes of both subspecies ranging between 154.4~154.5 kbp, with a large single-copy region (84,197~84,158 bp), a small single-copy region (17,738~17,813 bp) and pair of inverted repeats (IRa/IRb; 26,264~26,259 bp). Both cp genomes encode 130 genes, including 85 protein-coding genes, eight ribosomal RNA genes and 37 transfer RNA genes. Whole cp genome comparison of A. halleri ssp. gemmifera and A. lyrata ssp. petraea, along with ten other Arabidopsis species, showed an overall high degree of sequence similarity, with divergence among some intergenic spacers. The location and distribution of repeat sequences were determined, and sequence divergences of shared genes were calculated among related species. Comparative phylogenetic analysis of the entire genomic data set and 70 shared genes between both cp genomes confirmed the previous phylogeny and generated phylogenetic trees with the same topologies. The sister species of A. halleri ssp. gemmifera is A. umezawana, whereas the closest relative of A. lyrata spp. petraea is A. arenicola.
Chen, Zhi-Teng; Du, Yu-Zhou
2015-03-01
The complete mitochondrial genome of the stonefly, Sweltsa longistyla Wu (Plecoptera: Chloroperlidae), was sequenced in this study. The mitogenome of S. longistyla is 16,151bp and contains 37 genes including 13 protein-coding genes (PCGs), 22 tRNA genes, two rRNA genes, and a large non-coding region. S. longistyla, Pteronarcys princeps Banks, Kamimuria wangi Du and Cryptoperla stilifera Sivec belong to the Plecoptera, and the gene order and orientation of their mitogenomes were similar. The overall AT content for the four stoneflies was below 72%, and the AT content of tRNA genes was above 69%. The four genomes were compact and contained only 65-127bp of non-coding intergenic DNAs. Overlapping nucleotides existed in all four genomes and ranged from 24 (P. princeps) to 178bp (K. wangi). There was a 7-bp motif ('ATGATAA') of overlapping DNA and an 8-bp motif (AAGCCTTA) conserved in three stonefly species (P. princeps, K. wangi and C. stilifera). The control regions of four stoneflies contained a stem-loop structure. Four conserved sequence blocks (CSBs) were present in the A+T-rich regions of all four stoneflies. Copyright © 2014 Elsevier B.V. All rights reserved.
Walline, Heather M; Goudsmit, Christine M; McHugh, Jonathan B; Tang, Alice L; Owen, John H; Teh, Bin T; McKean, Erin; Glover, Thomas W; Graham, Martin P; Prince, Mark E; Chepeha, Douglas B; Chinn, Steven B; Ferris, Robert L; Gollin, Susanne M; Hoffmann, Thomas K; Bier, Henning; Brakenhoff, Ruud; Bradford, Carol R; Carey, Thomas E
2017-05-01
Human papillomavirus (HPV)-positive oropharyngeal cancer is generally associated with excellent response to therapy, but some HPV-positive tumors progress despite aggressive therapy. The purpose of this study was to evaluate viral oncogene expression and viral integration sites in HPV16- and HPV18-positive squamous cell carcinoma lines. E6/E7 alternate transcripts were assessed by reverse transcriptase-polymerase chain reaction (RT-PCR). Detection of integrated papillomavirus sequences (DIPS-PCR) and sequencing identified viral insertion sites and affected host genes. Cellular gene expression was assessed across viral integration sites. All HPV-positive cell lines expressed alternate HPVE6/E7 splicing indicative of active viral oncogenesis. HPV integration occurred within cancer-related genes TP63, DCC, JAK1, TERT, ATR, ETV6, PGR, PTPRN2, and TMEM237 in 8 head and neck squamous cell carcinoma (HNSCC) lines but UM-SCC-105 and UM-GCC-1 had only intergenic integration. HPV integration into cancer-related genes occurred in 7 of 9 HPV-positive cell lines and of these 6 were from tumors that progressed. HPV integration into cancer-related genes may be a secondary carcinogenic driver in HPV-driven tumors. © 2017 Wiley Periodicals, Inc. Head Neck 39: 840-852, 2017. © 2017 Wiley Periodicals, Inc.
Ruppitsch, W; Stöger, A; Indra, A; Grif, K; Schabereiter-Gurtner, C; Hirschl, A; Allerberger, F
2007-03-01
In a bioterrorism event a rapid tool is needed to identify relevant dangerous bacteria. The aim of the study was to assess the usefulness of partial 16S rRNA gene sequence analysis and the suitability of diverse databases for identifying dangerous bacterial pathogens. For rapid identification purposes a 500-bp fragment of the 16S rRNA gene of 28 isolates comprising Bacillus anthracis, Brucella melitensis, Burkholderia mallei, Burkholderia pseudomallei, Francisella tularensis, Yersinia pestis, and eight genus-related and unrelated control strains was amplified and sequenced. The obtained sequence data were submitted to three public and two commercial sequence databases for species identification. The most frequent reason for incorrect identification was the lack of the respective 16S rRNA gene sequences in the database. Sequence analysis of a 500-bp 16S rDNA fragment allows the rapid identification of dangerous bacterial species. However, for discrimination of closely related species sequencing of the entire 16S rRNA gene, additional sequencing of the 23S rRNA gene or sequencing of the 16S-23S rRNA intergenic spacer is essential. This work provides comprehensive information on the suitability of partial 16S rDNA analysis and diverse databases for rapid and accurate identification of dangerous bacterial pathogens.
Polarity-defective mutants of Aspergillus nidulans.
Osherov, N; Mathew, J; May, G S
2000-12-01
We have identified two polarity-defective (pod) mutants in Aspergillus nidulans from a collection of heat-sensitive lethal mutants. At restrictive temperature, these mutants are capable of nuclear division but are unable to establish polar hyphal growth. We cloned the two pod genes by complementation of their heat-sensitive lethal phenotypes. The libraries used to clone the pod genes are under the control of the bidirectional niaD and niiA promoters. Complementation of the pod mutants is dependent on growth on inducing medium. We show that rescue of the heat-sensitive phenotype on inducing media is independent of the orientation of the gene relative to the niaD or niiA promoters, demonstrating that the intergenic region between the niaD and the niiA genes functions as an orientation-independent enhancer and repressor that is capable of functioning over long distances. The products of the podG and the podH genes were identified as homologues of the alpha subunit of yeast mitochondrial phenylalanyl--tRNA synthetase and transcription factor IIF interacting component of the CTD phosphatase. Neither of these gene products would have been predicted to produce a pod mutant phenotype based on studies of cellular polarity mutants in other organisms. The implications of these results are discussed. Copyright 2000 Academic Press.
Chen, Z. Jeffrey; Pikaard, Craig S.
1997-01-01
Nucleolar dominance is an epigenetic phenomenon that describes the formation of nucleoli around rRNA genes inherited from only one parent in the progeny of an interspecific hybrid. Despite numerous cytogenetic studies, little is known about nucleolar dominance at the level of rRNA gene expression in plants. We used S1 nuclease protection and primer extension assays to define nucleolar dominance at a molecular level in the plant genus Brassica. rRNA transcription start sites were mapped in three diploids and in three allotetraploids (amphidiploids) and one allohexaploid species derived from these diploid progenitors. rRNA transcripts of only one progenitor were detected in vegetative tissues of each polyploid. Dominance was independent of maternal effect, ploidy, or rRNA gene dosage. Natural and newly synthesized amphidiploids yielded the same results, arguing against substantial evolutionary effects. The hypothesis that nucleolar dominance in plants is correlated with physical characteristics of rRNA gene intergenic spacers is not supported in Brassica. Furthermore, in Brassica napus, rRNA genes silenced in vegetative tissues were found to be expressed in all floral organs, including sepals and petals, arguing against the hypothesis that passage through meiosis is needed to reactivate suppressed genes. Instead, the transition of inflorescence to floral meristem appears to be a developmental stage when silenced genes can be derepressed. PMID:9096413
Ricaño-Ponce, Isis; Zhernakova, Daria V; Deelen, Patrick; Luo, Oscar; Li, Xingwang; Isaacs, Aaron; Karjalainen, Juha; Di Tommaso, Jennifer; Borek, Zuzanna Agnieszka; Zorro, Maria M; Gutierrez-Achury, Javier; Uitterlinden, Andre G; Hofman, Albert; van Meurs, Joyce; Netea, Mihai G; Jonkers, Iris H; Withoff, Sebo; van Duijn, Cornelia M; Li, Yang; Ruan, Yijun; Franke, Lude; Wijmenga, Cisca; Kumar, Vinod
2016-04-01
Genome-wide association and fine-mapping studies in 14 autoimmune diseases (AID) have implicated more than 250 loci in one or more of these diseases. As more than 90% of AID-associated SNPs are intergenic or intronic, pinpointing the causal genes is challenging. We performed a systematic analysis to link 460 SNPs that are associated with 14 AID to causal genes using transcriptomic data from 629 blood samples. We were able to link 71 (39%) of the AID-SNPs to two or more nearby genes, providing evidence that for part of the AID loci multiple causal genes exist. While 54 of the AID loci are shared by one or more AID, 17% of them do not share candidate causal genes. In addition to finding novel genes such as ULK3, we also implicate novel disease mechanisms and pathways like autophagy in celiac disease pathogenesis. Furthermore, 42 of the AID SNPs specifically affected the expression of 53 non-coding RNA genes. To further understand how the non-coding genome contributes to AID, the SNPs were linked to functional regulatory elements, which suggest a model where AID genes are regulated by network of chromatin looping/non-coding RNAs interactions. The looping model also explains how a causal candidate gene is not necessarily the gene closest to the AID SNP, which was the case in nearly 50% of cases. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.
Horizontal transfer of a large and highly toxic secondary metabolic gene cluster between fungi.
Slot, Jason C; Rokas, Antonis
2011-01-25
Genes involved in intermediary and secondary metabolism in fungi are frequently physically linked or clustered. For example, in Aspergillus nidulans the entire pathway for the production of sterigmatocystin (ST), a highly toxic secondary metabolite and a precursor to the aflatoxins (AF), is located in a ∼54 kb, 23 gene cluster. We discovered that a complete ST gene cluster in Podospora anserina was horizontally transferred from Aspergillus. Phylogenetic analysis shows that most Podospora cluster genes are adjacent to or nested within Aspergillus cluster genes, although the two genera belong to different taxonomic classes. Furthermore, the Podospora cluster is highly conserved in content, sequence, and microsynteny with the Aspergillus ST/AF clusters and its intergenic regions contain 14 putative binding sites for AflR, the transcription factor required for activation of the ST/AF biosynthetic genes. Examination of ∼52,000 Podospora expressed sequence tags identified transcripts for 14 genes in the cluster, with several expressed at multiple life cycle stages. The presence of putative AflR-binding sites and the expression evidence for several cluster genes, coupled with the recent independent discovery of ST production in Podospora [1], suggest that this HGT event probably resulted in a functional cluster. Given the abundance of metabolic gene clusters in fungi, our finding that one of the largest known metabolic gene clusters moved intact between species suggests that such transfers might have significantly contributed to fungal metabolic diversity. PAPERFLICK: Copyright © 2011 Elsevier Ltd. All rights reserved.
Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K
2000-06-15
Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.
PlantRNA_Sniffer: A SVM-Based Workflow to Predict Long Intergenic Non-Coding RNAs in Plants.
Vieira, Lucas Maciel; Grativol, Clicia; Thiebaut, Flavia; Carvalho, Thais G; Hardoim, Pablo R; Hemerly, Adriana; Lifschitz, Sergio; Ferreira, Paulo Cavalcanti Gomes; Walter, Maria Emilia M T
2017-03-04
Non-coding RNAs (ncRNAs) constitute an important set of transcripts produced in the cells of organisms. Among them, there is a large amount of a particular class of long ncRNAs that are difficult to predict, the so-called long intergenic ncRNAs (lincRNAs), which might play essential roles in gene regulation and other cellular processes. Despite the importance of these lincRNAs, there is still a lack of biological knowledge and, currently, the few computational methods considered are so specific that they cannot be successfully applied to other species different from those that they have been originally designed to. Prediction of lncRNAs have been performed with machine learning techniques. Particularly, for lincRNA prediction, supervised learning methods have been explored in recent literature. As far as we know, there are no methods nor workflows specially designed to predict lincRNAs in plants. In this context, this work proposes a workflow to predict lincRNAs on plants, considering a workflow that includes known bioinformatics tools together with machine learning techniques, here a support vector machine (SVM). We discuss two case studies that allowed to identify novel lincRNAs, in sugarcane ( Saccharum spp.) and in maize ( Zea mays ). From the results, we also could identify differentially-expressed lincRNAs in sugarcane and maize plants submitted to pathogenic and beneficial microorganisms.
PlantRNA_Sniffer: A SVM-Based Workflow to Predict Long Intergenic Non-Coding RNAs in Plants
Vieira, Lucas Maciel; Grativol, Clicia; Thiebaut, Flavia; Carvalho, Thais G.; Hardoim, Pablo R.; Hemerly, Adriana; Lifschitz, Sergio; Ferreira, Paulo Cavalcanti Gomes; Walter, Maria Emilia M. T.
2017-01-01
Non-coding RNAs (ncRNAs) constitute an important set of transcripts produced in the cells of organisms. Among them, there is a large amount of a particular class of long ncRNAs that are difficult to predict, the so-called long intergenic ncRNAs (lincRNAs), which might play essential roles in gene regulation and other cellular processes. Despite the importance of these lincRNAs, there is still a lack of biological knowledge and, currently, the few computational methods considered are so specific that they cannot be successfully applied to other species different from those that they have been originally designed to. Prediction of lncRNAs have been performed with machine learning techniques. Particularly, for lincRNA prediction, supervised learning methods have been explored in recent literature. As far as we know, there are no methods nor workflows specially designed to predict lincRNAs in plants. In this context, this work proposes a workflow to predict lincRNAs on plants, considering a workflow that includes known bioinformatics tools together with machine learning techniques, here a support vector machine (SVM). We discuss two case studies that allowed to identify novel lincRNAs, in sugarcane (Saccharum spp.) and in maize (Zea mays). From the results, we also could identify differentially-expressed lincRNAs in sugarcane and maize plants submitted to pathogenic and beneficial microorganisms. PMID:29657283
Nakamura, Mikiko; Suzuki, Ayako; Akada, Junko; Yarimizu, Tohru; Iwakiri, Ryo; Hoshida, Hisashi; Akada, Rinji
2015-08-01
Escherichia coli plasmids are commonly used for gene expression experiments in mammalian cells, while PCR-amplified DNAs are rarely used even though PCR is a much faster and easier method to construct recombinant DNAs. One difficulty may be the limited amount of DNA produced by PCR. For direct utilization of PCR-amplified DNA in transfection experiments, efficient transfection with a smaller amount of DNA should be attained. For this purpose, we investigated two enhancer reagents, polyethylene glycol and tRNA, for a chemical transfection method. The addition of the enhancers to a commercial transfection reagent individually and synergistically exhibited higher transfection efficiency applicable for several mammalian cell culture lines in a 96-well plate. By taking advantage of a simple transfection procedure using PCR-amplified DNA, SV40 and rabbit β-globin terminator lengths were minimized. The terminator length is short enough to design in oligonucleotides; thus, terminator primers can be used for the construction and analysis of numerous mutations, deletions, insertions, and tag-fusions at the 3'-terminus of any gene. The PCR-mediated gene manipulation with the terminator primers will transform gene expression by allowing for extremely simple and high-throughput experiments with small-scale, multi-well, and mammalian cell cultures.
GSDM family genes meet autophagy.
Tamura, Masaru; Shiroishi, Toshihiko
2015-07-15
In the previous issue of Biochemical Journal, Shi et al. [(2015) 468, 325-336] report that Gasdermin (Gsdm) family proteins regulate autophagy activity, which is counter-balanced by the opposite functions of well-conserved N- and C-terminal domains of the proteins. The Gsdm family was originally identified as the causative gene of dominant skin mutations exhibiting alopecia. Each member of the Gsdm gene family shows characteristic expression patterns in the epithelium, which is tissue and differentiation stage-specific. Previous phenotype analyses of mutant mice, biochemical analyses of proteins and genome-wide association studies showed that the Gsdm gene family might be involved in epithelial cell development, apoptosis, inflammation, carcinogenesis and immune-related diseases. To date, however, their molecular function(s) remain unclear. Shi et al. found that mutations in the C-terminal domain of Gsdma3, a member of the Gsdm family, induce autophagy. Further studies revealed that the wild-type N-terminal domain has pro-autophagic activity and that the C-terminal domain conversely inhibits this N-terminal function. These opposite functions of the two domains were also observed in other Gsdm family members. Thus, their study provides a new insight into the function of Gsdm genes in epithelial cell lineage, causality of cancers and immune-related diseases including childhood-onset asthma. © 2015 Authors; published by Portland Press Limited.
Zhang, Wei; Xing, Fuguo; Selvaraj, Jonathan Nimal; Liu, Yang
2014-05-01
In order to assess the degradation of endogenous and exogenous genes during food processing, genetically modified rice with Cry1Ab was used as raw material to produce 4 processed foods: steamed rice, rice noodles, rice crackers, and sweet rice wine. The results showed various processing procedures caused different degrees of degradation of both endogenous and exogenous genes. During the processing of steamed rice and rice noodles, the procedures were so mild that only genes larger than 1500 bp were degraded, and no degradation of NOS terminator and Hpt gene was detected. For rice crackers, frying was the most severe procedure, followed by microwaving, baking, boiling, 1st drying, and 2nd drying. For sweet rice wine, fermentation had more impact on degradation of genes than the other processing procedures. All procedures in this study did not lead to degradation of genes to below 200 bp, except for NOS terminator. In the case of stability of the genes studied during processing of rice crackers and sweet rice wine, SPS gene was the most, followed by the Cry1Ab gene, Hpt gene, Pubi promoter, and NOS terminator. In our study, we gained some information about the degradation of endogenous and exogenous genes during 4 foods processing, compared the different stabilities between endogenous and exogenous genes, and analyzed different effects of procedure on degradation of genes. In addition, the fragments of endogenous and exogenous genes about 200 bp could be detected in final products, except NOS terminator. As a result, we provided some base information about risk assessment of genetically modified (GM) food and appropriate length of fragment to detect GM component in processed foods. © 2014 Institute of Food Technologists®
Beyene, Getu; Buenrostro-Nava, Marco T; Damaj, Mona B; Gao, San-Ji; Molina, Joe; Mirkov, T Erik
2011-01-01
The potential of using vector-free minimal gene cassettes (MGCs) with a double terminator for the enhancement and stabilization of transgene expression was tested in sugarcane biolistic transformation. The MGC system used consisted of the enhanced yellow fluorescent protein (EYFP) reporter gene driven by the maize ubiquitin-1 (Ubi) promoter and a single or double terminator from nopaline synthase (Tnos) or/and Cauliflower mosaic virus 35S (35ST). Transient EYFP expression from Tnos or 35ST single terminator MGC was very low and unstable, typically peaking early (8-16 h) and diminishing rapidly (48-72 h) after bombardment. Addition of a ~260 bp vector sequence (VS) to the single MGC downstream of Tnos (Tnos + VS) or 35ST (35ST + VS) enhanced EYFP expression by 1.25- to 25-fold. However, a much more significant increase in EYFP expression was achieved when the VS in 35ST + VS was replaced by Tnos to generate a 35ST-Tnos double terminator MGC, reaching its maximum at 24 h post-bombardment. The enhanced EYFP expression from the double terminator MGC was maintained for a long period of time (168 h), resulting in an overall increase of 5- to 65-fold and 10- to 160-fold as compared to the 35ST and Tnos single terminator MGCs, respectively. The efficiency of the double terminator MGC in enhancing EYFP expression was also demonstrated in sorghum and tobacco, suggesting that the underlying mechanism is highly conserved among monocots and dicots. Our results also suggest the involvement of posttranscriptional gene silencing in the reduced and unstable transgene expression from single terminator MGCs in plants.
Guo, Hui Juan; Wang, En Tao; Zhang, Xing Xing; Li, Qin Qin; Zhang, Yan Ming; Chen, Wen Xin
2014-01-01
In order to investigate the genetic differentiation of Sinorhizobium strains nodulating Glycine max and related microevolutionary mechanisms, three housekeeping genes (SMc00019, truA, and thrA) and 16 symbiosis-related genes on the chromosome (7 genes), pSymA (6 genes), and pSymB (3 genes) were analyzed. Five distinct species were identified among the test strains by calculating the average nucleotide identity (ANI) of SMc00019-truA-thrA: Sinorhizobium fredii, Sinorhizobium sojae, Sinorhizobium sp. I, Sinorhizobium sp. II, and Sinorhizobium sp. III. These species assignments were also supported by population genetics and phylogenetic analyses of housekeeping genes and symbiosis-related genes on the chromosome and pSymB. Different levels of genetic differentiation were observed among these species or different replicons. S. sojae was the most divergent from the other test species and was characterized by its low intraspecies diversity and limited geographic distribution. Intergenic recombination dominated the evolution of 19 genes from different replicons. Intraspecies recombination happened frequently in housekeeping genes and symbiosis-related genes on the chromosome and pSymB, whereas pSymA genes showed a clear pattern of lateral-transfer events between different species. Moreover, pSymA genes were characterized by a lower level of polymorphism and recombination than those on the chromosome and pSymB. Taken together, genes from different replicons of rhizobia might be involved in the establishment of symbiosis with legumes, but these symbiosis-related genes might have evolved differently according to their corresponding replicons. PMID:24317084
González-González, Andrea; Hug, Shaun M; Rodríguez-Verdugo, Alejandra; Patel, Jagdish Suresh; Gaut, Brandon S
2017-11-01
Modifications to transcriptional regulators play a major role in adaptation. Here, we compared the effects of multiple beneficial mutations within and between Escherichia coli rpoB, the gene encoding the RNA polymerase β subunit, and rho, which encodes a transcriptional terminator. These two genes have harbored adaptive mutations in numerous E. coli evolution experiments but particularly in our previous large-scale thermal stress experiment, where the two genes characterized alternative adaptive pathways. To compare the effects of beneficial mutations, we engineered four advantageous mutations into each of the two genes and measured their effects on fitness, growth, gene expression and transcriptional termination at 42.2 °C. Among the eight mutations, two rho mutations had no detectable effect on relative fitness, suggesting they were beneficial only in the context of epistatic interactions. The remaining six mutations had an average relative fitness benefit of ∼20%. The rpoB mutations affected the expression of ∼1,700 genes; rho mutations affected the expression of fewer genes but most (83%) were a subset of those altered by rpoB mutants. Across the eight mutants, relative fitness correlated with the degree to which a mutation restored gene expression back to the unstressed, 37.0 °C state. The beneficial mutations in the two genes did not have identical effects on fitness, growth or gene expression, but they caused parallel phenotypic effects on gene expression and genome-wide transcriptional termination. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Kim, Eunsoo; Lane, Christopher E; Curtis, Bruce A; Kozera, Catherine; Bowman, Sharen; Archibald, John M
2008-05-12
Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote) endosymbiosis. Cryptophytes are unusual in that they possess four genomes-a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a approximately 20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22-336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu) gene and possesses a trnS-derived 'trnK(uuu)', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher-order eukaryotic lineages. Comparison of the H. andersenii and R. salina mitochondrial genomes reveals a number of cryptophyte-specific genomic features, most notably the presence of a large repeat-rich intergenic region. However, unlike R. salina, the H. andersenii mtDNA does not possess introns and lacks a Lys-tRNA, which is presumably imported from the cytosol.
Kim, Eunsoo; Lane, Christopher E; Curtis, Bruce A; Kozera, Catherine; Bowman, Sharen; Archibald, John M
2008-01-01
Background Cryptophytes are an enigmatic group of unicellular eukaryotes with plastids derived by secondary (i.e., eukaryote-eukaryote) endosymbiosis. Cryptophytes are unusual in that they possess four genomes–a host cell-derived nuclear and mitochondrial genome and an endosymbiont-derived plastid and 'nucleomorph' genome. The evolutionary origins of the host and endosymbiont components of cryptophyte algae are at present poorly understood. Thus far, a single complete mitochondrial genome sequence has been determined for the cryptophyte Rhodomonas salina. Here, the second complete mitochondrial genome of the cryptophyte alga Hemiselmis andersenii CCMP644 is presented. Results The H. andersenii mtDNA is 60,553 bp in size and encodes 30 structural RNAs and 36 protein-coding genes, all located on the same strand. A prominent feature of the genome is the presence of a ~20 Kbp long intergenic region comprised of numerous tandem and dispersed repeat units of between 22–336 bp. Adjacent to these repeats are 27 copies of palindromic sequences predicted to form stable DNA stem-loop structures. One such stem-loop is located near a GC-rich and GC-poor region and may have a regulatory function in replication or transcription. The H. andersenii mtDNA shares a number of features in common with the genome of the cryptophyte Rhodomonas salina, including general architecture, gene content, and the presence of a large repeat region. However, the H. andersenii mtDNA is devoid of inverted repeats and introns, which are present in R. salina. Comparative analyses of the suite of tRNAs encoded in the two genomes reveal that the H. andersenii mtDNA has lost or converted its original trnK(uuu) gene and possesses a trnS-derived 'trnK(uuu)', which appears unable to produce a functional tRNA. Mitochondrial protein coding gene phylogenies strongly support a variety of previously established eukaryotic groups, but fail to resolve the relationships among higher-order eukaryotic lineages. Conclusion Comparison of the H. andersenii and R. salina mitochondrial genomes reveals a number of cryptophyte-specific genomic features, most notably the presence of a large repeat-rich intergenic region. However, unlike R. salina, the H. andersenii mtDNA does not possess introns and lacks a Lys-tRNA, which is presumably imported from the cytosol. PMID:18474103
Ahmad, N N; McDonald-McGinn, D M; Zackai, E H; Knowlton, R G; LaRossa, D; DiMascio, J; Prockop, D J
1993-01-01
Genetic linkage analyses suggest that mutations in type II collagen may be responsible for Stickler syndrome, or arthro-ophthalmopathy (AO), in many families. In the present study oligonucleotide primers were developed to amplify and directly sequence eight of the first nine exons of the gene for type II procollagen (COL2A1). Analysis of the eight exons in 10 unrelated probands with AO revealed that one had a single-base mutation in one allele that changed the codon of -CGA- for arginine at amino acid position alpha 1-9 in exon 7 to a premature termination signal for translation. The second mutation found to cause AO was, therefore, similar to the first in that both created premature termination signals in the COL2A1 gene. Since mutations producing premature termination signals have not previously been detected in genes for fibrillar collagens, the results raise the possibility that such mutations in the COL2A1 gene are a common cause of AO. Images Figure 2 Figure 3 PMID:8434604
Inácio, Vera; Rocheta, Margarida; Morais-Cecílio, Leonor
2014-01-01
The 35S ribosomal DNA (rDNA) units, repeated in tandem at one or more chromosomal loci, are separated by an intergenic spacer (IGS) containing functional elements involved in the regulation of transcription of downstream rRNA genes. In the present work, we have compared the IGS molecular organizations in two divergent species of Fagaceae, Fagus sylvatica and Quercus suber, aiming to comprehend the evolution of the IGS sequences within the family. Self- and cross-hybridization FISH was done on representative species of the Fagaceae. The IGS length variability and the methylation level of 18 and 25S rRNA genes were assessed in representatives of three genera of this family: Fagus, Quercus and Castanea. The intergenic spacers in Beech and Cork Oak showed similar overall organizations comprising putative functional elements needed for rRNA gene activity and containing a non-transcribed spacer (NTS), a promoter region, and a 5′-external transcribed spacer. In the NTS: the sub-repeats structure in Beech is more organized than in Cork Oak, sharing some short motifs which results in the lowest sequence similarity of the entire IGS; the AT-rich region differed in both spacers by a GC-rich block inserted in Cork Oak. The 5′-ETS is the region with the higher similarity, having nonetheless different lengths. FISH with the NTS-5′-ETS revealed fainter signals in cross-hybridization in agreement with the divergence between genera. The diversity of IGS lengths revealed variants from ∼2 kb in Fagus, and Quercus up to 5.3 kb in Castanea, and a lack of correlation between the number of variants and the number of rDNA loci in several species. Methylation of 25S Bam HI site was confirmed in all species and detected for the first time in the 18S of Q. suber and Q. faginea. These results provide important clues for the evolutionary trends of the rDNA 25S-18S IGS in the Fagaceae family. PMID:24893289
The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae).
Pan, Hong-Chun; Fang, Hong-Yan; Li, Shi-Wei; Liu, Jun-Hong; Wang, Ying; Wang, An-Tai
2014-12-01
The complete mitochondrial genome of Hydra vulgaris (Hydroida: Hydridae) is composed of two linear DNA molecules. The mitochondrial DNA (mtDNA) molecule 1 is 8010 bp long and contains six protein-coding genes, large subunit rRNA, methionine and tryptophan tRNAs, two pseudogenes consisting respectively of a partial copy of COI, and terminal sequences at two ends of the linear mtDNA, while the mtDNA molecule 2 is 7576 bp long and contains seven protein-coding genes, small subunit rRNA, methionine tRNA, a pseudogene consisting of a partial copy of COI and terminal sequences at two ends of the linear mtDNA. COI gene begins with GTG as start codon, whereas other 12 protein-coding genes start with a typical ATG initiation codon. In addition, all protein-coding genes are terminated with TAA as stop codon.
Bratkowski, Matthew; Unarta, Ilona Christy; Zhu, Lizhe; Shubbar, Murtada; Huang, Xuhui; Liu, Xin
2018-02-02
Functional cross-talk between the promoter and terminator of a gene has long been noted. Promoters and terminators are juxtaposed to form gene loops in several organisms, and gene looping is thought to be involved in transcriptional regulation. The general transcription factor IIB (TFIIB) and the C-terminal domain phosphatase Ssu72, essential factors of the transcription preinitiation complex and the mRNA processing and polyadenylation complex, respectively, are important for gene loop formation. TFIIB and Ssu72 interact both genetically and physically, but the molecular basis of this interaction is not known. Here we present a crystal structure of the core domain of TFIIB in two new conformations that differ in the relative distance and orientation of the two cyclin-like domains. The observed extraordinary conformational plasticity may underlie the binding of TFIIB to multiple transcription factors and promoter DNAs that occurs in distinct stages of transcription, including initiation, reinitiation, and gene looping. We mapped the binding interface of the TFIIB-Ssu72 complex using a series of systematic, structure-guided in vitro binding and site-specific photocross-linking assays. Our results indicate that Ssu72 competes with acidic activators for TFIIB binding and that Ssu72 disrupts an intramolecular TFIIB complex known to impede transcription initiation. We also show that the TFIIB-binding site on Ssu72 overlaps with the binding site of symplekin, a component of the mRNA processing and polyadenylation complex. We propose a hand-off model in which Ssu72 mediates a conformational transition in TFIIB, accounting for the role of Ssu72 in transcription reinitiation, gene looping, and promoter-terminator cross-talk. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.
Lin, J W; Lu, H C; Chen, H Y; Weng, S F
1997-10-09
Partial 3'-end nucleotide sequence of the pkI gene (GenBank accession No. AF019143) from Photobacterium leiognathi ATCC 25521 has been determined, and the encoded pyruvate kinase I is deduced. Pyruvate kinase I is the key enzyme of glycolysis, which converts phosphoenol pyruvate to pyruvate. Alignment and comparison of pyruvate kinase Is from P. leiognathi, E. coli and Salmonella typhimurium show that they are homologous. Nucleotide sequence reveals that the pkI gene is linked to the luxZ gene that enhances bioluminescence of the lux operon from P. leiognathi. The gene order of the pkI and luxZ genes is-pk1-ter-->-R&R"-luxZ-ter"-->, whereas ter is transcriptional terminator for the pkI and related genes, and R&R" is the regulatory region and ter" is transcriptional terminator for the luxZ gene. It clearly elicits that the pkI gene and luxZ gene are divided to two operons. Functional analysis confirms that the potential hairpin loop omega T is the transcriptional terminator for the pkI and related genes. It infers that the pkI and related genes are simply linked to the luxZ gene in P. leiognathi genome.
Cui, Cuiju; Song, Fei; Tan, Yi; Zhou, Xuan; Zhao, Wen; Ma, Fengyun; Liu, Yunyi; Hussain, Javeed; Wang, Yuesheng; Yang, Guangxiao; He, Guangyuan
2011-04-01
Chloroplast transformation in wheat was achieved by bombardment of scutella from immature embryos and immature inflorescences, respectively. A wheat chloroplast site-specific expression vector, pBAGNRK, was constructed by placing an expression cassette containing neomycin phosphotransferase II (nptII) and green fluorescent protein (gfp) as selection and reporter genes, respectively, in the intergenic spacer between atpB and rbcL of wheat chloroplast genome. Integration of gfp gene in the plastome was identified by polymerase chain reaction (PCR) analysis and Southern blotting using gfp gene as a probe. Expression of GFP protein was examined by western blot. Three positive transformants were obtained and the Southern blot of partial fragment of atpB and rbcL (targeting site) probes verified that one of them was homoplasmic. Stable expression of GFP fluorescence was confirmed by confocal microscopy in the leaf tissues from T(1) progeny seedlings. PCR analysis of gfp gene also confirmed the inheritance of transgene in the T(1) progeny. These results strengthen the feasibility of wheat chloroplast transformation and also give a novel method for the introduction of important agronomic traits in wheat through chloroplast transformation.
The sex-specific region of sex chromosomes in animals and plants.
Gschwend, Andrea R; Weingartner, Laura A; Moore, Richard C; Ming, Ray
2012-01-01
Our understanding of the evolution of sex chromosomes has increased greatly in recent years due to a number of molecular evolutionary investigations in divergent sex chromosome systems, and these findings are reshaping theories of sex chromosome evolution. In particular, the dynamics of the sex-determining region (SDR) have been demonstrated by recent findings in ancient and incipient sex chromosomes. Radical changes in genomic structure and gene content in the male specific region of the Y chromosome between human and chimpanzee indicated rapid evolution in the past 6 million years, defying the notion that the pace of evolution in the SDR was fast at early stages but slowed down overtime. The chicken Z and the human X chromosomes appeared to have acquired testis-expressed genes and expanded in intergenic regions. Transposable elements greatly contributed to SDR expansion and aided the trafficking of genes in the SDR and its X or Z counterpart through retrotransposition. Dosage compensation is not a destined consequence of sex chromosomes as once thought. Most X-linked microRNA genes escape silencing and are expressed in testis. Collectively, these findings are challenging many of our preconceived ideas of the evolutionary trajectory and fates of sex chromosomes.
Homolka, David; Ivanek, Robert; Forejt, Jiri; Jansa, Petr
2011-02-14
Tight regulation of testicular gene expression is a prerequisite for male reproductive success, while differentiation of gene activity in spermatogenesis is important during speciation. Thus, comparison of testicular transcriptomes between closely related species can reveal unique regulatory patterns and shed light on evolutionary constraints separating the species. Here, we compared testicular transcriptomes of two closely related mouse species, Mus musculus and Mus spretus, which diverged more than one million years ago. We analyzed testicular expression using tiling arrays overlapping Chromosomes 2, X, Y and mitochondrial genome. An excess of differentially regulated non-coding RNAs was found on Chromosome 2 including the intronic antisense RNAs, intergenic RNAs and premature forms of Piwi-interacting RNAs (piRNAs). Moreover, striking difference was found in the expression of X-linked G6pdx gene, the parental gene of the autosomal retrogene G6pd2. The prevalence of non-coding RNAs among differentially expressed transcripts indicates their role in species-specific regulation of spermatogenesis. The postmeiotic expression of G6pdx in Mus spretus points towards the continuous evolution of X-chromosome silencing and provides an example of expression change accompanying the out-of-the X-chromosomal retroposition.
Bernstein, Jeffrey R; Bulter, Thomas; Liao, James C
2008-01-01
This work demonstrates the transfer of the five-gene cyclohexane carboxylate (CHC) degradation pathway from the high-GC alphaproteobacterium Rhodopseudomonas palustris to Escherichia coli, a gammaproteobacterium. The degradation product of this pathway is pimeloyl-CoA, a key metabolite in E. coli's biotin biosynthetic pathway. This pathway is useful for biotin overproduction in E. coli; however, the expression of GC-rich genes is troublesome in this host. When the native R. palustris CHC degradation pathway is transferred to a DeltabioH pimeloyl-CoA auxotroph of E. coli, it is unable to complement growth in the presence of CHC. To overcome this expression problem we redesigned the operon with decreased GC content and removed stretches of high-GC intergenic DNA which comprise the 5' untranslated region of each gene, replacing these features with shorter low-GC sequences. We show this synthetic construct enables growth of the DeltabioH strain in the presence of CHC. When the synthetic degradation pathway is overexpressed in conjunction with the downstream genes for biotin biosynthesis, we measured significant accumulation of biotin in the growth medium, showing that the pathway transfer is successfully integrated with the host metabolism.
Martin, N C; Underbrink-Lyon, K
1981-01-01
We have used a cloned yeast mitochondrial tRNAUCNSer gene as a probe to detect RNA species that are transcripts from this gene in wild-type Saccharomyces cerevisiae and in petite deletion mutants. In RNA from wild-type cells, the tRNA is the most prominent transcript of the gene. In RNA from deletion mutants that retain this gene but have lost other regions of mtDNA, high molecular weight transcripts containing the tRNAUCNSer sequences accumulate but tRNAUCNSer is not made. tRNAUCNSer synthesis can be restored in these mutants when they are mated to other deletion mutants that retain a different portion of the mitochondrial genome. Protein synthesis is not necessary for the restoration, and the restoration is not due to a nuclear effect or to an effect of mating alone, because strains without mtDNA are not able to restore tRNA synthesis. These results definitively demonstrate the existence of a yeast mitochondrial locus that is necessary for tRNA synthesis and, because the restoration of tRNAUCNSer synthesis appears to result from intergenic complementation, not recombination, indicate that this locus acts in trans. Images PMID:6795621
Zhang, Yan-Qiong; Chen, Dong-Liang; Tian, Hai-Feng; Zhang, Bao-Hong; Wen, Jian-Fan
2009-10-01
Using a combined computational program, we identified 50 potential microRNAs (miRNAs) in Giardia lamblia, one of the most primitive unicellular eukaryotes. These miRNAs are unique to G. lamblia and no homologues have been found in other organisms; miRNAs, currently known in other species, were not found in G. lamblia. This suggests that miRNA biogenesis and miRNA-mediated gene regulation pathway may evolve independently, especially in evolutionarily distant lineages. A majority (43) of the predicted miRNAs are located at one single locus; however, some miRNAs have two or more copies in the genome. Among the 58 miRNA genes, 28 are located in the intergenic regions whereas 30 are present in the anti-sense strands of the protein-coding sequences. Five predicted miRNAs are expressed in G. lamblia trophozoite cells evidenced by expressed sequence tags or RT-PCR. Thirty-seven identified miRNAs may target 50 protein-coding genes, including seven variant-specific surface proteins (VSPs). Our findings provide a clue that miRNA-mediated gene regulation may exist in the early stage of eukaryotic evolution, suggesting that it is an important regulation system ubiquitous in eukaryotes.
Operon-mapper: A Web Server for Precise Operon Identification in Bacterial and Archaeal Genomes.
Taboada, Blanca; Estrada, Karel; Ciria, Ricardo; Merino, Enrique
2018-06-19
Operon-mapper is a web server that accurately, easily, and directly predicts the operons of any bacterial or archaeal genome sequence. The operon predictions are based on the intergenic distance of neighboring genes as well as the functional relationships of their protein-coding products. To this end, Operon-mapper finds all the ORFs within a given nucleotide sequence, along with their genomic coordinates, orthology groups, and functional relationships. We believe that Operon-mapper, due to its accuracy, simplicity and speed, as well as the relevant information that it generates, will be a useful tool for annotating and characterizing genomic sequences. http://biocomputo.ibt.unam.mx/operon_mapper/.
Dupont, Joëlle; Jacquet, Claire; Dennetière, Bruno; Lacoste, Sandrine; Bousta, Faisl; Orial, Geneviève; Cruaud, Corinne; Couloux, Arnaud; Roquebert, Marie-France
2007-01-01
A major fungal invasion was discovered in the prehistoric painted cave of Lascaux in France in Sep 2001. At least three species of the Fusarium solani complex were isolated and identified with a portion of the translation elongation factor 1alpha gene (EF-1alpha), a portion of the nuclear large subunit rDNA (LSU) and nuclear ribosomal intergenic spacer region (ITS). This study represents the first time that Fusarium species have been reported from a cave containing prehistoric paintings. Significant interspecific molecular variability was observed, suggesting that there might have been repeated introduction of the species, possibly carried by water from soils above the cave.
Kouvelis, Vassili N; Ghikas, Dimitri V; Typas, Milton A
2004-10-01
The mitochondrial genome (mtDNA) of the entomopathogenic fungus Lecanicillium muscarium (synonym Verticillium lecanii) with a total size of 24,499-bp has been analyzed. So far, it is the smallest known mitochondrial genome among Pezizomycotina, with an extremely compact gene organization and only one group-I intron in its large ribosomal RNA (rnl) gene. It contains the 14 typical genes coding for proteins related to oxidative phosphorylation, the two rRNA genes, one intronic ORF coding for a possible ribosomal protein (rps), and a set of 25 tRNA genes which recognize codons for all amino acids, except alanine and cysteine. All genes are transcribed from the same DNA strand. Gene order comparison with all available complete fungal mtDNAs-representatives of all four Phyla are included-revealed some characteristic common features like uninterrupted gene pairs, overlapping genes, and extremely variable intergenic regions, that can all be exploited for the study of fungal mitochondrial genomes. Moreover, a minimum common mtDNA gene order could be detected, in two units, for all known Sordariomycetes namely nad1-nad4-atp8-atp6 and rns-cox3-rnl, which can be extended in Hypocreales, to nad4L-nad5-cob-cox1-nad1-nad4-atp8-atp6 and rns-cox3-rnl nad2-nad3, respectively. Phylogenetic analysis of all fungal mtDNA essential protein-coding genes as one unit, clearly demonstrated the superiority of small genome (mtDNA) over single gene comparisons.
Battistelli, C; Cicchini, C; Santangelo, L; Tramontano, A; Grassi, L; Gonzalez, F J; de Nonno, V; Grassi, G; Amicone, L; Tripodi, M
2017-01-01
The transcription factor Snail is a master regulator of cellular identity and epithelial-to-mesenchymal transition (EMT) directly repressing a broad repertoire of epithelial genes. How chromatin modifiers instrumental to its activity are recruited to Snail-specific binding sites is unclear. Here we report that the long non-coding RNA (lncRNA) HOTAIR (for HOX Transcript Antisense Intergenic RNA) mediates a physical interaction between Snail and enhancer of zeste homolog 2 (EZH2), an enzymatic subunit of the polycomb-repressive complex 2 and the main writer of chromatin-repressive marks. The Snail-repressive activity, here monitored on genes with a pivotal function in epithelial and hepatic morphogenesis, differentiation and cell-type identity, depends on the formation of a tripartite Snail/HOTAIR/EZH2 complex. These results demonstrate an lncRNA-mediated mechanism by which a transcriptional factor conveys a general chromatin modifier to specific genes, thereby allowing the execution of hepatocyte transdifferentiation; moreover, they highlight HOTAIR as a crucial player in the Snail-mediated EMT. PMID:27452518
Pappi, Polyxeni G; Dovas, Chrysostomos I; Efthimiou, Konstantinos E; Maliogka, Varvara I; Katis, Nikolaos I
2013-08-01
A novel strategy employing the rhabdovirus untranslated conserved intergenic regions was developed and applied successfully for the determination of the complete nucleotide sequence of Eggplant mottled dwarf virus (EMDV). The EMDV genome contains seven open reading frames with the same organization as Potato yellow dwarf virus (PYDV), the type species of the genus Nucleorhabdovirus. These two species encode five core genes [nucleocapsid (N), phosphoprotein (P), matrix (M), glycoprotein (G), and the polymerase (L)] like other viruses of the genus and an additional one (X), located between N and P, giving rise to a protein with currently unknown function. Furthermore, both EMDV and PYDV contain a gene (Y), inserted between P and M, which probably encodes the virus movement protein, in concordance with the rest of the plant-infecting rhabdoviruses. Phylogenetic analysis of the polymerase gene confirmed the classification of EMDV within the genus Nucleorhabdovirus and showed a close evolutionary relationship to PYDV. The novel sequencing strategy developed is a useful tool for the genome determination of yet uncharacterized rhabdoviruses.
Improved maize reference genome with single-molecule technologies.
Jiao, Yinping; Peluso, Paul; Shi, Jinghua; Liang, Tiffany; Stitzer, Michelle C; Wang, Bo; Campbell, Michael S; Stein, Joshua C; Wei, Xuehong; Chin, Chen-Shan; Guill, Katherine; Regulski, Michael; Kumari, Sunita; Olson, Andrew; Gent, Jonathan; Schneider, Kevin L; Wolfgruber, Thomas K; May, Michael R; Springer, Nathan M; Antoniou, Eric; McCombie, W Richard; Presting, Gernot G; McMullen, Michael; Ross-Ibarra, Jeffrey; Dawe, R Kelly; Hastie, Alex; Rank, David R; Ware, Doreen
2017-06-22
Complete and accurate reference genomes and annotations provide fundamental tools for characterization of genetic and functional variation. These resources facilitate the determination of biological processes and support translation of research findings into improved and sustainable agricultural technologies. Many reference genomes for crop plants have been generated over the past decade, but these genomes are often fragmented and missing complex repeat regions. Here we report the assembly and annotation of a reference genome of maize, a genetic and agricultural model species, using single-molecule real-time sequencing and high-resolution optical mapping. Relative to the previous reference genome, our assembly features a 52-fold increase in contig length and notable improvements in the assembly of intergenic spaces and centromeres. Characterization of the repetitive portion of the genome revealed more than 130,000 intact transposable elements, allowing us to identify transposable element lineage expansions that are unique to maize. Gene annotations were updated using 111,000 full-length transcripts obtained by single-molecule real-time sequencing. In addition, comparative optical mapping of two other inbred maize lines revealed a prevalence of deletions in regions of low gene density and maize lineage-specific genes.
Mathur, G; Sanchez-Vargas, I; Alvarez, D; Olson, K E; Marinotti, O; James, A A
2010-12-01
Controlled sex-, stage- and tissue-specific expression of antipathogen effector molecules is important for genetic engineering strategies to control mosquito-borne diseases. Adult female salivary glands are involved in pathogen transmission to human hosts and are target sites for expression of antipathogen effector molecules. The Aedes aegypti 30K a and 30K b genes are expressed exclusively in adult female salivary glands and are transcribed divergently from start sites separated by 263 nucleotides. The intergenic, 5'- and 3'-end untranslated regions of both genes are sufficient to express simultaneously two different transgene products in the distal-lateral lobes of the female salivary glands. An antidengue effector gene, membranes no protein (Mnp), driven by the 30K b promoter, expresses an inverted-repeat RNA with sequences derived from the premembrane protein-encoding region of the dengue virus serotype 2 genome and reduces significantly the prevalence and mean intensities of viral infection in mosquito salivary glands and saliva. © 2010 The Authors. Insect Molecular Biology © 2010 The Royal Entomological Society.
The complete genome sequence of the Atlantic salmon paramyxovirus (ASPV)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nylund, Stian; Karlsen, Marius; Nylund, Are
2008-03-30
The complete RNA genome of the Atlantic salmon paramyxovirus (ASPV), isolated from Atlantic salmon suffering from proliferative gill inflammation (PGI), has been determined. The genome is 16,965 nucleotides in length and consists of six nonoverlapping genes in the order 3'- N - P/C/V - M - F - HN - L -5', coding for the nucleocapsid, phospho-, matrix, fusion, hemagglutinin-neuraminidase and large polymerase proteins, respectively. The gene junctions contain highly conserved transcription start and stop signal sequences and trinucleotide intergenic regions similar to those of other Paramyxoviridae. The ASPV P-gene expression strategy is like that of the respiro- and morbilliviruses,more » which express the phosphoprotein from the primary transcript, and edit a portion of the mRNA to encode the accessory proteins V and W. It also encodes the C-protein by ribosomal choice of translation initiation. Pairwise comparisons of amino acid identities, and phylogenetic analysis of deduced ASPV protein sequences with homologous sequences from other Paramyxoviridae, show that ASPV has an affinity for the genus Respirovirus, but may represent a new genus within the subfamily Paramyxovirinae.« less
Leliaert, Frederik; Marcelino, Vanessa R
2018-01-01
Abstract Chloroplast genomes have undergone tremendous alterations through the evolutionary history of the green algae (Chloroplastida). This study focuses on the evolution of chloroplast genomes in the siphonous green algae (order Bryopsidales). We present five new chloroplast genomes, which along with existing sequences, yield a data set representing all but one families of the order. Using comparative phylogenetic methods, we investigated the evolutionary dynamics of genomic features in the order. Our results show extensive variation in chloroplast genome architecture and intron content. Variation in genome size is accounted for by the amount of intergenic space and freestanding open reading frames that do not show significant homology to standard plastid genes. We show the diversity of these nonstandard genes based on their conserved protein domains, which are often associated with mobile functions (reverse transcriptase/intron maturase, integrases, phage- or plasmid-DNA primases, transposases, integrases, ligases). Investigation of the introns showed proliferation of group II introns in the early evolution of the order and their subsequent loss in the core Halimedineae, possibly through RT-mediated intron loss. PMID:29635329
The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3′ processing
Abe, Ken-ichiro; Yamamoto, Ryoma; Franke, Vedran; Cao, Minjun; Suzuki, Yutaka; Suzuki, Masataka G; Vlahovicek, Kristian; Svoboda, Petr; Schultz, Richard M; Aoki, Fugaku
2015-01-01
Initiation of zygotic transcription in mammals is poorly understood. In mice, zygotic transcription is first detected shortly after pronucleus formation in 1-cell embryos, but the identity of the transcribed loci and mechanisms regulating their expression are not known. Using total RNA-Seq, we have found that transcription in 1-cell embryos is highly promiscuous, such that intergenic regions are extensively expressed and thousands of genes are transcribed at comparably low levels. Striking is that transcription can occur in the absence of defined core-promoter elements. Furthermore, accumulation of translatable zygotic mRNAs is minimal in 1-cell embryos because of inefficient splicing and 3′ processing of nascent transcripts. These findings provide novel insights into regulation of gene expression in 1-cell mouse embryos that may confer a protective mechanism against precocious gene expression that is the product of a relaxed chromatin structure present in 1-cell embryos. The results also suggest that the first zygotic transcription itself is an active component of chromatin remodeling in 1-cell embryos. PMID:25896510
Kusumi, J; Tsumura, Y; Yoshimaru, H; Tachida, H
2000-10-01
Nucleotide sequences from four chloroplast genes, the matK, chlL, intergenic spacer (IGS) region between trnL and trnF, and an intron of trnL, were determined from all species of Taxodiaceae and five species of Cupressaceae sensu stricto (s.s.). Phylogenetic trees were constructed using the maximum parsimony and the neighbor-joining methods with Cunninghamia as an outgroup. These analyses provided greater resolution of relationships among genera and higher bootstrap supports for clades compared to previous analyses. Results indicate that Taiwania diverged first, and then Athrotaxis diverged from the remaining genera. Metasequoia, Sequoia, and Sequoiadendron form a clade. Taxodium and Glyptostrobus form a clade, which is the sister to Cryptomeria. Cupressaceae s.s. are derived from within Taxodiaceae, being the most closely related to the Cryptomeria/Taxodium/Glyptostrobus clade. These relationships are consistent with previous morphological groupings and the analyses of molecular data. In addition, we found acceleration of evolutionary rates in Cupressaceae s.s. Possible causes for the acceleration are discussed.
Guimond, A; Moss, T
1999-02-01
We have used a differential cloning approach to isolate ribosomal/non-ribosomal frontier sequences from Xenopus laevis. A ribosomal intergenic spacer sequence (IGS) was cloned and shown not to be physically linked with the ribosomal locus. This ribosomal orphon contained the IGS sequences found immediately downstream of the 28S gene and included an array of enhancer repetitions and a non-functional spacer promoter. The orphon sequence was flanked by a member of the novel 'Frt' low copy repetitive element family. Three individual Frt repeats were sequenced and all members of this family were shown to lie clustered at two chromosomal sites, one of which contained the ribosomal orphon. One of the Frt elements contained an insertion of 297 bp that showed extensive homology to sequences within at least three other Xenopus genes. Each homology region was flanked by members of the T2 family of short interspersed repetitive elements, (SINEs), and by its target insertion sequence, suggesting multiple translocation events. The data are discussed in terms of the evolution of the ribosomal gene locus.
EqualTDRL: illustrating equivalent tandem duplication random loss rearrangements.
Hartmann, Tom; Bernt, Matthias; Middendorf, Martin
2018-05-30
To study the differences between two unichromosomal circular genomes, e.g., mitochondrial genomes, under the tandem duplication random loss (TDRL) rearrangement it is important to consider the whole set of potential TDRL rearrangement events that could have taken place. The reason is that for two given circular gene orders there can exist different TDRL rearrangements that transform one of the gene orders into the other. Hence, a TDRL event cannot always be reconstructed only from the knowledge of the circular gene order before a TDRL event and the circular gene order after it. We present the program EqualTDRL that computes and illustrates the complete set of TDRLs for pairs of circular gene orders that differ by only one TDRL. EqualTDRL considers the circularity of the given genomes and certain restrictions on the TDRL rearrangements. Examples for the latter are sequences of genes that have to be conserved during a TDRL or pairs of genes that frame intergenic regions which might represent remnants of duplicated genes. Additionally, EqualTDRL allows to determine the set of TDRLs that are minimum with respect to the number of duplicated genes. EqualTDRL supports scientists to study the complete set of TDRLs that possibly could have taken place in the evolution of mitochondrial genomes. EqualTDRL is implemented in C++ using the ggplot2 package of the open source programming language R and is freely available from http://pacosy.informatik.uni-leipzig.de/equaltdrl .
A virus vector based on Canine Herpesvirus for vaccine applications in canids.
Strive, T; Hardy, C M; Wright, J; Reubel, G H
2007-01-31
Canine Herpesvirus (CHV) is being developed as a virus vector for the vaccination of European red foxes. However, initial studies using recombinant CHV vaccines in foxes revealed viral attenuation and lack of antibody response to inserted foreign antigens. These findings were attributed both to inactivation of the thymidine kinase (TK) gene and excess foreign genetic material in the recombinant viral genome. In this study, we report an improved CHV-bacterial artificial chromosome (BAC) vector system designed to overcome attenuation in foxes. A non-essential region was identified in the CHV genome as an alternative insertion site for foreign genes. Replacement of a guanine/cytosine (GC)-rich intergenic region between UL21 and UL22 of CHV with a marker gene did not change growth behaviour in vitro, showing that this region is not essential for virus growth in cell culture. We subsequently produced a CHV-BAC vector with an intact TK gene in which the bacterial genes and the antigen expression cassette were inserted into this GC-rich locus. Unlike earlier constructs, the new CHV-BAC allowed self-excision of the bacterial genes via homologous recombination after transfection of BACs into cell culture. The BAC-CHV system was used to produce a recombinant virus that constitutively expressed porcine zona pellucida subunit C protein between the UL21 and UL22 genes of CHV. Complete self-excision of the bacterial genes from CHV was achieved within one round of replication whilst retaining antigen gene expression.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ono, M.
1986-06-01
By using a DNA fragment primarily encoding the reverse transcriptase (pol) region of the Syrian hamster intracisternal A particle (IAP; type A retrovirus) gene as a probe, human endogenous retrovirus genes, tentatively termed HERV-K genes, were cloned from a fetal human liver gene library. Typical HERV-K genes were 9.1 or 9.4 kilobases in length, having long terminal repeats (LTRs) of ca. 970 base pairs. Many structural features commonly observed on the retrovirus LTRs, such as the TATAA box, polyadenylation signal, and terminal inverted repeats, were present on each LTR, and a lysine (K) tRNA having a CUU anticodon was identifiedmore » as a presumed primer tRNA. The HERV-K LTR, however, had little sequence homology to either the IAP LTR or other typical oncovirus LTRs. By filter hybridization, the number of HERV-K genes was estimated to be ca. 50 copies per haploid human genome. The cloned mouse mammary tumor virus (type B) gene was found to hybridize with both the HERV-K and IAP genes to essentially the same extent.« less
On the presence and role of human gene-body DNA methylation
Jjingo, Daudi; Conley, Andrew B.; Yi, Soojin V.; Lunyak, Victoria V.; Jordan, I. King
2012-01-01
DNA methylation of promoter sequences is a repressive epigenetic mark that down-regulates gene expression. However, DNA methylation is more prevalent within gene-bodies than seen for promoters, and gene-body methylation has been observed to be positively correlated with gene expression levels. This paradox remains unexplained, and accordingly the role of DNA methylation in gene-bodies is poorly understood. We addressed the presence and role of human gene-body DNA methylation using a meta-analysis of human genome-wide methylation, expression and chromatin data sets. Methylation is associated with transcribed regions as genic sequences have higher levels of methylation than intergenic or promoter sequences. We also find that the relationship between gene-body DNA methylation and expression levels is non-monotonic and bell-shaped. Mid-level expressed genes have the highest levels of gene-body methylation, whereas the most lowly and highly expressed sets of genes both have low levels of methylation. While gene-body methylation can be seen to efficiently repress the initiation of intragenic transcription, the vast majority of methylated sites within genes are not associated with intragenic promoters. In fact, highly expressed genes initiate the most intragenic transcription, which is inconsistent with the previously held notion that gene-body methylation serves to repress spurious intragenic transcription to allow for efficient transcriptional elongation. These observations lead us to propose a model to explain the presence of human gene-body methylation. This model holds that the repression of intragenic transcription by gene-body methylation is largely epiphenomenal, and suggests that gene-body methylation levels are predominantly shaped via the accessibility of the DNA to methylating enzyme complexes. PMID:22577155
Zhuo, L; Reed, K M; Phillips, R B
1995-06-01
Variation in the intergenic spacer (IGS) of the ribosomal DNA (rDNA) of lake trout (Salvelinus namaycush) was examined. Digestion of genomic DNA with restriction enzymes showed that almost every individual had a unique combination of length variants with most of this variation occurring within rather than between populations. Sequence analysis of a 2.3 kilobase (kb) EcoRI-DraI fragment spanning the 3' end of the 28S coding region and approximately 1.8 kb of the IGS revealed two blocks of repetitive DNA. Putative transcriptional termination sites were found approximately 220 bases (b) downstream from the end of the 28S coding region. Comparison of the 2.3-kb fragments with two longer (3.1 kb) fragments showed that the major difference in length resulted from variation in the number of short (89 b) repeats located 3' to the putative terminator. Repeat units within a single nucleolus organizer region (NOR) appeared relatively homogeneous and genetic analysis found variants to be stably inherited. A comparison of the number of spacer-length variants with the number of NORs found that the number of length variants per individual was always less than the number of NORs. Examination of spacer variants in five populations showed that populations with more NORs had more spacer variants, indicating that variants are present at different rDNA sites on nonhomologous chromosomes.
Yamamoto, Eiji; Ito, Toshihiro; Ito, Hiroshi
2016-11-01
The nucleotide sequences of nucleocapsid protein (N); phosphoprotein (P); matrix protein (M); hemagglutinin-neuraminidase (HN); and large polymerase protein (L) genes, 3'-end leader, 5'-end trailer and intergenic regions of the avian paramyxovirus (APMV) strain goose/Shimane/67/2000 (APMV/Shimane67) were determined. Together with previously reported data on fusion protein (F) gene sequence [46], the determination of the genome sequence of APMV/Shimane67 has been completed in this study. The genome of APMV/Shimane67 comprised 16,146 nucleotides in length and contains six genes in the order of 3'-N-P-M-F-HN-L-5'. The features of the APMV/Shimane67 genome (e.g., nucleotide length of whole genome and each of the six genes, and predicted amino acid length of each of the six genes) were distinct from those of other APMV serotypes. Phylogenetic analysis indicated that although APMV/Shimane67 was grouped with APMV-1, -9 and -12, the evolutionary distance between APMV/Shimane67 and these viruses was longer than that observed between intra-serotype viruses. These results show that the genome sequence of APMV/Shimane67 contains specific characteristics and is distinguishable from other types of APMV.
Using a Euclid distance discriminant method to find protein coding genes in the yeast genome.
Zhang, Chun-Ting; Wang, Ju; Zhang, Ren
2002-02-01
The Euclid distance discriminant method is used to find protein coding genes in the yeast genome, based on the single nucleotide frequencies at three codon positions in the ORFs. The method is extremely simple and may be extended to find genes in prokaryotic genomes or eukaryotic genomes with less introns. Six-fold cross-validation tests have demonstrated that the accuracy of the algorithm is better than 93%. Based on this, it is found that the total number of protein coding genes in the yeast genome is less than or equal to 5579 only, about 3.8-7.0% less than 5800-6000, which is currently widely accepted. The base compositions at three codon positions are analyzed in details using a graphic method. The result shows that the preference codons adopted by yeast genes are of the RGW type, where R, G and W indicate the bases of purine, non-G and A/T, whereas the 'codons' in the intergenic sequences are of the form NNN, where N denotes any base. This fact constitutes the basis of the algorithm to distinguish between coding and non-coding ORFs in the yeast genome. The names of putative non-coding ORFs are listed here in detail.
Composition bias and the origin of ORFan genes
Yomtovian, Inbal; Teerakulkittipong, Nuttinee; Lee, Byungkook; Moult, John; Unger, Ron
2010-01-01
Motivation: Intriguingly, sequence analysis of genomes reveals that a large number of genes are unique to each organism. The origin of these genes, termed ORFans, is not known. Here, we explore the origin of ORFan genes by defining a simple measure called ‘composition bias’, based on the deviation of the amino acid composition of a given sequence from the average composition of all proteins of a given genome. Results: For a set of 47 prokaryotic genomes, we show that the amino acid composition bias of real proteins, random ‘proteins’ (created by using the nucleotide frequencies of each genome) and ‘proteins’ translated from intergenic regions are distinct. For ORFans, we observed a correlation between their composition bias and their relative evolutionary age. Recent ORFan proteins have compositions more similar to those of random ‘proteins’, while the compositions of more ancient ORFan proteins are more similar to those of the set of all proteins of the organism. This observation is consistent with an evolutionary scenario wherein ORFan genes emerged and underwent a large number of random mutations and selection, eventually adapting to the composition preference of their organism over time. Contact: ron@biocoml.ls.biu.ac.il Supplementary information: Supplementary data are available at Bioinformatics online. PMID:20231229
Hao, Bingtao; Naik, Abani Kanta; Watanabe, Akiko; Tanaka, Hirokazu; Chen, Liang; Richards, Hunter W.; Kondo, Motonari; Taniuchi, Ichiro; Kohwi, Yoshinori; Kohwi-Shigematsu, Terumi
2015-01-01
Rag1 and Rag2 gene expression in CD4+CD8+ double-positive (DP) thymocytes depends on the activity of a distant anti-silencer element (ASE) that counteracts the activity of an intergenic silencer. However, the mechanistic basis for ASE activity is unknown. Here, we show that the ASE physically interacts with the distant Rag1 and Rag2 gene promoters in DP thymocytes, bringing the two promoters together to form an active chromatin hub. Moreover, we show that the ASE functions as a classical enhancer that can potently activate these promoters in the absence of the silencer or other locus elements. In thymocytes lacking the chromatin organizer SATB1, we identified a partial defect in Tcra gene rearrangement that was associated with reduced expression of Rag1 and Rag2 at the DP stage. SATB1 binds to the ASE and Rag promoters, facilitating inclusion of Rag2 in the chromatin hub and the loading of RNA polymerase II to both the Rag1 and Rag2 promoters. Our results provide a novel framework for understanding ASE function and demonstrate a novel role for SATB1 as a regulator of Rag locus organization and gene expression in DP thymocytes. PMID:25847946
Mascagni, Flavia; Barghini, Elena; Giordani, Tommaso; Rieseberg, Loren H.; Cavallini, Andrea; Natali, Lucia
2015-01-01
The sunflower (Helianthus annuus) genome contains a very large proportion of transposable elements, especially long terminal repeat retrotransposons. However, knowledge on the retrotransposon-related variability within this species is still limited. We used next-generation sequencing (NGS) technologies to perform a quantitative and qualitative survey of intraspecific variation of the retrotransposon fraction of the genome across 15 genotypes—7 wild accessions and 8 cultivars—of H. annuus. By mapping the Illumina reads of the 15 genotypes onto a library of sunflower long terminal repeat retrotransposons, we observed considerable variability in redundancy among genotypes, at both superfamily and family levels. In another analysis, we mapped Illumina paired reads to two sets of sequences, that is, long terminal repeat retrotransposons and protein-encoding sequences, and evaluated the extent of retrotransposon proximity to genes in the sunflower genome by counting the number of paired reads in which one read mapped to a retrotransposon and the other to a gene. Large variability among genotypes was also ascertained for retrotransposon proximity to genes. Both long terminal repeat retrotransposon redundancy and proximity to genes varied among retrotransposon families and also between cultivated and wild genotypes. Such differences are discussed in relation to the possible role of long terminal repeat retrotransposons in the domestication of sunflower. PMID:26608057
Detecting novel genes with sparse arrays
Haiminen, Niina; Smit, Bart; Rautio, Jari; Vitikainen, Marika; Wiebe, Marilyn; Martinez, Diego; Chee, Christine; Kunkel, Joe; Sanchez, Charles; Nelson, Mary Anne; Pakula, Tiina; Saloheimo, Markku; Penttilä, Merja; Kivioja, Teemu
2014-01-01
Species-specific genes play an important role in defining the phenotype of an organism. However, current gene prediction methods can only efficiently find genes that share features such as sequence similarity or general sequence characteristics with previously known genes. Novel sequencing methods and tiling arrays can be used to find genes without prior information and they have demonstrated that novel genes can still be found from extensively studied model organisms. Unfortunately, these methods are expensive and thus are not easily applicable, e.g., to finding genes that are expressed only in very specific conditions. We demonstrate a method for finding novel genes with sparse arrays, applying it on the 33.9 Mb genome of the filamentous fungus Trichoderma reesei. Our computational method does not require normalisations between arrays and it takes into account the multiple-testing problem typical for analysis of microarray data. In contrast to tiling arrays, that use overlapping probes, only one 25mer microarray oligonucleotide probe was used for every 100 b. Thus, only relatively little space on a microarray slide was required to cover the intergenic regions of a genome. The analysis was done as a by-product of a conventional microarray experiment with no additional costs. We found at least 23 good candidates for novel transcripts that could code for proteins and all of which were expressed at high levels. Candidate genes were found to neighbour ire1 and cre1 and many other regulatory genes. Our simple, low-cost method can easily be applied to finding novel species-specific genes without prior knowledge of their sequence properties. PMID:20691772
Evers, R; Grummt, I
1995-01-01
Both the DNA elements and the nuclear factors that direct termination of ribosomal gene transcription exhibit species-specific differences. Even between mammals--e.g., human and mouse--the termination signals are not identical and the respective transcription termination factors (TTFs) which bind to the terminator sequence are not fully interchangeable. To elucidate the molecular basis for this species-specificity, we have cloned TTF-I from human and mouse cells and compared their structural and functional properties. Recombinant TTF-I exhibits species-specific DNA binding and terminates transcription both in cell-free transcription assays and in transfection experiments. Chimeric constructs of mouse TTF-I and human TTF-I reveal that the major determinant for species-specific DNA binding resides within the C terminus of TTF-I. Replacing 31 C-terminal amino acids of mouse TTF-I with the homologous human sequences relaxes the DNA-binding specificity and, as a consequence, allows the chimeric factor to bind the human terminator sequence and to specifically stop rDNA transcription. Images Fig. 2 Fig. 3 Fig. 4 PMID:7597036
Maurer, B; Bannert, H; Darai, G; Flügel, R M
1988-01-01
The nucleotide sequence of the human spumaretrovirus (HSRV) genome was determined. The 5' long terminal repeat region was analyzed by strong stop cDNA synthesis and S1 nuclease mapping. The length of the RU5 region was determined and found to be 346 nucleotides long. The 5' long terminal repeat is 1,123 base pairs long and is bound by an 18-base-pair primer-binding site complementary to the 3' end of mammalian lysine-1,2-specific tRNA. Open reading frames for gag and pol genes were identified. Surprisingly, the HSRV gag protein does not contain the cysteine motif of the nucleic acid-binding proteins found in and typical of all other retroviral gag proteins; instead the HSRV gag gene encodes a strongly basic protein reminiscent of those of hepatitis B virus and retrotransposons. The carboxy-terminal part of the HSRV gag gene products encodes a protease domain. The pol gene overlaps the gag gene and is postulated to be synthesized as a gag/pol precursor via translational frameshifting analogous to that of Rous sarcoma virus, with 7 nucleotides immediately upstream of the termination codons of gag conserved between the two viral genomes. The HSRV pol gene is 2,730 nucleotides long, and its deduced protein sequence is readily subdivided into three well-conserved domains, the reverse transcriptase, the RNase H, and the integrase. Although the degree of homology of the HSRV reverse transcriptase domain is highest to that of murine leukemia virus, the HSRV genomic organization is more similar to that of human and simian immunodeficiency viruses. The data justify classifying the spumaretroviruses as a third subfamily of Retroviridae. Images PMID:2451755
Lunina, Natalia A; Agafonova, Elena V; Chekanovskaya, Lyudmila A; Dvortsov, Igor A; Berezina, Oksana V; Shedova, Ekaterina N; Kostrov, Sergey V; Velikodvorskaya, Galina A
2007-07-01
A cluster of Thermotoga neapolitana genes participating in starch degradation includes the malG gene of sugar transport protein and the aglB gene of cyclomaltodextrinase. The start and stop codons of these genes share a common overlapping sequence, aTGAtg. Here, we compared properties of expression products of three different constructs with aglB from T. neapolitana. The first expression vector contained the aglB gene linked to an upstream 90-bp 3'-terminal region of the malG gene with the stop codon overlapping with the start codon of aglB. The second construct included the isolated coding sequence of aglB with two tandem potential start codons. The expression product of this construct in Escherichia coli had two tandem Met residues at its N terminus and was characterized by low thermostability and high tendency to aggregate. In contrast, co-expression of aglB and the 3'-terminal region of malG (the first construct) resulted in AglB with only one N-terminal Met residue and a much higher specific activity of cyclomaltodextrinase. Moreover, the enzyme expressed by such a construct was more thermostable and less prone to aggregation. The third construct was the same as the second one except that it contained only one ATG start codon. The product of its expression had kinetic and other properties similar to those of the enzyme with only one N-terminal Met residue.
Lee, Jong-Hyuk; Kang, Byung-Hee; Jang, Hyonchol; Kim, Tae Wan; Choi, Jinmi; Kwak, Sojung; Han, Jungwon; Cho, Eun-Jung; Youn, Hong-Duk
2015-05-19
Post-translational modifications of core histones affect various cellular processes, primarily through transcription. However, their relationship with the termination of transcription has remained largely unknown. In this study, we show that DNA damage-activated AKT phosphorylates threonine 45 of core histone H3 (H3-T45). By genome-wide chromatin immunoprecipitation sequencing (ChIP-seq) analysis, H3-T45 phosphorylation was distributed throughout DNA damage-responsive gene loci, particularly immediately after the transcription termination site. H3-T45 phosphorylation pattern showed close-resemblance to that of RNA polymerase II C-terminal domain (CTD) serine 2 phosphorylation, which establishes the transcription termination signal. AKT1 was more effective than AKT2 in phosphorylating H3-T45. Blocking H3-T45 phosphorylation by inhibiting AKT or through amino acid substitution limited RNA decay downstream of mRNA cleavage sites and decreased RNA polymerase II release from chromatin. Our findings suggest that AKT-mediated phosphorylation of H3-T45 regulates the processing of the 3' end of DNA damage-activated genes to facilitate transcriptional termination. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Pringle, Märit; Bergsten, Christer; Fernström, Lise-Lotte; Höök, Helena; Johansson, Karl-Erik
2008-01-01
Background Digital dermatitis in cattle is an emerging infectious disease. Ulcerative lesions are typically located on the plantar skin between the heel bulbs and adjacent to the coronet. Spirochetes of the genus Treponema are found in high numbers in the lesions and are likely to be involved in the pathogenesis. The aim of this study was to obtain pure cultures of spirochetes from cattle with digital dermatitis and to describe them further. Methods Tissue samples and swabs from active digital dermatitis lesions were used for culturing. Pure isolates were subjected to, molecular typing through 16S rRNA gene sequencing, pulsed-field gel electrophoresis (PFGE), random amplified polymorphic DNA (RAPD) and an intergenic spacer PCR developed for Treponema spp. as well as API-ZYM and antimicrobial susceptibility tests. The antimicrobial agents used were tiamulin, valnemulin, tylosin, aivlosin, lincomycin and doxycycline. Results Seven spirochete isolates from five herds were obtained. Both 16S rRNA gene sequences, which were identical except for three polymorphic nucleotide positions, and the intergenic spacer PCR indicated that all isolates were of one yet unnamed species, most closely related to Treponema phagedenis. The enzymatic profile and antimicrobial susceptibility pattern were also similar for all isolates. However it was possible to separate the isolates through their PFGE and RAPD banding pattern. Conclusion This is the first report on isolation of a Treponema sp. from cattle with digital dermatitis in Scandinavia. The phylotype isolated has previously been cultured from samples from cattle in the USA and the UK and is closely related to T. phagedenis. While very similar, the isolates in this study were possible to differentiate through PFGE and RAPD indicating that these methods are suitable for subtyping of this phylotype. No antimicrobial resistance could be detected among the tested isolates. PMID:18937826
Wu, Panpan; Pan, Hui; Zhang, Congming; Wu, Hang; Yuan, Li; Huang, Xunduan; Zhou, Ying; Ye, Bang-ce; Weaver, David T; Zhang, Lixin; Zhang, Buchang
2014-07-01
Erythromycin, a medically important antibiotic, is produced by Saccharopolyspora erythraea. Unusually, the erythromycin biosynthetic gene cluster lacks a regulatory gene, and the regulation of its biosynthesis remains largely unknown. In this study, through gene deletion, complementation and overexpression experiments, we identified a novel TetR family transcriptional regulator SACE_3986 negatively regulating erythromycin biosynthesis in S. erythraea A226. When SACE_3986 was further inactivated in an industrial strain WB, erythromycin A yield of the mutant was increased by 54.2 % in average compared with that of its parent strain, displaying the universality of SACE_3986 as a repressor for erythromycin production in S. erythraea. qRT-PCR analysis indicated that SACE_3986 repressed the transcription of its adjacent gene SACE_3985 (which encodes a short-chain dehydrogenase/reductase), erythromycin biosynthetic gene eryAI and the resistance gene ermE. As determined by EMSA analysis, purified SACE_3986 protein specifically bound to the intergenic region between SACE_3985 and SACE_3986, whereas it did not bind to the promoter regions of eryAI and ermE. Furthermore, overexpression of SACE_3985 in A226 led to enhanced erythromycin A yield by at least 32.6 %. These findings indicate that SACE_3986 is a negative regulator of erythromycin biosynthesis, and the adjacent gene SACE_3985 is one of its target genes. The present study provides a basis to increase erythromycin production by engineering of SACE_3986 and SACE_3985 in S. erythraea.
Li, Weijun; Wang, Zongqing; Che, Yanli
2017-11-12
In this study, the complete mitochondrial genome of Cryptocercus meridianus was sequenced. The circular mitochondrial genome is 15,322 bp in size and contains 13 protein-coding genes, two ribosomal RNA genes (12S rRNA and 16S rRNA), 22 transfer RNA genes, and one D-loop region. We compare the mitogenome of C. meridianus with that of C. relictus and C. kyebangensis . The base composition of the whole genome was 45.20%, 9.74%, 16.06%, and 29.00% for A, G, C, and T, respectively; it shows a high AT content (74.2%), similar to the mitogenomes of C. relictus and C. kyebangensis . The protein-coding genes are initiated with typical mitochondrial start codons except for cox1 with TTG. The gene order of the C. meridianus mitogenome differs from the typical insect pattern for the translocation of tRNA-Ser AGN , while the mitogenomes of the other two Cryptocercus species, C. relictus and C. kyebangensis , are consistent with the typical insect pattern. There are two very long non-coding intergenic regions lying on both sides of the rearranged gene tRNA-Ser AGN . The phylogenetic relationships were constructed based on the nucleotide sequence of 13 protein-coding genes and two ribosomal RNA genes. The mitogenome of C. meridianus is the first representative of the order Blattodea that demonstrates rearrangement, and it will contribute to the further study of the phylogeny and evolution of the genus Cryptocercus and related taxa.
Perry, George H; Martin, Robert D; Verrelli, Brian C
2007-09-01
While color vision perception is thought to be adaptively correlated with foraging efficiency for diurnal mammals, those that forage exclusively at night may not need color vision nor have the capacity for it. Indeed, although the basic condition for mammals is dichromacy, diverse nocturnal mammals have only monochromatic vision, resulting from functional loss of the short-wavelength sensitive opsin gene. However, many nocturnal primates maintain intact two opsin genes and thus have dichromatic capacity. The evolutionary significance of this surprising observation has not yet been elucidated. We used a molecular population genetics approach to test evolutionary hypotheses for the two intact opsin genes of the fully nocturnal aye-aye (Daubentonia madagascariensis), a highly unusual and endangered Madagascar primate. No evidence of gene degradation in either opsin gene was observed for any of 8 aye-aye individuals examined. Furthermore, levels of nucleotide diversity for opsin gene functional sites were lower than those for 15 neutrally evolving intergenic regions (>25 kb in total), which is consistent with a history of purifying selection on aye-aye opsin genes. The most likely explanation for these findings is that dichromacy is advantageous for aye-ayes despite their nocturnal activity pattern. We speculate that dichromatic nocturnal primates may be able to perceive color while foraging under moonlight conditions, and suggest that behavioral and ecological comparisons among dichromatic and monochromatic nocturnal primates will help to elucidate the specific activities for which color vision perception is advantageous.
Lyons, Shawn M; Cunningham, Clark H; Welch, Joshua D; Groh, Beezly; Guo, Andrew Y; Wei, Bruce; Whitfield, Michael L; Xiong, Yue; Marzluff, William F
2016-11-02
Histone proteins are synthesized in large amounts during S-phase to package the newly replicated DNA, and are among the most stable proteins in the cell. The replication-dependent (RD)-histone mRNAs expressed during S-phase end in a conserved stem-loop rather than a polyA tail. In addition, there are replication-independent (RI)-histone genes that encode histone variants as polyadenylated mRNAs. Most variants have specific functions in chromatin, but H3.3 also serves as a replacement histone for damaged histones in long-lived terminally differentiated cells. There are no reported replacement histone genes for histones H2A, H2B or H4. We report that a subset of RD-histone genes are expressed in terminally differentiated tissues as polyadenylated mRNAs, likely serving as replacement histone genes in long-lived non-dividing cells. Expression of two genes, HIST2H2AA3 and HIST1H2BC, is conserved in mammals. They are expressed as polyadenylated mRNAs in fibroblasts differentiated in vitro, but not in serum starved fibroblasts, suggesting that their expression is part of the terminal differentiation program. There are two histone H4 genes and an H3 gene that encode mRNAs that are polyadenylated and expressed at 5- to 10-fold lower levels than the mRNAs from H2A and H2B genes, which may be replacement genes for the H3.1 and H4 proteins. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
Liu, Qingpo
2009-03-01
In C. elegans, four C2H2 zinc-finger proteins (ZIM-1, ZIM-2, ZIM-3, and HIM-8), which are arranged in tandem, mediate chromosome-specific pairing and synapsis during meiosis. The zim/him-8 genes from three Caenorhabditis species were contrasted in an effort to investigate the mechanisms driving their evolution. Here it is shown that the preservation of higher degree of sequence similarity in the N-terminal portion, particularly in several regions within the second exon between paralogous zim genes (especially between zim-1 and zim-3), is due to independent interparalogue gene conversions. However, the evolutionary force is not uniformly strong across species. The present data reveal that more frequent gene conversion events have occurred in C. elegans, whereas only gene conversions between zim-1 and zim-3 are detected in C. remanei. Although gene conversions are predicted to be present among zim-1, zim-2, and zim-3 in C. briggsae, the conversion tracts between zim-1/zim-2 and zim-2/zim-3 are very short. Moreover, positive selection analysis was performed on the basis of the significantly discordant phylogenies reconstructed using the N- and C-terminal sequences, respectively. Several codon sites located in the regions that are supposed not to have experienced gene conversions are predicted to be under the influence of positive selection. In comparison, stronger positive selection has acted on the C-terminal region relative to the N-terminal region. Thus, the zim/him-8 genes that evolve concertedly have also been shown to undergo adaptive diversifying selection.
Corley, Michael J.; Dye, Christian; D’Antoni, Michelle L.; Byron, Mary Margaret; Yo, Kaahukane Leite-Ah; Lum-Jones, Annette; Nakamoto, Beau; Valcour, Victor; SahBandar, Ivo; Shikuma, Cecilia M.; Ndhlovu, Lishomwa C.; Maunakea, Alika K.
2016-01-01
Monocytes/macrophages contribute to the neuropathogenesis of HIV-related cognitive impairment (CI); however, considerable gaps in our understanding of the precise mechanisms driving this relationship remain. Furthermore, whether a distinct biological profile associated with HIV-related CI resides in immune cell populations remains unknown. Here, we profiled DNA methylomes and transcriptomes of monocytes derived from HIV-infected individuals with and without CI using genome-wide DNA methylation and gene expression profiling. We identified 1,032 CI-associated differentially methylated loci in monocytes. These loci related to gene networks linked to the central nervous system (CNS) and interactions with HIV. Most (70.6%) of these loci exhibited higher DNA methylation states in the CI group and were preferentially distributed over gene bodies and intergenic regions of the genome. CI-associated DNA methylation states at 12 CpG sites associated with neuropsychological testing performance scores. CI-associated DNA methylation also associated with gene expression differences including CNS genes CSRNP1 (P = 0.017), DISC1 (P = 0.012), and NR4A2 (P = 0.005); and a gene known to relate to HIV viremia, THBS1 (P = 0.003). This discovery cohort data unveils cell type-specific DNA methylation patterns related to HIV-associated CI and provide an immunoepigenetic DNA methylation “signature” potentially useful for corroborating clinical assessments, informing pathogenic mechanisms, and revealing new therapeutic targets against CI. PMID:27629381
Functional annotation of the vlinc class of non-coding RNAs using systems biology approach.
St Laurent, Georges; Vyatkin, Yuri; Antonets, Denis; Ri, Maxim; Qi, Yao; Saik, Olga; Shtokalo, Dmitry; de Hoon, Michiel J L; Kawaji, Hideya; Itoh, Masayoshi; Lassmann, Timo; Arner, Erik; Forrest, Alistair R R; Nicolas, Estelle; McCaffrey, Timothy A; Carninci, Piero; Hayashizaki, Yoshihide; Wahlestedt, Claes; Kapranov, Philipp
2016-04-20
Functionality of the non-coding transcripts encoded by the human genome is the coveted goal of the modern genomics research. While commonly relied on the classical methods of forward genetics, integration of different genomics datasets in a global Systems Biology fashion presents a more productive avenue of achieving this very complex aim. Here we report application of a Systems Biology-based approach to dissect functionality of a newly identified vast class of very long intergenic non-coding (vlinc) RNAs. Using highly quantitative FANTOM5 CAGE dataset, we show that these RNAs could be grouped into 1542 novel human genes based on analysis of insulators that we show here indeed function as genomic barrier elements. We show that vlinc RNAs genes likely function in cisto activate nearby genes. This effect while most pronounced in closely spaced vlinc RNA-gene pairs can be detected over relatively large genomic distances. Furthermore, we identified 101 vlinc RNA genes likely involved in early embryogenesis based on patterns of their expression and regulation. We also found another 109 such genes potentially involved in cellular functions also happening at early stages of development such as proliferation, migration and apoptosis. Overall, we show that Systems Biology-based methods have great promise for functional annotation of non-coding RNAs. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.
The complete mitochondrial genome of Percocypris pingi (Teleostei, Cypriniformes).
Li, Yanping; Wang, Jinjin; Peng, Zuogang
2013-02-01
Percocypris pingi is an endemic and economic fish species only found in the upper Yangtze River basin in China. It has become endangered in recent years due to overfishing and/or dam construction. However, the available genetic data are still scarce for this species. Here, we sequenced the complete mitochondrial genome sequence of P. pingi using long polymerase chain reactions. The complete mitogenome sequence has 16,586 bp and contains the usual 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA (tRNA) genes, and 1 control region, the gene composition and order of which are similar to most of other vertebrates. Most mitochondrial genes except ND6 and eight tRNAs are encoded on the heavy strand. The overall base composition of the heavy strand is 30.9% A, 25.7% T, 26.6% C, and 16.8% G with a slight AT bias of 56.6%. There are seven regions of gene overlaps totaling 23 bp and 11 intergenic spacer regions totaling 35 bp. Combined with the COI barcoding region sequences of other 25 cyprinids, the phylogenetic position of P. pingi was estimated using neighbor-joining method. The results showed that P. pingi had a close phylogenetic relationship with the species from genus Schizothorax. This mitogenome sequence data of P. pingi would provide the fundamental genetic data for further conservation genetic studies for this endangered fish species.
Yokoyama, Eiji; Hirai, Shinichiro; Ishige, Taichiro; Murakami, Satoshi
2018-01-02
Seventeen clusters of Shiga toxin-producing Escherichia coli O157:H7/- (O157) strains, determined by cluster analysis of pulsed-field gel electrophoresis patterns, were analyzed using whole genome sequence (WGS) data to investigate this pathogen's molecular epidemiology. The 17 clusters included 136 strains containing strains from nine outbreaks, with each outbreak caused by a single source contaminated with the organism, as shown by epidemiological contact surveys. WGS data of these strains were used to identify single nucleotide polymorphisms (SNPs) by two methods: short read data were directly mapped to a reference genome (mapping derived SNPs) and common SNPs between the mapping derived SNPs and SNPs in assembled data of short read data (common SNPs). Among both SNPs, those that were detected in genes with a gap were excluded to remove ambiguous SNPs from further analysis. The effectiveness of both SNPs was investigated among all the concatenated SNPs that were detected (whole SNP set); SNPs were divided into three categories based on the genes in which they were located (i.e., backbone SNP set, O-island SNP set, and mobile element SNP set); and SNPs in non-coding regions (intergenic region SNP set). When SNPs from strains isolated from the nine single source derived outbreaks were analyzed using an unweighted pair group method with arithmetic mean tree (UPGMA) and a minimum spanning tree (MST), the maximum pair-wise distances of the backbone SNP set of the mapping derived SNPs were significantly smaller than those of the whole and intergenic region SNP set on both UPGMAs and MSTs. This significant difference was also observed when the backbone SNP set of the common SNPs were examined (Steel-Dwass test, P≤0.01). When the maximum pair-wise distances were compared between the mapping derived and common SNPs, significant differences were observed in those of the whole, mobile element, and intergenic region SNP set (Wilcoxon signed rank test, P≤0.01). When all the strains included in one complex on an MST or one cluster on a UPGMA were designated as the same genotype, the values of the Hunter-Gaston Discriminatory Power Index for the backbone SNP set of the mapping derived and common SNPs were higher than those of other SNP sets. In contrast, the mobile element SNP set could not robustly subdivide lineage I strains of tested O157 strains using both the mapping derived and common SNPs. These results suggested that the backbone SNP set were the most effective for analysis of WGS data for O157 in enabling an appropriation of its molecular epidemiology. Copyright © 2017 Elsevier B.V. All rights reserved.
Design of a Temperature-Responsive Transcription Terminator.
Roßmanith, Johanna; Weskamp, Mareen; Narberhaus, Franz
2018-02-16
RNA structures regulate various steps in gene expression. Transcription in bacteria is typically terminated by stable hairpin structures. Translation initiation can be modulated by metabolite- or temperature-sensitive RNA structures, called riboswitches or RNA thermometers (RNATs), respectively. RNATs control translation initiation by occlusion of the ribosome binding site at low temperatures. Increasing temperatures destabilize the RNA structure and facilitate ribosome access. In this study, we exploited temperature-responsive RNAT structures to design regulatory elements that control transcription termination instead of translation initiation in Escherichia coli. In order to mimic the structure of factor-independent intrinsic terminators, naturally occurring RNAT hairpins were genetically engineered to be followed by a U-stretch. Functional temperature-responsive terminators (thermoterms) prevented mRNA synthesis at low temperatures but resumed transcription after a temperature upshift. The successful design of temperature-controlled terminators highlights the potential of RNA structures as versatile gene expression control elements.
Isolation and characterization of a TERMINAL FLOWER 1 homolog from Prunus serotina Ehrh
Ying Wang; Paula M. Pijut
2013-01-01
Flowering control is one of the several strategies for gene containment of transgenic plants. TERMINAL FLOWER 1 (TFL1) is known to be involved in the transcriptional repression of genes for inflorescence development. Two TFL1 transcripts with different 3' UTR were cloned from black cherry (Prunus serotina...
Sutoh, Keita; Washio, Kenji; Imai, Ryozo; Wada, Masamitsu; Nakai, Tomonori; Yamauchi, Daisuke
2015-01-01
The expression of the gene for a proteinase (Rep1) is upregulated by gibberellins. The CAACTC regulatory element (CARE) of the Rep1 promoter is involved in the gibberellin response. We isolated a cDNA for a CARE-binding protein containing a Myb domain in its carboxyl-terminal region and designated the gene Carboxyl-terminal Myb1 (CTMyb1). This gene encodes two polypeptides of two distinctive lengths, CTMyb1L and CTMyb1S, which include or exclude 213 N-terminal amino acid residues, respectively. CTMyb1S transactivated the Rep1 promoter in the presence of OsGAMyb, but not CTMyb1L. We observed an interaction between CTMyb1S and the rice prolamin box-binding factor (RPBF). A bimolecular fluorescence complex analysis detected the CTMyb1S and RPBF complex in the nucleus, but not the CTMyb1L and RPBF complex. The results suggest that the arrangement of the transfactors is involved in gibberellin-inducible expression of Rep1.
Ochiai, Hiroshi; Miyamoto, Tatsuo; Kanai, Akinori; Hosoba, Kosuke; Sakuma, Tetsushi; Kudo, Yoshiki; Asami, Keiko; Ogawa, Atsushi; Watanabe, Akihiro; Kajii, Tadashi; Yamamoto, Takashi; Matsuura, Shinya
2014-01-01
Cancer-prone syndrome of premature chromatid separation with mosaic variegated aneuploidy [PCS (MVA) syndrome] is a rare autosomal recessive disorder characterized by constitutional aneuploidy and a high risk of childhood cancer. We previously reported monoallelic mutations in the BUB1B gene (encoding BUBR1) in seven Japanese families with the syndrome. No second mutation was found in the opposite allele of any of the families studied, although a conserved BUB1B haplotype and a decreased transcript were identified. To clarify the molecular pathology of the second allele, we extended our mutational search to a candidate region surrounding BUB1B. A unique single nucleotide substitution, G > A at ss802470619, was identified in an intergenic region 44 kb upstream of a BUB1B transcription start site, which cosegregated with the disorder. To examine whether this is the causal mutation, we designed a transcription activator-like effector nuclease–mediated two-step single-base pair editing strategy and biallelically introduced this substitution into cultured human cells. The cell clones showed reduced BUB1B transcripts, increased PCS frequency, and MVA, which are the hallmarks of the syndrome. We also encountered a case of a Japanese infant with PCS (MVA) syndrome carrying a homozygous single nucleotide substitution at ss802470619. These results suggested that the nucleotide substitution identified was the causal mutation of PCS (MVA) syndrome. PMID:24344301
HATAKEYAMA, YOSHINORI; SHIBUYA, NORIHIRO; NISHIYAMA, TAKASHI; NAKASHIMA, NOBUHIKO
2004-01-01
The intergenic region (IGR) located upstream of the capsid protein gene in dicistroviruses contains an internal ribosome entry site (IRES). Translation initiation mediated by the IRES does not require initiator methionine tRNA. Comparison of the IGRs among dicistroviruses suggested that Taura syndrome virus (TSV) and acute bee paralysis virus have an extra side stem loop in the predicted IRES. We examined whether the side stem is responsible for translation activity mediated by the IGR using constructs with compensatory mutations. In vitro translation analysis showed that TSV has an IGR-IRES that is structurally distinct from those previously described. Because IGR-IRES elements determine the translation initiation site by virtue of their own tertiary structure formation, the discovery of this initiation mechanism suggests the possibility that eukaryotic mRNAs might have more extensive coding regions than previously predicted. To test this hypothesis, we searched full-length cDNA databases and whole genome sequences of eukaryotes using the pattern matching program, Scan For Matches, with parameters that can extract sequences containing secondary structure elements resembling those of IGR-IRES. Our search yielded several sequences, but their predicted secondary structures were suggested to be unstable in comparison to those of dicistroviruses. These results suggest that RNAs structurally similar to dicistroviruses are not common. If some eukaryotic mRNAs are translated independently of an initiator methionine tRNA, their structures are likely to be significantly distinct from those of dicistroviruses. PMID:15100433
Carver, Melissa N.; Müller, Ulrika; Bekiranov, Stefan; Auble, David T.
2017-01-01
Transcriptome studies on eukaryotic cells have revealed an unexpected abundance and diversity of noncoding RNAs synthesized by RNA polymerase II (Pol II), some of which influence the expression of protein-coding genes. Yet, much less is known about biogenesis of Pol II non-coding RNA than mRNAs. In the budding yeast Saccharomyces cerevisiae, initiation of non-coding transcripts by Pol II appears to be similar to that of mRNAs, but a distinct pathway is utilized for termination of most non-coding RNAs: the Sen1-dependent or “NNS” pathway. Here, we examine the effect on the S. cerevisiae transcriptome of conditional mutations in the genes encoding six different essential proteins that influence Sen1-dependent termination: Sen1, Nrd1, Nab3, Ssu72, Rpb11, and Hrp1. We observe surprisingly diverse effects on transcript abundance for the different proteins that cannot be explained simply by differing severity of the mutations. Rather, we infer from our results that termination of Pol II transcription of non-coding RNA genes is subject to complex combinatorial control that likely involves proteins beyond those studied here. Furthermore, we identify new targets and functions of Sen1-dependent termination, including a role in repression of meiotic genes in vegetative cells. In combination with other recent whole-genome studies on termination of non-coding RNAs, our results provide promising directions for further investigation. PMID:28665995
NASA Astrophysics Data System (ADS)
Derelle, Evelyne; Ferraz, Conchita; Rombauts, Stephane; Rouzé, Pierre; Worden, Alexandra Z.; Robbens, Steven; Partensky, Frédéric; Degroeve, Sven; Echeynié, Sophie; Cooke, Richard; Saeys, Yvan; Wuyts, Jan; Jabbari, Kamel; Bowler, Chris; Panaud, Olivier; Piégu, Benoît; Ball, Steven G.; Ral, Jean-Philippe; Bouget, François-Yves; Piganeau, Gwenael; de Baets, Bernard; Picard, André; Delseny, Michel; Demaille, Jacques; van de Peer, Yves; Moreau, Hervé
2006-08-01
The green lineage is reportedly 1,500 million years old, evolving shortly after the endosymbiosis event that gave rise to early photosynthetic eukaryotes. In this study, we unveil the complete genome sequence of an ancient member of this lineage, the unicellular green alga Ostreococcus tauri (Prasinophyceae). This cosmopolitan marine primary producer is the world's smallest free-living eukaryote known to date. Features likely reflecting optimization of environmentally relevant pathways, including resource acquisition, unusual photosynthesis apparatus, and genes potentially involved in C4 photosynthesis, were observed, as was downsizing of many gene families. Overall, the 12.56-Mb nuclear genome has an extremely high gene density, in part because of extensive reduction of intergenic regions and other forms of compaction such as gene fusion. However, the genome is structurally complex. It exhibits previously unobserved levels of heterogeneity for a eukaryote. Two chromosomes differ structurally from the other eighteen. Both have a significantly biased G+C content, and, remarkably, they contain the majority of transposable elements. Many chromosome 2 genes also have unique codon usage and splicing, but phylogenetic analysis and composition do not support alien gene origin. In contrast, most chromosome 19 genes show no similarity to green lineage genes and a large number of them are specialized in cell surface processes. Taken together, the complete genome sequence, unusual features, and downsized gene families, make O. tauri an ideal model system for research on eukaryotic genome evolution, including chromosome specialization and green lineage ancestry. genome heterogeneity | genome sequence | green alga | Prasinophyceae | gene prediction
Baribault, Carl; Ehrlich, Kenneth C.; Ponnaluri, V. K. Chaithanya; Pradhan, Sriharsa; Lacey, Michelle; Ehrlich, Melanie
2018-01-01
ABSTRACT DNA methylation can affect tissue-specific gene transcription in ways that are difficult to discern from studies focused on genome-wide analyses of differentially methylated regions (DMRs). To elucidate the variety of associations between differentiation-related DNA hypermethylation and transcription, we used available epigenomic and transcriptomic profiles from 38 human cell/tissue types to focus on such relationships in 94 genes linked to hypermethylated DMRs in myoblasts (Mb). For 19 of the genes, promoter-region hypermethylation in Mb (and often a few heterologous cell types) was associated with gene repression but, importantly, DNA hypermethylation was absent in many other repressed samples. In another 24 genes, DNA hypermethylation overlapped cryptic enhancers or super-enhancers and correlated with down-modulated, but not silenced, gene expression. However, such methylation was absent, surprisingly, in both non-expressing samples and highly expressing samples. This suggests that some genes need DMR hypermethylation to help repress cryptic enhancer chromatin only when they are actively transcribed. For another 11 genes, we found an association between intergenic hypermethylated DMRs and positive expression of the gene in Mb. DNA hypermethylation/transcription correlations similar to those of Mb were evident sometimes in diverse tissues, such as aorta and brain. Our findings have implications for the possible involvement of methylated DNA in Duchenne's muscular dystrophy, congenital heart malformations, and cancer. This epigenomic analysis suggests that DNA methylation is not simply the inevitable consequence of changes in gene expression but, instead, is often an active agent for fine-tuning transcription in association with development. PMID:29498561
Schreiber, Miriam; Wright, Frank; MacKenzie, Katrin; Hedley, Pete E.; Schwerdt, Julian G.; Little, Alan; Burton, Rachel A.; Fincher, Geoffrey B.; Marshall, David; Waugh, Robbie; Halpin, Claire
2014-01-01
An important component of barley cell walls, particularly in the endosperm, is (1,3;1,4)-β- glucan, a polymer that has proven health benefits in humans and that influences processability in the brewing industry. Genes of the cellulose synthase-like (Csl) F gene family have been shown to be involved in (1,3;1,4)-β-glucan synthesis but many aspects of the biosynthesis are still unclear. Examination of the sequence assembly of the barley genome has revealed the presence of an additional three HvCslF genes (HvCslF11, HvCslF12 and HvCslF13) which may be involved in (1,3;1,4)-β-glucan synthesis. Transcripts of HvCslF11 and HvCslF12 mRNA were found in roots and young leaves, respectively. Transient expression of these genes in Nicotiana benthamiana resulted in phenotypic changes in the infiltrated leaves, although no authentic (1,3;1,4)-β-glucan was detected. Comparisons of the CslF gene families in cereals revealed evidence of intergenic recombination, gene duplications and translocation events. This significant divergence within the gene family might be related to multiple functions of (1,3;1,4)-β-glucans in the Poaceae. Emerging genomic and global expression data for barley and other cereals is a powerful resource for characterising the evolution and dynamics of complete gene families. In the case of the CslF gene family, the results will contribute to a more thorough understanding of carbohydrate metabolism in grass cell walls. PMID:24595438
Mascagni, Flavia; Barghini, Elena; Giordani, Tommaso; Rieseberg, Loren H; Cavallini, Andrea; Natali, Lucia
2015-11-24
The sunflower (Helianthus annuus) genome contains a very large proportion of transposable elements, especially long terminal repeat retrotransposons. However, knowledge on the retrotransposon-related variability within this species is still limited. We used next-generation sequencing (NGS) technologies to perform a quantitative and qualitative survey of intraspecific variation of the retrotransposon fraction of the genome across 15 genotypes--7 wild accessions and 8 cultivars--of H. annuus. By mapping the Illumina reads of the 15 genotypes onto a library of sunflower long terminal repeat retrotransposons, we observed considerable variability in redundancy among genotypes, at both superfamily and family levels. In another analysis, we mapped Illumina paired reads to two sets of sequences, that is, long terminal repeat retrotransposons and protein-encoding sequences, and evaluated the extent of retrotransposon proximity to genes in the sunflower genome by counting the number of paired reads in which one read mapped to a retrotransposon and the other to a gene. Large variability among genotypes was also ascertained for retrotransposon proximity to genes. Both long terminal repeat retrotransposon redundancy and proximity to genes varied among retrotransposon families and also between cultivated and wild genotypes. Such differences are discussed in relation to the possible role of long terminal repeat retrotransposons in the domestication of sunflower. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.
Jones, Stuart E.; Shade, Ashley L.; McMahon, Katherine D.; Kent, Angela D.
2007-01-01
Two primer sets for automated ribosomal intergenic spacer analysis (ARISA) were used to assess the bacterial community composition (BCC) in Lake Mendota, Wisconsin, over 3 years. Correspondence analysis revealed differences in community profiles generated by different primer sets, but overall ecological patterns were conserved in each case. ARISA is a powerful tool for evaluating BCC change through space and time, regardless of the specific primer set used. PMID:17122397
Micro-terminator: 'Hasta la vista, lncRNA!'.
Diederichs, Sven
2015-04-01
Transcriptional termination is an important yet incompletely understood aspect of gene expression. Proudfoot, Jopling and colleagues now identify a new Microprocessor-mediated mechanism of transcriptional termination, which acts specifically on long noncoding transcripts that serve as microRNA precursors.
DNA transposons have colonized the genome of the giant virus Pandoravirus salinus.
Sun, Cheng; Feschotte, Cédric; Wu, Zhiqiang; Mueller, Rachel Lockridge
2015-06-12
Transposable elements are mobile DNA sequences that are widely distributed in prokaryotic and eukaryotic genomes, where they represent a major force in genome evolution. However, transposable elements have rarely been documented in viruses, and their contribution to viral genome evolution remains largely unexplored. Pandoraviruses are recently described DNA viruses with genome sizes that exceed those of some prokaryotes, rivaling parasitic eukaryotes. These large genomes appear to include substantial noncoding intergenic spaces, which provide potential locations for transposable element insertions. However, no mobile genetic elements have yet been reported in pandoravirus genomes. Here, we report a family of miniature inverted-repeat transposable elements (MITEs) in the Pandoravirus salinus genome, representing the first description of a virus populated with a canonical transposable element family that proliferated by transposition within the viral genome. The MITE family, which we name Submariner, includes 30 copies with all the hallmarks of MITEs: short length, terminal inverted repeats, TA target site duplication, and no coding capacity. Submariner elements show signs of transposition and are undetectable in the genome of Pandoravirus dulcis, the closest known relative Pandoravirus salinus. We identified a DNA transposon related to Submariner in the genome of Acanthamoeba castellanii, a species thought to host pandoraviruses, which contains remnants of coding sequence for a Tc1/mariner transposase. These observations suggest that the Submariner MITEs of P. salinus belong to the widespread Tc1/mariner superfamily and may have been mobilized by an amoebozoan host. Ten of the 30 MITEs in the P. salinus genome are located within coding regions of predicted genes, while others are close to genes, suggesting that these transposons may have contributed to viral genetic novelty. Our discovery highlights the remarkable ability of DNA transposons to colonize and shape genomes from all domains of life, as well as giant viruses. Our findings continue to blur the division between viral and cellular genomes, adhering to the emerging view that the content, dynamics, and evolution of the genomes of giant viruses do not substantially differ from those of cellular organisms.
Masoudi, Neda; Tavazoie, Saeed; Glenwinkel, Lori; Ryu, Leesun; Kim, Kyuhyung
2018-01-01
Proneural genes are among the most early-acting genes in nervous system development, instructing blast cells to commit to a neuronal fate. Drosophila Atonal and Achaete-Scute complex (AS-C) genes, as well as their vertebrate orthologs, are basic helix-loop-helix (bHLH) transcription factors with such proneural activity. We show here that a C. elegans AS-C homolog, hlh-4, functions in a fundamentally different manner. In the embryonic, larval, and adult nervous systems, hlh-4 is expressed exclusively in a single nociceptive neuron class, ADL, and its expression in ADL is maintained via transcriptional autoregulation throughout the life of the animal. However, in hlh-4 null mutants, the ADL neuron is generated and still appears neuronal in overall morphology and expression of panneuronal and pansensory features. Rather than acting as a proneural gene, we find that hlh-4 is required for the ADL neuron to function properly, to adopt its correct morphology, to express its unusually large repertoire of olfactory receptor–encoding genes, and to express other known features of terminal ADL identity, including neurotransmitter phenotype, neuropeptides, ion channels, and electrical synapse proteins. hlh-4 is sufficient to induce ADL identity features upon ectopic expression in other neuron types. The expression of ADL terminal identity features is directly controlled by HLH-4 via a phylogenetically conserved E-box motif, which, through bioinformatic analysis, we find to constitute a predictive feature of ADL-expressed terminal identity markers. The lineage that produces the ADL neuron was previously shown to require the conventional, transient proneural activity of another AS-C homolog, hlh-14, demonstrating sequential activities of distinct AS-C-type bHLH genes in neuronal specification. Taken together, we have defined here an unconventional function of an AS-C-type bHLH gene as a terminal selector of neuronal identity and we speculate that such function could be reflective of an ancestral function of an “ur-” bHLH gene. PMID:29672507
Pan-cancer transcriptomic analysis associates long non-coding RNAs with key mutational driver events
Ashouri, Arghavan; Sayin, Volkan I.; Van den Eynden, Jimmy; Singh, Simranjit X.; Papagiannakopoulos, Thales; Larsson, Erik
2016-01-01
Thousands of long non-coding RNAs (lncRNAs) lie interspersed with coding genes across the genome, and a small subset has been implicated as downstream effectors in oncogenic pathways. Here we make use of transcriptome and exome sequencing data from thousands of tumours across 19 cancer types, to identify lncRNAs that are induced or repressed in relation to somatic mutations in key oncogenic driver genes. Our screen confirms known coding and non-coding effectors and also associates many new lncRNAs to relevant pathways. The associations are often highly reproducible across cancer types, and while many lncRNAs are co-expressed with their protein-coding hosts or neighbours, some are intergenic and independent. We highlight lncRNAs with possible functions downstream of the tumour suppressor TP53 and the master antioxidant transcription factor NFE2L2. Our study provides a comprehensive overview of lncRNA transcriptional alterations in relation to key driver mutational events in human cancers. PMID:28959951
Landscape of somatic mutations in 560 breast cancer whole-genome sequences
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; ...
2016-05-02
Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less
Landscape of somatic mutations in 560 breast cancer whole-genome sequences
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan
Here, we analysed whole-genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. We found that 93 protein-coding cancer genes carried probable driver mutations. Some non-coding regions exhibited high mutation frequencies, but most have distinctive structural features probably causing elevated mutation rates and do not contain driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed twelve base substitution and six rearrangement signatures. Three rearrangement signatures, characterized by tandem duplications or deletions, appear associated with defective homologous-recombination-based DNA repair: one with deficient BRCA1 function, anothermore » with deficient BRCA1 or BRCA2 function, the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operating, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer.« less
Ebolavirus comparative genomics
Jun, Se-Ran; Leuze, Michael R.; Nookaew, Intawat; ...
2015-07-14
The 2014 Ebola outbreak in West Africa is the largest documented for this virus. We examine the dynamics of this genome, comparing more than one hundred currently available ebolavirus genomes to each other and to other viral genomes. Based on oligomer frequency analysis, the family Filoviridae forms a distinct group from all other sequenced viral genomes. All filovirus genomes sequenced to date encode proteins with similar functions and gene order, although there is considerable divergence in sequences between the three genera Ebolavirus, Cuevavirus, and Marburgvirus within the family Filoviridae. Whereas all ebolavirus genomes are quite similar (multiple sequences of themore » same strain are often identical), variation is most common in the intergenic regions and within specific areas of the genes encoding the glycoprotein (GP), nucleoprotein (NP), and polymerase (L). We predict regions that could contain epitope-binding sites, which might be good vaccine targets. In conclusion, this information, combined with glycosylation sites and experimentally determined epitopes, can identify the most promising regions for the development of therapeutic strategies.« less
Genomic maps of lincRNA occupancy reveal principles of RNA-chromatin interactions
Chu, Ci; Qu, Kun; Zhong, Franklin; Artandi, Steven E.; Chang, Howard Y.
2011-01-01
SUMMARY Long intergenic noncoding RNAs (lincRNAs) are key regulators of chromatin state, yet the nature and sites of RNA-chromatin interaction are mostly unknown. Here we introduce Chromatin Isolation by RNA Purification (ChIRP), where tiling oligonucleotides retrieve specific lincRNAs with bound protein and DNA sequences, which are enumerated by deep sequencing. ChIRP-seq of three lincRNAs reveal that RNA occupancy sites in the genome are focal, sequence-specific, and numerous. Drosophila roX2 RNA occupies male X-linked gene bodies with increasing tendency toward the 3’ end, peaking at CES sites. Human telomerase RNA TERC occupies telomeres and Wnt pathway genes. HOTAIR lincRNA preferentially occupies a GA-rich DNA motif to nucleate broad domains of Polycomb occupancy and histone H3 lysine 27 trimethylation. HOTAIR occupancy occurs independently of EZH2, suggesting the order of RNA guidance of Polycomb occupancy. ChIRP-seq is generally applicable to illuminate the intersection of RNA and chromatin with newfound precision genome-wide. PMID:21963238
Yang, Ching-Fu; Chen, Kuan-Chun; Cheng, Ying-Hui; Raja, Joseph A. J.; Huang, Ya-Ling; Chien, Wan-Chu; Yeh, Shyi-Dong
2014-01-01
Global threats of ssDNA geminivirus and ss(-)RNA tospovirus on crops necessitate the development of transgenic resistance. Here, we constructed a two-T DNA vector carrying a hairpin of the intergenic region (IGR) of Ageratum yellow vein virus (AYVV), residing in an intron inserted in an untranslatable nucleocapsid protein (NP) fragment of Melon yellow spot virus (MYSV). Transgenic tobacco lines highly resistant to AYVV and MYSV were generated. Accumulation of 24-nt siRNA, higher methylation levels on the IGR promoters of the transgene, and suppression of IGR promoter activity of invading AYVV indicate that AYVV resistance is mediated by transcriptional gene silencing. Lack of NP transcript and accumulation of corresponding siRNAs indicate that MYSV resistance is mediated through post-transcriptional gene silencing. Marker-free progenies with concurrent resistance to both AYVV and MYSV, stably inherited as dominant nuclear traits, were obtained. Hence, we provide a novel way for concurrent control of noxious DNA and RNA viruses with less biosafety concerns. PMID:25030413
First detection of Rickettsia conorii ssp. caspia in Rhipicephalus sanguineus in Zambia.
Chitimia-Dobler, Lidia; Dobler, Gerhard; Schaper, Sabine; Küpper, Thomas; Kattner, Simone; Wölfel, Silke
2017-11-01
Ticks are important vectors for Rickettsia spp. of the spotted fever group all around the world. Rickettsia conorii is the etiological agent of boutonneuse fever in the Mediterranean region and Africa. Tick identification was based on morphological features and further characterized using the 16S rRNA gene. The ticks were individually tested using pan-Rickettsia real-time-PCR for screening, and 23S-5S intergenic spacer region, 16S rDNA, gltA, sca4, ompB, and ompA genes were used to analyze the Rickettsia positive samples. Rickettsia conorii ssp. caspia was detected in tick collected in Zambia for the first time, thus demonstrating the possibility of the occurrence of human disease, namely Astrakhan fever, due to this Rickettsia ssp. in this region of Africa. The prevalence of R. conorii ssp. caspia was 0.06% (one positive tick out of 1465 tested ticks) and 0.07% (one positive tick out of 1254 tested Rh. sanguineus).
Boo, Kyungjin; Bhin, Jinhyuk; Jeon, Yoon; Kim, Joomyung; Shin, Hi-Jai R; Park, Jong-Eun; Kim, Kyeongkyu; Kim, Chang Rok; Jang, Hyonchol; Kim, In-Hoo; Kim, V Narry; Hwang, Daehee; Lee, Ho; Baek, Sung Hee
2015-04-10
The actions of transcription factors, chromatin modifiers and noncoding RNAs are crucial for the programming of cell states. Although the importance of various epigenetic machineries for controlling pluripotency of embryonic stem (ES) cells has been previously studied, how chromatin modifiers cooperate with specific transcription factors still remains largely elusive. Here, we find that Pontin chromatin remodelling factor plays an essential role as a coactivator for Oct4 for maintenance of pluripotency in mouse ES cells. Genome-wide analyses reveal that Pontin and Oct4 share a substantial set of target genes involved in ES cell maintenance. Intriguingly, we find that the Oct4-dependent coactivator function of Pontin extends to the transcription of large intergenic noncoding RNAs (lincRNAs) and in particular linc1253, a lineage programme repressing lincRNA, is a Pontin-dependent Oct4 target lincRNA. Together, our findings demonstrate that the Oct4-Pontin module plays critical roles in the regulation of genes involved in ES cell fate determination.
Kamboj, Atul; Hallwirth, Claus V; Alexander, Ian E; McCowage, Geoffrey B; Kramer, Belinda
2017-06-17
The analysis of viral vector genomic integration sites is an important component in assessing the safety and efficiency of patient treatment using gene therapy. Alongside this clinical application, integration site identification is a key step in the genetic mapping of viral elements in mutagenesis screens that aim to elucidate gene function. We have developed a UNIX-based vector integration site analysis pipeline (Ub-ISAP) that utilises a UNIX-based workflow for automated integration site identification and annotation of both single and paired-end sequencing reads. Reads that contain viral sequences of interest are selected and aligned to the host genome, and unique integration sites are then classified as transcription start site-proximal, intragenic or intergenic. Ub-ISAP provides a reliable and efficient pipeline to generate large datasets for assessing the safety and efficiency of integrating vectors in clinical settings, with broader applications in cancer research. Ub-ISAP is available as an open source software package at https://sourceforge.net/projects/ub-isap/ .
Ongus, Juliette R; Roode, Els C; Pleij, Cornelis W A; Vlak, Just M; van Oers, Monique M
2006-11-01
Structure prediction of the 5' non-translated region (NTR) of four iflavirus RNAs revealed two types of potential internal ribosome entry site (IRES), which are discriminated by size and level of complexity, in this group of viruses. In contrast to the intergenic IRES of dicistroviruses, the potential 5' IRES structures of iflaviruses do not have pseudoknots. To test the activity of one of these, a bicistronic construct was made in which the 5' NTR of Varroa destructor virus 1 (VDV-1) containing a putative IRES was cloned in between two reporter genes, enhanced green fluorescent protein and firefly luciferase (Fluc). The presence of the 5' NTR of VDV-1 greatly enhanced the expression levels of the second reporter gene (Fluc) in Lymantria dispar Ld652Y cells. The 5' NTR was active in a host-specific manner, as it showed lower activity in Spodoptera frugiperda Sf21 cells and no activity in Drosophila melanogaster S2 cells.
The Arabidopsis lyrata genome sequence and the basis of rapid genome size change
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu, Tina T.; Pattyn, Pedro; Bakker, Erica G.
2011-04-29
In our manuscript, we present a high-quality genome sequence of the Arabidopsis thaliana relative, Arabidopsis lyrata, produced by dideoxy sequencing. We have performed the usual types of genome analysis (gene annotation, dN/dS studies etc. etc.), but this is relegated to the Supporting Information. Instead, we focus on what was a major motivation for sequencing this genome, namely to understand how A. thaliana lost half its genome in a few million years and lived to tell the tale. The rather surprising conclusion is that there is not a single genomic feature that accounts for the reduced genome, but that every aspectmore » centromeres, intergenic regions, transposable elements, gene family number is affected through hundreds of thousands of cuts. This strongly suggests that overall genome size in itself is what has been under selection, a suggestion that is strongly supported by our demonstration (using population genetics data from A. thaliana) that new deletions seem to be driven to fixation.« less
Landscape of somatic mutations in 560 breast cancer whole genome sequences
Nik-Zainal, Serena; Davies, Helen; Staaf, Johan; Ramakrishna, Manasa; Glodzik, Dominik; Zou, Xueqing; Martincorena, Inigo; Alexandrov, Ludmil B.; Martin, Sancha; Wedge, David C.; Van Loo, Peter; Ju, Young Seok; Smid, Marcel; Brinkman, Arie B; Morganella, Sandro; Aure, Miriam R.; Lingjærde, Ole Christian; Langerød, Anita; Ringnér, Markus; Ahn, Sung-Min; Boyault, Sandrine; Brock, Jane E.; Broeks, Annegien; Butler, Adam; Desmedt, Christine; Dirix, Luc; Dronov, Serge; Fatima, Aquila; Foekens, John A.; Gerstung, Moritz; Hooijer, Gerrit KJ; Jang, Se Jin; Jones, David R.; Kim, Hyung-Yong; King, Tari A.; Krishnamurthy, Savitri; Lee, Hee Jin; Lee, Jeong-Yeon; Li, Yilong; McLaren, Stuart; Menzies, Andrew; Mustonen, Ville; O’Meara, Sarah; Pauporté, Iris; Pivot, Xavier; Purdie, Colin A.; Raine, Keiran; Ramakrishnan, Kamna; Rodríguez-González, F. Germán; Romieu, Gilles; Sieuwerts, Anieta M.; Simpson, Peter T; Shepherd, Rebecca; Stebbings, Lucy; Stefansson, Olafur A; Teague, Jon; Tommasi, Stefania; Treilleux, Isabelle; Van den Eynden, Gert G.; Vermeulen, Peter; Vincent-Salomon, Anne; Yates, Lucy; Caldas, Carlos; van’t Veer, Laura; Tutt, Andrew; Knappskog, Stian; Tan, Benita Kiat Tee; Jonkers, Jos; Borg, Åke; Ueno, Naoto T; Sotiriou, Christos; Viari, Alain; Futreal, P. Andrew; Campbell, Peter J; Span, Paul N.; Van Laere, Steven; Lakhani, Sunil R; Eyfjord, Jorunn E.; Thompson, Alastair M.; Birney, Ewan; Stunnenberg, Hendrik G; van de Vijver, Marc J; Martens, John W.M.; Børresen-Dale, Anne-Lise; Richardson, Andrea L.; Kong, Gu; Thomas, Gilles; Stratton, Michael R.
2016-01-01
We analysed whole genome sequences of 560 breast cancers to advance understanding of the driver mutations conferring clonal advantage and the mutational processes generating somatic mutations. 93 protein-coding cancer genes carried likely driver mutations. Some non-coding regions exhibited high mutation frequencies but most have distinctive structural features probably causing elevated mutation rates and do not harbour driver mutations. Mutational signature analysis was extended to genome rearrangements and revealed 12 base substitution and six rearrangement signatures. Three rearrangement signatures, characterised by tandem duplications or deletions, appear associated with defective homologous recombination based DNA repair: one with deficient BRCA1 function; another with deficient BRCA1 or BRCA2 function; the cause of the third is unknown. This analysis of all classes of somatic mutation across exons, introns and intergenic regions highlights the repertoire of cancer genes and mutational processes operative, and progresses towards a comprehensive account of the somatic genetic basis of breast cancer. PMID:27135926
Samans, Birgit; Yang, Yang; Krebs, Stefan; Sarode, Gaurav Vilas; Blum, Helmut; Reichenbach, Myriam; Wolf, Eckhard; Steger, Klaus; Dansranjavin, Temuujin; Schagdarsurengin, Undraga
2014-07-14
Nucleosome-to-protamine exchange during mammalian spermiogenesis is essential for compaction and protection of paternal DNA. It is interesting that, depending on the species, 1% to 15% of nucleosomes are retained, but the generalizability and biological function of this retention are unknown. Here, we show concordantly in human and bovine that nucleosomes remained in sperm chromatin predominantly within distal intergenic regions and introns and associated with centromere repeats and retrotransposons (LINE1 and SINEs). In contrast, nucleosome depletion concerned particularly exons, 5'-UTR, 3'-UTR, TSS, and TTS and was associated with simple and low-complexity repeats. Overlap of human and bovine genes exhibiting nucleosome preservation in the promoter and gene body revealed a significant enrichment of signal transduction and RNA- and protein-processing factors. Our study demonstrates the genome-wide uniformity of the nucleosome preservation pattern in mammalian sperm and its connection to repetitive DNA elements and suggests a function in preimplantation processes for paternally derived nucleosomes. Copyright © 2014 Elsevier Inc. All rights reserved.
Detection of non-coding RNA in bacteria and archaea using the DETR'PROK Galaxy pipeline.
Toffano-Nioche, Claire; Luo, Yufei; Kuchly, Claire; Wallon, Claire; Steinbach, Delphine; Zytnicki, Matthias; Jacq, Annick; Gautheret, Daniel
2013-09-01
RNA-seq experiments are now routinely used for the large scale sequencing of transcripts. In bacteria or archaea, such deep sequencing experiments typically produce 10-50 million fragments that cover most of the genome, including intergenic regions. In this context, the precise delineation of the non-coding elements is challenging. Non-coding elements include untranslated regions (UTRs) of mRNAs, independent small RNA genes (sRNAs) and transcripts produced from the antisense strand of genes (asRNA). Here we present a computational pipeline (DETR'PROK: detection of ncRNAs in prokaryotes) based on the Galaxy framework that takes as input a mapping of deep sequencing reads and performs successive steps of clustering, comparison with existing annotation and identification of transcribed non-coding fragments classified into putative 5' UTRs, sRNAs and asRNAs. We provide a step-by-step description of the protocol using real-life example data sets from Vibrio splendidus and Escherichia coli. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.
Furuya, Toshiki; Hirose, Satomi; Semba, Hisashi; Kino, Kuniki
2011-01-01
The mimABCD gene cluster encodes the binuclear iron monooxygenase that oxidizes propane and phenol in Mycobacterium smegmatis strain MC2 155 and Mycobacterium goodii strain 12523. Interestingly, expression of the mimABCD gene cluster is induced by acetone. In this study, we investigated the regulator gene responsible for this acetone-responsive expression. In the genome sequence of M. smegmatis strain MC2 155, the mimABCD gene cluster is preceded by a gene designated mimR, which is divergently transcribed. Sequence analysis revealed that MimR exhibits amino acid similarity with the NtrC family of transcriptional activators, including AcxR and AcoR, which are involved in acetone and acetoin metabolism, respectively. Unexpectedly, many homologs of the mimR gene were also found in the sequenced genomes of actinomycetes. A plasmid carrying a transcriptional fusion of the intergenic region between the mimR and mimA genes with a promoterless green fluorescent protein (GFP) gene was constructed and introduced into M. smegmatis strain MC2 155. Using a GFP reporter system, we confirmed by deletion and complementation analyses that the mimR gene product is the positive regulator of the mimABCD gene cluster expression that is responsive to acetone. M. goodii strain 12523 also utilized the same regulatory system as M. smegmatis strain MC2 155. Although transcriptional activators of the NtrC family generally control transcription using the σ54 factor, a gene encoding the σ54 factor was absent from the genome sequence of M. smegmatis strain MC2 155. These results suggest the presence of a novel regulatory system in actinomycetes, including mycobacteria. PMID:21856847
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aklujkar, Muktak; Krushkal, Julia; DiBartolo, Genevieve
Background. The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results. The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recentlymore » in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion. The genomic evidence suggests that metabolism, physiology Background. The genome sequence of Geobacter metallireducens is the second to be completed from the metal-respiring genus Geobacter, and is compared in this report to that of Geobacter sulfurreducens in order to understand their metabolic, physiological and regulatory similarities and differences. Results. The experimentally observed greater metabolic versatility of G. metallireducens versus G. sulfurreducens is borne out by the presence of more numerous genes for metabolism of organic acids including acetate, propionate, and pyruvate. Although G. metallireducens lacks a dicarboxylic acid transporter, it has acquired a second succinate dehydrogenase/fumarate reductase complex, suggesting that respiration of fumarate was important until recently in its evolutionary history. Vestiges of the molybdate (ModE) regulon of G. sulfurreducens can be detected in G. metallireducens, which has lost the global regulatory protein ModE but retained some putative ModE-binding sites and multiplied certain genes of molybdenum cofactor biosynthesis. Several enzymes of amino acid metabolism are of different origin in the two species, but significant patterns of gene organization are conserved. Whereas most Geobacteraceae are predicted to obtain biosynthetic reducing equivalents from electron transfer pathways via a ferredoxin oxidoreductase, G. metallireducens can derive them from the oxidative pentose phosphate pathway. In addition to the evidence of greater metabolic versatility, the G. metallireducens genome is also remarkable for the abundance of multicopy nucleotide sequences found in intergenic regions and even within genes. Conclusion. The genomic evidence suggests that metabolism, physiology and regulation of gene expression in G. metallireducens may be dramatically different from other Geobacteraceae.« less
Importance of databases of nucleic acids for bioinformatic analysis focused to genomics
NASA Astrophysics Data System (ADS)
Jimenez-Gutierrez, L. R.; Barrios-Hernández, C. J.; Pedraza-Ferreira, G. R.; Vera-Cala, L.; Martinez-Perez, F.
2016-08-01
Recently, bioinformatics has become a new field of science, indispensable in the analysis of millions of nucleic acids sequences, which are currently deposited in international databases (public or private); these databases contain information of genes, RNA, ORF, proteins, intergenic regions, including entire genomes from some species. The analysis of this information requires computer programs; which were renewed in the use of new mathematical methods, and the introduction of the use of artificial intelligence. In addition to the constant creation of supercomputing units trained to withstand the heavy workload of sequence analysis. However, it is still necessary the innovation on platforms that allow genomic analyses, faster and more effectively, with a technological understanding of all biological processes.
Milky hemolymph syndrome (MHS) in spiny lobsters, penaeid shrimp and crabs.
Nunan, Linda M; Poulos, Bonnie T; Navarro, Solangel; Redman, Rita M; Lightner, Donald V
2010-09-02
Black tiger shrimp Penaeus monodon, European shore crab Carcinus maenas and spiny lobster Panulirus spp. can be affected by milky hemolymph syndrome (MHS). Four rickettsia-like bacteria (RLB) isolates of MHS originating from 5 geographical areas have been identified to date. The histopathology of the disease was characterized and a multiplex PCR assay was developed for detection of the 4 bacterial isolates. The 16S rRNA gene and 16-23S rRNA intergenic spacer region (ISR) were used to examine the phylogeny of the MHS isolates. Although the pathology of this disease appears similar in the various different hosts, sequencing and examination of the phylogenetic relationships reveal 4 distinct RLB involved in the infection process.
The Saccharomyces cerevisiae YPR184w gene encodes the glycogen debranching enzyme.
Teste, M A; Enjalbert, B; Parrou, J L; François, J M
2000-12-01
The YPR184w gene encodes a 1536-amino acid protein that is 34-39% identical to the mammal, Drosophila melanogaster and Caenorhabditis elegans glycogen debranching enzyme. The N-terminal part of the protein possesses the four conserved sequences of the alpha-amylase superfamily, while the C-terminal part displays 50% similarity with the C-terminal of other eukaryotic glycogen debranching enzymes. Reliable measurement of alpha-1,4-glucanotransferase and alpha-1, 6-glucosidase activity of the yeast debranching enzyme was determined in strains overexpressing YPR184w. The alpha-1, 4-glucanotransferase activity of a partially purified preparation of debranching enzyme preferentially transferred maltosyl units than maltotriosyl. Deletion of YPR184w prevents glycogen degradation, whereas overexpression had no effect on the rate of glycogen breakdown. In response to stress and growth conditions, the transcriptional control of YPR184w gene, renamed GDB1 (for Glycogen DeBranching gene), is strictly identical to that of other genes involved in glycogen metabolism.
Shoguchi, Eiichi; Shinzato, Chuya; Hisata, Kanako; Satoh, Nori; Mungpakdee, Sutada
2015-01-01
Even though mitochondrial genomes, which characterize eukaryotic cells, were first discovered more than 50 years ago, mitochondrial genomics remains an important topic in molecular biology and genome sciences. The Phylum Alveolata comprises three major groups (ciliates, apicomplexans, and dinoflagellates), the mitochondrial genomes of which have diverged widely. Even though the gene content of dinoflagellate mitochondrial genomes is reportedly comparable to that of apicomplexans, the highly fragmented and rearranged genome structures of dinoflagellates have frustrated whole genomic analysis. Consequently, noncoding sequences and gene arrangements of dinoflagellate mitochondrial genomes have not been well characterized. Here we report that the continuous assembled genome (∼326 kb) of the dinoflagellate, Symbiodinium minutum, is AT-rich (∼64.3%) and that it contains three protein-coding genes. Based upon in silico analysis, the remaining 99% of the genome comprises transcriptomic noncoding sequences. RNA edited sites and unique, possible start and stop codons clarify conserved regions among dinoflagellates. Our massive transcriptome analysis shows that almost all regions of the genome are transcribed, including 27 possible fragmented ribosomal RNA genes and 12 uncharacterized small RNAs that are similar to mitochondrial RNA genes of the malarial parasite, Plasmodium falciparum. Gene map comparisons show that gene order is only slightly conserved between S. minutum and P. falciparum. However, small RNAs and intergenic sequences share sequence similarities with P. falciparum, suggesting that the function of noncoding sequences has been preserved despite development of very different genome structures. PMID:26199191
Tang, Guo-Qing; Maxwell, E. Stuart
2008-01-01
The amphibian Xenopus provides a model organism for investigating microRNA expression during vertebrate embryogenesis and development. Searching available Xenopus genome databases using known human pre-miRNAs as query sequences, more than 300 genes encoding 142 Xenopus tropicalis miRNAs were identified. Analysis of Xenopus tropicalis miRNA genes revealed a predominate positioning within introns of protein-coding and nonprotein-coding RNA Pol II-transcribed genes. MiRNA genes were also located in pre-mRNA exons and positioned intergenically between known protein-coding genes. Many miRNA species were found in multiple locations and in more than one genomic context. MiRNA genes were also clustered throughout the genome, indicating the potential for the cotranscription and coordinate expression of miRNAs located in a given cluster. Northern blot analysis confirmed the expression of many identified miRNAs in both X. tropicalis and X. laevis. Comparison of X. tropicalis and X. laevis blots revealed comparable expression profiles, although several miRNAs exhibited species-specific expression in different tissues. More detailed analysis revealed that for some miRNAs, the tissue-specific expression profile of the pri-miRNA precursor was distinctly different from that of the mature miRNA profile. Differential miRNA precursor processing in both the nucleus and cytoplasm was implicated in the observed tissue-specific differences. These observations indicated that post-transcriptional processing plays an important role in regulating miRNA expression in the amphibian Xenopus. PMID:18032731
Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto
2005-06-01
Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses.
Springfeld, Christoph; Darai, Gholamreza; Cattaneo, Roberto
2005-01-01
Rhabdoviruses are negative-stranded RNA viruses of the order Mononegavirales and have been isolated from vertebrates, insects, and plants. Members of the genus Lyssavirus cause the invariably fatal disease rabies, and a member of the genus Vesiculovirus, Chandipura virus, has recently been associated with acute encephalitis in children. We present here the complete genome sequence and transcription map of a rhabdovirus isolated from cultivated cells of hepatocellular carcinoma tissue from a moribund tree shrew. The negative-strand genome of tupaia rhabdovirus is composed of 11,440 nucleotides and encodes six genes that are separated by one or two intergenic nucleotides. In addition to the typical rhabdovirus genes in the order N-P-M-G-L, a gene encoding a small hydrophobic putative type I transmembrane protein of approximately 11 kDa was identified between the M and G genes, and the corresponding transcript was detected in infected cells. Similar to some Vesiculoviruses and many Paramyxovirinae, the P gene has a second overlapping reading frame that can be accessed by ribosomal choice and encodes a protein of 26 kDa, predicted to be the largest C protein of these virus families. Phylogenetic analyses of the tupaia rhabdovirus N and L genes show that the virus is distantly related to the Vesiculoviruses, Ephemeroviruses, and the recently characterized Flanders virus and Oita virus and further extends the sequence territory occupied by animal rhabdoviruses. PMID:15890917
Papaleo, Maria Cristiana; Russo, Edda; Fondi, Marco; Emiliani, Giovanni; Frandi, Antonio; Brilli, Matteo; Pastorelli, Roberta; Fani, Renato
2009-12-01
In this work a detailed analysis of the structure, the expression and the organization of his genes belonging to the core of histidine biosynthesis (hisBHAF) in 40 newly determined and 13 available sequences of Burkholderia strains was carried out. Data obtained revealed a strong conservation of the structure and organization of these genes through the entire genus. The phylogenetic analysis showed the monophyletic origin of this gene cluster and indicated that it did not undergo horizontal gene transfer events. The analysis of the intergenic regions, based on the substitution rate, entropy plot and bendability suggested the existence of a putative transcription promoter upstream of hisB, that was supported by the genetic analysis that showed that this cluster was able to complement Escherichia colihisA, hisB, and hisF mutations. Moreover, a preliminary transcriptional analysis and the analysis of microarray data revealed that the expression of the his core was constitutive. These findings are in agreement with the fact that the entire Burkholderiahis operon is heterogeneous, in that it contains "alien" genes apparently not involved in histidine biosynthesis. Besides, they also support the idea that the proteobacterial his operon was piece-wisely assembled, i.e. through accretion of smaller units containing only some of the genes (eventually together with their own promoters) involved in this biosynthetic route. The correlation existing between the structure, organization and regulation of his "core" genes and the function(s) they perform in cellular metabolism is discussed.
DNA methylation patterns and gene expression associated with litter size in Berkshire pig placenta
Kwon, Seulgi; Park, Da Hye; Kim, Tae Wan; Kang, Deok Gyeong; Yu, Go Eun; Kim, Il-Suk; Park, Hwa Chun; Ha, Jeongim; Kim, Chul Wook
2017-01-01
Increasing litter size is of great interest to the pig industry. DNA methylation is an important epigenetic modification that regulates gene expression, resulting in livestock phenotypes such as disease resistance, milk production, and reproduction. We classified Berkshire pigs into two groups according to litter size and estimated breeding value: smaller (SLG) and larger (LLG) litter size groups. Genome-wide DNA methylation and gene expression were analyzed using placenta genomic DNA and RNA to identify differentially methylated regions (DMRs) and differentially expressed genes (DEGs) associated with litter size. The methylation levels of CpG dinucleotides in different genomic regions were noticeably different between the groups, while global methylation pattern was similar, and excluding intergenic regions they were found the most frequently in gene body regions. Next, we analyzed RNA-Seq data to identify DEGs between the SLG and LLG groups. A total of 1591 DEGs were identified: 567 were downregulated and 1024 were upregulated in LLG compared to SLG. To identify genes that simultaneously exhibited changes in DNA methylation and mRNA expression, we integrated and analyzed the data from bisulfite-Seq and RNA-Seq. Nine DEGs positioned in DMRs were found. The expression of only three of these genes (PRKG2, CLCA4, and PCK1) was verified by RT-qPCR. Furthermore, we observed the same methylation patterns in blood samples as in the placental tissues by PCR-based methylation analysis. Together, these results provide useful data regarding potential epigenetic markers for selecting hyperprolific sows. PMID:28880934
Garcia, S; Kovařík, A
2013-01-01
In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S–5.8S–26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S–18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S–5.8S–26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants. PMID:23512008
Garcia, S; Kovařík, A
2013-07-01
In higher eukaryotes, the 5S rRNA genes occur in tandem units and are arranged either separately (S-type arrangement) or linked to other repeated genes, in most cases to rDNA locus encoding 18S-5.8S-26S genes (L-type arrangement). Here we used Southern blot hybridisation, PCR and sequencing approaches to analyse genomic organisation of rRNA genes in all large gymnosperm groups, including Coniferales, Ginkgoales, Gnetales and Cycadales. The data are provided for 27 species (21 genera). The 5S units linked to the 35S rDNA units occur in some but not all Gnetales, Coniferales and in Ginkgo (∼30% of the species analysed), while the remaining exhibit separate organisation. The linked 5S rRNA genes may occur as single-copy insertions or as short tandems embedded in the 26S-18S rDNA intergenic spacer (IGS). The 5S transcript may be encoded by the same (Ginkgo, Ephedra) or opposite (Podocarpus) DNA strand as the 18S-5.8S-26S genes. In addition, pseudogenised 5S copies were also found in some IGS types. Both L- and S-type units have been largely homogenised across the genomes. Phylogenetic relationships based on the comparison of 5S coding sequences suggest that the 5S genes independently inserted IGS at least three times in the course of gymnosperm evolution. Frequent transpositions and rearrangements of basic units indicate relatively relaxed selection pressures imposed on genomic organisation of 5S genes in plants.
Underhill-Day, Nicholas; Hill, Victoria
2011-01-01
Epigenetic inactivation of tumor suppressor genes is a hallmark of cancer development. RASSF1A (Ras Association Domain Family 1 isoform A) tumor suppressor gene is one of the most frequently epigenetically inactivated genes in a wide range of adult and children's cancers and could be a useful molecular marker for cancer diagnosis and prognosis. RASSF1A has been shown to play a role in several biological pathways, including cell cycle control, apoptosis and microtubule dynamics. RASSF2, RASSF4, RASSF5 and RASSF6 are also epigenetically inactivated in cancer but have not been analyzed in as wide a range of malignancies as RASSF1A. Recently four new members of the RASSF family were identified these are termed N-Terminal RASSF genes (RASSF7–RASSF10). Molecular and biological analysis of these newer members has just begun. This review highlights what we currently know in respects to structural, functional and molecular properties of the N-Terminal RASSFs. PMID:21116130
Microprocessor mediates transcriptional termination in long noncoding microRNA genes
Dhir, Ashish; Dhir, Somdutta; Proudfoot, Nick J.; Jopling, Catherine L.
2015-01-01
MicroRNA (miRNA) play a major role in the post-transcriptional regulation of gene expression. Mammalian miRNA biogenesis begins with co-transcriptional cleavage of RNA polymerase II (Pol II) transcripts by the Microprocessor complex. While most miRNA are located within introns of protein coding genes, a substantial minority of miRNA originate from long non coding (lnc) RNA where transcript processing is largely uncharacterized. We show, by detailed characterization of liver-specific lnc-pri-miR-122 and genome-wide analysis in human cell lines, that most lnc-pri-miRNA do not use the canonical cleavage and polyadenylation (CPA) pathway, but instead use Microprocessor cleavage to terminate transcription. This Microprocessor inactivation leads to extensive transcriptional readthrough of lnc-pri-miRNA and transcriptional interference with downstream genes. Consequently we define a novel RNase III-mediated, polyadenylation-independent mechanism of Pol II transcription termination in mammalian cells. PMID:25730776
Hirai, Tadayoshi; Shohael, Abdullah Mohammad; Kim, You-Wang; Yano, Megumu; Ezura, Hiroshi
2011-12-01
Lettuce is a commercially important leafy vegetable that is cultivated worldwide, and it is also a target crop for plant factories. In this study, lettuce was selected as an alternative platform for recombinant miraculin production because of its fast growth, agronomic value, and wide availability. The taste-modifying protein miraculin is a glycoprotein extracted from the red berries of the West African native shrub Richadella dulcifica. Because of its limited natural availability, many attempts have been made to produce this protein in suitable alternative hosts. We produced transgenic lettuce with miraculin gene driven either by the ubiquitin promoter/terminator cassette from lettuce or a 35S promoter/nos terminator cassette. Miraculin gene expression and miraculin accumulation in both cassettes were compared by quantitative real-time PCR analysis, Western blotting, and enzyme-linked immunosorbent assay. The expression level of the miraculin gene and protein in transgenic lettuce was higher and more genetically stable in the ubiquitin promoter/terminator cassette than in the 35S promoter/nos terminator cassette. These results demonstrated that the ubiquitin promoter/terminator cassette is an efficient platform for the genetically stable expression of the miraculin protein in lettuce and hence this platform is of benefit for recombinant miraculin production on a commercial scale.
Hodgetts, Jennifer; Boonham, Neil; Mumford, Rick; Harrison, Nigel; Dickinson, Matthew
2008-08-01
Phytoplasma phylogenetics has focused primarily on sequences of the non-coding 16S rRNA gene and the 16S-23S rRNA intergenic spacer region (16-23S ISR), and primers that enable amplification of these regions from all phytoplasmas by PCR are well established. In this study, primers based on the secA gene have been developed into a semi-nested PCR assay that results in a sequence of the expected size (about 480 bp) from all 34 phytoplasmas examined, including strains representative of 12 16Sr groups. Phylogenetic analysis of secA gene sequences showed similar clustering of phytoplasmas when compared with clusters resolved by similar sequence analyses of a 16-23S ISR-23S rRNA gene contig or of the 16S rRNA gene alone. The main differences between trees were in the branch lengths, which were elongated in the 16-23S ISR-23S rRNA gene tree when compared with the 16S rRNA gene tree and elongated still further in the secA gene tree, despite this being a shorter sequence. The improved resolution in the secA gene-derived phylogenetic tree resulted in the 16SrII group splitting into two distinct clusters, while phytoplasmas associated with coconut lethal yellowing-type diseases split into three distinct groups, thereby supporting past proposals that they represent different candidate species within 'Candidatus Phytoplasma'. The ability to differentiate 16Sr groups and subgroups by virtual RFLP analysis of secA gene sequences suggests that this gene may provide an informative alternative molecular marker for pathogen identification and diagnosis of phytoplasma diseases.
Tissue-specific epigenetics in gene neighborhoods: myogenic transcription factor genes
Chandra, Sruti; Terragni, Jolyon; Zhang, Guoqiang; Pradhan, Sriharsa; Haushka, Stephen; Johnston, Douglas; Baribault, Carl; Lacey, Michelle; Ehrlich, Melanie
2015-01-01
Myogenic regulatory factor (MRF) genes, MYOD1, MYOG, MYF6 and MYF5, are critical for the skeletal muscle lineage. Here, we used various epigenome profiles from human myoblasts (Mb), myotubes (Mt), muscle and diverse non-muscle samples to elucidate the involvement of multigene neighborhoods in the regulation of MRF genes. We found more far-distal enhancer chromatin associated with MRF genes in Mb and Mt than previously reported from studies in mice. For the MYF5/MYF6 gene-pair, regions of Mb-associated enhancer chromatin were located throughout the adjacent 236-kb PTPRQ gene even though Mb expressed negligible amounts of PTPRQ mRNA. Some enhancer chromatin regions inside PTPRQ in Mb were also seen in PTPRQ mRNA-expressing non-myogenic cells. This suggests dual-purpose PTPRQ enhancers that upregulate expression of PTPRQ in non-myogenic cells and MYF5/MYF6 in myogenic cells. In contrast, the myogenic enhancer chromatin regions distal to MYOD1 were intergenic and up to 19 kb long. Two of them contain small, known MYOD1 enhancers, and one displayed an unusually high level of 5-hydroxymethylcytosine in a quantitative DNA hydroxymethylation assay. Unexpectedly, three regions of MYOD1-distal enhancer chromatin in Mb and Mt overlapped enhancer chromatin in umbilical vein endothelial cells, which might upregulate a distant gene (PIK3C2A). Lastly, genes surrounding MYOG were preferentially transcribed in Mt, like MYOG itself, and exhibited nearby myogenic enhancer chromatin. These neighboring chromatin regions may be enhancers acting in concert to regulate myogenic expression of multiple adjacent genes. Our findings reveal the very different and complex organization of gene neighborhoods containing closely related transcription factor genes. PMID:26041816
Voigt, Susanne; Laurent, Stefan; Litovchenko, Maria; Stephan, Wolfgang
2015-01-01
Drosophila melanogaster as a cosmopolitan species has successfully adapted to a wide range of different environments. Variation in temperature is one important environmental factor that influences the distribution of species in nature. In particular for insects, which are mostly ectotherms, ambient temperature plays a major role in their ability to colonize new habitats. Chromatin-based gene regulation is known to be sensitive to temperature. Ambient temperature leads to changes in the activation of genes regulated in this manner. One such regulatory system is the Polycomb group (PcG) whose target genes are more expressed at lower temperatures than at higher ones. Therefore, a greater range in ambient temperature in temperate environments may lead to greater variability (plasticity) in the expression of these genes. This might have detrimental effects, such that positive selection acts to lower the degree of the expression plasticity. We provide evidence for this process in a genomic region that harbors two PcG-regulated genes, polyhomeotic proximal (ph-p) and CG3835. We found a signature of positive selection in this gene region in European populations of D. melanogaster and investigated the region by means of reporter gene assays. The target of selection is located in the intergenic fragment between the two genes. It overlaps with the promoters of both genes and an experimentally validated Polycomb response element (PRE). This fragment harbors five sequence variants that are highly differentiated between European and African populations. The African alleles confer a temperature-induced plasticity in gene expression, which is typical for PcG-mediated gene regulation, whereas thermosensitivity is reduced for the European alleles. PMID:25855066
NASA Astrophysics Data System (ADS)
Ferdiani, Defika I.; Devi, Fera L.; Koentjana, Johan P.; Milasari, Asri F.; Nur'aini, Indah; Semiarti, Endang
2015-09-01
Natural orchid is one of the most important tropical biodiversity. In Indonesia there are ± 6000 species out of 30000 orchids species in the world, of which there are ± 60 species at Mount Merapi. Repetitive eruption of Merapi have wiped out the biodiversity of orchids, therefore the efforts to conserve the orchids and to establish the database of natural orchids in Mount Merapi are needed. The orchid's database can be created based on DNA analysis, and establish barcoding DNA. DNA-barcodes can be used as molecular markers. The different character of morphology usually shows different pattern in DNA fragments. This research aims to characterize the phenotype and genotype of natural orchids of Mt. Merapi based on morphology and the structure of DNA in trnL-F intergenic region of chloroplasts DNA of orchid. Amplified Fragment Length Polymorphism (AFLP) technique was used to characterize the molecular types of orchids in silico of intergenic space area of orchid chloroplast. In this study, 11 species of orchids were characterized based on morphological and molecular characters. The molecular characters were obtained from trnL-F intergenic region of leaves chloroplasts. The data indicates that there is a conserve DNA pattern in all orchids and the distinctive characters of some orchids. In this study, based on trnL-F intergenic region of chloroplast genome, the phylogenetic tree revealed that 11 species of orchids at Mt. Merapi can be grouped into 2 clades, that matched with morphological characters.
Goodwin, Stephen B; McCorison, Cassandra B; Cavaletto, Jessica R; Culley, David E; LaButti, Kurt; Baker, Scott E; Grigoriev, Igor V
2016-08-01
Fungi in the class Dothideomycetes often live in extreme environments or have unusual physiology. One of these, the wine cellar mold Zasmidium cellare, produces thick curtains of mycelia in cellars with high humidity, and its ability to metabolize volatile organic compounds is thought to improve air quality. Whether these abilities have affected its mitochondrial genome is not known. To fill this gap, the circular-mapping mitochondrial genome of Z. cellare was sequenced and, at only 23 743 bp, is the smallest reported for a filamentous fungus. Genes were encoded on both strands with a single change of direction, different from most other fungi but consistent with the Dothideomycetes. Other than its small size, the only unusual feature of the Z. cellare mitochondrial genome was two copies of a 110-bp sequence that were duplicated, inverted and separated by approximately 1 kb. This inverted-repeat sequence confused the assembly program but appears to have no functional significance. The small size of the Z. cellare mitochondrial genome was due to slightly smaller genes, lack of introns and non-essential genes, reduced intergenic spacers and very few ORFs relative to other fungi rather than a loss of essential genes. Whether this reduction facilitates its unusual biology remains unknown. Published by Elsevier Ltd.
Species identification of mutans streptococci by groESL gene sequence.
Hung, Wei-Chung; Tsai, Jui-Chang; Hsueh, Po-Ren; Chia, Jean-San; Teng, Lee-Jene
2005-09-01
The near full-length sequences of the groESL genes were determined and analysed among eight reference strains (serotypes a to h) representing five species of mutans group streptococci. The groES sequences from these reference strains revealed that there are two lengths (285 and 288 bp) in the five species. The intergenic spacer between groES and groEL appears to be a unique marker for species, with a variable size (ranging from 111 to 310 bp) and sequence. Phylogenetic analysis of groES and groEL separated the eight serotypes into two major clusters. Strains of serotypes b, c, e and f were highly related and had groES gene sequences of the same length, 288 bp, while strains of serotypes a, d, g and h were also closely related and their groES gene sequence lengths were 285 bp. The groESL sequences in clinical isolates of three serotypes of S. mutans were analysed for intraspecies polymorphism. The results showed that the groESL sequences could provide information for differentiation among species, but were unable to distinguish serotypes of the same species. Based on the determined sequences, a PCR assay was developed that could differentiate members of the mutans streptococci by amplicon size and provide an alternative way for distinguishing mutans streptococci from other viridans streptococci.
Homolka, David; Ivanek, Robert; Forejt, Jiri; Jansa, Petr
2011-01-01
Background Tight regulation of testicular gene expression is a prerequisite for male reproductive success, while differentiation of gene activity in spermatogenesis is important during speciation. Thus, comparison of testicular transcriptomes between closely related species can reveal unique regulatory patterns and shed light on evolutionary constraints separating the species. Methodology/Principal Findings Here, we compared testicular transcriptomes of two closely related mouse species, Mus musculus and Mus spretus, which diverged more than one million years ago. We analyzed testicular expression using tiling arrays overlapping Chromosomes 2, X, Y and mitochondrial genome. An excess of differentially regulated non-coding RNAs was found on Chromosome 2 including the intronic antisense RNAs, intergenic RNAs and premature forms of Piwi-interacting RNAs (piRNAs). Moreover, striking difference was found in the expression of X-linked G6pdx gene, the parental gene of the autosomal retrogene G6pd2. Conclusions/Significance The prevalence of non-coding RNAs among differentially expressed transcripts indicates their role in species-specific regulation of spermatogenesis. The postmeiotic expression of G6pdx in Mus spretus points towards the continuous evolution of X-chromosome silencing and provides an example of expression change accompanying the out-of-the X-chromosomal retroposition. PMID:21347268
Song, Xiaowen; Huang, Fei; Liu, Juanjuan; Li, Chengjun; Gao, Shanshan; Wu, Wei; Zhai, Mengfan; Yu, Xiaojuan; Xiong, Wenfeng; Xie, Jia
2017-01-01
Abstract Cytosine DNA methylation is a vital epigenetic regulator of eukaryotic development. Whether this epigenetic modification occurs in Tribolium castaneum has been controversial, its distribution pattern and functions have not been established. Here, using bisulphite sequencing (BS-Seq), we confirmed the existence of DNA methylation and described the methylation profiles of the four life stages of T. castaneum. In the T. castaneum genome, both symmetrical CpG and non-CpG methylcytosines were observed. Symmetrical CpG methylation, which was catalysed by DNMT1 and occupied a small part in T. castaneum methylome, was primarily enriched in gene bodies and was positively correlated with gene expression levels. Asymmetrical non-CpG methylation, which was predominant in the methylome, was strongly concentrated in intergenic regions and introns but absent from exons. Gene body methylation was negatively correlated with gene expression levels. The distribution pattern and functions of this type of methylation were similar only to the methylome of Drosophila melanogaster, which further supports the existence of a novel methyltransferase in the two species responsible for this type of methylation. This first life-cycle methylome of T. castaneum reveals a novel and unique methylation pattern, which will contribute to the further understanding of the variety and functions of DNA methylation in eukaryotes. PMID:28449092
The Complete Chloroplast Genome of Wild Rice (Oryza minuta) and Its Comparison to Related Species.
Asaf, Sajjad; Waqas, Muhammad; Khan, Abdul L; Khan, Muhammad A; Kang, Sang-Mo; Imran, Qari M; Shahzad, Raheem; Bilal, Saqib; Yun, Byung-Wook; Lee, In-Jung
2017-01-01
Oryza minuta , a tetraploid wild relative of cultivated rice (family Poaceae), possesses a BBCC genome and contains genes that confer resistance to bacterial blight (BB) and white-backed (WBPH) and brown (BPH) plant hoppers. Based on the importance of this wild species, this study aimed to understand the phylogenetic relationships of O. minuta with other Oryza species through an in-depth analysis of the composition and diversity of the chloroplast (cp) genome. The analysis revealed a cp genome size of 135,094 bp with a typical quadripartite structure and consisting of a pair of inverted repeats separated by small and large single copies, 139 representative genes, and 419 randomly distributed microsatellites. The genomic organization, gene order, GC content and codon usage are similar to those of typical angiosperm cp genomes. Approximately 30 forward, 28 tandem and 20 palindromic repeats were detected in the O . minuta cp genome. Comparison of the complete O. minuta cp genome with another eleven Oryza species showed a high degree of sequence similarity and relatively high divergence of intergenic spacers. Phylogenetic analyses were conducted based on the complete genome sequence, 65 shared genes and matK gene showed same topologies and O. minuta forms a single clade with parental O. punctata . Thus, the complete O . minuta cp genome provides interesting insights and valuable information that can be used to identify related species and reconstruct its phylogeny.
CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart.
Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Tena, Juan J; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F; Roy, Anna R; Galjart, Niels; Delgado-Olguin, Paul; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis; Manzanares, Miguel
2017-08-01
Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development.
CTCF counter-regulates cardiomyocyte development and maturation programs in the embryonic heart
Gomez-Velazquez, Melisa; Badia-Careaga, Claudio; Lechuga-Vieco, Ana Victoria; Nieto-Arellano, Rocio; Rollan, Isabel; Alvarez, Alba; Torroja, Carlos; Caceres, Eva F.; Roy, Anna R.; Galjart, Niels; Sanchez-Cabo, Fatima; Enriquez, Jose Antonio; Gomez-Skarmeta, Jose Luis
2017-01-01
Cardiac progenitors are specified early in development and progressively differentiate and mature into fully functional cardiomyocytes. This process is controlled by an extensively studied transcriptional program. However, the regulatory events coordinating the progression of such program from development to maturation are largely unknown. Here, we show that the genome organizer CTCF is essential for cardiogenesis and that it mediates genomic interactions to coordinate cardiomyocyte differentiation and maturation in the developing heart. Inactivation of Ctcf in cardiac progenitor cells and their derivatives in vivo during development caused severe cardiac defects and death at embryonic day 12.5. Genome wide expression analysis in Ctcf mutant hearts revealed that genes controlling mitochondrial function and protein production, required for cardiomyocyte maturation, were upregulated. However, mitochondria from mutant cardiomyocytes do not mature properly. In contrast, multiple development regulatory genes near predicted heart enhancers, including genes in the IrxA cluster, were downregulated in Ctcf mutants, suggesting that CTCF promotes cardiomyocyte differentiation by facilitating enhancer-promoter interactions. Accordingly, loss of CTCF disrupts gene expression and chromatin interactions as shown by chromatin conformation capture followed by deep sequencing. Furthermore, CRISPR-mediated deletion of an intergenic CTCF site within the IrxA cluster alters gene expression in the developing heart. Thus, CTCF mediates local regulatory interactions to coordinate transcriptional programs controlling transitions in morphology and function during heart development. PMID:28846746
Merico, Daniele; Zarrei, Mehdi; Costain, Gregory; Ogura, Lucas; Alipanahi, Babak; Gazzellone, Matthew J; Butcher, Nancy J; Thiruvahindrapuram, Bhooma; Nalpathamkalam, Thomas; Chow, Eva W C; Andrade, Danielle M; Frey, Brendan J; Marshall, Christian R; Scherer, Stephen W; Bassett, Anne S
2015-09-16
Chromosome 22q11.2 microdeletions impart a high but incomplete risk for schizophrenia. Possible mechanisms include genome-wide effects of DGCR8 haploinsufficiency. In a proof-of-principle study to assess the power of this model, we used high-quality, whole-genome sequencing of nine individuals with 22q11.2 deletions and extreme phenotypes (schizophrenia, or no psychotic disorder at age >50 years). The schizophrenia group had a greater burden of rare, damaging variants impacting protein-coding neurofunctional genes, including genes involved in neuron projection (nominal P = 0.02, joint burden of three variant types). Variants in the intact 22q11.2 region were not major contributors. Restricting to genes affected by a DGCR8 mechanism tended to amplify between-group differences. Damaging variants in highly conserved long intergenic noncoding RNA genes also were enriched in the schizophrenia group (nominal P = 0.04). The findings support the 22q11.2 deletion model as a threshold-lowering first hit for schizophrenia risk. If applied to a larger and thus better-powered cohort, this appears to be a promising approach to identify genome-wide rare variants in coding and noncoding sequence that perturb gene networks relevant to idiopathic schizophrenia. Similarly designed studies exploiting genetic models may prove useful to help delineate the genetic architecture of other complex phenotypes. Copyright © 2015 Merico et al.
Merico, Daniele; Zarrei, Mehdi; Costain, Gregory; Ogura, Lucas; Alipanahi, Babak; Gazzellone, Matthew J.; Butcher, Nancy J.; Thiruvahindrapuram, Bhooma; Nalpathamkalam, Thomas; Chow, Eva W. C.; Andrade, Danielle M.; Frey, Brendan J.; Marshall, Christian R.; Scherer, Stephen W.; Bassett, Anne S.
2015-01-01
Chromosome 22q11.2 microdeletions impart a high but incomplete risk for schizophrenia. Possible mechanisms include genome-wide effects of DGCR8 haploinsufficiency. In a proof-of-principle study to assess the power of this model, we used high-quality, whole-genome sequencing of nine individuals with 22q11.2 deletions and extreme phenotypes (schizophrenia, or no psychotic disorder at age >50 years). The schizophrenia group had a greater burden of rare, damaging variants impacting protein-coding neurofunctional genes, including genes involved in neuron projection (nominal P = 0.02, joint burden of three variant types). Variants in the intact 22q11.2 region were not major contributors. Restricting to genes affected by a DGCR8 mechanism tended to amplify between-group differences. Damaging variants in highly conserved long intergenic noncoding RNA genes also were enriched in the schizophrenia group (nominal P = 0.04). The findings support the 22q11.2 deletion model as a threshold-lowering first hit for schizophrenia risk. If applied to a larger and thus better-powered cohort, this appears to be a promising approach to identify genome-wide rare variants in coding and noncoding sequence that perturb gene networks relevant to idiopathic schizophrenia. Similarly designed studies exploiting genetic models may prove useful to help delineate the genetic architecture of other complex phenotypes. PMID:26384369
Valiante, Vito; Baldin, Clara; Hortschansky, Peter; Jain, Radhika; Thywißen, Andreas; Straßburger, Maria; Shelest, Ekaterina; Heinekamp, Thorsten; Brakhage, Axel A
2016-10-01
Melanins play a crucial role in defending organisms against external stressors. In several pathogenic fungi, including the human pathogen Aspergillus fumigatus, melanin production was shown to contribute to virulence. A. fumigatus produces two different types of melanins, i.e., pyomelanin and dihydroxynaphthalene (DHN)-melanin. DHN-melanin forms the gray-green pigment characteristic for conidia, playing an important role in immune evasion of conidia and thus for fungal virulence. The DHN-melanin biosynthesis pathway is encoded by six genes organized in a cluster with the polyketide synthase gene pksP as a core element. Here, cross-species promoter analysis identified specific DNA binding sites in the DHN-melanin biosynthesis genes pksP-arp1 intergenic region that can be recognized by bHLH and MADS-box transcriptional regulators. Independent deletion of two genes coding for the transcription factors DevR (bHLH) and RlmA (MADS-box) interfered with sporulation and reduced the expression of the DHN-melanin gene cluster. In vitro and in vivo experiments proved that these transcription factors cooperatively regulate pksP expression acting both as repressors and activators in a mutually exclusive manner. The dual role executed by each regulator depends on specific DNA motifs recognized in the pksP promoter region. © 2016 John Wiley & Sons Ltd.
A resource for functional profiling of noncoding RNA in the yeast Saccharomyces cerevisiae.
Parker, Steven; Fraczek, Marcin G; Wu, Jian; Shamsah, Sara; Manousaki, Alkisti; Dungrattanalert, Kobchai; de Almeida, Rogerio Alves; Estrada-Rivadeneyra, Diego; Omara, Walid; Delneri, Daniela; O'Keefe, Raymond T
2017-08-01
Eukaryotic genomes are extensively transcribed, generating many different RNAs with no known function. We have constructed 1502 molecular barcoded ncRNA gene deletion strains encompassing 443 ncRNAs in the yeast Saccharomyces cerevisiae as tools for ncRNA functional analysis. This resource includes deletions of small nuclear RNAs (snRNAs), transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), and other annotated ncRNAs as well as the more recently identified stable unannotated transcripts (SUTs) and cryptic unstable transcripts (CUTs) whose functions are largely unknown. Specifically, deletions have been constructed for ncRNAs found in the intergenic regions, not overlapping genes or their promoters (i.e., at least 200 bp minimum distance from the closest gene start codon). The deletion strains carry molecular barcodes designed to be complementary with the protein gene deletion collection enabling parallel analysis experiments. These strains will be useful for the numerous genomic and molecular techniques that utilize deletion strains, including genome-wide phenotypic screens under different growth conditions, pooled chemogenomic screens with drugs or chemicals, synthetic genetic array analysis to uncover novel genetic interactions, and synthetic dosage lethality screens to analyze gene dosage. Overall, we created a valuable resource for the RNA community and for future ncRNA research. © 2017 Parker et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.