Science.gov

Sample records for interictal brain spect

  1. Interictal photosensitivity associates with altered brain structure in patients with episodic migraine.

    PubMed

    Chong, Catherine D; Starling, Amaal J; Schwedt, Todd J

    2016-05-01

    Migraine attacks manifest with hypersensitivities to light, sound, touch and odor. Some people with migraine have photosensitivity between migraine attacks, suggesting persistent alterations in the integrity of brain regions that process light. Although functional neuroimaging studies have shown visual stimulus induced "hyperactivation" of visual cortex regions in migraineurs between attacks, whether photosensitivity is associated with alterations in brain structure is unknown. Levels of photosensitivity were evaluated using the Photosensitivity Assessment Questionnaire in 48 interictal migraineurs and 48 healthy controls. Vertex-by-vertex measurements of cortical thickness were assessed in 28 people with episodic migraine who had interictal photosensitivity (mean age = 35.0 years, SD = 12.1) and 20 episodic migraine patients without symptoms of interictal photosensitivity (mean age = 36.0 years, SD = 11.4) using a general linear model design. Migraineurs have greater levels of interictal photosensitivity relative to healthy controls. Relative to migraineurs without interictal photosensitivity, migraineurs with interictal photosensitivity have thicker cortex in several brain areas including the right lingual, isthmus cingulate and pericalcarine regions, and the left precentral, postcentral and supramarginal regions. Episodic migraineurs with interictal photosensitivity have greater cortical thickness in the right parietal-occipital and left fronto-parietal regions, suggesting that persistent light sensitivity is associated with underlying structural alterations. © International Headache Society 2015.

  2. Resilience of developing brain networks to interictal epileptiform discharges is associated with cognitive outcome

    PubMed Central

    Cassel, Daniel; Morgan, Benjamin R.; Smith, Mary Lou; Otsubo, Hiroshi; Ochi, Ayako; Taylor, Margot; Rutka, James T.; Snead, O. Carter; Doesburg, Sam

    2014-01-01

    . The association between interictal discharges, network changes and neurocognitive outcomes suggests that it is of clinical importance to suppress discharges to foster more typical brain network development in children with focal epilepsy. PMID:25104094

  3. Brain SPECT quantitation in clinical diagnosis

    SciTech Connect

    Hellman, R.S.

    1991-12-31

    Methods to quantitate SPECT data for clinical diagnosis should be chosen so that they take advantage of the lessons learned from PET data. This is particularly important because current SPECT high-resolution brain imaging systems now produce images that are similar in resolution to those generated by the last generation PET equipment (9 mm FWHM). These high-resolution SPECT systems make quantitation of SPECT more problematic than earlier. Methodology validated on low-resolution SPECT systems may no longer be valid for data obtained with the newer SPECT systems. For example, in patients with dementia, the ratio of parietal to cerebellar activity often was studied. However, with new instruments, the cerebellum appears very different: discrete regions are more apparent. The large cerebellar regions usually used with older instrumentation are of an inappropriate size for the new equipment. The normal range for any method of quantitation determined using older equipment probably changes for data obtained with new equipment. It is not surprising that Kim et al. in their simulations demonstrated that because of the finite resolution of imaging systems, the ability to measure pure function is limited, with {open_quotes}anatomy{close_quotes} and {open_quotes}function{close_quotes} coupled in a {open_quotes}complex nonlinear way{close_quotes}. 11 refs.

  4. Rodent brain imaging with SPECT/CT

    SciTech Connect

    Seo, Youngho; Gao, D.-W.; Hasegawa, Bruce H.; Dae, Michael W.; Franc, Benjamin L.

    2007-04-15

    We evaluated methods of imaging rat models of stroke in vivo using a single photon emission computed tomography (SPECT) system dedicated to small animal imaging (X-SPECT{sup TM}, Gamma Medica-Ideas, Northridge, CA). An animal model of ischemic stroke was developed for in vivo SPECT/CT imaging using the middle cerebral artery occlusion (MCAO) technique. The presence of cerebral ischemia was verified in ex vivo studies using triphenyltetrazolium chloride (TTC) staining. In vivo radionuclide imaging of cerebral blood flow was performed in rats following MCAO using dynamic planar imaging of {sup 99m}Tc-exametazime with parallel hole collimation. This was followed immediately by in vivo radionuclide imaging of cerebral blood flow with {sup 99m}Tc-exametazime in the same animals using 1-mm pinhole SPECT. Correlated computed tomography imaging was performed to localize radiopharmaceutical uptake. The animals were allowed to recover and ex vivo autoradiography was performed with separate administration of {sup 99m}Tc-exametazime. Time activity curve of {sup 99m}Tc-exametazime showed that the radiopharmaceutical uptake could be maintained for over 9 min. The activity would be expected to be relatively stable for a much longer period, although the data were only obtained for 9 min. TTC staining revealed sizable infarcts by visual observation of inexistence of TTC stain in infracted tissues of MCAO rat brains. In vivo SPECT imaging showed cerebral blood flow deficit in the MCAO model, and the in vivo imaging result was confirmed with ex vivo autoradiography. We have demonstrated a capability of imaging regions of cerebral blood flow deficit in MCAO rat brains in vivo using a pinhole SPECT dedicated to small animal imaging.

  5. Correspondence between large-scale ictal and interictal epileptic networks revealed by single photon emission computed tomography (SPECT) and electroencephalography (EEG)-functional magnetic resonance imaging (fMRI).

    PubMed

    Tousseyn, Simon; Dupont, Patrick; Goffin, Karolien; Sunaert, Stefan; Van Paesschen, Wim

    2015-03-01

    Epilepsy is increasingly recognized as a network disorder, but the spatial relationship between ictal and interictal networks is still largely unexplored. In this work, we compared hemodynamic changes related to seizures and interictal spikes on a whole brain scale. Twenty-eight patients with refractory focal epilepsy (14 temporal and 14 extratemporal lobe) underwent both subtraction ictal single photon emission computed tomography (SPECT) coregistered to magnetic resonance imaging (MRI) (SISCOM) and spike-related electroencephalography (EEG-functional MRI (fMRI). SISCOM visualized relative perfusion changes during seizures, whereas EEG-fMRI mapped blood oxygen level-dependent (BOLD) changes related to spikes. Similarity between statistical maps of both modalities was analyzed per patient using the following two measures: (1) correlation between unthresholded statistical maps (Pearson's correlation coefficient) and (2) overlap between thresholded images (Dice coefficient). Overlap was evaluated at a regional level, for hyperperfusions and activations and for hypoperfusions and deactivations separately, using different thresholds. Nonparametric permutation tests were applied to assess statistical significance (p ≤ 0.05). We found significant and positive correlations between hemodynamic changes related to seizures and spikes in 27 (96%) of 28 cases (median correlation coefficient 0.29 [range -0.12 to 0.62]). In 20 (71%) of 28 cases, spatial overlap between hyperperfusion on SISCOM and activation on EEG-fMRI was significantly larger than expected by chance. Congruent changes were not restricted to the territory of the presumed epileptogenic zone, but could be seen at distant sites (e.g., cerebellum and basal ganglia). Overlap between ictal hypoperfusion and interictal deactivation was statistically significant in 22 (79%) of 28 patients. Despite the high rate of congruence, discrepancies were observed for both modalities. We conclude that hemodynamic changes

  6. Nonlinear analyses of interictal EEG map the brain interdependences in human focal epilepsy

    NASA Astrophysics Data System (ADS)

    Quyen, Michel Le Van; Martinerie, Jacques; Adam, Claude; Varela, Francisco J.

    1999-03-01

    The degree of interdependence between intracranial electroencephalographic (EEG) channels was investigated in epileptic patients with temporal lobe seizures during interictal (between seizures) periods. With a novel method to characterize nonlinear cross-predictability, that is, the predictability of one channel using another channel as data base, we demonstrated here a possibility to extract information on the spatio-temporal organization of interactions between multichannel recording sites. This method determines whether two channels contain common activity, and often, whether one channel contains activity induced by the activity of the other channel. In particular, the technique and the comparison with surrogate data demonstrated that transient large-scale nonlinear entrainments by the epileptogenic region can be identified, this with or without epileptic activity. Furthermore, these recurrent activities related with the epileptic foci occurred in well-defined spatio-temporal patterns. This suggests that the epileptogenic region can exhibit very subtle influences on other brain regions during an interictal period and raises the possibility that the cross-predictability analysis of interictal data may be used as a significant aid in locating epileptogenic foci.

  7. No abnormalities of intrinsic brain connectivity in the interictal phase of migraine with aura.

    PubMed

    Hougaard, A; Amin, F M; Magon, S; Sprenger, T; Rostrup, E; Ashina, M

    2015-04-01

    Functional neuroimaging studies have shown hyperresponsiveness of cortical areas to visual stimuli in migraine patients with aura outside of attacks. This may be a key feature in the initiation of aura episodes and possibly also migraine headache attacks. It is unknown if cortical dysfunction is present at rest, i.e. in the absence of any external stimuli. Functional magnetic resonance imaging is a powerful technique for evaluating resting state functional connectivity, i.e. coherence of brain activity across cerebral areas. The objective of this study was to investigate resting-state functional brain connectivity in migraineurs with aura outside of attacks using functional magnetic resonance imaging. Forty patients suffering from migraine with visual aura and 40 individually age and gender matched healthy controls with no history or family history of migraine were investigated. Following advanced denoising, the data were analyzed both in a hypothesis-driven fashion, testing for abnormalities involving 27 different brain areas of potential relevance to migraine with aura including the cortical visual areas, the amygdala and peri-aqueductal grey matter, and in a data-driven exploratory fashion (dual regression) in order to reveal any possible between-group differences of resting state networks. Age, gender, attack frequency and disease duration were included as nuisance variables. No differences of functional connectivity were found between patients and controls. The previously reported increased cortical hyperresponsivity in the interictal phase of migraine with aura is unlikely to be caused by abnormalities of intrinsic brain connectivity. The interictal migraine aura brain may be abnormally functioning only during exposure to external stimuli. © 2015 EAN.

  8. Perfusion SPECT, SISCOM and PET (18)F-FDG in the assessment of drug- refractory epilepsy patients candidates for epilepsy surgery.

    PubMed

    Suárez-Piñera, M; Mestre-Fusco, A; Ley, M; González, S; Medrano, S; Principe, A; Mojal, S; Conesa, G; Rocamora, R

    2015-01-01

    Brain perfusion SPECT (ictal-interictal), SPECT images and subtraction ictal SPECT coregistered to MRI (SISCOM) and (18)F-FDG-PET (interictal), play an important role in the pre-surgical diagnosis of patients with medically refractory epilepsy. This study aimed to establish: the reproducibility of visual ictal-interictal SPECT and SISCOM analysis altogether with the capacity of SPECT, SISCOM and PET to determine the epileptogenic zone. (99m)Tc-HMPAO SPECT ictal-interictal and SISCOM (Analyze 7.0) were performed on 47 refractory epilepsy patients (24 F, 19-60 yrs). In 13 patients, SISCOM was also performed using a new program (Focus DET). Ictal-interictal SPECT and SISCOM images were analysed independently by two nuclear medicine physicians (observer 1 and 2). Kappa concordance coefficient was used to evaluate the reproducibility. In sixteen patients, SPECT, SISCOM and PET findings were compared with the resected area during the surgery, and surgical outcome using Engel scale or with the stereo EEG-(SEEG). The ictal-interictal SPECT interobserver agreement was 91%, Kappa index 0.86, SISCOM (Analyze 7.0) interobserver agreement percentage was 82%, Kappa index 0.80, Analyze 7.0 showed a higher inconclusive results than visual SPECT analysis. SISCOM FocusDET interobserver agreement was 92%, Kappa index 0.87, with lower inconclusive results than Analyze 7.0. SPECT, SISCOM and PET combined findings identified 87% seizure onset zone: 79% temporal, 26% parieto-temporal and 7% frontal. Ictal-interictal SPECT and SISCOM showed a high reproducibility in this sample of patients with drug-refractory epilepsy. SPECT,SISCOM and PET combined findings improved detection of epileptogenic zone in comparison with the individual assessment. Copyright © 2015 Elsevier España, S.L.U. and SEMNIM. All rights reserved.

  9. 3D quantitative analysis of brain SPECT images

    NASA Astrophysics Data System (ADS)

    Loncaric, Sven; Ceskovic, Ivan; Petrovic, Ratimir; Loncaric, Srecko

    2001-07-01

    The main purpose of this work is to develop a computer-based technique for quantitative analysis of 3-D brain images obtained by single photon emission computed tomography (SPECT). In particular, the volume and location of ischemic lesion and penumbra is important for early diagnosis and treatment of infracted regions of the brain. SPECT imaging is typically used as diagnostic tool to assess the size and location of the ischemic lesion. The segmentation method presented in this paper utilizes a 3-D deformable model in order to determine size and location of the regions of interest. The evolution of the model is computed using a level-set implementation of the algorithm. In addition to 3-D deformable model the method utilizes edge detection and region growing for realization of a pre-processing. Initial experimental results have shown that the method is useful for SPECT image analysis.

  10. Interictal Electroencephalography (EEG) Findings in Children with Epilepsy and Bilateral Brain Lesions on Magnetic Resonance Imaging (MRI).

    PubMed

    Zubcevic, Smail; Milos, Maja; Catibusic, Feriha; Uzicanin, Sajra; Krdzalic, Belma

    2015-12-01

    Neuroimaging procedures and electroencephalography (EEG) are basic parts of investigation of patients with epilepsies. The aim is to try to assess relationship between bilaterally localized brain lesions found in routine management of children with newly diagnosed epilepsy and their interictal EEG findings. Total amount of 68 patients filled criteria for inclusion in the study that was performed at Neuropediatrics Department, Pediatric Hospital, University Clinical Center Sarajevo, or its outpatient clinic. There were 33 girls (48,5%) and 35 boys (51,5%). Average age at diagnosis of epilepsy was 3,5 years. Both neurological and neuropsychological examination in the moment of making diagnosis of epilepsy was normal in 27 (39,7%) patients, and showed some kind of delay or other neurological finding in 41 (60,3%). Brain MRI showed lesions that can be related to antenatal or perinatal events in most of the patients (ventricular dilation in 30,9%, delayed myelination and post-hypoxic changes in 27,9%). More than half of patients (55,9%) showed bilateral interictal epileptiform discharges on their EEGs, and further 14,7% had other kinds of bilateral abnormalities. Frequency of bilateral epileptic discharges showed statistically significant predominance on level of p<0,05. Cross tabulation between specific types of bilateral brain MRI lesions and EEG finding did not reveal significant type of EEG for assessed brain lesions. We conclude that there exists relationship between bilaterally localized brain MRI lesions and interictal bilateral epileptiform or nonspecific EEG findings in children with newly diagnosed epilepsies. These data are suggesting that in cases when they do not correlate there is a need for further investigation of seizure etiology.

  11. In Vivo Dosimetry Of Patients Submitted To Brain Spect Studies

    NASA Astrophysics Data System (ADS)

    Cruz-Cortés, D.; Azorín, J.; Saucedo, V. M.

    2004-09-01

    Single photon emission computed tomography (SPECT) is a diagnosis technique which allows to visualize a three dimensional distribution of a radioactive material in the brain. This technique is used for evaluating the blood flux and the metabolic function of the diverse brain regions and is very useful to diagnostic several pathologies such as Alzheimer disease, tumors, epilepsy brain hemorrhages, etc. The radioactive tracer used is 99mTc-labeled hexamethylpropyleneamineoxime (99mTc-HMPAO). We present the results obtained from measurements performed in the chest, back and skull of patients submitted to brain SPECT studies during two hours using home-made LiF:Mg,Cu,P+PTFE thermoluminescent dosimeters. Results obtained showed that the dose received by the patients during two hours are lower than 0.3 mGy.

  12. Initial experience with SPECT imaging of the brain using I-123 p-iodoamphetamine in focal epilepsy

    SciTech Connect

    LaManna, M.M.; Sussman, N.M.; Harner, R.N.; Kaplan, L.R.; Hershey, B.L.; Bernstein, D.R.; Goldstein, P.; Parker, J.A.; Wolodzko, J.G.; Popky, G.L.

    1989-06-01

    Nineteen patients with complex partial seizures refractory to medical treatment were examined with routine electroencephalography (EEG), video EEG monitoring, computed tomography or magnetic resonance imaging, neuropsychological tests and interictal single photon emission computed tomography (SPECT) with I-123 iodoamphetamine (INT). In 18 patients, SPECT identified areas of focal reduction in tracer uptake that correlated with the epileptogenic focus identified on the EEG. In addition, SPECT disclosed other areas of neurologic dysfunction as elicited on neuropsychological tests. Thus, IMP SPECT is a useful tool for localizing epileptogenic foci and their associated dynamic deficits.

  13. Collimator design for a multipinhole brain SPECT insert for MRI.

    PubMed

    Van Audenhaege, Karen; Van Holen, Roel; Vanhove, Christian; Vandenberghe, Stefaan

    2015-11-01

    Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that can operate inside a clinical MRI. The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations show sufficient axial

  14. Collimator design for a multipinhole brain SPECT insert for MRI

    SciTech Connect

    Van Audenhaege, Karen; Van Holen, Roel; Vanhove, Christian; Vandenberghe, Stefaan

    2015-11-15

    Purpose: Brain single photon emission computed tomography (SPECT) imaging is an important clinical tool, with unique tracers for studying neurological diseases. Nowadays, most commercial SPECT systems are combined with x-ray computed tomography (CT) in so-called SPECT/CT systems to obtain an anatomical background for the functional information. However, while CT images have a high spatial resolution, they have a low soft-tissue contrast, which is an important disadvantage for brain imaging. Magnetic resonance imaging (MRI), on the other hand, has a very high soft-tissue contrast and does not involve extra ionizing radiation. Therefore, the authors designed a brain SPECT insert that can operate inside a clinical MRI. Methods: The authors designed and simulated a compact stationary multipinhole SPECT insert based on digital silicon photomultiplier detector modules, which have shown to be MR-compatible and have an excellent intrinsic resolution (0.5 mm) when combined with a monolithic 2 mm thick LYSO crystal. First, the authors optimized the different parameters of the SPECT system to maximize sensitivity for a given target resolution of 7.2 mm in the center of the field-of-view, given the spatial constraints of the MR system. Second, the authors performed noiseless simulations of two multipinhole configurations to evaluate sampling and reconstructed resolution. Finally, the authors performed Monte Carlo simulations and compared the SPECT insert with a clinical system with ultrahigh-resolution (UHR) fan beam collimators, based on contrast-to-noise ratio and a visual comparison of a Hoffman phantom with a 9 mm cold lesion. Results: The optimization resulted in a stationary multipinhole system with a collimator radius of 150.2 mm and a detector radius of 172.67 mm, which corresponds to four rings of 34 diSPM detector modules. This allows the authors to include eight rings of 24 pinholes, which results in a system volume sensitivity of 395 cps/MBq. Noiseless simulations

  15. Thallium-201 SPECT imaging of brain tumors: Methods and results

    SciTech Connect

    Kim, K.T.; Black, K.L.; Marciano, D.; Mazziotta, J.C.; Guze, B.H.; Grafton, S.; Hawkins, R.A.; Becker, D.P. )

    1990-06-01

    Recent studies suggest that thallium-201 ({sup 201}Tl) planar scans of brain tumors more accurately reflect viable tumor burden than CT, MRI, or radionuclide studies with other single-photon emitting compounds. We have previously reported the utility of {sup 201}Tl SPECT index in distinguishing low- from high-grade gliomas elsewhere. Here we describe the technical considerations of deriving a simple {sup 201}Tl index, based on uptake in the tumor normalized to homologous contralateral tissue, from SPECT images of brain tumors. We evaluated the importance of consistently correcting for tissue attenuation, as it may achieve better lesion discrimination on qualitative inspection, and the methodologic limitations imposed by partial volume effects at the limits of resolution.

  16. Dual-headed SPECT for awake animal brain imaging

    SciTech Connect

    Lee, Seung Joon; Weisenberger, A G; McKisson, J; Goddard Jr, James Samuel; Baba, Justin S; Smith, M F

    2011-01-01

    Abstract- Motion-corrected awake animal imaging is needed for normal-state investigations of models of neurological disease and brain activity. The awake animal brain SPECT/CT system, AwakeSPECT at Johns Hopkins University has in the past used a single gamma camera for imaging. Enhancements have been made by adding a pinhole collimator to the second gamma camera at the opposite side which has been previously equipped parallel hole collimator. Geometry calibration was performed using a custom built quality control phantom containing three Co-57 point sources and applied to the tomographic reconstruction code. Hot-rod phantom scans with Tc-99m were performed to test sensitivity and resolution improvements. The reconstruction results show significant resolution and sensitivity improvements.

  17. Dual-headed SPECT for awake animal brain imaging

    SciTech Connect

    S. Lee, B. Kross, D. Weisenberger, J. McKisson, J.S. Goddard, J.S. Baba, M.S. Smith

    2012-02-01

    Motion-corrected awake animal imaging is needed for normal-state investigations of models of neurological disease and brain activity. The awake animal brain SPECT/CT system, AwakeSPECT at Johns Hopkins University has in the past used a single gamma camera for imaging. Enhancements have been made by adding a pinhole collimator to the second gamma camera at the opposite side which has been previously equipped parallel hole collimator. Geometry calibration was performed using a custom built quality control phantom containing three Co-57 point sources and applied to the tomographic reconstruction code. Hot-rod phantom scans with Tc-99m were performed to test sensitivity and resolution improvements. The reconstruction results show significant resolution and sensitivity improvements.

  18. [Brain SPECT in a case of Wernicke Korsakoff syndrome].

    PubMed

    Hervás-Benito, I; Pérez-Velasco, R

    In this article we report a 44 year old male with chronic alcoholism as antecedent and Wernicke Korsakoff s syndrome, studied with brain CT, MR and SPECT. In this work we review the different conclusion obtained with different studies and in different stages of the chronic alcoholism disease. Although several authors have described impaired frontal blood flow in the Wernicke Korsakoff s syndrome, in our case the parietal, temporal and occipital cortex were the most affected.

  19. Comparison of heterogeneity quantification algorithms for brain SPECT perfusion images

    PubMed Central

    2012-01-01

    Background Several algorithms from the literature were compared with the original random walk (RW) algorithm for brain perfusion heterogeneity quantification purposes. Algorithms are compared on a set of 210 brain single photon emission computed tomography (SPECT) simulations and 40 patient exams. Methods Five algorithms were tested on numerical phantoms. The numerical anthropomorphic Zubal head phantom was used to generate 42 (6 × 7) different brain SPECT simulations. Seven diffuse cortical heterogeneity levels were simulated with an adjustable Gaussian noise function and six focal perfusion defect levels with temporoparietal (TP) defects. The phantoms were successively projected and smoothed with Gaussian kernel with full width at half maximum (FWHM = 5 mm), and Poisson noise was added to the 64 projections. For each simulation, 5 Poisson noise realizations were performed yielding a total of 210 datasets. The SPECT images were reconstructed using filtered black projection (Hamming filter: α = 0.5). The five algorithms or measures tested were the following: the coefficient of variation, the entropy and local entropy, fractal dimension (FD) (box counting and Fourier power spectrum methods), the gray-level co-occurrence matrix (GLCM), and the new RW. The heterogeneity discrimination power was obtained with a linear regression for each algorithm. This regression line is a mean function of the measure of heterogeneity compared to the different diffuse heterogeneity and focal defect levels generated in the phantoms. A greater slope denotes a larger separation between the levels of diffuse heterogeneity. The five algorithms were computed using 40 99mTc-ethyl-cysteinate-dimer (ECD) SPECT images of patients referred for memory impairment. Scans were blindly ranked by two physicians according to the level of heterogeneity, and a consensus was obtained. The rankings obtained by the algorithms were compared with the physicians' consensus ranking. Results The GLCM method

  20. Comparison of heterogeneity quantification algorithms for brain SPECT perfusion images.

    PubMed

    Modzelewski, Romain; Janvresse, Elise; de la Rue, Thierry; Vera, Pierre

    2012-07-20

    Several algorithms from the literature were compared with the original random walk (RW) algorithm for brain perfusion heterogeneity quantification purposes. Algorithms are compared on a set of 210 brain single photon emission computed tomography (SPECT) simulations and 40 patient exams. Five algorithms were tested on numerical phantoms. The numerical anthropomorphic Zubal head phantom was used to generate 42 (6 × 7) different brain SPECT simulations. Seven diffuse cortical heterogeneity levels were simulated with an adjustable Gaussian noise function and six focal perfusion defect levels with temporoparietal (TP) defects. The phantoms were successively projected and smoothed with Gaussian kernel with full width at half maximum (FWHM = 5 mm), and Poisson noise was added to the 64 projections. For each simulation, 5 Poisson noise realizations were performed yielding a total of 210 datasets. The SPECT images were reconstructed using filtered black projection (Hamming filter: α = 0.5).The five algorithms or measures tested were the following: the coefficient of variation, the entropy and local entropy, fractal dimension (FD) (box counting and Fourier power spectrum methods), the gray-level co-occurrence matrix (GLCM), and the new RW.The heterogeneity discrimination power was obtained with a linear regression for each algorithm. This regression line is a mean function of the measure of heterogeneity compared to the different diffuse heterogeneity and focal defect levels generated in the phantoms. A greater slope denotes a larger separation between the levels of diffuse heterogeneity.The five algorithms were computed using 40 99mTc-ethyl-cysteinate-dimer (ECD) SPECT images of patients referred for memory impairment. Scans were blindly ranked by two physicians according to the level of heterogeneity, and a consensus was obtained. The rankings obtained by the algorithms were compared with the physicians' consensus ranking. The GLCM method (slope = 58.5), the fractal

  1. System Integration of FastSPECT III, a Dedicated SPECT Rodent-Brain Imager Based on BazookaSPECT Detector Technology

    PubMed Central

    Miller, Brian W.; Furenlid, Lars R.; Moore, Stephen K.; Barber, H. Bradford; Nagarkar, Vivek V.; Barrett, Harrison H.

    2010-01-01

    FastSPECT III is a stationary, single-photon emission computed tomography (SPECT) imager designed specifically for imaging and studying neurological pathologies in rodent brain, including Alzheimer’s and Parkinsons’s disease. Twenty independent BazookaSPECT [1] gamma-ray detectors acquire projections of a spherical field of view with pinholes selected for desired resolution and sensitivity. Each BazookaSPECT detector comprises a columnar CsI(Tl) scintillator, image-intensifier, optical lens, and fast-frame-rate CCD camera. Data stream back to processing computers via firewire interfaces, and heavy use of graphics processing units (GPUs) ensures that each frame of data is processed in real time to extract the images of individual gamma-ray events. Details of the system design, imaging aperture fabrication methods, and preliminary projection images are presented. PMID:21218137

  2. [Usefulness of SPECT images in helping radiologists understand brain diseases].

    PubMed

    Hayashida, K

    2001-04-01

    Nuclear brain imaging is able to show functional abnormalities of lesions that are not detectable by CT and MR images. The diagnostic keys of nuclear-imaging in terms of clinical usefulness are its early detection of lesions and determination of the efficacy of drug and surgical therapies. In dementic patients, F-18 FDG brain images can be diagnosed as Alzheimer's disease 12 months earlier than is possible on CT and MRI images, and can provide information for effective drug therapy. O-15 water CBF images can predict the effect of Nicholin by assessing transient increases in cerebral blood flow (CBF), thereby facilitating improvement in higher brain functions such as orientation. In stroke patients, brain SPECT images with Tc-99m HMPAO can predict fatal cerebral hemorrhage caused by anti-thrombic therapy by showing the decrease in count ratio (count ratio of infarcted to contralateral area of < 0.34) in the acute phase and identifying disruption of the blood brain barrier by showing hyperfixation in the subacute phase. Brain SPECT with I-123 IMP can also identify "misery" perfused areas resulting from reduced CBF and decreased vasoreactivity in the chronic phase. This criterion is utilized for patient selection for extracranial/intracranial bypass surgery, because patients with areas of poor perfusion might be indicated for such surgery. Since nuclear medicine images can accurately select candidates for drug or surgical therapies, they will be beneficial in reducing Medicare costs as well as in enhancing patients' quality of life as a result of the successful treatment. With the advancement of technology, nuclear medicine units that can simultaneously obtain CT images and can combine functional with anatomical images will provide more useful information for the diagnosis of brain disease.

  3. Robin Hood caught in Wonderland: brain SPECT findings.

    PubMed

    Morland, David; Wolff, Valérie; Dietemann, Jean-Louis; Marescaux, Christian; Namer, Izzie Jacques

    2013-12-01

    We present the case of a 53-year-old woman presenting several episodes of body image distortions, ground deformation illusions, and problems assessing distance in the orthostatic position corresponding to the Alice in Wonderland syndrome. No symptoms were reported when sitting or lying down. She had uncontrolled hypertension, hyperglycemia, hypercholesterolemia, and a history of head trauma. Her condition had been diagnosed with left internal carotid artery dissection 2 years earlier. Brain SPECT with 99mTc-ECD performed after i.v. injection of the radiotracer in supine and in standing positions showed hypoperfusion in the healthy contralateral frontoparietal operculum (Robin Hood syndrome), deteriorating when standing up.

  4. Multipinhole collimator with 20 apertures for a brain SPECT application

    SciTech Connect

    Lee, Tzu-Cheng; Ellin, Justin R.; Shrestha, Uttam; Seo, Youngho; Huang, Qiu; Gullberg, Grant T.

    2014-11-01

    Purpose: Several new technologies for single photon emission computed tomography (SPECT) instrumentation with parallel-hole collimation have been proposed to improve detector sensitivity and signal collection efficiency. Benefits from improved signal efficiency include shorter acquisition times and lower dose requirements. In this paper, the authors show a possibility of over an order of magnitude enhancement in photon detection efficiency (from 7.6 × 10{sup −5} to 1.6 × 10{sup −3}) for dopamine transporter (DaT) imaging of the striatum over the conventional SPECT parallel-hole collimators by use of custom-designed 20 multipinhole (20-MPH) collimators with apertures of 0.75 cm diameter. Methods: Quantifying specific binding ratio (SBR) of {sup 123}I-ioflupane or {sup 123}I-iometopane’s signal at the striatal region is a common brain imaging method to confirm the diagnosis of the Parkinson’s disease. The authors performed imaging of a striatal phantom filled with aqueous solution of I-123 and compared camera recovery ratios of SBR acquired between low-energy high-resolution (LEHR) parallel-hole collimators and 20-MPH collimators. Results: With only two-thirds of total acquisition time (20 min against 30 min), a comparable camera recovery ratio of SBR was achieved using 20-MPH collimators in comparison to that from the LEHR collimator study. Conclusions: Their systematic analyses showed that the 20-MPH collimator could be a promising alternative for the DaT SPECT imaging for brain over the traditional LEHR collimator, which could give both shorter scan time and improved diagnostic accuracy.

  5. Brain SPECT findings of anosognosia in Alzheimer's disease.

    PubMed

    Sedaghat, Fereshteh; Dedousi, Eleni; Baloyannis, Ioannis; Tegos, Thomas; Costa, Vasiliki; Dimitriadis, Athanasios S; Baloyannis, Stavros J

    2010-01-01

    Anosognosia is a common symptom of dementia. The aim of this study was to evaluate the contribution of different regions of the brain to anosognosia in Alzheimer's disease (AD) brains using single photon emission computed tomography (SPECT). Forty-two patients with AD were included in this study. After clinical interviews with the patients and their relatives, the patients were divided into two groups: Anosognosia and No-anosognosia. The patients were studied regarding the severity of dementia. They underwent SPECT with HMPAO and regional cerebral blood flow (rCBF) was measured. Regional CBF significantly differed between Anosognosia and No-anosognosia groups in right prefrontal (P < or = 0.02), right inferior parietal (P < or = 0.00), and right (P < or = 0.01) and left (P < or = 0.01) medial temporal cortex. There was a significant correlation between the severity of dementia and rCBF in medial temporal regions. When comparisons were made between mild and moderate stages separately, the 'right inferior parietal region' was the common region which showed hypoperfusion in both anosognosia subgroups. We conclude that anosognosia may be a reflection of functional impairment in right prefrontal, right frontal and especially right inferior parietal regions in AD.

  6. [Compartment analysis of 123I-IMP brain SPECT].

    PubMed

    Higano, S; Shishido, F; Aizawa, Y; Miura, S; Murakami, M; Inugami, A; Kanno, I; Fujita, H; Uemura, K

    1990-01-01

    To clarify the kinetics of N-isopropyl [123I]p-iodoamphetamine (IMP) in the brain, 2-compartment analysis was applied for brain SPECT with 57-minute dynamic scan in 9 subjects. The model consisted of blood component and brain tissue component. Two transfer rate constants were defined; k1 showed the rate from the blood to the brain tissue, and k2 was that of back diffusion. The late scan was performed 210 minutes after the tracer injection. Suitable k values best fitting to the dynamic data were determined for all regions of interest. Predicted regional cerebral activity at 210 minutes using 57-minute dynamic data was well agreed with measured activity. These showed the kinetics of IMP in the brain was well described by the 2-compartment model. The partition coefficient (k1/k2 ratio) was as large as about 35, and almost constant in the various brain structures including hypoperfused areas. These findings indicated that the initial IMP images reflected the reasonable CBF distribution, which gave relatively reliable CBF values even if using microsphere model.

  7. 99mTc-HMPAO perfusion SPECT/CT in the diagnosis of brain death.

    PubMed

    Derlin, Thorsten; Weiberg, Desiree

    2016-01-01

    This report describes a case of brain death (BD) evaluated by 99mTc-hexamethylpropylene amine oxime (HMPAO) single photon emission tomography/computed tomography (SPECT/CT). A 16-year-old boy with a history of rapid unexpected brain herniation due to pilocytic astrocytoma underwent 99mTc-HMPAO SPECT/CT for evaluation of brain death in the context of organ donation. Flow images demonstrated lack of blood flow to the brain, and delayed images showed absence of demonstrable radionuclide activity within the brain. SPECT/CT confirmed absence of tracer accumulation, and was deemed helpful for evaluation of the brain stem. 99mTc-HMPAO SPECT/CT is a valuable tool enabling imaging-based confirmation of BD.

  8. Compensation for non-uniform attenuation in SPECT brain imaging

    SciTech Connect

    Glick, S.J.; King, M.A.; Pan, T.S.

    1994-05-01

    Photon attenuation is a major limitation in performing quantitative SPECT brain imaging. A number of methods have been proposed for compensation of attenuation in regions of the body that can be modelled as a uniform attenuator. The magnitude of the errors introduced into reconstructed brain images by assuming the head to be a uniform attenuator are uncertain (the skull, sinus cavities and head holder all have different attenuation properties than brain tissue). Brain imaging is unique in that the radioisotope, for the most part, is taken up within a uniform attenuation medium (i.e., brain tissue) which is surrounded by bone (i.e., the skull) of a different density. Using this observation, Bellini`s method for attenuation compensation (which is an exact solution to the exponential Radon transform) has been modified to account for the different attenuation properties of the skull. To test this modified Bellini method, a simple mathematical phantom was designed to model the brain and a skull of varying thickness less than 7.5 mm. To model brain imaging with Tc-99m HMPAO, the attenuation coefficient of the brain tissue and skull were set to 0.15 cm{sup -1} and 0.22 cm{sup -1} respectively. A ray-driven projector which accounted for non-uniform attenuation was used to simulate projection data from 128 views. The detector response and scatter were not simulated. It was observed that reconstructions processed with uniform attenuation compensation (i.e., where it was assumed that the brain tissue and the skull had the same attenuation coefficient) provided errors of 6-20%, whereas those processed with the non-uniform Bellini algorithm were biased by only 0-5%.

  9. Automated coregistration and statistical analyses of SPECT brain images

    SciTech Connect

    Gong, W.; Devous, M.D.

    1994-05-01

    Statistical analyses of SPECT image data often require highly accurate image coregistration. Several image coregistration algorithms have been developed. The Pellizari algorithm (PA) uses the Powell technique to estimate transformation parameters between the {open_quotes}head{close_quotes} (model) and {open_quotes}hat{close_quotes} (images to be registered). Image normalization and good initial transformation parameters heavily affect the accuracy and speed of convergence of the PA. We have explored various normalization methods and found a simple technique that avoids most artificial edge effects and minimizes blurring of useful edges. We have tested the effects on accuracy and convergence speed of the PA caused by different initial transformation parameters. From these data, a modified PA was integrated into an automated coregistration system for SPECT brain images on the PRISM 3000S under X Windows. The system yields an accuracy of approximately 2 mm between model and registered images, and employs minimal user intervention through a simple graphic user interface. Data are automatically resliced, normalized and coregistered, with the user choosing only the slice range for inclusion and two initial transformation parameters (under computer-aided guidance). Coregistration is accomplished (converges) in approximately 8 min for a 128 x 128 x 128 set of 2 mm{sup 3} voxels. The complete process (editing, reslicing, normalization, coregistration) takes about 20 min. We have also developed automated 3-dimensional parametric images ({open_quotes}t{close_quotes}, {open_quotes}z{close_quotes}, and subtraction images) from coregistered data sets for statistical analyses. Data are compared against a coregistered normal control group (N = 50) distributed in age and gender for matching against subject samples.

  10. GATE simulation of a new design of pinhole SPECT system for small animal brain imaging

    NASA Astrophysics Data System (ADS)

    Uzun Ozsahin, D.; Bläckberg, L.; El Fakhri, G.; Sabet, H.

    2017-01-01

    Small animal SPECT imaging has gained an increased interest over the past decade since it is an excellent tool for developing new drugs and tracers. Therefore, there is a huge effort on the development of cost-effective SPECT detectors with high capabilities. The aim of this study is to simulate the performance characteristics of new designs for a cost effective, stationary SPECT system dedicated to small animal imaging with a focus on mice brain. The conceptual design of this SPECT system platform, Stationary Small Animal SSA-SPECT, is to use many pixelated CsI:TI detector modules with 0.4 mm × 0.4 mm pixels in order to achieve excellent intrinsic detector resolution where each module is backed by a single pinhole collimator with 0.3 mm hole diameter. In this work, we present the simulation results of four variations of the SSA-SPECT platform where the number of detector modules and FOV size is varied while keeping the detector size and collimator hole size constant. Using the NEMA NU-4 protocol, we performed spatial resolution, sensitivity, image quality simulations followed by a Derenzo-like phantom evaluation. The results suggest that all four SSA-SPECT systems can provide better than 0.063% system sensitivity and < 1.5 mm FWHM spatial resolution without resolution recovery or other correction techniques. Specifically, SSA-SPECT-1 showed a system sensitivity of 0.09% in combination with 1.1 mm FWHM spatial resolution.

  11. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy

    NASA Astrophysics Data System (ADS)

    Grova, C.; Jannin, P.; Biraben, A.; Buvat, I.; Benali, H.; Bernard, A. M.; Scarabin, J. M.; Gibaud, B.

    2003-12-01

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within

  12. A methodology for generating normal and pathological brain perfusion SPECT images for evaluation of MRI/SPECT fusion methods: application in epilepsy.

    PubMed

    Grova, C; Jannin, P; Biraben, A; Buvat, I; Benali, H; Bernard, A M; Scarabin, J M; Gibaud, B

    2003-12-21

    Quantitative evaluation of brain MRI/SPECT fusion methods for normal and in particular pathological datasets is difficult, due to the frequent lack of relevant ground truth. We propose a methodology to generate MRI and SPECT datasets dedicated to the evaluation of MRI/SPECT fusion methods and illustrate the method when dealing with ictal SPECT. The method consists in generating normal or pathological SPECT data perfectly aligned with a high-resolution 3D T1-weighted MRI using realistic Monte Carlo simulations that closely reproduce the response of a SPECT imaging system. Anatomical input data for the SPECT simulations are obtained from this 3D T1-weighted MRI, while functional input data result from an inter-individual analysis of anatomically standardized SPECT data. The method makes it possible to control the 'brain perfusion' function by proposing a theoretical model of brain perfusion from measurements performed on real SPECT images. Our method provides an absolute gold standard for assessing MRI/SPECT registration method accuracy since, by construction, the SPECT data are perfectly registered with the MRI data. The proposed methodology has been applied to create a theoretical model of normal brain perfusion and ictal brain perfusion characteristic of mesial temporal lobe epilepsy. To approach realistic and unbiased perfusion models, real SPECT data were corrected for uniform attenuation, scatter and partial volume effect. An anatomic standardization was used to account for anatomic variability between subjects. Realistic simulations of normal and ictal SPECT deduced from these perfusion models are presented. The comparison of real and simulated SPECT images showed relative differences in regional activity concentration of less than 20% in most anatomical structures, for both normal and ictal data, suggesting realistic models of perfusion distributions for evaluation purposes. Inter-hemispheric asymmetry coefficients measured on simulated data were found within

  13. [Value of thallium 201-SPECT in typing brain space-occupying lesions].

    PubMed

    Martínez del Valle Torres, M D; Gómez Rio, M; Rodríguez Fernández, A; Sabatel Hernandez, G; Ortega Lozano, S; Ramos Font, C; Bellon Guardia, M; López Ramírez, E; Llamas Elvira, J M

    2004-01-01

    This study was designed to assess the diagnostic accuracy of single photon emission computed tomography with Tl-201 (SPECT Tl-201) to establish the tumoral or non-tumoral nature of brain space occupying lesions in comparison with usual diagnostic techniques. The study population consisted of 37 patients, 24 men (64.9 %) and 13 women (35.1 %), mean age 48 +/- 16 years. After establishing the clinical and radiological diagnosis of brain lesion, all patients underwent SPECT Tl-201, evaluating it only by subjective analysis and blinded to neuroestructural techniques. After surgical resection all patients were evaluated anatomopathologically to establish the histologic nature. The sensitivity of SPECT Tl-201 (0.87) was higher than standard neuroimaging techniques (0.78). Specificity (0.43), positive (0.87) and negative (0.43) predictive values of SPECT were similar to neuroestructural procedures (MRI and CT scan) with 0.43, 0.82 and 0.38 values. Tumoral disease prevalence was 0.81. Neuroestructural procedures were non-conclusive in 18.9 % of the studies. No non-conclusive results were obtained with SPECT Tl-201. SPECT Tl-201 is a diagnostic procedure of high sensitivity to establish the tumoral nature of brain lesions, with poor specificity, similar to structural X-ray techniques.

  14. Interictal brain activity differs in migraine with and without aura: resting state fMRI study.

    PubMed

    Faragó, Péter; Tuka, Bernadett; Tóth, Eszter; Szabó, Nikoletta; Király, András; Csete, Gergő; Szok, Délia; Tajti, János; Párdutz, Árpád; Vécsei, László; Kincses, Zsigmond Tamás

    2017-12-01

    Migraine is one of the most severe primary headache disorders. The nature of the headache and the associated symptoms during the attack suggest underlying functional alterations in the brain. In this study, we examined amplitude, the resting state fMRI fluctuation in migraineurs with and without aura (MWA, MWoA respectively) and healthy controls. Resting state functional MRI images and T1 high-resolution images were acquired from all participants. For data analysis we compared the groups (MWA-Control, MWA-MWoA, MWoA-Control). The resting state networks were identified by MELODIC. The mean time courses of the networks were identified for each participant for all networks. The time-courses were decomposed into five frequency bands by discrete wavelet decomposition. The amplitude of the frequency-specific activity was compared between groups. Furthermore, the preprocessed resting state images were decomposed by wavelet analysis into five specific frequency bands voxel-wise. The voxel-wise amplitudes were compared between groups by non-parametric permutation test. In the MWA-Control comparison the discrete wavelet decomposition found alterations in the lateral visual network. Higher activity was measured in the MWA group in the highest frequency band (0.16-0.08 Hz). In case of the MWA-MWoA comparison all networks showed higher activity in the 0.08-0.04 Hz frequency range in MWA, and the lateral visual network in in higher frequencies. In MWoA-Control comparison only the default mode network revealed decreased activity in MWoA group in the 0.08-0.04 Hz band. The voxel-wise frequency specific analysis of the amplitudes found higher amplitudes in MWA as compared to MWoA in the in fronto-parietal regions, anterior cingulate cortex and cerebellum. The amplitude of the resting state fMRI activity fluctuation is higher in MWA than in MWoA. These results are in concordance with former studies, which found cortical hyperexcitability in MWA.

  15. Discrepancies in brain perfusion SPECT findings between Tc-99m HMPAO and Tc-99m ECD: evaluation using dynamic SPECT in patients with hyperemia.

    PubMed

    Miyazawa, N; Koizumi, K; Mitsuka, S; Nukui, H

    1998-10-01

    Discrepancies have been reported between the findings of Tc-99m HMPAO and Tc-99m ECD brain perfusion SPECT imaging. This study investigated the discrepancies in the accumulation of these tracers using dynamic SPECT to detect the super early phase of distribution. Thirteen patients with luxury perfusion or high flow states were studied with both dynamic and standard SPECT using Tc-99m HMPAO and Tc-99m ECD within 1-3 days. Standard SPECT showed discrepancies in 6 of 13 patients. Patients with meningioma and cerebral thrombosis had increased accumulation of Tc-99m HMPAO and decreased uptake of Tc-99m ECD. Patients with arteriovenous malformation, subarachnoid hemorrhage, and cavernous angioma had decreased accumulation of both tracers, but to different degrees. Dynamic SPECT showed increased or normal accumulation (i.e., essentially no discrepancy) in the first few minutes. However, Tc-99m HMPAO had a longer retention time than Tc-99m ECD in the ensuing 5-10 minutes. Dynamic SPECT revealed a similar accumulation pattern but different washout rates for the two tracers. Tc-99m HMPAO might be a more suitable tracer to detect high flow states or luxury perfusion because the findings on standard SPECT were more in agreement with those of dynamic SPECT using this tracer.

  16. 5-HT Radioligands for Human Brain Imaging With PET and SPECT

    PubMed Central

    Paterson, Louise M.; Kornum, Birgitte R.; Nutt, David J.; Pike, Victor W.; Knudsen, Gitte M.

    2014-01-01

    The serotonergic system plays a key modulatory role in the brain and is the target for many drug treatments for brain disorders either through reuptake blockade or via interactions at the 14 subtypes of 5-HT receptors. This review provides the history and current status of radioligands used for positron emission tomography (PET) and single photon emission computerized tomography (SPECT) imaging of human brain serotonin (5-HT) receptors, the 5-HT transporter (SERT), and 5-HT synthesis rate. Currently available radioligands for in vivo brain imaging of the 5-HT system in humans include antagonists for the 5-HT1A, 5-HT1B, 5-HT2A, and 5-HT4 receptors, and for SERT. Here we describe the evolution of these radioligands, along with the attempts made to develop radioligands for additional serotonergic targets. We describe the properties needed for a radioligand to become successful and the main caveats. The success of a PET or SPECT radioligand can ultimately be assessed by its frequency of use, its utility in humans, and the number of research sites using it relative to its invention date, and so these aspects are also covered. In conclusion, the development of PET and SPECT radioligands to image serotonergic targets is of high interest, and successful evaluation in humans is leading to invaluable insight into normal and abnormal brain function, emphasizing the need for continued development of both SPECT and PET radioligands for human brain imaging. PMID:21674551

  17. Registration and display of brain SPECT and MRI using external markers.

    PubMed

    Pohjonen, H; Nikkinen, P; Sipilä, O; Launes, J; Salli, E; Salonen, O; Karp, P; Ylä-Jääski, J; Katila, T; Liewendahl, K

    1996-02-01

    Accurate anatomical localisation of abnormalities observed in brain perfusion single-photon emission computed tomography (SPECT) is difficult, but can be improved by correlating data from SPECT and other tomographic imaging modalities. For this purpose we have developed software to register, analyse and display 99mTc-hexamethylpropyleneamine oxime SPECT and 1.0 T MRI of the brain. For registration of SPECT and MRI data external skin markers containing 99mTc (220 kBq) in 50 microliters of coconut butter were used. The software is coded in the C programming language, and the X Window system and the OSF/Motif standards are used for graphics and definition of the user interface. The registration algorithm follows a noniterative least-squares method using singular value decomposition of a 3 x 3 covariance matrix. After registration, the image slices of both data sets are shown at identical tomographic levels. The registration error in phantom studies was on average 4 mm. In the two-dimensional display mode the orthogonal cross-sections of the data sets are displayed side by side. In the three-dimensional mode MRI data are displayed as a surface-shaded 3 D reconstruction and SPECT data as cut planes. The usefulness of this method is demonstrated in patients with cerebral infarcts, brain tumour, herpes simplex encephalitis and epilepsy.

  18. SPECT study of low intensity He-Ne laser intravascular irradiation therapy for brain infarction

    NASA Astrophysics Data System (ADS)

    Xiao, Xue-Chang; Dong, Jia-Zheng; Chu, Xiao-Fan; Jia, Shao-Wei; Liu, Timon C.; Jiao, Jian-Ling; Zheng, Xi-Yuan; Zhou, Ci-Xiong

    2003-12-01

    We used single photon emission computed tomography (SPECT) in brain perfusion imaging to study the changes of regional cerebral blood flow (rCBF) and cerebral function in brain infarction patients treated with intravascular laser irradiation of blood (ILIB). 17 of 35 patients with brain infarction were admitted to be treated by ILIB on the base of standard drug therapy, and SPECT brain perfusion imaging was performed before and after ILIB therapy with self-comparison. The results were analyzed in quantity with brain blood flow function change rate (BFCR%) model. Effect of ILIB during the therapy process in the other 18 patients were also observed. In the 18 patients, SPECT indicated an improvement of rCBF (both in focus and in total brain) and cerebral function after a 30 min-ILIB therapy. And the 17 patients showed an enhancement of total brain rCBF and cerebral function after ILIB therapy in comparison with that before, especially for the focus side of the brain. The enhancement for focus itself was extremely obvious with a higher significant difference (P<0.0001). The mirror regions had no significant change (P>0.05). BFCR% of foci was prominently higher than that of mirror regions (P<0.0001). In conclusion, the ILIB therapy can improve rCBF and cerebral function and activate brain cells of patients with brain infarction. The results denote new evidence of ILIB therapy for those patients with cerebral ischemia.

  19. Automated three-dimensional quantification of myocardial perfusion and brain SPECT.

    PubMed

    Slomka, P J; Radau, P; Hurwitz, G A; Dey, D

    2001-01-01

    To allow automated and objective reading of nuclear medicine tomography, we have developed a set of tools for clinical analysis of myocardial perfusion tomography (PERFIT) and Brain SPECT/PET (BRASS). We exploit algorithms for image registration and use three-dimensional (3D) "normal models" for individual patient comparisons to composite datasets on a "voxel-by-voxel basis" in order to automatically determine the statistically significant abnormalities. A multistage, 3D iterative inter-subject registration of patient images to normal templates is applied, including automated masking of the external activity before final fit. In separate projects, the software has been applied to the analysis of myocardial perfusion SPECT, as well as brain SPECT and PET data. Automatic reading was consistent with visual analysis; it can be applied to the whole spectrum of clinical images, and aid physicians in the daily interpretation of tomographic nuclear medicine images.

  20. Cerebral abnormalities in cocaine abusers: Demonstration by SPECT perfusion brain scintigraphy. Work in progress

    SciTech Connect

    Tumeh, S.S.; Nagel, J.S.; English, R.J.; Moore, M.; Holman, B.L. )

    1990-09-01

    Single photon emission computed tomography (SPECT) perfusion brain scans with iodine-123 isopropyl iodoamphetamine (IMP) were obtained in 12 subjects who acknowledged using cocaine on a sporadic to a daily basis. The route of cocaine administration varied from nasal to intravenous. Concurrent abuse of other drugs was also reported. None of the patients were positive for human immunodeficiency virus. Brain scans demonstrated focal defects in 11 subjects, including seven who were asymptomatic, and no abnormality in one. Among the findings were scattered focal cortical deficits, which were seen in several patients and which ranged in severity from small and few to multiple and large, with a special predilection for the frontal and temporal lobes. No perfusion deficits were seen on I-123 SPECT images in five healthy volunteers. Focal alterations in cerebral perfusion are seen commonly in asymptomatic drug users, and these focal deficits are readily depicted by I-123 IMP SPECT.

  1. Quantitative analysis of L-SPECT system for small animal brain imaging

    NASA Astrophysics Data System (ADS)

    Rahman, Tasneem; Tahtali, Murat; Pickering, Mark R.

    2016-03-01

    This paper aims to investigate the performance of a newly proposed L-SPECT system for small animal brain imaging. The L-SPECT system consists of an array of 100 × 100 micro range diameter pinholes. The proposed detector module has a 48 mm by 48 mm active area and the system is based on a pixelated array of NaI crystals (10×10×10 mm elements) coupled with an array of position sensitive photomultiplier tubes (PSPMTs). The performance of this system was evaluated with pinhole radii of 50 μm, 60 μm and 100 μm. Monte Carlo simulation studies using the Geant4 Application for Tomographic Emission (GATE) software package validate the performance of this novel dual head L-SPECT system where a geometric mouse phantom is used to investigate its performance. All SPECT data were obtained using 120 projection views from 0° to 360° with a 3° step. Slices were reconstructed using conventional filtered back projection (FBP) algorithm. We have evaluated the quality of the images in terms of spatial resolution (FWHM) based on line spread function, the system sensitivity, the point source response function and the image quality. The sensitivity of our newly proposed L- SPECT system was about 4500 cps/μCi at 6 cm along with excellent full width at half-maximum (FWHM) using 50 μm pinhole aperture at several radii of rotation. The analysis results show the combination of excellent spatial resolution and high detection efficiency over an energy range between 20-160 keV. The results demonstrate that SPECT imaging using a pixelated L-SPECT detector module is applicable in a quantitative study of mouse brain imaging.

  2. Brain-stem Listeriosis: A Comparison of SPECT and MRI Findings

    PubMed Central

    Sahin, Sevki; Arisoy, Ayse S.; Topkaya, Aynur E.; Karsidag, Sibel

    2006-01-01

    Abstract and Introduction Abstract Listeria monocytogenes, although uncommon as a cause of illness in the general population, can result in serious illness when it affects pregnant women, neonates, the elderly, and immunocompromised individuals. Typically, it is a food-borne organism. This report describes a case of brain-stem listeriosis in a previously healthy 51-year-old woman. The diagnosis was based on clinical findings, the results of cerebrospinal fluid (CSF) analysis, CSF culture, and magnetic resonance imaging (MRI) findings. MRI demonstrated upper brain stem and cerebellar peduncle involvement. In addition, Tc-99m exametazime (HMPAO)-labeled single photon emission computed tomography (SPECT) of the brain revealed bilateral cerebellar hypoperfusion. Antibiotic therapy resulted in partial clinical recovery after 3 weeks. At the end of 6 months, brain-stem findings had nearly resolved. However, although minimal residual findings were observed on MRI at 6 months, bilateral diffuse cerebellar hypoperfusion remained on Tc-99m HMPAO brain SPECT. PMID:17415328

  3. Brain SPECT can differentiate between essential tremor and early-stage tremor-dominant Parkinson's disease.

    PubMed

    Song, In-Uk; Park, Jeong-Wook; Chung, Sung-Woo; Chung, Yong-An

    2014-09-01

    There are no confirmatory or diagnostic tests or tools to differentiate between essential tremor (ET) and tremor in idiopathic Parkinson's disease (PD). Although a number of imaging studies have indicated that there are differences between ET and PD, the functional imaging study findings are controversial. Therefore, we analyzed regional cerebral blood flow (CBF) by perfusion brain single-photon emission computed tomography (SPECT) to identify differences between ET and tremor-dominant Parkinson's disease (TPD). We recruited 33 patients with TPD, 16 patients with ET, and 33 healthy controls. We compared the severity of tremor symptoms by comparing the Fahn-Tolosa-Marin rating scale (FTM) score and the tremor score from Unified Parkinson's Disease Rating Scale (UPDRS) between TPD and ET patients. Subjects were evaluated by neuropsychological assessments, MRI and perfusion SPECT of the brain. Total FTM score was significantly higher in ET patients than TPD patients. However, there was no significant difference in FTM Part A scores between the two patient groups, while the scores for FTM Part B and C were significantly higher in ET patients than TPD patients. Brain SPECT analysis of the TPD group demonstrated significant hypoperfusion of both the lentiform nucleus and thalamus compared to the ET group. Brain perfusion SPECT may be a useful clinical method to differentiate between TPD and ET even during early-phase PD, because the lentiform nucleus and thalamus show differences in regional perfusion between these two groups during this time period. Additionally, we found evidence of cerebellar dysfunction in both TPT and ET.

  4. Voxel-by-voxel analysis of brain SPECT perfusion in Fibromyalgia

    NASA Astrophysics Data System (ADS)

    Guedj, Eric; Taïeb, David; Cammilleri, Serge; Lussato, David; de Laforte, Catherine; Niboyet, Jean; Mundler, Olivier

    2007-02-01

    We evaluated brain perfusion SPECT at rest, without noxious stiumuli, in a homogeneous group of hyperalgesic FM patients. We performed a voxel-based analysis in comparison to a control group, matched for age and gender. Under such conditions, we made the assumption that significant cerebral perfusion abnormalities could be demonstrated, evidencing altered cerebral processing associated with spontaneous pain in FM patients. The secondary objective was to study the reversibility and the prognostic value of such possible perfusion abnormalities under specific treatment. Eighteen hyperalgesic FM women (mean age 48 yr; range 25-63 yr; ACR criteria) and 10 healthy women matched for age were enrolled in the study. A voxel-by-voxel group analysis was performed using SPM2 ( p<0.05, corrected for multiple comparisons). All brain SPECT were performed before any change was made in therapy in the pain care unit. A second SPECT was performed a month later after specific treatment by Ketamine. Compared to control subjects, we observed individual brain SPECT abnormalities in FM patients, confirmed by SPM2 analysis with hyperperfusion of the somatosensory cortex and hypoperfusion of the frontal, cingulate, medial temporal and cerebellar cortices. We also found that a medial frontal and anterior cingulate hypoperfusions were highly predictive (PPV=83%; NPV=91%) of non-response on Ketamine, and that only responders showed significant modification of brain perfusion, after treatment. In the present study performed without noxious stimuli in hyperalgesic FM patients, we found significant hyperperfusion in regions of the brain known to be involved in sensory dimension of pain processing and significant hypoperfusion in areas assumed to be associated with the affective dimension. As current pharmacological and non-pharmacological therapies act differently on both components of pain, we hypothesize that SPECT could be a valuable and readily available tool to guide individual therapeutic

  5. Brain SPECT imaging within the Talairach reference system: a simple registration algorithm

    NASA Astrophysics Data System (ADS)

    Meunier, Jean; Imbert, Bernard; Janicki, Christian; Soucy, Jean-Paul

    1998-06-01

    An important goal to achieve in order to improve the clinical usefulness of regional cerebral blood flow (rCBF) SPECT studies is to register each brain to a standard anatomical atlas. For this purpose, we propose a simple three steps method. First the mid-sagittal plane is computed based on the left-right symmetry of the brain. Then the AC- PC line (main axis of the Talairach & Tournoux reference system) is obtained from the positions of four landmarks in the mid-sagittal plane. Finally, three linear scaling parameters are determined to adjust the size of the subject brain within the Talairach & Tournoux Atlas. The method was successfully validated with a set of 64 X 64 X 64 SPECT Monte-Carlo simulations of the brain.

  6. Blind deconvolution of human brain SPECT images using a distribution mixture estimation

    NASA Astrophysics Data System (ADS)

    Mignotte, Max; Meunier, Jean

    2000-06-01

    Thanks to its ability to yield functionally-based information, the SPECT imagery technique has become a great help in the diagnostic of cerebrovascular diseases. Nevertheless, due to the imaging process, SPECT images are blurred and consequently their interpretation by the clinician is often difficult. In order to improve the spatial resolution of these images and then to facilitate their interpretation, we propose herein to implement a deconvolution procedure relying on an accurate distribution mixture parameter estimation procedure. Parameters of this distribution mixture are efficiently exploited in order to prevent overfitting of the noisy data or to determine the support of the object to be deconvolved when this one is needed. In this context, we compare the deconvolution results obtained by the Lucy-Richardson method and by the recent blind deconvolution technique called the NAS-RIF algorithm on real and simulated brain SPECT images. The NAS-RIF performs the best and shows significant contrast enhancement with little mottle (noise) amplification.

  7. Pattern of brain blood perfusion in tinnitus patients using technetium-99m SPECT imaging

    PubMed Central

    Mahmoudian, Saeid; Farhadi, Mohammad; Gholami, Saeid; Saddadi, Fariba; Karimian, Ali Reza; Mirzaei, Mohammad; Ghoreyshi, Esmaeel; Ahmadizadeh, Majid; Lenarz, Thomas

    2012-01-01

    Background and Purpose: Tinnitus is associated with an increased activity in central auditory system as demonstrated by neuroimaging studies. Brain perfusion scanning using single photon emission computed tomography (SPECT) was done to understand the pattern of brain blood perfusion of tinnitus subjects and find the areas which are mostly abnormal in these patients. Materials and Methods: A number of 122 patients with tinnitus were enrolled to this cross-sectional study. They underwent SPECT and magnetic resonance imaging (MRI) of brain, and the images were fused to find the regions with abnormal perfusion. Results: SPECT scan results were abnormal in 101 patients (83%). Most patients had bilateral abnormal perfusion (N = 65, 53.3%), and most subjects had abnormality in middle-temporal gyrus (N = 83, 68%) and temporoparietal cortex (N = 46, 37.7%). Patients with multifocal involvement had the least mean age than other 2 groups (patients with no abnormality and unifocal abnormality) (P value = 0.045). Conclusions: Brain blood perfusion pattern differs in patient with tinnitus than others. These patients have brain perfusion abnormality, mostly in auditory gyrus (middle temporal) and associative cortex (temporoparietal cortex). Multifocal abnormalities might be due to more cognitive and emotional brain centers involvement due to tinnitus or more stress and anxiety of tinnitus in the young patients. PMID:23267375

  8. Perfusion brain SPECT in assessing motor improvement after deep brain stimulation in Parkinson's disease.

    PubMed

    Paschali, Anna; Constantoyannis, Constantinos; Angelatou, Fevronia; Vassilakos, Pavlos

    2013-03-01

    High-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) has become an established therapeutic approach for the management of patients with late-stage idiopathic Parkinson's disease (PD). The aim of the present study was to assess regional cerebral blood flow (rCBF) changes related to motor improvement. Twenty-one PD patients underwent two rCBF SPECT studies at rest, once preoperatively in the off-meds state and the other postoperatively (at 6 ± 2 months) in the off medication/on stimulation state. Patients were classified according to the UPDRS and H&Y scale. NeuroGam software was used to register, quantify, and compare two sequential brain SPECT studies of the same patient in order to investigate rCBF changes during STN stimulation in comparison with preoperative rCBF. The relationship between rCBF and UPDRS scores was used as a covariate of interest. Twenty patients showed clinical improvement during the first months after surgery, resulting in a 44 % reduction of the UPDRS motor score. The administered mean daily levodopa dose significantly decreased from 850 ± 108 mg before surgery to 446 ± 188 mg during the off-meds state (p < 0.001, paired t test). At the 6-month postoperative assessment, we noticed rCBF increases in the pre-supplementary motor area (pre-SMA) and the premotor cortex (PMC) (mean rCBF increase = 10.2 %, p < 0.05), the dorsolateral prefrontal cortex and in associative and limbic territories of the frontal cortex (mean rCBF increase = 8.2 %, p > 0.05). A correlation was detected between the improvement in motor scores and the rCBF increase in the pre-SMA and PMC (r = 0.89, p < 0.001). Our study suggests that STN stimulation leads to improvement in neural activity and rCBF increase in higher-order motor cortical areas.

  9. Validation of brain tumour imaging with p-[123I]iodo-L-phenylalanine and SPECT.

    PubMed

    Hellwig, Dirk; Ketter, Ralf; Romeike, Bernd F M; Sell, Nadja; Schaefer, Andrea; Moringlane, Jean R; Kirsch, Carl-Martin; Samnick, Samuel

    2005-09-01

    The aims of this prospective study were to validate single-photon emission computed tomography (SPECT) with p-[(123)I]iodo-L-phenylalanine (IPA) in brain tumours and to evaluate its potential for the characterisation of indeterminate brain lesions. In 45 patients with indeterminate brain lesions or suspected progression of glioma, amino acid uptake was studied using IPA-SPECT and compared with the final diagnosis established by biopsy or serial imaging. After image fusion of IPA-SPECT and magnetic resonance imaging, the presence of tumour was visually determined by two independent observers. IPA uptake was quantified as the ratio between maximum uptake in the suspicious lesion and mean uptake in unaffected brain. Primary brain tumours were present in 35 cases (12 low-grade and 23 high-grade gliomas). Non-neoplastic brain lesions were confirmed in seven cases (three dysplasias, three inflammatory lesions, one lesion after effective therapy). Visual analysis showed a high concordance between the two observers (kappa=0.90, p<0.001), with sensitivity and specificity of 86% and 100% for the discrimination of primary brain tumours and non-neoplastic lesions. At 30 min p.i., IPA uptake in primary brain tumours was higher than that in non-neoplastic lesions (1.70+/-0.36 vs 1.14+/-0.18, p<0.05). Brain metastases showed no increased uptake (1.13+/-0.22, n=3). The persistent retention of IPA in low-grade gliomas without disruption of the blood-brain barrier was visualised up to 24 h p.i. Low-grade and high-grade gliomas showed equivalent IPA uptake (1.72+/-0.37 vs 1.67+/-0.36 at 30 min, p=0.745). IPA shows long and specific retention in gliomas. IPA is a promising and safe radiopharmaceutical for the visualisation of gliomas and the characterisation of indeterminate brain lesions.

  10. Visual and semi-quantitative assessment of brain tumors using (201)Tl-SPECT.

    PubMed

    Nose, Ayumi; Otsuka, Hideki; Nose, Hayato; Otomi, Yoichi; Terazawa, Kaori; Harada, Masafumi

    2013-01-01

    To evaluate the usefulness of (201)Tl-SPECT in differentiating benign from malignant brain tumors. Eighty-eight patients (44 males and 44 females) with 58 high-grade (WHO grade III-IV) and 30 low-grade (WHO grade I-II) tumors were evaluated with (201)Tl-SPECT. (1) Visual assessment was performed by board-certificated radiologists using (201)Tl-SPECT. Tumors were classified in two groups (Tl-positive and Tl-negative) and scored using the five grade evaluation system. Receiver operating characteristic (ROC) analysis was performed in the Tl-positive group. (2) Semi-quantitative assessment involved measurement of early and delayed (201)Tl uptake, and the retention index (RI) was applied as follows: RI=delayed uptake ratio/early uptake ratio. Three combinations of RI using mean and maximum values of the region of interest were calculated. (1) Seventy-four Tl-positive and 14 Tl-negative tumors. The area under the ROC curve (AUC) estimated by three radiologists exceeded a value of 0.7. The value was greater when estimated by the more experienced radiologist. (2) In all RIs, the difference of RI between high-grade tumors and low-grade tumors was statistically significant. A visual and semi-quantitative assessment using (201)Tl-SPECT was found to be useful for differentiating benign from malignant brain tumors.

  11. Thallium SPECT-based stereotactic targeting for brain tumor biopsies. A technical note.

    PubMed

    Hemm, S; Vayssiere, Nathalie; Zanca, Michel; Ravel, Patrice; Coubes, Philippe

    2004-01-01

    MR or CT images acquired under stereotactic conditions are often used to plan and guide brain tumor biopsies. The objective of this study was to design and test a methodology to increase target selection reliability by acquiring stereotactic 201Tl-SPECT data and by integrating them into the surgical planning. The three-headed Philips gamma camera system (Prism 3000) was adapted to stereotactic acquisitions (patient pallet, headholder). A software was developed for the stereotactic target determination based on SPECT images (pixel with the highest metabolic activity inside the tumor). The whole system accuracy was tested with the Elekta phantom adapted to SPECT imaging. The methodology was applied to one brain tumor biopsy. Comparison of the specific phantom coordinates evaluated in SPECT with the theoretical ones did not reveal any significant difference. In this way, our methodology including our homemade software (identification of the stereotactic frame, determination of the pixel with highest metabolic activity within the tumor in the stereotactic coordinate system) was validated. No significant geometric deformations were detected. Clinical feasibility was confirmed in 1 patient with a brain glioma. This study illustrates the feasibility and the accuracy of SPECT acquisitions with the stereotactic Leksell G-frame. The clinical relevance of this methodology is under evaluation. This definition of the target, based on the point with the highest metabolic activity within the tumor, might lead to improved diagnosis in biopsies and patient management. Furthermore, it might prepare the future for therapy aimed at delivering a therapeutic agent within a tumor. Copyright 2004 S. Karger AG, Basel

  12. Brain perfusion SPECT in the mouse: normal pattern according to gender and age.

    PubMed

    Apostolova, Ivayla; Wunder, Andreas; Dirnagl, Ulrich; Michel, Roger; Stemmer, Nina; Lukas, Mathias; Derlin, Thorsten; Gregor-Mamoudou, Betina; Goldschmidt, Jürgen; Brenner, Winfried; Buchert, Ralph

    2012-12-01

    Regional cerebral blood flow (rCBF) is a useful surrogate marker of neuronal activity and a parameter of primary interest in the diagnosis of many diseases. The increasing use of mouse models spawns the demand for in vivo measurement of rCBF in the mouse. Small animal SPECT provides excellent spatial resolution at adequate sensitivity and is therefore a promising tool for imaging the mouse brain. This study evaluates the feasibility of mouse brain perfusion SPECT and assesses the regional pattern of normal Tc-99m-HMPAO uptake and the impact of age and gender. Whole-brain kinetics was compared between Tc-99m-HMPAO and Tc-99m-ECD using rapid dynamic planar scans in 10 mice. Assessment of the regional uptake pattern was restricted to the more suitable tracer, HMPAO. Two HMPAO SPECTs were performed in 18 juvenile mice aged 7.5 ± 1.5weeks, and in the same animals at young adulthood, 19.1 ± 4.0 weeks (nanoSPECT/CTplus, general purpose mouse apertures: 1.2kcps/MBq, 0.7mm FWHM). The 3-D MRI Digital Atlas Database of an adult C57BL/6J mouse brain was used for region-of-interest (ROI) analysis. SPECT images were stereotactically normalized using SPM8 and a custom made, left-right symmetric HMPAO template in atlas space. For testing lateral asymmetry, each SPECT was left-right flipped prior to stereotactical normalization. Flipped and unflipped SPECTs were compared by paired testing. Peak brain uptake was similar for ECD and HMPAO: 1.8 ± 0.2 and 2.1 ± 0.6 %ID (p=0.357). Washout after the peak was much faster for ECD than for HMPAO: 24 ± 7min vs. 4.6 ± 1.7h (p=0.001). The general linear model for repeated measures with gender as an intersubject factor revealed an increase in relative HMPAO uptake with age in the neocortex (p=0.018) and the hippocampus (p=0.012). A decrease was detected in the midbrain (p=0.025). Lateral asymmetry, with HMPAO uptake larger in the left hemisphere, was detected primarily in the neocortex, both at juvenile age (asymmetry index AI=2.7 ± 1

  13. Scatter and attenuation correction for brain SPECT using attenuation distributions inferred from a head atlas.

    PubMed

    Stodilka, R Z; Kemp, B J; Prato, F S; Kertesz, A; Kuhl, D; Nicholson, R L

    2000-09-01

    Sequential transmission scanning (TS)/SPECT is impractical for neurologically impaired patients who are unable to keep their heads motionless for the extended duration of the combined scans. To provide an alternative to TS, we have developed a method of inferring-attenuation distributions (IADs), from SPECT data, using a head atlas and a registration program. The validity of replacing TS with IAD was tested in 10 patients with mild dementia. TS was conducted with each patient using a collimated 99mTc line source and fanbeam collimator; this was followed by hexamethyl propyleneamine oxime-SPECT. IAD was derived by deformably registering the brain component of a digital head atlas to a preliminary SPECT reconstruction and then applying the resulting spatial transformation to the full head atlas. SPECT data were reconstructed with scatter and attenuation correction. Relative regional cerebral blood flow was quantified in 12 threshold-guided anatomic regions of interest, with cerebellar normalization. SPECT reconstructions using IAD were compared with those using TS (which is the "gold standard") in terms of these regions of interest. When we compared all regions of interest across the population, the correlation between IAD-guided and TS-guided SPECT scans was 0.92 (P < 0.0001), whereas the mean absolute difference between the scans was 7.5%. On average, IAD resulted in slight underestimation of relative regional cerebral blood flow; however, this underestimation was statistically significant for only the left frontal and left central sulcus regions (P = 0.001 and 0.002, respectively). Error analysis indicated that approximately 10.0% of the total error was caused by IAD scatter correction, 36.6% was caused by IAD attenuation correction, 27.0% was caused by discrepancies in region-of-interest demarcation from quantitative errors in IAD-guided reconstructions, and 26.5% was caused by patient motion throughout the imaging procedure. SPECT reconstructions guided by IAD

  14. Probabilistic multiobject deformable model for MR/SPECT brain image registration and segmentation

    NASA Astrophysics Data System (ADS)

    Nikou, Christophoros; Heitz, Fabrice; Armspach, Jean-Paul

    1999-05-01

    A probabilistic deformable model for the representation of brain structures is described. The statistically learned deformable model represents the relative location of head (skull and scalp) and brain surfaces in MR/SPECT images pairs and accommodates the significant variability of these anatomical structures across different individuals. To provide a training set, a representative collection of 3D MRI volumes of different patients have first been registered to a reference image. The head and brain surfaces of each volume are parameterized by the amplitudes of the vibration modes of a deformable spherical mesh. For a given MR image in the training set, a vector containing the largest vibration modes describing the head and the brain is created. This random vector is statistically constrained by retaining the most significant variations modes of its Karhunen-Loeve expansion on the training population. By these means, both head and brain surfaces are deformed according to the anatomical variability observed in the training set. Two applications of the probabilistic deformable model are presented: the deformable model-based registration of 3D multimodal (MR/SPECT) brain images and the segmentation of the brain from MRI using the probabilistic constraints embedded in the deformable model. The multi-object deformable model may be considered as a first step towards the development of a general purpose probabilistic anatomical atlas of the brain.

  15. Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI.

    PubMed

    Lewine, Jeffrey David; Davis, John T; Bigler, Erin D; Thoma, Robert; Hill, Dina; Funke, Michael; Sloan, John Henry; Hall, Sandra; Orrison, William W

    2007-01-01

    To determine to what extent magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT), and magnetoencephalography (MEG) can provide objective evidence of brain injury in adult patients with persistent (>1 year) postconcussive symptoms following mild blunt head trauma. A retrospective and blind review of imaging data with respect to the presence of specific somatic, psychiatric, and cognitive complaints. Thirty complete data sets (with MRI, SPECT, MEG, and neuropsychological testing results) were collected between 1994 and 2000 from the MEG programs at the Albuquerque VAMC and the University of Utah. MRI data were evaluated for focal and diffuse structural abnormalities, SPECT data for regions of hypoperfusion, and resting MEG data for abnormal dipolar slow wave activity (DSWA) and epileptiform transients. Structural MRI was abnormal for 4 patients. SPECT showed regions of hypoperfusion in 12 patients, while MEG showed abnormal activity in 19 patients. None of the imaging methods produced findings statistically associated with postconcussive psychiatric symptoms. A significant association was found between basal ganglia hypoperfusion and postconcussive headaches. For patients with cognitive complaints, abnormalities were more likely to be detected by MEG (86%) than either SPECT (40%) or MRI (18%) (P<.01). MEG also revealed significant (P<.01) associations between temporal lobe DSWA and memory problems, parietal DSWA and attention problems, and frontal DSWA and problems in executive function. Functional brain imaging data collected in a resting state can provide objective evidence of brain injury in mild blunt head trauma patients with persistent postconcussive somatic and/or cognitive symptoms. MEG proved to be particularly informative for patients with cognitive symptoms.

  16. Role of auditory brain function assessment by SPECT in cochlear implant side selection.

    PubMed

    Di Nardo, W; Giannantonio, S; Di Giuda, D; De Corso, E; Schinaia, L; Paludetti, G

    2013-02-01

    Pre-surgery evaluation, indications for cochlear implantation and expectations in terms of post-operative functional results remain challenging topics in pre-lingually deaf adults. Our study has the purpose of determining the benefits of Single Photon Emission Tomography (SPECT) assessment in pre-surgical evaluation of pre-lingually deaf adults who are candidates for cochlear implantation. In 7 pre-lingually profoundly deaf patients, brain SPECT was performed at baseline conditions and in bilateral simultaneous multi-frequency acoustic stimulation. Six sagittal tomograms of both temporal cortices were used for semi-quantitative analysis in each patient. Percentage increases in cortical perfusion resulting from auditory stimulation were calculated. The results showed an inter-hemispherical asymmetry of the activation extension and intensity in the stimulated temporal areas. Consistent with the obtained brain activation data, patients were implanted preferring the side that showed higher activation after acoustic stimulus. Considering the increment in auditory perception performances, it was possible to point out a relationship between cortical brain activity shown by SPECT and hearing performances, and, even more significant, a correlation between post-operative functional performances and the activation of the most medial part of the sagittal temporal tomograms, corresponding to medium-high frequencies. In light of these findings, we believe that brain SPECT could be considered in the evaluation of deaf patients candidate for cochlear implantation, and that it plays a major role in functional assessment of the auditory cortex of pre-lingually deaf subjects, even if further studies are necessary to conclusively establish its utility. Further developments of this technique are possible by using trans-tympanic electrical stimulation of the cochlear promontory, which could give the opportunity to study completely deaf patients, whose evaluation is objectively difficult

  17. A Silicon SPECT System for Molecular Imaging of the Mouse Brain.

    PubMed

    Shokouhi, Sepideh; Fritz, Mark A; McDonald, Benjamin S; Durko, Heather L; Furenlid, Lars R; Wilson, Donald W; Peterson, Todd E

    2007-01-01

    We previously demonstrated the feasibility of using silicon double-sided strip detectors (DSSDs) for SPECT imaging of the activity distribution of iodine-125 using a 300-micrometer thick detector. Based on this experience, we now have developed fully customized silicon DSSDs and associated readout electronics with the intent of developing a multi-pinhole SPECT system. Each DSSD has a 60.4 mm × 60.4 mm active area and is 1 mm thick. The strip pitch is 59 micrometers, and the readout of the 1024 strips on each side gives rise to a detector with over one million pixels. Combining four high-resolution DSSDs into a SPECT system offers an unprecedented space-bandwidth product for the imaging of single-photon emitters. The system consists of two camera heads with two silicon detectors stacked one behind the other in each head. The collimator has a focused pinhole system with cylindrical-shaped pinholes that are laser-drilled in a 250 μm tungsten plate. The unique ability to collect projection data at two magnifications simultaneously allows for multiplexed data at high resolution to be combined with lower magnification data with little or no multiplexing. With the current multi-pinhole collimator design, our SPECT system will be capable of offering high spatial resolution, sensitivity and angular sampling for small field-of-view applications, such as molecular imaging of the mouse brain.

  18. Functional brain abnormalities localized in 55 chronic tinnitus patients: fusion of SPECT coincidence imaging and MRI.

    PubMed

    Farhadi, Mohammad; Mahmoudian, Saeid; Saddadi, Fariba; Karimian, Ali Reza; Mirzaee, Mohammad; Ahmadizadeh, Majid; Ghasemikian, Khosro; Gholami, Saeid; Ghoreyshi, Esmaeel; Beyty, Saeid; Shamshiri, Ahmadreza; Madani, Sedighe; Bakaev, Valery; Moradkhani, Seddighe; Raeisali, Gholamreza

    2010-04-01

    Tinnitus is often defined as the perception of sounds or noise in the absence of any external auditory stimuli. The pathophysiology of subjective idiopathic tinnitus remains unclear. The aim of this study was to investigate the functional brain activities and possible involved cerebral areas in subjective idiopathic tinnitus patients by means of single photon emission computerized tomography (SPECT) coincidence imaging, which was fused with magnetic resonance imaging (MRI). In this cross-sectional study, 56 patients (1 subject excluded) with subjective tinnitus and 8 healthy controls were enrolled. After intravenous injection of 5 mCi F18-FDG (fluorodeoxyglucose), all subjects underwent a brain SPECT coincidence scan, which was then superimposed on their MRIs. In the eight regions of interest (middle temporal, inferotemporal, medial temporal, lateral temporal, temporoparietal, frontal, frontoparietal, and parietal areas), the more pronounced values were represented in medial temporal, inferotemporal, and temporoparietal areas, which showed more important proportion of associative auditory cortices in functional attributions of tinnitus than primary auditory cortex. Brain coincidence SPECT scan, when fused on MRI is a valuable technique in the assessment of patients with tinnitus and could show the significant role of different regions of central nervous system in functional attributions of tinnitus.

  19. Functional brain abnormalities localized in 55 chronic tinnitus patients: fusion of SPECT coincidence imaging and MRI

    PubMed Central

    Farhadi, Mohammad; Mahmoudian, Saeid; Saddadi, Fariba; Karimian, Ali Reza; Mirzaee, Mohammad; Ahmadizadeh, Majid; Ghasemikian, Khosro; Gholami, Saeid; Ghoreyshi, Esmaeel; Beyty, Saeid; Shamshiri, Ahmadreza; Madani, Sedighe; Bakaev, Valery; Moradkhani, Seddighe; Raeisali, Gholamreza

    2010-01-01

    Tinnitus is often defined as the perception of sounds or noise in the absence of any external auditory stimuli. The pathophysiology of subjective idiopathic tinnitus remains unclear. The aim of this study was to investigate the functional brain activities and possible involved cerebral areas in subjective idiopathic tinnitus patients by means of single photon emission computerized tomography (SPECT) coincidence imaging, which was fused with magnetic resonance imaging (MRI). In this cross-sectional study, 56 patients (1 subject excluded) with subjective tinnitus and 8 healthy controls were enrolled. After intravenous injection of 5 mCi F18-FDG (fluorodeoxyglucose), all subjects underwent a brain SPECT coincidence scan, which was then superimposed on their MRIs. In the eight regions of interest (middle temporal, inferotemporal, medial temporal, lateral temporal, temporoparietal, frontal, frontoparietal, and parietal areas), the more pronounced values were represented in medial temporal, inferotemporal, and temporoparietal areas, which showed more important proportion of associative auditory cortices in functional attributions of tinnitus than primary auditory cortex. Brain coincidence SPECT scan, when fused on MRI is a valuable technique in the assessment of patients with tinnitus and could show the significant role of different regions of central nervous system in functional attributions of tinnitus. PMID:20068582

  20. Three modality image registration of brain SPECT/CT and MR images for quantitative analysis of dopamine transporter imaging

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Yuzuho; Takeda, Yuta; Hara, Takeshi; Zhou, Xiangrong; Matsusako, Masaki; Tanaka, Yuki; Hosoya, Kazuhiko; Nihei, Tsutomu; Katafuchi, Tetsuro; Fujita, Hiroshi

    2016-03-01

    Important features in Parkinson's disease (PD) are degenerations and losses of dopamine neurons in corpus striatum. 123I-FP-CIT can visualize activities of the dopamine neurons. The activity radio of background to corpus striatum is used for diagnosis of PD and Dementia with Lewy Bodies (DLB). The specific activity can be observed in the corpus striatum on SPECT images, but the location and the shape of the corpus striatum on SPECT images only are often lost because of the low uptake. In contrast, MR images can visualize the locations of the corpus striatum. The purpose of this study was to realize a quantitative image analysis for the SPECT images by using image registration technique with brain MR images that can determine the region of corpus striatum. In this study, the image fusion technique was used to fuse SPECT and MR images by intervening CT image taken by SPECT/CT. The mutual information (MI) for image registration between CT and MR images was used for the registration. Six SPECT/CT and four MR scans of phantom materials are taken by changing the direction. As the results of the image registrations, 16 of 24 combinations were registered within 1.3mm. By applying the approach to 32 clinical SPECT/CT and MR cases, all of the cases were registered within 0.86mm. In conclusions, our registration method has a potential in superimposing MR images on SPECT images.

  1. Localization of spatially distributed brain sources after a tensor-based preprocessing of interictal epileptic EEG data.

    PubMed

    Albera, L; Becker, H; Karfoul, A; Gribonval, R; Kachenoura, A; Bensaid, S; Senhadji, L; Hernandez, A; Merlet, I

    2015-01-01

    This paper addresses the localization of spatially distributed sources from interictal epileptic electroencephalographic data after a tensor-based preprocessing. Justifying the Canonical Polyadic (CP) model of the space-time-frequency and space-time-wave-vector tensors is not an easy task when two or more extended sources have to be localized. On the other hand, the occurrence of several amplitude modulated spikes originating from the same epileptic region can be used to build a space-time-spike tensor from the EEG data. While the CP model of this tensor appears more justified, the exact computation of its loading matrices can be limited by the presence of highly correlated sources or/and a strong background noise. An efficient extended source localization scheme after the tensor-based preprocessing has then to be set up. Different strategies are thus investigated and compared on realistic simulated data: the "disk algorithm" using a precomputed dictionary of circular patches, a standardized Tikhonov regularization and a fused LASSO scheme.

  2. Tl-201 and Tc-99m-Sestamibi SPECT for brain tumor detection: Comparison using MRI coregistration

    SciTech Connect

    Darcourt, J.; Itti, L.; Chang, L.

    1994-05-01

    Tl-201 (Tl) brain SPECT has been validated for the differential diagnosis of high versus low grade gliomas and recurrence versus radiation necrosis. We compared this technique to Tc-99m-Sestamibi (MIBI) SPECT in 9 patients (pts) with brain tumors using MRI coregistration. Pts were injected with 4 mCi of Tl and brain SPECT was performed using a dedicated brain system. This was immediately following by an injection of 20 mCi of MIBI and a brain SPECT using the same camera and with the pt in the same position. Four pts were studied for the diagnosis of radiation necrosis vs. tumor recurrence (2 had biopsy proven recurrence); 5 pts were studied for primary tumor evaluation: 2 meningiomas, 1 oligodendroglioma, 1 low-grade astrocytoma, 1 cysticercosis. Coregistration was performed for every pt by 3D surface fitting of the inner skull MIBI contour to the MRI brain surface extracted automatically. ROIs were drawn on the MRI and applied to the coregistered MIBI and Tl images for tumor to non-tumor ratios T/NT calculations. There was a tight correlation between MIBI and Tl T/NT (r-0.96) and a 1.5 threshold separated radiation necrosis from recurrence and low from high grade primary tumors. Therefore, the data already available on Tl brain tumor imaging can be used with MIBI SPECT with the advantage of a better image quality (2.5 to 4 times more counts).

  3. Functional brain substrate of quality of life in patients with schizophrenia: A brain SPECT multidimensional analysis.

    PubMed

    Faget-Agius, Catherine; Boyer, Laurent; Richieri, Raphaëlle; Auquier, Pascal; Lançon, Christophe; Guedj, Eric

    2016-03-30

    The aim of this study was to investigate the functional brain substrate of quality of life (QoL) in patients with schizophrenia. Participants comprised 130 right-handed patients with schizophrenia who underwent whole-brain single photon emission computed tomography (SPECT) with (99m)Tc-labeled ethylcysteinate dimer ((99m)Tc-ECD) for exploring correlations of regional cerebral blood flow (rCBF) with the eight dimensions score of the Schizophrenia Quality of Life questionnaire (S-QoL 18). A significant positive correlation was found between the global index of the S-QoL 18 and rCBF in the right superior temporal sulcus and between psychological well-being dimension and rCBF in Brodmann area (BA)6, BA8, BA9, and BA10 and between self-esteem dimension and rCBF in striatum and between family relationship dimension and rCBF in BA1, BA2, BA3, BA4, BA8, BA22, BA40, BA42 and BA44 and between relationship with friends dimension and rCBF in BA44 and between physical well-being dimension and rCBF in parahippocampal gyrus, and finally between autonomy dimension and rCBF in cuneus and precuneus. A significant negative correlation was found between resilience dimension and rCBF in precuneus and between sentimental life dimension and rCBF in BA10. Our findings provide neural correlates of QoL. Brain regions involved in cognitions, emotional information processing and social cognition underlie the different QoL dimensions. Copyright © 2016. Published by Elsevier Ireland Ltd.

  4. Cortical neuron loss in post-traumatic higher brain dysfunction using (123)I-iomazenil SPECT.

    PubMed

    Nakagawara, Jyoji; Kamiyama, Kenji; Takahashi, Masaaki; Nakamura, Hirohiko

    2013-01-01

    In patients with higher brain dysfunction (HBD) after mild traumatic brain injury (MTBI), diagnostic imaging of cortical neuron loss in the frontal lobes was studied using SPECT with (123)I-iomazenil (IMZ), as a radioligand for central benzodiazepine receptor (BZR). Statistical imaging analysis using three-dimensional stereotactic surface projections (3D-SSP) for (123)I-IMZ SPECT was performed in 17 patients. In all patients with HBD defined by neuropsychological tests, cortical neuron loss was indicated in the bilateral medial frontal lobes in 14 patients (83 %). A comparison between the group of 17 patients and the normal database demonstrated common areas of cortical neuron loss in the bilateral medial frontal lobes involving the medial frontal gyrus (MFG) and the anterior cingulate gyrus (ACG). In an assessment of cortical neuron loss in the frontal medial cortex using the stereotactic extraction estimation (SEE) method (level 3), significant cortical neuron loss was observed within bilateral MFG in 9 patients and unilateral MFG in 4, and bilateral ACG in 12 and unilateral ACG in 3. Fourteen patients showed significant cortical neuron loss in bilateral MFG or ACG. In patients with MTBI, HBD seemed to correlate with selective cortical neuron loss within the bilateral MFG or ACG where the responsible lesion could be. 3D-SSP and SEE level 3 analysis for (123)I-IMZ SPECT could be valuable for diagnostic imaging of HBD after MTBI.

  5. Brain SPECT guided repetitive transcranial magnetic stimulation (rTMS) in treatment resistant major depressive disorder.

    PubMed

    Jha, Shailesh; Chadda, Rakesh K; Kumar, Nand; Bal, C S

    2016-06-01

    Repetitive transcranial magnetic stimulation (rTMS) has emerged as a potential treatment in treatment resistant major depressive disorder (MDD). However, there is no consensus about the exact site of stimulation for rTMS. Single-photon emission computed tomography (SPECT) offers a potential technique in deciding the site of stimulation. The present study was conducted to assess the difference in outcome of brain SPECT assisted rTMS versus standard protocol of twenty sessions of high frequency rTMS as add on treatment in 20 patients with treatment resistant MDD, given over a period of 4 weeks. Thirteen subjects (group I) received high frequency rTMS over an area of hypoperfusion in the prefrontal cortex, as identified on SPECT, whereas 7 subjects (group II) were administered rTMS in the left dorsoslateral prefrontal cortex (DLPFC) area. Improvement was monitored using standardized instruments. Patients in the group I showed a significantly better response compared to those in the group II. In group I, 46% of the subjects were responders on MADRS, 38% on BDI and 77% on CGI. The parallel figures of responders in Group II were 0% on MADRS, 14% on BDI and 43% on CGI. There were no remitters in the study. No significant untoward side effects were noticed. The study had limitations of a small sample size and non-controlled design, and all the subjects were also receiving the standard antidepressant therapy. Administration of rTMS over brain SPECT specified area of hypoperfusion may have a better clinical outcome compared to the standard protocol.

  6. Evolution of technetium-99m-HMPAO SPECT and brain mapping in a patient presenting with echolalia and palilalia.

    PubMed

    Dierckx, R A; Saerens, J; De Deyn, P P; Verslegers, W; Marien, P; Vandevivere, J

    1991-08-01

    A 78-yr-old woman presented with transient echolalia and palilalia. She had suffered from Parkinson's disease for 2 yr. Routine laboratory examination showed hypotonic hyponatremia, but was otherwise unremarkable. Brain mapping revealed a bifrontal delta focus, more pronounced on the right. Single photon emission computed tomography (SPECT) of the brain with technetium-99m labeled d,l hexamethylpropylene-amine oxime (99mTc-HMPAO), performed during the acute episode showed relative frontoparietal hypoactivity. Brain mapping performed after disappearance of the echolalia and palilalia, which persisted only for 1 day, was normal. By contrast, SPECT findings persisted for more than 3 wk. Features of particular interest in the presented patient are the extensive defects seen on brain SPECT despite the absence of morphologic lesions, the congruent electrophysiologic changes and their temporal relationship with the clinical evolution.

  7. SPECT brain perfusion imaging with Tc-99m ECD: Semi-quantitative regional analysis and database mapping

    SciTech Connect

    Schiepers, C.; Hegge, J.; De Roo, M.

    1994-05-01

    Brain SPECT is a well accepted method for the assessment of brain perfusion in various disorders such as epilepsy, stroke, dementia. A program for handling the tomographic data was developed, using a commercial spreadsheet (Microsoft EXCEL) with a set of macro`s for analysis, graphic display and database management of the final results.

  8. Quantitative I-123-IMP brain SPECT and neuropsychological testing in AIDS dementia

    SciTech Connect

    Kuni, C.C.; Rhame, F.S.; Meier, M.J.; Foehse, M.C.; Loewenson, R.B.; Lee, B.C.; Boudreau, R.J.; duCret, R.P. )

    1991-03-01

    We performed I-123-IMP SPECT brain imaging on seven mildly demented AIDS patients and seven normal subjects. In an attempt to detect and quantitate regions of decreased I-123-IMP uptake, pixel intensity histograms of normalized SPECT images at the basal ganglia level were analyzed for the fraction of pixels in the lowest quartile of the intensity range. This fraction (F) averaged 17.5% (S.D. = 4.6) in the AIDS group and 12.6% (S.D. = 5.1) in the normal group (p less than .05). Six of the AIDS patients underwent neuropsychological testing (NPT). NPT showed the patients to have a variety of mild abnormalities. Regression analysis of NPT scores versus F yielded a correlation coefficient of .80 (p less than .05). We conclude that analysis of I-123-IMP SPECT image pixel intensity distribution is potentially sensitive in detecting abnormalities associated with AIDS dementia and may correlate with the severity of dementia as measured by NPT.

  9. Brain SPECT with short focal-length cone-beam collimation

    SciTech Connect

    Park, Mi-Ae; Moore, Stephen C.; Kijewski, Marie Foley

    2005-07-15

    Single-photon emission-computed tomography (SPECT) imaging of deep brain structures is compromised by loss of photons due to attenuation. We have previously shown that a centrally peaked collimator sensitivity function can compensate for this phenomenon, increasing sensitivity over most of the brain. For dual-head instruments, parallel-hole collimators cannot provide variable sensitivity without simultaneously degrading spatial resolution near the center of the brain; this suggests the use of converging collimators. We have designed collimator pairs for dual-head SPECT systems to increase sensitivity, particularly in the center of the brain, and compared the new collimation approach to existing approaches on the basis of performance in estimating activity concentration of small structures at various locations in the brain. The collimator pairs we evaluated included a cone-beam collimator, for increased sensitivity, and a fan-beam collimator, for data sufficiency. We calculated projections of an ellipsoidal uniform background, with 0.9-cm-radius spherical lesions at several locations in the background. From these, we determined ideal signal-to-noise ratios (SNR{sub CRB}) for estimation of activity concentration within the spheres, based on the Cramer-Rao lower bound on variance. We also reconstructed, by an ordered-subset expectation-maximization (OS-EM) procedure, images of this phantom, as well as of the Zubal brain phantom, to allow visual assessment and to ensure that they were free of artifacts. The best of the collimator pairs evaluated comprised a cone-beam collimator with 20 cm focal length, for which the focal point is inside the brain, and a fan-beam collimator with 40 cm focal length. This pair yielded increased SNR{sub CRB}, compared to the parallel-parallel pair, throughout the imaging volume. The factor by which SNR{sub CRB} increased ranged from 1.1 at the most axially extreme location to 3.5 at the center. The gains in SNR{sub CRB} were relatively

  10. Brain SPECT and transcranial Doppler (TCD) evaluation of the effects of intra-arterial papaverine for cerebral vasospasm

    SciTech Connect

    Lewis, D.H.; Newell, D.W.; Eskridge, J.M.

    1994-05-01

    Cerebral vasospasm (cv) is a common and serious consequence of subarachnoid hemorrhage. Interventional neuroradiologic techniques for treating cv refractory to medical and hemodynamic measures have included transluminal microballoon angioplasty and intra-arterial papaverine infusion (pap). Eight patients (pts) who had symptomatic cv but were not candidates for microballoon angioplasty received pap via arterial catheter. All 8 pts had brain SPECT with Tc-99m HMPAO and 7 had TCD readings before and after treatment. One pt had 2 separate treatments. Total treatments = 9. Results: Of the total of 9 treatments: 5 demonstrated marked improvement in regional cerebral blood flow on SPECT in the vascular territories that were ischemic, 3 showed mild to moderate improvement of blood flow, and 1 was unchanged. The pt that did not improve on SPECT died due to cardiorespiratory problems but remained comatose without neurologic improvement after the treatment. The other 8 had either prompt clinical improvement or modestly delayed improvement due to concomitant hydrocephalus. infection, recurrent vasospasm or other intervening medical problems. TCD readings in the treated vessels showed improved (lower) velocities that agreed with SPECT improvement after 4 intra-arterial pap treatments. There were 4 discrepancies of SPECT and TCD: 1 with rising TCD velocity in the mild cv range in the treated vessel that demonstrated SPECT improvement; 1 with unchanged velocity in the moderate cv range that showed SPECT improvement; 1 that showed lower velocity in the moderate cv range while the SPECT was unchanged; and 1 that had normal TCD velocities before and after treatment but high pulsatility indices on Doppler (which are characteristic of either elevated intra-cranial pressure or distal vessel disease) who had mild to moderate improvement of blood flow on SPECT after treatment.

  11. Clinical Utility of SPECT Neuroimaging in the Diagnosis and Treatment of Traumatic Brain Injury: A Systematic Review

    PubMed Central

    Raji, Cyrus A.; Tarzwell, Robert; Pavel, Dan; Schneider, Howard; Uszler, Michael; Thornton, John; van Lierop, Muriel; Cohen, Phil; Amen, Daniel G.; Henderson, Theodore

    2014-01-01

    Purpose This systematic review evaluated the clinical utility of single photon emission computed tomography (SPECT) in traumatic brain injury (TBI). Methods After defining a PICO Statement (Population, Intervention, Comparison and Outcome Statement), PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) criteria were applied to identify 1600 articles. After screening, 374 articles were eligible for review. Inclusion for review was focus on SPECT in the setting of mild, moderate, or severe TBI with cerebral lobar specificity of SPECT findings. Other inclusion criteria were comparison modalities in the same subjects and articles in English. Foreign language articles, SPECT studies that did not include comparison modalities, and case reports were not included for review. Results We identified 19 longitudinal and 52 cross-sectional studies meeting inclusion criteria. Three longitudinal studies examined diagnostic predictive value. The first showed positive predictive value increases from initial SPECT scan shortly after trauma to one year follow up scans, from 59% to 95%. Subsequent work replicated these results in a larger cohort. Longitudinal and cross sectional studies demonstrated SPECT lesion localization not detected by CT or MRI. The most commonly abnormal regions revealed by SPECT in cross-sectional studies were frontal (94%) and temporal (77%) lobes. SPECT was found to outperform both CT and MRI in both acute and chronic imaging of TBI, particularly mild TBI. It was also found to have a near 100% negative predictive value. Conclusions This review demonstrates Level IIA evidence (at least one non-randomized controlled trial) for the value of SPECT in TBI. Given its advantages over CT and MRI in the detection of mild TBI in numerous studies of adequate quality, and given its excellent negative predictive value, it may be an important second test in settings where CT or MRI are negative after a closed head injury with post

  12. SPECT imaging for brain improvement quantification in a patient with cerebrotendinous xanthomatosis.

    PubMed

    Selva-O'Callaghan, Albert; Bardes, Ignasi; Jacas, Carlos; Jubany, Lluis; Lorenzo-Bosquet, Carles; Cuberas-Borrós, Gemma; Vilardell-Tarres, Miquel

    2011-01-01

    Cerebrotendinous xanthomatosis is a rare recessive autosomal disease caused by mutations of the sterol 27-hydroxylase gene (CYP27), which leads to reduced synthesis of bile acids, particularly chenodeoxycholic acid (Cali et al, J Biol Chem. 1991;266:7779-7783; Gallus et al, Neurol Sci. 2006;27:143-149). The disease is characterized by progressive neurologic dysfunction due to accumulation of cholestanol in neurologic tissues (Moghadasian et al, Arch Neurol. 2002;59:527-529; Selva-O'Callaghan et al, Rheumatology. 2007;46:1212-1213). Long-term treatment with chenodeoxycholic acid can arrest or even reverse progression of the disease (Pierre et al, J Inherit Metab Dis. In press).Brain SPECT with 740 MBq of Tc-99m ethyl cysteinate dimmer, using a double-head gamma camera (Siemens E.cam) with high-resolution, low-energy parallel collimators was performed in our patient at onset and 2 years after starting chenodeoxycholic acid treatment. SPECT acquisitions were performed using a 360-degree orbit, 1 image/30 seg/3 degree, and 128 × 128 matrix. Reconstruction was by means of filtered back-projection, Butterworth 5/0.25, without attenuation correction. Pre- and post-SPECT dicom images were reoriented into Talairach space using NeuroGam (Segami Corporation). To visually identify abnormal perfusion regions, volume render brain image was computed, where abnormal perfusion regions were found by comparing with age-matched normal database, and Brodmann areas (BA) were quantified. Pre- versus post-treatment changes were computed by means of relative percentage between counts. Post-treatment SPECT showed better perfusion than pretreatment SPECT with an increase between 5% and 10% in frontal cortex (BA 9, BA 24, BA 32, BA 46, BA 47), parietal cortex (BA 5, BA 31), and temporal cortex (BA 20, BA 22, BA 28, BA 36, BA 37, BA 38), and with an increase of more than 10% in frontal cortex (BA 45) and parietal cortex (BA 23). This case illustrates the benefit of bile acid therapy for

  13. Simulation of realistic abnormal SPECT brain perfusion images: application in semi-quantitative analysis

    NASA Astrophysics Data System (ADS)

    Ward, T.; Fleming, J. S.; Hoffmann, S. M. A.; Kemp, P. M.

    2005-11-01

    Simulation is useful in the validation of functional image analysis methods, particularly when considering the number of analysis techniques currently available lacking thorough validation. Problems exist with current simulation methods due to long run times or unrealistic results making it problematic to generate complete datasets. A method is presented for simulating known abnormalities within normal brain SPECT images using a measured point spread function (PSF), and incorporating a stereotactic atlas of the brain for anatomical positioning. This allows for the simulation of realistic images through the use of prior information regarding disease progression. SPECT images of cerebral perfusion have been generated consisting of a control database and a group of simulated abnormal subjects that are to be used in a UK audit of analysis methods. The abnormality is defined in the stereotactic space, then transformed to the individual subject space, convolved with a measured PSF and removed from the normal subject image. The dataset was analysed using SPM99 (Wellcome Department of Imaging Neuroscience, University College, London) and the MarsBaR volume of interest (VOI) analysis toolbox. The results were evaluated by comparison with the known ground truth. The analysis showed improvement when using a smoothing kernel equal to system resolution over the slightly larger kernel used routinely. Significant correlation was found between effective volume of a simulated abnormality and the detected size using SPM99. Improvements in VOI analysis sensitivity were found when using the region median over the region mean. The method and dataset provide an efficient methodology for use in the comparison and cross validation of semi-quantitative analysis methods in brain SPECT, and allow the optimization of analysis parameters.

  14. Brain perfusion SPECT with Brodmann areas analysis in differentiating frontotemporal dementia subtypes.

    PubMed

    Valotassiou, Varvara; Papatriantafyllou, John; Sifakis, Nikolaos; Tzavara, Chara; Tsougos, Ioannis; Psimadas, Dimitrios; Kapsalaki, Eftychia; Fezoulidis, Ioannis; Hadjigeorgiou, George; Georgoulias, Panagiotis

    2014-01-01

    Despite the known validity of clinical diagnostic criteria, significant overlap of clinical symptoms between Frontotemporal dementia (FTD) subtypes exists in several cases, resulting in great uncertainty of the diagnostic boundaries. We evaluated the perfusion between FTD subtypes using brain perfusion (99m)Tc-HMPAO SPECT with Brodmann areas (BA) mapping. NeuroGam software was applied on single photon emission computed tomographic (SPECT) studies for the semi-quantitative evaluation of perfusion in BA and the comparison with the software's normal database. We studied 91 consecutive FTD patients: 21 with behavioural variants (bvFTD), 39 with language variants (lvFTD) [12 with progressive non-fluent aphasia (PNFA), 27 with semantic dementia (SD)], and 31 patients with progressive supranuclear palsy (PSP)/corticobasal degeneration (CBD). Stepwise logistic regression analyses showed that the BA 28L and 32R could independently differentiate bvFTD from lvFTD, while the BA 8R and 25R could discriminate bvFTD from SD and PNFA, respectively. Additionally, BA 7R and 32R were found to discriminate bvFTD from CBD/PSP. The only BA that could differentiate SD from PNFA was 6L. BA 6R and 20L were found to independently differentiate CBD/PSP from lvFTD. Moreover, BA 20L and 22R could discriminate CBD/PSP from PNFA, while BA 6R, 20L and 45R were found to independently discriminate CBD/PSP from SD. Brain perfusion SPECT with BA mapping can be a useful additional tool in differentiating FTD variants by improving the definition of brain areas that are specifically implicated, resulting in a more accurate differential diagnosis in atypical or uncertain forms of FTD.

  15. PET and SPECT in whiplash syndrome: a new approach to a forgotten brain?

    PubMed Central

    Otte, A; Ettlin, T; Nitzsche, E; Wachter, K; Hoegerle, S; Simon, G; Fierz, L; Moser, E; Mueller-Brand, J

    1997-01-01

    Whiplash associated disorders are a medicolegally controversial condition becoming increasingly worrisome in the western world. This study was designed to evaluate perfusion and glucose metabolism in whiplash brain. Using Tc-99m-bicisate (ECD) single photon emission computed tomography (SPECT) and F-18-fluorodeoxyglucose (FDG) PET, six clinically and neuropsychologically controlled patients (patient group) with whiplash syndrome and 12 normal controls (control group) were investigated. Standardised elliptical regions of interest (ROIs) were determined in three adjacent transaxial slices in the frontal, parietal, temporal, and parieto-occipital cortex, cerebellum, brain stem, basal ganglia, and thalamus. For PET, the glucose metabolic index (GMI; =ROI uptake/global uptake at the level of the basal ganglia) and, for SPECT, the perfusion index (PI; =ROI/global) were calculated. In the patient group there was significant hypometabolism and hypoperfusion in the parieto-occipital regions (on the right (R) and left (L) side) compared with the control group: PET data: GMI parieto-occipital R: control 1.066 (0.081) (mean (SD)), patient 0.946 (0.065); P=0.0092, Mann Whitney. GMI parieto-occipital L: control 1.034 (0.051), patient 0.922 (0.073); p=0.0067. SPECT data: PI parieto-occipital R: control 1.262 (0.066), patient 1.102 (0.063); P=0.0039. PI parieto-occipital L: control 1.226 (0.095), patient 1.098 (0.075); P=0.0273. In some patients there was hypometabolism (>2 SD of control) in regions other than the parieto-occipital region. It is hypothesised that parieto-occipital hypometabolism may be caused by activation of nociceptive afferent nerves from the upper cervical spine.

 PMID:9328255

  16. The clinical impact of SPECT/PET co-registration with MRI in patients with brain tumors

    SciTech Connect

    Macapinlac, H.A.; Scott, A.M.; Zhang, J.J.

    1994-05-01

    We wanted to evaluate the clinical impact of co-registering SPECT and PET images with MRI (Gd-DTPA) in brain tumor patients. 81 patients with known or suspected brain tumors had 168 SPECT and/or PET scans which were difficult to interpret were coregistered with MRI. A modified Pellizari/Chen surface matching algorithm was used to fit the SPECT/PET and MR images. Impact of the technique on interpretation of the scans was defined as (A) no effect, (B) moderate effect (better localize abnormal uptake to suspected tumor and distinguish normal activity from tumor), (C) basis for final interpretation (distinguish tumor from necrosis, localize biopsy site, find occult tumor, grading of tumor). Impact on patient management was defined as (A) no effect, (B) altered diagnostic/treatment decision (continuation of conservative care, or justify chemo or radiation), (C) basis for treatment (direct biopsy, surgery, and/or radiation).

  17. Design and simulation of a full-ring multi-lofthole collimator for brain SPECT

    NASA Astrophysics Data System (ADS)

    Van Audenhaege, Karen; Vandenberghe, Stefaan; Deprez, Karel; Vandeghinste, Bert; Van Holen, Roel

    2013-09-01

    Currently, clinical brain single photon emission computed tomography (SPECT) is mostly performed using rotating dual-head gamma cameras equipped with low-energy-high-resolution parallel-beam collimators (LEHR PAR). The resolution of these systems is rather poor (8-10 mm) and the rotation of the heavy gamma cameras can introduce misalignment errors. Therefore, we designed a static full-ring multi-lofthole brain SPECT insert for an existing ring of LaBr3 (5% Ce) detectors. The novelty of the design is found in the shutter mechanism that makes the system very flexible and eliminates the need for rotating parts. A stationary SPECT insert is not only more robust, it is also easier to integrate in a magnetic resonance imaging system (MRI) for simultaneous SPECT-MRI. The target spatial resolution of our design is 6 mm. In this study we used analytical calculations to optimize the collimator for an existing ring of LaBr3 (5% Ce) detectors. We fixed the target spatial resolution at 6 mm in the center of the field-of-view and maximized the volume sensitivity by changing the collimator radius, the aperture and the number of loftholes. Based on these optimal parameters we simulated phantom data and evaluated the image quality of our multi-lofthole system. We simulated a noiseless uniform and Defrise phantom to assess artifacts and sampling completeness and a noiseless hot-rod phantom to assess the reconstructed spatial resolution. We visually evaluated a simulated noisy Hoffman phantom with two lesions. Then, we evaluated the non-prewhitening matched filter signal-to-noise ratio (NPW-SNR) in two lesion detectability phantoms: one with hot lesions and one with cold lesions. Finally, a contrast-to-noise (CNR) study was performed on a phantom with both hot and cold lesions of different sizes (6-16 mm). All results were compared to a LEHR PAR system. The optimization resulted in a final collimator design with a volume sensitivity of 1.55 × 10-4 cps Bq-1, which is 2.5 times lower

  18. Design and simulation of a full-ring multi-lofthole collimator for brain SPECT.

    PubMed

    Van Audenhaege, Karen; Vandenberghe, Stefaan; Deprez, Karel; Vandeghinste, Bert; Van Holen, Roel

    2013-09-21

    Currently, clinical brain single photon emission computed tomography (SPECT) is mostly performed using rotating dual-head gamma cameras equipped with low-energy-high-resolution parallel-beam collimators (LEHR PAR). The resolution of these systems is rather poor (8-10 mm) and the rotation of the heavy gamma cameras can introduce misalignment errors. Therefore, we designed a static full-ring multi-lofthole brain SPECT insert for an existing ring of LaBr3 (5% Ce) detectors. The novelty of the design is found in the shutter mechanism that makes the system very flexible and eliminates the need for rotating parts. A stationary SPECT insert is not only more robust, it is also easier to integrate in a magnetic resonance imaging system (MRI) for simultaneous SPECT-MRI. The target spatial resolution of our design is 6 mm. In this study we used analytical calculations to optimize the collimator for an existing ring of LaBr3 (5% Ce) detectors. We fixed the target spatial resolution at 6 mm in the center of the field-of-view and maximized the volume sensitivity by changing the collimator radius, the aperture and the number of loftholes. Based on these optimal parameters we simulated phantom data and evaluated the image quality of our multi-lofthole system. We simulated a noiseless uniform and Defrise phantom to assess artifacts and sampling completeness and a noiseless hot-rod phantom to assess the reconstructed spatial resolution. We visually evaluated a simulated noisy Hoffman phantom with two lesions. Then, we evaluated the non-prewhitening matched filter signal-to-noise ratio (NPW-SNR) in two lesion detectability phantoms: one with hot lesions and one with cold lesions. Finally, a contrast-to-noise (CNR) study was performed on a phantom with both hot and cold lesions of different sizes (6-16 mm). All results were compared to a LEHR PAR system. The optimization resulted in a final collimator design with a volume sensitivity of 1.55 × 10(-4) cps Bq(-1), which is 2.5

  19. Brain imaging with sup 123 I-IMP-SPECT in migraine between attacks

    SciTech Connect

    Schlake, H.P.; Boettger, I.G.G.; Grotemeyer, K.H.; Husstedt, I.W.

    1989-06-01

    {sup 123}I-IMP-SPECT brain imaging was performed in patients with classic migraine (n = 5) and migraine accompagnee (n = 18) during the headache-free interval. A regional reduction of tracer uptake into brain was observed in all patients with migraine accompagnee, while in patients with classic migraine only one case showed an area of decreased activity. The most marked alteration was found in a patient with persisting neurological symptoms (complicated migraine). In most cases the areas of decreased tracer uptake corresponded to headache localization as well as to topography of neurologic symptoms during migraine attacks. It may be concluded that migraine attacks occur in connection with exacerbations of preexisting changes of cerebral autoregulation due to endogenous or exogenous factors.

  20. Ligands for SPECT and PET imaging of muscarinic-cholinergic receptors of the heart and brain

    SciTech Connect

    Knapp, F.F. Jr.; McPherson, D.W.; Luo, H.

    1995-06-01

    Interest in the potential use of cerebral SPECT and PET imaging for determination of the density and activity of muscarinic-cholinergic receptors (mAChR) has been stimulated by the changes in these receptors which occur in many neurological diseases. In addition, the important involvement of mAChR in modulating negative inotropic cardiac activity suggests that such receptor ligands may have important applications in evaluation of changes which may occur in cardiac disease. In this paper, the properties of several key muscarinic receptor ligands being developed or which have been used for clinical SPECT and PET are discussed. In addition, the ORNL development of the new iodinated IQNP ligand based on QNB and the results of in vivo biodistribution studies in rats, in vitro competitive binding studies and ex vivo autoradiographic experiments are described. The use of radioiodinated IQNP may offer several advantages in comparison to IQNB because of its easy and high yield preparation and high brain uptake and the potential usefulness of the {open_quotes}partial{close_quotes} subtype selective IONP isomers. We also describe the development of new IQNP-type analogues which offer the opportunity for radiolabeling with positron-emitting radioisotopes (carbon-11, fluorine-18 and bromine-76) for potential use with PET.

  1. Evaluation of linear registration algorithms for brain SPECT and the errors due to hypoperfusion lesions.

    PubMed

    Radau, P E; Slomka, P J; Julin, P; Svensson, L; Wahlund, L O

    2001-08-01

    The semiquantitative analysis of perfusion single-photon emission computed tomography (SPECT) images requires a reproducible, objective method. Automated spatial standardization (registration) of images is a prerequisite to this goal. A source of registration error is the presence of hypoperfusion defects, which was evaluated in this study with simulated lesions. The brain perfusion images measured by 99mTc-HMPAO SPECT from 21 patients with probable Alzheimer's disease and 35 control subjects were retrospectively analyzed. An automatic segmentation method was developed to remove external activity. Three registration methods, robust least squares, normalized mutual information (NMI), and count difference were implemented and the effects of simulated defects were compared. The tested registration methods required segmentation of the cerebrum from external activity, and the automatic and manual methods differed by a three-dimensional displacement of 1.4+/-1.1 mm. NMI registration proved to be least adversely effected by simulated defects with 3 mm average displacement caused by severe defects. The error in quantifying the patient-template parietal ratio due to misregistration was 2.0% for large defects (70% hypoperfusion) and 0.5% for smaller defects (85% hypoperfusion).

  2. Linear intensity normalization of FP-CIT SPECT brain images using the α-stable distribution.

    PubMed

    Salas-Gonzalez, Diego; Górriz, Juan M; Ramírez, Javier; Illán, Ignacio A; Lang, Elmar W

    2013-01-15

    In this work, a linear procedure to perform the intensity normalization of FP-CIT SPECT brain images is presented. This proposed methodology is based on the fact that the histogram of intensity values can be fitted accurately using a positive skewed α-stable distribution. Then, the predicted α-stable parameters and the location-scale property are used to linearly transform the intensity values in each voxel. This transformation is performed such that the new histograms in each image have a pre-specified α-stable distribution with desired location and dispersion values. The proposed methodology is compared with a similar approach assuming Gaussian distribution and the widely used specific-to-nonspecific ratio. In this work, we show that the linear normalization method using the α-stable distribution outperforms those existing methods. Copyright © 2012 Elsevier Inc. All rights reserved.

  3. Clinical Evaluation of Brain Perfusion SPECT with Brodmann Areas Mapping in Early Diagnosis of Alzheimer's Disease.

    PubMed

    Valotassiou, Varvara; Papatriantafyllou, John; Sifakis, Nikolaos; Tzavara, Chara; Tsougos, Ioannis; Psimadas, Dimitrios; Fezoulidis, Ioannis; Kapsalaki, Eftychia; Hadjigeorgiou, George; Georgoulias, Panagiotis

    2015-01-01

    Early diagnosis of Alzheimer's disease (AD) based on clinical criteria alone may be problematic, while current and future treatments should be administered earlier in order to be more effective. Thus, various disease biomarkers could be used for early detection of AD. We evaluated brain perfusion with 99mTc-HMPAO single photon emission computed tomography (SPECT) and Brodmann areas (BAs) mapping in mild AD using an automated software (NeuroGam) for the semi-quantitative evaluation of perfusion in BAs and the comparison with the software's normal database. We studied 34 consecutive patients with mild AD: 9 men, 25 women, mean age 70.9 ± 8.1 years, mean Mini-Mental State Examination 22.6 ± 2.5. BAs 25L, 25R, 38L, 38R, 28L, 28R, 36L, and 36R had the lower mean perfusion values, while BAs 31L, 31R, 19R, 18L, 18R, 17L, and 17R had the higher mean values. Compared with healthy subjects of the same age, perfusion values in BAs 25L, 25R, 28R, 28L, 36L, and 36R had the greatest deviations from the healthy sample, while the lowest deviations were found in BAs 32L, 32R, 19R, 24L, 17L, 17R, 18L, and 18R. A percentage of ≥94% of patients had perfusion values more than -2SDs below the mean of healthy subjects in BAs 38R, 38L, 36L, 36R, 23L, 23R, 22L, 44L, 28L, 28R, 25L, and 25R. The corresponding proportion was less than 38% for BAs 11L, 19R, 32L, 32R, 18L, 18R, 24L, and 17R. In conclusion, brain SPECT studies with automated perfusion mapping could be useful as an ancillary tool in daily practice, revealing perfusion impairments in early AD.

  4. Including anatomical and functional information in MC simulation of PET and SPECT brain studies. Brain-VISET: a voxel-based iterative method.

    PubMed

    Marti-Fuster, Berta; Esteban, Oscar; Thielemans, Kris; Setoain, Xavier; Santos, Andres; Ros, Domenec; Pavia, Javier

    2014-10-01

    Monte Carlo (MC) simulation provides a flexible and robust framework to efficiently evaluate and optimize image processing methods in emission tomography. In this work we present Brain-VISET (Voxel-based Iterative Simulation for Emission Tomography), a method that aims to simulate realistic [ (99m) Tc]-SPECT and [ (18) F]-PET brain databases by including anatomical and functional information. To this end, activity and attenuation maps generated using high-resolution anatomical images from patients were used as input maps in a MC projector to simulate SPECT or PET sinograms. The reconstructed images were compared with the corresponding real SPECT or PET studies in an iterative process where the activity inputs maps were being modified at each iteration. Datasets of 30 refractory epileptic patients were used to assess the new method. Each set consisted of structural images (MRI and CT) and functional studies (SPECT and PET), thereby allowing the inclusion of anatomical and functional variability in the simulation input models. SPECT and PET sinograms were obtained using the SimSET package and were reconstructed with the same protocols as those employed for the clinical studies. The convergence of Brain-VISET was evaluated by studying the behavior throughout iterations of the correlation coefficient, the quotient image histogram and a ROI analysis comparing simulated with real studies. The realism of generated maps was also evaluated. Our findings show that Brain-VISET is able to generate realistic SPECT and PET studies and that four iterations is a suitable number of iterations to guarantee a good agreement between simulated and real studies.

  5. SPECT (single photon emission computed tomography) in pediatrics.

    PubMed

    Chiron, Catherine

    2013-01-01

    Surgery of focal epilepsies in childhood has largely benefited from the recent advances of the noninvasive functional imaging techniques, particularly SPECT which presurgically contributes to the localization of the seizure onset zone, in order to select the patients, decide the optimal placement of intracranial electrodes, and plan the resection. Peri-ictal SPECT (ictal and postictal) proved especially useful when video-EEG is not contributory, when MRI looks normal or shows multiple abnormalities, or in cases of discrepant findings within the presurgery workup. Because of a poor temporal resolution, peri-ictal SPECT must be coupled with video-EEG. Multimodal imaging so-called SISCOM (peri-ictal - interictal SPECT subtraction image superimposed on MRI) increases the sensitivity of peri-ictal SPECT by about 70% and makes it a good predictor of seizure-free outcome after surgery. In addition, interictal SPECT occasionally provides some interesting results regarding functional cortical maturation and learning disorders in childhood.

  6. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals.

    PubMed

    Angelis, Georgios I; Ryder, William J; Bashar, Rezaul; Fulton, Roger R; Meikle, Steven R

    2014-09-01

    Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more advantageous. Motion

  7. Impact of extraneous mispositioned events on motion-corrected brain SPECT images of freely moving animals

    SciTech Connect

    Angelis, Georgios I. Ryder, William J.; Bashar, Rezaul; Meikle, Steven R.; Fulton, Roger R.

    2014-09-15

    Purpose: Single photon emission computed tomography (SPECT) brain imaging of freely moving small animals would allow a wide range of important neurological processes and behaviors to be studied, which are normally inhibited by anesthetic drugs or precluded due to the animal being restrained. While rigid body motion of the head can be tracked and accounted for in the reconstruction, activity in the torso may confound brain measurements, especially since motion of the torso is more complex (i.e., nonrigid) and not well correlated with that of the head. The authors investigated the impact of mispositioned events and attenuation due to the torso on the accuracy of motion corrected brain images of freely moving mice. Methods: Monte Carlo simulations of a realistic voxelized mouse phantom and a dual compartment phantom were performed. Each phantom comprised a target and an extraneous compartment which were able to move independently of each other. Motion correction was performed based on the known motion of the target compartment only. Two SPECT camera geometries were investigated: a rotating single head detector and a stationary full ring detector. The effects of motion, detector geometry, and energy of the emitted photons (hence, attenuation) on bias and noise in reconstructed brain regions were evaluated. Results: The authors observed two main sources of bias: (a) motion-related inconsistencies in the projection data and (b) the mismatch between attenuation and emission. Both effects are caused by the assumption that the orientation of the torso is difficult to track and model, and therefore cannot be conveniently corrected for. The motion induced bias in some regions was up to 12% when no attenuation effects were considered, while it reached 40% when also combined with attenuation related inconsistencies. The detector geometry (i.e., rotating vs full ring) has a big impact on the accuracy of the reconstructed images, with the full ring detector being more

  8. Brain SPECT and Neuropsychological Examination in Patients with a History of Minor Craniocerebral Trauma Nine Years after Head Injury.

    PubMed

    Dawid, S; Marks, W; Lasek, J; Witkowski, Z; Goŀąbek-Dropiewska, K; Sitek, E J; Wieczorek, D; Brockhuis, B; Lass, P

    2010-03-01

    Focal perfusion deficits disclosed by single photon emission computerized tomography (SPECT) show more diffuse brain dysfunction than computed tomography (CT) examinations in case of head trauma. The aim of the study was to evaluate SPECT as an enhancing and complementary diagnostic method in patients after minor craniocerebral trauma (mCCT) and establish a possible correlation between clinical symptoms and disturbances of cerebral blood flow (CBF). SPECT examination and neuropsychological assessment was performed in seven patients about nine years after head injury, scoring 13-15 points on the Glasgow COMA SCALE and without evidence of structural brain damage. Neuropsychological assessment addressed global cognitive status, verbal and visual memory, working memory, object and space perception, executive function, self-assessment of memory, mood and health-related complaints. A direct relationship was shown between mCCT and the observed CBF disorders, and between the CBF disorders and cognitive dysfunction. Because of its sensitivity, SPECT, should be regarded as a method complementary to CT in mCCT.

  9. Improved outcomes using brain SPECT-guided treatment versus treatment-as-usual in community psychiatric outpatients: a retrospective case-control study.

    PubMed

    Thornton, John F; Schneider, Howard; McLean, Mary K; van Lierop, Muriel J; Tarzwell, Robert

    2014-01-01

    Brain single-photon emission computed tomography (SPECT) scans indirectly show functional activity via measurement of regional cerebral blood flow. Thirty patients at a community-based psychiatric clinic underwent brain SPECT scans. Changes in scoring of before-treatment and after-treatment scans correlated well with changes in patient Global Assessment of Functioning (GAF) scores before treatment and after treatment. Patients were retrospectively matched with controls with similar diagnoses and pretreatment GAF scores, and those who underwent SPECT-guided treatment improved significantly more than the control patients.

  10. A Computer-Aided Analysis Method of SPECT Brain Images for Quantitative Treatment Monitoring: Performance Evaluations and Clinical Applications.

    PubMed

    Zheng, Xiujuan; Wei, Wentao; Huang, Qiu; Song, Shaoli; Wan, Jieqing; Huang, Gang

    2017-01-01

    The objective and quantitative analysis of longitudinal single photon emission computed tomography (SPECT) images are significant for the treatment monitoring of brain disorders. Therefore, a computer aided analysis (CAA) method is introduced to extract a change-rate map (CRM) as a parametric image for quantifying the changes of regional cerebral blood flow (rCBF) in longitudinal SPECT brain images. The performances of the CAA-CRM approach in treatment monitoring are evaluated by the computer simulations and clinical applications. The results of computer simulations show that the derived CRMs have high similarities with their ground truths when the lesion size is larger than system spatial resolution and the change rate is higher than 20%. In clinical applications, the CAA-CRM approach is used to assess the treatment of 50 patients with brain ischemia. The results demonstrate that CAA-CRM approach has a 93.4% accuracy of recovered region's localization. Moreover, the quantitative indexes of recovered regions derived from CRM are all significantly different among the groups and highly correlated with the experienced clinical diagnosis. In conclusion, the proposed CAA-CRM approach provides a convenient solution to generate a parametric image and derive the quantitative indexes from the longitudinal SPECT brain images for treatment monitoring.

  11. A Computer-Aided Analysis Method of SPECT Brain Images for Quantitative Treatment Monitoring: Performance Evaluations and Clinical Applications

    PubMed Central

    Wei, Wentao; Huang, Qiu; Wan, Jieqing; Huang, Gang

    2017-01-01

    The objective and quantitative analysis of longitudinal single photon emission computed tomography (SPECT) images are significant for the treatment monitoring of brain disorders. Therefore, a computer aided analysis (CAA) method is introduced to extract a change-rate map (CRM) as a parametric image for quantifying the changes of regional cerebral blood flow (rCBF) in longitudinal SPECT brain images. The performances of the CAA-CRM approach in treatment monitoring are evaluated by the computer simulations and clinical applications. The results of computer simulations show that the derived CRMs have high similarities with their ground truths when the lesion size is larger than system spatial resolution and the change rate is higher than 20%. In clinical applications, the CAA-CRM approach is used to assess the treatment of 50 patients with brain ischemia. The results demonstrate that CAA-CRM approach has a 93.4% accuracy of recovered region's localization. Moreover, the quantitative indexes of recovered regions derived from CRM are all significantly different among the groups and highly correlated with the experienced clinical diagnosis. In conclusion, the proposed CAA-CRM approach provides a convenient solution to generate a parametric image and derive the quantitative indexes from the longitudinal SPECT brain images for treatment monitoring. PMID:28251150

  12. Corneal Dose Reduction Using a Bismuth-Coated Latex Shield over the Eyes During Brain SPECT/CT.

    PubMed

    Matsutomo, Norikazu; Fukunaga, Masaaki; Onishi, Hideo; Yamamoto, Tomoaki

    2017-09-01

    This study aimed to determine whether a bismuth-coated latex shield (B-shield) could protect the eyes during brain SPECT/CT. Methods: A shield containing the heavy metal bismuth (equivalent to a 0.15-mm-thick lead shield) was placed over a cylindric phantom and the eyes of a 3-dimensional brain phantom filled with (99m)Tc solution. Subsequently, phantoms with and without the B-shield were compared using SPECT/CT. The CT parameters were 30-200 mA and 130 kV. The dose reduction achieved by the B-shield was measured using a pencil-shaped ionization chamber. The protective effects of the B-shield were determined by evaluating relative radioactivity concentration as well as artifacts (changes in CT number), linear attenuation coefficients, and coefficients of variation on SPECT images. Results: The radiation doses with and without the B-shield were 0.14-0.77 and 0.36-1.93 mGy, respectively, and the B-shield decreased the average radiation dose by about 60%. The B-shield also increased the mean CT number, but only at locations just beneath the surface of the phantom. Streaks of higher density near the underside of the B-shield indicated beam hardening. Linear attenuation coefficients and the coefficients of variation did not significantly differ between phantoms with and without the B-shield, and the relative (99m)Tc radioactivity concentrations were not affected. Conclusion: The B-shield decreased the radiation dose without affecting estimated attenuation correction or radioactivity concentrations. Although surface artifacts increased with the B-shield, the quality of the SPECT images was acceptable. B-shields can help protect pediatric patients and patients with eye diseases who undergo SPECT imaging. © 2017 by the Society of Nuclear Medicine and Molecular Imaging.

  13. Old wine in new bottles: validating the clinical utility of SPECT in predicting cognitive performance in mild traumatic brain injury.

    PubMed

    Romero, Kristoffer; Lobaugh, Nancy J; Black, Sandra E; Ehrlich, Lisa; Feinstein, Anthony

    2015-01-30

    The neural underpinnings of cognitive dysfunction in mild traumatic brain injury (TBI) are not fully understood. Consequently, patient prognosis using existing clinical imaging is somewhat imprecise. Single photon emission computed tomography (SPECT) is a frequently employed investigation in this population, notwithstanding uncertainty over the clinical utility of the data obtained. In this study, subjects with mild TBI underwent (99m)Tc-ECD SPECT scanning, and were administered a brief battery of cognitive tests and self-report symptom scales of concussion and emotional distress. Testing took place 2 weeks (n=84) and 1 year (n=49) post-injury. Multivariate analysis (i.e., partial least squares analysis) revealed that frontal perfusion in right superior frontal and middle frontal gyri predicted poorer performance on the Stroop test, an index of executive function, both at initial and follow-up testing. Conversely, SPECT scans categorized as normal or abnormal by radiologists did not differentiate cognitively impaired from intact subjects. These results demonstrate the clinical utility of SPECT in mild TBI, but only when data are subjected to blood flow quantification analysis.

  14. Neuroreceptor imaging with SPECT.

    PubMed

    Innis, R B

    1992-11-01

    Single photon emission computed tomography (SPECT) imaging can provide useful measurements of brain receptors and endogenous neurotransmitters and may have significant experimental and clinical applications. This presentation reviews the use of SPECT for neuroreceptor imaging. Studies of receptors for benzodiazepines, dopamine D2 agents, and dopamine reuptake sites will be used to exemplify the capabilities of SPECT. Tracers labeled with the radioisotope 125I have high affinity, high brain uptake, and high ratios of specific to nonspecific binding. Imaging studies of human and nonhuman primate brain will be presented, and the potential clinical applicability of these agents will be discussed.

  15. Collimator selection for SPECT brain imaging: the advantage of high resolution

    SciTech Connect

    Mueller, S.P.; Polak, J.F.; Kijewski, M.F.; Holman, B.L.

    1986-11-01

    We compared a prototype long-bore (LB) high-resolution collimator with a low-energy, general-purpose collimator (LEGP) using 99mTc and /sup 123/I. The LB collimator provided a 56% improvement in tomographic resolution (autocorrelation width) over the LEGP for 99mTc; for /sup 123/I, the gain was 79%, providing substantially improved contrast for small structures. The sensitivity of the LB collimator, however, is only 32% of that of the LEGP. The imaging tasks to be performed on (/sup 123/I)IMP brain scans involve localization and discrimination of small, high-contrast brain structures and detection of abnormalities in shape, size, or uptake, rather than simple detection of lesions. Observer performance in such higher-order imaging tasks is known to depend on high spatial resolution, even at the cost of sensitivity. Patient studies confirmed that, for resolution-limited tasks, the increase in resolution outweighs the increased noise due to a loss in sensitivity. When the tomographic resolution of the LB collimator was degraded by smoothing to that of the LEGP, the noise in the LB images was lower than that of the LEGP by a factor of 2.9 for the same imaging time, demonstrating the advantage of high-resolution detectors and a smooth reconstruction filter over low-resolution detectors without smoothing. Therefore, collimators designed for high resolution, even at substantial cost in sensitivity, are expected to yield significant improvements for brain SPECT. Geometric calculations show that commercially available low-energy, high-resolution cast collimators promise to meet these requirements.

  16. Can brain thallium 201 SPECT substitute for F-18-FDG PET in detecting recurrent brain tumor in the presence of radiation necrosis; correlation with biopsy/surgery results

    SciTech Connect

    Antar, M.A.; Barnett, G.H.; McIntyre, W.J.

    1994-05-01

    F-18-FDG PET man has been largely successful in differentiating between radiation necrosis and recurrent brain tumors. Because of the expense and unavailability of PET scanners in most clinical centers, Tl-201 SPECT scan may offer an alternative. Therefore, we have evaluated both techniques in 18 patients (13 men and 5 women) whose ages range from 28 to 74 year old. Eleven patients had glioblastoma multiformi and 4 patients high grade astrocytoma and 3 patient meningiosarcoma. All patients received radiation therapy (5500-6000 Rad) and 13 patients received also chemotherapy. PET scan was performed 40-60 min. after 5-10 mCi of F-18 FDG (i.v.) and SPECT 30 min. after 4.6 mCi of Tl-201 chloride (i.v.). Severe FDG hypometabolism was evident in the irradiated regions, in all patients. Evidence of tumor recurrence was seen in 15 patients by both FDG PET and Thallium 201 SPECT. The ratio of peak pixel uptake of suspected tumor to that of normal cortex for FDG ranged from 0.67 to 1.5 with a mean of 1.02. The ratio of peak pixel uptake of thallium 201 in the suspected lesion to that of the contralateral scalp area ranges from 0.8 to 1.9 with mean of 1.1. There was concordance between the findings of PET and SPECT in 16/18 patients. However, the volume of involvement differs in these patients; most likely secondary to different mechanisms of uptake and both studies may complement each other. Subsequent biopsy/surgery in 11 patients confirmed tumor recurrence in 10 out of 11 patients. The findings suggest that thallium 201 brain SPECT scan can provide similar (but not identical) information regarding brain tumor recurrence in these patients.

  17. High-resolution single photon planar and spect imaging of brain and neck employing a system of two co-registered opposed gamma imaging heads

    DOEpatents

    Majewski, Stanislaw [Yorktown, VA; Proffitt, James [Newport News, VA

    2011-12-06

    A compact, mobile, dedicated SPECT brain imager that can be easily moved to the patient to provide in-situ imaging, especially when the patient cannot be moved to the Nuclear Medicine imaging center. As a result of the widespread availability of single photon labeled biomarkers, the SPECT brain imager can be used in many locations, including remote locations away from medical centers. The SPECT imager improves the detection of gamma emission from the patient's head and neck area with a large field of view. Two identical lightweight gamma imaging detector heads are mounted to a rotating gantry and precisely mechanically co-registered to each other at 180 degrees. A unique imaging algorithm combines the co-registered images from the detector heads and provides several SPECT tomographic reconstructions of the imaged object thereby improving the diagnostic quality especially in the case of imaging requiring higher spatial resolution and sensitivity at the same time.

  18. High-sensitivity brain SPECT system using cadmium telluride (CdTe) semiconductor detector and 4-pixel matched collimator.

    PubMed

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Tsuchiya, Katsutoshi; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Kubo, Naoki; Shiga, Tohru; Tamaki, Nagara

    2013-11-07

    For high-sensitivity brain imaging, we have developed a two-head single-photon emission computed tomography (SPECT) system using a CdTe semiconductor detector and 4-pixel matched collimator (4-PMC). The term, '4-PMC' indicates that the collimator hole size is matched to a 2 × 2 array of detector pixels. By contrast, a 1-pixel matched collimator (1-PMC) is defined as a collimator whose hole size is matched to one detector pixel. The performance of the higher-sensitivity 4-PMC was experimentally compared with that of the 1-PMC. The sensitivities of the 1-PMC and 4-PMC were 70 cps/MBq/head and 220 cps/MBq/head, respectively. The SPECT system using the 4-PMC provides superior image resolution in cold and hot rods phantom with the same activity and scan time to that of the 1-PMC. In addition, with half the usual scan time the 4-PMC provides comparable image quality to that of the 1-PMC. Furthermore, (99m)Tc-ECD brain perfusion images of healthy volunteers obtained using the 4-PMC demonstrated acceptable image quality for clinical diagnosis. In conclusion, our CdTe SPECT system equipped with the higher-sensitivity 4-PMC can provide better spatial resolution than the 1-PMC either in half the imaging time with the same administered activity, or alternatively, in the same imaging time with half the activity.

  19. High-sensitivity brain SPECT system using cadmium telluride (CdTe) semiconductor detector and 4-pixel matched collimator

    NASA Astrophysics Data System (ADS)

    Suzuki, Atsuro; Takeuchi, Wataru; Ishitsu, Takafumi; Tsuchiya, Katsutoshi; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Kubo, Naoki; Shiga, Tohru; Tamaki, Nagara

    2013-11-01

    For high-sensitivity brain imaging, we have developed a two-head single-photon emission computed tomography (SPECT) system using a CdTe semiconductor detector and 4-pixel matched collimator (4-PMC). The term, ‘4-PMC’ indicates that the collimator hole size is matched to a 2 × 2 array of detector pixels. By contrast, a 1-pixel matched collimator (1-PMC) is defined as a collimator whose hole size is matched to one detector pixel. The performance of the higher-sensitivity 4-PMC was experimentally compared with that of the 1-PMC. The sensitivities of the 1-PMC and 4-PMC were 70 cps/MBq/head and 220 cps/MBq/head, respectively. The SPECT system using the 4-PMC provides superior image resolution in cold and hot rods phantom with the same activity and scan time to that of the 1-PMC. In addition, with half the usual scan time the 4-PMC provides comparable image quality to that of the 1-PMC. Furthermore, 99mTc-ECD brain perfusion images of healthy volunteers obtained using the 4-PMC demonstrated acceptable image quality for clinical diagnosis. In conclusion, our CdTe SPECT system equipped with the higher-sensitivity 4-PMC can provide better spatial resolution than the 1-PMC either in half the imaging time with the same administered activity, or alternatively, in the same imaging time with half the activity.

  20. Use of neural networks in brain SPECT to diagnose Alzheimer's disease.

    PubMed

    Page, M P; Howard, R J; O'Brien, J T; Buxton-Thomas, M S; Pickering, A D

    1996-02-01

    The usefulness of artificial neural networks in the classification of 99mTc-HMPAO SPECT axial brain scans was investigated in a study group of Alzheimer's disease patients and age-matched normal subjects. The cortical circumferential profiling (CCP) technique was used to extract information regarding patterns of cortical perfusion. Traditional analysis of the CCP data, taken from slices at the level of the basal ganglia, indicated significant perfusion deficits for Alzheimer's disease patients relative to normals, particularly in the left temporo-parietal and left posterior frontal areas of the cortex. The compressed profiles were then used to train a neural-network classifier, the performance of which was compared with that of a number of more traditional statistical (discriminant function) techniques and that of two expert viewers. The optimal classification performance of the neural network (ROC area = 0.91) was better than that of the alternative statistical techniques (max. ROC area = 0.85) and that of the expert viewers (max. ROC area = 0.79). The CCP produces perfusion profiles which are well suited to automated classification methods, particularly those employing neural networks. The technique has the potential for wide application.

  1. NMF-Based Analysis of SPECT Brain Images for the Diagnosis of Alzheimer's Disease

    NASA Astrophysics Data System (ADS)

    Padilla, Pablo; Górriz, Juan-Manuel; Ramírez, Javier; Lang, Elmar; Chaves, Rosa; Segovia, Fermin; Álvarez, Ignacio; Salas-González, Diego; López, Miriam

    This paper offers a computer-aided diagnosis (CAD) technique for early diagnosis of Alzheimer's disease (AD) by means of single photon emission computed tomography (SPECT) image classification. The SPECT database for different patients is analyzed by applying the Fisher discriminant ratio (FDR) and non-negative matrix factorization (NMF) for the selection and extraction of the most significative features of each patient SPECT data, in order to reduce the large dimensionality of the input data and the problem of the curse of dimensionality, extracting score features. The NMF-transformed set of data, with reduced number of features, is classified by means of support vector machines (SVM) classification. The proposed NMF+SVM method yields up to 94% classification accuracy, thus becoming an accurate method for SPECT image classification. For the sake of completeness, comparison between conventional PCA+SVM method and the proposed method is also provided.

  2. Brain areas involved in acupuncture needling sensation of de qi: a single-photon emission computed tomography (SPECT) study.

    PubMed

    Chen, Jia-Rong; Li, Gan-Long; Zhang, Gui-Feng; Huang, Yong; Wang, Shu-Xia; Lu, Na

    2012-12-01

    De qi is a sensory response elicited by acupuncture stimulation. According to traditional Chinese medicine (TCM), de qi is essential for clinical efficacy. However, the understanding of the neurobiological basis of de qi is still limited. To investigate the relationship between brain activation and de qi by taking a single-photon emission computed tomography (SPECT) scan while applying acupuncture at TE5. A total of 24 volunteers were randomly divided into 4 groups, and received verum or sham acupuncture at true acupuncture point TE5 or a nearby sham point according to grouping. All subjects then received a (99m)Tc-ethylcysteinate dimer (ECD) SPECT scan. All six subjects in the verum acupuncture at true acupuncture point group experienced de qi sensation; in contrast, all six subjects in the sham acupuncture at the sham point group responded with nothing other than non-sensation. Compared to the scan results from subjects who experienced non-sensation, SPECT scans from subjects with de qi sensation demonstrated significant activated points mainly located in brodmann areas 6, 8, 19, 21, 28, 33, 35, 37, 47, the parahippocampal gyrus, lentiform nucleus, claustrum and red nucleus; deactivated points were seen in brodmann areas 9 and 25. Verum acupuncture at true acupuncture points is more likely to elicit de qi sensation. De qi sensations mainly resulted in brain area activations, but not deactivations. These brain areas are related to the curative effect of Te5. The acupuncture needle sensations of de qi and sharp pain are associated with different patterns of activations and deactivations in the brain.

  3. Statistical parametric mapping demonstrates asymmetric uptake with Tc-99m ECD and Tc-99m HMPAO SPECT in normal brain

    PubMed Central

    Brinkmann, Benjamin H; Jones, David T; Stead, Matt; Kazemi, Noojan; O'Brien, Terence J; So, Elson L; Blumenfeld, Hal; Mullan, Brian P; Worrell, Gregory A

    2012-01-01

    Tc-99m ethyl cysteinate diethylester (ECD) and Tc-99m hexamethyl propylene amine oxime (HMPAO) are commonly used for single-photon emission computed tomography (SPECT) studies of a variety of neurologic disorders. Although these tracers have been very helpful in diagnosing and guiding treatment of neurologic disease, data describing the distribution and laterality of these tracers in normal resting brain are limited. Advances in quantitative functional imaging have demonstrated the value of using resting studies from control populations as a baseline to account for physiologic fluctuations in cerebral perfusion. Here, we report results from 30 resting Tc-99m ECD SPECT scans and 14 resting Tc-99m HMPAO scans of normal volunteers with no history of neurologic disease. Scans were analyzed with regions of interest and with statistical parametric mapping, with comparisons performed laterally (left vs. right), as well as for age, gender, and handedness. The results show regions of significant asymmetry in the normal controls affecting widespread areas in the cerebral hemispheres, but most marked in superior parietotemporal region and frontal lobes. The results have important implications for the use of normal control SPECT images in the evaluation of patients with neurologic disease. PMID:21934696

  4. CT-based attenuation and scatter correction compared with uniform attenuation correction in brain perfusion SPECT imaging for dementia

    NASA Astrophysics Data System (ADS)

    Gillen, Rebecca; Firbank, Michael J.; Lloyd, Jim; O'Brien, John T.

    2015-09-01

    This study investigated if the appearance and diagnostic accuracy of HMPAO brain perfusion SPECT images could be improved by using CT-based attenuation and scatter correction compared with the uniform attenuation correction method. A cohort of subjects who were clinically categorized as Alzheimer’s Disease (n=38 ), Dementia with Lewy Bodies (n=29 ) or healthy normal controls (n=30 ), underwent SPECT imaging with Tc-99m HMPAO and a separate CT scan. The SPECT images were processed using: (a) correction map derived from the subject’s CT scan or (b) the Chang uniform approximation for correction or (c) no attenuation correction. Images were visually inspected. The ratios between key regions of interest known to be affected or spared in each condition were calculated for each correction method, and the differences between these ratios were evaluated. The images produced using the different corrections were noted to be visually different. However, ROI analysis found similar statistically significant differences between control and dementia groups and between AD and DLB groups regardless of the correction map used. We did not identify an improvement in diagnostic accuracy in images which were corrected using CT-based attenuation and scatter correction, compared with those corrected using a uniform correction map.

  5. Correlation between clinical severity of central nervous system (CNS) lupus and findings on single photon emission computed tomographic (SPECT) images of the brain; preliminary results

    SciTech Connect

    Silverman, I.E.; Zeit, R.M.; Von Feldt, J.M.

    1994-05-01

    Systemic Lupus Erythematosis (SLE) commonly causes significant neuropsychiatric disorders. The purpose of this study was to review the brain SPECT studies of SLE patients with clinical evidence of CNS involvement and determine whether there is a correlation between the findings on SPECT images and the clinical manifestations of this serious phase of the disease. We enrolled 19 SLE patients and 12 normal controls in this study. The level of each patient`s disease activity was determined by the SLE Disease Activity Index (SLEDAI), an established method of scoring disease severity which is heavily weighted toward neuropsychiatric symptomatology, for 15 of the 19 SLE patients. The SLEDAI was calculated within a 10 day window of the date when the SPECT scan was obtained. SPECT scans were performed 30 minutes following the intravenous administration of 99mTc-HMPAO. Results are discussed.

  6. Performance of a novel collimator for high-sensitivity brain SPECT

    SciTech Connect

    El Fakhri, Georges; Ouyang Jinsong; Zimmerman, Robert E.; Fischman, Alan J.; Kijewski, Marie Foley

    2006-01-15

    We assessed improvements in performance in detection and estimation tasks due to a novel brain single photon computed tomography collimator. Data were acquired on the CeraSPECT{sup TM} scanner using both new and standard collimators. The new variable focusing collimator SensOgrade{sup TM} samples the projections unequally, with central regions more heavily represented, to compensate for attenuation of counts from central brain structures. Furthermore, it utilizes more of the cylindrical crystal surface. Two phantom studies were performed. The first phantom was a 21-cm-diameter cylindrical background containing nine spheres ranging from 0.5 to 5 cm{sup 3} in volume. {sup 99m}Tc sphere to background activity ratio was 10:1. Twenty-nine 10-min datasets were acquired with each collimator. The second phantom was the Radiology Support Devices (Long Beach, CA) striatal phantom with striatal-background ratios of 10:1 on the left and 5:1 on the right. Twenty-nine 4-min datasets were acquired with each collimator. Perfusion imaging using {sup 99m}Tc-HMPAO was also performed in three healthy volunteers using both collimators under identical simulations. Projections were reconstructed by filtered backprojection with an unwindowed ramp filter. The nonprewhitening matched filter signal-to-noise ratio (NPW-SNR) was computed as a surrogate for human performance in detecting spherical lesions. Sphere activity concentration, radius, and location coordinates were simultaneously estimated by fitting images to an assumed model using an iterative nonlinear algorithm. Resolution recovery was implicit in the estimation procedure, as the point spread function was incorporated into the model. NPW-SNR for sphere detection was 1.5 to 2 times greater with the new collimator; for the striatal phantom the improvement in SNR was 54%. The SNR for estimating sphere activity concentration improved by 46 to 89 % for spheres located more than 5 cm from the phantom center. Images acquired with the

  7. Performance of a novel collimator for high-sensitivity brain SPECT.

    PubMed

    El Fakhri, Georges; Ouyang, Jinsong; Zimmerman, Robert E; Fischman, Alan J; Kijewski, Marie Foley

    2006-01-01

    We assessed improvements in performance in detection and estimation tasks due to a novel brain single photon computed tomography collimator. Data were acquired on the CeraSPECT scanner using both new and standard collimators. The new variable focusing collimator SensOgrade samples the projections unequally, with central regions more heavily represented, to compensate for attenuation of counts from central brain structures. Furthermore, it utilizes more of the cylindrical crystal surface. Two phantom studies were performed. The first phantom was a 21-cm-diameter cylindrical background containing nine spheres ranging from 0.5 to 5 cm3 in volume. 99mTc sphere to background activity ratio was 10:1. Twenty-nine 10-min datasets were acquired with each collimator. The second phantom was the Radiology Support Devices (Long Beach, CA) striatal phantom with striatal-background ratios of 10:1 on the left and 5:1 on the right. Twenty-nine 4-min datasets were acquired with each collimator. Perfusion imaging using 99mTc-HMPAO was also performed in three healthy volunteers using both collimators under identical simulations. Projections were reconstructed by filtered backprojection with an unwindowed ramp filter. The nonprewhitening matched filter signal-to-noise ratio (NPW-SNR) was computed as a surrogate for human performance in detecting spherical lesions. Sphere activity concentration, radius, and location coordinates were simultaneously estimated by fitting images to an assumed model using an iterative nonlinear algorithm. Resolution recovery was implicit in the estimation procedure, as the point spread function was incorporated into the model. NPW-SNR for sphere detection was 1.5 to 2 times greater with the new collimator; for the striatal phantom the improvement in SNR was 54%. The SNR for estimating sphere activity concentration improved by 46 to 89% for spheres located more than 5 cm from the phantom center. Images acquired with the standard collimator were too noisy in

  8. SU-C-9A-07: Fabrication and Calibration of a Novel High-Sensitivity Collimator for Brain SPECT Imaging

    SciTech Connect

    Park, M; Kijewski, M; Horky, L; Moore, S; Keijzers, M; Keijzers, R; Kalfin, L; Crough, J; Goswami, M

    2014-06-01

    Purpose: We have designed a novel collimator for brain SPECT imaging that yields greatly increased sensitivity near the center of the brain without loss of resolution. The collimator was manufactured and initial evaluation has been completed. Methods: The collimator was time-consuming and challenging to build. Because our desired hole pattern required substantial variations in hole angle, we designed two supporting plates to securely position about 34,000 hexagonal, slightly tapered, 75-mm long steel pins. The holes in the plates were modeled to yield the desired focal length, hole length and septal thickness. Molten lead was poured in between the plates, and all pins were removed after cooling. The sensitivity gain compared to a fan-beam collimator was measured using a point source placed along the central ray at several distances from the collimator face. Visual inspection of the holes was not possible as the collimator was sealed so it could be safely mounted on a SPECT system. Therefore, we prepared a 2D array of 768, ∼48μCi Tc-99m point sources, separated by 1.6 cm. The array was imaged for 10 minutes at 4 shifted locations to reduce sampling distance to 8 mm. Results: The sensitivity of the novel cone-beam collimator varied with distance from the detector face; it was higher than that of the fan-beam collimator by factors ranging from 3 to 176. Examination of the projections of the 4×768 point sources revealed that fewer than 2% of the holes were fully or partially blocked, which indicates that the intensive manual fabrication process was very successful. Conclusion: We have designed and manufactured a novel collimator for brain SPECT imaging. As expected, the sensitivity is much higher than that of a fan-beam collimator. Because of differences between the manufactured collimator and its design, reconstruction of the data will require a measured system function.

  9. Quantification of GABAA receptors in the rat brain with [(123)I]Iomazenil SPECT from factor analysis-denoised images.

    PubMed

    Tsartsalis, Stergios; Moulin-Sallanon, Marcelle; Dumas, Noé; Tournier, Benjamin B; Ghezzi, Catherine; Charnay, Yves; Ginovart, Nathalie; Millet, Philippe

    2014-02-01

    In vivo imaging of GABAA receptors is essential for the comprehension of psychiatric disorders in which the GABAergic system is implicated. Small animal SPECT provides a modality for in vivo imaging of the GABAergic system in rodents using [(123)I]Iomazenil, an antagonist of the GABAA receptor. The goal of this work is to describe and evaluate different quantitative reference tissue methods that enable reliable binding potential (BP) estimations in the rat brain to be obtained. Five male Sprague-Dawley rats were used for [(123)I]Iomazenil brain SPECT scans. Binding parameters were obtained with a one-tissue compartment model (1TC), a constrained two-tissue compartment model (2TCc), the two-step Simplified Reference Tissue Model (SRTM2), Logan graphical analysis and analysis of delayed-activity images. In addition, we employed factor analysis (FA) to deal with noise in data. BPND obtained with SRTM2, Logan graphical analysis and delayed-activity analysis was highly correlated with BPF values obtained with 2TCc (r=0.954 and 0.945 respectively, p<0.0001). Equally significant correlations were found between values obtained with 2TCc and SRTM2 in raw and FA-denoised images (r=0.961 and 0.909 respectively, p<0.0001). Scans of at least 100min are required to obtain stable BPND values from raw images while scans of only 70min are sufficient from FA-denoised images. These images are also associated with significantly lower standard errors of 2TCc and SRTM2 BP values. Reference tissue methods such as SRTM2 and Logan graphical analysis can provide equally reliable BPND values from rat brain [(123)I]Iomazenil SPECT. Acquisitions, however, can be much less time-consuming either with analysis of delayed activity obtained from a 20-minute scan 50min after tracer injection or with FA-denoising of images. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. The evaluation of brain perfusion SPECT using an easy Z-score imaging system in the mild cognitive impairment subjects with brain amyloid-β deposition.

    PubMed

    Takemaru, Makoto; Kimura, Noriyuki; Abe, Yoshitake; Goto, Megumi; Matsubara, Etsuro

    2017-09-01

    The analysis of (99)mTc-ECD single-photon emission computed tomography (SPECT) images using the easy Z-score imaging system (eZIS) program is useful for the diagnosis of early AD in daily medical practice. However, it remains unclear whether eZIS analysis can identify the amnestic mild cognitive impairment (MCI) subjects with brain amyloid-β deposition. The aim of this study was to evaluate the usefulness of an eZIS analysis for predicting amnestic MCI subjects with brain amyloid β deposition. Twenty-three subjects with MCI (10 men and 13 women, mean age; 74.2 years) underwent brain perfusion SPECT and (11)C-Pittsburgh Compound B positron emission tomography (PiB-PET). MCI subjects were divided into PiB-positive and PiB-negative subgroups. SPECT data was analyzed using the Specific Volume of interest Analysis of the eZIS program. Three indicators (severity, extent, and ratio) were calculated automatically and compared between the two subgroups. Five of 12 (41.7%) subjects in the PiB-positive subgroup and three of 11 (27.3%) subjects in the PiB-negative subgroup showed the abnormal value for each indicator. The frequency of subjects with abnormal ratio values was significantly higher in the PiB-positive subgroup compared to the PiB-negative subgroup (p=0.02), whereas that of subjects with abnormal values in severity and extent did not differ among the two subgroups. In particular, all subjects in the PiB-negative subgroup showed normal ratio values. Moreover, the subjects with abnormal values on two indicators, including ratio, or on all three indicators, showed PiB-positive. The analysis of brain perfusion SPECT using an eZIS program cannot identify the amnestic MCI subjects with brain amyloid-β deposition. However, abnormal three indicators or normal ratio values may be helpful SPECT findings for predicting the results of PiB-PET in the amnestic MCI subjects. Copyright © 2017. Published by Elsevier B.V.

  11. Interictal spikes in focal epileptogenesis.

    PubMed

    de Curtis, M; Avanzini, G

    2001-04-01

    Interictal electroencephalography (EEG) potentials in focal epilepsies are sustained by synchronous paroxysmal membrane depolarization generated by assemblies of hyperexcitable neurons. It is currently believed that interictal spiking sets a condition that preludes to the onset of an ictal discharge. Such an assumption is based on little experimental evidence. Human pre-surgical studies and recordings in chronic and acute models of focal epilepsy showed that: (i) interictal spikes (IS) and ictal discharges are generated by different populations of neuron through different cellular and network mechanisms; (ii) the cortical region that generates IS (irritative area) does not coincide with the ictal-onset area; (iii) IS frequency does not increase before a seizure and is enhanced just after an ictal event; (iv) spike suppression is found to herald ictal discharges; and (v) enhancement of interictal spiking suppresses ictal events. Several experimental evidences indicate that the highly synchronous cellular discharge associated with an IS is generated by a multitude of mechanisms involving synaptic and non-synaptic communication between neurons. The synchronized neuronal discharge associated with a single IS induces and is followed by a profound and prolonged refractory period sustained by inhibitory potentials and by activity-dependent changes in the ionic composition of the extracellular space. Post-spike depression may be responsible for pacing interictal spiking periodicity commonly observed in both animal models and human focal epilepsies. It is proposed that the strong after-inhibition produced by IS protects against the occurrence of ictal discharges by maintaining a low level of excitation in a general condition of hyperexcitability determined by the primary epileptogenic dysfunction.

  12. Recurring Functional Interactions Predict Network Architecture of Interictal and Ictal States in Neocortical Epilepsy.

    PubMed

    Khambhati, Ankit N; Bassett, Danielle S; Oommen, Brian S; Chen, Stephanie H; Lucas, Timothy H; Davis, Kathryn A; Litt, Brian

    2017-01-01

    Human epilepsy patients suffer from spontaneous seizures, which originate in brain regions that also subserve normal function. Prior studies demonstrate focal, neocortical epilepsy is associated with dysfunction, several hours before seizures. How does the epileptic network perpetuate dysfunction during baseline periods? To address this question, we developed an unsupervised machine learning technique to disentangle patterns of functional interactions between brain regions, or subgraphs, from dynamic functional networks constructed from approximately 100 h of intracranial recordings in each of 22 neocortical epilepsy patients. Using this approach, we found: (1) subgraphs from ictal (seizure) and interictal (baseline) epochs are topologically similar, (2) interictal subgraph topology and dynamics can predict brain regions that generate seizures, and (3) subgraphs undergo slower and more coordinated fluctuations during ictal epochs compared to interictal epochs. Our observations suggest that seizures mark a critical shift away from interictal states that is driven by changes in the dynamical expression of strongly interacting components of the epileptic network.

  13. Recurring Functional Interactions Predict Network Architecture of Interictal and Ictal States in Neocortical Epilepsy

    PubMed Central

    Bassett, Danielle S.; Oommen, Brian S.; Chen, Stephanie H.; Lucas, Timothy H.

    2017-01-01

    Abstract Human epilepsy patients suffer from spontaneous seizures, which originate in brain regions that also subserve normal function. Prior studies demonstrate focal, neocortical epilepsy is associated with dysfunction, several hours before seizures. How does the epileptic network perpetuate dysfunction during baseline periods? To address this question, we developed an unsupervised machine learning technique to disentangle patterns of functional interactions between brain regions, or subgraphs, from dynamic functional networks constructed from approximately 100 h of intracranial recordings in each of 22 neocortical epilepsy patients. Using this approach, we found: (1) subgraphs from ictal (seizure) and interictal (baseline) epochs are topologically similar, (2) interictal subgraph topology and dynamics can predict brain regions that generate seizures, and (3) subgraphs undergo slower and more coordinated fluctuations during ictal epochs compared to interictal epochs. Our observations suggest that seizures mark a critical shift away from interictal states that is driven by changes in the dynamical expression of strongly interacting components of the epileptic network. PMID:28303256

  14. Implementation of a fully 3D system model for brain SPECT with fan- beam-collimator OSEM reconstruction with 3D total variation regularization

    NASA Astrophysics Data System (ADS)

    Ye, Hongwei; Krol, Andrzej; Lipson, Edward D.; Lu, Yao; Xu, Yuesheng; Lee, Wei; Feiglin, David H.

    2007-03-01

    In order to improve tomographically reconstructed image quality, we have implemented a fully 3D reconstruction, using an ordered subsets expectation maximization (OSEM) algorithm for fan-beam collimator (FBC) SPECT, along with a volumetric system model-fan-volume system model (FVSM), a modified attenuation compensation, a 3D depth- and angle-dependent resolution and sensitivity correction, and a 3D total variation (TV) regularization. SPECT data were acquired in a 128x64 matrix, in 120 views with a circular orbit. The numerical Zubal brain phantom was used to simulate a FBC HMPAO Tc-99m brain SPECT scan, and a low noise and scatter-free projection dataset was obtained using the SimSET Monte Carlo package. A SPECT scan for a mini-Defrise phantom and brain HMPAO SPECT scans for five patients were acquired with a triple-head gamma camera (Triad 88) equipped with a low-energy high-resolution (LEHR) FBC. The reconstructed images, obtained using clinical filtered back projection (FBP), OSEM with a line-length system model (LLSM) and 3D TV regularization, and OSEM with FVSM and 3D TV regularization were quantitatively studied. Overall improvement in the image quality has been observed, including better axial and transaxial resolution, better integral uniformity, higher contrast-to-noise ration between the gray matter and the white matter, and better accuracy and lower bias in OSEM-FVSM, compared with OSEM-LLSM and clinical FBP.

  15. Hemodynamic and metabolic state of hyperfixation with 99mTc-HMPAO brain SPECT in subacute stroke.

    PubMed

    Cho, I; Hayashida, K; Imakita, S; Kume, N; Fukuchi, K

    2000-06-01

    By means of positron emission tomography (PET), we investigated the hemodynamic and metabolic state of the hyperfixation identified as the increased accumulation with 99mTc-d,l-hexamethylpropyleneamine oxime (HMPAO) by single photon emission computed tomography (SPECT) in patients with subacute stroke. We studied four patients with subacute stroke having hyperfixed areas evaluated with CBF, CMRO2, OEF and CBV by PET. The hyperfixation rate with 99mTc-HMPAO was obtained by comparing the surplus rate with standardized CBF. The OEF and CMRO2 values in the hyperfixed areas of 4 patients were significantly lower than those in normal 5 controls (p < 0.01), but CBF and CBV were almost the same in patients and normal controls, but the hyperfixation rate of 0.30 +/- 0.15 in 4 patients correlated well with CBV (r = 0.97, y = 11.75x + 0.42; p < 0.05). Hyperfixation with 99mTc-HMPAO in the infarct area revealing a mismatch between CMRO2 and CBF meant relative luxury perfusion. The hyperfixation rate determined by 99mTc-HMPAO brain SPECT correlated with CBV in the PET study. We can conclude that one of the main factors which caused hyperfixation was vasodilatation as well as the blood brain barrier disruption and the neovascularization.

  16. CT-Based Attenuation Correction in Brain SPECT/CT Can Improve the Lesion Detectability of Voxel-Based Statistical Analyses

    PubMed Central

    Kato, Hiroki; Shimosegawa, Eku; Fujino, Koichi; Hatazawa, Jun

    2016-01-01

    Background Integrated SPECT/CT enables non-uniform attenuation correction (AC) using built-in CT instead of the conventional uniform AC. The effect of CT-based AC on voxel-based statistical analyses of brain SPECT findings has not yet been clarified. Here, we assessed differences in the detectability of regional cerebral blood flow (CBF) reduction using SPECT voxel-based statistical analyses based on the two types of AC methods. Subjects and Methods N-isopropyl-p-[123I]iodoamphetamine (IMP) CBF SPECT images were acquired for all the subjects and were reconstructed using 3D-OSEM with two different AC methods: Chang’s method (Chang’s AC) and the CT-based AC method. A normal database was constructed for the analysis using SPECT findings obtained for 25 healthy normal volunteers. Voxel-based Z-statistics were also calculated for SPECT findings obtained for 15 patients with chronic cerebral infarctions and 10 normal subjects. We assumed that an analysis with a higher specificity would likely produce a lower mean absolute Z-score for normal brain tissue, and a more sensitive voxel-based statistical analysis would likely produce a higher absolute Z-score for in old infarct lesions, where the CBF was severely decreased. Results The inter-subject variation in the voxel values in the normal database was lower using CT-based AC, compared with Chang’s AC, for most of the brain regions. The absolute Z-score indicating a SPECT count reduction in infarct lesions was also significantly higher in the images reconstructed using CT-based AC, compared with Chang’s AC (P = 0.003). The mean absolute value of the Z-score in the 10 intact brains was significantly lower in the images reconstructed using CT-based AC than in those reconstructed using Chang’s AC (P = 0.005). Conclusions Non-uniform CT-based AC by integrated SPECT/CT significantly improved sensitivity and the specificity of the voxel-based statistical analyses for regional SPECT count reductions, compared with

  17. Comparison of diffusion tensor, dynamic susceptibility contrast MRI and (99m)Tc-Tetrofosmin brain SPECT for the detection of recurrent high-grade glioma.

    PubMed

    Alexiou, George A; Zikou, Anastasia; Tsiouris, Spyridon; Goussia, Anna; Kosta, Paraskevi; Papadopoulos, Athanasios; Voulgaris, Spyridon; Tsekeris, Pericles; Kyritsis, Athanasios P; Fotopoulos, Andreas D; Argyropoulou, Maria I

    2014-09-01

    Treatment induced necrosis is a relatively frequent finding in patients treated for high-grade glioma. Differentiation by imaging modalities between glioma recurrence and treatment induced necrosis is not always straightforward. This is a comparative study of diffusion tensor imaging (DTI), dynamic susceptibility contrast MRI and (99m)Tc-Tetrofosmin brain single-photon emission computed tomography (SPECT) for differentiation of recurrent glioma from treatment induced necrosis. A prospective study was made of 30 patients treated for high-grade glioma who had suspected recurrent tumor on follow-up MRI. All had been treated by surgical resection of the tumor followed by standard postoperative radiotherapy with chemotherapy. No residual tumor had been found on brain imaging immediately after the initial treatment. All the patients were studied with dynamic susceptibility contrast brain MRI and, within a week, (99m)Tc-Tetrofosmin brain SPECT. Both (99m)Tc-Tetrofosmin brain SPECT and dynamic susceptibility contrast MRI could discriminate between tumor recurrence and treatment induced necrosis with 100% sensitivity and 100% specificity. An apparent diffusion coefficient (ADC) ratio cut-off value of 1.27 could differentiate recurrence from treatment induced necrosis with 65% sensitivity and 100% specificity and a fractional anisotropy (FA) ratio cut-off value of 0.47 could differentiate recurrence from treatment induced necrosis with 57% sensitivity and 100% specificity. A significant correlation was demonstrated between (99m)Tc-Tetrofosmin uptake ratio and rCBV (P=0.003). Dynamic susceptibility contrast MRI and brain SPECT with (99m)Tc-Tetrofosmin had the same accuracy and may be used to detect recurrent tumor following treatment for glioma. DTI also showed promise for the detection of recurrent tumor, but was inferior to both dynamic susceptibility contrast MRI and brain SPECT. Copyright © 2014 Elsevier Inc. All rights reserved.

  18. Multifocal spatiotemporal distribution of interictal spikes in Panayiotopoulos syndrome.

    PubMed

    Kokkinos, Vasileios; Koutroumanidis, Michalis; Tsatsou, Katerina; Koupparis, Andreas; Tsiptsios, Dimitrios; Panayiotopoulos, Chrysostomos P

    2010-06-01

    To investigate the spatiotemporal course of interictal spikes in Panayiotopoulos syndrome (PS), and in particular whether seemingly independent extra-occipital spikes are truly autonomous or secondary, triggered by occipital spikes. Seven children with the most representative interictal spike patterns on visual analysis were studied. Five had a single focus (occipital in two, suggestive of posterior to anterior spike propagation in two, and frontal) and two had two foci over the posterior and the anterior areas independently. Spikes were marked, clustered and waveform - averaged, and mapped on electrode space. The patterns of spatial and temporal dynamics of the interictal spikes were not stereotypical for any brain area, including the occipital lobe. Some of the anterior and the posterior spikes remained focal or showed little spread, but others appeared to propagate to the opposite direction (occipital to frontal and vice versa). In PS all cerebral locations are able to spontaneously and independently generate and propagate interictal spikes, indicating that PS is a multifocal epileptic syndrome. Confirmation of the multifocal character of PS improves clinical diagnosis and challenges our current taxonomic concepts by expanding the anatomical boundaries of a distinct focal epilepsy phenotype from lobar to system. Crown Copyright 2010. Published by Elsevier Ireland Ltd. All rights reserved.

  19. Quantifying interictal metabolic activity in human temporal lobe epilepsy

    SciTech Connect

    Henry, T.R.; Mazziotta, J.C.; Engel, J. Jr.; Christenson, P.D.; Zhang, J.X.; Phelps, M.E.; Kuhl, D.E. )

    1990-09-01

    The majority of patients with complex partial seizures of unilateral temporal lobe origin have interictal temporal hypometabolism on (18F)fluorodeoxyglucose positron emission tomography (FDG PET) studies. Often, this hypometabolism extends to ipsilateral extratemporal sites. The use of accurately quantified metabolic data has been limited by the absence of an equally reliable method of anatomical analysis of PET images. We developed a standardized method for visual placement of anatomically configured regions of interest on FDG PET studies, which is particularly adapted to the widespread, asymmetric, and often severe interictal metabolic alterations of temporal lobe epilepsy. This method was applied by a single investigator, who was blind to the identity of subjects, to 10 normal control and 25 interictal temporal lobe epilepsy studies. All subjects had normal brain anatomical volumes on structural neuroimaging studies. The results demonstrate ipsilateral thalamic and temporal lobe involvement in the interictal hypometabolism of unilateral temporal lobe epilepsy. Ipsilateral frontal, parietal, and basal ganglial metabolism is also reduced, although not as markedly as is temporal and thalamic metabolism.

  20. Analysis of SPECT brain images for the diagnosis of Alzheimer's disease using moments and support vector machines.

    PubMed

    Salas-Gonzalez, Diego; Górriz, Juan M; Ramírez, Javier; López, Miriam; Illan, Ignacio A; Segovia, Fermín; Puntonet, Carlos G; Gómez-Río, Manuel

    2009-09-11

    This paper presents a computer-aided diagnosis technique for improving the accuracy of diagnosing the Alzheimer's type dementia. The proposed methodology is based on the calculation of the skewness for each m-by-m-by-m sliding block of the SPECT brain images. The center pixel in this m-by-m-by-m block is replaced by the skewness value to build a new 3-D brain image which is used for classification purposes. After that, voxels which present a Welch's t-statistic between classes, Normal and Alzheimer's images, higher (or lower) than a threshold are selected. The mean, standard deviation, skewness and kurtosis are calculated for these selected voxels and they are subjected as features to linear kernel based support vector machine classifier. The proposed methodology reaches accuracy higher than 99% in the classification task.

  1. Thallium-201 SPECT in the evaluation of early effects on brain tumors treated with stereotactic irradiation.

    PubMed

    Tomura, Noriaki; Izumi, Jun-ichi; Anbai, Akira; Takahashi, Satoshi; Sakuma, Ikuo; Omachi, Koichi; Kidani, Hiroyuki; Sasaki, Kazuhumi; Watarai, Jiro; Suzuki, Akira; Mizoi, Kazuo

    2005-02-01

    To determine whether thallium-201 SPECT can predict response to stereotactic irradiation (STI) earlier than magnetic resonance imaging (MRI), the change in tumor size measured by MRI was compared with the change in tumor activity measured by Tl-201 SPECT before and after STI. Twenty-one tumors in 16 patients with intracranial tumors were treated by STI. Tl-201 SPECT was performed within 1 week before the beginning of STI and within 1 week after the end of STI in all patients. All patients underwent MRI within 1 week before the beginning of STI, and 14 patients (19 tumors) underwent MRI within 1 week after the end of STI. Follow-up MRI was performed 1 to 2 months after the end of STI in 14 patients (16 tumors). The activity of Tl-201 in the tumor divided by that of the uninvolved symmetric area was defined as the Tl-index. The change in tumor size immediately and 1 to 2 months after STI was compared with the change in Tl-index immediately after STI. No significant relationship between the ratio of tumor size immediately after STI and the ratio of Tl-index immediately after STI was found. A significant correlation (r = 0.69, P <0.05) between the ratio of tumor size 1 to 2 months after STI and the ratio of Tl-index immediately after STI was found. This study suggests that Tl-201 SPECT immediately after STI can predict treatment response 1 to 2 months after STI, and that Tl-201 SPECT can be an early indicator of treatment response.

  2. Clinical application of 3D arterial spin-labeled brain perfusion imaging for Alzheimer disease: comparison with brain perfusion SPECT.

    PubMed

    Takahashi, H; Ishii, K; Hosokawa, C; Hyodo, T; Kashiwagi, N; Matsuki, M; Ashikaga, R; Murakami, T

    2014-05-01

    Alzheimer disease is the most common neurodegenerative disorder with dementia, and a practical and economic biomarker for diagnosis of Alzheimer disease is needed. Three-dimensional arterial spin-labeling, with its high signal-to-noise ratio, enables measurement of cerebral blood flow precisely without any extrinsic tracers. We evaluated the performance of 3D arterial spin-labeling compared with SPECT, and demonstrated the 3D arterial spin-labeled imaging characteristics in the diagnosis of Alzheimer disease. This study included 68 patients with clinically suspected Alzheimer disease who underwent both 3D arterial spin-labeling and SPECT imaging. Two readers independently assessed both images. Kendall W coefficients of concordance (K) were computed, and receiver operating characteristic analyses were performed for each reader. The differences between the images in regional perfusion distribution were evaluated by means of statistical parametric mapping, and the incidence of hypoperfusion of the cerebral watershed area, referred to as "borderzone sign" in the 3D arterial spin-labeled images, was determined. Readers showed K = 0.82/0.73 for SPECT/3D arterial spin-labeled imaging, and the respective areas under the receiver operating characteristic curve were 0.82/0.69 for reader 1 and 0.80/0.69 for reader 2. Statistical parametric mapping showed that the perisylvian and medial parieto-occipital perfusion in the arterial spin-labeled images was significantly higher than that in the SPECT images. Borderzone sign was observed on 3D arterial spin-labeling in 70% of patients misdiagnosed with Alzheimer disease. The diagnostic performance of 3D arterial spin-labeling and SPECT for Alzheimer disease was almost equivalent. Three-dimensional arterial spin-labeled imaging was more influenced by hemodynamic factors than was SPECT imaging. © 2014 by American Journal of Neuroradiology.

  3. Differences at brain SPECT between depressed females with and without adult ADHD and healthy controls: etiological considerations

    PubMed Central

    Gardner, Ann; Salmaso, Dario; Varrone, Andrea; Sanchez-Crespo, Alejandro; Bejerot, Susanne; Jacobsson, Hans; Larsson, Stig A; Pagani, Marco

    2009-01-01

    Background Comorbidity between Attention Deficit Hyperactivity Disorder (ADHD) and mood disorders is common. Alterations of the cerebellum and frontal regions have been reported in neuro-imaging studies of ADHD and major depression. Methods Thirty chronically depressed adult females of whom 16 had scores below, and 14 scores above, cut-offs on the 25-items Wender Utah Retrospective Scale (WURS-25) and the Wender-Reimherr Adult Attention Deficit Disorder Scale (WRAADDS) were divided into subgroups designated "Depression" and "Depression + ADHD", respectively. Twenty-one of the patients had some audiological symptom, tinnitus and/or hearing impairment. The patients were investigated with other rating scales and 99mTc-HMPAO SPECT. Controls for 99mTc-HMPAO SPECT were 16 healthy females. SPECT was analyzed by both statistical parametric mapping (SPM2) and the computerized brain atlas (CBA). Discriminant analysis was performed on the volumes of interest generated by the CBA, and on the scores from rating scales with the highest group differences. Results The mean score of a depression rating scale (MADRS-S) was significantly lower in the "Depression" subgroup compared to in the "Depression + ADHD" subgroup. There was significantly decreased tracer uptake within the bilateral cerebellum at both SPM and CBA in the "Depression + ADHD" subgroup compared to in the controls. No decrease of cerebellar tracer uptake was observed in "Depression". Significantly increased tracer uptake was found at SPM within some bilateral frontal regions (Brodmann areas 8, 9, 10, 32) in the "Depression + ADHD" subgroup compared to in "Depression". An accuracy of 100% was obtained for the discrimination between the patient groups when thalamic uptake was used in the analysis along with scores from Socialization and Impulsivity scales. Conclusion The findings confirm the previous observation of a cerebellar involvement in ADHD. Higher bilateral frontal 99mTc-HMPAO uptake in "Depression + ADHD

  4. Clinical Role of Subtraction Ictal SPECT Coregistered to MR Imaging and (18)F-FDG PET in Pediatric Epilepsy.

    PubMed

    Perissinotti, Andrés; Setoain, Xavier; Aparicio, Javier; Rubí, Sebastiá; Fuster, Berta Marti; Donaire, Antonio; Carreño, Mar; Bargalló, Nuria; Rumiá, Jordi; Garcia-Fructuoso, Gemma; Mayoral, Maria; Sanmartí, Francesc; Pons, Francesca

    2014-07-01

    A precise assessment of the drug-resistant epileptic pediatric population for surgical candidacy is often challenging, and to date there are no evidence-based guidelines for presurgical identification of the epileptogenic zone. To evaluate the usefulness of radionuclide imaging techniques for presurgical evaluation of epileptic pediatric patients, we compared the results of video-electroencephalography (EEG), brain MR imaging, interictal SPECT, ictal SPECT, subtraction ictal SPECT coregistered to MR imaging (SISCOM), and interictal PET with (18)F-FDG. Fifty-four children with drug-resistant epilepsy who had undergone video-EEG monitoring, brain MR imaging, interictal and ictal brain perfusion SPECT, SISCOM, and (18)F-FDG PET were included in this study. All abnormal findings revealed by these neuroimaging techniques were compared with the presumed location of the epileptogenic zone (PEZ) as determined by video-EEG and clinical data. The proportion of localizing studies for each technique was statistically compared. In the 18 patients who underwent resective brain surgery, neuroimaging results were compared with histopathology results and surgical outcome. SISCOM and (18)F-FDG PET concordance with the PEZ was significantly higher than MR imaging (P < 0.05). MR imaging showed localizing results in 21 of 54 cases (39%), SISCOM in 36 of 54 cases (67%), and (18)F-FDG PET in 31 of 54 cases (57%). If we consider SISCOM and (18)F-FDG PET results together, nuclear medicine imaging techniques showed coinciding video-EEG results in 76% of patients (41/54). In those cases in which MR imaging failed to identify any epileptogenic lesion (61% [33/54]), SISCOM or (18)F-FDG PET findings matched PEZ in 67% (22/33) of cases. SISCOM and (18)F-FDG PET provide complementary presurgical information that matched video-EEG results and clinical data in three fourths of our sample. SISCOM was particularly useful in those cases in which MR imaging findings were abnormal but no epileptogenic

  5. Evolution of brain imaging instrumentation.

    PubMed

    Abraham, Tony; Feng, Janine

    2011-05-01

    localization, to currently providing excellent resolution with imaging characteristics that can greatly impact clinical management. In addition, although ictal SPECT remains more sensitive than interictal PET for detection of seizure foci, the stringent conditions required for SPECT can be difficult to achieve, making interictal PET a very reasonable alternative. The clinical utility of PET and SPECT in neuropsychiatric and addictive disorders has not yet been defined, though a plethora of data exits. This arena of CNS disease has been the impetus for development of neurotransmitter-receptor-specific radioligands, which have already led to better understanding of dopaminergic, GABAergic, and serotonergic pathways. Another functional brain imaging technique that has gained broad acceptance since its invention in the early 1990 s, is functional MRI, which indirectly measures CNS neuronal activity by evaluating oxygenation levels of cerebral vessels. Despite other recent related developments, such as MR spectroscopy, arterial spin labeling, and diffusion tensor imaging, nuclear medicine-based techniques remain clinically relevant and robust modalities, especially with the ever-expanding armamentarium of radiotracers and radioligands in conjunction with industry-driven improvements in image-analysis hardware and software.

  6. Differential diagnosis of posterior fossa brain tumors: Multiple discriminant analysis of Tl-SPECT and FDG-PET.

    PubMed

    Yamauchi, Moritaka; Okada, Tomohisa; Okada, Tsutomu; Yamamoto, Akira; Fushimi, Yasutaka; Arakawa, Yoshiki; Miyamoto, Susumu; Togashi, Kaori

    2017-08-01

    This study investigated the combined capability of thallium-201 (Tl)-SPECT and fluorine-18-fluoro-deoxy-glucose (FDG)-PET for differential diagnosis of posterior fossa brain tumors using multiple discriminant analysis.This retrospective study was conducted under approval of the institutional review board. In the hospital information system, 27 patients with posterior fossa intra-axial tumor between January 2009 and June 2015 were enrolled and grouped as the following 7 entities: low grade glioma (LGG) 6, anaplastic astrocytoma (AA) 2, glioblastoma (GBM) 3, medulloblastoma (MB) 3, hemangioblastoma (HB) 6, metastatic tumor (Mets) 3, and malignant lymphoma (ML) 4. Tl and FDG uptakes were measured at the tumors and control areas, and several indexes were derived. Using indexes selected by the stepwise method, discriminant analysis was conducted with leave-one-out cross-validation.The predicted accuracy for tumor classification was 70.4% at initial analysis and 55.6% at cross-validation to differentiate 7 tumor entities. HB, LGG, and ML were well-discriminated, but AA was located next to LGG. GBM, MB, and Mets largely overlapped and could not be well distinguished even applying multiple discriminant analysis. Correct classification in the original and cross-validation analyses was 44.4% and 33.3% for Tl-SPECT and 55.6% and 48.1% for FDG-PET.

  7. Functional imaging of brain maturation in humans using iodine-123 iodoamphetamine and SPECT

    SciTech Connect

    Rubinstein, M.; Denays, R.; Ham, H.R.; Piepsz, A.; VanPachterbeke, T.; Haumont, D.; Nol, P. )

    1989-12-01

    The application of regional cerebral blood flow (rCBF) study by means of lipophilic radiotracers and single photon emission computed (SPECT) devices in very young infants is hampered by the considerable changes of rCBF pattern as a result of the cerebral maturation process. In an attempt to determine the normal evolution of ({sup 123}I)IMP SPECT pattern as a function of age, we retrospectively selected the studies of 30 babies with normal clinical examination, EEG and CT or ultrasound scans at time of SPECT. There was a marked predominance of the thalamic perfusion over cortical areas until the end of the second month. The distribution of regional cortical activity followed a strict sequence. The perfusion of both parietal and occipital areas was well-visualized around the 40th week of gestational age and thereafter rapidly rose, always, however, with a slight predominance of the parietal activity. At the opposite, frontal activity which remained scarcely recognizable up to the second month tremendously rose to present the adult-like pattern at the beginning of the second year. The rCBF changes described above are well in agreement with the behavioral evolution occurring during prime infancy.

  8. Development and validation of the random walk algorithm: application to the classification of diffuse heterogeneity in brain SPECT perfusion images.

    PubMed

    Modzelewski, Romain; de la Rue, Thierry; Janvresse, Elise; Hitzel, Anne; Menard, Jean François; Manrique, Alain; Gardin, Isabelle; Gerardin, Emmanuel; Hannequin, Didier; Vera, Pierre

    2008-01-01

    Heterogeneity analysis has been studied for radiological imaging, but few methods have been developed for functional images. Diffuse heterogeneous perfusion frequently appears in brain single photon emission computed tomography (SPECT) images, but objective quantification is lacking. An automatic method, based on random walk (RW) theory, has been developed to quantify perfusion heterogeneity. We assess the robustness of our algorithm in differentiating levels of diffuse heterogeneity even when focal defects are present. Heterogeneity is quantified by counting R (percentage), the mean rate of visited pixels in a fixed number of steps of the stochastic RW process. The algorithm has been tested on the numerical anthropomorphic Zubal head phantom. Seven diffuse cortical heterogeneity levels were simulated with an adjustable Gaussian function and 6 temporoparietal focal defects simulating Alzheimer Disease, leading to 42 phantoms. Data were projected and smoothed (full width at half maximum, 5.5 mm), and Poisson noise was added to the 64 projections. The SPECT data were reconstructed using filtered backprojection (Hamming filter, 0.5 c/p). R values for different levels of perfusion defect and diffuse heterogeneity were evaluated on 3 parameters: the number of slices studied (20 vs 40), the use of Talairach normalization versus original space, and the use of a cortical mask within the Talairach space. For each parameter, regression lines for heterogeneity and temporoparietal defect quantification were analyzed by covariance statistics. R values were also evaluated on SPECT images performed on 25 subjects with suspected focal dementia and on 15 normal controls. Scans were blindly ranked by 2 experienced nuclear physicians according to the degree of diffuse heterogeneity. Variability of R was smaller than 0.17% for repeated measurements. R was more particularly influenced by diffuse heterogeneity compared with focal perfusion defect. The Talairach normalization had a

  9. SPECT brain imaging of the dopaminergic system in Parkinsonism using {sup 123}I and {sup 99m}Tc labeled agents

    SciTech Connect

    Du Yong

    2004-12-01

    SPECT brain imaging of the dopaminergic system using {sup 123}I and {sup 99m}Tc labeled agents, especially the simultaneous imaging of both pre- and postsynaptic neurons, promises to provide accurate diagnosis and differentiation of Parkinsonism. However, there are many degrading factors that affect the quality and quantitative accuracy of the SPECT images. These degrading factors limit the potential clinical applications of brain SPECT imaging. In this work, we studied these degrading factors by developing and validating a Monte Carlo (MC) method that provides accurate SPECT simulation with detailed modeling of the photon interactions inside the collimator detector system. To compensate for the partial volume effect (PVE) in the SPECT images caused by finite spatial resolution, we developed a new PVE compensation method that takes into account the effects of nonlinearity in iterative reconstruction-based compensation for image degrading factors, including attenuation, scatter, and collimator detector response. Compensation using the new method greatly improved the quantitative accuracy of brain SPECT images. We have also developed model-based method that can accurately estimate the downscatter and crosstalk contamination in the {sup 123}I imaging and the simultaneous {sup 123}I/{sup 99m}Tc dual-isotope imaging. Based on the model-based method, two different approaches to model-based downscatter and crosstalk contamination compensation were proposed. Both methods are based on iterative reconstruction and include compensation for other imaging degrading factors. The model-based downscatter and crosstalk compensation method provided greatly improved accuracy of activity estimates with little effect on the precision. Finally, optimization of energy windows for simultaneous {sup 123}I/{sup 99m}Tc acquisition was performed to find the energy windows with the best trade-off between minimizing the crosstalk and maximizing the detection efficiency for simultaneous

  10. Structural and Perfusion Abnormalities of Brain on MRI and Technetium-99m-ECD SPECT in Children With Cerebral Palsy: A Comparative Study.

    PubMed

    Rana, Kamer Singh; Narwal, Varun; Chauhan, Lokesh; Singh, Giriraj; Sharma, Monica; Chauhan, Suneel

    2016-04-01

    Cerebral palsy has traditionally been associated with hypoxic ischemic brain damage. This study was undertaken to demonstrate structural and perfusion brain abnormalities. Fifty-six children diagnosed clinically as having cerebral palsy were studied between 1 to 14 years of age and were subjected to 3 Tesla magnetic resonance imaging (MRI). Brain and Technetium-99m-ECD brain single-photon emission computed tomography (SPECT) scan. Male to female ratio was 1.8:1 with a mean age of 4.16 ± 2.274 years. Spastic cerebral palsy was the most common type, observed in 91%. Birth asphyxia was the most common etiology (69.6%). White matter changes (73.2%) such as periventricular leukomalacia and corpus callosal thinning were the most common findings on MRI. On SPECT all cases except one revealed perfusion impairments in different regions of brain. MRI is more sensitive in detecting white matter changes, whereas SPECT is better in detecting cortical and subcortical gray matter abnormalities of perfusion. © The Author(s) 2015.

  11. Alteration of Interictal Brain Activity in Patients with Temporal Lobe Epilepsy in the Left Dominant Hemisphere: A Resting-State MEG Study

    PubMed Central

    Zhu, Haitao; Zhu, Jinlong; Zhao, Tiezhu; Wu, Yong; Liu, Hongyi; Wu, Ting; Yang, Lu; Zou, Yuanjie; Zhang, Rui; Zheng, Gang

    2014-01-01

    Resting MEG activities were compared between patients with left temporal lobe epilepsy (LTLE) and normal controls. Using SAMg2, the activities of MEG data were reconstructed and normalized. Significantly elevated SAMg2 signals were found in LTLE patients in the left temporal lobe and medial structures. Marked decreases of SAMg2 signals were found in the wide extratemporal lobe regions, such as the bilateral visual cortex. The study also demonstrated a positive correlation between the seizure frequency and brain activities of the abnormal regions after the multiple linear regression analysis. These results suggested that the aberrant brain activities not only were related to the epileptogenic zones, but also existed in other extratemporal regions in patients with LTLE. The activities of the aberrant regions could be further damaged with the increase of the seizure frequency. Our findings indicated that LTLE could be a multifocal disease, including complex epileptic networks and brain dysfunction networks. PMID:25136558

  12. Interictal EEG discoordination in a rat seizure model.

    PubMed

    Neymotin, Samuel A; Lee, Heekyung; Fenton, André A; Lytton, William W

    2010-12-01

    Cognitive and psychiatric comorbidities are common and clinically important in medial temporal lobe epilepsy and are likely caused by ongoing abnormalities in brain activity. In addition, it is unclear how the dynamics of interictal brain activity in medial temporal lobe epilepsy contributes to the generation of seizures. To investigate these issues, the authors evaluated multisite interictal EEG from a perinatal excitotoxic, hippocampal lesion rat model of medial temporal lobe epilepsy. Sample entropy, an information theoretical measure, demonstrated decreased complexity at different time scales and across all channels in epileptic animals. However, higher-order multiarea measures showed evidence of increased variability in population correlation measures. This apparent paradox was resolved by noting that although the EEG from epileptic animals was overall more stereotyped, there were frequent periods where two or more brain areas "broke off" from ongoing brain activity in epileptic animals, producing decorrelations between areas. These decorrelations were particularly apparent across the midline, suggesting impairments of interhemispheric coordination, a form of interhemispheric diaschisis. Both the observed alterations could contribute to a reduction in brain functionality: an overall reduction in complexity and a failure of interhemispheric brain coordination, suggesting a breakdown in communication between hemispheres. The authors speculate that any tendency of areas to lose communication or break away from coordinated brain activity might predispose to seizures in these areas.

  13. NeuroGam Software Analysis in Epilepsy Diagnosis Using 99mTc-ECD Brain Perfusion SPECT Imaging.

    PubMed

    Fu, Peng; Zhang, Fang; Gao, Jianqing; Jing, Jianmin; Pan, Liping; Li, Dongxue; Wei, Lingge

    2015-09-20

    BACKGROUND The aim of this study was to explore the value of NeuroGam software in diagnosis of epilepsy by 99Tcm-ethyl cysteinate dimer (ECD) brain imaging. MATERIAL AND METHODS NeuroGam was used to analyze 52 cases of clinically proven epilepsy by 99Tcm-ECD brain imaging. The results were compared with EEG and MRI, and the positive rates and localization to epileptic foci were analyzed. RESULTS NeuroGam analysis showed that 42 of 52 epilepsy cases were abnormal. 99Tcm-ECD brain imaging revealed a positive rate of 80.8% (42/52), with 36 out of 42 patients (85.7%) clearly showing an abnormal area. Both were higher than that of brain perfusion SPECT, with a consistency of 64.5% (34/52) using these 2 methods. Decreased regional cerebral blood flow (rCBF) was observed in frontal (18), temporal (20), and parietal lobes (2). Decreased rCBF was seen in frontal and temporal lobes in 4 out of 36 patients, and in temporal and parietal lobes of 2 out of 36 patients. NeuroGam further showed that the abnormal area was located in a different functional area of the brain. EEG abnormalities were detected in 29 out of 52 patients (55.8%) with 16 cases (55.2%) clearly showing an abnormal area. MRI abnormalities were detected in 17 out of 43 cases (39.5%), including 9 cases (52.9%) clearly showing an abnormal area. The consistency of NeuroGam software analysis, and EEG and MRI were 48.1% (25/52) and 34.9% (15/43), respectively. CONCLUSIONS NeuroGam software analysis offers a higher sensitivity in detecting epilepsy than EEG or MRI. It is a powerful tool in 99Tcm-ECD brain imaging.

  14. Alzheimer disease: Quantitative analysis of I-123-iodoamphetamine SPECT brain imaging

    SciTech Connect

    Hellman, R.S.; Tikofsky, R.S.; Collier, B.D.; Hoffmann, R.G.; Palmer, D.W.; Glatt, S.L.; Antuono, P.G.; Isitman, A.T.; Papke, R.A.

    1989-07-01

    To enable a more quantitative diagnosis of senile dementia of the Alzheimer type (SDAT), the authors developed and tested a semiautomated method to define regions of interest (ROIs) to be used in quantitating results from single photon emission computed tomography (SPECT) of regional cerebral blood flow performed with N-isopropyl iodine-123-iodoamphetamine. SPECT/IMP imaging was performed in ten patients with probable SDAT and seven healthy subjects. Multiple ROIs were manually and semiautomatically generated, and uptake was quantitated for each ROI. Mean cortical activity was estimated as the average of the mean activity in 24 semiautomatically generated ROIs; mean cerebellar activity was determined from the mean activity in separate ROIs. A ratio of parietal to cerebellar activity less than 0.60 and a ratio of parietal to mean cortical activity less than 0.90 allowed correct categorization of nine of ten and eight of ten patients, respectively, with SDAT and all control subjects. The degree of diminished mental status observed in patients with SDAT correlated with both global and regional changes in IMP uptake.

  15. The impacts of acute carbon monoxide poisoning on the brain: Longitudinal clinical and 99mTc ethyl cysteinate brain SPECT characterization of patients with persistent and delayed neurological sequelae.

    PubMed

    Tsai, Chung-Fen; Yip, Ping-Keung; Chen, Shao-Yuan; Lin, Jen-Cheng; Yeh, Zai-Ting; Kung, Lan-Yu; Wang, Cheng-Yi; Fan, Yu-Ming

    2014-04-01

    Acute carbon monoxide (CO) poisoning poses a significant threat to the central nervous system. It can cause brain injury and diverse neurological deficits including persistent neurological sequelae (PNS) and delayed neurological sequelae (DNS). The study aimed to investigate the long-term impacts of acute CO poisoning on brain perfusion and neurological function, and to explore potential differences between PNS and DNS patients. We evaluated brain perfusion using (99m)Tc ethyl cysteinate (ECD) brain single photon emission computed tomography (SPECT) and assessed clinical neurological symptoms and signs one month following acute poisoning. For DNS patients, ECD SPECT and clinical evaluation were performed when their delayed symptoms appeared. All patients had follow-up SPECT imaging, along with clinical assessments six months following poisoning. 12 PNS and 12 DNS patients were recruited between 2007 and 2010. Clinically, the main characteristic presentations were cognitive decline, emotional instability, and gait disturbance. SPECT imaging demonstrated consistent frontal hypoperfusion of varying severities in all patients, which decreased in severity at follow-up imaging. DNS patients usually had more severe symptoms and perfusion defects, along with worse clinical outcomes than the PNS group. These results suggest that acute CO poisoning might lead to long term brain injuries and neurological sequelae, particularly in DNS patients. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Role of Brain Perfusion SPECT with 99mTc HMPAO in the Assessment of Response to Drug Therapy in Patients with Autoimmune Vasculitis: A Prospective Study

    PubMed Central

    Mauro, Liberatore; Manuela, Morreale; Valentina, Megna; Sara, Collorone; Chondrogiannis, Sotirios; Maria, Drudi Francesco; Christos, Anagnostou; Liana, Civitelli; Ada, Francia; Maffione, Anna Margherita; Marzola, Maria Cristina; Rubello, Domenico

    2015-01-01

    Background: The diagnosis of vasculitis in the brain remains a quite difficult achievement. To the best of our knowledge, there is no imaging method reported in literature which is capable of reaching to a diagnosis of vasculitis with very high sensitivity. Aim: The aim of this study was to determine whether perfusion brain single photon emission computed tomography (SPECT) can be usefully employed in monitoring the treatment of vasculitis, allowing treating only potentially responder patients and avoiding the side effects on patients who do not respond. Materials and Methods: Twenty patients (two males and 18 females) suffering from systemic lupus erythematosus (SLE; n = 5), Behcet's disease (BD; n = 5), undifferentiated vasculitis (UV; n = 5), and Sjogren's syndrome (SS; n = 5) were included in the study. All patients underwent a wide neurological anamnestic investigation, a complete objective neurological examination and SPECT of the brain with 99mTc-hexamethyl-propylene-aminoxime (HMPAO). The brain SPECT was then repeated after appropriate medical treatment. The neurological and neuropsychiatric follow-up was performed at 6 months after the start of the treatment. Results: Overall, the differences between the scintigraphic results obtained after and before the medical treatment indicated a statistically significant increase of the cerebral perfusion (CP). In 19 out of 200 regions of interest (ROI) studied, the difference between pre- and post treatment percentages had negative sign, indicating a worsening of CP. This latter event has occurred six times (five in the same patients) in the UV, 10 times (eight in the same patients) in the SLE, never in BD, and three times (two in the same patient) in the SS. Conclusion: The reported results seem to indicate the possibility of identifying, by the means of a brain SPECT, responder and nonresponder (unchanged or worsened CP) patients, affected by autoimmune vasculitis, to the therapy. PMID:25973400

  17. Semiquantitative analysis using thallium-201 SPECT for differential diagnosis between tumor recurrence and radiation necrosis after gamma knife surgery for malignant brain tumors.

    PubMed

    Matsunaga, Shigeo; Shuto, Takashi; Takase, Hajime; Ohtake, Makoto; Tomura, Nagatsuki; Tanaka, Takahiro; Sonoda, Masaki

    2013-01-01

    Semiquantitative analysis of thallium-201 chloride single photon emission computed tomography (201Tl SPECT) was evaluated for the discrimination between recurrent brain tumor and delayed radiation necrosis after gamma knife surgery (GKS) for metastatic brain tumors and high-grade gliomas. The medical records were reviewed of 75 patients, including 48 patients with metastatic brain tumor and 27 patients with high-grade glioma who underwent GKS in our institution, and had suspected tumor recurrence or radiation necrosis on follow-up neuroimaging and deteriorating clinical status after GKS. Analysis of 201Tl SPECT data used the early ratio (ER) and the delayed ratio (DR) calculated as tumor/normal average counts on the early and delayed images, and the retention index (RI) as the ratio of DR to ER. A total of 107 tumors were analyzed with 201Tl SPECT. Nineteen lesions were removed surgically and histological diagnoses established, and the other lesions were evaluated with follow-up clinical and neuroimaging examinations after GKS. The final diagnosis was considered to be recurrent tumor in 65 lesions and radiation necrosis in 42 lesions. Semiquantitative analysis demonstrated significant differences in DR (P=.002) and RI (P<.0001), but not in ER (P=.372), between the tumor recurrence and radiation necrosis groups, and no significant differences between metastatic brain tumors and high-grade gliomas in all indices (P=.926 for ER, P=.263 for DR, and P=.826 for RI). Receiver operating characteristics analysis indicated that RI was the most informative index with the optimum threshold of 0.775, which provided 82.8% sensitivity, 83.7% specificity, and 82.8% accuracy. Semiquantitative analysis of 201Tl SPECT provides useful information for the differentiation between tumor recurrence and radiation necrosis in metastatic brain tumors and high-grade gliomas after GKS, and the RI may be the most valuable index for this purpose. Copyright © 2013 Elsevier Inc. All rights

  18. Semiquantitative Analysis Using Thallium-201 SPECT for Differential Diagnosis Between Tumor Recurrence and Radiation Necrosis After Gamma Knife Surgery for Malignant Brain Tumors

    SciTech Connect

    Matsunaga, Shigeo; Shuto, Takashi; Takase, Hajime; Ohtake, Makoto; Tomura, Nagatsuki; Tanaka, Takahiro; Sonoda, Masaki

    2013-01-01

    Purpose: Semiquantitative analysis of thallium-201 chloride single photon emission computed tomography ({sup 201}Tl SPECT) was evaluated for the discrimination between recurrent brain tumor and delayed radiation necrosis after gamma knife surgery (GKS) for metastatic brain tumors and high-grade gliomas. Methods and Materials: The medical records were reviewed of 75 patients, including 48 patients with metastatic brain tumor and 27 patients with high-grade glioma who underwent GKS in our institution, and had suspected tumor recurrence or radiation necrosis on follow-up neuroimaging and deteriorating clinical status after GKS. Analysis of {sup 201}Tl SPECT data used the early ratio (ER) and the delayed ratio (DR) calculated as tumor/normal average counts on the early and delayed images, and the retention index (RI) as the ratio of DR to ER. Results: A total of 107 tumors were analyzed with {sup 201}Tl SPECT. Nineteen lesions were removed surgically and histological diagnoses established, and the other lesions were evaluated with follow-up clinical and neuroimaging examinations after GKS. The final diagnosis was considered to be recurrent tumor in 65 lesions and radiation necrosis in 42 lesions. Semiquantitative analysis demonstrated significant differences in DR (P=.002) and RI (P<.0001), but not in ER (P=.372), between the tumor recurrence and radiation necrosis groups, and no significant differences between metastatic brain tumors and high-grade gliomas in all indices (P=.926 for ER, P=.263 for DR, and P=.826 for RI). Receiver operating characteristics analysis indicated that RI was the most informative index with the optimum threshold of 0.775, which provided 82.8% sensitivity, 83.7% specificity, and 82.8% accuracy. Conclusions: Semiquantitative analysis of {sup 201}Tl SPECT provides useful information for the differentiation between tumor recurrence and radiation necrosis in metastatic brain tumors and high-grade gliomas after GKS, and the RI may be the most

  19. Computer-assisted diagnostic system for neurodegenerative dementia using brain SPECT and 3D-SSP.

    PubMed

    Ishii, Kazunari; Kanda, Tomonori; Uemura, Takafumi; Miyamoto, Naokazu; Yoshikawa, Toshiki; Shimada, Kenichi; Ohkawa, Shingo; Minoshima, Satoshi

    2009-05-01

    To develop a computer-assisted automated diagnostic system to distinguish among Alzheimer disease (AD), dementia with Lewy bodies (DLB), and other degenerative disorders in patients with mild dementia. Single photon emission computed tomography (SPECT) images with injection of N-Isopropyl-p-[(123)I]iodoamphetamine (IMP) were obtained from patients with mild degenerative dementia. First, datasets from 20 patients mild AD, 15 patients with dementia with DLB, and 17 healthy controls were used to develop an automated diagnosing system based on three-dimensional stereotactic surface projections (3D-SSP). AD- and DLB-specific regional templates were created using 3D-SSP, and critical Z scores in the templates were established. Datasets from 50 AD patients, 8 DLB patients, and 10 patients with non-AD/DLB type degenerative dementia (5 with frontotemporal dementia and 5 with progressive supranuclear palsy) were then used to test the diagnostic accuracy of the optimized automated system in comparison to the diagnostic interpretation of conventional IMP-SPECT images. These comparisons were performed to differentiate AD and DLB from non-AD/DLB and to distinguish AD from DLB. A receiver operating characteristic (ROC) analysis was performed. The area under the ROC curve (Az) and the accuracy of the automated diagnosis system were 0.89 and 82%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 65%, respectively, for AD vs. DLB patients. The mean Az and the accuracy of the visual inspection were 0.84 and 77%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 65%, respectively, for AD vs. DLB patients. The mean Az and the accuracy of the combination of visual inspection and this system were 0.96 and 91%, respectively, for AD/DLB vs. non-AD/DLB patients, and 0.70 and 66%, respectively, for AD vs. DLB patients. The system developed in the present study achieved as good discrimination of AD, DLB, and other degenerative disorders in patients with mild dementia

  20. An easy Z-score imaging system for discrimination between very early Alzheimer's disease and controls using brain perfusion SPECT in a multicentre study.

    PubMed

    Matsuda, Hiroshi; Mizumura, Sunao; Nagao, Takehiko; Ota, Tsuneyoshi; Iizuka, Tomomichi; Nemoto, Kiyotaka; Kimura, Michihiro; Tateno, Amane; Ishiwata, Akiko; Kuji, Ichiei; Arai, Heii; Homma, Akira

    2007-03-01

    In Alzheimer's disease (AD), regional cerebral blood flow (rCBF) in the posterior cingulate gyrus and precuneus has been reported to decrease even at a very early stage. We performed a multicentre SPECT study to evaluate the discrimination ability of an easy Z-score imaging system (eZIS) by detecting an rCBF decrease in this area with a common normal database between very early AD patients at the stage of mild cognitive impairment and age-matched healthy volunteers. Brain perfusion SPECT images of 40 Alzheimer's disease patients and 40 healthy volunteers were acquired from four gamma camera systems in different institutions. Systematic differences of SPECT images between different gamma cameras were corrected using conversion maps calculated from the SPECT images of the same brain phantom. Ten observers with various degrees of expertise graded eZIS results for receiver operating characteristic (ROC) curves. ROC curves for a positive Z-score in the volume of interest (VOI) of the posterior cingulate gyrus and precuneus were also analysed. An area under the ROC curve value (AZ) for ten observers showed the highest value of 0.866 on average with the smallest standard deviation of 0.027 in the condition of the lower threshold of a Z-score map of 2 without superimposition of VOI. Automated analysis of a Z-score in the VOI showed an AZ value of 0.895. Since the degree of expertise of the observers with respect to reading eZIS did not influence the performance and an eZIS can use a common normal database by converting site-specific SPECT data to the core data, the eZIS was considered to be very useful for diagnosing early AD in routine studies in many institutions.

  1. Effects of dextromethorphan on MDMA-induced serotonergic aberration in the brains of non-human primates using [123I]-ADAM/SPECT

    PubMed Central

    Ma, Kuo-Hsing; Liu, Tsung-Ta; Weng, Shao-Ju; Chen, Chien-Fu F.; Huang, Yuahn-Sieh; Chueh, Sheau-Huei; Liao, Mei-Hsiu; Chang, Kang-Wei; Sung, Chi-Chang; Hsu, Te-Hung; Huang, Wen-Sheng; Cheng, Cheng-Yi

    2016-01-01

    3,4-Methylenedioxymethamphetamine (MDMA), a common recreational drug, is known to cause serotonergic neurotoxicity in the brain. Dextromethorphan (DM) is a widely used antitussive reported to exert anti-inflammatory effect in vivo. In this study, we examined the long-term effect of MDMA on the primate serotonergic system and the protective property of DM against MDMA-induced serotonergic abnormality using single photon emission computed tomography (SPECT). Nine monkeys (Macaca cyclopis) were divided into three groups, namely control, MDMA and co-treatment (MDMA/DM). [123I]-ADAM was used as the radioligand for serotonin transporters (SERT) in SPECT scans. SERT levels of the brain were evaluated and presented as the uptake ratios (URs) of [123I]-ADAM in several regions of interest of the brain including midbrain, thalamus and striatum. We found that the URs of [123I]-ADAM were significantly lower in the brains of MDMA than control group, indicating lower brain SERT levels in the MDMA-treated monkeys. This MDMA-induced decrease in brain SERT levels could persist for over four years. However, the loss of brain SERT levels was not observed in co-treatment group. These results suggest that DM may exert a protective effect against MDMA-induced serotonergic toxicity in the brains of the non-human primate. PMID:27941910

  2. The time course of vasogenic oedema after focal human head injury--evidence from SPECT mapping of blood brain barrier defects.

    PubMed

    Bullock, R; Statham, P; Patterson, J; Wyper, D; Hadley, D; Teasdale, E

    1990-01-01

    We have tomographically mapped changes in the blood brain barrier (BBB) (99 mTc Pertechnetate) in 20 patients with acute contusions, and four with acute subdural haematomas in situ. The changes were related to regional CBF, (99 mTc HMPAO SPECT) T2 weighted MRI scans, CT abnormalities and the clinical features. Seventy-five percent of contusions were accompanied by a BBB abnormality, usually a "halo" around the lesion, which was more common in scans made after the second day. All contusions demonstrated "oedema" as a zone of "T2" signal on MRI or a zone of lucency on CT, and all were accompanied by a focal zone of low CBF on SPECT. Early contusional oedema appears to be cytotoxic but in certain cases, delayed blood brain barrier lesions develop, suggesting a vasogenic component.

  3. Alteration of ictal and interictal perfusion in patients with paroxysmal kinesigenic dyskinesia.

    PubMed

    Kim, Y-D; Kim, J-S; Chung, Y-A; Song, I-U; Oh, Y-S; Chung, S-W; Kim, H-T; Kim, Y-I; Lee, K-S

    2011-12-01

    Although previous cerebral blood flow studies have suggested that the basal ganglia or thalamus are involved in the pathogenesis of paroxysmal kinesigenic dyskinesia (PKD), the precise anatomic substrate or pathophysiological networks associated with PKD remain unclear. Here, ictal and interictal single photon emission computed tomography (SPECT) in 2 patients with idiopathic PKD compared to 6 age-matched normal controls and the perfusion findings of subtraction ictal SPECT co-registered to MRI (SISCOM) in 1 patient are reported. The interictal and ictal perfusion changes were different in each of the patients and there were no consistent anatomic substrates observed. 2 patients had significant perfusion changes in the left frontal/temporal cortices compared to controls, whereas the others showed an increased uptake of 99mTc-ethyl cysteinate dimer (ECD) in the left occipital area on subtraction SPECT imaging. The results of this study suggest that the pathophysiology of PKD cannot be simply explained by lesions of the basal ganglia or thalamus, and that other associated areas of the cortex are likely involved in these movement disorders.

  4. Pentavalent technetium-99m-dimercaptosuccinic acid [Tc-99m (V) DMSA] brain SPECT: does it have a place in predicting survival in patients with glioblastoma multiforme?

    PubMed

    Amin, Amr; Mustafa, M; Abd El-Hadi, E; Monier, A; Badwey, A; Saad, E

    2015-01-01

    Pentavalent technetium-99m dimercaptosuccinic acid (Tc-99m (V) DMSA) is reported as a useful tool for detection of residual or recurrent gliomas. We aimed to investigate the prognostic value of Tc-99m (V) DMSA brain SPECT in patients with glioblastoma multiforme (GBM). 40 patients [21 males and 19 females; mean age 48.6 ± 12.2 years] with GBM were included. Tc-99m (V) DMSA brain SPECT was done after surgery and before onset of radiation therapy or chemotherapy (Baseline study), at 4-6 weeks and at 6 months as a follow-up after therapy. The end point of the study was clinical follow-up for 2 years and/or death. 4-6 weeks after therapy, 40 and 60 % had negative and positive Tc-99m (V) DMSA for viable tumor tissues respectively (P = 0.09). At 6 months follow-up, 62.5 % of (V) DMSA negative patients and 12.5 % of the positive subjects were responders (P = 0.001). The median over-all survival (OS) of all patients was 12.3 month [range 5-24 month]. Patients with positive (V) DMSA had worse survival (8.87 month) compared to the negative ones (16.67 month) (P = 0.0001). Multivariate Cox regression analysis showed that Tc-99m (V) DMSA brain SPECT studies at 4-6 weeks and 6-months follow-up were independent prognostic factors for survival [OR 1.069; 95 % CI 1.417-2.174; P = 0.03 and OR 1.055; 95 % CI 0.821-1.186; P = 0.01 respectively]. Stratification of tumors into risk groups based on prognostic parameters may improve outcome by altering or intensifying treatment methods. Technetium-99m dimercaptosuccinic acid brain SPECT may have an additional prognostic role in patients with GBM which needs further evaluation in larger future series.

  5. Linear interictal pain in Epicrania Fugax.

    PubMed

    Pareja, Juan A; Bandrés, Pablo

    2015-01-01

    Epicrania Fugax is a paroxysmal, short-lasting, head pain moving across one hemicranium, describing a linear or zag trajectory, starting and ending in territories of different nerves. Between attacks, patients are usually free of symptoms. We describe an Epicrania Fugax patient complaining of interictal pain. The interictal pain was line-shaped and extended across the usual starting and ending points of the typical Epicrania Fugax paroxysms. Although rarely encountered, persistent linear pain may be a feature of Epicrania Fugax.

  6. Brain and platelet serotonin transporter in humans-correlation between [123I]-ADAM SPECT and serotonergic measurements in platelets.

    PubMed

    Uebelhack, Ralf; Franke, Leonora; Herold, Nathalie; Plotkin, Michael; Amthauer, Holger; Felix, Roland

    2006-10-09

    Blood platelets are thought to be a useful peripheral model for investigating the central serotoninergic mechanisms associated with the serotonin transporter (SERT). On the other hand, an in vivo investigation of SERT in the human brain has been made possible by the development of several promising SPECT radioligands, such as [123I]-ADAM. The aim of the present study was to investigate the possible correlation between the SERT measurements in the brain and those in platelets. Forty-four subjects (14 healthy subjects and 30 patients with the diagnosis of major depression or schizoaffective disorder) were examined. The [123I]-ADAM binding was assessed 4h after injection using MR-guided regions of interest (ROIs) in the midbrain and cerebellum. In a parallel investigation, serotonin (5HT) concentration and kinetic characteristics of 5HT uptake activity (Vmax and Km) were determined in platelet-rich plasma. Overall, there was no significant correlation between the V(max) of 5HT uptake in platelets and the specific to nonspecific partition coefficient of [123I]-ADAM (V''3) in the midbrain. However, low but significant Pearson correlation coefficients were found for V(max) and normalised activities measured in the midbrain (r=0.310, p=0.043). The correlation was stronger and significant in females (n=20, r=0.629, p=0.003) but low and non-significant in the 24 males (r=0.104). Although confirmation is necessary, it seems that the relationship between different indices of [123I]-ADAM binding in the brain and 5HT uptake characteristics in platelets is complex, nonuniform, and possibly gender-specific.

  7. Early brain perfusion improvement after ventriculoperitoneal shunt surgery in patients with idiopathic normal pressure hydrocephalus evaluated by 99mTc-HMPAO SPECT - preliminary report.

    PubMed

    Nocuń, Anna; Mosiewicz, Anna; Kaczmarczyk, Robert; Kazalska, Teresa; Czekajska-Chehab, Elżbieta; Chrapko, Beata; Trojanowski, Tomasz

    2015-01-01

    Idiopathic normal pressure hydrocephalus (iNPH) is a clinical syndrome that consists of the triad: gait disturbance, mental deterioration and urinary incontinence associated with normal cerebrospinal fluid pressure (CSF), without pre-existing abnormalities. The most popular treatment option is surgical implantation of a shunt. Brain perfusion increase occurring months or years after successful shunt surgery is well described in the literature. Early improvement of perfusion is not well documented. Therefore, the objective of the present study was to determine patterns of brain perfusion changes 3-6 days after the ventriculoperitoneal shunting in patients with iNPH by using 99mTc-HMPAO SPECT. Sixteen patients with iNPH (9 women, 7 men, mean age 64.1 ± 12.7 years) who underwent ventriculoperitoneal shunt surgery were included into the study group. Indications for implanting a shunt were based on clinical history, neuroimaging and CSF dynamic studies with an infusion test. Brain perfusion SPECT was performed 1-2 days before and 3-6 days after the surgical treatment. For comparison of perfusion before and after the surgery SPECT scans were assessed visually and semiquantitatively with voxel based analysis. No side effects were observed after the surgery. Brain perfusion improvement after shunting was observed in 10 patients (62.5%). Patterns of perfusion changes varied between patients, with combinations of different bilateral and lateralized brain regions involved. Perfusion increased in the whole brain (3 patients), in the right cerebral hemisphere (1 patient) or in the separate cerebral regions (6 patients): frontal, parietal, temporal, cerebellum, cingulate gyrus. Perfusion improvement was predominantly observed in the frontal lobes: right frontal (3 cases, 18.8%), left frontal (3 cases, 18.8%). Cerebral perfusion is recovered promptly after ventriculoperitoneal shunt surgery in about 60% of patients with iNPH. This improvement may be global or regional in

  8. Equivalent brain SPECT perfusion changes underlying therapeutic efficiency in pharmacoresistant depression using either high-frequency left or low-frequency right prefrontal rTMS.

    PubMed

    Richieri, Raphaëlle; Boyer, Laurent; Padovani, Romain; Adida, Marc; Colavolpe, Cécile; Mundler, Olivier; Lançon, Christophe; Guedj, Eric

    2012-12-03

    Functional neuroimaging studies have suggested similar mechanisms underlying antidepressant effects of distinct therapeutics. This study aimed to determine and compare functional brain patterns underlying the antidepressant response of 2 distinct protocols of repetitive transcranial magnetic stimulation (rTMS). 99mTc-ECD SPECT was performed before and after rTMS of dorsolateral prefrontal cortex in 61 drug-resistant right-handed patients with major depression, using high frequency (10Hz) left-side stimulation in 33 patients, and low frequency (1Hz) right-side stimulation in 28 patients. Efficiency of rTMS response was defined as at least 50% reduction of the baseline Beck Depression Inventory score. We compared the whole-brain voxel-based brain SPECT changes in perfusion after rTMS, between responders and non-responders in the whole sample (p<0.005, uncorrected), and separately in the subgroup of patients with left- and right-stimulation. Before rTMS, the left- and right-prefrontal stimulation groups did not differ from clinical data and brain SPECT perfusion. rTMS efficiency (evaluated on % of responders) was statistically equivalent in the two groups of patients. In the whole-group of responder patients, a perfusion decrease was found after rTMS, in comparison to non-responders, within the left perirhinal cortex (BA35, BA36). This result was secondarily confirmed separately in the two subgroups, i.e. after either left stimulation (p=0.017) or right stimulation (p<0.001), without significant perfusion differences between these two subgroups. These data show that distinct successful rTMS protocols induce equivalent brain functional changes associated to antidepressive efficiency, consisting to a remote brain limbic activity decrease within the left perirhinal cortex. However, these results will have to be confirmed in a double-blind randomized trial using a sham control group. Copyright © 2012 Elsevier Inc. All rights reserved.

  9. Computer-assisted superimposition of magnetic resonance and high-resolution technetium-99m-HMPAO and thallium-201 SPECT images of the brain

    SciTech Connect

    Holman, B.L.; Zimmerman, R.E.; Johnson, K.A.; Carvalho, P.A.; Schwartz, R.B.; Loeffler, J.S.; Alexander, E.; Pelizzari, C.A.; Chen, G.T. )

    1991-08-01

    A method for registering three-dimensional CT, MR, and PET data sets that require no special patient immobilization or other precise positioning measures was adapted to high-resolution SPECT and MRI and was applied in 14 subjects (five normal volunteers, four patients with dementia (Alzheimer's disease), two patients with recurrent glioblastoma, and three patients with focal lesions (stroke, arachnoid cyst and head trauma)). T2-weighted axial magnetic resonance images and transaxial 99mTc-HMPAO and 201Tl images acquired with an annular gamma camera were merged using an objective registration (translation, rotation and rescaling) program. In the normal subjects and patients with dementia and focal lesions, focal areas of high uptake corresponded to gray matter structures. Focal lesions observed on MRI corresponded to perfusion defects on SPECT. In the patients who had undergone surgical resection of glioblastoma followed by interstitial brachytherapy, increased 201Tl corresponding to recurrent tumor could be localized from the superimposed images. The method was evaluated by measuring the residuals in all subjects and translational errors due to superimposition of deep structures in the 12 subjects with normal thalamic anatomy and 99mTc-HMPAO uptake. This method for superimposing magnetic resonance and high-resolution SPECT images of the brain is a useful technique for correlating regional function with brain anatomy.

  10. PET and SPECT exploration of central monoaminergic transporters for the development of new drugs and treatments in brain disorders.

    PubMed

    Guilloteau, D; Chalon, S

    2005-01-01

    Membrane and vesicular monoaminergic transporters, responsible for the homeostasis of neurotransmitter pools at nerve endings, are very involved in the physiology and diseases of central nervous system. Recent progresses of cerebral molecular imaging using SPECT and PET methods allow the extend of in vivo exploration of these transporters. For this aim, an increasing number of radiopharmaceuticals labelled with [123I], [99mTc], [11C] or [18F] have been developed such as cocaine derivatives for the DAT, compounds from the diphenyl sulfide family for the SERT, and dihydrotetrabenazine derivatives for the VMAT2. These functional imaging methods can be very useful in several neurological and psychiatric disorders which involve the monoaminergic neurotransmission systems such as Parkinson's disease, ADHD, depression and autism. For example, the DAT is a specific index of the density of dopaminergic endings which progressively degenerate in Parkinson's disease. In vivo exploration of this transporter can therefore be a relevant way (i) to realize an early detection of the loss of dopaminergic neurons, (ii) to assess the progression of the disease, (iii) to validate and improve the efficacy of new therapeutic strategies such as neuroprotection and neuroreparation. In all, the extend of in vivo exploration of monoamine transporters will allow great progress for (1) knowledge of physiopathological mechanisms of brain disorders, (2) early diagnosis of cerebral dysfunctions, allowing early use of new therapies, (3) selection of homogenous classes of subjects for therapeutic assays, (4) objectiveness of drug-molecular target interaction, (5) follow-up of disease evolution and treatment.

  11. Brain MRI, Tc-99m HMPAO SPECT and F-18 FP-CIT PET/CT Findings in a Patient with Wilson Disease: A Case Report.

    PubMed

    Kim, Seungyoo; Song, In Uk; Chung, Yong An; Choi, Eun Kyung; Oh, Jin Kyoung

    2014-12-01

    A 34-year-old female had experienced head and hand tremors with a dystonic component for 8 months. Brain MRI showed T2 high signal intensity in the periaqueductal region, dorsal midbrain and dorsal upper pons. No abnormal uptake was noted on Tc-99m HMPAO SPECT or F-18 FP-CIT PET/CT. Wilson disease was diagnosed according to the 2008 consensus guideline from the American Association for the Study of Liver Disease and 2012 guideline from the European Association for the Study of the Liver. This case demonstrates T2 signal change in the basal ganglia, excluding the putamen, in a Wilson disease patient with relatively severe clinical findings, but normal Tc-99m HMPAO SPECT and F-18 FP-CIT PET/CT.

  12. Combination of blood flow asymmetry in the cerebral and cerebellar hemispheres on brain perfusion SPECT predicts 5-year outcome in patients with symptomatic unilateral major cerebral artery occlusion.

    PubMed

    Nomura, Jun-ichi; Ogasawara, Kuniaki; Saito, Hideo; Terasaki, Kazunori; Matsumoto, Yoshiyasu; Takahashi, Yoshihiro; Ogasawara, Yasushi; Saura, Hiroaki; Yoshida, Koji; Sato, Yuiko; Kubo, Yoshitaka; Ogawa, Akira

    2014-03-01

    Misery perfusion increases the risk of stroke recurrence in patients with symptomatic major cerebral artery occlusion. The ratio of brain perfusion contralateral-to-affected asymmetry in the cerebellar hemisphere to brain perfusion affected-to-contralateral asymmetry in the cerebral hemisphere (CblPR/CbrPR) indicates affected-to-contralateral asymmetry of oxygen extraction fraction (OEF) in the cerebral hemisphere. The purpose of the present study was to determine whether the CblPR/CbrPR on brain perfusion single-photon emission computed tomography (SPECT) predicts 5-year outcomes in patients with symptomatic unilateral occlusion of the middle cerebral artery (MCA) or internal carotid artery (ICA). Brain perfusion was assessed using N-isopropyl-p-[123I]-iodoamphetamine (123I-IMP) SPECT in 70 patients. A region of interest (ROI) was manually placed in the bilateral MCA territories and in the bilateral cerebellar hemispheres, and the CblPR/CbrPR was calculated. All patients were prospectively followed for 5 years. The primary end points were stroke recurrence or death. A total of 17 patients exhibited the primary end points, 11 of whom experienced subsequent ipsilateral strokes. Multivariate analysis revealed that only high CblPR/CbrPR was significantly associated with the development of the primary end point or subsequent ipsilateral strokes (95% confidential limits [CIs], 1.130-3.145; P  =  0.0114 or 95% CIs, 2.558-5.140; P  =  0.0045, respectively). The CblPR/CbrPR provided 65% (11/17) or 91% (10/11) sensitivity and 88% (47/53) or 88% (52/59) specificity in predicting the primary end point or subsequent ipsilateral strokes, respectively. The CblPR/CbrPR on brain perfusion SPECT predicts 5-year outcomes in patients with symptomatic unilateral occlusion of the MCA or ICA.

  13. Tl-201 brain SPECT imaging in preoperative supratentorial glioma: Is it useful in the grading of nonehancing CT or MRI lesions?

    SciTech Connect

    Ryu, J.S.; Moon, D.H.; Lee, H.K.

    1995-05-01

    Contrast enhanced MRI is valuable in predicting the histologic grade of gliomas. However, some high grade tumors may not demonstrate any significant enhancement. The purpose of this study was to assess the contribution of Tl-201 brain SPECT in the grading of preoperative glioma and the correlation with contrast enhancement in MRI or CT. The subjects consisted of 30 patients(pts) with suspected gliomas on contrast enhanced MR(n=27) or CT(n=3). Tl-201 brain SPECT was performed after injection of 74MBq of Tl-201 using triple head SPECT system. To quantify Tl-201 uptake, Tl indices (Tl average pixel counts of tumor ROl/normal contralateral hemisphere) were obtained. Histologic diagnoses were glioblastoma multiforme(GM) in 13, asrtrocytoma grade III (GIII) in 7, astrocytoma grade II(GII) in 6 and reactive gliosis(RG) in 4. All 13 pts with GM showed positive Tl-201 uptake(mean Tl; 9.0 {plus_minus}4.7), when Tl over 2.5 was considered as positive. Four of the 7 pts with GIII were positive(Tl: 4.6 {approximately}8.5) and the other 3 pts were negative. Tl-201 uptake(Tl; 0.8{approximately}1.5). All with GII showed negative Tl-201 uptake except one with 4.7 of Tl. Three of the 4 pts with RG also showed negative Tl-201 uptake and one showed positive uptake(Tl; 4.9). Overall sensitivity and specificity of Tl-201 SPECT in differentiating high grade glioma were 85% and 80%. In the correlation with contrast enhancement in MRI or CT, all nonenhancing lesions were negative Tl-201 uptake including 2 lesions with GIII. Nineteen out of the 23 pts with enhancing lesions had positive Tl-201 uptake. Three pts with RG and one with GIII who had enhancing lesions in MRI showed negative Tl-201 uptake. In conclusion, Tl-201 brain SPECT imaging is a useful method in differentiating the high grade gliomas in contrast enhancing lesions in MRI or CT. It has no additional value in differential diagnosis of nonenhancing lesions.

  14. Towards mapping the brain connectome in depression: functional connectivity by perfusion SPECT.

    PubMed

    Gardner, Ann; Åstrand, Disa; Öberg, Johanna; Jacobsson, Hans; Jonsson, Cathrine; Larsson, Stig; Pagani, Marco

    2014-08-30

    Several studies have demonstrated altered brain functional connectivity in the resting state in depression. However, no study has investigated interregional networking in patients with persistent depressive disorder (PDD). The aim of this study was to assess differences in brain perfusion distribution and connectivity between large groups of patients and healthy controls. Participants comprised 91 patients with PDD and 65 age- and sex-matched healthy controls. Resting state perfusion was investigated by single photon emission computed tomography, and group differences were assessed by Statistical Parametric Mapping. Brain connectivity was explored through a voxel-wise interregional correlation analysis using as covariate of interest the normalized values of clusters of voxels in which perfusion differences were found in group analysis. Significantly increased regional brain perfusion distribution covering a large part of the cerebellum was observed in patients as compared with controls. Patients showed a significant negative functional connectivity between the cerebellar cluster and caudate, bilaterally. This study demonstrated inverse relative perfusion between the cerebellum and the caudate in PDD. Functional uncoupling may be associated with a dysregulation between the role of the cerebellum in action control and of the caudate in action selection, initiation and decision making in the patients. The potential impact of the resting state condition and the possibility of mitochondrial impairment are discussed. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  15. Glioma residual or recurrence versus radiation necrosis: accuracy of pentavalent technetium-99m-dimercaptosuccinic acid [Tc-99m (V) DMSA] brain SPECT compared to proton magnetic resonance spectroscopy (1H-MRS): initial results.

    PubMed

    Amin, Amr; Moustafa, Hosna; Ahmed, Ebaa; El-Toukhy, Mohamed

    2012-02-01

    We compared pentavalent technetium-99m dimercaptosuccinic acid (Tc-99m (V) DMSA) brain single photon emission computed tomography (SPECT) and proton magnetic resonance spectroscopy ((1)H-MRS) for the detection of residual or recurrent gliomas after surgery and radiotherapy. A total of 24 glioma patients, previously operated upon and treated with radiotherapy, were studied. SPECT was acquired 2-3 h post-administration of 555-740 MBq of Tc-99m (V) DMSA. Lesion to normal (L/N) delayed uptake ratio was calculated as: mean counts of tumor ROI (L)/mean counts of normal mirror symmetric ROI (N). (1)H-MRS was performed using a 1.5-T scanner equipped with a spectroscopy package. SPECT and (1)H-MRS results were compared with pathology or follow-up neuroimaging studies. SPECT and (1)H-MRS showed concordant residue or recurrence in 9/24 (37.5%) patients. Both were true negative in 6/24 (25%) patients. SPECT and (1)H-MRS disagreed in 9 recurrences [7/9 (77.8%) and 2/9 (22.2%) were true positive by SPECT and (1)H-MRS, respectively]. Sensitivity of SPECT and (1)H-MRS in detecting recurrence was 88.8 and 61.1% with accuracies of 91.6 and 70.8%, respectively. A positive association between the delayed L/N ratio and tumor grade was found; the higher the grade, the higher is the L/N ratio (r = 0.62, P = 0.001). Tc-99m (V) DMSA brain SPECT is more accurate compared to (1)H-MRS for the detection of tumor residual tissues or recurrence in glioma patients with previous radiotherapy. It allows early and non-invasive differentiation of residual tumor or recurrence from irradiation necrosis.

  16. Brain perfusion SPECT imaging and acetazolamide challenge in vascular cognitive impairment.

    PubMed

    Farid, Karim; Petras, Slavomir; Ducasse, Valérie; Chokron, Sylvie; Helft, Gérard; Blacher, Jacques; Caillat-Vigneron, Nadine

    2012-06-01

    Cerebrovascular disease is recognized as a common cause of cognitive impairment and dementia, alone or coexisting with other neurodegenerative diseases, mostly Alzheimer's disease. Vascular cognitive impairment (VCI) is a part of the heterogenous disorders group related to cerebral vessel disease. Although age is one of the most important risk factors for VCI, other common cardiovascular risk factors are also involved. By investigating these risk factors, a high proportion of these cognitive disorders can be prevented and/or delayed. Until now, only treatment of midlife arterial hypertension has been recognized as a preventing factor of vascular dementia. Brain MRI is becoming the method of choice to investigate cerebral vascular pathologies. However, this form of morphological imaging remains inadequate and does not provide useful functional information during VCI exploration, despite which functional imaging such as brain perfusion single-photon computed tomography, performed in baseline conditions and/or after an acetazolamide challenge, is underutilized in VCI exploration. The common strategies for VCI screening have not been standardized until now, and therefore further long-term imaging studies are needed to establish early diagnostic protocols. The present review summarizes the potential benefits of brain perfusion single-photon computed tomography imaging and possible scintigraphic quantification of cerebral hemodynamic reserves in investigation of VCI.

  17. Receptor binding characterization of the benzodiazepine radioligand sup 125 I-Ro16-0154: Potential probe for SPECT (Single Photon Emission Computed Tomography) brain imaging

    SciTech Connect

    Johnson, E.W.; Woods, S.W.; Zoghbi, S.; Baldwin, R.M.; Innis, R.B. ); McBride, B.J. )

    1990-01-01

    The binding of an iodinated benzodiazepine (BZ) radioligand has been characterized, particularly in regard to its potential use as a neuroreceptor brain imaging agent with SPECT (Single Photon Emission Computed Tomography). Ro16-0154 is an iodine-containing BZ antagonist and a close analog of Ro15-1788. In tissue homogenates prepared from human and monkey brain, the binding of {sup 125}I-labeled Ro16-0154 was saturable, of high affinity, and had high ratios of specific to non-specific binding. Physiological concentrations of NaCl enhanced specific binding approximately 15% compared to buffer without this salt. Kinetic studies of association and dissociation demonstrated a temperature dependent decrease in affinity with increasing temperature. Drug displacement studies confirmed that {sup 125}I-Ro16-0154 binds to the central type BZ receptor: binding is virtually identical to that of {sup 3}H-Ro15-1788 except that {sup 125}I-Ro16-0154 shows an almost 10 fold higher affinity at 37{degree}C. These in vitro results suggest that {sup 123}I-labeled Ro16-0154 shows promise as a selective, high affinity SPECT probe of the brain's BZ receptor.

  18. SPECT assessment of brain activation induced by caffeine: no effect on areas involved in dependence.

    PubMed

    Nehlig, Astrid; Armspach, Jean-Paul; Namer, Izzie J

    2010-01-01

    Caffeine is not considered addictive, and in animals it does not trigger metabolic increases or dopamine release in brain areas involved in reinforcement and reward. Our objective was to measure caffeine effects on cerebral perfusion in humans using single photon emission computed tomography with a specific focus on areas of reinforcement and reward. Two groups of nonsmoking subjects were studied, one with a low (8 subjects) and one with a high (6 subjects) daily coffee consumption. The subjects ingested 3 mg/kg caffeine or placebo in a raspberry-tasting drink, and scans were performed 45 min after ingestion. A control group of 12 healthy volunteers receiving no drink was also studied. Caffeine consumption led to a generalized, statistically nonsignificant perfusion decrease of 6% to 8%, comparable in low and high consumers. Compared with controls, low consumers displayed neuronal activation bilaterally in inferior frontal gyrus-anterior insular cortex and uncus, left internal parietal cortex, right lingual gyrus, and cerebellum. In high consumers, brain activation occurred bilaterally only in hypothalamus. Thus, on a background of widespread low-amplitude perfusion decrease, caffeine activates a few regions mainly involved in the control of vigilance, anxiety, and cardiovascular regulation, but does not affect areas involved in reinforcing and reward.

  19. SPECT assessment of brain activation induced by caffeine: no effect on areas involved in dependence

    PubMed Central

    Nehlig, Astrid; Armspach, Jean-Paul; Namer, Izzie J.

    2010-01-01

    Caffeine is not considered addictive, and in animals it does not trigger metabolic increases or dopamine release in brain areas involved in reinforcement and reward. Our objective was to measure caffeine effects on cerebral perfusion in humans using single photon emission computed tomography, with a specific focus on areas of reinforcement and reward. Two groups of nonsmoking subjects were studied, one with a low (8 subjects) and one with a high (6 subjects) daily coffee consumption. The subjects ingested 3 mg/kg caffeine or placebo in a raspberry-tasting drink, and scans were performed 45 min after ingestion. A control group of 12 healthy volunteers receiving no drink was also studied. Caffeine consumption led to a generalized, statistically nonsignificant perfusion decrease of 6% to 8%, comparable in low and high consumers. Compared with controls, low consumers displayed neuronal activation bilaterally in inferior frontal gyrusanterior insular cortex and uncus, left internal parietal cortex, right lingual gyrus, and cerebellum. In high consumers, brain activation occurred bilaterally only in hypothalamus. Thus, on a background of widespread low-amplitude perfusion decrease, caffeine activates a few regions mainly involved in the control of vigilance, anxiety, and cardiovascular regulation, but does not affect areas involved in reinforcing and reward. PMID:20623930

  20. Adaptive SPECT

    PubMed Central

    Barrett, Harrison H.; Furenlid, Lars R.; Freed, Melanie; Hesterman, Jacob Y.; Kupinski, Matthew A.; Clarkson, Eric; Whitaker, Meredith K.

    2008-01-01

    Adaptive imaging systems alter their data-acquisition configuration or protocol in response to the image information received. An adaptive pinhole single-photon emission computed tomography (SPECT) system might acquire an initial scout image to obtain preliminary information about the radiotracer distribution and then adjust the configuration or sizes of the pinholes, the magnifications, or the projection angles in order to improve performance. This paper briefly describes two small-animal SPECT systems that allow this flexibility and then presents a framework for evaluating adaptive systems in general, and adaptive SPECT systems in particular. The evaluation is in terms of the performance of linear observers on detection or estimation tasks. Expressions are derived for the ideal linear (Hotelling) observer and the ideal linear (Wiener) estimator with adaptive imaging. Detailed expressions for the performance figures of merit are given, and possible adaptation rules are discussed. PMID:18541485

  1. sup 123 I-iodoamphetamine SPECT brain imaging in alternating hemiplegia

    SciTech Connect

    Zupanc, M.L.; Dobkin, J.A.; Perlman, S.B. )

    1991-01-01

    Alternating hemiplegia of childhood is an unusual disorder characterized by early onset (occurring before 18 months of age); repeated attacks of hemiplegia involving both sides of the body; other paroxysmal phenomena, such as tonic stiffening, dystonic posturing, choreoathetoid movements, ocular motor abnormalities, and autonomic disturbances, in association with bouts of hemiplegia or occurring independently; and evidence of mental or neurologic deficits. A girl was examined because of left hemiplegia at the age of 16 months. The patient had begun exhibiting episodes of alternating hemiplegia at approximately 4 months of age. They consisted of tonic stiffening and dystonia of the right or left extremities, lasting from 30 min to several hours and followed by residual hemiparesis. They were invariably accompanied by ocular motor abnormalities. Magnetic resonance imaging, computed tomography, and angiography all were normal. Single proton emission computed tomography brain images during an acute episode of right hemiplegia demonstrated hypoperfusion of the left cerebral hemisphere. Following improvement of the hemiplegia, the patient was re-evaluated. The uptake of the radiotracer in the left hemisphere was increased. The scan did not demonstrate significant asymmetry in cerebral perfusion.

  2. Modified total variation norm for the maximum a posteriori ordered subsets expectation maximization reconstruction in fan-beam SPECT brain perfusion imaging

    NASA Astrophysics Data System (ADS)

    Krol, Andrzej; Yang, Zhaoxia; Xu, Yuesheng; Wismüller, Axel; Feiglin, David H.

    2011-03-01

    The anisotropic geometry of Fan-Beam Collimator (FBC) Single Photon Emission Tomography (SPECT) is used in brain perfusion imaging with clinical goals to quantify regional cerebral blood flow and to accurately determine the location and extent of the brain perfusion defects. One of the difficult issues that need to be addressed is partial volume effect. The purpose of this study was to minimize the partial volume effect while preserving the optimal tradeoff between noise and bias, and maintaining spatial resolution in the reconstructed images acquired in FBC geometry. We modified conventional isotropic TV (L1) norm, which has only one hyperparameter, and replaced it with two independent TV (L1u) norms (TVxy and TVz) along two orthogonal basis vectors (XY, Z) in 3D reconstruction space. We investigated if the anisotropic norm with two hyperparameters (βxy and βz, where z is parallel to the axis-of-rotation) performed better in FBC-SPECT reconstruction, as compared to the conventional isotropic norm with one hyperparameter (β) only. We found that MAP-OSEM reconstruction with modified TV norm produced images with smaller partial volume effect, as compared to the conventional TV norm at a cost of slight increase in the bias and noise.

  3. Analysis of SPECT brain images for the diagnosis of Alzheimer's disease based on NMF for feature extraction.

    PubMed

    Padilla, P; Górriz, J M; Ramírez, J; Lang, E W; Chaves, R; Segovia, F; López, M; Salas-González, D; Alvarez, I

    2010-08-02

    This letter presents a novel computer-aided diagnosis (CAD) technique for the early diagnosis of Alzheimer's disease (AD) based on non-negative matrix factorization (NMF) analysis applied to single photon emission computed tomography (SPECT) images. A baseline normalized SPECT database containing normalized data for both AD patients and healthy reference patients is selected for this study. The SPECT database is analyzed by applying the Fisher discriminant ratio (FDR) for feature selection and NMF for feature extraction of relevant components of each subject. The main goal of these preprocessing steps is to reduce the large dimensionality of the input data and to relieve the so called "curse of dimensionality" problem. The resulting NMF-transformed set of data, which contains a reduced number of features, is classified by means of a support vector machines based classification technique (SVM). The proposed NMF + SVM method yields up to 94% classification accuracy, with high sensitivity and specificity values (upper than 90%), becoming an accurate method for SPECT image classification. For the sake of completeness, comparison between another recently developed principal component analysis (PCA) plus SVM method and the proposed method is also provided, yielding results for the NMF + SVM approach that outperform the behavior of the reference PCA + SVM or conventional voxel-as-feature (VAF) plus SVM methods.

  4. A Standardized Method for the Construction of Tracer Specific PET and SPECT Rat Brain Templates: Validation and Implementation of a Toolbox

    PubMed Central

    Vállez Garcia, David; Casteels, Cindy; Schwarz, Adam J.; Dierckx, Rudi A. J. O.; Koole, Michel; Doorduin, Janine

    2015-01-01

    High-resolution anatomical image data in preclinical brain PET and SPECT studies is often not available, and inter-modality spatial normalization to an MRI brain template is frequently performed. However, this procedure can be challenging for tracers where substantial anatomical structures present limited tracer uptake. Therefore, we constructed and validated strain- and tracer-specific rat brain templates in Paxinos space to allow intra-modal registration. PET [18F]FDG, [11C]flumazenil, [11C]MeDAS, [11C]PK11195 and [11C]raclopride, and SPECT [99mTc]HMPAO brain scans were acquired from healthy male rats. Tracer-specific templates were constructed by averaging the scans, and by spatial normalization to a widely used MRI-based template. The added value of tracer-specific templates was evaluated by quantification of the residual error between original and realigned voxels after random misalignments of the data set. Additionally, the impact of strain differences, disease uptake patterns (focal and diffuse lesion), and the effect of image and template size on the registration errors were explored. Mean registration errors were 0.70±0.32mm for [18F]FDG (n = 25), 0.23±0.10mm for [11C]flumazenil (n = 13), 0.88±0.20 mm for [11C]MeDAS (n = 15), 0.64±0.28mm for [11C]PK11195 (n = 19), 0.34±0.15mm for [11C]raclopride (n = 6), and 0.40±0.13mm for [99mTc]HMPAO (n = 15). These values were smallest with tracer-specific templates, when compared to the use of [18F]FDG as reference template (p&0.001). Additionally, registration errors were smallest with strain-specific templates (p&0.05), and when images and templates had the same size (p≤0.001). Moreover, highest registration errors were found for the focal lesion group (p&0.005) and the diffuse lesion group (p = n.s.). In the voxel-based analysis, the reported coordinates of the focal lesion model are consistent with the stereotaxic injection procedure. The use of PET/SPECT strain- and tracer-specific templates allows

  5. Clinical Comparison of 99mTc Exametazime and 123I Ioflupane SPECT in Patients with Chronic Mild Traumatic Brain Injury

    PubMed Central

    Newberg, Andrew B.; Serruya, Mijail; Gepty, Andrew; Intenzo, Charles; Lewis, Todd; Amen, Daniel; Russell, David S.; Wintering, Nancy

    2014-01-01

    Background This study evaluated the clinical interpretations of single photon emission computed tomography (SPECT) using a cerebral blood flow and a dopamine transporter tracer in patients with chronic mild traumatic brain injury (TBI). The goal was to determine how these two different scan might be used and compared to each other in this patient population. Methods and Findings Twenty-five patients with persistent symptoms after a mild TBI underwent SPECT with both 99mTc exametazime to measure cerebral blood flow (CBF) and 123I ioflupane to measure dopamine transporter (DAT) binding. The scans were interpreted by two expert readers blinded to any case information and were assessed for abnormal findings in comparison to 10 controls for each type of scan. Qualitative CBF scores for each cortical and subcortical region along with DAT binding scores for the striatum were compared to each other across subjects and to controls. In addition, symptoms were compared to brain scan findings. TBI patients had an average of 6 brain regions with abnormal perfusion compared to controls who had an average of 2 abnormal regions (p<0.001). Patient with headaches had lower CBF in the right frontal lobe, and higher CBF in the left parietal lobe compared to patients without headaches. Lower CBF in the right temporal lobe correlated with poorer reported physical health. Higher DAT binding was associated with more depressive symptoms and overall poorer reported mental health. There was no clear association between CBF and DAT binding in these patients. Conclusions Overall, both scans detected abnormalities in brain function, but appear to reflect different types of physiological processes associated with chronic mild TBI symptoms. Both types of scans might have distinct uses in the evaluation of chronic TBI patients depending on the clinical scenario. PMID:24475210

  6. 99mTc-ECD brain perfusion SPECT imaging for the assessment of brain perfusion in cerebral palsy (CP) patients with evaluation of the effect of hyperbaric oxygen therapy.

    PubMed

    Asl, Mina Taghizadeh; Yousefi, Farzaneh; Nemati, Reza; Assadi, Majid

    2015-01-01

    The present study was carried out to evaluate cerebral perfusion in different types of cerebral palsy (CP) patients. For those patients who underwent hyperbaric oxygen therapy, brain perfusion before and after the therapy was compared. A total of 11 CP patients were enrolled in this study, of which 4 patients underwent oxygen therapy. Before oxygen therapy and at the end of 40 sessions of oxygen treatment, 99mTc-ECD brain perfusion single photon emission computed tomography (SPECT) was performed , and the results were compared. A total of 11 CP patients, 7 females and 4 males with an age range of 5-27 years participated in the study. In brain SPECT studies, all the patients showed perfusion impairments. The region most significantly involved was the frontal lobe (54.54%), followed by the temporal lobe (27.27%), the occipital lobe (18.18%), the visual cortex (18.18%), the basal ganglia (9.09%), the parietal lobe (9.09%), and the cerebellum (9.09%). Frontal-lobe hypoperfusion was seen in all types of cerebral palsy. Two out of 4 patients (2 males and 2 females) who underwent oxygen therapy revealed certain degree of brain perfusion improvement. This study demonstrated decreased cerebral perfusion in different types of CP patients. The study also showed that hyperbaric oxygen therapy improved cerebral perfusion in a few CP patients. However, it could keep the physiological discussion open and strenghten a link with other areas of neurology in which this approach may have some value.

  7. Performance of a high-sensitivity dedicated cardiac SPECT scanner for striatal uptake quantification in the brain based on analysis of projection data

    PubMed Central

    Park, Mi-Ae; Moore, Stephen C.; Müller, Stefan P.; McQuaid, Sarah J.; Kijewski, Marie Foley

    2013-01-01

    Purpose: The authors have previously reported the advantages of high-sensitivity single-photon emission computed tomography (SPECT) systems for imaging structures located deep inside the brain. DaTscan (Isoflupane I-123) is a dopamine transporter (DaT) imaging agent that has shown potential for early detection of Parkinson disease (PD), as well as for monitoring progression of the disease. Realizing the full potential of DaTscan requires efficient estimation of striatal uptake from SPECT images. They have evaluated two SPECT systems, a conventional dual-head gamma camera with low-energy high-resolution collimators (conventional) and a dedicated high-sensitivity multidetector cardiac imaging system (dedicated) for imaging tasks related to PD. Methods: Cramer–Rao bounds (CRB) on precision of estimates of striatal and background activity concentrations were calculated from high-count, separate acquisitions of the compartments (right striata, left striata, background) of a striatal phantom. CRB on striatal and background activity concentration were calculated from essentially noise-free projection datasets, synthesized by scaling and summing the compartment projection datasets, for a range of total detected counts. They also calculated variances of estimates of specific-to-nonspecific binding ratios (BR) and asymmetry indices from these values using propagation of error analysis, as well as the precision of measuring changes in BR on the order of the average annual decline in early PD. Results: Under typical clinical conditions, the conventional camera detected 2 M counts while the dedicated camera detected 12 M counts. Assuming a normal BR of 5, the standard deviation of BR estimates was 0.042 and 0.021 for the conventional and dedicated system, respectively. For an 8% decrease to BR = 4.6, the signal-to-noise ratio were 6.8 (conventional) and 13.3 (dedicated); for a 5% decrease, they were 4.2 (conventional) and 8.3 (dedicated). Conclusions: This implies that PD can

  8. Performance of a high-sensitivity dedicated cardiac SPECT scanner for striatal uptake quantification in the brain based on analysis of projection data

    SciTech Connect

    Park, Mi-Ae; Moore, Stephen C.; McQuaid, Sarah J.; Kijewski, Marie Foley; Mueller, Stefan P.

    2013-04-15

    Purpose: The authors have previously reported the advantages of high-sensitivity single-photon emission computed tomography (SPECT) systems for imaging structures located deep inside the brain. DaTscan (Isoflupane I-123) is a dopamine transporter (DaT) imaging agent that has shown potential for early detection of Parkinson disease (PD), as well as for monitoring progression of the disease. Realizing the full potential of DaTscan requires efficient estimation of striatal uptake from SPECT images. They have evaluated two SPECT systems, a conventional dual-head gamma camera with low-energy high-resolution collimators (conventional) and a dedicated high-sensitivity multidetector cardiac imaging system (dedicated) for imaging tasks related to PD. Methods: Cramer-Rao bounds (CRB) on precision of estimates of striatal and background activity concentrations were calculated from high-count, separate acquisitions of the compartments (right striata, left striata, background) of a striatal phantom. CRB on striatal and background activity concentration were calculated from essentially noise-free projection datasets, synthesized by scaling and summing the compartment projection datasets, for a range of total detected counts. They also calculated variances of estimates of specific-to-nonspecific binding ratios (BR) and asymmetry indices from these values using propagation of error analysis, as well as the precision of measuring changes in BR on the order of the average annual decline in early PD. Results: Under typical clinical conditions, the conventional camera detected 2 M counts while the dedicated camera detected 12 M counts. Assuming a normal BR of 5, the standard deviation of BR estimates was 0.042 and 0.021 for the conventional and dedicated system, respectively. For an 8% decrease to BR = 4.6, the signal-to-noise ratio were 6.8 (conventional) and 13.3 (dedicated); for a 5% decrease, they were 4.2 (conventional) and 8.3 (dedicated). Conclusions: This implies that PD can

  9. Correction for scatter and septal penetration using convolution subtraction methods and model-based compensation in 123I brain SPECT imaging-a Monte Carlo study.

    PubMed

    Larsson, Anne; Ljungberg, Michael; Mo, Susanna Jakobson; Riklund, Katrine; Johansson, Lennart

    2006-11-21

    Scatter and septal penetration deteriorate contrast and quantitative accuracy in single photon emission computed tomography (SPECT). In this study four different correction techniques for scatter and septal penetration are evaluated for 123I brain SPECT. One of the methods is a form of model-based compensation which uses the effective source scatter estimation (ESSE) for modelling scatter, and collimator-detector response (CDR) including both geometric and penetration components. The other methods, which operate on the 2D projection images, are convolution scatter subtraction (CSS) and two versions of transmission dependent convolution subtraction (TDCS), one of them proposed by us. This method uses CSS for correction for septal penetration, with a separate kernel, and TDCS for scatter correction. The corrections are evaluated for a dopamine transporter (DAT) study and a study of the regional cerebral blood flow (rCBF), performed with 123I. The images are produced using a recently developed Monte Carlo collimator routine added to the program SIMIND which can include interactions in the collimator. The results show that the method included in the iterative reconstruction is preferable to the other methods and that the new TDCS version gives better results compared with the other 2D methods.

  10. Correction for scatter and septal penetration using convolution subtraction methods and model-based compensation in 123I brain SPECT imaging—a Monte Carlo study

    NASA Astrophysics Data System (ADS)

    Larsson, Anne; Ljungberg, Michael; Jakobson Mo, Susanna; Riklund, Katrine; Johansson, Lennart

    2006-11-01

    Scatter and septal penetration deteriorate contrast and quantitative accuracy in single photon emission computed tomography (SPECT). In this study four different correction techniques for scatter and septal penetration are evaluated for 123I brain SPECT. One of the methods is a form of model-based compensation which uses the effective source scatter estimation (ESSE) for modelling scatter, and collimator-detector response (CDR) including both geometric and penetration components. The other methods, which operate on the 2D projection images, are convolution scatter subtraction (CSS) and two versions of transmission dependent convolution subtraction (TDCS), one of them proposed by us. This method uses CSS for correction for septal penetration, with a separate kernel, and TDCS for scatter correction. The corrections are evaluated for a dopamine transporter (DAT) study and a study of the regional cerebral blood flow (rCBF), performed with 123I. The images are produced using a recently developed Monte Carlo collimator routine added to the program SIMIND which can include interactions in the collimator. The results show that the method included in the iterative reconstruction is preferable to the other methods and that the new TDCS version gives better results compared with the other 2D methods.

  11. [Evaluation by statistical brain perfusion SPECT analysis on MRI findings, kana pick-out test and Mini-Mental State Examination results in patients with forgetfulness].

    PubMed

    Nakatsuka, Hiroki; Matsubara, Ichirou; Ohtani, Haruhiko

    2003-04-01

    The aim of this single photon emission computed tomography(SPECT) study was to determine the abnormality of the regional cerebral blood flow(rCBF) using a three-dimensional stereotactic surface projection (3 D-SSP) in 18 patients who were referred to the hospital because of forgetfulness. Two intergroup comparison by 3 D-SSP analysis was conducted based on MRI, kana pick-out test and Mini-Mental State Examination (MMSE) results. Of the MRI findings, in the brain atrophy group, rCBF was decreased in the posterior cingulate gyrus, medial temporal structure and parieto-temporal association cortex; these rCBF-decreased areas are similar to the Alzheimer disease pattern. In the group where the MMSE was normal but the kana pick-out test was abnormal, rCBF was decreased in the posterior cingulate gyrus and cinguloparietal transitional area. In the group where both the MMSE and kana pick-out test were abnormal, rCBF was decreased in the parieto-temporal association cortex, temporal cortex and medial temporal structure. These results suggest that 3 D-SSP analysis of the SPECT with MMSE and the kana pick-out test provides the possibility of early diagnosis of initial stage of Alzheimer's disease.

  12. Thrombotic Thrombocytopenic Purpura with Reversible Neurological Features: Brain Diffusion MRI with ADC Map, Spect and EEG Findings. A Case Report.

    PubMed

    Yerdelen, D; Göksel, B K; Yıldırım, T; Karataş, M; Karaca, S; Reyhan, M; Ozdoğu, H

    2006-11-30

    Although nervous system involvement is common in thrombotic thrombocytopenic purpura (TTP), abnormalities on computerized tomography, magnetic resonance imaging and electroencephalography are not encountered so frequently and if present, these abnormalities are often reversible. We describe a 39-year-old woman with recurring transient focal neurological findings found to have laboratory findings consistent with TTP. In cerebral diffusion weighted images (DWI), diffuse cortical hyperintensity was noted in right frontal lobe, but the ADC (apparent diffusion coefficient) map was normal. Electroencephalography demonstrated lateralized slowing and repeated DWI showed diffuse cortical hyperintensity in the right hemisphere. SPECT showed luxury perfusion in the right hemisphere areas. The patient's condition resolved with plasmapheresis. Our patient illustrates that diffuse hemispheric involvement can be seen in DWI and EEG, and SPECT may show luxury perfusion after resolution of neurological findings in TTP cases. To our knowledge, this is the first TTP case in which the ADC map was normal.

  13. Monte Carlo simulation of scintillation photons for the design of a high-resolution SPECT detector dedicated to human brain.

    PubMed

    Hirano, Yoshiyuki; Zeniya, Tsutomu; Iida, Hidehiro

    2012-04-01

    In a typical single photon emission computed tomography (SPECT) system, intrinsic spatial resolution depends on the accuracy of the identification of an interacting point, which is dominated by propagation of the scintillation photons in the detector block. This study was intended to establish a Monte Carlo simulation-based evaluation tool taking into account the propagation of scintillation photons to estimate the intrinsic spatial and energy resolutions of the position-sensitive scintillator block in a SPECT detector. We employed Geant4 Monte Carlo simulation library which incorporated the optical photon processes for two different designs of the position-sensitive scintillator blocks. The validation of the simulation code was performed for a monolithic NaI(Tl) scintillator (251 × 147 × 6.4 mm(3)) coupled to 15 flat-panel type multi-anode photo multiplier tubes (PMT) (H8500: Hamamatsu) and results were compared with those obtained experimentally. The code was then applied to a LaBr(3)(Ce) scintillator of 120 mm square with varied thicknesses for designing high-resolution detector. The simulation resulted in 2.6 mm full width at half maximum (FWHM) of spatial resolution and 9.0% FWHM of energy resolution for the NaI(Tl)-based detector, which were in a good agreement of the experimental results, i.e., 2.7 mm and 10%, respectively. These findings suggest that Geant4 simulation including optical photon processes enables to predict the spatial and energy resolutions of a SPECT detector block accurately. The simulation also demonstrated that 2 mm spatial resolution can be obtained for a 6 mm thickness of the LaBr(3)(Ce), which is a significant improvement in performance as compared to existing gamma camera system that employs the scintillation detector fitted with PMTs. The Monte Carlo simulation-based evaluation tool was established to estimate the intrinsic spatial and energy resolutions of SPECT detector with position sensitive PMTs. This simulation may

  14. Abnormal interictal gamma activity may manifest a seizure onset zone in temporal lobe epilepsy.

    PubMed

    Medvedev, Andrei V; Murro, Anthony M; Meador, Kimford J

    2011-04-01

    Even though recent studies have suggested that seizures do not occur suddenly and that before a seizure there is a period with an increased probability of seizure occurrence, neurophysiological mechanisms of interictal and pre-seizure states are unknown. The ability of mathematical methods to provide much more sensitive tools for the detection of subtle changes in the electrical activity of the brain gives promise that electrophysiological markers of enhanced seizure susceptibility can be found even during interictal periods when EEG of epilepsy patients often looks 'normal'. Previously, we demonstrated in animals that hippocampal and neocortical gamma-band rhythms (30-100 Hz) intensify long before seizures caused by systemic infusion of kainic acid. Other studies in recent years have also drawn attention to the fast activity (>30 Hz) as a possible marker of epileptogenic tissue. The current study quantified gamma-band activity during interictal periods and seizures in intracranial EEG (iEEG) in 5 patients implanted with subdural grids/intracranial electrodes during their pre-surgical evaluation. In all our patients, we found distinctive (abnormal) bursts of gamma activity with a 3 to 100 fold increase in power at gamma frequencies with respect to selected by clinicians, quiescent, artifact-free, 7-20 min "normal" background (interictal) iEEG epochs 1 to 14 hours prior to seizures. Increases in gamma activity were largest in those channels which later displayed the most intensive electrographic seizure discharges. Moreover, location of gamma-band bursts correlated (with high specificity, 96.4% and sensitivity, 83.8%) with seizure onset zone (SOZ) determined by clinicians. Spatial localization of interictal gamma rhythms within SOZ suggests that the persistent presence of abnormally intensified gamma rhythms in the EEG may be an important tool for focus localization and possibly a determinant of epileptogenesis.

  15. Dynamics of interictal spikes and high-frequency oscillations during epileptogenesis in temporal lobe epilepsy

    PubMed Central

    Salami, Pariya; Lévesque, Maxime; Benini, Ruba; Behr, Charles; Gotman, Jean; Avoli, Massimo

    2016-01-01

    Mesial temporal lobe epilepsy (MTLE) is characterized in humans and in animal models by a seizure-free latent phase that follows an initial brain insult; this period is presumably associated to plastic changes in temporal lobe excitability and connectivity. Here, we analyzed the occurrence of interictal spikes and high frequency oscillations (HFOs; ripples: 80–200 Hz and fast ripples: 250–500 Hz) from 48 h before to 96 h after the first seizure in the rat pilocarpine model of MTLE. Interictal spikes recorded with depth EEG electrodes from the hippocampus CA3 area and entorhinal cortex (EC) were classified as type 1 (characterized by a spike followed by a wave) or type 2 (characterized by a spike with no wave). We found that: (i) there was a switch in the distribution of both types of interictal spikes before and after the occurrence of the first seizure; during the latent phase both types of interictal spikes predominated in the EC whereas during the chronic phase both types of spikes predominated in CA3; (ii) type 2 spike duration decreased in both regions from the latent to the chronic phase; (iii) type 2 spikes associated to fast ripples occurred at higher rates in EC compared to CA3 during the latent phase while they occurred at similar rates in both regions in the chronic phase; and (iv) rates of fast ripples outside of spikes were higher in EC compared to CA3 during the latent phase. Our findings demonstrate that the transition from the latent to the chronic phase is paralleled by dynamic changes in interictal spike and HFO expression in EC and CA3. We propose that these changes may represent biomarkers of epileptogenicity in MTLE. PMID:24686305

  16. New open-source ictal SPECT analysis method implemented in BioImage Suite.

    PubMed

    Scheinost, Dustin; Teisseyre, Thomas Z; Distasio, Marcello; DeSalvo, Matthew N; Papademetris, Xenophon; Blumenfeld, Hal

    2010-04-01

    Ictal single photon emission computed tomography (SPECT) is a powerful tool for noninvasive seizure localization, but it has been underutilized because of practical challenges, including difficulty in implementing ictal-interictal SPECT difference analysis. We previously validated a freely available utility for this purpose, ictal-interictal subtraction analysis by statistical parametric mapping (SPM) (ISAS). To further simplify and improve the difference imaging technique, we now compare a new algorithm, ISAS BioImage Suite (see http://spect.yale.edu and http://bioimagesuite.org), to the original ISAS method in 13 patients with known seizure localization. We found that ISAS BioImage Suite was in agreement with the original algorithm in all cases for which ISAS correctly identified a single unambiguous region of seizure onset. We also tested for possible effects of scan-order bias in the control group used for the analysis and found no significant effect on the results. These findings establish a simple, validated and objective method for analyzing ictal-interictal SPECT difference images for use in the care of patients with epilepsy.

  17. Guidelines for brain radionuclide imaging. Perfusion single photon computed tomography (SPECT) using Tc-99m radiopharmaceuticals and brain metabolism positron emission tomography (PET) using F-18 fluorodeoxyglucose. The Belgian Society for Nuclear Medicine.

    PubMed

    Vander Borght, T; Laloux, P; Maes, A; Salmon, E; Goethals, I; Goldman, S

    2001-12-01

    The purpose of these guidelines is to assist nuclear medicine practitioners in recommending, performing, interpreting, and reporting the results of brain perfusion SPECT studies using Tc-99m radiopharmaceuticals and brain metabolism PET studies using F-18 fluorodeoxyglucose (FDG). These guidelines have been adapted and extended from those produced by the Society of Nuclear Medicine (Juni et al., 1998) and the European Association of Nuclear Medicine by a Belgian group of experts in the field trained in neurology and/or nuclear medicine. Some indications are not universally approved (e.g. brain death), but largely supported by the literature. They have been included in these guidelines in order to provide recommendations and a standardised protocol.

  18. Progress in BazookaSPECT.

    PubMed

    Miller, Brian W; Barber, H Bradford; Furenlid, Lars R; Moore, Stephen K; Barrett, Harrison H

    2009-01-01

    Recent progress on a high-resolution, photon-counting gamma-ray and x-ray imager called BazookaSPECT is presented. BazookaSPECT is an example of a new class of scintillation detectors based on integrating detectors such as CCD(charge-coupled device) or CMOS(complementary metal-oxide semiconductor) sensors. BazookaSPECT is unique in that it makes use of a scintillator in close proximity to a microchannel plate-based image intensifier for up-front optical amplification of scintillation light. We discuss progress made in bringing about compact BazookaSPECT modules and in real-time processing of event data using graphics processing units (GPUs). These advances are being implemented in the design of a high-resolution rodent brain imager called FastSPECT III. A key benefit of up-front optical gain is that any CCD/CMOS sensor can now be utilized for photon counting. We discuss the benefits and feasibility of using CMOS sensors as photon-counting detectors for digital radiography, with application in mammography and computed tomography (CT). We present as an appendix a formal method for comparing various photon-counting integrating detectors using objective statistical criteria.

  19. Progress in BazookaSPECT

    PubMed Central

    Miller, Brian W.; Barber, H. Bradford; Furenlid, Lars R.; Moore, Stephen K.; Barrett, Harrison H.

    2010-01-01

    Recent progress on a high-resolution, photon-counting gamma-ray and x-ray imager called BazookaSPECT is presented. BazookaSPECT is an example of a new class of scintillation detectors based on integrating detectors such as CCD(charge-coupled device) or CMOS(complementary metal-oxide semiconductor) sensors. BazookaSPECT is unique in that it makes use of a scintillator in close proximity to a microchannel plate-based image intensifier for up-front optical amplification of scintillation light. We discuss progress made in bringing about compact BazookaSPECT modules and in real-time processing of event data using graphics processing units (GPUs). These advances are being implemented in the design of a high-resolution rodent brain imager called FastSPECT III. A key benefit of up-front optical gain is that any CCD/CMOS sensor can now be utilized for photon counting. We discuss the benefits and feasibility of using CMOS sensors as photon-counting detectors for digital radiography, with application in mammography and computed tomography (CT). We present as an appendix a formal method for comparing various photon-counting integrating detectors using objective statistical criteria. PMID:21297897

  20. Comparison of ictal and interictal EEG signals using fractal features.

    PubMed

    Wang, Yu; Zhou, Weidong; Yuan, Qi; Li, Xueli; Meng, Qingfang; Zhao, Xiuhe; Wang, Jiwen

    2013-12-01

    The feature analysis of epileptic EEG is very significant in diagnosis of epilepsy. This paper introduces two nonlinear features derived from fractal geometry for epileptic EEG analysis. The features of blanket dimension and fractal intercept are extracted to characterize behavior of EEG activities, and then their discriminatory power for ictal and interictal EEGs are compared by means of statistical methods. It is found that there is significant difference of the blanket dimension and fractal intercept between interictal and ictal EEGs, and the difference of the fractal intercept feature between interictal and ictal EEGs is more noticeable than the blanket dimension feature. Furthermore, these two fractal features at multi-scales are combined with support vector machine (SVM) to achieve accuracies of 97.58% for ictal and interictal EEG classification and 97.13% for normal, ictal and interictal EEG classification.

  1. Hypoglycaemic hemiplegia: a repeat SPECT study.

    PubMed Central

    Shintani, S; Tsuruoka, S; Shiigai, T

    1993-01-01

    During a hypoglycaemic right hemiplegia induced by a deliberate overdose of oral hypoglycaemics, brain CT and angiography revealed no abnormalities. SPECTs made one day and six days later showed relative hypoperfusion in the left hemisphere. Repeat SPECT study suggested that the left hemisphere was more vulnerable than the right in the cerebral blood perfusion. This vulnerability might provoke the right hemiplegia in a critical condition, such as severe hypoglycaemia. Images PMID:8509788

  2. Interictal activity is an important contributor to abnormal intrinsic network connectivity in paediatric focal epilepsy.

    PubMed

    Shamshiri, Elhum A; Tierney, Tim M; Centeno, Maria; St Pier, Kelly; Pressler, Ronit M; Sharp, David J; Perani, Suejen; Cross, J Helen; Carmichael, David W

    2017-01-01

    Patients with focal epilepsy have been shown to have reduced functional connectivity in intrinsic connectivity networks (ICNs), which has been related to neurocognitive development and outcome. However, the relationship between interictal epileptiform discharges (IEDs) and changes in ICNs remains unclear, with evidence both for and against their influence. EEG-fMRI data was obtained in 27 children with focal epilepsy (mixed localisation and aetiologies) and 17 controls. A natural stimulus task (cartoon blocks verses blocks where the subject was told "please wait") was used to enhance the connectivity within networks corresponding to ICNs while reducing potential confounds of vigilance and motion. Our primary hypothesis was that the functional connectivity within visual and attention networks would be reduced in patients with epilepsy. We further hypothesized that controlling for the effects of IEDs would increase the connectivity in the patient group. The key findings were: (1) Patients with mixed epileptic foci showed a common connectivity reduction in lateral visual and attentional networks compared with controls. (2) Having controlled for the effects of IEDs there were no connectivity differences between patients and controls. (3) A comparison within patients revealed reduced connectivity between the attentional network and basal ganglia associated with interictal epileptiform discharges. We also found that the task activations were reduced in epilepsy patients but that this was unrelated to IED occurrence. Unexpectedly, connectivity changes in ICNs were strongly associated with the transient effects of interictal epileptiform discharges. Interictal epileptiform discharges were shown to have a pervasive transient influence on the brain's functional organisation. Hum Brain Mapp 38:221-236, 2017. © 2016 Wiley Periodicals, Inc.

  3. 99mTc-ECD brain perfusion SPECT imaging for the assessment of brain perfusion in cerebral palsy (CP) patients with evaluation of the effect of hyperbaric oxygen therapy

    PubMed Central

    Asl, Mina Taghizadeh; Yousefi, Farzaneh; Nemati, Reza; Assadi, Majid

    2015-01-01

    Objective: The present study was carried out to evaluate cerebral perfusion in different types of cerebral palsy (CP) patients. For those patients who underwent hyperbaric oxygen therapy, brain perfusion before and after the therapy was compared. Methods: A total of 11 CP patients were enrolled in this study, of which 4 patients underwent oxygen therapy. Before oxygen therapy and at the end of 40 sessions of oxygen treatment, 99mTc-ECD brain perfusion single photon emission computed tomography (SPECT) was performed , and the results were compared. Results: A total of 11 CP patients, 7 females and 4 males with an age range of 5-27 years participated in the study. In brain SPECT studies, all the patients showed perfusion impairments. The region most significantly involved was the frontal lobe (54.54%), followed by the temporal lobe (27.27%), the occipital lobe (18.18%), the visual cortex (18.18%), the basal ganglia (9.09%), the parietal lobe (9.09%), and the cerebellum (9.09%). Frontal-lobe hypoperfusion was seen in all types of cerebral palsy. Two out of 4 patients (2 males and 2 females) who underwent oxygen therapy revealed certain degree of brain perfusion improvement. Conclusion: This study demonstrated decreased cerebral perfusion in different types of CP patients. The study also showed that hyperbaric oxygen therapy improved cerebral perfusion in a few CP patients. However, it could keep the physiological discussion open and strenghten a link with other areas of neurology in which this approach may have some value. PMID:25785099

  4. Perfusion patterns in postictal 99mTc-HMPAO SPECT after coregistration with MRI in patients with mesial temporal lobe epilepsy

    PubMed Central

    Hogan, R; Cook, M.; Binns, D.; Desmond, P.; Kilpatrick, C.; Murrie, V.; Morris, K.

    1997-01-01

    OBJECTIVES—To assess patterns of postictal cerebral blood flow in the mesial temporal lobe by coregistration of postictal 99mTc-HMPAO SPECT with MRI in patients with confirmed mesial temporal lobe epilepsy.
METHODS—Ten postictal and interictal 99mTc-HMPAO SPECT scans were coregistered with MRI in 10 patients with confirmed mesial temporal lobe epilepsy. Volumetric tracings of the hippocampus and amygdala from the MRI were superimposed on the postictal and interictal SPECT. Asymmetries in hippocampal and amygdala SPECT signal were then calculated using the equation:
 % Asymmetry =100 × (right − left) / (right + left)/2.
RESULTS—In the postictal studies, quantitative measurements of amygdala SPECT intensities were greatest on the side of seizure onset in all cases, with an average % asymmetry of 11.1, range 5.2-21.9.Hippocampal intensities were greatest on the side of seizure onset in six studies, with an average % asymmetry of 9.6, range 4.7-12.0.In four scans the hippocampal intensities were less on the side of seizure onset, with an average % asymmetry of 10.2, range 5.7-15.5.There was no localising quantitative pattern in interictal studies.
CONCLUSIONS—Postictal SPECT shows distinctive perfusion patterns when coregistered with MRI, which assist in lateralisation of temporal lobe seizures. Hyperperfusion in the region of the amygdala is more consistently lateralising than hyperperfusion in the region of the hippocampus in postictal studies.

 PMID:9285464

  5. [123I]beta-CIT SPECT demonstrates decreased brain dopamine and serotonin transporter levels in untreated parkinsonian patients.

    PubMed

    Haapaniemi, T H; Ahonen, A; Torniainen, P; Sotaniemi, K A; Myllylä, V V

    2001-01-01

    Striatal dopamine transporters (DATs) and serotonin transporters (SERTs) were evaluated in untreated patients with Parkinson's disease (PD) and controls using single-photon emission computed tomography (SPECT) with 2beta-carboxymethoxy-3beta-(4-iodophenyl)tropane ([123I]beta-CIT). The striatal DAT specific to non-displaceable uptake ratios of 29, and the SERT uptake measurements of 27, PD patients were compared with those of 21 and 16 controls, respectively. The results were correlated with Unified Parkinson's Disease Rating Scale (UPDRS) scores, the Hoehn & Yahr stage, age, duration of the disease, and the major PD signs. The specific DAT binding in the caudate, the putamen and the caudate/putamen ratio were measured. In all of the PD patients the striatal uptake values were bilaterally reduced, being 36.9% (P < 0.001) lower than those of the controls. In the hemiparkinsonian patients the reduction was greater on the side contralateral to the initial symptoms (33.3% vs. 27.8%) and the uptake ratios indicated a more pronounced deficit in the putamen (39.1%) than in the caudate (27.9%). The DAT uptake correlated with the UPDRS total score and activities of daily living (ADL) and motor subscores, the Hoehn & Yahr stage, and rigidity score. PD patients had significantly higher caudate to putamen ratios than the controls. In the PD patients the SERT values were lower in the thalamic and frontal regions. The SERT uptake ratio of the frontal area correlated with the UPDRS subscore I. [123I]beta-CIT SPECT provides a useful method for confirming the clinical diagnosis of PD with correlation to disease severity. Additionally, this technique allows the simultaneous measurement of SERT uptake and shows that PD patients, interestingly, seem to have decreased SERT availability in the thalamic and frontal areas.

  6. What are we changing with neurocognitive rehabilitation? Illustrations from two single cases of changes in neuropsychological performance and brain systems as measured by SPECT.

    PubMed

    Wykes, T

    1998-11-09

    If cognitive remediation is to be developed further, there have to be not only large-scale randomized trials but also detailed analysis of the strategies used to produce improved performance. In this study the strategies adopted by two people who took part in a remediation program are investigated, with their results on neuropsychological tasks and with concomitant brain image data gathered via SPECT while the participant was performing a Verbal Fluency task. After remediation there were improvements in many of the neuropsychological tests, and changes in the scan data. The changes in strategies and brain activation were different for both individuals. One person increased his verbal output but without close monitoring, so also increased his errors. The other participant decreased his output but monitored it more closely, and so decreased the errors. These strategies were reflected in the changes in activation between scans, i.e. increases in temporal areas for the increased output and bilateral decreases in the anterior cingulate and left pre-motor areas for the decreased output case. Together these results imply that the participants continue to use individual strategies which for many of the neuropsychological tasks produced gains. Further investigation of whether it is possible to change idiosyncratic strategy use is needed if we are to develop the efficacy of this remediation technique.

  7. SPECT measurements with /sup 99m/Tc-HM-PAO in focal epilepsy

    SciTech Connect

    Ryding, E.; Rosen, I.; Elmqvist, D.; Ingvar, D.H.

    1988-12-01

    The ability of SPECT measurements with (/sup 99m/Tc)-HM-PAO (Ceretec) to find the location of the epileptic focus was studied in patients under consideration for neurosurgical treatment for therapy-resistant focal epilepsy. The location of low (/sup 99m/Tc)-HM-PAO uptake regions found at interictal measurements, and of high (/sup 99m/Tc)-HM-PAO uptake regions found at ictal measurements, was compared to the findings of extensive ictal and interictal EEG examinations, and to the results of CT and MRT. While EEG revealed focal epileptic activity in all of the 14 patients, SPECT showed regional abnormalities in 13 (93%). CT and MRT showed abnormal findings in 30%.

  8. Clinical value of the first dedicated, commercially available automatic injector for ictal brain SPECT in presurgical evaluation of pediatric epilepsy: comparison with manual injection.

    PubMed

    Kim, Sunhee; Holder, Deborah L; Laymon, Charles M; Tudorascu, Dana L; Deeb, Erin L; Panigrahy, Ashok; Mountz, James M

    2013-05-01

    The most challenging technical problem in ictal brain SPECT for localization of an epileptogenic focus is obtaining a timely injection of a radiopharmaceutical. In our institution, the first dedicated commercially available, remotely controlled automatic injector has been used in the pediatric epilepsy unit in conjunction with 24-h video and electroencephalogram monitoring. The goal of this study was to demonstrate the improved success rate of ictal injection by use of the automatic injector in the pediatric population. Eighty-four pediatric patients and eighty-four (99m)Tc-ethylcysteinate dimer ((99m)Tc-ECD) ictal brain SPECT studies were retrospectively analyzed in a masked manner. The group with manual injection consisted of 45 studies performed from 2004 to 2010 before the introduction of the automatic injector. The group with automatic injection consisted of 39 studies performed from 2010 to 2011 after the introduction of the automatic injector. The 2 groups were comparable in the total duration of seizure, injected dose, and time from the injection to the image acquisition. The latency time from the seizure onset to the initiation time of injection, the ratio of latency time to total duration of seizure (L/T), the number of patients with repeated studies, the number of days of additional hospitalization for each study, and the localization rate for identifying a single focus in each study were compared between the groups. The median latency time in the group with automatic injection (8 s) was significantly lower than that of the group with manual injection (18 s) (P < 0.05). Also there was a statistically significant decrease in the number of patients with repeated studies in the group with automatic injection (2/39 [5%]), compared with the group with manual injection (14/45 [31%]) (P < 0.05). The median number of days of additional hospitalization in the group with manual injection (range, 0-7) was statistically significantly different, compared with the

  9. I-123 Iofetamine SPECT scan in children with neurological disorders

    SciTech Connect

    Flamini, J.R.; Konkol, R.J.; Wells, R.G.; Sty, J.R. )

    1990-10-01

    I-123 Iofetamine (IMP) single photon emission computed tomography (SPECT) imaging of the brain in 42 patients (ages 14 days to 23 years) was compared with other localizing studies in children with neurological diseases. All had an EEG and at least one imaging study of the brain (computed tomography (CT) or magnetic resonance imaging (MRI), or both). Seventy-eight percent of the patients had an EEG within 24-72 hours of the IMP-SPECT scan. Thirty-five (83%) had a history of seizures, and the remainder had other neurological conditions without a history of seizures. In most cases, a normal EEG reading with normal CT or MRI result predicted a normal SPECT study. When the EEG was abnormal the majority of the IMP-SPECT scans were abnormal and localized the abnormality to the same region. A comparison with CT and MRI showed that structural abnormalities involving the cortex were usually well demonstrated with IMP-SPECT imaging. Structural lesions confined to the white matter were generally not detectable with IMP-SPECT. In a few cases, SPECT scans revealed abnormalities in deep brain areas not identified by EEG. IMP-SPECT imaging is a valuable technique for the detection and localization of abnormal cerebral metabolic activity in children with seizure disorders. A correlation with CT or MRI is essential for proper interpretation of abnormalities detected with IMP SPECT imaging.

  10. Interictal epileptic discharge correlates with global and frontal cognitive dysfunction in temporal lobe epilepsy.

    PubMed

    Dinkelacker, Vera; Xin, Xu; Baulac, Michel; Samson, Séverine; Dupont, Sophie

    2016-09-01

    Temporal lobe epilepsy (TLE) with hippocampal sclerosis has widespread effects on structural and functional connectivity and often entails cognitive dysfunction. EEG is mandatory to disentangle interactions in epileptic and physiological networks which underlie these cognitive comorbidities. Here, we examined how interictal epileptic discharges (IEDs) affect cognitive performance. Thirty-four patients (right TLE=17, left TLE=17) were examined with 24-hour video-EEG and a battery of neuropsychological tests to measure intelligence quotient and separate frontal and temporal lobe functions. Hippocampal segmentation of high-resolution T1-weighted imaging was performed with FreeSurfer. Partial correlations were used to compare the number and distribution of clinical interictal spikes and sharp waves with data from imagery and psychological tests. The number of IEDs was negatively correlated with executive functions, including verbal fluency and intelligence quotient (IQ). Interictal epileptic discharge affected cognitive function in patients with left and right TLE differentially, with verbal fluency strongly related to temporofrontal spiking. In contrast, IEDs had no clear effects on memory functions after corrections with partial correlations for age, age at disease onset, disease duration, and hippocampal volume. In patients with TLE of long duration, IED occurrence was strongly related to cognitive deficits, most pronounced for frontal lobe function. These data suggest that IEDs reflect dysfunctional brain circuitry and may serve as an independent biomarker for cognitive comorbidity. Copyright © 2016. Published by Elsevier Inc.

  11. Interictal epileptogenic fast oscillations on neonatal and infantile EEGs in hemimegalencephaly.

    PubMed

    Yamazaki, Madoka; Chan, Derrick; Tovar-Spinoza, Zulma; Go, Cristina; Imai, Katsumi; Ochi, Ayako; Chu, Bill; Rutka, James T; Drake, James; Widjaja, Elysa; Matsuura, Masato; Snead, O Carter; Otsubo, Hiroshi

    2009-02-01

    Hemimegalencephaly is an epileptic encephalopathy which presents during the neonatal period. Our aims are to analyze interictal fast oscillations and EEG patterns in neonates and infants with hemimegalencephaly. We collected scalp EEGs and applied multiple band frequency analysis (MBFA) to analyze frequency and power of interictal fast oscillations (FOs). We studied 18 scalp EEGs in 7 patients with catastrophic epilepsy secondary to hemimegalencephaly, between 3 days and 24 months of age. Maximum frequency of FOs (22-57 Hz; mean, 42 Hz) on the hemimegalencephalic side was significantly higher than those (8-27 Hz; mean, 18 Hz) in the unaffected side (p<0.05). Differences in maximum FOs remained within 1-8 Hz (mean, 3 Hz) across consecutive EEGs. We found four EEG patterns: (1) suppression burst pattern (7 EEGs, 6 patients), (2) continuous triphasic complex pattern (5 EEGs, 3 patients), (3) continuous high amplitude slow waves with spikes (3 EEGs, 2 patients) and (4) frequent spike and slow waves (3 EEGs, 2 patients). Five patients with multiple EEG recordings showed changing EEG patterns. We confirmed the interictal epileptogenic FOs in neonatal EEGs of patients with hemimegalencephaly. The frequency of epileptogenic FOs remains stable from the neonates through increasing age while the patterns of EEG changed during brain maturation.

  12. Comparison of two I-123 labeled SPECT probes, for the dopamine transporter in non-human primate brain

    SciTech Connect

    Gandelman, M.S.; Scanley, B.E.; Al-Tikrite, M.S.

    1994-05-01

    A comparative SPECT evaluation of the regional uptake of 28-carboisopropoxy-3{beta}-(4-iodophenyl)tropane (IP-CIT) and 2{beta}-carbomethoxy-3{beta}-(4-iodophenyl)tropane ({beta}-CIT) was performed to assess the improved specificity of IP-CIT over {beta}-CIT for the dopamine (DE) transporter, as shown previously by in vitro studies (n=10), ranging from 7 to 10 hours with 6.9 to 15 mCi injected dose, were completed in 3 baboons. Peripheral metabolism of the two ligands were similar The SPECT images utilized ROIs over striatum (which reflect DA transporters), midbrain (previously shown for {beta}-CIT to reflect primarily serotonin transporters), and the occipital lobe (a region of non-specific uptake). The time to peak specific striatal uptake (striatal minus occipital activity) was similar for IP-CIT and {beta}-CIT (377{plus_minus}60 and 410{plus_minus}60 min, respectively); whereas midbrain peak activity occurred at a significantly earlier time for IP-CIT (21{plus_minus}4 min) as compared to {beta}-CIT (60{plus_minus}17 min). At time of peak specific striatal activity, striatal to occipital ratios were 2.7+0.6 for IP-CIT and 7.6{plus_minus}0.7 for {beta}-CIT, and at time of peak midbrain activity, midbrain to occipital ratios were 1.1{plus_minus}0.1 for IP-CIT, and 1.7{plus_minus}0.2 for {beta}-CIT. At peak specific striatal time, normalized regional uptake values ({mu}Ci/cc per {mu}Ci injected dose per g body mass) for the striatum were 4.9{plus_minus}1.1 IP-CIT and 5.2{plus_minus}0.7 {beta}-CIT, whereas for the occipital lobe normalized regional uptake values were 1.9{plus_minus}0.4 IP-CIT and 0.7{plus_minus}0.2 for {beta}-CIT. Similar regional kinetics in the striatum were observed, as both ligands demonstrate comparable peak striatal uptake and time to peak.

  13. Cellular mechanisms underlying spontaneous interictal spikes in an acute model of focal cortical epileptogenesis.

    PubMed

    de Curtis, M; Radici, C; Forti, M

    1999-01-01

    The cellular mechanisms involved in the generation of spontaneous epileptiform potentials were investigated in the pirifom cortex of the in vitro isolated guinea-pig brain. A single, unilateral injection of bicuculline (150-200 nmol) in the anterior piriform cortex induced locally spontaneous interictal spikes that recurred with a period of 8.81+/-4.47 s and propagated caudally to the ipsi- and contralateral hemispheres. Simultaneous extra- and intracellular recordings from layer II and III principal cells showed that the spontaneous interictal spike correlates to a burst of action potentials followed by a large afterdepolarization. Intracellular application of the sodium conductance blocker, QX-314 (80 mM), abolished bursting activity and unmasked a high-threshold slow spike enhanced by the calcium chelator EGTA (50 mM). The slow spike was abolished by membrane hyperpolarization and by local perfusion with 2 mM cadmium. The depolarizing potential that followed the primary burst was reduced by arterial perfusion with the N-methyl-D-aspartate receptor antagonist, DL-2-amino-5-phosphonopentanoic acid (100-200 microM). The non-N-methyl-D-aspartate glutamate receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (20 microM), completely and reversibly blocked the spontaneous spikes. The interictal spikes were terminated by a large afterpotential blocked either by intracellular QX-314 (80 mM) or by extracellular application of phaclofen and 2-hydroxysaclofen (10 and 4 mM, respectively). The present study demonstrates that, in an acute model of epileptogenesis, spontaneous interictal spikes are fostered by a primary burst of fast action potentials that ride on a regenerative high-threshold, possibly calcium-mediated spike, which activates a recurrent, glutamate-mediated potential responsible for the entrainment of adjacent and remote cortical regions. The bursting activity is controlled by a GABA(B) receptor-mediated inhibitory synaptic potential.

  14. Filtering in SPECT Image Reconstruction

    PubMed Central

    Lyra, Maria; Ploussi, Agapi

    2011-01-01

    Single photon emission computed tomography (SPECT) imaging is widely implemented in nuclear medicine as its clinical role in the diagnosis and management of several diseases is, many times, very helpful (e.g., myocardium perfusion imaging). The quality of SPECT images are degraded by several factors such as noise because of the limited number of counts, attenuation, or scatter of photons. Image filtering is necessary to compensate these effects and, therefore, to improve image quality. The goal of filtering in tomographic images is to suppress statistical noise and simultaneously to preserve spatial resolution and contrast. The aim of this work is to describe the most widely used filters in SPECT applications and how these affect the image quality. The choice of the filter type, the cut-off frequency and the order is a major problem in clinical routine. In many clinical cases, information for specific parameters is not provided, and findings cannot be extrapolated to other similar SPECT imaging applications. A literature review for the determination of the mostly used filters in cardiac, brain, bone, liver, kidneys, and thyroid applications is also presented. As resulting from the overview, no filter is perfect, and the selection of the proper filters, most of the times, is done empirically. The standardization of image-processing results may limit the filter types for each SPECT examination to certain few filters and some of their parameters. Standardization, also, helps in reducing image processing time, as the filters and their parameters must be standardised before being put to clinical use. Commercial reconstruction software selections lead to comparable results interdepartmentally. The manufacturers normally supply default filters/parameters, but these may not be relevant in various clinical situations. After proper standardisation, it is possible to use many suitable filters or one optimal filter. PMID:21760768

  15. Differences in resting state regional cerebral blood flow assessed with 99mTc-HMPAO SPECT and brain atlas matching between depressed patients with and without tinnitus.

    PubMed

    Gardner, A; Pagani, M; Jacobsson, H; Lindberg, G; Larsson, S A; Wägner, A; Hällstrom, T

    2002-05-01

    An increased occurrence of major depressive disorder has been reported in tinnitus patients, and of tinnitus in depressive patients. Involvement of several Brodmann areas (BAs) has been reported in tinnitus perception. The aim of this study was to assess the regional cerebral blood flow (rCBF) changes in depressed patients with and without tinnitus. The rCBF distribution at rest was compared among 45 patients with a lifetime prevalence of major depressive disorder, of whom 27 had severe tinnitus, and 26 normal healthy subjects. 99mTc-hexamethylenepropylene amine oxime (99mTc-HMPAO) single photon emission computed tomography (SPECT), using a three-headed gamma camera, was performed and the uptake in 34 functional sub-volumes of the brain bilaterally was assessed by a computerized brain atlas. Decreased rCBF in right frontal lobe BA 45 (P<0.05), the left parietal lobe BA 39 (P<0.00) and the left visual association cortex BA 18 (P<0.05) was found in tinnitus patients compared with non-tinnitus patients. The proportion of tinnitus patients with pronounced rCBF alterations in one or more of the temporal lobe BAs 41+21+22 was increased compared to gender matched controls (P<0.00) and patients without tinnitus (P<0.05). Positive correlations were found between trait anxiety scales from the Karolinska Scales of Personality and rCBF in tinnitus patients only in three limbic BAs (P<0.01), and inverse correlations in non-tinnitus patients only in five BAs subserving auditory perception and processing (P<0.05). rCBF differences between healthy controls and depressed patients with and without tinnitus were found in this study. The rCBF alterations were distributed in the cortex and were particularly specific in the auditory cortex. These findings suggest that taking audiological symptoms into account may yield more consistent results between rCBF studies of depression.

  16. A new graphic method for estimation of distribution volume in chronic ischemic brain lesions on I-123 IMP SPECT; in prediction of regional CBF increase by bypass surgery

    SciTech Connect

    Odano, I.; Ohkubo, M.; Takahashi, N.

    1994-05-01

    The estimate the distribution volume (Vd) of Iodine-123 IMP brain SPECT, we developed a new graphic plot, the rate constant square method, which was useful to predict an increase of rCBF in the ischemic lesions caused by bypass surgery. The tracer kinetics of IMP was assumed to be a 2-compartment model as follows: dCb(t)/dt=K1Ca(t)-k2Cb(t), where K1 is rCBF(ml/g/min), k2 is the washout constant(/min), and K1/k2 is defined as distribution volume (Vd:ml/g). When input function Ca(t) is prepared, we can determine the relationship between K1, Delayed/Early ratio and Vd on the graph. The method was applied to 13 patients with chronic cerebral infarction. Regional CBF was measured by the microsphere model and early and delayed scans were performed. In the normal area, K1 and Delayed/Early ratio were 0.5 ml/g/min and 1.0, respectively, then Vd (=31.5 ml/g) was obtained on the graph. 30.0 ml/g, the value in the infarct area was reduced. After bypass surgery undertaken on five patients, we observed a significant relationship between % increase of rCBF in the lesions and values of Vd. Since Vd reflects the extent of IMP retention in the brain tissue, we can predict an increase of rCBF by the bypass operation using this method.

  17. Interictal language functions in temporal lobe epilepsy

    PubMed Central

    Bartha, L; Benke, T; Bauer, G; Trinka, E

    2005-01-01

    Objective: To evaluate interictal language functions in patients with medically intractable left and right sided mesial temporal lobe epilepsy (TLE). Methods: Spontaneous speech, language comprehension, confrontation naming, repetition, reading, writing, and word fluency were examined in 12 patients with left sided TLE and 11 patients with right sided TLE. Results: Four patients out of 23 displayed language deficits in more than one language domain. Three further patients exhibited isolated language deficits. Linguistic deficits were observed in both left TLE and right TLE. In quantitative analyses left and right TLE only differed in spontaneous speech (p = 0.02); no difference was found in other language functions, laterality quotient of Wada test, or overall IQ. Qualitative error analysis of object naming, however, showed typical errors associated only with left TLE. Patients with linguistic deficits were older at testing compared to patients without linguistic deficits (p = 0.003), whereas other factors including side of TLE, handedness, educational level, age at epilepsy onset, and duration of epilepsy did not differ between groups. Conclusions: Possible explanations for these findings include neuronal cell loss and deafferentiation in cortical areas, and disruption of the basal temporal language area pathways. Our study suggests that some patients with chronic mesial TLE exhibit linguistic deficits when specifically tested, and underlines the need to routinely investigate linguistic functions in TLE. PMID:15897504

  18. Hemimegalencephaly: Clinical, EEG, neuroimaging, and IMP-SPECT correlation

    SciTech Connect

    Konkol, R.J.; Maister, B.H.; Wells, R.G.; Sty, J.R. )

    1990-11-01

    Iofetamine-single photon emission computed tomography (IMP-SPECT) was performed on 2 girls (5 1/2 and 6 years of age) with histories of intractable seizures, developmental delay, and unilateral hemiparesis secondary to hemimegalencephaly. Electroencephalography (EEG) revealed frequent focal discharges in 1 patient, while a nearly continuous burst suppression pattern over the malformed hemisphere was recorded in the other. IMP-SPECT demonstrated a good correlation with neuroimaging studies. In spite of the different EEG patterns, which had been proposed to predict contrasting clinical outcomes, both IMP-SPECT scans disclosed a similar decrease in tracer uptake in the malformed hemisphere. These results are consistent with the pattern of decreased tracer uptake found in other interictal studies of focal seizures without cerebral malformations. In view of recent recommendations for hemispherectomy in these patients, we suggest that the IMP-SPECT scan be used to compliment EEG as a method to define the extent of abnormality which may be more relevant to long-term prognosis than EEG alone.

  19. Single photon emission computed tomography (SPECT) in epilepsy

    SciTech Connect

    Leroy, R.F.

    1991-12-31

    Epilepsy is a common neurologic disorder which has just begun to be studied with single photon emission computerized tomography (SPECT). Epilepsy usually is studied with electroencephalographic (EEG) techniques that demonstrate the physiologic changes that occur during seizures, and with neuroimaging techniques that show the brain structures where seizures originate. Neither method alone has been adequate to describe the pathophysiology of the patient with epilepsy. EEG techniques lack anatomic sensitivity, and there are no structural abnormalities shown by neuroimaging which are specific for epilepsy. Functional imaging (FI) has developed as a physiologic tool with anatomic sensitivity, and SPECT has been promoted as a FI technique because of its potentially wide availability. However, SPECT is early in its development and its clinical utility for epilepsy still has to be demonstrated. To understand this role of SPECT, consideration must be given to the pathophysiology of epilepsy, brain physiology, types of seizure, epileptic syndromes, and the SPECT technique itself. 44 refs., 2 tabs.

  20. Cerebral SPECT imaging: Impact on clinical management

    SciTech Connect

    Bloom, M.; Jacobs, S.; Pozniakof, T.

    1994-05-01

    Although cerebral SPECT has been reported to be of value in a variety of neurologic disorders, there is limited data available on the value of SPECT relative to clinical management decisions. The purpose of this study was to determine the effect of cerebral SPECT imaging on patient management. A total of 94 consecutive patients referred for clinical evaluation with brain SPECT were included in this study. Patients were assigned to one of nine groups depending on the clinical indication for the study. These groups included transient ischemia (16), stroke (20), dementia (18), seizures (5), hemorrhage (13), head trauma (6), arteriovenous malformations (6), encephalopathy (6) and a miscellaneous (4) group. All patients were injected with 99mTc HMPAO in doses ranging from 15 mCi to 22 mCi (555 MBq to 814 MBq) and scanned on a triple headed SPECT gamma camera. Two weeks after completion of the study, a standardized interview was conducted between the nuclear and referring physicians to determine if the SPECT findings contributed to an alteration in patient management. Overall, patient management was significantly altered in 47% of the cases referred. The greatest impact on patient management occurred in the group evaluated for transient ischemia, where a total of 13/16 (81%) of patients had their clinical management altered as a result of the cerebral SPECT findings. Clinical management was altered in 61% of patients referred for evaluation of dementia, 67% of patients evaluated for arteriovenous malformations, and 50% of patients with head trauma. In the remainder of the patients, alteration in clinical management ranged from 17% to 50% of patients. This study demonstrates the clinical utility of cerebral SPECT imaging since in a significant number of cases clinical management was altered as a result of the examination. Long term follow up will be necessary to determine patient outcome.

  1. Technological Development and Advances in SPECT/CT

    PubMed Central

    Seo, Youngho; Aparici, Carina Mari; Hasegawa, Bruce H

    2010-01-01

    SPECT/CT has emerged over the past decade as a means of correlating anatomical information from CT with functional information from SPECT. The integration of SPECT and CT in a single imaging device facilitates anatomical localization of the radiopharmaceutical to differentiate physiological uptake from that associated with disease and patient-specific attenuation correction to improve the visual quality and quantitative accuracy of the SPECT image. The first clinically available SPECT/CT systems performed emission-transmission imaging using a dual-headed SPECT camera and a low-power x-ray CT sub-system. Newer SPECT/CT systems are available with high-power CT sub-systems suitable for detailed anatomical diagnosis, including CT coronary angiography and coronary calcification that can be correlated with myocardial perfusion measurements. The high-performance CT capabilities also offer the potential to improve compensation of partial volume errors for more accurate quantitation of radionuclide measurement of myocardial blood flow and other physiological processes and for radiation dosimetry for radionuclide therapy. In addition, new SPECT technologies are being developed that significantly improve the detection efficiency and spatial resolution for radionuclide imaging of small organs including the heart, brain, and breast, and therefore may provide new capabilities for SPECT/CT imaging in these important clinical applications. PMID:18396178

  2. Importance of 123I-ioflupane SPECT and Myocardial MIBG Scintigraphy to Determine the Candidate of Deep Brain Stimulation for Parkinson’s Disease

    PubMed Central

    ASAHI, Takashi; KASHIWAZAKI, Daina; YONEYAMA, Tatsuya; NOGUCHI, Kyo; KURODA, Satoshi

    2016-01-01

    123I-ioflupane SPECT (DaTscan) is an examination that detects presynaptic dopamine neuronal dysfunction, and has been used as a diagnostic tool to identify degenerative parkinsonism. Additionally, myocardial 123I-metaiodobenzyl guanidine (MIBG) scintigraphy measures the concentration of cardiac sympathetic nerve fibers and is used to diagnose Parkinson’s disease (PD). These exams are used as adjuncts in the diagnosis of parkinsonism, however, the relationship of these two examinations are not well-known. We investigated the relationship of these two scanning results specifically for determining the use of deep brain stimulation therapy (DBS). Subjects were Japanese patients with suspected striatonigral degeneration, including PD; DaTscans and myocardial MIBG scintigraphy were performed. The mean values of the left-right specific binding ratios (SBRs) from the DaTscan, and the early/delayed heart-to-mediastinum ratios (HMRs) from the MIBG scintigraphy were calculated. Using simple linear regression analysis, we compared the SBR and early/delayed HMR values. Twenty-four patients were enrolled in this study. Twenty-one patients were positive via the DaTscan, and the MIBG scintigraphy results showed 14 patients were positive. SBR and both early and delayed HMR were positively correlated in cases of PD, but negative in non-PD cases. A mean SBR value less than 3.0 and a delayed HMR value less than 1.7 indicated a Hoehn-Yahr stage 3 or 4 for PD, which is commonly regarded as a level appropriate for initiating DBS therapy. Our results indicate that performing both DaTscan and MIBG scintigraphy is useful for the evaluation of surgical intervention in PD. PMID:26794041

  3. Simultaneous Tc-99m and I-123 dual-radionuclide imaging with a solid-state detector-based brain-SPECT system and energy-based scatter correction.

    PubMed

    Takeuchi, Wataru; Suzuki, Atsuro; Shiga, Tohru; Kubo, Naoki; Morimoto, Yuichi; Ueno, Yuichiro; Kobashi, Keiji; Umegaki, Kikuo; Tamaki, Nagara

    2016-12-01

    A brain single-photon emission computed tomography (SPECT) system using cadmium telluride (CdTe) solid-state detectors was previously developed. This CdTe-SPECT system is suitable for simultaneous dual-radionuclide imaging due to its fine energy resolution (6.6 %). However, the problems of down-scatter and low-energy tail due to the spectral characteristics of a pixelated solid-state detector should be addressed. The objective of this work was to develop a system for simultaneous Tc-99m and I-123 brain studies and evaluate its accuracy. A scatter correction method using five energy windows (FiveEWs) was developed. The windows are Tc-lower, Tc-main, shared sub-window of Tc-upper and I-lower, I-main, and I-upper. This FiveEW method uses pre-measured responses for primary gamma rays from each radionuclide to compensate for the overestimation of scatter by the triple-energy window method that is used. Two phantom experiments and a healthy volunteer experiment were conducted using the CdTe-SPECT system. A cylindrical phantom and a six-compartment phantom with five different mixtures of Tc-99m and I-123 and a cold one were scanned. The quantitative accuracy was evaluated using 18 regions of interest for each phantom. In the volunteer study, five healthy volunteers were injected with Tc-99m human serum albumin diethylene triamine pentaacetic acid (HSA-D) and scanned (single acquisition). They were then injected with I-123 N-isopropyl-4-iodoamphetamine hydrochloride (IMP) and scanned again (dual acquisition). The counts of the Tc-99m images for the single and dual acquisitions were compared. In the cylindrical phantom experiments, the percentage difference (PD) between the single and dual acquisitions was 5.7 ± 4.0 % (mean ± standard deviation). In the six-compartment phantom experiment, the PDs between measured and injected activity for Tc-99m and I-123 were 14.4 ± 11.0 and 2.3 ± 1.8 %, respectively. In the volunteer study, the PD between the single

  4. The interictal language profile in adult epilepsy.

    PubMed

    Bartha-Doering, Lisa; Trinka, Eugen

    2014-10-01

    The purpose of this study was to systematically review the literature on the interictal language profile in adult patients with epilepsy. An extensive literature search was performed using MEDLINE, Embase, PsycINFO, Cochrane Central Register of Controlled Trials, PASCAL, and PSYNDEXplus databases. Key aspects of inclusion criteria were adult patients with epilepsy, patient number >10, and in-depth qualitative investigations of a specific language modality or administration of tests of at least two different language modalities, including comprehension, naming, repetition, reading, writing, and spontaneous speech. Our search strategy yielded 933 articles on epilepsy and language. Of these, 31 met final eligibility criteria. Most included articles focused on temporal lobe epilepsy; only three studies were interested in the language profile of patients with idiopathic generalized epilepsies, and one study on frontal lobe epilepsy met inclusion criteria. Study results showed a pronounced heterogeneity of language abilities in patients with epilepsy, varying from intact language profiles to impairment in several language functions. However, at least 17% of patients displayed deficits in more than one language function, with naming, reading comprehension, spontaneous speech, and discourse production being most often affected. This review underscores the need to evaluate different language functions-including spontaneous speech, discourse abilities, naming, auditory and reading comprehension, reading, writing, and repetition-individually in order to obtain a reliable profile of language functioning in patients with epilepsy. Moreover, our findings show that in contrast to the huge scientific interest of memory functions in epilepsy, the examination of language functions so far played a minor role in epilepsy research, emphasizing the need for future research activities in this field. Wiley Periodicals, Inc. © 2014 International League Against Epilepsy.

  5. Technetium-99m bis (aminoethanethiol) complexes with amine sidechains--potential brain perfusion imaging agents for SPECT

    SciTech Connect

    Efange, S.M.; Kung, H.F.; Billings, J.; Guo, Y.Z.; Blau, M.

    1987-06-01

    In an effort to develop new clinically useful technetium-99m bis(aminoethanethiol) ((/sup 99m/Tc)BAT) complexes for the evaluation of regional cerebral perfusion, two new BAT ligands containing amines in the sidechain were synthesized and subsequently complexed with /sup 99m/Tc to yield the target complexes: (/sup 99m/Tc)DEA and (/sup 99m/Tc)TMPDA. Each complex was obtained as mixtures of two isomers, syn and anti, which were separated chromatographically. In biodistribution studies, both isomers of (/sup 99m/Tc)TMPDA showed little uptake in the brain. In contrast, the brain uptake values at 2 and 15 min for (/sup 99m/Tc)DEA-anti were 0.99 and 0.26, whereas, the corresponding values for DEA-syn were 2.27, 0.64% dose/organ, respectively. Autoradiographic studies (in rats) using both isomers of (/sup 99m/Tc)DEA show a fixed regional distribution and a higher concentration of radioactivity in the gray matter relative to the white matter. Planar imaging using (/sup 99m/Tc)DEA-syn clearly demonstrates localization of the complex in the brain with a T 1/2 of 41 min, suggesting some potential for use with single photon emission computed tomography.

  6. Nuclear medicine in pediatric neurology and neurosurgery: epilepsy and brain tumors.

    PubMed

    Patil, Shekhar; Biassoni, Lorenzo; Borgwardt, Lise

    2007-09-01

    In pediatric drug-resistant epilepsy, nuclear medicine can provide important additional information in the presurgical localization of the epileptogenic focus. The main modalities used are interictal (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) and ictal regional cerebral perfusion study with single-photon emission computed tomography (SPECT). Nuclear medicine techniques have a sensitivity of approximately 85% to 90% in the localization of an epileptogenic focus in temporal lobe epilepsy; however, in this clinical setting, they are not always clinically indicated because other techniques (eg, icterictal and ictal electroencephalogram, video telemetry, magnetic resonance imaging [MRI]) may be successful in the identification of the epileptogenic focus. Nuclear medicine is very useful when MRI is negative and/or when electroencephalogram and MRI are discordant. A good technique to identify the epileptogenic focus is especially needed in the setting of extra-temporal lobe epilepsy; however, in this context, identification of the epileptogenic focus is more difficult for all techniques and the sensitivity of the isotope techniques is only 50% to 60%. This review article discusses the clinical value of the different techniques in the clinical context; it also gives practical suggestions on how to acquire good ictal SPECT and interictal FDG-PET scans. Nuclear medicine in pediatric brain tumors can help in differentiating tumor recurrence from post-treatment sequelae, in assessing the response to treatment, in directing biopsy, and in planning therapy. Both PET and SPECT tracers can be used. In this review, we discuss the use of the different tracers available in this still very new, but promising, application of radioisotope techniques.

  7. Recent advances in SPECT

    SciTech Connect

    Tsui, Benjamin M. W.

    1998-08-28

    Single photon emission computed tomography (SPECT) is a medical imaging modality that combines conventional nuclear medicine imaging technique and methods of computed tomography (CT). From images that represent the biodistribution of the injected radiopharmaceutical in the patient, SPECT provides functional information that is unique. The first SPECT system was developed in the sixties. However, early progress of SPECT was hampered by the lack of adequate image reconstruction methods. The development of x-ray CT and image reconstruction methods in the seventies spurred a renewed interest in SPECT. In 1981, the first commercial SPECT system based on a single rotating camera was available for clinical use. Today, most modern SPECT systems consist of multiple cameras that rotate around the patients. They have better spatial resolution and higher detection efficiency as compared to the earlier single camera systems. Recently, a new generation of dual camera systems allowing for coincidence imaging of positron emitting radiopharmaceuticals has emerged in the commercial market. Additionally, new quantitative image reconstruction methods are under development. They compensate for image degrading factors including attenuation, collimator-detector blurring and scatter. Also, they result in SPECT images with improved image quality and more accurately represent the three-dimensional radioactivity distribution in the patient. Such advances in radiopharmaceuticals, instrumentation, image reconstruction, compensation methods, and clinical applications have fueled a steady growth of SPECT as an important diagnostic tool in patient management.

  8. How Can We Identify Ictal and Interictal Abnormal Activity?

    PubMed Central

    Fisher, Robert S.; Scharfman, Helen E.; deCurtis, Marco

    2015-01-01

    The International League Against Epilepsy (ILAE) defined a seizure as “a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain.” This definition has been used since the era of Hughlings Jackson, and does not take into account subsequent advances made in epilepsy and neuroscience research. The clinical diagnosis of a seizure is empirical, based upon constellations of certain signs and symptoms, while simultaneously ruling out a list of potential imitators of seizures. Seizures should be delimited in time, but the borders of ictal (during a seizure), interictal (between seizures) and postictal (after a seizure) often are indistinct. EEG recording is potentially very helpful for confirmation, classification and localization. About a half-dozen common EEG patterns are encountered during seizures. Clinicians rely on researchers to answer such questions as why seizures start, spread and stop, whether seizures involve increased synchrony, the extent to which extra-cortical structures are involved, and how to identify the seizure network and at what points interventions are likely to be helpful. Basic scientists have different challenges in use of the word ‘seizure,’ such as distinguishing seizures from normal behavior, which would seem easy but can be very difficult because some rodents have EEG activity during normal behavior that resembles spike-wave discharge or bursts of rhythmic spiking. It is also important to define when a seizure begins and stops so that seizures can be quantified accurately for pre-clinical studies. When asking what causes seizures, the transition to a seizure and differentiating the pre-ictal, ictal and post-ictal state is also important because what occurs before a seizure could be causal and may warrant further investigation for that reason. These and other issues are discussed by three epilepsy researchers with clinical and basic science expertise. PMID:25012363

  9. How can we identify ictal and interictal abnormal activity?

    PubMed

    Fisher, Robert S; Scharfman, Helen E; deCurtis, Marco

    2014-01-01

    The International League Against Epilepsy (ILAE) defined a seizure as "a transient occurrence of signs and/or symptoms due to abnormal excessive or synchronous neuronal activity in the brain." This definition has been used since the era of Hughlings Jackson, and does not take into account subsequent advances made in epilepsy and neuroscience research. The clinical diagnosis of a seizure is empirical, based upon constellations of certain signs and symptoms, while simultaneously ruling out a list of potential imitators of seizures. Seizures should be delimited in time, but the borders of ictal (during a seizure), interictal (between seizures) and postictal (after a seizure) often are indistinct. EEG recording is potentially very helpful for confirmation, classification and localization. About a half-dozen common EEG patterns are encountered during seizures. Clinicians rely on researchers to answer such questions as why seizures start, spread and stop, whether seizures involve increased synchrony, the extent to which extra-cortical structures are involved, and how to identify the seizure network and at what points interventions are likely to be helpful. Basic scientists have different challenges in use of the word 'seizure,' such as distinguishing seizures from normal behavior, which would seem easy but can be very difficult because some rodents have EEG activity during normal behavior that resembles spike-wave discharge or bursts of rhythmic spiking. It is also important to define when a seizure begins and stops so that seizures can be quantified accurately for pre-clinical studies. When asking what causes seizures, the transition to a seizure and differentiating the pre-ictal, ictal and post-ictal state is also important because what occurs before a seizure could be causal and may warrant further investigation for that reason. These and other issues are discussed by three epilepsy researchers with clinical and basic science expertise.

  10. Directed differential connectivity graph of interictal epileptiform discharges

    PubMed Central

    Amini, Ladan; Jutten, Christian; Achard, Sophie; David, Olivier; Soltanian-Zadeh, Hamid; Hossein-Zadeh, Gh. Ali; Kahane, Philippe; Minotti, Lorella; Vercueil, Laurent

    2011-01-01

    In this paper, we study temporal couplings between interictal events of spatially remote regions in order to localize the leading epileptic regions from intracerebral electroencephalogram (iEEG). We aim to assess whether quantitative epileptic graph analysis during interictal period may be helpful to predict the seizure onset zone of ictal iEEG. Using wavelet transform, cross-correlation coefficient, and multiple hypothesis test, we propose a differential connectivity graph (DCG) to represent the connections that change significantly between epileptic and non-epileptic states as defined by the interictal events. Post-processings based on mutual information and multi-objective optimization are proposed to localize the leading epileptic regions through DCG. The suggested approach is applied on iEEG recordings of five patients suffering from focal epilepsy. Quantitative comparisons of the proposed epileptic regions within ictal onset zones detected by visual inspection and using electrically stimulated seizures, reveal good performance of the present method. PMID:21156385

  11. What graph theory actually tells us about resting state interictal MEG epileptic activity

    PubMed Central

    Niso, Guiomar; Carrasco, Sira; Gudín, María; Maestú, Fernando; del-Pozo, Francisco; Pereda, Ernesto

    2015-01-01

    Graph theory provides a useful framework to study functional brain networks from neuroimaging data. In epilepsy research, recent findings suggest that it offers unique insight into the fingerprints of this pathology on brain dynamics. Most studies hitherto have focused on seizure activity during focal epilepsy, but less is known about functional epileptic brain networks during interictal activity in frontal focal and generalized epilepsy. Besides, it is not clear yet which measures are most suitable to characterize these networks. To address these issues, we recorded magnetoencephalographic (MEG) data using two orthogonal planar gradiometers from 45 subjects from three groups (15 healthy controls (7 males, 24 ± 6 years), 15 frontal focal (8 male, 32 ± 16 years) and 15 generalized epileptic (6 male, 27 ± 7 years) patients) during interictal resting state with closed eyes. Then, we estimated the total and relative spectral power of the largest principal component of the gradiometers, and the degree of phase synchronization between each sensor site in the frequency range [0.5–40 Hz]. We further calculated a comprehensive battery of 15 graph-theoretic measures and used the affinity propagation clustering algorithm to elucidate the minimum set of them that fully describe these functional brain networks. The results show that differences in spectral power between the control and the other two groups have a distinctive pattern: generalized epilepsy presents higher total power for all frequencies except the alpha band over a widespread set of sensors; frontal focal epilepsy shows higher relative power in the beta band bilaterally in the fronto-central sensors. Moreover, all network indices can be clustered into three groups, whose exemplars are the global network efficiency, the eccentricity and the synchronizability. Again, the patterns of differences were clear: the brain network of the generalized epilepsy patients presented greater efficiency and lower

  12. What graph theory actually tells us about resting state interictal MEG epileptic activity.

    PubMed

    Niso, Guiomar; Carrasco, Sira; Gudín, María; Maestú, Fernando; Del-Pozo, Francisco; Pereda, Ernesto

    2015-01-01

    Graph theory provides a useful framework to study functional brain networks from neuroimaging data. In epilepsy research, recent findings suggest that it offers unique insight into the fingerprints of this pathology on brain dynamics. Most studies hitherto have focused on seizure activity during focal epilepsy, but less is known about functional epileptic brain networks during interictal activity in frontal focal and generalized epilepsy. Besides, it is not clear yet which measures are most suitable to characterize these networks. To address these issues, we recorded magnetoencephalographic (MEG) data using two orthogonal planar gradiometers from 45 subjects from three groups (15 healthy controls (7 males, 24 ± 6 years), 15 frontal focal (8 male, 32 ± 16 years) and 15 generalized epileptic (6 male, 27 ± 7 years) patients) during interictal resting state with closed eyes. Then, we estimated the total and relative spectral power of the largest principal component of the gradiometers, and the degree of phase synchronization between each sensor site in the frequency range [0.5-40 Hz]. We further calculated a comprehensive battery of 15 graph-theoretic measures and used the affinity propagation clustering algorithm to elucidate the minimum set of them that fully describe these functional brain networks. The results show that differences in spectral power between the control and the other two groups have a distinctive pattern: generalized epilepsy presents higher total power for all frequencies except the alpha band over a widespread set of sensors; frontal focal epilepsy shows higher relative power in the beta band bilaterally in the fronto-central sensors. Moreover, all network indices can be clustered into three groups, whose exemplars are the global network efficiency, the eccentricity and the synchronizability. Again, the patterns of differences were clear: the brain network of the generalized epilepsy patients presented greater efficiency and lower

  13. [Usefulness of brain SPECT with HMPAO-99mTc and psychological tests for diagnosis of neurological involvement in Behçet's disease].

    PubMed

    García Hernández, Francisco José; Ocaña Medina, Celia; Mateos Romero, Luis; Sánchez Román, Julio; García Solís, David; Franco-Baux, Joaquín Ruiz; Mora Roche, Joaquín; Mora Merchán, Joaquín

    2002-10-12

    The purpose of this study was to establish the usefulness of single photon emission computed tomography (SPECT) and psychological tests for diagnostic of neuro-Behçet (NB) and to evaluate the clinical significance of neurological symptoms that are difficult to interpret and asymptomatic abnormalities in diagnostic tests. Forty patients with Behçet's disease (BD) were enrrolled for being studied with magnetic resonance imaging (MRI), SPECT and psychological tests. MRI findings were abnormal in 52,9% of patients with neurological involvement and 23.1% without it (p < 0.1), whereas SPECT findings were abnormal in 82.3% and 61.5%, respectively (no significant difference). The difference between MRI and SPECT findings was significant (p < 0.02 for the complete group; p < 0.05 for patients without neurological symptoms; p < 0.08 for patients with them). The mean follow-up period was 42.6 months, and no patient without neurological involvement or those only with neurological symptoms that are difficult to interprete developed definite neurological involvement. The results of cognitive tests were not significantly different among patients with or without neurological involvement, neither among patients and controls. The scale 2 (depression) of the personality test was more frequent in patients with definite neurological involvement (p < 0.05). SPECT seems more sensible and less specific than MRI for diagnostic of NB. Although SPECT findings were frequently abnormal in patients with BD without neurological involvement or with neurological symptoms hard to interpret, no patient from this group developed a NB flare after a long follow-up period. A characteristic personality was found for patients with BD.

  14. SPECT radiopharmaceuticals for dementia.

    PubMed

    Guidotti, Claudio; Farioli, Daniela; Gaeta, Maria Chiara; Giovannini, Elisabetta; Lazzeri, Patrizia; Meniconi, Martina; Ciarmiello, Andrea

    2013-12-01

    Over the last decade the interest towards functional neuroimaging has gradually increased, especially in the field of neurodegenerative diseases. At present, diagnosis of dementia is mostly clinical. Numerous modalities of neuroimaging are today available, each of them allowing a different aspect of neurodegeneration to be investigated. Although during the last period many have predicted a forthcoming disappearance of SPECT imaging in favour of the PET imaging, many new radiotracers SPECT, dual-SPECT tracers techniques and receptor targeting designed radiopharmaceuticals are currently at study. Besides, last decade has also assisted to the development of new SPECT imaging systems, most of them integrated with other imaging modalities (MRI, CT, ultrasound techniques), granting improved imaging capabilities. All these improved conditions, especially appealing for the neuroimaging, together with the new radiopharmaceuticals in development may renovate the interest for SPECT clinical applications.

  15. Interictal temporal hypoperfusion is related to early-onset temporal lobe epilepsy.

    PubMed

    Duncan, R; Patterson, J; Hadley, D; Roberts, R; Bone, I

    1996-02-01

    Previous studies of interictal regional cerebral blood flow (rCBF) in temporal lobe epilepsy have shown variable correlations with clinical measures. We used high spatial resolution hexamethyl propyleneamine oxime single photon emission computed tomography (HMPAO SPECT) in 80 consecutive patients with complex partial seizures (CPS), comparing results with those from a large series of normal subjects. Visual image analysis detected abnormalities of rCBF in 41 of 80 (51%; numeric analysis detected abnormalities in 38 of 80). Age at epilepsy onset was significantly younger in patients with temporal hypoperfusion (p = 0.002), and the frequency distribution of hypoperfusion versus age at epilepsy onset was reverse exponential. The results of numerical image analysis showed that degree of hypoperfusion did not vary with age at epilepsy onset. These data suggest a single insult operating early in life as a cause of temporal hypoperfusion, as has been shown for mesial temporal sclerosis (MTS). We could not demonstrate relationships with other clinical variables, including time since last seizure.

  16. Radiosynthesis, In Vivo Biological Evaluation, and Imaging of Brain Lesions with [123I]-CLINME, a New SPECT Tracer for the Translocator Protein

    PubMed Central

    Mattner, F.; Quinlivan, M.; Greguric, I.; Pham, T.; Liu, X.; Jackson, T.; Berghofer, P.; Fookes, C. J. R.; Dikic, B.; Gregoire, M.-C.; Dolle, F.; Katsifis, A.

    2015-01-01

    The high affinity translocator protein (TSPO) ligand 6-chloro-2-(4′-iodophenyl)-3-(N,N-methylethyl)imidazo[1,2-a]pyridine-3-acetamide (CLINME) was radiolabelled with iodine-123 and assessed for its sensitivity for the TSPO in rodents. Moreover neuroinflammatory changes on a unilateral excitotoxic lesion rat model were detected using SPECT imaging. [123I]-CLINME was prepared in 70–80% radiochemical yield. The uptake of [123I]-CLINME was evaluated in rats by biodistribution, competition, and metabolite studies. The unilateral excitotoxic lesion was performed by injection of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid unilaterally into the striatum. The striatum lesion was confirmed and correlated with TSPO expression in astrocytes and activated microglia by immunohistochemistry and autoradiography. In vivo studies with [123I]-CLINME indicated a biodistribution pattern consistent with TPSO distribution and the competition studies with PK11195 and Ro 5-4864 showed that [123I]-CLINME is selective for this site. The metabolite study showed that the extractable radioactivity was unchanged [123I]-CLINME in organs which expresses TSPO. SPECT/CT imaging on the unilateral excitotoxic lesion indicated that the mean ratio uptake in striatum (lesion : nonlesion) was 2.2. Moreover, TSPO changes observed by SPECT imaging were confirmed by immunofluorescence, immunochemistry, and autoradiography. These results indicated that [123I]-CLINME is a promising candidate for the quantification and visualization of TPSO expression in activated astroglia using SPECT. PMID:26199457

  17. Ictal panic and interictal panic attacks: diagnostic and therapeutic principles.

    PubMed

    Kanner, Andres M

    2011-02-01

    Ictal and postictal panic and interictal and primary panic attacks share common symptoms but differ with respect to duration and association with other symptoms. A careful history is often sufficient to distinguish these events. When necessary, electroencephalography and neuroimaging studies, estimation of prolactin levels can be a helpful tool in establishing an accurate diagnosis. Copyright © 2011 Elsevier Inc. All rights reserved.

  18. Painful Heat Reveals Hyperexcitability of the Temporal Pole in Interictal and Ictal Migraine States

    PubMed Central

    Moulton, E. A.; Becerra, L.; Maleki, N.; Pendse, G.; Tully, S.; Hargreaves, R.; Burstein, R.

    2011-01-01

    During migraine attacks, alterations in sensation accompanying headache may manifest as allodynia and enhanced sensitivity to light, sound, and odors. Our objective was to identify physiological changes in cortical regions in migraine patients using painful heat and functional magnetic resonance imaging (fMRI) and the structural basis for such changes using diffusion tensor imaging (DTI). In 11 interictal patients, painful heat threshold + 1°C was applied unilaterally to the forehead during fMRI scanning. Significantly greater activation was identified in the medial temporal lobe in patients relative to healthy subjects, specifically in the anterior temporal pole (TP). In patients, TP showed significantly increased functional connectivity in several brain regions relative to controls, suggesting that TP hyperexcitability may contribute to functional abnormalities in migraine. In 9 healthy subjects, DTI identified white matter connectivity between TP and pulvinar nucleus, which has been related to migraine. In 8 patients, fMRI activation in TP with painful heat was exacerbated during migraine, suggesting that repeated migraines may sensitize TP. This article investigates a nonclassical role of TP in migraineurs. Observed temporal lobe abnormalities may provide a basis for many of the perceptual changes in migraineurs and may serve as a potential interictal biomarker for drug efficacy. PMID:20562317

  19. Painful heat reveals hyperexcitability of the temporal pole in interictal and ictal migraine States.

    PubMed

    Moulton, E A; Becerra, L; Maleki, N; Pendse, G; Tully, S; Hargreaves, R; Burstein, R; Borsook, D

    2011-02-01

    During migraine attacks, alterations in sensation accompanying headache may manifest as allodynia and enhanced sensitivity to light, sound, and odors. Our objective was to identify physiological changes in cortical regions in migraine patients using painful heat and functional magnetic resonance imaging (fMRI) and the structural basis for such changes using diffusion tensor imaging (DTI). In 11 interictal patients, painful heat threshold + 1°C was applied unilaterally to the forehead during fMRI scanning. Significantly greater activation was identified in the medial temporal lobe in patients relative to healthy subjects, specifically in the anterior temporal pole (TP). In patients, TP showed significantly increased functional connectivity in several brain regions relative to controls, suggesting that TP hyperexcitability may contribute to functional abnormalities in migraine. In 9 healthy subjects, DTI identified white matter connectivity between TP and pulvinar nucleus, which has been related to migraine. In 8 patients, fMRI activation in TP with painful heat was exacerbated during migraine, suggesting that repeated migraines may sensitize TP. This article investigates a nonclassical role of TP in migraineurs. Observed temporal lobe abnormalities may provide a basis for many of the perceptual changes in migraineurs and may serve as a potential interictal biomarker for drug efficacy.

  20. Ictal/postictal SPECT in the pre-surgical localisation of complex partial seizures.

    PubMed

    Duncan, R; Patterson, J; Roberts, R; Hadley, D M; Bone, I

    1993-02-01

    Single photon emission computed tomography (SPECT) used in conjunction with HM-PAO (Ceretec-Amersham International) was used to image regional cerebral blood flow (rCBF) in 28 patients with medically intractable complex partial seizures during or soon after a seizure, and interictally. Changes from interictal rCBF were seen in 26/28 (93%) patients. The main findings were; 1) During the seizure--hyperperfusion of the whole temporal lobe; 2) Up to 2m postically--hyperperfusion of the hippocampus with hypoperfusion of lateral temporal structures; 3) From 2-15m postically--hypoperfusion of the whole temporal lobe. When compared with EEG and MRI data, correct localisation to one temporal lobe was obtained in 23 patients. In one further patient bilateral temporal foci, and in a further two patients frontal foci, were correctly identified. There were no disagreements between EEG and SPECT localisation. Temporal lobe surgery was successful (by the criterion of at least 90% reduction in seizure frequency) in all but one of the 23 patients operated on. It is concluded that ictal/postictal SPECT is a reliable technique for the presurgical localisation of complex partial seizures. The data indicate a likely sequence of changes in rCBF during and after complex partial seizures of temporal lobe origin.

  1. Abdominal SPECT imaging

    SciTech Connect

    Van Heertum, R.L.; Brunetti, J.C.; Yudd, A.P.

    1987-07-01

    Over the past several years, abdominal single photon emission computed tomography (SPECT) imaging has evolved from a research tool to an important clinical imaging modality that is helpful in the diagnostic assessment of a wide variety of disorders involving the abdominal viscera. Although liver-spleen imaging is the most popular of the abdominal SPECT procedures, blood pool imaging is becoming much more widely utilized for the evaluation of cavernous hemangiomas of the liver as well as other vascular abnormalities in the abdomen. Adjunctive indium leukocyte and gallium SPECT studies are also proving to be of value in the assessment of a variety of infectious and neoplastic diseases. As more experience is acquired in this area, SPECT should become the primary imaging modality for both gallium and indium white blood cells in many institutions. Renal SPECT, on the other hand, has only recently been used as a clinical imaging modality for the assessment of such parameters as renal depth and volume. The exact role of renal SPECT as a clinical tool is, therefore, yet to be determined. 79 references.

  2. Using of the interictal EEGs for epilepsy diagnosing

    NASA Astrophysics Data System (ADS)

    Panischev, O. Yu; Demin, S. A.; Zinatullin, E. M.

    2015-12-01

    In this work we apply a new method to determine the differences in characteristics of the cortical electroencephalographic (EEG) activity, measured during interictal stage (i.e., period between seizures), between healthy subjects and patients with epilepsy. To analyze the dynamical and spectral properties of bioelectric activity we use power spectra and phase portraits which are introduced on the basis of the Memory Function Formalism (MFF). We discover the significant differences in the types of power spectra of the EEG for healthy subjects and patients. We reveal the cerebral cortex areas for which the EEG activity of considered groups of subjects has a different structure of the phase portraits. The proposed approach can be used as an additional method for diagnosis of epilepsy during interictal stage.

  3. The interictal dysphoric disorder of epilepsy: Legend or reality?

    PubMed

    Mula, Marco

    2016-05-01

    For a long time, the relationships between epilepsy and mood disorders captured the attention of clinicians and neuroscientists. The existence of a peculiar clinical presentation for mood disorders in epilepsy has been a matter of debate since the early reports of Kraepelin and Bleuler. The interictal dysphoric disorder (IDD) represents the modern reinterpretation of such early observations. This paper reviews current research on this topic discussing clinical implications, phenomenological observations, and directions for future research.

  4. Proceedings of clinical SPECT (single photon emission computed tomography) symposium

    SciTech Connect

    Not Available

    1986-09-01

    It has been five years since the last in-depth American College of Nuclear Physicians/Society of Nuclear Medicine Symposium on the subject of single photon emission computed tomography (SPECT) was held. Because this subject was nominated as the single most desired topic we have selected SPECT imaging as the basis for this year's program. The objectives of this symposium are to survey the progress of SPECT clinical applications that have taken place over the last five years and to provide practical and timely guidelines to users of SPECT so that this exciting imaging modality can be fully integrated into the evaluation of pathologic processes. The first half was devoted to a consideration of technical factors important in SPECT acquisition and the second half was devoted to those organ systems about which sufficient clinical SPECT imaging data are available. With respect to the technical aspect of the program we have selected the key areas which demand awareness and attention in order to make SPECT operational in clinical practice. These include selection of equipment, details of uniformity correction, utilization of phantoms for equipment acceptance and quality assurance, the major aspect of algorithms, an understanding of filtered back projection and appropriate choice of filters and an awareness of the most commonly generated artifacts and how to recognize them. With respect to the acquisition and interpretation of organ images, the faculty will present information on the major aspects of hepatic, brain, cardiac, skeletal, and immunologic imaging techniques. Individual papers are processed separately for the data base. (TEM)

  5. The role of cognitive group therapy and happiness training on cerebral blood flow using 99mTc-ECD brain perfusion SPECT: a quasi-experimental study of depressed patients.

    PubMed

    Azizi, M; Bahrieniain, S A; Baghdasarians, A; Emamipur, S; Azizmohammadi, Z; Qutbi, S M; Javadi, H; Assadi, M; Asli, I N

    2014-01-01

    The purpose of this study is to investigate the impact of cognitive group therapy and happiness training objectively in the local cerebral blood flow of patients with major depression (MD). The present research is semi-experimental to pre- and post-test with a control group. Three groups were formed, and this number was incorporated in each group: 12 patients were chosen randomly; the first group of depressed patients benefited from the combination of pharmacotherapy and sessions of cognitive group therapy; the second group used a combination of pharmacotherapy and sessions of happiness training; and a third group used only pharmacotherapy. We compared cognitive-behavioural therapy and happiness training efficacy with only pharmacotherapy in MD patients. We performed brain perfusion SPECT in each group, before and after each trial. The study was conducted on 36 patients with MD (32 women and 4 men; mean age: 41.22 ± 9.08; range: 27-65 years). There were significant differences regarding the two trial effects into two experimental groups (p < 0/001) before and after trials, while such differences were not significant in the control group (p > 0.05). In addition, there was significant difference among the regional cerebral blood flow in the frontal and prefrontal regions into two experimental groups before and after trials (p < 0/001), while such differences were not significant in the control group (p > 0.05). This study demonstrated decreased cerebral perfusion in the frontal regions in MD patients, which increased following cognitive group therapy and happiness training. Because of its availability, low costs, easy performance, and the objective semi-quantitative information supplied, brain perfusion SPECT scanning might be useful to assess the diagnosis and therapy efficacy. Further exploration is needed to validate its clinical role.

  6. Automated Detection of Epileptic Biomarkers in Resting-State Interictal MEG Data.

    PubMed

    Soriano, Miguel C; Niso, Guiomar; Clements, Jillian; Ortín, Silvia; Carrasco, Sira; Gudín, María; Mirasso, Claudio R; Pereda, Ernesto

    2017-01-01

    Certain differences between brain networks of healthy and epilectic subjects have been reported even during the interictal activity, in which no epileptic seizures occur. Here, magnetoencephalography (MEG) data recorded in the resting state is used to discriminate between healthy subjects and patients with either idiopathic generalized epilepsy or frontal focal epilepsy. Signal features extracted from interictal periods without any epileptiform activity are used to train a machine learning algorithm to draw a diagnosis. This is potentially relevant to patients without frequent or easily detectable spikes. To analyze the data, we use an up-to-date machine learning algorithm and explore the benefits of including different features obtained from the MEG data as inputs to the algorithm. We find that the relative power spectral density of the MEG time-series is sufficient to distinguish between healthy and epileptic subjects with a high prediction accuracy. We also find that a combination of features such as the phase-locked value and the relative power spectral density allow to discriminate generalized and focal epilepsy, when these features are calculated over a filtered version of the signals in certain frequency bands. Machine learning algorithms are currently being applied to the analysis and classification of brain signals. It is, however, less evident to identify the proper features of these signals that are prone to be used in such machine learning algorithms. Here, we evaluate the influence of the input feature selection on a clinical scenario to distinguish between healthy and epileptic subjects. Our results indicate that such distinction is possible with a high accuracy (86%), allowing the discrimination between idiopathic generalized and frontal focal epilepsy types.

  7. PET and SPECT imaging in veterinary medicine.

    PubMed

    LeBlanc, Amy K; Peremans, Kathelijne

    2014-01-01

    Veterinarians have gained increasing access to positron emission tomography (PET and PET/CT) imaging facilities, allowing them to use this powerful molecular imaging technique for clinical and research applications. SPECT is currently being used more in Europe than in the United States and has been shown to be useful in veterinary oncology and in the evaluation of orthopedic diseases. SPECT brain perfusion and receptor imaging is used to investigate behavioral disorders in animals that have interesting similarities to human psychiatric disorders. This article provides an overview of the potential applications of PET and SPECT. The use of commercially available and investigational PET radiopharmaceuticals in the management of veterinary disease has been discussed. To date, most of the work in this field has utilized the commercially available PET tracer, (18)F-fluorodeoxyglucose for oncologic imaging. Normal biodistribution studies in several companion animal species (cats, dogs, and birds) have been published to assist in lesion detection and interpretation for veterinary radiologists and clinicians. Studies evaluating other (18)F-labeled tracers for research applications are underway at several institutions and companion animal models of human diseases are being increasingly recognized for their value in biomarker and therapy development. Although PET and SPECT technologies are in their infancy for clinical veterinary medicine, increasing access to and interest in these applications and other molecular imaging techniques has led to a greater knowledge and collective body of expertise for veterinarians worldwide. Initiation and fostering of physician-veterinarian collaborations are key components to the forward movement of this field.

  8. Quantitative myocardial perfusion SPECT.

    PubMed

    Tsui, B M; Frey, E C; LaCroix, K J; Lalush, D S; McCartney, W H; King, M A; Gullberg, G T

    1998-01-01

    In recent years, there has been much interest in the clinical application of attenuation compensation to myocardial perfusion single photon emission computed tomography (SPECT) with the promise that accurate quantitative images can be obtained to improve clinical diagnoses. The different attenuation compensation methods that are available create confusion and some misconceptions. Also, attenuation-compensated images reveal other image-degrading effects including collimator-detector blurring and scatter that are not apparent in uncompensated images. This article presents basic concepts of the major factors that degrade the quality and quantitative accuracy of myocardial perfusion SPECT images, and includes a discussion of the various image reconstruction and compensation methods and misconceptions and pitfalls in implementation. The differences between the various compensation methods and their performance are demonstrated. Particular emphasis is directed to an approach that promises to provide quantitative myocardial perfusion SPECT images by accurately compensating for the 3-dimensional (3-D) attenuation, collimator-detector response, and scatter effects. With advances in the computer hardware and optimized implementation techniques, quantitatively accurate and high-quality myocardial perfusion SPECT images can be obtained in clinically acceptable processing time. Examples from simulation, phantom, and patient studies are used to demonstrate the various aspects of the investigation. We conclude that quantitative myocardial perfusion SPECT, which holds great promise to improve clinical diagnosis, is an achievable goal in the near future.

  9. Interictal spikes, seizures and ictal cell death are not necessary for post-traumatic epileptogenesis in vitro

    PubMed Central

    Berdichevsky, Yevgeny; Dzhala, Volodymyr; Mail, Michelle; Staley, Kevin J.

    2012-01-01

    Clinical studies indicate that phenytoin prevents acute post-traumatic seizures but not subsequent post-traumatic epilepsy. We explored this phenomenon using organotypic hippocampal slice cultures as a model of severe traumatic brain injury. Hippocampal slices were cultured for up to eight weeks, during which acute and chronic electrical recordings revealed a characteristic evolution of spontaneous epileptiform discharges, including interictal spikes, seizure activity and electrical status epilepticus. Cell death exhibited an early peak immediately following slicing, and a later secondary peak that coincided with the peak of seizure-like activity. The secondary peak in neuronal death was abolished by either blockade of glutamatergic transmission with kynurenic acid or by elimination of ictal activity and status epilepticus with phenytoin. Withdrawal of kynurenic acid or phenytoin was followed by a sharp increase in spontaneous seizure activity. Phenytoin’s anticonvulsant and neuroprotective effects failed after four weeks of continuous administration. These data support the clinical findings that after brain injury, anticonvulsants prevent seizures but not epilepsy or the development of anticonvulsant resistance. We extend the clinical data by showing that secondary neuronal death is correlated with ictal but not interictal activity, and that blocking all three of these sequelae of brain injury does not prevent epileptogenesis in this in vitro model. PMID:22115940

  10. Quantification of rat brain SPECT with 123I-ioflupane: evaluation of different reconstruction methods and image degradation compensations using Monte Carlo simulation

    NASA Astrophysics Data System (ADS)

    Roé-Vellvé, N.; Pino, F.; Falcon, C.; Cot, A.; Gispert, J. D.; Marin, C.; Pavía, J.; Ros, D.

    2014-08-01

    SPECT studies with 123I-ioflupane facilitate the diagnosis of Parkinson’s disease (PD). The effect on quantification of image degradations has been extensively evaluated in human studies but their impact on studies of experimental PD models is still unclear. The aim of this work was to assess the effect of compensating for the degrading phenomena on the quantification of small animal SPECT studies using 123I-ioflupane. This assessment enabled us to evaluate the feasibility of quantitatively detecting small pathological changes using different reconstruction methods and levels of compensation for the image degrading phenomena. Monte Carlo simulated studies of a rat phantom were reconstructed and quantified. Compensations for point spread function (PSF), scattering, attenuation and partial volume effect were progressively included in the quantification protocol. A linear relationship was found between calculated and simulated specific uptake ratio (SUR) in all cases. In order to significantly distinguish disease stages, noise-reduction during the reconstruction process was the most relevant factor, followed by PSF compensation. The smallest detectable SUR interval was determined by biological variability rather than by image degradations or coregistration errors. The quantification methods that gave the best results allowed us to distinguish PD stages with SUR values that are as close as 0.5 using groups of six rats to represent each stage.

  11. Size of cortical generators of epileptic interictal events and visibility on scalp EEG.

    PubMed

    von Ellenrieder, Nicolás; Beltrachini, Leandro; Perucca, Piero; Gotman, Jean

    2014-07-01

    Growing evidence indicates that fast oscillations (>80 Hz) can be recorded interictally in the scalp EEG of patients with epilepsy, and that they may point to the seizure-onset zone. However, mechanisms underpinning the emergence of scalp fast oscillations, and whether they differ from those of interictal epileptic discharges (IEDs), are yet to be understood. The visibility of cortical electric activity on scalp EEG recordings is dependent on two factors: the characteristics of the cortical generator and the background level. We studied this issue using scalp EEG recordings and detailed simulations, with a finite element model including 8 million elements and 8 different tissues. We observed an almost linear relationship between the amplitude of scalp electric potential and the extent of the generator on the cortex. However, this relationship is subject to substantial variability, with variations in factors greater than 3 occurring simply by changing the location on the cortex of generators of fixed extent. In addition, we showed that the background power in scalp EEG recordings decreases at higher frequency bands, being inversely proportional to a power of 2.5 of the frequency. In the specific case of fast oscillations, they can be detected within the lower noise level of the ripple band (80-200 Hz) even though their median amplitude on scalp EEG recordings is more than 10 times smaller than IEDs and consistent with cortical generators of approximately 1 cm(2). In conclusion, the physics governing the propagation of electrical activity from the brain to the scalp are consistent with the hypothesis that scalp fast oscillations and intracranial high-frequency oscillations (HFOs, 80-500 Hz) are expressions of common generators. Given the potential role of HFOs as biomarkers in epilepsy, the possibility to obtain some of the associated information from scalp EEG is of high clinical significance. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Cardiovascular Alterations during the Interictal Period in Awake and Pithed Amygdala-Kindled Rats.

    PubMed

    Ruiz-Salinas, Inna; Rocha, Luisa; Marichal-Cancino, Bruno A; Villalón, Carlos M

    2016-08-01

    Epileptic seizures are often accompanied by increased sympathetic cardiovascular activity (even interictally), but it remains unknown whether this increased activity is of central and/or peripheral origin. Hence, this study investigated the cardiovascular alterations produced by amygdala kindling in awake and pithed Wistar rats. Blood pressure (BP) and heart rate (HR) were initially recorded by tail cuff plethysmography in awake control, sham-operated and amygdala-kindled rats before and 24 hr after the kindling process. The after-discharge threshold (ADT) was measured under different conditions to correlate brain excitability with BP and HR in kindled rats. Twenty-four hours after the last kindling seizure, (i) HR, systolic and diastolic BP were increased and (ii) only higher HR values correlated with lower ADT values. Forty-eight hr after the last kindled seizure, all rats were pithed and prepared for analysing the tachycardic, vasopressor and vasodepressor responses by (i) stimulation of the sympathetic or sensory vasodepressor CGRPergic out-flows (stimulus-response curves, S-R curves) and (ii) intravenous injections of noradrenaline or α-CGRP (dose-response curves, D-R curves). Interestingly, (i) the tachycardic S-R and D-R curves were attenuated, whilst the CGRPergic S-R and D-R curves were potentiated in kindled rats, and (ii) the vasopressor noradrenergic S-R and D-R curves were not significantly different in all groups. Therefore, the kindling process may be associated with overstimulation in the central sympathetic and sensory out-flows interictally, producing (i) peripheral attenuation of cardiac sympathetic out-flow and β-adrenoceptor activity and (ii) peripheral potentiation of vasodepressor sensory CGRPergic out-flow and CGRP receptor activity. © 2016 Nordic Association for the Publication of BCPT (former Nordic Pharmacological Society).

  13. [Risk factors for interictal epileptiform discharges on electroencephalogram in children with spastic hemiplegic cerebral palsy].

    PubMed

    Li, Su-Yun; Qian, Xu-Guang; Zhao, Yi-Li; Fu, Wen-Jie; Tan, Xiao-Ru; Liu, Zhen-Huan

    2015-12-01

    To investigate the clinical symptoms and features of interictal epileptiform discharges (IED) on electroencephalogram (EEG) in children with spastic hemiplegic cerebral palsy (CP) and to analyze the risk factors for IED. Eighty-three children with spastic hemiplegic CP were recruited, and their clinical data, results of video-electroencephalogram, imaging findings, and cognitive levels were collected. The influencing factors for IED were determined by multiple logistic regression analysis. The incidence of epilepsy was 13% in children with spastic hemiplegic CP; 34% of these cases had IED. The incidence of epilepsy in children with IED (32%) was significantly higher than that in those without IED (4%) (P<0.01). The incidence of IED in children with complications and brain cortex impairment increased significantly (P<0.01). The incidence of IED varied significantly between patients with different cognitive levels (P<0.01). Brain cortex impairment (OR=11.521) and low cognitive level (OR=2.238)were risk factors for IED in children with spastic hemiplegic CP (P<0.05). Spastic hemiplegic CP is often found with IED on EEG, and the incidence of epilepsy is higher in children with IED than in those without IED. Brain cortex impairment and low cognitive level have predictive values for IED in children with spastic hemiplegic CP.

  14. Interictal epileptiform discharges have an independent association with cognitive impairment in children with lesional epilepsy.

    PubMed

    Glennon, Jennifer M; Weiss-Croft, Louise; Harrison, Sue; Cross, J Helen; Boyd, Stewart G; Baldeweg, Torsten

    2016-09-01

    The relative contribution of interictal epileptiform discharges (IEDs) to cognitive dysfunction in comparison with the underlying brain pathology is not yet understood in children with lesional focal epilepsy. The current study investigated the association of IEDs with intellectual functioning in 103 children with medication-resistant focal epilepsy. Hierarchical multiple regression analyses were used to determine the independent contribution of IED features on intellectual functioning, after controlling for effects of lesional pathology, epilepsy duration, and medication. Exploratory analyses were conducted for language and memory scores as well as academic skills available in a subset of participants. The results reveal that IEDs have a negative association with IQ with independent, additive effects documented for frequent and bilaterally distributed IEDs as well as discharge enhancement in sleep. Left-lateralized IEDs had a prominent effect on verbal intelligence, in excess of the influence of left-sided brain pathology. These effects extended to other cognitive functions, most prominently for sleep-enhanced IEDs to be associated with deficits in expressive and receptive language, reading, spelling and numerical skills. Overall, IED effects on cognition were of a magnitude similar to lesional influences or drug effects (topiramate use). This study demonstrates an association between IEDs and cognitive dysfunction, independent of the underlying focal brain pathology. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  15. Design and simulation of a high-resolution stationary SPECT system for small animals

    NASA Astrophysics Data System (ADS)

    Beekman, Freek J.; Vastenhouw, Brendan

    2004-10-01

    Exciting new SPECT systems can be created by combining pinhole imaging with compact high-resolution gamma cameras. These new systems are able to solve the problem of the limited sensitivity-resolution trade-off that hampers contemporary small animal SPECT. The design presented here (U-SPECT-III) uses a set of detectors placed in a polygonal configuration and a cylindrical collimator that contains 135 pinholes arranged in nine rings. Each ring contains 15 gold pinhole apertures that focus on the centre of the cylinder. A non-overlapping projection is acquired via each pinhole. Consequently, when a mouse brain is placed in the central field-of-view, each voxel in the cerebrum can be observed via 130 to 135 different pinholes simultaneously. A method for high-resolution scintillation detection is described that eliminates the depth-of-interaction problem encountered with pinhole cameras, and is expected to provide intrinsic detector resolutions better than 150 µm. By means of simulations U-SPECT-III is compared to a simulated dual pinhole SPECT (DP-SPECT) system with a pixelated array consisting of 2.0 × 2.0 mm NaI crystals. Analytic calculations indicate that the proposed U-SPECT-III system yields an almost four times higher linear and about sixty times higher volumetric system resolution than DP-SPECT, when the systems are compared at matching system sensitivity. In addition, it should be possible to achieve a 15 up to 30 times higher sensitivity with U-SPECT-III when the systems are compared at equal resolution. Simulated images of a digital mouse-brain phantom show much more detail with U-SPECT-III than with DP-SPECT. In a resolution phantom, 0.3 mm diameter cold rods are clearly visible with U-SPECT-III, whereas with DP-SPECT the smallest visible rods are about 0.6-0.8 mm. Furthermore, with U-SPECT-III, the image deformations outside the central plane of reconstruction that hamper conventional pinhole SPECT are strongly suppressed. Simulation results indicate

  16. A SPECT study in internal carotid artery occlusion: Discrepancies between flow image and neurologic deficits

    SciTech Connect

    Moriwaki, H.; Hougaku, H.; Matsuda, I.; Kusunoki, M.; Shirai, J. )

    1989-08-01

    A SPECT (single photon emission computed tomography) study in internal carotid artery (ICA) occlusion was performed in 6 patients. The validity of iodoamphetamine (IMP) SPECT study in the evaluation of cerebral blood flow (CBF) or neurologic function is still controversial. In this study, the authors showed several cases in whom SPECT images of brain were not compatible with their neurologic deficits. In 2 typical cases, a large low-density area was observed in the non-dominant hemisphere in computed tomography (CT) scan, but no apparent motor-sensory deficits in left limbs were present. In these patients, SPECT study also revealed flow reduction in the affected side of the brain. So there was a possibility that an IMP brain image could not always reflect CBF, which maintains neurologic function of the brain.

  17. Single Photon Emission Computed Tomography (SPECT) Experience with (S)-5-[123I]iodo-3-(2-azetidinylmethoxy)pyridine (5-[123I]IA) in the Living Human Brain of Smokers and Nonsmokers

    PubMed Central

    BRAŠIĆ, JAMES ROBERT; ZHOU, YUN; MUSACHIO, JOHN L.; HILTON, JOHN; FAN, HONG; CRABB, ANDREW; ENDRES, CHRISTOPHER J.; REINHARDT, MELVIN J.; DOGAN, AHMET S.; ALEXANDER, MOHAB; ROUSSET, OLIVIER; MARIS, MARIKA A.; GALECKI, JEFFREY; NANDI, AYON; WONG, DEAN F.

    2009-01-01

    (S)-5-[123I]iodo-3-(2-azetidinylmethoxy)pyridine (5-[123I]IA), a novel potent radioligand for high-affinity α4β2* neuronal nicotinic acetylcholine receptors (nAChRs), provides a means to evaluate the density and the distribution of nAChRs in the living human brain. We sought in healthy adult smokers and nonsmokers to (1) evaluate the safety, tolerability, and efficacy of 5-[123I]IA in an open nonblind trial and (2) to estimate the density and distribution of α4β2* nAChRs in the brain. Single photon emission computed tomography (SPECT) was performed for five hours after the intravenous administration of approximately 0.001 μg/kg (approximately 10 mCi) 5-[123I]IA. Blood pressure, heart rate, and neurobehavioral status were monitored before, during, and after the administration of 5-[123I]IA to twelve healthy adults (8 men and 4 women) (6 smokers and 6 nonsmokers) ranging in age from 19 to 46 years (mean = 28.25, standard deviation = 8.20). High plasma nicotine level was significantly associated with low 5-[123I]IA binding in (1) the caudate head, the cerebellum, the cortex, and the putamen, utilizing both the Sign and Mann-Whitney U tests, (2) the fusiform gyrus, the hippocampus, the parahippocampus, and the pons utilizing the Mann-Whitney U test, and (3)the thalamus utilizing the Sign test. We conclude that 5-[123I]IA is a safe, well-tolerated, and effective pharmacologic agent for human subjects to estimate high-affinity α4/β2 nAChRs in the living human brain. PMID:19140167

  18. Discharge threshold is enhanced for several seconds after a single interictal spike in a model of focal epileptogenesis.

    PubMed

    de Curtis, M; Librizzi, L; Biella, G

    2001-07-01

    Interictal spikes (ISs) are typically observed between seizures in focal epilepsies. Whether ISs are causally involved or represent protective elements in the transition toward an ictal discharge is an open question. Previous studies suggested that inhibition or disfacilitation occurs during the period elapsing between two ISs induced by local application of either bicuculline or penicillin in the piriform cortex of the in vitro isolated guinea pig brain preparation. We further investigated this issue by studying responses to afferent stimulation during the interspike period (6.3 +/- 2.5 s; mean +/- SD). Properly set stimulation intensity of the lateral olfactory tract resets ISs exclusively (and not before) 4-10 s (5.6 +/- 2.0 s; mean +/- SD) after a preceding spontaneous spike. This finding demonstrates the existence of a period of enhanced threshold to stimulus-evoked activation that coincides with the interspike interval in the absence of stimulation. Current source density analysis of depth laminar profiles demonstrated that both stimulus-evoked and spontaneous ISs were generated by the activation of an identical cortical circuit. Our study suggests that interictal spiking could play a protective role or at least provide an effective restraint against the onset of a focal ictal discharge.

  19. Primary Somatosensory Cortices Contain Altered Patterns of Regional Cerebral Blood Flow in the Interictal Phase of Migraine

    PubMed Central

    Hodkinson, Duncan J.; Veggeberg, Rosanna; Wilcox, Sophie L.; Scrivani, Steven; Burstein, Rami; Becerra, Lino; Borsook, David

    2015-01-01

    The regulation of cerebral blood flow (CBF) is a complex integrated process that is critical for supporting healthy brain function. Studies have demonstrated a high incidence of alterations in CBF in patients suffering from migraine with and without aura during different phases of attacks. However, the CBF data collected interictally has failed to show any distinguishing features or clues as to the underlying pathophysiology of the disease. In this study we used the magnetic resonance imaging (MRI) technique—arterial spin labeling (ASL)—to non-invasively and quantitatively measure regional CBF (rCBF) in a case-controlled study of interictal migraine. We examined both the regional and global CBF differences between the groups, and found a significant increase in rCBF in the primary somatosensory cortex (S1) of migraine patients. The CBF values in S1 were positively correlated with the headache attack frequency, but were unrelated to the duration of illness or age of the patients. Additionally, 82% of patients reported skin hypersensitivity (cutaneous allodynia) during migraine, suggesting atypical processing of somatosensory stimuli. Our results demonstrate the presence of a disease-specific functional deficit in a known region of the trigemino-cortical pathway, which may be driven by adaptive or maladaptive functional plasticity. These findings may in part explain the altered sensory experiences reported between migraine attacks. PMID:26372461

  20. A testbed to explore the optimal electrical stimulation parameters for suppressing inter-ictal spikes in human hippocampal slices.

    PubMed

    Min-Chi Hsiao; Pen-Ning Yu; Dong Song; Liu, Charles Y; Heck, Christi N; Millett, David; Berger, Theodore W

    2014-01-01

    New interventions using neuromodulatory devices such as vagus nerve stimulation, deep brain stimulation and responsive neurostimulation are available or under study for the treatment of refractory epilepsy. Since the actual mechanisms of the onset and termination of the seizure are still unclear, most researchers or clinicians determine the optimal stimulation parameters through trial-and-error procedures. It is necessary to further explore what types of electrical stimulation parameters (these may include stimulation frequency, amplitude, duration, interval pattern, and location) constitute a set of optimal stimulation paradigms to suppress seizures. In a previous study, we developed an in vitro epilepsy model using hippocampal slices from patients suffering from mesial temporal lobe epilepsy. Using a planar multi-electrode array system, inter-ictal activity from human hippocampal slices was consistently recorded. In this study, we have further transferred this in vitro seizure model to a testbed for exploring the possible neurostimulation paradigms to inhibit inter-ictal spikes. The methodology used to collect the electrophysiological data, the approach to apply different electrical stimulation parameters to the slices are provided in this paper. The results show that this experimental testbed will provide a platform for testing the optimal stimulation parameters of seizure cessation. We expect this testbed will expedite the process for identifying the most effective parameters, and may ultimately be used to guide programming of new stimulating paradigms for neuromodulatory devices.

  1. Cortical sulcal areas in baboons (Papio hamadryas spp.) with generalized interictal epileptic discharges on scalp EEG.

    PubMed

    Szabó, C A; Kochunov, P; Knape, K D; McCoy, K J M; Leland, M M; Lancaster, J L; Fox, P T; Williams, J T; Rogers, J

    2011-02-01

    Brain MRI studies in people with idiopathic generalized epilepsies demonstrate regional morphometric differences, though variable in magnitude and location. As the baboon provides an excellent electroclinical and neuroimaging model for photosensitive generalized epilepsy in humans, this study evaluated MRI volumetric and morphometric differences between baboons with interictal epileptic discharges (IEDs) on scalp EEG and baboons with normal EEG studies. Seventy-seven baboons underwent high-resolution brain MRI and scalp EEG studies. The scans were acquired using an 8-channel primate head coil (Siemens TRIO 3T scanner, Erlangen, Germany). After spatial normalization, sulcal measurements were obtained by object-based-morphology methods. One-hour scalp EEG studies were performed in animals sedated with ketamine. Thirty-eight (22F/16M) baboons had normal EEGs (IED-), while 39 (22F/17M) had generalized IEDs (IED+). The two groups were compared for age, total brain volume, and sulcal areas (Hotelling's Trace) as well as between-subjects comparison of 11 individual sulcal areas (averaged between left and right hemispheres). There were no differences between IED- and IED+ groups with respect to age or total brain (gray or white matter) volume, and multivariate tests demonstrated a marginally significant decrease of sulcal areas in IED+ baboons (p=0.075). Tests of between-subjects effects showed statistically significant decreases in the intraparietal (p=0.002), central (p=0.03) and cingulate sulci (p=0.02), and marginal decreases involving the lunate (p=0.07) and superior temporal sulci (p=0.08). Differences in sulcal areas in IED+ baboons may reflect global developmental abnormalities, while decreases of areas of specific sulci reflect anatomical markers for potential generators or cortical nodes of the networks underlying spontaneous seizures and photosensitivity in the baboon. Copyright © 2010 Elsevier B.V. All rights reserved.

  2. Cerebral blood flow imaging with thallium-201 diethyldithiocarbamate SPECT

    SciTech Connect

    van Royen, E.A.; de Brune, J.F.H.; Hill, T.C.; Vyth, A.; Limburg, M.; Byse, B.L.; O'Leary, D.H.; de Jong, J.M.; Hijdra, A.; van der Schoot, J.B.

    1987-02-01

    Thallium-201 diethyldithiocarbamate ((/sup 201/TI)DDC) was studied in humans as an agent for cerebral blood flow imaging. Brain uptake proved to be complete 90 sec after injection with no appreciable washout or redistribution for hours. Intracarotid injection suggested an almost 100% extraction during the first passage. Whole-body distribution studies demonstrated a brain uptake of 4.3% of the dose compared with 0.9% for (/sup 201/TI)chloride. No differences were found in the distribution of (/sup 201/TI)DDC versus (/sup 201/TI)chloride in other organs. After the injection of 3 mCi /sup 201/TI, good quality single photon emission computed tomographic (SPECT) images of the brain were obtained with both a rotating gamma camera and a multidetector system. In ischemic brain disease, perfusion defects were easily demonstrated. We conclude that (/sup 201/TI)DDC is a suitable radiopharmaceutical for SPECT studies of cerebral blood flow.

  3. Molecular SPECT Imaging: An Overview

    PubMed Central

    Khalil, Magdy M.; Tremoleda, Jordi L.; Bayomy, Tamer B.; Gsell, Willy

    2011-01-01

    Molecular imaging has witnessed a tremendous change over the last decade. Growing interest and emphasis are placed on this specialized technology represented by developing new scanners, pharmaceutical drugs, diagnostic agents, new therapeutic regimens, and ultimately, significant improvement of patient health care. Single photon emission computed tomography (SPECT) and positron emission tomography (PET) have their signature on paving the way to molecular diagnostics and personalized medicine. The former will be the topic of the current paper where the authors address the current position of the molecular SPECT imaging among other imaging techniques, describing strengths and weaknesses, differences between SPECT and PET, and focusing on different SPECT designs and detection systems. Radiopharmaceutical compounds of clinical as well-preclinical interest have also been reviewed. Moreover, the last section covers several application, of μSPECT imaging in many areas of disease detection and diagnosis. PMID:21603240

  4. Functional imaging in periventricular nodular heterotopia with the use of FDG-PET and HMPAO-SPECT.

    PubMed

    Morioka, T; Nishio, S; Sasaki, M; Yoshida, T; Kuwabara, Y; Ohta, M; Fukui, M

    1999-01-01

    We analyzed the interictal [18F]fluoro-2-deoxy-D-glucose positron emission tomography (FGD-PET) and single photon emission computed tomography with technetium-99m-hexamethyl-propyleneamine oxime (HMPAO-SPECT) in two epileptic patients with periventricular nodular heterotopia (PNH). In both cases, we found both the glucose metabolism and the perfusion of PNH to be almost identical to those of the normal cerebral cortex. The metabolic activity and perfusion in the heterotopic gray matter in a subependymal white matter area probably represent the glucose metabolism and perfusion of the abnormally located gray matter rather than a subclinical ictal phenomenon. FDG-PET and HMPAO-SPECT were thus found to be a useful complement to magnetic resonance imaging in the evaluation of PNH.

  5. [Normal database (NDB) of 123I-IMP brain perfusion SPECT examination is affected by statistical image analysis in the presence or absence of scatter correction and attenuation correction].

    PubMed

    Shimada, Hirotaka; Otake, Hidenori; Higuchi, Tetsuya; Arisaka, Yukiko; Oriuchi, Noboru; Endo, Keigo

    2012-11-01

    The purpose of our study is the establishment of normal database (NDB) from persons (aged 50-80 years) for 3D-SSP analysis of 123I-IMP brain perfusion SPECT image, and we analyzed whether the presence or absence of image correction methods, scatter correction (SC) and attenuation correction (AC), affects the created NDB and 3D-SSP analysis. We created NDB from 63 healthy volunteers (32 males and 31 females, aged 50-80 years), and calculated the coefficient of variation for each pixel from the mean value and standard deviation. Next, we compared the visual assessments of the standard deviation images by each image correction method, and the coefficient of variation of SEE analysis in each part of the brain. Furthermore, we examined frontotemporal dementia and healthy volunteers by 3D-SSP analysis, and evaluated the differences of Z-score in the presence or absence of image correction methods. In NDB, the coefficient of variation was the minimum when SC and AC were not applied and the maximum in periventricular and cerebellum when SC and AC were applied. In Z-score image of 3D-SSP analysis, Z-score of the low value was the maximum when SC and AC were not applied. It was shown that the results from NDB coefficient of variation and 3D-SSP analysis were affected by the differences of image correction methods. It is important to understand the feature of imaging reconstruction conditions in your own facilities, and evaluate 3D-SSP analysis.

  6. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    SciTech Connect

    Baba, Justin S.; Endres, Christopher J.; Foss, Catherine A.; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard, James S.; Lee, Seung Joon; McKisson, John; Smith, Mark F.; Stolin, Alexander V.; Weisenberger, Andrew G.; Pomper, Martin G.

    2013-06-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a ^99mTc-pertechnetate phantom, ^99mTc-methylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand ^123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of ^123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  7. Molecular Imaging of Conscious, Unrestrained Mice with AwakeSPECT

    SciTech Connect

    Baba, Justin S; Endres, Christopher; Foss, Catherine; Nimmagadda, Sridhar; Jung, Hyeyun; Goddard Jr, James Samuel; Lee, Seung Joon; McKisson, John; Smith, Mark F.; Stolin, Alexander; Weisenberger, Andrew G.; Pomper, Martin

    2013-01-01

    We have developed a SPECT imaging system, AwakeSPECT, to enable molecular brain imaging of untrained mice that are conscious, unanesthetized, and unrestrained. We accomplished this with head tracking and motion correction techniques. Methods: The capability of the system for motion-corrected imaging was demonstrated with a 99mTc-pertechnetate phantom, 99mTcmethylene diphosphonate bone imaging, and measurement of the binding potential of the dopamine transporter radioligand 123I-ioflupane in mouse brain in the awake and anesthetized (isoflurane) states. Stress induced by imaging in the awake state was assessed through measurement of plasma corticosterone levels. Results: AwakeSPECT provided high-resolution bone images reminiscent of those obtained from CT. The binding potential of 123I-ioflupane in the awake state was on the order of 50% of that obtained with the animal under anesthesia, consistent with previous studies in nonhuman primates. Levels of stress induced were on the order of those seen in other behavioral tasks and imaging studies of awake animals. Conclusion: These results demonstrate the feasibility of SPECT molecular brain imaging of mice in the conscious, unrestrained state and demonstrate the effects of isoflurane anesthesia on radiotracer uptake.

  8. Parallel-hole collimator concept for stationary SPECT imaging.

    PubMed

    Pato, Lara R V; Vandenberghe, Stefaan; Zedda, Tiziana; Van Holen, Roel

    2015-11-21

    Parallel-hole SPECT collimators have traditionally been manufactured by stacking sheets of lead foil or by casting. These techniques significantly restrict our options in terms of collimator geometry. However, recent developments in metal additive manufacturing are making novel collimator designs possible, giving rise to new opportunities in SPECT imaging. In this paper we propose an innovative type of collimator for stationary SPECT, using parallel-holes whose collimation direction depends on their axial position. Its main advantage compared to current stationary SPECT systems (which are based on pinholes) is that, using only axial bed translations, we can achieve complete angular sampling of an increased portion of the transaxial area of the collimator bore. This allows the system to be much more compact than current stationary SPECT systems that image objects of the same size. We describe three possible designs, for full-body, brain and small-animal imaging, respectively, and test their feasibility using simulations. The system modeling method is validated against realistic Monte Carlo simulations, and then used in the evaluation of the systems' performances and reconstructions. The simulations show that the system is able to reconstruct objects occupying the predicted field of view ([Formula: see text] of the transaxial area of the bore) without sampling artifacts. In particular, we perform reconstructions from noisy projection data obtained for an activity and scanning time similar to standard protocols for the three applications, and the resulting images indicate the possibility of using the proposed systems in practice.

  9. Parallel-hole collimator concept for stationary SPECT imaging

    NASA Astrophysics Data System (ADS)

    Pato, Lara R. V.; Vandenberghe, Stefaan; Zedda, Tiziana; Van Holen, Roel

    2015-11-01

    Parallel-hole SPECT collimators have traditionally been manufactured by stacking sheets of lead foil or by casting. These techniques significantly restrict our options in terms of collimator geometry. However, recent developments in metal additive manufacturing are making novel collimator designs possible, giving rise to new opportunities in SPECT imaging. In this paper we propose an innovative type of collimator for stationary SPECT, using parallel-holes whose collimation direction depends on their axial position. Its main advantage compared to current stationary SPECT systems (which are based on pinholes) is that, using only axial bed translations, we can achieve complete angular sampling of an increased portion of the transaxial area of the collimator bore. This allows the system to be much more compact than current stationary SPECT systems that image objects of the same size. We describe three possible designs, for full-body, brain and small-animal imaging, respectively, and test their feasibility using simulations. The system modeling method is validated against realistic Monte Carlo simulations, and then used in the evaluation of the systems’ performances and reconstructions. The simulations show that the system is able to reconstruct objects occupying the predicted field of view (75% of the transaxial area of the bore) without sampling artifacts. In particular, we perform reconstructions from noisy projection data obtained for an activity and scanning time similar to standard protocols for the three applications, and the resulting images indicate the possibility of using the proposed systems in practice.

  10. Intracerebral propagation of interictal activity in partial epilepsy: implications for source localisation.

    PubMed Central

    Alarcon, G; Guy, C N; Binnie, C D; Walker, S R; Elwes, R D; Polkey, C E

    1994-01-01

    The hypothesis that focal scalp EEG and MEG interictal epileptiform activity can be modelled by single dipoles or by a limited number of dipoles was examined. The time course and spatial distribution of interictal activity recorded simultaneously by surface electrodes and by electrodes next to mesial temporal structures in 12 patients being assessed for epilepsy surgery have been studied to estimate the degree of confinement of neural activity present during interictal paroxysms, and the degree to which volume conduction and neural propagation take part in the diffusion of interictal activity. Also, intrapatient topographical correlations of ictal onset zone and deep interictal activity have been studied. Correlations between the amplitudes of deep and surface recordings, together with previous reports on the amplitude of scalp signals produced by artificially implanted dipoles suggest that the ratio of deep to surface activity recorded during interictal epileptiform activity on the scalp is around 1:2000. This implies that most such activity recorded on the scalp does not arise from volume conduction from deep structures but is generated in the underlying neocortex. Also, time delays of up to 220 ms recorded between interictal paroxysms at different recording sites show that interictal epileptiform activity can propagate neuronally within several milliseconds to relatively remote cortex. Large areas of archicortex and neocortex can then be simultaneously or sequentially active via three possible mechanisms: (1) by fast association fibres directly, (2) by fast association fibres that trigger local phenomena which in turn give rise to sharp/slow waves or spikes, and (3) propagation along the neocortex. The low ratio of deep-to-surface signal on the scalp and the simultaneous activation of large neocortical areas can yield spurious equivalent dipoles localised in deeper structures. Frequent interictal spike activities can also take place independently in areas other

  11. 3D Source Localization of Interictal Spikes in Epilepsy Patients with MRI Lesions

    PubMed Central

    Ding, Lei; Worrell, Gregory A.; Lagerlund, Terrence D.; He, Bin

    2007-01-01

    Objective The present study aims to accurately localize epileptogenic regions which are responsible for epileptic activities in epilepsy patients by means of a new subspace source localization approach, i.e. First-principle-vectors (FINE), using scalp EEG recordings. Methods Computer simulations were first performed to assess source localization accuracy of FINE under the clinical electrode set-up. The source localization results from FINE were compared with the results from a classic subspace source localization approach, i.e. MUSIC, and their differences were tested statistically using the paired t-test. Other influence factors to source localization accuracy were assessed statistically by ANOVA. The interictal epileptiform spike data from three adult epilepsy patients with medically intractable partial epilepsy and well-defined symptomatic MRI lesions were then studied using both FINE and MUSIC. The comparison between the electrical sources estimated by the subspace source localization approaches and MRI lesions were made through the co-registration between the EEG recordings and MRI scans. The accuracy of estimations made by FINE and MUSIC was also evaluated and compared by R2 statistic, which was used to indicate the goodness-of-fit of the estimated sources to the scalp EEG recordings. The 3-concentric-spheres head volume conductor model was build for each patient with different radii of three spheres which takes the individual head size and thickness of individual skull into the consideration. Results The results from computer simulations indicate that the improvement of source spatial resolvability and localization accuracy of FINE as compared with MUSIC is significant when simulated sources are closely spaced, deep, or signal-to-noise-ratio is low in a clinical electrode set-up. The interictal electrical generators estimated by FINE and MUSIC are in concordance with the patients’ structural abnormality, i.e. MRI lesions, in all three patients. The higher

  12. 3D source localization of interictal spikes in epilepsy patients with MRI lesions

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Worrell, Gregory A.; Lagerlund, Terrence D.; He, Bin

    2006-08-01

    The present study aims to accurately localize epileptogenic regions which are responsible for epileptic activities in epilepsy patients by means of a new subspace source localization approach, i.e. first principle vectors (FINE), using scalp EEG recordings. Computer simulations were first performed to assess source localization accuracy of FINE in the clinical electrode set-up. The source localization results from FINE were compared with the results from a classic subspace source localization approach, i.e. MUSIC, and their differences were tested statistically using the paired t-test. Other factors influencing the source localization accuracy were assessed statistically by ANOVA. The interictal epileptiform spike data from three adult epilepsy patients with medically intractable partial epilepsy and well-defined symptomatic MRI lesions were then studied using both FINE and MUSIC. The comparison between the electrical sources estimated by the subspace source localization approaches and MRI lesions was made through the coregistration between the EEG recordings and MRI scans. The accuracy of estimations made by FINE and MUSIC was also evaluated and compared by R2 statistic, which was used to indicate the goodness-of-fit of the estimated sources to the scalp EEG recordings. The three-concentric-spheres head volume conductor model was built for each patient with three spheres of different radii which takes the individual head size and skull thickness into consideration. The results from computer simulations indicate that the improvement of source spatial resolvability and localization accuracy of FINE as compared with MUSIC is significant when simulated sources are closely spaced, deep, or signal-to-noise ratio is low in a clinical electrode set-up. The interictal electrical generators estimated by FINE and MUSIC are in concordance with the patients' structural abnormality, i.e. MRI lesions, in all three patients. The higher R2 values achieved by FINE than MUSIC

  13. Comparison of Three Methods for Localizing Interictal Epileptiform Discharges with Magnetoencephalography

    PubMed Central

    Shiraishi, Hideaki; Ahlfors, Seppo P.; Stufflebeam, Steven M.; Knake, Susanne; Larsson, Pål G.; Hämäläinen, Matti S.; Takano, Kyoko; Okajima, Maki; Hatanaka, Keisaku; Saitoh, Shinji; Dale, Anders M.; Halgren, Eric

    2011-01-01

    Purpose To compare three methods of localizing the source of epileptiform activity recorded with magnetoencephalography (MEG): equivalent current dipole (ECD), minimum current estimate (MCE), and dynamic statistical parametric mapping (dSPM), and to evaluate the solutions by comparison with clinical symptoms and other electrophysiological and neuroradiological findings. Methods Fourteen children of 3 to 15 years old were studied. MEG was collected with a whole-head 204-channel helmet-shaped sensor array. We calculated ECDs and made MCE and dSPM movies to estimate the cortical distribution of interictal epileptic discharges (IED) in these patients. Results The results for 4 patients with localization related epilepsy (LRE) and 1 patient with Landau-Kleffner Syndrome were consistent among all 3 analysis methods. In the rest of the patients MCE and dSPM suggested multifocal or widespread activity; in these patients the ECD results were so scattered that interpretation of the results was not possible. For 9 patients with LRE and generalized epilepsy, the epileptiform discharges were wide-spread or only slow waves, but dSPM suggested a possible propagation path of the IED. Conclusion MCE and dSPM could identify the propagation of epileptiform activity with high temporal resolution. The results of dSPM were more stable because the solutions were less sensitive to background brain activity. PMID:21946369

  14. Interictal epileptiform discharges induce hippocampal-cortical coupling in temporal lobe epilepsy

    PubMed Central

    Gelinas, Jennifer N.; Khodagholy, Dion; Thesen, Thomas; Devinsky, Orrin; Buzsáki, György

    2016-01-01

    Interactions between the hippocampus and cortex are critical for memory. Interictal epileptiform discharges (IEDs) identify epileptic brain regions and can impair memory, but how they interact with physiological patterns of network activity is mostly undefined. We show in a rat model of temporal lobe epilepsy that spontaneous hippocampal IEDs correlate with impaired memory consolidation and are precisely coordinated with spindle oscillations in the prefrontal cortex during NREM sleep. This coordination surpasses the normal physiological ripple-spindle coupling and is accompanied by decreased ripple occurrence. IEDs also induce spindles during REM sleep and wakefulness, behavioral states that do not naturally express these oscillations, by generating a cortical ‘DOWN’ state. We confirm a similar correlation of temporofrontal IEDs with spindles over anatomically restricted cortical regions in a pilot clinical examination of four subjects with focal epilepsy. These findings imply that IEDs may impair memory via misappropriation of physiological mechanisms for hippocampal-cortical coupling, suggesting a target to treat memory impairment in epilepsy. PMID:27111281

  15. Increased interictal visual network connectivity in patients with migraine with aura.

    PubMed

    Tedeschi, Gioacchino; Russo, Antonio; Conte, Francesca; Corbo, Daniele; Caiazzo, Giuseppina; Giordano, Alfonso; Conforti, Renata; Esposito, Fabrizio; Tessitore, Alessandro

    2016-02-01

    To evaluate the resting-state visual network functional connectivity in patients with migraine with aura and migraine without aura during the interictal period. Using resting-state functional magnetic resonance imaging, the resting-state visual network integrity was investigated in 20 patients with migraine with aura, 20 age- and sex-matched patients with migraine without aura and 20 healthy controls. Voxel-based morphometry and diffusion tensor imaging were used to assess whether between-groups differences in functional connectivity were dependent on structural or microstructural changes. Resting-state functional magnetic resonance imaging data showed that patients with migraine with aura, compared to both patients with migraine without aura and healthy controls, had a significant increased functional connectivity in the right lingual gyrus within the resting-state visual network (p < 0.05, cluster-level corrected). This abnormal resting-state visual network functional connectivity was observed in the absence of structural or microstructural abnormalities and was not related to migraine severity. Our imaging data revealed that patients with migraine with aura exhibit an altered resting-state visual network connectivity. These results support the hypothesis of an extrastriate cortex involvement, centred in the lingual gyrus, a brain region related to mechanisms underlying the initiation and propagation of the migraine aura. This resting-state functional magnetic resonance imaging finding may represent a functional biomarker that could differentiate patients experiencing the aura phenomenon from patients with migraine without aura, even between migraine attacks. © International Headache Society 2015.

  16. SpikeGUI: Software for Rapid Interictal Discharge Annotation via Template Matching and Online Machine Learning

    PubMed Central

    Jin, Jing; Dauwels, Justin; Cash, Sydney; Westover, M. Brandon

    2015-01-01

    Detection of interictal discharges is a key element of interpreting EEGs during the diagnosis and management of epilepsy. Because interpretation of clinical EEG data is time-intensive and reliant on experts who are in short supply, there is a great need for automated spike detectors. However, attempts to develop general-purpose spike detectors have so far been severely limited by a lack of expert-annotated data. Huge databases of interictal discharges are therefore in great demand for the development of general-purpose detectors. Detailed manual annotation of interictal discharges is time consuming, which severely limits the willingness of experts to participate. To address such problems, a graphical user interface “SpikeGUI” was developed in our work for the purposes of EEG viewing and rapid interictal discharge annotation. “SpikeGUI” substantially speeds up the task of annotating interictal discharges using a custom-built algorithm based on a combination of template matching and online machine learning techniques. While the algorithm is currently tailored to annotation of interictal epileptiform discharges, it can easily be generalized to other waveforms and signal types. PMID:25570976

  17. Initial experience with SPECT (single-photon computerized tomography) of the brain using N-isopropyl I-123 p-iodoamphetamine: concise communication

    SciTech Connect

    Hill, T.C.; Holman, B.L.; Lovett, R.; O'Leary, D.H.; Front, D.; Magistretti, P.; Zimmerman, R.E.; Moore, S.; Clouse, M.E.; Wu, J.L.; Lin, T.H.; Baldwin, R.M.

    1982-03-01

    Forty-six patients were studied with N-isopropyl I-123 p-iodoamphetamine (IMP) and the Harvard Scanning Multidetector Brain System. In nine control patients, good differentiation between the gray and white matter of the cerebral cortex and the basal ganglia was evident. Regional uptake was affected by physiologic maneuvers (visual stimulation). In 24 patients studied for stroke, IMP images demonstrated areas that were involved in acute infarction in eight patients whose initial transmission computerized tomography (TCT) was normal; IMP also showed perfusion abnormalities larger than the TCT abnormality in ten patients. Perfusion abnormalities were present in 23/24 of these patients. Seven patients studied with a history of TIA had normal TCT and IMP images. In three patients studied during seizure activity, regions of hyperperfusion corresponded to the EEG seizure focus. Markedly decreased activity was present in three patients with brain tumor and corresponded to the focal abnormality on the TCT study. Our study demonstrates the feasibility of assessing regional brain perfusion using a radiopharmaceutical that is lipid soluble and has a high extraction fraction in the brain, together with single-photon ECT.

  18. Interictal burden attributable to episodic headache: findings from the Eurolight project.

    PubMed

    Lampl, Christian; Thomas, Hallie; Stovner, Lars Jacob; Tassorelli, Cristina; Katsarava, Zaza; Laínez, Jose Miguel; Lantéri-Minet, Michel; Rastenyte, Daiva; Ruiz de la Torre, Elena; Andrée, Colette; Steiner, Timothy J

    2016-01-01

    Most primary headaches are episodic, and most estimates of the heavy disability burden attributed to headache derive from epidemiological data focused on the episodic subtypes of migraine and tension-type headache (TTH). These disorders give rise directly but intermittently to symptom burden. Nevertheless, people with these disorders may not be symptom-free between attacks. We analysed the Eurolight dataset for interictal burden. Eurolight was a cross-sectional survey using modified cluster sampling from the adult population (18-65 years) in 10 countries of the European Union. We used data from nine. The questionnaire included headache-diagnostic questions based on ICHD-II and several question sets addressing impact, including interictal and cumulative burdens. There were 6455 participants with headache (male 2444 [37.9 %]). Interictal symptoms were reported by 26.0 % of those with migraine and 18.9 % with TTH: interictal anxiety by 10.6 % with migraine and avoidance (lifestyle compromise) by 14.8 %, both much more common than in TTH (3.1 % [OR 3.8] and 4.7 % [OR 3.5] respectively). Mean time spent in the interictal state was 317 days/year for migraine, 331 days/year for TTH. Those who were "rarely" or "never" in control of their headaches (migraine 15.2 %, TTH 9.6 %) had significantly raised odds of interictal anxiety, avoidance and other interictal symptoms. Among those with migraine, interictal anxiety increased markedly with headache intensity and frequency, avoidance less so but still significantly. Lost productive time was associated with high ORs (up to 5.3) of anxiety and avoidance. A third (32.9 %) with migraine and a quarter (26.7 %) with TTH (difference: p < 0.0001) were reluctant to tell others of their headaches. About 10 % with each disorder felt families and friends did not understand their headaches. Nearly 12 % with migraine reported their employers and colleagues did not. Regarding cumulative burden, 11.8 % reported they had done less well in

  19. Endothelial function in patients with migraine during the interictal period.

    PubMed

    Silva, Federico A; Rueda-Clausen, Christian F; Silva, Sandra Y; Zarruk, Juan G; Guzmán, Juan C; Morillo, Carlos A; Vesga, Boris; Pradilla, Gustavo; Flórez, Mildred; López-Jaramillo, Patricio

    2007-01-01

    The aim of this study is to evaluate endothelial function in migraineurs subjects during the asymptomatic period. Migraine has been proposed as a risk factor for cerebrovascular events. The underlying mechanisms that relate these 2 pathologies are unknown. Nitric oxide (NO) has been proposed as the final causative molecule of migraine. Increased NO metabolites concentrations have been reported in migraineurs subjects during acute migraine attacks, but there is no evidence indicating alterations in endothelial NO release during the symptom free period in theses subjects. Fifty migraineurs subjects and 25 healthy subjects matched by gender and age were included. Every subject underwent a complete examination that included medical history, physical examination, resting electrocardiogram, forearm flow-mediated vasodilation (FMD), blood determinations of fasting nitrates and nitrites (NO(2) (-)+ NO(3) (-)), glucose, lipid profile, creatinine, C-reactive protein, and blood cell count. No differences in FMD or NO(2) (-)+ NO(3) (-) were detected among groups. The only difference between migraineurs and control subjects was a higher mean blood pressure 92.1 (8.8) mmHg versus 86.7 (8.2) mmHg P= .01. The endothelial function is not altered during the interictal period in migraineurs subjects.

  20. Psychoses in epilepsy: A comparison of postictal and interictal psychoses.

    PubMed

    Hilger, Eva; Zimprich, Friedrich; Pataraia, Ekaterina; Aull-Watschinger, Susanne; Jung, Rebekka; Baumgartner, Christoph; Bonelli, Silvia

    2016-07-01

    We retrospectively analyzed data of patients with epilepsy (n=1434) evaluated with prolonged EEG monitoring in order to estimate the prevalence of postictal psychosis (PP) and interictal psychosis (IP), to investigate a potential association of psychosis subtype with epilepsy type, and to assess differences between PP and IP. The overall prevalence of psychosis was 5.9% (N=85); prevalence of PP (N=53) and IP (N=32) was 3.7% and 2.2%, respectively. Of patients with psychosis, 97.6% had localization-related epilepsy (LRE). Prevalence of psychosis was highest (9.3%) in patients with temporal lobe epilepsy (TLE). When comparing PP with IP groups on demographic, clinical, and psychopathological variables, patients with IP were younger at occurrence of first psychosis (P=0.048), had a shorter interval between epilepsy onset and first psychosis (P=0.002), and more frequently exhibited schizophreniform traits (conceptual disorganization: P=0.008; negative symptoms: P=0.017) than those with PP. Postictal psychosis was significantly associated with a temporal seizure onset on ictal EEG (P=0.000) and a higher incidence of violent behavior during psychosis (P=0.047). To conclude, our results support the presumption of a preponderance of LRE in patients with psychosis and that of a specific association of TLE with psychosis, in particular with PP. Given the significant differences between groups, PP and IP may represent distinct clinical entities potentially with a different neurobiological background. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Computer-Aided Diagnosis and Localization of Lateralized Temporal Lobe Epilepsy Using Interictal FDG-PET

    PubMed Central

    Kerr, Wesley T.; Nguyen, Stefan T.; Cho, Andrew Y.; Lau, Edward P.; Silverman, Daniel H.; Douglas, Pamela K.; Reddy, Navya M.; Anderson, Ariana; Bramen, Jennifer; Salamon, Noriko; Stern, John M.; Cohen, Mark S.

    2013-01-01

    Interictal FDG-PET (iPET) is a core tool for localizing the epileptogenic focus, potentially before structural MRI, that does not require rare and transient epileptiform discharges or seizures on EEG. The visual interpretation of iPET is challenging and requires years of epilepsy-specific expertise. We have developed an automated computer-aided diagnostic (CAD) tool that has the potential to work both independent of and synergistically with expert analysis. Our tool operates on distributed metabolic changes across the whole brain measured by iPET to both diagnose and lateralize temporal lobe epilepsy (TLE). When diagnosing left TLE (LTLE) or right TLE (RTLE) vs. non-epileptic seizures (NES), our accuracy in reproducing the results of the gold standard long term video-EEG monitoring was 82% [95% confidence interval (CI) 69–90%] or 88% (95% CI 76–94%), respectively. The classifier that both diagnosed and lateralized the disease had overall accuracy of 76% (95% CI 66–84%), where 89% (95% CI 77–96%) of patients correctly identified with epilepsy were correctly lateralized. When identifying LTLE, our CAD tool utilized metabolic changes across the entire brain. By contrast, only temporal regions and the right frontal lobe cortex, were needed to identify RTLE accurately, a finding consistent with clinical observations and indicative of a potential pathophysiological difference between RTLE and LTLE. The goal of CADs is to complement – not replace – expert analysis. In our dataset, the accuracy of manual analysis (MA) of iPET (∼80%) was similar to CAD. The square correlation between our CAD tool and MA, however, was only 30%, indicating that our CAD tool does not recreate MA. The addition of clinical information to our CAD, however, did not substantively change performance. These results suggest that automated analysis might provide clinically valuable information to focus treatment more effectively. PMID:23565107

  2. Radiopharmaceuticals for SPECT cancer detection

    NASA Astrophysics Data System (ADS)

    Chernov, V. I.; Medvedeva, A. A.; Zelchan, R. V.; Sinilkin, I. G.; Stasyuk, E. S.; Larionova, L. A.; Slonimskaya, E. M.; Choynzonov, E. L.

    2016-08-01

    The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with 199Tl and 99mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. A total of 220 patients were included into the study: 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and 100 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). No abnormal 199Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of 199Tl SPECT. In the breast cancer patients, the increased 199Tl uptake in the breast was visualized in 94.8% patients, 99mTc-MIBI—in 93.4% patients. The increased 199Tl uptake in axillary lymph nodes was detected in 60% patients, and 99mTc-MIBI—in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, the sensitivity of SPECT with 199Tl and 99mTc-MIBI was 95%. The 199Tl SPECT sensitivity in identification of regional lymph node metastases in the patients with laryngeal/hypopharyngeal cancer was 75% and the 99mTc-MIBI SPECT sensitivity was 17%. The data obtained showed that SPECT with 199Tl and 99mTc-MIBI can be used as one of the additional imaging methods in detection of tumors.

  3. Radiopharmaceuticals for SPECT Cancer Detection

    NASA Astrophysics Data System (ADS)

    Chernov, V. I.; Medvedeva, A. A.; Zelchan, R. V.; Sinilkin, I. G.; Stasyuk, E. S.; Larionova, L. A.; Slonimskaya, E. M.; Choynzonov, E. L.

    2016-06-01

    The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with 199Tl and 99mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. Materials and Methods: a total of 220 patients were included into the study. Of them, there were 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and '00 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). Results: no abnormal 199Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of 199Tl SPECT. In breast cancer patients, increased 199Tl uptake in the breast was visualized in 94.8% patients, 99mTc-MIBI in 93.4% patients. Increased 199Tl uptake in axillary lymph nodes was detected in 60% patients and 99mTc-MIBI in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, sensitivity of SPECT with 199Tl and 99mTc-MIBI were 95%. The 199Tl SPECT sensitivity in identification of regional lymph node metastases in patients with laryngeal/hypopharyngeal cancer was 75% and the 99mTc-MIBI SPECT sensitivity was 17%. Conclusion: the data obtained show that SPECT with 199Tl and 99mTc-MIBI can be used as one of the additional imaging methods in detection of tumors.

  4. Characterization of the hemodynamic modes associated with interictal epileptic activity using a deformable model-based analysis of combined EEG and functional MRI recordings.

    PubMed

    Grouiller, Frédéric; Vercueil, Laurent; Krainik, Alexandre; Segebarth, Christoph; Kahane, Philippe; David, Olivier

    2010-08-01

    Simultaneous electroencephalography and functional magnetic resonance imaging (EEG/fMRI) have been proposed to contribute to the definition of the epileptic seizure onset zone. Following interictal epileptiform discharges, one usually assumes a canonical hemodynamic response function (HRF), which has been derived from fMRI studies in healthy subjects. However, recent findings suggest that the hemodynamic properties of the epileptic brain are likely to differ significantly from physiological responses. Here, we propose a simple and robust approach that provides HRFs, defined as a limited set of gamma functions, optimized so as to elicit strong activations after standard model-driven statistical analysis at the single subject level. The method is first validated on healthy subjects using experimental data acquired during motor, visual and memory encoding tasks. Second, interictal EEG/fMRI data measured in 10 patients suffering from epilepsy are analyzed. Results show dramatic changes of activation patterns, depending on whether physiological or pathological assumptions are made on the hemodynamics of the epileptic brain. Our study suggests that one cannot assume a priori that HRFs in epilepsy are similar to the canonical model. This may explain why a significant fraction of EEG/fMRI exams in epileptic patients are inconclusive after standard data processing. The heterogeneous perfusion in epileptic regions indicates that the properties of brain vasculature in epilepsy deserve careful attention. 2010 Wiley-Liss, Inc.

  5. Interictal lack of habituation of mismatch negativity in migraine.

    PubMed

    de Tommaso, M; Guido, M; Libro, G; Losito, L; Difruscolo, O; Sardaro, M; Puca, F M

    2004-08-01

    The aim was to study mismatch negativity features and habituation during the interictal phase of migraine. In migraine patients, a strong negative correlation has been found between the initial amplitude of long latency auditory-evoked potentials and their amplitude increase during subsequent averaging. We studied 12 outpatients with a diagnosis of migraine without aura recorded in a headache-free interval and 10 gender- and age-matched healthy volunteers not suffering from any recurrent headache. The experiment consisted of two sequential blocks of 2000 stimulations, during which 1800 (90%) recordings for standard tones and 200 (10%) for target tones were selected for averaging. The latency of the N1 component was significantly increased in migraine patients in respect of controls in both the first and second repetitions; the MMN latency was increased in the second repetition. In the control group the MMN amplitude decreased on average by 3.2 +/- 1.4 microV in the second trial, whereas in migraine patients it showed a slight increase of 0.21 +/- 0.11 microV in the second repetition. The MMN latency relieved in the second trial was significantly correlated with the duration of illness in the migraine patients (Spearman correlation coefficient: 0.69; P < 0.05). The increases in N1 latency and MMN latency and amplitude, the latter correlated with duration of illness, seemed to be due to a reduced anticipatory effect of stimulus repetition in migraine patients. This suggests that such hypo-activity of automatic cortical processes, subtending the discrimination of acoustic stimuli, may be a basic abnormality in migraine, developing in the course of the disease.

  6. Classification Preictal and Interictal Stages via Integrating Interchannel and Time-Domain Analysis of EEG Features.

    PubMed

    Lin, Lung-Chang; Chen, Sharon Chia-Ju; Chiang, Ching-Tai; Wu, Hui-Chuan; Yang, Rei-Cheng; Ouyang, Chen-Sen

    2017-03-01

    The life quality of patients with refractory epilepsy is extremely affected by abrupt and unpredictable seizures. A reliable method for predicting seizures is important in the management of refractory epilepsy. A critical factor in seizure prediction involves the classification of the preictal and interictal stages. This study aimed to develop an efficient, automatic, quantitative, and individualized approach for preictal/interictal stage identification. Five epileptic children, who had experienced at least 2 episodes of seizures during a 24-hour video EEG recording, were included. Artifact-free preictal and interictal EEG epochs were acquired, respectively, and characterized with 216 global feature descriptors. The best subset of 5 discriminative descriptors was identified. The best subsets showed differences among the patients. Statistical analysis revealed most of the 5 descriptors in each subset were significantly different between the preictal and interictal stages for each patient. The proposed approach yielded weighted averages of 97.50% correctness, 96.92% sensitivity, 97.78% specificity, and 95.45% precision on classifying test epochs. Although the case number was limited, this study successfully integrated a new EEG analytical method to classify preictal and interictal EEG segments and might be used further in predicting the occurrence of seizures.

  7. Rapid Annotation of Interictal Epileptiform Discharges via Template Matching under Dynamic Time Warping

    PubMed Central

    Dauwels, J.; Rakthanmanon, T.; Keogh, E.; Cash, S.S.; Westover, M.B.

    2017-01-01

    Background EEG interpretation relies on experts who are in short supply. There is a great need for automated pattern recognition systems to assist with interpretation. However, attempts to develop such systems have been limited by insufficient expert-annotated data. To address these issues, we developed a system named NeuroBrowser for EEG review and rapid waveform annotation. New Methods At the core of NeuroBrowser lies on ultrafast template matching under Dynamic Time Warping, which substantially accelerates the task of annotation. Results Our results demonstrate that NeuroBrowser can reduce the time required for annotation of interictal epileptiform discharges by EEG experts by 20–90%, with an average of approximately 70%. Comparison with Existing Method(s) In comparison with conventional manual EEG annotation, NeuroBrowser is able to save EEG experts approximately 70% on average of the time spent in annotating interictal epileptiform discharges. We have already extracted 19,000+ interictal epileptiform discharges from 100 patient EEG recordings. To our knowledge this represents the largest annotated database of interictal epileptiform discharges in existence. Conclusion NeuroBrowser is an integrated system for rapid waveform annotation. While the algorithm is currently tailored to annotation of interictal epileptiform discharges in scalp EEG recordings, the concepts can be easily generalized to other waveforms and signal types. PMID:26944098

  8. PET and SPECT studies in Parkinson's disease.

    PubMed

    Brooks, D J

    1997-04-01

    Positron emission tomography (PET) and single photon emission tomography (SPECT) provide sensitive means for quantifying the loss of nigrostriatal dopaminergic fibres in Parkinson's disease and for detecting the presence of dopaminergic dysfunction in asymptomatic at-risk relatives and patients with isolated tremor. Functional imaging can also be used to follow the rate of disease progression objectively, determine the efficacy of putative neuroprotective agents, and monitor the viability of transplants of fetal tissue. Additionally, in vivo pharmacological changes associated with development of treatment complications (fluctuations, dyskinesias) can be studied. Loss of dopaminergic projections produces profound changes in resting and activated brain metabolism. PET and SPECT activation studies have suggested that the akinesia of Parkinson's disease is associated with failure to activate the supplementary motor and dorsal pre-frontal areas. Activation of these cortical areas is restored towards normal by the use of dopaminergic medication, striatal transplantation with fetal mesencephalic tissue, and pallidotomy. The aim of this chapter is to review the insight which functional imaging has given us into the pathophysiology of parkinsonism.

  9. Sensitivity and Specificity of Interictal EEG-fMRI for Detecting the Ictal Onset Zone at Different Statistical Thresholds

    PubMed Central

    Tousseyn, Simon; Dupont, Patrick; Goffin, Karolien; Sunaert, Stefan; Van Paesschen, Wim

    2014-01-01

    There is currently a lack of knowledge about electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) specificity. Our aim was to define sensitivity and specificity of blood oxygen level dependent (BOLD) responses to interictal epileptic spikes during EEG-fMRI for detecting the ictal onset zone (IOZ). We studied 21 refractory focal epilepsy patients who had a well-defined IOZ after a full presurgical evaluation and interictal spikes during EEG-fMRI. Areas of spike-related BOLD changes overlapping the IOZ in patients were considered as true positives; if no overlap was found, they were treated as false-negatives. Matched healthy case-controls had undergone similar EEG-fMRI in order to determine true-negative and false-positive fractions. The spike-related regressor of the patient was used in the design matrix of the healthy case-control. Suprathreshold BOLD changes in the brain of controls were considered as false positives, absence of these changes as true negatives. Sensitivity and specificity were calculated for different statistical thresholds at the voxel level combined with different cluster size thresholds and represented in receiver operating characteristic (ROC)-curves. Additionally, we calculated the ROC-curves based on the cluster containing the maximal significant activation. We achieved a combination of 100% specificity and 62% sensitivity, using a Z-threshold in the interval 3.4–3.5 and cluster size threshold of 350 voxels. We could obtain higher sensitivity at the expense of specificity. Similar performance was found when using the cluster containing the maximal significant activation. Our data provide a guideline for different EEG-fMRI settings with their respective sensitivity and specificity for detecting the IOZ. The unique cluster containing the maximal significant BOLD activation was a sensitive and specific marker of the IOZ. PMID:25101049

  10. Sensitivity and Specificity of Interictal EEG-fMRI for Detecting the Ictal Onset Zone at Different Statistical Thresholds.

    PubMed

    Tousseyn, Simon; Dupont, Patrick; Goffin, Karolien; Sunaert, Stefan; Van Paesschen, Wim

    2014-01-01

    There is currently a lack of knowledge about electroencephalography (EEG)-functional magnetic resonance imaging (fMRI) specificity. Our aim was to define sensitivity and specificity of blood oxygen level dependent (BOLD) responses to interictal epileptic spikes during EEG-fMRI for detecting the ictal onset zone (IOZ). We studied 21 refractory focal epilepsy patients who had a well-defined IOZ after a full presurgical evaluation and interictal spikes during EEG-fMRI. Areas of spike-related BOLD changes overlapping the IOZ in patients were considered as true positives; if no overlap was found, they were treated as false-negatives. Matched healthy case-controls had undergone similar EEG-fMRI in order to determine true-negative and false-positive fractions. The spike-related regressor of the patient was used in the design matrix of the healthy case-control. Suprathreshold BOLD changes in the brain of controls were considered as false positives, absence of these changes as true negatives. Sensitivity and specificity were calculated for different statistical thresholds at the voxel level combined with different cluster size thresholds and represented in receiver operating characteristic (ROC)-curves. Additionally, we calculated the ROC-curves based on the cluster containing the maximal significant activation. We achieved a combination of 100% specificity and 62% sensitivity, using a Z-threshold in the interval 3.4-3.5 and cluster size threshold of 350 voxels. We could obtain higher sensitivity at the expense of specificity. Similar performance was found when using the cluster containing the maximal significant activation. Our data provide a guideline for different EEG-fMRI settings with their respective sensitivity and specificity for detecting the IOZ. The unique cluster containing the maximal significant BOLD activation was a sensitive and specific marker of the IOZ.

  11. The relationship between sleep-activated interictal epileptiform discharges and intelligence in children.

    PubMed

    Scott, Christine M

    2013-12-01

    This study investigates the relationship between interictal epileptiform discharges (IEDs) during sleep in children with benign rolandic epilepsy (BRE) and cognitive test scores as measured by the Wechsler Intelligence Scale for Children-Fourth Edition (WISC-IV) with the hypothesis that, as IEDs increase, cognitive test scores decrease. Studies have shown that generalized seizures and status epilepticus can negatively impact cognition (Dodrill 2004), that children with epilepsy have lower cognitive function on average than children without epilepsy and that children with epilepsy and abnormal electroencephalograms (EEGs) have lower cognitive function than children with epilepsy and normal EEGs (Bailet et al. 2000). Studies have also indicated that as IEDs decrease, neurocognitive test scores increase (Baglietto et al. 2001). The current study evaluated sleep-activated IEDs in children with the specific syndrome of benign rolandic epilepsy based on the frequency of LEDs in sleep in relation to cognitive test scores. Neuropsychological test scores from the WISC-IV were gathered along with the number of spikes per minute detected in EEG recordings. Statistical analysis revealed a negative correlation between spike frequency and both processing speed and coding scores, though the relationship did not reach statistical significance. This study concludes that there may be correlations between increased spike density and cognitive test scores, or there might be other factors impacting cognition in BRE, but a larger sample is needed to further investigate. In addition, it is possible that a negative result in the present study represents good news, that the number of IEDs in BRE does not harm the brain by negatively impacting cognition.

  12. Magnetic resonance imaging findings in epileptic cats with a normal interictal neurological examination: 188 cases.

    PubMed

    Raimondi, F; Shihab, N; Gutierrez-Quintana, R; Smith, A; Trevail, R; Sanchez-Masian, D; Smith, P M

    2017-06-24

    Epilepsy is a common neurological condition in dogs and cats. Although an increased likelihood of significant brain lesions with age has been identified in neurologically normal dogs with epileptic seizures, the underlying aetiology of epileptic seizures in cats that present with normal physical and neurological examinations remains unknown. In this cross-sectional study, the authors examined MRI findings in a large population of cats with a normal interictal physical and neurological examination. They hypothesised that age would have an impact on the prevalence of detectable lesions. First, following the guidelines for dogs and in accordance with previous studies, the authors divided the cats into three age groups (aged one year or younger, between one and six, and older than six) and calculated the proportion of cats with a detectable lesion on MRI in these groups. In the first group, 3/32 cats (9.4 per cent) had significant MRI abnormalities that were all consistent with congenital malformation; in the second group, only 5/92 (5.4 per cent) MRI scans were abnormal and in the third group, 15/ 65 (23.1 per cent) cats showed abnormal findings that were predominantly lesions of neoplastic origin. Second, to investigate the impact of age further, data were investigated as a continuous variable using receiver operating characteristic analysis. This indicated an optimal cut-off age of five years, above which MRI abnormalities were more likely, with an increase in the odds of a significant structural lesion increasing by 14 per cent per year. British Veterinary Association.

  13. Comparison of five directed graph measures for identification of leading interictal epileptic regions

    PubMed Central

    Amini, Ladan; Jutten, Christian; Achard, Sophie; David, Olivier; Kahane, Philippe; Vercueil, Laurent; Minotti, Lorella; Hossein-Zadeh, Gh. Ali; Soltanian-Zadeh, Hamid

    2010-01-01

    Directed graphs (digraphs) derived from interictal periods of intracerebral EEG (iEEG) recordings can be used to estimate the leading interictal epileptic regions for presurgery evaluations. For this purpose, quantification of the emittance contribution of each node to the rest of digraph is important. However, the usual digraph measures are not very well suited for this quantification. Here we compare the efficiency of recently introduced local information measure LI and a new measure called total global efficiency with classical measures like global efficiency, local efficiency and node degree. For evaluation, the estimated leading interictal epileptic regions based on five measures are compared with seizure onset zones obtained by visual inspection of epileptologists for five patients. The comparison revealed the superior performance of LI measure. We showed efficiency of different digraph measures for the purpose of source and sink node identification. PMID:20952817

  14. Interictal discharges in the hippocampus of rats with long-term pilocarpine seizures.

    PubMed

    Nagao, T; Avoli, M; Gloor, P

    1994-06-20

    Systemic administration of pilocarpine to adult rats induces an acute status epilepticus followed by spontaneous recurrent seizures after a 1-2-week silent period. We recorded field potentials in hippocampal slices obtained from rats with spontaneous recurrent seizures after pilocarpine-induced status. The frequency of the interictal discharges induced in these slices by 4-aminopyridine (4AP) was reduced and their duration was increased. Cutting the Schaffer collaterals caused interictal discharges in CA1 to disappear in normal rats and in rats 3 weeks after pilocarpine-induced status. However, 12 weeks after pilocarpine, these discharges remained in CA1 after such a cut but occurred at a lower frequency. These findings show that in rat hippocampi with a lesion similar to that of human Ammon's horn sclerosis some electrophysiological features of 4AP-induced interictal discharges are altered in comparison to those induced in normal hippocampi.

  15. Brain perfusion imaging under acetazolamide challenge for detection of impaired cerebrovascular reserve capacity: positive findings with O-15-water PET in patients with negative Tc-99m-HMPAO SPECT.

    PubMed

    Acker, Güliz; Lange, Catharina; Schatka, Imke; Pfeifer, Andreas; Czabanka, Marcus A; Vajkoczy, Peter; Buchert, Ralph

    2017-07-20

    Cerebrovascular reserve capacity (CVRC) is an important parameter for treatment decisions in chronic cerebrovascular diseases. It can be assessed by measuring the acetazolamide-induced change of regional cerebral blood flow using single photon emission computed tomography (SPECT) with Tc-99m-labeled hexamethylpropyleneamine oxime (HMPAO) or positron emission tomography (PET) with O-15-water. Methods: Our database was searched for patients with moyamoya vasculopathy (MMV) or atherosclerotic cerebrovascular disease who had underwent O-15-water PET after normal Tc-99m-HMPAO SPECT with respect to CVRC. O-15-water PET was analyzed visually and quantitatively. Quantitative analysis was based on parametric CVRC maps generated by voxel-wise image subtraction. Results: The search identified 18 patients (43±15y, 12 MMV). PET revealed impaired CVRC in 8 patients (44%). Quantitative analysis confirmed the positive visual findings in O-15-water PET and the negative findings in Tc-99m-HMPAO SPECT. Conclusion: O-15-water PET enables detection of impaired CVRC in a considerable fraction of symptomatic patients with steno-occlusion and negative Tc-99m-HMPAO SPECT. Copyright © 2017 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  16. SPECT imaging with resolution recovery

    SciTech Connect

    Bronnikov, A. V.

    2011-07-01

    Single-photon emission computed tomography (SPECT) is a method of choice for imaging spatial distributions of radioisotopes. Many applications of this method are found in nuclear industry, medicine, and biomedical research. We study mathematical modeling of a micro-SPECT system by using a point-spread function (PSF) and implement an OSEM-based iterative algorithm for image reconstruction with resolution recovery. Unlike other known implementations of the OSEM algorithm, we apply en efficient computation scheme based on a useful approximation of the PSF, which ensures relatively fast computations. The proposed approach can be applied with the data acquired with any type of collimators, including parallel-beam fan-beam, cone-beam and pinhole collimators. Experimental results obtained with a micro SPECT system demonstrate high efficiency of resolution recovery. (authors)

  17. Reduced 123I Ioflupane Binding in Bilateral Diabetic Chorea: Findings With 18F FDG PET, 99mTc ECD SPECT, and 123I MIBG Scintigraphy.

    PubMed

    Sato, Kenichiro; Hida, Ayumi; Kameyama, Masashi; Morooka, Miyako; Takeuchi, Sousuke

    2016-06-01

    We report a 64-year-old man with diabetic chorea whom we investigated with dopamine transporter SPECT, F FDG PET, Tc ethylcysteinate dimer (ECD) SPECT, and I metaiodobenzylguanidine (MIBG) scintigraphy. Dopamine transporter SPECT revealed reduced I ioflupane binding in the bilateral striatum. F FDG PET showed metabolic dysfunction in the bilateral striatum, as shown in earlier studies. Tc ECD SPECT revealed reduced brain perfusion in the bilateral caudate nucleus and putamen. I MIBG scintigraphy revealed no cardiac sympathetic nerve dysfunction. Our case suggests a possible nigrostriatal presynaptic dopaminergic involvement in diabetic chorea.

  18. Radiopharmaceuticals for SPECT cancer detection

    SciTech Connect

    Chernov, V. I. Medvedeva, A. A. Zelchan, R. V. Sinilkin, I. G.; Stasyuk, E. S.; Larionova, L. A.; Slonimskaya, E. M.; Choynzonov, E. L.

    2016-08-02

    The purpose of the study was to assess the efficacy of single photon emission computed tomography (SPECT) with {sup 199}Tl and {sup 99}mTc-MIBI in the detection of breast, laryngeal and hypopharyngeal cancers. A total of 220 patients were included into the study: 120 patients with breast lesions (100 patients with breast cancer and 20 patients with benign breast tumors) and 100 patients with laryngeal/hypopharyngeal diseases (80 patients with laryngeal/hypopharyngeal cancer and 20 patients with benign laryngeal/hypopharyngeal lesions). No abnormal {sup 199}Tl uptake was seen in all patients with benign breast and laryngeal lesions, indicating a 100% specificity of {sup 199}Tl SPECT. In the breast cancer patients, the increased {sup 199}Tl uptake in the breast was visualized in 94.8% patients, {sup 99m}Tc-MIBI—in 93.4% patients. The increased {sup 199}Tl uptake in axillary lymph nodes was detected in 60% patients, and {sup 99m}Tc-MIBI—in 93.1% patients. In patients with laryngeal/hypopharyngeal cancer, the sensitivity of SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI was 95%. The {sup 199}Tl SPECT sensitivity in identification of regional lymph node metastases in the patients with laryngeal/hypopharyngeal cancer was 75% and the {sup 99m}Tc-MIBI SPECT sensitivity was 17%. The data obtained showed that SPECT with {sup 199}Tl and {sup 99m}Tc-MIBI can be used as one of the additional imaging methods in detection of tumors.

  19. Interictal, circulating sphingolipids in women with episodic migraine

    PubMed Central

    Mielke, Michelle M.; Dickens, Alex M.; Chatterjee, Subroto; Dash, Paul; Alexander, Guillermo; Vieira, Rebeca V.A.; Bandaru, Veera Venkata Ratnam; Dorskind, Joelle M.; Tietjen, Gretchen E.; Haughey, Norman H.

    2015-01-01

    Objective: To evaluate interictal, circulating sphingolipids in women migraineurs. Methods: In the fasting state, serum samples were obtained pain-free from 88 women with episodic migraine (EM; n = 52) and from controls (n = 36). Sphingolipids were detected and quantified by high-performance liquid chromatography coupled with tandem mass spectrometry using multiple reaction monitoring. Multivariate logistic regression was used to examine the association between serum sphingolipids and EM odds. A recursive partitioning decision tree based on the serum concentrations of 10 sphingolipids was used to determine the presence or absence of EM in a subset of participants. Results: Total ceramide (EM 6,502.9 ng/mL vs controls 10,518.5 ng/mL; p < 0.0001) and dihydroceramide (EM 39.3 ng/mL vs controls 63.1 ng/mL; p < 0.0001) levels were decreased in those with EM as compared with controls. Using multivariate logistic regression, each SD increase in total ceramide (odds ratio [OR] 0.07; 95% confidence interval [CI]: 0.02, 0.22; p < 0.001) and total dihydroceramide (OR 0.05; 95% CI: 0.01, 0.21; p < 0.001) levels was associated with more than 92% reduced odds of migraine. Although crude sphingomyelin levels were not different in EM compared with controls, after adjustments, every SD increase in the sphingomyelin species C18:0 (OR 4.28; 95% CI: 1.87, 9.81; p = 0.001) and C18:1 (OR 2.93; 95% CI: 1.55, 5.54; p = 0.001) was associated with an increased odds of migraine. Recursive portioning models correctly classified 14 of 14 randomly selected participants as EM or control. Conclusion: These results suggest that sphingolipid metabolism is altered in women with EM and that serum sphingolipid panels may have potential to differentiate EM presence or absence. Classification of evidence: This study provides Class III evidence that serum sphingolipid panels accurately distinguish women with migraine from women without migraine. PMID:26354990

  20. Iterative restoration of SPECT projection images

    NASA Astrophysics Data System (ADS)

    Glick, S. J.; Xia, Weishi

    1997-04-01

    Photon attenuation and the limited nonstationary spatial resolution of the detector can reduce both qualitative and quantitative image quality in single photon emission computed tomography (SPECT). In this paper, a reconstruction approach is described which can compensate for both of these degradations. The approach involves processing the projection data with Bellini's method for attenuation compensation followed by an iterative deconvolution technique which uses the frequency distance principle (FDP) to model the distance-dependent camera blur. Modeling of the camera blur with the FDP allows an efficient implementation using fast Fourier transform (FFT) methods. After processing of the projection data, reconstruction is performed using filtered backprojection. Simulation studies using two different brain phantoms show that this approach gives reconstructions with a favorable bias versus noise tradeoff, provides no visually undesirable noise artifacts, and requires a low computational load.

  1. [Utility of SPECT in gallium scintigraphy].

    PubMed

    Uto, Tomoyuki

    2002-11-01

    Whole-body gallium planar scintigraphy is a mainstay for the detection of tumors and inflammatory lesions. Recently, gallium SPECT (single photon emission computed tomography) has become more common in the clinical setting. This diagnostic modality is widely employed in our hospital, and lesions are actually detected by SPECT in some cases. Although the contrast of SPECT images is better than that of planar images, spatial resolution is limited by the limited matrix size. Thus, the overall diagnostic utility of SPECT remains to be confirmed. The usefulness of SPECT for the detection of gallium-accumulated lesions was evaluated in a phantom. In this study, we showed that SPECT is able to detect more smaller and lower gallium accumulations than planar imaging. Thus, SPECT imaging is useful in gallium scintigraphy.

  2. Cerebral infarction on 99mTc-MDP SPECT/CT imaging.

    PubMed

    Guo, Jia; Hu, Shuang; Wang, Haitao; Kuang, Anren

    2013-11-01

    A 70-year-old man with lung cancer underwent whole-body MDP bone scintigraphy to evaluate bone metastases that showed marked tracer uptake in the right side of the head, suggestive of skull metastasis. SPECT/CT imaging was performed for further evaluation. The SPECT images demonstrated increased MDP activity in the region of the brain perfused by the right middle cerebral artery. On CT images, there was a large hypoattenuation area corresponding to elevated MDP accumulation. At the same day, magnetic resonance angiography of the brain revealed occlusion of the right middle cerebral artery.

  3. [Electroconvulsive therapy in depression: insights from fMRI, PET and SPECT studies].

    PubMed

    Depping, M S; Wolf, R C; Nolte, H M; Palm, E; Hirjak, D; Thomann, P A

    2014-09-01

    Electroconvulsive therapy (ECT) is the most potent and rapidly acting of all antidepressant treatments in major depressive disorder (MDD). Nuclear and functional magnetic (fMRI) brain imaging studies of ECT have substantially contributed to the neurobiological understanding of this treatment modality. Neuroimaging methods may also validate potential mechanisms of antidepressant action. Models of neural dysfunction in MDD suggest impaired modulation of activity within a cortico-limbic circuitry, along with alterations in the functional organisation of multiple brain networks implicated in emotional processes. Nuclear imaging techniques have demonstrated consistent patterns of ECT-induced ictal changes in brain activity that appear to be linked to efficacy and side effects of ECT. Interictally, widespread alterations of brain function have been reported, however, results remain inconclusive. FMRI studies of ECT have demonstrated longer-lasting, interictal changes of neural activity in multiple cerebral regions that are in accordance with functional neuroanatomical models of mood disorders. Future research detailing ECT interactions with brain pathophysiology in MDD could potentially provide a clinically useful framework to better predict ECT treatment response and/or side effects, and may also facilitate the development of more focused brain stimulation techniques. © Georg Thieme Verlag KG Stuttgart · New York.

  4. Mapping and mining interictal pathological gamma (30–100 Hz) oscillations with clinical intracranial EEG in patients with epilepsy

    PubMed Central

    Smart, Otis; Maus, Douglas; Marsh, Eric; Dlugos, Dennis; Litt, Brian; Meador, Kimford

    2012-01-01

    Localizing an epileptic network is essential for guiding neurosurgery and antiepileptic medical devices as well as elucidating mechanisms that may explain seizure-generation and epilepsy. There is increasing evidence that pathological oscillations may be specific to diseased networks in patients with epilepsy and that these oscillations may be a key biomarker for generating and indentifying epileptic networks. We present a semi-automated method that detects, maps, and mines pathological gamma (30–100 Hz) oscillations (PGOs) in human epileptic brain to possibly localize epileptic networks. We apply the method to standard clinical iEEG (<100 Hz) with interictal PGOs and seizures from six patients with medically refractory epilepsy. We demonstrate that electrodes with consistent PGO discharges do not always coincide with clinically determined seizure onset zone (SOZ) electrodes but at times PGO-dense electrodes include secondary seizure-areas (SS) or even areas without seizures (NS). In 4/5 patients with epilepsy surgery, we observe poor (Engel Class 4) post-surgical outcomes and identify more PGO-activity in SS or NS than in SOZ. Additional studies are needed to further clarify the role of PGOs in epileptic brain. PMID:23105174

  5. Mapping and mining interictal pathological gamma (30-100 Hz) oscillations with clinical intracranial EEG in patients with epilepsy.

    PubMed

    Smart, Otis; Maus, Douglas; Marsh, Eric; Dlugos, Dennis; Litt, Brian; Meador, Kimford

    2012-06-15

    Localizing an epileptic network is essential for guiding neurosurgery and antiepileptic medical devices as well as elucidating mechanisms that may explain seizure-generation and epilepsy. There is increasing evidence that pathological oscillations may be specific to diseased networks in patients with epilepsy and that these oscillations may be a key biomarker for generating and indentifying epileptic networks. We present a semi-automated method that detects, maps, and mines pathological gamma (30-100 Hz) oscillations (PGOs) in human epileptic brain to possibly localize epileptic networks. We apply the method to standard clinical iEEG (<100 Hz) with interictal PGOs and seizures from six patients with medically refractory epilepsy. We demonstrate that electrodes with consistent PGO discharges do not always coincide with clinically determined seizure onset zone (SOZ) electrodes but at times PGO-dense electrodes include secondary seizure-areas (SS) or even areas without seizures (NS). In 4/5 patients with epilepsy surgery, we observe poor (Engel Class 4) post-surgical outcomes and identify more PGO-activity in SS or NS than in SOZ. Additional studies are needed to further clarify the role of PGOs in epileptic brain.

  6. Multimedia human brain database system for surgical candidacy determination in temporal lobe epilepsy with content-based image retrieval

    NASA Astrophysics Data System (ADS)

    Siadat, Mohammad-Reza; Soltanian-Zadeh, Hamid; Fotouhi, Farshad A.; Elisevich, Kost

    2003-01-01

    This paper presents the development of a human brain multimedia database for surgical candidacy determination in temporal lobe epilepsy. The focus of the paper is on content-based image management, navigation and retrieval. Several medical image-processing methods including our newly developed segmentation method are utilized for information extraction/correlation and indexing. The input data includes T1-, T2-Weighted MRI and FLAIR MRI and ictal and interictal SPECT modalities with associated clinical data and EEG data analysis. The database can answer queries regarding issues such as the correlation between the attribute X of the entity Y and the outcome of a temporal lobe epilepsy surgery. The entity Y can be a brain anatomical structure such as the hippocampus. The attribute X can be either a functionality feature of the anatomical structure Y, calculated with SPECT modalities, such as signal average, or a volumetric/morphological feature of the entity Y such as volume or average curvature. The outcome of the surgery can be any surgery assessment such as memory quotient. A determination is made regarding surgical candidacy by analysis of both textual and image data. The current database system suggests a surgical determination for the cases with relatively small hippocampus and high signal intensity average on FLAIR images within the hippocampus. This indication pretty much fits with the surgeons" expectations/observations. Moreover, as the database gets more populated with patient profiles and individual surgical outcomes, using data mining methods one may discover partially invisible correlations between the contents of different modalities of data and the outcome of the surgery.

  7. Single photon emission photography/magnetic resonance imaging (SPECT/MRI) visualization for frontal-lobe-damaged regions

    NASA Astrophysics Data System (ADS)

    Stokking, Rik; Zuiderveld, Karel J.; Hulshoff Pol, Hilleke E.; Viergever, Max A.

    1994-09-01

    We present multi-modality visualization strategies to convey information contained in registered Single Photon Emission Photography (SPECT) and Magnetic Resonance (MR) images of the brain. Multi-modality visualization provides a means to retrieve valuable information from the data which might otherwise remain obscured. Here we use MRI as an anatomical framework for functional information acquired with SPECT. This is part of clinical research studying the change of functionality caused by a frontal lobe damaged region. A number of known and newly developed techniques for the integrated visualization of SPECT and MR images will be discussed.

  8. Non-ketotic hyperglycaemic chorea: a SPECT study.

    PubMed

    Chang, M H; Li, J Y; Lee, S R; Men, C Y

    1996-04-01

    To study regional blood flow of the striatum in non-ketotic hyperglycaemic choreic patients. Brain SPECT was performed with intravenous injection of 20 mCi 99mTc hexamethylpropylene amineoxime in six non-ketotic hyperglycaemic choreic patients and 10 age matched patients with a similar level of hyperglycaemia without chorea as a control. The focal perfusion defects were analysed by visual interpretation and semiquantitative determination with reference to homolateral occipital blood flow. The measured blood flow of striatum on the contralateral side of chorea was significantly decreased. Hypometabolism of the striatum is seen not only in Huntington's disease, but also in non-ketotic hyperglycaemic chorea. Hypofunction of the striatum is a possible common pathogenesis in the development of contralateral chorea in different diseases. Furthermore, the sensitivity and reliability of SPECT is as good as PET in assessing choreic patients.

  9. Interictal High Frequency Oscillations Detected with Simultaneous Magnetoencephalography and Electroencephalography as Biomarker of Pediatric Epilepsy

    PubMed Central

    Papadelis, Christos; Tamilia, Eleonora; Stufflebeam, Steven; Grant, Patricia E.; Madsen, Joseph R.; Pearl, Phillip L.; Tanaka, Naoaki

    2016-01-01

    Crucial to the success of epilepsy surgery is the availability of a robust biomarker that identifies the Epileptogenic Zone (EZ). High Frequency Oscillations (HFOs) have emerged as potential presurgical biomarkers for the identification of the EZ in addition to Interictal Epileptiform Discharges (IEDs) and ictal activity. Although they are promising to localize the EZ, they are not yet suited for the diagnosis or monitoring of epilepsy in clinical practice. Primary barriers remain: the lack of a formal and global definition for HFOs; the consequent heterogeneity of methodological approaches used for their study; and the practical difficulties to detect and localize them noninvasively from scalp recordings. Here, we present a methodology for the recording, detection, and localization of interictal HFOs from pediatric patients with refractory epilepsy. We report representative data of HFOs detected noninvasively from interictal scalp EEG and MEG from two children undergoing surgery. The underlying generators of HFOs were localized by solving the inverse problem and their localization was compared to the Seizure Onset Zone (SOZ) as this was defined by the epileptologists. For both patients, Interictal Epileptogenic Discharges (IEDs) and HFOs were localized with source imaging at concordant locations. For one patient, intracranial EEG (iEEG) data were also available. For this patient, we found that the HFOs localization was concordant between noninvasive and invasive methods. The comparison of iEEG with the results from scalp recordings served to validate these findings. To our best knowledge, this is the first study that presents the source localization of scalp HFOs from simultaneous EEG and MEG recordings comparing the results with invasive recordings. These findings suggest that HFOs can be reliably detected and localized noninvasively with scalp EEG and MEG. We conclude that the noninvasive localization of interictal HFOs could significantly improve the

  10. The effect of sevoflurane and isoflurane anesthesia on interictal spike activity among patients with refractory epilepsy.

    PubMed

    Watts, A D; Herrick, I A; McLachlan, R S; Craen, R A; Gelb, A W

    1999-11-01

    The electrophysiologic effects of sevoflurane are not well characterized in humans. Among patients with refractory epilepsy, this study compared 1) electroencephalographic (EEG) interictal spike activity during wakefulness and sevoflurane anesthesia, and 2) electrocorticographically (ECoG) recorded interictal spike activity during sevoflurane and isoflurane anesthesia. We studied 12 patients undergoing insertion of subdural electrodes. Before commencing anesthesia, awake (baseline) EEG recordings were obtained. After inhaled induction, EEG interictal spike activity was evaluated during stable, normocapnic, and hypocapnic (Paco2 = 28-30 mm Hg), sevoflurane anesthesia administered at 1.5 times the minimum alveolar anesthetic concentration (1.5 MAC). Immediately after surgery, ECoG recordings were obtained from subdural electrodes during 1) 1.5 MAC isoflurane, 2) 0.3 MAC isoflurane, and 3) 1.5 MAC sevoflurane anesthesia. EEG spike frequency increased in all patients during sevoflurane anesthesia compared with awake recordings (P = 0.002). Compared with 0.3 MAC isoflurane anesthesia, ECoG interictal spike frequency was higher in all patients during 1.5 MAC sevoflurane anesthesia (P = 0.004) and in 8 of 10 patients during 1.5 MAC isoflurane anesthesia (P = 0.016). Under sufficiently rigorous conditions, both sevoflurane and isoflurane can provoke interictal spike activity at near burst-suppression doses. This property is more prominent with sevoflurane than isoflurane. The results of this study suggest that the capacity to modulate neuroexcitability is a dose-dependent feature of volatile anesthetics that is manifested most prominently at near burst-suppression doses (i.e., 1.5 times the minimum alveolar anesthetic concentration) and is minimal or absent at low doses.

  11. Effects of Marijuana on Ictal and Interictal EEG Activities in Idiopathic Generalized Epilepsy.

    PubMed

    Sivakumar, Sanjeev; Zutshi, Deepti; Seraji-Bozorgzad, Navid; Shah, Aashit K

    2017-01-01

    Marijuana-based treatment for refractory epilepsy shows promise in surveys, case series, and clinical trials. However, literature on their EEG effects is sparse. Our objective is to analyze the effect of marijuana on EEG in a 24-year-old patient with idiopathic generalized epilepsy treated with cannabis. We blindly reviewed 3 long-term EEGs-a 24-hour study while only on antiepileptic drugs, a 72-hour EEG with Cannabis indica smoked on days 1 and 3 in addition to antiepileptic drugs, and a 48-hour EEG with combination C indica/sativa smoked on day 1 plus antiepileptic drugs. Generalized spike-wave discharges and diffuse paroxysmal fast activity were categorized as interictal and ictal, based on duration of less than 10 seconds or greater, respectively. Data from three studies concatenated into contiguous time series, with usage of marijuana modeled as time-dependent discrete variable while interictal and ictal events constituted dependent variables. Analysis of variance as initial test for significance followed by time series analysis using Generalized Autoregressive Conditional Heteroscedasticity model was performed. Statistical significance for lower interictal events (analysis of variance P = 0.001) was seen during C indica use, but not for C indica/sativa mixture (P = 0.629) or ictal events (P = 0.087). However, time series analysis revealed a significant inverse correlation between marijuana use, with interictal (P < 0.0004) and ictal (P = 0.002) event rates. Using a novel approach to EEG data, we demonstrate a decrease in interictal and ictal electrographic events during marijuana use. Larger samples of patients and EEG, with standardized cannabinoid formulation and dosing, are needed to validate our findings.

  12. Interictal High Frequency Oscillations Detected with Simultaneous Magnetoencephalography and Electroencephalography as Biomarker of Pediatric Epilepsy.

    PubMed

    Papadelis, Christos; Tamilia, Eleonora; Stufflebeam, Steven; Grant, Patricia E; Madsen, Joseph R; Pearl, Phillip L; Tanaka, Naoaki

    2016-12-06

    Crucial to the success of epilepsy surgery is the availability of a robust biomarker that identifies the Epileptogenic Zone (EZ). High Frequency Oscillations (HFOs) have emerged as potential presurgical biomarkers for the identification of the EZ in addition to Interictal Epileptiform Discharges (IEDs) and ictal activity. Although they are promising to localize the EZ, they are not yet suited for the diagnosis or monitoring of epilepsy in clinical practice. Primary barriers remain: the lack of a formal and global definition for HFOs; the consequent heterogeneity of methodological approaches used for their study; and the practical difficulties to detect and localize them noninvasively from scalp recordings. Here, we present a methodology for the recording, detection, and localization of interictal HFOs from pediatric patients with refractory epilepsy. We report representative data of HFOs detected noninvasively from interictal scalp EEG and MEG from two children undergoing surgery. The underlying generators of HFOs were localized by solving the inverse problem and their localization was compared to the Seizure Onset Zone (SOZ) as this was defined by the epileptologists. For both patients, Interictal Epileptogenic Discharges (IEDs) and HFOs were localized with source imaging at concordant locations. For one patient, intracranial EEG (iEEG) data were also available. For this patient, we found that the HFOs localization was concordant between noninvasive and invasive methods. The comparison of iEEG with the results from scalp recordings served to validate these findings. To our best knowledge, this is the first study that presents the source localization of scalp HFOs from simultaneous EEG and MEG recordings comparing the results with invasive recordings. These findings suggest that HFOs can be reliably detected and localized noninvasively with scalp EEG and MEG. We conclude that the noninvasive localization of interictal HFOs could significantly improve the

  13. SPECT (Single-Photon Emission Computerized Tomography) Scan

    MedlinePlus

    SPECT scan Overview By Mayo Clinic Staff A single-photon emission computerized tomography (SPECT) scan lets your doctor analyze the function of some of your internal organs. A SPECT scan is a type of nuclear imaging test, ...

  14. Combining SPECT and Quantitative EEG Analysis for the Automated Differential Diagnosis of Disorders with Amnestic Symptoms

    PubMed Central

    Höller, Yvonne; Bathke, Arne C.; Uhl, Andreas; Strobl, Nicolas; Lang, Adelheid; Bergmann, Jürgen; Nardone, Raffaele; Rossini, Fabio; Zauner, Harald; Kirschner, Margarita; Jahanbekam, Amirhossein; Trinka, Eugen; Staffen, Wolfgang

    2017-01-01

    Single photon emission computed tomography (SPECT) and Electroencephalography (EEG) have become established tools in routine diagnostics of dementia. We aimed to increase the diagnostic power by combining quantitative markers from SPECT and EEG for differential diagnosis of disorders with amnestic symptoms. We hypothesize that the combination of SPECT with measures of interaction (connectivity) in the EEG yields higher diagnostic accuracy than the single modalities. We examined 39 patients with Alzheimer's dementia (AD), 69 patients with depressive cognitive impairment (DCI), 71 patients with amnestic mild cognitive impairment (aMCI), and 41 patients with amnestic subjective cognitive complaints (aSCC). We calculated 14 measures of interaction from a standard clinical EEG-recording and derived graph-theoretic network measures. From regional brain perfusion measured by 99mTc-hexamethyl-propylene-aminoxime (HMPAO)-SPECT in 46 regions, we calculated relative cerebral perfusion in these patients. Patient groups were classified pairwise with a linear support vector machine. Classification was conducted separately for each biomarker, and then again for each EEG- biomarker combined with SPECT. Combination of SPECT with EEG-biomarkers outperformed single use of SPECT or EEG when classifying aSCC vs. AD (90%), aMCI vs. AD (70%), and AD vs. DCI (100%), while a selection of EEG measures performed best when classifying aSCC vs. aMCI (82%) and aMCI vs. DCI (90%). Only the contrast between aSCC and DCI did not result in above-chance classification accuracy (60%). In general, accuracies were higher when measures of interaction (i.e., connectivity measures) were applied directly than when graph-theoretical measures were derived. We suggest that quantitative analysis of EEG and machine-learning techniques can support differentiating AD, aMCI, aSCC, and DCC, especially when being combined with imaging methods such as SPECT. Quantitative analysis of EEG connectivity could become an

  15. Different structures involved during ictal and interictal epileptic activity in malformations of cortical development: an EEG-fMRI study.

    PubMed

    Tyvaert, L; Hawco, C; Kobayashi, E; LeVan, P; Dubeau, F; Gotman, J

    2008-08-01

    Malformations of cortical development (MCDs) are commonly complicated by intractable focal epilepsy. Epileptogenesis in these disorders is not well understood and may depend on the type of MCD. The cellular mechanisms involved in interictal and ictal events are notably different, and could be influenced independently by the type of pathology. We evaluated the relationship between interictal and ictal zones in eight patients with different types of MCD in order to better understand the generation of these activities: four had nodular heterotopia, two focal cortical dysplasia and two subcortical band heterotopia (double-cortex). We used the non-invasive EEG-fMRI technique to record simultaneously all cerebral structures with a high spatio-temporal resolution. We recorded interictal and ictal events during the same session. Ictal events were either electrical only or clinical with minimal motion. BOLD changes were found in the focal cortical dysplasia during interictal and ictal epileptiform events in the two patients with this disorder. Heterotopic and normal cortices were involved in BOLD changes during interictal and ictal events in the two patients with double cortex, but the maximum BOLD response was in the heterotopic band in both patients. Only two of the four patients with nodular heterotopia showed involvement of a nodule during interictal activity. During seizures, although BOLD changes affected the lesion in two patients, the maximum was always in the overlying cortex and never in the heterotopia. For two patients intracranial recordings were available and confirm our findings. The dysplastic cortex and the heterotopic cortex of band heterotopia were involved in interictal and seizure processes. Even if the nodular gray matter heterotopia may have the cellular substrate to produce interictal events, the often abnormal overlying cortex is more likely to be involved during the seizures. The non-invasive BOLD study of interictal and ictal events in MCD

  16. Dual Isotope SPECT Study With Epilepsy Patients Using Semiconductor SPECT System.

    PubMed

    Shiga, Tohru; Suzuki, Atsuro; Sakurai, Kotarou; Kurita, Tsugiko; Takeuchi, Wataru; Toyonaga, Takuya; Hirata, Kenji; Kobashi, Keiji; Katoh, Chietsugu; Kubo, Naoki; Tamaki, Nagara

    2017-09-01

    We developed a prototype CdTe SPECT system with 4-pixel matched collimator for brain study. This system provides high-energy-resolution (6.6%), high-sensitivity (220 cps/MBq/head), and high-spatial-resolution images. The aim of this study was to evaluate dual-isotope study of CBF and central benzodiazepine receptor (BZR) images using Tc-ECD and I-IMZ with the new SPECT system in patients with epilepsy comparing with single-isotope study using the conventional scintillation gamma camera. This study included 13 patients with partial epilepsy. The BZR images were acquired at 3 hours after I-IMZ injection for 20 minutes. The images of IMZ were acquired with a conventional 3-head scintillation gamma camera. After BZR image acquisition with the conventional camera, Tc-ECD was injected, and CBF and BZR images were acquired simultaneously 5 minutes after ECD injection with the new SPECT system. The CBF images were also acquired with the conventional camera on separate days. The findings were visually analyzed, and 3D-SSP maximum Z scores of lesions were compared between the 2 studies. There were 47 abnormal lesions on BZR images and 60 abnormal lesions on CBF images in the single-isotope study with the conventional camera. Dual-isotope study with the new system showed concordant abnormal findings of 46 of 47 lesions on BZR and 54 of 60 lesions on CBF images with the single-isotope study with the conventional camera. There was high agreement between the 2 studies in both BZR and CBF findings (Cohen κ values = 0.96 for BZR and 0.78 for CBF). In semiquantitative analysis, maximum Z scores of dual-isotope study with the new system strongly correlated with those of single-isotope study with the conventional camera (BZR: r = 0.82, P < 0.05, CBF: r = 0.87, P < 0.05). Our new SPECT system permits dual-isotope study for pixel-by-pixel analysis of CBF and BZR information with the same pathophysiological condition in patients with epilepsy.

  17. Evaluation of MR perfusion abnormalities in organophosphorus poisoning and its correlation with SPECT.

    PubMed

    Bhanu, K Uday; Khandelwal, Niranjan; Vyas, Sameer; Singh, Paramjeet; Prabhakar, Anuj; Mittal, B R; Bhalla, Ashish

    2017-01-01

    Acute organophosphate (OP) pesticide poisoning causes substantial morbidity and mortality worldwide. Many imaging modalities, such as computerized tomography (CT), magnetic resonance imaging (MRI), and single photon emission computed tomography (SPECT) of the brain, have been used for quantitative assessment of the acute brain insult caused by acute OP poisoning. Perfusion defects on SPECT in acutely poisoned patients with OPs have been described, however, MR perfusion abnormalities have not been described in the literature. MR perfusion Imaging has the advantage of having higher spatial resolution, no radiation, and better availability. In this prospective study, 20 patients who ingested OP compounds were included. All the patients underwent brain SPECT on a dual head SPECT gamma camera and MRI brain on a 1.5T MR system. Neurocognitive tests were performed for all patients. SPECT showed perfusion defects in 7 patients and total number of perfusion defects were 29. On MR perfusion, based on the cut-off values of normalized cerebral blood volume (nCBV) ratios and normalized cerebral blood flow (nCBF) ratios, the total number of patients showing perfusion defects were 6 and 8; and the total number of perfusion defects were 29 and 45, respectively. There was significant difference of the nCBV ratios and nCBF ratios between the control group (n = 20) and positive patients group (n = 6 and n = 8, respectively) (P > 0.05). All the defects seen on SPECT were well appreciated on nCBF maps (MRI perfusion) suggestive of 100% correlation. MR perfusion imaging can be used as an effective modality for evaluation in acute OP poisoning.

  18. [SPECT radiopharmaceuticals -- novelties and new possibilities].

    PubMed

    Balogh, Lajos; Polyák, András; Pöstényi, Zita; Haász, Veronika; Dabasi, Gabriella; Jóba, Róbert; Bús, Katalin; Jánoki, Gergely; Thuróczy, Julianna; Zámbó, Katalin; Garai, Ildikó; Környei, József; Jánoki, Gyõzõ

    2014-12-01

    Actual state of affairs and future perspectives of SPECT radiopharmaceuticals regarding local and international data were summarized. Beyond conventional gamma-emitting radioisotopes, localization studies with beta emitting therapeutic radiopharmaceuticals hold increasing importance. Extension of hybrid (SPECT/CT) equipments has modified conventional scintigraphic and SPECT methods as well but more important changes come into the world through novel ligands for specific diagnoses and therapy.

  19. Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex.

    PubMed

    Keller, Corey J; Truccolo, Wilson; Gale, John T; Eskandar, Emad; Thesen, Thomas; Carlson, Chad; Devinsky, Orrin; Kuzniecky, Ruben; Doyle, Werner K; Madsen, Joseph R; Schomer, Donald L; Mehta, Ashesh D; Brown, Emery N; Hochberg, Leigh R; Ulbert, István; Halgren, Eric; Cash, Sydney S

    2010-06-01

    Epileptic cortex is characterized by paroxysmal electrical discharges. Analysis of these interictal discharges typically manifests as spike-wave complexes on electroencephalography, and plays a critical role in diagnosing and treating epilepsy. Despite their fundamental importance, little is known about the neurophysiological mechanisms generating these events in human focal epilepsy. Using three different systems of microelectrodes, we recorded local field potentials and single-unit action potentials during interictal discharges in patients with medically intractable focal epilepsy undergoing diagnostic workup for localization of seizure foci. We studied 336 single units in 20 patients. Ten different cortical areas and the hippocampus, including regions both inside and outside the seizure focus, were sampled. In three of these patients, high density microelectrode arrays simultaneously recorded between 43 and 166 single units from a small (4 mm x 4 mm) patch of cortex. We examined how the firing rates of individual neurons changed during interictal discharges by determining whether the firing rate during the event was the same, above or below a median baseline firing rate estimated from interictal discharge-free periods (Kruskal-Wallis one-way analysis, P<0.05). Only 48% of the recorded units showed such a modulation in firing rate within 500 ms of the discharge. Units modulated during the discharge exhibited significantly higher baseline firing and bursting rates than unmodulated units. As expected, many units (27% of the modulated population) showed an increase in firing rate during the fast segment of the discharge (+ or - 35 ms from the peak of the discharge), while 50% showed a decrease during the slow wave. Notably, in direct contrast to predictions based on models of a pure paroxysmal depolarizing shift, 7.7% of modulated units recorded in or near the seizure focus showed a decrease in activity well ahead (0-300 ms) of the discharge onset, while 12.2% of

  20. Heterogeneous neuronal firing patterns during interictal epileptiform discharges in the human cortex

    PubMed Central

    Keller, Corey J.; Truccolo, Wilson; Gale, John T.; Eskandar, Emad; Thesen, Thomas; Carlson, Chad; Devinsky, Orrin; Kuzniecky, Ruben; Doyle, Werner K.; Madsen, Joseph R.; Schomer, Donald L.; Mehta, Ashesh D.; Brown, Emery N.; Hochberg, Leigh R.; Ulbert, István; Halgren, Eric

    2010-01-01

    Epileptic cortex is characterized by paroxysmal electrical discharges. Analysis of these interictal discharges typically manifests as spike–wave complexes on electroencephalography, and plays a critical role in diagnosing and treating epilepsy. Despite their fundamental importance, little is known about the neurophysiological mechanisms generating these events in human focal epilepsy. Using three different systems of microelectrodes, we recorded local field potentials and single-unit action potentials during interictal discharges in patients with medically intractable focal epilepsy undergoing diagnostic workup for localization of seizure foci. We studied 336 single units in 20 patients. Ten different cortical areas and the hippocampus, including regions both inside and outside the seizure focus, were sampled. In three of these patients, high density microelectrode arrays simultaneously recorded between 43 and 166 single units from a small (4 mm × 4 mm) patch of cortex. We examined how the firing rates of individual neurons changed during interictal discharges by determining whether the firing rate during the event was the same, above or below a median baseline firing rate estimated from interictal discharge-free periods (Kruskal–Wallis one-way analysis, P<0.05). Only 48% of the recorded units showed such a modulation in firing rate within 500 ms of the discharge. Units modulated during the discharge exhibited significantly higher baseline firing and bursting rates than unmodulated units. As expected, many units (27% of the modulated population) showed an increase in firing rate during the fast segment of the discharge (±35 ms from the peak of the discharge), while 50% showed a decrease during the slow wave. Notably, in direct contrast to predictions based on models of a pure paroxysmal depolarizing shift, 7.7% of modulated units recorded in or near the seizure focus showed a decrease in activity well ahead (0–300 ms) of the discharge onset, while 12.2% of

  1. Organ volume estimation using SPECT

    SciTech Connect

    Zaidi, H.

    1996-06-01

    Knowledge of in vivo thyroid volume has both diagnostic and therapeutic importance and could lead to a more precise quantification of absolute activity contained in the thyroid gland. In order to improve single-photon emission computed tomography (SPECT) quantitation, attenuation correction was performed according to Chang`s algorithm. The dual window method was used for scatter subtraction. The author used a Monte Carlo simulation of the SPECT system to accurately determine the scatter multiplier factor k. Volume estimation using SPECT was performed by summing up the volume elements (voxels) lying within the contour of the object, determined by a fixed threshold and the gray level histogram (GLH) method. Thyroid phantom and patient studies were performed and the influence of (1) fixed thresholding, (2) automatic thresholding, (3) attenuation, (4) scatter, and (5) reconstruction filter were investigated. This study shows that accurate volume estimation of the thyroid gland is feasible when accurate corrections are performed. The relative error is within 7% for the GLH method combined with attenuation and scatter corrections.

  2. Physiological imaging with PET and SPECT in Dementia

    SciTech Connect

    Jagust, W.J. . Dept. of Neurology Lawrence Berkeley Lab., CA )

    1989-10-01

    Dementia is a medical problem of increasingly obvious importance. The most common cause of dementia, Alzheimer's disease (AD) accounts for at least 50% of all cases of dementia, with multi-infarct dementia the next most common cause of the syndrome. While the accuracy of diagnosis of AD may range from 80 to 90%, there is currently no laboratory test to confirm the diagnosis. Functional imaging techniques such as positron emission tomography (PET) and single photon emission computed tomography (SPECT) offer diagnostic advantages since brain function is unequivocally disturbed in all dementing illnesses. Both PET and SPECT have been utilized in the study of dementia. While both techniques rely on principles of emission tomography to produce three dimensional maps of injected radiotracers, the differences between positron and single photon emission have important consequences for the practical applications of the two procedures. This briefly reviews the technical differences between PET and SPECT, and discusses how both techniques have been used in our laboratory to elucidate the pathophysiology of dementia. 32 refs., 2 figs.

  3. A method of analysis of SPECT blood flow image data for comparison with computed tomography

    SciTech Connect

    Mountz, J.M.

    1989-03-01

    A consistent method for the qualitative analysis of regional cerebral blood flow on single-photon emission computed tomography (SPECT) imaging has not yet been realized. Regional analysis usually refers an area of abnormal tracer uptake to another region of brain (e.g., the contralateral hemisphere), but region of interest size and analysis differ between investigators. In patients who have had a stroke, the flow deficit size on the SPECT image often appears much larger than the abnormality visualized on computed tomography (CT), and confounds attempts to differentiate between ''purely'' infarcted brain tissue, ischemic brain tissue, edema, or brain tissue having diminution of flow resulting from deafferentation. The author presents a method to determine a flow deficit volume that can be easily calculated from the SPECT image, which yields a volume size that is equivalent to a hypothetical volume having zero blood flow. The method of calculation is objective, independent of region of interest size, and provides a SPECT volume deficit that may be correlated with the CT volume deficit, thus helping to differentiate ''purely'' infarcted tissue from tissue having infarction, edema, ischemia, and deafferentation.

  4. Habituation of single CO2 laser-evoked responses during interictal phase of migraine.

    PubMed

    de Tommaso, Marina; Libro, Giuseppe; Guido, Marco; Losito, Luciana; Lamberti, Paolo; Livrea, Paolo

    2005-09-01

    A reduced habituation of averaged laser-evoked potential (LEP) amplitudes was previously found in migraine patients. The aim of the present study was to assess the habituation of single LEP responses and pain sensation during the interictal phase in migraine patients. Fourteen migraine patients were compared with ten control subjects. The pain stimulus was laser pulses, generated by CO2 laser, delivered to right supraorbital zone. Patients were evaluated during attack-free conditions. The LEP habituation was studied by measuring the changes of LEP amplitudes across and within three consecutive repetitions of 21 non-averaged trials. In migraine patients the N2-P2 wave amplitudes did not show a tendency toward habituation across and, above all, within the three repetitions. Anomalous behaviour of nociceptive cortex during the interictal phase of migraine may predispose patients to headache occurrence and persistence.

  5. Discriminating preictal and interictal states in patients with temporal lobe epilepsy using wavelet analysis of intracerebral EEG

    PubMed Central

    Gadhoumi, Kais; Lina, Jean-Marc; Gotman, Jean

    2013-01-01

    Objective Identification of consistent distinguishing features between preictal and interictal periods in the EEG is an essential step towards performing seizure prediction. We propose a novel method to separate preictal and interictal states based on the analysis of the high frequency activity of intracerebral EEGs in patients with mesial temporal lobe epilepsy. Methods Wavelet energy and entropy were computed in sliding window fashion from preictal and interictal epochs. A comparison of their organization in a 2 dimensional space was carried out using three features quantifying the similarities between their underlying states and a reference state. A discriminant analysis was then used in the features space to classify epochs. Performance was assessed based on sensitivity and false positive rates and validation was performed using a bootstrapping approach. Results Preictal and interictal epochs were discriminable in most patients on a subset of channels that were found to be close or within the seizure onset zone. Conclusions Preictal and interictal states were separable using measures of similarity with the reference state. Discriminability varies with frequency bands. Significance This method is useful to discriminate preictal from interictal states in intracerebral EEGs and could be useful for seizure prediction. PMID:22480601

  6. Magnetoencephalographic mapping of interictal spike propagation: a technical and clinical report.

    PubMed

    Hara, K; Lin, F-H; Camposano, S; Foxe, D M; Grant, P E; Bourgeois, B F; Ahlfors, S P; Stufflebeam, S M

    2007-09-01

    Distinguishing propagated epileptic activity from primary epileptic foci is of critical importance in presurgical evaluation of patients with medically intractable focal epilepsy. We studied an 11-year-old patient with complex partial epilepsy by using simultaneous magnetoencephalography (MEG) and electroencephalography (EEG). In EEG, bilateral interictal discharges appeared synchronous, whereas MEG source analysis suggested propagation of spikes from the right to the left frontal lobe.

  7. Lymphoma: evaluation with Ga-67 SPECT

    SciTech Connect

    Tumeh, S.S.; Rosenthal, D.S.; Kaplan, W.D.; English, R.J.; Holman, B.L.

    1987-07-01

    To determine the value of gallium-67 single photon emission computed tomography (SPECT) in imaging patients with lymphoma, the authors compared Ga-67 planar images and SPECT images in 40 consecutive patients, using radiologic examinations and/or medical records to confirm the presence or absence of disease. Thirty-three patients had Hodgkin disease, and seven had non-Hodgkin lymphoma. Fifty-four examinations were performed. Of 57 sites of lymphoma in the chest, planar imaging depicted 38, while SPECT depicted 55, resulting in sensitivities of 0.66 and 0.96 for planar and SPECT imaging, respectively. In eight sites, both modalities were truly negative, but SPECT was negative in four additional sites that were equivocal on planar imaging, resulting in specificities of 0.66 and 1.00 for planar and SPECT imaging, respectively. In the abdomen, the sensitivities of planar and SPECT imaging were 0.69 and 0.85, and the specificities 0.87 and 1.00, respectively. SPECT was more accurate in depicting foci of gallium-avid lymphoma in the chest and abdomen and in excluding disease when planar imaging was equivocal.

  8. Increased discharge threshold after an interictal spike in human focal epilepsy.

    PubMed

    Curtis, Marco; Tassi, Laura; Lo Russo, Giorgio; Mai, Roberto; Cossu, Massimo; Francione, Stefano

    2005-12-01

    It is commonly assumed that interictal spikes (ISs) in focal epilepsies set off a period of inhibition that transiently reduces tissue excitability. Post-spike inhibition was described in experimental models but was never demonstrated in the human epileptic cortex. In the present study post-spike excitability was retrospectively evaluated on intracerebral stereo-electroencephalographic recordings performed in the epileptogenic cortex of five patients suffering from drug-resistant focal epilepsy secondary to Taylor-type neocortical dysplasias. Patients typically presented with highly periodic interictal spiking activity at 2.33 +/- 0.87 Hz (mean +/- SD) in the dysplastic region. During the stereo-electroencephalographic procedure, low-frequency stimulation at 1 Hz was systematically performed for diagnostic purposes to identify the epileptogenic zone. The probability of evoking an IS during the interspike period in response to 1-Hz stimuli delivered close to the ictal-onset zone was examined. Stimuli that occurred early after a spontaneous IS (within 70% of the inter-IS period) had a very low probability of generating a further IS. On the contrary, stimuli delivered during the late inter-IS period had the highest probability of evoking a further IS. The generation of stimulus-evoked ISs is occluded for several hundred milliseconds after the occurrence of a preceding spike discharge. As previously shown in animal models, these findings suggest that, during focal, periodic interictal spiking, human neocortical excitability is phasically controlled by post-spike inhibition.

  9. Interval analysis of interictal EEG: pathology of the alpha rhythm in focal epilepsy

    NASA Astrophysics Data System (ADS)

    Pyrzowski, Jan; Siemiński, Mariusz; Sarnowska, Anna; Jedrzejczak, Joanna; Nyka, Walenty M.

    2015-11-01

    The contemporary use of interictal scalp electroencephalography (EEG) in the context of focal epilepsy workup relies on the visual identification of interictal epileptiform discharges. The high-specificity performance of this marker comes, however, at a cost of only moderate sensitivity. Zero-crossing interval analysis is an alternative to Fourier analysis for the assessment of the rhythmic component of EEG signals. We applied this method to standard EEG recordings of 78 patients divided into 4 subgroups: temporal lobe epilepsy (TLE), frontal lobe epilepsy (FLE), psychogenic nonepileptic seizures (PNES) and nonepileptic patients with headache. Interval-analysis based markers were capable of effectively discriminating patients with epilepsy from those in control subgroups (AUC~0.8) with diagnostic sensitivity potentially exceeding that of visual analysis. The identified putative epilepsy-specific markers were sensitive to the properties of the alpha rhythm and displayed weak or non-significant dependences on the number of antiepileptic drugs (AEDs) taken by the patients. Significant AED-related effects were concentrated in the theta interval range and an associated marker allowed for identification of patients on AED polytherapy (AUC~0.9). Interval analysis may thus, in perspective, increase the diagnostic yield of interictal scalp EEG. Our findings point to the possible existence of alpha rhythm abnormalities in patients with epilepsy.

  10. Mapping the distribution of amobarbital sodium in the intracarotid Wada test by use of Tc-99m HMPAO with SPECT.

    PubMed

    Jeffery, P J; Monsein, L H; Szabo, Z; Hart, J; Fisher, R S; Lesser, R P; Debrun, G M; Gordon, B; Wagner, H N; Camargo, E E

    1991-03-01

    The intracarotid amobarbital sodium, or Wada, test has been used to localize speech and memory function prior to surgical treatment of temporal lobe seizures. The authors mixed technetium-99m hexamethyl-propyleneamine oxime (HMPAO) with amobarbital sodium and injected the mixture in 25 patients with epilepsy. Single photon emission computed tomography (SPECT) of the brain was then performed to determine intracerebral distribution of the amobarbital sodium. Results of SPECT were compared with those of conventional and digital subtraction angiography (DSA). The distribution of Tc-99m HMPAO and, presumably, amobarbital sodium varied from patient to patient. SPECT revealed a statistically different distribution from that predicted with conventional angiography. The distribution also often differed from that of DSA, although the difference was not significant. SPECT revealed infrequent delivery to mesial temporal lobe structures. This emphasizes the need for caution in the use of the intracarotid amobarbital sodium test to predict the outcome of removal of these areas.

  11. Clinical utility of MRI and SPECT in the diagnosis of cognitive impairment referred to memory clinic.

    PubMed

    Guinane, John; Ng, Boon Lung

    2017-09-07

    Despite of their limited availability and potential for significant variation between and within each modality, this is the first study to prospectively measure the clinical utility of MRI and/or SPECT brain scanning in addition to the routine diagnostic workup of patients presenting to memory clinic. A single center study was conducted over a convenience of 12-month sampling period. For each patient referred for MRI and/or SPECT scanning, the primary geriatrician or psychogeriatrician was asked to assign an initial diagnosis. The initial diagnosis was then compared with the final consensus diagnosis after any scans or neuropsychology testing had been completed. During the 12-month study period, 66 patients (26%) were referred for scans out of a total of 253 patients included in the study. There were 16/44 (36%) positive MRI outcomes and 13/35 (37%) positive SPECT outcomes. The diagnosis changed consistent with the MRI scan findings in 11/44 (25%) and changed consistent with the SPECT scan findings in 9/35 (26%). Potentially reversible pathology was identified in a single patient, 1/50 (2%), via an MRI scan that suggested normal pressure hydrocephalus. The number needed to test for one positive outcome was 3.8 (95% CI 2.0-23.3), 6.0 (95% CI NA), and 1.7 (95% CI 1.3-2.5) for MRI only, SPECT only, and MRI and SPECT together, respectively. The clinical utility of MRI and/or SPECT scanning in this study may be broadly superior to the available international evidence, and further research is needed to identify predictors of positive scan outcomes.

  12. Drug Development in Alzheimer’s Disease: The Contribution of PET and SPECT

    PubMed Central

    Declercq, Lieven D.; Vandenberghe, Rik; Van Laere, Koen; Verbruggen, Alfons; Bormans, Guy

    2016-01-01

    Clinical trials aiming to develop disease-altering drugs for Alzheimer’s disease (AD), a neurodegenerative disorder with devastating consequences, are failing at an alarming rate. Poorly defined inclusion-and outcome criteria, due to a limited amount of objective biomarkers, is one of the major concerns. Non-invasive molecular imaging techniques, positron emission tomography and single photon emission (computed) tomography (PET and SPE(C)T), allow visualization and quantification of a wide variety of (patho)physiological processes and allow early (differential) diagnosis in many disorders. PET and SPECT have the ability to provide biomarkers that permit spatial assessment of pathophysiological molecular changes and therefore objectively evaluate and follow up therapeutic response, especially in the brain. A number of specific PET/SPECT biomarkers used in support of emerging clinical therapies in AD are discussed in this review. PMID:27065872

  13. C-SPECT - a Clinical Cardiac SPECT/Tct Platform: Design Concepts and Performance Potential

    PubMed Central

    Chang, Wei; Ordonez, Caesar E.; Liang, Haoning; Li, Yusheng; Liu, Jingai

    2013-01-01

    Because of scarcity of photons emitted from the heart, clinical cardiac SPECT imaging is mainly limited by photon statistics. The sub-optimal detection efficiency of current SPECT systems not only limits the quality of clinical cardiac SPECT imaging but also makes more advanced potential applications difficult to be realized. We propose a high-performance system platform - C-SPECT, which has its sampling geometry optimized for detection of emitted photons in quality and quantity. The C-SPECT has a stationary C-shaped gantry that surrounds the left-front side of a patient’s thorax. The stationary C-shaped collimator and detector systems in the gantry provide effective and efficient detection and sampling of photon emission. For cardiac imaging, the C-SPECT platform could achieve 2 to 4 times the system geometric efficiency of conventional SPECT systems at the same sampling resolution. This platform also includes an integrated transmission CT for attenuation correction. The ability of C-SPECT systems to perform sequential high-quality emission and transmission imaging could bring cost-effective high-performance to clinical imaging. In addition, a C-SPECT system could provide high detection efficiency to accommodate fast acquisition rate for gated and dynamic cardiac imaging. This paper describes the design concepts and performance potential of C-SPECT, and illustrates how these concepts can be implemented in a basic system. PMID:23885129

  14. Ictal and interictal EEG patterns in patients with nonconvulsive and subtle convulsive status epilepticus.

    PubMed

    Gosavi, Tushar Divakar; See, Siew Ju; Lim, Shih Hui

    2015-08-01

    Electroencephalography findings in nonconvulsive or subtle convulsive status epilepticus (NCSE and SCSE, respectively) can be heterogenous. We aimed to study the different patterns on EEG in our cohort of patients. Our objective was to study ictal and interictal EEG patterns in patients with NCSE and SCSE. From January 2012 to December 2013, EEGs recorded from patients admitted for altered mental status suspected of having NCSE or SCSE were reviewed retrospectively. Electroencephalography status was defined as having (a) continuous ictal discharges lasting >5 min or (b) >2 discrete bursts of ictal discharges, each lasting <5 min, without returning to previous background rhythm in between these bursts. Among 1698 EEGs recorded for at least 30 min from hospitalized patients, 55 (3.23%) satisfied the criteria of EEG SE. The ictal onset was regional in 37 (67.2%) EEGs, multiregional independent in 8 (14.5%), and generalized in 10 (18.4%). The EEG seizure duration was >5 min in 24 (43.6%) EEGs, between 1 and 5 min in 14 (25.4%), and less than 1 min in 17 (30.8%). Twenty (36.3%) EEGs showed one continuous prolonged seizure episode of >5-minute duration, 15 (27.2%) had 10 or less discrete episodes, 20 (36.3%) had more than 10 episodes, and 11 (20%) had 2 or more ictal patterns. Thirty (54.5%) EEGs had onset ictal frequency of >8 Hz whereas the rest had <8-Hz ictal frequency. In the interictal segment, 29 patients had continuous generalized slow waves, while 12 had intermittent generalized slow waves. Eleven patients had continuous slow waves lateralized to one hemisphere, and these were ipsilateral to the ictal focus in 10 but contralateral in 1. Other interictal waves seen were PLEDS (6), sharp waves (3), suppression (5), and triphasic waves (1). The background alpha rhythm was absent in 36 patients and slow in 14, and normal background alpha was seen in the interictal period in 5 patients. The ictal and interictal EEG patterns in NCSE and SCSE can be varied. Further

  15. Feasibility of a CdTe-based SPECT for high-resolution low-dose small animal imaging: a Monte Carlo simulation study

    NASA Astrophysics Data System (ADS)

    Park, S.-J.; Yu, A. R.; Lee, Y.-J.; Kim, Y.-s.; Kim, H.-J.

    2014-07-01

    Dedicated single-photon-emission computed tomography (SPECT) systems based on pixelated semiconductors such as cadmium telluride (CdTe) are in development to study small animal models of human disease. In an effort to develop a high-resolution, low-dose system for small animal imaging, we compared a CdTe-based SPECT system and a conventional NaI(Tl)-based SPECT system in terms of spatial resolution, sensitivity, contrast, and contrast-to-noise ratio (CNR). In addition, we investigated the radiation absorbed dose and calculated a figure of merit (FOM) for both SPECT systems. Using the conventional NaI(Tl)-based SPECT system, we achieved a spatial resolution of 1.66 mm at a 30 mm source-to-collimator distance, and a resolution of 2.4-mm hot-rods. Using the newly-developed CdTe-based SPECT system, we achieved a spatial resolution of 1.32 mm FWHM at a 30 mm source-to-collimator distance, and a resolution of 1.7-mm hot-rods. The sensitivities at a 30 mm source-to-collimator distance were 115.73 counts/sec/MBq and 83.38 counts/sec/MBq for the CdTe-based SPECT and conventional NaI(Tl)-based SPECT systems, respectively. To compare quantitative measurements in the mouse brain, we calculated the CNR for images from both systems. The CNR from the CdTe-based SPECT system was 4.41, while that from the conventional NaI(Tl)-based SPECT system was 3.11 when the injected striatal dose was 160 Bq/voxel. The CNR increased as a function of injected dose in both systems. The FOM of the CdTe-based SPECT system was superior to that of the conventional NaI(Tl)-based SPECT system, and the highest FOM was achieved with the CdTe-based SPECT at a dose of 40 Bq/voxel injected into the striatum. Thus, a CdTe-based SPECT system showed significant improvement in performance compared with a conventional system in terms of spatial resolution, sensitivity, and CNR, while reducing the radiation dose to the small animal subject. Herein, we discuss the feasibility of a CdTe-based SPECT system for high

  16. Global scaling for semi-quantitative analysis in FP-CIT SPECT.

    PubMed

    Kupitz, D; Apostolova, I; Lange, C; Ulrich, G; Amthauer, H; Brenner, W; Buchert, R

    2014-01-01

    Semi-quantitative characterization of dopamine transporter availability from single photon emission computed tomography (SPECT) with 123I-ioflupane (FP-CIT) is based on uptake ratios relative to a reference region. The aim of this study was to evaluate the whole brain as reference region for semi-quantitative analysis of FP-CIT SPECT. The rationale was that this might reduce statistical noise associated with the estimation of non-displaceable FP-CIT uptake. 150 FP-CIT SPECTs were categorized as neurodegenerative or non-neurodegenerative by an expert. Semi-quantitative analysis of specific binding ratios (SBR) was performed with a custom-made tool based on the Statistical Parametric Mapping software package using predefined regions of interest (ROIs) in the anatomical space of the Montreal Neurological Institute. The following reference regions were compared: predefined ROIs for frontal and occipital lobe and whole brain (without striata, thalamus and brainstem). Tracer uptake in the reference region was characterized by the mean, median or 75th percentile of its voxel intensities. The area (AUC) under the receiver operating characteristic curve was used as performance measure. The highest AUC of 0.973 was achieved by the SBR of the putamen with the 75th percentile in the whole brain as reference. The lowest AUC for the putamen SBR of 0.937 was obtained with the mean in the frontal lobe as reference. We recommend the 75th percentile in the whole brain as reference for semi-quantitative analysis in FP-CIT SPECT. This combination provided the best agreement of the semi-quantitative analysis with visual evaluation of the SPECT images by an expert and, therefore, is appropriate to support less experienced physicians.

  17. The AdaptiSPECT Imaging Aperture

    PubMed Central

    Chaix, Cécile; Moore, Jared W.; Van Holen, Roel; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    In this paper, we present the imaging aperture of an adaptive SPECT imaging system being developed at the Center for Gamma Ray Imaging (AdaptiSPECT). AdaptiSPECT is designed to automatically change its configuration in response to preliminary data, in order to improve image quality for a particular task. In a traditional pinhole SPECT imaging system, the characteristics (magnification, resolution, field of view) are set by the geometry of the system, and any modification can be accomplished only by manually changing the collimator and the distance of the detector to the center of the field of view. Optimization of the imaging system for a specific task on a specific individual is therefore difficult. In an adaptive SPECT imaging system, on the other hand, the configuration can be conveniently changed under computer control. A key component of an adaptive SPECT system is its aperture. In this paper, we present the design, specifications, and fabrication of the adaptive pinhole aperture that will be used for AdaptiSPECT, as well as the controls that enable autonomous adaptation. PMID:27019577

  18. SPECT in the diagnosis of hepatic hemangioma

    SciTech Connect

    Brunetti, J.C.; Van Heertum, R.L.; Yudd, A.P.

    1985-05-01

    Tc99m labeled red blood cell blood flow and delayed static blood pool imaging is widely accepted as a reliable, accurate method for the diagnosis of hepatic hemangiomata. The purpose of this study is to assess the relative value of SPECT blood pool imaging in the evaluation of hepatic hemangionata. A total of 68 patients, including 21 patients with proven hepatic cavernous hemangiomas, were studied using both planar and SPECT imaging techniques. All patients underwent multi-phase evaluation which included a hepatic flow study, immediate planar images of the liver, followed by a 360/sup 0/ tomographic (SPECT) study and subsequent 60 minute delayed static planar hepatic blood pool images. All 21 patients with proven hepatic hemangiomas had a positive SPECT exam and 17 of the 21 (81%) patients had a positive planar exam. In the 21 patients, there were a total of 36 hemangiomas ranging in size from .7 cm to 13 cm. The SPECT imaging technique correctly identified all 36 lesions (100%) where as planar imaging detected 25 of the 36 lesions (69.4%). In all the remaining patients (10-normal, 17-metastatic disease, 12-hepatocellular disease, 6-hepatoma, 2-liver cysts), both the planar and SPECT imaging techniques were interpreted as showing no evidence of focal sequestration of red blood cells. SPECT hepatic blood pool imaging represents an improvement in the evaluation of hepatic hemangioma as a result of a reduction in imaging time (less than thirty minutes), improved spatial resolution and greater overall accuracy.

  19. Brain perfusion single photon emission computed tomography in major psychiatric disorders: From basics to clinical practice

    PubMed Central

    Santra, Amburanjan; Kumar, Rakesh

    2014-01-01

    Brain single photon emission computed tomography (SPECT) is a well-established and reliable method to assess brain function through measurement of regional cerebral blood flow (rCBF). It can be used to define a patient's pathophysiological status when neurological or psychiatric symptoms cannot be explained by anatomical neuroimaging findings. Though there is ample evidence validating brain SPECT as a technique to track human behavior and correlating psychiatric disorders with dysfunction of specific brain regions, only few psychiatrists have adopted brain SPECT in routine clinical practice. It can be utilized to evaluate the involvement of brain regions in a particular patient, to individualize treatment on basis of SPECT findings, to monitor the treatment response and modify treatment, if necessary. In this article, we have reviewed the available studies in this regard from existing literature and tried to present the evidence for establishing the clinical role of brain SPECT in major psychiatric illnesses. PMID:25400359

  20. Integration of AdaptiSPECT, a small-animal adaptive SPECT imaging system

    PubMed Central

    Chaix, Cécile; Kovalsky, Stephen; Kosmider, Matthew; Barrett, Harrison H.; Furenlid, Lars R.

    2015-01-01

    AdaptiSPECT is a pre-clinical adaptive SPECT imaging system under final development at the Center for Gamma-ray Imaging. The system incorporates multiple adaptive features: an adaptive aperture, 16 detectors mounted on translational stages, and the ability to switch between a non-multiplexed and a multiplexed imaging configuration. In this paper, we review the design of AdaptiSPECT and its adaptive features. We then describe the on-going integration of the imaging system. PMID:26347197

  1. SPECT Imaging: Basics and New Trends

    NASA Astrophysics Data System (ADS)

    Hutton, Brian F.

    Single Photon Emission Computed Tomography (SPECT) is widely used as a means of imaging the distribution of administered radiotracers that have single-photon emission. The most widely used SPECT systems are based on the Anger gamma camera, usually involving dual detectors that rotate around the patient. Several factors affect the quality of SPECT images (e.g., resolution and noise) and the ability to perform absolute quantification (e.g., attenuation, scatter, motion, and resolution). There is a trend to introduce dual-modality systems and organ-specific systems, both developments that enhance diagnostic capability.

  2. [The group study of diagnostic efficacy of cerebro-vascular disease by I-123 IMP SPECT images obtained with ring type SPECT scanner--the ROC analysis on the diagnosis of perfusion defect and redistribution].

    PubMed

    Machida, K; Matsumoto, T; Honda, N; Mamiya, T; Takahashi, T; Takishima, T; Kamano, T; Tamaki, S; Iinuma, T A; Tateno, Y

    1991-11-01

    We performed two image reading experiments in order to investigate the diagnostic capability of I-123 IMP SPECT obtained by the ring type SPECT scanner in cerebro-vascular disease. Fourteen physicians diagnosed SPECT images of 55 cases with reference to clinical neurological informations, first without brain XCT images and second with XCT images. Each physician detected perfusion defects and redistributions of I-123 IMP and assigned a confidence level of abnormality for these SPECT findings by means of five rating method. From results obtained by ROC analysis, we concluded as follows: (1) Generally, I-123 IMP SPECT is a stable diagnostic modality in the diagnosis of cerebro-vascular disease and the image reading of XCT had no effects on the diagnosis of SPECT on the whole of physician, (2) However, there were unnegligible differences among individuals in the detectability of findings and the effect of XCT image reading, (3) Detectability of redistribution of I-123 IMP was lower than that of perfusion defect and inter-observer variation in the diagnostic performance for redistribution was larger than that of perfusion defect. The results suggest that it is necessary to standardize diagnostic criteria among physicians for redistribution of I-123 IMP.

  3. "Ectopic" theta oscillations and interictal activity during slow-wave state in the R6/1 mouse model of Huntington's disease.

    PubMed

    Pignatelli, Michele; Lebreton, Fanny; Cho, Yoon H; Leinekugel, Xavier

    2012-12-01

    The pathophysiology of Huntington's disease (HD) is primarily associated with striatal degeneration and a number of behavioral symptoms such as involuntary movements, cognitive decline, psychiatric disorders, and in the most juvenile-onset cases with epilepsy. In addition to several changes in cellular and synaptic properties previously reported in HD, attention was recently driven towards the potential relationships between cognitive deficits and sleep disturbances in patients and animal models of Huntington's disease. In the present study, we have investigated whether the population-activity patterns normally expressed by the hippocampal and neocortical circuits during active and slow-wave states are affected in R6/1 mice, a model of Huntington's disease. By performing electrophysiological recordings from the hippocampus and neocortex of R6/1 mice that were either freely moving, head restrained or anesthetized, we observed an altered segregation of active and slow wave brain states, in relation with an epileptic phenotype. Slow-wave state (SWS) in R6/1 was characterized by the intrusion of active-state features (increased 6-10 Hz theta power and depressed 2-3 Hz delta power) and transient, temporally misplaced ("ectopic") theta oscillations. The epileptic phenotype, in addition to previously reported occasional ictal seizures, was characterized by the systematic presence of interictal activity, confined to SWS. Ectopic theta episodes, which could be reversed by the cholinergic antagonist atropine, concentrated interictal spikes and phase-locked hippocampal sharp-wave-ripples. These results point to major alterations of neuronal activity during rest in R6/1 mice, potentially involving anomalous activation of the cholinergic system, which may contribute to the cognitive deficits observed in Huntington's disease. Copyright © 2012 Elsevier Inc. All rights reserved.

  4. SPECT imaging with the long bore collimator: Loss in sensitivity vs improved contrast resolution

    SciTech Connect

    Muller, S.; Polak, J.F.; Holman, B.L.; Eisner, R.L.

    1984-01-01

    A long bore (LB) collimator (16 cm thick) was compared with the standard low energy all purpose (LEAP) collimator for SPECT imaging. Line spread functions at various depths were measured in scatter material (planar imaging). Both collimators have similar full-width-at-half-maximum (FWHM) values yet the LB has less resolution loss with distance and consistently lower full-width-at-tenth-maximum (FWTM) values. An assessment of overall performance was made by planar imaging of the Rollo phantom with both collectors. Performance was judged by calculating the chi-square for the observed and expected contrasts of spherical cold targets (2.54, 1.91, 1.27 and 0.95 cm diameter). In all cases, LB scored consistently better than the LEAP. SPECT imaging of a bar phantom (spacing 2.25 cm) filled with I-123 (p,2n) confirmed the superior contrast resolution of the LB. Using SPECT data from 5 clinical I-123 IMP brain studies and from measurements of % rms noise as a function of total slice counts in a cylindrical phantom, the authors calculate that LB images would have a % rms noise of 8.7% compared to 5.7% for LEAP images acquired over the same time interval. The authors conclude that SPECT of the brain with the LB would lead to improved contrast resolution and a minimal increase in % rms noise despite a significant loss in sensitivity.

  5. Characterisation and imaging of cortical impedance changes during interictal and ictal activity in the anaesthetised rat

    PubMed Central

    Vongerichten, Anna N.; Santos, Gustavo Sato dos; Aristovich, Kirill; Avery, James; McEvoy, Andrew; Walker, Matthew; Holder, David S.

    2016-01-01

    Epilepsy affects approximately 50 million people worldwide, and 20–30% of these cases are refractory to antiepileptic drugs. Many patients with intractable epilepsy can benefit from surgical resection of the tissue generating the seizures; however, difficulty in precisely localising seizure foci has limited the number of patients undergoing surgery as well as potentially lowered its effectiveness. Here we demonstrate a novel imaging method for monitoring rapid changes in cerebral tissue impedance occurring during interictal and ictal activity, and show that it can reveal the propagation of pathological activity in the cortex. Cortical impedance was recorded simultaneously to ECoG using a 30-contact electrode mat placed on the exposed cortex of anaesthetised rats, in which interictal spikes (IISs) and seizures were induced by cortical injection of 4-aminopyridine (4-AP), picrotoxin or penicillin. We characterised the tissue impedance responses during IISs and seizures, and imaged these responses in the cortex using Electrical Impedance Tomography (EIT). We found a fast, transient drop in impedance occurring as early as 12 ms prior to the IISs, followed by a steep rise in impedance within ~ 120 ms of the IIS. EIT images of these impedance changes showed that they were co-localised and centred at a depth of 1 mm in the cortex, and that they closely followed the activity propagation observed in the surface ECoG signals. The fast, pre-IIS impedance drop most likely reflects synchronised depolarisation in a localised network of neurons, and the post-IIS impedance increase reflects the subsequent shrinkage of extracellular space caused by the intense activity. EIT could also be used to picture a steady rise in tissue impedance during seizure activity, which has been previously described. Thus, our results demonstrate that EIT can detect and localise different physiological changes during interictal and ictal activity and, in conjunction with ECoG, may in future

  6. Magnesium valproate in learning disabled children with interictal paroxysmal EEG patterns: Preliminary report.

    PubMed

    Porras-Kattz, Eneida; Harmony, Thalía; Ricardo-Garcell, Josefina; Galán, Lídice; Fernández, Thalía; Prado-Alcalá, Roberto; Avecilla-Ramírez, Gloria; Sánchez-Moreno, Liliana; Barrera-Reséndiz, Jesús; Corsi-Cabrera, María; Valencia-Solís, Elizabeth

    2011-04-01

    Previous studies have investigated whether routine use of antiepileptic drugs is adequate to improve cognitive abilities in children who are learning disabled not otherwise specified (LD NOS) and who display interictal paroxysmal patterns in the electroencephalogram (EEG) but do not have epilepsy, and the findings of these studies have been controversial. In the current study, 112 LD children without epilepsy were assessed; however, only 18 met the strict inclusion/exclusion criteria in order to obtain a homogeneous sample. These children showed interictal paroxysmal patterns in the EEG, and a randomized, double-blind trial was carried out on them. The children were treated with either magnesium valproate (MgV; 20mg/kg/day) or a placebo for six months, and differences in WISC subtests, in a computerized reading skills battery (BTL) and EEG recordings were evaluated between groups before and after the treatment period. Performance IQ score and several items of the BTL (rhymes and ordering of words) improved in children who received MgV, whereas no changes were observed in the placebo group. No changes in the number of interictal paroxysmal patterns were observed in any group; however increased EEG currents at 10.92 and 12.87Hz (alpha band) in posterior regions and decreased currents in frequencies within the theta band (3.90, 4.29 and 5.07Hz) in frontal regions and at 4.68 and 5.46Hz in the parietal cortex were observed, suggesting an improvement in EEG maturation. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  7. Physiological sharp wave-ripples and interictal events in vitro: what's the difference?

    PubMed

    Karlócai, Mária R; Kohus, Zsolt; Káli, Szabolcs; Ulbert, István; Szabó, Gábor; Máté, Zoltán; Freund, Tamás F; Gulyás, Attila I

    2014-02-01

    Sharp wave-ripples and interictal events are physiological and pathological forms of transient high activity in the hippocampus with similar features. Sharp wave-ripples have been shown to be essential in memory consolidation, whereas epileptiform (interictal) events are thought to be damaging. It is essential to grasp the difference between physiological sharp wave-ripples and pathological interictal events to understand the failure of control mechanisms in the latter case. We investigated the dynamics of activity generated intrinsically in the Cornu Ammonis region 3 of the mouse hippocampus in vitro, using four different types of intervention to induce epileptiform activity. As a result, sharp wave-ripples spontaneously occurring in Cornu Ammonis region 3 disappeared, and following an asynchronous transitory phase, activity reorganized into a new form of pathological synchrony. During epileptiform events, all neurons increased their firing rate compared to sharp wave-ripples. Different cell types showed complementary firing: parvalbumin-positive basket cells and some axo-axonic cells stopped firing as a result of a depolarization block at the climax of the events in high potassium, 4-aminopyridine and zero magnesium models, but not in the gabazine model. In contrast, pyramidal cells began firing maximally at this stage. To understand the underlying mechanism we measured changes of intrinsic neuronal and transmission parameters in the high potassium model. We found that the cellular excitability increased and excitatory transmission was enhanced, whereas inhibitory transmission was compromised. We observed a strong short-term depression in parvalbumin-positive basket cell to pyramidal cell transmission. Thus, the collapse of pyramidal cell perisomatic inhibition appears to be a crucial factor in the emergence of epileptiform events.

  8. Interictal electrocardiographic and echocardiographic changes in patients with generalized tonic-clonic seizures.

    PubMed

    M Ramadan, Mahmoud; El-Shahat, Nader; A Omar, Ashraf; Gomaa, Mohamed; Belal, Tamer; A Sakr, Sherif; Abu-Hegazy, Mohammad; Hakim, Hazem; A Selim, Heba; Omar, Sabry; A Omar, Sabry

    2013-01-01

    Partial and generalized seizures often affect autonomic functions during seizures, and interictal and postictal periods. We investigated possible interictal electrocardiographic abnormalities in patients with generalized tonic-clonic seizures (GTCS), together with evaluating any structural heart changes by echocardiography in these patients in comparison with healthy controls. We studied 120 definite GTCS patients (76 males and 44 females) who are neither diabetic nor under any medical treatment, and 60 healthy controls with a mean age of 25.2 ± 9.3 and 27.3 ± 7.5 years; respectively. Resting systolic and diastolic arterial blood pressures were measured, and standard 12-lead electrocardiograms and a 2-dimensional echocardiographic examination were performed. In univariate analysis, GTCS patients (compared to controls) had significantly lower means of PR interval (147.2 ± 18.6 versus 153.8 ± 22.6 msec; P = 0.037), QT interval (362.8 ± 22.9 versus 379.9 ± 29.3 msec; P < 0.001), and QTc interval (425.5 ± 20.7 versus 441.6 ± 19.9 msec; P < 0.001) but significantly higher mean left atrial diameter (3.49 ± 0.64 versus 3.09 ± 0.45 cm; P < 0.001). After adjusting for age, gender, and body mass index in a multivariate adjusted logistic regression model, left atrial diameter (OR = 3.941 [1.739 - 8.932]) and QTc (OR = 0.924 [0.895 - 0.954]) were significantly and independently associated with GTCS. In conclusion, patients with epilepsy may be predisposed to disturbances of autonomic functions with subsequent cardiac arrhythmias due to the effects of recurrent seizures on cardiac microstructure. Further work is needed to stratify the risk of sudden unexplained cardiac death (SUDEP) on the basis of interictal autonomic parameters to improve prognosis.

  9. Comparison of ( sup 99m Tc)HMPAO SPECT with ( sup 18 F)fluoromethane PET in cerebrovascular disease

    SciTech Connect

    Heiss, W.D.; Herholz, K.; Podreka, I.; Neubauer, I.; Pietrzyk, U. )

    1990-09-01

    Positron emission tomography (PET) of (18F)fluoromethane (FM) and single-photon emission tomography (SPECT) of (99mTc)hexamethylpropyleneamine oxime (HMPAO) were performed under identical conditions within 2 h in 22 patients suffering from cerebrovascular disease (8 ischemic infarction, 2 intracerebral hemorrhages, 7 transient ischemic attacks, and 5 multi-infarct syndrome). While gross pathological changes could be seen in the images of either procedure, focal abnormalities corresponding to transient ischemic deficits or to lesions in multi-infarct syndrome and areas of functional deactivation were sometimes missed on SPECT images. Overall, HMPAO SPECT images showed less contrast between high and low activity regions than the FM PET images, and differences between lesions and contralateral regions were less pronounced (6.4 vs 13.3% difference). Regional cerebral blood flow (rCBF) was calculated from FM PET studies in 14 large territorial regions and the pathological lesion, and the regional values relative to mean flow were compared to the relative HMPAO uptake in an identical set of regions defined on the SPECT images. Among individual patients, the Spearman rank-correlation coefficient between relative rCBF and HMPAO uptake varied between 0.48 and 0.89, with a mean of 0.70. While an underestimation of high flow with SPECT--which was demonstrated in a curvilinear relationship between all relative regional PET and SPECT values--could be corrected by linearization taking into account HMPAO efflux from the brain before metabolic trapping, correspondence of SPECT data with PET rCBF values was not improved since this procedure also increased the variance in high flow areas. In the cerebellum, however, a high HMPAO uptake in SPECT always overestimated CBF in relation to forebrain values; this finding might be due to high capillary density in the cerebellum.

  10. Awake animal SPECT: Overview and initial results

    SciTech Connect

    Weisenberger, A G; Majewski, S; McKisson, J; Popov, V; Proffitt, J; Stolin, A; Baba, J S; Goddard, J S; Lee, S J; Smith, M F; Tsui, B; Pomper, M

    2009-02-01

    A SPECT / X-ray CT system configured at Johns Hopkins University to image the biodistribution of radiopharmaceuticals in unrestrained, un-anesthetized mice has been constructed and tested on awake mice. The system was built by Thomas Jefferson National Accelerator Facility and Oak Ridge National Laboratory. SPECT imaging is accomplished using two gamma cameras, 10 cm × 20 cm in size based on a 2 × 4 array of Hamamatsu H8500 flat panel position sensitive photomultiplier tubes. A real-time optical tracking system utilizing three infrared cameras provides time stamped pose data of an awake mouse head during a SPECT scan. The six degrees of freedom (three translational and three rotational) pose data are used for motion correction during 3-D tomographic list-mode iterative image reconstruction. SPECT reconstruction of awake, unrestrained mice with motion compensation for head movement has been accomplished.

  11. SPECT assay of radiolabeled monoclonal antibodies

    SciTech Connect

    Jaszczak, R.J.

    1992-02-01

    The long-term goal of this research project is to develop methods to improve the utility of single photon emission computed tomography (SPECI) to quantify the biodistribution of monoclonal antibodies (MoAbs) labeled with clinically relevant radionuclides ({sup 123}I, {sup 131}I, and {sup 111}In) and with another radionuclide,{sup 211}At, recently used in therapy. We describe here our progress in developing quantitative SPECT methodology for {sup 111}In and {sup 123}I. We have focused our recent research thrusts on the following aspects of SPECT: (1) The development of improved SPECT hardware, such as improved acquisition geometries. (2) The development of better reconstruction methods that provide accurate compensation for the physical factors that affect SPECT quantification. (3) The application of carefully designed simulations and experiments to validate our hardware and software approaches.

  12. PET/SPECT imaging agents for neurodegenerative diseases

    PubMed Central

    Zhu, Lin; Ploessl, Karl; Kung, Hank F.

    2014-01-01

    Single photon emission computed tomography (SPECT) or positron emission computed tomography (PET) imaging agents for neurodegenerative disease have a significant impact on clinical diagnosis and patient care. The examples of Parkinson’s Disease (PD) and Alzheimer’s Disease (AD) imaging agents described in this paper provide a general view on how imaging agents, ie radioactive drugs, are selected, chemically prepared and applied in humans. Imaging the living human brain can provide unique information on the pathology and progression of neurodegenerative diseases, such as AD and PD. The imaging method will also facilitate preclinical and clinical trials of new drugs offering specific information related to drug binding sites in the brain. In the future, chemists will continue to play important roles in identifying specific targets, synthesizing target-specific probes for screening and ultimately testing them by in vitro and in vivo assays. PMID:24676152

  13. ADAPTIVE SMALL-ANIMAL SPECT/CT

    PubMed Central

    Furenlid, L.R.; Moore, J.W.; Freed, M.; Kupinski, M.A.; Clarkson, E.; Liu, Z.; Wilson, D.W.; Woolfenden, J.M.; Barrett, H.H.

    2015-01-01

    We are exploring the concept of adaptive multimodality imaging, a form of non-linear optimization where the imaging configuration is automatically adjusted in response to the object. Preliminary studies suggest that substantial improvement in objective, task-based measures of image quality can result. We describe here our work to add motorized adjustment capabilities and a matching CT to our existing FastSPECT II system to form an adaptive small-animal SPECT/CT. PMID:26617457

  14. Impact of Single-Photon Emission Computed Tomography/Computed Tomography (SPECT/CT) and Positron Emission Tomography/Computed Tomography (PET/CT) in the Diagnosis of Traumatic Brain Injury (TBI): Case Report.

    PubMed

    Molina-Vicenty, Irma L; Santiago-Sánchez, Michelaldemar; Vélez-Miró, Iván; Motta-Valencia, Keryl

    2016-09-01

    Traumatic brain injury (TBI) is defined as damage to the brain resulting from an external force. TBI, a global leading cause of death and disability, is associated with serious social, economic, and health problems. In cases of mild-to-moderate brain damage, conventional anatomical imaging modalities may or may not detect the cascade of metabolic changes that have occurred or are occurring at the intracellular level. Functional nuclear medicine imaging and neurophysiological parameters can be used to characterize brain damage, as the former provides direct visualization of brain function, even in the absence of overt behavioral manifestations or anatomical findings. We report the case of a 30-year-old Hispanic male veteran who, after 2 traumatic brain injury events, developed cognitive and neuropsychological problems with no clear etiology in the presence of negative computed tomography (CT) findings.

  15. Localization Value of Magnetoencephalography Interictal Spikes in Adult Nonlesional Neocortical Epilepsy

    PubMed Central

    Jeong, Woorim; Kim, June Sic

    2012-01-01

    Few studies have included magnetoencephalography (MEG) when assessing the diagnostic value of presurgical modalities in a nonlesional epilepsy population. Here, we compare single photon emission computed tomography (SPECT), positron emission tomography (PET), video-EEG (VEEG), and MEG, with intracranial EEG (iEEG) to determine the value of individual modalities to surgical decisions. We analyzed 23 adult epilepsy patients with no abnormal MRI findings who had undergone surgical resection. Localization of individual presurgical tests was determined for hemispheric and lobar locations based on visual analysis. Each localization result was compared with the ictal onset zone (IOZ) defined by using iEEG. The highest to the lowest hemispheric concordance rates were MEG (83%) > ictal VEEG (78%) > PET (70%) > ictal SPECT (57%). The highest to lowest lobar concordance rates were ictal VEEG = MEG (65%) > PET (57%) > ictal SPECT (52%). Statistical analysis showed MEG to have a higher hemispheric concordance than that of ictal SPECT (P = 0.031). We analyzed the effects of MEG clustered-area resection on surgical outcome. Patients who had resection of MEG clusters showed a better surgical outcome than those without such resection (P = 0.038). It is suggested that MEG-based localization had the highest concordance with the iEEG-defined IOZ. Furthermore, MEG cluster resection has prognostic significance in predicting surgical outcome. PMID:23166423

  16. Small-animal SPECT and SPECT/CT: application in cardiovascular research

    PubMed Central

    Golestani, Reza; Wu, Chao; Tio, René A.; Zeebregts, Clark J.; Petrov, Artiom D.; Beekman, Freek J.; Dierckx, Rudi A. J. O.; Slart, Riemer H. J. A.

    2010-01-01

    Preclinical cardiovascular research using noninvasive radionuclide and hybrid imaging systems has been extensively developed in recent years. Single photon emission computed tomography (SPECT) is based on the molecular tracer principle and is an established tool in noninvasive imaging. SPECT uses gamma cameras and collimators to form projection data that are used to estimate (dynamic) 3-D tracer distributions in vivo. Recent developments in multipinhole collimation and advanced image reconstruction have led to sub-millimetre and sub-half-millimetre resolution SPECT in rats and mice, respectively. In this article we review applications of microSPECT in cardiovascular research in which information about the function and pathology of the myocardium, vessels and neurons is obtained. We give examples on how diagnostic tracers, new therapeutic interventions, pre- and postcardiovascular event prognosis, and functional and pathophysiological heart conditions can be explored by microSPECT, using small-animal models of cardiovascular disease. PMID:20069298

  17. Cannabinoid antagonist SLV326 induces convulsive seizures and changes in the interictal EEG in rats

    PubMed Central

    de Bruin, Natasja; Heijink, Liesbeth; Kruse, Chris; Vinogradova, Lyudmila; Lüttjohann, Annika; van Luijtelaar, Gilles; van Rijn, Clementina M.

    2017-01-01

    Cannabinoid CB1 antagonists have been investigated for possible treatment of e.g. obesity-related disorders. However, clinical application was halted due to their symptoms of anxiety and depression. In addition to these adverse effects, we have shown earlier that chronic treatment with the CB1 antagonist rimonabant may induce EEG-confirmed convulsive seizures. In a regulatory repeat-dose toxicity study violent episodes of “muscle spasms” were observed in Wistar rats, daily dosed with the CB1 receptor antagonist SLV326 during 5 months. The aim of the present follow-up study was to investigate whether these violent movements were of an epileptic origin. In selected SLV326-treated and control animals, EEG and behavior were monitored for 24 hours. 25% of SLV326 treated animals showed 1 to 21 EEG-confirmed generalized convulsive seizures, whereas controls were seizure-free. The behavioral seizures were typical for a limbic origin. Moreover, interictal spikes were found in 38% of treated animals. The frequency spectrum of the interictal EEG of the treated rats showed a lower theta peak frequency, as well as lower gamma power compared to the controls. These frequency changes were state-dependent: they were only found during high locomotor activity. It is concluded that long term blockade of the endogenous cannabinoid system can provoke limbic seizures in otherwise healthy rats. Additionally, SLV326 alters the frequency spectrum of the EEG when rats are highly active, suggesting effects on complex behavior and cognition. PMID:28151935

  18. Cannabinoid antagonist SLV326 induces convulsive seizures and changes in the interictal EEG in rats.

    PubMed

    Perescis, Martin F J; de Bruin, Natasja; Heijink, Liesbeth; Kruse, Chris; Vinogradova, Lyudmila; Lüttjohann, Annika; van Luijtelaar, Gilles; van Rijn, Clementina M

    2017-01-01

    Cannabinoid CB1 antagonists have been investigated for possible treatment of e.g. obesity-related disorders. However, clinical application was halted due to their symptoms of anxiety and depression. In addition to these adverse effects, we have shown earlier that chronic treatment with the CB1 antagonist rimonabant may induce EEG-confirmed convulsive seizures. In a regulatory repeat-dose toxicity study violent episodes of "muscle spasms" were observed in Wistar rats, daily dosed with the CB1 receptor antagonist SLV326 during 5 months. The aim of the present follow-up study was to investigate whether these violent movements were of an epileptic origin. In selected SLV326-treated and control animals, EEG and behavior were monitored for 24 hours. 25% of SLV326 treated animals showed 1 to 21 EEG-confirmed generalized convulsive seizures, whereas controls were seizure-free. The behavioral seizures were typical for a limbic origin. Moreover, interictal spikes were found in 38% of treated animals. The frequency spectrum of the interictal EEG of the treated rats showed a lower theta peak frequency, as well as lower gamma power compared to the controls. These frequency changes were state-dependent: they were only found during high locomotor activity. It is concluded that long term blockade of the endogenous cannabinoid system can provoke limbic seizures in otherwise healthy rats. Additionally, SLV326 alters the frequency spectrum of the EEG when rats are highly active, suggesting effects on complex behavior and cognition.

  19. Interictal attenuation in pediatric electrocorticography can be reliably detected by EEG readers.

    PubMed

    Kim, Andrew J; Nangia, Srishti; Berg, Anne T; Nordli, Douglas R

    2014-10-01

    Intraoperative electrocorticography (ECoG) helps to demarcate epileptogenic cortex, but a commonly observed feature, interictal attenuation, has received little attention. This may limit its use in the determination of the resection margin. In order to test how reliably EEGers can discern attenuation, we assessed how well EEGers agree with each other and with an objective, quantified measure of attenuation. ECoG segments (n=34) were evaluated for attenuation by two EEGers independently and in consensus, and by an amplitude spectral analysis-based quantitative method. A third EEGer divided the 34 ECoG segments into 3 subgroups-physiologic field present, physiologic field uncertain, and physiologic field absent-based on the clustering patterns of the attenuated electrodes. Inter-rater agreement between two independent EEGers (kappa=0.56) was moderate, and between consensus EEGers and the quantitative method (kappa=0.71) was substantial. These agreements were especially good among the physiologic field present subgroup where the attenuation clearly involved contiguous electrodes, and thus, more likely pathologic (kappa=0.64 for two independent EEGers and kappa=0.78 for consensus EEGers and quantitative method). Our results suggest that interictal attenuation, especially when involving contiguous electrodes, is an ECoG marker that can be consistently and reliably discerned by trained EEGers.

  20. Synaptic Conductances during Interictal Discharges in Pyramidal Neurons of Rat Entorhinal Cortex

    PubMed Central

    Amakhin, Dmitry V.; Ergina, Julia L.; Chizhov, Anton V.; Zaitsev, Aleksey V.

    2016-01-01

    In epilepsy, the balance of excitation and inhibition underlying the basis of neural network activity shifts, resulting in neuronal network hyperexcitability and recurrent seizure-associated discharges. Mechanisms involved in ictal and interictal events are not fully understood, in particular, because of controversial data regarding the dynamics of excitatory and inhibitory synaptic conductances. In the present study, we estimated AMPAR-, NMDAR-, and GABAA R-mediated conductances during two distinct types of interictal discharge (IID) in pyramidal neurons of rat entorhinal cortex in cortico-hippocampal slices. Repetitively emerging seizure-like events and IIDs were recorded in high extracellular potassium, 4-aminopyridine, and reduced magnesium-containing solution. An original procedure for estimating synaptic conductance during IIDs was based on the differences among the current-voltage characteristics of the synaptic components. The synaptic conductance dynamics obtained revealed that the first type of IID is determined by activity of GABAA R channels with depolarized reversal potential. The second type of IID is determined by the interplay between excitation and inhibition, with early AMPAR and prolonged depolarized GABAA R and NMDAR-mediated components. The study then validated the contribution of these components to IIDs by intracellular pharmacological isolation. These data provide new insights into the mechanisms of seizures generation, development, and cessation. PMID:27790093

  1. Do interictal microembolic signals play a role in higher cortical dysfunction during migraine aura?

    PubMed

    Petrusic, I; Podgorac, A; Zidverc-Trajkovic, J; Radojicic, A; Jovanovic, Z; Sternic, N

    2016-05-01

    The aim of this study was to evaluate the prevalence and clinical impact of interictal microembolic signals (MES) in patients suffering from migraine with higher cortical dysfunction (HCD), such as language and memory impairment, during an aura. This study was carried out on 34 migraineurs with language and memory impairment during aura (HCD group), 31 migraineurs with only visual or visual and somatosensory symptoms during aura (Control group I), and 34 healthy controls (Control group II). We used a Doppler instrument to detect microemboli. Demographic data, disease features and the detection of MES between these groups, as well as the predictors of HCD during the aura, were analyzed. The duration of aura was longer and the frequency of aura was higher among patients with language and memory impairment during aura compared to Control group I. MES was detected in 29.4% patients from the HCD group, which was significantly higher compared to 3.2% in Control group I and 5.9% in Control group II. Regarding the absence or presence of MES, demographic and aura features were not different in the HCD subgroups. A longer duration of aura, the presence of somatosensory symptoms during the aura and the presence of interictal MES were independent predictors of HCD during the aura. The present findings indicate that HCD and MES are related in patients with migraine with aura. Further research is needed to better understand the exact pathophysiological mechanism. © International Headache Society 2015.

  2. Cortisol fluctuations relate to interictal epileptiform discharges in stress sensitive epilepsy.

    PubMed

    van Campen, Jolien S; Hompe, E Lorraine; Jansen, Floor E; Velis, Demetrios N; Otte, Willem M; van de Berg, Fia; Braun, Kees P J; Visser, Gerhard H; Sander, Josemir W; Joels, Marian; Zijlmans, Maeike

    2016-06-01

    People with epilepsy often report seizures precipitated by stress. This is believed to be due to effects of stress hormones, such as cortisol, on neuronal excitability. Cortisol, regardless of stress, is released in hourly pulses, whose effect on epileptic activity is unknown. We tested the relation between cortisol levels and the incidence of epileptiform abnormalities in the electroencephalogram of people with focal epilepsy. Morning cortisol levels were measured in saliva samples obtained every 15 min. Interictal epileptiform discharges were determined in the same time periods. We investigated the relationship between cortisol levels and the epileptiform discharges distinguishing persons with from those without stress-precipitated seizures (linear mixed model), and analysed the contribution of individual, epilepsy and recording characteristics with multivariable analysis. Twenty-nine recordings were performed in 21 individuals. Cortisol was positively related to incidence of epileptiform discharges (β = 0.26, P = 0.002) in people reporting stress-sensitive seizures, but not those who did not report stress sensitivity (β = -0.07, P = 0.64). The relationship between cortisol and epileptiform discharges was positively associated only with stress sensitivity of seizures (β = 0.31, P = 0.005). The relationship between cortisol levels and incidence of interictal epileptiform discharges in people with stress-sensitive seizures suggests that stress hormones influence disease activity in epilepsy, also under basal conditions.

  3. Spatiotemporal Mapping of Interictal Spike Propagation: A Novel Methodology Applied to Pediatric Intracranial EEG Recordings

    PubMed Central

    Tomlinson, Samuel B.; Bermudez, Camilo; Conley, Chiara; Brown, Merritt W.; Porter, Brenda E.; Marsh, Eric D.

    2016-01-01

    Synchronized cortical activity is implicated in both normative cognitive functioning and many neurologic disorders. For epilepsy patients with intractable seizures, irregular synchronization within the epileptogenic zone (EZ) is believed to provide the network substrate through which seizures initiate and propagate. Mapping the EZ prior to epilepsy surgery is critical for detecting seizure networks in order to achieve postsurgical seizure control. However, automated techniques for characterizing epileptic networks have yet to gain traction in the clinical setting. Recent advances in signal processing and spike detection have made it possible to examine the spatiotemporal propagation of interictal spike discharges across the epileptic cortex. In this study, we present a novel methodology for detecting, extracting, and visualizing spike propagation and demonstrate its potential utility as a biomarker for the EZ. Eighteen presurgical intracranial EEG recordings were obtained from pediatric patients ultimately experiencing favorable (i.e., seizure-free, n = 9) or unfavorable (i.e., seizure-persistent, n = 9) surgical outcomes. Novel algorithms were applied to extract multichannel spike discharges and visualize their spatiotemporal propagation. Quantitative analysis of spike propagation was performed using trajectory clustering and spatial autocorrelation techniques. Comparison of interictal propagation patterns revealed an increase in trajectory organization (i.e., spatial autocorrelation) among Sz-Free patients compared with Sz-Persist patients. The pathophysiological basis and clinical implications of these findings are considered. PMID:28066315

  4. Microdialysis and SPECT measurements of amphetamine-induced dopamine release in nonhuman primates.

    PubMed

    Laruelle, M; Iyer, R N; al-Tikriti, M S; Zea-Ponce, Y; Malison, R; Zoghbi, S S; Baldwin, R M; Kung, H F; Charney, D S; Hoffer, P B; Innis, R B; Bradberry, C W

    1997-01-01

    The competition between endogenous transmitters and radiolabeled ligands for in vivo binding to neuroreceptors might provide a method to measure endogenous transmitter release in the living human brain with noninvasive techniques such as positron emission tomography (PET) or single photon emission computerized tomography (SPECT). In this study, we validated the measure of amphetamine-induced dopamine release with SPECT in nonhuman primates. Microdialysis experiments were conducted to establish the dose-response curve of amphetamine-induced dopamine release and to document how pretreatment with the dopamine depleter alpha-methyl-para-tyrosine (alpha MPT) affects this response. SPECT experiments were performed with two iodinated benzamides, [123I]IBZM and [123I]IBF, under sustained equilibrium condition. Both radio-tracers are specific D2 antagonists, but the affinity of [123I]IBZM (KD-0.4 nM) is lower than that of [123I]IBF (KD 0.1 nM). With both tracers, we observed a prolonged reduction in binding to D2 receptors following amphetamine injection. [123I]IBZM binding to D2 receptors was more affected than [123I]IBF by high doses of amphetamine, indicating that a lower affinity increases the vulnerability of a tracer to endogenous competition. With [123I]IBZM, we observed an excellent correlation between reduction of D2 receptor binding measured with SPECT and peak dopamine release measured with microdialysis after various doses of amphetamine. Pretreatment with alpha MPT significantly reduced the effect of amphetamine on [123I]IBZM binding to D2 receptors, confirming that this effect was mediated by intrasynaptic dopamine release. Together, these results validate the use of this SPECT paradigm as a noninvasive measurement of intrasynaptic dopamine release in the living brain.

  5. Development of [(123)I]IPEB and [(123)I]IMPEB as SPECT Radioligands for Metabotropic Glutamate Receptor Subtype 5.

    PubMed

    Kil, Kun-Eek; Zhu, Aijun; Zhang, Zhaoda; Choi, Ji-Kyung; Kura, Sreekanth; Gong, Chunyu; Brownell, Anna-Liisa

    2014-06-12

    mGlu5 play an important role in physiology and pathology to various central nervous system (CNS) diseases. Several positron emission tomography (PET) radiotracers have been developed to explore the role of mGlu5 in brain disorders. However, there are no single photon emission computed tomography (SPECT) radioligands for mGlu5. Here we report development of [(123)I]IPEB ([(123)I]1) and [(123)I]IMPEB ([(123)I]2) as mGlu5 radioligands for SPECT. [(123)I]1 and [(123)I]2 were produced by copper(I) mediated aromatic halide displacement reactions. The SPECT imaging using mouse models demonstrated that [(123)I]1 readily entered the brain and accumulated specifically in mGlu5-rich regions of the brain such as striatum and hippocampus. However, in comparison to the corresponding PET tracer [(18)F]FPEB, [(123)I]1 showed faster washout from the brain. The binding ratios of the striatum and the hippocampus compared to the cerebellum for [(123)I]1 and [(18)F]FPEB were similar despite unfavorable pharmacokinetics of [(123)I]1. Further structural optimization of 1 may lead to more viable SPECT radiotracers for the imaging of mGlu5.

  6. SPECT, MRI and cognitive functions in multiple sclerosis.

    PubMed Central

    Pozzilli, C; Passafiume, D; Bernardi, S; Pantano, P; Incoccia, C; Bastianello, S; Bozzao, L; Lenzi, G L; Fieschi, C

    1991-01-01

    Seventeen patients with relapsing remitting multiple sclerosis (MS) and mild physical disability had neuropsychological testing, magnetic resonance imaging (MRI) and single photon emission computerised tomography (SPECT) using technetium 99m (99mTc) hexamethyl-propyleneamine oxime (HMPAO). Performance in verbal fluency, naming and memory testing appeared to be impaired in MS patients compared with 17 age-sex and education matched normal controls. Weighted periventricular and confluent lesion scores and the width of the third ventricle, proved to be the most sensitive MRI measures in differentiating more cognitively impaired patients from those who were relatively unimpaired. Ratios of regional to whole brain activity, measured by SPECT, showed significant reduction in the frontal lobes and in the left temporal lobe of MS patients. A relationship was found between left temporal abnormality in 99mTc-HMPAO uptake and deficit in verbal fluency and verbal memory. Finally, asymmetrical lobar activity indicated a predominant left rather than right temporo-parietal involvement. PMID:2019835

  7. Development of PET and SPECT Probes for Glutamate Receptors

    PubMed Central

    Nakayama, Morio

    2015-01-01

    l-Glutamate and its receptors (GluRs) play a key role in excitatory neurotransmission within the mammalian central nervous system (CNS). Impaired regulation of GluRs has also been implicated in various neurological disorders. GluRs are classified into two major groups: ionotropic GluRs (iGluRs), which are ligand-gated ion channels, and metabotropic GluRs (mGluRs), which are coupled to heterotrimeric guanosine nucleotide binding proteins (G-proteins). Positron emission tomography (PET) and single photon emission computed tomography (SPECT) imaging of GluRs could provide a novel view of CNS function and of a range of brain disorders, potentially leading to the development of new drug therapies. Although no satisfactory imaging agents have yet been developed for iGluRs, several PET ligands for mGluRs have been successfully employed in clinical studies. This paper reviews current progress towards the development of PET and SPECT probes for GluRs. PMID:25874256

  8. Intrinsic Feature Pose Measurement for Awake Animal SPECT Imaging

    SciTech Connect

    Goddard Jr, James Samuel; Baba, Justin S; Lee, Seung Joon; Weisenberger, A G; Stolin, A; McKisson, J; Smith, M F

    2009-01-01

    New developments have been made in optical motion tracking for awake animal imaging that measures 3D position and orientation (pose) for a single photon emission computed tomography (SPECT) imaging system. Ongoing SPECT imaging research has been directed towards head motion measurement for brain studies in awake, unrestrained mice. In contrast to previous results using external markers, this work extracts and tracks intrinsic features from multiple camera images and computes relative pose from the tracked features over time. Motion tracking thus far has been limited to measuring extrinsic features such as retro-reflective markers applied to the mouse s head. While this approach has been proven to be accurate, the additional animal handling required to attach the markers is undesirable. A significant improvement in the procedure is achieved by measuring the pose of the head without extrinsic markers using only the external surface appearance. This approach is currently being developed with initial results presented here. The intrinsic features measurement extracts discrete, sparse natural features from 2D images such as eyes, nose, mouth and other visible structures. Stereo correspondence between features for a camera pair is determined for calculation of 3D positions. These features are also tracked over time to provide continuity for surface model fitting. Experimental results from live images are presented.

  9. Optimizing SPECT SISCOM analysis to localize seizure-onset zone by using varying z scores.

    PubMed

    Newey, Christopher R; Wong, Chong; Wang, Z Irene; Chen, Xin; Wu, Guiyun; Alexopoulos, Andreas V

    2013-05-01

    Subtraction ictal single photon emission computed tomography (SPECT) co-registered to magnetic resonance imaging (MRI) (SISCOM) is a useful modality to identify epileptogenic focus. Using this technique, several studies have generally considered the area of highest ictal hyperperfusion, as outlined by thresholding the difference images with a standard z score of 2, to be highly concordant to the epileptogenic focus. In clinical practice, several factors influence ictal hyperperfusion and using different SISCOM thresholds can be helpful. We aimed to systematically evaluate the localizing value of various z scores (1, 1.5, 2, and 2.5) in a seizure-free cohort following resective epilepsy surgery, and to examine the localizing information of perfusion patterns observed at each z score. Twenty-six patients were identified as having ictal-interictal SPECT images, preoperative and postoperative MRI studies, and having remained seizure free for at least 6 months after temporal or extratemporal surgical resection. SISCOM analysis was performed using preoperative MRI studies, and then blindly reviewed for localization of hyperperfused regions. With the added information from postoperative, coregistered MRI, perfusion patterns were determined. Using pair-wise comparisons, we found that the optimal z score for SPECT-SISCOM localization of the epileptogenic zone was 1.5, not the commonly used z score of 2. The z score of 1.5 was 84.8% sensitive and 93.8% specific. The z score of 1.5 had a moderate interrater agreement (0.70). When an hourglass configuration hyperperfusion pattern was present, a trend toward correctly localizing the seizure onset region was suggested (100% of the 11 observed occurrences). Nonetheless this trend was not statistically significant, possibly reflecting the small number of occurrences in our study. SISCOM is a useful modality in evaluating patients for epilepsy surgery. This study shows that the z score of 1.5 represents a highly sensitive and

  10. Monitoring CBF in clinical routine by dynamic single photon emission tomography (SPECT) of inhaled xenon-133

    SciTech Connect

    Sugiyama, H.; Christensen, J.; Skyhoj Olsen, T.; Lassen, N.A.

    1986-11-01

    A very simple and low-cost brain dedicated, rapidly rotating Single Photon Emission Tomograph SPECT is described. Its use in following patients with ischemic stroke is illustrated by two middle cerebral artery occlusion cases, one with persistent occlusion and low CBF in MCA territory, and one with early lysis of the occlusion having high CBF (massive luxury perfusion) for some weeks. Evidence of this kind may be essential in the evaluation of therapeutic measures in ischemic stroke.

  11. Imaging analysis of Parkinson’s disease patients using SPECT and tractography

    PubMed Central

    Son, Seong-Jin; Kim, Mansu; Park, Hyunjin

    2016-01-01

    Parkinson’s disease (PD) is a degenerative disorder that affects the central nervous system. PD-related alterations in structural and functional neuroimaging have not been fully explored. This study explored multi-modal PD neuroimaging and its application for predicting clinical scores on the Movement Disorder Society-sponsored Unified Parkinson’s Disease Rating Scale (MDS-UPDRS). Multi-modal imaging that combined 123I-Ioflupane single-photon emission computed tomography (SPECT) and diffusion tensor imaging (DTI) were adopted to incorporate complementary brain imaging information. SPECT and DTI images of normal controls (NC; n = 45) and PD patients (n = 45) were obtained from a database. The specific binding ratio (SBR) was calculated from SPECT. Tractography was performed using DTI. Group-wise differences between NC and PD patients were quantified using SBR of SPECT and structural connectivity of DTI for regions of interest (ROIs) related to PD. MDS-UPDRS scores were predicted using multi-modal imaging features in a partial least-squares regression framework. Three regions and four connections within the cortico-basal ganglia thalamocortical circuit were identified using SBR and DTI, respectively. Predicted MDS-UPDRS scores using identified regions and connections and actual MDS-UPDRS scores showed a meaningful correlation (r = 0.6854, p < 0.001). Our study provided insight on regions and connections that are instrumental in PD. PMID:27901100

  12. Multimodal imaging with hybrid semiconductor detectors Timepix for an experimental MRI-SPECT system

    NASA Astrophysics Data System (ADS)

    Zajicek, J.; Jakubek, J.; Burian, M.; Vobecky, M.; Fauler, A.; Fiederle, M.; Zwerger, A.

    2013-01-01

    An increasing number of clinical applications are being based on multimodal imaging systems (MIS), including anatomical (CT, MRI) and functional (PET, SPECT) techniques to provide complex information in a single image. CT with one of the scintigraphic methods (PET or SPECT) is nowadays a combination of choice for clinical practice and it is mostly used in cardiography and tumour diagnostics. Combination with MRI is also being implemented as no radiation dose is imparted to the patient and it is possible to gain higher structural resolution of soft tissues (brain imaging). A major disadvantage of such systems is inability to operate scintillators with photomultipliers (used for detection of γ rays) in presence of high magnetic fields. In this work we present the application of the semiconductor pixel detector for SPECT method in combination with MR imaging. We propose a novel approach based on MRI compatible setup with CdTe pixel sensor Timepix and non-conductive collimator. Measurements were performed on high proton-density (PD) phantom (1H) with an embedded radioisotopic source inside the shielded RF coil by MRI animal scanner (4.7 T). Our results pave the way for a combined MRI-SPECT system. The project was performed in the framework of the Medipix Collaboration.

  13. Improving the count rate performance of a modular cylindrical SPECT system

    SciTech Connect

    Li, Y.J.; Hollinger, E.F.; Liu, J.; Chang, W.

    1996-12-31

    We recently proposed a design of a modular cylindrical cardiac SPECT system. one special feature of this system is an integrated provision for transmission imaging. To meet the clinical demands of obtaining transmission images, this system must be able to achieve a very high count rate (CR). To explore methods for achieving a high CR capability on a modular cylindrical detector system, we have used our existing modular cylindrical brain SPECT system to examine the feasibility of two approaches. First, we use digital-signal-processing (DSP) boards, in parallel, to execute real time position calculations. Second, we use local encoding and triggering circuits to perform analog signal processing, including identifying the detector module and digitizing the pulse signals. The results of our preliminary investigations indicate that applying the multiple-DSP parallel position calculation and local triggering techniques in a modular SPECT system can improve the CR capability significantly. Applying local triggering increased the CR capability by 15% at a CR capability of 200 kcps. Because we have used slow-speed DSP boards during this proof-of-concept testing, we have not yet met the CR requirements for transmission imaging. However, these results indicate that by using state-of-the-art DSP boards the CR capability of this modular SPECT system can be increased to over 300 kcps.

  14. A practical correction of scatter-related artifacts in SPECT reconstruction

    NASA Astrophysics Data System (ADS)

    Ye, Hongwei; Krol, Andrzej; Lipson, Edward D.; Kunniyur, Vikram R.; Lee, Wei; Feiglin, David H.

    2007-03-01

    We have observed that an expectation maximization (EM) algorithm applied to SPECT reconstruction may produce hotspot artifacts of varying intensity. Our hypothesis was that scatter caused these artifacts. To test this assumption, we studied the performance of forward- and back-projection procedures in the EM algorithm for simulated and experimental SPECT data. First, synthetic scatter-free projections and projections with only one scattered photon in each view were created for a simulated simple object, and reconstructed with a fully 3D ordered-subsets EM (OSEM) algorithm. Then, Monte Carlo simulated brain SPECT (with no scatter and with scatter present), a mini-Defrise phantom, and patient SPECT were reconstructed. We confirmed our hypothesis: hot-spot artifacts appeared only in the reconstruction from noisy projections but not in the reconstruction from scatter-free projections. We investigated a practical and simple method, critical path-length control (CPLC), for suppression of the hot-spot artifacts. To this end we performed reconstructions with or without CPLC and quantitatively evaluated the results including estimation of accuracy, bias, contrast-to-noise ratio, and uniformity. We found that the OSEM-with-CPLC method significantly reduced hot-spot artifacts, and yielded a similar or improved image quality. We conclude that the CPLC method provides a useful yet simple tool to reduce scatter-related hot-spot artifacts.

  15. 123I-IMP-SPECT in a patient with cerebral proliferative angiopathy: a case report.

    PubMed

    Kimiwada, Tomomi; Hayashi, Toshiaki; Shirane, Reizo; Tominaga, Teiji

    2013-11-01

    Cerebral proliferative angiopathy (CPA) is a new clinical entity demonstrating a diffuse network of densely enhanced vascular abnormalities with intermingled normal brain parenchyma and is distinguishable from classical arteriovenous malformations by specific clinical and imaging markers. However, the pathophysiological nature of this disease is unclear, and there is no consensus on the treatment. We describe cerebral perfusion abnormalities in a patient with CPA by using N-isopropyl-p-[123I] iodoamphetamine single-photon emission computed tomography (123I-IMP-SPECT) and perfusion-weighted magnetic resonance imaging. The patient, a 13-year-old boy, had reversible focal neurological deficits unrelated to cerebral hemorrhage. 123I-IMP-SPECT at resting state showed preserved uptake within the vascular lesion, yet lower uptake in the area adjacent to the lesion. In addition, acetazolamide-stressed 123I-IMP-SPECT exhibited severely impaired cerebrovascular reactivity over the affected hemisphere, suggesting that his focal neurological deficits were related to the cerebral ischemia. The perfusion abnormalities on 123I-IMP-SPECT in a CPA patient have never been previously reported. The concept of vascular malformation-related hypoperfusion is discussed. Copyright © 2013 National Stroke Association. Published by Elsevier Inc. All rights reserved.

  16. Localization of interictal epileptic spikes with MEG: optimization of an automated beamformer screening method (SAMepi) in a diverse epilepsy population

    PubMed Central

    Scott, Jonathan M.; Robinson, Stephen E.; Holroyd, Tom; Coppola, Richard; Sato, Susumu; Inati, Sara K.

    2016-01-01

    OBJECTIVE To describe and optimize an automated beamforming technique followed by identification of locations with excess kurtosis (g2) for efficient detection and localization of interictal spikes in medically refractory epilepsy patients. METHODS Synthetic Aperture Magnetometry with g2 averaged over a sliding time window (SAMepi) was performed in 7 focal epilepsy patients and 5 healthy volunteers. The effect of varied window lengths on detection of spiking activity was evaluated. RESULTS Sliding window lengths of 0.5–10 seconds performed similarly, with 0.5 and 1 second windows detecting spiking activity in one of the 3 virtual sensor locations with highest kurtosis. These locations were concordant with the region of eventual surgical resection in these 7 patients who remained seizure free at one year. Average g2 values increased with increasing sliding window length in all subjects. In healthy volunteers kurtosis values stabilized in datasets longer than two minutes. CONCLUSIONS SAMepi using g2 averaged over 1 second sliding time windows in datasets of at least 2 minutes duration reliably identified interictal spiking and the presumed seizure focus in these 7 patients. Screening the 5 locations with highest kurtosis values for spiking activity is an efficient and accurate technique for localizing interictal activity using MEG. SIGNIFICANCE SAMepi should be applied using the parameter values and procedure described for optimal detection and localization of interictal spikes. Use of this screening procedure could significantly improve the efficiency of MEG analysis if clinically validated. PMID:27760068

  17. Anodal transcranial direct current stimulation over the left temporal pole restores normal visual evoked potential habituation in interictal migraineurs.

    PubMed

    Cortese, Francesca; Pierelli, Francesco; Bove, Ilaria; Di Lorenzo, Cherubino; Evangelista, Maurizio; Perrotta, Armando; Serrao, Mariano; Parisi, Vincenzo; Coppola, Gianluca

    2017-12-01

    Neuroimaging data has implicated the temporal pole (TP) in migraine pathophysiology; the density and functional activity of the TP were reported to fluctuate in accordance with the migraine cycle. Yet, the exact link between TP morpho-functional abnormalities and migraine is unknown. Here, we examined whether non-invasive anodal transcranial direct current stimulation (tDCS) ameliorates abnormal interictal multimodal sensory processing in patients with migraine. We examined the habituation of visual evoked potentials and median nerve somatosensory evoked potentials (SSEP) before and immediately after 20-min anodal tDCS (2 mA) or sham stimulation delivered over the left TP in interictal migraineurs. Prior to tDCS, interictal migraineurs did not exhibit habituation in response to repetitive visual or somatosensory stimulation. After anodal tDCS but not sham stimulation, migraineurs exhibited normal habituation responses to visual stimulation; however, tDCS had no effect on SSEP habituation in migraineurs. Our study shows for the first time that enhancing excitability of the TP with anodal tDCS normalizes abnormal interictal visual information processing in migraineurs. This finding has implications for the role of the TP in migraine, and specifically highlights the ventral stream of the visual pathway as a pathophysiological neural substrate for abnormal visual processing in migraine.

  18. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction.

    PubMed

    Elschot, Mattijs; Smits, Maarten L J; Nijsen, Johannes F W; Lam, Marnix G E H; Zonnenberg, Bernard A; van den Bosch, Maurice A A J; Viergever, Max A; de Jong, Hugo W A M

    2013-11-01

    Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ((166)Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative (166)Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum. A fast Monte Carlo (MC) simulator was developed for simulation of (166)Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full (166)Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A(est)) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six (166)Ho RE patients. At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥ 17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96-106.21 ml were improved from 32%-63% (SPECT-DSW) and 50%-80% (SPECT-ppMC+DSW) to 76%-103% (SPECT-fMC). Furthermore

  19. Lacosamide modulates interictal spiking and high-frequency oscillations in a model of mesial temporal lobe epilepsy

    PubMed Central

    Behr, Charles; Lévesque, Maxime; Ragsdale, David; Avoli, Massimo

    2016-01-01

    Objective Nearly one third of patients presenting with mesial temporal lobe epilepsy (MTLE), the most prevalent lesion-related epileptic disorder in adulthood, do not respond to currently available antiepileptic medications. Thus, there is a need to identify and characterize new antiepileptic drugs. In this study, we used the pilocarpine model of MTLE to establish the effects of a third generation drug, lacosamide (LCM), on seizures, interictal spikes and high-frequency oscillations (HFOs, ripples: 80–200 Hz, fast ripples: 250–500 Hz). Methods Sprague–Dawley rats (250–300 g) were injected with pilocarpine to induce a status epilepticus (SE) that was pharmacologically terminated after 1 h. Eight pilocarpine-treated rats were then injected with LCM (30 mg/kg, i.p.) 4 h after SE and daily for 14 days. Eight pilocarpine-treated rats were used as controls and treated with saline. Three days after SE, all rats were implanted with bipolar electrodes in the hippocampal CA3 region, entorhinal cortex (EC), dentate gyrus (DG) and subiculum and EEG-video monitored from day 4 to day 14 after SE. Results LCM-treated animals showed lower rates of seizures (0.21 (±0.11) seizures/day) than controls (2.6 (±0.57), p < 0.05), and a longer latent period (LCM: 11 (±1) days, controls: 6.25 (±1), p < 0.05). Rates of interictal spikes in LCM-treated rats were significantly lower than in controls in CA3 and subiculum (p < 0.05). Rates of ripples and fast ripples associated with interictal spikes in CA3 and subiculum as well as rates of fast ripples occurring outside of interictal spikes in CA3 were also significantly lower in LCM-treated animals. In controls, interictal spikes and associated HFOs correlated to seizure clustering, while this was not the case for isolated HFOs. Significance Our findings show that early treatment with LCM has powerful anti-ictogenic properties in the pilocarpine model of MTLE. These effects are accompanied by decreased rates of interictal spikes

  20. Characterisation and imaging of cortical impedance changes during interictal and ictal activity in the anaesthetised rat.

    PubMed

    Vongerichten, Anna N; Santos, Gustavo Sato Dos; Aristovich, Kirill; Avery, James; McEvoy, Andrew; Walker, Matthew; Holder, David S

    2016-01-01

    Epilepsy affects approximately 50 million people worldwide, and 20-30% of these cases are refractory to antiepileptic drugs. Many patients with intractable epilepsy can benefit from surgical resection of the tissue generating the seizures; however, difficulty in precisely localising seizure foci has limited the number of patients undergoing surgery as well as potentially lowered its effectiveness. Here we demonstrate a novel imaging method for monitoring rapid changes in cerebral tissue impedance occurring during interictal and ictal activity, and show that it can reveal the propagation of pathological activity in the cortex. Cortical impedance was recorded simultaneously to ECoG using a 30-contact electrode mat placed on the exposed cortex of anaesthetised rats, in which interictal spikes (IISs) and seizures were induced by cortical injection of 4-aminopyridine (4-AP), picrotoxin or penicillin. We characterised the tissue impedance responses during IISs and seizures, and imaged these responses in the cortex using Electrical Impedance Tomography (EIT). We found a fast, transient drop in impedance occurring as early as 12ms prior to the IISs, followed by a steep rise in impedance within ~120ms of the IIS. EIT images of these impedance changes showed that they were co-localised and centred at a depth of 1mm in the cortex, and that they closely followed the activity propagation observed in the surface ECoG signals. The fast, pre-IIS impedance drop most likely reflects synchronised depolarisation in a localised network of neurons, and the post-IIS impedance increase reflects the subsequent shrinkage of extracellular space caused by the intense activity. EIT could also be used to picture a steady rise in tissue impedance during seizure activity, which has been previously described. Thus, our results demonstrate that EIT can detect and localise different physiological changes during interictal and ictal activity and, in conjunction with ECoG, may in future improve the

  1. Latent profile analysis in frontotemporal lobar degeneration and related disorders: clinical presentation and SPECT functional correlates

    PubMed Central

    Borroni, Barbara; Grassi, Mario; Agosti, Chiara; Paghera, Barbara; Alberici, Antonella; Di Luca, Monica; Perani, Daniela; Padovani, Alessandro

    2007-01-01

    Background Frontotemporal Lobar Degeneration (FTLD) thus recently renamed, refers to a spectrum of heterogeneous conditions. This same heterogeneity of presentation represents the major methodological limit for the correct evaluation of clinical designation and brain functional correlates. At present, no study has investigated clinical clusters due to specific cognitive and behavioural disturbances beyond current clinical criteria. The aim of this study was to identify clinical FTLD presentation, based on cognitive and behavioural profile, and to define their SPECT functional correlations. Methods Ninety-seven FTLD patients entered the study. A clinical evaluation and standardised assessment were preformed, as well as a brain SPECT perfusion imaging study. Latent Profile Analysis on clinical, neuropsychological, and behavioural data was performed. Voxel-basis analysis of SPECT data was computed. Results Three specific clusters were identified and named "pseudomanic behaviour" (LC1), "cognitive" (LC2), and "pseudodepressed behaviour" (LC3) endophenotypes. These endophenotypes showed a comparable hypoperfusion in left temporal lobe, but a specific pattern involving: medial and orbitobasal frontal cortex in LC1, subcortical brain region in LC2, and right dorsolateral frontal cortex and insula in LC3. Conclusion These findings provide evidence that specific functional-cluster symptom relationship can be delineated in FTLD patients by a standardised assessment. The understanding of the different functional correlates of clinical presentations will hopefully lead to the possibility of individuating diagnostic and treatment algorithms. PMID:17506892

  2. Gap Junctions Contribute to Ictal/Interictal Genesis in Human Hypothalamic Hamartomas.

    PubMed

    Wu, Jie; Gao, Ming; Rice, Stephen G; Tsang, Candy; Beggs, John; Turner, Dharshaun; Li, Guohui; Yang, Bo; Xia, Kunkun; Gao, Fenfei; Qiu, Shenfeng; Liu, Qiang; Kerrigan, John F

    2016-06-01

    Human hypothalamic hamartoma (HH) is a rare subcortical lesion associated with treatment-resistant epilepsy. Cellular mechanisms responsible for epileptogenesis are unknown. We hypothesized that neuronal gap junctions contribute to epileptogenesis through synchronous activity within the neuron networks in HH tissue. We studied surgically resected HH tissue with Western-blot analysis, immunohistochemistry, electron microscopy, biocytin microinjection of recorded HH neurons, and microelectrode patch clamp recordings with and without pharmacological blockade of gap junctions. Normal human hypothalamus tissue was used as a control. Western blots showed increased expression of both connexin-36 (Cx36) and connexin-43 (Cx43) in HH tissue compared with normal human mammillary body tissue. Immunohistochemistry demonstrated that Cx36 and Cx43 are expressed in HH tissue, but Cx36 was mainly expressed within neuron clusters while Cx43 was mainly expressed outside of neuron clusters. Gap-junction profiles were observed between small HH neurons with electron microscopy. Biocytin injection into single recorded small HH neurons showed labeling of adjacent neurons, which was not observed in the presence of a neuronal gap-junction blocker, mefloquine. Microelectrode field recordings from freshly resected HH slices demonstrated spontaneous ictal/interictal-like discharges in most slices. Bath-application of gap-junction blockers significantly reduced ictal/interictal-like discharges in a concentration-dependent manner, while not affecting the action-potential firing of small gamma-aminobutyric acid (GABA) neurons observed with whole-cell patch-clamp recordings from the same patient's HH tissue. These results suggest that neuronal gap junctions between small GABAergic HH neurons participate in the genesis of epileptic-like discharges. Blockade of gap junctions may be a new therapeutic strategy for controlling seizure activity in HH patients. Copyright © 2016 The Authors. Published by

  3. Periictal and interictal headache including migraine in Dutch patients with epilepsy: a cross-sectional study.

    PubMed

    Hofstra, W A; Hageman, G; de Weerd, A W

    2015-03-01

    As early as in 1898, it was noted that there was a need to find "a plausible explanation of the long recognized affinities of migraine and epilepsy". However, results of recent studies are clearly conflicting on this matter. In this cross-sectional study, we aimed to define the prevalence and characteristics of both seizure-related and interictal headaches in patients with epilepsy (5-75years) seeking help in the tertiary epilepsy clinic SEIN in Zwolle. Using a questionnaire, subjects were surveyed on the existence of headaches including characteristics, duration, severity, and accompanying symptoms. Furthermore, details on epilepsy were retrieved from medical records (e.g., syndrome, seizure frequency, and use of drugs). Diagnoses of migraine, tension-type headache, or unclassifiable headache were made based on criteria of the International Classification of Headache Disorders. Between March and December 2013, 29 children and 226 adults were evaluated, 73% of whom indicated having current headaches, which is significantly more often when compared with the general population (p<0.001). Forty-nine percent indicated having solely interictal headache, while 29% had solely seizure-related headaches and 22% had both. Migraine occurs significantly more often in people with epilepsy in comparison with the general population (p<0.001), and the occurrence of tension-type headaches conforms to results in the general population. These results show that current headaches are a significantly more frequent problem amongst people with epilepsy than in people without epilepsy. When comparing migraine prevalence, this is significantly higher in the population of patients with epilepsy. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Interictal MEG/MSI in intractable mesial temporal lobe epilepsy: spike yield and characterization.

    PubMed

    Kaiboriboon, Kitti; Nagarajan, Srikantan; Mantle, Mary; Kirsch, Heidi E

    2010-03-01

    To evaluate the ability of MEG to detect medial temporal spikes in patients with known medial temporal lobe epilepsy (MTLE) and to use magnetic source imaging (MSI) with equivalent current dipoles to examine localization and orientation of spikes and their relation to surgical outcome. We prospectively obtained MSI on a total of 25 patients previously diagnosed with intractable MTLE. MEG was recorded with a 275 channel whole-head system with simultaneous 21-channel scalp EEG during inpatient admission one day prior to surgical resection. The patients' surgical outcomes were classified based on one-year follow-up after surgery. Nineteen of the 22 patients (86.4%) had interictal spikes during the EEG and MEG recordings. Thirteen of 19 patients (68.4%) demonstrated unilateral temporal dipoles ipsilateral to the site of surgery. Among these patients, five (38.5%) patients had horizontal dipoles, one (7.7%) patient had vertical dipoles, and seven (53.8%) patients had both horizontal and vertical dipoles. Sixty percent of patients with non-localizing ictal scalp EEG had well-localized spikes on MSI ipsilateral to the side of surgery and 66.7% of patients with non-localizing MRI had well-localized spikes on MSI ipsilateral to the side of surgery. Concordance between MSI localization and the side of lobectomy was not associated with a likelihood of an excellent postsurgical outcome. MSI can detect medial temporal spikes. It may provide important localizing information in patients with MTLE, especially when MRI and/or ictal scalp EEG are not localizing. This study demonstrates that MSI has a good ability to detect interictal spikes from mesial temporal structures.

  5. Interictal diffusion and perfusion magnetic resonance imaging features of cats with familial spontaneous epilepsy.

    PubMed

    Mizoguchi, Shunta; Hasegawa, Daisuke; Hamamoto, Yuji; Yu, Yoshihiko; Kuwabara, Takayuki; Fujiwara-Igarashi, Aki; Fujita, Michio

    2017-03-01

    OBJECTIVE To evaluate the usefulness of diffusion and perfusion MRI of the cerebrum in cats with familial spontaneous epilepsy (FSECs) and identify microstructural and functional deficit zones in affected cats. ANIMALS 19 FSECs and 12 healthy cats. PROCEDURES Diffusion-weighted, diffusion tensor, and perfusion-weighted MRI of the cerebrum were performed during interictal periods in FSECs. Imaging findings were compared between FSECs and control cats. Diffusion (apparent diffusion coefficient and fractional anisotropy) and perfusion (relative cerebral blood volume [rCBV], relative cerebral blood flow [rCBF], and mean transit time) variables were measured bilaterally in the hippocampus, amygdala, thalamus, parietal cortex gray matter, and subcortical white matter. Asymmetry of these variables in each region was also evaluated and compared between FSECs and control cats. RESULTS The apparent diffusion coefficient of the total amygdala of FSECs was significantly higher, compared with that of control cats. The fractional anisotropy of the right side and total hippocampus of FSECs was significantly lower, compared with that of control cats. The left and right sides and total hippocampal rCBV and rCBF were significantly lower in FSECs than in control cats. The rCBV and rCBF of the parietal cortex gray matter in FSECs were significantly lower than in control cats. CONCLUSIONS AND CLINICAL RELEVANCE In FSECs, diffusion and perfusion MRI detected microstructural changes and hypoperfusion (lowered function) in the cerebrum during interictal periods from that of healthy cats. These findings indicated that diffusion and perfusion MRI may be useful for noninvasive evaluation of epileptogenic foci in cats.

  6. N-allyl epiderpride: An extremely potent SPECT radioligand for the dopamine D2 receptor

    SciTech Connect

    Kessler, R.M.; Mason, N.S.; Ansari, M.S.

    1994-05-01

    We have previously reported that epidepride is a potent (K{sub D} 24pM) and specific SPECT radioligand for the dopamine D2 receptor which can be used to study striatal and extrastriatal dopamine D2 receptors in man. We have synthesized and evaluated the N-allyl analogue of epiderpride (APID) as a potential SPECT radioligand for the dopamine D2 receptor. In comparison to epidepride it is even more potent at the dopamine D2 receptor, the K{sub D} for APID being 11 frontal cortical homogenate. The lipophilicity, evaluated using the log kw pH 7.5, was 2.9 versus 2.05 for epidepride. Competitive binding studies using rat striatal, hippocampal and frontal cortical homogenates showed high affinity for only dopamine D2 like cerebellar ratio of 275:1 at 320 minutes post injection-similar to that seen with epidepride, but with nearly four times higher brain uptake. Of interest was the off-rate from the dopamine D2 receptor; it was 0.0046 min{sup -1} in vitro at 25{degrees}C-corresponding to an t 1/2 of 150 minutes. Studies in rhesus monkeys show an in vivo off rate (following 2.5 mg/kg raclopride IV) of about 0.0082 min{sup -1} seen that with epidepride. SPECT studies in rhesus monkeys reveal APID is a promising SPECT radioligand that appears to be similar to epidepride, but with higher brain uptake due to its more optimal lipophilicity for entry into brain.

  7. Multi-pinhole collimator design for small-object imaging with SiliSPECT: a high-resolution SPECT

    PubMed Central

    Shokouhi, S; Metzler, S D; Wilson, D W; Peterson, T E

    2010-01-01

    We have designed a multi-pinhole collimator for a dual-headed, stationary SPECT system that incorporates high-resolution silicon double-sided strip detectors. The compact camera design of our system enables imaging at source–collimator distances between 20 and 30 mm. Our analytical calculations show that using knife-edge pinholes with small-opening angles or cylindrically shaped pinholes in a focused, multi-pinhole configuration in combination with this camera geometry can generate narrow sensitivity profiles across the field of view that can be useful for imaging small objects at high sensitivity and resolution. The current prototype system uses two collimators each containing 127 cylindrically shaped pinholes that are focused toward a target volume. Our goal is imaging objects such as a mouse brain, which could find potential applications in molecular imaging. PMID:19088387

  8. Characterisation of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits

    PubMed Central

    Fuchigami, Takeshi; Yamashita, Yuki; Kawasaki, Masao; Ogawa, Ayaka; Haratake, Mamoru; Atarashi, Ryuichiro; Sano, Kazunori; Nakagaki, Takehiro; Ubagai, Kaori; Ono, Masahiro; Yoshida, Sakura; Nishida, Noriyuki; Nakayama, Morio

    2015-01-01

    Prion diseases are fatal neurodegenerative diseases characterised by deposition of amyloid plaques containing abnormal prion protein aggregates (PrPSc). This study aimed to evaluate the potential of radioiodinated flavonoid derivatives for single photon emission computed tomography (SPECT) imaging of PrPSc. In vitro binding assays using recombinant mouse PrP (rMoPrP) aggregates revealed that the 4-dimethylamino-substituted styrylchromone derivative (SC-NMe2) had higher in vitro binding affinity (Kd = 24.5 nM) and capacity (Bmax = 36.3 pmol/nmol protein) than three other flavonoid derivatives (flavone, chalcone, and aurone). Fluorescent imaging using brain sections from mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice demonstrated that SC-NMe2 clearly labelled PrPSc-positive prion deposits in the mice brain. Two methoxy SC derivatives, SC-OMe and SC-(OMe)2, also showed high binding affinity for rMoPrP aggregates with Ki values of 20.8 and 26.6 nM, respectively. In vitro fluorescence and autoradiography experiments demonstrated high accumulation of [125I]SC-OMe and [125I]SC-(OMe)2 in prion deposit-rich regions of the mBSE-infected mouse brain. SPECT/computed tomography (CT) imaging and ex vivo autoradiography demonstrated that [123I]SC-OMe showed consistent brain distribution with the presence of PrPSc deposits in the mBSE-infected mice brain. In conclusion, [123I]SC-OMe appears a promising SPECT radioligand for monitoring prion deposit levels in the living brain. PMID:26669576

  9. Characterisation of radioiodinated flavonoid derivatives for SPECT imaging of cerebral prion deposits.

    PubMed

    Fuchigami, Takeshi; Yamashita, Yuki; Kawasaki, Masao; Ogawa, Ayaka; Haratake, Mamoru; Atarashi, Ryuichiro; Sano, Kazunori; Nakagaki, Takehiro; Ubagai, Kaori; Ono, Masahiro; Yoshida, Sakura; Nishida, Noriyuki; Nakayama, Morio

    2015-12-16

    Prion diseases are fatal neurodegenerative diseases characterised by deposition of amyloid plaques containing abnormal prion protein aggregates (PrP(Sc)). This study aimed to evaluate the potential of radioiodinated flavonoid derivatives for single photon emission computed tomography (SPECT) imaging of PrP(Sc). In vitro binding assays using recombinant mouse PrP (rMoPrP) aggregates revealed that the 4-dimethylamino-substituted styrylchromone derivative (SC-NMe2) had higher in vitro binding affinity (Kd = 24.5 nM) and capacity (Bmax = 36.3 pmol/nmol protein) than three other flavonoid derivatives (flavone, chalcone, and aurone). Fluorescent imaging using brain sections from mouse-adapted bovine spongiform encephalopathy (mBSE)-infected mice demonstrated that SC-NMe2 clearly labelled PrP(Sc)-positive prion deposits in the mice brain. Two methoxy SC derivatives, SC-OMe and SC-(OMe)2, also showed high binding affinity for rMoPrP aggregates with Ki values of 20.8 and 26.6 nM, respectively. In vitro fluorescence and autoradiography experiments demonstrated high accumulation of [(125)I]SC-OMe and [(125)I]SC-(OMe)2 in prion deposit-rich regions of the mBSE-infected mouse brain. SPECT/computed tomography (CT) imaging and ex vivo autoradiography demonstrated that [(123)I]SC-OMe showed consistent brain distribution with the presence of PrP(Sc) deposits in the mBSE-infected mice brain. In conclusion, [(123)I]SC-OMe appears a promising SPECT radioligand for monitoring prion deposit levels in the living brain.

  10. Development of novel 123I-labeled pyridyl benzofuran derivatives for SPECT imaging of β-amyloid plaques in Alzheimer's disease.

    PubMed

    Ono, Masahiro; Cheng, Yan; Kimura, Hiroyuki; Watanabe, Hiroyuki; Matsumura, Kenji; Yoshimura, Masashi; Iikuni, Shimpei; Okamoto, Yoko; Ihara, Masafumi; Takahashi, Ryosuke; Saji, Hideo

    2013-01-01

    Imaging of β-amyloid (Aβ) plaques in the brain may facilitate the diagnosis of cerebral β-amyloidosis, risk prediction of Alzheimer's disease (AD), and effectiveness of anti-amyloid therapies. The purpose of this study was to evaluate novel (123)I-labeled pyridyl benzofuran derivatives as SPECT probes for Aβ imaging. The formation of a pyridyl benzofuran backbone was accomplished by Suzuki coupling. [(123)I/(125)I]-labeled pyridyl benzofuran derivatives were readily prepared by an iododestannylation reaction. In vitro Aβ binding assays were carried out using Aβ(1-42) aggregates and postmortem human brain sections. Biodistribution experiments were conducted in normal mice at 2, 10, 30, and 60 min postinjection. Aβ labeling in vivo was evaluated by small-animal SPECT/CT in Tg2576 transgenic mice injected with [(123)I]8. Ex vivo autoradiography of the brain sections was performed after SPECT/CT. Iodinated pyridyl benzofuran derivatives showed excellent affinity for Aβ(1-42) aggregates (2.4 to 10.3 nM) and intensely labeled Aβ plaques in autoradiographs of postmortem AD brain sections. In biodistribution experiments using normal mice, all these derivatives displayed high initial uptake (4.03-5.49% ID/g at 10 min). [(125)I]8 displayed the quickest clearance from the brain (1.30% ID/g at 60 min). SPECT/CT with [(123)I]8 revealed higher uptake of radioactivity in the Tg2576 mouse brain than the wild-type mouse brain. Ex vivo autoradiography showed in vivo binding of [(123)I]8 to Aβ plaques in the Tg2576 mouse brain. These combined results warrant further investigation of [(123)I]8 as a SPECT imaging agent for visualizing Aβ plaques in the AD brain.

  11. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology

    NASA Astrophysics Data System (ADS)

    Erlandsson, Kjell; Kacperski, Krzysztof; van Gramberg, Dean; Hutton, Brian F.

    2009-05-01

    D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a β-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s-1 MBq-1 per head (99mTc, 10 cm) (CS: 72 s-1 MBq-1), and the tomographic sensitivity in the heart region was in the range 647-1107 s-1 MBq-1 (CS: 141 s-1 MBq-1). The count rate increased linearly with increasing activity up to 1.44 M s-1. The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.

  12. Performance evaluation of D-SPECT: a novel SPECT system for nuclear cardiology.

    PubMed

    Erlandsson, Kjell; Kacperski, Krzysztof; van Gramberg, Dean; Hutton, Brian F

    2009-05-07

    D-SPECT (Spectrum Dynamics, Israel) is a novel SPECT system for cardiac perfusion studies. Based on CZT detectors, region-centric scanning, high-sensitivity collimators and resolution recovery, it offers potential advantages over conventional systems. A series of measurements were made on a beta-version D-SPECT system in order to evaluate its performance in terms of energy resolution, scatter fraction, sensitivity, count rate capability and resolution. Corresponding measurements were also done on a conventional SPECT system (CS) for comparison. The energy resolution of the D-SPECT system at 140 keV was 5.5% (CS: 9.25%), the scatter fraction 30% (CS: 34%), the planar sensitivity 398 s(-1) MBq(-1) per head ((99m)Tc, 10 cm) (CS: 72 s(-1) MBq(-1)), and the tomographic sensitivity in the heart region was in the range 647-1107 s(-1) MBq(-1) (CS: 141 s(-1) MBq(-1)). The count rate increased linearly with increasing activity up to 1.44 M s(-1). The intrinsic resolution was equal to the pixel size, 2.46 mm (CS: 3.8 mm). The average reconstructed resolution using the standard clinical filter was 12.5 mm (CS: 13.7 mm). The D-SPECT has superior sensitivity to that of a conventional system with similar spatial resolution. It also has excellent energy resolution and count rate characteristics, which should prove useful in dynamic and dual radionuclide studies.

  13. Freehand SPECT in low uptake situations

    NASA Astrophysics Data System (ADS)

    Lasser, Tobias; Ziegler, Sibylle I.; Navab, Nassir

    2011-03-01

    3D functional imaging in the operating room can be extremely useful for some procedures like SLN mapping or SLN biopsies. Freehand SPECT is an example of such an imaging modality, combining manually scanned, hand-held 1D gamma detectors with spatial positioning systems in order to reconstruct localized 3D SPECT images, for example in the breast or neck region. Standard series expansion methods are applied together with custom physical models of the acquisition process and custom filtering procedures to perform 3D tomographic reconstruction from sparse, limited-angle and irregularly sampled data. A Freehand SPECT system can easily be assembled on a mobile cart suitable for use in the operating room. This work addresses in particular the problem of objects with low uptake (like sentinel lymph nodes), where reconstruction tends to be difficult due to low signal to noise ratio. In a neck-like phantom study, we show that four simulated nodes of 250 microliter volume with 0.06% respectively 0.03% uptake of a virtual 70MBq injection of Tc99m (the typical activity for SLN procedures at our hospital) in a background of water can be reconstructed successfully using careful filtering procedures in the reconstruction pipeline. Ten independent Freehand SPECT scans of the phantom were performed by several different operators, with an average scan duration of 5.1 minutes. The resulting reconstructions show an average spatial accuracy within voxel dimensions (2.5mm) compared to CT and exhibit correct relative quantification.

  14. SPECT gallium imaging in abdominal lymphoma

    SciTech Connect

    Adcock, K.A.; Friefeld, G.D.; Waldron, J.A. Jr.

    1986-05-01

    A case of non-Hodgkin's lymphoma of the abdomen studied by gallium SPECT imaging is reported. The tomographic slices accurately demonstrated the location of residual disease after chemotherapy in the region of the transverse mesocolon. Previous transmission CT had shown considerable persistent retroperitoneal lymphadenopathy, but was not helpful in determining the presence of viable lymphoma.

  15. Towards personalized interventional SPECT-CT imaging.

    PubMed

    Gardiazabal, José; Esposito, Marco; Matthies, Philipp; Okur, Asli; Vogel, Jakob; Kraft, Silvan; Frisch, Benjamin; Lasser, Tobias; Navab, Nassir

    2014-01-01

    The development of modern robotics and compact imaging detectors allows the transfer of diagnostic imaging modalities to the operating room, supporting surgeons to perform faster and safer procedures. An intervention that currently suffers from a lack of interventional imaging is radioembolization, a treatment for hepatic carcinoma. Currently, this procedure requires moving the patient from an angiography suite for preliminary catheterization and injection to a whole-body SPECT/CT for leakage detection, necessitating a second catheterization back in the angiography suite for the actual radioembolization. We propose an imaging setup that simplifies this procedure using a robotic approach to directly acquire an interventional SPECT/CT in the angiography suite. Using C-arm CT and a co-calibrated gamma camera mounted on a robotic arm, a personalized trajectory of the gamma camera is generated from the C-arm CT, enabling an interventional SPECT reconstruction that is inherently co-registered to the C-arm CT. In this work we demonstrate the feasibility of this personalized interventional SPECT/CT imaging approach in a liver phantom study.

  16. PET/SPECT molecular imaging in clinical neuroscience: recent advances in the investigation of CNS diseases

    PubMed Central

    Lu, Feng-Mei

    2015-01-01

    Molecular imaging is an attractive technology widely used in clinical practice that greatly enhances our understanding of the pathophysiology and treatment in central nervous system (CNS) diseases. It is a novel multidisciplinary technique that can be defined as real-time visualization, in vivo characterization and qualification of biological processes at the molecular and cellular level. It involves the imaging modalities and the corresponding imaging agents. Nowadays, molecular imaging in neuroscience has provided tremendous insights into disturbed human brain function. Among all of the molecular imaging modalities, positron emission tomography (PET) and single photon emission computed tomography (SPECT) have occupied a particular position that visualize and measure the physiological processes using high-affinity and high-specificity molecular radioactive tracers as imaging probes in intact living brain. In this review, we will put emphasis on the PET/SPECT applications in Alzheimer’s disease (AD) and Parkinson’s disease (PD) as major CNS disorders. We will first give an overview of the main classical molecular neuroimaging modalities. Then, the major clinical applications of PET and SPECT along with molecular probes in the fields of psychiatry and neurology will be discussed. PMID:26029646

  17. Generating Dynamic System Matrices for Dynamic SPECT

    SciTech Connect

    2011-02-01

    The purpose of the computer program is to generate system matrices that model data acquisition process in dynamic single photon emission computed tomography (SPECT). The application is for the reconstruction of dynamic data from projection measurements that provide the time evolution of activity uptake and wash out in an organ of interest. The measurement of the time activity in the blood and organ tissue provide time-activity curves (TACs) that are used to estimate kinetic parameters. The program provides a correct model of the in vivo spatial and temporal distribution of radioactive in organs. The model accounts for the attenuation of the internal emitting radioactivity, it accounts for the vary point response of the collimators, and correctly models the time variation of the activity in the organs. One important application where the software is being used in a measuring the arterial input function (AIF) in a dynamic SPECT study where the data are acquired from a slow camera rotation. Measurement of the arterial input function (AIF) is essential to deriving quantitative estimates of regional myocardial blood flow using kinetic models. A study was performed to evaluate whether a slowly rotating SPECT system could provide accurate AIF's for myocardial perfusion imaging (MPI). Methods: Dynamic cardiac SPECT was first performed in human subjects at rest using a Phillips Precedence SPECT/CT scanner. Dynamic measurements of Tc-99m-tetrofosmin in the myocardium were obtained using an infusion time of 2 minutes. Blood input, myocardium tissue and liver TACs were estimated using spatiotemporal splines. These were fit to a one-compartment perfusion model to obtain wash-in rate parameters K1. Results: The spatiotemporal 4D ML-EM reconstructions gave more accurate reconstructions that did standard frame-by-frame 3D ML-EM reconstructions. From additional computer simulations and phantom studies, it was determined that a 1 minute infusion with a SPECT system rotation speed

  18. Unlocking the Secrets of the Brain, Part II: A Continuing Look at Techniques for Exploring the Brain.

    ERIC Educational Resources Information Center

    Powledge, Tabitha M.

    1997-01-01

    Describes techniques for delving into the brain including positron emission tomography (PET), single photon emission computed tomography (SPECT), electroencephalogram (EEG), magnetoencephalography (MEG), transcranial magnetic stimulation (TMS), and low-tech indirect studies. (JRH)

  19. Unlocking the Secrets of the Brain, Part II: A Continuing Look at Techniques for Exploring the Brain.

    ERIC Educational Resources Information Center

    Powledge, Tabitha M.

    1997-01-01

    Describes techniques for delving into the brain including positron emission tomography (PET), single photon emission computed tomography (SPECT), electroencephalogram (EEG), magnetoencephalography (MEG), transcranial magnetic stimulation (TMS), and low-tech indirect studies. (JRH)

  20. Monte Carlo scatter correction for SPECT

    NASA Astrophysics Data System (ADS)

    Liu, Zemei

    The goal of this dissertation is to present a quantitatively accurate and computationally fast scatter correction method that is robust and easily accessible for routine applications in SPECT imaging. A Monte Carlo based scatter estimation method is investigated and developed further. The Monte Carlo simulation program SIMIND (Simulating Medical Imaging Nuclear Detectors), was specifically developed to simulate clinical SPECT systems. The SIMIND scatter estimation (SSE) method was developed further using a multithreading technique to distribute the scatter estimation task across multiple threads running concurrently on multi-core CPU's to accelerate the scatter estimation process. An analytical collimator that ensures less noise was used during SSE. The research includes the addition to SIMIND of charge transport modeling in cadmium zinc telluride (CZT) detectors. Phenomena associated with radiation-induced charge transport including charge trapping, charge diffusion, charge sharing between neighboring detector pixels, as well as uncertainties in the detection process are addressed. Experimental measurements and simulation studies were designed for scintillation crystal based SPECT and CZT based SPECT systems to verify and evaluate the expanded SSE method. Jaszczak Deluxe and Anthropomorphic Torso Phantoms (Data Spectrum Corporation, Hillsborough, NC, USA) were used for experimental measurements and digital versions of the same phantoms employed during simulations to mimic experimental acquisitions. This study design enabled easy comparison of experimental and simulated data. The results have consistently shown that the SSE method performed similarly or better than the triple energy window (TEW) and effective scatter source estimation (ESSE) methods for experiments on all the clinical SPECT systems. The SSE method is proven to be a viable method for scatter estimation for routine clinical use.

  1. Studying Spatial Resolution of CZT Detectors Using Sub-Pixel Positioning for SPECT

    NASA Astrophysics Data System (ADS)

    Montémont, Guillaume; Lux, Silvère; Monnet, Olivier; Stanchina, Sylvain; Verger, Loïck

    2014-10-01

    CZT detectors are the basic building block of a variety of new SPECT systems. Their modularity allows adapting system architecture to specific applications such as cardiac, breast, brain or small animal imaging. In semiconductors, a high number of electron-hole pairs is produced by a single interaction. This direct conversion process allows better energy and spatial resolutions than usual scintillation detectors based on NaI(Tl). However, it remains often unclear if SPECT imaging can really benefit of that performance gain. We investigate the system performance of a detection module, which is based on 5 mm thick CZT with a segmented anode having a 2.5 mm pitch by simulation and experimentation. This pitch allows an easy assembly of the crystal on the readout board and limits the space occupied by electronics without significantly degrading energy and spatial resolution.

  2. α-[11C] methyl-L tryptophan-PET as a surrogate for interictal cerebral serotonin synthesis in migraine without aura.

    PubMed

    Sakai, Y; Nishikawa, M; Diksic, M; Aubé, M

    2014-03-01

    Alteration in central serotonin biology has been implicated in migraine, and serotonin (5-HT) agonists have been available for more than a decade in the treatment of that condition. To test this hypothesis, we studied in vivo using positron-emission tomography (PET) and α-[(11)C] methyl-L-tryptophan (α-[(11)C]MTrp) as a surrogate marker of cerebral 5-HT synthetic rate before and after administration of eletriptan in migraine and control subjects. Six nonmenopausal female migraine subjects with migraine without aura (MoA) and six nonmenopausal age-matched female control subjects were scanned at baseline and after oral administration of 40 mg of eletriptan. Migraine subjects at the time of PET had to have been headache free for a minimum of three days. Images of (α-[(11)C]MTrp) brain trapping were colocalized with individual MRI images in three dimensions and analyzed. There was no difference in baseline cerebral global 5-HT synthesis between migraine and control subjects. After administration of eletriptan, there was a striking global reduction in cerebral 5-HT synthesis (K*) in the migraine group and in 22 regions of interest (ROIs). In control subjects, no significant changes were found in global cerebral 5-HT synthesis (K*) or in any of the ROIs. These findings suggest in migraine an interictal alteration in the regulation mechanisms of cerebral 5-HT synthesis.

  3. Multichannel continuous electroencephalography-functional near-infrared spectroscopy recording of focal seizures and interictal epileptiform discharges in human epilepsy: a review

    PubMed Central

    Peng, Ke; Pouliot, Philippe; Lesage, Frédéric; Nguyen, Dang Khoa

    2016-01-01

    Abstract. Functional near-infrared spectroscopy (fNIRS) has emerged as a promising neuroimaging technique as it allows noninvasive and long-term monitoring of cortical hemodynamics. Recent work by our group and others has revealed the potential of fNIRS, combined with electroencephalography (EEG), in the context of human epilepsy. Hemodynamic brain responses attributed to epileptic events, such as seizures and interictal epileptiform discharges (IEDs), are routinely observed with a good degree of statistical significance and in concordance with clinical presentation. Recording done with over 100 channels allows sufficiently large coverage of the epileptic focus and other areas. Three types of seizures have been documented: frontal lobe seizures, temporal lobe seizures, and posterior seizures. Increased oxygenation was observed in the epileptic focus in most cases, while rapid but similar hemodynamic variations were identified in the contralateral homologous region. While investigating IEDs, it was shown that their hemodynamic effect is observable with fNIRS, that their response is associated with significant (inhibitive) nonlinearities, and that the sensitivity and specificity of fNIRS to localize the epileptic focus can be estimated in a sample of 40 patients. This paper first reviews recent EEG-fNIRS developments in epilepsy research and then describes applications to the study of focal seizures and IEDs. PMID:26958576

  4. Characteristic features of the interictal EEG background in two patients with Malignant Migrating Partial Epilepsy in Infancy (MMPEI)

    PubMed Central

    Selioutski, Olga; Seltzer, Laurie; Burchfiel, James; Paciorkowski, Alex; Erba, Giuseppe

    2015-01-01

    Purpose To describe chronological electrographic features of the interictal EEG background observed in two patients with MMPEI from neonatal to early infantile period. Methods EEGs of two patients who fulfilled diagnostic criteria for MMPEI were acquired over the period of 6 months to monitor treatment efficacy and characterize seizures and other paroxysmal events. Results Both patients followed a similar sequential pattern. A distinctive evolution from a dysmature term neonatal EEG pattern to an asynchronous suppression burst pattern was observed prior to the interictal background becoming continuous. Conclusions Physicians providing care to infants with intractable epilepsy and burst suppression EEG pattern should be alert to the possibility of MMPEI. An earlier diagnosis of MMPEI would help guide diagnostic workup including genetic testing. PMID:25839129

  5. Interictal plasma pituitary adenylate cyclase-activating polypeptide levels are decreased in migraineurs but remain unchanged in patients with tension-type headache.

    PubMed

    Han, Xun; Dong, Zhao; Hou, Lei; Wan, Dongjun; Chen, Min; Tang, Wenjing; Yu, Shengyuan

    2015-10-23

    Pituitary adenylate cyclase-activating polypeptide (PACAP) is associated with migraine phase; however, whether PACAP levels could be used to distinguish between migraine and tension-type headache (TTH) remains unknown. We compared interictal plasma PACAP levels among healthy controls, migraineurs, and patients with TTH. Interictal plasma levels of PACAP were measured in 133 migraineurs, 106 patients with TTH, and 50 controls using enzyme-linked immunoassays. We further evaluated the relationships between interictal PACAP plasma concentrations and clinical parameters, such as headache severity, attack frequency, and duration. We found that migraineurs had significantly lower interictal plasma PACAP levels than patients with TTH and healthy controls. However, there were no significant differences between patients with TTH and healthy controls. Plasma PACAP levels were significantly lower in patients with episodic migraine (EM) than in patients with episodic tension-type headache (ETTH) and in patients with chronic migraine (CM) than in patients with chronic tension-type headache (CTTH). Interictal PACAP levels were negatively correlated with duration in the CM group. The results of this study demonstrated differences in interictal PACAP levels in migraine and TTH, suggesting that PACAP is involved in the pathogenesis of migraine rather than TTH. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. "Luxury perfusion" with 99mTc-HMPAO and 123I-IMP SPECT imaging during the subacute phase of stroke.

    PubMed

    Moretti, J L; Defer, G; Cinotti, L; Cesaro, P; Degos, J D; Vigneron, N; Ducassou, D; Holman, B L

    1990-01-01

    To compare the merits of 123I-isopropyl-iodoamphetamine (123I-IMP) and 99mTc-HMPAO in showing abnormal brain uptake distribution during cerebral ischemia, we studied ten patients during the subacute phase of their stroke, a period where metabolism and blood flow are frequently uncoupled. SPECT imaging was performed using both radiopharmaceuticals in the 10 patients from 48 h to 4 weeks after onset of symptoms. Two patients out of the 10 had similar defects with 123I-IMP and 99mTc-HMPAO SPECT, the location of the defects corresponding to the area of infarction observed on CT. Six patients had normal 99mTc-HMPAO SPECT and abnormal 123I-IMP SPECT with defects in the area of infarction shown by CT. The remaining 2 patients had hyperactive abnormalities on 99mTc-HMPAO in areas corresponding to defects on the 123I-IMP images. Two of the patients with SPECT mismatches were studied again more than 1 month after onset. On reexamination, 99mTc-HMPAO SPECT which was previously normal or hyperactive became hypoactive with a focal area of decreased activity corresponding to the defect on 123I-IMP. Crossed cerebellar diaschisis was found in 7 patients with 99mTc-HMPAO and was absent for both 123I-IMP and 99mTc-HMPAO in 3. We suggest that SPECT with 99mTc-HMPAO could show transient hyperemia not demonstrated by 123I-IMP whereas in some cases cerebral infarction would be more difficult to demonstrate with 99mTc-HMPAO than with 123I-IMP. SPECT with both tracers is recommended to follow the evolution of strokes in terms of regional cerebral blood flow and tissue metabolism.

  7. Impaired social cognition in patients with interictal epileptiform discharges in the frontal lobe.

    PubMed

    Hu, Ying; Jiang, Yubao; Hu, Panpan; Ma, Huijuan; Wang, Kai

    2016-04-01

    Patients with epilepsy frequently experience cognitive impairments, including impairments in social cognition. However, there is a lack of direct examinations of the affective and cognitive aspects of social cognition in such patients. The neural correlates remain to be identified. The present study was designed to examine the degree of impairments in different aspects of social cognition including empathy, emotion recognition, and Theory of Mind (ToM) in patients with epilepsy. In addition, we further explored factors related to the impairments, highlighting the specific importance of the frontal region. After 24-hour EEG monitoring, 53 patients with epilepsy were administered a neuropsychological battery of tests for basic intelligence assessment and then were tested with the Interpersonal Reactive Index, the "Yoni" task, the Emotion Recognition Test, the Reading the Mind in the Eyes test, and other neuropsychological tests. The clinical variables potentially affecting the ability to accomplish these tests were taken into account. We divided the patients into those having frontal lobe interictal epileptiform discharges (group with frontal IEDs) and those with seizures originating outside the frontal or temporal lobes (group with extrafrontal IEDs). Sixty healthy individuals served as controls. The group with frontal IEDs achieved the most severe deficits in emotion recognition, ToM, and cognitive empathy, while affective empathy was intact. Moreover, the performance scores of empathy in the group with frontal IEDs were selectively correlated with their executive function scores, which are believed to be associated with orbitofrontal functioning. In contrast, patients with epilepsies not originating from the frontal or temporal lobes may also be at risk of impairments in social cognition, albeit to a lesser extent. The preliminary findings suggest that patients with epilepsy, especially those having frontal lobe interictal epileptiform discharges, have associated

  8. EEG desynchronization during phasic REM sleep suppresses interictal epileptic activity in humans.

    PubMed

    Frauscher, Birgit; von Ellenrieder, Nicolás; Dubeau, François; Gotman, Jean

    2016-06-01

    Rapid eye movement (REM) sleep has a suppressing effect on epileptic activity. This effect might be directly related to neuronal desynchronization mediated by cholinergic neurotransmission. We investigated whether interictal epileptiform discharges (IEDs) and high frequency oscillations-a biomarker of the epileptogenic zone-are evenly distributed across phasic and tonic REM sleep. We hypothesized that IEDs are more suppressed during phasic REM sleep because of additional cholinergic drive. Twelve patients underwent polysomnography during long-term combined scalp-intracerebral electroencephalography (EEG) recording. After sleep staging in the scalp EEG, we identified segments of REM sleep with rapid eye movements (phasic REM) and segments of REM sleep without rapid eye movements (tonic REM). In the intracerebral EEG, we computed the power in frequencies <30 Hz and from 30 to 500 Hz, and marked IEDs, ripples (>80 Hz) and fast ripples (>250 Hz). We grouped the intracerebral channels into channels in the seizure-onset zone (SOZ), the exclusively irritative zone (EIZ), and the normal zone (NoZ). Power in frequencies <30 Hz was lower during phasic than tonic REM sleep (p < 0.001), most likely reflecting increased desynchronization. IEDs, ripples and fast ripples, were less frequent during phasic than tonic REM sleep (phasic REM sleep: 39% of spikes, 35% of ripples, 18% of fast ripples, tonic REM sleep: 61% of spikes, 65% of ripples, 82% of fast ripples; p < 0.001). In contrast to ripples in the epileptogenic zone, physiologic ripples were more abundant during phasic REM sleep (phasic REM sleep: 73% in NoZ, 30% in EIZ, 28% in SOZ, tonic REM sleep: 27% in NoZ, 70% in EIZ, 72% in SOZ; p < 0.001). Phasic REM sleep has an enhanced suppressive effect on IEDs, corroborating the role of EEG desynchronization in the suppression of interictal epileptic activity. In contrast, physiologic ripples were increased during phasic REM sleep, possibly reflecting REM-related memory

  9. Local and Distant Dysregulation of Synchronization Around Interictal Spikes in BECTS

    PubMed Central

    Bourel-Ponchel, Emilie; Mahmoudzadeh, Mahdi; Berquin, Patrick; Wallois, Fabrice

    2017-01-01

    Objective: High Density electroencephalography (HD EEG) is the reference non-invasive technique to investigate the dynamics of neuronal networks in Benign Epilepsy with Centro-Temporal Spikes (BECTS). Analysis of local dynamic changes surrounding Interictal Epileptic Spikes (IES) might improve our knowledge of the mechanisms that propel neurons to the hypersynchronization of IES in BECTS. Transient distant changes in the dynamics of neurons populations may also interact with neuronal networks involved in various functions that are impaired in BECTS patients. Methods: HD EEG (64 electrodes) of eight well-characterized BECTS patients (8 males; mean age: 7.2 years, range: 5–9 years) were analyzed. Unilateral IES were selected in 6 patients. They were bilateral and independent in 2 other patients. This resulted in a total of 10 groups of IES. Time-frequency analysis was performed on HD EEG epochs around the peak of the IES (±1000 ms), including phase-locked and non-phase-locked activities to the IES. The time frequency analyses were calculated for the frequencies between 4 and 200 Hz. Results: Time-frequency analysis revealed two patterns of dysregulation of the synchronization between neuronal networks preceding and following hypersynchronization of interictal spikes (±400 ms) in the epileptogenic zone. Dysregulation consists of either desynchronization (n = 6) or oscillating synchronization (n = 4) (4–50 Hz) surrounding the IES. The 2 patients with bilateral IES exhibited only local desynchronization whatever the IES considered. Distant desynchronization in low frequencies within the same window occurs simultaneously in bilateral frontal, temporal and occipital areas (n = 7). Significance: Using time-frequency analysis of HD EEG data in a well-defined population of BECTS, we demonstrated repeated complex changes in the dynamics of neuronal networks not only during, but also, before and after the IES. In the epileptogenic zone, our results found more complex

  10. Siblings with the adult-onset slowly progressive type of pantothenate kinase-associated neurodegeneration and a novel mutation, Ile346Ser, in PANK2: clinical features and (99m)Tc-ECD brain perfusion SPECT findings.

    PubMed

    Doi, Hiroshi; Koyano, Shigeru; Miyatake, Satoko; Matsumoto, Naomichi; Kameda, Tomoaki; Tomita, Atsuko; Miyaji, Yosuke; Suzuki, Yume; Sawaishi, Yukio; Kuroiwa, Yoshiyuki

    2010-03-15

    Pantothenate kinase-associated neurodegeneration (PKAN), formerly known as Hallervorden-Spatz syndrome (HSS), is an autosomal recessive neurodegenerative disorder characterized by iron accumulation in the brain. Mutations in the pantothenate kinase 2 (PANK2) gene are known to be responsible for PKAN. Several studies have revealed correlations between clinical phenotypes and particular PANK2 mutations. The adult-onset slowly progressive type of PKAN with PANK2 mutations is very rare. In this report, we describe siblings with the adult-onset slowly progressive type of PKAN with a novel mutation, Ile346Ser, in PANK2. The siblings had the same mutation in PANK2 and had common clinical signs such as misalignment of teeth, a high arched palate, hollow feet, a slight cognitive decline, and an apparent executive dysfunction, although they showed different patterns of movement disorders. Thus, even if PKAN patients have identical mutations, it is likely that they will present with different types of movement disorders. Brain perfusion single photon emission computed tomography in both patients showed decreased regional cerebral blood flow in the bilateral frontoparietal lobes, the globus pallidus, the striatum, and around the ventriculus quartus. Cardiac uptake of [(123)I] meta-iodobenzylguanidine was normal in both patients. Analysis of genotype-phenotype correlations and the elucidation of mutational effects on pantothenate kinase 2 function, expression, and structure are important for understanding the mechanisms of PKAN.

  11. Trigeminal somatosensorial evoked potentials suggest increased excitability during interictal period in patients with long disease duration in migraine.

    PubMed

    Abanoz, Yesim; Abanoz, Yasin; Gündüz, Aysegül; Savrun, Feray Karaali

    2016-01-26

    Migraine pathogenesis is suggested to involve many structures in cerebral cortex, brainstem and trigeminovascular system. Electrophysiological studies revealed loss of habituation, decreased cortical preactivation, segmental hypersensitivity and reduction in control of inhibitory descending pathways. Given these information, we aimed to evaluate the excitability changes of the trigeminal pathway in the cortex and brainstem in migraine using trigeminal nerve somatosensory evoked potentials (TSEP). Fifty-one women with migraine without aura and 32 age-matched healthy women were included. TSEPs were recorded in migraine patients during interictal period and in healthy subjects. Sensory thresholds, stimulation intensities, latencies of N1, P1, N2 and P2 waves as well as N1/P1 and N2/P1 amplitudes were measured. Comparisons of ipsilateral latencies with N1-P1 and N2-P1 amplitudes between migraine and control groups showed no difference. Sensory thresholds were also similar. Stimulation thresholds decreased as the attack frequency increased and ipsilateral N1/P1 amplitude increased with prolonged disease duration (p=0.043). Our study did not show significant difference between migraine patients and healthy subjects during interictal period. However, migraine with long duration affects the excitability of the cortical and brainstem trigeminal pathways even during interictal periods. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  12. Interictal abnormal fMRI activation of visual areas during a motor task cued by visual stimuli in migraine

    PubMed Central

    Conforto, Adriana Bastos; Chaim, Khallil Taverna; Peres, Mario Fernando Prieto; Gonçalves, André Leite; Siqueira, Inara Laurindo; Barreiros, Maria Angela Maramaldo; Amaro, Edson

    2017-01-01

    ABSTRACT Objective To assess changes in blood-oxygen-level-dependent activity after light deprivation compared to regular light exposure in subjects with migraine in the interictal state and in controls. Methods Ten subjects with migraine and ten controls participated in two sessions of functional magnetic resonance imaging. In each session, they performed a finger-tapping task with the right hand, cued by visual stimuli. They were scanned before and after 30 minutes of light deprivation or light exposure. In subjects with migraine, functional magnetic resonance imaging was performed interictally. Analysis of variance was made with the factors time (before or after), session (light deprivation or exposure), and group (migraine or control). Results There were significant “group” effects in a cluster in the bilateral cuneus encompassing the superior border of the calcarine sulcus and extrastriate cortex. There were no significant effects of “time”, “session”, or interactions between these factors. Conclusion The main result of this study is consistent with aberrant interictal processing of visual information in migraine. Light deprivation did not modulate functional magnetic resonance imaging activity in subjects with or without migraine. PMID:28444083

  13. Persistent Interictal Musical Hallucination in a Patient With Mesial Temporal Sclerosis-Related Epilepsy: First Case Report and Etiopathological Hypothesis.

    PubMed

    Borelli, Paolo; Vedovello, Marcella; Braga, Massimiliano; Pederzoli, Massimo; Beretta, Sandro

    2016-12-01

    Musical hallucination is a disorder of complex sound processing of instrumental music, songs, choirs, chants, etc. The underlying pathologies include moderate to severe acquired hearing loss (the auditory equivalent of Charles Bonnet syndrome), psychiatric illnesses (depression, schizophrenia), drug intoxication (benzodiazepines, salicylate, pentoxifylline, propranolol), traumatic lesions along the acoustic pathways, and epilepsy. The hallucinations are most likely to begin late in life; 70% of patients are women. Musical hallucination has no known specific therapy. Treating the underlying cause is the most effective approach; neuroleptic and antidepressant medications have only rarely succeeded.Musical hallucination in epilepsy typically presents as simple partial seizures originating in the lateral temporal cortex. To our knowledge, no formal report of musical hallucination in the interictal state has been published before. In contrast, other interictal psychotic features are a relatively common complication, especially in patients with long-standing drug-resistant epilepsy.We describe a 62-year-old woman with a long history of mesial temporal lobe epilepsy whose musical hallucination was solely interictal. We speculate on the possible link between temporal epilepsy and her hallucination. We hypothesize that, as a result of her epileptic activity-induced damage, an imbalance developed between the excitatory and inhibitory projections connecting the mesial temporal cortex to the other auditory structures. These structures may have generated hyperactivity in the lateral temporal cortex through a "release" mechanism that eventually resulted in musical hallucination.

  14. Support vector machine-based classification of neuroimages in Alzheimer's disease: direct comparison of FDG-PET, rCBF-SPECT and MRI data acquired from the same individuals.

    PubMed

    Ferreira, Luiz K; Rondina, Jane M; Kubo, Rodrigo; Ono, Carla R; Leite, Claudia C; Smid, Jerusa; Bottino, Cassio; Nitrini, Ricardo; Busatto, Geraldo F; Duran, Fabio L; Buchpiguel, Carlos A

    2017-10-02

    To conduct the first support vector machine (SVM)-based study comparing the diagnostic accuracy of T1-weighted magnetic resonance imaging (T1-MRI), F-fluorodeoxyglucose-positron emission tomography (FDG-PET) and regional cerebral blood flow single-photon emission computed tomography (rCBF-SPECT) in Alzheimer's disease (AD). Brain T1-MRI, FDG-PET and rCBF-SPECT scans were acquired from a sample of mild AD patients (n=20) and healthy elderly controls (n=18). SVM-based diagnostic accuracy indices were calculated using whole-brain information and leave-one-out cross-validation. The accuracy obtained using PET and SPECT data were similar. PET accuracy was 68∼71% and area under curve (AUC) 0.77∼0.81; SPECT accuracy was 68∼74% and AUC 0.75∼0.79, and both had better performance than analysis with T1-MRI data (accuracy of 58%, AUC 0.67). The addition of PET or SPECT to MRI produced higher accuracy indices (68∼74%; AUC: 0.74∼0.82) than T1-MRI alone, but these were not clearly superior to the isolated neurofunctional modalities. In line with previous evidence, FDG-PET and rCBF-SPECT more accurately identified patients with AD than T1-MRI, and the addition of either PET or SPECT to T1-MRI data yielded increased accuracy. The comparable SPECT and PET performances, directly demonstrated for the first time in the present study, support the view that rCBF-SPECT still has a role to play in AD diagnosis.

  15. Interictal magnetoencephalography used in magnetic resonance imaging-negative patients with epilepsy.

    PubMed

    Wu, X-T; Rampp, S; Buchfelder, M; Kuwert, T; Blümcke, I; Dörfler, A; Zhou, D; Stefan, H

    2013-04-01

    This study aims to investigate the contributions of magnetoencephalography (MEG) in magnetic resonance imaging (MRI)-negative patients. A total of 18 MRI-negative patients diagnosed with refractory epilepsy, subjected to MEG investigation, and subsequently underwent surgery were selected for retrospective analysis. A 1.5-tesla Magnetom Sonata with an eight-channel head array coil was used. MEG data were obtained using a 74/248-channel system. A total of 16 patients (16/18) had positive MEG results, comprising 12 patients with monofocal localizations, five with multifocal localizations, and one with unremarkable results in MEG. In addition, 12 patients had indicative single photon-emission computed tomography (SPECT), five had indicative fluorodeoxyglucose positron emission tomography (FDG-PET), and all the patients had intracranial electroencephalography (EEG) (14 with subdural electrodes and four with electrocorticography). The intracranial EEG recordings of nine patients were guided by MEG informative results. Among these 18 patients, 10 exhibited good postoperative outcomes (Engel I and II), four of which were completely seizure-free. All these ten patients had clear monofocal localization in MEG, including nine with accordant indicative metabolic changes in either SPECT or FDG-PET, or both. None of the five patients with multifocal localizations achieved good postoperative outcomes. For cases with negative MRI findings, epilepsy surgery may be an alternative option for pharmaco-resistant patients if epileptogenic focus localizations by MEG are present in multimodal evaluation. © 2012 John Wiley & Sons A/S.

  16. Association of Interictal Epileptiform Discharges with Sleep and Anti-Epileptic Drugs.

    PubMed

    Mohan, Latika; Singh, Jayvardhan; Singh, Yogesh; Kathrotia, Rajesh; Goel, Arun

    2016-10-01

    The presence of interictal epileptiform discharges (IEDs) in electroencephalogram (EEG) is diagnostic of epilepsy. Latent IEDs are activated during sleep. Anti-epileptic drugs (AEDs) improve sleep. AEDs, sleep, and IEDs may interact and affect epilepsy management. To explore the occurrence of IEDs and its association with sleep and AED status in suspected patients of epilepsy. EEG records were collected of suspected patients of epilepsy who reported to the electrophysiology laboratory of a tertiary care hospital during 1 year. The anthropometric details, clinical presentations, and AED status of the patients were recorded from the EEG records. Patients were divided into 2 categories based on whether AEDs had been started prior to the EEG evaluation (category-I) or not (category-II). The occurrences of IEDs in EEG recordings in both categories were analyzed. In 1 year, 138 patients were referred for diagnostic EEG evaluation. One-hundred-two patients fulfilled the inclusion criteria, of which 57 patients (53%) belonged to category-I and 45 patients (47%) belonged to category-II. Incidence of IEDs, suggestive of definite diagnosis of epilepsy in category-I was 88% and in category-II was 69%, and this difference was statistically significant (p = 0.02). The increased proportion of IEDs in category-I patients may be due to high clinical suspicion or compounding interaction of AEDs and sleep. More extensive studies are required to delineate the complex interaction of AEDs, sleep, and IEDs so that judicious yet prompt management of epilepsy can be carried out.

  17. Decreased heart rate and enhanced sinus arrhythmia during interictal sleep demonstrate autonomic imbalance in generalized epilepsy

    PubMed Central

    Sivakumar, Siddharth S.; Namath, Amalia G.; Tuxhorn, Ingrid E.; Lewis, Stephen J.

    2016-01-01

    We hypothesized that epilepsy affects the activity of the autonomic nervous system even in the absence of seizures, which should manifest as differences in heart rate variability (HRV) and cardiac cycle. To test this hypothesis, we investigated ECG traces of 91 children and adolescents with generalized epilepsy and 25 neurologically normal controls during 30 min of stage 2 sleep with interictal or normal EEG. Mean heart rate (HR) and high-frequency HRV corresponding to respiratory sinus arrhythmia (RSA) were quantified and compared. Blood pressure (BP) measurements from physical exams of all subjects were also collected and analyzed. RSA was on average significantly stronger in patients with epilepsy, whereas their mean HR was significantly lower after adjusting for age, body mass index, and sex, consistent with increased parasympathetic tone in these patients. In contrast, diastolic (and systolic) BP at rest was not significantly different, indicating that the sympathetic tone is similar. Remarkably, five additional subjects, initially diagnosed as neurologically normal but with enhanced RSA and lower HR, eventually developed epilepsy, suggesting that increased parasympathetic tone precedes the onset of epilepsy in children. ECG waveforms in epilepsy also displayed significantly longer TP intervals (ventricular diastole) relative to the RR interval. The relative TP interval correlated positively with RSA and negatively with HR, suggesting that these parameters are linked through a common mechanism, which we discuss. Altogether, our results provide evidence for imbalanced autonomic function in generalized epilepsy, which may be a key contributing factor to sudden unexpected death in epilepsy. PMID:26888110

  18. Emergence of dominant initiation sites for interictal spikes in rat neocortex

    PubMed Central

    Vitantonio, Daniel; Xu, Weifeng; Geng, Xinling; Wolff, Brian S.; Takagaki, Kentaroh; Motamedi, Gholam K.

    2015-01-01

    Neuronal populations with unbalanced inhibition can generate interictal spikes (ISs), where each IS starts from a small initiation site and then spreads activation across a larger area. We used in vivo voltage-sensitive dye imaging to map the initiation site of ISs in rat visual cortex disinhibited by epidural application of bicuculline methiodide. Immediately after the application of bicuculline, the IS initiation sites were widely distributed over the entire disinhibited area. After ∼10 min, a small number of sites became “dominant” and initiated the majority of the ISs throughout the course of imaging. Such domination also occurred in cortical slices, which lack long-range connections between the cortex and subcortical structures. This domination of IS initiation sites may allow timing-related plasticity mechanisms to provide a spatial organization where connections projecting outward from the dominant initiation site become strengthened. Understanding the spatiotemporal organization of IS initiation sites may contribute to our understanding of epileptogenesis in its very early stages, because a dominant IS initiation site with strengthened outward connectivity may ultimately develop into a seizure focus. PMID:26445866

  19. Functional neuroimaging in epilepsy: FDG PET and ictal SPECT.

    PubMed Central

    Lee, D. S.; Lee, S. K.; Lee, M. C.

    2001-01-01

    Epileptogenic zones can be localized by F-18 fluorodeoxyglucose positron emission tomography (FDG PET) and ictal single-photon emission computed tomography(SPECT). In medial temporal lobe epilepsy, the diagnostic sensitivity of FDG PET or ictal SPECT is excellent, however, the sensitivity of MRI is so high that the incremental sensitivity by FDG PET or ictal SPECT has yet to be proven. When MRI findings are ambiguous or normal, or discordant with those of ictal EEG, FDG PET and ictal SPECT are helpful for localization without the need for invasive ictal EEG. In neocortical epilepsy, the sensitivities of FDG PET or ictal SPECT are fair. However, because almost a half of the patients are normal on MRI, FDG PET and ictal SPECT are helpful for localization or at least for lateralization in these non-lesional epilepsies in order to guide the subdural insertion of electrodes. Interpretation of FDG PET has been recently advanced by voxel-based analysis and automatic volume of interest analysis based on a population template. Both analytical methods confirmed the performance of previous visual interpretation results. Ictal SPECT was analyzed using subtraction methods(coregistered to MRI) and voxel-based analysis. Rapidity of injection of tracers, HMPAO versus ECD, and repeated ictal SPECT, which remain the technical issues of ictal SPECT, are detailed. PMID:11748346

  20. Perfusion SPECT studies with mapping of Brodmann areas in differentiating Alzheimer's disease from frontotemporal degeneration syndromes.

    PubMed

    Valotassiou, Varvara; Papatriantafyllou, John; Sifakis, Nikolaos; Tzavara, Chara; Tsougos, Ioannis; Kapsalaki, Eftychia; Hadjigeorgiou, George; Georgoulias, Panagiotis

    2012-12-01

    The aim of this study was to evaluate the contribution of brain perfusion single-photon emission computed tomography (SPECT) studies with mapping of Brodmann areas (BAs) in the differential diagnosis between Alzheimer's disease (AD) and frontotemporal degeneration (FTLD) syndromes. Thirty-nine patients with AD and 73 patients with FTLD syndromes [behavioural variant FTLD (bvFTLD); language variant FTLD (lvFTLD), including semantic dementia (SD) and progressive nonfluent aphasia (PNFA); and corticobasal degeneration (CBD)/progressive supranuclear palsy (PSP) syndromes] underwent brain perfusion SPECT. The NeuroGam software was used for the semiquantitative evaluation of perfusion in BAs of the left (L) and right (R) hemispheres. Compared with those in AD patients, BAs with statistically significant hypoperfusion were found in the prefrontal, orbitofrontal and cingulated cortices and Broca's areas of FTLD and bvFTLD patients; in the temporal and prefrontal cortices and Broca's areas of lvFTLD patients; in the left temporal gyrus of SD patients; in premotor and supplementary motor, prefrontal, orbitofrontal, temporal and anterior cingulated cortices and Broca's areas of PNFA patients; and in the prefrontal, temporal, posterior cingulated and primary and secondary visual cortices of CBD/PSP patients. BA 46R could differentiate AD patients from FTLD and bvFTLD patients; 21L and 25L were found to be independent predictors for lvFTLD in comparison with AD, and 25R, 21L and 23R could differentiate AD patients from PNFA, SD and CBD/PSP patients, respectively. Brain perfusion SPECT with BA mapping in AD and FTLD patients could improve the definition of brain areas that are specifically implicated in these disorders, resulting in a more accurate differential diagnosis.

  1. Silicon Detectors for PET and SPECT

    NASA Astrophysics Data System (ADS)

    Cochran, Eric R.

    Silicon detectors use state-of-the-art electronics to take advantage of the semiconductor properties of silicon to produce very high resolution radiation detectors. These detectors have been a fundamental part of high energy, nuclear, and astroparticle physics experiments for decades, and they hold great potential for significant gains in both PET and SPECT applications. Two separate prototype nuclear medicine imaging systems have been developed to explore this potential. Both devices take advantage of the unique properties of high resolution pixelated silicon detectors, designed and developed as part of the CIMA collaboration and built at The Ohio State University. The first prototype is a Compton SPECT imaging system. Compton SPECT, also referred to as electronic collimation, is a fundamentally different approach to single photon imaging from standard gamma cameras. It removes the inherent coupling of spatial resolution and sensitivity in mechanically collimated systems and provides improved performance at higher energies. As a result, Compton SPECT creates opportunities for the development of new radiopharmaceuticals based on higher energy isotopes as well as opportunities to expand the use of current isotopes such as 131I due to the increased resolution and sensitivity. The Compton SPECT prototype consists of a single high resolution silicon detector, configured in a 2D geometry, in coincidence with a standard NaI scintillator detector. Images of point sources have been taken for 99mTc (140 keV), 131I (364keV), and 22Na (511 keV), demonstrating the performance of high resolution silicon detectors in a Compton SPECT system. Filtered back projection image resolutions of 10 mm, 7.5 mm, and 6.7 mm were achieved for the three different sources respectively. The results compare well with typical SPECT resolutions of 5-15 mm and validate the claims of improved performance in Compton SPECT imaging devices at higher source energies. They also support the potential of

  2. New Approaches in SPECT Breast Imaging

    DTIC Science & Technology

    2005-07-01

    the use of their breast and torso phantoms. The software package, "SPECTER", developed by Tim Turkington, was used to analyze and display the phantom...breast images. The software package, "SPECT-MAP", developed by James Bowsher, was used for reconstructions. VI. REFERENCES [1] Tornai MP, Bowsher JE...based software . and standard errors of the mean. No attenuation or scatter corrections were taken into account in For a given statistical ensemble of

  3. Accelerated GPU based SPECT Monte Carlo simulations

    NASA Astrophysics Data System (ADS)

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-01

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: 99m Tc, 111In and 131I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational efficiency

  4. Accelerated GPU based SPECT Monte Carlo simulations.

    PubMed

    Garcia, Marie-Paule; Bert, Julien; Benoit, Didier; Bardiès, Manuel; Visvikis, Dimitris

    2016-06-07

    Monte Carlo (MC) modelling is widely used in the field of single photon emission computed tomography (SPECT) as it is a reliable technique to simulate very high quality scans. This technique provides very accurate modelling of the radiation transport and particle interactions in a heterogeneous medium. Various MC codes exist for nuclear medicine imaging simulations. Recently, new strategies exploiting the computing capabilities of graphical processing units (GPU) have been proposed. This work aims at evaluating the accuracy of such GPU implementation strategies in comparison to standard MC codes in the context of SPECT imaging. GATE was considered the reference MC toolkit and used to evaluate the performance of newly developed GPU Geant4-based Monte Carlo simulation (GGEMS) modules for SPECT imaging. Radioisotopes with different photon energies were used with these various CPU and GPU Geant4-based MC codes in order to assess the best strategy for each configuration. Three different isotopes were considered: (99m) Tc, (111)In and (131)I, using a low energy high resolution (LEHR) collimator, a medium energy general purpose (MEGP) collimator and a high energy general purpose (HEGP) collimator respectively. Point source, uniform source, cylindrical phantom and anthropomorphic phantom acquisitions were simulated using a model of the GE infinia II 3/8" gamma camera. Both simulation platforms yielded a similar system sensitivity and image statistical quality for the various combinations. The overall acceleration factor between GATE and GGEMS platform derived from the same cylindrical phantom acquisition was between 18 and 27 for the different radioisotopes. Besides, a full MC simulation using an anthropomorphic phantom showed the full potential of the GGEMS platform, with a resulting acceleration factor up to 71. The good agreement with reference codes and the acceleration factors obtained support the use of GPU implementation strategies for improving computational

  5. [SPECT and FDG-PET in diagnostics of neurolues].

    PubMed

    Pichler, Robert; Doppler, Stefan; Szalay, Elisabeth; Hertl, Christine; Knell, Ulrich; Winkler, Johanna

    2008-01-01

    Syphilis is a recurrent treponematosis of acute and chronic evolution. In general it is either sexually or congenitally transmitted. Primary syphilis appears as a single and painless lesion. Secondary syphilis may manifest years later, the secondary bacteremic stage is accompanied by generalized mucocutaneous lesions. Tertiary disease can be disseminated to bones and virtually any organ, involving principally the ascending aorta and the central nervous system. Nuclear medicine provides diagnostic methods in case of skeletal manifestations by bone scan - identifying periostitis and osteomyelitis. Hepatic gummas can be imaged by 99m-Tc-colloid liver scintigraphy. In neurosyphilis brain perfusion SPECT enables imaging of cerebral involvement by small vessel endarteritis resulting from syphilitic vascular disease. 18-FDG PET is also useful to evaluate neurosyphilis, a reduction of brain glucose consumption is observed. The technique adequately enables imaging of therapeutic response and might be superior to morphologic imaging. We present our experiences with these nuclear medicine methods in patients with neurolues. The incidence of neurolues is estimated at 2 per 100.000 inhabitants worldwide, migration processes might bring a re-emergence of this disease to Austria and other developed countries of the EU. Scintigraphic methods should be kept in mind for diagnostic evaluation of neurosyphilis.

  6. Reconstruction of dynamic gated cardiac SPECT

    SciTech Connect

    Jin Mingwu; Yang Yongyi; King, Michael A.

    2006-11-15

    In this paper we propose an image reconstruction procedure which aims to unify gated single photon emission computed tomography (SPECT) and dynamic SPECT into a single method. We divide the cardiac cycle into a number of gate intervals as in gated SPECT, but treat the tracer distribution for each gate as a time-varying signal. By using both dynamic and motion-compensated temporal regularization, our reconstruction procedure will produce an image sequence that shows both cardiac motion and time-varying tracer distribution simultaneously. To demonstrate the proposed reconstruction method, we simulated gated cardiac perfusion imaging using the gated mathematical cardiac-torso (gMCAT) phantom with Tc99m-Teboroxime as the imaging agent. Our results show that the proposed method can produce more accurate reconstruction of gated dynamic images than independent reconstruction of individual gate frames with spatial smoothness alone. In particular, our results show that the former could improve the contrast to noise ratio of a simulated perfusion defect by as much as 100% when compared to the latter.

  7. SPECT and PET in ischemic heart failure.

    PubMed

    Angelidis, George; Giamouzis, Gregory; Karagiannis, Georgios; Butler, Javed; Tsougos, Ioannis; Valotassiou, Varvara; Giannakoulas, George; Dimakopoulos, Nikolaos; Xanthopoulos, Andrew; Skoularigis, John; Triposkiadis, Filippos; Georgoulias, Panagiotis

    2017-02-02

    Heart failure is a common clinical syndrome associated with significant morbidity and mortality worldwide. Ischemic heart disease is the leading cause of heart failure, at least in the industrialized countries. Proper diagnosis of the syndrome and management of patients with heart failure require anatomical and functional information obtained through various imaging modalities. Nuclear cardiology techniques play a main role in the evaluation of heart failure. Myocardial single photon emission computed tomography (SPECT) with thallium-201 or technetium-99 m labelled tracers offer valuable data regarding ventricular function, myocardial perfusion, viability, and intraventricular synchronism. Moreover, positron emission tomography (PET) permits accurate evaluation of myocardial perfusion, metabolism, and viability, providing high-quality images and the ability of quantitative analysis. As these imaging techniques assess different parameters of cardiac structure and function, variations of sensitivity and specificity have been reported among them. In addition, the role of SPECT and PET guided therapy remains controversial. In this comprehensive review, we address these controversies and report the advances in patient's investigation with SPECT and PET in ischemic heart failure. Furthermore, we present the innovations in technology that are expected to strengthen the role of nuclear cardiology modalities in the investigation of heart failure.

  8. SPECT and PET Imaging of Meningiomas

    PubMed Central

    Valotassiou, Varvara; Leondi, Anastasia; Angelidis, George; Psimadas, Dimitrios; Georgoulias, Panagiotis

    2012-01-01

    Meningiomas arise from the meningothelial cells of the arachnoid membranes. They are the most common primary intracranial neoplasms and represent about 20% of all intracranial tumors. They are usually diagnosed after the third decade of life and they are more frequent in women than in men. According to the World Health Organization (WHO) criteria, meningiomas can be classified into grade I meningiomas, which are benign, grade II (atypical) and grade III (anaplastic) meningiomas, which have a much more aggressive clinical behaviour. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are routinely used in the diagnostic workup of patients with meningiomas. Molecular Nuclear Medicine Imaging with Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) could provide complementary information to CT and MRI. Various SPECT and PET tracers may provide information about cellular processes and biological characteristics of meningiomas. Therefore, SPECT and PET imaging could be used for the preoperative noninvasive diagnosis and differential diagnosis of meningiomas, prediction of tumor grade and tumor recurrence, response to treatment, target volume delineation for radiation therapy planning, and distinction between residual or recurrent tumour from scar tissue. PMID:22623896

  9. SPECT and PET imaging of meningiomas.

    PubMed

    Valotassiou, Varvara; Leondi, Anastasia; Angelidis, George; Psimadas, Dimitrios; Georgoulias, Panagiotis

    2012-01-01

    Meningiomas arise from the meningothelial cells of the arachnoid membranes. They are the most common primary intracranial neoplasms and represent about 20% of all intracranial tumors. They are usually diagnosed after the third decade of life and they are more frequent in women than in men. According to the World Health Organization (WHO) criteria, meningiomas can be classified into grade I meningiomas, which are benign, grade II (atypical) and grade III (anaplastic) meningiomas, which have a much more aggressive clinical behaviour. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are routinely used in the diagnostic workup of patients with meningiomas. Molecular Nuclear Medicine Imaging with Single Photon Emission Computed Tomography (SPECT) and Positron Emission Tomography (PET) could provide complementary information to CT and MRI. Various SPECT and PET tracers may provide information about cellular processes and biological characteristics of meningiomas. Therefore, SPECT and PET imaging could be used for the preoperative noninvasive diagnosis and differential diagnosis of meningiomas, prediction of tumor grade and tumor recurrence, response to treatment, target volume delineation for radiation therapy planning, and distinction between residual or recurrent tumour from scar tissue.

  10. SPECT detectors: the Anger Camera and beyond.

    PubMed

    Peterson, Todd E; Furenlid, Lars R

    2011-09-07

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  11. SPECT detectors: the Anger Camera and beyond

    PubMed Central

    Peterson, Todd E.; Furenlid, Lars R.

    2011-01-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous NaI(Tl) scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic. PMID:21828904

  12. SPECT detectors: the Anger Camera and beyond

    NASA Astrophysics Data System (ADS)

    Peterson, Todd E.; Furenlid, Lars R.

    2011-09-01

    The development of radiation detectors capable of delivering spatial information about gamma-ray interactions was one of the key enabling technologies for nuclear medicine imaging and, eventually, single-photon emission computed tomography (SPECT). The continuous sodium iodide scintillator crystal coupled to an array of photomultiplier tubes, almost universally referred to as the Anger Camera after its inventor, has long been the dominant SPECT detector system. Nevertheless, many alternative materials and configurations have been investigated over the years. Technological advances as well as the emerging importance of specialized applications, such as cardiac and preclinical imaging, have spurred innovation such that alternatives to the Anger Camera are now part of commercial imaging systems. Increased computing power has made it practical to apply advanced signal processing and estimation schemes to make better use of the information contained in the detector signals. In this review we discuss the key performance properties of SPECT detectors and survey developments in both scintillator and semiconductor detectors and their readouts with an eye toward some of the practical issues at least in part responsible for the continuing prevalence of the Anger Camera in the clinic.

  13. Dual head HIPDM SPECT imaging in the differential diagnosis of dementia with MR and CT correlation

    SciTech Connect

    Wellman, H.N.; Gilmor, R.; Hendrie, H.; Mock, B.; Kapuscinski, A.; Appledorn, C.R.; Krepshaw, J.

    1985-05-01

    Dual head SPECT brain imaging was performed in 25 patients with a clinical diagnosis of dementia approximately one-half hour after a 5mCi dose of high purity (p,5n) I-123 HIPDM (N,N,N'-Trimethyl-N'-(2-hydroxy-3-methyl-5-iodobenzyl)- 1,3-propane diamine). Tomographic reconstruction used a 30th order, moderate cutoff (0.2) Butterworth filter found previously to optimize low noise and conspicuity. Most patients had CT and MR imaging and some patients were studied more than once. In approximately one-half of patients referred with a diagnosis of dementia of the Alzheimer's type, SPECT results were consistent with multiple infarct dementia (MID). MR studies in most of these patients with MID demonstrated multiple white matter defects correlating with multiple gray matter defects seen with SPECT and consistent with angiogenic disease of the Binswanger's type. While CT demonstrated cortical abnormalities in some patients, the findings were often nonspecific with enlarged ventricles and widened sulci.

  14. Cerebral Hypoperfusion in Hereditary Coproporphyria (HCP): A Single Photon Emission Computed Tomography (SPECT) Study

    PubMed Central

    Valle, Guido; Guida, Claudio Carmine; Nasuto, Michelangelo; Totaro, Manuela; Aucella, Filippo; Frusciante, Vincenzo; Di Mauro, Lazzaro; Potenza, Adele; Savino, Maria; Stanislao, Mario; Popolizio, Teresa; Guglielmi, Giuseppe; Giagulli, Vito Angelo; Guastamacchia, Edoardo; Triggiani, Vincenzo

    2016-01-01

    Background: Hereditary Coproporphyria (HCP) is characterized by abdominal pain, neurologic symptoms and psychiatric disorders, even if it might remain asymptomatic. The pathophysiology of both neurologic and psychiatric symptoms is not fully understood. Therefore, aiming to evaluate a possible role of brain blood flow disorders, we have retrospectively investigated cerebral perfusion patterns in Single Photon Emission Computed Tomography (SPECT) studies in HCP patients. Materials & Methods: We retrospectively evaluated the medical records of patients diagnosed as being affected by HCP. A total of seven HCP patients had been submitted to brain perfusion SPECT study with 99mTc-Exametazime (hexamethylpropyleneamine oxime, HMPAO) or with its functionally equivalent 99mTc-Bicisate (ECD or Neurolite) according with common procedures. In 3 patients the scintigraphic study had been repeated for a second time after the first evaluation at 3, 10 and 20 months, respectively. All the studied subjects had been also submitted to an electromyographic and a Magnetic Resonance Imaging (MRI) study of the brain. Results: Mild to moderate perfusion defects were detected in temporal lobes (all 7 patients), frontal lobes (6 patients) and parietal lobes (4 patients). Occipital lobe, basal ganglia and cerebellar involvement were never observed. In the three subjects in which SPECT study was repeated, some recovery of hypo-perfused areas and appearance of new perfusion defects in other brain regions have been found. In all patients electromyography resulted normal and MRI detected few unspecific gliotic lesions only in one patient. Discussion & Conclusions: Since perfusion abnormalities were usually mild to moderate, this can probably explain the normal pattern observed at MRI studies. Compared to MRI, SPECT with 99mTc showed higher sensitivity in HCP patients. Changes observed in HCP patients who had more than one study suggest that transient perfusion defects might be due to a brain

  15. Cerebral Hypoperfusion in Hereditary Coproporphyria (HCP): A Single Photon Emission Computed Tomography (SPECT) Study.

    PubMed

    Valle, Guido; Guida, Claudio Carmine; Nasuto, Michelangelo; Totaro, Manuela; Aucella, Filippo; Frusciante, Vincenzo; Di Mauro, Lazzaro; Potenza, Adele; Savino, Maria; Stanislao, Mario; Popolizio, Teresa; Guglielmi, Giuseppe; Giagulli, Vito Angelo; Guastamacchia, Edoardo; Triggiani, Vincenzo

    2016-01-01

    Hereditary Coproporphyria (HCP) is characterized by abdominal pain, neurologic symptoms and psychiatric disorders, even if it might remain asymptomatic. The pathophysiology of both neurologic and psychiatric symptoms is not fully understood. Therefore, aiming to evaluate a possible role of brain blood flow disorders, we have retrospectively investigated cerebral perfusion patterns in Single Photon Emission Computed Tomography (SPECT) studies in HCP patients. We retrospectively evaluated the medical records of patients diagnosed as being affected by HCP. A total of seven HCP patients had been submitted to brain perfusion SPECT study with 99mTc-Exametazime (hexamethylpropyleneamine oxime, HMPAO) or with its functionally equivalent 99mTc-Bicisate (ECD or Neurolite) according with common procedures. In 3 patients the scintigraphic study had been repeated for a second time after the first evaluation at 3, 10 and 20 months, respectively. All the studied subjects had been also submitted to an electromyographic and a Magnetic Resonance Imaging (MRI) study of the brain. Mild to moderate perfusion defects were detected in temporal lobes (all 7 patients), frontal lobes (6 patients) and parietal lobes (4 patients). Occipital lobe, basal ganglia and cerebellar involvement were never observed. In the three subjects in which SPECT study was repeated, some recovery of hypo-perfused areas and appearance of new perfusion defects in other brain regions have been found. In all patients electromyography resulted normal and MRI detected few unspecific gliotic lesions only in one patient. Discussion & Conclusions: Since perfusion abnormalities were usually mild to moderate, this can probably explain the normal pattern observed at MRI studies. Compared to MRI, SPECT with 99mTc showed higher sensitivity in HCP patients. Changes observed in HCP patients who had more than one study suggest that transient perfusion defects might be due to a brain artery spasm possibly leading to psychiatric

  16. Evaluation of the olfactory nerve transport function by SPECT-MRI fusion image with nasal thallium-201 administration.

    PubMed

    Shiga, Hideaki; Taki, Junichi; Yamada, Masato; Washiyama, Kohshin; Amano, Ryohei; Matsuura, Yukihiro; Matsui, Osamu; Tatsutomi, Shinji; Yagi, Sayaka; Tsuchida, Asuka; Yoshizaki, Tomokazu; Furukawa, Mitsuru; Kinuya, Seigo; Miwa, Takaki

    2011-12-01

    The aim of this study was to visualize the human olfactory transport pathway to the brain by performing imaging after nasal thallium-201 ((201)Tl) administration. Healthy volunteers were enrolled in this study after giving informed consent (five males, 35-51 years old). The subjects were nasally administered (201)TlCl into either the olfactory cleft. Twenty-four hours later, uptake of (201)Tl was detected by a single photon emission computed tomography (SPECT)/X-ray computed tomography hybrid system. For each subject, an MRI image was obtained and merged with the SPECT image. The peak of the (201)Tl uptake entered into the olfactory bulb in the anterior skull base through the cribriform lamina 24 h after nasal administration of (201)Tl. No participant had olfactory disturbance after treatment. Nasal (201)Tl administration was safely used to assess the direct pathway to the brain via the nose in healthy volunteers with normal olfactory threshold.

  17. A multiresolution restoration method for cardiac SPECT

    NASA Astrophysics Data System (ADS)

    Franquiz, Juan Manuel

    Single-photon emission computed tomography (SPECT) is affected by photon attenuation and image blurring due to Compton scatter and geometric detector response. Attenuation correction is important to increase diagnostic accuracy of cardiac SPECT. However, in attenuation-corrected scans, scattered photons from radioactivity in the liver could produce a spillover of counts into the inferior myocardial wall. In the clinical setting, blurring effects could be compensated by restoration with Wiener and Metz filters. Inconveniences of these procedures are that the Wiener filter depends upon the power spectra of the object image and noise, which are unknown, while Metz parameters have to be optimized by trial and error. This research develops an alternative restoration procedure based on a multiresolution denoising and regularization algorithm. It was hypothesized that this representation leads to a more straightforward and automatic restoration than conventional filters. The main objective of the research was the development and assessment of the multiresolution algorithm for compensating the liver spillover artifact. The multiresolution algorithm decomposes original SPECT projections into a set of sub-band frequency images. This allows a simple denoising and regularization procedure by discarding high frequency channels and performing inversion only in low and intermediate frequencies. The method was assessed in bull's eye polar maps and short- axis attenuation-corrected reconstructions of a realistic cardiac-chest phantom with a custom-made liver insert and different 99mTc liver-to-heart activity ratios. Inferior myocardial defects were simulated in some experiments. The cardiac phantom in free air was considered as the gold standard reference. Quantitative analysis was performed by calculating contrast of short- axis slices and the normalized chi-square measure, defect size and mean and standard deviation of polar map counts. The performance of the multiresolution

  18. Design and assessment of cardiac SPECT systems

    NASA Astrophysics Data System (ADS)

    Lee, Chih-Jie

    Single-photon emission computed tomography (SPECT) is a modality widely used to detect myocardial ischemia and myocardial infarction. Objectively assessing and comparing different SPECT systems is important so that the best detectability of cardiac defects can be achieved. Whitaker, Clarkson, and Barrett's study on the scanning linear observer (SLO) shows that the SLO can be used to estimate the location and size of signals. One major advantage of the SLO is that it can be used with projection data rather than reconstruction data. Thus, this observer model assesses overall hardware performance independent by any reconstruction algorithm. In addition, we will show that the run time of image-quality studies is significantly reduced. Several systems derived from the GE CZT-based dedicated cardiac SPECT camera Discovery 530c design, which is officially named the Alcyone Technology: Discovery NM 530c, were assessed using the performance of the SLO for the task of detecting cardiac defects and estimating the properties of the defects. Clinically, hearts can be virtually segmented into three coronary artery territories: left anterior descending artery (LAD), left circumflex artery (LCX), and right coronary artery (RCA). One of the most important functions of a cardiac SPECT system is to produce images from which a radiologist can correctly predict in which territory the defect exists. A good estimation of the defect extent from the images is also very helpful for determining the seriousness of the myocardial ischemia. In this dissertation, both locations and extent of defects were estimated by the SLO, and system performance was assessed using localization receiver operating characteristic (LROC) / estimation receiver operating characteristic (EROC) curves. Area under LROC curve (AULC) / area under EROC curve (AUEC) and true positive fraction (TPF) at specific false positive fraction (FPF) can be treated as the gures of merit (FOMs). As the results will show, a

  19. Quantitative Monte Carlo-based holmium-166 SPECT reconstruction

    SciTech Connect

    Elschot, Mattijs; Smits, Maarten L. J.; Nijsen, Johannes F. W.; Lam, Marnix G. E. H.; Zonnenberg, Bernard A.; Bosch, Maurice A. A. J. van den; Jong, Hugo W. A. M. de; Viergever, Max A.

    2013-11-15

    Purpose: Quantitative imaging of the radionuclide distribution is of increasing interest for microsphere radioembolization (RE) of liver malignancies, to aid treatment planning and dosimetry. For this purpose, holmium-166 ({sup 166}Ho) microspheres have been developed, which can be visualized with a gamma camera. The objective of this work is to develop and evaluate a new reconstruction method for quantitative {sup 166}Ho SPECT, including Monte Carlo-based modeling of photon contributions from the full energy spectrum.Methods: A fast Monte Carlo (MC) simulator was developed for simulation of {sup 166}Ho projection images and incorporated in a statistical reconstruction algorithm (SPECT-fMC). Photon scatter and attenuation for all photons sampled from the full {sup 166}Ho energy spectrum were modeled during reconstruction by Monte Carlo simulations. The energy- and distance-dependent collimator-detector response was modeled using precalculated convolution kernels. Phantom experiments were performed to quantitatively evaluate image contrast, image noise, count errors, and activity recovery coefficients (ARCs) of SPECT-fMC in comparison with those of an energy window-based method for correction of down-scattered high-energy photons (SPECT-DSW) and a previously presented hybrid method that combines MC simulation of photopeak scatter with energy window-based estimation of down-scattered high-energy contributions (SPECT-ppMC+DSW). Additionally, the impact of SPECT-fMC on whole-body recovered activities (A{sup est}) and estimated radiation absorbed doses was evaluated using clinical SPECT data of six {sup 166}Ho RE patients.Results: At the same noise level, SPECT-fMC images showed substantially higher contrast than SPECT-DSW and SPECT-ppMC+DSW in spheres ≥17 mm in diameter. The count error was reduced from 29% (SPECT-DSW) and 25% (SPECT-ppMC+DSW) to 12% (SPECT-fMC). ARCs in five spherical volumes of 1.96–106.21 ml were improved from 32%–63% (SPECT-DSW) and 50%–80

  20. Evaluation of reconstruction techniques in regional cerebral blood flow SPECT using trade-off plots: a Monte Carlo study.

    PubMed

    Olsson, Anna; Arlig, Asa; Carlsson, Gudrun Alm; Gustafsson, Agnetha

    2007-09-01

    The image quality of single photon emission computed tomography (SPECT) depends on the reconstruction algorithm used. The purpose of the present study was to evaluate parameters in ordered subset expectation maximization (OSEM) and to compare systematically with filtered back-projection (FBP) for reconstruction of regional cerebral blood flow (rCBF) SPECT, incorporating attenuation and scatter correction. The evaluation was based on the trade-off between contrast recovery and statistical noise using different sizes of subsets, number of iterations and filter parameters. Monte Carlo simulated SPECT studies of a digital human brain phantom were used. The contrast recovery was calculated as measured contrast divided by true contrast. Statistical noise in the reconstructed images was calculated as the coefficient of variation in pixel values. A constant contrast level was reached above 195 equivalent maximum likelihood expectation maximization iterations. The choice of subset size was not crucial as long as there were > or = 2 projections per subset. The OSEM reconstruction was found to give 5-14% higher contrast recovery than FBP for all clinically relevant noise levels in rCBF SPECT. The Butterworth filter, power 6, achieved the highest stable contrast recovery level at all clinically relevant noise levels. The cut-off frequency should be chosen according to the noise level accepted in the image. Trade-off plots are shown to be a practical way of deciding the number of iterations and subset size for the OSEM reconstruction and can be used for other examination types in nuclear medicine.

  1. A small-animal imaging system capable of multipinhole circular/helical SPECT and parallel-hole SPECT

    PubMed Central

    Qian, Jianguo; Bradley, Eric L.; Majewski, Stan; Popov, Vladimir; Saha, Margaret S.; Smith, Mark F.; Weisenberger, Andrew G.; Welsh, Robert E.

    2008-01-01

    We have designed and built a small animal single photon emission computed tomography (SPECT) imaging system equipped with parallel-hole and multipinhole collimators and capable of circular or helical SPECT. Copper-beryllium parallel-hole collimators suitable for imaging the ~35 keV photons from the decay of 125I have been built and installed to achieve useful spatial resolution over a range of object-detector distances and to reduce imaging time on our dual-detector array. To address the resolution limitations in the parallel-hole SPECT and the sensitivity and limited field of view of single-pinhole SPECT, we have incorporated multipinhole circular and helical SPECT in addition to expanding the parallel-hole SPECT capabilities. The pinhole SPECT system is based on a 110 mm diameter circular detector equipped with a pixellated NaI(Tl) scintillator array (1×1×5 mm3/pixel). The helical trajectory is accomplished by two stepping motors controlling the rotation of the detector-support gantry and displacement of the animal bed along the axis of rotation of the gantry. Results obtained in SPECT studies of various phantoms show an enlarged field of view, very good resolution and improved sensitivity using multipinhole circular or helical SPECT. Collimators with one, three and five 1 mm diameter pinholes have been implemented and compared in these tests. Our objective is to develop a system on which one may readily select a suitable mode of either parallel-hole SPECT or pinhole circular or helical SPECT for a variety of small animal imaging applications. PMID:19701447

  2. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization.

    PubMed

    Strobbe, Gregor; Carrette, Evelien; López, José David; Montes Restrepo, Victoria; Van Roost, Dirk; Meurs, Alfred; Vonck, Kristl; Boon, Paul; Vandenberghe, Stefaan; van Mierlo, Pieter

    2016-01-01

    Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in

  3. Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization

    PubMed Central

    Strobbe, Gregor; Carrette, Evelien; López, José David; Montes Restrepo, Victoria; Van Roost, Dirk; Meurs, Alfred; Vonck, Kristl; Boon, Paul; Vandenberghe, Stefaan; van Mierlo, Pieter

    2016-01-01

    Electrical source imaging of interictal spikes observed in EEG recordings of patients with refractory epilepsy provides useful information to localize the epileptogenic focus during the presurgical evaluation. However, the selection of the time points or time epochs of the spikes in order to estimate the origin of the activity remains a challenge. In this study, we consider a Bayesian EEG source imaging technique for distributed sources, i.e. the multiple volumetric sparse priors (MSVP) approach. The approach allows to estimate the time courses of the intensity of the sources corresponding with a specific time epoch of the spike. Based on presurgical averaged interictal spikes in six patients who were successfully treated with surgery, we estimated the time courses of the source intensities for three different time epochs: (i) an epoch starting 50 ms before the spike peak and ending at 50% of the spike peak during the rising phase of the spike, (ii) an epoch starting 50 ms before the spike peak and ending at the spike peak and (iii) an epoch containing the full spike time period starting 50 ms before the spike peak and ending 230 ms after the spike peak. To identify the primary source of the spike activity, the source with the maximum energy from 50 ms before the spike peak till 50% of the spike peak was subsequently selected for each of the time windows. For comparison, the activity at the spike peaks and at 50% of the peaks was localized using the LORETA inversion technique and an ECD approach. Both patient-specific spherical forward models and patient-specific 5-layered finite difference models were considered to evaluate the influence of the forward model. Based on the resected zones in each of the patients, extracted from post-operative MR images, we compared the distances to the resection border of the estimated activity. Using the spherical models, the distances to the resection border for the MSVP approach and each of the different time epochs were in

  4. The Value of 99mTc ECD SPECT With Statistical Image Analysis on Enhancing the Early Diagnosis of Primary Progressive Aphasia.

    PubMed

    Wei, Cheng-Yu; Chiu, Pai-Yi; Hou, Po-Nien; Matsuda, Hiroshi; Hung, Guang-Uei

    2017-02-01

    A 64-year-old woman with poor short-term memory was first suspected as early Alzheimer disease. Tc ECD brain SPECT was arranged for differential diagnosis. A small area of mild hypoperfusion was noted in the left temporal lobe on conventional display. Further statistical analysis of SPECT with an easy Z-score imaging system showed large areas of distinct hypoperfusion in left precentral and perisylvian cortical areas, compatible with typical pictures of nonfluent variant primary progressive aphasia (PPA), but no involvement in areas characteristic for Alzheimer disease. Further detailed neuropsychological examination and 6 months of clinical follow-up confirmed the final diagnosis of PPA.

  5. Comparison of technetium-99m-HMPAO and technetium-99m-ECD cerebral SPECT images in Alzheimer`s disease

    SciTech Connect

    Dyck, C.H. van; Lin, C.H.; Smith, E.O.

    1996-11-01

    SPECT has shown increasing promise as a diagnostic tool in Alzheimer`s disease (AD). Recently, a new SPECT brain perfusion agent, {sup 99m}Tc-ethyl cysteinate dimer ({sup 99m}Tc-ECD) has emerged with purported advantages in image quality over the established tracer, {sup 99m}Tc-hexamethylpropyleneamine oxime ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for ({sup 99m}Tc-HMPAO). This research aimed to compare cerebral images for {sup 99}mTc-HMPAO and {sup 99m}Tc-ECD in discriminating patients with AD form control subjects. 51 refs., 5 figs., 3 tabs.

  6. Hemodynamic Response to Interictal Epileptiform Discharges Addressed by Personalized EEG-fNIRS Recordings

    PubMed Central

    Pellegrino, Giovanni; Machado, Alexis; von Ellenrieder, Nicolas; Watanabe, Satsuki; Hall, Jeffery A.; Lina, Jean-Marc; Kobayashi, Eliane; Grova, Christophe

    2016-01-01

    Objective: We aimed at studying the hemodynamic response (HR) to Interictal Epileptic Discharges (IEDs) using patient-specific and prolonged simultaneous ElectroEncephaloGraphy (EEG) and functional Near InfraRed Spectroscopy (fNIRS) recordings. Methods: The epileptic generator was localized using Magnetoencephalography source imaging. fNIRS montage was tailored for each patient, using an algorithm to optimize the sensitivity to the epileptic generator. Optodes were glued using collodion to achieve prolonged acquisition with high quality signal. fNIRS data analysis was handled with no a priori constraint on HR time course, averaging fNIRS signals to similar IEDs. Cluster-permutation analysis was performed on 3D reconstructed fNIRS data to identify significant spatio-temporal HR clusters. Standard (GLM with fixed HRF) and cluster-permutation EEG-fMRI analyses were performed for comparison purposes. Results: fNIRS detected HR to IEDs for 8/9 patients. It mainly consisted oxy-hemoglobin increases (seven patients), followed by oxy-hemoglobin decreases (six patients). HR was lateralized in six patients and lasted from 8.5 to 30 s. Standard EEG-fMRI analysis detected an HR in 4/9 patients (4/9 without enough IEDs, 1/9 unreliable result). The cluster-permutation EEG-fMRI analysis restricted to the region investigated by fNIRS showed additional strong and non-canonical BOLD responses starting earlier than the IEDs and lasting up to 30 s. Conclusions: (i) EEG-fNIRS is suitable to detect the HR to IEDs and can outperform EEG-fMRI because of prolonged recordings and greater chance to detect IEDs; (ii) cluster-permutation analysis unveils additional HR features underestimated when imposing a canonical HR function (iii) the HR is often bilateral and lasts up to 30 s. PMID:27047325

  7. Virtual car accidents of epilepsy patients, interictal epileptic activity, and medication.

    PubMed

    Nirkko, Arto C; Bernasconi, Corrado; von Allmen, Andreas; Liechti, Christian; Mathis, Johannes; Krestel, Heinz

    2016-05-01

    To investigate effects of interictal epileptic activity (IEA) and antiepileptic drugs (AEDs) on reactivity and aspects of the fitness to drive for epilepsy patients. Forty-six adult patients with demonstration of focal or generalized bursts of IEA in electroencephalography (EEG) readings within 1 year prior to inclusion irrespective of medication performed a car driving computer test or a single light flash test (39 patients performed both). Reaction times (RTs), virtual crashes, or lapses (RT ≥ 1 s in the car or flash test) were measured in an IEA burst-triggered fashion during IEA and compared with RT-measurements during unremarkable EEG findings in the same session. IEA prolonged RTs both in the flash and car test (p < 0.001) in individual patients up to 200 ms. Generalized IEA with spike/waves (s/w) had the largest effect on RT prolongation (p < 0.001, both tests), whereas mean RT during normal EEG, age, gender, and number of AEDs had no effect. The car test was better than the flash test in detecting RT prolongations (p = 0.030). IEA increased crashes/lapses >26% in sessions with generalized IEA with s/w. The frequency of IEA-associated RT >1 s exceeded predictions (p < 0.001) based on simple RT shift, suggesting functional impairment beyond progressive RT prolongation by IEA. The number of AEDs correlated with prolonged RTs during normal EEG (p < 0.021) but not with IEA-associated RT prolongation or crashes/lapses. IEA prolonged RTs to varying extents, dependent on IEA type. IEA-associated RTs >1 s were more frequent than predicted, suggesting beginning cerebral decompensation of visual stimulus processing. AEDs somewhat reduced psychomotor speed, but it was mainly the IEA that contributed to an excess of virtual accidents. Wiley Periodicals, Inc. © 2016 International League Against Epilepsy.

  8. Interictal Epileptiform Discharge Effects on Neuropsychological Assessment and Epilepsy Surgical Planning

    PubMed Central

    Drane, Daniel L.; Ojemann, Jeffrey G.; Kim, Michelle S.; Gross, Robert E.; Miller, John W.; Faught, R. Edward; Loring, David W.

    2016-01-01

    Both animal and human research suggests interictal epileptiform discharges (IEDs) may affect cognition, although the significance of such findings remains controversial. We review a wide range of literature with bearing on this topic, and present relevant epilepsy surgery cases, which suggest the effects of IEDs may be substantial and informative for surgical planning. In the first case, we present an epilepsy patient with left anterior temporal lobe (TL) seizure onset who experienced frequent IEDs during preoperative neuropsychological assessment. Cognitive results strongly lateralized to the left TL. Because the patient failed performance validity tests and appeared amnestic for verbal materials inconsistent with his work history, selected neuropsychological tests were repeated 6 weeks later. Scores improved one to two standard deviations over the initial evaluation, and because of this improvement, were only mildly suggestive of left TL impairment. The second case involves another patient with documented left TL epilepsy who experienced epileptiform activity while undergoing neurocognitive testing and simultaneous ambulatory EEG recording. This patient’s verbal memory performance was impaired during the period that IEDs were present but near normal when such activity was absent. Overall, although the presence of IEDs may be helpful in confirming laterality of seizure onset, frequent IEDs might disrupt focal cognitive functions, and distort accurate measurement of neuropsychological ability, interfering with accurate characterization of surgical risks and benefits. Such transient effects on daily performance may also contribute to significant functional compromise. We include a discussion of the manner in which IED effects during presurgical assessment can hinder individual patient presurgical planning as well as distort outcome research (e.g., IEDs occurring during presurgical assessment may lead to an underestimation of postoperative neuropsychological

  9. Multifactorial etiology of interictal behavior in frontal and temporal lobe epilepsy.

    PubMed

    Helmstaedter, Christoph; Witt, Juri-Alexander

    2012-10-01

    Based on discussions on the so called "epileptic personality" in patients with epilepsy, interictal behavioral impairments in frontal and temporal lobe epilepsies were examined in a multivariate approach that took demographic, clinical, and neuropsychological determinants into consideration. A total of 428 patients with epilepsies originating from the temporal (TLE; 84%) or frontal (FLE; 16%) lobes were examined in regard to personality (Fragebogen zur Persönlichkeit bei zerebralen Erkrankungen [FPZ], a clinical personality questionnaire) and mood (Beck Depression Inventory [BDI I]). Prevalence of impaired behavioral domains was determined. Etiologically relevant determinants of behavioral problems were identified via multiple regression analyses. Elevated depression scores (BDI) were evident in 42% of the patients, and not different in TLE and FLE. In regard to personality, introversion together with low mood, sociability, and self-determination, as well as problems with interpersonal communication were frequent. The TLE group tended to show greater neuroticism and introversion, while FLE appeared more associated with behavioral aspects of an organic psychosyndrome. Multivariate analyses revealed demographic characteristics (age, gender, education), clinical aspects (psychiatric history, affected hemisphere, mesial pathology, seizure frequency, cognitive functions), and treatment (antiepileptic drug treatment) as relevant determinants, explaining up to 30% of the behavior. Behavioral abnormalities in patients with frontal or temporal lobe epilepsy are common but on the average mostly mild. Within a multivariate etiological model, localization (mesial yes/no) and lateralization (left > right) dependent behavioral problems in TLE and FLE seem to be overshadowed by other variables, of which patients' and their families' psychiatric history, patient characteristics and pharmacological treatment appear of major importance. Better education and cognitive capabilities

  10. Interictal spike frequency varies with ovarian cycle stage in a rat model of epilepsy.

    PubMed Central

    D’Amour, James; Magagna-Poveda, Alejandra; Moretto, Jillian; Friedman, Daniel; LaFrancois, John J.; Pearce, Patrice; Fenton, Andre A.; MacLusky, Neil J.; Scharfman, Helen E.

    2015-01-01

    In catamenial epilepsy, seizures exhibit a cyclic pattern that parallels the menstrual cycle. Many studies suggest that catamenial seizures are caused by fluctuations in gonadal hormones during the menstrual cycle, but this has been difficult to study in rodent models of epilepsy because the ovarian cycle in rodents, called the estrous cycle, is disrupted by severe seizures. Thus, when epilepsy is severe, estrous cycles become irregular or stop. Therefore, we modified kainic acid (KA)- and pilocarpine-induced status epilepticus (SE) models of epilepsy so that seizures were rare for the first months after SE, and conducted video-EEG during this time. The results showed that interictal spikes (IIS) occurred intermittently. All rats with regular 4-day estrous cycles had IIS that waxed and waned with the estrous cycle. The association between the estrous cycle and IIS was strong: if the estrous cycles became irregular transiently, IIS frequency also became irregular, and when the estrous cycle resumed its 4-day pattern, IIS frequency did also. Furthermore, when rats were ovariectomized, or males were recorded, IIS frequency did not show a 4-day pattern. Systemic administration of an estrogen receptor antagonist stopped the estrous cycle transiently, accompanied by transient irregularity of the IIS pattern. Eventually all animals developed severe, frequent seizures and at that time both the estrous cycle and the IIS became irregular. We conclude that the estrous cycle entrains IIS in the modified KA and pilocarpine SE models of epilepsy. The data suggest that the ovarian cycle influences more aspects of epilepsy than seizure susceptibility. PMID:25864929

  11. Interictal spike frequency varies with ovarian cycle stage in a rat model of epilepsy.

    PubMed

    D'Amour, James; Magagna-Poveda, Alejandra; Moretto, Jillian; Friedman, Daniel; LaFrancois, John J; Pearce, Patrice; Fenton, Andre A; MacLusky, Neil J; Scharfman, Helen E

    2015-07-01

    In catamenial epilepsy, seizures exhibit a cyclic pattern that parallels the menstrual cycle. Many studies suggest that catamenial seizures are caused by fluctuations in gonadal hormones during the menstrual cycle, but this has been difficult to study in rodent models of epilepsy because the ovarian cycle in rodents, called the estrous cycle, is disrupted by severe seizures. Thus, when epilepsy is severe, estrous cycles become irregular or stop. Therefore, we modified kainic acid (KA)- and pilocarpine-induced status epilepticus (SE) models of epilepsy so that seizures were rare for the first months after SE, and conducted video-EEG during this time. The results showed that interictal spikes (IIS) occurred intermittently. All rats with regular 4-day estrous cycles had IIS that waxed and waned with the estrous cycle. The association between the estrous cycle and IIS was strong: if the estrous cycles became irregular transiently, IIS frequency also became irregular, and when the estrous cycle resumed its 4-day pattern, IIS frequency did also. Furthermore, when rats were ovariectomized, or males were recorded, IIS frequency did not show a 4-day pattern. Systemic administration of an estrogen receptor antagonist stopped the estrous cycle transiently, accompanied by transient irregularity of the IIS pattern. Eventually all animals developed severe, frequent seizures and at that time both the estrous cycle and the IIS became irregular. We conclude that the estrous cycle entrains IIS in the modified KA and pilocarpine SE models of epilepsy. The data suggest that the ovarian cycle influences more aspects of epilepsy than seizure susceptibility.

  12. Attention deficit/hyperactivity disorder and interictal epileptiform discharges: it is safe to use methylphenidate?

    PubMed

    Socanski, Dobrinko; Aurlien, Dag; Herigstad, Anita; Thomsen, Per Hove; Larsen, Tor Ketil

    2015-02-01

    This study investigated whether interictal epileptiform discharges (IED) on a baseline routine EEG in children with ADHD was associated with the occurrence of epileptic seizures (Sz) or influenced the use of methylphenidate (MPH) during 2 years follow-up. A retrospective chart-review of 517 ADHD children with EEG revealed IED in 39 cases. These patients (IED group) were matched on age and gender with 39 patients without IED (non-IED group). We measured at baseline, 1 year and 2 years Sz occurrence, the use of MPH and antiepileptic drug (AED). At baseline, 12 patients in the IED group had active epilepsy and three of them had Sz during the last year. 36 (92.3%) patients were treated with MPH. Initial positive response to MPH was achieved in 83.3% compared with 89.2% in the non-IED group. At 1 and 2 years follow-up, three patients who also had Sz at baseline and difficult to treat epilepsy, had Sz, without changes in seizure frequency. We found no statistically significant differences between the groups with respect to MPH use at 1 year and at 2 years. Ten patients from IED group, who did not have confirmed epilepsy diagnosis, temporarily used AEDs during the first year of follow-up. Despite the occurrence of IED, the use of MPH was safe during 2 years follow-up. IED predict the Sz occurrence in children with previous epilepsy, but does not necessarily suggest an increased seizure risk. A caution is warranted in order not to overestimate the significance of temporarily occurrence of IED. Copyright © 2015 British Epilepsy Association. Published by Elsevier Ltd. All rights reserved.

  13. Influence of metallic artifact filtering on MEG signals for source localization during interictal epileptiform activity

    NASA Astrophysics Data System (ADS)

    Migliorelli, Carolina; Alonso, Joan F.; Romero, Sergio; Mañanas, Miguel A.; Nowak, Rafał; Russi, Antonio

    2016-04-01

    Objective. Medical intractable epilepsy is a common condition that affects 40% of epileptic patients that generally have to undergo resective surgery. Magnetoencephalography (MEG) has been increasingly used to identify the epileptogenic foci through equivalent current dipole (ECD) modeling, one of the most accepted methods to obtain an accurate localization of interictal epileptiform discharges (IEDs). Modeling requires that MEG signals are adequately preprocessed to reduce interferences, a task that has been greatly improved by the use of blind source separation (BSS) methods. MEG recordings are highly sensitive to metallic interferences originated inside the head by implanted intracranial electrodes, dental prosthesis, etc and also coming from external sources such as pacemakers or vagal stimulators. To reduce these artifacts, a BSS-based fully automatic procedure was recently developed and validated, showing an effective reduction of metallic artifacts in simulated and real signals (Migliorelli et al 2015 J. Neural Eng. 12 046001). The main objective of this study was to evaluate its effects in the detection of IEDs and ECD modeling of patients with focal epilepsy and metallic interference. Approach. A comparison between the resulting positions of ECDs was performed: without removing metallic interference; rejecting only channels with large metallic artifacts; and after BSS-based reduction. Measures of dispersion and distance of ECDs were defined to analyze the results. Main results. The relationship between the artifact-to-signal rati