Sample records for interim waste containment

  1. Functions and requirements document for interim store solidified high-level and transuranic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Smith-Fewell, M.A., Westinghouse Hanford

    1996-05-17

    The functions, requirements, interfaces, and architectures contained within the Functions and Requirements (F{ampersand}R) Document are based on the information currently contained within the TWRS Functions and Requirements database. The database also documents the set of technically defensible functions and requirements associated with the solidified waste interim storage mission.The F{ampersand}R Document provides a snapshot in time of the technical baseline for the project. The F{ampersand}R document is the product of functional analysis, requirements allocation and architectural structure definition. The technical baseline described in this document is traceable to the TWRS function 4.2.4.1, Interim Store Solidified Waste, and its related requirements, architecture,more » and interfaces.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cummins, G.D.

    This request is submitted to seek interim approval to operate a Toxic Substances Control Act (TSCA) of 1976 chemical waste landfill for the disposal of polychlorinated biphenyl (PCB) waste. Operation of a chemical waste landfill for disposal of PCB waste is subject to the TSCA regulations of 40 CFR 761. Interim approval is requested for a period not to exceed 5 years from the date of approval. This request covers only the disposal of small 10 quantities of solid PCB waste contained in decommissioned, defueled submarine reactor compartments (SRC). In addition, the request applies only to disposal 12 of thismore » waste in Trench 94 of the 218-E-12B Burial Ground (Trench 94) in the 13 200 East Area of the US Department of Energy`s (DOE) Hanford Facility. Disposal of this waste will be conducted in accordance with the Compliance 15 Agreement (Appendix H) between the DOE Richland Operations Office (DOE-RL) and 16 the US Environmental Protection Agency (EPA), Region 10. During the 5-year interim approval period, the DOE-RL will submit an application seeking final 18 approval for operation of Trench 94 as a chemical waste landfill, including 19 any necessary waivers, and also will seek a final dangerous waste permit from 20 the Washington State Department of Ecology (Ecology) for disposal of lead 21 shielding contained in the SRCS.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the interim change notice for the safety operation procedure for hot cell. It covers the master-slave manipulators, dry waste removal, cell transfers, hoists, cask handling, liquid waste system, and physical characterization of fluids.

  4. 40 CFR 265.228 - Closure and post-closure care.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.228 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... or operator must: (1) Remove or decontaminate all waste residues, contaminated containment system...

  5. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: Defense waste processing facility

    NASA Astrophysics Data System (ADS)

    Huang, J. C.; Wright, W. V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built. High level waste is produced when reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The risks associated with the manufacture and interim storage of these two forms in the DWPF are compared. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information.

  6. SWSA 6 interim corrective measures environmental monitoring: FY 1991 results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clapp, R.B.; Marshall, D.S.

    1992-06-01

    In 1988, interim corrective measures (ICMs) were implemented at Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory. The SWSA 6 site was regulated under the Resource Conservation and Recovery Act (RCRA). The ICMs consist of eight large high-density polyethylene sheets placed as temporary caps to cover trenches known to contain RCRA-regulated materials. Environmental monitoring for FY 1991 consisted of collecting water levels at 13 groundwater wells outside the capped areas and 44 wells in or near the capped areas in order to identify any significant loss of hydrologic isolation of the wastes. Past annual reports show thatmore » the caps are only partially effective in keeping the waste trenches dry and that many trenches consistently or intermittently contain water.« less

  7. SWSA 6 interim corrective measures environmental monitoring: FY 1991 results. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clapp, R.B.; Marshall, D.S.

    1992-06-01

    In 1988, interim corrective measures (ICMs) were implemented at Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory. The SWSA 6 site was regulated under the Resource Conservation and Recovery Act (RCRA). The ICMs consist of eight large high-density polyethylene sheets placed as temporary caps to cover trenches known to contain RCRA-regulated materials. Environmental monitoring for FY 1991 consisted of collecting water levels at 13 groundwater wells outside the capped areas and 44 wells in or near the capped areas in order to identify any significant loss of hydrologic isolation of the wastes. Past annual reports show thatmore » the caps are only partially effective in keeping the waste trenches dry and that many trenches consistently or intermittently contain water.« less

  8. 40 CFR 265.223 - Containment system.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 265.223 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL..., such as grass, shale, or rock, to minimize wind and water erosion and to preserve their structural...

  9. Final Environmental Assessment for the CV-22 Interim Beddown

    DTIC Science & Technology

    2016-04-01

    as asbestos -containing materials and lead-based paints, depending on the age of the buildings demolished. The Proposed Action and proposed...Demolition could generate additional hazardous wastes and materials such as asbestos -containing materials and lead-based paints, depending on the

  10. Superfund record of decision (EPA Region 5): Muskego Sanitary Landfill, Muskego, WI. (First remedial action), June 1992. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-06-12

    The 56-acre Muskego Sanitary Landfill site was located in the City of Muskego, Waukesha County, Wisconsin. From the 1950's to 1981, municipal waste, waste oils, paint products, and other waste were disposed of at the site. The site was separated into three disposal areas: the Old Fill Area (38 acres); the Southeast Fill Area (16 acres); and the Non-Contiguous Fill Area (4.2 acres), composed of a drum trench, north and south refuse trenches, and an L-shaped fill area, all containing waste similar to the Old Fill Area. As a result of deteriorating water quality at onsite ground water monitoring wells,more » Waste Management of Wisconsin Inc. (WMWI) and the state conducted numerous investigations that revealed elevated levels of contaminants in the ground water. Two separate areas at the site were discovered to contain buried drums and contaminated soil. The first area was located east of the Non-Contiguous Fill Area. The second area, known as the drum trench, was discovered in a portion of the Non-Contiguous Fill Area and contained 989 drums and 2,500 cubic yards of contaminated soil. The interim ROD addressed the control and remediation of the contamination sources, including landfill waste, contaminated soils, leachate, and landfill gas. The primary contaminants of concern affecting the soil and ground water were VOCs, including benzene, toluene, and xylenes; and other organics, including chlorinated ethanes, ketones, PAHs, PCBs, pesticides, phenols, and phthalates.« less

  11. PROJECT W-551 INTERIM PRETREATMENT SYSTEM PRECONCEPTUAL CANDIDATE TECHNOLOGY DESCRIPTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MAY TH

    The Office of River Protection (ORP) has authorized a study to recommend and select options for interim pretreatment of tank waste and support Waste Treatment Plant (WTP) low activity waste (LAW) operations prior to startup of all the WTP facilities. The Interim Pretreatment System (IPS) is to be a moderately sized system which separates entrained solids and 137Cs from tank waste for an interim time period while WTP high level waste vitrification and pretreatment facilities are completed. This study's objective is to prepare pre-conceptual technology descriptions that expand the technical detail for selected solid and cesium separation technologies. This revisionmore » includes information on additional feed tanks.« less

  12. Analysis of the factors that impact the reliability of high level waste canister materials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boyd, W.K.; Hall, A.M.

    1977-09-19

    The analysis encompassed identification and analysis of potential threats to canister integrity arising in the course of waste solidification, interim storage at the fuels reprocessing plant, wet and dry shipment, and geologic storage. Fabrication techniques and quality assurance requirements necessary to insure optimum canister reliability were considered taking into account such factors as welding procedure, surface preparation, stress relief, remote weld closure, and inspection methods. Alternative canister materials and canister systems were also considered in terms of optimum reliability in the face of threats to the canister's integrity, ease of fabrication, inspection, handling and cost. If interim storage in airmore » is admissible, the sequence suggested comprises producing a glass-type waste product in a continuous ceramic melter, pouring into a carbon steel or low-alloy steel canister of moderately heavy wall thickness, storing in air upright on a pad and surrounded by a concrete radiation shield, and thereafter placing in geologic storage without overpacking. Should the decision be to store in water during the interim period, then use of either a 304 L stainless steel canister overpacked with a solution-annealed and fast-cooled 304 L container, or a single high-alloy canister, is suggested. The high alloy may be Inconel 600, Incoloy Alloy 800, or Incoloy Alloy 825. In either case, it is suggested that the container be overpacked with a moderately heavy wall carbon steel or low-alloy steel cask for geologic storage to ensure ready retrievability. 19 figs., 5 tables.« less

  13. Conceptual design statement of work for the immobilized low-activity waste interim storage facility project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, T.A., Fluor Daniel Hanford

    1997-02-06

    The Immobilized Low-Activity Waste Interim Storage subproject will provide storage capacity for immobilized low-activity waste product sold to the U.S. Department of Energy by the privatization contractor. This statement of work describes the work scope (encompassing definition of new installations and retrofit modifications to four existing grout vaults), to be performed by the Architect-Engineer, in preparation of a conceptual design for the Immobilized Low-Activity Waste Interim Storage Facility.

  14. Safety evaluation for packaging transportation of equipment for tank 241-C-106 waste sluicing system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Calmus, D.B.

    1994-08-25

    A Waste Sluicing System (WSS) is scheduled for installation in nd waste storage tank 241-C-106 (106-C). The WSS will transfer high rating sludge from single shell tank 106-C to double shell waste tank 241-AY-102 (102-AY). Prior to installation of the WSS, a heel pump and a transfer pump will be removed from tank 106-C and an agitator pump will be removed from tank 102-AY. Special flexible receivers will be used to contain the pumps during removal from the tanks. After equipment removal, the flexible receivers will be placed in separate containers (packagings). The packaging and contents (packages) will be transferredmore » from the Tank Farms to the Central Waste Complex (CWC) for interim storage and then to T Plant for evaluation and processing for final disposition. Two sizes of packagings will be provided for transferring the equipment from the Tank Farms to the interim storage facility. The packagings will be designated as the WSSP-1 and WSSP-2 packagings throughout the remainder of this Safety Evaluation for Packaging (SEP). The WSSP-1 packagings will transport the heel and transfer pumps from 106-C and the WSSP-2 packaging will transport the agitator pump from 102-AY. The WSSP-1 and WSSP-2 packagings are similar except for the length.« less

  15. Waste Determination Equivalency - 12172

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman, Rebecca D.

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposedmore » of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed by the Secretary of Energy in January of 2006 based on proposed processing techniques with the expectation that it could be revised as new processing capabilities became viable. Once signed, however, it became evident that any changes would require lengthy review and another determination signed by the Secretary of Energy. With the maturation of additional salt removal technologies and the extension of the SWPF start-up date, it becomes necessary to define 'equivalency' to the processes laid out in the original determination. For the purposes of SRS, any waste not processed through Interim Salt Processing must be processed through SWPF or an equivalent process, and therefore a clear statement of the requirements for a process to be equivalent to SWPF becomes necessary. (authors)« less

  16. Hazardous waste management programs; Florida: authorization for interim authorization phase I--Environmental Protection Agency. Notice of final determination.

    PubMed

    1982-05-07

    The State of Florida has applied for interim Authorization Phase I. EPA has reviewed Florida's application for Phase I and has determined that Florida's hazardous waste program is substantially equivalent to the Federal program covered by Phase I. The State of Florida is, hereby, granted Interim Authorization for Phase I to operate the State 's hazardous waste program, in lieu of the Federal program.

  17. Hanford Waste Physical and Rheological Properties: Data and Gaps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, Beric E.; Kurath, Dean E.; Mahoney, Lenna A.

    2011-08-01

    The Hanford Site in Washington State manages 177 underground storage tanks containing approximately 250,000 m3 of waste generated during past defense reprocessing and waste management operations. These tanks contain a mixture of sludge, saltcake and supernatant liquids. The insoluble sludge fraction of the waste consists of metal oxides and hydroxides and contains the bulk of many radionuclides such as the transuranic components and 90Sr. The saltcake, generated by extensive evaporation of aqueous solutions, consists primarily of dried sodium salts. The supernates consist of concentrated (5-15 M) aqueous solutions of sodium and potassium salts. The 177 storage tanks include 149 single-shellmore » tanks (SSTs) and 28 double -hell tanks (DSTs). Ultimately the wastes need to be retrieved from the tanks for treatment and disposal. The SSTs contain minimal amounts of liquid wastes, and the Tank Operations Contractor is continuing a program of moving solid wastes from SSTs to interim storage in the DSTs. The Hanford DST system provides the staging location for waste feed delivery to the Department of Energy (DOE) Office of River Protection’s (ORP) Hanford Tank Waste Treatment and Immobilization Plant (WTP). The WTP is being designed and constructed to pretreat and then vitrify a large portion of the wastes in Hanford’s 177 underground waste storage tanks.« less

  18. 40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... 40 Protection of Environment 26 2011-07-01 2011-07-01 false EPA Interim Primary Drinking Water... Water Standards Parameter Maximum level (mg/l) Arsenic 0.05 Barium 1.0 Cadmium 0.01 Chromium 0.05...

  19. 40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... 40 Protection of Environment 25 2010-07-01 2010-07-01 false EPA Interim Primary Drinking Water... Water Standards Parameter Maximum level (mg/l) Arsenic 0.05 Barium 1.0 Cadmium 0.01 Chromium 0.05...

  20. 40 CFR Appendix III to Part 265 - EPA Interim Primary Drinking Water Standards

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false EPA Interim Primary Drinking Water Standards III Appendix III to Part 265 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Pt....

  1. Superfund Record of Decision (EPA Region 1): Otis Air National Guard/Camp Edwards, MA. (First remedial action), May 1992. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-05-20

    The 22,000-acre Otis National Guard/Camp Edwards site is a former military vehicle maintenance facility on Cape Cod, Massachusetts, within the Massachusetts Military Reservation (MMR). The Area of Contamination Chemical Spill Area Number 4 (AOC CS-4) plume extends 11,000 feet and is located 1.1 miles from the southern boundary of MMR. Wastes and equipment handled at AOC CS-4 included oils, solvents, antifreeze, battery electrolytes, paint, and waste fuels. Additionally, the northern portion of AOC CS-4 was used as a storage yard for wastes generated by shops and laboratories operating at MMR. Liquid wastes were stored in containers or underground storage tanksmore » (USTs) in an unbermed area or deposited in USTs designated for motor gasoline. The ROD addresses OU2, the interim action for MMR AOC CS-4 ground water to prevent further down gradient migration of the contaminants. The primary contaminants of concern affecting the ground water are VOCs, including PCE and TCE.« less

  2. Interim-status groundwater monitoring plan for the 216-B-63 trench. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sweeney, M.D.

    1995-06-13

    This document outlines the groundwater monitoring plan for interim-status detection-level monitoring of the 216-B-63 Trench. This is a revision of the initial groundwater monitoring plan prepared for Westinghouse Hanford Company (WHC) by Bjornstad and Dudziak (1989). The 216-B-63 Trench, located at the Hanford Site in south-central Washington State, is an open, unlined, earthern trench approximately 1.2 m (4 ft) wide at the bottom, 427 m (1400 ft) long, and 3 m (10 ft) deep that received wastewater containing hazardous waste and radioactive materials from B Plant, located in the 200 East Area. Liquid effluent discharge to the 216-B-63 Trench beganmore » in March 1970 and ceased in February 1992. The trench is now managed by Waste Tank Operations.« less

  3. Benchmarking of MCNP for calculating dose rates at an interim storage facility for nuclear waste.

    PubMed

    Heuel-Fabianek, Burkhard; Hille, Ralf

    2005-01-01

    During the operation of research facilities at Research Centre Jülich, Germany, nuclear waste is stored in drums and other vessels in an interim storage building on-site, which has a concrete shielding at the side walls. Owing to the lack of a well-defined source, measured gamma spectra were unfolded to determine the photon flux on the surface of the containers. The dose rate simulation, including the effects of skyshine, using the Monte Carlo transport code MCNP is compared with the measured dosimetric data at some locations in the vicinity of the interim storage building. The MCNP data for direct radiation confirm the data calculated using a point-kernel method. However, a comparison of the modelled dose rates for direct radiation and skyshine with the measured data demonstrate the need for a more precise definition of the source. Both the measured and the modelled dose rates verified the fact that the legal limits (<1 mSv a(-1)) are met in the area outside the perimeter fence of the storage building to which members of the public have access. Using container surface data (gamma spectra) to define the source may be a useful tool for practical calculations and additionally for benchmarking of computer codes if the discussed critical aspects with respect to the source can be addressed adequately.

  4. Final Report: Characterization of Canister Mockup Weld Residual Stresses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Enos, David; Bryan, Charles R.

    2016-12-01

    Stress corrosion cracking (SCC) of interim storage containers has been indicated as a high priority data gap by the Department of Energy (DOE) (Hanson et al., 2012), the Electric Power Research Institute (EPRI, 2011), the Nuclear Waste Technical Review Board (NWTRB, 2010a), and the Nuclear Regulatory Commission (NRC, 2012a, 2012b). Uncertainties exist in terms of the environmental conditions that prevail on the surface of the storage containers, the stress state within the container walls associated both with weldments as well as within the base metal itself, and the electrochemical properties of the storage containers themselves. The goal of the workmore » described in this document is to determine the stress states that exists at various locations within a typical storage canister by evaluating the properties of a full-diameter cylindrical mockup of an interim storage canister. This mockup has been produced using the same manufacturing procedures as the majority of the fielded spent nuclear fuel interim storage canisters. This document describes the design and procurement of the mockup and the characterization of the stress state associated with various portions of the container. It also describes the cutting of the mockup into sections for further analyses, and a discussion of the potential impact of the results from the stress characterization effort.« less

  5. Method of preparing nuclear wastes for tansportation and interim storage

    DOEpatents

    Bandyopadhyay, Gautam; Galvin, Thomas M.

    1984-01-01

    Nuclear waste is formed into a substantially water-insoluble solid for temporary storage and transportation by mixing the calcined waste with at least 10 weight percent powdered anhydrous sodium silicate to form a mixture and subjecting the mixture to a high humidity environment for a period of time sufficient to form cementitious bonds by chemical reaction. The method is suitable for preparing an interim waste form from dried high level radioactive wastes.

  6. Quarterly report of RCRA groundwater monitoring data for period January 1, 1993 through March 31, 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-07-01

    Hanford Site interim-status groundwater monitoring projects are conducted as either background, indicator parameter evaluation, or groundwater quality assessment monitoring programs as defined in the Resource Conservation and Recovery Act of 1976 (RCRA); and Interim Status Standards for Owners and Operators of Hazardous Waste Treatment, Storage, and Disposal Facilities, as amended (40 Code of Federal Regulations [CFR] 265). Compliance with the 40 CFR 265 regulations is required by the Washington Administrative Code (WAC) 173-303. This report contains data from Hanford Site groundwater monitoring projects. This quarterly report contains data received between March 8 and May 24, 1993, which are the cutoffmore » dates for this reporting period. This report may contain not only data from the January through March quarter but also data from earlier sampling events that were not previously reported.« less

  7. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  8. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  9. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  10. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  11. 40 CFR 265.352 - Interim status incinerators burning particular hazardous wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Interim status incinerators burning... incinerators burning particular hazardous wastes. (a) Owners or operators of incinerators subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or FO27 if they receive a...

  12. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits:Interim CQA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Delphi Groupe, Inc., and J. A. Cesare and Associates, Inc.

    This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. Construction was approved by the Nevada Division of Environmental Protection (NDEP) under the Approval of Corrective Action Decision Document/Corrective Action Plan (CADD/CAP)more » for Corrective Action Unit (CAU) 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada, on January 6, 2011, pursuant to Subpart XII.8a of the Federal Facility Agreement and Consent Order. The project is located in Area 5 of the Radioactive Waste Management Complex (RWMC) at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site, located in southern Nevada, approximately 65 miles northwest of Las Vegas, Nevada, in Nye County. The project site, in Area 5, is located in a topographically closed basin approximately 14 additional miles north of Mercury Nevada, in the north-central part of Frenchman Flat. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.« less

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmanlioglu, Ahmet Erdal

    Available in abstract form only. Full text of publication follows: Naturally occurring radioactive material (NORM) in concentrated forms arises both in industry and in nature where natural radioisotopes accumulate at particular sites. Technically enhanced naturally occurring radioactive materials (TE-NORM) often occurs in an acidic environment where precipitates containing radionuclides plate out onto pipe walls, filters, tank linings, etc. Because of the radionuclides are selectively deposited at these sites, radioactivity concentration is extremely higher than the natural concentration. This paper presents characterization and related considerations of TE-NORM wastes in Turkey. Generally, accumulation conditions tend to favour the build-up of radium. Asmore » radium is highly radio-toxic, handling, treatment, storage and disposal of such material requires careful management. Turkey has the only low level waste processing and storage facility (WPSF) in Istanbul. This facility has interim storage buildings and storage area for storage of packaged radioactive waste which are containing artificial radioisotopes, but there is an increasing demand for the storage to accept bulk concentrated TE-NORM wastes from iron-steel and related industries. Most of these wastes generated from scrap metal piles which are imported from other countries. These wastes generally contain radium. (authors)« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Pacific Northwest Laboratory (PNL), operated by Battelle Memorial Institute under contract to the U.S. Department of Energy, operates tank systems for the U.S. Department of Energy, Richland Operations Office (DOE-RL), that contain dangerous waste constituents as defined by Washington State Department of Ecology (WDOE) Dangerous Waste Regulations, Washington Administrative Code (WAC) 173-303-040(18). Chapter 173-303-640(2) of the WAC requires the performance of integrity assessments for each existing tank system that treats or stores dangerous waste, except those operating under interim status with compliant secondary containment. This Integrity Assessment Plan (IAP) identifies all tasks that will be performed during the integritymore » assessment of the PNL-operated Radioactive Liquid Waste Systems (RLWS) associated with the 324 and 325 Buildings located in the 300 Area of the Hanford Site. It describes the inspections, tests, and analyses required to assess the integrity of the PNL RLWS (tanks, ancillary equipment, and secondary containment) and provides sufficient information for adequate budgeting and control of the assessment program. It also provides necessary information to permit the Independent, Qualified, Registered Professional Engineer (IQRPE) to approve the integrity assessment program.« less

  15. How the University of Texas system responded to the need for interim storage of low-level radioactive waste materials.

    PubMed

    Emery, Robert J

    2012-11-01

    Faced with the prospect of being unable to permanently dispose of low-level radioactive wastes (LLRW) generated from teaching, research, and patient care activities, component institutions of the University of Texas System worked collaboratively to create a dedicated interim storage facility to be used until a permanent disposal facility became available. Located in a remote section of West Texas, the University of Texas System Interim Storage Facility (UTSISF) was licensed and put into operation in 1993, and since then has provided safe and secure interim storage for up to 350 drums of dry solid LLRW at any given time. Interim storage capability provided needed relief to component institutions, whose on-site waste facilities could have possibly become overburdened. Experiences gained from the licensing and operation of the site are described, and as a new permanent LLRW disposal facility emerges in Texas, a potential new role for the storage facility as a surge capacity storage site in times of natural disasters and emergencies is also discussed.

  16. 40 CFR 264.3 - Relationship to interim status standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Relationship to interim status standards. 264.3 Section 264.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES General § 264.3 Relationship to...

  17. Cost Implications of an Interim Storage Facility in the Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jarrell, Joshua J.; Joseph, III, Robert Anthony; Howard, Rob L

    2016-09-01

    This report provides an evaluation of the cost implications of incorporating a consolidated interim storage facility (ISF) into the waste management system (WMS). Specifically, the impacts of the timing of opening an ISF relative to opening a repository were analyzed to understand the potential effects on total system costs.

  18. Guidance: Interim Municipal Settlement Policy

    EPA Pesticide Factsheets

    Interim guidance and fact sheets regarding settlements involving municipalities or municipal waste under Section 122 CERCLA as amended by SARA. Interim policy sets forth the criteria by which EPA generally determines whether to exercise enforcement discretion to pursue MSW generators and transporters as PRPs.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the interim change notice for sample preparation methods. Covered are: acid digestion for metals analysis, fusion of Hanford tank waste solids, water leach of sludges/soils/other solids, extraction procedure toxicity (simulate leach in landfill), sample preparation for gamma spectroscopy, acid digestion for radiochemical analysis, leach preparation of solids for free cyanide analysis, aqueous leach of solids for anion analysis, microwave digestion of glasses and slurries for ICP/MS, toxicity characteristic leaching extraction for inorganics, leach/dissolution of activated metal for radiochemical analysis, extraction of single-shell tank (SST) samples for semi-VOC analysis, preparation and cleanup of hydrocarbon- containing samples for VOCmore » and semi-VOC analysis, receiving of waste tank samples in onsite transfer cask, receipt and inspection of SST samples, receipt and extrusion of core samples at 325A shielded facility, cleaning and shipping of waste tank samplers, homogenization of solutions/slurries/sludges, and test sample preparation for bioassay quality control program.« less

  20. Remaining Sites Verification Package for the 116-C-3, 105-C Chemical Waste Tanks, Waste Site Reclassification Form 2008-002

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. M. Dittmer

    2008-01-31

    The 116-C-3 waste site consisted of two underground storage tanks designed to receive mixed waste from the 105-C Reactor Metals Examination Facility chemical dejacketing process. Confirmatory evaluation and subsequent characterization of the site determined that the southern tank contained approximately 34,000 L (9,000 gal) of dejacketing wastes, and that the northern tank was unused. In accordance with this evaluation, the verification sampling and modeling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrate that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils.more » The results also show that residual contaminant concentrations are protective of groundwater and the Columbia River.« less

  1. Integrated waste management system costs in a MPC system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Supko, E.M.

    1995-12-01

    The impact on system costs of including a centralized interim storage facility as part of an integrated waste management system based on multi-purpose canister (MPC) technology was assessed in analyses by Energy Resources International, Inc. A system cost savings of $1 to $2 billion occurs if the Department of Energy begins spent fuel acceptance in 1998 at a centralized interim storage facility. That is, the savings associated with decreased utility spent fuel management costs will be greater than the cost of constructing and operating a centralized interim storage facility.

  2. 40 CFR 267.2 - What is the relationship to interim status standards?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false What is the relationship to interim status standards? 267.2 Section 267.2 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE FACILITIES OPERATING UNDER A STANDARDIZED PERMIT General § 267.2...

  3. 76 FR 56708 - Ohio: Final Authorization of State Hazardous Waste Management Program Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-14

    .... January 4, 1989, 54 FR 246.... NESHAPS: Final Standards for May 14, 2001, 66 FR 24270..... OAC 3745-50-41...; Checklist 188.1. NESHAPS: Interim Standards for February 13, 2002, 67 FR 6792. OAC 3745-50-44; 3745-50-66... Waste Combustors 2009. (Interim Standards Rule); Checklist 197. NESHAPS: Standards for Hazardous...

  4. Postconstruction report for the mercury tanks interim action at the Oak Ridge Y-12 Plant, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voskuil, T.L.

    1993-09-01

    Three underground concrete settling tanks (tanks 2101-U, 2104-U, and 2100-U) at the Y-12 Plant on the Oak Ridge Reservation in Oak Ridge, Tennessee, contained contaminated sludges contributing mercury to the Upper East Fork Poplar Creek (UEFPC). These tanks were cleaned out as an interim action under the Comprehensive Environmental Response, Compensation, and Liability Act as part of the Reduction of Mercury in Plant Effluent subproject. Cleaning out these tanks prevented the sludge that had settled in the bottom from resuspending and carrying mercury into UEFPC. Tanks 2104-U and 2100-U were returned to service and will continue to receive effluent frommore » buildings 9201-4 and 9201-5. Tank 2101-U had been abandoned and its effluent redirected to Tank 2100-U during previous activities. This interim action permanently sealed Tank 2101-U from the storm sewer system. Upon removal of materials and completion of cleanup, inspections determined that the project`s cleanup criteria had been met. The structural integrity of the tanks was also inspected, and minor cracks identified in tanks 2101-U and 2104-U were repaired. This project is considered to have been completed successfully because it met its performance objectives as addressed in the Interim Record of Decision and the work plan: to remove the waste from the three storage tanks; to ensure that the tanks were cleaned to the levels specified; to return tanks 2100-U and 2104-U to service; to isolate Tank 2101-U permanently; and to manage the wastes in an appropriate fashion.« less

  5. RH-TRU Waste Shipments from Battelle Columbus Laboratories to the Hanford Nuclear Facility for Interim Storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eide, J.; Baillieul, T. A.; Biedscheid, J.

    2003-02-26

    Battelle Columbus Laboratories (BCL), located in Columbus, Ohio, must complete decontamination and decommissioning (D&D) activities for nuclear research buildings and grounds by 2006, as directed by Congress. Most of the resulting waste (approximately 27 cubic meters [m3]) is remote-handled (RH) transuranic (TRU) waste destined for disposal at the Waste Isolation Pilot Plant (WIPP). The BCL, under a contract to the U.S. Department of Energy (DOE) Ohio Field Office, has initiated a plan to ship the TRU waste to the DOE Hanford Nuclear Facility (Hanford) for interim storage pending the authorization of WIPP for the permanent disposal of RH-TRU waste. Themore » first of the BCL RH-TRU waste shipments was successfully completed on December 18, 2002. This BCL shipment of one fully loaded 10-160B Cask was the first shipment of RH-TRU waste in several years. Its successful completion required a complex effort entailing coordination between different contractors and federal agencies to establish necessary supporting agreements. This paper discusses the agreements and funding mechanisms used in support of the BCL shipments of TRU waste to Hanford for interim storage. In addition, this paper presents a summary of the efforts completed to demonstrate the effectiveness of the 10-160B Cask system. Lessons learned during this process are discussed and may be applicable to other TRU waste site shipment plans.« less

  6. Conditioning of the 4 Curies Radium-226 Sealed Radiation Source in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Punnachaiya, M.; Sawangsri, T.; Wanabongse, P.

    This paper describes the conditioning of the 4 curies Radium-226 (Ra-226) sealed radiation source using as a teletherapy unit for cancer treatment in Thailand. The conditioning was under the International Atomic Energy Agency (IAEA) supervision and budgetary supports, comprised of 6 operational steps: the surface dose rate and actual dimension of radium unit measurements, the appropriate lead shielding design with IAEA approval, confirmation of radioactive contamination before conditioning (smear test and radon gas leakage test), transfer of radium source unit into the designed shielding, confirmation of radioactive contamination and dose rate measurement after conditioning, and transportation of Ra-226 conditioning wastemore » package to OAP interim waste storage. The Ra-226 unit was taken out of OAP temporary waste storage for the surface dose rate and the actual dimension measurements behind the 12 inches thick heavy concrete shielding. The maximum measured surface dose rate was 70 R/hr. The special lead container was designed according to its surface dose rate along the source unit which the maximum permissible dose limit for surface dose rate of waste package after conditioning at 2 mSv/hr was applied. The IAEA approved container had total weight of 2.4 ton. After the confirmation of radioactive contamination, Ra-226 source unit was transferred and loaded in the designed lead shielding within 2 minutes. The results of smear test before and after conditioning including radon gas leakage test revealed that there was no radioactive contamination. After conditioning, the surface dose rate measured on the top, bottom were 15,10 mR/hr and varied from 6 - 50 mR/hr around lead container. The Ra-226 conditioning waste package was safely transported to store in OAP interim waste storage. Total working time including the time consumed for radon gas leakage test was 3.5 hours. The total radiation dose received by 16 operators, were ranged from 1 - 69.84 {mu}Sv and the operational team completed the conditioning safely within the effective dose limit for occupational exposure of 50 mSv/year (200 {mu}Sv/day). (authors)« less

  7. Progress and future direction for the interim safe storage and disposal of Hanford high-level waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinzer, J.E.; Wodrich, D.D.; Bacon, R.F.

    This paper describes the progress made at the largest environmental cleanup program in the United States. Substantial advances in methods to start interim safe storage of Hanford Site high-level wastes, waste characterization to support both safety- and disposal-related information needs, and proceeding with cost-effective disposal by the U.S. Department of Energy (DOE) and its Hanford Site contractors, have been realized. Challenges facing the Tank Waste Remediation System (TWRS) Program, which is charged with the dual and parallel missions of interim safe storage and disposal of the high-level tank waste stored at the Hanford Site, are described. In these times ofmore » budget austerity, implementing an ongoing program that combines technical excellence and cost effectiveness is the near-term challenge. The technical initiatives and progress described in this paper are made more cost effective by DOE`s focus on work force productivity improvement, reduction of overhead costs, and reduction, integration and simplification of DOE regulations and operations requirements to more closely model those used in the private sector.« less

  8. West Valley demonstration project: Alternative processes for solidifying the high-level wastes

    NASA Astrophysics Data System (ADS)

    Holton, L. K.; Larson, D. E.; Partain, W. L.; Treat, R. L.

    1981-10-01

    Two pretreatment approaches and several waste form processes for radioactive wastes were selected for evaluation. The two waste treatment approaches were the salt/sludge separation process and the combined waste process. Both terminal and interim waste form processes were studied.

  9. 40 CFR 265.93 - Preparation, evaluation, and response.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... determining: (1) Whether hazardous waste or hazardous waste constituents have entered the ground water; (2... water; and (3) The concentrations of hazardous waste or hazardous waste constituents in the ground water...

  10. 40 CFR 265.93 - Preparation, evaluation, and response.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... determining: (1) Whether hazardous waste or hazardous waste constituents have entered the ground water; (2... water; and (3) The concentrations of hazardous waste or hazardous waste constituents in the ground water...

  11. PROJECT W-551 DETERMINATION DATA FOR EARLY LAW INTERIM PRETREATMENT SYSTEM SELECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEDESCHI AR

    This report provides the detailed assessment forms and data for selection of the solids separation and cesium separation technology for project W-551, Interim Pretreatment System. This project will provide early pretreated low activity waste feed to the Waste Treatment Plant to allow Waste Treatment Plan Low Activity Waste facility operation prior to construction completion of the Pretreatment and High Level Waste facilities. The candidate solids separations technologies are rotary microfiltration and crossflow filtration, and the candidate cesium separation technologies are fractional crystallization, caustic-side solvent extraction, and ion-exchange using spherical resorcinol-formaldehyde resin. This data was used to prepare a cross-cutting technologymore » summary, reported in RPP-RPT-37740.« less

  12. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, D.R.

    1993-03-23

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  13. Fail-safe storage rack for irradiated fuel rod assemblies

    DOEpatents

    Lewis, Donald R.

    1993-01-01

    A fail-safe storage rack is provided for interim storage of spent but radioactive nuclear fuel rod assemblies. The rack consists of a checkerboard array of substantially square, elongate receiving tubes fully enclosed by a double walled container, the outer wall of which is imperforate for liquid containment and the inner wall of which is provided with perforations for admitting moderator liquid flow to the elongate receiving tubes, the liquid serving to take up waste heat from the stored nuclear assemblies and dissipate same to the ambient liquid reservoir. A perforated cover sealing the rack facilitates cooling liquid entry and dissipation.

  14. 40 CFR 265.198 - Special requirements for ignitable or reactive wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) The resulting waste, mixture, or dissolved material no longer meets the definition of ignitable or... reactive wastes. 265.198 Section 265.198 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE...

  15. Interim Guidance: Municipal Solid Waste Exemption under Superfund

    EPA Pesticide Factsheets

    Interim guidance discusses the statutory provisions of CERCLA § 107(p) and identifies some factors to be considered by EPA and DOJ staff in exercising their enforcement discretion of MSW at an NPL site.

  16. 40 CFR 265.72 - Manifest discrepancies.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...

  17. 40 CFR 265.72 - Manifest discrepancies.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...

  18. 40 CFR 265.72 - Manifest discrepancies.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 265.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... waste solvent substituted for waste acid, or toxic constituents not reported on the manifest or shipping...

  19. 40 CFR 265.54 - Amendment of contingency plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 265.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND..., explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary...

  20. 40 CFR 265.54 - Amendment of contingency plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.54 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND..., explosions, or releases of hazardous waste or hazardous waste constituents, or changes the response necessary...

  1. 40 CFR 265.31 - Maintenance and operation of facility.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the -environment. ...

  2. 40 CFR 265.31 - Maintenance and operation of facility.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the -environment. ...

  3. 40 CFR 265.31 - Maintenance and operation of facility.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the -environment. ...

  4. 40 CFR 265.142 - Cost estimate for closure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...

  5. 40 CFR 265.142 - Cost estimate for closure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...

  6. 40 CFR 265.142 - Cost estimate for closure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.142 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... salvage value that may be realized with the sale of hazardous wastes, or non-hazardous wastes if...

  7. 40 CFR 265.31 - Maintenance and operation of facility.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water which could threaten human health or the -environment. ...

  8. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  9. 40 CFR 265.13 - General waste analysis.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...

  10. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  11. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  12. 40 CFR 265.13 - General waste analysis.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...

  13. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  14. 40 CFR 265.13 - General waste analysis.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 26 2014-07-01 2014-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...

  15. 40 CFR 265.76 - Unmanifested waste report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Unmanifested waste report. 265.76 Section 265.76 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  16. 40 CFR 265.13 - General waste analysis.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 27 2012-07-01 2012-07-01 false General waste analysis. 265.13 Section 265.13 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL...

  17. Associate Directorate Environmental Management Infrastructure Plan for Area G and Area L Domes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, Patrice Ann; Baumer, Andrew Ronald

    Technical Area 54, at Los Alamos National Laboratory (LANL) is situated in the east-central portion of the Laboratory on the Mesita del Buey between Pajarito Canyon to the south and Cañada del Buey to the north. TA-54 includes four MDAs designated as G, H, J, and L; a waste characterization, container storage, and transfer facility; active TRU waste and MLLW waste storage and low-level waste (LLW) disposal operations at Area G; active hazardous and mixed low-level (MLLW) waste storage operations at Area L; and administrative and support areas. MDA J has previously under-gone closure. Area G is a waste managementmore » and disposal area, used for the disposal and storage of radioactive wastes since 1957. Since August 2015, Area G has been in warm standby and provides minimal operations to support safety, compliance, and nitrate salt remediation. Located within Area G, MDA G covers 63-acres. MDA G contains 334 active and inactive waste management units, which include 36 pits, 294 shafts, and 4 trenches. In 1971, Area G began use for the retrievable storage of TRU waste. There are two pits, four trenches and 60 shafts that contain retrievable TRU waste. Thirty-three of the shafts contain TRU waste that may present unique problems for retrieval. In 1986, segregation of MLLW was initiated at Area G for treatment and temporary storage or for off-site disposal. Area G is the only active LLW disposal facility at the Laboratory. Current operations at Area G include storage and characterization of TRU and mixed TRU waste destined for off-site disposal at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico and the storage of MLLW destined for off-site treatment and/or disposal. Several above-ground container storage units (CSUs) are currently used for storage of containerized MLLW and/or mixed TRU wastes. These consist of asphalt pads and associated fabric domes or other structures. As defined by the Consent Order, MDA G contains 229 of the 334 subsurface waste management units at Area G. These MDA G disposal units include 32 pits, 193 shafts, and 4 trenches and contain LLW, MLLW and TRU waste. The remaining 105 solid waste management units (SWMUs) include RCRA-regulated landfill and storage units and DOE-regulated LLW disposal units. The TA-54 closure project must ensure that continuing waste operations at Area G and their transition to an interim or enduring facility are coordinated with closure activities.« less

  18. Evaluation of Hose in Hose Transfer Line Service Life for Hanfords Interim Stabilization Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TORRES, T.D.

    RPP-6153, Engineering Task Plan for Hose-in-Hose Transfer System for the Interim Stabilization Program (Torres, 2000a), defines the programmatic goals, functional requirements, and technical criteria for the development and subsequent installation of waste transfer line equipment to support Hanford's Interim Stabilization Program. RPP-6028, Specification for Hose in Hose Transfer Lines for Hanford's Interim Stabilization Program (Torres, 2000b), has been issued to define the specific requirements for the design, manufacture, and verification of transfer line assemblies for specific waste transfer applications associated with Interim Stabilization. Included in RPP-6028 are tables defining the chemical constituents of concern to which transfer lines will bemore » exposed. Current Interim Stabilization Program planning forecasts that the at-grade transfer lines will be required to convey pumpable waste for as much as three years after commissioning, RPP-6028 Section 3.2.7. Performance Incentive Number ORP-05 requires that all the Single Shell Tanks be Interim Stabilized by September 30, 2003. The Tri-Party Agreement (TPA) milestone M-41-00, enforced by a federal consent decree, requires all the Single Shell Tanks to be Interim stabilized by September 30, 2004. By meeting the Performance Incentive the TPA milestone is met. Prudent engineering dictates that the equipment used to transfer waste have a life in excess of the forecasted operational time period, with some margin to allow for future adjustments to the planned schedule. This document evaluates the effective service life of the Hose-in-Hose Transfer Lines, based on information submitted by the manufacturer, published literature and calculations. The effective service life of transfer line assemblies is a function of several factors. Foremost among these are the hose material's resistance to the harmful effects of process fluid characteristics, ambient environmental conditions, exposure to ionizing radiation and the manufacturer's stated shelf life. In order to determine the transfer line service life this evaluation examines the certification of shelf life, the certification of chemical compatibility with waste, catalog information of ambient ratings and published literature on the effects of exposure to ionizing radiation on the mechanical properties of elastomeric materials. During initial hose procurements, the hose-in-hose transfer line vendor River Bend Hose Specialty (RBHS) submitted a letter, dated 6/8/00, which recommended the service and shelf life of the hose to be seven years. In submittals for later hose procurements, RBHS submitted a letter, dated 11/6/00, which recommended the service life of the hose to be three years. This submittal was followed by documentation, on 2/14/01, which submitted new storage requirements and restated the seven year shelf life. RBHS revised their original hose service life estimate to a more conservative three years due to concerns over the effects of chemicals in transferred waste. The above mentioned submittals from RBHS are the primary drivers of the three year service life limit established by this document.« less

  19. EPA issues interim final waste minimization guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bergeson, L.L.

    1993-08-01

    The U.S. Environmental Protection Agency (EPA) has released a new and detailed interim final guidance to assist hazardous waste generators in certifying they have a waste minimization program in place under the Resource Conservation and Recovery Act (RCRA). EPA's guidance identifies the basic elements of a waste minimization program in place that, if present, will allow people to certify they have implemented a program to reduce the volume and toxicity of hazardous waste to the extent economically practical. The guidance is directly applicable to generators of 1000 or more kilograms per month of hazardous waste, or large-quantity generators, and tomore » owners and operators of hazardous waste treatment, storage or disposal facilities who manage their own hazardous waste on site. Small-quantity generators that generate more than 100 kilograms, but less than 1,000 kilograms, per month of hazardous waste are not subject to the same program in place certification requirement. Rather, they must certify on their manifests that they have made a good faith effort to minimize their waste generation.« less

  20. 40 CFR 265.110 - Applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Closure... through 265.115 (which concern closure) apply to the owners and operators of all hazardous waste...

  1. Classification methodology for tritiated waste requiring interim storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cana, D.; Dall'ava, D.; Decanis, C.

    2015-03-15

    Fusion machines like the ITER experimental research facility will use tritium as fuel. Therefore, most of the solid radioactive waste will result not only from activation by 14 MeV neutrons, but also from contamination by tritium. As a consequence, optimizing the treatment process for waste containing tritium (tritiated waste) is a major challenge. This paper summarizes the studies conducted in France within the framework of the French national plan for the management of radioactive materials and waste. The paper recommends a reference program for managing this waste based on its sorting, treatment and packaging by the producer. It also recommendsmore » setting up a 50-year temporary storage facility to allow for tritium decay and designing future disposal facilities using tritiated radwaste characteristics as input data. This paper first describes this waste program and then details an optimized classification methodology which takes into account tritium decay over a 50-year storage period. The paper also describes a specific application for purely tritiated waste and discusses the set-up expected to be implemented for ITER decommissioning waste (current assumption). Comparison between this optimized approach and other viable detritiation techniques will be drawn. (authors)« less

  2. LANDFILL BIOREACTOR PERFORMANCE, SECOND INTERIM REPORT

    EPA Science Inventory

    A bioreactor landfill is a landfill that is operated in a manner that is expected to increase the rate and extent of waste decomposition, gas generation, and settlement compared to a traditional landfill. This Second Interim Report was prepared to provide an interpretation of fie...

  3. 40 CFR 265.51 - Purpose and implementation of contingency plan.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... contingency plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...

  4. 40 CFR 265.51 - Purpose and implementation of contingency plan.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... contingency plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...

  5. 40 CFR 265.51 - Purpose and implementation of contingency plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT... contingency plan must be designed to minimize hazards to human health or the environment from fires, explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents...

  6. 40 CFR 265.51 - Purpose and implementation of contingency plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT..., explosions, or any unplanned sudden or non-sudden release of hazardous waste or hazardous waste constituents to air, soil, or surface water. (b) The provisions of the plan must be carried out immediately...

  7. 40 CFR 265.120 - Certification of completion of post-closure care.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... each hazardous waste disposal unit, the owner or operator must submit to the Regional Administrator, by registered mail, a certification that the post-closure care period for the hazardous waste disposal unit was...) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT...

  8. 40 CFR 265.1 - Purpose, scope, and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... establish minimum national standards that define the acceptable management of hazardous waste during the...

  9. 40 CFR 265.118 - Post-closure plan; amendment of plan.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the wastes, application of advanced technology, or alternative disposal, treatment, or re-use.... 265.118 Section 265.118 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT...

  10. 40 CFR 265.340 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... hazardous waste incinerators (as defined in § 260.10 of this chapter), except as § 265.1 provides otherwise...

  11. 40 CFR 265.340 - Applicability.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES... hazardous waste incinerators (as defined in § 260.10 of this chapter), except as § 265.1 provides otherwise...

  12. LANDFILLS AS BIOREACTORS: RESEARH AT THE OUTER LOOP LANDFILL, LOUISVILLE, KENTUCKY; FIRST INTERIM REPORT

    EPA Science Inventory

    Interim report resulting from a cooperative research and development agreement (CRADA) between US EP A's Officeof Research and Development - National Risk Management Research Laboratory and a n ongoing field demonstration
    of municipal waste landfills being operated as bioreact...

  13. Data Quality Objectives for Regulatory Requirements for Dangerous Waste Sampling and Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MULKEY, C.H.

    1999-07-02

    This document describes sampling and analytical requirements needed to meet state and federal regulations for dangerous waste (DW). The River Protection Project (RPP) is assigned to the task of storage and interim treatment of hazardous waste. Any final treatment or disposal operations, as well as requirements under the land disposal restrictions (LDRs), fall in the jurisdiction of another Hanford organization and are not part of this scope. The requirements for this Data Quality Objective (DQO) Process were developed using the RPP Data Quality Objective Procedure (Banning 1996), which is based on the U.S. Environmental Protection Agency's (EPA) Guidance for themore » Data Quality Objectives Process (EPA 1994). Hereafter, this document is referred to as the DW DQO. Federal and state laws and regulations pertaining to waste contain requirements that are dependent upon the composition of the waste stream. These regulatory drivers require that pertinent information be obtained. For many requirements, documented process knowledge of a waste composition can be used instead of analytical data to characterize or designate a waste. When process knowledge alone is used to characterize a waste, it is a best management practice to validate the information with analytical measurements.« less

  14. 40 CFR 265.1 - Purpose, scope, and applicability.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste is necessary to protect human health or the environment, that official or specialist may authorize....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  15. 40 CFR 265.1 - Purpose, scope, and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... waste is necessary to protect human health or the environment, that official or specialist may authorize....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  16. 40 CFR 265.1 - Purpose, scope, and applicability.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... waste is necessary to protect human health or the environment, that official or specialist may authorize....1 Section 265.1 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  17. 40 CFR 265.113 - Closure; time allowed for closure.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... includes an amended waste analysis plan, ground-water monitoring and response program, human exposure....113 Section 265.113 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  18. 40 CFR 265.77 - Additional reports.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ....77 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL... submitting the biennial report and unmanifested waste reports described in §§ 265.75 and 265.76, the owner or...

  19. 40 CFR 265.1059 - Standards: Delay of repair.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.1059 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... technically infeasible without a hazardous waste management unit shutdown. In such a case, repair of this...

  20. Land Use Management for Solid Waste Programs

    ERIC Educational Resources Information Center

    Brown, Sanford M., Jr.

    1974-01-01

    The author discusses the problems of solid waste disposal and examines various land use management techniques. These include the land use plan, zoning, regionalization, land utilities, and interim use. Information concerning solid waste processing site zoning and analysis is given. Bibliography included. (MA)

  1. The Time Needed to Implement the Blue Ribbon Commission Recommendation on Interim Storage - 13124

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voegele, Michael D.; Vieth, Donald

    2013-07-01

    The report of the Blue Ribbon Commission on America's Nuclear Future [1] makes a number of important recommendations to be considered if Congress elects to redirect U.S. high-level radioactive waste disposal policy. Setting aside for the purposes of this discussion any issues related to political forces leading to stopping progress on the Yucca Mountain project and driving the creation of the Commission, an important recommendation of the Commission was to institute prompt efforts to develop one or more consolidated storage facilities. The Blue Ribbon Commission noted that this recommended strategy for future storage and disposal facilities and operations should bemore » implemented regardless of what happens with Yucca Mountain. It is too easy, however, to focus on interim storage as an alternative to geologic disposal. The Blue Ribbon Commission report does not go far enough in addressing the magnitude of the contentious problems associated with reopening the issues of relative authorities of the states and federal government with which Congress wrestled in crafting the Nuclear Waste Policy Act [2]. The Blue Ribbon Commission recommendation for prompt adoption of an interim storage program does not appear to be fully informed about the actions that must be taken, the relative cost of the effort, or the realistic time line that would be involved. In essence, the recommendation leaves to others the details of the systems engineering analyses needed to understand the nature and details of all the operations required to reach an operational interim storage facility without derailing forever the true end goal of geologic disposal. The material presented identifies a number of impediments that must be overcome before the country could develop a centralized federal interim storage facility. In summary, and in the order presented, they are: 1. Change the law, HJR 87, PL 107-200, designating Yucca Mountain for the development of a repository. 2. Bring new nuclear waste legislation to the floor of the Senate, overcoming existing House support for Yucca Mountain; 3. Change the longstanding focus of Congress from disposal to storage; 4. Change the funding concepts embodied in the Nuclear Waste Policy Act to allow the Nuclear Waste fund to be used to pay for interim storage; 5. Reverse the Congressional policy not to give states or tribes veto or consent authority, and to reserve to Congress the authority to override a state or tribal disapproval; 6. Promulgate interim storage facility siting regulations to reflect the new policies after such changes to policy and law; 7. Complete already underway changes to storage and transportation regulations, possibly incorporating changes to reflect changes to waste disposal law; 8. Promulgate new repository siting regulations if the interim storage facility is to support repository development; 9. Identify volunteer sites, negotiate agreements, and get Congressional approval for negotiated benefits packages; 10. Design, License and develop the interim storage facility. The time required to accomplish these ten items depends on many factors. The estimate developed assumes that certain of the items must be completed before other items are started; given past criticisms of the current program, such an assumption appears appropriate. Estimated times for completion of individual items are based on historical precedent. (authors)« less

  2. Consolidated permit regulations and hazardous waste management system: Environmental Protection Agency. Notice of issuance of regulation interpretation memorandum.

    PubMed

    1981-12-10

    The Environmental Protection Agency (EPA) is issuing today a Regulation Interpretation Memorandum (RIM) which provides official interpretation of the issue of whether a generator who accumulates hazardous waste pursuant to 40 CFR 262.34, may qualify for interim status after November 19, 1980. This issue arose when the requirements for submitting a Part A permit application (one of the prerequisites to qualifying for interim status) were amended on November 19, 1980. The provisions interpreted today are part of the Consolidated Permit Regulations promulgated under Subtitle C of the Solid Waste Disposal Act, as amended by the Resource Conservation and Recovery Act, as amended (RCRA).

  3. Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey

    2011-09-30

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to havemore » a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.« less

  4. 40 CFR 270.72 - Changes during interim status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... the changes to the facility exceeds 50 percent of the capital cost of a comparable entirely new... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Changes during interim status. 270.72 Section 270.72 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES...

  5. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  6. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2012-07-01 2012-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  7. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 26 2014-07-01 2014-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  8. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  9. 40 CFR 262.212 - Making the hazardous waste determination at an on-site interim status or permitted treatment...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... permitted treatment, storage or disposal facility. (e) If the unwanted material is a hazardous waste, the... 40 Protection of Environment 27 2013-07-01 2013-07-01 false Making the hazardous waste... 262.212 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED...

  10. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  11. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  12. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  13. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  14. 40 CFR 265.383 - Interim status thermal treatment devices burning particular hazardous waste.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... devices burning particular hazardous waste. 265.383 Section 265.383 Protection of Environment... status thermal treatment devices burning particular hazardous waste. (a) Owners or operators of thermal treatment devices subject to this subpart may burn EPA Hazardous Wastes FO20, FO21, FO22, FO23, FO26, or...

  15. Indiana application for interim authorization, phase I, hazardous waste management program--Environmental Protection Agency. Notice of public hearing and public comment period.

    PubMed

    1982-04-12

    EPA regulations to protect human health and the environment from the improper management of hazardous waste were published in the Federal Register on May 19, 1980 (45 FR 33063). These regulations include provisions for authorization of State programs to operate in lieu of the Federal program. Today EPA is announcing the availability for public review of the Indiana application for Phase I Interim Authorization, inviting public comment, and giving notice of a public hearing to be held on the application.

  16. Alternatives Generation and Analysis for Heat Removal from High Level Waste Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WILLIS, W.L.

    This document addresses the preferred combination of design and operational configurations to provide heat removal from high-level waste tanks during Phase 1 waste feed delivery to prevent the waste temperature from exceeding tank safety requirement limits. An interim decision for the preferred method to remove the heat from the high-level waste tanks during waste feed delivery operations is presented herein.

  17. 40 CFR 265.254 - Design and operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ....254 Section 265.254 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Waste Piles § 265.254 Design and operating requirements. The owner or operator of each...

  18. Cost Sensitivity Analysis for Consolidated Interim Storage of Spent Fuel: Evaluating the Effect of Economic Environment Parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumberland, Riley M.; Williams, Kent Alan; Jarrell, Joshua J.

    This report evaluates how the economic environment (i.e., discount rate, inflation rate, escalation rate) can impact previously estimated differences in lifecycle costs between an integrated waste management system with an interim storage facility (ISF) and a similar system without an ISF.

  19. 40 CFR 265.401 - General operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... equipment, the process or equipment must be equipped with a means to stop this inflow (e.g., a waste feed....401 Section 265.401 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  20. Preparation of actinide boride materials via solid-state metathesis reactions and actinide dicarbollide precursors

    NASA Astrophysics Data System (ADS)

    Lupinetti, Anthony J.; Fife, Julie; Garcia, Eduardo; Abney, Kent D.

    2000-07-01

    Information gaps exist in the knowledge base needed for choosing among the alternate processes to be used in the safe conversion of fissile materials to optimal forms for safe interim storage, long-term storage, and ultimate disposition. The current baseline storage technology for various wastes uses borosilicate glasses.1 The focus of this paper is the synthesis of actinide-containing ceramic materials at low and moderate temperatures (200 °C-1000 °C) using molecular and polymeric actinide borane and carborane complexes.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This volume contains the interim change notice for physical testing. Covered are: properties of solutions, slurries, and sludges; rheological measurement with cone/plate viscometer; % solids determination; particle size distribution by laser scanning; penetration resistance of radioactive waste; operation of differential scanning calorimeter, thermogravimetric analyzer, and high temperature DTA and DSC; sodium rod for sodium bonded fuel; filling SP-100 fuel capsules; sodium filling of BEATRIX-II type capsules; removal of alkali metals with ammonia; specific gravity of highly radioactive solutions; bulk density of radioactive granular solids; purification of Li by hot gettering/filtration; and Li filling of MOTA capsules.

  2. Targeted Health Assessment for Wastes Contained at the Niagara Falls Storage Site to Guide Planning for Remedial Action Alternatives - 13428

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Busse, John; Keil, Karen; Staten, Jane

    2013-07-01

    The U.S. Army Corps of Engineers (USACE) is evaluating potential remedial alternatives at the 191-acre Niagara Falls Storage Site (NFSS) in Lewiston, New York, under the Formerly Utilized Sites Remedial Action Program (FUSRAP). The Manhattan Engineer District (MED) and Atomic Energy Commission (AEC) brought radioactive wastes to the site during the 1940's and 1950's, and the U.S. Department of Energy (US DOE) consolidated these wastes into a 10-acre interim waste containment structure (IWCS) in the southwest portion of the site during the 1980's. The USACE is evaluating remedial alternatives for radioactive waste contained within the IWCS at the NFSS undermore » the Feasibility Study phase of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) process. A preliminary evaluation of the IWCS has been conducted to assess potential airborne releases associated with uncovered wastes, particularly during waste excavation, as well as direct exposures to uncovered wastes. Key technical issues for this assessment include: (1) limitations in waste characterization data; (2) representative receptors and exposure routes; (3) estimates of contaminant emissions at an early stage of the evaluation process; (4) consideration of candidate meteorological data and air dispersion modeling approaches; and (5) estimates of health effects from potential exposures to both radionuclides and chemicals that account for recent updates of exposure and toxicity factors. Results of this preliminary health risk assessment indicate if the wastes were uncovered and someone stayed at the IWCS for a number of days to weeks, substantial doses and serious health effects could be incurred. Current controls prevent such exposures, and the controls that would be applied to protect onsite workers during remedial action at the IWCS would also effectively protect the public nearby. This evaluation provides framing context for the upcoming development and detailed evaluation of remedial alternatives for the IWCS. (authors)« less

  3. Cementitious waste option scoping study report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, A.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored asmore » a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.« less

  4. Implementation of EPA criminal enforcement strategy for RCRA interim status facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-11-15

    The directive discusses criminal enforcement priorities and procedures related to the RCRA section 3007(e)(2) Loss of Interim Status (LOIS) provision, including: (1) identifying/targeting facilities with violations, (2) verifying receipt of RCRA 3007 letters, and (3) inspections of facilities. The directive supplements directive no. 9930.0-1 RCRA LOIS Enforcement Strategy, dated October 15, 1985. The directive is supplemented by directive no. 9930.0-2a, Accepting Nonhazardous Waste After Losing Interim Status, dated December 20, 1986.

  5. Radon exposure at a radioactive waste storage facility.

    PubMed

    Manocchi, F H; Campos, M P; Dellamano, J C; Silva, G M

    2014-06-01

    The Waste Management Department of Nuclear and Energy Research Institute (IPEN) is responsible for the safety management of the waste generated at all internal research centers and that of other waste producers such as industry, medical facilities, and universities in Brazil. These waste materials, after treatment, are placed in an interim storage facility. Among them are (226)Ra needles used in radiotherapy, siliceous cake arising from conversion processes, and several other classes of waste from the nuclear fuel cycle, which contain Ra-226 producing (222)Rn gas daughter.In order to estimate the effective dose for workers due to radon inhalation, the radon concentration at the storage facility has been assessed within this study. Radon measurements have been carried out through the passive method with solid-state nuclear track detectors (CR-39) over a period of nine months, changing detectors every month in order to determine the long-term average levels of indoor radon concentrations. The radon concentration results, covering the period from June 2012 to March 2013, varied from 0.55 ± 0.05 to 5.19 ± 0.45 kBq m(-3). The effective dose due to (222)Rn inhalation was further assessed following ICRP Publication 65.

  6. 78 FR 6149 - Final Interim Staff Guidance Assessing the Radiological Consequences of Accidental Releases of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... Accidental Releases of Radioactive Materials From Liquid Waste Tanks in Ground and Surface Waters for... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications... Radioactive Materials from Liquid Waste Tanks in Ground and Surface Waters for Combined License Applications...

  7. The small-scale treatability study sample exemption

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coalgate, J.

    1991-01-01

    In 1981, the Environmental Protection Agency (EPA) issued an interim final rule that conditionally exempted waste samples collected solely for the purpose of monitoring or testing to determine their characteristics or composition'' from RCRA Subtitle C hazardous waste regulations. This exemption (40 CFR 261.4(d)) apples to the transportation of samples between the generator and testing laboratory, temporary storage of samples at the laboratory prior to and following testing, and storage at a laboratory for specific purposes such as an enforcement action. However, the exclusion did not include large-scale samples used in treatability studies or other testing at pilot plants ormore » other experimental facilities. As a result of comments received by the EPA subsequent to the issuance of the interim final rule, the EPA reopened the comment period on the interim final rule on September 18, 1987, and specifically requested comments on whether or not the sample exclusion should be expanded to include waste samples used in small-scale treatability studies. Almost all responders commented favorably on such a proposal. As a result, the EPA issued a final rule (53 FR 27290, July 19, 1988) conditionally exempting waste samples used in small-scale treatability studies from full regulation under Subtitle C of RCRA. The question of whether or not to extend the exclusion to larger scale as proposed by the Hazardous Waste Treatment Council was deferred until a later date. This information Brief summarizes the requirements of the small-scale treatability exemption.« less

  8. Environmental Assessment: Waste Tank Safety Program, Hanford Site, Richland, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    The US Department of Energy (DOE) needs to take action in the near-term, to accelerate resolution of waste tank safety issues at the Hanford Site near the City of Richland, Washington, and reduce the risks associated with operations and management of the waste tanks. The DOE has conducted nuclear waste management operations at the Hanford Site for nearly 50 years. Operations have included storage of high-level nuclear waste in 177 underground storage tanks (UST), both in single-shell tank (SST) and double-shell tank configurations. Many of the tanks, and the equipment needed to operate them, are deteriorated. Sixty-seven SSTs are presumedmore » to have leaked a total approximately 3,800,000 liters (1 million gallons) of radioactive waste to the soil. Safety issues associated with the waste have been identified, and include (1) flammable gas generation and episodic release; (2) ferrocyanide-containing wastes; (3) a floating organic solvent layer in Tank 241-C-103; (4) nuclear criticality; (5) toxic vapors; (6) infrastructure upgrades; and (7) interim stabilization of SSTs. Initial actions have been taken in all of these areas; however, much work remains before a full understanding of the tank waste behavior is achieved. The DOE needs to accelerate the resolution of tank safety concerns to reduce the risk of an unanticipated radioactive or chemical release to the environment, while continuing to manage the wastes safely.« less

  9. Container Approval for the Disposal of Radioactive Waste with Negligible Heat Generation in the German Konrad Repository - 12148

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Voelzke, Holger; Nieslony, Gregor; Ellouz, Manel

    Since the license for the Konrad repository was finally confirmed by legal decision in 2007, the Federal Institute for Radiation Protection (BfS) has been performing further planning and preparation work to prepare the repository for operation. Waste conditioning and packaging has been continued by different waste producers as the nuclear industry and federal research institutes on the basis of the official disposal requirements. The necessary prerequisites for this are approved containers as well as certified waste conditioning and packaging procedures. The Federal Institute for Materials Research and Testing (BAM) is responsible for container design testing and evaluation of quality assurancemore » measures on behalf of BfS under consideration of the Konrad disposal requirements. Besides assessing the container handling stability (stacking tests, handling loads), design testing procedures are performed that include fire tests (800 deg. C, 1 hour) and drop tests from different heights and drop orientations. This paper presents the current state of BAM design testing experiences about relevant container types (box shaped, cylindrical) made of steel sheets, ductile cast iron or concrete. It explains usual testing and evaluation methods which range from experimental testing to analytical and numerical calculations. Another focus has been laid on already existing containers and packages. The question arises as to how they can be evaluated properly especially with respect to lack of completeness of safety assessment and fabrication documentation. At present BAM works on numerous applications for container design testing for the Konrad repository. Some licensing procedures were successfully finished in the past and BfS certified several container types like steel sheet, concrete until cast iron containers which are now available for waste packaging for final disposal. However, large quantities of radioactive wastes had been placed into interim storage using containers which are not already licensed for the Konrad repository. Safety assessment of these so-called 'old' containers is a big challenge for all parties because documentation sheets about container design testing and fabrication often contain gaps or have not yet been completed. Appropriate solution strategies are currently under development and discussion. Furthermore, BAM has successfully initiated and established an information forum, called 'ERFA QM Konrad Containers', which facilitates discussions on various issues of common interest with respect to Konrad container licensing procedures as well as the interpretation of disposal requirements under consideration of operational needs. Thus, it provides additional, valuable supports for container licensing procedures. (authors)« less

  10. 40 CFR 265.111 - Closure performance standard.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Section 265.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...) Controls, minimizes or eliminates, to the extent necessary to protect human health and the environment...

  11. 40 CFR 265.111 - Closure performance standard.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Section 265.111 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...) Controls, minimizes or eliminates, to the extent necessary to protect human health and the environment...

  12. Tank waste remediation system baseline tank waste inventory estimates for fiscal year 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shelton, L.W., Westinghouse Hanford

    1996-12-06

    A set of tank-by-tank waste inventories is derived from historical waste models, flowsheet records, and analytical data to support the Tank Waste Remediation System flowsheet and retrieval sequence studies. Enabling assumptions and methodologies used to develop the inventories are discussed. These provisional inventories conform to previously established baseline inventories and are meant to serve as an interim basis until standardized inventory estimates are made available.

  13. Hazardous Waste Management System: Identification and Listing of Hazardous Waste - CERCLA Hazardous Substance Designation-Petroleum Refinery Primary and Other Listings (F037 and F038) - Federal Register Notice, May 13, 1991

    EPA Pesticide Factsheets

    The Agency is promulgating an interim final rule revising the definition of wastes subject to the F037 and F038 listings to state that sludges from non-contact, once-through cooling waters are not included.

  14. Preliminary Concept of Operations for the Spent Fuel Management System--WM2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cumberland, Riley M; Adeniyi, Abiodun Idowu; Howard, Rob L

    The Nuclear Fuels Storage and Transportation Planning Project (NFST) within the U.S. Department of Energy s Office of Nuclear Energy is tasked with identifying, planning, and conducting activities to lay the groundwork for developing interim storage and transportation capabilities in support of an integrated waste management system. The system will provide interim storage for commercial spent nuclear fuel (SNF) from reactor sites and deliver it to a repository. The system will also include multiple subsystems, potentially including; one or more interim storage facilities (ISF); one or more repositories; facilities to package and/or repackage SNF; and transportation systems. The project teammore » is analyzing options for an integrated waste management system. To support analysis, the project team has developed a Concept of Operations document that describes both the potential integrated system and inter-dependencies between system components. The goal of this work is to aid systems analysts in the development of consistent models across the project, which involves multiple investigators. The Concept of Operations document will be updated periodically as new developments emerge. At a high level, SNF is expected to travel from reactors to a repository. SNF is first unloaded from reactors and placed in spent fuel pools for wet storage at utility sites. After the SNF has cooled enough to satisfy loading limits, it is placed in a container at reactor sites for storage and/or transportation. After transportation requirements are met, the SNF is transported to an ISF to store the SNF until a repository is developed or directly to a repository if available. While the high level operation of the system is straightforward, analysts must evaluate numerous alternative options. Alternative options include the number of ISFs (if any), ISF design, the stage at which SNF repackaging occurs (if any), repackaging technology, the types of containers used, repository design, component sizing, and timing of events. These alternative options arise due to technological, economic, or policy considerations. As new developments regularly emerge, the operational concepts will be periodically updated. This paper gives an overview of the different potential alternatives identified in the Concept of Operations document at a conceptual level.« less

  15. The mixed low-level waste problem in BE/NWN capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, D.C.

    1999-07-01

    The Boh Environmental, LLC (BE) and Northwest Nuclear, LLC (NWN) program addresses the problem of diminishing capacity in the United States to store mixed waste. A lack of an alternative program has caused the US Department of Energy (DOE) to indefinitely store all of its mixed waste in Resource Conservation and Recovery Act (RCRA) compliant storage facilities. Unfortunately, this capacity is fast approaching the administrative control limit. The combination of unique BE encapsulation and NWN waste characterization technologies provides an effective solution to DOE's mixed-waste dilemma. The BE ARROW-PAK technique encapsulates mixed low-level waste (MLLW) in extra-high molecular weight, high-densitymore » polyethylene, pipe-grade resin cylinders. ARROW-PAK applications include waste treatment, disposal, transportation (per 49 CFR 173), vault encasement, and interim/long-term storage for 100 to 300 yr. One of the first demonstrations of this treatment/storage technique successfully treated 880 mixed-waste debris drums at the DOE Hanford Site in 1997. NWN, deploying the APNea neutron assay technology, provides the screening and characterization capability necessary to ensure that radioactive waste is correctly categorized as either transuranic (TRU) or LLW. MLLW resulting from D and D activities conducted at the Oak Ridge East Tennessee Technology Park will be placed into ARROW-PAK containers following comprehensive characterization of the waste by NWN. The characterized and encapsulated waste will then be shipped to a commercial disposal facility, where the shipments meet all waste acceptance criteria of the disposal facility including treatment criteria.« less

  16. Preliminary performance assessment for the Waste Isolation Pilot Plant, December 1992. Volume 5, Uncertainty and sensitivity analyses of gas and brine migration for undisturbed performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-08-01

    Before disposing of transuranic radioactive waste in the Waste Isolation Pilot Plant (WIPP), the United States Department of Energy (DOE) must evaluate compliance with applicable long-term regulations of the United States Environmental Protection Agency (EPA). Sandia National Laboratories is conducting iterative performance assessments (PAs) of the WIPP for the DOE to provide interim guidance while preparing for a final compliance evaluation. This volume of the 1992 PA contains results of uncertainty and sensitivity analyses with respect to migration of gas and brine from the undisturbed repository. Additional information about the 1992 PA is provided in other volumes. Volume 1 containsmore » an overview of WIPP PA and results of a preliminary comparison with 40 CFR 191, Subpart B. Volume 2 describes the technical basis for the performance assessment, including descriptions of the linked computational models used in the Monte Carlo analyses. Volume 3 contains the reference data base and values for input parameters used in consequence and probability modeling. Volume 4 contains uncertainty and sensitivity analyses with respect to the EPA`s Environmental Standards for the Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR 191, Subpart B). Finally, guidance derived from the entire 1992 PA is presented in Volume 6. Results of the 1992 uncertainty and sensitivity analyses indicate that, conditional on the modeling assumptions and the assigned parameter-value distributions, the most important parameters for which uncertainty has the potential to affect gas and brine migration from the undisturbed repository are: initial liquid saturation in the waste, anhydrite permeability, biodegradation-reaction stoichiometry, gas-generation rates for both corrosion and biodegradation under inundated conditions, and the permeability of the long-term shaft seal.« less

  17. CONTROL OF CHELATOR-BASED UPSETS IN SURFACE FINISHING SHOP WASTE WATER TREATMENT SYSTEMS

    EPA Science Inventory

    Actual surface finishing shop examples are used to illustrate the use of process chemistry understanding and analyses to identify immediate, interim and permanent response options for industrial waste water treatment plant (IWTP) upset problems caused by chelating agents. There i...

  18. The Creation of a French Basic Nuclear Installation - Description of the Regulatory Process - 13293

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mahe, Carole; Leroy, Christine

    CEA is a French government-funded technological research organization. It has to build a medium-level waste interim storage facility because the geological repository will not be available until 2025. This interim storage facility, called DIADEM, has to be available in 2017. These wastes are coming from the research facilities for spent fuel reprocessing and the dismantling of the most radioactive parts of nuclear facilities. The CEA handles the waste management by inventorying the needs and updating them regularly. The conception of the facility is mainly based on this inventory. It provides quantity and characteristics of wastes and it gives the productionmore » schedule until 2035. Beyond mass and volume, main characteristics of these radioactive wastes are chemical nature, radioisotopes, radioactivity, radiation dose, the heat emitted, corrosive or explosive gas production, etc. These characteristics provide information to study the repository safety. DIADEM mainly consists of a concrete cell, isolated from the outside, wherein stainless steel welded containers are stored, stacked in a vertical position in the racks. DIADEM is scheduled to store three types of 8 mm-thick, stainless steel cylindrical containers with an outside diameter 498 mm and height from 620 to 2120 mm. DIADEM will be a basic nuclear installation (INB in French) because of overall activity of radioactive substances stored. The creation of a French basic nuclear installation is subject to authorization according to the French law No. 2006-686 of 13 June 2006 on Transparency and Security in the Nuclear Field. The authorization takes into account the technical and financial capacities of the licensee which must allow him to conduct his project in compliance with these interests, especially to cover the costs of decommissioning the installation and conduct remediation work, and to monitor and maintain its location site or, for radioactive waste disposal installations, to cover the definitive shut-down, maintenance and surveillance expenditure. The authorization is issued by a decree adopted upon advice of the French Nuclear Safety Authority and after a public enquiry. In accordance with Decree No. 2007-1557 of November 2, 2007, the application is filed with the ministries responsible for nuclear safety and the Nuclear Safety Authority. It consists of twelve files and four records information. The favorable opinion of the Nuclear Safety Authority on the folder is required to start the public inquiry. Once the public inquiry is completed, the building permit is issued by the prefect. (authors)« less

  19. UNITED STATES AND GERMAN BILATERAL AGREEMENT ON REMEDIATION OF HAZARDOUS WASTE SITES

    EPA Science Inventory

    The U.S. Environmental Protection Agency (EPA) and Germany's Bundesministerium fur Forschung und Technologie (BMFT) are involved in a collaborative effort called the U.S. and German Bilateral Agreement on Remediation of Hazardous Waste Sites. he purpose of this interim status rep...

  20. Interim Guidelines Growing Longleaf Seedlings in Containers

    Treesearch

    James P. Barnett; Mark J. Hainds; George A. Hernandez

    2002-01-01

    These interim guidelines are designed for producers and users of longleaf pine container stock. They are not meant to exclude any container product. The seedling specifications listed in the preferred category are attainable by the grower and will result in excellent field sur vival and early height growth.

  1. Hazardous Waste Management System - Identification and Listing of Hazardous Waste - Toxicity Characteristic - Hydrocarbon Recovery Operations - Federal Register Notice, October 5, 1990

    EPA Pesticide Factsheets

    The Agency is promulgating an interim final rule to extend the compliance date of the Toxicity Characteristic rule for petroleum refining facilities, marketing terminals and bulk plants engaged in the recovery and remediation operation for 120 days.

  2. 2008 interim guidelines for growing longleaf pine seedlings in container nurseries

    Treesearch

    R. Kasten Dumroese; James P. Barnett; D. Paul Jackson; Mark J. Hainds

    2013-01-01

    Production of container longleaf pine (Pinus palustris Mill.) seedlings for reforestation and restoration exceeds that of bare-root production, but information on container production techniques has been slow to develop. Because outplanting success requires quality seedlings, interim guidelines were proposed in 2002 to assist nursery managers and...

  3. 2008 interim guidelines for growing longleaf pine seedlings in container nurseries

    Treesearch

    R. Kasten Dumroese; James P. Barnett; D. Paul Jackson; Mark J. Hainds

    2009-01-01

    Production of container longleaf pine (Pinus palustris) seedlings for reforestation and restoration plantings exceeds that of bareroot production, but information on container production techniques has been slow to develop. Because success of those outplantings requires quality seedlings, interim guidelines were proposed in 2002 to assist nursery...

  4. Refining technology for the recycling of stainless steel radioactive scrap metals, FY 94 bi-annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mizia, R.E.; Atteridge, D.G.; Buckentin, J.

    1994-08-01

    The research addressed under this project is the recycling of metallic nuclear-related by-product materials under the direction of Westinghouse Idaho Nuclear Company (WINCO). The program addresses the recycling of radioactive scrap metals (RSM) for beneficial re-use within the DOE complex; in particular, this program addresses the recycling of stainless steel RSM. It is anticipated that various stainless steel components under WINCO control at the Idaho Falls Engineering Laboratory (INEL), such as fuel pool criticality barriers and fuel storage racks will begin to be recycled in FY94-95. The end product of this recycling effort is expected to be waste and overpackmore » canisters for densified high level waste for the Idaho Waste Immobilization Facility and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific components of this problem area that are presently being, or have been, addressed by CAAMSEC are: (1) the melting/remelting of stainless steel RSM into billet form; (2) the melting/remelting initial research focus will be on the use of radioactive surrogates to study; (3) the cost effectiveness of RSM processing oriented towards privatization of RSM reuse and/or resale. Other components of this problem that may be addressed under program extension are: (4) the melting/remelting of carbon steel; (5) the processing of billet material into product form which shall meet all applicable ASTM requirements; and, (6) the fabrication of an actual prototypical product; the present concept of an end product is a low carbon Type 304/316 stainless steel cylindrical container for densified and/or vitrified high level radioactive waste and/or the Universal Canister System for dry (interim) storage of spent fuel. The specific work reported herein covers the melting/remelting of stainless steel {open_quotes}scrap{close_quotes} metal into billet form and the study of surrogate material removal effectiveness by various remelting techniques.« less

  5. Radioactive Wastes.

    PubMed

    Choudri, B S; Charabi, Yassine; Baawain, Mahad; Ahmed, Mushtaque

    2017-10-01

    Papers reviewed herein present a general overview of radioactive waste related activities around the world in 2016. The current reveiw include studies related to safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation. Further, the review highlights on management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in ecosystem, water and soil alongwith other progress made in the management of radioactive wastes.

  6. Engineering study of 50 miscellaneous inactive underground radioactive waste tanks located at the Hanford Site, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Freeman-Pollard, J.R.

    1994-03-02

    This engineering study addresses 50 inactive underground radioactive waste tanks. The tanks were formerly used for the following functions associated with plutonium and uranium separations and waste management activities in the 200 East and 200 West Areas of the Hanford Site: settling solids prior to disposal of supernatant in cribs and a reverse well; neutralizing acidic process wastes prior to crib disposal; receipt and processing of single-shell tank (SST) waste for uranium recovery operations; catch tanks to collect water that intruded into diversion boxes and transfer pipeline encasements and any leakage that occurred during waste transfer operations; and waste handlingmore » and process experimentation. Most of these tanks have not been in use for many years. Several projects have, been planned and implemented since the 1970`s and through 1985 to remove waste and interim isolate or interim stabilize many of the tanks. Some tanks have been filled with grout within the past several years. Responsibility for final closure and/or remediation of these tanks is currently assigned to several programs including Tank Waste Remediation Systems (TWRS), Environmental Restoration and Remedial Action (ERRA), and Decommissioning and Resource Conservation and Recovery Act (RCRA) Closure (D&RCP). Some are under facility landlord responsibility for maintenance and surveillance (i.e. Plutonium Uranium Extraction [PUREX]). However, most of the tanks are not currently included in any active monitoring or surveillance program.« less

  7. Development studies for a novel wet oxidation process. Phase 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-07-01

    DETOX{sup SM} is a catalyzed wet oxidation process which destroys organic materials in an acidic water solution of iron at 373 to 473 K. The solution can be used repeatedly to destroy great amounts of organic materials. Since the process is conducted in a contained vessel, air emissions from the process can be well controlled. The solution is also capable of dissolving and concentrating many heavy and radioactive metals for eventual stabilization and disposal. The Phase 2 effort for this project is site selection and engineering design for a DETOX demonstration unit. Site selection was made using a set ofmore » site selection criteria and evaluation factors. A survey of mixed wastes at DOE sites was conducted using the Interim Mixed Waste Inventory Report. Sites with likely suitable waste types were identified. Potential demonstration sites were ranked based on waste types, interest, regulatory needs, scheduling, ability to provide support, and available facilities. Engineering design for the demonstration unit is in progress and is being performed by Jacobs Applied Technology. The engineering design proceeded through preliminary process flow diagrams (PFDs), calculation of mass and energy balances for representative waste types, process and instrumentation diagrams (P and IDs), preparation of component specifications, and a firm cost estimate for fabrication of the demonstration unit.« less

  8. 40 CFR 265.442 - Design and installation of new drip pads.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 26 2011-07-01 2011-07-01 false Design and installation of new drip pads. 265.442 Section 265.442 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Drip Pads §...

  9. Waste handling and storage in the decontamination pilot projects of JAEA for environments of Fukushima

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nakayama, S.; Kawase, K.; Iijima, K.

    2013-07-01

    After the Fukushima Daiichi nuclear accident, Japan Atomic Energy Agency (JAEA) was chosen by the national government to conduct decontamination pilot projects at selected sites in Fukushima prefecture. Despite tight boundary conditions in terms of timescale and resources, the projects served their primary purpose to develop a knowledge base to support more effective planning and implementation of stepwise regional remediation of the evacuated zone. A range of established, modified and newly developed techniques were tested under realistic field conditions and their performance characteristics were determined. The results of the project can be summarized in terms of site characterization, cleanup andmore » waste management. A range of options were investigated to reduce the volumes of waste produced and to ensure that decontamination water could be cleaned to the extent that it could be discharged to normal drainage. Resultant solid wastes were packaged in standard flexible containers, labelled and stored at the remediation site (temporary storage until central interim storage becomes available). The designs of such temporary storage facilities were tailored to available sites, but all designs included measures to ensure mechanical stability (e.g., filling void spaces between containers with sand, graded cover with soil) and prevent releases to groundwater (impermeable base and cap, gravity flow drainage including radiation monitors and catch tanks). Storage site monitoring was also needed to check that storage structures would not be perturbed by external events that could include typhoons, heavy snowfalls, freeze/thaw cycles and earthquakes. (authors)« less

  10. Storage for greater-than-Class C low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beitel, G.A.

    1991-12-31

    EG and G Idaho, Inc., at the Idaho National Engineering Laboratory (INEL) is actively pursuing technical storage alternatives for greater-than-Class C low-level radioactive waste (GTCC LLW) until a suitable licensed disposal facility is operating. A recently completed study projects that between 2200 and 6000 m{sup 3} of GTCC LLW will be generated by the year 2035; the base case estimate is 3250 m{sup 3}. The current plan envisions a disposal facility available as early as the year 2010. A long-term dedicated storage facility could be available in 1997. In the meantime, it is anticipated that a limited number of sealedmore » sources that are no longer useful and have GTCC concentrations of radionuclides will require storage. Arrangements are being made to provide this interim storage at an existing DOE waste management facility. All interim stored waste will subsequently be moved to the dedicated storage facility once it is operating. Negotiations are under way to establish a host site for interim storage, which may be operational, at the earliest, by the second quarter of 1993. Two major activities toward developing a long-term dedicated storage facility are ongoing. (a) An engineering study, which explores costs for alternatives to provide environmentally safe storage and satisfy all regulations, is being prepared. Details of some of the findings of that study will be presented. (b) There is also an effort under way to seek the assistance of one or more private companies in providing dedicated storage. Alternatives and options will be discussed.« less

  11. Cleanup Verification Package for the 600-47 Waste Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    M. J. Cutlip

    This cleanup verification package documents completion of interim remedial action for the 600-47 waste site. This site consisted of several areas of surface debris and contamination near the banks of the Columbia River across from Johnson Island. Contaminated material identified in field surveys included four areas of soil, wood, nuts, bolts, and other metal debris.

  12. German Support Program for Retrieval and Safe Storage of Disused Radioactive Sealed Sources in Ukraine - 13194

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pretzsch, Gunter; Salewski, Peter; Sogalla, Martin

    2013-07-01

    The German Federal Ministry for the Environment, Nature Conservation and Nuclear Safety (BMU) on behalf of the Government of the Federal Republic of Germany supports the State Nuclear Regulatory Inspectorate of Ukraine (SNRIU) in enhancement of nuclear safety and radiation protection and strengthening of the physical protection. One of the main objectives of the agreement concluded by these parties in 2008 was the retrieval and safe interim storage of disused orphan high radioactive sealed sources in Ukraine. At present, the Ukrainian National Registry does not account all high active radiation sources but only for about 70 - 80 %. GRSmore » in charge of BMU to execute the program since 2008 concluded subcontracts with the waste management and interim storage facilities RADON at different regions in Ukraine as well with the waste management and interim storage facility IZOTOP at Kiev. Below selected examples of removal of high active Co-60 and Cs-137 sources from irradiation facilities at research institutes are described. By end of 2012 removal and safe interim storage of 12.000 disused radioactive sealed sources with a total activity of more than 5,7.10{sup 14} Bq was achieved within the frame of this program. The German support program will be continued up to the end of 2013 with the aim to remove and safely store almost all disused radioactive sealed sources in Ukraine. (authors)« less

  13. Interim Status Closure Plan Open Burning Treatment Unit Technical Area 16-399 Burn Tray

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vigil-Holterman, Luciana R.

    2012-05-07

    This closure plan describes the activities necessary to close one of the interim status hazardous waste open burning treatment units at Technical Area (TA) 16 at the Los Alamos National Laboratory (LANL or the Facility), hereinafter referred to as the 'TA-16-399 Burn Tray' or 'the unit'. The information provided in this closure plan addresses the closure requirements specified in the Code of Federal Regulations (CFR), Title 40, Part 265, Subparts G and P for the thermal treatment units operated at the Facility under the Resource Conservation and Recovery Act (RCRA) and the New Mexico Hazardous Waste Act. Closure of themore » open burning treatment unit will be completed in accordance with Section 4.1 of this closure plan.« less

  14. 2005 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. Shanklin

    2006-07-19

    This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report describes inspection and monitoring activities fro the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action is functioning adequately to meet the objectives stated in the Operable Unit 3-13,more » Record of Decision for the Group 1, Tank Farm Interim Action, (DOE/ID-10660) and as amended by the agreement to resolve dispute, which was effective in February 2003.« less

  15. 2006 Annual Operations Report for INTEC Operable Unit 3-13, Group 1, Tank Farm Interim Action

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    D. E. Shanklin

    2007-02-14

    This annual operations report describes the requirements followed and activities conducted to inspect, monitor, and maintain the items installed during performance of the Waste Area Group 3, Operable Unit 3-13, Group 1, Tank Farm Interim Action, at the Idaho Nuclear Technology and Engineering Center. This report covers the time period from January 1 through December 31, 2006, and describes inspection and monitoring activities for the surface-sealed areas within the tank farm, concrete-lined ditches and culverts in and around the tank farm, the lift station, and the lined evaporation pond. These activities are intended to assure that the interim action ismore » functioning adequately to meet the objectives stated in the Operable Unit 3-13, Record of Decision for the Group 1, Tank Farm Interim Action (DOE/ID-10660) as described in the Group 1 Remedial Design/Remedial Action Work Plan (DOE/ID-10772).« less

  16. Modern technology for landfill waste placement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, D.L.

    1995-12-31

    The City of Albany, New York, together with the principals of Landfill Service Corporation, proposed in November 1991 to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double composite lined Interim Landfill located at Rapp Road in the City of Albany. This is a small facility, only 12 acres in area, which is immediately adjacent to residential neighbors. Significant advancements have been made for the control of environmental factors (odors, vectors, litter) while successfully achieving waste stabilization and air space conservations goals. Also, the procedure consumes a significant quantity of landfill leachate. The benefits ofmore » this practice include a dramatic improvement in the orderlines of waste placement with significant reduction of windblown dust and litter. The biostabilization process also reduces the presence of typical landfill vectors such as flies, crows, seagulls and rodents. All of these factors can pose serious problems for nearby residents to the City of Albany`s Interim landfill site. The physically and biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of postclosure conditions and reduction or elimination of remedial costs attendant to post closure gross differential settlement. Recent research in Europe indicates that aerobic pretreatment of waste also reduces contaminant loading of leachate.« less

  17. Elimination of exemptions for chemical mixtures containing the list I chemicals ephedrine and/or pseudoephedrine. Final rule.

    PubMed

    2008-07-10

    The Drug Enforcement Administration (DEA) is finalizing, without change, the Interim Rule with Request for Comment published in the Federal Register on July 25, 2007 (72 FR 40738). The Interim Rule removed the Controlled Substances Act (CSA) exemptions for chemical mixtures containing ephedrine and/or pseudoephedrine with concentration limits at or below five percent. Upon the effective date of the Interim Rule, all ephedrine and pseudoephedrine chemical mixtures, regardless of concentration and form, became subject to the regulatory provisions of the CSA. DEA regulated the importation, exportation, manufacture, and distribution of these chemical mixtures by requiring persons who handle these chemical mixtures to register with DEA, maintain certain records common to business practice, and file certain reports, regarding these chemical mixtures. No comments to the Interim Rule were received. This Final Rule finalizes the Interim Rule without change.

  18. Glass-ceramic nuclear waste forms obtained by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th): Study of the crystallization from the surface

    NASA Astrophysics Data System (ADS)

    Loiseau, P.; Caurant, D.

    2010-07-01

    Glass-ceramic materials containing zirconolite (nominally CaZrTi 2O 7) crystals in their bulk can be envisaged as potential waste forms for minor actinides (Np, Am, Cm) and Pu immobilization. In this study such matrices are synthesized by crystallization of SiO 2-Al 2O 3-CaO-ZrO 2-TiO 2 glasses containing lanthanides (Ce, Nd, Eu, Gd, Yb) and actinides (Th) as surrogates. A thin partially crystallized layer containing titanite and anorthite (nominally CaTiSiO 5 and CaAl 2Si 2O 8, respectively) growing from glass surface is also observed. The effect of the nature and concentration of surrogates on the structure, the microstructure and the composition of the crystals formed in the surface layer is presented in this paper. Titanite is the only crystalline phase able to significantly incorporate trivalent lanthanides whereas ThO 2 precipitates in the layer. The crystal growth thermal treatment duration (2-300 h) at high temperature (1050-1200 °C) is shown to strongly affect glass-ceramics microstructure. For the system studied in this paper, it appears that zirconolite is not thermodynamically stable in comparison with titanite growing form glass surface. Nevertheless, for kinetic reasons, such transformation (i.e. zirconolite disappearance to the benefit of titanite) is not expected to occur during interim storage and disposal of the glass-ceramic waste forms because their temperature will never exceed a few hundred degrees.

  19. Demonstration of close-coupled barriers for subsurface containment of buried waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dwyer, B.P.

    1996-05-01

    A close-coupled barrier is produced by first installing a conventional cement grout curtain followed by a thin inner lining of a polymer grout. The resultant barrier is a cement polymer composite that has economic benefits derived from the cement and performance benefits from the durable and resistant polymer layer. Close-coupled barrier technology is applicable for final, interim, or emergency containment of subsurface waste forms. Consequently, when considering the diversity of technology application, the construction emplacement and material technology maturity, general site operational requirements, and regulatory compliance incentives, the close-coupled barrier system provides an alternative for any hazardous or mixed wastemore » remediation plan. This paper discusses the installation of a close-coupled barrier and the subsequent integrity verification. The demonstration was installed at a benign site at the Hanford Geotechnical Test Facility, 400 Area, Hanford, Washington. The composite barrier was emplaced beneath a 7,500 liter tank. The tank was chosen to simulate a typical DOE Complex waste form. The stresses induced on the waste form were evaluated during barrier construction. The barrier was constructed using conventional jet grouting techniques. Drilling was completed at a 45{degree} angle to the ground, forming a conical shaped barrier with the waste form inside the cone. Two overlapping rows of cylindrical cement columns were grouted in a honeycomb fashion to form the secondary backdrop barrier layer. The primary barrier, a high molecular weight polymer manufactured by 3M Company, was then installed providing a relatively thin inner liner for the secondary barrier. The primary barrier was emplaced by panel jet grouting with a dual wall drill stem, two phase jet grouting system.« less

  20. RCRA, superfund and EPCRA hotline training module. Introduction to: Permits and interim status (40 cfr part 270) updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    Owners/operators of facilities that treat, store, or dispose of hazardous waste must obtain an operating permit, as required by Subtitle C of the Resource Conservation and Recovery Act (RCRA). The module presents an overview of the RCRA permitting process and the requirements that apply to TSDFs operating under interim status until a permit is issued. The regulations governing the permit process are found in 40 CFR Parts 124 through 270.

  1. 40 CFR 270.72 - Changes during interim status.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... reconstruction of the hazardous waste management facility. Reconstruction occurs when the capital investment in the changes to the facility exceeds 50 percent of the capital cost of a comparable entirely new...

  2. Lessons Learned in the Design and Use of IP1 / IP2 Flexible Packaging - 13621

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanchez, Mike; Reeves, Wendall; Smart, Bill

    2013-07-01

    For many years in the USA, Low Level Radioactive Waste (LLW), contaminated soils and construction debris, have been transported, interim stored, and disposed of, using IP1 / IP2 metal containers. The performance of these containers has been more than adequate, with few safety occurrences. The containers are used under the regulatory oversight of the US Department of Transportation (DOT), 49 Code of Federal Regulations (CFR). In the late 90's the introduction of flexible packaging for the transport, storage, and disposal of low level contaminated soils and construction debris was introduced. The development of flexible packaging came out of a needmore » for a more cost effective package, for the large volumes of waste generated by the decommissioning of many of the US Department of Energy (DOE) legacy sites across the US. Flexible packaging had to be designed to handle a wide array of waste streams, including soil, gravel, construction debris, and fine particulate dust migration. The design also had to meet all of the IP1 requirements under 49CFR 173.410, and be robust enough to pass the IP2 testing 49 CFR 173.465 required for many LLW shipments. Tens of thousands of flexible packages have been safely deployed and used across the US nuclear industry as well as for hazardous non-radioactive applications, with no recorded release of radioactive materials. To ensure that flexible packages are designed properly, the manufacturer must use lessons learned over the years, and the tests performed to provide evidence that these packages are suitable for transporting low level radioactive wastes. The design and testing of flexible packaging for LLW, VLLW and other hazardous waste streams must be as strict and stringent as the design and testing of metal containers. The design should take into consideration the materials being loaded into the package, and should incorporate the right materials, and manufacturing methods, to provide a quality, safe product. Flexible packaging can be shown to meet the criteria for safe and fit for purpose packaging, by meeting the US DOT regulations, and the IAEA Standards for IP-1 and IP-2 including leak tightness. (authors)« less

  3. Public Preferences Related to Radioactive Waste Management in the United States: Methodology and Response Reference Report for the 2016 Energy and Environment Survey.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jenkins-Smith, Hank C.; Silva, Carol L.; Gupta, Kuhika

    This report presents the questions and responses to a nationwide survey taken June 2016 to track preferences of US residents concerning the environment, energy, and radioactive waste management. A focus of the 2016 survey is public perceptions on different options for managing spent nuclear fuel, including on-site storage, interim storage, deep boreholes, general purpose geologic repositories, and geologic repositories for only defense-related waste. Highlights of the survey results include the following: (1) public attention to the 2011 accident and subsequent cleanup at the Fukushima nuclear facility continues to influence the perceived balance of risk and benefit for nuclear energy; (2)more » the incident at the Waste Isolation Pilot Plant in 2014 could influence future public support for nuclear waste management; (3) public knowledge about US nuclear waste management policies has remined higher than seen prior to the Fukushima nuclear accident and submittal of the Yucca Mountain application; (6) support for a mined disposal facility is higher than for deep borehole disposal, building one more interim storage facilities, or continued on-site storage of spent nuclear fuel; (7) support for a repository that comingles commercial and defense related waste is higher than for a repository for only defense related waste; (8) the public’s level of trust accorded to the National Academies, university scientists, and local emergency responders is the highest and the level trust accorded to advocacy organizations, public utilities, and local/national press is the lowest; and (9) the public is willing to serve on citizens panels but, in general, will only modestly engage in issues related to radioactive waste management.« less

  4. Innovative Solidification Techniques for Hazardous Wastes at Army Installations.

    DTIC Science & Technology

    1985-11-01

    Fixed Hazardous Industrial Wastes and Flue Gas Desulfurization Sludges," Interim Report, EPA-600/2-76-182, US Environmental Protection Agency... flue gas . Flyash from coal-fired power plants is an almost entirely inorganic product having a glassy nature. Consequently, flyash by itself has little...effective- ness of alternative control strategies for reducing environmental impacts. 4. % 46 -"- °° ~~~~~...-.-..o

  5. Flight set 360L007 (STS-33) insulation component. Volume 3: Final release

    NASA Technical Reports Server (NTRS)

    Hicken, Steve

    1990-01-01

    Volume 3 of this postfire report deals with the insulation component of the RSRM. The report is released twice for each flight set. The interim release contract date is on or before 60 days after the last field joint or nozzle to case joint is disassembled at KSC and contain the results of the KSC visual evaluation. The data contained in Volume 3 interim release supersedes the insulation data presented in the KSC 10 day report. The final release contract data is on or before 60 days after the last factory joint is disassembled at the Clearfield H-7 facility and contains the results of all visual evaluations and a thermal safety factor analysis. The data contained in the Volume 3 final release supersedes the interim release and the insulation data presented in the Clearfield 10 day report.

  6. Ebola (Ebola Virus Disease): Treatment

    MedlinePlus

    ... Guidance for Cleaning, Disinfection, and Waste Disposal in Commercial Passenger Aircraft Notes on the Interim U.S. Guidance for Monitoring and Movement of Persons with Potential Ebola Virus Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus ...

  7. Ebola (Ebola Virus Disease): Prevention

    MedlinePlus

    ... Guidance for Cleaning, Disinfection, and Waste Disposal in Commercial Passenger Aircraft Notes on the Interim U.S. Guidance for Monitoring and Movement of Persons with Potential Ebola Virus Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus ...

  8. Ebola (Ebola Virus Disease)

    MedlinePlus

    ... Guidance for Cleaning, Disinfection, and Waste Disposal in Commercial Passenger Aircraft Notes on the Interim U.S. Guidance for Monitoring and Movement of Persons with Potential Ebola Virus Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus ...

  9. Ebola (Ebola Virus Disease): Transmission

    MedlinePlus

    ... Guidance for Cleaning, Disinfection, and Waste Disposal in Commercial Passenger Aircraft Notes on the Interim U.S. Guidance for Monitoring and Movement of Persons with Potential Ebola Virus Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus ...

  10. Ebola (Ebola Virus Disease): Diagnosis

    MedlinePlus

    ... Guidance for Cleaning, Disinfection, and Waste Disposal in Commercial Passenger Aircraft Notes on the Interim U.S. Guidance for Monitoring and Movement of Persons with Potential Ebola Virus Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus ...

  11. Interim Basis for PCB Sampling and Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-01-18

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the US. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposalmore » approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QAlG4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1 A, Vol. IV, Section 4.16 (Banning 1999).« less

  12. Interim Basis for PCB Sampling and Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BANNING, D.L.

    2001-03-20

    This document was developed as an interim basis for sampling and analysis of polychlorinated biphenyls (PCBs) and will be used until a formal data quality objective (DQO) document is prepared and approved. On August 31, 2000, the Framework Agreement for Management of Polychlorinated Biphenyls (PCBs) in Hanford Tank Waste was signed by the U.S. Department of Energy (DOE), the Environmental Protection Agency (EPA), and the Washington State Department of Ecology (Ecology) (Ecology et al. 2000). This agreement outlines the management of double shell tank (DST) waste as Toxic Substance Control Act (TSCA) PCB remediation waste based on a risk-based disposalmore » approval option per Title 40 of the Code of Federal Regulations 761.61 (c). The agreement calls for ''Quantification of PCBs in DSTs, single shell tanks (SSTs), and incoming waste to ensure that the vitrification plant and other ancillary facilities PCB waste acceptance limits and the requirements of the anticipated risk-based disposal approval are met.'' Waste samples will be analyzed for PCBs to satisfy this requirement. This document describes the DQO process undertaken to assure appropriate data will be collected to support management of PCBs and is presented in a DQO format. The DQO process was implemented in accordance with the U.S. Environmental Protection Agency EPA QA/G4, Guidance for the Data Quality Objectives Process (EPA 1994) and the Data Quality Objectives for Sampling and Analyses, HNF-IP-0842, Rev. 1A, Vol. IV, Section 4.16 (Banning 1999).« less

  13. EARTHSAWtm IN-SITU CONTAINMENT OF PITS AND TRENCHES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ernest E. Carter, P.E.

    2002-09-20

    EarthSaw{trademark} is a proposed technology for construction of uniform high quality barriers under and around pits and trenches containing buried radioactive waste without excavating or disturbing the waste. The method works by digging a deep vertical trench around the perimeter of a site, filling that trench with high specific gravity grout sealant, and then cutting a horizontal bottom pathway at the base of the trench with a simple cable saw mechanism. The severed block of earth becomes buoyant in the grout and floats on a thick layer of grout, which then cures into an impermeable barrier. The ''Interim Report onmore » task 1 and 2'' which is incorporated into this report as appendix A, provided theoretical derivations, field validation of formulas, a detailed quantitative engineering description of the technique, engineering drawings of the hardware, and a computer model of how the process would perform in a wide variety of soil conditions common to DOE waste burial sites. The accomplishments of task 1 and 2 are also summarized herein Task 3 work product provides a comprehensive field test plan in Appendix B and a health and safety plan in Appendix C and proposal for a field-scale demonstration of the EarthSaw barrier technology. The final report on the subcontracted stress analysis is provided in Appendix D. A copy of the unified computer model is provided as individual non-functional images of each sheet of the spreadsheet and separately as a Microsoft Excel 2000 file.« less

  14. Establishing a store baseline during interim storage of waste packages and a review of potential technologies for base-lining

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McTeer, Jennifer; Morris, Jenny; Wickham, Stephen

    Interim storage is an essential component of the waste management lifecycle, providing a safe, secure environment for waste packages awaiting final disposal. In order to be able to monitor and detect change or degradation of the waste packages, storage building or equipment, it is necessary to know the original condition of these components (the 'waste storage system'). This paper presents an approach to establishing the baseline for a waste-storage system, and provides guidance on the selection and implementation of potential base-lining technologies. The approach is made up of two sections; assessment of base-lining needs and definition of base-lining approach. Duringmore » the assessment of base-lining needs a review of available monitoring data and store/package records should be undertaken (if the store is operational). Evolutionary processes (affecting safety functions), and their corresponding indicators, that can be measured to provide a baseline for the waste-storage system should then be identified in order for the most suitable indicators to be selected for base-lining. In defining the approach, identification of opportunities to collect data and constraints is undertaken before selecting the techniques for base-lining and developing a base-lining plan. Base-lining data may be used to establish that the state of the packages is consistent with the waste acceptance criteria for the storage facility and to support the interpretation of monitoring and inspection data collected during store operations. Opportunities and constraints are identified for different store and package types. Technologies that could potentially be used to measure baseline indicators are also reviewed. (authors)« less

  15. Ebola (Ebola Virus Disease): Signs and Symptoms

    MedlinePlus

    ... Guidance for Cleaning, Disinfection, and Waste Disposal in Commercial Passenger Aircraft Notes on the Interim U.S. Guidance for Monitoring and Movement of Persons with Potential Ebola Virus Exposure Communication Resources Videos Audio Infographics & Illustrations Factsheets Posters Virus ...

  16. Field study of a shredded-tire embankment.

    DOT National Transportation Integrated Search

    1994-01-01

    This report presents interim data from the ongoing field study of an experimental shredded-tire embankment constructed near Williamsburg, Virginia. Approximately 1.7 million tires were used. This constitutes the largest reported use to date of waste ...

  17. H. R. 3692: a bill to modify the deadlines applicable to hazardous waste disposal facilities. A report submitted to the House of Representatives, Ninety-Ninth Congress, First Session, November 6, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1985-01-01

    This bill amends the Solid Waste Disposal Act to change the deadlines when facilities must certify that they are in compliance with the financial requirements of the Act; i.e., that they have obtained appropriate insurance policies and other protection as required by law. The bill delays compliance during interim status in terms of groundwater monitoring, with interim status terminating on November 8, 1987. The bill covers facilities which were in compliance, but whose insurance policies were later cancelled, those with revenues in the July 1981-1982 fiscal year of less than $5 million, those in states whose requirement came into effectmore » after November 8, 1984, and those which can document a good-faith effort to comply.« less

  18. Response Action Plan for the Basin F Interim Response Action Waste Pile.

    DTIC Science & Technology

    1992-10-01

    the Waste Pile via an 8-Inch diameter HDPE stand pipe. A stainless - steel submersible pump provides the lift to deliver the collected liquid 5 to the...2.1.4 Settlement Measuring System 3 Nine settlement plates were installed at the base of the Waste Pile during its construction. A 1-Inch steel pipe...PLATE STEEL CONDUIT. PIPE GS: 5219.61 GS: 5219.98 GS: 5219.56 GS: 5219.50 SPSP: 5217.87 SPSP: 5217.94 SPSP: 5218.59 THP: 5221.25 THP: 5221.41 THP

  19. OUTER LOOP LANDFILL CASE STUDY

    EPA Science Inventory

    This presentation will describe the interim data reaulting from a CRADA between USEPA and Waste Management, Inc. at the outer Loop Landfill Bioreactor research project located in Louisville, KY. Recently updated data will be presented covering landfill solids, gas being collecte...

  20. Electrical Resistivity Imaging Below Nuclear Waste Tank Farms at the Hanford Site

    NASA Astrophysics Data System (ADS)

    Rucker, D. F.; Levitt, M. T.

    2006-12-01

    The Hanford Site, a Department of Energy nuclear processing facility in eastern Washington, contains a complex series of radiological liquid waste disposal and storage facilities. The primary method of interim storage is the use of large single-shelled steel tanks with capacities of up to 3790 m3 (1 million gallons). The tanks are organized below ground into tank farms, with about 12 tanks per farm. The liquid waste within the tanks is primarily comprised of inorganic salts with minor constituents of heavy metals and radiological metals. The electrical properties of the radiological waste are significantly different to that of the surrounding engineered fill and native geologic formations. Over the past 60 years since the earliest tanks have been in use, many have been known to leak. An electrical resistivity survey was conducted within a tank farm to map the extent of the plumes resulting from historic leaks. Traditional surface-based electrical resistivity surveys resulted in unusable data due to the significant subsurface infrastructure that included a network of delivery pipes, wells, fences, and electrical discharge sources . HGI adapted the resistivity technique to include the site infrastructure as transceivers to augment data density and geometry. The results show a distribution of low resistivity values within the farm in areas that match known historic leak sites. The addition of site infrastructure as sensors demonstrates that the electrical resistivity technique can be used in highly industrial sites.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wells, D.

    The SRS Interim Sanitary Landfill opened in Mid-1992 and operated until 1998 under Domestic Waste Permit No. 025500-1120. Several contaminants have been detected in the groundwater beneath the unit.The well sampling and analyses were conducted in accordance with Procedure 3Q5, Hydrogeologic Data Collection.

  2. Functional design criteria for interim stabilization safety class 1 trip circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Larson, R.E., Westinghouse Hanford

    1996-06-10

    This Functional Design Criteria document outlines the basic requirements for the Safety Class 1 Trip Circuit. The objective of the Safety Class 1 Trip Circuit is to isolate the power circuitry to the Class 1 Division 2, Group B or lesser grade electrically fed loads located in the pump pit. The electrically fed load circuits need to have power isolated to them upon receipt of the following conditions, loss of flammable gases being released (above a predetermined threshold), and seismic(greater than 0.12g acceleration) activity. The two circuits requiring power isolation are the pump and heat trace power circuits. The Safetymore » Class 1 Trip Circuit will be used to support salt well pumping in SST`s containing potentially flammable gas-bearing / gas-producing radioactive waste.« less

  3. D and D: Dismantling and Release of Large Components at the GNS Premises in Duisburg on the Example of a CASTOR S1 Container - 13536

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oehmigen, Steffen; Ambos, Frank

    There are a lot of metallic large components for the transport of radioactive waste in Germany. Some of these large components like for example the Castor S1 with 82 Mg are so old, that the transport via streets is not possible because the permission is not valid anymore. The application for a new permission is economically not reasonable. Out of this reason the large components need to be decontaminated and recycled to use them again in the economic cycle. Decontamination of large components by cleaning/removing the surface for example with beam technology is a very time-consuming release procedure. Manufacturing amore » specialized machine for decontamination and creation of a new surface was the intention of this project. The objective was to save interim storage and final repository volume and costs as well as developing a process that is nationally and internationally usable. 90% of the volume/mass of waste could be released and therefore possibly re-used. (authors)« less

  4. Lessons learned from the Siting Process of an Interim Storage Facility in Spain - 12024

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lamolla, Meritxell Martell

    2012-07-01

    On 29 December 2009, the Spanish government launched a site selection process to host a centralised interim storage facility for spent fuel and high-level radioactive waste. It was an unprecedented call for voluntarism among Spanish municipalities to site a controversial facility. Two nuclear municipalities, amongst a total of thirteen municipalities from five different regions, presented their candidatures to host the facility in their territories. For two years the government did not make a decision. Only in November 30, 2011, the new government elected on 20 November 2011 officially selected a non-nuclear municipality, Villar de Canas, for hosting this facility. Thismore » paper focuses on analysing the factors facilitating and hindering the siting of controversial facilities, in particular the interim storage facility in Spain. It demonstrates that involving all stakeholders in the decision-making process should not be underestimated. In the case of Spain, all regional governments where there were candidate municipalities willing to host the centralised interim storage facility, publicly opposed to the siting of the facility. (author)« less

  5. RCRA, superfund and EPCRA hotline training module. Introduction to: Boilers and industrial furnaces (40 cfr part 266, subpart h) updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    The module summarizes the regulations affecting hazardous waste processes in boilers and industrial furnaces (BIFs). If defines boilers and industrial furnaces and describes the criteria associated with the definitions. It describes the requirements for processing hazardous waste in BIFs, including the distinctions between permitted and interim status units. It explains the requirements for the specially regulated BIFs and gives examples of each.

  6. Developing a concept for a national used fuel interim storage facility in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Donald Wayne

    2013-07-01

    In the United States (U.S.) the nuclear waste issue has plagued the nuclear industry for decades. Originally, spent fuel was to be reprocessed but with the threat of nuclear proliferation, spent fuel reprocessing has been eliminated, at least for now. In 1983, the Nuclear Waste Policy Act of 1982 [1] was established, authorizing development of one or more spent fuel and high-level nuclear waste geological repositories and a consolidated national storage facility, called a 'Monitored Retrievable Storage' facility, that could store the spent nuclear fuel until it could be placed into the geological repository. Plans were under way to buildmore » a geological repository, Yucca Mountain, but with the decision by President Obama to terminate the development of Yucca Mountain, a consolidated national storage facility that can store spent fuel for an interim period until a new repository is established has become very important. Since reactor sites have not been able to wait for the government to come up with a storage or disposal location, spent fuel remains in wet or dry storage at each nuclear plant. The purpose of this paper is to present a concept developed to address the DOE's goals stated above. This concept was developed over the past few months by collaboration between the DOE and industry experts that have experience in designing spent nuclear fuel facilities. The paper examines the current spent fuel storage conditions at shutdown reactor sites, operating reactor sites, and the type of storage systems (transportable versus non-transportable, welded or bolted). The concept lays out the basis for a pilot storage facility to house spent fuel from shutdown reactor sites and then how the pilot facility can be enlarged to a larger full scale consolidated interim storage facility. (authors)« less

  7. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW... EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions that apply...

  8. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...

  9. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...

  10. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...

  11. 40 CFR 94.12 - Interim provisions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... differences in testing will not affect NOX emission rates. (g) Flexibility for engines over 560kW...) CONTROL OF EMISSIONS FROM MARINE COMPRESSION-IGNITION ENGINES General Provisions for Emission Regulations for Compression-Ignition Marine Engines § 94.12 Interim provisions. This section contains provisions...

  12. Taipower`s radioactive waste management program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, B.C.C.

    1996-09-01

    Nuclear safety and radioactive waste management are the two major concerns of nuclear power in Taiwan. Recognizing that it is an issue imbued with political and social-economic concerns, Taipower has established an integrated nuclear backend management system and its associated financial and mechanism. For LLW, the Orchid Island storage facility will play an important role in bridging the gap between on-site storage and final disposal of LLW. Also, on-site interim storage of spent fuel for 40 years or longer will provide Taipower with ample time and flexibility to adopt the suitable alternative of direct disposal or reprocessing. In other words,more » by so exercising interim storage option, Taipower will be in a comfortable position to safely and permanently dispose of radwaste without unduly forgoing the opportunities of adopting better technologies or alternatives. Furthermore, Taipower will spare no efforts to communicate with the general public and make her nuclear backend management activities accountable to them.« less

  13. Superfund record of decision (EPA Region 5): Skinner Landfill, Butler County, Union Township, West Chester, OH. (First remedial action), September 1992. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-30

    The 78-acre Skinner Landfill site is located in West Chester, Butler County, Ohio. Land use in the immediate vicinity includes business and residential uses to the west and crop farming to the north. The site was used in the past for the mining of sand and gravel, and was operated for the landfilling of a wide variety of materials from approximately 1934 through 1990. Materials deposited onsite include demolition debris, household refuse, and a wide variety of chemical wastes. In 1982, EPA conducted an investigation that showed that the groundwater southeast of the buried waste lagoon was contaminated with VOCs.more » RI studies conducted between 1986 and 1989 investigated the site ground water, surface water, soil, and sediment. In 1990, the state closed the site to further landfilling activities. The ROD is an interim action to protect human health by limiting site access to prevent ingestion of and direct contact with contaminated soil, and to protect the potentially affected users of ground water on and near the site. The primary contaminants of concern affecting the soil and ground water are VOCs, including benzene; organics, including PAHs, PCBs, and pesticides; and metals, including arsenic. The selected interim remedial action for the site are included.« less

  14. Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.Soholt; G.Gonzales; P.Fresquez

    2003-03-01

    Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses tomore » higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions.« less

  15. Glass Property Data and Models for Estimating High-Level Waste Glass Volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Fluegel, Alexander; Kim, Dong-Sang

    2009-10-05

    This report describes recent efforts to develop glass property models that can be used to help estimate the volume of high-level waste (HLW) glass that will result from vitrification of Hanford tank waste. The compositions of acceptable and processable HLW glasses need to be optimized to minimize the waste-form volume and, hence, to save cost. A database of properties and associated compositions for simulated waste glasses was collected for developing property-composition models. This database, although not comprehensive, represents a large fraction of data on waste-glass compositions and properties that were available at the time of this report. Glass property-composition modelsmore » were fit to subsets of the database for several key glass properties. These models apply to a significantly broader composition space than those previously publised. These models should be considered for interim use in calculating properties of Hanford waste glasses.« less

  16. 46 CFR 308.202 - Issuance of interim binder; terms and conditions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....202 Section 308.202 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.202 Issuance of interim... terms, conditions, and warranties contained in the application for war risk protection and indemnity...

  17. 46 CFR 308.202 - Issuance of interim binder; terms and conditions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....202 Section 308.202 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.202 Issuance of interim... terms, conditions, and warranties contained in the application for war risk protection and indemnity...

  18. 46 CFR 308.202 - Issuance of interim binder; terms and conditions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....202 Section 308.202 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.202 Issuance of interim... terms, conditions, and warranties contained in the application for war risk protection and indemnity...

  19. 46 CFR 308.202 - Issuance of interim binder; terms and conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....202 Section 308.202 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.202 Issuance of interim... terms, conditions, and warranties contained in the application for war risk protection and indemnity...

  20. 46 CFR 308.202 - Issuance of interim binder; terms and conditions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....202 Section 308.202 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Protection and Indemnity Insurance § 308.202 Issuance of interim... terms, conditions, and warranties contained in the application for war risk protection and indemnity...

  1. Characterization and remediation of a mixed waste-contaminated site at Kirtland Air Force Base, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.

    In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 andmore » RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility.« less

  2. 40 CFR 445.10 - Applicability.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... LANDFILLS POINT SOURCE CATEGORY RCRA Subtitle C Hazardous Waste Landfill § 445.10 Applicability. Except as provided in § 445.1, this subpart applies to discharges of wastewater from landfills subject to the... Disposal Facilities, Subpart N-(Landfills); and 40 CFR Part 265, Interim Status Standards for Owners and...

  3. Waste tire and shingle scrap/bituminous paving test sections on the Munger Recreational Trail Gateway segment. interim report

    DOT National Transportation Integrated Search

    1991-02-01

    The need to reduce Minnesota's dependence on land fills resulted in a unique cooperative venture by three state agencies. A partnership was forged between the Minnesota Pollution Control Agency (MPCA), the Minnesota Department of Natural Resources (D...

  4. 19 CFR 354.8 - Interim sanctions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... reconsider imposition of interim sanctions on the basis of new and material evidence or other good cause... Secretary may petition a presiding official to impose such sanctions. (b) The presiding official may impose... person to return material previously provided by the Department and all other materials containing the...

  5. Joint DOE/EPA Interim Policy Statement on Leasing Under the Hall Amendment

    EPA Pesticide Factsheets

    This page contains a joint statement between the Environmental Protection Agency and the Department of Energy, providing interim policy on processing proposals for leasing DOE real property using the authority in 42 U.S.C. 7256, commonly referred to as the 'Hall Amendment.

  6. Interim Use Limitations for Eleven Threatened or Endangered Species in the San Francisco Bay Area

    EPA Pesticide Factsheets

    Interim use limitations may apply to pesticide products containing any of 75 active ingredients, in 8 listed counties. The limitations are in a Stipulated Injunction entered by the U.S. District Court for the Northern District of California in 2010.

  7. 46 CFR 308.302 - Issuance of interim binder; terms and conditions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....302 Section 308.302 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE Second Seamen's War Risk Insurance § 308.302 Issuance of interim binder; terms..., conditions, and warranties contained in the application for Second Seamen's war risk insurance (set forth in...

  8. 46 CFR 308.302 - Issuance of interim binder; terms and conditions.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....302 Section 308.302 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE Second Seamen's War Risk Insurance § 308.302 Issuance of interim binder; terms..., conditions, and warranties contained in the application for Second Seamen's war risk insurance (set forth in...

  9. 46 CFR 308.302 - Issuance of interim binder; terms and conditions.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....302 Section 308.302 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE Second Seamen's War Risk Insurance § 308.302 Issuance of interim binder; terms..., conditions, and warranties contained in the application for Second Seamen's war risk insurance (set forth in...

  10. 46 CFR 308.302 - Issuance of interim binder; terms and conditions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....302 Section 308.302 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE Second Seamen's War Risk Insurance § 308.302 Issuance of interim binder; terms..., conditions, and warranties contained in the application for Second Seamen's war risk insurance (set forth in...

  11. 46 CFR 308.302 - Issuance of interim binder; terms and conditions.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ....302 Section 308.302 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE Second Seamen's War Risk Insurance § 308.302 Issuance of interim binder; terms..., conditions, and warranties contained in the application for Second Seamen's war risk insurance (set forth in...

  12. Remaining Sites Verification Package for the 100-F-26:15 Miscellaneous Pipelines Associated with the 132-F-6, 1608-F Waste Water Pumping Station, Waste Site Reclassification Form 2007-031

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. M. Dittmer

    2008-03-18

    The 100-F-26:15 waste site consisted of the remnant portions of underground process effluent and floor drain pipelines that originated at the 105-F Reactor. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  13. Laser ablation/ionization characterization of solids: Second interim progress report of the strategic environmental research development program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hess, W.P.; Bushaw, B.A.; McCarthy, M.I.

    1996-10-01

    The Department of Energy is undertaking the enormous task of remediating defense wastes and environmental insults which have occurred over 50 years of nuclear weapons production. It is abundantly clear that significant technology advances are needed to characterize, process, and store highly radioactive waste and to remediate contaminated zones. In addition to the processing and waste form issues, analytical technologies needed for the characterization of solids, and for monitoring storage tanks and contaminated sites do not exist or are currently expensive labor-intensive tasks. This report describes progress in developing sensitive, rapid, and widely applicable laser-based mass spectrometry techniques for analysismore » of mixed chemical wastes and contaminated soils.« less

  14. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.

    2013-07-01

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Centermore » (HLWMC) for storage and monitoring. (authors)« less

  15. 46 CFR 308.102 - Issuance of interim binder; terms and conditions; fees.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    .... 308.102 Section 308.102 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.102 Issuance of interim binder... the terms, conditions, and warranties contained in the application for war risk hull and disbursements...

  16. 46 CFR 308.102 - Issuance of interim binder; terms and conditions; fees.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    .... 308.102 Section 308.102 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.102 Issuance of interim binder... the terms, conditions, and warranties contained in the application for war risk hull and disbursements...

  17. 46 CFR 308.102 - Issuance of interim binder; terms and conditions; fees.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    .... 308.102 Section 308.102 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.102 Issuance of interim binder... the terms, conditions, and warranties contained in the application for war risk hull and disbursements...

  18. 46 CFR 308.102 - Issuance of interim binder; terms and conditions; fees.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    .... 308.102 Section 308.102 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.102 Issuance of interim binder... the terms, conditions, and warranties contained in the application for war risk hull and disbursements...

  19. 46 CFR 308.102 - Issuance of interim binder; terms and conditions; fees.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... 308.102 Section 308.102 Shipping MARITIME ADMINISTRATION, DEPARTMENT OF TRANSPORTATION EMERGENCY OPERATIONS WAR RISK INSURANCE War Risk Hull and Disbursements Insurance § 308.102 Issuance of interim binder... the terms, conditions, and warranties contained in the application for war risk hull and disbursements...

  20. 40 CFR 265.221 - Design and operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...

  1. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  2. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  3. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  4. 40 CFR 265.226 - Monitoring and inspection.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...

  5. 40 CFR 265.226 - Monitoring and inspection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...

  6. 40 CFR 265.221 - Design and operating requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...

  7. 40 CFR 265.221 - Design and operating requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...

  8. 40 CFR 265.226 - Monitoring and inspection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...

  9. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  10. 40 CFR 265.221 - Design and operating requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...

  11. 40 CFR 265.112 - Closure plan; amendment of plan.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND.... By May 19, 1981, or by six months after the effective date of the rule that first subjects a facility... description of other activities necessary during the partial and final closure periods to ensure that all...

  12. 40 CFR 265.304 - Monitoring and inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... for two consecutive months, the amount of liquids in the sumps must be recorded at least quarterly. If... sump until the liquid level again stays below the pump operating level for two consecutive months. (c... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND...

  13. 40 CFR 265.226 - Monitoring and inspection.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...

  14. 40 CFR 265.221 - Design and operating requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... effective date of a prohibition pursuant to § 268.5 of this chapter, within this 48-month period. [50 FR... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... each replacement of an existing surface impoundment unit must install two or more liners, and a...

  15. 40 CFR 265.226 - Monitoring and inspection.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... operating level for two consecutive months, the amount of liquids in the sumps must be recorded at least... (CONTINUED) INTERIM STATUS STANDARDS FOR OWNERS AND OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND... period. (2) After the final cover is installed, the amount of liquids removed from each leak detection...

  16. Guidance: Policy for Municipality and MSW CERCLA Settlements at NPL Co-Disposal Sites

    EPA Pesticide Factsheets

    Transmittal memorandum and policy supplementing the 9/30/89 Interim Policy on CERCLA Settlements Involving Municipalities and Municipal Wastes. 1998 MSW Policy states that EPA will continue its policy of generally not identifying generators and transporters of MSW as PRPs at NPL sites.

  17. Chemical Waste Landfill Annual Post-Closure Care Report Calendar Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mitchell, Michael Marquand; Little, Bonnie Colleen

    The CWL is a 1.9-acre remediated interim status landfill located in the southeastern corner of SNL/NM Technical Area III (Figures 2-1 and 2-2) undergoing post-closure care in accordance with the PCCP (NMED October 2009 and subsequent revisions). From 1962 until 1981, the CWL was used for the disposal of chemical and solid waste generated by SNL/NM research activities. Additionally, a small amount of radioactive waste was disposed of during the operational years. Disposal of liquid waste in unlined pits and trenches ended in 1981, and after 1982 all liquid waste disposal was terminated. From 1982 through 1985, only solid wastemore » was disposed of at the CWL, and after 1985 all waste disposal ended. The CWL was also used as a hazardous waste drum-storage facility from 1981 to 1989. A summary of the CWL disposal history is presented in the Closure Plan (SNL/NM December 1992) along with a waste inventory based upon available disposal records and information.« less

  18. Health insurance issuers implementing medical loss ratio (MLR) requirements under the Patient Protection and Affordable Care Act. Interim final rule with request for comments.

    PubMed

    2010-12-01

    This document contains the interim final regulation implementing medical loss ratio (MLR) requirements for health insurance issuers under the Public Health Service Act, as added by the Patient Protection and Affordable Care Act (Affordable Care Act).

  19. Amendment to the interim final rules for group health plans and health insurance coverage relating to status as a grandfathered health plan under the Patient Protection and Affordable Care Act. Amendment to interim final rules with request for comments.

    PubMed

    2010-11-17

    This document contains an amendment to interim final regulations implementing the rules for group health plans and health insurance coverage in the group and individual markets under provisions of the Patient Protection and Affordable Care Act regarding status as a grandfathered health plan; the amendment permits certain changes in policies, certificates, or contracts of insurance without loss of grandfathered status.

  20. Long-Term Effects of Dredging Operations Program. Design of an Improved Column Leaching Apparatus for Sediments and Dredged Material

    DTIC Science & Technology

    1991-07-01

    Wastes and Flue Gas Desulfurization Sludgas, Interim Report," EPA-600/2-76-182, Municipal Environ- mental Laboratory, US Environmental Protection Agency...Kinman, R. N. 1979. "Leachate and Gas Production Under Controlled Moisture Condition," "Municipal Solid Waste: Land Disposal" EPA- 600/9-79-029a, M. P...includes upflow mode with distribution disks at both the top and bottom of the column. Pore water velocity is controlled to be less than 1 E-05 cm/sec

  1. Kennedy Space Center Press Site (SWMU 074) Interim Measure Report

    NASA Technical Reports Server (NTRS)

    Applegate, Joseph L.

    2015-01-01

    This report summarizes the Interim Measure (IM) activities conducted at the Kennedy Space Center (KSC) Press Site ("the Press Site"). This facility has been designated as Solid Waste Management Unit 074 under KSC's Resource Conservation and Recovery Act Corrective Action program. The activities were completed as part of the Vehicle Assembly Building (VAB) Area Land Use Controls Implementation Plan (LUCIP) Elimination Project. The purpose of the VAB Area LUCIP Elimination Project was to delineate and remove soil affected with constituents of concern (COCs) that historically resulted in Land Use Controls (LUCs). The goal of the project was to eliminate the LUCs on soil. LUCs for groundwater were not addressed as part of the project and are not discussed in this report. This report is intended to meet the Florida Department of Environmental Protection (FDEP) Corrective Action Management Plan requirement as part of the KSC Hazardous and Solid Waste Amendments permit and the U.S. Environmental Protection Agency's (USEPA's) Toxic Substance Control Act (TSCA) self-implementing polychlorinated biphenyl (PCB) cleanup requirements of 40 Code of Federal Regulations (CFR) 761.61(a).

  2. FY 1987 current fiscal year work plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This Current Year Work Plan presents a detailed description of the activities to be performed by the Joint Integration Office during FY87. It breaks down the activities into two major work areas: Program Management and Program Analysis. Program Management is performed by the JIO by providing technical planning and guidance for the development of advanced TRU waste management capabilities. This includes equipment/facility design, engineering, construction, and operations. These functions are integrated to allow transition from interim storage to final disposition. JIO tasks include program requirements identification, long-range technical planning, budget development, program planning document preparation, task guidance, task monitoring, informationmore » gathering and task reporting to DOE, interfacing with other agencies and DOE lead programs, integrating public involvement with program efforts, and preparation of program status reports for DOE. Program Analysis is performed by the JIO to support identification and assessment of alternatives, and development of long-term TRU waste program capabilities. This work plan includes: system analyses, requirements analyses, interim and procedure development, legislative and regulatory analyses, dispatch and traffic analyses, and data bases.« less

  3. Geological Disposal of Nuclear Waste: Investigating the Thermo-Hygro-Mechanical-Chemical (THMC) Coupled Processes at the Waste Canister- Bentonite Barrier Interface

    NASA Astrophysics Data System (ADS)

    Davies, C. W.; Davie, D. C.; Charles, D. A.

    2015-12-01

    Geological disposal of nuclear waste is being increasingly considered to deal with the growing volume of waste resulting from the nuclear legacy of numerous nations. Within the UK there is 650,000 cubic meters of waste safely stored and managed in near-surface interim facilities but with no conclusive permanent disposal route. A Geological Disposal Facility with incorporated Engineered Barrier Systems are currently being considered as a permanent waste management solution (Fig.1). This research focuses on the EBS bentonite buffer/waste canister interface, and experimentally replicates key environmental phases that would occur after canister emplacement. This progresses understanding of the temporal evolution of the EBS and the associated impact on its engineering, mineralogical and physicochemical state and considers any consequences for the EBS safety functions of containment and isolation. Correlation of engineering properties to the physicochemical state is the focus of this research. Changes to geotechnical properties such as Atterberg limits, swelling pressure and swelling kinetics are measured after laboratory exposure to THMC variables from interface and batch experiments. Factors affecting the barrier, post closure, include corrosion product interaction, precipitation of silica, near-field chemical environment, groundwater salinity and temperature. Results show that increasing groundwater salinity has a direct impact on the buffer, reducing swelling capacity and plasticity index by up to 80%. Similarly, thermal loading reduces swelling capacity by 23% and plasticity index by 5%. Bentonite/steel interaction studies show corrosion precipitates diffusing into compacted bentonite up to 3mm from the interface over a 4 month exposure (increasing with temperature), with reduction in swelling capacity in the affected zone, probably due to the development of poorly crystalline iron oxides. These results indicate that groundwater conditions, temperature and corrosion may affect the engineering performance of the bentonite buffer such that any interfaces between bentonite blocks that may be present immediately following buffer emplacement may persist in the longer term.

  4. A security vulnerabilities assessment tool for interim storage facilities of low-level radioactive wastes.

    PubMed

    Bible, J; Emery, R J; Williams, T; Wang, S

    2006-11-01

    Limited permanent low-level radioactive waste (LLRW) disposal capacity and correspondingly high disposal costs have resulted in the creation of numerous interim storage facilities for either decay-in-storage operations or longer term accumulation efforts. These facilities, which may be near the site of waste generation or in distal locations, often were not originally designed for the purpose of LLRW storage, particularly with regard to security. Facility security has become particularly important in light of the domestic terrorist acts of 2001, wherein LLRW, along with many other sources of radioactivity, became recognized commodities to those wishing to create disruption through the purposeful dissemination of radioactive materials. Since some LLRW materials may be in facilities that may exhibit varying degrees of security control sophistication, a security vulnerabilities assessment tool grounded in accepted criminal justice theory and security practice has been developed. The tool, which includes dedicated sections on general security, target hardening, criminalization benefits, and the presence of guardians, can be used by those not formally schooled in the security profession to assess the level of protection afforded to their respective facilities. The tool equips radiation safety practitioners with the ability to methodically and systematically assess the presence or relative status of various facility security aspects, many of which may not be considered by individuals from outside the security profession. For example, radiation safety professionals might not ordinarily consider facility lighting aspects, which is a staple for the security profession since it is widely known that crime disproportionately occurs more frequently at night or in poorly lit circumstances. Likewise, the means and associated time dimensions for detecting inventory discrepancies may not be commonly considered. The tool provides a simple means for radiation safety professionals to assess, and perhaps enhance in a reasonable fashion, the security of their interim storage operations. Aspects of the assessment tool can also be applied to other activities involving the protection of sources of radiation as well.

  5. Interim Performance Objectives. Progress Report, 3rd Quarter Fiscal Year 1999.

    ERIC Educational Resources Information Center

    Office of Student Financial Assistance (ED), Washington, DC.

    This document contains a progress report on three categories of interim performance objectives outlined by the Office of Student Financial Assistance (OSFA) in winter 1999. These objectives were to: (1) improve customer service; (2) reduce the overall cost of delivering student aid; and (3) transform the OSFA into a performance-based organization.…

  6. [Second Interim Report of the Special Committee of the Trustees of Columbia University.

    ERIC Educational Resources Information Center

    Columbia Univ., New York, NY.

    The Special Committee of the Trustees of Columbia University was appointed "to study and recommend changes in the basic structure of the University." The second interim report contains recommendations of the Committee on the participation of faculty and students in university governance through a proposed University Senate that would replace the…

  7. Building an Interim Assessment System: A Workbook for School Districts

    ERIC Educational Resources Information Center

    Crane, Eric W.

    2010-01-01

    As someone with a stake in a school district's systems, a person probably does not have all the answers around what is necessary to build an effective interim assessment system. Neither does this workbook. But it is intended to have the right questions. More precisely, this workbook contains the vision, infrastructure, and resource questions…

  8. Processing Plan for Potentially Reactive/Ignitable Remote Handled Transuranic Waste at the Idaho Cleanup Project - 12090

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troescher, Patrick D.; Hobbes, Tammy L.; Anderson, Scott A.

    Remote Handle Transuranic (RH-TRU) Waste generated at Argonne National Laboratory - East, from the examination of irradiated and un-irradiated fuel pins and other reactor materials requires a detailed processing plan to ensure reactive/ignitable material is absent to meet WIPP Waste Acceptance Criteria prior to shipping and disposal. The Idaho Cleanup Project (ICP) approach to repackaging Lot 2 waste and how we ensure prohibited materials are not present in waste intended for disposal at Waste Isolation Pilot Plant 'WIPP' uses an Argon Repackaging Station (ARS), which provides an inert gas blanket. Opening of the Lot 2 containers under an argon gasmore » blanket is proposed to be completed in the ARS. The ARS is an interim transition repackaging station that provides a mitigation technique to reduce the chances of a reoccurrence of a thermal event prior to rendering the waste 'Safe'. The consequences, should another thermal event be encountered, (which is likely) is to package the waste, apply the reactive and or ignitable codes to the container, and store until the future treatment permit and process are available. This is the same disposition that the two earlier containers in the 'Thermal Events' were assigned. By performing the initial handling under an inert gas blanket, the waste can sorted and segregate the fines and add the Met-L-X to minimize risk before it is exposed to air. The 1-gal cans that are inside the ANL-E canister will be removed and each can is moved to the ARS for repackaging. In the ARS, the 1-gal can is opened in the inerted environment. The contained waste is sorted, weighed, and visually examined for non compliant items such as unvented aerosol cans and liquids. The contents of the paint cans are transferred into a sieve and manipulated to allow the fines, if any, to be separated into the tray below. The fines are weighed and then blended with a minimum 5:1 mix of Met-L-X. Other debris materials found are segregated from the cans into containers for later packaging. Recoverable fissile waste material (Fuel and fuel-like pieces) suspected of containing sodium bonded pieces) are segregated and will remain in the sieve or transferred to a similar immersion basket in the ARS. The fuel like pieces will be placed into a container with sufficient water to cover the recoverable fissile waste. If a 'reactive characteristic' is present the operator will be able to observe the formation of 'violent' hydrogen gas bubbles. When sodium bonded fuel-like pieces are placed in water the expected reaction is a non-violent reaction that does not meet the definition of reactivity. It is expected that there will be a visible small stream of bubbles present if there is any sodium-bonded fuel-like piece placed in the water. The test will be completed when there is no reaction or the expected reaction is observed..At that point, the fuel like pieces complete the processing cycle in preparation for characterization and shipment to WIPP. If a violent reaction occurs, the fuel-like pieces will be removed from the water, split into the required fissile material content, placed into a screened basket in a 1 gallon drum and drummed out of the hot cell with appropriate RCRA codes applied and placed into storage until sodium treatment is available. These 'violent' reactions will be evidenced by gas bubbles being evolved at the specimen surface where sodium metal is present. The operators will be trained to determine if the reaction is 'violent' or 'mild'. If a 'violent' reaction occurs, the sieve will be immediately removed from the water, placed in a 1 gallon paint can, canned in the argon cover gas and removed from the hot cell to await a future treatment. If the reaction is 'mild', the sieve will then be removed from the water; the material weighed for final packaging and allowed to dry by air exposure. Lot 2 waste cans can be opened, sorted, processed, and weighed while mitigating the potential of thermal events that could occur prior to exposing to air. Exposure to air is a WIPP compliance step demonstrating the absence of reactive or ignitable characteristics. (authors)« less

  9. Load drop evaluation for TWRS FSAR

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Julyk, L.J.; Ralston, G.L.

    1996-09-30

    Operational or remediation activities associated with existing underground high-level waste storage tank structures at the Hanford Site often require the installation/removal of various equipment items. To gain tank access for installation or removal of this equipment, large concrete cover blocks must be removed and reinstalled in existing concrete pits above the tanks. An accidental drop of the equipment or cover blocks while being moved over the tanks that results in the release of contaminants to the air poses a potential risk to onsite workers or to the offsite public. To minimize this potential risk, the use of critical lift hoistingmore » and rigging procedures and restrictions on lift height are being considered during development of the new tank farm Basis for Interim Operation and Final Safety Analysis Report. The analysis contained herein provides information for selecting the appropriate lift height restrictions for these activities.« less

  10. Engineering assessment of low-level liquid waste disposal caisson locations at the 618-11 Burial Grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Phillips, S.J.; Fischer, D.D.; Crawford, R.C.

    1982-06-01

    Rockwell Hanford Operations is currently involved in an extensive effort to perform interim ground surface stabilization activities at retired low-level waste burial grounds located at the Hanford Site, Richland, Washington. The principal objective of these activities is to promote increased occupational and radiological safety at burial grounds. Interim stabilization activities include: (1) load testing (traversing burial ground surfaces with heavy equipment to promote incipient collapse of void spaces within the disposal structure and overburden), (2) barrier placement (placement of a {ge} 0.6 m soil barrier over existing overburden), and (3) revegetation (establishment of shallow rooted vegetation on the barrier tomore » mitigate deep rooted plant growth and to reduce erosion). Low-level waste disposal caissons were used in 300 Area Burial Grounds as internment structures for containerized liquid wastes. These caissons, by virtue of their contents, design and methods of closure, require long-term performance evaluation. As an initial activity to evaluate long-term performance, the accurate location of these structures is required. This topical report summarizes engineering activities used to locate caissons in the subsurface environment at the Burial Ground. Activities were conducted to locate caissons during surface stabilization activities. The surface locations were marked, photographed, and recorded on an as built engineering drawing. The recorded location of these caissons will augment long-term observations of confinement structure and engineered surface barrier performance. In addition, accurate caisson location will minimize occupational risk during monitoring and observation activities periodically conducted at the burial ground.« less

  11. Review of the transport of selected radionuclides in the interim risk assessment for the Radioactive Waste Management Complex, Waste Area Group 7 Operable Unit 7-13/14, Idaho National Engineering and Environmental Laboratory, Idaho

    USGS Publications Warehouse

    Rousseau, Joseph P.; Landa, Edward R.; Nimmo, John R.; Cecil, L. DeWayne; Knobel, LeRoy L.; Glynn, Pierre D.; Kwicklis, Edward M.; Curtis, Gary P.; Stollenwerk, Kenneth G.; Anderson, Steven R.; Bartholomay, Roy C.; Bossong, Clifford R.; Orr, Brennon R.

    2005-01-01

    The U.S. Department of Energy (DOE) requested that the U.S. Geological Survey conduct an independent technical review of the Interim Risk Assessment (IRA) and Contaminant Screening for the Waste Area Group 7 (WAG-7) Remedial Investigation, the draft Addendum to the Work Plan for Operable Unit 7-13/14 WAG-7 comprehensive Remedial Investigation and Feasibility Study (RI/FS), and supporting documents that were prepared by Lockheed Martin Idaho Technologies, Inc. The purpose of the technical review was to assess the data and geotechnical approaches that were used to estimate future risks associated with the release of the actinides americium, uranium, neptunium, and plutonium to the Snake River Plain aquifer from wastes buried in pits and trenches at the Subsurface Disposal Area (SDA). The SDA is located at the Radioactive Waste Management Complex in southeastern Idaho within the boundaries of the Idaho National Engineering and Environmental Laboratory. Radionuclides have been buried in pits and trenches at the SDA since 1957 and 1952, respectively. Burial of transuranic wastes was discontinued in 1982. The five specific tasks associated with this review were defined in a ?Proposed Scope of Work? prepared by the DOE, and a follow-up workshop held in June 1998. The specific tasks were (1) to review the radionuclide sampling data to determine how reliable and significant are the reported radionuclide detections and how reliable is the ongoing sampling program, (2) to assess the physical and chemical processes that logically can be invoked to explain true detections, (3) to determine if distribution coefficients that were used in the IRA are reliable and if they have been applied properly, (4) to determine if transport model predictions are technically sound, and (5) to identify issues needing resolution to determine technical adequacy of the risk assessment analysis, and what additional work is required to resolve those issues.

  12. COMPILATION OF DISPOSABLE SOLID WASTE CASK EVALUATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    THIELGES, J.R.; CHASTAIN, S.A.

    The Disposable Solid Waste Cask (DSWC) is a shielded cask capable of transporting, storing, and disposing of six non-fuel core components or approximately 27 cubic feet of radioactive solid waste. Five existing DSWCs are candidates for use in storing and disposing of non-fuel core components and radioactive solid waste from the Interim Examination and Maintenance Cell, ultimately shipping them to the 200 West Area disposal site for burial. A series of inspections, studies, analyses, and modifications were performed to ensure that these casks can be used to safely ship solid waste. These inspections, studies, analyses, and modifications are summarized andmore » attached in this report. Visual inspection of the casks interiors provided information with respect to condition of the casks inner liners. Because water was allowed to enter the casks for varying lengths of time, condition of the cask liner pipe to bottom plate weld was of concern. Based on the visual inspection and a corrosion study, it was concluded that four of the five casks can be used from a corrosion standpoint. Only DSWC S/N-004 would need additional inspection and analysis to determine its usefulness. The five remaining DSWCs underwent some modification to prepare them for use. The existing cask lifting inserts were found to be corroded and deemed unusable. New lifting anchor bolts were installed to replace the existing anchors. Alternate lift lugs were fabricated for use with the new lifting anchor bolts. The cask tiedown frame was modified to facilitate adjustment of the cask tiedowns. As a result of the above mentioned inspections, studies, analysis, and modifications, four of the five existing casks can be used to store and transport waste from the Interim Examination and Maintenance Cell to the disposal site for burial. The fifth cask, DSWC S/N-004, would require further inspections before it could be used.« less

  13. Nasreya: a treatment and disposal facility for industrial hazardous waste in Alexandria, Egypt: phase I.

    PubMed

    Ramadan, Adham R; Kock, Per; Nadim, Amani

    2005-04-01

    A facility for the treatment and disposal of industrial hazardous waste has been established in Alexandria, Egypt. Phase I of the facility encompassing a secure landfill and solar evaporation ponds is ready to receive waste, and Phase II encompassing physico-chemical treatment, solidification, and interim storage is underway. The facility, the Nasreya Centre, is the first of its kind in Egypt, and represents the nucleus for the integration, improvement and further expansion of different hazardous waste management practices and services in Alexandria. It has been developed within the overall legal framework of the Egyptian Law for the Environment, and is expected to improve prospects for enforcement of the regulatory requirements specified in this law. It has been developed with the overall aim of promoting the establishment of an integrated industrial hazardous waste management system in Alexandria, serving as a demonstration to be replicated elsewhere in Egypt. For Phase I, the Centre only accepts inorganic industrial wastes. In this respect, a waste acceptance policy has been developed, which is expected to be reviewed during Phase II, with an expansion of the waste types accepted.

  14. 78 FR 67442 - Congestion Mitigation and Air Quality Improvement Program Interim Guidance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-12

    ... the CMAQ Program as a result of the enactment of the Moving Ahead for Progress in the 21st Century Act (MAP-21). The Interim Guidance also contains changes to clarify the 2008 CMAQ Program Guidance. Because... Act for the 21st Century (TEA-21) (Pub. L. 105-178; Oct. 1998) and the Safe, Accountable, Flexible...

  15. Methods and system for subsurface stabilization using jet grouting

    DOEpatents

    Loomis, Guy G.; Weidner, Jerry R.; Farnsworth, Richard K.; Gardner, Bradley M.; Jessmore, James J.

    1999-01-01

    Methods and systems are provided for stabilizing a subsurface area such as a buried waste pit for either long term storage, or interim storage and retrieval. A plurality of holes are drilled into the subsurface area with a high pressure drilling system provided with a drill stem having jet grouting nozzles. A grouting material is injected at high pressure through the jet grouting nozzles into a formed hole while the drill stem is withdrawn from the hole at a predetermined rate of rotation and translation. A grout-filled column is thereby formed with minimal grout returns, which when overlapped with other adjacent grout-filled columns encapsulates and binds the entire waste pit area to form a subsurface agglomeration or monolith of grout, soil, and waste. The formed monolith stabilizes the buried waste site against subsidence while simultaneously providing a barrier against contaminate migration. The stabilized monolith can be left permanently in place or can be retrieved if desired by using appropriate excavation equipment. The jet grouting technique can also be utilized in a pretreatment approach prior to in situ vitrification of a buried waste site. The waste encapsulation methods and systems are applicable to buried waste materials such as mixed waste, hazardous waste, or radioactive waste.

  16. INTERIM -- Starlink Software Environment

    NASA Astrophysics Data System (ADS)

    Pearce, Dave; Pavelin, Cliff; Lawden, M. D.

    Early versions of this paper were based on a number of other papers produced at a very early stage of the Starlink project. They contained a description of a specific implementation of a subroutine library, speculations on the desirable attributes of a software environment, and future development plans. They reflected the experimental nature of the Starlink software environment at that time. Since then, the situation has changed. The implemented subroutine library, INTERIM_DIR:INTERIM.OLB, is now a well established and widely used piece of software. A completely new Starlink software environment (ADAM) has been developed and distributed. Thus the library released in 1980 as `STARLINK' and now called `INTERIM' has reached the end of its development cycle and is now frozen in its current state, apart from bug corrections. This paper has, therefore, been completely rewritten and restructured to reflect the new situation. Its aim is to describe the facilities of the INTERIM subroutine library as clearly and concisely as possible. It avoids speculation, discussion of design decisions, and announcements of future plans.

  17. RCRA/UST, superfund, and EPCRA hotline training module. Introduction to: Boilers and indutrial furnaces (40 CFR part 266, subpart H) updated as of July 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-01

    The module summarizes the regulations affecting hazardous waste processes in boilers and industrial furnaces (BIFs). It defines boilers and industrial furnaces and describes the criteria associated with the definitions. It explains the difference in applicability between regulations found in Part 266, Subpart H, and those found in Part 266, Subpart E. It describes the requirements for processing hazardous waste in BIFs, including the distinctions between permitted and interim status units and explains the requirements for the specially regulated BIF units and gives examples of each.

  18. Political life and half-life: the future formulation of nuclear waste public policy in the United States.

    PubMed

    Leroy, David

    2006-11-01

    The United States continues to need forward-thinking and revised public policy to assure safe nuclear waste disposal. Both the high- and low-level disposal plans enacted by Congress in the 1980's have been frustrated by practical and political interventions. In the interim, ad hoc solutions and temporary fixes have emerged as de facto policy. Future statutory, regulatory, and administrative guidance will likely be less bold, more narrowly focused, and adopted at lower levels of government, more informally, in contrast to the top-down, statutory policies of the 1980's.

  19. The Impacts of Upward Bound Math-Science on Postsecondary Outcomes 7-9 Years after Scheduled High School Graduation: Final Report

    ERIC Educational Resources Information Center

    Seftor, Neil S.; Calcagno, Juan Carlos

    2010-01-01

    This final report updates the report "Upward Bound Math-Science: Program Description and Interim Impact Estimates" published in 2007 (Olsen et al. 2007). The 2007 interim report contained descriptive findings from a survey of Upward Bound Math-Science (UBMS) grantees from the late 1990s at the time of the study's initiation and impact estimates…

  20. Elder Abuse Demonstration Project. Third Interim Report to the Illinois General Assembly on Public Acts 83-1259 and 83-1432.

    ERIC Educational Resources Information Center

    Illinois State Dept. on Aging, Springfield.

    This document contains the third annual interim report of the Illinois Elder Abuse Demonstration Program. It discusses the overall intent of the demonstration program, trends and changes in the third year of the demonstration program compared with the results from the first two years of the program, and achievements and recommendations for a…

  1. Long-term high-level waste technology. Composite report

    NASA Astrophysics Data System (ADS)

    Cornman, W. R.

    1981-12-01

    Research and development studies on the immobilization of high-level wastes from the chemical reprocessing of nuclear reactor fuels are summarized. The reports are grouped under the following tasks: (1) program management and support; (2) waste preparation; (3) waste fixation; and (4) final handling. Some of the highlights are: leaching properties were obtained for titanate and tailored ceramic materials being developed at ICPP to immobilize zirconia calcine; comparative leach tests, hot-cell tests, and process evaluations were conducted of waste form alternatives to borosilicate glass for the immobilization of SRP high-level wastes, experiments were run at ANL to qualify neutron activation analysis and radioactive tracers for measuring leach rates from simulated waste glasses; comparative leach test samples of SYNROC D were prepared, characterized, and tested at LLNL; encapsulation of glass marbles with lead or lead alloys was demonstrated on an engineering scale at PNL; a canister for reference Commercial HLW was designed at PNL; a study of the optimization of salt-crete was completed at SRL; a risk assessment showed that an investment for tornado dampers in the interim storage building of the DWPF is unjustified.

  2. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Williams, M. S.; Zamecnik, J. R.

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe +2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc 4+ state, 104Ru in the melt as reduced Ru +4 state as insoluble RuO 2, and hazardous volatile Cr 6+ in themore » less soluble and less volatile Cr +3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H 2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H 2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.« less

  3. Existing data on the 216-Z liquid waste sites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Owens, K.W.

    1981-05-01

    During 36 years of operation at the Hanford Site, the ground has been used for disposal of liquid and solid transuranic and/or low-level wastes. Liquid waste was disposed in surface and subsurface cribs, trenches, French drains, reverse wells, ditches and ponds. Disposal structures associated with Z Plant received liquid waste from plutonium finishing and reclamation, waste treatment and laboratory operations. The nineteen 216-Z sites have received 83% of the plutonium discharged to 325 liquid waste facilities at the Hanford Site. The purpose of this document is to support the Hanford Defense Waste Environmental Impact Statement by drawing the existing datamore » together for the 216-Z liquid waste disposal sites. This document provides an interim reference while a sitewide Waste Information Data System (WIDS) is developed and put on line. Eventually these and additional site data for all Hanford waste disposal sites will be available on WIDS. Compilation of existing data is the first step in evaluating the need and developing the technology for long-term management of these waste sites. The scope of this document is confined to data describing the status of the 216-Z waste sites as of December 31, 1979. Information and sketches are taken from existing documents and drawings.« less

  4. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325, Nevada Test Site Waste Acceptance Criteria (NTSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NTS Class III Permit and the NTSWAC.« less

  5. GeoMelt{sup R} ICV{sup TM} Treatment of Sellafield Pond Solids Waste - 13414

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Witwer, Keith; Woosley, Steve; Campbell, Brett

    2013-07-01

    Kurion, Inc., in partnership with AMEC Ltd., is demonstrating its GeoMelt{sup R} In-Container Vitrification (ICV){sup TM} Technology to Sellafield Ltd. (SL). SL is evaluating the proposition of directly converting a container (skip/box/drum) of raw solid ILW into an immobilized waste form using thermal treatment, such that the resulting product is suitable for interim storage at Sellafield and subsequent disposal at a future Geological Disposal Facility. Potential SL feed streams include sludges, ion-exchange media, sand, plutonium contaminated material, concrete, uranium, fuel cladding, soils, metals, and decommissioning wastes. The solid wastes have significant proportions of metallic constituents in the form of containers,more » plant equipment, structural material and swarf arising from the nuclear operations at Sellafield. GeoMelt's proprietary ICV process was selected for demonstration, with the focus being high and reactive metal wastes arising from solid ILW material. A composite surrogate recipe was used to demonstrate the technology towards treating waste forms of diverse types and shapes, as well as those considered difficult to process; all the while requiring few (if any) pre-treatment activities. Key strategic objectives, along with their success criterion, were established by SL for this testing, namely: 1. Passivate and stabilize the raw waste simulant, as demonstrated by the entire quantity of material being vitrified, 2. Immobilize the radiological and chemo-toxic species, as demonstrated via indicative mass balance using elemental analyses from an array of samples, 3. Production of an inert and durable product as evidenced by transformation of reactive metals to their inert oxide forms and satisfactory leachability results using PCT testing. Two tests were performed using the GeoMelt Demonstration Unit located at AMEC's Birchwood Park Facilities in the UK. Post-melt examination of the first test indicated some of the waste simulant had not fully processed, due to insufficient processing time and melt temperature. A second test, incorporating operational experience from the first test, was performed and resulted in all of the 138 kg of feed material being treated. The waste simulant portion, at 41 kg, constituted 30 wt% of the total feed mass, with over 90% of this being made up of various reactive and non-reactive metals. The 95 liters of staged material was volume reduced to 41 liters, providing a 57% overall feed to product volume reduction in a fully passivated two-phase glass/metal product. The GeoMelt equipment operated as designed, vitrifying the entire batch of waste simulant. Post-melt analytical testing verified that 91-99+% of the radiological tracer metals were uniformly distributed within the glass/cast refractory/metal product, and the remaining fraction was captured in the offgas filtration systems. PCT testing of the glass and inner refractory liner showed leachability results that outperform the DOE regulatory limit of 2 g/m{sup 2} for the radiological species of interest (Sr, Ru, Cs, Eu, Re), and by more than an order of magnitude better for standard reference analytes (B, Na, Si). (authors)« less

  6. SWSA 6 interim corrective measures environmental monitoring: FY 1990 results. Environmental Restoration Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashwood, T.L.; Spalding, B.P.

    1991-07-01

    This report presents the results and conclusions from a multifaceted monitoring effort associated with the high-density polyethylene caps installed in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL) as an interim corrective measure (ICM). The caps were installed between November 1988 and June 1989 to meet Resource Conservation and Recovery Act (RCRA) requirements for closure of those areas of SWSA 6 that had received RCRA-regulated wastes after November 1980. Three separate activities were undertaken to evaluate the performance of the caps: (1) wells were installed in trenches to be covered by the caps, and water levelsmore » in these intratrench wells were monitored periodically; (2) samples were taken of the leachate in the intratrench wells and were analyzed for a broad range of radiological and chemical contaminants; and (3) water levels in wells outside the trenches were monitored periodically. With the exception of the trench leachate sampling, each of these activities spanned the preconstruction, construction, and postconstruction periods. Findings of this study have important implications for the ongoing remedial investigation in SWSA 6 and for the design of other ICMs. 51 figs., 2 tabs.« less

  7. SWSA 6 interim corrective measures environmental monitoring: FY 1990 results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashwood, T.L.; Spalding, B.P.

    1991-07-01

    This report presents the results and conclusions from a multifaceted monitoring effort associated with the high-density polyethylene caps installed in Solid Waste Storage Area (SWSA) 6 at Oak Ridge National Laboratory (ORNL) as an interim corrective measure (ICM). The caps were installed between November 1988 and June 1989 to meet Resource Conservation and Recovery Act (RCRA) requirements for closure of those areas of SWSA 6 that had received RCRA-regulated wastes after November 1980. Three separate activities were undertaken to evaluate the performance of the caps: (1) wells were installed in trenches to be covered by the caps, and water levelsmore » in these intratrench wells were monitored periodically; (2) samples were taken of the leachate in the intratrench wells and were analyzed for a broad range of radiological and chemical contaminants; and (3) water levels in wells outside the trenches were monitored periodically. With the exception of the trench leachate sampling, each of these activities spanned the preconstruction, construction, and postconstruction periods. Findings of this study have important implications for the ongoing remedial investigation in SWSA 6 and for the design of other ICMs. 51 figs., 2 tabs.« less

  8. Financial responsibilities under RCRA. Hearing before the Subcommittee on Commerce, Transportation, and Tourism of the Committee on Energy and Commerce, House of Representatives, Ninety-Ninth Congress, First Session on H. R. 3692, November 13, 1985

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1986-01-01

    Representatives of environmental organizations, the Hazardous Waste Treatment Council, and regulators were among those testifying at a hearing on H.R. 3692, which amends the Resource Conservation and Recovery Act (RCRA) of 1976. The bill is in response to concerns that the Environmental Protection Agency (EPA) has not compiled with the intent of RCRA in its failure to move beyond interim permits to issue final permits to land disposal facilities accepting hazardous wastes. Reported leakage and environmental risks from sites operating under interim permits raises questions about how disposal companies could deal with liability claims. At issue was whether Congress needsmore » to take new action to develop regulations under which financially responsible companies can operate or whether new EPA rules can solve the problem. A spokesman for EPA reviewed the liability insurance problem and the status of the insurance market in this context. Material submitted for the record follows the text of H.R. 3692 and the testimony of 11 witnesses.« less

  9. Interim Measures Report for the Headquarters Building Area Location of Concern (LOC) 2E East SWMU 104 John F. Kennedy Space Center, Florida

    NASA Technical Reports Server (NTRS)

    Sager, Eric D.

    2016-01-01

    The Hazardous and Solid Waste Amendment portion of the National Aeronautics and Space Administration (NASA) Resource Conservation and Recovery Act (RCRA) Permit issued by the Florida Department of Environmental Protection (FDEP), requires identification and evaluation of all known Solid Waste Management Units (SWMUs) and Locations of Concern (LOCs) located on Kennedy Space Center (KSC) property. The KSC Headquarters Building Area (KHQA) has been identified as SWMU 104 under KSC's RCRA Program. This report summarizes the Interim Measure (IM) conducted by Geosyntec Consultants (Geosyntec) for NASA under Indefinite Delivery Indefinite Quantity Contract NNK12CA13B at the KHQA to mitigate potential exposure to polychlorinated biphenyl (PCB)-affected media at the eastern side of LOC 2E. The IM activities were conducted in June and July 2015 to remediate PCBs above the FDEP Residential Direct-Exposure (R-) Soil Cleanup Target Level (SCTL) of 0.5 milligram per kilogram (mg/kg) established by Chapter 62-777, Florida Administrative Code. The IM was performed in accordance with the IM Work Plan (IMWP) approved by the FDEP, dated August 2012. IM activities were conducted in accordance with the KSC Generic PCB Work Plan (NASA 2007).

  10. Biostabilization of landfill waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, D.L.

    1995-06-01

    In November 1991, the city of Albany, N.Y., together with the principals of Landfill Service Corp. (Apalachin, N.Y.), proposed to demonstrate the successful practice of biostabilized solid waste placement in the newly constructed, double-composite-lined Interim Landfill located in the city of Albany. The small landfill covers just 12 acres and is immediately adjacent to residential neighbors. The benefits of this biostabilization practice include a dramatic improvement in the orderliness of waste placement, with significant reduction of windblown dust and litter. The process also reduces the presence of typical landfill vectors such as flies, crows, seagulls, and rodents. The physically andmore » biologically uniform character of the stabilized waste mass can result in more uniform future landfill settlement and gas production properties. This can allow for more accurate prediction of post-closure conditions and reduction or elimination of remedial costs attendant to post-closure gross differential settlement.« less

  11. Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weber, William J.; Zhang, Yanwen

    This is the final report of the NEUP project “Radiation and Thermal Effects on Used Nuclear Fuel and Nuclear Waste Forms.” This project started on July 1, 2012 and was successfully completed on June 30, 2016. This report provides an overview of the main achievements, results and findings through the duration of the project. Additional details can be found in the main body of this report and in the individual Quarterly Reports and associated Deliverables of this project, which have been uploaded in PICS-NE. The objective of this research was to advance understanding and develop validated models on the effectsmore » of self-radiation from beta and alpha decay on the response of used nuclear fuel and nuclear waste forms during high-temperature interim storage and long-term permanent disposition. To achieve this objective, model used-fuel materials and model waste form materials were identified, fabricated, and studied.« less

  12. Mobile Launch Platform Vehicle Assembly Area (SWMU 056) Biosparge Expansion Interim Measures Work Plan

    NASA Technical Reports Server (NTRS)

    Burcham, Michael S.; Daprato, Rebecca C.

    2016-01-01

    This document presents the design details for an Interim Measure (IM) Work Plan (IMWP) for the Mobile Launch Platform/Vehicle Assembly Building (MLPV) Area, located at the John F. Kennedy Space Center (KSC), Florida. The MLPV Area has been designated Solid Waste Management Unit Number 056 (SWMU 056) under KSC's Resource Conservation and Recovery Act (RCRA) Corrective Action Program. This report was prepared by Geosyntec Consultants (Geosyntec) for the National Aeronautics and Space Administration (NASA) under contract number NNK09CA02B and NNK12CA13B, project control number ENV1642. The Advanced Data Package (ADP) presentation covering the elements of this IMWP report received KSC Remediation Team (KSCRT) approval at the December 2015 Team Meeting; the meeting minutes are included in Appendix A.

  13. Support for HLW Direct Feed - Phase 2, VSL-15R3440-1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlack, K. S.; Pegg, I.; Joseph, I.

    This report describes work performed to develop and test new glass and feed formulations originating from a potential flow-sheet for the direct vitrification of High Level Waste (HLW) with minimal or no pretreatment. In the HLW direct feed option that is under consideration for early operations at the Hanford Tank Waste Treatment and Immobilization Plant (WTP), the pretreatment facility would be bypassed in order to support an earlier start-up of the vitrification facility. For HLW, this would mean that the ultrafiltration and caustic leaching operations that would otherwise have been performed in the pretreatment facility would either not be performedmore » or would be replaced by an interim pretreatment function (in-tank leaching and settling, for example). These changes would likely affect glass formulations and waste loadings and have impacts on the downstream vitrification operations. Modification of the pretreatment process may result in: (i) Higher aluminum contents if caustic leaching is not performed; (ii) Higher chromium contents if oxidative leaching is not performed; (iii) A higher fraction of supernate in the HLW feed resulting from the lower efficiency of in-tank washing; and (iv) A higher water content due to the likely lower effectiveness of in-tank settling compared to ultrafiltration. The HLW direct feed option has also been proposed as a potential route for treating HLW streams that contain the highest concentrations of fast-settling plutoniumcontaining particles, thereby avoiding some of the potential issues associated with such particles in the WTP Pretreatment facility [1]. In response, the work presented herein focuses on the impacts of increased supernate and water content on wastes from one of the candidate source tanks for the direct feed option that is high in plutonium.« less

  14. The capacity of aquatic macrophytes for phytoremediation and their disposal with specific reference to water hyacinth.

    PubMed

    Newete, Solomon W; Byrne, Marcus J

    2016-06-01

    The actual amount of fresh water readily accessible for use is <1 % of the total amount of water on earth, and is expected to shrink further due to the projected growth of the population by a third in 2050. Worse yet are the major issues of water pollution, including mining and industrial waste which account for the bulk of contamination sources. The use of aquatic macrophytes as a cost-effective and eco-friendly tool for phytoremediation is well documented. However, little is known about the fate of those plants after phytoremediation. This paper reviews the options for safe disposal of waste plant biomass after phytoremediation. Among the few mentioned in the literature are briquetting, incineration and biogasification. The economic viability of such processes and the safety of their economic products for domestic use are however, not yet established. Over half of the nations in the world are involved in mining of precious metals, and tailings dams are the widespread legacy of such activities. Thus, the disposal of polluted plant biomass onto mine storage facilities such as tailing dams could be an interim solution. There, the material can act as mulch for the establishment of stabilizing vegetation and suppress dust. Plant decomposition might liberate its contaminants, but in a site where containment is a priority.

  15. 75 FR 70114 - Amendment to the Interim Final Rules for Group Health Plans and Health Insurance Coverage...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-17

    ...This document contains an amendment to interim final regulations implementing the rules for group health plans and health insurance coverage in the group and individual markets under provisions of the Patient Protection and Affordable Care Act regarding status as a grandfathered health plan; the amendment permits certain changes in policies, certificates, or contracts of insurance without loss of grandfathered status.

  16. Hanford facility dangerous waste permit application, general information portion. Revision 3

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sonnichsen, J.C.

    1997-08-21

    For purposes of the Hanford facility dangerous waste permit application, the US Department of Energy`s contractors are identified as ``co-operators`` and sign in that capacity (refer to Condition I.A.2. of the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit). Any identification of these contractors as an ``operator`` elsewhere in the application is not meant to conflict with the contractors` designation as co-operators but rather is based on the contractors` contractual status with the U.S. Department of Energy, Richland Operations Office. The Dangerous Waste Portion of the initial Hanford Facility Resource Conservation and Recovery Act Permit,more » which incorporated five treatment, storage, and/or disposal units, was based on information submitted in the Hanford Facility Dangerous Waste Permit Application and in closure plan and closure/postclosure plan documentation. During 1995, the Dangerous Waste Portion was modified twice to incorporate another eight treatment, storage, and/or disposal units; during 1996, the Dangerous Waste Portion was modified once to incorporate another five treatment, storage, and/or disposal units. The permit modification process will be used at least annually to incorporate additional treatment, storage, and/or disposal units as permitting documentation for these units is finalized. The units to be included in annual modifications are specified in a schedule contained in the Dangerous Waste Portion of the Hanford Facility Resource Conservation and Recovery Act Permit. Treatment, storage, and/or disposal units will remain in interim status until incorporated into the Permit. The Hanford Facility Dangerous Waste Permit Application is considered to be a single application organized into a General Information Portion (this document, DOE/RL-91-28) and a Unit-Specific Portion. The scope of the Unit-Specific Portion is limited to individual operating treatment, storage, and/or disposal units for which Part B permit application documentation has been, or is anticipated to be, submitted. Documentation for treatment, storage, and/or disposal units undergoing closure, or for units that are, or are anticipated to be, dispositioned through other options, will continue to be submitted by the Permittees in accordance with the provisions of the Hanford Federal Facility Agreement and Consent Order. However, the scope of the General Information Portion includes information that could be used to discuss operating units, units undergoing closure, or units being dispositioned through other options. Both the General Information and Unit-Specific portions of the Hanford Facility Dangerous Waste Permit Application address the contents of the Part B permit application guidance documentation prepared by the Washington State Department of Ecology and the U.S. Environmental Protection Agency, with additional information needs defined by revisions of Washington Administrative Code 173-303 and by the Hazardous and Solid Waste Amendments. Documentation contained in the General Information Portion is broader in nature and could be used by multiple treatment, storage, and/or disposal units (i.e., either operating units, units undergoing closure, or units being dispositioned through other options).« less

  17. Management of radioactive waste in Belgium: ONDRAF/NIRAS and Belgoprocess as major actors of the waste acceptance system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zaelen, Gunter van; Verheyen, Annick

    2007-07-01

    The management of radioactive waste in Belgium is undertaken by the national agency for radioactive waste and enriched fissile materials, ONDRAF/NIRAS, and its industrial partner Belgoprocess. ONDRAF/NIRAS has set up a management system designed to guarantee that the general public and the environment are protected against the potential hazards arising from radioactive waste. Belgoprocess is a private company, founded in 1984 and located in Dessel, Belgium. It is a subsidiary of ONDRAF/NIRAS and its activities focus on the safe processing and storage of radioactive waste. The management system of ONDRAF/NIRAS includes two aspects: a) an integrated system and b) anmore » acceptance system. The integrated system covers all aspects of management ranging from the origin of waste to its transport, processing, interim storage and long-term management. The safety of radioactive waste management not only depends on the quality of the design and construction of the processing, temporary storage or disposal infrastructure, but also on the quality of the waste accepted by ONDRAF/NIRAS. In order to be manage d safely, both in the short and the long term, the waste transferred to ONDRAF/NIRAS must meet certain specific requirements. To that end, ONDRAF/NIRAS has developed an acceptance system. (authors)« less

  18. Remaining Sites Verification Package for the 100-F-26:10, 1607-F3 Sanitary Sewer Pipelines (182-F, 183-F, and 151-F Sanitary Sewer Lines), Waste Site Reclassification Form 2007-028

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. M. Dittmer

    2007-12-03

    The 100-F-26:10 waste site includes sanitary sewer lines that serviced the former 182-F, 183-F, and 151-F Buildings. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  19. Interim Guidelines for Growing Longleaf Seedlings in Containers

    Treesearch

    James P. Barnett; Mark J. Hainds; George A. Hernandez

    2002-01-01

    The demand for container longleaf pine (Pinus palustris Mill.) planting stock continues to increase each year. A problem facing both producers and users of container seedlings is the lack of target seedling specifications. Outplanting and evaluating performance of seedlings with a range of physiological and morphological characteristics, over a...

  20. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Yasser T.

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less

  1. Hazmat storage requires a zero-risk attitude

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roer, M.

    It does not matter whether a company accumulates, transports, treats, stores or disposes hazardous chemicals--it is held responsible by the Environmental Protection Agency for environmental damage caused by leaks and spills. As a result, facilities must take sufficient precautions to minimize damage and avoid liability under the federal Comprehensive Environmental Response, Compensation and Liability Act, applicable state statute, Occupational Safety and Health Administration regulations, and Department of Transportation (DOT) requirements. A facility may accumulate hazardous waste onsite--without a permit or having interim status--for 90 days or less, or up to 120 days with an extension. However, certain conditions must bemore » met. Companies can determine their specific storage requirements in accordance with federal regulations and local requirements. To help these companies, various laboratories have developed procedures for examining, testing, listing and labeling hazardous materials storage lockers. A pre-examination service and accompanying approval label should provide generators and authorities with an increased level of confidence when selecting storage containment systems.« less

  2. Schedules of Controlled Substances: Placement of FDA-Approved Products of Oral Solutions Containing Dronabinol [(-)-delta-9-transtetrahydrocannabinol (delta-9-THC)] in Schedule II. Interim final rule, with request for comments.

    PubMed

    2017-03-23

    On July 1, 2016, the U.S. Food and Drug Administration (FDA) approved a new drug application for Syndros, a drug product consisting of dronabinol [(-)-delta-9-trans-tetrahydrocannabinol (delta-9-THC)] oral solution. Thereafter, the Department of Health and Human Services (HHS) provided the Drug Enforcement Administration (DEA) with a scheduling recommendation that would result in Syndros (and other oral solutions containing dronabinol) being placed in schedule II of the Controlled Substances Act (CSA). In accordance with the CSA, as revised by the Improving Regulatory Transparency for New Medical Therapies Act, DEA is hereby issuing an interim final rule placing FDA-approved products of oral solutions containing dronabinol in schedule II of the CSA.

  3. A global validation of ERA-Interim integrated water vapor estimates using ground-based GNSS observations

    NASA Astrophysics Data System (ADS)

    Ahmed, F.; Dousa, J.; Hunegnaw, A.; Teferle, F. N.; Bingley, R.

    2017-12-01

    Integrated water vapor (IWV) derived from climate reanalysis models, such as the European Centre for Medium-range Weather Forecasts (ECMWF) ReAnalysis-Interim (ERA-Interim), is widely used in many atmospheric applications. Therefore, it is of interest to assess the quality of this reanalysis product using available observations. Observations from Global Navigation Satellite Systems (GNSS) are, as of now, available for a period of over 2 decades and their global availability makes it possible to validate the IWV obtained from climate reanalysis models in different geographical and climatic regions. In this study, primarily, three 5-year long homogeneously reprocessed GNSS-derived IWV datasets containing over 400 globally distributed ground-based GNSS stations have been used to validate the IWV estimates obtained from the ERA-Interim climate reanalysis model in 25 different climate zones. The IWV from ERA-Interim has been obtained by vertically integrating the specific humidity at all model levels above the locations of GNSS stations. It has been studied how the difference between the ERA-Interim IWV and the GNSS-derived IWV varies with respect to the different climate zones as well as with respect to the difference in the model orography and latitude. The results show a dependence of the ability of ERA-Interim to model the IWV on difference in climate types and latitude. This dependence, however, is dictated by the concentration of water vapor in different climate zones and at different latitudes. Furthermore, as a secondary focus of this study, the weighted mean atmospheric temperature (Tm) obtained from ERA-Interim has been compared to its equivalent obtained using two widely used approximations globally.

  4. Disposal of LLW and ILW in Germany - Characterisation and Documentation of Waste Packages with Respect to the Change of Requirements

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bandt, G.; Spicher, G.; Steyer, St.

    2008-07-01

    Since the 1998 termination of LLW and ILW emplacement in the Morsleben repository (ERAM), Germany, the treatment, conditioning and documentation of radioactive waste products and packages have been continued on the basis of the waste acceptance requirements as of 1995, prepared for the Konrad repository near Salzgitter in Lower Saxony, Germany. The resulting waste products and packages are stored in interim storage facilities. Due to the Konrad license issued in 2002 the waste acceptance requirements have to be completed by additional requirements imposed by the licensing authority, e. g. for the declaration of chemical waste package constituents. Therefore, documentation ofmore » waste products and packages which are checked by independent experts and are in parts approved by the responsible authority (Office for Radiation Protection, BfS) up to now will have to be checked again for fulfilling the final waste acceptance requirements prior to disposal. In order to simplify these additional checks, databases are used to ensure an easy access to all known facts about the waste packages. A short balance of the existing waste products and packages which are already checked and partly approved by BfS as well as an overview on the established databases ensuring a fast access to the known facts about the conditioning processes is presented. (authors)« less

  5. A NEW, SMALL DRYING FACILITY FOR WET RADIOACTIVE WASTE AND LIQUIDS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oldiges, Olaf; Blenski, Hans-Juergen

    2003-02-27

    Due to the reason, that in Germany every Waste, that is foreseen to be stored in a final disposal facility or in a long time interim storage facility, it is necessary to treat a lot of waste using different drying technologies. In Germany two different drying facilities are in operation. The GNS Company prefers a vacuum-drying-technology and has built and designed PETRA-Drying-Facilities. In a lot of smaller locations, it is not possible to install such a facility because inside the working areas of that location, the available space to install the PETRA-Drying-Facility is too small. For that reason, GNS decidedmore » to design a new, small Drying-Facility using industrial standard components, applying the vacuum-drying-technology. The new, small Drying-Facility for wet radioactive waste and liquids is presented in this paper. The results of some tests with a prototype facility are shown in chapter 4. The main components of that new facility are described in chapter 3.« less

  6. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    NASA Astrophysics Data System (ADS)

    Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.

    2011-04-01

    The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  7. Direct cementitious waste option study report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dafoe, R.E.; Losinski, S.J.

    A settlement agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) will be treated so that it is ready to be moved out of Idaho for disposal by a target data of 2035. This study investigates the direct grouting of all ICPP calcine (including the HLW dry calcine and those resulting from calcining sodium-bearing liquid waste currently residing in the ICPP storage tanks) as the treatment method to comply with the settlement agreement. This method involves grouting the calcined waste andmore » casting the resulting hydroceramic grout into stainless steel canisters. These canisters will be stored at the Idaho National Engineering and Environmental Laboratory (INEEL) until they are sent to a national geologic repository. The operating period for grouting treatment will be from 2013 through 2032, and all the HLW will be treated and in interim storage by the end of 2032.« less

  8. Interim waste storage for the Integral Fast Reactor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benedict, R.W.; Phipps, R.D.; Condiff, D.W.

    1991-01-01

    The Integral Fast Reactor (IFR), which Argonne National Laboratory is developing, is an innovative liquid metal breeder reactor that uses metallic fuel and has a close coupled fuel recovery process. A pyrochemical process is used to separate the fission products from the actinide elements. These actinides are used to make new fuel for the reactor. As part of the overall IFR development program, Argonne has refurbished an existing Fuel Cycle Facility at ANL-West and is installing new equipment to demonstrate the remote reprocessing and fabrication of fuel for the Experimental Breeder Reactor II (EBR-II). During this demonstration the wastes thatmore » are produced will be treated and packaged to produce waste forms that would be typical of future commercial operations. These future waste forms would, assuming Argonne development goals are fulfilled, be essentially free of long half-life transuranic isotopes. Promising early results indicate that actinide extraction processes can be developed to strip these isotopes from waste stream and return them to the IFR type reactors for fissioning. 1 fig.« less

  9. Calendar year 1993 groundwater quality report for the Chestnut Ridge Hydrogeologic Regime, Y-12 Plant, Oak Ridge, Tennessee. 1993 groundwater quality data and calculated rate of contaminant migration, Part 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    This annual groundwater report contains groundwater quality data obtained during the 1993 calendar year (CY) at several hazardous and non-hazardous waste-management facilities associated with the US Department of Energy (DOE) Y-12 Plant located on the DOE Oak Ridge Reservation (ORR) southeast of Oak Ridge, Tennessee. These sites are located south of the Y-12 Plant in the Chestnut Ridge Hydrogeologic Regime (Chestnut Ridge Regime), which is one of three regimes defined for the purposes of groundwater quality monitoring at the Y-12 Plant. The Environmental Management Department of the Y-12 Plant Health, Safety, Environment, and Accountability Organization manages the groundwater monitoring activitiesmore » in each regime as part of the Y-12 Plant Groundwater Protection Program (GWPP). The annual groundwater report for the Chestnut Ridge Regime is completed in two-parts; Part 1 (this report) containing the groundwater quality data and Part 2 containing a detailed evaluation of the data. The primary purpose of this report is to serve as a reference for the groundwater quality data obtained each year under the lead of the Y-12 Plant GWPP. However, because it contains information needed to comply with Resource Conservation and Recovery Act (RCRA) interim status assessment monitoring and reporting requirements, this report is submitted to the Tennessee Department of Health and Environment (TDEC) by the RCRA reporting deadline.« less

  10. Superfund Record of Decision (EPA Region 4): USMC Camp Lejeune Military Reservation, NC. (First remedial action), September 1992. Interim report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1992-09-23

    The 500-acre Camp Lejeune Military Reservation is located 15 miles southeast of Jacksonville, in Onslow County, North Carolina. Within the site lies the Hadnot Point Industrial Area (HPIA), which was constructed in the late 1930's. It is composed of 75 buildings and facilities, which include gas stations, offices, storage yards, maintenance shops, and a dry cleaning plant. Several areas of the HPIA have been investigated for potential contamination attributed to Marine Corps activities and operations that resulted in a generation of potentially hazardous wastes. The ROD addresses an interim remedial action for the shallow aquifer at the HPIA to protectmore » human health from exposure to VOCs and metals. The primary contaminants of concern affecting the shallow ground water aquifer are VOCs, including benzene and TCE; and metals, including arsenic, chromium, and lead.« less

  11. Diffusion and Leaching Behavior of Radionuclides in Category 3 Waste Encasement Concrete and Soil Fill Material – Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mattigod, Shas V.; Wellman, Dawn M.; Bovaird, Chase C.

    2011-08-31

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Such concrete encasement would contain and isolate the waste packages from the hydrologic environment and would act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expectedmore » to have a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed, and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The mobilized radionuclides may escape from the encased concrete by mass flow and/or diffusion and move into the surrounding subsurface environment. Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. The retardation factors for radionuclides contained in the waste packages can be determined from measurements of diffusion coefficients for these contaminants through concrete and fill material. Some of the mobilization scenarios include (1) potential leaching of waste form before permanent closure cover is installed; (2) after the cover installation, long-term diffusion of radionuclides from concrete waste form into surrounding fill material; (3) diffusion of radionuclides from contaminated soils into adjoining concrete encasement and clean fill material. Additionally, the rate of diffusion of radionuclides may be affected by the formation of structural cracks in concrete, the carbonation of the buried waste form, and any potential effect of metallic iron (in the form of rebars) on the mobility of radionuclides. The radionuclides iodine-129 ({sup 129}I), technetium-99 ({sup 99}Tc), and uranium-238 ({sup 238}U) are identified as long-term dose contributors in Category 3 waste (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, {sup 129}I, {sup 99}Tc, and carbonate-complexed {sup 238}U may readily leach into the subsurface environment (Serne et al. 1989, 1992a, b, 1993, and 1995). The leachability and/or diffusion of radionuclide species must be measured to assess the long-term performance of waste grouts when contacted with vadose-zone pore water or groundwater. Although significant research has been conducted on the design and performance of cementitious waste forms, the current protocol conducted to assess radionuclide stability within these waste forms has been limited to the Toxicity Characteristic Leaching Procedure, Method 1311 Federal Registry (EPA 1992) and ANSI/ANS-16.1 leach test (ANSI 1986). These tests evaluate the performance under water-saturated conditions and do not evaluate the performance of cementitious waste forms within the context of waste repositories which are located within water-deficient vadose zones. Moreover, these tests assess only the diffusion of radionuclides from concrete waste forms and neglect evaluating the mechanisms of retention, stability of the waste form, and formation of secondary phases during weathering, which may serve as long-term secondary hosts for immobilization of radionuclides. The results of recent investigations conducted under arid and semi-arid conditions (Al-Khayat et al. 2002; Garrabrants et al. 2002; Garrabrants and Kosson 2003; Garrabrants et al. 2004; Gervais et al. 2004; Sanchez et al. 2002; Sanchez et al. 2003) provide valuable information suggesting structural and chemical changes to concrete waste forms which may affect contaminant containment and waste form performance. However, continued research is necessitated by the need to understand: the mechanism of contaminant release; the significance of contaminant release pathways; how waste form performance is affected by the full range of environmental conditions within the disposal facility; the process of waste form aging under conditions that are representative of processes occurring in response to changing environmental conditions within the disposal facility; the effect of waste form aging on chemical, physical, and radiological properties, and the associated impact on contaminant release. Recent reviews conducted by the National Academies of Science recognized the efficacy of cementitious materials for waste isolation, but further noted the significant shortcomings in our current understanding and testing protocol for evaluating the performance of various formulations.« less

  12. Remaining Sites Verification Package for the 100-B-20, 1716-B Maintenance Garage Underground Tank, Waste Site Reclassification Form 2006-019

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. M. Dittmer

    2006-09-27

    The 100-B-20 waste site, located in the 100-BC-1 Operable Unit of the Hanford Site, consisted of an underground oil tank that once serviced the 1716-B Maintenance Garage. The selected action for the 100-B-20 waste site involved removal of the oil tanks and their contents and demonstrating through confirmatory sampling that all cleanup goals have been met. In accordance with this evaluation, a reclassification status of interim closed out has been determined. The results demonstrate that the site will support future unrestricted land uses that can be represented by a rural-residential scenario. These results also show that residual concentrations support unrestrictedmore » future use of shallow zone soil and that contaminant levels remaining in the soil are protective of groundwater and the Columbia River.« less

  13. Remaining Sites Verification Package for the 100-F-26:13, 108-F Drain Pipelines, Waste Site Reclassification Form 2005-011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L. M. Dittmer

    2008-03-03

    The 100-F-26:13 waste site is the network of process sewer pipelines that received effluent from the 108-F Biological Laboratory and discharged it to the 188-F Ash Disposal Area (126-F-1 waste site). The pipelines included one 0.15-m (6-in.)-, two 0.2-m (8-in.)-, and one 0.31-m (12-in.)-diameter vitrified clay pipe segments encased in concrete. In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling demonstrated that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also showed thatmore » residual contaminant concentrations are protective of groundwater and the Columbia River.« less

  14. 76 FR 17331 - Debt Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-29

    ... procedures for collection of debts through salary offset, administrative offset, tax refund offset, and... procedure and is interpretative in nature. The procedures contained in the interim final rule for salary...

  15. Wide Area Recovery and Resiliency Program (WARRP) Interim Clearance Strategy for Environments Contaminated with Cesium-137

    DTIC Science & Technology

    2012-07-01

    Goiania) and those containing 137Cs and other radionuclides ( Chernobyl ). Another group contains documents relevant to site survey 3 procedures...residents of the contaminated areas. Recovery experience from the Chernobyl incident have demonstrated that direct involvement of inhabitants and local

  16. Wide Area Recovery and Resiliency Program (WARRP) Interim Clearance Strategy for Environments Contaminated with Hazardous Chemicals

    DTIC Science & Technology

    2012-07-01

    on the cleanup of specific sites: those containing only cesium-137 (Goiania) and those containing 137Cs and other radionuclides ( Chernobyl ...targets and consider initiatives to enhance the quality of life of the residents of the contaminated areas. Recovery experience from the Chernobyl

  17. 75 FR 38791 - Sunshine Act Meetings

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-06

    ... Children's Products: Vinyl Plastic Film. 2. Cribs--Notice of Proposed Rulemaking (NPR). 3. Interim Policy....gov/webcast . For a recorded message containing the latest agenda information, call (301) 504-7948...

  18. Superfund record of decision (EPA Region 7): Cornhusker Army Ammunition Plant, Operable Unit 1, Hall County, Grand Island, NE, September 29, 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-01

    The decision document presents the selected interim remedial action for the groundwater operable unit at the Cornhusker Army Ammunition Plant (CAAP). Operable Unit One encompasses the explosives groundwater plume(s), both on-post and off-post. Explosives of concern in the contaminant plume include RDX, TNT, HMX, and their decomposition products. The objective of the interim action is to contain the plume and prevent further migration of contaminants, and does not encompass full restoration of the plume of contaminated groundwater. The recommended alternatives provide an approach to containing and removing contaminant mass from the groundwater plume. This approach will control further migration ofmore » the plume and reduce the levels of the contamination in groundwater.« less

  19. Planning for the recreational end use of a future LLR waste mound in Canada - Leaving an honourable legacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleb, H.R.; Zelmer, R.L.

    2007-07-01

    The Low-Level Radioactive Waste Management Office was established in 1982 to carry out the federal government's responsibilities for low-level radioactive (LLR) waste management in Canada. In this capacity, the Office operates programs to characterize, delineate, decontaminate and consolidate historic LLR waste for interim and long-term storage. The Office is currently the proponent of the Port Hope Area Initiative; a program directed at the development and implementation of a safe, local long-term management solution for historic LLR waste in the Port Hope area. A legal agreement between the Government of Canada and the host community provides the framework for the implementationmore » of the Port Hope Project. Specifically, the agreement requires that the surface of the long-term LLR waste management facility be 'conducive to passive and active recreational uses such as soccer fields and baseball diamonds'. However, there are currently no examples of licensed LLR waste management facilities in Canada that permit recreational use. Such an end use presents challenges with respect to engineering and design, health and safety and landscape planning. This paper presents the cover system design, the environmental effects assessment and the landscape planning processes that were undertaken in support of the recreational end use of the Port Hope long-term LLR waste management facility. (authors)« less

  20. 40 CFR 257.3-5 - Application to land used for the production of food-chain crops (interim final).

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) through (iv) of this section. (1)(i) The pH of the solid waste and soil mixture is 6.5 or greater at the.... (A) Soil cation exchange capacity (meq/100g) Maximum cumulative application (kg/ha) Background soil pH less than 6.5 Background soil pH more than 6.5 Less than 5 5 5 5 to 15 5 10 More than 15 5 20 (B...

  1. 40 CFR 257.3-5 - Application to land used for the production of food-chain crops (interim final).

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) through (iv) of this section. (1)(i) The pH of the solid waste and soil mixture is 6.5 or greater at the.... (A) Soil cation exchange capacity (meq/100g) Maximum cumulative application (kg/ha) Background soil pH less than 6.5 Background soil pH more than 6.5 Less than 5 5 5 5 to 15 5 10 More than 15 5 20 (B...

  2. 40 CFR 257.3-5 - Application to land used for the production of food-chain crops (interim final).

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) through (iv) of this section. (1)(i) The pH of the solid waste and soil mixture is 6.5 or greater at the.... (A) Soil cation exchange capacity (meq/100g) Maximum cumulative application (kg/ha) Background soil pH less than 6.5 Background soil pH more than 6.5 Less than 5 5 5 5 to 15 5 10 More than 15 5 20 (B...

  3. Flight Set 360T004 (STS-30) Insulation Component, Interim Release, Volume 3

    NASA Technical Reports Server (NTRS)

    Passman, James A.

    1989-01-01

    The insulation component of the Redesigned Solid Rocket Motor (RSRM) is discussed. The results of all visual evaluations and a thermal safety factor analysis are given. The data contained here supersedes the interim release and the insulation data presented in the Clearfield 10 day report. The objective is to document the postflight condition of the internal and external insulation of nozzle to case joints, the case field joints, the igniter to case joints, and the acreage insulation which made up RSRM-4A and RSRM-4B.

  4. 76 FR 37207 - Group Health Plans and Health Insurance Issuers: Rules Relating to Internal Claims and Appeals...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-24

    ...This document contains amendments to interim final regulations implementing the requirements regarding internal claims and appeals and external review processes for group health plans and health insurance coverage in the group and individual markets under provisions of the Affordable Care Act. These rules are intended to respond to feedback from a wide range of stakeholders on the interim final regulations and to assist plans and issuers in coming into full compliance with the law through an orderly and expeditious implementation process.

  5. Advanced Fuel Cycle Cost Basis – 2017 Edition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dixon, B. W.; Ganda, F.; Williams, K. A.

    This report, commissioned by the U.S. Department of Energy (DOE) Office of Nuclear Energy (NE), provides a comprehensive set of cost data supporting a cost analysis for the relative economic comparison of options for use in the DOE Nuclear Technology Research and Development (NTRD) Program (previously the Fuel Cycle Research and Development (FCRD) and the Advanced Fuel Cycle Initiative (AFCI)). The report describes the NTRD cost basis development process, reference information on NTRD cost modules, a procedure for estimating fuel cycle costs, economic evaluation guidelines, and a discussion on the integration of cost data into economic computer models. This reportmore » contains reference cost data for numerous fuel cycle cost modules (modules A-O) as well as cost modules for a number of reactor types (R modules). The fuel cycle cost modules were developed in the areas of natural uranium mining and milling, thorium mining and milling, conversion, enrichment, depleted uranium disposition, fuel fabrication, interim spent fuel storage, reprocessing, waste conditioning, spent nuclear fuel (SNF) packaging, long-term monitored retrievable storage, managed decay storage, recycled product storage, near surface disposal of low-level waste (LLW), geologic repository and other disposal concepts, and transportation processes for nuclear fuel, LLW, SNF, transuranic, and high-level waste. Since its inception, this report has been periodically updated. The last such internal document was published in August 2015 while the last external edition was published in December of 2009 as INL/EXT-07-12107 and is available on the Web at URL: www.inl.gov/technicalpublications/Documents/4536700.pdf. This current report (Sept 2017) is planned to be reviewed for external release, at which time it will replace the 2009 report as an external publication. This information is used in the ongoing evaluation of nuclear fuel cycles by the NE NTRD program.« less

  6. Characterization of the solid low level mixed waste inventory for the solid waste thermal treatment activity - III

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Place, B.G., Westinghouse Hanford

    1996-09-24

    The existing thermally treatable, radioactive mixed waste inventory is characterized to support implementation of the commercial, 1214 thermal treatment contract. The existing thermally treatable waste inventory has been identified using a decision matrix developed by Josephson et al. (1996). Similar to earlier waste characterization reports (Place 1993 and 1994), hazardous materials, radionuclides, physical properties, and waste container data are statistically analyzed. In addition, the waste inventory data is analyzed to correlate waste constituent data that are important to the implementation of the commercial thermal treatment contract for obtaining permits and for process design. The specific waste parameters, which were analyzed,more » include the following: ``dose equivalent`` curie content, polychlorinated biphenyl (PCB) content, identification of containers with PA-related mobile radionuclides (14C, 12 79Se, 99Tc, and U isotopes), tritium content, debris and non-debris content, container free liquid content, fissile isotope content, identification of dangerous waste codes, asbestos containers, high mercury containers, beryllium dust containers, lead containers, overall waste quantities, analysis of container types, and an estimate of the waste compositional split based on the thermal treatment contractor`s proposed process. A qualitative description of the thermally treatable mixed waste inventory is also provided.« less

  7. 78 FR 55339 - Regulatory Capital Rules: Regulatory Capital, Implementation of Basel III, Capital Adequacy...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-10

    ...The Federal Deposit Insurance Corporation (FDIC) is adopting an interim final rule that revises its risk-based and leverage capital requirements for FDIC-supervised institutions. This interim final rule is substantially identical to a joint final rule issued by the Office of the Comptroller of the Currency (OCC) and the Board of Governors of the Federal Reserve System (Federal Reserve) (together, with the FDIC, the agencies). The interim final rule consolidates three separate notices of proposed rulemaking that the agencies jointly published in the Federal Register on August 30, 2012, with selected changes. The interim final rule implements a revised definition of regulatory capital, a new common equity tier 1 minimum capital requirement, a higher minimum tier 1 capital requirement, and, for FDIC-supervised institutions subject to the advanced approaches risk-based capital rules, a supplementary leverage ratio that incorporates a broader set of exposures in the denominator. The interim final rule incorporates these new requirements into the FDIC's prompt corrective action (PCA) framework. In addition, the interim final rule establishes limits on FDIC-supervised institutions' capital distributions and certain discretionary bonus payments if the FDIC-supervised institution does not hold a specified amount of common equity tier 1 capital in addition to the amount necessary to meet its minimum risk-based capital requirements. The interim final rule amends the methodologies for determining risk-weighted assets for all FDIC-supervised institutions. The interim final rule also adopts changes to the FDIC's regulatory capital requirements that meet the requirements of section 171 and section 939A of the Dodd-Frank Wall Street Reform and Consumer Protection Act. The interim final rule also codifies the FDIC's regulatory capital rules, which have previously resided in various appendices to their respective regulations, into a harmonized integrated regulatory framework. In addition, the FDIC is amending the market risk capital rule (market risk rule) to apply to state savings associations. The FDIC is issuing these revisions to its capital regulations as an interim final rule. The FDIC invites comments on the interaction of this rule with other proposed leverage ratio requirements applicable to large, systemically important banking organizations. This interim final rule otherwise contains regulatory text that is identical to the common rule text adopted as a final rule by the Federal Reserve and the OCC. This interim final rule enables the FDIC to proceed on a unified, expedited basis with the other federal banking agencies pending consideration of other issues. Specifically, the FDIC intends to evaluate this interim final rule in the context of the proposed well- capitalized and buffer levels of the supplementary leverage ratio applicable to large, systemically important banking organizations, as described in a separate Notice of Proposed Rulemaking (NPR) published in the Federal Register August 20, 2013. The FDIC is seeking commenters' views on the interaction of this interim final rule with the proposed rule regarding the supplementary leverage ratio for large, systemically important banking organizations.

  8. Naval facility energy conversion plants as resource recovery system components

    NASA Astrophysics Data System (ADS)

    Capps, A. G.

    1980-01-01

    This interim report addresses concepts for recovering energy from solid waste by using Naval facilities steam plants as principle building blocks of candidate solid waste/resource recovery systems at Navy installations. The major conclusions of this portion of the project are: although it is technically feasible to adapt Navy energy conversion systems to fire Waste Derived Fuels (WDF) in one or more of its forms, the optimal form selected should be a site-specific total system; near- to intermediate-term programs should probably continue to give first consideration to waterwall incinerators and to the cofiring of solid WDF in coal-capable plants; package incinerators and conversions of oil burning plants to fire a fluff form of solid waste fuel may be the options with the greatest potential for the intermediate term because waterwalls would be uneconomical in many small plants and because the majority of medium-sized oil-burning plants will not be converted to burn coal; and pyrolytic processes to produce gaseous and liquid fuels have not been sufficiently developed as yet to be specified for commerical operation.

  9. 40 CFR 761.207 - The manifest-general requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) (2) For each PCB Article Container or PCB Container, the unique identifying number, type of PCB waste... PCB Article not in a PCB Container or PCB Article Container, the serial number if available, or other... only containing PCB waste. However, some States track PCB wastes as State-regulated hazardous wastes...

  10. 40 CFR 761.207 - The manifest-general requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) (2) For each PCB Article Container or PCB Container, the unique identifying number, type of PCB waste... PCB Article not in a PCB Container or PCB Article Container, the serial number if available, or other... only containing PCB waste. However, some States track PCB wastes as State-regulated hazardous wastes...

  11. Wide Area Recovery and Resiliency Program (WARRP) Decon-13 Subject Matter Expert Meeting

    DTIC Science & Technology

    2012-08-14

    Japan, Chernobyl , Goiania Waste Screening Workshop August 14, 2012 Edward A. Tupin Center for Radiological Emergency Response Radiation Protection...Total release -10% - 20% of releases from Chernobyl (37 PBq = 1,000,000 Curies) L~:lCl.~== ~ Wide Ar£>a Contamination ~ MEXT data as of S£>pt£>mber...and longer-tenn interim storage - disposal likely will take more time 2 1 On April 26, 1986, Unit 4 of the Chernobyl Nuclear Power Plant suffered

  12. Engineering Tests of Experimental Ammonia Process Printer-Developer

    DTIC Science & Technology

    1950-07-06

    of materials and processes for photo reproduction by the amonia process. c. It was expected that the new machine might also pro- vide an interim...grease, oil, amonia waste can, and attachzmnts. A 6- inch diareter flexible tube is attached at the roar of the rxchine for carrying away the exhaust heat...by field troops. 2 TGIF 58 SUBJECT: Amonia Process Equipment Developed Under Project 8-35-09-005 19 Jan 50 7. An early reply would be required in

  13. 40 CFR 257.3-5 - Application to land used for the production of food-chain crops (interim final).

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) through (iv) of this section. (1)(i) The pH of the solid waste and soil mixture is 6.5 or greater at the...H less than 6.5 Background soil pH more than 6.5 Less than 5 5 5 5 to 15 5 10 More than 15 5 20 (B) For soils with a background pH of less than 6.5, the cumulative cadmium application rate does not...

  14. 40 CFR 257.3-5 - Application to land used for the production of food-chain crops (interim final).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) through (iv) of this section. (1)(i) The pH of the solid waste and soil mixture is 6.5 or greater at the...H less than 6.5 Background soil pH more than 6.5 Less than 5 5 5 5 to 15 5 10 More than 15 5 20 (B) For soils with a background pH of less than 6.5, the cumulative cadmium application rate does not...

  15. RCRA, superfund and EPCRA hotline training module. Introduction to: Land disposal units (40 cfr parts 264/265, subparts k, l, m, n) updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    The module provides an overview of the requirements for landfills, surface impoundments, waste piles, and land treatment units. It summarizes the differences between interim status (Part 265) and permitted (Part 264) standards for land disposal units. It defines `surface impoundment` and distinguishes surface impoundments from tanks and describes surface impoundment retrofitting and retrofitting variance procedures. It explains the connection between land disposal standards, post-closure, and groundwater monitoring.

  16. Environmental Assessment of Interim Flight Training Authority at Airfields in the Northeast

    DTIC Science & Technology

    2006-09-01

    Transportation and warehousing, and utilities 3.2% 4.5% 5.5% Information 2.0% 2.7% 4.1% Finance , insurance, real estate, and rental and leasing 3.9% 3.4...3.8% 3.3% Finance , insurance, real estate, and rental and leasing 11.1% 6.6% 14.2% Professional, scientific, management, administrative, and waste...the Classified Supervisor of the Johnson Newspaper Corp., a corporation duly organized and existing under the laws of the State of New York, and

  17. Constraints to healthcare waste treatment in low-income countries - a case study from Somaliland.

    PubMed

    Di Bella, Veronica; Ali, Mansoor; Vaccari, Mentore

    2012-06-01

    In low-income countries, healthcare waste is mixed with the municipal waste stream and rarely receives special attention. This paper presents the lessons learned from a pilot project targeted to improve healthcare waste management in Hargeisa (Somaliland). The interventions were carried out in three of the main hospitals in the city. Consideration was also given to improve the overall situation regarding the management of healthcare waste. Three De Montfort incinerators were built and training was provided to operators, waste workers and healthcare personnel. Although the incinerators were constructed in accordance with the required standards, major constraints were identified in the operational phase: irregular de-ashing procedures, misuse of safety equipment, and ineffective separation of healthcare waste were seen in this phase. The paper concludes that in other small hospitals in the developing world, such as those in Hargeisa, on-site incineration by use of low-cost, small-scale incinerators could be successfully applied as an interim solution, provided that an agreed and acceptable plan of operation and maintenance is in place and responsibilities for the management of the facility are clearly identified. Moreover, when replicating this experience in other settings even greater importance should be given to the technical capacity building of operators and pressure should be exercised on local administrations in order to control and supervise the whole management system.

  18. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    G. Radulesscu; J.S. Tang

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container alongmore » with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this analysis is to support Site Recommendation reports and to assist in the development of WPD drawings. Activities described in this analysis were conducted in accordance with the Development Plan ''Design Analysis for the Defense High-Level Waste Disposal Container'' (CRWMS M&O 2000c) with no deviations from the plan.« less

  19. RCRA, superfund and EPCRA hotline training module. Introduction to: Containers (40 cfr parts 264/265, subpart i; section 261.7) updated July 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1996-07-01

    The module reviews two sets of regulatory requirements for containers: requirements that pertain to the management of hazardous waste containers and regulations governing residues of hazardous waste in empty containers. It defines `container` and `empty container` and provides examples and citations for each. It provides an overview of the requirements for the design and operation of hazardous waste containers. It explains the difference between the container standards set out in part 264 and part 265. It states the requirements for rendering a hazardous waste container `RCRA empty`. It explains when container rinsate must be managed as a hazardous waste.

  20. Leaching behaviour of hazardous demolition waste.

    PubMed

    Roussat, Nicolas; Méhu, Jacques; Abdelghafour, Mohamed; Brula, Pascal

    2008-11-01

    Demolition wastes are generally disposed of in unlined landfills for inert waste. However, demolition wastes are not just inert wastes. Indeed, a small fraction of demolition waste contains components that are hazardous to human health and the environment, e.g., lead-based paint, mercury-contained in fluorescent lamps, treated wood, and asbestos. The objective of this study is to evaluate the release potential of pollutants contained in these hazardous components when they are mixed with inert wastes in unlined landfills. After identification of the different building products which can contain hazardous elements and which can be potentially pollutant in landfill scenario, we performed leaching tests using three different lysimeters: one lysimeter containing only inert wastes and two lysimeters containing inert wastes mixed with hazardous demolition wastes. The leachates from these lysimeters were analysed (heavy metals, chlorides, sulphates fluoride, DOC (Dissolved Organic Carbon), phenol index, and PAH). Finally, we compared concentrations and cumulative releases of elements in leachates with the limits values of European regulation for the acceptance of inert wastes at landfill. Results indicate that limit values are exceeded for some elements. We also performed a percolation column test with only demolition hazardous wastes to evaluate the specific contribution of these wastes in the observed releases.

  1. Remaining Sites Verification Package for the 100-F-26:12, 1.8-m (72-in.) Main Process Sewer Pipeline, Waste Site Reclassification Form 2007-034

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    J. M. Capron

    2008-04-29

    The 100-F-26:12 waste site was an approximately 308-m-long, 1.8-m-diameter east-west-trending reinforced concrete pipe that joined the North Process Sewer Pipelines (100-F-26:1) and the South Process Pipelines (100-F-26:4) with the 1.8-m reactor cooling water effluent pipeline (100-F-19). In accordance with this evaluation, the verification sampling results support a reclassification of this site to Interim Closed Out. The results of verification sampling show that residual contaminant concentrations do not preclude any future uses and allow for unrestricted use of shallow zone soils. The results also demonstrate that residual contaminant concentrations are protective of groundwater and the Columbia River.

  2. Success of the Melton Valley Watershed Remediation at the ORNL - 12351

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adler, David; Wilkerson, Laura; Sims, Lynn

    2012-07-01

    The source remediation of the Melton Valley (MV) Watershed at the U.S. Department of Energy's (DOE's) Oak Ridge National Laboratory was completed 5 years ago (September 2006). Historic operations at the laboratory had resulted in chemical and radionuclide contaminant releases and potential risks or hazards within 175 contaminated units scattered across an area of 430 hectares (1062 acres) within the watershed. Contaminated areas included burial grounds, landfills, underground tanks, surface impoundments, liquid disposal pit/trenches, hydrofracture wells, leak and spill spites, inactive surface structures, and contaminated soil and sediments. The remediation of the watershed was detailed in the MV Interim Actionmore » Record of Decision (ROD) and included a combination of actions encompassing containment, isolation, stabilization, removal, and treatment of sources within the watershed and established the monitoring and land use controls that would result in protection of human health. The actions would take place over 5 years with an expenditure of over $340 M. The MV remedial actions left hazardous wastes in-place (e.g., buried wastes beneath hydraulic isolation caps) and cleanup at levels that do not allow for unrestricted access and unlimited exposure. The cleanup with the resultant land use would result in a comprehensive monitoring plan for groundwater, surface water, and biological media, as well as the tracking of the land use controls to assure their completion. This paper includes an overview of select performance measures and monitoring results, as detailed in the annual Remediation Effectiveness Report and the Five-Year Report. (authors)« less

  3. Assessing cost and effectiveness of radiation decontamination in Fukushima Prefecture, Japan.

    PubMed

    Yasutaka, Tetsuo; Naito, Wataru

    2016-01-01

    Despite the enormous cost of radiation decontamination in Fukushima Prefecture, it is not clear what levels of reduction in external radiation exposure are possible in the Special Decontamination Area, the Intensive Contamination Survey Areas and the whole of Fukushima. The objective of this study was to evaluate the cost and effectiveness of radiation decontamination in Fukushima Prefecture in its entirety. Using a geographic information system, we calculated the costs of removal, storage containers, transport, and temporary and interim storage facilities as well as the reduction in air dose rate for a cumulative external exposure for 9000 1 km × 1 km mesh units incorporating 51 municipalities. The decontamination cost for the basic scenario, for which forested areas within 20 m of habitation areas were decontaminated, was JPY2.53-5.12 trillion; the resulting reduction in annual external dose was about 2500 person-Sv. The transport, storage, and administrative costs of decontamination waste and removed soil reached JPY1.55-2.12 trillion under this scenario. Although implementing decontamination of all forested areas provides some major reductions in the external radiation dose for the average inhabitant, decontamination costs could potentially exceed JPY16 trillion. These results indicate that technologies for reducing the volume of decontamination waste and removed soil should be considered to reduce storage costs and that further discussions about forest decontamination policies are needed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Nuclear waste storage container with metal matrix

    DOEpatents

    Sump, Kenneth R.

    1978-01-01

    The invention relates to a storage container for high-level waste having a metal matrix for the high-level waste, thereby providing greater impact strength for the waste container and increasing heat transfer properties.

  5. Hantavirus infection--southwestern United States: interim recommendations for risk reduction. Centers for Disease Control and Prevention.

    PubMed

    Childs, J E; Kaufmann, A F; Peters, C J; Ehrenberg, R L

    1993-07-30

    This report provides interim recommendations for prevention and control of hantavirus infections associated with rodents in the southwestern United States. It is based on principles of rodent and infection control and contains specific recommendations for reducing rodent shelter and food sources in and around the home, recommendations for eliminating rodents inside the home and preventing them from entering the home, precautions for preventing hantavirus infection while rodent-contaminated areas are being cleaned up, prevention measures for persons who have occupational exposure to wild rodents, and precautions for campers and hikers.

  6. Superfund record of decision (EPA Region 3): US Defense General Supply Center, Operable Unit 9, Chesterfield County, VA, September 1993

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-09-01

    The decision document presents the selected interim remedial action for Operable Unit 9 (OU9) at the Defense General Supply Center (DGSC) in Chesterfield County, Virginia near Richmond. OU9 pertains to groundwater beneath Area 50, the Open Storage Area (OSA), and the Naitonal Guard Area (NGA). This operable unit is the third of nine operable units that are currently being addressed at the DGSC. OU9 addresses interim treatment and containment of groundwater in the upper and lower aquifers beneath Area 50, the OSA, and the NGA.

  7. Interim reliability-evaluation program: analysis of the Browns Ferry, Unit 1, nuclear plant. Appendix C - sequence quantification

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, S.E.; Poloski, J.P.; Sullivan, W.H.

    1982-07-01

    This report describes a risk study of the Browns Ferry, Unit 1, nuclear plant. The study is one of four such studies sponsored by the NRC Office of Research, Division of Risk Assessment, as part of its Interim Reliability Evaluation Program (IREP), Phase II. This report is contained in four volumes: a main report and three appendixes. Appendix C generally describes the methods used to estimate accident sequence frequency values. Information is presented concerning the approach, example collection, failure data, candidate dominant sequences, uncertainty analysis, and sensitivity analysis.

  8. Hanford Site annual dangerous waste report: Volume 3, Part 1, Waste Management Facility report, dangerous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    This report contains information on hazardous wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation, and amount of waste.

  9. Hanford Site annual dangerous waste report: Volume 4, Waste Management Facility report, Radioactive mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, handling method and containment vessel, waste number, waste designation and amount of waste.

  10. Treatability Variance for Containerised Liquids in Mixed Debris Waste - 12101

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Alstatt, Catherine M.

    2012-07-01

    The TRU Waste Processing Center (TWPC) is a Department of Energy facility whose mission is to receive and process for appropriate disposal legacy Contact Handled (CH) and Remote Handled (RH) waste, including debris waste stored at various DOE Oak Ridge facilities. Acceptable Knowledge (AK) prepared for the waste characterizes the waste as mixed waste, meaning it is both radioactive and regulated under the Resource Conservation and Recovery Act (RCRA). The AK also indicates that a number of the debris waste packages contain small amounts of containerised liquids. The documentation indicates liquid wastes generated in routine lab operations were typically collectedmore » for potential recovery of valuable isotopes. However, during activities associated with decontamination and decommissioning (D and D), some containers with small amounts of liquids were placed into the waste containers with debris waste. Many of these containers now hold from 2.5 milliliters (ml) to 237 ml of liquid; a few contain larger volumes. At least some of these containers were likely empty at the time of generation, but documentation of this condition is lacking. Since WIPP compliant AK is developed on a waste stream basis, rather than an individual container basis, and includes every potential RCRA hazardous constituent within the waste stream, it is insufficient for the purpose of characterizing individual containers of liquid. Debris waste is defined in 40 CFR 268.2(g) as 'solid material exceeding a 60 mm particle size that is intended for disposal and that is: a manufactured object; or plant or animal matter; or natural geologic material'. The definition further states that intact containers of hazardous waste that are not ruptured and that retain at least 75% of their original volume are not debris. The prescribed treatment is removal of intact containers from the debris waste, and treatment of their contents to meet specific Land Disposal Restrictions (LDR) standards. This is true for containers with incidental amounts of liquids, even if the liquid is less than 50% of the total waste volume. Under the proposed variance, all free or containerised liquids (up to 3.8 liters(L)) found in the debris would be treated and returned in solid form to the debris waste stream from which they originated. The waste would then be macro-encapsulated. (author)« less

  11. Project FARE task III report : urban mass transportation industry reporting system design : interim task III report for November 1972-June 1973 period. Part I - Task summary.

    DOT National Transportation Integrated Search

    1973-06-01

    This report contains a description of the proposed uniform reporting system for the urban mass transit industry. It is presented in four volumes: Part I - Task Summary contains a description of how Task III was accomplished and the conclusions and re...

  12. DOSE ASSESSMENT OF THE FINAL INVENTORIES IN CENTER SLIT TRENCHES ONE THROUGH FIVE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collard, L.; Hamm, L.; Smith, F.

    2011-05-02

    In response to a request from Solid Waste Management (SWM), this study evaluates the performance of waste disposed in Slit Trenches 1-5 by calculating exposure doses and concentrations. As of 8/19/2010, Slit Trenches 1-5 have been filled and are closed to future waste disposal in support of an ARRA-funded interim operational cover project. Slit Trenches 6 and 7 are currently in operation and are not addressed within this analysis. Their current inventory limits are based on the 2008 SA and are not being impacted by this study. This analysis considers the location and the timing of waste disposal in Slitmore » Trenches 1-5 throughout their operational life. In addition, the following improvements to the modeling approach have been incorporated into this analysis: (1) Final waste inventories from WITS are used for the base case analysis where variance in the reported final disposal inventories is addressed through a sensitivity analysis; (2) Updated K{sub d} values are used; (3) Area percentages of non-crushable containers are used in the analysis to determine expected infiltration flows for cases that consider collapse of these containers; (4) An updated representation of ETF carbon column vessels disposed in SLIT3-Unit F is used. Preliminary analyses indicated a problem meeting the groundwater beta-gamma dose limit because of high H-3 and I-129 release from the ETF vessels. The updated model uses results from a recent structural analysis of the ETF vessels indicating that water does not penetrate the vessels for about 130 years and that the vessels remain structurally intact throughout the 1130-year period of assessment; and (5) Operational covers are included with revised installation dates and sets of Slit Trenches that have a common cover. With the exception of the modeling enhancements noted above, the analysis follows the same methodology used in the 2008 PA (WSRC, 2008) and the 2008 SA (Collard and Hamm, 2008). Infiltration flows through the vadose zone are identical to the flows used in the 2008 PA, except for flows during the operational cover time period. The physical (i.e., non-geochemical) models of the vadose zone and aquifer are identical in most cases to the models used in the 2008 PA. However, the 2008 PA assumed a uniform distribution of waste within each Slit Trench (WITS Location) and assumed that the entire inventory of each trench was disposed of at the time the first Slit Trench was opened. The current analysis considers individual trench excavations (i.e., segments) and groups of segments (i.e., Inventory Groups also known as WITS Units) within Slit Trenches. Waste disposal is assumed to be spatially uniform in each Inventory Group and is distributed in time increments of six months or less between the time the Inventory Group was opened and closed.« less

  13. Low-temperature catalytic gasification of food processing wastes. 1995 topical report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elliott, D.C.; Hart, T.R.

    The catalytic gasification system described in this report has undergone continuing development and refining work at Pacific Northwest National Laboratory (PNNL) for over 16 years. The original experiments, performed for the Gas Research Institute, were aimed at developing kinetics information for steam gasification of biomass in the presence of catalysts. From the fundamental research evolved the concept of a pressurized, catalytic gasification system for converting wet biomass feedstocks to fuel gas. Extensive batch reactor testing and limited continuous stirred-tank reactor tests provided useful design information for evaluating the preliminary economics of the process. This report is a follow-on to previousmore » interim reports which reviewed the results of the studies conducted with batch and continuous-feed reactor systems from 1989 to 1994, including much work with food processing wastes. The discussion here provides details of experiments on food processing waste feedstock materials, exclusively, that were conducted in batch and continuous- flow reactors.« less

  14. Regulatory Supervision of Radiological Protection in the Russian Federation as Applied to Facility Decommissioning and Site Remediation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sneve, M.K.; Shandala, N.K.

    2007-07-01

    The Russian Federation is carrying out major work to manage the legacy of exploitation of nuclear power and use of radioactive materials. This paper describes work on-going to provide enhanced regulatory supervision of these activities as regards radiological protection. The scope includes worker and public protection in routine operation; emergency preparedness and response; radioactive waste management, including treatment, interim storage and transport as well as final disposal; and long term site restoration. Examples examined include waste from facilities in NW Russia, including remediation of previous shore technical bases (STBs) for submarines, spent fuel and radioactive waste management from ice-breakers, andmore » decommissioning of Radio-Thermal-Generators (RTGs) used in navigational devices. Consideration is given to the identification of regulatory responsibilities among different regulators; development of necessary regulatory instruments; and development of regulatory procedures for safety case reviews and compliance monitoring and international cooperation between different regulators. (authors)« less

  15. Performance assessment for continuing and future operations at Solid Waste Storage Area 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-02-01

    This radiological performance assessment for the continued disposal operations at Solid Waste Storage Area 6 (SWSA 6) on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the requirements of the US DOE. The analysis of SWSA 6 required the use of assumptions to supplement the available site data when the available data were incomplete for the purpose of analysis. Results indicate that SWSA 6 does not presently meet the performance objectives of DOE Order 5820.2A. Changes in operations and continued work on the performance assessment are expected to demonstrate compliance with the performance objectives for continuingmore » operations at the Interim Waste Management Facility (IWMF). All other disposal operations in SWSA 6 are to be discontinued as of January 1, 1994. The disposal units at which disposal operations are discontinued will be subject to CERCLA remediation, which will result in acceptable protection of the public health and safety.« less

  16. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1997-01-01

    A process for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes.

  17. Treatment of halogen-containing waste and other waste materials

    DOEpatents

    Forsberg, C.W.; Beahm, E.C.; Parker, G.W.

    1997-03-18

    A process is described for treating a halogen-containing waste material. The process provides a bath of molten glass containing a sacrificial metal oxide capable of reacting with a halogen in the waste material. The sacrificial metal oxide is present in the molten glass in at least a stoichiometric amount with respect to the halogen in the waste material. The waste material is introduced into the bath of molten glass to cause a reaction between the halogen in the waste material and the sacrificial metal oxide to yield a metal halide. The metal halide is a gas at the temperature of the molten glass. The gaseous metal halide is separated from the molten glass and contacted with an aqueous scrubber solution of an alkali metal hydroxide to yield a metal hydroxide or metal oxide-containing precipitate and a soluble alkali metal halide. The precipitate is then separated from the aqueous scrubber solution. The molten glass containing the treated waste material is removed from the bath as a waste glass. The process of the invention can be used to treat all types of waste material including radioactive wastes. The process is particularly suited for separating halogens from halogen-containing wastes. 3 figs.

  18. 40 CFR 265.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... OPERATORS OF HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 265.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste... hazardous waste in overpacked drums (lab packs). 265.316 Section 265.316 Protection of Environment...

  19. 40 CFR 264.316 - Disposal of small containers of hazardous waste in overpacked drums (lab packs).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... HAZARDOUS WASTE TREATMENT, STORAGE, AND DISPOSAL FACILITIES Landfills § 264.316 Disposal of small containers of hazardous waste in overpacked drums (lab packs). Small containers of hazardous waste in overpacked... hazardous waste in overpacked drums (lab packs). 264.316 Section 264.316 Protection of Environment...

  20. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  1. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  2. Remote vacuum compaction of compressible hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1996-12-31

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  3. Clean option: An alternative strategy for Hanford Tank Waste Remediation. Volume 2, Detailed description of first example flowsheet

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swanson, J.L.

    1993-09-01

    Disposal of high-level tank wastes at the Hanford Site is currently envisioned to divide the waste between two principal waste forms: glass for the high-level waste (HLW) and grout for the low-level waste (LLW). The draft flow diagram shown in Figure 1.1 was developed as part of the current planning process for the Tank Waste Remediation System (TWRS), which is evaluating options for tank cleanup. The TWRS has been established by the US Department of Energy (DOE) to safely manage the Hanford tank wastes. It includes tank safety and waste disposal issues, as well as the waste pretreatment and wastemore » minimization issues that are involved in the ``clean option`` discussed in this report. This report describes the results of a study led by Pacific Northwest Laboratory to determine if a more aggressive separations scheme could be devised which could mitigate concerns over the quantity of the HLW and the toxicity of the LLW produced by the reference system. This aggressive scheme, which would meet NRC Class A restrictions (10 CFR 61), would fit within the overall concept depicted in Figure 1.1; it would perform additional and/or modified operations in the areas identified as interim storage, pretreatment, and LLW concentration. Additional benefits of this scheme might result from using HLW and LLW disposal forms other than glass and grout, but such departures from the reference case are not included at this time. The evaluation of this aggressive separations scheme addressed institutional issues such as: radioactivity remaining in the Hanford Site LLW grout, volume of HLW glass that must be shipped offsite, and disposition of appropriate waste constituents to nonwaste forms.« less

  4. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, G.D.; Beaulieu, D.H.; Wolaver, R.W.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part ofmore » this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs.« less

  5. In-situ vitrification of waste materials

    DOEpatents

    Powell, J.R.; Reich, M.; Barletta, R.

    1997-10-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed. 7 figs.

  6. In-situ vitrification of waste materials

    DOEpatents

    Powell, James R.; Reich, Morris; Barletta, Robert

    1997-11-14

    A method for the in-situ vitrification of waste materials in a disposable can that includes an inner container and an outer container is disclosed. The method includes the steps of adding frit and waste materials to the inner container, removing any excess water, heating the inner container such that the frit and waste materials melt and vitrify after cooling, while maintaining the outer container at a significantly lower temperature than the inner container. The disposable can is then cooled to ambient temperatures and stored. A device for the in-situ vitrification of waste material in a disposable can is also disclosed.

  7. Construction of an interim storage field using recovered municipal solid waste incineration bottom ash: Field performance study.

    PubMed

    Sormunen, Laura Annika; Kolisoja, Pauli

    2017-06-01

    The leaching of hazardous substances from municipal solid waste incineration (MSWI) bottom ash (BA) has been studied in many different scales for several years. Less attention has been given to the mechanical performance of MSWI BA in actual civil engineering structures. The durability of structures built with this waste derived material can have major influence on the functional properties of such structures and also the potential leaching of hazardous substances in the long term. Hence, it is necessary to properly evaluate in which type of structures MSWI BA can be safely used in a similar way as natural and crushed rock aggregates. In the current study, MSWI BA treated with ADR (Advance Dry Recovery) technology was used in the structural layers of an interim storage field built within a waste treatment centre. During and half a year after the construction, the development of technical and mechanical properties of BA materials and the built structures were investigated. The aim was to compare these results with the findings of laboratory studies in which the same material was previously investigated. The field results showed that the mechanical performance of recovered BA corresponds to the performance of natural aggregates in the lower structural layers of field structures. Conversely, the recovered MSWI BA cannot be recommended to be used in the base layers as such, even though its stiffness properties increased over time due to material aging and changes in moisture content. The main reason for this is that BA particles are prone for crushing and therefore inadequate to resist the higher stresses occurring in the upper parts of road and field structures. These results were in accordance with the previous laboratory findings. It can thus be concluded that the recovered MSWI BA is durable to be used as a replacement of natural aggregates especially in the lower structural layers of road and field structures, whereas if used in the base layers, an additional base layer of natural aggregate or a thicker asphalt pavement is recommended. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. An investigation of safety belt usage and effectiveness

    DOT National Transportation Integrated Search

    1975-03-01

    This interim report contains primarily a theoretical discussion of problems of inference in studies on seat belt utilization and effectiveness. Seat belt effectiveness in accidents is initially discussed from a population paramenter point of, view. T...

  9. SWTR Fact Sheet - EPA Region 8, May 2018

    EPA Pesticide Factsheets

    Contains information for public water systems under the Surface Water Treatment Rule (SWTR), Filter Backwash Recycling Rule, Interim Enhanced SWTR (IESWTR), Long Term 1 Enhanced SWTR (LT1ESWTR) and Long Term 2 Enhanced SWTR (LT2).

  10. SWTR Fact Sheet - EPA Region 8, July 2016

    EPA Pesticide Factsheets

    Contains information for public water systems under the Surface Water Treatment Rule (SWTR), Filter Backwash Recycling Rule, Interim Enhanced SWTR (IESWTR), Long Term 1 Enhanced SWTR (LT1ESWTR) and Long Term 2 Enhanced SWTR (LT2).

  11. 16 CFR 1209.38 - Records.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Practices CONSUMER PRODUCT SAFETY COMMISSION CONSUMER PRODUCT SAFETY ACT REGULATIONS INTERIM SAFETY STANDARD FOR CELLULOSE INSULATION Certification § 1209.38 Records. (a) Establishment and maintenance. Each... product specification containing all information required by § 1209.35. (This includes information...

  12. Project FARE task III report : urban mass transportation industry reporting system design : interim task III report for November 1972-June 1973 period. Part III - Reporting system forms.

    DOT National Transportation Integrated Search

    1973-06-01

    The report contains a description of the proposed uniform reporting system for the urban mass transit industry. It is presented in four volumes: Part I - Task Summary contains a description of how Task III was accomplished and the conclusions and rec...

  13. Project FARE task III report : urban mass transportation industry reporting system design : interim task III report for November 1972-June 1973 period. Part IV - Commuter rail reporting.

    DOT National Transportation Integrated Search

    1973-06-01

    This report contains a description of the proposed uniform reporting system for the urban mass transit industry. It is presented in four volumes: Part I - Task Summary contains a description of how Task III was accomplished and the conclusions and re...

  14. Project FARE task III report : urban mass transportation industry reporting system design : interim task III report for November 1972-June 1973 period. Part II - Reporting system instructions.

    DOT National Transportation Integrated Search

    1973-06-01

    This report contains a description of the proposed uniform reporting system for the urban mass transit industry. It is presented in four volumes: Part I - Task Summary contains a description of how Task III was accomplished and the conclusions and re...

  15. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure processmore » for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.« less

  16. Federal Register Notice: Final Rule Listing as Hazardous Wastes Certain Dioxin Containing Wastes

    EPA Pesticide Factsheets

    EPA is amending the regulations for hazardous waste management under the RCRA by listing as hazardous wastes certain wastes containing particular chlorinated dioxins, -dibenzofurans, and -phenols, and by specifying a engagement standards for these wastes.

  17. The status of LILW disposal facility construction in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan

    2013-07-01

    In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drumsmore » of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)« less

  18. Use of improved structural materials systems in marine piling : interim report.

    DOT National Transportation Integrated Search

    1982-09-01

    This report contains the results of a study to evaluate the feasibility of manufacturing precast, prestressed marine pile from polymer concrete, polymer impregnated concrete, internally sealed concrete and latex modified concrete. Included in the rep...

  19. Estimates of Urban Roadway Congestion, 1990: Interim Report

    DOT National Transportation Integrated Search

    1993-03-01

    This research report is the fifth year continuation of a six year research effort focused on quantifying urban mobility. This study contains the facility information for 50 urban areas throughout the country. The database used for this research conta...

  20. Evaluation of experimental flexible pavements : interim report no. 2.

    DOT National Transportation Integrated Search

    1975-01-01

    A program of construction and performance evaluation of seven Virginia flexible pavements containing at least some experimental features is reported. The objective of the program is to evaluate the performance of the pavements incorporating new or ti...

  1. Listed waste determination report. Environmental characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1993-06-01

    On September 23, 1988, the US Environmental Protection Agency (EPA) published a notice clarifying interim status requirements for the management of radioactive mixed waste thereby subjecting the Idaho National Engineering Laboratory (INEL) and other applicable Department of Energy (DOE) sites to regulation under the Resource Conservation and Recovery Act (RCRA). Therefore, the DOE was required to submit a Part A Permit application for each treatment, storage, and disposal (TSD) unit within the INEL, defining the waste codes and processes to be regulated under RCRA. The September 1990 revised Part A Permit application, that was approved by the State of Idahomore » identified 101 potential acute and toxic hazardous waste codes (F-, P-, and U- listed wastes according to 40 CFR 261.31 and 40 CFR 261.33) for some TSD units at the Idaho Chemical Processing Plant. Most of these waste were assumed to have been introduced into the High-level Liquid Waste TSD units via laboratory drains connected to the Process Equipment Waste (PEW) evaporator (PEW system). At that time, a detailed and systematic evaluation of hazardous chemical use and disposal practices had not been conducted to determine if F-, P-, or Unlisted waste had been disposed to the PEW system. The purpose of this investigation was to perform a systematic and detailed evaluation of the use and disposal of the 101 F-, P-, and Unlisted chemicals found in the approved September 1990 Part A Permit application. This investigation was aimed at determining which listed wastes, as defined in 40 CFR 261.31 (F-listed) and 261.33 (P & Unlisted) were discharged to the PEW system. Results of this investigation will be used to support revisions to the RCRA Part A Permit application.« less

  2. Container materials in environments of corroded spent nuclear fuel

    NASA Astrophysics Data System (ADS)

    Huang, F. H.

    1996-07-01

    Efforts to remove corroded uranium metal fuel from the K Basins wet storage to long-term dry storage are underway. The multi-canister overpack (MCO) is used to load spent nuclear fuel for vacuum drying, staging, and hot conditioning; it will be used for interim dry storage until final disposition options are developed. Drying and conditioning of the corroded fuel will minimize the possibility of gas pressurization and runaway oxidation. During all phases of operations the MCO is subjected to radiation, temperature and pressure excursions, hydrogen, potential pyrophoric hazard, and corrosive environments. Material selection for the MCO applications is clearly vital for safe and efficient long-term interim storage. Austenitic stainless steels (SS) such as 304L SS or 316L SS appear to be suitable for the MCO. Of the two, Type 304L SS is recommended because it possesses good resistance to chemical corrosion, hydrogen embrittlement, and radiation-induced corrosive species. In addition, the material has adequate strength and ductility to withstand pressure and impact loading so that the containment boundary of the container is maintained under accident conditions without releasing radioactive materials.

  3. Research study on materials processing in space Skylab experiment M553 - sphere forming

    NASA Technical Reports Server (NTRS)

    Johnson, P. C.; Peters, E. T.; Wechsler, A. E.

    1973-01-01

    A research program was conducted to study the solidification of metals in the form of small spheres both in the one gravity environment of the earth laboratory and the low gravity environment of KC-135 trajectory flights and the Skylab 1/2 mission. The program had three phases. The details of the results of this program are contained in interim reports prepared at the conclusion of each of the three phases. This final report is intended to summarize the efforts and results described in detail in each of these interim reports, with particular emphasis on the differences observed between the ground-based and Skylab flight specimens.

  4. Hydraulic Mineral Waste Transport and Storage

    NASA Astrophysics Data System (ADS)

    Pullum, Lionel; Boger, David V.; Sofra, Fiona

    2018-01-01

    Conventional mineral waste disposal involves pumping dilute concentration suspensions of tailings to large catchment areas, where the solids settle to form a consolidated base while the excess water is evaporated. Unfortunately, this often takes years, if ever, to occur, and the interim period poses a severe threat to the surrounding countryside and water table. A worldwide movement to increase the concentration of these tailings to pastes for disposal above and below ground, obviating some of these issues, has led to the development of new technologies. Increasing the solids concentrations invariably produces non-Newtonian effects that can mask the underlying nature of the suspension mechanics, resulting in the use of poor pipeline and disposal methods. Combining rheological characterization and analysis with non-Newtonian suspension fluid mechanics provides insight into these flows, both laminar and turbulent. These findings provide the necessary basis for successful engineering designs.

  5. A historical application of social amplification of risk model: Economic impacts of risk events at nuclear weapons facilities?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metz, W.C.

    1996-12-31

    Public perceptions of risk have proven to be a critical barrier to the federal government`s extensive, decade-long, technical and scientific effort to site facilities for the interim storage and permanent disposal of high-level radioactive waste (HLW). The negative imagery, fear, and anxiety that are linked to ``nuclear`` and ``radioactive`` technologies, activities, and facilities by the public originate from the personal realities and experiences of individuals and the information they receive. These perceptions continue to be a perplexing problem for those responsible for making decisions about federal nuclear waste management policies and programs. The problem of understanding and addressing public perceptionsmore » is made even more difficult because there are decidedly different opinions about HLW held by the public and nuclear industry and radiation health experts.« less

  6. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vuichard, N.; Papale, D.

    In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robustmore » method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.« less

  7. Filling the gaps in meteorological continuous data measured at FLUXNET sites with ERA-Interim reanalysis

    DOE PAGES

    Vuichard, N.; Papale, D.

    2015-07-13

    In this study, exchanges of carbon, water and energy between the land surface and the atmosphere are monitored by eddy covariance technique at the ecosystem level. Currently, the FLUXNET database contains more than 500 registered sites, and up to 250 of them share data (free fair-use data set). Many modelling groups use the FLUXNET data set for evaluating ecosystem models' performance, but this requires uninterrupted time series for the meteorological variables used as input. Because original in situ data often contain gaps, from very short (few hours) up to relatively long (some months) ones, we develop a new and robustmore » method for filling the gaps in meteorological data measured at site level. Our approach has the benefit of making use of continuous data available globally (ERA-Interim) and a high temporal resolution spanning from 1989 to today. These data are, however, not measured at site level, and for this reason a method to downscale and correct the ERA-Interim data is needed. We apply this method to the level 4 data (L4) from the La Thuile collection, freely available after registration under a fair-use policy. The performance of the developed method varies across sites and is also function of the meteorological variable. On average over all sites, applying the bias correction method to the ERA-Interim data reduced the mismatch with the in situ data by 10 to 36 %, depending on the meteorological variable considered. In comparison to the internal variability of the in situ data, the root mean square error (RMSE) between the in situ data and the unbiased ERA-I (ERA-Interim) data remains relatively large (on average over all sites, from 27 to 76 % of the standard deviation of in situ data, depending on the meteorological variable considered). The performance of the method remains poor for the wind speed field, in particular regarding its capacity to conserve a standard deviation similar to the one measured at FLUXNET stations.« less

  8. Airborne microorganisms from waste containers.

    PubMed

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  9. WIPP

    Science.gov Websites

    waste Semi Truck with trailer hauling two TRUPACT-II containers Safely disposed of more than 170,000 waste containers WIPP has been disposing of legacy transuranic (TRU) waste since 1999, cleaning up 22 once waste... [January 17, 2018] read more... Semi Truck hauling three TRUPACT-II containers THE WIPP

  10. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.31 Waste...

  11. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.31 Waste...

  12. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.31 Waste...

  13. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.31 Waste...

  14. 40 CFR 268.31 - Waste specific prohibitions-Dioxin-containing wastes.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Waste specific prohibitions-Dioxin-containing wastes. 268.31 Section 268.31 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) LAND DISPOSAL RESTRICTIONS Prohibitions on Land Disposal § 268.31 Waste...

  15. Configuration management at an environmental restoration DOE facility (Fernald)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beckett, C.; Pasko, W.; Kupinski, T.

    This report contains information about a meeting held to discuss the decontamination and decommissioning of the Fernald site in Ohio. This site contains two major types of waste. First is the legacy waste. This waste consists of the wastes which were left over from production which is stored in various drums and containers across the site. Second is the waste generated from the remedial activities.

  16. Groundwater Interim Measures Work Plan for the Former Chemical Plant

    EPA Pesticide Factsheets

    May 2012 Groundwater IMWP, revised per EPA's approval, focuses on the installation of a groundwater containment system to mitigate groundwater migration from the former plant. A prior 2002 work plan is included in its entirety in Appendix B.

  17. Year-Round Daylight Saving Time Study : Volume 2. Supporting Studies

    DOT National Transportation Integrated Search

    1975-06-01

    This volume contains detailed background material in support of findings of the Interim Report. It includes the findings of a survey of attifudes towards daylight saving conducted by the National Opinion Research Center; description of sunrise and su...

  18. Implementation of high performance concrete in Louisiana bridges : interim report.

    DOT National Transportation Integrated Search

    1998-02-01

    The report contains a research plan to assist in the implementation of high performance concrete in the Charenton Canal Bridge in Louisiana. The research involves a literature review, plan review, development of a quality control program for the conc...

  19. Treatment for hydrazine-containing waste water solution

    NASA Technical Reports Server (NTRS)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  20. Applications of fiber reinforced concrete containers in France and in Slovakia

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verdier, A.; Delgrande, J.; Remias, V.

    Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by COGEMA culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber reinforced concrete containers satisfy all French safetymore » requirements relating to waste immobilization and disposal, and have been certified by ANDRA, the national radioactive waste management agency. The fiber reinforced concrete containers have been fabricated on a production scale since July 1990 by Sogefibre, a jointly-owned subsidiary of SGN and Campaign Generale des Eaux. This technology is being transferred to Slovenske Elektrarne (Slovak Power Plant) to intern the waste produced by Bohunice and Mochovce power plants in cubical fiber reinforced concrete containers.« less

  1. SLUDGE TREATMENT PROJECT PHASE 1 SLUDGE STORAGE OPTIONS ASSESSMENT OF T PLANT VERSUS ALTERNATE STORAGE FACILITY

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    RUTHERFORD WW; GEUTHER WJ; STRANKMAN MR

    2009-04-29

    The CH2M HILL Plateau Remediation Company (CHPRC) has recommended to the U.S. Department of Energy (DOE) a two phase approach for removal and storage (Phase 1) and treatment and packaging for offsite shipment (Phase 2) of the sludge currently stored within the 105-K West Basin. This two phased strategy enables early removal of sludge from the 105-K West Basin by 2015, allowing remediation of historical unplanned releases of waste and closure of the 100-K Area. In Phase 1, the sludge currently stored in the Engineered Containers and Settler Tanks within the 105-K West Basin will be transferred into sludge transportmore » and storage containers (STSCs). The STSCs will be transported to an interim storage facility. In Phase 2, sludge will be processed (treated) to meet shipping and disposal requirements and the sludge will be packaged for final disposal at a geologic repository. The purpose of this study is to evaluate two alternatives for interim Phase 1 storage of K Basin sludge. The cost, schedule, and risks for sludge storage at a newly-constructed Alternate Storage Facility (ASF) are compared to those at T Plant, which has been used previously for sludge storage. Based on the results of the assessment, T Plant is recommended for Phase 1 interim storage of sludge. Key elements that support this recommendation are the following: (1) T Plant has a proven process for storing sludge; (2) T Plant storage can be implemented at a lower incremental cost than the ASF; and (3) T Plant storage has a more favorable schedule profile, which provides more float, than the ASF. Underpinning the recommendation of T Plant for sludge storage is the assumption that T Plant has a durable, extended mission independent of the K Basin sludge interim storage mission. If this assumption cannot be validated and the operating costs of T Plant are borne by the Sludge Treatment Project, the conclusions and recommendations of this study would change. The following decision-making strategy, which is dependent on the confidence that DOE has in the long term mission for T Plant, is proposed: (1) If the confidence level in a durable, extended T Plant mission independent of sludge storage is high, then the Sludge Treatment Project (STP) would continue to implement the path forward previously described in the Alternatives Report (HNF-39744). Risks to the sludge project can be minimized through the establishment of an Interface Control Document (ICD) defining agreed upon responsibilities for both the STP and T Plant Operations regarding the transfer and storage of sludge and ensuring that the T Plant upgrade and operational schedule is well integrated with the sludge storage activities. (2) If the confidence level in a durable, extended T Plant mission independent of sludge storage is uncertain, then the ASF conceptual design should be pursued on a parallel path with preparation of T Plant for sludge storage until those uncertainties are resolved. (3) Finally, if the confidence level in a durable, extended T Plant mission independent of sludge storage is low, then the ASF design should be selected to provide independence from the T Plant mission risk.« less

  2. A Self-Contained Pole Syringe Array for Closed-Interval Water Sampling.

    DTIC Science & Technology

    1982-10-19

    L AD-R12l 265 R SELF-CONTAINED POLE SYRINGE ARRAY FOR CLOSDITRR Va WATER SANPLING4U) NAVAL RESEARCH LAB WASHINGTON DC I R E PELLENBARG ET AL. 19 OCT...PERIOD COVERED A SELF-CONTAINED POLE SYRINGE ARRAY FOR Interim report on one phase of CLOSED-INTERVAL WATER SAMPLING an NRL problem. 6. PERFORMING ORG...1473 EDITION OF I NOv ,, IS OMSOLCT S/N 0102-014- 6601 SECURITY CLASSIFICATION OF THIS PAGE (Wm Dle Et ere d A SELF-CONTAINED POLE SYRINGE ARRAY FOR

  3. 45 CFR 671.11 - Waste storage.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... containers or tanks labeled to indicate their contents and the beginning date of accumulation of such waste... McMurdo Station or other disposition, for a period not to exceed 28 months; (4) Containers holding... ability of the containers to contain such waste is not impaired; (iii) Stored in a manner that allows...

  4. 45 CFR 671.11 - Waste storage.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... containers or tanks labeled to indicate their contents and the beginning date of accumulation of such waste... McMurdo Station or other disposition, for a period not to exceed 28 months; (4) Containers holding... ability of the containers to contain such waste is not impaired; (iii) Stored in a manner that allows...

  5. 45 CFR 671.11 - Waste storage.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... containers or tanks labeled to indicate their contents and the beginning date of accumulation of such waste... McMurdo Station or other disposition, for a period not to exceed 28 months; (4) Containers holding... ability of the containers to contain such waste is not impaired; (iii) Stored in a manner that allows...

  6. 45 CFR 671.11 - Waste storage.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... containers or tanks labeled to indicate their contents and the beginning date of accumulation of such waste... McMurdo Station or other disposition, for a period not to exceed 28 months; (4) Containers holding... ability of the containers to contain such waste is not impaired; (iii) Stored in a manner that allows...

  7. Case Study of Urban Residential Remediation and Restoration in Port Hope, Canada - 13250

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Geddes, Brian; DeJong, John; Owen, Michael

    2013-07-01

    The Canadian Municipality of Port Hope, Ontario, is located some 100 km east of Toronto and has been the location of radium and/or uranium refining since the 1930's. Historically, these activities involved materials containing radium-226, uranium, arsenic and other contaminants generated by the refining process. In years past, properties and sites in Port Hope became contaminated from spillage during transportation, unrecorded, un-monitored or unauthorized diversion of contaminated fill and materials, wind and water erosion and spread from residue storage areas. Residential properties in Port Hope impacted by radioactive materials are being addressed by the Canadian federal government under programs administeredmore » by the Low-Level Radioactive Waste Management Office (LLRWMO) and the Port Hope Area Initiative Management Office (PHAIMO). Issues that currently arise at these properties are addressed by the LLRWMO's Interim Waste Management Program (IWM). In the future, these sites will be included in the PHAIMO's Small Scale Sites (SSS) remedial program. The LLRWMO has recently completed a remediation and restoration program at a residential property in Port Hope that has provided learnings that will be applicable to the PHAIMO's upcoming SSS remedial effort. The work scope at this property involved remediating contaminated refinery materials that had been re-used in the original construction of the residence. Following removal of the contaminated materials, the property was restored for continued residential use. This kind of property represents a relatively small, but potentially challenging subset of the portfolio of sites that will eventually be addressed by the SSS program. (authors)« less

  8. 40 CFR 148.11 - Waste specific prohibitions-dioxin-containing wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste specific prohibitions-dioxin-containing wastes. 148.11 Section 148.11 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS (CONTINUED) HAZARDOUS WASTE INJECTION RESTRICTIONS Prohibitions on Injection § 148.11...

  9. Method for acid oxidation of radioactive, hazardous, and mixed organic waste materials

    DOEpatents

    Pierce, Robert A.; Smith, James R.; Ramsey, William G.; Cicero-Herman, Connie A.; Bickford, Dennis F.

    1999-01-01

    The present invention is directed to a process for reducing the volume of low level radioactive and mixed waste to enable the waste to be more economically stored in a suitable repository, and for placing the waste into a form suitable for permanent disposal. The invention involves a process for preparing radioactive, hazardous, or mixed waste for storage by contacting the waste starting material containing at least one organic carbon-containing compound and at least one radioactive or hazardous waste component with nitric acid and phosphoric acid simultaneously at a contacting temperature in the range of about 140.degree. C. to about 210 .degree. C. for a period of time sufficient to oxidize at least a portion of the organic carbon-containing compound to gaseous products, thereby producing a residual concentrated waste product containing substantially all of said radioactive or inorganic hazardous waste component; and immobilizing the residual concentrated waste product in a solid phosphate-based ceramic or glass form.

  10. INTERIM METHOD FOR THE DETERMINATION OF ASBESTOS IN BULK INSULATION SAMPLES

    EPA Science Inventory

    The U.S. Environmental Protection Agency Asbestos-in-Schools Program was established in March, 1979 to provide information and technical assistance to the public for addressing problems presented by asbestos-containing insulation materials in school buildings. Because there were ...

  11. Cathodic Protection Field Trials on Prestressed Concrete Components, Final Report

    DOT National Transportation Integrated Search

    1998-01-01

    This is the final report in a study to demonstrate the feasibility of using cathodic protection (CP) on concrete bridge structures containing prestressed steel. The interim report, FHWA-RD-95-032, has more details on the installation of selected CP s...

  12. Human Factors in Railroad Operations : Activities in Fiscal Year 1973

    DOT National Transportation Integrated Search

    1974-02-01

    This is an interim report covering human factors services rendered by TSC to the FRA under the project: "Human Factors in Railroad Operations," during fiscal year 1973. It reviews all activities briefly and contains more detailed reports on a researc...

  13. 76 FR 35318 - Competitive and Noncompetitive Nonformula Federal Assistance Programs-Administrative Provisions...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-17

    ...] Competitive and Noncompetitive Nonformula Federal Assistance Programs--Administrative Provisions for Biomass..., without change, an interim rule containing a set of specific administrative requirements for the Biomass... Biomass Research and Development Initiative (BRDI) under which competitively awarded grants, contracts...

  14. Evaluation of historical and analytical data on the TAN TSF-07 Disposal Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Medina, S.M.

    1993-07-01

    The Technical Support Facility (TSF)-07 Disposal Pond, located at Test Area North at the Idaho National Engineering Laboratory, has been identified as part of Operable Unit 1-06 under the Comprehensive Environmental Response, Compensation, and Liability Act. The Environmental Restoration and Waste Management Department is conducting an evaluation of existing site characterization data for the TSF-07 Disposal Pond Track 1 investigation. The results from the site characterization data will be used to determine whether the operable unit will undergo a Track 2 investigation, an interim action, a remedial investigation/feasibility study, or result in a no-action decision. This report summarizes activities relevantmore » to wastewaters discharged to the pond and characterization efforts conducted from 1982 through 1991. Plan view and vertical distribution maps of the significant contaminants contained in the pond are included. From this evaluation it was determined that cobalt-60, cesium-137, americium-241, mercury, chromium, and thallium are significant contaminants for soils. This report also evaluates the migration tendencies of the significant contaminants into the perched water zone under the pond and the surrounding terrain to support the investigation.« less

  15. 40 CFR 270.300 - What container information must I keep at my facility?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) EPA ADMINISTERED PERMIT PROGRAMS: THE HAZARDOUS WASTE PERMIT PROGRAM... containers holding ignitable or reactive wastes) and 40 CFR 267.175(c) (location of incompatible wastes in...

  16. CONTAINMENT TECHNOLOGIES

    EPA Science Inventory

    Hazardous waste containment's primary objective is to isolate wastes deemed as hazardous from man and environmental systems of air, soil, and water. Hazardous wastes differ from other waste classifications due to their increased potential to cause human health effects or environ...

  17. Technical and economic assessment of different options for minor actinide transmutation: the French case

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chabert, C.; Coquelet-Pascal, C.; Saturnin, A.

    Studies have been performed to assess the industrial perspectives of partitioning and transmutation of long-lived elements. These studies were carried out in tight connection with GEN-IV systems development. The results include the technical and economic evaluation of fuel cycle scenarios along with different options for optimizing the processes between the minor actinide transmutation in fast neutron reactors, their interim storage and geological disposal of ultimate waste. The results are analysed through several criteria (impacts on waste, on waste repository, on fuel cycle plants, on radiological exposure of workers, on costs and on industrial risks). These scenario evaluations take place inmore » the French context which considers the deployment of the first Sodium-cooled Fast Reactor (SFR) in 2040. 3 management options of minor actinides have been studied: no transmutation, transmutation in SFR and transmutation in an accelerator-driven system (ADS). Concerning economics the study shows that the cost overrun related to the transmutation process could vary between 5 to 9% in SFR and 26 % in the case of ADS.« less

  18. Yucca Mountain nuclear waste repository prompts heated congressional hearing

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2011-11-01

    Although the final report of the Blue Ribbon Commission on America's Nuclear Future is not expected until January 2012, the tentative conclusions of the commission's draft report were dissected during a recent joint hearing by two subcommittees of the House of Representatives' Committee on Science, Space, and Technology. Among the more heated issues debated at the hearing was the fate of the stalled Yucca Mountain nuclear waste repository in Nevada. The Blue Ribbon Commission's (BRC) draft report includes recommendations for managing nuclear waste and for developing one or more permanent deep geological repositories and interim storage facilities, but the report does not address the future of Yucca Mountain. The BRC charter indicates that the commission is to "conduct a comprehensive review of policies for managing the back end of the nuclear fuel cycle." However, the draft report states that the commission was not asked to consider, and therefore did not address, several key issues. "We have not rendered an opinion on the suitability of the Yucca Mountain site or on the request to withdraw the license application for Yucca Mountain," the draft report states.

  19. (US low-level radioactive waste management facility design, construction, and operation): Foreign trip report, July 22--30, 1989

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoesen, S.D.; Bolinsky, J.

    1989-08-02

    The Martin Marietta Energy Systems, Inc., Team, consisting of representatives of the Engineering Division and Oak Ridge National Laboratory (ORNL), participated in a technology exchange program on French and US low-level radioactive waste (LLW) management facility design, construction, and operation. Meetings were held at the Agence National pour la Gestion des Dechets Radioactif (ANDRA) offices in Paris to review the designs for the new French LLW disposal facility, the Cente de Stockage de l'Aube (CSA), and the new ORNL LLW disposal project, the Interim Waste Management Facility (IWMF), and the results of the French LLW disposal facility cover experiment atmore » St. Sauveur. Visits were made to the operating LLW disposal facility, the Centre de Stockage de la Manche (CSM), the LLW conditioning facilities at the La Hague Reprocessing Facility, and the St. Saueveur Disposal Cap Experiment to discuss design, construction, and operating experience. A visit was also made to the CSA site to view the progress made in construction of the new facility.« less

  20. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less

  1. 40 CFR 148.10 - Waste specific prohibitions-solvent wastes.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste specific prohibitions-solvent wastes. 148.10 Section 148.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER... injection unless the solvent waste is a solvent-water mixture or solvent-containing sludge containing less...

  2. INNOVATIVE PRACTICES FOR TREATING WASTE STREAMS CONTAINING HEAVY METALS: A WASTE MINIMIZATION APPROACH

    EPA Science Inventory

    Innovative practices for treating waste streams containing heavy metals often involve technologies or systems that either reduce the amount of waste generated or recover reusable resources. With the land disposal of metal treatment residuals becoming less of an accepted waste man...

  3. SLUDGE TREATMENT PROJECT COST COMPARISON BETWEEN HYDRAULIC LOADING AND SMALL CANISTER LOADING CONCEPTS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    GEUTHER J; CONRAD EA; RHOADARMER D

    2009-08-24

    The Sludge Treatment Project (STP) is considering two different concepts for the retrieval, loading, transport and interim storage of the K Basin sludge. The two design concepts under consideration are: (1) Hydraulic Loading Concept - In the hydraulic loading concept, the sludge is retrieved from the Engineered Containers directly into the Sludge Transport and Storage Container (STSC) while located in the STS cask in the modified KW Basin Annex. The sludge is loaded via a series of transfer, settle, decant, and filtration return steps until the STSC sludge transportation limits are met. The STSC is then transported to T Plantmore » and placed in storage arrays in the T Plant canyon cells for interim storage. (2) Small Canister Concept - In the small canister concept, the sludge is transferred from the Engineered Containers (ECs) into a settling vessel. After settling and decanting, the sludge is loaded underwater into small canisters. The small canisters are then transferred to the existing Fuel Transport System (FTS) where they are loaded underwater into the FTS Shielded Transfer Cask (STC). The STC is raised from the basin and placed into the Cask Transfer Overpack (CTO), loaded onto the trailer in the KW Basin Annex for transport to T Plant. At T Plant, the CTO is removed from the transport trailer and placed on the canyon deck. The CTO and STC are opened and the small canisters are removed using the canyon crane and placed into an STSC. The STSC is closed, and placed in storage arrays in the T Plant canyon cells for interim storage. The purpose of the cost estimate is to provide a comparison of the two concepts described.« less

  4. Water Balance Covers For Waste Containment: Principles and Practice

    EPA Science Inventory

    Water Balance Covers for Waste Containment: Principles and Practices introduces water balance covers and compares them with conventional approaches to waste containment. The authors provided detailed analysis of the fundamentals of soil physics and design issues, introduce appl...

  5. Underground waste barrier structure

    DOEpatents

    Saha, Anuj J.; Grant, David C.

    1988-01-01

    Disclosed is an underground waste barrier structure that consists of waste material, a first container formed of activated carbonaceous material enclosing the waste material, a second container formed of zeolite enclosing the first container, and clay covering the second container. The underground waste barrier structure is constructed by forming a recessed area within the earth, lining the recessed area with a layer of clay, lining the clay with a layer of zeolite, lining the zeolite with a layer of activated carbonaceous material, placing the waste material within the lined recessed area, forming a ceiling over the waste material of a layer of activated carbonaceous material, a layer of zeolite, and a layer of clay, the layers in the ceiling cojoining with the respective layers forming the walls of the structure, and finally, covering the ceiling with earth.

  6. Chooz A, First Pressurized Water Reactor to be Dismantled in France - 13445

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boucau, Joseph; Mirabella, C.; Nilsson, Lennart

    2013-07-01

    Nine commercial nuclear power plants have been permanently shut down in France to date, of which the Chooz A plant underwent an extensive decommissioning and dismantling program. Chooz Nuclear Power Station is located in the municipality of Chooz, Ardennes region, in the northeast part of France. Chooz B1 and B2 are 1,500 megawatt electric (MWe) pressurized water reactors (PWRs) currently in operation. Chooz A, a 305 MWe PWR implanted in two caves within a hill, began operations in 1967 and closed in 1991, and will now become the first PWR in France to be fully dismantled. EDF CIDEN (Engineering Centermore » for Dismantling and Environment) has awarded Westinghouse a contract for the dismantling of its Chooz A reactor vessel (RV). The project began in January 2010. Westinghouse is leading the project in a consortium with Nuvia France. The project scope includes overall project management, conditioning of the reactor vessel (RV) head, RV and RV internals segmentation, reactor nozzle cutting for lifting the RV out of the pit and seal it afterwards, dismantling of the RV thermal insulation, ALARA (As Low As Reasonably Achievable) forecast to ensure acceptable doses for the personnel, complementary vacuum cleaner to catch the chips during the segmentation work, needs and facilities, waste characterization and packaging, civil work modifications, licensing documentation. The RV and RV internals will be segmented based on the mechanical cutting technology that Westinghouse applied successfully for more than 13 years. The segmentation activities cover the cutting and packaging plan, tooling design and qualification, personnel training and site implementation. Since Chooz A is located inside two caves, the project will involve waste transportation from the reactor cave through long galleries to the waste buffer area. The project will end after the entire dismantling work is completed, and the waste storage is outside the caves and ready to be shipped either to the ANDRA (French National Radioactive Waste Management Agency) waste disposal facilities - (for low-level waste [LLW] and very low-level waste [VLLW], which are considered short lived) - or to the EDF Interim Storage Facility planned to be built on another site - (for low- and intermediate-level waste [LILW], which is considered long lived). The project has started with a detailed conceptual study that determines the step-by-step approach for dismantling the reactor and eventually supplying the packed containers ready for final disposal. All technical reports must be verified and approved by EDF and the French Nuclear Safety Authority before receiving the authorization to start the site work. The detailed conceptual study has been completed to date and equipment design and manufacturing is ongoing. This paper will present the conceptual design of the reactor internals segmentation and packaging process that will be implemented at Chooz A, including the planning, methodology, equipment, waste management, and packaging strategy. (authors)« less

  7. Influence of tropical seasonal variations on landfill leachate characteristics--results from lysimeter studies.

    PubMed

    Tränkler, J; Visvanathan, C; Kuruparan, P; Tubtimthai, O

    2005-01-01

    Considering the quality of design and construction of landfills in developing countries, little information can be derived from randomly taken leachate samples. Leachate generation and composition under monsoon conditions have been studied using lysimeters to simulate sanitary landfills and open cell settings. In this study, lysimeters were filled with domestic waste, highly organic market waste and pre-treated waste. Results over two subsequent dry and rainy seasons indicate that the open cell lysimeter simulation showed the highest leachate generation throughout the rainy season, with leachate flow in all lysimeters coming to a halt during the dry periods. More than 60% of the precipitation was found in the form of leachate. The specific COD and TKN load discharged from the open cell was 20% and 180% more than that of the sanitary landfill lysimeters. Types of waste material and kind of pre-treatment prior to landfilling strongly influenced the pollutant load. Compared to the sanitary landfill lysimeter filled with domestic waste, the specific COD and TKN load discharged from the pre-treated waste lysimeter accounted for only 4% and 16%, respectively. Considering the local settings of tropical landfills, these results suggest that landfill design and operation has to be adjusted. Leachate can be collected and stored during the rainy season, and recirculation of leachate is recommended to maintain a steady and even accelerated degradation during the prolonged dry season. The open cell approach in combination with leachate recirculation is suggested as an option for interim landfill operations.

  8. 78 FR 46447 - Conditional Exclusions From Solid Waste and Hazardous Waste for Solvent-Contaminated Wipes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-31

    ... Waste Landfill NODA Notice of Data Availability NPDES National Pollutant Discharge Elimination System...-contaminated wipe or from the container holding the wipes. In addition, the exclusions are not applicable to... containers. The containers must be able to contain free liquids, should free liquids occur, and the...

  9. Thermal Analysis for Ion-Exchange Column System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Si Y.; King, William D.

    2012-12-20

    Models have been developed to simulate the thermal characteristics of crystalline silicotitanate ion exchange media fully loaded with radioactive cesium either in a column configuration or distributed within a waste storage tank. This work was conducted to support the design and operation of a waste treatment process focused on treating dissolved, high-sodium salt waste solutions for the removal of specific radionuclides. The ion exchange column will be installed inside a high level waste storage tank at the Savannah River Site. After cesium loading, the ion exchange media may be transferred to the waste tank floor for interim storage. Models weremore » used to predict temperature profiles in these areas of the system where the cesium-loaded media is expected to lead to localized regions of elevated temperature due to radiolytic decay. Normal operating conditions and accident scenarios (including loss of solution flow, inadvertent drainage, and loss of active cooling) were evaluated for the ion exchange column using bounding conditions to establish the design safety basis. The modeling results demonstrate that the baseline design using one central and four outer cooling tubes provides a highly efficient cooling mechanism for reducing the maximum column temperature. In-tank modeling results revealed that an idealized hemispherical mound shape leads to the highest tank floor temperatures. In contrast, even large volumes of CST distributed in a flat layer with a cylindrical shape do not result in significant floor heating.« less

  10. Record of decision, Bomarc Missile Accident Site, Mcguire AFB, New Jersey. Final report, November 1989-May 1992

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, G.

    1992-11-20

    This document presents the selected final remedial action for the radioactive wastes at the BOMARC Missile Site, McGuire Air Force Base, New Jersey. The BOMARC Missile Site became contaminated in 1960 as the result of a fire which partially consumed a nuclear warhead-equipped BOMARC missile. The Air Force has decided to pursue excavation and Off-site Disposal of contaminated waste at a Department of Energy (DOE) disposal facility. This is a cost effective, permanent remedy, and is the environmentally preferred alternative. However, should the Air Force be denied the use of a DOE facility, or if other events should dramatically decreasemore » the cost effectiveness of this remedy, then as an interim remedy, the Air Force will maintain the BOMARC Missile Site in accordance with the NEPA No Action Alternative.« less

  11. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... equipment. 273.4 Section 273.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury...-containing components have been removed. (c) Generation of waste mercury-containing equipment. (1) Used...

  12. RCRA Part A Permit Application for Waste Management Activities at the Nevada Test Site, Part B Permit Application Hazardous Waste Storage Unit, Nevada Test Site, and Part B Permit Application - Explosives Ordnance Disposal Unit (EODU)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    2010-06-17

    The Area 5 Hazardous Waste Storage Unit (HWSU) was established to support testing, research, and remediation activities at the Nevada Test Site (NTS), a large-quantity generator of hazardous waste. The HWSU, located adjacent to the Area 5 Radioactive Waste Management Site (RWMS), is a prefabricated, rigid steel-framed, roofed shelter used to store hazardous nonradioactive waste generated on the NTS. No offsite generated wastes are managed at the HWSU. Waste managed at the HWSU includes the following categories: Flammables/Combustibles; Acid Corrosives; Alkali Corrosives; Oxidizers/Reactives; Toxics/Poisons; and Other Regulated Materials (ORMs). A list of the regulated waste codes accepted for storage atmore » the HWSU is provided in Section B.2. Hazardous wastes stored at the HWSU are stored in U.S. Department of Transportation (DOT) compliant containers, compatible with the stored waste. Waste transfer (between containers) is not allowed at the HWSU and containers remain closed at all times. Containers are stored on secondary containment pallets and the unit is inspected monthly. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational Resource Conservation and Recovery Act (RCRA) units at the NTS and their respective regulatory status.« less

  13. 75 FR 39414 - Federal Acquisition Regulation; FAR Case 2008-039, Reporting Executive Compensation and First...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... DEPARTMENT OF DEFENSE GENERAL SERVICES ADMINISTRATION NATIONAL AERONAUTICS AND SPACE... National Aeronautics and Space Administration (NASA). ACTION: Interim rule with request for comments... free, public, online Web site containing full disclosure of all Federal contract award information, the...

  14. PREPARATION OF U-PLANT FOR FINAL DEMOLITION AND DISPOSAL - 12109E

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    FARABEE OA; HERZOG B; CAMERON C

    2012-02-16

    The U-Plant is one of the five major nuclear materials processing facilities at Hanford and was chosen as a pilot project to develop the modalities for closure of the other four facilities at Hanford and the rest of the Department of Energy (DOE) complex. The remedy for this facility was determined by a Record of Decision (ROD) pursuant to the Comprehensive Environmental Response, Compensation and Liability Act of 1980 (CERCLA). That remedy was to 'Close in Place - Partially Demolished Structure'. The U-Plant facility is identified as the 221-U Building and is a large, concrete structure nominally 247m (810 ft)more » long, 20 M (66 ft) wide and 24 m (77 ft) high with approximately 9 m (30 ft) being below grade level. It is a robust facility with walls ranging from 0.9 m to 2.7 m (3 ft to 9 ft) thick. One large room extends the entire length of the building that provides access to 40 sub-grade processing cells containing tanks, piping and other components. The work breakdown was divided into three major deliverables: (1) Tank D-10 Removal: removal of Tank D-10, which contained TRU waste; (2) Equipment Disposition: placement of contaminated equipment in the sub-grade cells; and (3) Canyon Grouting: grouting canyon void spaces to the maximum extent practical. A large number of pieces of contaminated equipment (pumps, piping, centrifuges, tanks, etc) from other facilities that had been stored on the canyon operating floor were placed inside of the sub-grade cells as final disposition, grouted and the cell shield plug reinstalled. This action precluded a large volume of waste being transported to another burial site. Finally, {approx}19,000 m3 ({approx}25,000 yd3) of grout was placed inside of the cells (in and around the contaminated equipment), in the major galleries. the ventilation tunnel, the external ventilation duct, and the hot pipe trench to minimize the potential for void spaces and to reduce the mobility, solubility, and/or toxicity of the grouted waste. The interim condition of the facility is 'cold and dark'. Upon availability of funding the structure will have contamination fixative applied to all contaminated surfaces and may be explosively demolished, with the remaining structure buried under an engineered barrier.« less

  15. WASTE CONTAINMENT OVERVIEW

    EPA Science Inventory

    BSE waste is derived from diseased animals such as BSE (bovine spongiform encepilopothy, also known as Mad Cow) in cattle and CWD (chronic wasting disease) in deer and elk. Landfilling is examined as a disposal option and this presentation introduces waste containment technology...

  16. AN EVALUATION OF HANFORD SITE TANK FARM SUBSURFACE CONTAMINATION FY2007

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2007-07-10

    The Tank Farm Vadose Zone (TFVZ) Project conducts activities to characterize and analyze the long-term environmental and human health impacts from tank waste releases to the vadose zone. The project also implements interim measures to mitigate impacts, and plans the remediation of waste releases from tank farms and associated facilities. The scope of this document is to report data needs that are important to estimating long-term human health and environmental risks. The scope does not include technologies needed to remediate contaminated soils and facilities, technologies needed to close tank farms, or management and regulatory decisions that will impact remediation andmore » closure. This document is an update of ''A Summary and Evaluation of Hanford Site Tank Farm Subsurface Contamination''. That 1998 document summarized knowledge of subsurface contamination beneath the tank farms at the time. It included a preliminary conceptual model for migration of tank wastes through the vadose zone and an assessment of data and analysis gaps needed to update the conceptual model. This document provides a status of the data and analysis gaps previously defined and discussion of the gaps and needs that currently exist to support the stated mission of the TFVZ Project. The first data-gaps document provided the basis for TFVZ Project activities over the previous eight years. Fourteen of the nineteen knowledge gaps identified in the previous document have been investigated to the point that the project defines the current status as acceptable. In the process of filling these gaps, significant accomplishments were made in field work and characterization, laboratory investigations, modeling, and implementation of interim measures. The current data gaps are organized in groups that reflect Components of the tank farm vadose zone conceptual model: inventory, release, recharge, geohydrology, geochemistry, and modeling. The inventory and release components address residual wastes that will remain in the tanks and tank-farm infrastructure after closure and potential losses from leaks during waste retrieval. Recharge addresses the impacts of current conditions in the tank farms (i.e. gravel covers that affect infiltration and recharge) as well as the impacts of surface barriers. The geohydrology and geochemistry components address the extent of the existing subsurface contaminant inventory and drivers and pathways for contaminants to be transported through the vadose zone and groundwater. Geochemistry addresses the mobility of key reactive contaminants such as uranium. Modeling addresses conceptual models and how they are simulated in computers. The data gaps will be used to provide input to planning (including the upcoming C Farm Data Quality Objective meetings scheduled this year).« less

  17. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-01-01

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  18. Method for immobilizing mixed waste chloride salts containing radionuclides and other hazardous wastes

    DOEpatents

    Lewis, Michele A.; Johnson, Terry R.

    1993-09-07

    The invention is a method for the encapsulation of soluble radioactive waste chloride salts containing radionuclides such as strontium, cesium and hazardous wastes such as barium so that they may be permanently stored without future threat to the environment. The process consists of contacting the salts containing the radionuclides and hazardous wastes with certain zeolites which have been found to ion exchange with the radionuclides and to occlude the chloride salts so that the resulting product is leach resistant.

  19. Plasma methods for metals recovery from metal-containing waste.

    PubMed

    Changming, Du; Chao, Shang; Gong, Xiangjie; Ting, Wang; Xiange, Wei

    2018-04-27

    Metal-containing waste, a kind of new wastes, has a great potential for recycling and is also difficult to deal with. Many countries pay more and more attention to develop the metal recovery process and equipment of this kind of waste as raw material, so as to solve the environmental pollution and comprehensively utilize the discarded metal resources. Plasma processing is an efficient and environmentally friendly way for metal-containing waste. This review mainly discuss various metal-containing waste types, such as printed circuit boards (PCBs), red mud, galvanic sludge, Zircon, aluminium dross and incinerated ash, and the corresponding plasma methods, which include DC extended transferred arc plasma reactor, DC non-transferred arc plasma torch, RF thermal plasma reactor and argon and argon-hydrogen plasma jets. In addition, the plasma arc melting technology has a better purification effect on the extraction of useful metals from metal-containing wastes, a great capacity of volume reduction of waste materials, and a low leaching toxicity of solid slag, which can also be used to deal with all kinds of metal waste materials, having a wide range of applications. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    2000-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  1. Method for recovering materials from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1994-01-01

    A method for recovering metals from metals-containing wastes, a vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800{degrees}C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1000--1550{degrees}C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  2. Method for recovering metals from waste

    DOEpatents

    Wicks, George G.; Clark, David E.; Schulz, Rebecca L.

    1998-01-01

    A method for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300.degree.-800.degree. C. to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000.degree.-1,550.degree. C. at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification.

  3. Method for recovering metals from waste

    DOEpatents

    Wicks, G.G.; Clark, D.E.; Schulz, R.L.

    1998-12-01

    A method is described for recovering metals from metals-containing wastes, and vitrifying the remainder of the wastes for disposal. Metals-containing wastes such as circuit boards, cathode ray tubes, vacuum tubes, transistors and so forth, are broken up and placed in a suitable container. The container is heated by microwaves to a first temperature in the range of approximately 300--800 C to combust organic materials in the waste, then heated further to a second temperature in the range of approximately 1,000--1,550 C at which temperature glass formers present in the waste will cause it to melt and vitrify. Low-melting-point metals such as tin and aluminum can be recovered after organics combustion is substantially complete. Metals with higher melting points, such as gold, silver and copper, can be recovered from the solidified product or separated from the waste at their respective melting points. Network former-containing materials can be added at the start of the process to assist vitrification. 2 figs.

  4. Hazardous Waste and Wastewater Characterization Survey, Columbus AFB, Mississippi

    DTIC Science & Technology

    1988-06-01

    behind bldg 322 (Liquid Fuels Maintenance Branch). These wastes are then picked up by a waste oil contractor. All other drummed wastes are disposed of...is responsible for custody of the waste until a contractor (currently, Chemical Waste Management) comes to pick up the waste. Prior to disposal...chemicals are used up in the process. Any leftover chemicals are drained and stored in containers for use at a later time. All empty containers are

  5. 48 CFR 702.170-17 - Automated Directives System.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    .... “Automated Directives System” (“ADS”) sets forth the Agency's policies and essential procedures, as well as supplementary informational references. It contains six functional series, interim policy updates, valid USAID handbook chapters, a resource library, and a glossary. References to “ADS” throughout this chapter 7 are...

  6. 77 FR 31724 - Exchange Visitor Program-Summer Work Travel; Correction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... DEPARTMENT OF STATE 22 CFR Part 62 RIN 1400-AD14 [Public Notice 7902] Exchange Visitor Program--Summer Work Travel; Correction AGENCY: Department of State. ACTION: Interim final rule; correction SUMMARY: This document contains minor corrections to the Exchange Visitor Program--Summer Work Travel...

  7. 17 CFR 229.301 - (Item 301) Selected financial data.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... subsidiaries consolidated. 4. If interim period financial statements are included, or are required to be... issuer shall disclose also the following information in all filings containing financial statements: A.... currency of the foreign currency in which the financial statements are denominated; B. A history of...

  8. Process for removing sulfate anions from waste water

    DOEpatents

    Nilsen, David N.; Galvan, Gloria J.; Hundley, Gary L.; Wright, John B.

    1997-01-01

    A liquid emulsion membrane process for removing sulfate anions from waste water is disclosed. The liquid emulsion membrane process includes the steps of: (a) providing a liquid emulsion formed from an aqueous strip solution and an organic phase that contains an extractant capable of removing sulfate anions from waste water; (b) dispersing the liquid emulsion in globule form into a quantity of waste water containing sulfate anions to allow the organic phase in each globule of the emulsion to extract and absorb sulfate anions from the waste water and (c) separating the emulsion including its organic phase and absorbed sulfate anions from the waste water to provide waste water containing substantially no sulfate anions.

  9. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Azar, Miguel; Gardner, Donald A.; Taylor, Edward R.

    Exelon Nuclear (Exelon) designed and constructed an Interim Radwaste Storage Facility (IRSF) in the mid-1980's at LaSalle County Nuclear Station (LaSalle). The facility was designed to store low-level radioactive waste (LLRW) on an interim basis, i.e., up to five years. The primary reason for the IRSF was to offset lack of disposal in case existing disposal facilities, such as the Southeast Compact's Barnwell Disposal Facility in Barnwell, South Carolina, ceased accepting radioactive waste from utilities not in the Southeast Compact. Approximately ninety percent of the Radwaste projected to be stored in the LaSalle IRSF in that period of time wasmore » Class A, with the balance being Class B/C waste. On July 1, 2008 the Barnwell Disposal Facility in the Southeast Compact closed its doors to out of- compact Radwaste, which precluded LaSalle from shipping Class B/C Radwaste to an outside disposal facility. Class A waste generated by LaSalle is still able to be disposed at the 'Envirocare of Utah LLRW Disposal Complex' in Clive, Utah. Thus the need for utilizing the LaSalle IRSF for storing Class B/C Radwaste for an extended period, perhaps life-of-plant or more became apparent. Additionally, other Exelon Midwest nuclear stations located in Illinois that did not build an IRSF heretofore also needed extended Radwaste storage. In early 2009, Exelon made a decision to forward Radwaste from the Byron Nuclear Station (Byron), Braidwood Nuclear Station (Braidwood), and Clinton Nuclear Station (Clinton) to LaSalle's IRSF. As only Class B/C Radwaste would need to be forwarded to LaSalle, the original volumetric capacity of the LaSalle IRSF was capable of handling the small number of additional expected shipments annually from the Exelon sister nuclear stations in Illinois. Forwarding Class B/C Radwaste from the Exelon sister nuclear stations in Illinois to LaSalle would require an amendment to the LaSalle Station operating license. Exelon submitted the License Amendment Request (LAR) to NRC on January 6, 2010; NRC approved the LAR on July 21, 2011. A similar decision was made by Exelon in early 2009 to forward Radwaste from Limerick Nuclear Station to its sister station, the Peach Bottom Atomic Power Station; both in Pennsylvania. A LAR submittal to the NRC was also provided and NRC approval was received in 2011. (authors)« less

  10. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...

  11. 10 CFR 71.97 - Advance notification of shipment of irradiated reactor fuel and nuclear waste.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... notification of shipment of irradiated reactor fuel and nuclear waste. (a)(1) As specified in paragraphs (b... shipment of irradiated reactor fuel or nuclear waste must contain the following information: (1) The name... nuclear waste shipment; (2) A description of the irradiated reactor fuel or nuclear waste contained in the...

  12. Fiber reinforced concrete: An advanced technology for LL/ML radwaste conditioning and disposal

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tchemitcheff, E.; Verdier, A.

    Radioactive waste immobilization is an integral part of operations in nuclear facilities. The goal of immobilization is to contain radioactive materials in a waste form which can maintain its integrity over very long periods of time, thus effectively isolating the materials from the environment and hence from the public. This is true regardless of the activity of the waste, including low-, and medium-level waste (LLW, MLW). A multiple-year research effort by Cogema culminated in the development of a new process to immobilize nuclear waste in concrete containers reinforced with metal fibers. The fiber concrete containers satisfy all French safety requirementsmore » relating to waste immobilization and disposal, and have been certified by ANDRA, the national radioactive waste management agency. The fiber concrete containers have been fabricated on a production scale since July 1990 by Sogefibre, a jointly-owned subsidiary of SGN and Compagnie Generale des Eaux.« less

  13. Household disposables as breeding habitats of dengue vectors: Linking wastes and public health

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Banerjee, Soumyajit, E-mail: soumyajitb@gmail.com; Aditya, Gautam, E-mail: gautamaditya2001@gmail.com; Department of Zoology, The University of Burdwan, Golapbag, Burdwan 713 104

    Highlights: Black-Right-Pointing-Pointer An assessment of different household wastes as larval habitats of dengue vectors Aedes aegypti and Aedes albopictus was made using Kolkata, India as a model geographical area. Black-Right-Pointing-Pointer Household wastes of four major categories namely earthen, porcelain, plastic and coconut shells varied significantly for Aedes immature depending on species, month and location. Black-Right-Pointing-Pointer Based on the relative density of Aedes immature, cluster analyses allowed segregation and classification of the waste containers and relative importance as mosquito larval habitats. Black-Right-Pointing-Pointer Conversion of disposed wastes into larval habitats cautions for continuance of Aedes population in Kolkata and similar cities ofmore » tropics lacking suitable waste management practices. - Abstract: An assessment of the household wastes as larval habitats of the dengue vectors was made considering Kolkata, India, as geographical area. Wastes of four major categories, namely, earthen, porcelain, plastic and coconut shells were monitored for positive with immature of either Aedes aegypti or Aedes albopictus. Twenty six types of wastes with varying size and shape, resembling containers, were identified that hosted mosquito immature. The number of waste containers positive for Aedes immature varied significantly (P < 0.05) with respect to location, type and month. The relative density of Aedes immature in the waste containers varied significantly (P < 0.05) with the types and months. The significant interaction between the month, waste container types and density of Aedes immature suggest that the household wastes are important contributors to the maintenance of the population of Aedes mosquito in the city. Based on the relative density of mosquito immature in the wastes, cluster analysis allowed segregation and classification of the wastes and their importance as mosquito larval habitats. Apparently, the containers that are most frequently disposed off contributed largely to the sustenance of Aedes mosquito population in the city. This calls for a strict legislation towards disposal as well as enhanced management of the household wastes. A link between the wastes disposed and subsequent conversion to the mosquito larval habitats cautions for continuance of Aedes population and possibility of dengue epidemics if the existing management practices are not improved.« less

  14. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  15. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  16. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  17. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  18. 40 CFR 61.155 - Standard for operations that convert asbestos-containing waste material into nonasbestos...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... asbestos-containing waste material into nonasbestos (asbestos-free) material. 61.155 Section 61.155... EMISSION STANDARDS FOR HAZARDOUS AIR POLLUTANTS National Emission Standard for Asbestos § 61.155 Standard for operations that convert asbestos-containing waste material into nonasbestos (asbestos-free...

  19. TECHNICAL RESOURCE DOCUMENT: TREATMENT TECHNOLOGIES FOR CORROSIVE-CONTAINING WASTES. VOLUME 2

    EPA Science Inventory

    The Technical Resource Document (TRD) for wastes containing corrosives is one in a series of five documents which evaluate waste management alternatives to land disposal. In addition to this TRD for corrosive wastes, the other four TRDs in the series address land disposal alterna...

  20. PRN 95-3: Reduction of Worker protection Standard (WPS) Interim Restricted Entry Intervals (REIS) for Certain Low Risk Pesticides

    EPA Pesticide Factsheets

    On January 11, 1995, EPA published a draft policy on Reduced Restricted Entry Intervals for Certain Pesticides, in the Federal Register. The final policy was published in the Federal Register on May 3, 1995. This Notice contains the final policy.

  1. 10 CFR 430.27 - Petitions for waiver and applications for interim waiver.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... design characteristics which either prevent testing of the basic model according to the prescribed test... faucets, showerheads, water closets, and urinals) as to provide materially inaccurate comparative data. (2... contains a design characteristic which either prevents testing of the basic model according to the...

  2. 10 CFR 430.27 - Petitions for waiver and applications for interim waiver.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... design characteristics which either prevent testing of the basic model according to the prescribed test... faucets, showerheads, water closets, and urinals) as to provide materially inaccurate comparative data. (2... contains a design characteristic which either prevents testing of the basic model according to the...

  3. 10 CFR 430.27 - Petitions for waiver and applications for interim waiver.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... design characteristics which either prevent testing of the basic model according to the prescribed test... faucets, showerheads, water closets, and urinals) as to provide materially inaccurate comparative data. (2... contains a design characteristic which either prevents testing of the basic model according to the...

  4. 76 FR 18813 - China Changjiang Mining & New Energy Co., Ltd.; Order of Suspension of Trading

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-05

    ... and completeness of information contained in CHJI's public filings with the Commission concerning..., 2010 without the required review of the interim financial statements by an independent public accountant; and (b) the company's independent auditor has resigned, withdrawn its audit opinion issued April...

  5. 76 FR 46621 - Group Health Plans and Health Insurance Issuers Relating to Coverage of Preventive Services Under...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-03

    ...This document contains amendments to the interim final regulations implementing the rules for group health plans and health insurance coverage in the group and individual markets under provisions of the Patient Protection and Affordable Care Act regarding preventive health services.

  6. Job Satisfaction of Home Health Satisfaction Workers in the Environment of Cost Containment

    ERIC Educational Resources Information Center

    Egan, Marcia; Kadushin, Goldie

    2004-01-01

    This national survey examined the job satisfaction of 228 home health social workers in the restrictive reimbursement environment of the Medicare interim payment system. Administrators' helpfulness in resolving ethical conflicts between patient access to services and agency financial priorities contributed significantly to greater satisfaction in…

  7. 75 FR 39632 - Regulated Navigation Area; Gulf Intracoastal Waterway, Inner Harbor Navigation Canal, Harvey...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-12

    ..., Algiers Canal, New Orleans, LA; Correction ACTION: Interim rule; Correction. SUMMARY: In the Federal... Area; Gulf Intracoastal Waterway, Inner Harbor Navigation Canal, Harvey Canal, Algiers Canal, New Orleans, LA into the Code of Federal Regulations. That publication contained an error in the DATES section...

  8. 76 FR 54697 - Certification of Factual Information To Import Administration During Antidumping and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... Portal (``Portal'') at http://www.regulations.gov . Any questions concerning file formatting, document... Portal. See Interim Final Rule on Certification of Factual Information To Import Administration During... complete to the best of my knowledge. I am aware that the information contained in this submission may be...

  9. Radon Reduction Techniques in Schools: Interim Technical Guidance.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC.

    This technical document is intended to assist school facilities maintenance personnel in the selection, design, and operation of radon reduction systems in schools. The guidance contained in this document is based largely on research conducted in 1987 and 1988 in schools located in Maryland and Virginia. Researchers from the United States…

  10. 77 FR 33662 - Structure and Practices of the Video Relay Service Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-07

    ... FEDERAL COMMUNICATIONS COMMISSION 47 CFR Part 64 [CG Docket No. 10-51; FCC 11-118] Structure and Practices of the Video Relay Service Program AGENCY: Federal Communications Commission. ACTION: Correcting amendments. SUMMARY: This document contains a correction to the interim regulations of the Commission's rules...

  11. 75 FR 41693 - Export Inspection and Weighing Waiver for High Quality Specialty Grains Transported in Containers

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-19

    ... DEPARTMENT OF AGRICULTURE Grain Inspection, Packers and Stockyards Administration 7 CFR Part 800... Agriculture's (USDA) Grain Inspection, Packers and Stockyards Administration (GIPSA) is issuing an interim... and individual elevator operators shipping less than 15,000 metric tons during the current and...

  12. Interim reliability-evaluation program: analysis of the Browns Ferry, Unit 1, nuclear plant. Appendix B - system descriptions and fault trees

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mays, S.E.; Poloski, J.P.; Sullivan, W.H.

    1982-07-01

    This report describes a risk study of the Browns Ferry, Unit 1, nuclear plant. The study is one of four such studies sponsored by the NRC Office of Research, Division of Risk Assessment, as part of its Interim Reliability Evaluation Program (IREP), Phase II. This report is contained in four volumes: a main report and three appendixes. Appendix B provides a description of Browns Ferry, Unit 1, plant systems and the failure evaluation of those systems as they apply to accidents at Browns Ferry. Information is presented concerning front-line system fault analysis; support system fault analysis; human error models andmore » probabilities; and generic control circuit analyses.« less

  13. 40 CFR 261.7 - Residues of hazardous waste in empty containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Residues of hazardous waste in empty containers. 261.7 Section 261.7 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) IDENTIFICATION AND LISTING OF HAZARDOUS WASTE General § 261.7 Residues of hazardous...

  14. Transporting Radioactive Waste: An Engineering Activity. Grades 5-12.

    ERIC Educational Resources Information Center

    HAZWRAP, The Hazardous Waste Remedial Actions Program.

    This brochure contains an engineering activity for upper elementary, middle school, and high school students that examines the transportation of radioactive waste. The activity is designed to inform students about the existence of radioactive waste and its transportation to disposal sites. Students experiment with methods to contain the waste and…

  15. Deep Vadose Zone Treatability Test for the Hanford Central Plateau: Interim Post-Desiccation Monitoring Results, Fiscal Year 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Truex, Michael J.; Strickland, Christopher E.; Johnson, Christian D.

    Over decades of operation, the U.S. Department of Energy (DOE) and its predecessors have released nearly 2 trillion L (450 billion gal.) of liquid into the vadose zone at the Hanford Site. Much of this discharge of liquid waste into the vadose zone occurred in the Central Plateau, a 200 km 2 (75 mi 2) area that includes approximately 800 waste sites. Some of the inorganic and radionuclide contaminants in the deep vadose zone at the Hanford Site are at depths below the limit of direct exposure pathways, but may need to be remediated to protect groundwater. The Tri-Party Agenciesmore » (DOE, U.S. Environmental Protection Agency, and Washington State Department of Ecology) established Milestone M 015 50, which directed DOE to submit a treatability test plan for remediation of technetium-99 (Tc-99) and uranium in the deep vadose zone. These contaminants are mobile in the subsurface environment and have been detected at high concentrations deep in the vadose zone, and at some locations have reached groundwater. Testing technologies for remediating Tc-99 and uranium will also provide information relevant for remediating other contaminants in the vadose zone. A field test of desiccation is being conducted as an element of the DOE test plan published in March 2008 to meet Milestone M 015 50. The active desiccation portion of the test has been completed. Monitoring data have been collected at the field test site during the post-desiccation period and are reported herein. This is an interim data summary report that includes about 3 years of post-desiccation monitoring data. The DOE field test plan proscribes a total of 5 years of post-desiccation monitoring.« less

  16. Simultaneous treatment of SO2 containing stack gases and waste water

    NASA Technical Reports Server (NTRS)

    Poradek, J. C.; Collins, D. D. (Inventor)

    1978-01-01

    A process for simultaneously removing sulfur dioxide from stack gases and the like and purifying waste water such as derived from domestic sewage is described. A portion of the gas stream and a portion of the waste water, the latter containing dissolved iron and having an acidic pH, are contacted in a closed loop gas-liquid scrubbing zone to effect absorption of the sulfur dioxide into the waste water. A second portion of the gas stream and a second portion of the waste water are controlled in an open loop gas-liquid scrubbing zone. The second portion of the waste water contains a lesser amount of iron than the first portion of the waste water. Contacting in the openloop scrubbing zone is sufficient to acidify the waste water which is then treated to remove solids originally present.

  17. Slovenian Experience with the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stritar, A.

    Slovenia is a relatively small European country with only one operating nuclear power plant, one operating research reactor and one Central Interim Storage for Radioactive Waste from small producers. There are also a uranium mine and mill at Zirovski vrh, both in the decommissioning stage. The Slovenian Government, its public and neighboring countries are most interested in the managing of radioactive waste in the safest possible way by carefully utilizing best practices and existing human and financial resources. In order to achieve this goal the tight connection with the international community in the area of radioactive waste management is essential.more » Slovenia was among those countries involved in the process of preparation of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management (Joint Convention) from the very beginning and was also among first ratifiers. Slovenia had prepared the first report under the Convention and took part in the first Review Meeting in November 2003. The preparation of this report was not regarded only as a fulfillment of obligation toward Joint Convention, but was considered primarily as a kind of self appraisal of the national radioactive management program. Therefore the preparation of the report primarily contributed to the improvements in the field of radioactive waste management and consequently enhanced the safety of our public. For the preparation of the second report for the review meeting in 2006 it was decided to follow the structure of the first report. Only updates were introduced and eventual changes in the area of radioactive waste management were reflected. (authors)« less

  18. Quantifying capital goods for collection and transport of waste.

    PubMed

    Brogaard, Line K; Christensen, Thomas H

    2012-12-01

    The capital goods for collection and transport of waste were quantified for different types of containers (plastic containers, cubes and steel containers) and an 18-tonnes compacting collection truck. The data were collected from producers and vendors of the bins and the truck. The service lifetime and the capacity of the goods were also assessed. Environmental impact assessment of the production of the capital goods revealed that, per tonne of waste handled, the truck had the largest contribution followed by the steel container. Large high density polyethylene (HDPE) containers had the lowest impact per tonne of waste handled. The impact of producing the capital goods for waste collection and transport cannot be neglected as the capital goods dominate (>85%) the categories human-toxicity (non-cancer and cancer), ecotoxicity, resource depletion and aquatic eutrophication, but also play a role (>13%) within the other impact categories when compared with the impacts from combustion of fuels for the collection and transport of the waste, when a transport distance of 25 km was assumed.

  19. Performance of the Fecal Immunochemical Test for Colorectal Cancer Screening Using Different Stool-Collection Devices: Preliminary Results from a Randomized Controlled Trial.

    PubMed

    Shin, Hye Young; Suh, Mina; Baik, Hyung Won; Choi, Kui Son; Park, Boyoung; Jun, Jae Kwan; Hwang, Sang-Hyun; Kim, Byung Chang; Lee, Chan Wha; Oh, Jae Hwan; Lee, You Kyoung; Han, Dong Soo; Lee, Do-Hoon

    2016-11-15

    We are in the process of conducting a randomized trial to determine whether compliance with the fecal immunochemical test (FIT) for colorectal cancer screening differs according to the stool-collection method. This study was an interim analysis of the performance of two stool-collection devices (sampling bottle vs conventional container). In total, 1,701 individuals (age range, 50 to 74 years) were randomized into the sampling bottle group (intervention arm) or the conventional container group (control arm). In both groups, we evaluated the FIT positivity rate, the positive predictive value for advanced neoplasia, and the detection rate for advanced neoplasia. The FIT positivity rates were 4.1% for the sampling bottles and 2.0% for the conventional containers; these values were significantly different. The positive predictive values for advanced neoplasia in the sampling bottles and conventional containers were 11.1% (95% confidence interval [CI], -3.4 to 25.6) and 12.0% (95% CI, -0.7 to 24.7), respectively. The detection rates for advanced neoplasia in the sampling bottles and conventional containers were 4.5 per 1,000 persons (95% CI, 2.0 to 11.0) and 2.4 per 1,000 persons (95% CI, 0.0 to 5.0), respectively. The impact of these findings on FIT screening performance was unclear in this interim analysis. This impact should therefore be evaluated in the final analysis following the final enrollment period.

  20. Passive Neutron Non-Destructive Assay for Remediation of Radiological Waste at Hanford Burial Grounds- 13189

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simpson, A.; Pitts, M.; Ludowise, J.D.

    The Hanford burial grounds contains a broad spectrum of low activity radioactive wastes, transuranic (TRU) wastes, and hazardous wastes including fission products, byproduct material (thorium and uranium), plutonium and laboratory chemicals. A passive neutron non-destructive assay technique has been developed for characterization of shielded concreted drums exhumed from the burial grounds. This method facilitates the separation of low activity radiological waste containers from TRU waste containers exhumed from the burial grounds. Two identical total neutron counting systems have been deployed, each consisting of He-3 detectors surrounded by a polyethylene moderator. The counts are processed through a statistical filter that removesmore » outliers in order to suppress cosmic spallation events and electronic noise. Upon completion of processing, a 'GO / NO GO' signal is provided to the operator based on a threshold level equivalent to 0.5 grams of weapons grade plutonium in the container being evaluated. This approach allows instantaneous decisions to be made on how to proceed with the waste. The counting systems have been set up using initial on-site measurements (neutron emitting standards loaded into surrogate waste containers) combined with Monte Carlo modeling techniques. The benefit of this approach is to allow the systems to extend their measurement ranges, in terms of applicable matrix types and container sizes, with minimal interruption to the operations at the burial grounds. (authors)« less

  1. Development of an Integrated Waste Plan for Chalk River Laboratories - 13376

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jones, L.

    2013-07-01

    To further its Strategic Planning, the Atomic Energy of Canada Limited (AECL) required an effective approach to developing a fully integrated waste plan for its Chalk River Laboratories (CRL) site. Production of the first Integrated Waste Plan (IWP) for Chalk River was a substantial task involving representatives from each of the major internal stakeholders. Since then, a second revision has been produced and a third is underway. The IWP remains an Interim IWP until all gaps have been resolved and all pathways are at an acceptable level of detail. Full completion will involve a number of iterations, typically annually formore » up to six years. The end result of completing this process is a comprehensive document and supporting information that includes: - An Integrated Waste Plan document summarizing the entire waste management picture in one place; - Details of all the wastes required to be managed, including volume and timings by waste stream; - Detailed waste stream pathway maps for the whole life-cycle for each waste stream to be managed from pre-generation planning through to final disposition; and - Critical decision points, i.e. decisions that need to be made and timings by when they need to be made. A waste inventory has been constructed that serves as the master reference inventory of all waste that has been or is committed to be managed at CRL. In the past, only the waste that is in storage has been effectively captured, and future predictions of wastes requiring to be managed were not available in one place. The IWP has also provided a detailed baseline plan at the current level of refinement. Waste flow maps for all identified waste streams, for the full waste life cycle complete to disposition have been constructed. The maps identify areas requiring further development, and show the complexities and inter-relationships between waste streams. Knowledge of these inter-dependencies is necessary in order to perform effective options studies for enabling facilities that may be necessary for multiple related waste streams. The next step is to engage external stakeholders in the optioneering work required to provide enhanced confidence that the path forward identified within future iterations of the IWP will be acceptable to all. (authors)« less

  2. Reflections on Post-16 Strategies in European Countries. Interim Report of the Leonardo da Vinci/Multiplier Effect Project III.3.a. Priority 2: Forging Links between Educational Establishments and Enterprises (1997-2000) ID 27009. Working Papers, No. 9.

    ERIC Educational Resources Information Center

    Stenstrom, Marja-Leena, Ed.

    This four-part publication contains 19 papers on educational practices and promises for post-16 education in European countries. Part I, the introduction, contains these three papers: "Sharpening Post-16 Education Strategies: Building on the Results of the Previous Projects" (Johanna Lasonen); "'Parity of Esteem' and 'Integrated…

  3. U.S. Department of Energy Implementation of Chemical Evaluation Requirements for Transuranic Waste Disposal at the Waste Isolation Pilot Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Moon, Alison; Barkley, Michelle; Poppiti, James

    This report summarizes new controls designed to ensure that transuranic waste disposed at the Waste Isolation Pilot Plant (WIPP) does not contain incompatible chemicals. These new controls include a Chemical Compatibility Evaluation, an evaluation of oxidizing chemicals, and a waste container assessment to ensure that waste is safe for disposal. These controls are included in the Chapter 18 of the Documented Safety Analysis for WIPP (1).

  4. The NEA research and environmental surveillance programme related to sea disposal of low-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Rugger, B.; Templeton, W. L.; Gurbutt, P.

    1983-05-01

    Sea dumping operations of certain types of packaged low and medium level radioactive wastes have been carried out since 1967 in the North-East Atlantic under the auspices of the OECD Nuclear Energy Agency. On the occasion of the 1980 review of the continued suitability of the North-East Atlantic site used for the disposal of radioactive waste, it was recommended that an effort should be made to increase the scientific data base relating to the oceanographic and biological characteristics of the dumping area. In particular, it was suggested that a site specific model of the transfer of radionuclides in the marine environment be developed, which would permit a better assessment of the potential radiation doses to man from the dumping of radioactive waste. To fulfill these objectives a research and environmental surveillance program related to sea disposal of radioactive waste was set up in 1981 with the participation of thirteen Member countries and the International Laboratory for Marine Radioactivity of the IAEA in Monaco. The research program is focused on five research areas which are directly relevant to the preparation of more site specific assessments in the future. They are: model development; physical oceanography; geochemistry; biology; and radiological surveillance. Promising results have already been obtained and more are anticipated in the not too distant future. An interim description of the NEA dumping site has been prepared which provides an excellent data base for this area.

  5. Karlsruhe Database for Radioactive Wastes (KADABRA) - Accounting and Management System for Radioactive Waste Treatment - 12275

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Himmerkus, Felix; Rittmeyer, Cornelia

    2012-07-01

    The data management system KADABRA was designed according to the purposes of the Cen-tral Decontamination Department (HDB) of the Wiederaufarbeitungsanlage Karlsruhe Rueckbau- und Entsorgungs-GmbH (WAK GmbH), which is specialized in the treatment and conditioning of radioactive waste. The layout considers the major treatment processes of the HDB as well as regulatory and legal requirements. KADABRA is designed as an SAG ADABAS application on IBM system Z mainframe. The main function of the system is the data management of all processes related to treatment, transfer and storage of radioactive material within HDB. KADABRA records the relevant data concerning radioactive residues, interimmore » products and waste products as well as the production parameters relevant for final disposal. Analytical data from the laboratory and non destructive assay systems, that describe the chemical and radiological properties of residues, production batches, interim products as well as final waste products, can be linked to the respective dataset for documentation and declaration. The system enables the operator to trace the radioactive material through processing and storage. Information on the actual sta-tus of the material as well as radiological data and storage position can be gained immediately on request. A variety of programs accessed to the database allow the generation of individual reports on periodic or special request. KADABRA offers a high security standard and is constantly adapted to the recent requirements of the organization. (authors)« less

  6. 40 CFR 265.173 - Management of containers.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 25 2010-07-01 2010-07-01 false Management of containers. 265.173... DISPOSAL FACILITIES Use and Management of Containers § 265.173 Management of containers. (a) A container... waste. (b) A container holding hazardous waste must not be opened, handled, or stored in a manner which...

  7. Several organic parameters on underlying hazardous constituents list can not be measured at the universal treatment standards

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, H.C.

    1998-07-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) has several permitted treatment, storage and disposal facilities. The INEEL Sample Management Office (SMO) conducts all analysis subcontracting activities for Department of Energy Environmental Management programs at the INEEL. In this role, the INEEL SMO has had the opportunity to subcontract the analyses of various wastes (including ash from an interim status incinerator) requesting a target analyte list equivalent to the constituents listed in 40 Code of Federal Regulations. These analyses are required to ensure that treated wastes do not contain underlying hazardous constituents (UHC) at concentrations greater than the universal treatmentmore » standards (UTS) prior to land disposal. The INEEL SMO has conducted a good-faith effort by negotiating with several commercial laboratories to identify the lowest possible quantitation and detection limits that can be achieved for the organic UHC analytes. The results of this negotiating effort has been the discovery that no single laboratory (currently under subcontract with the INEEL SMO) can achieve a detection level that is within an order of magnitude of the UTS for all organic parameters on a clean sample matrix (e.g., sand). This does not mean that there is no laboratory that can achieve the order of magnitude requirements for all organic UHCs on a clean sample matrix. The negotiations held to date indicate that it is likely that no laboratory can achieve the order of magnitude requirements for a difficult sample matrix (e.g., an incinerator ash). The authors suggest that the regulation needs to be revised to address the disparity between what is achievable in the laboratory and the regulatory levels required by the UTS.« less

  8. New approaches for MOX multi-recycling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gain, T.; Bouvier, E.; Grosman, R.

    Due to its low fissile content after irradiation, Pu from used MOX fuel is considered by some as not recyclable in LWR (Light Water Reactors). The point of this paper is hence to go back to those statements and provide a new analysis based on AREVA extended experience in the fields of fissile and fertile material management and optimized waste management. This is done using the current US fuel inventory as a case study. MOX Multi-recycling in LWRs is a closed cycle scenario where U and Pu management through reprocessing and recycling leads to a significant reduction of the usedmore » assemblies to be stored. The recycling of Pu in MOX fuel is moreover a way to maintain the self-protection of the Pu-bearing assemblies. With this scenario, Pu content is also reduced repetitively via a multi-recycling of MOX in LWRs. Simultaneously, {sup 238}Pu content decreases. All along this scenario, HLW (High-Level Radioactive Waste) vitrified canisters are produced and planned for deep geological disposal. Contrary to used fuel, HLW vitrified canisters do not contain proliferation materials. Moreover, the reprocessing of used fuel limits the space needed on current interim storage. With MOX multi-recycling in LWR, Pu isotopy needs to be managed carefully all along the scenario. The early introduction of a limited number of SFRs (Sodium Fast Reactors) can therefore be a real asset for the overall system. A few SFRs would be enough to improve the Pu isotopy from used LWR MOX fuel and provide a Pu-isotopy that could be mixed back with multi-recycled Pu from LWRs, hence increasing the Pu multi-recycling potential in LWRs.« less

  9. Mercury recovery from mercury-containing wastes using a vacuum thermal desorption system.

    PubMed

    Lee, Woo Rim; Eom, Yujin; Lee, Tai Gyu

    2017-02-01

    Mercury (Hg)-containing waste from various industrial facilities is commonly treated by incineration or stabilization/solidification and retained in a landfill at a managed site. However, when highly concentrated Hg waste is treated using these methods, Hg is released into the atmosphere and soil environment. To eliminate these risks, Hg recovery technology using thermal treatment has been developed and commercialized to recover Hg from Hg-containing waste for safe disposal. Therefore, we developed Hg recovery equipment to treat Hg-containing waste under a vacuum of 6.67kPa (abs) at 400°C and recover the Hg. In addition, the dust generated from the waste was separated by controlling the temperature of the dust filtration unit to 230°C. Additionally, water and Hg vapors were condensed in a condensation unit. The Hg removal rate after waste treatment was 96.75%, and the Hg recovery rate as elemental Hg was 75.23%. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Mercury methylation in mine wastes collected from abandoned mercury mines in the USA

    USGS Publications Warehouse

    Gray, J.E.; Hines, M.E.; Biester, H.; Lasorsa, B.K.; ,

    2003-01-01

    Speciation and transformation of Hg was studied in mine wastes collected from abandoned Hg mines at McDermitt, Nevada, and Terlingua, Texas, to evaluate formation of methyl-Hg, which is highly toxic. In these mine wastes, we measured total Hg and methyl-Hg contents, identified various Hg compounds using a pyrolysis technique, and determined rates of Hg methylation and methyl-Hg demethylation using isotopic-tracer methods. Mine wastes contain total Hg contents as high as 14000 ??g/g and methyl-Hg concentrations as high as 88 ng/g. Mine wastes were found to contain variable amounts of cinnabar, metacinnabar, Hg salts, Hg0, and Hg0 and Hg2+ sorbed onto matrix particulates. Samples with Hg0 and matrix-sorbed Hg generally contained significant methyl-Hg contents. Similarly, samples containing Hg0 compounds generally produced significant Hg methylation rates, as much as 26%/day. Samples containing mostly cinnabar showed little or no Hg methylation. Mine wastes with high methyl-Hg contents generally showed low methyl-Hg demethylation, suggesting that Hg methylation was dominant. Methyl-Hg demethylation was by both oxidative and microbial pathways. The correspondence of mine wastes containing Hg0 compounds and measured Hg methylation suggests that Hg0 oxidizes to Hg2+, which is subsequently bioavailable for microbial Hg methylation.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dowell, Jonathan; Franco, Joe

    The discussion of Hanford's River Corridor will cover work that has already been completed plus the work remaining to be done. This includes the buildings, waste sites, and groundwater plumes in the 300 Area; large-scale burial ground remediation in the 600 Area; plutonium production reactor dismantling and 'cocooning' along the river; preservation of the world's first full-scale plutonium production reactor; removal of more than 14 million tons of contaminated soil and debris along the Columbia River shoreline and throughout the River Corridor; and the excavation of buried waste sites in the river shore area. It also includes operating an EPA-permittedmore » low-level waste disposal facility in the central portion of the site. At the completions of cleanup in 2015, Hanford's River Corridor will be the largest closure project ever completed by the Department of Energy. Cleanup of the River Corridor has been one of Hanford's top priorities since the early 1990's. This urgency has been due to the proximity of hundreds of waste sites to the Columbia River. In addition, removal of the sludge from K West Basin, near the river, remains a high priority. This 220-square-mile area of the Hanford Site sits on the edge of the last free-flowing stretch of the Columbia River. The River Corridor portion of the Hanford Site includes the 100 and 300 Areas along the south shore of the Columbia River. The 100 Areas contain nine retired plutonium production reactors. These areas are also the location of numerous support facilities and solid and liquid waste disposal sites that have contaminated groundwater and soil. The 300 Area, located just north of the city of Richland, contains fuel fabrication facilities, nuclear research and development facilities, and their associated solid and liquid waste disposal sites that have contaminated groundwater and soil. In order to ensure that cleanup actions address all threats to human health and the environment, the River Corridor includes the adjacent areas that extend from the 100 Area and 300 Area to the Central Plateau. For sites in the River Corridor, remedial actions are expected to restore groundwater to drinking water standards and ensure that aquatic life in the Columbia River is protected by achieving ambient water quality standards. It is intended that these objectives be achieved, unless technically impracticable, within a reasonable timeframe. In those instances where remedial action objectives are not achievable in a reasonable time frame, or are determined to be technically impracticable, programs are being implemented to contain the plume, prevent exposure to contaminated groundwater, and evaluate further risk reduction opportunities as new technologies become available. River Corridor cleanup work also removes potential sources of contamination, which are close to the Columbia River, and places them on the Central Plateau for final disposal. The intent is to shrink the footprint of active cleanup to within the 75-square- mile area of the Central Plateau by removing excess facilities and remediating waste sites. Cleanup actions are supporting anticipated future land uses consistent with the Hanford Reach National Monument, where applicable, and the Hanford Comprehensive Land- Use Plan (DOE 1999). The River Corridor has been divided into six geographic decision areas to achieve source and groundwater remedy decisions. These decisions will provide comprehensive coverage for all areas within the River Corridor and will incorporate ongoing interim action cleanup activities. Cleanup levels will be achieved in order to support anticipated future land uses of conservation and preservation for most of this area and industrial use for the 300 Area. At the conclusion of cleanup actions, the federal government will implement long-term stewardship activities to ensure protection of human health and the environment. (authors)« less

  12. A Characteristics-Based Approach to Radioactive Waste Classification in Advanced Nuclear Fuel Cycles

    NASA Astrophysics Data System (ADS)

    Djokic, Denia

    The radioactive waste classification system currently used in the United States primarily relies on a source-based framework. This has lead to numerous issues, such as wastes that are not categorized by their intrinsic risk, or wastes that do not fall under a category within the framework and therefore are without a legal imperative for responsible management. Furthermore, in the possible case that advanced fuel cycles were to be deployed in the United States, the shortcomings of the source-based classification system would be exacerbated: advanced fuel cycles implement processes such as the separation of used nuclear fuel, which introduce new waste streams of varying characteristics. To be able to manage and dispose of these potential new wastes properly, development of a classification system that would assign appropriate level of management to each type of waste based on its physical properties is imperative. This dissertation explores how characteristics from wastes generated from potential future nuclear fuel cycles could be coupled with a characteristics-based classification framework. A static mass flow model developed under the Department of Energy's Fuel Cycle Research & Development program, called the Fuel-cycle Integration and Tradeoffs (FIT) model, was used to calculate the composition of waste streams resulting from different nuclear fuel cycle choices: two modified open fuel cycle cases (recycle in MOX reactor) and two different continuous-recycle fast reactor recycle cases (oxide and metal fuel fast reactors). This analysis focuses on the impact of waste heat load on waste classification practices, although future work could involve coupling waste heat load with metrics of radiotoxicity and longevity. The value of separation of heat-generating fission products and actinides in different fuel cycles and how it could inform long- and short-term disposal management is discussed. It is shown that the benefits of reducing the short-term fission-product heat load of waste destined for geologic disposal are neglected under the current source-based radioactive waste classification system, and that it is useful to classify waste streams based on how favorable the impact of interim storage is on increasing repository capacity. The need for a more diverse set of waste classes is discussed, and it is shown that the characteristics-based IAEA classification guidelines could accommodate wastes created from advanced fuel cycles more comprehensively than the U.S. classification framework.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, M.S.

    The Barnwell Waste Management Facility (BWMF) is scheduled to restrict access to waste generators outside of the Atlantic Compact (SC, CT, NJ) on July 1, 2008. South Carolina, authorized under the Low-Level Waste Policy Act of 1980 and Amendments Act of 1985, and in agreement with the other Atlantic Compact states, will only accept Class A, B, and C low-level radioactive waste (LLRW) generated within compact. For many years, the BWMF has been the only LLRW disposal facility to accept Class B and C waste from LLRW generators throughout the country, except those that have access to the Northwest Compactmore » Site. Many Class B/C waste generators consider this to be a national crisis situation requiring interim or possible permanent storage, changes in operation, significant cost impacts, and/or elimination of services, especially in the health care and non-power generation industries. With proper in-house waste management practices and utilization of commercial processor services, a national crisis can be avoided, although some generators with specific waste forms or radionuclides will remain without options. In summary: It is unknown what the future will bring for commercial LLRW disposal. Could the anticipated post Barnwell Class B/C crisis be avoided by any of the following? - Barnwell Site remains open for the nation's commercial Class B/C waste; - Richland Site opens back up to the nation for commercial Class B/C waste; - Texas Site opens up to the nation for commercial Class B/C waste; - Federal Government intervenes by keeping a commercial Class B/C site open for the nation's commercial Class B/C waste; - Federal Government makes a DOE site available for commercial Class B/C waste; - Federal Government revisits the LLRW Policy Act of 1980 and Amendments Act of 1985. Without a future LLRW site capable of accepting Class B/C currently on the horizon, commercial LLRW generators are faced with waste volume elimination, reduction, or storage. With proper in-house waste management practices, utilization of commercial processor services and regulatory relief, a national crisis can be avoided. Waste volumes for storage can be reduced to as little as 10% of the current Class B/C volume. Although a national LLRW crisis can be avoided, some generators with specific waste forms or radionuclides will have a significant financial and/or operational impact due to a lack of commercial LLRW management options. (authors)« less

  14. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2012-02-29

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2012 version of the HSWMUR contains a comprehensive inventory of themore » 3389 sites and 540 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  15. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2014-02-19

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of themore » 3438 sites and 569 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  16. Hanford Site Waste Management Units Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shearer, Jeffrey P.

    2013-02-13

    The Hanford Site Waste Management Units Report (HSWMUR) has been created to meet the requirements of the Tri-Party Agreement (TPA) Action Plan, Section 3.5, which states: “The Hanford Site Waste Management Units Report shall be generated, in a format agreed upon by the Parties, as a calendar year report and issued annually by the DOE by the end of February of each year, and posted electronically for regulator and public access. This report shall reflect all changes made in waste management unit status during the previous year.” This February 2013 version of the HSWMUR contains a comprehensive inventory of themore » 3427 sites and 564 subsites in the Waste Information Data System (WIDS). The information for each site contains a description of each unit and the waste it contains, where applicable. The WIDS database provides additional information concerning the sites contained in this report and is maintained with daily changes to these sites.« less

  17. Explanation of Significant Differences for the Record of Decision for Interim Actions in Zone 1, East Tennessee Technology Park, Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bechtel Jacobs

    2011-02-01

    Zone 1 is a 1400-acre area outside the fence of the main plant at The East Tennessee Technology Park (ETTP) in Oak Ridge, Tennessee. The Record of Decision for Interim Actions in Zone, ETTP (Zone 1 Interim ROD) (DOE 2002) identifies the remedial actions for contaminated soil, buried waste, and subsurface infrastructure necessary to protect human health and to limit further contamination of groundwater. Since the Zone 1 Interim Record of Decision (ROD) was signed, new information has been obtained that requires the remedy to be modified as follows: (1) Change the end use in Contractor's Spoil Area (CSA) frommore » unrestricted industrial to recreational; (2) Remove Exposure Units (EU5) ZI-50, 51, and 52 from the scope of the Zone I Interim ROD; (3) Change the end use of the duct bank corridor from unrestricted industrial to restricted industrial; and (4) Remove restriction for the disturbance of soils below 10 feet in Exposure Unit (EU) Z1-04. In accordance with 40 Code of Federal Regulations (CFR) 300.435, these scope modifications are a 'significant' change to the Zone 1 Interim ROD. In accordance with CERCLA Sect. 117 (c) and 40 CFR 300.435 (c)(2)(i), such a significant change is documented with an Explanation of Significant Differences (ESD). The purpose of this ESD is to make the changes listed above. This ESD is part of the Administrative Record file, and it, and other information supporting the selected remedy, can be found at the DOE Information Center, 475 Oak Ridge Turnpike, Oak Ridge, Tennessee 37830, from 8:00 a.m. to 5:00 p.m., Monday through Friday. The ORR is located in Roane and Anderson counties, within and adjacent to the corporate city limits of Oak Ridge, Tennessee. ETTP is located in Roane County near the northwest corner of the ORR. ETTP began operation during World War II as part of the Manhattan Project. The original mission of ETTP was to produce enriched uranium for use in atomic weapons. The plant produced enriched uranium from 1945 until 1985. Uranium production was terminated in 1987. ORR was placed on the National Priorities List in 1989, so remediation activities are conducted under CERCLA. The primary contaminants of concern at ETTP follow: (1) In groundwater - volatile organic compounds (VOCs) at multiple locations (trichloroethene is generally the most prevalent compound); (2) In sediment - inorganic elements, radionuclides, and polychlorinated biphenyls; (3) In soil - inorganic elements, radionuclides, semivolatile organic compounds (particularly the polycyclic aromatic hydrocarbons), and VOCs; and (4) In facilities - radionuclides and polychlorinated biphenyls (abandoned facilities also pose a safety and health hazard to workers.) The purposes of the remedial actions selected in the Zone 1 Interim ROD are to allow unrestricted industrial use down to 10 feet and to remediate potential sources of groundwater contamination. Following is a summary of the major components of the Zone 1 Interim ROD remedy: (1) Excavation of the Blair Quarry burial area and associated contaminated soil; (2) Excavation of miscellaneous contaminated soil in the K-895 Cylinder Destruct Facility area and in the Powerhouse Area; (3) Removal of sludge and demolition of the K-710 sludge beds and Imhoff tanks; (4) Implementation of land use controls (LUCs); and (5) Characterization of soil and remediation of areas that exceed remediation levels.« less

  18. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, A.S.; Singh, D.

    1997-07-08

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH){sub 4} to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set. 4 figs.

  19. Method for stabilizing low-level mixed wastes at room temperature

    DOEpatents

    Wagh, Arun S.; Singh, Dileep

    1997-01-01

    A method to stabilize solid and liquid waste at room temperature is provided comprising combining solid waste with a starter oxide to obtain a powder, contacting the powder with an acid solution to create a slurry, said acid solution containing the liquid waste, shaping the now-mixed slurry into a predetermined form, and allowing the now-formed slurry to set. The invention also provides for a method to encapsulate and stabilize waste containing cesium comprising combining the waste with Zr(OH).sub.4 to create a solid-phase mixture, mixing phosphoric acid with the solid-phase mixture to create a slurry, subjecting the slurry to pressure; and allowing the now pressurized slurry to set. Lastly, the invention provides for a method to stabilize liquid waste, comprising supplying a powder containing magnesium, sodium and phosphate in predetermined proportions, mixing said powder with the liquid waste, such as tritium, and allowing the resulting slurry to set.

  20. Recent developments - US spent fuel disposition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    One of a US utility's major risk factors in continuing to operate a nuclear plant is managing discharged spent fuel. The US Department of Energy (DOE) signed contracts with utilities guaranteeing government acceptance of spent fuel by 1988. However, on December 17, 1992, DOE Secretary Watkins wrote to Sen. J. Bennett Johnston (D-LA), Chairman of the Senate Energy Committee, indicating a reassessment of DOE's programs, the results of which will be presented to Congress in January 1993. He indicated the Department may not be able to meet the 1988 date, because of difficulty in finding a site for the Monitoredmore » Retrievable Storage facility. Watkins indicated that DOE has investigated an interim solution and decided to expedite a program to certify a multi-purpose standardized cask system for spent fuel receipt, storage, transport, and disposal. To meet the expectations of US utilities, DOE is considering a plan to use federal sites for interim storage of the casks. Secretary Watkins recommended the waste program be taken off-budget and put in a revolving fund established to ensure that money already collected from utilities will be available to meet the schedule for completion of the repository.« less

  1. Internal pilots for a class of linear mixed models with Gaussian and compound symmetric data

    PubMed Central

    Gurka, Matthew J.; Coffey, Christopher S.; Muller, Keith E.

    2015-01-01

    SUMMARY An internal pilot design uses interim sample size analysis, without interim data analysis, to adjust the final number of observations. The approach helps to choose a sample size sufficiently large (to achieve the statistical power desired), but not too large (which would waste money and time). We report on recent research in cerebral vascular tortuosity (curvature in three dimensions) which would benefit greatly from internal pilots due to uncertainty in the parameters of the covariance matrix used for study planning. Unfortunately, observations correlated across the four regions of the brain and small sample sizes preclude using existing methods. However, as in a wide range of medical imaging studies, tortuosity data have no missing or mistimed data, a factorial within-subject design, the same between-subject design for all responses, and a Gaussian distribution with compound symmetry. For such restricted models, we extend exact, small sample univariate methods for internal pilots to linear mixed models with any between-subject design (not just two groups). Planning a new tortuosity study illustrates how the new methods help to avoid sample sizes that are too small or too large while still controlling the type I error rate. PMID:17318914

  2. Analysis of Transportation Options for Commercial Spent Fuel in the U.S.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalinina, Elena; Busch, Ingrid Karin

    The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S.more » Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage The U.S. Department of Energy (DOE) is laying the groundwork for implementing interim storage and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF) and high and associated transportation of spent nuclear fuel (SNF) high and associated transportation of spent nuclear fuel (SNF) highand associated transportation of spent nuclear fuel (SNF)...« less

  3. Biotechnology in the management and resource recovery from metal bearing solid wastes: Recent advances.

    PubMed

    Sethurajan, Manivannan; van Hullebusch, Eric D; Nancharaiah, Yarlagadda V

    2018-04-01

    Solid metalliferous wastes (sludges, dusts, residues, slags, red mud and tailing wastes) originating from ferrous and non-ferrous metallurgical industries are a serious environmental threat, when waste management practices are not properly followed. Metalliferous wastes generated by metallurgical industries are promising resources for biotechnological extraction of metals. These wastes still contain significant amounts of valuable non-ferrous metals, sometimes precious metals and also rare earth elements. Elemental composition and mineralogy of the metallurgical wastes is dependent on the nature of mining site and composition of primary ores mined. Most of the metalliferous wastes are oxidized in nature and contain less/no reduced sulfidic minerals (which can be quite well processed by biohydrometallurgy). However, application of biohydrometallurgy is more challenging while extracting metals from metallurgical wastes that contain oxide minerals. In this review, origin, elemental composition and mineralogy of the metallurgical solid wastes are presented. Various bio-hydrometallurgical processes that can be considered for the extraction of non-ferrous metals from metal bearing solid wastes are reviewed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  4. 37 CFR 202.2 - Copyright notice.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... may be on a container which is designed and can be expected to remain with the work; (11) The notice...) General. (1) With respect to a work published before January 1, 1978, copyright was secured, or the right to secure it was lost, except for works seeking ad interim copyright, at the date of publication, i.e...

  5. 40 CFR 80.156 - Liability for violations of the interim detergent program controls and prohibitions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... base gasoline component, the detergent component, or the detergent-additized post-refinery component of... component of any post-refinery component or gasoline in the storage tank containing gasoline found to be in... evidence, that the gasoline or detergent carrier caused the violation. (2) Post-refinery component non...

  6. 40 CFR 96.284 - Opt-in process.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... TRADING PROGRAM AND CAIR NOX AND SO2 TRADING PROGRAMS FOR STATE IMPLEMENTATION PLANS CAIR SO2 Opt-in Units... of interim review, if the plan appears to contain information demonstrating that the SO2 emissions... section, the owner or operator shall monitor and report the SO2 emissions rate and the heat input of the...

  7. Project FARE task II report : urban mass transportation industry survey of reporting capability : interim task II report for July-November 1972 period

    DOT National Transportation Integrated Search

    1972-11-01

    Report contains a description of the work done to evaluate the capability of the urban mass transit industry to report financial and operating data through a uniform reporting system. Techniques used in the evaluation included a questionnaire survey ...

  8. 77 FR 66588 - Interim Procedures for Considering Requests Under the Commercial Availability Provision of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... English. If any attachments are in a language other than English, then a complete translation must be... regarding the accuracy of the factual information. Any submission that lacks the applicable certifications... submission, and (2) the information contained in this submission is, to the best of my knowledge, complete...

  9. Unreviewed Disposal Question Evaluation: Impact of New Information since 2008 PA on Current Low-Level Solid Waste Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G.; Smith, F.; Hamm, L.

    2014-10-06

    Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and datamore » identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013: New K d values for iodine, radium and uranium; Elimination of cellulose degradation product (CDP) factors; Updated radionuclide data; Changes in transport behavior of mobile radionuclides; Potential delay in interim closure beyond 2025; and Component-in-grout (CIG) plume interaction correction. Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in revision 0 of this UDQE has rendered the projected final SOF for SLIT9 less than the WITS Admin Limit. With respect to future disposal unit operations in the East Slit Trench Group, consideration of new information for Slit Trench#14 (SLIT14) reduced the current SOF for the limiting All-Pathways 200-1000 year period (AP2) by an order of magnitude and by one quarter for the Beta-Gamma 12-100 year period (BG2) pathway. On the balance, updates to K{sub d} values and dose factors and elimination of CDP factors (generally favorable) more than compensated for the detrimental impact of a more rigorous treatment of plume dispersion. These observations suggest that future operations in the East Slit Trench Group can be conducted with higher confidence using current inventory limits, and that limits could be increased if desired for future low-level waste disposal units. The same general conclusion applies to future ST’s in the West Slit Trench Group based on the Impacted Final SOFs for existing ST’s in that area.« less

  10. 49 CFR 228.325 - Food service in a camp car or separate kitchen or dining facility in a camp.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... be stored to prevent vermin and insect infestation. (4) All food waste disposal containers shall be constructed to prevent vermin and insect infestation. (i) All food waste disposal containers used within a...) All food waste disposal containers used outside a camp car shall be located to prevent offensive odors...

  11. Waste from grocery stores

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lieb, K.

    1993-11-01

    The Community Recycling Center, Inc., (CRC, Champaign, Ill.), last year conducted a two-week audit of waste generated at two area grocery stores. The stores surveyed are part of a 10-store chain. For two of the Kirby Foods Stores, old corrugated containers (OCC) accounted for 39-45% of all waste. The summary drew correlations between the amount of OCC and the sum of food and garbage waste. The study suggested that one can reasonably estimate volumes of waste based on the amount of OCC because most things come in a box. Auditors set up a series of containers to make the collectionmore » process straightforward. Every day the containers were taken to local recycling centers and weighed. Approximate waste breakdowns for the two stores were as follows: 45% OCC; 35% food waste; 20% nonrecyclable or noncompostable items; and 10% other.« less

  12. LINER FOR EXTRUSION BILLET CONTAINERS. Interim Technical Documentary Progress Report, June 5, 1962-September 5, 1962

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spachner, S.A.

    1962-10-31

    A container-sleeve-liner assembly was designed which will provide adequate support for ceramic, ceramic coated metal, or metal liners. The design minimizes mechanical property requirements of liner materials, and permits rapid removal of worn or damaged liners. A high-strength stem was designed and fabricated. Technical literature on high-strength materials was reviewed, and high-strength materials producers were contacted to locate sources and assess applicability of existing materials for refractory metal extrusion liner use. (auth)

  13. Independent Orbiter Assessment (IOA) CIL issues resolution report, volume 3

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The results of the Independent Orbiter Assessment (IOA) of the Failure Modes and Effects Analysis (FMEA) and Critical Items List (CIL) are presented. This report contains IOA assessment workshets showing resolution of outstanding IOA CIL issues that were summarized in the IOA FMEA/CIL Assessment Interim Report, dated 9 March 1988. Each assessment worksheet has been updated with CIL issue rsolution and rationale. Volume 3 contains the worksheets for the Reaction Control Subsystem and the Communications and Tracking Subsystem.

  14. SNF Interim Storage Canister Corrosion and Surface Environment Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Charles R.; Enos, David G.

    2015-09-01

    This progress report describes work being done at Sandia National Laboratories (SNL) to assess the localized corrosion performance of container/cask materials used in the interim storage of spent nuclear fuel (SNF). Of particular concern is stress corrosion cracking (SCC), by which a through-wall crack could potentially form in a canister outer wall over time intervals that are shorter than possible dry storage times. In order for SCC to occur, three criteria must be met. A corrosive environment must be present on the canister surface, the metal must susceptible to SCC, and sufficient tensile stress to support SCC must be presentmore » through the entire thickness of the canister wall. SNL is currently evaluating the potential for each of these criteria to be met.« less

  15. Hanford Site annual dangerous waste report: Volume 2, Generator dangerous waste report, radioactive mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-12-31

    This report contains information on radioactive mixed wastes at the Hanford Site. Information consists of shipment date, physical state, chemical nature, waste description, waste number, waste designation, weight, and waste designation.

  16. Consolidation process for producing ceramic waste forms

    DOEpatents

    Hash, Harry C.; Hash, Mark C.

    2000-01-01

    A process for the consolidation and containment of solid or semisolid hazardous waste, which process comprises closing an end of a circular hollow cylinder, filling the cylinder with the hazardous waste, and then cold working the cylinder to reduce its diameter while simultaneously compacting the waste. The open end of the cylinder can be sealed prior to or after the cold working process. The preferred method of cold working is to draw the sealed cylinder containing the hazardous waste through a plurality of dies to simultaneously reduce the diameter of the tube while compacting the waste. This process provides a quick continuous process for consolidating hazardous waste, including radioactive waste.

  17. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 27 2011-07-01 2011-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  18. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 28 2013-07-01 2013-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  19. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 28 2012-07-01 2012-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

  20. 40 CFR 273.4 - Applicability-Mercury-containing equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 27 2014-07-01 2014-07-01 false Applicability-Mercury-containing... WASTES (CONTINUED) STANDARDS FOR UNIVERSAL WASTE MANAGEMENT General § 273.4 Applicability—Mercury-containing equipment. (a) Mercury-containing equipment covered under this part 273. The requirements of this...

Top