NASA Astrophysics Data System (ADS)
Zhou, Shiqi; Lamperski, Stanisław; Sokołowska, Marta
2017-07-01
We have performed extensive Monte-Carlo simulations and classical density functional theory (DFT) calculations of the electrical double layer (EDL) near a cylindrical electrode in a primitive model (PM) modified by incorporating interionic dispersion interactions. It is concluded that (i) in general, an unsophisticated use of the mean field (MF) approximation for the interionic dispersion interactions does not distinctly worsen the classical DFT performance, even if the salt ions considered are highly asymmetrical in size (3:1) and charge (5:1), the bulk molar concentration considered is high up to a total bulk ion packing fraction of 0.314, and the surface charge density of up to 0.5 C m-2. (ii) More specifically, considering the possible noises in the simulation, the local volume charge density profiles are the most accurately predicted by the classical DFT in all situations, and the co- and counter-ion singlet distributions are also rather accurately predicted; whereas the mean electrostatic potential profile is relatively less accurately predicted due to an integral amplification of minor inaccuracy of the singlet distributions. (iii) It is found that the layered structure of the co-ion distribution is abnormally possible only if the surface charge density is high enough (for example 0.5 C m-2) moreover, the co-ion valence abnormally influences the peak height of the first counter-ion layer, which decreases with the former. (iv) Even if both the simulation and DFT indicate an insignificant contribution of the interionic dispersion interaction to the above three ‘local’ quantities, it is clearly shown by the classical DFT that the interionic dispersion interaction does significantly influence a ‘global’ quantity like the cylinder surface-aqueous electrolyte interfacial tension, and this may imply the role of the interionic dispersion interaction in explaining the specific Hofmeister effects. We elucidate all of the above observations based on the arguments from the liquid state theory and at the molecular scale.
Influence of the inter-ion interaction on the phase diagrams of the 1D Falicov-Kimball system
NASA Astrophysics Data System (ADS)
Gajek, Z.; Lemański, R.
2004-05-01
A model of itinerant, spinless electrons interacting with ions via the on-site Coulomb potential U, modified by the inter-ionic nearest-neighbour interaction V, is studied on the one-dimensional infinite lattice. Only periodical configurations of the ions with a limited number of lattice sites in a unit cell and their mixtures are taken into account. Phases whose energies reach minimum values for given electron and ion chemical potentials are selected and depicted for a set of model parameters. Then the results are translated into the ion density-electron density canonical phase diagrams and summarized in the electrondensity-U plane. The diagrams clearly show how various kinds of charge ordering evolve with V, starting from V=0 case, that represents the standard Falicov-Kimball model discussed previously.
Electrostatic potential of B-DNA: effect of interionic correlations.
Gavryushov, S; Zielenkiewicz, P
1998-01-01
Modified Poisson-Boltzmann (MPB) equations have been numerically solved to study ionic distributions and mean electrostatic potentials around a macromolecule of arbitrarily complex shape and charge distribution. Results for DNA are compared with those obtained by classical Poisson-Boltzmann (PB) calculations. The comparisons were made for 1:1 and 2:1 electrolytes at ionic strengths up to 1 M. It is found that ion-image charge interactions and interionic correlations, which are neglected by the PB equation, have relatively weak effects on the electrostatic potential at charged groups of the DNA. The PB equation predicts errors in the long-range electrostatic part of the free energy that are only approximately 1.5 kJ/mol per nucleotide even in the case of an asymmetrical electrolyte. In contrast, the spatial correlations between ions drastically affect the electrostatic potential at significant separations from the macromolecule leading to a clearly predicted effect of charge overneutralization. PMID:9826596
NASA Astrophysics Data System (ADS)
Shevkunov, S. V.
2017-11-01
The mean force potential (MFP) of interaction between counterions Na+ and Cl- in a planar nanopore with structureless hydrophobic walls is calculated via computer simulation under the condition that the nanopore is in contact with water at an external pressure that exceeds the saturation pressure but remains insufficient to fill the nanopore with water. For a nanopore with a liquid phase, the MFP dependence on the interionic distance indicates the dissociation of an ion pair into two hydrated ions in a nanopore that is not completely filled with water. Fluctuations in the number of water molecules drawn into the interionic space decisively influence the dissociation. The attraction between counterions, averaged over thermal fluctuations, depends largely on the pore width and grows as the shielding of the ions' electric field by water molecules in a narrow pore diminishes. The contributions from energy and entropy to the free energy of hydration are analyzed.
Mechanical stiffening and thermal softening of rare earth chalcogenides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shriya, S.; Varshney, Dinesh; Singh, Namita, E-mail: namita.singh.2050@gmail.com
2014-04-24
The pressure and temperature dependent elastic properties such as melting temperature nature in REX; (RE = La, Pr, Eu; X = O, S, Se, Te) chalcogenides is computed with emphasis on charge transfer interactions and covalent contribution in the effective interionic interaction potential. The pressure dependent elastic constants and melting temperature confirms that REX chalcogens lattice get stiffened as a consequence of bond compression and bond strengthening, however thermal softening arose due to bond expansion and bond weakening is evidenced from temperature dependence of melting temperature (T{sub M})
Stopping power beyond the adiabatic approximation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Caro, M.; Correa, A. A.; Artacho, E.
2017-06-01
Energetic ions traveling in solids deposit energy in a variety of ways, being nuclear and electronic stopping the two avenues in which dissipation is usually treated. This separation between electrons and ions relies on the adiabatic approximation in which ions interact via forces derived from the instantaneous electronic ground state. In a more detailed view, in which non-adiabatic effects are explicitly considered, electronic excitations alter the atomic bonding, which translates into changes in the interatomic forces. In this work, we use time dependent density functional theory and forces derived from the equations of Ehrenfest dynamics that depend instantaneously on themore » time-dependent electronic density. With them we analyze how the inter-ionic forces are affected by electronic excitations in a model of a Ni projectile interacting with a Ni target, a metallic system with strong electronic stopping and shallow core level states. We find that the electronic excitations induce substantial modifications to the inter-ionic forces, which translate into nuclear stopping power well above the adiabatic prediction. Particularly, we observe that most of the alteration of the adiabatic potential in early times comes from the ionization of the core levels of the target ions, not readily screened by the valence electrons.« less
On the brittle nature of rare earth pnictides
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shriya, S.; Sapkale, R.; Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com, E-mail: sapkale.raju@rediffmail.com
The high-pressure structural phase transition and pressure as well temperature induced elastic properties in ReY; (Re = La, Sc, Pr; Y = N, P, As, Sb, Bi) pnictides have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from NaCl to CsCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, second order Cauchy discrepancy, anisotropy, hardness and brittle/ductile nature of rare earth pnictides are computed.
Ionic Interactions in Actinide Tetrahalides
NASA Astrophysics Data System (ADS)
Akdeniz, Z.; Karaman, A.; Tosi, M. P.
2001-05-01
We determine a model of the ionic interactions in AX 4 compounds (where A is an atom in the actinide series from Th to Am and X = F, Cl, Br or I) by an analysis of data on the static and dynamic structure of their molecular monomers. The potential energy function that we adopt is taken from earlier work on rare-earth trihalides [Z. Akdeniz, Z. Q q e k and M. P. Tosi, Z. Naturforsch. 55a, 861 (2000)] and in particular allows for the electronic polarizability of the actinide ion. This polarizability quantitatively determines the antisymmetric-bending vibrational mode, but its magnitude remains compatible with a symmetric tetrahedral shape of the molecule at equilibrium. The fluorides have an especially high degree of ionic character, and the interionic-force parameters for each halide of the U, Np, Pu and Am series show regular trends, suggesting that extrapolations to the other transuranic-element halides may usefully be made. The Th compounds show some deviations from these trends, and the interionic-force model that we determine for ThCl4 differs somewhat from that obtained in a previous study. We therefore return on the evaluation of the relative stability of charged oligomers of ThCl4 and ZrCl4 and find confirmation of our earlier results on this problem.
NASA Astrophysics Data System (ADS)
Soni, Shubhangi; Choudhary, K. K.; Kaurav, Netram
2018-05-01
Structural and elastic properties of transition metal nitrides, XN (X = Co, Fe and Cu), are investigated through an effective inter-ionic potential method. The B3(ZnS) type ambient crystal structure of these compounds undergoes to B1(NaCl) type structure with pressure. Structural phase transition pressure in CoN, FeN and CuN was 35, 55 and 35 GPa, respectively, predicated by computing Gibbs' free energy (G) as a function of pressure and has good agreement with available theoretical results. The elastic properties were also estimated as a function of pressure. It is found that the elastic constants increased linearly with increasing pressure due to stronger hybridization, bonding and covalent properties of constituent elements of a compound.
High pressure and temperature induced structural and elastic properties of lutetium chalcogenides
NASA Astrophysics Data System (ADS)
Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh
2018-04-01
The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.
Race, C P; Mason, D R; Sutton, A P
2009-03-18
Using time-dependent tight-binding simulations of radiation damage cascades in a model metal we directly investigate the nature of the excitations of a system of quantum mechanical electrons in response to the motion of a set of classical ions. We furthermore investigate the effect of these excitations on the attractive electronic forces between the ions. We find that the electronic excitations are well described by a Fermi-Dirac distribution at some elevated temperature, even in the absence of the direct electron-electron interactions that would be required in order to thermalize a non-equilibrium distribution. We explain this result in terms of the spectrum of characteristic frequencies of the ionic motion. Decomposing the electronic force into four well-defined components within the basis of instantaneous electronic eigenstates, we find that the effect of accumulated excitations in weakening the interionic bonds is mostly (95%) accounted for by a thermal model for the electronic excitations. This result justifies the use of the simplifying assumption of a thermalized electron system in simulations of radiation damage with an electronic temperature dependence and in the development of temperature-dependent classical potentials.
Structural stability and mechanical properties of technetium mononitride (TcN)
NASA Astrophysics Data System (ADS)
Soni, Shubhangi; Choudhary, K. K.; Kaurav, Netram
2018-05-01
Among the nitrides, 3d and 4d transition metal nitrides have been investigated both experimentally and theoretically due to their predominant performances and enormous applications. In the present paper, we have attempted to predict the structural stability and mechanical properties of technetium mononitride (TcN) using an effective interionic interaction potential, which includes the long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach. Our theoretical approach reveals the structural phase transition of the TcN B3 to B1 structure, wherein, the Gibbs' free energies of both the structures were minimized. The variations of elastic constants with pressure follow a systematic trend identical to that observed in other compounds of ZnS type structure family.
NASA Astrophysics Data System (ADS)
Jain, Aayushi; Dixit, R. C.
2018-05-01
Pressure induced structural phase transition of NaCl-type (B1) to CsCl-type (B2) structure in Sodium Chloride NaCl are presented. An effective interionic interaction potential (EIOP) with long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbor ions within the Hafemeister and Flygare approach with modified ionic charge is reported here. The reckon value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are compatible as compared with reported data. The variations of elastic constants and their combinations with pressure follow ordered behavior. The present approach has also succeeded in predicting the Born and relative stability criteria.
Watanabe, Yuuya; Ohnaka, Kenji; Fujita, Saki; Kishi, Midori; Yuchi, Akio
2011-10-01
The spaces (voids) available for cations in the five exchange resins with varying exchange capacities and cross-linking degrees were estimated, on the basis of the additivity of molar volumes of the constituents. Tetraalkylammonium ions (NR(4)(+); R: Me, Et, Pr) may completely exchange potassium ion on the resin having a larger void radius. In contrast, the ratio of saturated adsorption capacity to exchange capacity of the resin having a smaller void radius decreased with an increase in size of NR(4)(+) ions, due to the interionic contacts. Alkali metal ions could be exchanged quantitatively. While the hydration numbers of K(+), Rb(+), and Cs(+) were independent of the void radius, those of Li(+) and Na(+), especially Na(+), decreased with a decrease in void radius. Interionic contacts between the hydrated ions enhance the dehydration. Multivalent metal ions have the hydration numbers, comparable to or rather greater than those in water. A greater void volume available due to exchange stoichiometry released the interionic contacts and occasionally promoted the involvement of water molecules other than directly bound molecules. The close proximity between ions in the conventional ion-exchange resins having higher exchange capacities may induce varying interactions.
Pressure induced structural phase transition in IB transition metal nitrides compounds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Soni, Shubhangi; Kaurav, Netram, E-mail: netramkaurav@yahoo.co.uk; Jain, A.
2015-06-24
Transition metal mononitrides are known as refractory compounds, and they have, relatively, high hardness, brittleness, melting point, and superconducting transition temperature, and they also have interesting optical, electronic, catalytic, and magnetic properties. Evolution of structural properties would be an important step towards realizing the potential technological scenario of this material of class. In the present study, an effective interionic interaction potential (EIOP) is developed to investigate the pressure induced phase transitions in IB transition metal nitrides TMN [TM = Cu, Ag, and Au] compounds. The long range Coulomb, van der Waals (vdW) interaction and the short-range repulsive interaction upto second-neighbormore » ions within the Hafemeister and Flygare approach with modified ionic charge are properly incorporated in the EIOP. The vdW coefficients are computed following the Slater-Kirkwood variational method, as both the ions are polarizable. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the reported data.« less
On the pressure and temperature dependent ductile, brittle nature of SmS1-xSex semiconductor
NASA Astrophysics Data System (ADS)
Shriya, S.; Khan, E.; Khenata, R.; Varshney, Dinesh
2018-04-01
The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rocksalt to CsCl structures of SmS1-xSex (x = 0, 0.11, 0.44, 1) compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), Poisson's ratio ν and Pugh ratio ϕ (= BT/GH) the SmS1-xSex (x = 0, 0.11, 0.44, 1) lattice infers mechanical stiffening, thermal softening, and ductile (brittle) nature.
First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate
NASA Astrophysics Data System (ADS)
Toyoura, Kazuaki; Ohta, Masataka; Nakamura, Atsutomo; Matsunaga, Katsuyuki
2015-08-01
The phase transitions and ferroelectricity of LiNbO3 and LiTaO3 have been investigated theoretically from first principles. The phonon analyses and the molecular dynamics simulations revealed that the ferroelectric phase transition is not conventional displacive type but order-disorder type with strong correlation between cation displacements. According to the evaluated potential energy surfaces around the paraelectric structures, the large difference in ferroelectricity between the two oxides results from the little difference in short-range interionic interaction between Nb-O and Ta-O. As the results of the crystal orbital overlap population analyses, the different short-range interaction originates from the difference in covalency between Nb4d-O2p and Ta5d-O2p orbitals, particularly dxz-px/dyz-py orbitals (π orbitals), from the electronic point of view.
Baumketner, Andrij
2009-01-01
The performance of reaction-field methods to treat electrostatic interactions is tested in simulations of ions solvated in water. The potential of mean force between sodium chloride pair of ions and between side chains of lysine and aspartate are computed using umbrella sampling and molecular dynamics simulations. It is found that in comparison with lattice sum calculations, the charge-group-based approaches to reaction-field treatments produce a large error in the association energy of the ions that exhibits strong systematic dependence on the size of the simulation box. The atom-based implementation of the reaction field is seen to (i) improve the overall quality of the potential of mean force and (ii) remove the dependence on the size of the simulation box. It is suggested that the atom-based truncation be used in reaction-field simulations of mixed media. PMID:19292522
Interatomic Potentials for Structure Simulation of Alkaline-Earth Cuprates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eremin, N.N.; Leonyuk, L.I.; Urusov, V.S.
2001-05-01
A specific potential model of interionic interactions was derived in which the crystal structures of alkaline-earth cuprates were satisfactorily described and some of their physical properties were predicted. It was found that a harmonic three-particle O-Cu-O potential and some Morse-type contributions to the simple Buckingham-type Cu-O repulsive potential enable one to improve essentially the results of crystal structure modeling for cuprates. The obtained potential set seems to be well transferable for different cuprates, despite the variety in linkages of the CuO{sub 4} groups. In the present work this potential set model was applied in the crystal structure modeling for Ca{submore » 2}CuO{sub 3}, CaCuO{sub 2}, SrCuO{sub 3}, (Sr{sub 1.19}Ca{sub 0.73})Cu{sub 2}O{sub 4}, and BaCuO{sub 2}. Some elastic and energetic properties of the compounds under question were predicted.« less
First-principles study on phase transition and ferroelectricity in lithium niobate and tantalate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Toyoura, Kazuaki, E-mail: toyoura@numse.nagoya-u.ac.jp; Ohta, Masataka; Nakamura, Atsutomo
2015-08-14
The phase transitions and ferroelectricity of LiNbO{sub 3} and LiTaO{sub 3} have been investigated theoretically from first principles. The phonon analyses and the molecular dynamics simulations revealed that the ferroelectric phase transition is not conventional displacive type but order-disorder type with strong correlation between cation displacements. According to the evaluated potential energy surfaces around the paraelectric structures, the large difference in ferroelectricity between the two oxides results from the little difference in short-range interionic interaction between Nb-O and Ta-O. As the results of the crystal orbital overlap population analyses, the different short-range interaction originates from the difference in covalency betweenmore » Nb4d-O2p and Ta5d-O2p orbitals, particularly d{sub xz}-p{sub x}/d{sub yz}-p{sub y} orbitals (π orbitals), from the electronic point of view.« less
Biswas, Ranjit; Das, Anuradha; Shirota, Hideaki
2014-10-07
In this study, we have investigated the ion concentration dependent collective dynamics in two series of deep eutectic solvent (DES) systems by femtosecond Raman-induced Kerr effect spectroscopy, as well as some physical properties, e.g., shear viscosity (η), density (ρ), and surface tension (γ). The DES systems studied here are [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] and [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] with f = 0, 0.2, 0.4, 0.6, 0.8, and 1.0. γ of these DES systems shows near insensitivity to f, while ρ shows a moderate dependence on f. Interestingly, η exhibits a strong dependence on f. In the low-frequency Kerr spectra, obtained via the Fourier transform of the collected Kerr transients, a characteristic band at ∼70 cm(-1) is clear in [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] DES especially at the larger f. The band is attributed to the intermolecular hydrogen bond of acetamide. Because of less depolarized Raman activities of intermolecular/interionic vibrational motions, which are mostly translational (collision-induced or interaction-induced) motions, of spherical ions, the intermolecular hydrogen-bonding band is clearly observed. In contrast, the intermolecular hydrogen-bonding band is buried in the other intermolecular/interionic vibrational motions, which includes translational and reorientational (librational) motions and their cross-terms, in [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] system. The first moment (M1) of the intermolecular/interionic vibrational band in these DES systems is much higher than that in typical neutral molecular liquids and shows a weak but contrasting dependence on the bulk parameter √γ/ρ. The time constants for picosecond overdamped Kerr transients in both the DES systems, which are obtained on the basis of the analysis fitted by a triexponential function, are rather insensitive to f for both the DES systems, but all the three time constants (fast: ∼1-3 ps; intermediate: ∼7-20 ps; and slow: ∼100 ps) are different between the [0.78CH3CONH2 + 0.22{f LiBr + (1 - f )LiNO3}] and [0.75CH3CONH2 + 0.25{f KSCN + (1 - f )NaSCN}] systems. These results indicate that the intermolecular/interionic interactions in DES systems is strongly influenced by the ionic species present in these DES systems.
Theoretical analysis of the structural phase transformation from B3 to B1 in BeO under high pressure
NASA Astrophysics Data System (ADS)
Jain, Arvind; Verma, Saligram; Nagarch, R. K.; Shah, S.; Kaurav, Netram
2018-05-01
We have performed the phase transformation and elastic properties of BeO at high pressure by formulating effective interionic interaction potential. The elastic constants, including the long-range Coulomb and van der Waals (vdW) interactions and the short-range repulsive interaction of up to second-neighbor ions within the Hafemeister and Flygare approach, are derived. Assuming that both the ions are polarizable, we employed the Slater-Kirkwood variational method to estimate the vdW coefficients, a structural phase transition (Pt) from ZnS structure (B3) to NaCl structure (B1) at 108 GPa has been predicted for BeO. The estimated value of the phase transition pressure (Pt) and the magnitude of the discontinuity in volume at the transition pressure are consistent as compared to the theoretical data. The variations of elastic constants with pressure follow a systematic trend identical to that observed in others compounds of ZnS type structure family.
Qian, Qin; Hao, Jie; Ma, Wenjie; Yu, Ping; Mao, Lanqun
2016-04-01
Direct selective sensing of arginine in central nervous systems remains very essential to understanding of the molecular basis of some physiological events. This study presents the first demonstration on a simple yet effective method for arginine sensing with gold nanoparticles (Au-NPs) as the signal readout. The rationale for the method is based on the pH-dependent feature of the interionic interaction between cysteine and arginine. At pH 6.0, cysteine can only interact with arginine through the ion-pair interaction and such interaction can lead to the changes in both the solution color and UV-vis spectrum of the cysteine-protected Au-NPs upon the addition of arginine. These changes are further developed into an analytical strategy for effective sensing of arginine by rationally controlling the pH values of Au-NP dispersions with the ratio of the absorbance at 650 nm (A 650) to that at 520 nm (A 520) (A 650/A 520) as a parameter for analysis. The method is responsive to arginine without the interference from other species in the cerebral system; under the optimized conditions, the A 650/A 520 values are linear with the concentration of arginine within a concentration range from 0.80 to 64 μM, yet remain unchanged with the addition of other kinds of amino acids or the species in the central nervous system into the Au-NPs dispersion containing cysteine. The method demonstrated here is reliable and robust and could thus be used for detection of the increase of arginine in central nervous systems.
Highly luminescent and color-tunable salicylate ionic liquids
Campbell, Paul S.; Yang, Mei; Pitz, Demian; ...
2014-03-11
High quantum yields of up to 40.5 % can be achieved in salicylate-bearing ionic liquids. A range of these ionic liquids have been synthesized and their photoluminescent properties studied in detail. The differences noted can be related back to the structure of the ionic liquid cation and possible interionic interactions. It is found that shifts of emission, particularly in the pyridinium-based ionic liquids, can be related to cation–anion pairing interactions. Furthermore, facile and controlled emission color mixing is demonstrated through combining different ILs, with emission colors ranging from blue to yellow.
B1 to B2 structural phase transition in LiF under pressure
NASA Astrophysics Data System (ADS)
Jain, Aayushi; Dixit, R. C.
2018-05-01
In the last few decades the alkali halides emerged as crystals with useful applications and their high-pressure behaviour is the most intensively studied subject in high-pressure physics/chemistry, material science, and geosciences. Most alkali halides follow the B1 (NaCl-type)→B2 (CsCl-type) phase-transition route under pressure. In the present paper, we have investigated the characteristics of structural phase transition that occurred in Lithium Florid compound under high pressure. The transition pressure of B1-B2 was calculated using an effective interionic interaction potential (EIOP). The changes of the characteristics of crystals like, Gibbs free energy, cohesive energy, volume collapse, and lattice constant are calculated for the B1 and B2 structures. These data were compared with the available experimental and theoretical data.
Classical and quantum simulations of warm dense carbon
NASA Astrophysics Data System (ADS)
Whitley, Heather; Sanchez, David; Hamel, Sebastien; Correa, Alfredo; Benedict, Lorin
We have applied classical and DFT-based molecular dynamics (MD) simulations to study the equation of state of carbon in the warm dense matter regime (ρ = 3.7 g/cc, 0.86 eV
Superexchange and spin-glass formation in semimagnetic semiconductors
NASA Astrophysics Data System (ADS)
Rusin, Tomasz M.
1996-05-01
The Mn-Mn superexchange interaction in semimagnetic semiconductors A1-xMnxB (where A=Zn, Cd and B=S, Se, Te) is studied within the three-level model of the band structure. We focus on the dependence of the interaction on the interion distance Jdd(r)=J0f(r). In the present work, the function f(r) is obtained analytically. This, only weakly material-dependent function is found to decrease with Mn-Mn distance much slower than its Gaussian approximation derived previously. The exact form of the decay of the superexchange can be approximated by a power law J0r-8.5. This is close to an experimental result, J0r-6.8, determined on the basis of the spin-glass transition temperature on the composition.
NASA Astrophysics Data System (ADS)
Ishida, Tateki
2015-01-01
Recent theoretical studies on interesting topics related to polarization effects in solutions are presented. As one of interesting topics, ionic liquids (ILs) solvents are focused on. The collective dynamics of electronic polarizability through interionic dynamics and the effect of polarization in ILs, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF6]), are studied with molecular dynamics simulation. Also, the time-dependent polarization effect on the probe betaine dye molecule, pyridinium N-phenoxide, in water is investigated by a time-dependent reference interaction site model self-consistent field (time-dependent RISM-SCF) approach. The importance of considering polarization effects on solution systems related to solvent collective motions is shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishida, Tateki
2015-01-22
Recent theoretical studies on interesting topics related to polarization effects in solutions are presented. As one of interesting topics, ionic liquids (ILs) solvents are focused on. The collective dynamics of electronic polarizability through interionic dynamics and the effect of polarization in ILs, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIm][PF{sub 6}]), are studied with molecular dynamics simulation. Also, the time-dependent polarization effect on the probe betaine dye molecule, pyridinium N-phenoxide, in water is investigated by a time-dependent reference interaction site model self-consistent field (time-dependent RISM-SCF) approach. The importance of considering polarization effects on solution systems related to solvent collective motions is shown.
A Monte Carlo (N,V,T) study of the stability of charged interfaces: A simulation on a hypersphere
NASA Astrophysics Data System (ADS)
Delville, A.; Pellenq, R. J.-M.; Caillol, J. M.
1997-05-01
We have used an exact expression of the Coulombic interactions derived on a hypersphere of an Euclidian space of dimension four to determine the swelling behavior of two infinite charged plates neutralized by exchangeable counterions. Monte Carlo simulations in the (N,V,T) ensemble allows for a derivation of short-ranged hard core repulsions and long-ranged electrostatic forces, which are the two components of the interionic forces in the context of the primitive model. Comparison with numerical results obtained by a classical Euclidian method illustrates the efficiency of the hyperspherical approach, especially at strong coupling between the charged particles, i.e., for divalent counterions and small plate separation.
Concentration dependence of electrical resistivity of binary liquid alloy HgZn: Ab-initio study
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2013-06-01
The electrical resistivity of HgZn liquid alloy has been made calculated using Troullier and Martins ab-initio pseudopotential as a function of concentration. Hard sphere diameters of Hg and Zn are obtained through the inter-ionic pair potential have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. These results suggest that ab-initio approach for calculating electrical resistivity is quite successful in explaining the electronic transport properties of binary Liquid alloys.
First principles molecular dynamics of molten NaCl
NASA Astrophysics Data System (ADS)
Galamba, N.; Costa Cabral, B. J.
2007-03-01
First principles Hellmann-Feynman molecular dynamics (HFMD) results for molten NaCl at a single state point are reported. The effect of induction forces on the structure and dynamics of the system is studied by comparison of the partial radial distribution functions and the velocity and force autocorrelation functions with those calculated from classical MD based on rigid-ion and shell-model potentials. The first principles results reproduce the main structural features of the molten salt observed experimentally, whereas they are incorrectly described by both rigid-ion and shell-model potentials. Moreover, HFMD Green-Kubo self-diffusion coefficients are in closer agreement with experimental data than those predicted by classical MD. A comprehensive discussion of MD results for molten NaCl based on different ab initio parametrized polarizable interionic potentials is also given.
Temperature Dependence of Thermodynamic Properties of Thallium Chloride and Thallium Bromide
NASA Astrophysics Data System (ADS)
Kavanoz, H. B.
2015-02-01
Thermodynamic properties as lattice parameters, thermal expansion, heat capacities Cp and Cv, bulk modulus, and Gruneisen parameter of ionic halides TlCl and TlBr in solid and liquid phases were studied using classical molecular dynamics simulation (MD) with interionic Vashistha-Rahman (VR) model potential. In addition to the static and transport properties which have been previously reported by the author [13], this study further confirms that temperature dependence of the calculated thermophysical properties of TlCl and TlBr are in agreement with the available experimental data at both solid and liquid phases in terms of providing an alternative rigid ion potential. The results give a fairly good description of TlCl and TlBr in the temperature range 10-1000 K.
Absorption Spectroscopy Analysis of Calcium-Phosphate Glasses Highly Doped with Monovalent Copper.
Jiménez, José A
2016-06-03
CaO-P2 O5 glasses with high concentrations of monovalent copper ions were prepared by a simple melt-quench method through CuO and SnO co-doping. Spectroscopic characterization was carried out by optical absorption with the aim of analyzing the effects of Cu(+) ions on the optical band-gap energies, which were estimated on the basis of indirect-allowed transitions. The copper(I) content is estimated in the CuO/SnO-containing glasses after the assessment of the concentration dependence of Cu(2+) absorption in the visible region for CuO singly doped glasses. An exponential dependence of the change in optical band gaps (relative to the host) with Cu(+) concentration is inferred up to about 10 mol %. However, the entire range is divided into two distinct linear regions that are characterized by different rates of change with respect to concentration: 1) below 5 mol %, where the linear dependence presents a relatively high magnitude of the slope; and 2) from 5-10 mol %, where a lower magnitude of the slope is manifested. With increasing concentration, the mean Cu(+) -Cu(+) interionic distance decreases, thereby decreasing the sensitivity of monovalent copper for light absorption. The decrease in optical band-gap energies is ultimately shown to follow a linear dependence with the interionic distance, suggesting the potential of the approach to gauge the concentration of monovalent copper straightforwardly in amorphous hosts. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Ion-dipole interactions in concentrated organic electrolytes.
Chagnes, Alexandre; Nicolis, Stamatios; Carré, Bernard; Willmann, Patrick; Lemordant, Daniel
2003-06-16
An algorithm is proposed for calculating the energy of ion-dipole interactions in concentrated organic electrolytes. The ion-dipole interactions increase with increasing salt concentration and must be taken into account when the activation energy for the conductivity is calculated. In this case, the contribution of ion-dipole interactions to the activation energy for this transport process is of the same order of magnitude as the contribution of ion-ion interactions. The ion-dipole interaction energy was calculated for a cell of eight ions, alternatingly anions and cations, placed on the vertices of an expanded cubic lattice whose parameter is related to the mean interionic distance (pseudolattice theory). The solvent dipoles were introduced randomly into the cell by assuming a randomness compacity of 0.58. The energy of the dipole assembly in the cell was minimized by using a Newton-Raphson numerical method. The dielectric field gradient around ions was taken into account by a distance parameter and a dielectric constant of epsilon = 3 at the surfaces of the ions. A fair agreement between experimental and calculated activation energy has been found for systems composed of gamma-butyrolactone (BL) as solvent and lithium perchlorate (LiClO4), lithium tetrafluoroborate (LiBF4), lithium hexafluorophosphate (LiPF6), lithium hexafluoroarsenate (LiAsF6), and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) as salts.
Joseph, Aswathy; Thomas, Vibin Ipe; Żyła, Gaweł; Padmanabhan, A S; Mathew, Suresh
2018-01-11
A comprehensive study on the structure, nature of interaction, and properties of six ionic pairs of 1-butylpyridinium and 1-butyl-4-methylpyridinium cations in combination with tetrafluoroborate (BF 4 - ), chloride (Cl - ), and bromide (Br - ) anions have been carried out using density functional theory (DFT). The anion-cation interaction energy (ΔE int ), thermochemistry values, theoretical band gap, molecular orbital energy order, DFT-based chemical activity descriptors [chemical potential (μ), chemical hardness (η), and electrophilicity index (ω)], and distribution of density of states (DOS) of these ion pairs were investigated. The ascendancy of the -CH 3 substituent at the fourth position of the 1-butylpyridinium cation ring on the values of ΔE int , theoretical band gap and chemical activity descriptors was evaluated. The ΔE int values were negative for all six ion pairs and were highest for Cl - containing ion pairs. The theoretical band gap value after -CH 3 substitution increased from 3.78 to 3.96 eV (for Cl - ) and from 2.74 to 2.88 eV (for Br - ) and decreased from 4.9 to 4.89 eV (for BF 4 - ). Ion pairs of BF 4 - were more susceptible to charge transfer processes as inferred from their significantly high η values and comparatively small difference in ω value after -CH 3 substitution. The change in η and μ values due to the -CH 3 substituent is negligibly small in all cases except for the ion pairs of Cl - . Critical-point (CP) analyses were carried out to investigate the AIM topological parameters at the interionic bond critical points (BCPs). The RDG isosurface analysis indicated that the anion-cation interaction was dominated by strong H cat ···X ani and C cat ···X ani interactions in ion pairs of Cl - and Br - whereas a weak van der Waal's effect dominated in ion pairs of BF 4 - . The molecular electrostatic potential (MESP)-based parameter ΔΔV min measuring the anion-cation interaction strength showed a good linear correlation with ΔE int for all 1-butylpyridinium ion pairs (R 2 = 0.9918). The ionic crystal density values calculated by using DFT-based MESP showed only slight variations from experimentally reported values.
High Pressure EPR for Probing the Magnetic Anisotropy in Single Molecule Magnets
NASA Astrophysics Data System (ADS)
Bhaskaran, Lakshmi; Trociewitz, Bianca; Dubroca, Thierry; Hill, Stephen
Single-molecule magnets (SMM) are potential candidates for nanoscale magnetic information storage, and a platform for studying classical and quantum behaviors at the mesoscopic scale. Varying the structures of these molecules by chemical modification can give rise to changes in their magnetic properties. However, this approach can be unpredictable, leaving very little control via chemical synthesis. An alternate approach is to exert physical pressure. This convenient tool can be used to vary crystal packing, local coordination geometries, as well as inter-ion and intermolecular interactions without changing the chemical composition of a SMM. Moreover, pressure in combination with Electron Paramagnetic Resonance (EPR), can be employed to better understand the factors that control magnetic anisotropy, both at the single-ion level and in exchange-coupled molecules. Here we present a microwave cavity integrated with a diamond anvil cell with a pressure range up to 1.5 GPa. As an example we show results from single crystal high field EPR experiments performed on an exchange coupled system, [Fe8O2(OH)12(tacn)6] Br8.9H2O, better known as Fe8 with a giant spin of S =10. The obtained pressure-dependent results will be discussed. National High Magnetic Field Laboratory.
The Nature of the Interactions in Triethanolammonium-Based Ionic Liquids. A Quantum Chemical Study.
Fedorova, Irina V; Safonova, Lyubov P
2018-05-10
Structural features and interionic interactions play a crucial role in determining the overall stability of ionic liquids and their physicochemical properties. Therefore, we performed high-level quantum-chemical study of different cation-anion pairs representing the building units of protic ionic liquids based on triethanolammonium cation and anions of sulfuric, nitric, phosphoric, and phosphorus acids to provide essential insight into these phenomena at the molecular level. It was shown that every structure is stabilized through multiple H bonds between the protons in the N-H and O-H groups of the cation and different oxygen atoms of the anion acid. Using atoms in molecules topological parameters and natural bond orbital analysis, we determined the nature and strength of these interactions. Our calculations suggest that the N-H group of the cation has more proton donor-like character than the O-H group that makes the N-H···O hydrogen bonds stronger. A close relation between the binding energies of these ion pairs and experimental melting points was established: the smaller the absolute value of the binding energy between ions, the lower is the melting point.
Zhan, Qiuqiang; Liu, Haichun; Wang, Baoju; Wu, Qiusheng; Pu, Rui; Zhou, Chao; Huang, Bingru; Peng, Xingyun; Ågren, Hans; He, Sailing
2017-10-20
Stimulated emission depletion microscopy provides a powerful sub-diffraction imaging modality for life science studies. Conventionally, stimulated emission depletion requires a relatively high light intensity to obtain an adequate depletion efficiency through only light-matter interaction. Here we show efficient emission depletion for a class of lanthanide-doped upconversion nanoparticles with the assistance of interionic cross relaxation, which significantly lowers the laser intensity requirements of optical depletion. We demonstrate two-color super-resolution imaging using upconversion nanoparticles (resolution ~ 66 nm) with a single pair of excitation/depletion beams. In addition, we show super-resolution imaging of immunostained cytoskeleton structures of fixed cells (resolution ~ 82 nm) using upconversion nanoparticles. These achievements provide a new perspective for the development of photoswitchable luminescent probes and will broaden the applications of lanthanide-doped nanoparticles for sub-diffraction microscopic imaging.
NASA Astrophysics Data System (ADS)
Algradee, M. A.; Sultan, M.; Samir, O. M.; Alwany, A. Elwhab B.
2017-08-01
The Nd3+-doped lithium-zinc-phosphate glasses were prepared by means of conventional melt quenching method. X-ray diffraction results confirmed the glassy nature of the studied glasses. The physical parameters such as the density, molar volume, ion concentration, polaron radius, inter-ionic distance, field strength and oxygen packing density were calculated using different formulae. The transmittance and reflectance spectra of glasses were recorded in the wavelength range 190-1200 nm. The values of optical band gap and Urbach energy were determined based on Mott-Davis model. The refractive indices for the studied glasses were evaluated from optical band gap values using different methods. The average electronic polarizability of the oxide ions, optical basicity and an interaction parameter were investigated from the calculated values of the refractive index and the optical band gap for the studied glasses. The variations in the different physical and optical properties of glasses with Nd2O3 content were discussed in terms of different parameters such as non-bridging oxygen and different concentrations of Nd cation in glass system.
Jiang, Jian-Bing; Bian, Guo-Qing; Zhang, Ya-Ping; Luo, Wen; Zhu, Qin-Yu; Dai, Jie
2011-10-07
Three anion-cation compounds 1-3 with formula [M(phen)(3)][Cd(4)(SPh)(10)]·Sol (M = Ru(2+), Fe(2+), and Ni(2+), Sol = MeCN and H(2)O) have been synthesized and characterized by single-crystal analysis. Both the cations and anion are well-known ions, but the properties of the co-assembled compounds are interesting. Molecular structures and charge-transfer between the cations and anions in crystal and even in solution are discussed. These compounds are isomorphous and short inter-ion interactions are found in these crystals, such as π···π stacking and C-H···π contacts. Both spectroscopic and theoretical calculated results indicate that there is anion-cation charge-transfer (ACCT) between the Ru-phen complex dye and the Cd-SPh cluster, which plays an important role in their photophysical properties. The intensity of the fluorescent emission of the [Ru(phen)(3)](2+) is enhanced when the cation interacts with the [Cd(4)(SPh)(10)](2-) anion. The mechanism for the enhancement of photoluminescence has been proposed.
NASA Astrophysics Data System (ADS)
Sharma, Nalini; Thakur, Anil; Ahluwalia, P. K.
2013-02-01
The electrical resistivity of compound forming liquid alloy HgPb is studied as a function of concentration. Hard sphere diameters of Hg and Pb are obtained through the inter-ionic pair potential evaluated using Troullier and Martins ab initio pseudopotential, which have been used to calculate partial structure factors. Considering the liquid alloy to be a ternary mixture Ziman's formula for calculating the resistivity of binary liquid alloys, modified for complex formation, has been used. The concentration dependence in resistivity occurs due to preferential ordering of unlike atoms as nearest neighbours with help of complex formation model. Though the compound HgiPbi as per structure peaks is found to be less stable. However it contributes significantly to resistivity as compared to bare ions.
Bolel, Priyanka; Datta, Shubhashis; Mahapatra, Niharendu; Halder, Mintu
2012-08-30
Formation of ion pair between charged molecule and protein can lead to interesting biochemical phenomena. We report the evolution of thermodynamics of the binding of tartrazine, a negatively charged azo colorant, and serum albumins with salt. The dye binds predominantly electrostatically in low buffer strengths; however, on increasing salt concentration, affinity decreases considerably. The calculated thermodynamic parameters in high salt indicate manifestation of nonelectrostatic interactions, namely, van der Waals force and hydrogen bonding. Site-marker competitive binding studies and docking simulations indicate that the dye binds with HSA in the warfarin site and with BSA at the interface of warfarin and ibuprofen binding sites. The docked poses indicate nearby amino acid positive side chains, which are possibly responsible for electrostatic interaction. Using the Debye-Hückel interionic attraction theory for binding equilibria, it is shown that, for electrostatic binding the calculated free energy change increases linearly with square root of ionic strength. Also UV-vis, fluorescence, CD data indicate a decrease of interaction with salt concentration. This study quantitatively relates how ionic strength modulates the strength of the protein-ligand electrostatic interaction. The binding enthalpy and entropy have been found to compensate one another. The enthalpy-entropy compensation (EEC), general property of weak intermolecular interactions, has been discussed.
Pethica, Brian A
2007-12-21
As indicated by Gibbs and made explicit by Guggenheim, the electrical potential difference between two regions of different chemical composition cannot be measured. The Gibbs-Guggenheim Principle restricts the use of classical electrostatics in electrochemical theories as thermodynamically unsound with some few approximate exceptions, notably for dilute electrolyte solutions and concomitant low potentials where the linear limit for the exponential of the relevant Boltzmann distribution applies. The Principle invalidates the widespread use of forms of the Poisson-Boltzmann equation which do not include the non-electrostatic components of the chemical potentials of the ions. From a thermodynamic analysis of the parallel plate electrical condenser, employing only measurable electrical quantities and taking into account the chemical potentials of the components of the dielectric and their adsorption at the surfaces of the condenser plates, an experimental procedure to provide exceptions to the Principle has been proposed. This procedure is now reconsidered and rejected. No other related experimental procedures circumvent the Principle. Widely-used theoretical descriptions of electrolyte solutions, charged surfaces and colloid dispersions which neglect the Principle are briefly discussed. MD methods avoid the limitations of the Poisson-Bolzmann equation. Theoretical models which include the non-electrostatic components of the inter-ion and ion-surface interactions in solutions and colloid systems assume the additivity of dispersion and electrostatic forces. An experimental procedure to test this assumption is identified from the thermodynamics of condensers at microscopic plate separations. The available experimental data from Kelvin probe studies are preliminary, but tend against additivity. A corollary to the Gibbs-Guggenheim Principle is enunciated, and the Principle is restated that for any charged species, neither the difference in electrostatic potential nor the sum of the differences in the non-electrostatic components of the thermodynamic potential difference between regions of different chemical compositions can be measured.
NASA Astrophysics Data System (ADS)
Torabifard, Hedieh; Reed, Luke; Berry, Matthew T.; Hein, Jason E.; Menke, Erik; Cisneros, G. Andrés
2017-10-01
The development of Li-ion batteries for energy storage has received significant attention. The synthesis and characterization of electrolytes in these batteries are an important component of this development. Ionic liquids (ILs) have been proposed as possible electrolytes in these devices. Thus, the accurate determination of thermophysical properties for these solvents becomes important for determining their applicability as electrolytes. In this contribution, we present the synthesis and experimental/computational characterization of thermodynamic and transport properties of a pyrrolidinium based ionic liquid as a first step to investigate the possible applicability of this class of ILs for Li-ion batteries. A quantum mechanical-based force field with many-body polarizable interactions has been developed for the simulation of spirocyclic pyrrolidinium, [sPyr+], with BF4- and Li+. Molecular dynamics calculations employing intra-molecular polarization predicted larger heat of vaporization and self-diffusion coefficients and smaller densities in comparison with the model without intra-molecular polarization, indicating that the inclusion of this term can significantly effect the inter-ionic interactions. The calculated properties are in good agreement with available experimental data for similar IL pairs and isothermal titration calorimetry data for [sPyr+][BF4-].
Physical-chemical examination of the N2O3-SO3-H2O system
NASA Technical Reports Server (NTRS)
Linstroem, C.; Malyska, G.
1977-01-01
It was found that when (NO)HSO4 is added to absolute H2SO4, specific conductivity rises sharply, possibly due to an increase in mutual interionic effects and viscosity as the (NO)HSO4 concentration rises. The addition of SO3 to the solution yielded a precipitate; a combination of analysis, IR spectroscopy and X-ray diffraction techniques indicated that this precipitate was (NO)HS2O7.
Mechanism for the occurrence of paramagnetic planes within magnetically ordered cerium systems
NASA Astrophysics Data System (ADS)
Kioussis, Nicholas; Cooper, Bernard R.; Banerjea, Amitava
1988-11-01
Hybridization of moderately delocalized f electrons with band electrons gives rise to a highly anisotropic two-ion interaction. Previously it has been shown that such an interaction explains the experimentally observed unusual magnetic behavior of CeBi, yielding a phase transition from a higher-temperature type-I (↑↓) to a lower-temperature type-IA (↑↑↓↓) antiferromagnetic structure. If the hybridization-mediated interaction is the key to understanding the magnetic behavior of such moderately delocalized f-electron systems, we should expect to be able to understand on this basis the even more unusual magnetic behavior of CeSb. In CeSb, there is a sequence of magnetic structures in which the higher-temperature structures involve a periodic stacking of paramagnetic \\{001\\} planes alternating with magnetically ordered \\{001\\} planes of [001]-moment alignment. In this paper we show that such a coexistence of paramagnetic and magnetically ordered Ce3+ sites can be understood on the basis of the hybridization-mediated interionic interaction when there are cubic crystal-field (CF) interactions of comparable strength. The tendency to form paramagnetic planes is found to increase with increasing CF strength (Γ7 ground state); and the stability of the up-down paramagnetic plane arrangement at high temperatures is shown to arise from the reconciliation of the magnetic ordering with the CF interactions. We also find that for a certain range of parameters a different novel situation occurs, with a fully nonmagnetic (singlet) ground state for the Ce3+ ion. This singlet state is not Kondo-like, and occurs in such a way that the system would be expected to fluctuate between two differently polarized states, one of which is the singlet state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Philip J., E-mail: pgrif@seas.upenn.edu; Holt, Adam P.; Tsunashima, Katsuhiko
2015-02-28
Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphoniummore » IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range—indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.« less
High-Performance, Low-Temperature-Operating, Long-Lifetime Aerospace Lubricants
NASA Technical Reports Server (NTRS)
Bergeron, Bryan; Skyler, David; Roberts, Kyle; Stevens, Amy
2013-01-01
The synthesis and characterization of six new ionic liquids, with fluoroether moeties on the imidazolium ring, each with vapor pressures shown to be <10(exp -7 Torr at 25 C, have been demonstrated. Thermal stability of the ionic liquids up to 250 C was demonstrated. The ionic liquids had no measurable influence upon viscosity upon addition to perfluoropolyether (PFPE) base fluids. They also had no measureable influence upon corrosion on steel substrates upon addition to base fluids. In general, 13 to 34% lower COFs (coefficients of friction), and 30 to 80% higher OK load of base fluids upon addition of the ionic liquids was shown. The compound consists of a 1,3-disubstituted imidazolium cation. The substituents comprise perfluoroether groups. A bis(trifluoromethanesulfonyl) imide anion counterbalances the charge. The fluorinated groups are intended to enhance dispersion of the ionic liquid in the PFPE base fluid. The presence of weak Van der Waals forces associated with fluorine atoms will limit interaction of the substituents on adjacent ions. The longer interionic distances will reduce the heat of melting and viscosity, and will increase dispersion capabilities.
Inelastic neutron scattering study on boson peaks of imidazolium-based ionic liquids
Kofu, Maiko; Inamura, Yasuhiro; Podlesnyak, Andrey A.; ...
2015-07-26
Low energy excitations of 1-alkyl-3-methylimidazolium ionic liquids (ILs) have been investigated by means of neutron spectroscopy. In the spectra of inelastic scattering, a broad excitation peak referred to as a “boson peak” appeared at 1–3 meV in all of the ILs measured. The intensity of the boson peak was enhanced at the Q positions corresponding to the diffraction peaks, reflecting the in-phase vibrational nature of the boson peak. Furthermore the boson peak energy (E BP) was insensitive to the length of the alkyl-chain but changed depending on the radius of the anion. From the correlation among E BP, the anionmore » radius, and the glass transition temperature T g, we conclude that both E BP and T g in ILs are predominantly governed by the inter-ionic Coulomb interaction which is less influenced by the alkyl-chain length. Furthermore, we also found that the E BP is proportional to the inverse square root of the molecular weight as observed in molecular glasses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Griffin, Phillip J.; Holt, Adam P.; Tsunashima, Katsuhiko
2015-02-01
Charge transport and structural dynamics in a homologous pair of ammonium and phosphonium based room temperature ionic liquids (ILs) have been characterized over a wide temperature range using broadband dielectric spectroscopy and quasi-elastic light scattering spectroscopy. We have found that the ionic conductivity of the phosphonium based IL is significantly enhanced relative to the ammonium homolog, and this increase is primarily a result of a lower glass transition temperature and higher ion mobility. Additionally, these ILs exhibit pronounced secondary relaxations which are strongly influenced by the atomic identity of the cation charge center. While the secondary relaxation in the phosphoniummore » IL has the expected Arrhenius temperature dependence characteristic of local beta relaxations, the corresponding relaxation process in the ammonium IL was found to exhibit a mildly non-Arrhenius temperature dependence in the measured temperature range-indicative of molecular cooperativity. These differences in both local and long-range molecular dynamics are a direct reflection of the subtly different inter-ionic interactions and mesoscale structures found in these homologous ILs.« less
Wang, Hailong; Liu, Chenxi; Liu, Tao; Zeng, Suyuan; Cao, Wei; Ma, Qi; Duan, Chunying; Dou, Jianmin; Jiang, Jianzhuang
2013-11-21
Reaction between Schiff-base ligand and half-sandwich complex M(Pc)(acac) led to the isolation of new sandwich-type mixed (phthalocyaninato)(Schiff-base) di-lanthanide compounds M2(Pc)2(L)H2O (M = Dy, Gd) (1, 2) [H2Pc = metal free phthalocyanine, Hacac = acetylacetone, H2L = N,N'-bis(3-methyloxysalicylidene)benzene-1,2-diamine] with the triple-decker molecular structure clearly revealed by single crystal X-ray diffraction analysis. For the comparative studies, sandwich triple-decker analogues with pure Schiff-base ligand M2(L)3H2O (M = Dy, Gd) (3, 4) were also prepared. Dynamic magnetic measurement result reveals the single-molecule magnet (SMM) nature of the di-dysprosium derivative 1, while the static magnetic investigation over both pure and the diamagnetic diluted samples of this compound discloses the interionic ferromagnetic coupling between the two dysprosium ions, which in turn effectively suppresses the QTM and enhances the energy barrier of this SMM. Nevertheless, comparative studies over the static magnetic properties of the di-dysprosium triple-decker complexes 1 and 3 indicate the stronger magnetic coupling between the two lanthanide ions in mixed (phthalocyaninato)(Schiff-base) species than in the pure Schiff-base triple-decker analogue, suggesting the special coordination sphere around the dysprosium ions in the former compound over the latter one on the more intense inter-ionic ferromagnetic coupling. As a very small step towards understanding the structure-property relationship, the present result will be surely helpful for the design and synthesis of the multinuclear lanthanide-based SMMs with good properties.
Sodium channel selectivity and conduction: Prokaryotes have devised their own molecular strategy
Finol-Urdaneta, Rocio K.; Wang, Yibo; Al-Sabi, Ahmed; Zhao, Chunfeng
2014-01-01
Striking structural differences between voltage-gated sodium (Nav) channels from prokaryotes (homotetramers) and eukaryotes (asymmetric, four-domain proteins) suggest the likelihood of different molecular mechanisms for common functions. For these two channel families, our data show similar selectivity sequences among alkali cations (relative permeability, Pion/PNa) and asymmetric, bi-ionic reversal potentials when the Na/K gradient is reversed. We performed coordinated experimental and computational studies, respectively, on the prokaryotic Nav channels NaChBac and NavAb. NaChBac shows an “anomalous,” nonmonotonic mole-fraction dependence in the presence of certain sodium–potassium mixtures; to our knowledge, no comparable observation has been reported for eukaryotic Nav channels. NaChBac’s preferential selectivity for sodium is reduced either by partial titration of its highly charged selectivity filter, when extracellular pH is lowered from 7.4 to 5.8, or by perturbation—likely steric—associated with a nominally electro-neutral substitution in the selectivity filter (E191D). Although no single molecular feature or energetic parameter appears to dominate, our atomistic simulations, based on the published NavAb crystal structure, revealed factors that may contribute to the normally observed selectivity for Na over K. These include: (a) a thermodynamic penalty to exchange one K+ for one Na+ in the wild-type (WT) channel, increasing the relative likelihood of Na+ occupying the binding site; (b) a small tendency toward weaker ion binding to the selectivity filter in Na–K mixtures, consistent with the higher conductance observed with both sodium and potassium present; and (c) integrated 1-D potentials of mean force for sodium or potassium movement that show less separation for the less selective E/D mutant than for WT. Overall, tight binding of a single favored ion to the selectivity filter, together with crucial inter-ion interactions within the pore, suggests that prokaryotic Nav channels use a selective strategy more akin to those of eukaryotic calcium and potassium channels than that of eukaryotic Nav channels. PMID:24420772
Bottini, Gualberto; Moyna, Guillermo
2018-02-01
The relative strengths of aromatic and aliphatic C-H⋅⋅⋅X hydrogen bonds in imidazolium ionic liquids were investigated through measurement of H/D isotope effects on the 19 F nuclear shielding of deuterated isotopologues of 1-n-butyl-3-methylimidazolium hexafluorophosphate and tetrafluoroborate ([C 4 mim]PF 6 and [C 4 mim]BF 4 ). Δ 19 F(H,D) values ranging from 9.7 to 49.7 ppb were observed for [C 4 mim]PF 6 isotopologues, while for the [C 4 mim]BF 4 series these went from 26.2 to 83.8 ppb. Our findings indicate that the interactions between the fluorinated anions and protons on the C-1' and C-1″ position of the N-alkyl sidechains are comparable to, and in some cases stronger than, those involving protons on the aromatic ring, underscoring the role that these weak interionic forces have on the local ordering of imidazolium salts in the liquid state. Copyright © 2017 John Wiley & Sons, Ltd. Copyright © 2017 John Wiley & Sons, Ltd.
Multiscale Molecular Dynamics Model for Heterogeneous Charged Systems
NASA Astrophysics Data System (ADS)
Stanton, L. G.; Glosli, J. N.; Murillo, M. S.
2018-04-01
Modeling matter across large length scales and timescales using molecular dynamics simulations poses significant challenges. These challenges are typically addressed through the use of precomputed pair potentials that depend on thermodynamic properties like temperature and density; however, many scenarios of interest involve spatiotemporal variations in these properties, and such variations can violate assumptions made in constructing these potentials, thus precluding their use. In particular, when a system is strongly heterogeneous, most of the usual simplifying assumptions (e.g., spherical potentials) do not apply. Here, we present a multiscale approach to orbital-free density functional theory molecular dynamics (OFDFT-MD) simulations that bridges atomic, interionic, and continuum length scales to allow for variations in hydrodynamic quantities in a consistent way. Our multiscale approach enables simulations on the order of micron length scales and 10's of picosecond timescales, which exceeds current OFDFT-MD simulations by many orders of magnitude. This new capability is then used to study the heterogeneous, nonequilibrium dynamics of a heated interface characteristic of an inertial-confinement-fusion capsule containing a plastic ablator near a fuel layer composed of deuterium-tritium ice. At these scales, fundamental assumptions of continuum models are explored; features such as the separation of the momentum fields among the species and strong hydrogen jetting from the plastic into the fuel region are observed, which had previously not been seen in hydrodynamic simulations.
Towards Simulating the Transverse Ising Model in a 2D Array of Trapped Ions
NASA Astrophysics Data System (ADS)
Sawyer, Brian
2013-05-01
Two-dimensional Coulomb crystals provide a useful platform for large-scale quantum simulation. Penning traps enable confinement of large numbers of ions (>100) and allow for the tunable-range spin-spin interactions demonstrated in linear ion strings, facilitating simulation of quantum magnetism at a scale that is currently intractable on classical computers. We readily confine hundreds of Doppler laser-cooled 9Be+ within a Penning trap, producing a planar array of ions with self-assembled triangular order. The transverse ``drumhead'' modes of our 2D crystal along with the valence electron spin of Be+ serve as a resource for generating spin-motion and spin-spin entanglement. Applying a spin-dependent optical dipole force (ODF) to the ion array, we perform spectroscopy and thermometry of individual drumhead modes. This ODF also allows us to engineer long-range Ising spin couplings of either ferromagnetic or anti-ferromagnetic character whose approximate power-law scaling with inter-ion distance, d, may be varied continuously from 1 /d0 to 1 /d3. An effective transverse magnetic field is applied via microwave radiation at the ~124-GHz spin-flip frequency, and ground states of the effective Ising Hamiltonian may in principle be prepared adiabatically by slowly decreasing this transverse field in the presence of the induced Ising coupling. Long-range anti-ferromagnetic interactions are of particular interest due to their inherent spin frustration and resulting large, near-degenerate manifold of ground states. We acknowledge support from NIST and the DARPA-OLE program.
High-pressure optical studies on R-line fluorescence lifetime in Al2O3:V2+
NASA Astrophysics Data System (ADS)
Jovanić, Branislav R.; Radenković, Božidar; Despotović-Zrakić, Marijana; Bogdanović, Zorica; Barać, Dušan
2018-04-01
The effect of high hydrostatic pressure (up to 10.3 GPa) at room temperature on fluorescence lifetime τ for R line (2E→4A2 transition) in ruby Al2O3:V2+ was studied. The performed studies show the linear increase of τ with increasing pressure. At 10.3 GPa, τ is about 1.36 times higher than at ambient pressure. The obtained trend was explained by a model which considered the effect of pressure on τ through an induced change of line position, inter-ionic distance, compressibility, and molecular polarizability. A good agreement between the calculated and experimental values for τ was obtained.
Interfacial Ordering and Accompanying Divergent Capacitance at Ionic Liquid-Metal Interfaces.
Limmer, David T
2015-12-18
A theory is constructed for dense ionic solutions near charged planar walls that is valid for strong interionic correlations. This theory predicts a fluctuation-induced, first-order transition and spontaneous charge density ordering at the interface, in the presence of an otherwise disordered bulk solution. The surface ordering is driven by applied voltage and results in an anomalous differential capacitance, in agreement with recent simulation results and consistent with experimental observations of a wide array of systems. Explicit forms for the charge density profile and capacitance are given. The theory is compared with numerical results for the charge frustrated Ising model, which is also found to exhibit a voltage driven first-order transition.
Interfacial Ordering and Accompanying Divergent Capacitance at Ionic Liquid-Metal Interfaces
NASA Astrophysics Data System (ADS)
Limmer, David T.
2015-12-01
A theory is constructed for dense ionic solutions near charged planar walls that is valid for strong interionic correlations. This theory predicts a fluctuation-induced, first-order transition and spontaneous charge density ordering at the interface, in the presence of an otherwise disordered bulk solution. The surface ordering is driven by applied voltage and results in an anomalous differential capacitance, in agreement with recent simulation results and consistent with experimental observations of a wide array of systems. Explicit forms for the charge density profile and capacitance are given. The theory is compared with numerical results for the charge frustrated Ising model, which is also found to exhibit a voltage driven first-order transition.
Prabhu, Sugosh R; Dutt, G B
2014-08-07
Rotational diffusion of a nondipolar solute 2,5-dimethyl-1,4-dioxo-3,6-diphenylpyrrolo[3,4-c]pyrrole (DMDPP) and a charged solute rhodamine 110 (R110) has been investigated in 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMIM][Tf2N]) and 1-butyl-2,3-dimethylimidazolium bis(trifluoromethylsulfonyl)imide ([BMMIM][Tf2N]) to understand the influence of the C2 methylation on solute rotation. The measured reorientation times of the nondipolar solute DMDPP are similar in both the ionic liquids and follow Stokes-Einstein-Debye hydrodynamic theory with slip hydrodynamics. In contrast, rotational diffusion of the charged solute R110 in [BMIM][Tf2N] obeys stick hydrodynamics due to specific interactions with the anion of the ionic liquid. Nevertheless, the intriguing result of this study is that the reorientation times of R110 in [BMMIM][Tf2N] deviate significantly from the predictions of stick hydrodynamics, especially at ambient temperatures. The solute-solvent boundary condition parameter Cobs, which is defined as the ratio of the measured reorientation time to the one calculated using the SED theory with stick boundary condition, for R110 is lower by a factor of 2 in [BMMIM][Tf2N] compared to [BMIM][Tf2N] at 298 K. Upon increasing the temperature, Cobs gradually increases and eventually matches with that obtained in [BMIM][Tf2N] at 348 K. It has been well established that methylation of the C2 position in [BMMIM][Tf2N] switches off the main hydrogen-bonding interaction between the anion and the cation, but increases the Coulombic interactions. As a consequence of the enhanced interionic interactions between the cation and anion of the ionic liquid, specific interactions between R110 and [Tf2N] diminish leading to the faster rotation of the solute. However, such an influence is not apparent in case of DMDPP as it does not experience specific interactions with either the cation or the anion of these ionic liquids.
Brooks, Nicholas J.; Castiglione, Franca; Doherty, Cara M.; Dolan, Andrew; Hill, Anita J.; Hunt, Patricia A.; Matthews, Richard P.; Mauri, Michele; Mele, Andrea; Simonutti, Roberto; Villar-Garcia, Ignacio J.; Weber, Cameron C.
2017-01-01
The formation of ionic liquid (IL) mixtures has been proposed as an approach to rationally fine-tune the physicochemical properties of ILs for a variety of applications. However, the effects of forming such mixtures on the resultant properties of the liquids are only beginning to be understood. Towards a more complete understanding of both the thermodynamics of mixing ILs and the effect of mixing these liquids on their structures and physicochemical properties, the spatial arrangement and free volume of IL mixtures containing the common [C4C1im]+ cation and different anions have been systematically explored using small angle X-ray scattering (SAXS), positron annihilation lifetime spectroscopy (PALS) and 129Xe NMR techniques. Anion size has the greatest effect on the spatial arrangement of the ILs and their mixtures in terms of the size of the non-polar domains and inter-ion distances. It was found that differences in coulombic attraction between oppositely charged ions arising from the distribution of charge density amongst the atoms of the anion also significantly influences these inter-ion distances. PALS and 129Xe NMR results pertaining to the free volume of these mixtures were found to strongly correlate with each other despite the vastly different timescales of these techniques. Furthermore, the excess free volumes calculated from each of these measurements were in excellent agreement with the excess volumes of mixing measured for the IL mixtures investigated. The correspondence of these techniques indicates that the static and dynamic free volume of these liquid mixtures are strongly linked. Consequently, fluxional processes such as hydrogen bonding do not significantly contribute to the free volumes of these liquids compared to the spatial arrangement of ions arising from their size, shape and coulombic attraction. Given the relationship between free volume and transport properties such as viscosity and conductivity, these results provide a link between the structures of IL mixtures, the thermodynamics of mixing and their physicochemical properties. PMID:29619199
The influence of high pressure to crystalline and magnetic structure of Ba 2 FeMoO 6
NASA Astrophysics Data System (ADS)
Turchenko, V. A.; Kalanda, N. A.; Kovalev, L. V.; Yarmolich, M. V.; Petrov, A. V.; Lukin, Ye V.; Doroshkevich, A. S.; Balasoiu, M.; Lupu, N.; Savenko, B. N.
2018-03-01
The behavior of the crystalline and magnetic structure of Ba 2 FeMoO 6 compound in a wide pressure range from 0 to 4.7 GPa was studied. The crystal structure of ceramic sample was described in the framework of SG I4/mmm (No 139) and contains less 10% of anti-site defects. The change of tetragonal structure (I4/mmm) was not observed in all measured pressure range. It was shown multidirectional influence of ambient pressure onto the average interionic distances of metal-ligand in oxygen octahedrons of FeO 6 and MoO 6. For tetragonal structure of Ba 2 FeMoO 6 were determined coefficients of the linear and all-round compressibility. The influence of ambient pressure on the value of magnetic moment of iron sublattice was shown.
NASA Astrophysics Data System (ADS)
Velázquez, J. J.; Rodríguez, V. D.; Yanes, A. C.; del-Castillo, J.; Méndez-Ramos, J.
2012-10-01
95SiO2-5LaF3 sol-gel derived nano-glass-ceramics single doped with Ce3+ or Tb3+ and co-doped with Ce3+-Tb3+ were synthesized by thermal treatment of precursor glasses. Precipitation of LaF3 nanocrystals during ceramming process was confirmed by X-ray diffraction with mean size ranging from 12 to 15 nm. An exhaustive spectroscopic analysis has been carried out. As a result, it was found that the green emission of Tb3+ ions was greatly enhanced through down shifting process, due to efficient energy transfer from Ce3+ to Tb3+ ions in the glass-ceramics, which is favored by the reduction of the interionic distances when the dopant ions are partitioned into LaF3 nanocrystals. These results suggest the use of these materials to improve the efficiency of solar cells.
Shirota, Hideaki; Kakinuma, Shohei; Itoyama, Yu; Umecky, Tatsuya; Takamuku, Toshiyuki
2016-01-28
The microscopic aspects of the two series of mixtures of 1-methyl-3-octylimidazolium tetrafluoroborate ([MOIm][BF4])-benzene and 1-methyl-3-octylimidazolium bis(trifluoromethylsulfonyl)amide ([MOIm][NTf2])-benzene were investigated by several spectroscopic techniques such as attenuated total reflectance IR (ATR-IR), NMR, and fs-Raman-induced Kerr effect spectroscopy (fs-RIKES). All three different spectroscopic results indicate that the anions more strongly interact with the cations in the [MOIm][BF4]-benzene mixtures than in the [MOIm][NTf2]-benzene mixtures. This also explains the different miscibility features between the two mixture systems well. The xC6H6 dependences of the chemical shifts and the C-H out-of-plane bending mode of benzene are similar: the changes are large in the high benzene concentration (xC6H6 > ∼ 0.6) compared to the low benzene concentration. In contrast, the linear xC6H6 dependences of the first moments of the low-frequency spectra less than 200 cm(-1) were observed in both the [MOIm][BF4]-benzene and [MOIm][NTf2]-benzene systems. The difference in the xC6H6 dependent features between the chemical shifts and intramolecular vibrational mode and the intermolecular/interionic vibrational bands might come from the different probing space scales. The traces of the parallel aromatic ring structure and the T-shape structure were found in the ATR-IR and NMR experiments, but fs-RIKES did not observe a clear trace of the local structure. This might imply that the interactions between the imidazolium and benzene rings are not strong enough to librate the imidazolium and benzene rings together. The bulk properties, such as miscibility, density, viscosity, and surface tension, of the two ionic liquid-benzene mixture series were also compared to the microscopic aspects.
Transport properties of liquid metal hydrogen under high pressures
NASA Technical Reports Server (NTRS)
Brown, R. C.; March, N. H.
1972-01-01
A theory is developed for the compressibility and transport properties of liquid metallic hydrogen, near to its melting point and under high pressure. The interionic force law is assumed to be of the screened Coulomb type, because hydrogen has no core electrons. The random phase approximation is used to obtain the structure factor S(k) of the system in terms of the Fourier transform of this force law. The long wavelenth limit of the structure factor S(o) is related to the compressibility, which is much lower than that of alkali metals at their melting points. The diffusion constant at the melting point is obtained in terms of the Debye frequency, using a frequency spectrum analogous with the phonon spectrum of a solid. A similar argument is used to obtain the combined shear and bulk viscosities, but these depend also on S(o). The transport coefficients are found to be about the same size as those of alkali metals at their melting points.
NASA Astrophysics Data System (ADS)
Galamba, N.; Costa Cabral, B. J.
2007-09-01
The structure and self-diffusion of NaI and NaCl at temperatures close to their melting points are studied by first principles Hellmann-Feynman molecular dynamics (HFMD). The results are compared with classical MD using rigid-ion (RI) and shell-model (ShM) interionic potentials. HFMD for NaCl was reported before at a higher temperature [N. Galamba and B. J. Costa Cabral, J. Chem. Phys. 126, 124502 (2007)]. The main differences between the structures predicted by HFMD and RI MD for NaI concern the cation-cation and the anion-cation pair correlation functions. A ShM which allows only for the polarization of I- reproduces the main features of the HFMD structure of NaI. The inclusion of polarization effects for both ionic species leads to a more structured ionic liquid, although a good agreement with HFMD is also observed. HFMD Green-Kubo self-diffusion coefficients are larger than those obtained from RI and ShM simulations. A qualitative study of charge transfer in molten NaI and NaCl was also carried out with the Hirshfeld charge partitioning method. Charge transfer in molten NaI is comparable to that in NaCl, and results for NaCl at two temperatures support the view that the magnitude of charge transfer is weakly state dependent for ionic systems. Finally, Hirshfeld charge distributions indicate that differences between RI and HFMD results are mainly related to polarization effects, while the influence of charge transfer fluctuations is minimal for these systems.
Lyu, Hui; Lazár, Dušan
2017-03-01
In photosynthesis, electron transport-coupled proton movement initiates the formation of the light-induced electric potential difference, ΔΨ, across the thylakoid membrane (TM). Ions are transported across the TM to counterbalance the charge of protons accumulated in the lumen. The objective of this work is to construct range of mathematical models for simulation of ΔΨ, using the transition state rate theory (TSRT) for description of movement of ions through the channels. The TSRT considers either single-ion (TSRT-SI) or multi-ion occupancy (TSRT-MI) in the channels. Movement of ions through the channel pore is described by means of energy barriers and binding sites; ions move in and out of vacant sites with rate constants that depend on the barrier heights and well depths, as well as on the interionic repulsion in TSRT-MI model. Three energy motifs are used to describe the TSRT-SI model: two-barrier one-site (2B1S), three-barrier two-site (3B2S), and four-barrier three-site (4B3S). The 3B2S energy motif is used for the TSRT-MI model. The accumulation of cations due to the TM surface negative fixed charges is also taken into account. A model employing the electro-diffusion theory instead of the TSRT is constructed for comparison. The dual wavelength transmittance signal (ΔA515-560nm) measuring the electrochromic shift (ECS) provides a proxy for experimental light-induced ΔΨ. The simulated ΔΨ traces qualitatively agree with the measured ECS traces. The models can simulate different channel conducting regimes and assess their impact on ΔΨ. The ionic flux coupling in the TSRT-MI model suggests that an increase in the internal or external K + concentration may block the outward or the inward Mg 2+ current, respectively. Copyright © 2016 Elsevier B.V. All rights reserved.
MD studies of electron transfer at ambient and elevated pressures
NASA Astrophysics Data System (ADS)
Giles, Alex; Spooner, Jacob; Weinberg, Noham
2013-06-01
The effect of pressure on the rate constants of outer-sphere electron transfer reactions has often been described using the Marcus-Hush theory. This theory agrees well with experiment when internal reorganization of the ionic system is negligible, however it does not offer a recipe for calculation of the effects that result from significant solute restructuring. We have recently developed a molecular dynamics technique that accurately describes structural dependence of molecular volumes in non-polar and weakly polar systems. We are now extending this approach to the case of highly polar ionic systems where both solvent and solute restructuring components are important. For this purpose we construct pressure-dependent two-dimensional surfaces for electron transfer reactions in coordinate system composed of interionic distance and Marcus-type solvent polarization coordinate, and use these surfaces to describe pressure effects on reaction kinetics. R.A. Marcus. J. Chem. Phys. 24, 966 (1956); 24, 979 (1956); 26, 867 (1957). Discuss. Faraday Soc. 29, 21 (1960). Faraday Discuss. Chem. Soc. 74, 7 (1982); N.S. Hush. Trans. Faraday Soc. 57, 557 (1961).
NASA Astrophysics Data System (ADS)
Kim, Kyoung Jin; Jouini, Anis; Yoshikawa, Akira; Simura, Rayko; Boulon, Georges; Fukuda, Tsuguo
2007-02-01
We investigate different ways to realize laser emission from (Pr 3+) 3P J=0,1,2 levels by pump sources other than the common argon and excimer-dye laser. The use of infrared (IR) laser diodes in combination with intra- and inter-ionic energy transfer processes (up-conversion) could be an efficient solution towards laser oscillation. Pr 3+,Yb 3+-codoped KY 3F 10 (Pr, Yb:KYF) single crystals were successfully grown by the micro-pulling-down (μ-PD) method. The crystals were transparent with a slightly greenish color, 2.0-2.5 mm in diameter, 20-30 mm in length and free from visible inclusions and cracks. Effective segregation coefficients of Pr and Yb in KYF were studied by means of absorption and chemical analysis. Strong visible emission via selective IR pumping with λ=975 nm and up-conversion excitation were obtained in Pr, Yb:KYF at room temperature (RT). Luminescence measurements have been carried out and the decay kinetics of the Pr 3+ visible emissions was investigated by room temperature time-resolved spectra.
Improper ferroelectricity: A theoretical and experimental investigation
NASA Astrophysics Data System (ADS)
Hardy, J. R.; Ullman, F. G.
1984-02-01
A combined theoretical and experimental study has been made of the origins and properties of the improper ferroelectricity associated with structural modulations of non-zero wavelengths. Two classes of materials have been studied: rare earth molybdates (specifically, gadolinium molybdate: GMO), and potassium selenate and its isomorphs. In the former, the modulation is produced by a zone boundary phonon instability, and in the latter by the instability of a phonon of wave vector approximately two-thirds of the way to the zone-boundary. In the second case the initial result is a modulated structure whose repeat distance is not a rational multiple of the basic lattice repeat distance. This result is a modulated polarization which, when the basic modulation locks in to a rational multiple of the lattice spacing, becomes uniform, and improper ferroelectricity results. The origins of these effects have been elucidated by theoretical studies, initially semi-empirical, but subsequently from first-principles. These complemented the experimental work, which primarily used inelastic light scattering, uniaxial stress, and hydrostatic pressure, to probe the balance between the interionic forces through the effects on the phonons and dielectric properties.
Role of oxygen on the optical properties of borate glass doped with ZnO
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abdel-Baki, Manal; El-Diasty, Fouad, E-mail: fdiasty@yahoo.com
2011-10-15
Lithium tungsten borate glass (0.56-x)B{sub 2}O{sub 3}-0.4Li{sub 2}O-xZnO-0.04WO{sub 3} (0{<=}x{<=}0.1 mol%) is prepared by the melt quenching technique for photonic applications. Small relative values of ZnO are used to improve the glass optical dispersion and to probe as well the role of oxygen electronic polarizability on its optical characteristics. The spectroscopic properties of the glass are determined in a wide spectrum range (200-2500 nm) using a Fresnel-based spectrophotometric technique. Based on the Lorentz-Lorenz theory, as ZnO content increases on the expense of B{sub 2}O{sub 3} the glass molar polarizability increased due to an enhanced unshared oxide ion 2p electron density,more » which increases ionicity of the chemical bonds of glass. The role of oxide ion polarizability is explained in accordance with advanced measures and theories such as optical basicity, O 1s binding energy, the outer most cation binding energy in Yamashita-Kurosawa's interionic interaction parameter and Sun's average single bond strength. FT-IR measurements confirm an increase in bridging oxygen bonds, as a result of replacement of ZnO by B{sub 2}O{sub 3}, which increase the UV glass transmission window and transmittance. - Graphical abstract: O1s, Yamashita-Kurosawa's parameter and average single bond strength of charge overlapping between electronic shells are used to explain enhanced oxide ion 2p electron density, which increases refractive index of glasses. Highlights: > New borate glass for photonic application is prepared. > The dispersion property of the glass is effectively controlled using small amounts of ZnO. > ZnO is used to probe the glass structure and investigate the role of oxygen on the obtained optical properties of the glasses. > Modern theories are used to explain enhanced unshared oxide ion 2p electron density, which increases ionicity of chemical bonds of the glass.« less
Peng, Bo; Yu, Yang-Xin
2009-10-07
The structural and thermodynamic properties for charge symmetric and asymmetric electrolytes as well as mixed electrolyte system inside a charged cylindrical nanopore are investigated using a partially perturbative density functional theory. The electrolytes are treated in the restricted primitive model and the internal surface of the cylindrical nanopore is considered to have a uniform charge density. The proposed theory is directly applicable to the arbitrary mixed electrolyte solution containing ions with the equal diameter and different valences. Large amount of simulation data for ion density distributions, separation factors, and exclusion coefficients are used to determine the range of validity of the partially perturbative density functional theory for monovalent and multivalent counterion systems. The proposed theory is found to be in good agreement with the simulations for both mono- and multivalent counterion systems. In contrast, the classical Poisson-Boltzmann equation only provides reasonable descriptions of monovalent counterion system at low bulk density, and is qualitatively and quantitatively wrong in the prediction for the multivalent counterion systems due to its neglect of the strong interionic correlations in these systems. The proposed density functional theory has also been applied to an electrolyte absorbed into a pore that is a model of the filter of a physiological calcium channel.
NASA Astrophysics Data System (ADS)
Oumezzine, Marwène; Peña, Octavio; Kallel, Sami; Kallel, Nabil; Guizouarn, Thierry; Gouttefangeas, Francis; Oumezzine, Mohamed
2014-03-01
The effects of non-magnetic Ti4+ substitution on the structural, electrical and magnetic properties of La0.67Ba0.33Mn1- x Ti x O3 (0≤ x≤0.1) are investigated and compared to those existing in La0.67Ba0.33Mn1- x Cr x O3 (magnetic Cr3+). The structural refinement by the Rietveld method revealed that Ti-doped samples crystallize in the cubic lattice with space group , while samples with Cr crystallize in the hexagonal setting of the rhombohedral space group for identical contents of dopant. The most relevant structural features are an increase of the lattice parameters, of the cell volume and of the inter-ionic distances with increasing Ti doping level. Both series of samples show a decrease of the paramagnetic-ferromagnetic transition temperature when the amount of chromium or titanium increases. Transport measurements show that when increasing the metal doping, the resistivity increases whereas the metallic behavior of the parent compound La0.67Ba0.33MnO3 is destroyed. For a substitution higher than 5 at.% of Ti and 10 at.% of Cr, the samples exhibit a semiconducting behavior in the whole range of temperature, for which the electronic transport can be explained by variable range hopping and/or small polaron hopping models.
Archer, Melissa; Proulx, Joshua; Shane-McWhorter, Laura; Bray, Bruce E; Zeng-Treitler, Qing
2014-01-01
While potential medication-to-medication interaction alerting engines exist in many clinical applications, few systems exist to automatically alert on potential medication to herbal supplement interactions. We have developed a preliminary knowledge base and rules alerting engine that detects 259 potential interactions between 9 supplements, 62 cardiac medications, and 19 drug classes. The rules engine takes into consideration 12 patient risk factors and 30 interaction warning signs to help determine which of three different alert levels to categorize each potential interaction. A formative evaluation was conducted with two clinicians to set initial thresholds for each alert level. Additional work is planned add more supplement interactions, risk factors, and warning signs as well as to continue to set and adjust the inputs and thresholds for each potential interaction.
An ionic force-field study of monomers, dimers and higher polymers in pentafluoride vapors
NASA Astrophysics Data System (ADS)
Çiçek Önem, Z.; Akdeniz, Z.; Tosi, M. P.
2008-08-01
Pentafluoride compounds such as NbF 5 and TaF 5 have been reported in the literature to admit various states of polymerization coexisting with monomers in their vapor phase, in relative concentrations that vary with temperature and pressure. We construct a microscopic interionic force-field model for the molecular monomer of these compounds (including VF 5, SbF 5 and MoF 5 in addition to NbF 5 and TaF 5), the stable form of the monomer being in the shape of a D 3h trigonal bipyramid in all cases. The model emulates chemical bonds by allowing for electrical and short-range overlap polarizabilities of the fluorines, and is used to evaluate the structure and the stability of (MF 5) n molecules with n running from 2 to 6. The dimer is formed by two distorted edge-sharing octahedral, while the trimer and the higher polymers can form rings of distorted corner-sharing octahedra. A chain-like configuration is also found for the trimer of NbF 5, which consists of a seven-fold coordinated Nb bonded to two distorted octahedra via edge sharing. Comparison of calculated vibrational frequencies and bond lengths with experimental data is made whenever possible. We find that there is a small net gain of energy in the formation of a dimer, while otherwise the static energy of the n-mer is very close to that of n separated monomers. High sensitivity of the state of molecular aggregation to the thermodynamic conditions of the vapor is clearly indicated by our calculations.
Molecular Dynamic Simulations of Interaction of an AFM Probe with the Surface of an SCN Sample
NASA Technical Reports Server (NTRS)
Bune, Adris; Kaukler, William; Rose, M. Franklin (Technical Monitor)
2001-01-01
Molecular dynamic (MD) simulations is conducted in order to estimate forces of probe-substrate interaction in the Atomic Force Microscope (AFM). First a review of available molecular dynamic techniques is given. Implementation of MD simulation is based on an object-oriented code developed at the University of Delft. Modeling of the sample material - succinonitrile (SCN) - is based on the Lennard-Jones potentials. For the polystyrene probe an atomic interaction potential is used. Due to object-oriented structure of the code modification of an atomic interaction potential is straight forward. Calculation of melting temperature is used for validation of the code and of the interaction potentials. Various fitting parameters of the probe-substrate interaction potentials are considered, as potentials fitted to certain properties and temperature ranges may not be reliable for the others. This research provides theoretical foundation for an interpretation of actual measurements of an interaction forces using AFM.
Vibrational Relaxation and Collision-Induced Dissociation of Xenon Fluoride by Neon
1989-03-01
potential energy surface, which consists of a Morse function for the XeF interaction and Lennard - Jones functions for the NeXe and NeF interactions. Rate...interaction and a Lennard - Jones function for the NeXe and the NeF interactions. The values of the Morse potential parameters for XeF are taken from...interactions are calculated using the theoretical data provided by Svehla.59 The parameters for the Morse potential and the Lennard - Jones potentials are listed
Bush, Thomas M; Rayburn, Keith S; Holloway, Sandra W; Sanchez-Yamamoto, Deanna S; Allen, Blaine L; Lam, Tiffany; So, Brian K; Tran, De H; Greyber, Elizabeth R; Kantor, Sophia; Roth, Larry W
2007-01-01
Patients often combine prescription medications with herbal and dietary substances (herein referred to as herbal medicines). A variety of potential adverse herb-drug interactions exist based on the pharmacological properties of herbal and prescription medications. To determine the incidence of potential and observed adverse herb-drug interactions in patients using herbal medicines with prescription medications. Consecutive patients were questioned about their use of herbal medicines in 6 outpatient clinics. Patients reporting use of these products provided a list of their prescription medications, which were reviewed for any potential adverse herb-drug interactions using a comprehensive natural medicine database. Any potential adverse herb-drug interactions prompted a review of the patient's chart for evidence of an observed adverse herb-drug interaction. The rate of potential and observed adverse herb-drug interactions. Eight hundred four patients were surveyed, and 122 (15%) used herbal medicines. Eighty-five potential adverse herb-drug interactions were found in 49 patients (40% of herbal medicine users). Twelve possible adverse herb-drug interactions in 8 patients (7% of herbal medicine users) were observed. In all 12 cases, the severity scores were rated as mild, including 8 cases of hypoglycemia in diabetics taking nopal (prickly pear cactus). A substantial number of potential adverse herb-drug interactions were detected and a small number of adverse herb-drug interactions observed, particularly in diabetics taking nopal. Screening for herbal medicine usage in 804 patients did not uncover any serious adverse interactions with prescription medications.
Potential drug-drug interactions between anti-cancer agents and community pharmacy dispensed drugs.
Voll, Marsha L; Yap, Kim D; Terpstra, Wim E; Crul, Mirjam
2010-10-01
To identify the prevalence of potential drug-drug interactions between hospital pharmacy dispensed anti-cancer agents and community pharmacy dispensed drugs. A retrospective cohort study was conducted on the haematology/oncology department of the internal medicine ward in a large teaching hospital in Amsterdam, the Netherlands. Prescription data from the last 100 patients treated with anti-cancer agents were obtained from Paracelsus, the chemotherapy prescribing system in the hospital. The community pharmacy dispensed drugs of these patients were obtained by using OZIS, a system that allows regionally linked pharmacies to call up active medication on any patient. Both medication lists were manually screened for potential drug-drug interactions by using several information sources on interactions, e.g. Pubmed, the Flockhart P450 table, Micromedex and Dutch reference books. Prevalence of potential drug-drug interactions between anti-cancer agents provided by the hospital pharmacy and drugs dispensed by the community pharmacy. Ninety-one patients were included in the study. A total of 31 potential drug-drug interactions were found in 16 patients, of which 15 interactions were clinically relevant and would have required an intervention. Of these interactions 1 had a level of severity ≥ D, meaning the potential drug-drug interaction could lead to long lasting or permanent damage, or even death. The majority of the interactions requiring an intervention (67%) had a considerable level of evidence (≥ 2) and were based on well-documented case reports or controlled interaction studies. Most of the potential drug-drug interactions involved the antiretroviral drugs (40%), proton pump inhibitors (20%) and antibiotics (20%). The anti-cancer drug most involved in the drug-drug interactions is methotrexate (33%). This study reveals a high prevalence of potential drug-drug interactions between anti-cancer agents provided by the hospital pharmacy and drugs dispensed by the community pharmacy. It shows us there is need for an optimal medication surveillance mechanism to detect potential drug-drug interactions between these two groups of medication, especially because of the high toxicity of anticancer drugs and thus the severe consequences these interactions can have for the patient.
Latella, Ivan; Pérez-Madrid, Agustín
2013-10-01
The local thermodynamics of a system with long-range interactions in d dimensions is studied using the mean-field approximation. Long-range interactions are introduced through pair interaction potentials that decay as a power law in the interparticle distance. We compute the local entropy, Helmholtz free energy, and grand potential per particle in the microcanonical, canonical, and grand canonical ensembles, respectively. From the local entropy per particle we obtain the local equation of state of the system by using the condition of local thermodynamic equilibrium. This local equation of state has the form of the ideal gas equation of state, but with the density depending on the potential characterizing long-range interactions. By volume integration of the relation between the different thermodynamic potentials at the local level, we find the corresponding equation satisfied by the potentials at the global level. It is shown that the potential energy enters as a thermodynamic variable that modifies the global thermodynamic potentials. As a result, we find a generalized Gibbs-Duhem equation that relates the potential energy to the temperature, pressure, and chemical potential. For the marginal case where the power of the decaying interaction potential is equal to the dimension of the space, the usual Gibbs-Duhem equation is recovered. As examples of the application of this equation, we consider spatially uniform interaction potentials and the self-gravitating gas. We also point out a close relationship with the thermodynamics of small systems.
Solubility of methane in water: the significance of the methane-water interaction potential.
Konrad, Oliver; Lankau, Timm
2005-12-15
The influence of the methane-water interaction potential on the value of the Henry constant obtained from molecular dynamics simulations was investigated. The SPC, SPC/E, MSPC/E, and TIP3P potentials were used to describe water and the OPLS-UA and TraPPE potentials for methane. Nonbonding interactions between unlike atoms were calculated both with one of four mixing rules and with our new methane-water interaction potential. The Henry constants obtained from simulations using any of the mixing rules differed significantly from the experimental ones. Good agreement between simulation and experiment was achieved with the new potential over the whole temperature range.
Potential drug interactions in patients given antiretroviral therapy
dos Santos, Wendel Mombaque; Secoli, Silvia Regina; Padoin, Stela Maris de Mello
2016-01-01
ABSTRACT Objective: to investigate potential drug-drug interactions (PDDI) in patients with HIV infection on antiretroviral therapy. Methods: a cross-sectional study was conducted on 161 adults with HIV infection. Clinical, socio demographic, and antiretroviral treatment data were collected. To analyze the potential drug interactions, we used the software Micromedex(r). Statistical analysis was performed by binary logistic regression, with a p-value of ≤0.05 considered statistically significant. Results: of the participants, 52.2% were exposed to potential drug-drug interactions. In total, there were 218 potential drug-drug interactions, of which 79.8% occurred between drugs used for antiretroviral therapy. There was an association between the use of five or more medications and potential drug-drug interactions (p = 0.000) and between the time period of antiretroviral therapy being over six years and potential drug-drug interactions (p < 0.00). The clinical impact was prevalent sedation and cardiotoxicity. Conclusions: the PDDI identified in this study of moderate and higher severity are events that not only affect the therapeutic response leading to toxicity in the central nervous and cardiovascular systems, but also can interfere in tests used for detection of HIV resistance to antiretroviral drugs. PMID:27878224
ISS Plasma Interaction: Measurements and Modeling
NASA Technical Reports Server (NTRS)
Barsamian, H.; Mikatarian, R.; Alred, J.; Minow, J.; Koontz, S.
2004-01-01
Ionospheric plasma interaction effects on the International Space Station are discussed in the following paper. The large structure and high voltage arrays of the ISS represent a complex system interacting with LEO plasma. Discharge current measurements made by the Plasma Contactor Units and potential measurements made by the Floating Potential Probe delineate charging and magnetic induction effects on the ISS. Based on theoretical and physical understanding of the interaction phenomena, a model of ISS plasma interaction has been developed. The model includes magnetic induction effects, interaction of the high voltage solar arrays with ionospheric plasma, and accounts for other conductive areas on the ISS. Based on these phenomena, the Plasma Interaction Model has been developed. Limited verification of the model has been performed by comparison of Floating Potential Probe measurement data to simulations. The ISS plasma interaction model will be further tested and verified as measurements from the Floating Potential Measurement Unit become available, and construction of the ISS continues.
Effect of Coulomb interaction on chemical potential of metal film
NASA Astrophysics Data System (ADS)
Kostrobij, P. P.; Markovych, B. M.
2018-07-01
The chemical potential of a metal film within the jellium model taking into account the Coulomb interaction between electrons is calculated. The surface potential is modelled as the infinite rectangular potential well. The behaviour of the chemical potential as a function of the film thickness is studied, the quantum size effect for this quantity is analysed. It is shown that taking into account the Coulomb interaction leads to a significant decrease of the chemical potential and to an enhancement of the quantum size effect.
Dumbreck, Siobhan; Flynn, Angela; Nairn, Moray; Wilson, Martin; Treweek, Shaun; Mercer, Stewart W; Alderson, Phil; Thompson, Alex; Payne, Katherine; Guthrie, Bruce
2015-03-11
To identify the number of drug-disease and drug-drug interactions for exemplar index conditions within National Institute of Health and Care Excellence (NICE) clinical guidelines. Systematic identification, quantification, and classification of potentially serious drug-disease and drug-drug interactions for drugs recommended by NICE clinical guidelines for type 2 diabetes, heart failure, and depression in relation to 11 other common conditions and drugs recommended by NICE guidelines for those conditions. NICE clinical guidelines for type 2 diabetes, heart failure, and depression Potentially serious drug-disease and drug-drug interactions. Following recommendations for prescription in 12 national clinical guidelines would result in several potentially serious drug interactions. There were 32 potentially serious drug-disease interactions between drugs recommended in the guideline for type 2 diabetes and the 11 other conditions compared with six for drugs recommended in the guideline for depression and 10 for drugs recommended in the guideline for heart failure. Of these drug-disease interactions, 27 (84%) in the type 2 diabetes guideline and all of those in the two other guidelines were between the recommended drug and chronic kidney disease. More potentially serious drug-drug interactions were identified between drugs recommended by guidelines for each of the three index conditions and drugs recommended by the guidelines for the 11 other conditions: 133 drug-drug interactions for drugs recommended in the type 2 diabetes guideline, 89 for depression, and 111 for heart failure. Few of these drug-disease or drug-drug interactions were highlighted in the guidelines for the three index conditions. Drug-disease interactions were relatively uncommon with the exception of interactions when a patient also has chronic kidney disease. Guideline developers could consider a more systematic approach regarding the potential for drug-disease interactions, based on epidemiological knowledge of the comorbidities of people with the disease the guideline is focused on, and should particularly consider whether chronic kidney disease is common in the target population. In contrast, potentially serious drug-drug interactions between recommended drugs for different conditions were common. The extensive number of potentially serious interactions requires innovative interactive approaches to the production and dissemination of guidelines to allow clinicians and patients with multimorbidity to make informed decisions about drug selection. © Dumbreck et al 2015.
Rosokha, Sergiy V; Lü, Jian-Ming; Newton, Marshall D; Kochi, Jay K
2005-05-25
Definitive X-ray structures of "separated" versus "contact" ion pairs, together with their spectral (UV-NIR, ESR) characterizations, provide the quantitative basis for evaluating the complex equilibria and intrinsic (self-exchange) electron-transfer rates for the potassium salts of p-dinitrobenzene radical anion (DNB(-)). Three principal types of ion pairs, K(L)(+)DNB(-), are designated as Classes S, M, and C via the specific ligation of K(+) with different macrocyclic polyether ligands (L). For Class S, the self-exchange rate constant for the separated ion pair (SIP) is essentially the same as that of the "free" anion, and we conclude that dinitrobenzenide reactivity is unaffected when the interionic distance in the separated ion pair is r(SIP) > or =6 Angstroms. For Class M, the dynamic equilibrium between the contact ion pair (with r(CIP) = 2.7 Angstroms) and its separated ion pair is quantitatively evaluated, and the rather minor fraction of SIP is nonetheless the principal contributor to the overall electron-transfer kinetics. For Class C, the SIP rate is limited by the slow rate of CIP right arrow over left arrow SIP interconversion, and the self-exchange proceeds via the contact ion pair by default. Theoretically, the electron-transfer rate constant for the separated ion pair is well-accommodated by the Marcus/Sutin two-state formulation when the precursor in Scheme 2 is identified as the "separated" inner-sphere complex (IS(SIP)) of cofacial DNB(-)/DNB dyads. By contrast, the significantly slower rate of self-exchange via the contact ion pair requires an associative mechanism (Scheme 3) in which the electron-transfer rate is strongly governed by cationic mobility of K(L)(+) within the "contact" precursor complex (IS(CIP)) according to the kinetics in Scheme 4.
Park, Jungkap; Saitou, Kazuhiro
2014-09-18
Multibody potentials accounting for cooperative effects of molecular interactions have shown better accuracy than typical pairwise potentials. The main challenge in the development of such potentials is to find relevant structural features that characterize the tightly folded proteins. Also, the side-chains of residues adopt several specific, staggered conformations, known as rotamers within protein structures. Different molecular conformations result in different dipole moments and induce charge reorientations. However, until now modeling of the rotameric state of residues had not been incorporated into the development of multibody potentials for modeling non-bonded interactions in protein structures. In this study, we develop a new multibody statistical potential which can account for the influence of rotameric states on the specificity of atomic interactions. In this potential, named "rotamer-dependent atomic statistical potential" (ROTAS), the interaction between two atoms is specified by not only the distance and relative orientation but also by two state parameters concerning the rotameric state of the residues to which the interacting atoms belong. It was clearly found that the rotameric state is correlated to the specificity of atomic interactions. Such rotamer-dependencies are not limited to specific type or certain range of interactions. The performance of ROTAS was tested using 13 sets of decoys and was compared to those of existing atomic-level statistical potentials which incorporate orientation-dependent energy terms. The results show that ROTAS performs better than other competing potentials not only in native structure recognition, but also in best model selection and correlation coefficients between energy and model quality. A new multibody statistical potential, ROTAS accounting for the influence of rotameric states on the specificity of atomic interactions was developed and tested on decoy sets. The results show that ROTAS has improved ability to recognize native structure from decoy models compared to other potentials. The effectiveness of ROTAS may provide insightful information for the development of many applications which require accurate side-chain modeling such as protein design, mutation analysis, and docking simulation.
Jafari, Rahim; Sadeghi, Mehdi; Mirzaie, Mehdi
2016-05-01
The approaches taken to represent and describe structural features of the macromolecules are of major importance when developing computational methods for studying and predicting their structures and interactions. This study attempts to explore the significance of Delaunay tessellation for the definition of atomic interactions by evaluating its impact on the performance of scoring protein-protein docking prediction. Two sets of knowledge-based scoring potentials are extracted from a training dataset of native protein-protein complexes. The potential of the first set is derived using atomic interactions extracted from Delaunay tessellated structures. The potential of the second set is calculated conventionally, that is, using atom pairs whose interactions were determined by their separation distances. The scoring potentials were tested against two different docking decoy sets and their performances were compared. The results show that, if properly optimized, the Delaunay-based scoring potentials can achieve higher success rate than the usual scoring potentials. These results and the results of a previous study on the use of Delaunay-based potentials in protein fold recognition, all point to the fact that Delaunay tessellation of protein structure can provide a more realistic definition of atomic interaction, and therefore, if appropriately utilized, may be able to improve the accuracy of pair potentials. Copyright © 2016 Elsevier Inc. All rights reserved.
Valerian: no evidence for clinically relevant interactions.
Kelber, Olaf; Nieber, Karen; Kraft, Karin
2014-01-01
In recent popular publications as well as in widely used information websites directed to cancer patients, valerian is claimed to have a potential of adverse interactions with anticancer drugs. This questions its use as a safe replacement for, for example, benzodiazepines. A review on the interaction potential of preparations from valerian root (Valeriana officinalis L. root) was therefore conducted. A data base search and search in a clinical drug interaction data base were conducted. Thereafter, a systematic assessment of publications was performed. Seven in vitro studies on six CYP 450 isoenzymes, on p-glycoprotein, and on two UGT isoenzymes were identified. However, the methodological assessment of these studies did not support their suitability for the prediction of clinically relevant interactions. In addition, clinical studies on various valerian preparations did not reveal any relevant interaction potential concerning CYP 1A2, 2D6, 2E1, and 3A4. Available animal and human pharmacodynamic studies did not verify any interaction potential. The interaction potential of valerian preparations therefore seems to be low and thereby without clinical relevance. We conclude that there is no specific evidence questioning their safety, also in cancer patients.
Valerian: No Evidence for Clinically Relevant Interactions
Nieber, Karen; Kraft, Karin
2014-01-01
In recent popular publications as well as in widely used information websites directed to cancer patients, valerian is claimed to have a potential of adverse interactions with anticancer drugs. This questions its use as a safe replacement for, for example, benzodiazepines. A review on the interaction potential of preparations from valerian root (Valeriana officinalis L. root) was therefore conducted. A data base search and search in a clinical drug interaction data base were conducted. Thereafter, a systematic assessment of publications was performed. Seven in vitro studies on six CYP 450 isoenzymes, on p-glycoprotein, and on two UGT isoenzymes were identified. However, the methodological assessment of these studies did not support their suitability for the prediction of clinically relevant interactions. In addition, clinical studies on various valerian preparations did not reveal any relevant interaction potential concerning CYP 1A2, 2D6, 2E1, and 3A4. Available animal and human pharmacodynamic studies did not verify any interaction potential. The interaction potential of valerian preparations therefore seems to be low and thereby without clinical relevance. We conclude that there is no specific evidence questioning their safety, also in cancer patients. PMID:25093031
Thin Film Evaporation Model with Retarded Van Der Waals Interaction (Postprint)
2013-11-01
Waals interaction. The retarded van der Waals interaction is derived from Hamaker theory, the summation of retarded pair potentials for all molecules...interaction is derived from Hamaker theory, the summation of retarded pair potentials for all molecules for a given geometry. When combined, the governing...interaction force is the negative derivative with respect to distance of the interaction energy. The method due to Hamaker essentially sums all pair
Martínez-Múgica, Cristina
2015-12-01
Polypharmacy is a growing problem nowadays, which can increase the risk of potential drug interactions, and result in a loss of effectiveness. This is particularly relevant to the anti-infective therapy, especially when infection is produced by resistant bacteria, because therapeutic options are limited and interactions can cause treatment failure. All antimicrobial prescriptions were retrospectively reviewed during a week in the Pharmacy Department, in order to detect potential drug-interactions and analysing their clinical significance. A total of 314 antimicrobial prescriptions from 151 patients were checked. There was at least one potential interaction detected in 40% of patients, being more frequent and severe in those infected with multidrug-resistant microorganisms. Drugs most commonly involved were quinolones, azoles, linezolid and vancomycin. Potential drug interactions with antimicrobial agents are a frequent problem that can result in a loss of effectiveness. This is why they should be detected and avoided when possible, in order to optimize antimicrobial therapy, especially in case of multidrug resistant infections.
Thai, Michele; Hilmer, Sarah; Pearson, Sallie-Anne; Reeve, Emily; Gnjidic, Danijela
2015-10-01
A significant proportion of older people are prescribed statins and are also exposed to polypharmacy, placing them at increased risk of statin-drug interactions. To describe the prevalence rates of potential and clinically relevant statin-drug interactions in older inpatients according to frailty status. A cross-sectional study of patients aged ≥65 years who were prescribed a statin and were admitted to a teaching hospital between 30 July and 10 October 2014 in Sydney, Australia, was conducted. Data on socio-demographics, comorbidities and medications were collected using a standardized questionnaire. Potential statin-drug interactions were defined if listed in the Australian Medicines Handbook and three international drug information sources: the British National Formulary, Drug Interaction Facts and Drug-Reax(®). Clinically relevant statin-drug interactions were defined as interactions with the highest severity rating in at least two of the three international drug information sources. Frailty was assessed using the Reported Edmonton Frail Scale. A total of 180 participants were recruited (median age 78 years, interquartile range 14), 35.0% frail and 65.0% robust. Potential statin-drug interactions were identified in 10% of participants, 12.7% of frail participants and 8.5% of robust participants. Clinically relevant statin-drug interactions were identified in 7.8% of participants, 9.5% of frail participants and 6.8% of robust participants. Depending on the drug information source used, the prevalence rates of potential and clinically relevant statin-drug interactions ranged between 14.4 and 35.6% and between 14.4 and 20.6%, respectively. In our study of frail and robust older inpatients taking statins, the overall prevalence of potential statin-drug interactions was low and varied significantly according to the drug information source used.
Two-dimensional melting of colloids with long-range attractive interactions.
Du, Di; Doxastakis, Manolis; Hilou, Elaa; Biswal, Sibani Lisa
2017-02-22
The solid-liquid melting transition in a two-dimensional (2-D) attractive colloidal system is visualized using superparamagnetic colloids that interact through a long-range isotropic attractive interaction potential, which is induced using a high-frequency rotating magnetic field. Various experiments, supported by Monte Carlo simulations, are carried out over a range of interaction potentials and densities to determine structure factors, Lindermann parameters, and translational and orientational order parameters. The system shows a first-order solid-liquid melting transition. Simulations and experiments suggest that dislocations and disclinations simultaneously unbind during melting. This is in direct contrast with reports of 2-D melting of paramagnetic particles that interact with a repulsive interaction potential.
NASA Technical Reports Server (NTRS)
Jones, Henry E.
1997-01-01
A study of the full-potential modeling of a blade-vortex interaction was made. A primary goal of this study was to investigate the effectiveness of the various methods of modeling the vortex. The model problem restricts the interaction to that of an infinite wing with an infinite line vortex moving parallel to its leading edge. This problem provides a convenient testing ground for the various methods of modeling the vortex while retaining the essential physics of the full three-dimensional interaction. A full-potential algorithm specifically tailored to solve the blade-vortex interaction (BVI) was developed to solve this problem. The basic algorithm was modified to include the effect of a vortex passing near the airfoil. Four different methods of modeling the vortex were used: (1) the angle-of-attack method, (2) the lifting-surface method, (3) the branch-cut method, and (4) the split-potential method. A side-by-side comparison of the four models was conducted. These comparisons included comparing generated velocity fields, a subcritical interaction, and a critical interaction. The subcritical and critical interactions are compared with experimentally generated results. The split-potential model was used to make a survey of some of the more critical parameters which affect the BVI.
Electron interactions in graphene through an effective Coulomb potential
NASA Astrophysics Data System (ADS)
Rodrigues, Joao N. B.; Adam, Shaffique
A recent numerical work [H.-K. Tang et al, PRL 115, 186602 (2015)] considering graphene's π-electrons interacting through an effective Coulomb potential that is finite at short-distances, stressed the importance of the sp2 -electrons in determining the semimetal to Mott insulator phase transition in graphene. Some years ago, I. F. Herbut [PRL 97, 146401 (2006)] studied such a transition by mapping graphene's π-electrons into a Gross-Neveu model. From a different perspective, D. T. Son [PRB 75, 235423 (2007)] put the emphasis on the long-range interactions by modelling graphene as Dirac fermions interacting through a bare Coulomb potential. Here we build on these works and explore the phase diagram of Dirac fermions interacting through an effective Coulomb-like potential screened at short-distances. The interaction potential used allows for analytic results that controllably switch between the two perspectives above. This work was supported by the Singapore National Research Foundation (NRF-NRFF2012-01 and CA2DM medium-sized centre program) and by the Singapore Ministry of Education and Yale-NUS College (R-607-265-01312).
Empirical potential for molecular simulation of graphene nanoplatelets
NASA Astrophysics Data System (ADS)
Bourque, Alexander J.; Rutledge, Gregory C.
2018-04-01
A new empirical potential for layered graphitic materials is reported. Interatomic interactions within a single graphene sheet are modeled using a Stillinger-Weber potential. Interatomic interactions between atoms in different sheets of graphene in the nanoplatelet are modeled using a Lennard-Jones interaction potential. The potential is validated by comparing molecular dynamics simulations of tensile deformation with the reported elastic constants for graphite. The graphite is found to fracture into graphene nanoplatelets when subjected to ˜15% tensile strain normal to the basal surface of the graphene stack, with an ultimate stress of 2.0 GPa and toughness of 0.33 GPa. This force field is useful to model molecular interactions in an important class of composite systems comprising 2D materials like graphene and multi-layer graphene nanoplatelets.
FAST TRACK COMMUNICATION: A Be-W interatomic potential
NASA Astrophysics Data System (ADS)
Björkas, C.; Henriksson, K. O. E.; Probst, M.; Nordlund, K.
2010-09-01
In this work, an interatomic potential for the beryllium-tungsten system is derived. It is the final piece of a potential puzzle, now containing all possible interactions between the fusion reactor materials beryllium, tungsten and carbon as well as the plasma hydrogen isotopes. The potential is suitable for plasma-wall interaction simulations and can describe the intermetallic Be2W and Be12W phases. The interaction energy between a Be surface and a W atom, and vice versa, agrees qualitatively with ab initio calculations. The potential can also reasonably describe BexWy molecules with x, y = 1, 2, 3, 4.
NASA Astrophysics Data System (ADS)
Liu, B.; McLean, A. D.
1989-08-01
We report the LM-2 helium dimer interaction potential, from helium separations of 1.6 Å to dissociation, obtained by careful convergence studies with respect to configuration space, through a sequence of interacting correlated fragment (ICF) wave functions, and with respect to the primitive Slater-type basis used for orbital expansion. Parameters of the LM-2 potential are re=2.969 Å, rm=2.642 Å, and De=10.94 K, in near complete agreement with those of the best experimental potential of Aziz, McCourt, and Wong [Mol. Phys. 61, 1487 (1987)], which are re=2.963 Å, rm=2.637 Å, and De=10.95 K. The computationally estimated accuracy of each point on the potential is given; at re it is 0.03 K. Extrapolation procedures used to produce the LM-2 potential make use of the orbital basis inconsistency (OBI) and configuration base inconsistency (CBI) adjustments to separated fragment energies when computing the interaction energy. These components of basis set superposition error (BSSE) are given a full discussion.
Identification and evaluation of drug-supplement interactions in Hungarian hospital patients.
Végh, Anna; Lankó, Erzsébet; Fittler, András; Vida, Róbert György; Miseta, Ildikó; Takács, Gábor; Botz, Lajos
2014-04-01
The increasing number of patients taking supplementary products together with prescribed medicines has become a new challenge for health care systems. These products may influence therapy outcomes by inducing unwanted effects. Particularly concerning is the potential for harmful interactions between prescribed medicines and supplementary products. The aims of the study were to evaluate supplement use, to identify and analyse potential interactions, and to assess the efficiency of computerised interaction screening. Participants of the study were inpatients and outpatients of a Hungarian university hospital. A cross-sectional point-of-care survey of 200 patients was carried out. Data was collected through personal interviews and a review of the medical records. Drug-drug, drug-supplement and supplement-supplement interactions were analysed with three interaction databases (Lexi-Interact Online, Medscape Drug Interaction Checker and Mediris). Prevalence of supplementary product use, number of medicines and supplementary products per patient, procurement sources of products, number of potentially severe interactions. There was a marked difference between data obtained from patient interviews and the medical records. 85.5 % of the surveyed patients took supplementary products during the 2 weeks prior to the interview. The average number of prescribed medicines and supplementary products were 7.8 and 2.5, respectively. Women were more likely to take supplements than men. There was no significant difference in supplement use between patients under or over 60 years, between inpatients and outpatients and among patients in various wards. 39.4 % of supplementary products were purchased outside a regulated pharmacy environment. Potentially severe drug-supplement interactions were detected with 45.2 % of supplement users; however the majority of interactions were not included in one or the other of the three databases. In addition to that the risk ratings of the same interactions varied greatly between databases. A significant number of patients are exposed to potential drug interactions with supplementary products; however interagreement among interaction databases is poor. Our data suggest that a full medication history should specifically address the intake of supplements.
Study of interaction in silica glass via model potential approach
NASA Astrophysics Data System (ADS)
Mann, Sarita; Rani, Pooja
2016-05-01
Silica is one of the most commonly encountered substances in daily life and in electronics industry. Crystalline SiO2 (in several forms: quartz, cristobalite, tridymite) is an important constituent of many minerals and gemstones, both in pure form and mixed with related oxides. Cohesive energy of amorphous SiO2 has been investigated via intermolecular potentials i.e weak Van der Waals interaction and Morse type short-range interaction. We suggest a simple atom-atom based Van der Waals as well as Morse potential to find cohesive energy of glass. It has been found that the study of silica structure using two different model potentials is significantly different. Van der Waals potential is too weak (P.E =0.142eV/molecule) to describe the interaction between silica molecules. Morse potential is a strong potential, earlier given for intramolecular bonding, but if applied for intermolecular bonding, it gives a value of P.E (=-21.92eV/molecule) to appropriately describe the structure of silica.
Simulations of noble gases adsorbed on graphene
NASA Astrophysics Data System (ADS)
Maiga, Sidi; Gatica, Silvina
2014-03-01
We present results of Grand Canonical Monte Carlo simulations of adsorption of Kr, Ar and Xe on a suspended graphene sheet. We compute the adsorbate-adsorbate interaction by a Lennard-Jones potential. We adopt a hybrid model for the graphene-adsorbate force; in the hybrid model, the potential interaction with the nearest carbon atoms (within a distance rnn) is computed with an atomistic pair potential Ua; for the atoms at r>rnn, we compute the interaction energy as a continuous integration over a carbon uniform sheet with the density of graphene. For the atomistic potential Ua, we assume the anisotropic LJ potential adapted from the graphite-He interaction proposed by Cole et.al. This interaction includes the anisotropy of the C atoms on graphene, which originates in the anisotropic π-bonds. The adsorption isotherms, energy and structure of the layer are obtained and compared with experimental results. We also compare with the adsorption on graphite and carbon nanotubes. This research was supported by NSF/PRDM (Howard University) and NSF (DMR 1006010).
NASA Astrophysics Data System (ADS)
Henkel, C.; Klimchitskaya, G. L.; Mostepanenko, V. M.
2018-03-01
We present a formalism based on first principles of quantum electrodynamics at nonzero temperature which permits us to calculate the Casimir-Polder interaction between an atom and a graphene sheet with arbitrary mass gap and chemical potential, including graphene-coated substrates. The free energy and force of the Casimir-Polder interaction are expressed via the polarization tensor of graphene in (2 +1 ) -dimensional space-time in the framework of the Dirac model. The obtained expressions are used to investigate the influence of the chemical potential of graphene on the Casimir-Polder interaction. Computations are performed for an atom of metastable helium interacting with either a freestanding graphene sheet or a graphene-coated substrate made of amorphous silica. It is shown that the impacts of the nonzero chemical potential and the mass gap on the Casimir-Polder interaction are in opposite directions, by increasing and decreasing the magnitudes of the free energy and force, respectively. It turns out, however, that the temperature-dependent part of the Casimir-Polder interaction is decreased by a nonzero chemical potential, whereas the mass gap increases it compared to the case of undoped, gapless graphene. The physical explanation for these effects is provided. Numerical computations of the Casimir-Polder interaction are performed at various temperatures and atom-graphene separations.
Leung, Kin K.; Hause, Ronald J.; Barkinge, John L.; Ciaccio, Mark F.; Chuu, Chih-Pin; Jones, Richard B.
2014-01-01
Many human diseases are associated with aberrant regulation of phosphoprotein signaling networks. Src homology 2 (SH2) domains represent the major class of protein domains in metazoans that interact with proteins phosphorylated on the amino acid residue tyrosine. Although current SH2 domain prediction algorithms perform well at predicting the sequences of phosphorylated peptides that are likely to result in the highest possible interaction affinity in the context of random peptide library screens, these algorithms do poorly at predicting the interaction potential of SH2 domains with physiologically derived protein sequences. We employed a high throughput interaction assay system to empirically determine the affinity between 93 human SH2 domains and phosphopeptides abstracted from several receptor tyrosine kinases and signaling proteins. The resulting interaction experiments revealed over 1000 novel peptide-protein interactions and provided a glimpse into the common and specific interaction potentials of c-Met, c-Kit, GAB1, and the human androgen receptor. We used these data to build a permutation-based logistic regression classifier that performed considerably better than existing algorithms for predicting the interaction potential of several SH2 domains. PMID:24728074
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xiao-Fei, E-mail: xfzhang@ntsc.ac.cn; Du, Zhi-Jing; Tan, Ren-Bing
We consider a pair of coupled nonlinear Schrödinger equations modeling a rotating two-component Bose–Einstein condensate with tunable interactions and harmonic potential, with emphasis on the structure of vortex states by varying the strength of inter-component interaction, rotational frequency, and the aspect ratio of the harmonic potential. Our results show that the inter-component interaction greatly enhances the effect of rotation. For the case of isotropic harmonic potential and small inter-component interaction, the initial vortex structure remains unchanged. As the ratio of inter- to intra-component interactions increases, each component undergoes a transition from a vortex lattice (vortex line) in an isotropic (anisotropic)more » harmonic potential to an alternatively arranged stripe pattern, and eventually to the interwoven “serpentine” vortex sheets. Moreover, in the case of anisotropic harmonic potential the system can develop to a rotating droplet structure. -- Highlights: •Different vortex structures are obtained within the full parameter space. •Effects of system parameters on the ground state structure are discussed. •Phase transition between different vortex structures is also examined. •Present one possible way to obtain the rotating droplet structure. •Provide many possibilities to manipulate vortex in two-component BEC.« less
The Poisson-Helmholtz-Boltzmann model.
Bohinc, K; Shrestha, A; May, S
2011-10-01
We present a mean-field model of a one-component electrolyte solution where the mobile ions interact not only via Coulomb interactions but also through a repulsive non-electrostatic Yukawa potential. Our choice of the Yukawa potential represents a simple model for solvent-mediated interactions between ions. We employ a local formulation of the mean-field free energy through the use of two auxiliary potentials, an electrostatic and a non-electrostatic potential. Functional minimization of the mean-field free energy leads to two coupled local differential equations, the Poisson-Boltzmann equation and the Helmholtz-Boltzmann equation. Their boundary conditions account for the sources of both the electrostatic and non-electrostatic interactions on the surface of all macroions that reside in the solution. We analyze a specific example, two like-charged planar surfaces with their mobile counterions forming the electrolyte solution. For this system we calculate the pressure between the two surfaces, and we analyze its dependence on the strength of the Yukawa potential and on the non-electrostatic interactions of the mobile ions with the planar macroion surfaces. In addition, we demonstrate that our mean-field model is consistent with the contact theorem, and we outline its generalization to arbitrary interaction potentials through the use of a Laplace transformation. © EDP Sciences / Società Italiana di Fisica / Springer-Verlag 2011
NASA Astrophysics Data System (ADS)
Aoki, Sinya
2013-07-01
We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for nucleon-nucleon potentials.
One of the challenges facing toxicology and risk assessment is that numerous host and environmental factors may modulate vulnerability and risk. An area of increasing interest is the potential for chemicals to interact with background aging and disease processes, an interaction...
SELF-BLM: Prediction of drug-target interactions via self-training SVM.
Keum, Jongsoo; Nam, Hojung
2017-01-01
Predicting drug-target interactions is important for the development of novel drugs and the repositioning of drugs. To predict such interactions, there are a number of methods based on drug and target protein similarity. Although these methods, such as the bipartite local model (BLM), show promise, they often categorize unknown interactions as negative interaction. Therefore, these methods are not ideal for finding potential drug-target interactions that have not yet been validated as positive interactions. Thus, here we propose a method that integrates machine learning techniques, such as self-training support vector machine (SVM) and BLM, to develop a self-training bipartite local model (SELF-BLM) that facilitates the identification of potential interactions. The method first categorizes unlabeled interactions and negative interactions among unknown interactions using a clustering method. Then, using the BLM method and self-training SVM, the unlabeled interactions are self-trained and final local classification models are constructed. When applied to four classes of proteins that include enzymes, G-protein coupled receptors (GPCRs), ion channels, and nuclear receptors, SELF-BLM showed the best performance for predicting not only known interactions but also potential interactions in three protein classes compare to other related studies. The implemented software and supporting data are available at https://github.com/GIST-CSBL/SELF-BLM.
NASA Astrophysics Data System (ADS)
Kohno, M.
2018-03-01
Adopting hyperon-nucleon and hyperon-nucleon-nucleon interactions parametrized in chiral effective field theory, single-particle potentials of the Λ and Σ hyperons are evaluated in symmetric nuclear matter and in pure neutron matter within the framework of lowest-order Bruckner theory. The chiral NLO interaction bears strong Λ N -Σ N coupling. Although the Λ potential is repulsive if the coupling is switched off, the Λ N -Σ N correlation brings about the attraction consistent with empirical data. The Σ potential is repulsive, which is also consistent with empirical information. The interesting result is that the Λ potential becomes shallower beyond normal density. This provides the possibility of solving the hyperon puzzle without introducing ad hoc assumptions. The effects of the Λ N N -Λ N N and Λ N N -Σ N N three-baryon forces are considered. These three-baryon forces are first reduced to normal-ordered effective two-baryon interactions in nuclear matter and then incorporated in the G -matrix equation. The repulsion from the Λ N N -Λ N N interaction is of the order of 5 MeV at normal density and becomes larger with increasing density. The effects of the Λ N N -Σ N N coupling compensate the repulsion at normal density. The net effect of the three-baryon interactions on the Λ single-particle potential is repulsive at higher densities.
Chen, Qian; Cho, Hoduk; Manthiram, Karthish; ...
2015-03-23
We demonstrate a generalizable strategy to use the relative trajectories of pairs and groups of nanocrystals, and potentially other nanoscale objects, moving in solution which can now be obtained by in situ liquid phase transmission electron microscopy (TEM) to determine the interaction potentials between nanocrystals. Such nanoscale interactions are crucial for collective behaviors and applications of synthetic nanocrystals and natural biomolecules, but have been very challenging to measure in situ at nanometer or sub-nanometer resolution. Here we use liquid phase TEM to extract the mathematical form of interaction potential between nanocrystals from their sampled trajectories. We show the power ofmore » this approach to reveal unanticipated features of nanocrystal–nanocrystal interactions by examining the anisotropic interaction potential between charged rod-shaped Au nanocrystals (Au nanorods); these Au nanorods assemble, in a tip-to-tip fashion in the liquid phase, in contrast to the well-known side-by-side arrangements commonly observed for drying-mediated assembly. These observations can be explained by a long-range and highly anisotropic electrostatic repulsion that leads to the tip-selective attachment. As a result, Au nanorods stay unassembled at a lower ionic strength, as the electrostatic repulsion is even longer-ranged. Our study not only provides a mechanistic understanding of the process by which metallic nanocrystals assemble but also demonstrates a method that can potentially quantify and elucidate a broad range of nanoscale interactions relevant to nanotechnology and biophysics.« less
Interaction potential between a helium atom and metal surfaces
NASA Technical Reports Server (NTRS)
Takada, Y.; Kohn, W.
1985-01-01
By employing an S-matrix theory for evanescent waves, the repulsive potential between a helium atom and corrugated metal surfaces has been calculated. P-wave interactions and intra-atomic correlation effects were found to be very important. The corrugation part of the interaction potential is much weaker than predicted by the effective-medium theory. Application to Cu, Ni, and Ag (110) surfaces gives good agreement with experiment without any adjustable parameters.
Jastrow-like ground states for quantum many-body potentials with near-neighbors interactions
NASA Astrophysics Data System (ADS)
Baradaran, Marzieh; Carrasco, José A.; Finkel, Federico; González-López, Artemio
2018-01-01
We completely solve the problem of classifying all one-dimensional quantum potentials with nearest- and next-to-nearest-neighbors interactions whose ground state is Jastrow-like, i.e., of Jastrow type but depending only on differences of consecutive particles. In particular, we show that these models must necessarily contain a three-body interaction term, as was the case with all previously known examples. We discuss several particular instances of the general solution, including a new hyperbolic potential and a model with elliptic interactions which reduces to the known rational and trigonometric ones in appropriate limits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Park, Changwon; Rojas, Geoffrey A.; Jeon, Seokmin
2014-09-19
The energy scales of interactions that control molecular adsorption and assembly on surfaces can vary by several orders of magnitude, yet the importance of each contributing interaction is not apparent a priori. Tetracyanoquinodimethane (TCNQ) is an archetypal electron acceptor molecule and it is a key component of organic metals. On metal surfaces, this molecule also acts as an electron acceptor, producing negatively charged adsorbates. It is therefore rather intriguing to observe attractive molecular interactions in this system that were reported previously for copper and silver surfaces. In this paper, our experiments compared TCNQ adsorption on noble metal surfaces of Ag(100)more » and Ag(111). In both cases we found net attractive interactions down to the lowest coverage. However, the morphology of the assemblies was strikingly different, with two-dimensional islands on Ag(100) and one-dimensional chains on Ag(111) surfaces. This observation suggests that the registry effect governed by the molecular interaction with the underlying lattice potential is critical in determining the dimensionality of the molecular assembly. Using first-principles density functional calculations with a van der Waals correction scheme, we revealed that the strengths of major interactions (i.e., lattice potential corrugation, intermolecular attraction, and charge-transfer-induced repulsion) are all similar in energy. The van der Waals interactions, in particular, almost double the strength of attractive interactions, making the intermolecular potential comparable in strength to the diffusion potential and promoting self-assembly. However, it is the anisotropy of local intermolecular interactions that is primarily responsible for the difference in the topology of the molecular islands on Ag(100) and Ag(111) surfaces. Finally, we anticipate that the intermolecular potential will become more attractive and dominant over the diffusion potential with increasing molecular size, providing new design strategies for the structure and charge transfer within molecular layers.« less
NASA Astrophysics Data System (ADS)
Gupta, Raj K.; Singh, Dalip; Kumar, Raj; Greiner, Walter
2009-07-01
The universal function of the nuclear proximity potential is obtained for the Skyrme nucleus-nucleus interaction in the semiclassical extended Thomas-Fermi (ETF) approach. This is obtained as a sum of the spin-orbit-density-independent and spin-orbit-density-dependent parts of the Hamiltonian density, since the two terms behave differently, the spin-orbit-density-independent part mainly attractive and the spin-orbit-density-dependent part mainly repulsive. The semiclassical expansions of kinetic energy density and spin-orbit density are allowed up to second order, and the two-parameter Fermi density, with its parameters fitted to experiments, is used for the nuclear density. The universal functions or the resulting nuclear proximity potential reproduce the 'exact' Skyrme nucleus-nucleus interaction potential in the semiclassical approach, within less than ~1 MeV of difference, both at the maximum attraction and in the surface region. An application of the resulting interaction potential to fusion excitation functions shows clearly that the parameterized universal functions of nuclear proximity potential substitute completely the 'exact' potential in the Skyrme energy density formalism based on the semiclassical ETF method, including also the modifications of interaction barriers at sub-barrier energies in terms of modifying the constants of the universal functions.
Zeng, Li; Wu, Lie; Liu, Li; Jiang, Xiue
2017-11-02
The interaction of cytochrome c (cyt c) with cardiolipin (CL) plays a crucial role in apoptotic functions, however, the changes of the transmembrane potential in governing the protein behavior at the membrane-water interface have not been studied due to the difficulties in simultaneously monitoring the interaction and regulating the electric field. Herein, surface-enhanced infrared absorption (SEIRA) spectroelectrochemistry is employed to study the mechanism of how the transmembrane potentials control the interaction of cyt c with CL membranes by regulating the electrode potentials of an Au film. When the transmembrane potential decreases, the water content at the interface of the membranes can be increased to slow down protein adsorption through decreasing the hydrogen-bond and hydrophobic interactions, but regulates the redox behavior of CL-bound cyt c through a possible water-facilitated proton-coupled electron transfer process. Our results suggest that the potential drop-induced restructure of the CL conformation and the hydration state could modify the structure and function of CL-bound cyt c on the lipid membrane. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Interaction of the geomagnetic field with northward interplanetary magnetic field
NASA Astrophysics Data System (ADS)
Bhattarai, Shree Krishna
The interaction of the solar wind with Earth's magnetic field causes the transfer of momentum and energy from the solar wind to geospace. The study of this interaction is gaining significance as our society is becoming more and more space based, due to which, predicting space weather has become more important. The solar wind interacts with the geomagnetic field primarily via two processes: viscous interaction and the magnetic reconnection. Both of these interactions result in the generation of an electric field in Earth's ionosphere. The overall topology and dynamics of the magnetosphere, as well as the electric field imposed on the ionosphere, vary with speed, density, and magnetic field orientation of the solar wind as well as the conductivity of the ionosphere. In this dissertation, I will examine the role of northward interplanetary magnetic field (IMF) and discuss the global topology of the magnetosphere and the interaction with the ionosphere using results obtained from the Lyon-Fedder-Mobarry (LFM) simulation. The electric potentials imposed on the ionosphere due to viscous interaction and magnetic reconnection are called the viscous and the reconnection potentials, respectively. A proxy to measure the overall effect of these potentials is to measure the cross polar potential (CPP). The CPP is defined as the difference between the maximum and the minimum of the potential in a given polar ionosphere. I will show results from the LFM simulation showing saturation of the CPP during periods with purely northward IMF of sufficiently large magnitude. I will further show that the viscous potential, which was assumed to be independent of IMF orientation until this work, is reduced during periods of northward IMF. Furthermore, I will also discuss the implications of these results for a simulation of an entire solar rotation.
Alvim, Mariana Macedo; da Silva, Lidiane Ayres; Leite, Isabel Cristina Gonçalves; Silvério, Marcelo Silva
2015-01-01
Objective To evaluate the incidence of potential drug-drug interactions in an intensive care unit of a hospital, focusing on antimicrobial drugs. Methods This cross-sectional study analyzed electronic prescriptions of patients admitted to the intensive care unit of a teaching hospital between January 1 and March 31, 2014 and assessed potential drug-drug interactions associated with antimicrobial drugs. Antimicrobial drug consumption levels were expressed in daily doses per 100 patient-days. The search and classification of the interactions were based on the Micromedex® system. Results The daily prescriptions of 82 patients were analyzed, totaling 656 prescriptions. Antimicrobial drugs represented 25% of all prescription drugs, with meropenem, vancomycin and ceftriaxone being the most prescribed medications. According to the approach of daily dose per 100 patient-days, the most commonly used antimicrobial drugs were cefepime, meropenem, sulfamethoxazole + trimethoprim and ciprofloxacin. The mean number of interactions per patient was 2.6. Among the interactions, 51% were classified as contraindicated or significantly severe. Highly significant interactions (clinical value 1 and 2) were observed with a prevalence of 98%. Conclusion The current study demonstrated that antimicrobial drugs are frequently prescribed in intensive care units and present a very high number of potential drug-drug interactions, with most of them being considered highly significant. PMID:26761473
Interaction Potentials for Br(2P) + Ar, Kr, Xe (1S) by the Crossed Molecular Beams Method.
1981-03-01
recombination was significantly affected by eBr-RG" In their study, the interaction potential between Br and RG was assumed to be of the Lennard ... Jones (L-J) form with the following parameters: RG=Ar, c=1.0 kcal/mole, a=3.0 A; RG=Xe, e-1.0 kcal/mole, a=3.5 A. A slightly shallower Br-Ar potential ...AOA-A00 002 CALIFORNIA UNIV BERKELEY LAWRENCE BERKELEY LAB F/6 20/7 INTERACTION POTENTIALS FOR BR2P) + AR. KR. XE (IS) BY THE CROS--ETCfIU MAR 81 P
{rho}-{omega} mixing and spin dependent charge-symmetry violating potential
DOE Office of Scientific and Technical Information (OSTI.GOV)
Biswas, Subhrajyoti; Roy, Pradip; Dutt-Mazumder, Abhee K.
2008-10-15
We construct the charge symmetry violating (CSV) nucleon-nucleon potential induced by the {rho}{sup 0}-{omega} mixing due to the neutron-proton mass difference driven by the NN loop. Analytical expression for the two-body CSV potential is presented containing both the central and noncentral NN interaction. We show that the {rho}NN tensor interaction can significantly enhance the charge symmetry violating NN interaction even if the momentum dependent off-shell {rho}{sup 0}-{omega} mixing amplitude is considered. It is also shown that the inclusion of form factors removes the divergence arising out of the contact interaction. Consequently, we see that the precise size of the computedmore » scattering length difference depends on how the short-range aspects of the CSV potential are treated.« less
NASA Astrophysics Data System (ADS)
Kjellander, Roland
2006-04-01
It is shown that the nature of the non-electrostatic part of the pair interaction potential in classical Coulomb fluids can have a profound influence on the screening behaviour. Two cases are compared: (i) when the non-electrostatic part equals an arbitrary finite-ranged interaction and (ii) when a dispersion r-6 interaction potential is included. A formal analysis is done in exact statistical mechanics, including an investigation of the bridge function. It is found that the Coulombic r-1 and the dispersion r-6 potentials are coupled in a very intricate manner as regards the screening behaviour. The classical one-component plasma (OCP) is a particularly clear example due to its simplicity and is investigated in detail. When the dispersion r-6 potential is turned on, the screened electrostatic potential from a particle goes from a monotonic exponential decay, exp(-κr)/r, to a power-law decay, r-8, for large r. The pair distribution function acquire, at the same time, an r-10 decay for large r instead of the exponential one. There still remains exponentially decaying contributions to both functions, but these contributions turn oscillatory when the r-6 interaction is switched on. When the Coulomb interaction is turned off but the dispersion r-6 pair potential is kept, the decay of the pair distribution function for large r goes over from the r-10 to an r-6 behaviour, which is the normal one for fluids of electroneutral particles with dispersion interactions. Differences and similarities compared to binary electrolytes are pointed out.
Probing Atom-Surface Interactions by Diffraction of Bose-Einstein Condensates
NASA Astrophysics Data System (ADS)
Bender, Helmar; Stehle, Christian; Zimmermann, Claus; Slama, Sebastian; Fiedler, Johannes; Scheel, Stefan; Buhmann, Stefan Yoshi; Marachevsky, Valery N.
2014-01-01
In this article, we analyze the Casimir-Polder interaction of atoms with a solid grating and the repulsive interaction between the atoms and the grating in the presence of an external laser source. The Casimir-Polder potential is evaluated exactly in terms of Rayleigh reflection coefficients and via an approximate Hamaker approach. The laser-tuned repulsive interaction is given in terms of Rayleigh transmission coefficients. The combined potential landscape above the solid grating is probed locally by diffraction of Bose-Einstein condensates. Measured diffraction efficiencies reveal information about the shape of the potential landscape in agreement with the theory based on Rayleigh decompositions.
2013-07-11
in Fig. 3) is simulated. Each atom interacts with its neighboring atoms through a potential energy surface (PES), such as the simple Lennard - Jones ... Lennard -‐ Jones (LJ) potential energy surface (PES) dictating atomic interaction forces. The main point of this section is to...the potential energy surface (PES) that governs individual atomic interaction forces. In contrast to existing rotational energy models, we found
2008-03-01
bonded potentials used. The interactions between the beads were described using 6-12 Lennard - Jones (LJ) potential (Equation (1)) with a 2.5 d cutoff...in Lennard - Jones potential for the non-bonded interactions is at 1.12 d in line with the second peak. The remainder of the g(r)chain-chain has...Simulator). 40 Lennard - Jones and Coulombic interactions for pairs of organic atoms were computed using a switching function with inner and outer cutoffs of
NASA Astrophysics Data System (ADS)
Akpan, N. Ikot; Hassan, Hassanabadi; Tamunoimi, M. Abbey
2015-12-01
The Dirac equation with Hellmann potential is presented in the presence of Coulomb-like tensor (CLT), Yukawa-like tensor (YLT), and Hulthen-type tensor (HLT) interactions by using Nikiforov-Uvarov method. The bound state energy spectra and the radial wave functions are obtained approximately within the framework of spin and pseudospin symmetries limit. We have also reported some numerical results and figures to show the effects of the tensor interactions. Special cases of the potential are also discussed.
NASA Astrophysics Data System (ADS)
Ciftja, Orion
2018-05-01
It has now become evident that interplay between internal anisotropy parameters (such as electron mass anisotropy and/or anisotropic coupling of electrons to the substrate) and electron-electron correlation effects can create a rich variety of possibilities especially in quantum Hall systems. The electron mass anisotropy or material substrate effects (for example, the piezoelectric effect in GaAs) can lead to an effective anisotropic interaction potential between electrons. For lack of knowledge of realistic ab-initio potentials that may describe such effects, we adopt a phenomenological approach and assume that an anisotropic Coulomb interaction potential mimics the internal anisotropy of the system. In this work we investigate the emergence of liquid crystalline order at filling factor ν = 1/6 of the lowest Landau level, a state very close to the point where a transition from the liquid to the Wigner solid happens. We consider small finite systems of electrons interacting with an anisotropic Coulomb interaction potential and study the energy stability of an anisotropic liquid crystalline state relative to its isotropic Fermi-liquid counterpart. Quantum Monte Carlo simulation results in disk geometry show stabilization of liquid crystalline order driven by an anisotropic Coulomb interaction potential at all values of the interaction anisotropy parameter studied.
Adsorbed molecules in external fields: Effect of confining potential
NASA Astrophysics Data System (ADS)
Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod
2016-12-01
We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials.
Role of water mediated interactions in protein-protein recognition landscapes.
Papoian, Garegin A; Ulander, Johan; Wolynes, Peter G
2003-07-30
The energy landscape picture of protein folding and binding is employed to optimize a number of pair potentials for direct and water-mediated interactions in protein complex interfaces. We find that water-mediated interactions greatly complement direct interactions in discriminating against various types of trap interactions that model those present in the cell. We highlight the context dependent nature of knowledge-based binding potentials, as contrasted with the situation for autonomous folding. By performing a Principal Component Analysis (PCA) of the corresponding interaction matrixes, we rationalize the strength of the recognition signal for each combination of the contact type and reference trap states using the differential in the idealized "canonical" amino acid compositions of native and trap layers. The comparison of direct and water-mediated contact potential matrixes emphasizes the importance of partial solvation in stabilizing charged groups in the protein interfaces. Specific water-mediated interresidue interactions are expected to influence significantly the kinetics as well as thermodynamics of protein association.
Human Cancer and Platelet Interaction, a Potential Therapeutic Target.
Wang, Shike; Li, Zhenyu; Xu, Ren
2018-04-20
Cancer patients experience a four-fold increase in thrombosis risk, indicating that cancer development and progression are associated with platelet activation. Xenograft experiments and transgenic mouse models further demonstrate that platelet activation and platelet-cancer cell interaction are crucial for cancer metastasis. Direct or indirect interaction of platelets induces cancer cell plasticity and enhances survival and extravasation of circulating cancer cells during dissemination. In vivo and in vitro experiments also demonstrate that cancer cells induce platelet aggregation, suggesting that platelet-cancer interaction is bidirectional. Therefore, understanding how platelets crosstalk with cancer cells may identify potential strategies to inhibit cancer metastasis and to reduce cancer-related thrombosis. Here, we discuss the potential function of platelets in regulating cancer progression and summarize the factors and signaling pathways that mediate the cancer cell-platelet interaction.
Orbital-dependent Electron-Hole Interaction in Graphene and Associated Multi-Layer Structures
Deng, Tianqi; Su, Haibin
2015-01-01
We develop an orbital-dependent potential to describe electron-hole interaction in materials with structural 2D character, i.e. quasi-2D materials. The modulated orbital-dependent potentials are also constructed with non-local screening, multi-layer screening, and finite gap due to the coupling with substrates. We apply the excitonic Hamiltonian in coordinate-space with developed effective electron-hole interacting potentials to compute excitons’ binding strength at M (π band) and Γ (σ band) points in graphene and its associated multi-layer forms. The orbital-dependent potential provides a range-separated property for regulating both long- and short-range interactions. This accounts for the existence of the resonant π exciton in single- and bi-layer graphenes. The remarkable strong electron-hole interaction in σ orbitals plays a decisive role in the existence of σ exciton in graphene stack at room temperature. The interplay between gap-opening and screening from substrates shed a light on the weak dependence of σ exciton binding energy on the thickness of graphene stacks. Moreover, the analysis of non-hydrogenic exciton spectrum in quasi-2D systems clearly demonstrates the remarkable comparable contribution of orbital dependent potential with respect to non-local screening process. The understanding of orbital-dependent potential developed in this work is potentially applicable for a wide range of materials with low dimension. PMID:26610715
Potential disruption of protein-protein interactions by graphene oxide
NASA Astrophysics Data System (ADS)
Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong
2016-06-01
Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.
Potential disruption of protein-protein interactions by graphene oxide.
Feng, Mei; Kang, Hongsuk; Yang, Zaixing; Luan, Binquan; Zhou, Ruhong
2016-06-14
Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions and eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.
Ab initio study on electronically excited states of lithium isocyanide, LiNC
NASA Astrophysics Data System (ADS)
Yasumatsu, Hisato; Jeung, Gwang-Hi
2014-01-01
The electronically excited states of the lithium isocyanide molecule, LiNC, were studied by means of ab initio calculations. The bonding nature of LiNC up to ∼10 eV is discussed on the basis of the potential energy surfaces according to the interaction between the ion-pair and covalent states. The ion-pair states are described by Coulomb attractive interaction in the long distance range, while the covalent ones are almost repulsive or bound with a very shallow potential dent. These two states interact each other to form adiabatic potential energy surfaces with non-monotonic change in the potential energy with the internuclear distance.
Refined potentials for rare gas atom adsorption on rare gas and alkali-halide surfaces
NASA Technical Reports Server (NTRS)
Wilson, J. W.; Heinbockel, J. H.; Outlaw, R. A.
1985-01-01
The utilization of models of interatomic potential for physical interaction to estimate the long range attractive potential for rare gases and ions is discussed. The long range attractive force is calculated in terms of the atomic dispersion properties. A data base of atomic dispersion parameters for rare gas atoms, alkali ion, and halogen ions is applied to the study of the repulsive core; the procedure for evaluating the repulsive core of ion interactions is described. The interaction of rare gas atoms on ideal rare gas solid and alkali-halide surfaces is analyzed; zero coverage absorption potentials are derived.
Transport properties in the atmosphere of Jupiter
NASA Technical Reports Server (NTRS)
Biolsi, L., Jr.
1979-01-01
Activities reported include: (1) testing of the computer program used to obtain transport properties for the Hulburt-Hirschfelder potential; (2) calculation of transport properties for the C2-C interaction; (3) preliminary calculations for the C2-C2 interaction; (4) calculation of transport properties for the C2H-He interaction; (5) consideration of the effect of inelastic collisions on the transport properties; and (6) the use of the Hulburt-Hirschfelder potential to model ion-atom interactions.
Pauli structures arising from confined particles interacting via a statistical potential
NASA Astrophysics Data System (ADS)
Batle, Josep; Ciftja, Orion; Farouk, Ahmed; Alkhambashi, Majid; Abdalla, Soliman
2017-09-01
There have been suggestions that the Pauli exclusion principle alone can lead a non-interacting (free) system of identical fermions to form crystalline structures dubbed Pauli crystals. Single-shot imaging experiments for the case of ultra-cold systems of free spin-polarized fermionic atoms in a two-dimensional harmonic trap appear to show geometric arrangements that cannot be characterized as Wigner crystals. This work explores this idea and considers a well-known approach that enables one to treat a quantum system of free fermions as a system of classical particles interacting with a statistical interaction potential. The model under consideration, though classical in nature, incorporates the quantum statistics by endowing the classical particles with an effective interaction potential. The reasonable expectation is that possible Pauli crystal features seen in experiments may manifest in this model that captures the correct quantum statistics as a first order correction. We use the Monte Carlo simulated annealing method to obtain the most stable configurations of finite two-dimensional systems of confined particles that interact with an appropriate statistical repulsion potential. We consider both an isotropic harmonic and a hard-wall confinement potential. Despite minor differences, the most stable configurations observed in our model correspond to the reported Pauli crystals in single-shot imaging experiments of free spin-polarized fermions in a harmonic trap. The crystalline configurations observed appear to be different from the expected classical Wigner crystal structures that would emerge should the confined classical particles had interacted with a pair-wise Coulomb repulsion.
Vitamin and mineral supplements: friend or foe when combined with medications?
Donaldson, Mark; Touger-Decker, Riva
2014-11-01
Given the prevalence of vitamin and mineral supplement use among consumers and the potential for vitamin- and mineral-drug interactions, as well as oral and systemic adverse effects of excess consumption, oral health care providers (OHCPs) should ask all patients about their use. The challenges for OHCPs are how to recognize oral and systemic manifestations of these interactions and how to safely manage the care of these patients while avoiding potential interactions. The authors reviewed the literature regarding interactions between popular vitamin and mineral supplements and medications used commonly in dentistry. They used clinical databases and decision support tools to classify interactions according to their level of patient risk. They address interactions of greatest clinical concern with a high-quality evidence-based foundation in either randomized controlled clinical trials or meta-analyses. Most medications used commonly in dentistry can be prescribed safely without regard to vitamin- and mineral-drug interactions. However, patients taking anticoagulants or cytochrome P450 3A4 substrates (such as clarithromycin, erythromycin, ketoconazole, itraconazole, midazolam and triazolam) in addition to specific vitamin or mineral supplements (vitamins D, E, K, calcium, fluoride, iron, magnesium, selenium or zinc) may face additional challenges. OHCPs need to recognize these potential interactions and know how to manage the care of patients who may be receiving treatment with these combination therapies. Recognition and avoidance of potential vitamin- and mineral-drug interactions will help clinicians optimize patient treatment while emphasizing patient safety.
A Discontinuous Potential Model for Protein-Protein Interactions.
Shao, Qing; Hall, Carol K
2016-01-01
Protein-protein interactions play an important role in many biologic and industrial processes. In this work, we develop a two-bead-per-residue model that enables us to account for protein-protein interactions in a multi-protein system using discontinuous molecular dynamics simulations. This model deploys discontinuous potentials to describe the non-bonded interactions and virtual bonds to keep proteins in their native state. The geometric and energetic parameters are derived from the potentials of mean force between sidechain-sidechain, sidechain-backbone, and backbone-backbone pairs. The energetic parameters are scaled with the aim of matching the second virial coefficient of lysozyme reported in experiment. We also investigate the performance of several bond-building strategies.
Interaction Analysis through Proteomic Phage Display
2014-01-01
Phage display is a powerful technique for profiling specificities of peptide binding domains. The method is suited for the identification of high-affinity ligands with inhibitor potential when using highly diverse combinatorial peptide phage libraries. Such experiments further provide consensus motifs for genome-wide scanning of ligands of potential biological relevance. A complementary but considerably less explored approach is to display expression products of genomic DNA, cDNA, open reading frames (ORFs), or oligonucleotide libraries designed to encode defined regions of a target proteome on phage particles. One of the main applications of such proteomic libraries has been the elucidation of antibody epitopes. This review is focused on the use of proteomic phage display to uncover protein-protein interactions of potential relevance for cellular function. The method is particularly suited for the discovery of interactions between peptide binding domains and their targets. We discuss the largely unexplored potential of this method in the discovery of domain-motif interactions of potential biological relevance. PMID:25295249
Adsorbed molecules in external fields: Effect of confining potential.
Tyagi, Ashish; Silotia, Poonam; Maan, Anjali; Prasad, Vinod
2016-12-05
We study the rotational excitation of a molecule adsorbed on a surface. As is well known the interaction potential between the surface and the molecule can be modeled in number of ways, depending on the molecular structure and the geometry under which the molecule is being adsorbed by the surface. We explore the effect of change of confining potential on the excitation, which is largely controlled by the static electric fields and continuous wave laser fields. We focus on dipolar molecules and hence we restrict ourselves to the first order interaction in field-molecule interaction potential either through permanent dipole moment or/and the molecular polarizability parameter. It is shown that confining potential shapes, strength of the confinement, strongly affect the excitation. We compare our results for different confining potentials. Copyright © 2016 Elsevier B.V. All rights reserved.
ERIC Educational Resources Information Center
Huffman, Celia A.
2012-01-01
This study looked at the potential relationship that may exist between students' intelligence strengths, in particular their spatial and kinesthetic strengths, and their combined cognitive and metacognitive levels of interaction with a CD-ROM storybook. The multiple intelligence strengths of a sample of students, measured via the MIDAS/My…
Current Trends and Potential Applications of Microbial Interactions for Human Welfare
Tshikantwa, Tiroyaone Shimane; Ullah, Muhammad Wajid; He, Feng; Yang, Guang
2018-01-01
For a long time, it was considered that interactions between microbes are only inhibitory in nature. However, latest developments in research have demonstrated that within our environment, several classes of microbes exist which produce different products upon interaction and thus embrace a wider scope of useful and potentially valuable aspects beyond simple antibiosis. Therefore, the current review explores different types of microbial interactions and describes the role of various physical, chemical, biological, and genetic factors regulating such interactions. It further explains the mechanism of action of biofilm formation and role of secondary metabolites regulating bacteria-fungi interaction. Special emphasis and focus is placed on microbial interactions which are important in medicine, food industry, agriculture, and environment. In short, this review reveals the recent contributions of microbial interaction for the benefit of mankind.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nesterov, V. A., E-mail: archerix@ukpost.ua
On the basis of the energy-density method, the effect of simultaneously taking into account the Pauli exclusion principle and the monopole and quadrupole polarizations of interacting nuclei on their interaction potential is considered for the example of the {sup 16}O + {sup 16}O system by using the wave function for the two-center shell model. The calculations performed in the adiabatic approximation reveal that the inclusion of the Pauli exclusion principle and the polarization of interacting nuclei, especially their quadrupole polarization, has a substantial effect on the potential of the nucleus-nucleus interaction.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.
2000-05-08
The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation,more » the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work. (c) 2000 American Institute of Physics.« less
The role of atomic level steric effects and attractive forces in protein folding.
Lammert, Heiko; Wolynes, Peter G; Onuchic, José N
2012-02-01
Protein folding into tertiary structures is controlled by an interplay of attractive contact interactions and steric effects. We investigate the balance between these contributions using structure-based models using an all-atom representation of the structure combined with a coarse-grained contact potential. Tertiary contact interactions between atoms are collected into a single broad attractive well between the C(β) atoms between each residue pair in a native contact. Through the width of these contact potentials we control their tolerance for deviations from the ideal structure and the spatial range of attractive interactions. In the compact native state dominant packing constraints limit the effects of a coarse-grained contact potential. During folding, however, the broad attractive potentials allow an early collapse that starts before the native local structure is completely adopted. As a consequence the folding transition is broadened and the free energy barrier is decreased. Eventually two-state folding behavior is lost completely for systems with very broad attractive potentials. The stabilization of native-like residue interactions in non-perfect geometries early in the folding process frequently leads to structural traps. Global mirror images are a notable example. These traps are penalized by the details of the repulsive interactions only after further collapse. Successful folding to the native state requires simultaneous guidance from both attractive and repulsive interactions. Copyright © 2011 Wiley Periodicals, Inc.
Catching the PEG-induced attractive interaction between proteins.
Vivarès, D; Belloni, L; Tardieu, A; Bonneté, F
2002-09-01
We present the experimental and theoretical background of a method to characterize the protein-protein attractive potential induced by one of the mostly used crystallizing agents in the protein-field, the poly(ethylene glycol) (PEG). This attractive interaction is commonly called, in colloid physics, the depletion interaction. Small-Angle X-ray Scattering experiments and numerical treatments based on liquid-state theories were performed on urate oxidase-PEG mixtures with two different PEGs (3350 Da and 8000 Da). A "two-component" approach was used in which the polymer-polymer, the protein-polymer and the protein-protein pair potentials were determined. The resulting effective protein-protein potential was characterized. This potential is the sum of the free-polymer protein-protein potential and of the PEG-induced depletion potential. The depletion potential was found to be hardly dependent upon the protein concentration but strongly function of the polymer size and concentration. Our results were also compared with two models, which give an analytic expression for the depletion potential.
Equilibrium charge distribution on a finite straight one-dimensional wire
NASA Astrophysics Data System (ADS)
Batle, Josep; Ciftja, Orion; Abdalla, Soliman; Elhoseny, Mohamed; Alkhambashi, Majid; Farouk, Ahmed
2017-09-01
The electrostatic properties of uniformly charged regular bodies are prominently discussed on college-level electromagnetism courses. However, one of the most basic problems of electrostatics that deals with how a continuous charge distribution reaches equilibrium is rarely mentioned at this level. In this work we revisit the problem of equilibrium charge distribution on a straight one-dimensional (1D) wire with finite length. The majority of existing treatments in the literature deal with the 1D wire as a limiting case of a higher-dimensional structure that can be treated analytically for a Coulomb interaction potential between point charges. Surprisingly, different models (for instance, an ellipsoid or a cylinder model) may lead to different results, thus there is even some ambiguity on whether the problem is well-posed. In this work we adopt a different approach where we do not start with any higher-dimensional body that reduces to a 1D wire in the appropriate limit. Instead, our starting point is the obvious one, a finite straight 1D wire that contains charge. However, the new tweak in the model is the assumption that point charges interact with each other via a non-Coulomb power-law interaction potential. This potential is well-behaved, allows exact analytical results and approaches the standard Coulomb interaction potential as a limit. The results originating from this approach suggest that the equilibrium charge distribution for a finite straight 1D wire is a uniform charge density when the power-law interaction potential approaches the Coulomb interaction potential as a suitable limit. We contrast such a finding to results obtained using a different regularised logarithmic interaction potential which allows exact treatment in 1D. The present self-contained material may be of interest to instructors teaching electromagnetism as well as students who will discover that simple-looking problems may sometimes pose important scientific challenges.
Dassama, Laura M.K.; Krebs, Carsten; Bollinger, J. Martin; Rosenzweig, Amy C.; Boal, Amie K.
2013-01-01
The class Ic ribonucleotide reductase (RNR) from Chlamydia trachomatis (Ct) employs a MnIV/FeIII cofactor in each monomer of its β2 subunit to initiate nucleotide reduction. The cofactor forms by reaction of MnII/FeII-β2 with O2. Previously, in vitro cofactor assembly from apo β2 and divalent metal ions produced a mixture of two forms, with Mn in site 1 (MnIV/FeIII) or site 2 (FeIII/MnIV), of which the more active MnIV/FeIII product predominates. Here we have addressed the basis for metal site-selectivity by solving X-ray crystal structures of apo, MnII, and MnII/FeII complexes of Ct β2. A structure obtained anaerobically with equimolar MnII, FeII, and apo protein reveals exclusive incorporation of MnII in site 1 and FeII in site 2, in contrast to the more modest site-selectivity achieved previously. Site-specificity is controlled thermodynamically by the apo protein structure, as only minor adjustments of ligands occur upon metal binding. Additional structures imply that, by itself, MnII binds in either site. Together the structures are consistent with a model for in vitro cofactor assembly in which FeII specificity for site 2 drives assembly of the appropriately configured heterobimetallic center, provided that FeII is substoichiometric. This model suggests that use of an MnIV/FeIII cofactor in vivo could be an adaptation to FeII limitation. A 1.8 Å resolution model of the MnII/FeII-β2 complex reveals additional structural determinants for activation of the cofactor, including a proposed site for side-on (η2) addition of O2 to FeII and a short (3.2 Å) MnII-FeII interionic distance, promoting formation of the MnIV/FeIV activation intermediate. PMID:23924396
Analytical interatomic potential for modeling nonequilibrium processes in the W-C-H system
NASA Astrophysics Data System (ADS)
Juslin, N.; Erhart, P.; Träskelin, P.; Nord, J.; Henriksson, K. O. E.; Nordlund, K.; Salonen, E.; Albe, K.
2005-12-01
A reactive interatomic potential based on an analytical bond-order scheme is developed for the ternary system W-C-H. The model combines Brenner's hydrocarbon potential with parameter sets for W-W, W-C, and W-H interactions and is adjusted to materials properties of reference structures with different local atomic coordinations including tungsten carbide, W-H molecules, as well as H dissolved in bulk W. The potential has been tested in various scenarios, such as surface, defect, and melting properties, none of which were considered in the fitting. The intended area of application is simulations of hydrogen and hydrocarbon interactions with tungsten, which have a crucial role in fusion reactor plasma-wall interactions. Furthermore, this study shows that the angular-dependent bond-order scheme can be extended to second nearest-neighbor interactions, which are relevant in body-centered-cubic metals. Moreover, it provides a possibly general route for modeling metal carbides.
Important drug-nutrient interactions.
Mason, Pamela
2010-11-01
Drugs have the potential to interact with nutrients potentially leading to reduced therapeutic efficacy of the drug, nutritional risk or increased adverse effects of the drug. Despite significant interest in such interactions going back to over more than 40 years, the occurrence and clinical significance of many drug-nutrient interactions remains unclear. However, interactions involving drugs with a narrow therapeutic margin such as theophylline and digoxin and those that require careful blood monitoring such as warfarin are likely to be those of clinical significance. Drugs can affect nutrition as a result of changes in appetite and taste as well as having an influence on absorption or metabolism of nutrients. Moreover, foods and supplements can also interact with drugs, of which grapefruit juice and St John's wort are key examples. Significant numbers of people take both supplements and medication and are potentially at risk from interactions. Professionals, such as pharmacists, dietitians, nurses and doctors, responsible for the care of patients should therefore check whether supplements are being taken, while for researchers this is an area worthy of significant further study, particularly in the context of increasingly complex drug regimens and the plethora of new drugs.
The potential of protein-nanomaterial interaction for advanced drug delivery.
Peng, Qiang; Mu, Huiling
2016-03-10
Nanomaterials, like nanoparticles, micelles, nano-sheets, nanotubes and quantum dots, have great potentials in biomedical fields. However, their delivery is highly limited by the formation of protein corona upon interaction with endogenous proteins. This new identity, instead of nanomaterial itself, would be the real substance the organs and cells firstly encounter. Consequently, the behavior of nanomaterials in vivo is uncontrollable and some undesired effects may occur, like rapid clearance from blood stream; risk of capillary blockage; loss of targeting capacity; and potential toxicity. Therefore, protein-nanomaterial interaction is a great challenge for nanomaterial systems and should be inhibited. However, this interaction can also be used to functionalize nanomaterials by forming a selected protein corona. Unlike other decoration using exogenous molecules, nanomaterials functionalized by selected protein corona using endogenous proteins would have greater promise for clinical use. In this review, we aim to provide a comprehensive understanding of protein-nanomaterial interaction. Importantly, a discussion about how to use such interaction is launched and some possible applications of such interaction for advanced drug delivery are presented. Copyright © 2016 Elsevier B.V. All rights reserved.
Warwicker, J
1989-03-20
A method of calculating the electrostatic potential energy between two molecules, using finite difference potential, is presented. A reduced charge set is used so that the interaction energy can be calculated as the two static molecules explore their full six-dimensional configurational space. The energies are contoured over surfaces fixed to each molecule with an interactive computer graphics program. For two crystal structures (trypsin-trypsin inhibitor and anti-lysozyme Fab-lysozyme), it is found that the complex corresponds to highly favourable interacting regions in the contour plots. These matches arise from a small number of protruding basic residues interacting with enhanced negative potential in each case. The redox pair cytochrome c peroxidase-cytochrome c exhibits an extensive favourably interacting surface within which a possible electron transfer complex may be defined by an increased electrostatic complementarity, but a decreased electrostatic energy. A possible substrate transfer configuration for the glycolytic enzyme pair glyceraldehyde phosphate dehydrogenase-phosphoglycerate kinase is presented.
Numerical simulation and analysis of the flow in a two-staged axial fan
NASA Astrophysics Data System (ADS)
Xu, J. Q.; Dou, H. S.; Jia, H. X.; Chen, X. P.; Wei, Y. K.; Dong, M. W.
2016-05-01
In this paper, numerical simulation was performed for the internal three-dimensional turbulent flow field in the two-stage axial fan using steady three-dimensional in-compressible Navier-Stokes equations coupled with the Realizable turbulent model. The numerical simulation results of the steady analysis were combined with the flow characteristics of two- staged axial fan, the influence of the mutual effect between the blade and the vane on the flow of the two inter-stages was analyzed emphatically. This paper studied how the flow field distribution in inter-stage is influenced by the wake interaction and potential flow interaction of mutual effect in the impeller-vane inter-stage and the vane-impeller inter-stage. The results showed that: Relatively, wake interaction has an advantage over potential flow interaction in the impeller-vane inter-stage; potential flow interaction has an advantage over wake interaction in the vane-impeller inter-stage. In other words, distribution of flow field in the two interstages is determined by the rotating component.
NASA Astrophysics Data System (ADS)
Ghosh, Uddipta; Chakraborty, Suman
2016-06-01
In this study, we attempt to bring out a generalized formulation for electro-osmotic flows over inhomogeneously charged surfaces in presence of non-electrostatic ion-ion interactions. To this end, we start with modified electro-chemical potential of the individual species and subsequently use it to derive modified Nernst-Planck equation accounting for the ionic fluxes generated because of the presence of non-electrostatic potential. We establish what we refer to as the Poisson-Helmholtz-Nernst-Planck equations, coupled with the Navier-Stokes equations, to describe the complete transport process. Our analysis shows that the presence of non-electrostatic interactions between the ions results in an excess body force on the fluid, and modifies the osmotic pressure as well, which has hitherto remained unexplored. We further apply our analysis to a simple geometry, in an effort to work out the Smoluchowski slip velocity for thin electrical double layer limits. To this end, we employ singular perturbation and develop a general framework for the asymptotic analysis. Our calculations reveal that the final expression for slip velocity remains the same as that without accounting for non-electrostatic interactions. However, the presence of non-electrostatic interactions along with ion specificity can significantly change the quantitative behavior of Smoluchowski slip velocity. We subsequently demonstrate that the presence of non-electrostatic interactions may significantly alter the effective interfacial potential, also termed as the "Zeta potential." Our analysis can potentially act as a guide towards the prediction and possibly quantitative determination of the implications associated with the existence of non-electrostatic potential, in an electrokinetic transport process.
Ionic fluids with r-6 pair interactions have power-law electrostatic screening
NASA Astrophysics Data System (ADS)
Kjellander, Roland; Forsberg, Björn
2005-06-01
The decay behaviour of radial distribution functions for large distances r is investigated for classical Coulomb fluids where the ions interact with an r-6 potential (e.g. a dispersion interaction) in addition to the Coulombic and the short-range repulsive potentials (e.g. a hard core). The pair distributions and the density-density (NN), charge-density (QN) and charge-charge (QQ) correlation functions are investigated analytically and by Monte Carlo simulations. It is found that the NN correlation function ultimately decays like r-6 for large r, just as it does for fluids of electroneutral particles interacting with an r-6 potential. The prefactor is proportional to the squared compressibility in both cases. The QN correlations decay in general like r-8 and the QQ correlations like r-10 in the ionic fluid. The average charge density around an ion decays generally like r-8 and the average electrostatic potential like r-6. This behaviour is in stark contrast to the decay behaviour for classical Coulomb fluids in the absence of the r-6 potential, where all these functions decay exponentially for large r. The power-law decays are, however, the same as for quantum Coulomb fluids. This indicates that the inclusion of the dispersion interaction as an effective r-6 interaction potential in classical systems yields the same decay behaviour for the pair correlations as in quantum ionic systems. An exceptional case is the completely symmetric binary electrolyte for which only the NN correlation has a power-law decay but not the QQ correlations. These features are shown by an analysis of the bridge function.
NASA Astrophysics Data System (ADS)
Nguyen, Thuong T.; Székely, Eszter; Imbalzano, Giulio; Behler, Jörg; Csányi, Gábor; Ceriotti, Michele; Götz, Andreas W.; Paesani, Francesco
2018-06-01
The accurate representation of multidimensional potential energy surfaces is a necessary requirement for realistic computer simulations of molecular systems. The continued increase in computer power accompanied by advances in correlated electronic structure methods nowadays enables routine calculations of accurate interaction energies for small systems, which can then be used as references for the development of analytical potential energy functions (PEFs) rigorously derived from many-body (MB) expansions. Building on the accuracy of the MB-pol many-body PEF, we investigate here the performance of permutationally invariant polynomials (PIPs), neural networks, and Gaussian approximation potentials (GAPs) in representing water two-body and three-body interaction energies, denoting the resulting potentials PIP-MB-pol, Behler-Parrinello neural network-MB-pol, and GAP-MB-pol, respectively. Our analysis shows that all three analytical representations exhibit similar levels of accuracy in reproducing both two-body and three-body reference data as well as interaction energies of small water clusters obtained from calculations carried out at the coupled cluster level of theory, the current gold standard for chemical accuracy. These results demonstrate the synergy between interatomic potentials formulated in terms of a many-body expansion, such as MB-pol, that are physically sound and transferable, and machine-learning techniques that provide a flexible framework to approximate the short-range interaction energy terms.
Interaction potentials and transport properties of Ba, Ba+, and Ba2+ in rare gases from He to Xe
NASA Astrophysics Data System (ADS)
Buchachenko, Alexei A.; Viehland, Larry A.
2018-04-01
A highly accurate, consistent set of ab initio interaction potentials is obtained for the title systems at the coupled cluster with singles, doubles, and non-iterative triples level of theory with extrapolation to the complete basis set limit. These potentials are shown to be more reliable than the previous potentials based on their long-range behavior, equilibrium properties, collision cross sections, and transport properties.
Computer simulation of surface and film processes
NASA Technical Reports Server (NTRS)
Tiller, W. A.; Halicioglu, M. T.
1983-01-01
Adequate computer methods, based on interactions between discrete particles, provide information leading to an atomic level understanding of various physical processes. The success of these simulation methods, however, is related to the accuracy of the potential energy function representing the interactions among the particles. The development of a potential energy function for crystalline SiO2 forms that can be employed in lengthy computer modelling procedures was investigated. In many of the simulation methods which deal with discrete particles, semiempirical two body potentials were employed to analyze energy and structure related properties of the system. Many body interactions are required for a proper representation of the total energy for many systems. Many body interactions for simulations based on discrete particles are discussed.
Wilkins, Laura E; Phillips, Daniel J; Deller, Robert C; Davies, Gemma-Louise; Gibson, Matthew I
2015-03-20
Carbohydrate-protein interactions can assist with the targeting of polymer- and nano-delivery systems. However, some potential protein targets are not specific to a single cell type, resulting in reductions in their efficacy due to undesirable non-specific cellular interactions. The glucose transporter 1 (GLUT-1) is expressed to different extents on most cells in the vasculature, including human red blood cells and on cancerous tissue. Glycosylated nanomaterials bearing glucose (or related) carbohydrates, therefore, could potentially undergo unwanted interactions with these transporters, which may compromise the nanomaterial function or lead to cell agglutination, for example. Here, RAFT polymerisation is employed to obtain well-defined glucose-functional glycopolymers as well as glycosylated gold nanoparticles. Agglutination and binding assays did not reveal any significant binding to ovine red blood cells, nor any haemolysis. These data suggest that gluco-functional nanomaterials are compatible with blood, and their lack of undesirable interactions highlights their potential for delivery and imaging applications. Copyright © 2014 Elsevier Ltd. All rights reserved.
Potential disruption of protein-protein interactions by graphene oxide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feng, Mei; Kang, Hongsuk; Luan, Binquan
Graphene oxide (GO) is a promising novel nanomaterial with a wide range of potential biomedical applications due to its many intriguing properties. However, very little research has been conducted to study its possible adverse effects on protein-protein interactions (and thus subsequent toxicity to human). Here, the potential cytotoxicity of GO is investigated at molecular level using large-scale, all-atom molecular dynamics simulations to explore the interaction mechanism between a protein dimer and a GO nanosheet oxidized at different levels. Our theoretical results reveal that GO nanosheet could intercalate between the two monomers of HIV-1 integrase dimer, disrupting the protein-protein interactions andmore » eventually lead to dimer disassociation as graphene does [B. Luan et al., ACS Nano 9(1), 663 (2015)], albeit its insertion process is slower when compared with graphene due to the additional steric and attractive interactions. This study helps to better understand the toxicity of GO to cell functions which could shed light on how to improve its biocompatibility and biosafety for its wide potential biomedical applications.« less
Is the Pauli exclusion principle the origin of electron localisation?
NASA Astrophysics Data System (ADS)
Rincón, Luis; Torres, F. Javier; Almeida, Rafael
2018-03-01
In this work, we inquire into the origins of the electron localisation as obtained from the information content of the same-spin pair density, γσ, σ(r2∣r1). To this end, we consider systems of non-interacting and interacting identical Fermions contained in two simple 1D potential models: (1) an infinite potential well and (2) the Kronig-Penney periodic potential. The interparticle interaction is considered through the Hartree-Fock approximation as well as the configuration interaction expansion. Morover, the electron localisation is described through the Kullback-Leibler divergence between γσ, σ(r2∣r1) and its associated marginal probability. The results show that, as long as the adopted method properly includes the Pauli principle, the electronic localisation depends only modestly on the interparticle interaction. In view of the latter, one may conclude that the Pauli principle is the main responsible for the electron localisation.
Consistency of multi-time Dirac equations with general interaction potentials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deckert, Dirk-André, E-mail: deckert@math.lmu.de; Nickel, Lukas, E-mail: nickel@math.lmu.de
In 1932, Dirac proposed a formulation in terms of multi-time wave functions as candidate for relativistic many-particle quantum mechanics. A well-known consistency condition that is necessary for existence of solutions strongly restricts the possible interaction types between the particles. It was conjectured by Petrat and Tumulka that interactions described by multiplication operators are generally excluded by this condition, and they gave a proof of this claim for potentials without spin-coupling. Under suitable assumptions on the differentiability of possible solutions, we show that there are potentials which are admissible, give an explicit example, however, show that none of them fulfills themore » physically desirable Poincaré invariance. We conclude that in this sense, Dirac’s multi-time formalism does not allow to model interaction by multiplication operators, and briefly point out several promising approaches to interacting models one can instead pursue.« less
Anticoagulant Medicine: Potential for Drug-Food Interactions
... Medications Anticoagulants and Drug-Food Interactions Anticoagulants and Drug-Food Interactions Make an Appointment Ask a Question ... care provider before making the change. Anticoagulants and Medicine There are many medicines that can interact with ...
Hernández-Martínez, Jacqueline; Morales-Malacara, Juan B; Alvarez-Añorve, Mariana Yolotl; Amador-Hernández, Sergio; Oyama, Ken; Avila-Cabadilla, Luis Daniel
2018-05-21
The anthropogenic modification of natural landscapes, and the consequent changes in the environmental conditions and resources availability at multiple spatial scales can affect complex species interactions involving key-stone species such as bat-parasite interactions. In this study, we aimed to identify the drivers potentially influencing host-bat fly interactions at different spatial scales (at the host, vegetation stand and landscape level), in a tropical anthropogenic landscape. For this purpose, we mist-netted phyllostomid and moormopid bats and collected the bat flies (streblids) parasitizing them in 10 sites representing secondary and old growth forest. In general, the variation in fly communities largely mirrored the variation in bat communities as a result of the high level of specialization characterizing host-bat fly interaction networks. Nevertheless, we observed that: (1) bats roosting dynamics can shape bat-streblid interactions, modulating parasite prevalence and the intensity of infestation; (2) a degraded matrix could favor crowding and consequently the exchange of ectoparasites among bat species, lessening the level of specialization of the interaction networks and promoting novel interactions; and (3) bat-fly interaction can also be shaped by the dilution effect, as a decrease in bat diversity could be associated with a potential increase in the dissemination and prevalence of streblids.
Makowski, Mariusz; Liwo, Adam; Scheraga, Harold A
2017-01-19
The physics-based potentials of side-chain-side-chain interactions corresponding to pairs composed of charged and polar, polar and polar, charged and hydrophobic, and hydrophobic and hydrophobic side chains have been determined. A total of 144 four-dimensional potentials of mean force (PMFs) of all possible pairs of molecules modeling these pairs were determined by umbrella-sampling molecular dynamics simulations in explicit water as functions of distance and orientation, and the analytical expressions were then fitted to the PMFs. Depending on the type of interacting sites, the analytical approximation to the PMF is a sum of terms corresponding to van der Waals interactions and cavity-creation involving the nonpolar sections of the side chains and van der Waals, cavity-creation, and electrostatic (charge-dipole or dipole-dipole) interaction energies and polarization energies involving the charged or polar sections of the side chains. The model used in this work reproduces all features of the interacting pairs. The UNited RESidue force field with the new side-chain-side-chain interaction potentials was preliminarily tested with the N-terminal part of the B-domain of staphylococcal protein A (PDBL 1BDD ; a three-α-helix bundle) and UPF0291 protein YnzC from Bacillus subtilis (PDB: 2HEP ; an α-helical hairpin).
NASA Astrophysics Data System (ADS)
Vieira, Daniel; Krems, Roman
2017-04-01
Fine-structure transitions in collisions of O(3Pj) with atomic hydrogen are an important cooling mechanism in the interstellar medium; knowledge of the rate coefficients for these transitions has a wide range of astrophysical applications. The accuracy of the theoretical calculation is limited by inaccuracy in the ab initio interaction potentials used in the coupled-channel quantum scattering calculations from which the rate coefficients can be obtained. In this work we use the latest ab initio results for the O(3Pj) + H interaction potentials to improve on previous calculations of the rate coefficients. We further present a machine-learning technique based on Gaussian Process regression to determine the sensitivity of the rate coefficients to variations of the underlying adiabatic interaction potentials. To account for the inaccuracy inherent in the ab initio calculations we compute error bars for the rate coefficients corresponding to 20% variation in each of the interaction potentials. We obtain these error bars by fitting a Gaussian Process model to a data set of potential curves and rate constants. We use the fitted model to do sensitivity analysis, determining the relative importance of individual adiabatic potential curves to a given fine-structure transition. NSERC.
Handler, Steven M.; Sharkey, Siobhan S.; Hudak, Sandra; Ouslander, Joseph G.
2012-01-01
A substantial reduction in hospitalization rates has been associated with the implementation of the Interventions to Reduce Acute Care Transfers (INTERACT) quality improvement intervention using the accompanying paper-based clinical practice tools (INTERACT II). There is significant potential to further increase the impact of INTERACT by integrating INTERACT II tools into nursing home (NH) health information technology (HIT) via standalone or integrated clinical decision support (CDS) systems. This article highlights the process of translating INTERACT II tools from paper to NH HIT. The authors believe that widespread dissemination and integration of INTERACT II CDS tools into various NH HIT products could lead to sustainable improvement in resident and clinician process and outcome measures, including enhanced interclinician communication and a reduction in potentially avoidable hospitalizations. PMID:22267955
NASA Astrophysics Data System (ADS)
Cherny, Alexander Yu; Caux, Jean-Sébastien; Brand, Joachim
2018-01-01
We study the frictional force exerted on the trapped, interacting 1D Bose gas under the influence of a moving random potential. Specifically we consider weak potentials generated by optical speckle patterns with finite correlation length. We show that repulsive interactions between bosons lead to a superfluid response and suppression of frictional force, which can inhibit the onset of Anderson localisation. We perform a quantitative analysis of the Landau instability based on the dynamic structure factor of the integrable Lieb-Liniger model and demonstrate the existence of effective mobility edges.
Branicio, Paulo Sergio; Rino, José Pedro; Gan, Chee Kwan; Tsuzuki, Hélio
2009-03-04
Indium phosphide is investigated using molecular dynamics (MD) simulations and density-functional theory calculations. MD simulations use a proposed effective interaction potential for InP fitted to a selected experimental dataset of properties. The potential consists of two- and three-body terms that represent atomic-size effects, charge-charge, charge-dipole and dipole-dipole interactions as well as covalent bond bending and stretching. Predictions are made for the elastic constants as a function of density and temperature, the generalized stacking fault energy and the low-index surface energies.
The p+ 6He interaction from Ec.m.=0.5 to 25 MeV
NASA Astrophysics Data System (ADS)
Mackintosh, R. S.
2004-09-01
The p- 6He potential has been determined by inverting the S-matrix, calculated from single-channel RGM without absorption, over the energy range Ec.m.=0.5,1.0,…,25 MeV. Energy-dependent IP inversion was used, but with energy-independent spin-orbit terms. A potential with odd- and even-parity components reproduces Slj( E) from l=0 to l=4 over the whole energy range. The central components of the potential have a smooth, predominantly linear, energy dependence that is consistent with global phenomenology. We compare the similar neutron- 6Li (IAS) interaction. Various features in the potentials deserve explanation. The procedure employed here could extract dynamic polarization potentials for the p- 6He interaction from Slj( E) from multichannel RGM calculations, should these become available.
Are Anion/π Interactions Actually a Case of Simple Charge–Dipole Interactions?†
Wheeler, Steven E.; Houk, K. N.
2011-01-01
Substituent effects in Cl− ••• C6H6−nXn complexes, models for anion/π interactions, have been examined using density functional theory and robust ab initio methods paired with large basis sets. Predicted interaction energies for 83 model Cl− ••• C6H6−nXn complexes span almost 40 kcal mol−1 and show an excellent correlation (r = 0.99) with computed electrostatic potentials. In contrast to prevailing models of anion/π interactions, which rely on substituent-induced changes in the aryl π-system, it is shown that substituent effects in these systems are due mostly to direct interactions between the anion and the substituents. Specifically, interaction energies for Cl− ••• C6H6−nXn complexes are recovered using a model system in which the substituents are isolated from the aromatic ring and π-resonance effects are impossible. Additionally, accurate potential energy curves for Cl− interacting with prototypical anion-binding arenes can be qualitatively reproduced by adding a classical charge–dipole interaction to the Cl− ••• C6H6 interaction potential. In substituted benzenes, binding of anions arises primarily from interactions of the anion with the local dipoles induced by the substituents, not changes in the interaction with the aromatic ring itself. When designing anion-binding motifs, phenyl rings should be viewed as a scaffold upon which appropriate substituents can be placed, because there are no attractive interactions between anions and the aryl π-system of substituted benzenes. PMID:20433187
Sphericalization of the potential of interaction of anisotropic molecules with spherical particles
NASA Astrophysics Data System (ADS)
Fernández-Prini, R.; Japas, María L.
1986-09-01
The possibility of employing sphericalized intermolecular potentials to describe the interactions between nonpolar anisotropic molecules (CCl4 and benzene) with spherical nonpolar molecules (Ar, Xe, and CH4) has been tested for binary systems having liquid- and gas-like densities. Median and RAM sphericalization procedures have been used and their capacity to account for the experimental values of cross second virial coefficients and Henry's constants are compared. It is shown that the median sphericalized potentials, which are temperature and density independent, give a fairly good description of the data which is better than that provided by RAM potentials. The possibility of accounting correctly for the change of properties when the relative size of the interacting partners changes (e.g., conformal systems) is noteworthy.
Liu, Yang; Huang, Yin; Ma, Jianyi; Li, Jun
2018-02-15
Collision energy transfer plays an important role in gas phase reaction kinetics and relaxation of excited molecules. However, empirical treatments are generally adopted for the collisional energy transfer in the master equation based approach. In this work, classical trajectory approach is employed to investigate the collision energy transfer dynamics in the C 2 H 2 -Ne system. The entire potential energy surface is described as the sum of the C 2 H 2 potential and interaction potential between C 2 H 2 and Ne. It is highlighted that both parts of the entire potential are highly accurate. In particular, the interaction potential is fit to ∼41 300 configurations determined at the level of CCSD(T)-F12a/cc-pCVTZ-F12 with the counterpoise correction. Collision energy transfer dynamics are then carried out on this benchmark potential and the widely used Lennard-Jones and Buckingham interaction potentials. Energy transfers and related probability densities at different collisional energies are reported and discussed.
Water trimer torsional spectrum from accurate ab initio and semiempirical potentials
NASA Astrophysics Data System (ADS)
van der Avoird, Ad; Szalewicz, Krzysztof
2008-01-01
The torsional levels of (H2O)3 and (D2O)3 were calculated in a restricted dimensionality (three-dimensional) model with several recently proposed water potentials. Comparison with the experimental data provides a critical test, not only of the pair interactions that have already been probed on the water dimer spectra, but also of the nonadditive three-body contributions to the potential. The purely ab initio CC-pol and HBB potentials that were previously shown to yield very accurate water dimer levels, also reproduce the trimer levels well when supplemented with an appropriate three-body interaction potential. The TTM2.1 potential gives considerably less good agreement with experiment. Also the semiempirical VRT(ASP-W)III potential, fitted to the water dimer vibration-rotation-tunneling levels, gives substantial disagreement with the measured water trimer levels, which shows that the latter probe the potential for geometries other than those probed by the dimer spectrum. Although the three-body nonadditive interactions significantly increase the stability of the water trimer, their effect on the torsional energy barriers and vibration-tunneling frequencies is less significant.
Universal Power Law Governing Pedestrian Interactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Karamouzas, Ioannis; Skinner, Brian; Guy, Stephen J.
2014-12-01
Human crowds often bear a striking resemblance to interacting particle systems, and this has prompted many researchers to describe pedestrian dynamics in terms of interaction forces and potential energies. The correct quantitative form of this interaction, however, has remained an open question. Here, we introduce a novel statistical-mechanical approach to directly measure the interaction energy between pedestrians. This analysis, when applied to a large collection of human motion data, reveals a simple power-law interaction that is based not on the physical separation between pedestrians but on their projected time to a potential future collision, and is therefore fundamentally anticipatory inmore » nature. Remarkably, this simple law is able to describe human interactions across a wide variety of situations, speeds, and densities. We further show, through simulations, that the interaction law we identify is sufficient to reproduce many known crowd phenomena.« less
Orrell, Peter; Bennett, Alison E.
2013-01-01
Can above–belowground interactions help address issues of food security? We address this question in this manuscript, and review the intersection of above–belowground interactions and food security. We propose that above–belowground interactions could address two strategies identified by Godfray etal. (2010): reducing the Yield Gap, and Increasing Production Limits. In particular, to minimize the difference between potential and realized production (The Yield Gap) above–belowground interactions could be manipulated to reduce losses to pests and increase crop growth (and therefore yields). To Increase Production Limits we propose two mechanisms: utilizing intercropping (which uses multiple aspects of above–belowground interactions) and breeding for traits that promote beneficial above–belowground interactions, as well as breeding mutualistic organisms to improve their provided benefit. As a result, if they are managed correctly, there is great potential for above–belowground interactions to contribute to food security. PMID:24198821
Metzke, Barbara; Neubauer, Werner Christian; Hieke, Stefanie; Jung, Manfred; Wäsch, Ralph; Engelhardt, Monika
2012-09-01
To assess the role of systemic antifungal drugs as well as the frequency of potential drug interactions and adverse drug events of commonly used antifungals in an unselected haematology/oncology patient cohort. A prospective analysis was performed in our haematology/oncology department between October 2006 and September 2009. Data were obtained from 250 consecutive patients who received treatment and/or prophylaxis with fluconazole (n = 191), liposomal amphotericin B (n = 105), voriconazole (n = 62), caspofungin (n = 27) and/or posaconazole (n = 22). We performed detailed reviews of patient charts and laboratory values in close cooperation with treating physicians and nursing staff and participated regularly in ward and chart rounds. Potential drug interactions were assessed using the electronic database Micromedex® 1.0 (Healthcare Series). In terms of adverse drug events, caspofungin (56%) and voriconazole (58%) revealed a slightly more favourable safety profile than liposomal amphotericin B (66%) and posaconazole (64%). We confirmed frequent nephrotoxic effects with the use of liposomal amphotericin B (20%). Regarding potential drug interactions, 97 (66%) of 147 evaluated patients were exposed to at least 1 of 22 different potentially interacting drug combinations involving systemic antifungal agents. Cyclosporine was the most prevalent potentially interacting drug in our cohort. Systemic antifungal drugs are widely used in the haematology/oncology setting and exhibit numerous potential drug interactions and adverse events in cancer patients. Our results highlight the challenges related to antifungal drugs and should valuably contribute to a safe and efficient application of this increasingly important class of drugs. Copyright © 2012 John Wiley & Sons, Ltd.
Long, Amanda J.; Annes, William F.; Witcher, Jennifer W.; Knadler, Mary Pat; Ayan-Oshodi, Mosun A.; Mitchell, Malcolm I.; Leese, Phillip; Hillgren, Kathleen M.
2017-01-01
Despite peptide transporter 1 (PEPT1) being responsible for the bioavailability for a variety of drugs, there has been little study of its potential involvement in drug-drug interactions. Pomaglumetad methionil, a metabotropic glutamate 2/3 receptor agonist prodrug, utilizes PEPT1 to enhance absorption and bioavailability. In vitro studies were conducted to guide the decision to conduct a clinical drug interaction study and to inform the clinical study design. In vitro investigations determined the prodrug (LY2140023 monohydrate) is a substrate of PEPT1 with Km value of approximately 30 µM, whereas the active moiety (LY404039) is not a PEPT1 substrate. In addition, among the eight known PEPT1 substrates evaluated in vitro, valacyclovir was the most potent inhibitor (IC50 = 0.46 mM) of PEPT1-mediated uptake of the prodrug. Therefore, a clinical drug interaction study was conducted to evaluate the potential interaction between the prodrug and valacyclovir in healthy subjects. No effect of coadministration was observed on the pharmacokinetics of the prodrug, valacyclovir, or either of their active moieties. Although in vitro studies showed potential for the prodrug and valacyclovir interaction via PEPT1, an in vivo study showed no interaction between these two drugs. PEPT1 does not appear to easily saturate because of its high capacity and expression in the intestine. Thus, a clinical interaction at PEPT1 is unlikely even with a compound with high affinity for the transporter. PMID:27895114
Chervanyov, A I
2016-12-28
By making use of the polymer reference interaction site model, we analytically study the effect of attractive interactions between polymers on the effective forces acting between colloids immersed in a polymer system. The performed theoretical analysis has no restrictions with respect to the polymer density and relative sizes of the colloids and polymers. The polymer mediated (PM) potential acting between colloids is shown to significantly depend on the strength and range of the polymer-polymer interactions. In the nano-particle limit, where the colloid radius is much smaller than the polymer gyration radius, the presence of attractive polymer-polymer interactions causes only quantitative changes to the PM potential. In the opposite limit of relatively large colloids, the polymer-polymer interactions revert the sign of the total effective force acting between colloids so that this force becomes attractive at sufficiently large polymer densities. With the objective to study an intricate interplay between the attractive PM forces and steric repulsion in different polymer density regimes, we calculate the second virial coefficient B of the total effective potential acting between colloids. The dependence of B on the polymer density is discussed in detail, revealing several novel features of the PM interactions caused by the presence of attractive polymer-polymer interactions.
Totton, Tim S; Misquitta, Alston J; Kraft, Markus
2011-11-24
In this work we assess a recently published anisotropic potential for polycyclic aromatic hydrocarbon (PAH) molecules (J. Chem. Theory Comput. 2010, 6, 683-695). Comparison to recent high-level symmetry-adapted perturbation theory based on density functional theory (SAPT(DFT)) results for coronene (C(24)H(12)) demonstrate the transferability of the potential while highlighting some limitations with simple point charge descriptions of the electrostatic interaction. The potential is also shown to reproduce second virial coefficients of benzene (C(6)H(6)) with high accuracy, and this is enhanced by using a distributed multipole model for the electrostatic interaction. The graphene dimer interaction energy and the exfoliation energy of graphite have been estimated by extrapolation of PAH interaction energies. The contribution of nonlocal fluctuations in the π electron density in graphite have also been estimated which increases the exfoliation energy by 3.0 meV atom(-1) to 47.6 meV atom(-1), which compares well to recent theoretical and experimental results.
Reader, Arran T; Holmes, Nicholas P
2016-01-01
Social interaction is an essential part of the human experience, and much work has been done to study it. However, several common approaches to examining social interactions in psychological research may inadvertently either unnaturally constrain the observed behaviour by causing it to deviate from naturalistic performance, or introduce unwanted sources of variance. In particular, these sources are the differences between naturalistic and experimental behaviour that occur from changes in visual fidelity (quality of the observed stimuli), gaze (whether it is controlled for in the stimuli), and social potential (potential for the stimuli to provide actual interaction). We expand on these possible sources of extraneous variance and why they may be important. We review the ways in which experimenters have developed novel designs to remove these sources of extraneous variance. New experimental designs using a 'two-person' approach are argued to be one of the most effective ways to develop more ecologically valid measures of social interaction, and we suggest that future work on social interaction should use these designs wherever possible.
NASA Astrophysics Data System (ADS)
Shen, Yujia; Wen, Zichao; Yan, Zhenya; Hang, Chao
2018-04-01
We study the three-wave interaction that couples an electromagnetic pump wave to two frequency down-converted daughter waves in a quadratic optical crystal and P T -symmetric potentials. P T symmetric potentials are shown to modulate stably nonlinear modes in two kinds of three-wave interaction models. The first one is a spatially extended three-wave interaction system with odd gain-and-loss distribution in the channel. Modulated by the P T -symmetric single-well or multi-well Scarf-II potentials, the system is numerically shown to possess stable soliton solutions. Via adiabatical change of system parameters, numerical simulations for the excitation and evolution of nonlinear modes are also performed. The second one is a combination of P T -symmetric models which are coupled via three-wave interactions. Families of nonlinear modes are found with some particular choices of parameters. Stable and unstable nonlinear modes are shown in distinct families by means of numerical simulations. These results will be useful to further investigate nonlinear modes in three-wave interaction models.
Miller, Andrew D
2015-02-01
A sense peptide can be defined as a peptide whose sequence is coded by the nucleotide sequence (read 5' → 3') of the sense (positive) strand of DNA. Conversely, an antisense (complementary) peptide is coded by the corresponding nucleotide sequence (read 5' → 3') of the antisense (negative) strand of DNA. Research has been accumulating steadily to suggest that sense peptides are capable of specific interactions with their corresponding antisense peptides. Unfortunately, although more and more examples of specific sense-antisense peptide interactions are emerging, the very idea of such interactions does not conform to standard biology dogma and so there remains a sizeable challenge to lift this concept from being perceived as a peripheral phenomenon if not worse, into becoming part of the scientific mainstream. Specific interactions have now been exploited for the inhibition of number of widely different protein-protein and protein-receptor interactions in vitro and in vivo. Further, antisense peptides have also been used to induce the production of antibodies targeted to specific receptors or else the production of anti-idiotypic antibodies targeted against auto-antibodies. Such illustrations of utility would seem to suggest that observed sense-antisense peptide interactions are not just the consequence of a sequence of coincidental 'lucky-hits'. Indeed, at the very least, one might conclude that sense-antisense peptide interactions represent a potentially new and different source of leads for drug discovery. But could there be more to come from studies in this area? Studies on the potential mechanism of sense-antisense peptide interactions suggest that interactions may be driven by amino acid residue interactions specified from the genetic code. If so, such specified amino acid residue interactions could form the basis for an even wider amino acid residue interaction code (proteomic code) that links gene sequences to actual protein structure and function, even entire genomes to entire proteomes. The possibility that such a proteomic code should exist is discussed. So too the potential implications for biology and pharmaceutical science are also discussed were such a code to exist.
A general transformation to canonical form for potentials in pairwise interatomic interactions.
Walton, Jay R; Rivera-Rivera, Luis A; Lucchese, Robert R; Bevan, John W
2015-06-14
A generalized formulation of explicit force-based transformations is introduced to investigate the concept of a canonical potential in both fundamental chemical and intermolecular bonding. Different classes of representative ground electronic state pairwise interatomic interactions are referenced to a chosen canonical potential illustrating application of such transformations. Specifically, accurately determined potentials of the diatomic molecules H2, H2(+), HF, LiH, argon dimer, and one-dimensional dissociative coordinates in Ar-HBr, OC-HF, and OC-Cl2 are investigated throughout their bound potentials. Advantages of the current formulation for accurately evaluating equilibrium dissociation energies and a fundamentally different unified perspective on nature of intermolecular interactions will be emphasized. In particular, this canonical approach has significance to previous assertions that there is no very fundamental distinction between van der Waals bonding and covalent bonding or for that matter hydrogen and halogen bonds.
Chaimovich, Aviel; Shell, M Scott
2009-03-28
Recent efforts have attempted to understand many of liquid water's anomalous properties in terms of effective spherically-symmetric pairwise molecular interactions entailing two characteristic length scales (so-called "core-softened" potentials). In this work, we examine the extent to which such simple descriptions of water are representative of the true underlying interactions by extracting coarse-grained potential functions that are optimized to reproduce the behavior of an all-atom model. To perform this optimization, we use a novel procedure based upon minimizing the relative entropy, a quantity that measures the extent to which a coarse-grained configurational ensemble overlaps with a reference all-atom one. We show that the optimized spherically-symmetric water models exhibit notable variations with the state conditions at which they were optimized, reflecting in particular the shifting accessibility of networked hydrogen bonding interactions. Moreover, we find that water's density and diffusivity anomalies are only reproduced when the effective coarse-grained potentials are allowed to vary with state. Our results therefore suggest that no state-independent spherically-symmetric potential can fully capture the interactions responsible for water's unique behavior; rather, the particular way in which the effective interactions vary with temperature and density contributes significantly to anomalous properties.
The kink-soliton and antikink-soliton in quasi-one-dimensional nonlinear monoatomic lattice
NASA Astrophysics Data System (ADS)
Xu, Quan; Tian, Qiang
2005-04-01
The quasi-one-dimensional nonlinear monoatomic lattice is analyzed. The kink-soliton and antikink-soliton are presented. When the interaction of the lattice is strong in the x-direction and weak in the y-direction, the two-dimensional (2D) lattice changes to a quasi-one-dimensional lattice. Taking nearest-neighbor interaction into account, the vibration equation can be transformed into the KPI, KPII and MKP equation. Considering the cubic nonlinear potential of the vibration in the lattice, the kink-soliton solution is presented. Considering the quartic nonlinear potential and the cubic interaction potential, the kink-soliton and antikink-soliton solutions are presented.
Dane, Markus; Gonis, Antonios
2016-07-05
Based on a computational procedure for determining the functional derivative with respect to the density of any antisymmetric N-particle wave function for a non-interacting system that leads to the density, we devise a test as to whether or not a wave function known to lead to a given density corresponds to a solution of a Schrödinger equation for some potential. We examine explicitly the case of non-interacting systems described by Slater determinants. Here, numerical examples for the cases of a one-dimensional square-well potential with infinite walls and the harmonic oscillator potential illustrate the formalism.
Hanlon, J T; Perera, S; Newman, A B; Thorpe, J M; Donohue, J M; Simonsick, E M; Shorr, R I; Bauer, D C; Marcum, Z A
2017-04-01
There are few studies examining both drug-drug and drug-disease interactions in older adults. Therefore, the objective of this study was to describe the prevalence of potential drug-drug and drug-disease interactions and associated factors in community-dwelling older adults. This cross-sectional study included 3055 adults aged 70-79 without mobility limitations at their baseline visit in the Health Aging and Body Composition Study conducted in the communities of Pittsburgh PA and Memphis TN, USA. The outcome factors were potential drug-drug and drug-disease interactions as per the application of explicit criteria drawn from a number of sources to self-reported prescription and non-prescription medication use. Over one-third of participants had at least one type of interaction. Approximately one quarter (25·1%) had evidence of had one or more drug-drug interactions. Nearly 10·7% of the participants had a drug-drug interaction that involved a non-prescription medication. % The most common drug-drug interaction was non-steroidal anti-inflammatory drugs (NSAIDs) affecting antihypertensives. Additionally, 16·0% had a potential drug-disease interaction with 3·7% participants having one involving non-prescription medications. The most common drug-disease interaction was aspirin/NSAID use in those with history of peptic ulcer disease without gastroprotection. Over one-third (34·0%) had at least one type of drug interaction. Each prescription medication increased the odds of having at least one type of drug interaction by 35-40% [drug-drug interaction adjusted odds ratio (AOR) = 1·35, 95% confidence interval (CI) = 1·27-1·42; drug-disease interaction AOR = 1·30; CI = 1·21-1·40; and both AOR = 1·45; CI = 1·34-1·57]. A prior hospitalization increased the odds of having at least one type of drug interaction by 49-84% compared with those not hospitalized (drug-drug interaction AOR = 1·49, 95% CI = 1·11-2·01; drug-disease interaction AOR = 1·69, CI = 1·15-2·49; and both AOR = 1·84, CI = 1·20-2·84). Drug interactions are common among community-dwelling older adults and are associated with the number of medications and hospitalization in the previous year. Longitudinal studies are needed to evaluate the impact of drug interactions on health-related outcomes. © 2017 John Wiley & Sons Ltd.
The electrostatic interaction is a critical component of intermolecular interactions in biological processes. Rapid methods for the computation and characterization of the molecular electrostatic potential (MEP) that segment the molecular charge distribution and replace this cont...
Carboxyl-terminated PAMAM dendrimer interaction with 1-palmitoyl-2-oleoyl phosphocholine bilayers
USDA-ARS?s Scientific Manuscript database
Polycationic polymers and liposomes have a great potential use as individual drug delivery systems and greater potential as a combined drug delivery system. Thus, it is important to better understand the interactions of polymers with phospholipid bilayers. A mechanistic study of carboxyl-terminate...
Martínez-Araya, Jorge Ignacio
2013-07-01
The intrinsic reactivity of cyanide when interacting with a silver cation was rationalized using the dual descriptor (DD) as a complement to the molecular electrostatic potential (MEP) in order to predict interactions at the local level. It was found that DD accurately explains covalent interactions that cannot be explained by MEP, which focuses on essentially ionic interactions. This allowed the rationalization of the reaction mechanism that yields silver cyanide in the gas phase. Other similar reaction mechanisms involving a silver cation interacting with water, ammonia, and thiosulfate were also explained by the combination of MEP and DD. This analysis provides another example of the usefulness of DD as a tool for gaining a deeper understanding of any reaction mechanism that is mainly governed by covalent interactions.
NASA Technical Reports Server (NTRS)
Schreiber, Henry D.; Merkel, Robert C., Jr.; Schreiber, V. Lea; Balazs, G. Bryan
1987-01-01
The mutual interactions via electron exchange of redox couples in glass-forming melts were investigated both theoretically and experimentally. A thermodynamic approach for considering the mutual interactions leads to conclusion that the degree of mutual interaction in the melt should be proportional in part to the difference in relative reduction potentials of the interacting redox couples. Experimental studies verify this conclusion for numerous redox couples in several composition/temperature/oxygen fugacity regimes. Geochemical systems simultaneously possess many potentially multivalent elements; the stabilized redox states in the resulting magmas can be explained in part by mutual interactions and by redox buffering through the central Fe(III)- Fe(II) couples in the melts. The significance of these results for basaltic magmas of the earth, moon, and meteorites is addressed.
Direct measurements of protein-stabilized gold nanoparticle interactions.
Eichmann, Shannon L; Bevan, Michael A
2010-09-21
We report integrated video and total internal reflection microscopy measurements of protein stabilized 110 nm Au nanoparticles confined in 280 nm gaps in physiological media. Measured potential energy profiles display quantitative agreement with Brownian dynamic simulations that include hydrodynamic interactions and camera exposure time and noise effects. Our results demonstrate agreement between measured nonspecific van der Waals and adsorbed protein interactions with theoretical potentials. Confined, lateral nanoparticle diffusivity measurements also display excellent agreement with predictions. These findings provide a basis to interrogate specific biomacromolecular interactions in similar experimental configurations and to design future improved measurement methods.
NASA Astrophysics Data System (ADS)
da Silva, João Bosco P.; Hallwass, Fernando; da Silva, Aluizio G.; Moreira, Diogo Rodrigo; Ramos, Mozart N.; Espíndola, José Wanderlan P.; de Oliveira, Ana Daura T.; Brondani, Dalci José; Leite, Ana Cristina L.; Merz, Kenneth M.
2015-08-01
DFT calculations were used to access information about structure, energy and electronic properties of series of phenyl- and phenoxymethyl-(thio)semicarbazone derivatives with demonstrated activity against the larvae of Aedes aegypti in stage L4. The way as the thiosemicarbazone derivatives can interact with solvents like DMSO and water were analyzed from the comparison between calculated and experimental 1H NMR chemical shifts. The evidences of thiosemicarbazone derivatives making H-bond interaction to solvent have provide us insights on how they can interact with a potential A. aegypti's biological target, the Sterol Carrier Protein-2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Werhahn, Jasper C.; Akase, Dai; Xantheas, Sotiris S.
2014-08-14
The scaled versions of the newly introduced [S. S. Xantheas and J. C. Werhahn, J. Chem. Phys.141, 064117 (2014)] generalized forms of some popular potential energy functions (PEFs) describing intermolecular interactions – Mie, Lennard-Jones, Morse, and Buckingham exponential-6 – have been used to fit the ab initio relaxed approach paths and fixed approach paths for the halide-water, X -(H 2O), X = F, Cl, Br, I, and alkali metal-water, M +(H 2O), M = Li, Na, K, Rb, Cs, interactions. The generalized forms of those PEFs have an additional parameter with respect to the original forms and produce fits tomore » the ab initio data that are between one and two orders of magnitude better in the χ 2 than the original PEFs. They were found to describe both the long-range, minimum and repulsive wall of the respective potential energy surfaces quite accurately. Overall the 4-parameter extended Morse (eM) and generalized Buckingham exponential-6 (gBe-6) potentials were found to best fit the ab initio data for these two classes of ion-water interactions. Finally, the fitted values of the parameter of the (eM) and (gBe-6) PEFs that control the repulsive wall of the potential correlate remarkably well with the ionic radii of the halide and alkali metal ions.« less
The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.
2010-12-17
Research highlights: {yields} Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. {yields} Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. {yields} This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended themore » study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.« less
Gauge Invariant Formulation of the Interaction of Electromagnetic Radiation and Matter
ERIC Educational Resources Information Center
Kobe, Donald H.; Smirl, Arthur L.
1978-01-01
Presents a discussion in Perturbation theory in quantum mechanics for the interaction of electromagnetic radiation with matter. Advocates the use of electric dipole interaction whenever it can be used as compared to the vector potential interaction. (GA)
Long-distance Lienard-Wiechert potentials and qq-bar spin dependence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Childers, R.W.
1987-12-15
The long-range spin dependence of the qq interaction is considered in a model in which the confining potential is required to be the static limit of retarded scalar and vector potentials analogous to the Lienard-Wiechert potentials of classical electrodynamics. A generalization of Darwin's method is used to obtain the corresponding Hamiltonian. The long-distance spin-dependent interaction is found to be determined completely by only two potentials: namely, the static scalar and vector potentials. This is to be compared with the four potentials required in Eichten and Feinberg's general formulation. Two different solutions are allowed by Gromes's theorem. In one, the scalarmore » potential can be linear; in the other, it must be logarithmic.« less
Thermodynamic properties of triangle-well fluids in two dimensions: MC and MD simulations.
Reyes, Yuri; Bárcenas, Mariana; Odriozola, Gerardo; Orea, Pedro
2016-11-07
With the aim of providing complementary data of the thermodynamics properties of the triangular well potential, the vapor/liquid phase diagrams for such potential with different interaction ranges were calculated in two dimensions by Monte Carlo and molecular dynamics simulations; also, the vapor/liquid interfacial tension was calculated. As reported for other interaction potentials, it was observed that the reduction of the dimensionality makes the phase diagram to shrink. Finally, with the aid of reported data for the same potential in three dimensions, it was observed that this potential does not follow the principle of corresponding states.
Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions.
Abraham, Alex; Chatterji, Apratim
2018-04-21
We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.
Self assembled linear polymeric chains with tuneable semiflexibility using isotropic interactions
NASA Astrophysics Data System (ADS)
Abraham, Alex; Chatterji, Apratim
2018-04-01
We propose a two-body spherically symmetric (isotropic) potential such that particles interacting by the potential self-assemble into linear semiflexible polymeric chains without branching. By suitable control of the potential parameters, we can control the persistence length of the polymer and can even introduce a controlled number of branches. Thus we show how to achieve effective directional interactions starting from spherically symmetric potentials. The self-assembled polymers have an exponential distribution of chain lengths akin to what is observed for worm-like micellar systems. On increasing particle density, the polymeric chains self-organize to an ordered line-hexagonal phase where every chain is surrounded by six parallel chains, the transition is first order. On further increase in monomer density, the order is destroyed and we get a branched gel-like phase. This potential can be used to model semi-flexible equilibrium polymers with tunable semiflexibility and excluded volume. The use of the potential is computationally cheap and hence can be used to simulate and probe equilibrium polymer dynamics with long chains. The potential also gives a plausible method of tuning colloidal interactions in experiments such that one can obtain self-assembling polymeric chains made up of colloids and probe polymer dynamics using an optical microscope. Furthermore, we show how a modified potential leads to the observation of an intermediate nematic phase of self-assembled chains in between the low density disordered phase and the line-ordered hexagonal phase.
Nanoparticle interaction potentials constructed by multiscale computation
NASA Astrophysics Data System (ADS)
Lee, Cheng K.; Hua, Chi C.
2010-06-01
The van der Waals (vdW) potentials governing macroscopic objects have long been formulated in the context of classical theories, such as Hamaker's microscopic theory and Lifshitz's continuum theory. This work addresses the possibility of constructing the vdW interaction potentials of nanoparticle species using multiscale simulation schemes. Amorphous silica nanoparticles were considered as a benchmark example for which a series of (SiO2)n (n being an integer) has been systematically surveyed as the potential candidates of the packing units that reproduce known bulk material properties in atomistic molecular dynamics simulations. This strategy led to the identification of spherical Si6O12 molecules, later utilized as the elementary coarse-grained (CG) particles to compute the pair interaction potentials of silica nanoparticles ranging from 0.62 to 100 nm in diameter. The model nanoparticles so built may, in turn, serve as the children CG particles to construct nanoparticles assuming arbitrary sizes and shapes. Major observations are as follows. The pair interaction potentials for all the investigated spherical silica nanoparticles can be cast into a semiempirical, generalized Lennard-Jones 2α-α potential (α being a size-dependent, large integral number). In its reduced form, we discuss the implied universalities for the vdW potentials governing a certain range of amorphous nanoparticle species as well as how thermodynamic transferability can be fulfilled automatically. In view of future applications with colloidal suspensions, we briefly evaluated the vdW potential in the presence of a "screening" medium mimicking the effects of electrical double layers or grafting materials atop the nanoparticle core. The general observations shed new light on strategies to attain a microscopic control over interparticle attractions. In future perspectives, the proposed multiscale computation scheme shall help bridge the current gap between the modeling of polymer chains and macroscopic objects by introducing molecular models coarse-grained at a similar level so that the interactions between these two can be treated in a consistent and faithful way.
NASA Astrophysics Data System (ADS)
Tuttle, William D.; Thorington, Rebecca L.; Viehland, Larry A.; Breckenridge, W. H.; Wright, Timothy G.
2018-03-01
Accurate interatomic potentials were calculated for the interaction of a singly charged carbon cation, C+, with a single rare gas atom, RG (RG = Ne-Xe). The RCCSD(T) method and basis sets of quadruple-ζ and quintuple-ζ quality were employed; each interaction energy was counterpoise corrected and extrapolated to the basis set limit. The lowest C+(2P) electronic term of the carbon cation was considered, and the interatomic potentials calculated for the diatomic terms that arise from these: 2Π and 2Σ+. Additionally, the interatomic potentials for the respective spin-orbit levels were calculated, and the effect on the spectroscopic parameters was examined. In doing this, anomalously large spin-orbit splittings for RG = Ar-Xe were found, and this was investigated using multi-reference configuration interaction calculations. The latter indicated a small amount of RG → C+ electron transfer and this was used to rationalize the observations. This is taken as evidence of an incipient chemical interaction, which was also examined via contour plots, Birge-Sponer plots and various population analyses across the C+-RG series (RG = He-Xe), with the latter showing unexpected results. Trends in several spectroscopic parameters were examined as a function of the increasing atomic number of the RG atom. Finally, each set of RCCSD(T) potentials was employed, including spin-orbit coupling to calculate the transport coefficients for C+ in RG, and the results were compared with the limited available data. This article is part of the theme issue `Modern theoretical chemistry'.
The Functional Impact of the Intestinal Microbiome on Mucosal Immunity and Systemic Autoimmunity
Longman, Randy S.; Littman, Dan R.
2016-01-01
Purpose of Review This review will highlight recent advances functionally linking the gut microbiome with mucosal and systemic immune cell activation potentially underlying autoimmunity. Recent Findings Dynamic interactions between the gut microbiome and environmental cues (including diet and medicines) shape the effector potential of the microbial organ. Key bacteria and viruses have emerged, that, in defined microenvironments, play a critical role in regulating effector lymphocyte functions. The coordinated interactions between these different microbial kingdoms—including bacteria, helminths, and viruses (termed transkingdom interactions)—play a critical role in shaping immunity. Emerging strategies to identify immunologically-relevant microbes with the potential to regulate immune cell functions both at mucosal sites and systemically will likely define key diagnostic and therapeutic targets. Summary The microbiome constitutes a critical microbial organ with coordinated interactions that shape host immunity. PMID:26002030
Non-integrable dynamics of matter-wave solitons in a density-dependent gauge theory
NASA Astrophysics Data System (ADS)
Dingwall, R. J.; Edmonds, M. J.; Helm, J. L.; Malomed, B. A.; Öhberg, P.
2018-04-01
We study interactions between bright matter-wave solitons which acquire chiral transport dynamics due to an optically-induced density-dependent gauge potential. Through numerical simulations, we find that the collision dynamics feature several non-integrable phenomena, from inelastic collisions including population transfer and radiation losses to the formation of short-lived bound states and soliton fission. An effective quasi-particle model for the interaction between the solitons is derived by means of a variational approximation, which demonstrates that the inelastic nature of the collision arises from a coupling of the gauge field to velocities of the solitons. In addition, we derive a set of interaction potentials which show that the influence of the gauge field appears as a short-range potential, that can give rise to both attractive and repulsive interactions.
Highly accurate potential energy surface for the He-H2 dimer
NASA Astrophysics Data System (ADS)
Bakr, Brandon W.; Smith, Daniel G. A.; Patkowski, Konrad
2013-10-01
A new highly accurate interaction potential is constructed for the He-H2 van der Waals complex. This potential is fitted to 1900 ab initio energies computed at the very large-basis coupled-cluster level and augmented by corrections for higher-order excitations (up to full configuration interaction level) and the diagonal Born-Oppenheimer correction. At the vibrationally averaged H-H bond length of 1.448736 bohrs, the well depth of our potential, 15.870 ± 0.065 K, is nearly 1 K larger than the most accurate previous studies have indicated. In addition to constructing our own three-dimensional potential in the van der Waals region, we present a reparameterization of the Boothroyd-Martin-Peterson potential surface [A. I. Boothroyd, P. G. Martin, and M. R. Peterson, J. Chem. Phys. 119, 3187 (2003)] that is suitable for all configurations of the triatomic system. Finally, we use the newly developed potentials to compute the properties of the lone bound states of 4He-H2 and 3He-H2 and the interaction second virial coefficient of the hydrogen-helium mixture.
Thurner, Stefan; Fuchs, Benedikt
2015-01-01
Physical interactions between particles are the result of the exchange of gauge bosons. Human interactions are mediated by the exchange of messages, goods, money, promises, hostilities, etc. While in the physical world interactions and their associated forces have immediate dynamical consequences (Newton’s laws) the situation is not clear for human interactions. Here we quantify the relative acceleration between humans who interact through the exchange of messages, goods and hostilities in a massive multiplayer online game. For this game we have complete information about all interactions (exchange events) between about 430,000 players, and about their trajectories (movements) in the metric space of the game universe at any point in time. We use this information to derive “interaction potentials" for communication, trade and attacks and show that they are harmonic in nature. Individuals who exchange messages and trade goods generally attract each other and start to separate immediately after exchange events end. The form of the interaction potential for attacks mirrors the usual “hit-and-run" tactics of aggressive players. By measuring interaction intensities as a function of distance, velocity and acceleration, we show that “forces" between players are directly related to the number of exchange events. We find an approximate power-law decay of the likelihood for interactions as a function of distance, which is in accordance with previous real world empirical work. We show that the obtained potentials can be understood with a simple model assuming an exchange-driven force in combination with a distance-dependent exchange rate. PMID:26196505
Drug interactions between common illicit drugs and prescription therapies.
Lindsey, Wesley T; Stewart, David; Childress, Darrell
2012-07-01
The aim was to summarize the clinical literature on interactions between common illicit drugs and prescription therapies. Medline, Iowa Drug Information Service, International Pharmaceutical Abstracts, EBSCO Academic Search Premier, and Google Scholar were searched from date of origin of database to March 2011. Search terms were cocaine, marijuana, cannabis, methamphetamine, amphetamine, ecstasy, N-methyl-3,4-methylenedioxymethamphetamine, methylenedioxymethamphetamine, heroin, gamma-hydroxybutyrate, sodium oxybate, and combined with interactions, drug interactions, and drug-drug interactions. This review focuses on established clinical evidence. All applicable full-text English language articles and abstracts found were evaluated and included in the review as appropriate. The interactions of illicit drugs with prescription therapies have the ability to potentiate or attenuate the effects of both the illicit agent and/or the prescription therapeutic agent, which can lead to toxic effects or a reduction in the prescription agent's therapeutic activity. Most texts and databases focus on theoretical or probable interactions due to the kinetic properties of the drugs and do not fully explore the pharmacodynamic and clinical implications of these interactions. Clinical trials with coadministration of illicit drugs and prescription drugs are discussed along with case reports that demonstrate a potential interaction between agents. The illicit drugs discussed are cocaine, marijuana, amphetamines, methylenedioxymethamphetamine, heroin, and sodium oxybate. Although the use of illicit drugs is widespread, there are little experimental or clinical data regarding the effects of these agents on common prescription therapies. Potential drug interactions between illicit drugs and prescription drugs are described and evaluated on the Drug Interaction Probability Scale by Horn and Hansten.
Thurner, Stefan; Fuchs, Benedikt
2015-01-01
Physical interactions between particles are the result of the exchange of gauge bosons. Human interactions are mediated by the exchange of messages, goods, money, promises, hostilities, etc. While in the physical world interactions and their associated forces have immediate dynamical consequences (Newton's laws) the situation is not clear for human interactions. Here we quantify the relative acceleration between humans who interact through the exchange of messages, goods and hostilities in a massive multiplayer online game. For this game we have complete information about all interactions (exchange events) between about 430,000 players, and about their trajectories (movements) in the metric space of the game universe at any point in time. We use this information to derive "interaction potentials" for communication, trade and attacks and show that they are harmonic in nature. Individuals who exchange messages and trade goods generally attract each other and start to separate immediately after exchange events end. The form of the interaction potential for attacks mirrors the usual "hit-and-run" tactics of aggressive players. By measuring interaction intensities as a function of distance, velocity and acceleration, we show that "forces" between players are directly related to the number of exchange events. We find an approximate power-law decay of the likelihood for interactions as a function of distance, which is in accordance with previous real world empirical work. We show that the obtained potentials can be understood with a simple model assuming an exchange-driven force in combination with a distance-dependent exchange rate.
Lauffenburger, Julie C.; Mayer, Christina L.; Hawke, Roy L.; Brouwer, Kim L. R.; Fried, Michael W.; Farley, Joel F.
2014-01-01
Background With the advent of the direct-acting antiviral agents (DAAs), significant drug-drug interaction (DDI) potential now exists for patients treated for chronic hepatitis C virus (HCV) infection. However, little is known about how often patients with HCV use medications that may interact with newer HCV treatments, especially those with CYP3A DDI potential. Methods Using a large United States commercial insurance database, medication use and comorbidity burden was examined among adult patients with a chronic HCV diagnosis from 2006-2010. Medications were examined by total number of prescription claims, proportion of patients exposed, and DDI potential with prototypical CYP3A DAAs, boceprevir and telaprevir, for which data were available. Results Patient comorbidity burden was high and increased over the study period. Medication use was investigated in 53,461 patients with chronic HCV. Twenty-one (53%) of the top 40 most utilized medications were classified as having interaction potential, with 62% of patients received at least one of the top 22 interacting medications by exposure. Of these, 59% and 41% were listed in a common DDI resource but not in medication prescribing information, 77% and 77% had not been investigated in DDI studies, 32% and 27% did not have clear recommendations for DDI management, and only 14% and 23% carried a recommendation to avoid coadministration for boceprevir and telaprevir, respectively. Conclusion Practitioners may expect a medication with CYP3A DDI potential in two-thirds of patients with HCV and almost one-half of the most frequently used medications. However, DDI potential may not be reflected in prescribing information. PMID:25014625
Semilocal momentum-space regularized chiral two-nucleon potentials up to fifth order
NASA Astrophysics Data System (ADS)
Reinert, P.; Krebs, H.; Epelbaum, E.
2018-05-01
We introduce new semilocal two-nucleon potentials up to fifth order in the chiral expansion. We employ a simple regularization approach for the pion exchange contributions which i) maintains the long-range part of the interaction, ii) is implemented in momentum space and iii) can be straightforwardly applied to regularize many-body forces and current operators. We discuss in detail the two-nucleon contact interactions at fourth order and demonstrate that three terms out of fifteen used in previous calculations can be eliminated via suitably chosen unitary transformations. The removal of the redundant contact terms results in a drastic simplification of the fits to scattering data and leads to interactions which are much softer ( i.e., more perturbative) than our recent semilocal coordinate-space regularized potentials. Using the pion-nucleon low-energy constants from matching pion-nucleon Roy-Steiner equations to chiral perturbation theory, we perform a comprehensive analysis of nucleon-nucleon scattering and the deuteron properties up to fifth chiral order and study the impact of the leading F-wave two-nucleon contact interactions which appear at sixth order. The resulting chiral potentials at fifth order lead to an outstanding description of the proton-proton and neutron-proton scattering data from the self-consistent Granada-2013 database below the pion production threshold, which is significantly better than for any other chiral potential. For the first time, the chiral potentials match in precision and even outperform the available high-precision phenomenological potentials, while the number of adjustable parameters is, at the same time, reduced by about ˜ 40%. Last but not least, we perform a detailed error analysis and, in particular, quantify for the first time the statistical uncertainties of the fourth- and the considered sixth-order contact interactions.
Home Interactive Media: An Analysis of Potential Abusers of Privacy.
ERIC Educational Resources Information Center
Wegner, John M.
1985-01-01
Examines potential threats to privacy posed by development of unified interaction systems in the home. Applicability of existing federal laws, constitutional provisions, and regulatory actions, and the possible technical and legislative actions that may be useful in curtailing possible privacy abuses in these systems are analyzed. (Author/MBR)
Enteral feeding: drug/nutrient interaction.
Lourenço, R
2001-04-01
Enteral nutrition support via a feeding tube is the first choice for artificial nutrition. Most patients also require simultaneous drug therapy, with the potential risk for drug-nutrient interactions which may become relevant in clinical practice. During enteral nutrition, drug-nutrient interactions are more likely to occur than in patients fed orally. However, there is a lack of awareness about its clinical significance, which should be recognised and prevented in order to optimise nutritional and pharmacological therapeutic goals of safety and efficacy. To raise the awareness of potential drug-nutrient interactions and influence on clinical outcomes. To identify factors that can promote drug-nutrient interactions and contribute to nutrition and/or therapeutic failure. To be aware of different types of drug-nutrient interactions. To understand complex underlying mechanisms responsible for drug-nutrient interactions. To learn basic rules for the administration of medications during tube-feeding. Copyright 2001 Harcourt Publishers Ltd.
Müller, Adrienne C; Kanfer, Isadore
2011-11-01
The use of traditional/complementary/alternate medicines (TCAMs) in HIV/AIDS patients who reside in Southern Africa is quite common. Those who use TCAMs in addition to antiretroviral (ARV) treatment may be at risk of experiencing clinically significant pharmacokinetic (PK) interactions, particularly between the TCAMs and the protease inhibitors (PIs) and non-nucleoside reverse transcriptase inhibitors (NNRTIs). Mechanisms of PK interactions include alterations to the normal functioning of drug efflux transporters, such as P-gp and/or CYP isoenzymes, such a CYP3A4 that mediate the absorption and elimination of drugs in the small intestine and liver. Specific mechanisms include inhibition and activation of these proteins and induction via the pregnane X receptor (PXR). Several clinical studies and case reports involving ARV-herb PK interactions have been reported. St John's Wort, Garlic and Cat's Claw exhibited potentially significant interactions, each with a PI or NNRTI. The potential for these herbs to induce PK interactions with drugs was first identified in reports of in vitro studies. Other in vitro studies have shown that several African traditional medicinal (ATM) plants and extracts may also demonstrate PK interactions with ARVs, through effects on CYP3A4, P-gp and PXR. The most complex effects were exhibited by Hypoxis hemerocallidea, Sutherlandia frutescens, Cyphostemma hildebrandtii, Acacia nilotica, Agauria salicifolia and Elaeodendron buchananii. Despite a high incidence of HIV/AIDs in the African region, only one clinical study, between efavirenz and Hypoxis hemerocallidea has been conducted. However, several issues/concerns still remain to be addressed and thus more studies on ATMs are warranted in order for more meaningful data to be generated and the true potential for such interactions to be determined. Copyright © 2011 John Wiley & Sons, Ltd.
Zorina, Olesya I; Haueis, Patrick; Semmler, Alexander; Marti, Isabelle; Gonzenbach, Roman R; Guzek, Markus; Kullak-Ublick, Gerd A; Weller, Michael; Russmann, Stefan
2012-08-01
The comparative evaluation of clinical decision support software (CDSS) programs regarding their sensitivity and positive predictive value for the identification of clinically relevant drug interactions. In this research, we used a cross-sectional study that identified potential drug interactions using the CDSS MediQ and the ID PHARMA CHECK in 484 neurological inpatients. Interactions were reclassified according to the Zurich Interaction System, a multidimensional classification that incorporates the Operational Classification of Drug Interactions. In 484 patients with 2812 prescriptions, MediQ and ID PHARMA CHECK generated a total of 1759 and 1082 alerts, respectively. MediQ identified 658 unique potentially interacting combinations, 8 classified as "high danger," 164 as "average danger," and 486 as "low danger." ID PHARMA CHECK detected 336 combinations assigned to one or several of 12 risk and management categories. Altogether, both CDSS issued alerts relating to 808 unique potentially interacting combinations. According to the Zurich Interaction System, 6 of these were contraindicated, 25 were provisionally contraindicated, 190 carried a conditional risk, and 587 had a minimal risk of adverse events. The positive predictive value for alerts having at least a conditional risk was 0.24 for MediQ and 0.48 for ID PHARMA CHECK. CDSS showed major differences in the identification and grading of interactions, and many interactions were only identified by one of the two CDSS. For both programs, only a small proportion of all identified interactions appeared clinically relevant, and the selected display of alerts that imply management changes is a key issue in the further development and local setup of such programs. Copyright © 2012 John Wiley & Sons, Ltd.
Record, M Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael
2013-01-01
Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g. solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute "m-values" (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = delta(dmu2/dm3) = delta mu23, which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the solute partitioning model (SPM), we dissect mu23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called alpha-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these alpha-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients quantifying the distribution of solutes (e.g. urea, glycine betaine) and Hofmeister salt ions in the vicinity of each functional group make good chemical sense when interpreted in terms of competitive noncovalent interactions. These interaction potentials allow solute and Hofmeister (noncoulombic) salt effects on protein and nucleic acid processes to be interpreted or predicted, and allow the use of solutes and salts as probes of
2014-01-01
Background Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulate solutions of bovine serum albumin and of hen egg white lysozyme. Results We found that the inclusion of the long-range electrostatic correction increased the accuracy of both the protein-protein interaction profiles and the protein diffusion coefficients at low ionic strength. Conclusions An advantage of this method is the low additional computational cost required to treat long-range electrostatic interactions in large biomacromolecular systems. Moreover, the implementation described here for BD simulations of protein solutions can also be applied in implicit solvent molecular dynamics simulations that make use of gridded interaction potentials. PMID:25045516
Aesthetic perception and its minimal content: a naturalistic perspective
Xenakis, Ioannis; Arnellos, Argyris
2014-01-01
Aesthetic perception is one of the most interesting topics for philosophers and scientists who investigate how it influences our interactions with objects and states of affairs. Over the last few years, several studies have attempted to determine “how aesthetics is represented in an object,” and how a specific feature of an object could evoke the respective feelings during perception. Despite the vast number of approaches and models, we believe that these explanations do not resolve the problem concerning the conditions under which aesthetic perception occurs, and what constitutes the content of these perceptions. Adopting a naturalistic perspective, we here view aesthetic perception as a normative process that enables agents to enhance their interactions with physical and socio-cultural environments. Considering perception as an anticipatory and preparatory process of detection and evaluation of indications of potential interactions (what we call “interactive affordances”), we argue that the minimal content of aesthetic perception is an emotionally valued indication of interaction potentiality. Aesthetic perception allows an agent to normatively anticipate interaction potentialities, thus increasing sense making and reducing the uncertainty of interaction. This conception of aesthetic perception is compatible with contemporary evidence from neuroscience, experimental aesthetics, and interaction design. The proposed model overcomes several problems of transcendental, art-centered, and objective aesthetics as it offers an alternative to the idea of aesthetic objects that carry inherent values by explaining “the aesthetic” as emergent in perception within a context of uncertain interaction. PMID:25285084
NASA Technical Reports Server (NTRS)
Stallcop, James R.; Partridge, Harry; Levin, Eugene; Langhoff, Stephen R. (Technical Monitor)
1995-01-01
Collision integrals are fundamental quantities required to determine the transport properties of the environment surrounding aerospace vehicles in the upper atmosphere. These collision integrals can be determined as a function of temperature from the potential energy curves describing the atomic and molecular collisions. Ab initio calculations provide a practical method of computing the required interaction potentials. In this work we will discuss recent advances in scattering calculations with an emphasis on the accuracy that is obtainable. Results for interactions of the atoms and ionized atoms of nitrogen and oxygen will be reviewed and their application to the determination of transport properties, such as diffusion and viscosity coefficients, will be examined.
A software package for interactive motor unit potential classification using fuzzy k-NN classifier.
Rasheed, Sarbast; Stashuk, Daniel; Kamel, Mohamed
2008-01-01
We present an interactive software package for implementing the supervised classification task during electromyographic (EMG) signal decomposition process using a fuzzy k-NN classifier and utilizing the MATLAB high-level programming language and its interactive environment. The method employs an assertion-based classification that takes into account a combination of motor unit potential (MUP) shapes and two modes of use of motor unit firing pattern information: the passive and the active modes. The developed package consists of several graphical user interfaces used to detect individual MUP waveforms from a raw EMG signal, extract relevant features, and classify the MUPs into motor unit potential trains (MUPTs) using assertion-based classifiers.
Dipolar and spinor bosonic systems
NASA Astrophysics Data System (ADS)
Yukalov, V. I.
2018-05-01
The main properties and methods of describing dipolar and spinor atomic systems, composed of bosonic atoms or molecules, are reviewed. The general approach for the correct treatment of Bose-condensed atomic systems with nonlocal interaction potentials is explained. The approach is applied to Bose-condensed systems with dipolar interaction potentials. The properties of systems with spinor interaction potentials are described. Trapped atoms and atoms in optical lattices are considered. Effective spin Hamiltonians for atoms in optical lattices are derived. The possibility of spintronics with cold atom is emphasized. The present review differs from the previous review articles by concentrating on a thorough presentation of basic theoretical points, helping the reader to better follow mathematical details and to make clearer physical conclusions.
Drug-nutrient interactions: a case and clinical guide.
Plotnikoff, Gregory A
2011-10-01
Advances in pharmacokinetics and pharmacodynamics require new competencies related to pharmaceutical prescribing. First, both physicians and pharmacists need to recognize the potential negative impact of nutrients and dietary supplements on the absorption, metabolism, and utilization of prescription drugs. Second, physicians, even more than pharmacists, need to recognize the potential negative effects of pharmaceuticals on the absorption, metabolism, and utilization of nutrients. This article discusses common drug-nutrient interactions and presents a case that illustrates how unrecognized nutrient disruption may negatively affect a patient's health and potentially result in unnecessary prescribing of medications. In presenting the case, we also provide a conceptual framework for assessing and treating this patient and a summary of current knowledge regarding drug-nutrient interactions.
NASA Astrophysics Data System (ADS)
Nesterov, V. O.
2018-06-01
In the framework of the energy density method with the use of the wave function of the two-center shell model, the influence of the simultaneous account for the Pauli exclusion principle and the monopole and quadrupole polarizations of nuclei on the nuclear part of the potential of their interaction by the example of the 40Ca +40Ca system is considered. The calculations performed in the framework of the adiabatic approximation show that the consideration of the Pauli exclusion principle and the polarization of nuclei, especially the quadrupole one, essentially affects the nucleus-nucleus interaction potential.
QCD phase diagram using PNJL model with eight-quark interactions
NASA Astrophysics Data System (ADS)
Deb, Paramita; Bhattacharyya, Abhijit; Ghosh, Sanjay K.; Ray, Rajarshi; Lahiri, Anirban
2011-07-01
We present the phase diagram and the fluctuations of different conserved charges like quark number, charge and strangeness at vanishing chemical potential for the 2+1 flavor Polyakov Loop extended Nambu-Jona-Lasinio model with eight-quark interaction terms using three-momentum cutoff regularisation. The main effect of the higher order interaction term is to shift the critical end point to the lower value of the chemical potential and higher value of the temperature. The fluctuations show good qualitative agreement with the lattice data.
NASA Astrophysics Data System (ADS)
Ikot, Akpan N.; Maghsoodi, Elham; Hassanabadi, Hassan; Obu, Joseph A.
2014-05-01
In this paper, we obtain the approximate analytical bound-state solutions of the Dirac particle with the generalized Yukawa potential within the framework of spin and pseudospin symmetries for the arbitrary к state with a generalized tensor interaction. The generalized parametric Nikiforov-Uvarov method is used to obtain the energy eigenvalues and the corresponding wave functions in closed form. We also report some numerical results and present figures to show the effect of the tensor interaction.
NASA Technical Reports Server (NTRS)
Parker, P. D. M.
1981-01-01
Violation of the equivalence principle by the weak interaction is tested. Any variation of the weak interaction coupling constant with gravitational potential, i.e., a spatial variation of the fundamental constants is investigated. The level of sensitivity required for such a measurement is estimated on the basis of the size of a change in the gravitational potential which is accessible. The alpha particle spectrum is analyzed, and the counting rate was improved by a factor of approximately 100.
NASA Astrophysics Data System (ADS)
Yahya, W. A.; Falaye, B. J.; Oluwadare, O. J.; Oyewumi, K. J.
2013-08-01
By using the Nikiforov-Uvarov method, we give the approximate analytical solutions of the Dirac equation with the shifted Deng-Fan potential including the Yukawa-like tensor interaction under the spin and pseudospin symmetry conditions. After using an improved approximation scheme, we solved the resulting schr\\"{o}dinger-like equation analytically. Numerical results of the energy eigenvalues are also obtained, as expected, the tensor interaction removes degeneracies between spin and pseudospin doublets.
Iterative combining rules for the van der Waals potentials of mixed rare gas systems
NASA Astrophysics Data System (ADS)
Wei, L. M.; Li, P.; Tang, K. T.
2017-05-01
An iterative procedure is introduced to make the results of some simple combining rules compatible with the Tang-Toennies potential model. The method is used to calculate the well locations Re and the well depths De of the van der Waals potentials of the mixed rare gas systems from the corresponding values of the homo-nuclear dimers. When the ;sizes; of the two interacting atoms are very different, several rounds of iteration are required for the results to converge. The converged results can be substantially different from the starting values obtained from the combining rules. However, if the sizes of the interacting atoms are close, only one or even no iteration is necessary for the results to converge. In either case, the converged results are the accurate descriptions of the interaction potentials of the hetero-nuclear dimers.
Surprising features of particle dynamics in channel-facilitated transport
NASA Astrophysics Data System (ADS)
Berezhkovskii, Alexander M.; Bezrukov, Sergey M.
2007-06-01
We analyze the consequences of interactions between the pore and the translocating molecule within the framework of a continuous diffusion model using the Smoluchowski equation with the radiation boundary conditions. We describe the solute-pore interaction in terms of the potential of mean force. Several of our analytical findings are quite counterintuitive. Three of the examples to be discussed here are: (i) "Sticking" to the channel slows down translocation (a particle spends more time in the channel) but increases the flux; (ii) If the potential well modeling the particle-channel interaction occupies only a part of the channel length, the average translocation time is non-monotonic in the width of the potential well, first increasing and then decreasing; (iii) At a finite potential bias applied to the channel, the mean "up-hill" and "downhill" particle translocation times (and their distributions) are identical.
Lattice dynamics of solid N2 with an ab initio intermolecular potential
NASA Astrophysics Data System (ADS)
Luty, T.; van der Avoird, A.; Berns, R. M.
1980-11-01
We have performed harmonic and self-consistent phonon lattice dynamics calculations for α and γ N2 crystals using an intermolecular potential from ab initio calculations. This potential contains electrostatic (multipole) interactions, up to all R-9 terms inclusive, anisotropic dispersion interactions up to all R-10 terms inclusive, and anisotropic overlap interactions caused by charge penetration and exchange between the molecules. The lattice constants, cohesion energy, the frequencies of the translational phonon modes and the Grüneisen parameters for the librational modes are in good agreement with experimental values, confirming the quality of the potential. The frequencies of the librational modes and those of the mixed modes are less well reproduced, especially at temperatures near the α-β phase transition. Probably, the self-consistent phonon method used does not fully account for the anharmonicity in the librations.
Potential Interference of Protein-Protein Interactions by Graphyne.
Luan, Binquan; Huynh, Tien; Zhou, Ruhong
2016-03-10
Graphyne has attracted tremendous attention recently due to its many potentially superior properties relative to those of graphene. Although extensive efforts have been devoted to explore the applicability of graphyne as an alternative nanomaterial for state-of-the-art nanotechnology (including biomedical applications), knowledge regarding its possible adverse effects to biological cells is still lacking. Here, using large-scale all-atom molecular dynamics simulations, we investigate the potential toxicity of graphyne by interfering a protein-protein interaction (ppI). We found that graphyne could indeed disrupt the ppIs by cutting through the protein-protein interface and separating the protein complex into noncontacting ones, due to graphyne's dispersive and hydrophobic interaction with the hydrophobic residues residing at the dimer interface. Our results help to elucidate the mechanism of interaction between graphyne and ppI networks within a biological cell and provide insights for its hazard reduction.
Modified screening interaction potential on dust lattice waves in dusty plasma ring
NASA Astrophysics Data System (ADS)
He, Kerong; Chen, Hui; Liu, Sanqiu
2017-05-01
In the present paper, the modified screening interaction potential was adopted to investigate the dust lattice waves in dusty ring. Firstly, the influence of parameter ε on the modified screening interaction potential was analyzed; and it was found that the parameter ε has a long-range effect on the pairwise interaction between the particles. Secondly, the dispersion relations of longitudinal and transverse waves are obtained, and the effect of long-range action parameter ε, dimensionless lattice parameter α and dimensionless shielding parameter \\tilde{κ } on the dust lattice waves propagation in dusty ring are studied. Some interesting phenomena, such as the coupling of longitudinal and transverse waves, and instabilities of transverse waves are found, which are in good agreement with some previous works. Finally, the transverse wave instabilities and the relevant critical lattice parameter αc are presented and discussed.
Visualizing the orientational dependence of an intermolecular potential
NASA Astrophysics Data System (ADS)
Sweetman, Adam; Rashid, Mohammad A.; Jarvis, Samuel P.; Dunn, Janette L.; Rahe, Philipp; Moriarty, Philip
2016-02-01
Scanning probe microscopy can now be used to map the properties of single molecules with intramolecular precision by functionalization of the apex of the scanning probe tip with a single atom or molecule. Here we report on the mapping of the three-dimensional potential between fullerene (C60) molecules in different relative orientations, with sub-Angstrom resolution, using dynamic force microscopy (DFM). We introduce a visualization method which is capable of directly imaging the variation in equilibrium binding energy of different molecular orientations. We model the interaction using both a simple approach based around analytical Lennard-Jones potentials, and with dispersion-force-corrected density functional theory (DFT), and show that the positional variation in the binding energy between the molecules is dominated by the onset of repulsive interactions. Our modelling suggests that variations in the dispersion interaction are masked by repulsive interactions even at displacements significantly larger than the equilibrium intermolecular separation.
Adsorption interaction in the molecular hydrogen-aluminophosphate AlPO-5 zeolite system
NASA Astrophysics Data System (ADS)
Grenev, I. V.; Gavrilov, V. Yu.
2015-03-01
The adsorption interaction between molecular hydrogen and atoms forming the lattice of AlPO-5 zeolite is studied. The potential of intramolecular interaction is calculated by summing the potentials of individual pairwise H2-O(Al, P) interactions in a fragment of the zeolite structure with a volume of ˜32 nm3. Isopotential surfaces are constructed that allow determination of the shape of zeolite microchannels and the places of the preferential localization of sorbate molecules in the porous space. The calculated and experimental values of the Henry constant of H2 adsorption on AlPO-5 at 77 K are compared.
Environmental interactions of the Space Station Freedom electric power system
NASA Technical Reports Server (NTRS)
Nahra, Henry K.; Lu, Cheng-Yi
1991-01-01
The Space Station Freedom operates in a low earth orbit (LEO) environment. Such operation results in different potential interactions with the Space Station systems including the Electric Power System (EPS). These potential interactions result in environmental effects which include neutral species effects such as atomic oxygen erosion, effects of micrometeoroid and orbital debris impacts, plasma effects, ionizing radiation, and induced contamination degradation effects. The EPS design and its interactions with the LEO environment are briefly described and the results of analyses and testing programs planned and performed thus far to resolve environmental concerns related to the EPS and its function in LEO environment.
Multiple Changes to Reusable Solid Rocket Motors, Identifying Hidden Risks
NASA Technical Reports Server (NTRS)
Greenhalgh, Phillip O.; McCann, Bradley Q.
2003-01-01
The Space Shuttle Reusable Solid Rocket Motor (RSRM) baseline is subject to various changes. Changes are necessary due to safety and quality improvements, environmental considerations, vendor changes, obsolescence issues, etc. The RSRM program has a goal to test changes on full-scale static test motors prior to flight due to the unique RSRM operating environment. Each static test motor incorporates several significant changes and numerous minor changes. Flight motors often implement multiple changes simultaneously. While each change is individually verified and assessed, the potential for changes to interact constitutes additional hidden risk. Mitigating this risk depends upon identification of potential interactions. Therefore, the ATK Thiokol Propulsion System Safety organization initiated the use of a risk interaction matrix to identify potential interactions that compound risk. Identifying risk interactions supports flight and test motor decisions. Uncovering hidden risks of a full-scale static test motor gives a broader perspective of the changes being tested. This broader perspective compels the program to focus on solutions for implementing RSRM changes with minimal/mitigated risk. This paper discusses use of a change risk interaction matrix to identify test challenges and uncover hidden risks to the RSRM program.
NASA Astrophysics Data System (ADS)
Ferreira, G. G.; Borges, E.; Braga, J. P.; Belchior, J. C.
Cluster structures are discussed in a nonrigid analysis, using a modified minima search method based on stochastic processes and classical dynamics simulations. The relaxation process is taken into account considering the internal motion of the Cl2 molecule. Cluster structures are compared with previous works in which the Cl2 molecule is assumed to be rigid. The interactions are modeled using pair potentials: the Aziz and Lennard-Jones potentials for the Ar==Ar interaction, a Morse potential for the Cl==Cl interaction, and a fully spherical/anisotropic Morse-Spline-van der Waals (MSV) potential for the Ar==Cl interaction. As expected, all calculated energies are lower than those obtained in a rigid approximation; one reason may be attributed to the nonrigid contributions of the internal motion of the Cl2 molecule. Finally, the growing processes in molecular clusters are discussed, and it is pointed out that the growing mechanism can be affected due to the nonrigid initial conditions of smaller clusters such as ArnCl2 (n ? 4 or 5), which are seeds for higher-order clusters.
webPIPSA: a web server for the comparison of protein interaction properties
Richter, Stefan; Wenzel, Anne; Stein, Matthias; Gabdoulline, Razif R.; Wade, Rebecca C.
2008-01-01
Protein molecular interaction fields are key determinants of protein functionality. PIPSA (Protein Interaction Property Similarity Analysis) is a procedure to compare and analyze protein molecular interaction fields, such as the electrostatic potential. PIPSA may assist in protein functional assignment, classification of proteins, the comparison of binding properties and the estimation of enzyme kinetic parameters. webPIPSA is a web server that enables the use of PIPSA to compare and analyze protein electrostatic potentials. While PIPSA can be run with downloadable software (see http://projects.eml.org/mcm/software/pipsa), webPIPSA extends and simplifies a PIPSA run. This allows non-expert users to perform PIPSA for their protein datasets. With input protein coordinates, the superposition of protein structures, as well as the computation and analysis of electrostatic potentials, is automated. The results are provided as electrostatic similarity matrices from an all-pairwise comparison of the proteins which can be subjected to clustering and visualized as epograms (tree-like diagrams showing electrostatic potential differences) or heat maps. webPIPSA is freely available at: http://pipsa.eml.org. PMID:18420653
Asmussen, M. A.; Basnayake, E.
1990-01-01
A detailed analytic and numerical study is made of the potential for permanent genetic variation in frequency-dependent models based on pairwise interactions among genotypes at a single diallelic locus. The full equilibrium structure and qualitative gene-frequency dynamics are derived analytically for a symmetric model, in which pairwise fitnesses are chiefly determined by the genetic similarity of the individuals involved. This is supplemented by an extensive numerical investigation of the general model, the symmetric model, and nine other special cases. Together the results show that there is a high potential for permanent genetic diversity in the pairwise interaction model, and provide insight into the extent to which various forms of genotypic interactions enhance or reduce this potential. Technically, although two stable polymorphic equilibria are possible, the increased likelihood of maintaining both alleles, and the poor performance of protected polymorphism conditions as a measure of this likelihood, are primarily due to a greater variety and frequency of equilibrium patterns with one stable polymorphic equilibrium, in conjunction with a disproportionately large domain of attraction for stable internal equilibria. PMID:2341034
An isotopic mass effect on the intermolecular potential
Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.
2015-09-28
The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologuemore » thermodynamics.« less
Interactive Storytelling: Opportunities for Online Course Design
ERIC Educational Resources Information Center
Baldwin, Sally; Ching, Yu-Hui
2017-01-01
Compelling interactive stories can be used to get and keep learners' interest in online courses. Interactive storytelling presents information in a manner that involves learners by allowing them to connect with the content. Incorporating interactive storytelling into online education offers the potential to increase student interest and knowledge…
Potential drug-drug interactions with antiepileptic drugs in Medicaid recipients.
Dickson, Michael; Bramley, Thomas J; Kozma, Chris; Doshi, Dilesh; Rupnow, Marcia F T
2008-09-15
The frequency of potential drug-drug interactions (DDIs) between antiepileptic drugs (AEDs) and other (non-AED) medications in Medicaid patients taking newer AED monotherapy, older AED monotherapy, and combinations of AED treatment was studied. A retrospective, observational study was conducted using administrative claims obtained from South Carolina Medicaid. Patients were included in the analysis if they (1) had at least one prescription for an AED between January 1, 2004, and December 31, 2004, (2) were taking a specific AED for at least 60 days, (3) had at least one epilepsy diagnosis during the 6 months before or during the enrollment period, and (4) were enrolled in Medicaid for at least 11 of the 12 months of the follow-up period. Possible DDI exposure was defined as 10 days of overlap between an AED and a non-AED known to have the potential to cause a clinically relevant interaction. A total of 4955 patients met the inclusion criteria. Approximately 45% of patients receiving monotherapy with an older AED had a potential DDI, compared with 3.9% receiving a newer AED. An average of 0.08 potential DDI per year of exposure occurred in the newer AED monotherapy cohort compared with 1.18 in the older AED monotherapy cohort. The most common potential interaction category was a decreased concentration of the non-AED. Older AEDs were associated with a greater likelihood of a potential DDI than were newer AEDs. Further research is needed to elucidate the relationship between the occurrence of potential DDIs and actual clinically relevant consequences.
Yiqi Luo; Dieter Gerten; Guerric Le Maire; William J. Parton; Ensheng Weng; Xuhui Zhou; Cindy Keough; Claus Beier; Philippe Ciais; Wolfgang Cramer; Jeffrey S. Dukes; Bridget Emmett; Paul J. Hanson; Alan Knapp; Sune Linder; Dan Nepstad; Lindsey. Rustad
2008-01-01
Interactive effects of multiple global change factors on ecosystem processes are complex. It is relatively expensive to explore those interactions in manipulative experiments. We conducted a modeling analysis to identify potentially important interactions and to stimulate hypothesis formulation for experimental research. Four models were used to quantify interactive...
ERIC Educational Resources Information Center
Trushell, John; Maitland, Amanda
2005-01-01
The use of interactive storybooks in the primary classroom has the potential to facilitate pupils reading, in small groups or individually. However, critics have expressed concern at the exposure of pupils to interactive storybooks. In particular, concern has been expressed that the interactive animations and sound effects in such storybooks may…
Parian, Alyssa
2015-01-01
Background: Comorbidity and polypharmacy, more prevalent among older persons, may impact the treatment of patients with inflammatory bowel disease (IBD). The aims of this study were to assess the frequency of polypharmacy and medication interactions within a cohort of older patients with IBD and describe IBD treatment patterns. Methods: Cohort study of 190 patients with IBD 65 years or older followed at a tertiary IBD referral center from 2006 to 2012. Data collected included demographics, IBD-specific characteristics including disease activity, and comorbidity. Medication histories were extracted from medical records, and data were used to classify polypharmacy, frequency, and severity of potential medication interactions and inappropriate medication use. Results: Older patients with IBD were prescribed an average of 9 routine medications. Severe polypharmacy (≥10 routine medications) was present in 43.2% of studied patients and associated with increasing age, greater comorbidity, and steroid use. Overall, 73.7% of patients had at least 1 potential medication interaction, including 40% of patients with potential IBD medication-associated interactions. Chronic steroids were prescribed to 40% of the older patients including 24% who were in remission or with mild disease activity. Only 39.5% of patients were on immunomodulators and 21.1% on biologics. Approximately, 35% of patients were given at least 1 Beers inappropriate medication and almost 10% were receiving chronic narcotics. Conclusions: Older patients with IBD are at increased risk for severe polypharmacy and potential major medication interactions especially with increasing comorbidity and chronic steroid use. Steroid-maintenance therapies are prevalent among the older patients with IBD with lower utilization of steroid-sparing regimens. PMID:25856768
Understanding the Potential of PARO for Healthy Older Adults
McGlynn, Sean A.; Kemple, Shawn; Mitzner, Tracy L.; King, Chih-Hung Aaron; Rogers, Wendy A.
2017-01-01
As the population ages, there is an increasing need for socio-emotional support for older adults. A potential way to meet this need is through interacting with pet-type robots such as the seal robot, PARO. There was a need to extend research on PARO’s potential benefits beyond cognitively impaired and dependently living older adults. Because independently living, cognitively intact older adults may also have socio-emotional needs, the primary goal of this study was to investigate their attitudes, emotions, and engagement with PARO to identify its potential applicability to this demographic. Thirty older adults participated in an interaction period with PARO, and their attitudes and emotions toward PARO were assessed before and after using a multi-method approach. Video of the interaction was coded to determine the types and frequency of engagements participants initiated with PARO. Overall, there were no pre-post interaction differences on these measures. However, semi-structured interviews suggested that these older adults had positive attitudes towards PARO’s attributes, thought it would be easy to use, and perceived potential uses for both themselves and others. Participants varied in their frequency of engagement with PARO. A novel finding is that this active engagement frequency uniquely predicted post-interaction period positive affect. This study advances understanding of healthy older adults’ attitudes, emotions, and engagement with PARO and of possible ways in which PARO could provide social and emotional support to healthy older adults. The results are informative for future research and design of pet-type robots. PMID:28943748
NASA Astrophysics Data System (ADS)
Schran, Christoph; Uhl, Felix; Behler, Jörg; Marx, Dominik
2018-03-01
The design of accurate helium-solute interaction potentials for the simulation of chemically complex molecules solvated in superfluid helium has long been a cumbersome task due to the rather weak but strongly anisotropic nature of the interactions. We show that this challenge can be met by using a combination of an effective pair potential for the He-He interactions and a flexible high-dimensional neural network potential (NNP) for describing the complex interaction between helium and the solute in a pairwise additive manner. This approach yields an excellent agreement with a mean absolute deviation as small as 0.04 kJ mol-1 for the interaction energy between helium and both hydronium and Zundel cations compared with coupled cluster reference calculations with an energetically converged basis set. The construction and improvement of the potential can be performed in a highly automated way, which opens the door for applications to a variety of reactive molecules to study the effect of solvation on the solute as well as the solute-induced structuring of the solvent. Furthermore, we show that this NNP approach yields very convincing agreement with the coupled cluster reference for properties like many-body spatial and radial distribution functions. This holds for the microsolvation of the protonated water monomer and dimer by a few helium atoms up to their solvation in bulk helium as obtained from path integral simulations at about 1 K.
Schran, Christoph; Uhl, Felix; Behler, Jörg; Marx, Dominik
2018-03-14
The design of accurate helium-solute interaction potentials for the simulation of chemically complex molecules solvated in superfluid helium has long been a cumbersome task due to the rather weak but strongly anisotropic nature of the interactions. We show that this challenge can be met by using a combination of an effective pair potential for the He-He interactions and a flexible high-dimensional neural network potential (NNP) for describing the complex interaction between helium and the solute in a pairwise additive manner. This approach yields an excellent agreement with a mean absolute deviation as small as 0.04 kJ mol -1 for the interaction energy between helium and both hydronium and Zundel cations compared with coupled cluster reference calculations with an energetically converged basis set. The construction and improvement of the potential can be performed in a highly automated way, which opens the door for applications to a variety of reactive molecules to study the effect of solvation on the solute as well as the solute-induced structuring of the solvent. Furthermore, we show that this NNP approach yields very convincing agreement with the coupled cluster reference for properties like many-body spatial and radial distribution functions. This holds for the microsolvation of the protonated water monomer and dimer by a few helium atoms up to their solvation in bulk helium as obtained from path integral simulations at about 1 K.
The role of electrostatics in protein-protein interactions of a monoclonal antibody.
Roberts, D; Keeling, R; Tracka, M; van der Walle, C F; Uddin, S; Warwicker, J; Curtis, R
2014-07-07
Understanding how protein-protein interactions depend on the choice of buffer, salt, ionic strength, and pH is needed to have better control over protein solution behavior. Here, we have characterized the pH and ionic strength dependence of protein-protein interactions in terms of an interaction parameter kD obtained from dynamic light scattering and the osmotic second virial coefficient B22 measured by static light scattering. A simplified protein-protein interaction model based on a Baxter adhesive potential and an electric double layer force is used to separate out the contributions of longer-ranged electrostatic interactions from short-ranged attractive forces. The ionic strength dependence of protein-protein interactions for solutions at pH 6.5 and below can be accurately captured using a Deryaguin-Landau-Verwey-Overbeek (DLVO) potential to describe the double layer forces. In solutions at pH 9, attractive electrostatics occur over the ionic strength range of 5-275 mM. At intermediate pH values (7.25 to 8.5), there is a crossover effect characterized by a nonmonotonic ionic strength dependence of protein-protein interactions, which can be rationalized by the competing effects of long-ranged repulsive double layer forces at low ionic strength and a shorter ranged electrostatic attraction, which dominates above a critical ionic strength. The change of interactions from repulsive to attractive indicates a concomitant change in the angular dependence of protein-protein interaction from isotropic to anisotropic. In the second part of the paper, we show how the Baxter adhesive potential can be used to predict values of kD from fitting to B22 measurements, thus providing a molecular basis for the linear correlation between the two protein-protein interaction parameters.
Rahmati, Nazanin Fatemeh; Koocheki, Arash; Varidi, Mehdi; Kadkhodaee, Rassoul
2018-03-01
Thermodynamic compatibility and probable interactions between Speckled Sugar been protein (SSBP) and xanthan gum for production of multilayer O/W emulsion (30% oil) were investigated. Different interactions were observed between SSBP and xanthan at different pH (3-7) including electrostatic interactions and hydrogen bonding. These interactions were predominant at pH 3. When low xanthan gum concentration (0.1%) was used, phase separation and complex coacervation observed at this pH (negative effect of interactions). However, at pH 5, only 0.1% xanthan was enough to drastically reduce non-dissolved protein and its precipitation which normally occurs at this pH. In addition, incompatibility or segregative phase behavior which normally occurs when protein and polysaccharide have same charges was not observed (positive effects of interactions). Protein-gum interactions influenced emulsion properties (zeta potential, particle size, PDI, rheology, emulsion capacity, heat stability and creaming rate). Interactions had considerable influence on emulsion shelf life and produced completely stable emulsions at all pH values. Results confirmed that SSBP-xanthan gum mixture has a high potential for production of multilayer emulsions.
Orientation-dependent potential of mean force for protein folding
NASA Astrophysics Data System (ADS)
Mukherjee, Arnab; Bhimalapuram, Prabhakar; Bagchi, Biman
2005-07-01
We present a solvent-implicit minimalistic model potential among the amino acid residues of proteins, obtained by using the known native structures [deposited in the Protein Data Bank (PDB)]. In this model, the amino acid side chains are represented by a single ellipsoidal site, defined by the group of atoms about the center of mass of the side chain. These ellipsoidal sites interact with other sites through an orientation-dependent interaction potential which we construct in the following fashion. First, the site-site potential of mean force (PMF) between heavy atoms is calculated [following F. Melo and E. Feytsman, J. Mol. Biol. 267, 207 (1997)] from statistics of their distance separation obtained from crystal structures. These site-site potentials are then used to calculate the distance and the orientation-dependent potential between side chains of all the amino acid residues (AAR). The distance and orientation dependencies show several interesting results. For example, we find that the PMF between two hydrophobic AARs, such as phenylalanine, is strongly attractive at short distances (after the obvious repulsive region at very short separation) and is characterized by a deep minimum, for specific orientations. For the interaction between two hydrophilic AARs, such a deep minimum is absent and in addition, the potential interestingly reveals the combined effect of polar (charge) and hydrophobic interactions among some of these AARs. The effectiveness of our potential has been tested by calculating the Z-scores for a large set of proteins. The calculated Z-scores show high negative values for most of them, signifying the success of the potential to identify the native structure from among a large number of its decoy states.
Savage, Ruth L; Tatley, Michael V
2018-05-01
We undertook an analysis of all the reports to the New Zealand Centre for Adverse Reactions Monitoring of a roxithromycin/warfarin interaction after two recent reports described intense rapid warfarin potentiation. The interaction was first published in 1995. Cytochrome P450 3A4 inhibition has been the proposed mechanism but has limited biologic plausibility. There are suggestions that the clinical significance of the interaction may be increased by severe illness, polypharmacy, renal dysfunction, older age and increased warfarin sensitivity. To investigate the potentiating effect of warfarin on roxithromycin in this New Zealand case series, the reports were reviewed to identify patients at risk, compare the reporting pattern with published Australian data and evaluate the appropriateness of current prescribing advice. Thirty patient reports were identified. The age range was 23-88 years, mean 66.8, median 73.0 (standard deviation 17.7) and the international normalised ratios after roxithromycin commencement ranged from 3.6 to 16.7 (mean 7.6, median 7.6, standard deviation 3.6). For eight patients with measurements on day 3, international normalised ratios were 4.3-16.7 (mean 10.4, median 8.8, standard deviation 4.4). Four patients had serious haemorrhage. Indications for roxithromycin were a range of respiratory tract infections. Anticoagulation was stable for most patients prior to acute infection. Serious infection occurred in 54.5% (12 of 22 patients with information). Polypharmacy (five or more medicines daily) was used by 36.7% of patients long term, increasing acutely to 83.3%, including additional potentially interacting medicines. Warfarin daily dose (1.5-13.0 mg, mean 4.4, median 4.0, standard deviation 2.2) was moderate to low. Pre-roxithromycin international normalised ratio values ranged from 1.4 to 3.7, mean and median 2.5, standard deviation 0.5. A high proportion of interactions were observed between warfarin and roxithromycin compared with other macrolides and compared with cytochrome P450 3A4-related macrolide interactions. The pattern was similar to published Australian data. In this case series, the high prevalence of acute polypharmacy, including potentially interacting medicines, and serious infection suggests that they may have contributed to warfarin potentiation and increased the clinical significance of a roxithromycin/warfarin interaction.
Toivo, T M; Mikkola, J A V; Laine, K; Airaksinen, M
2016-01-01
Drug-drug interactions (DDIs) are a significant cause for adverse drug events (ADEs). DDIs are often predictable and preventable, but their prevention and management require systematic service development. Most DDI studies focus on interaction rates in hospitalized patients. Less is known of DDIs in outpatients, particularly how community pharmacists could contribute to DDI management by applying their surveillance systems for identifying high-risk medications. The study was related to the implementation of the first online DDI surveillance system in Finnish community pharmacies. The goal was to demonstrate how community pharmacies can utilize their prospective surveillance system 1) for identifying high risk medications causing potential DDIs in outpatients, 2) for collaborative service development with local physicians, and 3) for academic risk management research purposes. All DDI alerts given by the online surveillance system were collected during a one-month period in 16 out of 17 University Pharmacy outlets in Finland, covering approximately 10% of the national outpatient prescription volume. The surveillance system was based on the FASS database, which categorizes DDIs into four classes (A-D) according to their clinical significance. Potential drug-drug DDIs were analyzed for 276,891 dispensed community pharmacy prescriptions. Potential DDIs were associated with 10.8%, or 31,110 of these prescriptions. Clinically significant interaction alerts categorized as FASS classes D (most severe, should be avoided) and C (clinically significant but controllable) were associated with 0.5% and 7.0% of the prescriptions, respectively. Methotrexate and warfarin had the highest risk of causing potentially serious (class D) interactions. These interaction alerts were most frequently between methotrexate and NSAIDs and warfarin and NSAIDs. In general, NSAIDs were the most commonly interacting drugs in this study. This study demonstrates that community pharmacies can actively contribute to DDI risk management and systematically use their surveillance systems for identifying patients having clinically significant DDIs. The findings also indicate that the majority of potentially serious interactions in outpatients involve a limited number of drugs, particularly NSAIDs, warfarin and methotrexate. Further research should focus on community pharmacists' involvement in DDI risk management in collaboration with local health care providers. Copyright © 2015 Elsevier Inc. All rights reserved.
Communicative Interaction Processes Involving Non-Vocal Physically Handicapped Children.
ERIC Educational Resources Information Center
Harris, Deberah
1982-01-01
Communication prostheses are critical components of the nonvocal child's communication process, but are only one component. This article focuses on the steps involved in communicative interaction processes and the potential barriers to the development of effective interaction and analysis of nonvocal communicative interactions. A discussion of the…
Non-additive simple potentials for pre-programmed self-assembly
NASA Astrophysics Data System (ADS)
Mendoza, Carlos
2015-03-01
A major goal in nanoscience and nanotechnology is the self-assembly of any desired complex structure with a system of particles interacting through simple potentials. To achieve this objective, intense experimental and theoretical efforts are currently concentrated in the development of the so called ``patchy'' particles. Here we follow a completely different approach and introduce a very accessible model to produce a large variety of pre-programmed two-dimensional (2D) complex structures. Our model consists of a binary mixture of particles that interact through isotropic interactions that is able to self-assemble into targeted lattices by the appropriate choice of a small number of geometrical parameters and interaction strengths. We study the system using Monte Carlo computer simulations and, despite its simplicity, we are able to self assemble potentially useful structures such as chains, stripes, Kagomé, twisted Kagomé, honeycomb, square, Archimedean and quasicrystalline tilings. Our model is designed such that it may be implemented using discotic particles or, alternatively, using exclusively spherical particles interacting isotropically. Thus, it represents a promising strategy for bottom-up nano-fabrication. Partial Financial Support: DGAPA IN-110613.
Ionic strength independence of charge distributions in solvation of biomolecules
NASA Astrophysics Data System (ADS)
Virtanen, J. J.; Sosnick, T. R.; Freed, K. F.
2014-12-01
Electrostatic forces enormously impact the structure, interactions, and function of biomolecules. We perform all-atom molecular dynamics simulations for 5 proteins and 5 RNAs to determine the dependence on ionic strength of the ion and water charge distributions surrounding the biomolecules, as well as the contributions of ions to the electrostatic free energy of interaction between the biomolecule and the surrounding salt solution (for a total of 40 different biomolecule/solvent combinations). Although water provides the dominant contribution to the charge density distribution and to the electrostatic potential even in 1M NaCl solutions, the contributions of water molecules and of ions to the total electrostatic interaction free energy with the solvated biomolecule are comparable. The electrostatic biomolecule/solvent interaction energies and the total charge distribution exhibit a remarkable insensitivity to salt concentrations over a huge range of salt concentrations (20 mM to 1M NaCl). The electrostatic potentials near the biomolecule's surface obtained from the MD simulations differ markedly, as expected, from the potentials predicted by continuum dielectric models, even though the total electrostatic interaction free energies are within 11% of each other.
Phenomenology of BWR fuel assembly degradation
NASA Astrophysics Data System (ADS)
Kurata, Masaki; Barrachin, Marc; Haste, Tim; Steinbrueck, Martin
2018-03-01
Severe accidents occurred at the Fukushima-Daiichi Nuclear Power Station (FDNPS) which required an immediate re-examination of fuel degradation phenomenology. The present paper reviews the updated knowledge on the phenomenology of the fuel degradation, focusing mainly on the BWR fuel assembly degradation at the macroscopic scale and that of the individual interactions at the meso-scale. Oxidation of boron carbide (B4C) control rods potentially generates far larger amounts of heat and hydrogen under BWR accident conditions. All integral tests with B4C control rods or control blades have shown early failure, liquefaction, relocation and oxidation of B4C starting at temperatures around 1250 °C, well below the significant interaction temperatures of UO2-Zry. These interactions or reactions potentially influence the progress of fuel degradation in the early phase. The steam-starved conditions, which are being discussed as a likely scenario at the FDNPS accident, highly influence the individual interactions and potentially lead the fuel degradation in non-prototypical directions. The detailed phenomenology of individual interactions and their influence on the transient and on the late phase of the severe accidents are also discussed.
Adverse event potentially due to an interaction between ibrutinib and verapamil: a case report.
Lambert Kuhn, E; Levêque, D; Lioure, B; Gourieux, B; Bilbault, P
2016-02-01
Ibrutinib is a recently approved oral anticancer agent with pharmacokinetics that is very sensitive to metabolic inhibition. We report a serious side effect of ibrutinib potentially attributable to interaction with the moderate CYP3A4 inhibitor verapamil. A patient with mantle cell lymphoma was admitted to our emergency department with severe diarrhoea. During a prescription review, the clinical pharmacist identified a potential drug interaction between ibrutinib and verapamil present in a branded combination product also containing trandolapril. Ibrutinib was discontinued for 5 days, and verapamil was stopped. Lercanidipine 10 mg daily was prescribed as an alternative antihypertensive drug. The patient was discharged after 3 days with symptomatic treatment for his diarrhoea. Three months later, the patient maintained control with ibrutinib and olmesartan, but without verapamil. This is the first description of a serious side effect of ibrutinib likely due to an interaction with the CYP3A4 inhibitor verapamil. Prescriptions of ibrutinib must be carefully checked to identify possible interactions with CYP3A4 inhibitors and patients monitored accordingly. © 2016 John Wiley & Sons Ltd.
Interaction between attrition,abrasion and erosion in tooth wear.
Addy, M; Shellis, R P
2006-01-01
Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence seems insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear through formation of pellicle and by remineralisation but cannot prevent it.
Li, Min; Xu, Tao
2015-03-01
Via the Nth Darboux transformation, a chain of nonsingular localized-wave solutions is derived for a nonlocal nonlinear Schrödinger equation with the self-induced parity-time (PT) -symmetric potential. It is found that the Nth iterated solution in general exhibits a variety of elastic interactions among 2N solitons on a continuous-wave background and each interacting soliton could be the dark or antidark type. The interactions with an arbitrary odd number of solitons can also be obtained under different degenerate conditions. With N=1 and 2, the two-soliton and four-soliton interactions and their various degenerate cases are discussed in the asymptotic analysis. Numerical simulations are performed to support the analytical results, and the stability analysis indicates that the PT-symmetry breaking can also destroy the stability of the soliton interactions.
The interactions between attrition, abrasion and erosion in tooth wear.
Shellis, R Peter; Addy, Martin
2014-01-01
Tooth wear is the result of three processes: abrasion (wear produced by interaction between teeth and other materials), attrition (wear through tooth-tooth contact) and erosion (dissolution of hard tissue by acidic substances). A further process (abfraction) might potentiate wear by abrasion and/or erosion. Knowledge of these tooth wear processes and their interactions is reviewed. Both clinical and experimental observations show that individual wear mechanisms rarely act alone but interact with each other. The most important interaction is the potentiation of abrasion by erosive damage to the dental hard tissues. This interaction seems to be the major factor in occlusal and cervical wear. The available evidence is insufficient to establish whether abfraction is an important contributor to tooth wear in vivo. Saliva can modulate erosive/abrasive tooth wear, especially through formation of pellicle, but cannot prevent it. © 2014 S. Karger AG, Basel.
NASA Astrophysics Data System (ADS)
Munsat, Tobin; Deca, Jan; Han, Jia; Horanyi, Mihaly; Wang, Xu; Werner, Greg; Yeo, Li Hsia; Fuentes, Dominic
2017-10-01
Magnetic anomalies on the surfaces of airless bodies such as the Moon interact with the solar wind, resulting in both magnetic and electrostatic deflection of the charged particles and thus localized surface charging. This interaction is studied in the Colorado Solar Wind Experiment with large-cross-section ( 300 cm2) high-energy flowing plasmas (100-800 eV beam ions) that are incident upon a magnetic dipole embedded under various insulating surfaces. Measured 2D plasma potential profiles indicate that in the dipole lobe regions, the surfaces are charged to high positive potentials due to the collection of unmagnetized ions, while the electrons are magnetically shielded. At low ion beam energies, the surface potential follows the beam energy in eV. However, at high energies, the surface potentials in the electron-shielded regions are significantly lower than the beam energies. A series of studies indicate that secondary electrons are likely to play a dominant role in determining the surface potential. Early results will also be presented from a second experiment, in which a strong permanent magnet with large dipole moment (0.55 T, 275 A*m2) is inserted into the flowing plasma beam to replicate aspects of the solar wind interaction with the earth's magnetic field. This work is supported by the NASA SSERVI program.
[Prevalence of potential drug interactions with azithromycin in Colombia, 2012-2013].
Machado-Alba, Jorge E; Martínez-Pulgarín, Dayron F; Gómez-Suta, Daniela
2015-05-01
Objective To determine the prevalence of potential drug interactions between azithromycin and different IA and III antiarrhythmic groups in a national database of drug prescriptions in 2012-2013. Methods Retrospective study based on a population database of medicine dispensation. Data from patients who received azithromycin between January 1, 2012 and June 30, 2013 were extracted along with data from patients who received azithromycin in combination with other medications shown to cause heart arrhythmias when used concomitantly. Frequencies and proportions were established. Results 13 859 patients receiving azithromycin alone or in combination with other drugs were identified. The average time of use was 4.5 ± 0.9 days. A total of 702 patients (5.1 %) received azithromycin plus 19 other potentially risky drugs. The most frequently associated were loratadine (77.1 %), diphenhydramine (16.5 %) and amitriptyline (8.1 %). Combinations with a single drug were the most frequent (n=533, 75.9 %), predominantly azithromycin+loratadine. The maximum number of combined drugs was six (n=2, 0.3 %). Conclusions Identification of drug prescriptions through population databases is an effective way to find potential drug interactions. The frequency of potential interactions between azithromycin and other drugs is common in Colombian patients. Future research should assess the risk of occurrence of adverse cardiac events.
Zuo, Zhili; Gandhi, Neha S; Mancera, Ricardo L
2010-12-27
The leucine zipper region of activator protein-1 (AP-1) comprises the c-Jun and c-Fos proteins and constitutes a well-known coiled coil protein-protein interaction motif. We have used molecular dynamics (MD) simulations in conjunction with the molecular mechanics/Poisson-Boltzmann generalized-Born surface area [MM/PB(GB)SA] methods to predict the free energy of interaction of these proteins. In particular, the influence of the choice of solvation model, protein force field, and water potential on the stability and dynamic properties of the c-Fos-c-Jun complex were investigated. Use of the AMBER polarizable force field ff02 in combination with the polarizable POL3 water potential was found to result in increased stability of the c-Fos-c-Jun complex. MM/PB(GB)SA calculations revealed that MD simulations using the POL3 water potential give the lowest predicted free energies of interaction compared to other nonpolarizable water potentials. In addition, the calculated absolute free energy of binding was predicted to be closest to the experimental value using the MM/GBSA method with independent MD simulation trajectories using the POL3 water potential and the polarizable ff02 force field, while all other binding affinities were overestimated.
Exchange repulsive potential adaptable for electronic structure changes during chemical reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yokogawa, D., E-mail: d.yokogawa@chem.nagoya-u.ac.jp
2015-04-28
Hybrid methods combining quantum mechanical (QM) and classical calculations are becoming important tools in chemistry. The popular approach to calculate the interaction between QM and classical calculations employs interatomic potentials. In most cases, the interatomic potential is constructed of an electrostatic (ES) potential and a non-ES potential. Because QM treatment is employed in the calculation of the ES potential, the electronic change can be considered in this ES potential. However, QM treatment of the non-ES potential is difficult because of high computational cost. To overcome this difficulty of evaluating the non-ES potential, we proposed an exchange repulsive potential as themore » main part of the non-ES potential on the basis of a QM approach. This potential is independent of empirical parameters and adaptable for electronic structure. We combined this potential with the reference interaction site model self-consistent field explicitly including spatial electron density distribution and successfully applied it to the chemical reactions in aqueous phase.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Herman, Michael F.; Currier, Robert Patrick; Clegg, Samuel M.
The impact of isotopic variation on the electronic energy and intermolecular potentials is often suppressed when calculating isotopologue thermodynamics. Intramolecular potential energy surfaces for distinct isotopologues are in fact equivalent under the Born–Oppenheimer approximation, which is sometimes used to imply that the intermolecular interactions are independent of isotopic mass. In this paper, the intermolecular dipole–dipole interaction between hetero-nuclear diatomic molecules is considered. It is shown that the intermolecular potential contains mass-dependent terms even though each nucleus moves on a Born–Oppenheimer surface. Finally, the analysis suggests that mass dependent variations in intermolecular potentials should be included in comprehensive descriptions of isotopologuemore » thermodynamics.« less
Lattice QCD studies of s-wave meson-baryon interactions
NASA Astrophysics Data System (ADS)
Ikeda, Yoichi
2011-10-01
We study the s-wave KN interactions in the isospin I = 0, 1 channels and associated exotic state Θ+ from 2+1 flavor full lattice QCD simulation for relatively heavy quark mass corresponding to mπ = 871 MeV. The s-wave KN potentials are obtained from the Bethe-Salpeter amplitudes. Potentials in both channels reveal short range repulsions: Strength of the repulsion is stronger in the I = 1 potential. The I = 0 potential is found to have attractive well at mid range. The KN scattering phase shifts are calculated and compared with the experimental data.
NASA Astrophysics Data System (ADS)
Wang, Deng-Shan; Liu, Jiang; Wang, Lizhen
2018-03-01
In this paper, we investigate matter-wave solitons in hybrid atomic-molecular Bose-Einstein condensates with tunable interactions and external potentials. Three types of time-modulated harmonic potentials are considered and, for each of them, two groups of exact non-autonomous matter-wave soliton solutions of the coupled Gross-Pitaevskii equation are presented. Novel nonlinear structures of these non-autonomous matter-wave solitons are analyzed by displaying their density distributions. It is shown that the time-modulated nonlinearities and external potentials can support exact non-autonomous atomic-molecular matter-wave solitons.
Das, Siddhartha; Chakraborty, Suman
2011-08-01
In this paper, we quantitatively demonstrate that exponentially decaying attractive potentials can effectively mimic strong hydrophobic interactions between monomer units of a polymer chain dissolved in aqueous solvent. Classical approaches to modeling hydrophobic solvation interactions are based on invariant attractive length scales. However, we demonstrate here that the solvation interaction decay length may need to be posed as a function of the relative separation distances and the sizes of the interacting species (or beads or monomers) to replicate the necessary physical interactions. As an illustrative example, we derive a universal scaling relationship for a given solute-solvent combination between the solvation decay length, the bead radius, and the distance between the interacting beads. With our formalism, the hydrophobic component of the net attractive interaction between monomer units can be synergistically accounted for within the unified framework of a simple exponentially decaying potential law, where the characteristic decay length incorporates the distinctive and critical physical features of the underlying interaction. The present formalism, even in a mesoscopic computational framework, is capable of incorporating the essential physics of the appropriate solute-size dependence and solvent-interaction dependence in the hydrophobic force estimation, without explicitly resolving the underlying molecular level details.
Effective field theories for van der Waals interactions
NASA Astrophysics Data System (ADS)
Brambilla, Nora; Shtabovenko, Vladyslav; Tarrús Castellà, Jaume; Vairo, Antonio
2017-06-01
Van der Waals interactions between two neutral but polarizable systems at a separation R much larger than the typical size of the systems are at the core of a broad sweep of contemporary problems in settings ranging from atomic, molecular and condensed matter physics to strong interactions and gravity. In this paper, we reexamine the dispersive van der Waals interactions between two hydrogen atoms. The novelty of the analysis resides in the usage of nonrelativistic effective field theories of quantum electrodynamics. In this framework, the van der Waals potential acquires the meaning of a matching coefficient in an effective field theory, dubbed van der Waals effective field theory, suited to describe the low-energy dynamics of an atom pair. It may be computed systematically as a series in R times some typical atomic scale and in the fine-structure constant α . The van der Waals potential gets short-range contributions and radiative corrections, which we compute in dimensional regularization and renormalize here for the first time. Results are given in d space-time dimensions. One can distinguish among different regimes depending on the relative size between 1 /R and the typical atomic bound-state energy, which is of order m α2. Each regime is characterized by a specific hierarchy of scales and a corresponding tower of effective field theories. The short-distance regime is characterized by 1 /R ≫m α2 and the leading-order van der Waals potential is the London potential. We also compute next-to-next-to-next-to-leading-order corrections. In the long-distance regime we have 1 /R ≪m α2. In this regime, the van der Waals potential contains contact terms, which are parametrically larger than the Casimir-Polder potential that describes the potential at large distances. In the effective field theory, the Casimir-Polder potential counts as a next-to-next-to-next-to-leading-order effect. In the intermediate-distance regime, 1 /R ˜m α2, a significantly more complex potential is obtained. We compare this exact result with the two previous limiting cases. We conclude by commenting on the van der Waals interactions in the hadronic case.
Amirian, E Susan; Scheurer, Michael E; Liu, Yanhong; D'Amelio, Anthony M; Houlston, Richard S; Etzel, Carol J; Shete, Sanjay; Swerdlow, Anthony J; Schoemaker, Minouk J; McKinney, Patricia A; Fleming, Sarah J; Muir, Kenneth R; Lophatananon, Artitaya; Bondy, Melissa L
2011-08-01
Despite extensive research on the topic, glioma etiology remains largely unknown. Exploration of potential interactions between single-nucleotide polymorphisms (SNP) of immune genes is a promising new area of glioma research. The case-only study design is a powerful and efficient design for exploring possible multiplicative interactions between factors that are independent of one another. The purpose of our study was to use this exploratory design to identify potential pair wise SNP-SNP interactions from genes involved in several different immune-related pathways for investigation in future studies. The study population consisted of two case groups: 1,224 histologic confirmed, non-Hispanic white glioma cases from the United States and a validation population of 634 glioma cases from the United Kingdom. Polytomous logistic regression, in which one SNP was coded as the outcome and the other SNP was included as the exposure, was utilized to calculate the ORs of the likelihood of cases simultaneously having the variant alleles of two different SNPs. Potential interactions were examined only between SNPs located in different genes or chromosomes. Using this data mining strategy, we found 396 significant SNP-SNP interactions among polymorphisms of immune-related genes that were present in both the U.S. and U.K. study populations. This exploratory study was conducted for the purpose of hypothesis generation, and thus has provided several new hypotheses that can be tested using traditional case-control study designs to obtain estimates of risk. This is the first study, to our knowledge, to take this novel approach to identifying SNP-SNP interactions relevant to glioma etiology. ©2011 AACR.
Nonperturbative derivation of the interaction potential of static nucleons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izmailov, A.F.; Kessel', A.R.; Fainberg, V.Y.
1989-05-01
A new approach is used to calculate the interaction potential of nucleons which describes virtual processes of exchange of scalar and pseudoscalar mesons in all orders in the nucleon{endash}meson local coupling constant. The theory contains a natural parameter---a limiting momentum {ital p}{sub {ital m}}. The nucleon{endash}nucleon potential of scalar mesodynamics for various values of {ital p}{sub {ital m}} reproduces accurately the well known phenomenological potentials, such as the Hamada{endash}Johnston potential, the Reid soft-core potential, and the de Toureil{endash}Sprung supersoft-core potential.{sup 15} In pseudoscalar mesodynamics, it has been possible to reproduce completely the behavior of the empirical tensor potential. The shapemore » of the central potential at all distances is reproduced in the states {tau}=0, {sigma}=0 and {tau}=0, {sigma}=1, and at intermediate and large distances in the states {tau}=1, {sigma}=0 and {tau}=1, {sigma}=1.« less
Exponentially decaying interaction potential of cavity solitons
NASA Astrophysics Data System (ADS)
Anbardan, Shayesteh Rahmani; Rimoldi, Cristina; Kheradmand, Reza; Tissoni, Giovanna; Prati, Franco
2018-03-01
We analyze the interaction of two cavity solitons in an optically injected vertical cavity surface emitting laser above threshold. We show that they experience an attractive force even when their distance is much larger than their diameter, and eventually they merge. Since the merging time depends exponentially on the initial distance, we suggest that the attraction could be associated with an exponentially decaying interaction potential, similarly to what is found for hydrophobic materials. We also show that the merging time is simply related to the characteristic times of the laser, photon lifetime, and carrier lifetime.
Light scattering and dynamics of interacting Brownian particles
NASA Technical Reports Server (NTRS)
Tsang, T.; Tang, H. T.
1982-01-01
The relative motions of interacting Brownian particles in liquids may be described as radial diffusion in an effective potential of the mean force. By using a harmonic approximation for the effective potential, the intermediate scattering function may also be evaluated. For polystyrene spheres of 250 A mean radius in aqueous environment at 0.00125 g/cu cm concentration, the results for the calculated mean square displacement are in qualitative agreement with experimental data from photon correlation spectroscopy. Because of the interactions, the functions deviate considerably from the exponential forms for the free particles.
ABC Transporters and Isothiocyanates: Potential for Pharmacokinetic Diet–Drug Interactions
Telang, Urvi; Ji, Yan; Morris, Marilyn E.
2013-01-01
Isothiocyanates, a class of anti-cancer agents, are derived from cruciferous vegetables such as broccoli, cabbage and watercress, and have demonstrated chemopreventive activity in a number of cancer models and epidemiologic studies. Due to public interest in cancer prevention and alternative therapies in cancer, the consumption of herbal supplements and vegetables containing these compounds is widespread and increasing. Isothiocyanates interact with ATP-binding cassette (ABC) efflux transporters such as P-glycoprotein, MRP1, MRP2 and BCRP, and may influence the pharmacokinetics of substrates of these transporters. This review discusses the pharmacokinetic properties of isothiocyanates, their interactions with ABC transporters, and presents some data describing the potential for isothiocyanate-mediated diet–drug interactions. PMID:19623673
Electrostatics of electron-hole interactions in van der Waals heterostructures
NASA Astrophysics Data System (ADS)
Cavalcante, L. S. R.; Chaves, A.; Van Duppen, B.; Peeters, F. M.; Reichman, D. R.
2018-03-01
The role of dielectric screening of electron-hole interaction in van der Waals heterostructures is theoretically investigated. A comparison between models available in the literature for describing these interactions is made and the limitations of these approaches are discussed. A simple numerical solution of Poisson's equation for a stack of dielectric slabs based on a transfer matrix method is developed, enabling the calculation of the electron-hole interaction potential at very low computational cost and with reasonable accuracy. Using different potential models, direct and indirect exciton binding energies in these systems are calculated within Wannier-Mott theory, and a comparison of theoretical results with recent experiments on excitons in two-dimensional materials is discussed.
Predicting Drug-Target Interactions With Multi-Information Fusion.
Peng, Lihong; Liao, Bo; Zhu, Wen; Li, Zejun; Li, Keqin
2017-03-01
Identifying potential associations between drugs and targets is a critical prerequisite for modern drug discovery and repurposing. However, predicting these associations is difficult because of the limitations of existing computational methods. Most models only consider chemical structures and protein sequences, and other models are oversimplified. Moreover, datasets used for analysis contain only true-positive interactions, and experimentally validated negative samples are unavailable. To overcome these limitations, we developed a semi-supervised based learning framework called NormMulInf through collaborative filtering theory by using labeled and unlabeled interaction information. The proposed method initially determines similarity measures, such as similarities among samples and local correlations among the labels of the samples, by integrating biological information. The similarity information is then integrated into a robust principal component analysis model, which is solved using augmented Lagrange multipliers. Experimental results on four classes of drug-target interaction networks suggest that the proposed approach can accurately classify and predict drug-target interactions. Part of the predicted interactions are reported in public databases. The proposed method can also predict possible targets for new drugs and can be used to determine whether atropine may interact with alpha1B- and beta1- adrenergic receptors. Furthermore, the developed technique identifies potential drugs for new targets and can be used to assess whether olanzapine and propiomazine may target 5HT2B. Finally, the proposed method can potentially address limitations on studies of multitarget drugs and multidrug targets.
Folador, Edson Luiz; de Carvalho, Paulo Vinícius Sanches Daltro; Silva, Wanderson Marques; Ferreira, Rafaela Salgado; Silva, Artur; Gromiha, Michael; Ghosh, Preetam; Barh, Debmalya; Azevedo, Vasco; Röttger, Richard
2016-11-04
Corynebacterium pseudotuberculosis (Cp) is a gram-positive bacterium that is classified into equi and ovis serovars. The serovar ovis is the etiological agent of caseous lymphadenitis, a chronic infection affecting sheep and goats, causing economic losses due to carcass condemnation and decreased production of meat, wool, and milk. Current diagnosis or treatment protocols are not fully effective and, thus, require further research of Cp pathogenesis. Here, we mapped known protein-protein interactions (PPI) from various species to nine Cp strains to reconstruct parts of the potential Cp interactome and to identify potentially essential proteins serving as putative drug targets. On average, we predict 16,669 interactions for each of the nine strains (with 15,495 interactions shared among all strains). An in silico sanity check suggests that the potential networks were not formed by spurious interactions but have a strong biological bias. With the inferred Cp networks we identify 181 essential proteins, among which 41 are non-host homologous. The list of candidate interactions of the Cp strains lay the basis for developing novel hypotheses and designing according wet-lab studies. The non-host homologous essential proteins are attractive targets for therapeutic and diagnostic proposes. They allow for searching of small molecule inhibitors of binding interactions enabling modern drug discovery. Overall, the predicted Cp PPI networks form a valuable and versatile tool for researchers interested in Corynebacterium pseudotuberculosis.
Guinn, Emily J.; Schwinefus, Jeffrey J.; Cha, Hyo Keun; McDevitt, Joseph L.; Merker, Wolf E.; Ritzer, Ryan; Muth, Gregory W.; Engelsgjerd, Samuel W.; Mangold, Kathryn E.; Thompson, Perry J.; Kerins, Michael J.; Record, Thomas
2013-01-01
Urea destabilizes helical and folded conformations of nucleic acids and proteins, as well as protein-nucleic acid complexes. To understand these effects, extend previous characterizations of interactions of urea with protein functional groups, and thereby develop urea as a probe of conformational changes in protein and nucleic acid processes, we obtain chemical potential derivatives (μ23 = dμ2/dm3) quantifying interactions of urea (component 3) with nucleic acid bases, base analogs, nucleosides and nucleotide monophosphates (component 2) using osmometry and hexanol-water distribution assays. Dissection of these μ23 yields interaction potentials quantifying interactions of urea with unit surface areas of nucleic acid functional groups (heterocyclic aromatic ring, ring methyl, carbonyl and phosphate O, amino N, sugar (C,O)); urea interacts favorably with all these groups, relative to interactions with water. Interactions of urea with heterocyclic aromatic rings and attached methyl groups (as on thymine) are particularly favorable, as previously observed for urea-homocyclic aromatic ring interactions. Urea m-values determined for double helix formation by DNA dodecamers near 25°C are in the range 0.72 to 0.85 kcal mol−1 m−1 and exhibit little systematic dependence on nucleobase composition (17–42% GC). Interpretation of these results using the urea interaction potentials indicates that extensive (60–90%) stacking of nucleobases in the separated strands in the transition region is required to explain the m-value. Results for RNA and DNA dodecamers obtained at higher temperatures, and literature data, are consistent with this conclusion. This demonstrates the utility of urea as a quantitative probe of changes in surface area (ΔASA) in nucleic acid processes. PMID:23510511
NASA Astrophysics Data System (ADS)
Barakat, T.
2011-12-01
Higher order multipole potentials and electrostatic screening effects are introduced to incorporate the dangling bonds on the surface of a metallic nanopaticle and to modify the coulomb like potential energy terms, respectively. The total interaction energy function for any metallic nanoparticle is represented in terms of two- and three-body potentials. The two-body part is described by dipole-dipole interaction potential, and in the three-body part, triple-dipole (DDD) and dipole-dipole-quadrupole (DDQ) terms are included. The size-dependent cohesive energy and bulk modulus are observed to decrease with decreasing sizes, a result which is in good agreement with the experimental values of Mo and W nanoparticles.
Harnessing the Power of Interactivity for Instruction.
ERIC Educational Resources Information Center
Borsook, Terry K.
Arguing that what sets the computer apart from all other teaching devices is its potential for interactivity, this paper examines the concept of interactivity and explores ways in which its power can be harnessed and put to work. A discussion of interactivity in human-to-human communication sets a context within which to view human/computer…
Record, M. Thomas; Guinn, Emily; Pegram, Laurel; Capp, Michael
2013-01-01
Understanding how Hofmeister salt ions and other solutes interact with proteins, nucleic acids, other biopolymers and water and thereby affect protein and nucleic acid processes as well as model processes (e.g solubility of model compounds) in aqueous solution is a longstanding goal of biophysical research. Empirical Hofmeister salt and solute “m-values” (derivatives of the observed standard free energy change for a model or biopolymer process with respect to solute or salt concentration m3) are equal to differences in chemical potential derivatives: m-value = Δ(dμ2/dm3) = Δμ23 which quantify the preferential interactions of the solute or salt with the surface of the biopolymer or model system (component 2) exposed or buried in the process. Using the SPM, we dissect μ23 values for interactions of a solute or Hofmeister salt with a set of model compounds displaying the key functional groups of biopolymers to obtain interaction potentials (called α-values) that quantify the interaction of the solute or salt per unit area of each functional group or type of surface. Interpreted using the SPM, these α-values provide quantitative information about both the hydration of functional groups and the competitive interaction of water and the solute or salt with functional groups. The analysis corroborates and quantifies previous proposals that the Hofmeister anion and cation series for biopolymer processes are determined by ion-specific, mostly unfavorable interactions with hydrocarbon surfaces; the balance between these unfavorable nonpolar interactions and often-favorable interactions of ions with polar functional groups determine the series null points. The placement of urea and glycine betaine (GB) at opposite ends of the corresponding series of nonelectrolytes results from the favorable interactions of urea, and unfavorable interactions of GB, with many (but not all) biopolymer functional groups. Interaction potentials and local-bulk partition coefficients quantifying the distribution of solutes (e.g. urea, glycine betaine) and Hofmeister salt ions in the vicinity of each functional group make good chemical sense when interpreted in terms of competitive noncovalent interactions. These interaction potentials allow solute and Hofmeister (noncoulombic) salt effects on protein and nucleic acid processes to be interpreted or predicted, and allow the use of solutes and salts as probes of interface formation and large-scale conformational changes in the steps of a biopolymer mechanism. PMID:23795491
McLay, James S; Izzati, Naila; Pallivalapila, Abdul R; Shetty, Ashalatha; Pande, Binita; Rore, Craig; Al Hail, Moza; Stewart, Derek
2017-12-19
Pregnant women are routinely prescribed medicines while self-medicating with herbal natural products to treat predominantly pregnancy related conditions. The aim of this study was to assess the potential for herb-drug interactions (HDIs) in pregnant women and to explore possible herb-drug interactions and their potential clinical significance. A cross-sectional survey of women during early pregnancy or immediately postpartum in North-East Scotland. Outcome measures included; Prescription medicines use excluding vitamins and potential HDIs assessed using Natural Medicines Comprehensive Database. The survey was completed by 889 respondents (73% response rate). 45.3% (403) reported the use of at least one prescription medicine, excluding vitamins. Of those taking prescription medicines, 44.9% (181) also reported concurrent use of at least one HNP (Range 1-12). A total of 91 different prescription medicines were reported by respondents using HNPs. Of those taking prescription medicines, 44.9% (181) also reported concurrent use of at least one HNP (Range 1-12). Thirty-four herb-drug interactions were identified in 23 (12.7%) women with the potential to increase the risk of postpartum haemorrhage, alter maternal haemodynamics, and enhance maternal/fetal CNS depression. Almost all were rated as moderate (93.9%), one as a potentially major (ginger and nifedipine) and only one minor (ondansetron and chamomile). Almost half of pregnant women in this study were prescribed medicines excluding vitamins and minerals and almost half of these used HNPs. Potential moderate to severe HDIs were identified in an eighth of the study cohort. Healthcare professionals should be aware that the concurrent use of HNPs and prescription medicines during pregnancy is common and carries potential risks.
García-Dorival, Isabel; Wu, Weining; Dowall, Stuart; Armstrong, Stuart; Touzelet, Olivier; Wastling, Jonathan; Barr, John N; Matthews, David; Carroll, Miles; Hewson, Roger; Hiscox, Julian A
2014-11-07
Viral pathogenesis in the infected cell is a balance between antiviral responses and subversion of host-cell processes. Many viral proteins specifically interact with host-cell proteins to promote virus biology. Understanding these interactions can lead to knowledge gains about infection and provide potential targets for antiviral therapy. One such virus is Ebola, which has profound consequences for human health and causes viral hemorrhagic fever where case fatality rates can approach 90%. The Ebola virus VP24 protein plays a critical role in the evasion of the host immune response and is likely to interact with multiple cellular proteins. To map these interactions and better understand the potential functions of VP24, label-free quantitative proteomics was used to identify cellular proteins that had a high probability of forming the VP24 cellular interactome. Several known interactions were confirmed, thus placing confidence in the technique, but new interactions were also discovered including one with ATP1A1, which is involved in osmoregulation and cell signaling. Disrupting the activity of ATP1A1 in Ebola-virus-infected cells with a small molecule inhibitor resulted in a decrease in progeny virus, thus illustrating how quantitative proteomics can be used to identify potential therapeutic targets.
MOLECULAR INTERACTION POTENTIALS FOR THE DEVELOPMENT OF STRUCTURE-ACTIVITY RELATIONSHIPS
Abstract
One reasonable approach to the analysis of the relationships between molecular structure and toxic activity is through the investigation of the forces and intermolecular interactions responsible for chemical toxicity. The interaction between the xenobiotic and the bio...
Numerical approach for finite volume three-body interaction
NASA Astrophysics Data System (ADS)
Guo, Peng; Gasparian, Vladimir
2018-01-01
In the present work, we study a numerical approach to one dimensional finite volume three-body interaction, the method is demonstrated by considering a toy model of three spinless particles interacting with pair-wise δ -function potentials. The numerical results are compared with the exact solutions of three spinless bosons interaction when the strength of short-range interactions are set equal for all pairs.
Novel nonlinear knowledge-based mean force potentials based on machine learning.
Dong, Qiwen; Zhou, Shuigeng
2011-01-01
The prediction of 3D structures of proteins from amino acid sequences is one of the most challenging problems in molecular biology. An essential task for solving this problem with coarse-grained models is to deduce effective interaction potentials. The development and evaluation of new energy functions is critical to accurately modeling the properties of biological macromolecules. Knowledge-based mean force potentials are derived from statistical analysis of proteins of known structures. Current knowledge-based potentials are almost in the form of weighted linear sum of interaction pairs. In this study, a class of novel nonlinear knowledge-based mean force potentials is presented. The potential parameters are obtained by nonlinear classifiers, instead of relative frequencies of interaction pairs against a reference state or linear classifiers. The support vector machine is used to derive the potential parameters on data sets that contain both native structures and decoy structures. Five knowledge-based mean force Boltzmann-based or linear potentials are introduced and their corresponding nonlinear potentials are implemented. They are the DIH potential (single-body residue-level Boltzmann-based potential), the DFIRE-SCM potential (two-body residue-level Boltzmann-based potential), the FS potential (two-body atom-level Boltzmann-based potential), the HR potential (two-body residue-level linear potential), and the T32S3 potential (two-body atom-level linear potential). Experiments are performed on well-established decoy sets, including the LKF data set, the CASP7 data set, and the Decoys “R”Us data set. The evaluation metrics include the energy Z score and the ability of each potential to discriminate native structures from a set of decoy structures. Experimental results show that all nonlinear potentials significantly outperform the corresponding Boltzmann-based or linear potentials, and the proposed discriminative framework is effective in developing knowledge-based mean force potentials. The nonlinear potentials can be widely used for ab initio protein structure prediction, model quality assessment, protein docking, and other challenging problems in computational biology.
ERIC Educational Resources Information Center
Filicková, Marta; Ropovik, Ivan; Bobaková, Monika; Kovalcíková, Iveta
2015-01-01
The main aim of the study was to explore the relationship between fluid intelligence (gf), attentional control (AC), and learning potential (LP), and to investigate the interaction effect between gf and AC on LP. The sample comprised 210 children attending the fourth grade of a standard elementary school. It was hypothesized that the extent of the…
Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements.
Wierez-Kien, M; Craciun, A D; Pinon, A V; Roux, S Le; Gallani, J L; Rastei, M V
2018-04-01
The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <10 3 nm 2 ) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.
The impact of baryonic discs on the shapes and profiles of self-interacting dark matter halos
NASA Astrophysics Data System (ADS)
Sameie, Omid; Creasey, Peter; Yu, Hai-Bo; Sales, Laura V.; Vogelsberger, Mark; Zavala, Jesús
2018-06-01
We employ isolated N-body simulations to study the response of self-interacting dark matter (SIDM) halos in the presence of the baryonic potentials. Dark matter self-interactions lead to kinematic thermalization in the inner halo, resulting in a tight correlation between the dark matter and baryon distributions. A deep baryonic potential shortens the phase of SIDM core expansion and triggers core contraction. This effect can be further enhanced by a large self-scattering cross section. We find the final SIDM density profile is sensitive to the baryonic concentration and the strength of dark matter self-interactions. Assuming a spherical initial halo, we also study evolution of the SIDM halo shape together with the density profile. The halo shape at later epochs deviates from spherical symmetry due to the influence of the non-spherical disc potential, and its significance depends on the baryonic contribution to the total gravitational potential, relative to the dark matter one. In addition, we construct a multi-component model for the Milky Way, including an SIDM halo, a stellar disc and a bulge, and show it is consistent with observations from stellar kinematics and streams.
Self-Consistent Monte Carlo Study of the Coulomb Interaction under Nano-Scale Device Structures
NASA Astrophysics Data System (ADS)
Sano, Nobuyuki
2011-03-01
It has been pointed that the Coulomb interaction between the electrons is expected to be of crucial importance to predict reliable device characteristics. In particular, the device performance is greatly degraded due to the plasmon excitation represented by dynamical potential fluctuations in high-doped source and drain regions by the channel electrons. We employ the self-consistent 3D Monte Carlo (MC) simulations, which could reproduce both the correct mobility under various electron concentrations and the collective plasma waves, to study the physical impact of dynamical potential fluctuations on device performance under the Double-gate MOSFETs. The average force experienced by an electron due to the Coulomb interaction inside the device is evaluated by performing the self-consistent MC simulations and the fixed-potential MC simulations without the Coulomb interaction. Also, the band-tailing associated with the local potential fluctuations in high-doped source region is quantitatively evaluated and it is found that the band-tailing becomes strongly dependent of position in real space even inside the uniform source region. This work was partially supported by Grants-in-Aid for Scientific Research B (No. 2160160) from the Ministry of Education, Culture, Sports, Science and Technology in Japan.
Interface bonding in silicon oxide nanocontacts: interaction potentials and force measurements
NASA Astrophysics Data System (ADS)
Wierez-Kien, M.; Craciun, A. D.; Pinon, A. V.; Le Roux, S.; Gallani, J. L.; Rastei, M. V.
2018-04-01
The interface bonding between two silicon-oxide nanoscale surfaces has been studied as a function of atomic nature and size of contacting asperities. The binding forces obtained using various interaction potentials are compared with experimental force curves measured in vacuum with an atomic force microscope. In the limit of small nanocontacts (typically <103 nm2) measured with sensitive probes the bonding is found to be influenced by thermal-induced fluctuations. Using interface interactions described by Morse, embedded atom model, or Lennard-Jones potential within reaction rate theory, we investigate three bonding types of covalent and van der Waals nature. The comparison of numerical and experimental results reveals that a Lennard-Jones-like potential originating from van der Waals interactions captures the binding characteristics of dry silicon oxide nanocontacts, and likely of other nanoscale materials adsorbed on silicon oxide surfaces. The analyses reveal the importance of the dispersive surface energy and of the effective contact area which is altered by stretching speeds. The mean unbinding force is found to decrease as the contact spends time in the attractive regime. This contact weakening is featured by a negative aging coefficient which broadens and shifts the thermal-induced force distribution at low stretching speeds.
Bagny Beilhe, Leïla; Piou, Cyril; Tadu, Zéphirin; Babin, Régis
2018-06-06
The use of ants for biological control of insect pests was the first reported case of conservation biological control. Direct and indirect community interactions between ants and pests lead to differential spatial pattern. We investigated spatial interactions between mirids, the major cocoa pest in West Africa and numerically dominant ant species, using bivariate point pattern analysis to identify potential biological control agents. We assume that potential biological control agents should display negative spatial interactions with mirids considering their niche overlap. The mirid/ant data were collected in complex cacao-based agroforestry systems sampled in three agroecological areas over a forest-savannah gradient in Cameroon. Three species, Crematogaster striatula Emery (Hymenoptera: Formicidae), Crematogaster clariventris Mayr (Hymenoptera: Formicidae), and Oecophylla longinoda Latreille (Hymenoptera: Formicidae) with high predator and aggressive behaviors were identified as dominant and showed negative spatial relationships with mirids. The weaver ant, O. longinoda was identified as the only potential biological control agent, considering its ubiquity in the plots, the similarity in niche requirements, and the spatial segregation with mirids resulting probably from exclusion mechanisms. Combining bivariate point pattern analysis to good knowledge of insect ecology was an effective method to identify a potentially good biological control agent.
NASA Astrophysics Data System (ADS)
Khazaei, Somayeh; Sebastiani, Daniel
2017-11-01
We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the calculated first-principles PES on the model, it is confirmed that the hindering potential in 4-methylpyridine consists of proportionally shallow single-rotor potential to coupling interaction.
Khazaei, Somayeh; Sebastiani, Daniel
2017-11-21
We study the influence of rotational coupling between a pair of methyl rotators on the tunneling spectrum in condensed phase. Two interacting adjacent methyl groups are simulated within a coupled-pair model composed of static rotational potential created by the chemical environment and the interaction potential between two methyl groups. We solve the two-dimensional time-independent Schrödinger equation analytically by expanding the wave functions on the basis set of two independent free-rotor functions. We investigate three scenarios which differ with respect to the relative strength of single-rotor and coupling potential. For each scenario, we illustrate the dependence of the energy level scheme on the coupling strength. It is found that the main determinant of splitting energy levels tends to be a function of the ratio of strengths of coupling and single-rotor potential. The tunnel splitting caused by coupling is maximized for the coupled rotors in which their total hindering potential is relatively shallow. Such a weakly hindered methyl rotational potential is predicted for 4-methylpyridine at low temperature. The experimental observation of multiple tunneling peaks arising from a single type of methyl group in 4-methylpyridine in the inelastic neutron scattering spectrum is widely attributed to the rotor-rotor coupling. In this regard, using a set of first-principles calculations combined with the nudged elastic band method, we investigate the rotational potential energy surface (PES) of the coaxial pairs of rotors in 4-methylpyridine. A Numerov-type method is used to numerically solve the two-dimensional time-independent Schrödinger equation for the calculated 2D-density functional theory profile. Our computed energy levels reproduce the observed tunneling transitions well. Moreover, the calculated density distribution of the three methyl protons resembles the experimental nuclear densities obtained from the Fourier difference method. By mapping the calculated first-principles PES on the model, it is confirmed that the hindering potential in 4-methylpyridine consists of proportionally shallow single-rotor potential to coupling interaction.
NASA Technical Reports Server (NTRS)
Partridge, Harry; Stallcop, James R.; Levin, Eugene; Arnold, Jim (Technical Monitor)
2001-01-01
The interactions of a He atom with a heavier atom are examined for 26 different elements, which are consecutive members selected from three rows (Li - Ne, Na - Ar, and K,Ca, Ga - Kr) and column 12 (Zn,Cd) of the periodic table. Interaction energies are determined wing high-quality ab initio calculations for the states of the molecule that would be formed from each pair of atoms in their ground states. Potential energies are tabulated for a broad range of Interatomic separation distances. The results show, for example, that the energy of an alkali interaction at small separations is nearly the same as that of a rare-gas interaction with the same electron configuration for the dosed shells. Furthermore, the repulsive-range parameter for this region is very short compared to its length for the repulsion dominated by the alkali-valence electron at large separations (beyond about 3-4 a(sub 0)). The potential energies in the region of the van der Waals minimum agree well with the most accurate results available. The ab initio energies are applied to calculate scattering cross sections and obtain the collision integrals that are needed to determine transport properties to second order. The theoretical values of Li-He total scattering cross sections and the rare-gas atom-He transport properties agree well (to within about 1%) with the corresponding measured data. Effective potential energies are constructed from the ab initio energies; the results have been shown to reproduce known transport data and can be readily applied to predict unknown transport properties for like-atom interactions.
Self-consistent perturbation theory for two dimensional twisted bilayers
NASA Astrophysics Data System (ADS)
Shirodkar, Sharmila N.; Tritsaris, Georgios A.; Kaxiras, Efthimios
Theoretical modeling and ab-initio simulations of two dimensional heterostructures with arbitrary angles of rotation between layers involve unrealistically large and expensive calculations. To overcome this shortcoming, we develop a methodology for weakly interacting heterostructures that treats the effect of one layer on the other as perturbation, and restricts the calculations to their primitive cells. Thus, avoiding computationally expensive supercells. We start by approximating the interaction potential between the twisted bilayers to that of a hypothetical configuration (viz. ideally stacked untwisted layers), which produces band structures in reasonable agreement with full-scale ab-initio calculations for commensurate and twisted bilayers of graphene (Gr) and Gr/hexagonal boron nitride (h-BN) heterostructures. We then self-consistently calculate the charge density and hence, interaction potential of the heterostructures. In this work, we test our model for bilayers of various combinations of Gr, h-BN and transition metal dichalcogenides, and discuss the advantages and shortcomings of the self-consistently calculated interaction potential. Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA.
Martínez-Ballesta, Maria Del Carmen; Pérez-Sánchez, Horacio; Moreno, Diego A; Carvajal, Micaela
2016-07-01
Their biodegradable nature and ability to target cells make biological vesicles potential nanocarriers for bioactives delivery. In this work, the interaction between proteoliposomes enriched in aquaporins derived from broccoli plants and the glucosinolates was evaluated. The vesicles were stored at different temperatures and their integrity was studied. Determination of glucosinolates, showed that indolic glucosinolates were more sensitive to degradation in aqueous solution than aliphatic glucosinolates. Glucoraphanin was stabilized by leaf and root proteoliposomes at 25°C through their interaction with aquaporins. An extensive hydrogen bond network, including different aquaporin residues, and hydrophobic interactions, as a consequence of the interaction between the linear alkane chain of glucoraphanin and Glu31 and Leu34 protein residues, were established as the main stabilizing elements. Combined our results showed that plasma membrane vesicles from leaf and root tissues of broccoli plants may be considered as suitable carriers for glucosinolate which stabilization can be potentially attributed to aquaporins. Copyright © 2016 Elsevier B.V. All rights reserved.
Model colloid system for interfacial sorption kinetics
NASA Astrophysics Data System (ADS)
Salipante, Paul; Hudson, Steven
2014-11-01
Adsorption kinetics of nanometer scale molecules, such as proteins at interfaces, is usually determined through measurements of surface coverage. Their small size limits the ability to directly observe individual molecule behavior. To better understand the behavior of nanometer size molecules and the effect on interfacial kinetics, we use micron size colloids with a weak interfacial interaction potential as a model system. Thus, the interaction strength is comparable to many nanoscale systems (less than 10 kBT). The colloid-interface interaction potential is tuned using a combination of depletion, electrostatic, and gravitational forces. The colloids transition between an entropically trapped adsorbed state and a desorbed state through Brownian motion. Observations are made using an LED-based Total Internal Reflection Microscopy (TIRM) setup. The observed adsorption and desorption rates are compared theoretical predictions based on the measured interaction potential and near wall particle diffusivity. This experimental system also allows for the study of more complex dynamics such as nonspherical colloids and collective effects at higher concentrations.
Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions
NASA Technical Reports Server (NTRS)
Stallcop, James R.; Partridge, Harry; Levin, Eugene
1996-01-01
Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.
Anomalous dynamics of interstitial dopants in soft crystals
Tauber, Justin; Higler, Ruben; Sprakel, Joris
2016-01-01
The dynamics of interstitial dopants govern the properties of a wide variety of doped crystalline materials. To describe the hopping dynamics of such interstitial impurities, classical approaches often assume that dopant particles do not interact and travel through a static potential energy landscape. Here we show, using computer simulations, how these assumptions and the resulting predictions from classical Eyring-type theories break down in entropically stabilized body-centered cubic (BCC) crystals due to the thermal excitations of the crystalline matrix. Deviations are particularly severe close to melting where the lattice becomes weak and dopant dynamics exhibit strongly localized and heterogeneous dynamics. We attribute these anomalies to the failure of both assumptions underlying the classical description: (i) The instantaneous potential field experienced by dopants becomes largely disordered due to thermal fluctuations and (ii) elastic interactions cause strong dopant–dopant interactions even at low doping fractions. These results illustrate how describing nonclassical dopant dynamics requires taking the effective disordered potential energy landscape of strongly excited crystals and dopant–dopant interactions into account. PMID:27856751
Bidwell, Gene L; Raucher, Drazen
2009-10-01
Therapeutic peptides have great potential as anticancer agents owing to their ease of rational design and target specificity. However, their utility in vivo is limited by low stability and poor tumor penetration. The authors review the development of peptide inhibitors with potential for cancer therapy. Peptides that inhibit signal transduction cascades are discussed. The authors searched Medline for articles concerning the development of therapeutic peptides and their delivery. Given our current knowledge of protein sequences, structures and interaction interfaces, therapeutic peptides that inhibit interactions of interest are easily designed. These peptides are advantageous because they are highly specific for the interaction of interest, and they are much more easily developed than small molecule inhibitors of the same interactions. The main hurdle to application of peptides for cancer therapy is their poor pharmacokinetic and biodistribution parameters. Therefore, successful development of peptide delivery vectors could potentially make possible the use of this new and very promising class of anticancer agents.
Fluctuation-induced transport of two coupled particles: effect of the interparticle interaction.
Makhnovskii, Yurii A; Rozenbaum, Viktor M; Sheu, Sheh-Yi; Yang, Dah-Yen; Trakhtenberg, Leonid I; Lin, Sheng Hsien
2014-06-07
We consider a system of two coupled particles fluctuating between two states, with different interparticle interaction potentials and particle friction coefficients. An external action drives the interstate transitions that induces reciprocating motion along the internal coordinate x (the interparticle distance). The system moves unidirectionally due to rectification of the internal motion by asymmetric friction fluctuations and thus operates as a dimeric motor that converts input energy into net movement. We focus on how the law of interaction between the particles affects the dimer transport and, in particular, the role of thermal noise in the motion inducing mechanism. It is argued that if the interaction potential behaves at large distances as x(α), depending on the value of the exponent α, the thermal noise plays a constructive (α > 2), neutral (α = 2), or destructive (α < 2) role. In the case of α = 1, corresponding piecewise linear potential profiles, an exact solution is obtained and discussed in detail.
Potential of mean force for electrical conductivity of dense plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starrett, C. E.
The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. The current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. Here, we present a new way to define this potential, drawing on ideas from classical fluid theory to define amore » potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.« less
Potential of mean force for electrical conductivity of dense plasmas
Starrett, C. E.
2017-09-28
The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. The current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. Here, we present a new way to define this potential, drawing on ideas from classical fluid theory to define amore » potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.« less
Potential of mean force for electrical conductivity of dense plasmas
NASA Astrophysics Data System (ADS)
Starrett, C. E.
2017-12-01
The electrical conductivity in dense plasmas can be calculated with the relaxation-time approximation provided that the interaction potential between the scattering electron and the ion is known. To date there has been considerable uncertainty as to the best way to define this interaction potential so that it correctly includes the effects of ionic structure, screening by electrons and partial ionization. Current approximations lead to significantly different results with varying levels of agreement when compared to bench-mark calculations and experiments. We present a new way to define this potential, drawing on ideas from classical fluid theory to define a potential of mean force. This new potential results in significantly improved agreement with experiments and bench-mark calculations, and includes all the aforementioned physics self-consistently.
Constructive methods for the ground-state energy of fully interacting fermion gases
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aguilera Navarro, V.C.; Baker G.A. Jr.; Benofy, L.P.
1987-11-01
A perturbation scheme based not on the ideal gas but on a system of purely repulsive cores is applied to a typical fully interacting fermion gas. This is ''neutron matter'' interacting via (a) the repulsive ''Bethe homework-problem'' potential, (b) a hard-core--plus--square-well potential, and (c) the Baker-Hind-Kahane modification of the latter, suitable for describing a more accurate two-nucleon potential. Pade extrapolation techniques and generalizations thereof are employed to represent both the density dependence as well as the attractive coupling dependence of the perturbation expansion. Equations of state are constructed and compared with Jastrow--Monte Carlo calculations as well as expectations based onmore » semiempirical mass formulas. Excellent agreement is found with the latter.« less
Measuring three-dimensional interaction potentials using optical interference.
Mojarad, Nassir; Sandoghdar, Vahid; Krishnan, Madhavi
2013-04-22
We describe the application of three-dimensional (3D) scattering interferometric (iSCAT) imaging to the measurement of spatial interaction potentials for nano-objects in solution. We study electrostatically trapped gold particles in a nanofluidic device and present details on axial particle localization in the presence of a strongly reflecting interface. Our results demonstrate high-speed (~kHz) particle tracking with subnanometer localization precision in the axial and average 2.5 nm in the lateral dimension. A comparison of the measured levitation heights of trapped particles with the calculated values for traps of various geometries reveals good agreement. Our work demonstrates that iSCAT imaging delivers label-free, high-speed and accurate 3D tracking of nano-objects conducive to probing weak and long-range interaction potentials in solution.
Wachsmuth, Leah M; Johnson, Meredith G; Gavenonis, Jason
2017-06-01
Parasitic diseases caused by kinetoplastid parasites of the genera Trypanosoma and Leishmania are an urgent public health crisis in the developing world. These closely related species possess a number of multimeric enzymes in highly conserved pathways involved in vital functions, such as redox homeostasis and nucleotide synthesis. Computational alanine scanning of these protein-protein interfaces has revealed a host of potentially ligandable sites on several established and emerging anti-parasitic drug targets. Analysis of interfaces with multiple clustered hotspots has suggested several potentially inhibitable protein-protein interactions that may have been overlooked by previous large-scale analyses focusing solely on secondary structure. These protein-protein interactions provide a promising lead for the development of new peptide and macrocycle inhibitors of these enzymes.
The forward rainbow scattering of low energy protons by a graphene sheet
NASA Astrophysics Data System (ADS)
Ćosić, M.; Petrović, S.; Nešković, N.
2018-05-01
This article studies the rainbow scattering of 5-keV protons by the single sheet of free-standing graphene and its possible use as a tool for investigation of the ion-graphene interaction. The proton-graphene interaction potential was constructed by using the Doyle-Turner, ZBL, and Molière proton-carbon interaction potentials. The thermal motion of carbon atoms was included by averaging the potentials according to the Debye model. Proton trajectories were obtained by numerical solution of the corresponding Newton equations of motion. They were used to obtain the mapping of the proton initial positions to their scattering angles. Morphological properties of the introduced mapping including its multiplicity and the rainbow singularities were used to explain important features of the obtained angular distributions of transmitted protons.
NASA Technical Reports Server (NTRS)
Power, J. L.
1984-01-01
Preliminary ground correlation testing has been conducted with an 8 cm mercury ion thruster and diagnostic instrumentation replicating to a large extent the IAPS flight test hardware, configuration, and electrical grounding/isolation. Thruster efflux deposition retained at 25 C was measured and characterized. Thruster ion efflux was characterized with retarding potential analyzers. Thruster-generated plasma currents, the spacecraft common (SCC) potential, and ambient plasma properties were evaluated with a spacecraft potential probe (SPP). All the measured thruster/spacecraft interactions or their IAPS measurements depend critically on the SCC potential, which can be controlled by a neutralizer ground switch and by the SPP operation.
Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel
2015-12-15
The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.
Criticality of the electron-nucleus cusp condition to local effective potential-energy theories
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Xiaoyin; Sahni, Viraht; Graduate School of the City University of New York, 360 Fifth Avenue, New York, New York 10016
2003-01-01
Local(multiplicative) effective potential energy-theories of electronic structure comprise the transformation of the Schroedinger equation for interacting Fermi systems to model noninteracting Fermi or Bose systems whereby the equivalent density and energy are obtained. By employing the integrated form of the Kato electron-nucleus cusp condition, we prove that the effective electron-interaction potential energy of these model fermions or bosons is finite at a nucleus. The proof is general and valid for arbitrary system whether it be atomic, molecular, or solid state, and for arbitrary state and symmetry. This then provides justification for all prior work in the literature based on themore » assumption of finiteness of this potential energy at a nucleus. We further demonstrate the criticality of the electron-nucleus cusp condition to such theories by an example of the hydrogen molecule. We show thereby that both model system effective electron-interaction potential energies, as determined from densities derived from accurate wave functions, will be singular at the nucleus unless the wave function satisfies the electron-nucleus cusp condition.« less
Diffusing colloidal probes of protein-carbohydrate interactions.
Eichmann, Shannon L; Meric, Gulsum; Swavola, Julia C; Bevan, Michael A
2013-02-19
We present diffusing colloidal probe measurements of weak, multivalent, specific protein-polysaccharide interactions mediated by a competing monosaccharide. Specifically, we used integrated evanescent wave and video microscopy methods to monitor the three-dimensional Brownian excursions of conconavilin A (ConA) decorated colloids interacting with dextran-functionalized surfaces in the presence of glucose. Particle trajectories were interpreted as binding lifetime histograms, binding isotherms, and potentials of mean force. Binding lifetimes and isotherms showed clear trends of decreasing ConA-dextran-specific binding with increasing glucose concentration, consistent with expectations. Net potentials were accurately captured by superposition of a short-range, glucose-independent ConA-dextran repulsion and a longer-range, glucose-dependent dextran bridging attraction modeled as a harmonic potential. For glucose concentrations greater than 100 mM, the net ConA-dextran potential was found to have only a nonspecific repulsion, similar to that of bovine serum albumin (BSA) decorated colloids over dextran determined in control experiments. Our results demonstrate the first use of optical microscopy methods to quantify the connections between potentials of mean force and the binding behavior of ConA-decorated colloids on dextran-functionalized surfaces.
Study of the Hyperon-Nucleon Interaction in Exclusive Λ Photoproduction off the Deuteron
NASA Astrophysics Data System (ADS)
Zachariou, Nicholas; CLAS Collaboration
2014-09-01
Understanding the nature of the nuclear force in terms of the fundamental degrees of freedom of the theory of strong interaction, Quantum Chromodynamics (QCD), is one of the primary goals of modern nuclear physics. While the nucleon-nucleon (NN) interaction has been studied for decades, a systematic description of the NN potential has been achieved only recently with the development of low-energy Effective Field Theories (EFT). To obtain a comprehensive understanding of the strong interaction, dynamics involving strange baryons must be studied. Currently, little is known about the properties of the hyperon-nucleon (YN) and the hyperon-hyperon (YY) interactions. In this talk I will describe our current research of the Λn interaction using the E06-103 experiment performed with the CLAS detector in Hall B at Jefferson Lab. The large kinematic coverage of the CLAS combined with the exceptionally high quality of the experimental data allows to identify and select final-state interaction events in the reaction γd -->K+ Λn and to establish their kinematical dependencies. The large set of observables we aim to obtain will provide tight constraints on modern YN potentials. I will present the current status of the project and will discuss future incentives. Understanding the nature of the nuclear force in terms of the fundamental degrees of freedom of the theory of strong interaction, Quantum Chromodynamics (QCD), is one of the primary goals of modern nuclear physics. While the nucleon-nucleon (NN) interaction has been studied for decades, a systematic description of the NN potential has been achieved only recently with the development of low-energy Effective Field Theories (EFT). To obtain a comprehensive understanding of the strong interaction, dynamics involving strange baryons must be studied. Currently, little is known about the properties of the hyperon-nucleon (YN) and the hyperon-hyperon (YY) interactions. In this talk I will describe our current research of the Λn interaction using the E06-103 experiment performed with the CLAS detector in Hall B at Jefferson Lab. The large kinematic coverage of the CLAS combined with the exceptionally high quality of the experimental data allows to identify and select final-state interaction events in the reaction γd -->K+ Λn and to establish their kinematical dependencies. The large set of observables we aim to obtain will provide tight constraints on modern YN potentials. I will present the current status of the project and will discuss future incentives. for the CLAS Collaboration.
Interaction between colloidal particles on an oil-water interface in dilute and dense phases.
Parolini, Lucia; Law, Adam D; Maestro, Armando; Buzza, D Martin A; Cicuta, Pietro
2015-05-20
The interaction between micron-sized charged colloidal particles at polar/non-polar liquid interfaces remains surprisingly poorly understood for a relatively simple physical chemistry system. By measuring the pair correlation function g(r) for different densities of polystyrene particles at the decane-water interface, and using a powerful predictor-corrector inversion scheme, effective pair-interaction potentials can be obtained up to fairly high densities, and these reproduce the experimental g(r) in forward simulations, so are self consistent. While at low densities these potentials agree with published dipole-dipole repulsion, measured by various methods, an apparent density dependence and long range attraction are obtained when the density is higher. This condition is thus explored in an alternative fashion, measuring the local mobility of colloids when confined by their neighbors. This method of extracting interaction potentials gives results that are consistent with dipolar repulsion throughout the concentration range, with the same magnitude as in the dilute limit. We are unable to rule out the density dependence based on the experimental accuracy of our data, but we show that incomplete equilibration of the experimental system, which would be possible despite long waiting times due to the very strong repulsions, is a possible cause of artefacts in the inverted potentials. We conclude that to within the precision of these measurements, the dilute pair potential remains valid at high density in this system.
Yigit, Cemil; Heyda, Jan; Dzubiella, Joachim
2015-08-14
We introduce a set of charged patchy particle models (CPPMs) in order to systematically study the influence of electrostatic charge patchiness and multipolarity on macromolecular interactions by means of implicit-solvent, explicit-ion Langevin dynamics simulations employing the Gromacs software. We consider well-defined zero-, one-, and two-patched spherical globules each of the same net charge and (nanometer) size which are composed of discrete atoms. The studied mono- and multipole moments of the CPPMs are comparable to those of globular proteins with similar size. We first characterize ion distributions and electrostatic potentials around a single CPPM. Although angle-resolved radial distribution functions reveal the expected local accumulation and depletion of counter- and co-ions around the patches, respectively, the orientation-averaged electrostatic potential shows only a small variation among the various CPPMs due to space charge cancellations. Furthermore, we study the orientation-averaged potential of mean force (PMF), the number of accumulated ions on the patches, as well as the CPPM orientations along the center-to-center distance of a pair of CPPMs. We compare the PMFs to the classical Derjaguin-Verwey-Landau-Overbeek theory and previously introduced orientation-averaged Debye-Hückel pair potentials including dipolar interactions. Our simulations confirm the adequacy of the theories in their respective regimes of validity, while low salt concentrations and large multipolar interactions remain a challenge for tractable theoretical descriptions.
Muthu, Satish; Childress, Amy; Brant, Jonathan
2014-08-15
Membrane fouling assessed from a fundamental standpoint within the context of the Derjaguin-Landau-Verwey-Overbeek (DLVO) model. The DLVO model requires that the properties of the membrane and foulant(s) be quantified. Membrane surface charge (zeta potential) and free energy values are characterized using streaming potential and contact angle measurements, respectively. Comparing theoretical assessments for membrane-colloid interactions between research groups requires that the variability of the measured inputs be established. The impact that such variability in input values on the outcome from interfacial models must be quantified to determine an acceptable variance in inputs. An interlaboratory study was conducted to quantify the variability in streaming potential and contact angle measurements when using standard protocols. The propagation of uncertainty from these errors was evaluated in terms of their impact on the quantitative and qualitative conclusions on extended DLVO (XDLVO) calculated interaction terms. The error introduced into XDLVO calculated values was of the same magnitude as the calculated free energy values at contact and at any given separation distance. For two independent laboratories to draw similar quantitative conclusions regarding membrane-foulant interfacial interactions the standard error in contact angle values must be⩽2.5°, while that for the zeta potential values must be⩽7 mV. Copyright © 2014 Elsevier Inc. All rights reserved.
A femtoscopic correlation analysis tool using the Schrödinger equation (CATS)
NASA Astrophysics Data System (ADS)
Mihaylov, D. L.; Mantovani Sarti, V.; Arnold, O. W.; Fabbietti, L.; Hohlweger, B.; Mathis, A. M.
2018-05-01
We present a new analysis framework called "Correlation Analysis Tool using the Schrödinger equation" (CATS) which computes the two-particle femtoscopy correlation function C( k), with k being the relative momentum for the particle pair. Any local interaction potential and emission source function can be used as an input and the wave function is evaluated exactly. In this paper we present a study on the sensitivity of C( k) to the interaction potential for different particle pairs: p-p, p-Λ, K^-p, K^+-p, p-Ξ ^- and Λ- Λ. For the p-p Argonne v_{18} and Reid Soft-Core potentials have been tested. For the other pair systems we present results based on strong potentials obtained from effective Lagrangians such as χ EFT for p-Λ, Jülich models for K(\\bar{K})-N and Nijmegen models for Λ-Λ. For the p-Ξ^- pairs we employ the latest lattice results from the HAL QCD collaboration. Our detailed study of different interacting particle pairs as a function of the source size and different potentials shows that femtoscopic measurements can be exploited in order to constrain the final state interactions among hadrons. In particular, small collision systems of the order of 1 fm, as produced in pp collisions at the LHC, seem to provide a suitable environment for quantitative studies of this kind.
Dipole-dipole interaction in cavity QED: The weak-coupling, nondegenerate regime
NASA Astrophysics Data System (ADS)
Donaire, M.; Muñoz-Castañeda, J. M.; Nieto, L. M.
2017-10-01
We compute the energies of the interaction between two atoms placed in the middle of a perfectly reflecting planar cavity, in the weak-coupling nondegenerate regime. Both inhibition and enhancement of the interactions can be obtained by varying the size of the cavity. We derive exact expressions for the dyadic Green's function of the cavity field which mediates the interactions and apply time-dependent quantum perturbation theory in the adiabatic approximation. We provide explicit expressions for the van der Waals potentials of two polarizable atomic dipoles and the electrostatic potential of two induced dipoles. We compute the van der Waals potentials in three different scenarios: two atoms in their ground states, two atoms excited, and two dissimilar atoms with one of them excited. In addition, we calculate the phase-shift rate of the two-atom wave function in each case. The effect of the two-dimensional confinement of the electromagnetic field on the dipole-dipole interactions is analyzed. This effect depends on the atomic polarization. For dipole moments oriented parallel to the cavity plates, both the electrostatic and the van der Waals interactions are exponentially suppressed for values of the cavity width much less than the interatomic distance, whereas for values of the width close to the interatomic distance, the strength of both interactions is higher than their values in the absence of cavity. For dipole moments perpendicular to the plates, the strength of the van der Waals interaction decreases for values of the cavity width close to the interatomic distance, while it increases for values of the width much less than the interatomic distance with respect to its strength in the absence of cavity. We illustrate these effects by computing the dipole-dipole interactions between two alkali atoms in circular Rydberg states.
What are the Benefits of Interacting with Nature?
Keniger, Lucy E.; Gaston, Kevin J.; Irvine, Katherine N.; Fuller, Richard A.
2013-01-01
There is mounting empirical evidence that interacting with nature delivers measurable benefits to people. Reviews of this topic have generally focused on a specific type of benefit, been limited to a single discipline, or covered the benefits delivered from a particular type of interaction. Here we construct novel typologies of the settings, interactions and potential benefits of people-nature experiences, and use these to organise an assessment of the benefits of interacting with nature. We discover that evidence for the benefits of interacting with nature is geographically biased towards high latitudes and Western societies, potentially contributing to a focus on certain types of settings and benefits. Social scientists have been the most active researchers in this field. Contributions from ecologists are few in number, perhaps hindering the identification of key ecological features of the natural environment that deliver human benefits. Although many types of benefits have been studied, benefits to physical health, cognitive performance and psychological well-being have received much more attention than the social or spiritual benefits of interacting with nature, despite the potential for important consequences arising from the latter. The evidence for most benefits is correlational, and although there are several experimental studies, little as yet is known about the mechanisms that are important for delivering these benefits. For example, we do not know which characteristics of natural settings (e.g., biodiversity, level of disturbance, proximity, accessibility) are most important for triggering a beneficial interaction, and how these characteristics vary in importance among cultures, geographic regions and socio-economic groups. These are key directions for future research if we are to design landscapes that promote high quality interactions between people and nature in a rapidly urbanising world. PMID:23466828
What are the benefits of interacting with nature?
Keniger, Lucy E; Gaston, Kevin J; Irvine, Katherine N; Fuller, Richard A
2013-03-06
There is mounting empirical evidence that interacting with nature delivers measurable benefits to people. Reviews of this topic have generally focused on a specific type of benefit, been limited to a single discipline, or covered the benefits delivered from a particular type of interaction. Here we construct novel typologies of the settings, interactions and potential benefits of people-nature experiences, and use these to organise an assessment of the benefits of interacting with nature. We discover that evidence for the benefits of interacting with nature is geographically biased towards high latitudes and Western societies, potentially contributing to a focus on certain types of settings and benefits. Social scientists have been the most active researchers in this field. Contributions from ecologists are few in number, perhaps hindering the identification of key ecological features of the natural environment that deliver human benefits. Although many types of benefits have been studied, benefits to physical health, cognitive performance and psychological well-being have received much more attention than the social or spiritual benefits of interacting with nature, despite the potential for important consequences arising from the latter. The evidence for most benefits is correlational, and although there are several experimental studies, little as yet is known about the mechanisms that are important for delivering these benefits. For example, we do not know which characteristics of natural settings (e.g., biodiversity, level of disturbance, proximity, accessibility) are most important for triggering a beneficial interaction, and how these characteristics vary in importance among cultures, geographic regions and socio-economic groups. These are key directions for future research if we are to design landscapes that promote high quality interactions between people and nature in a rapidly urbanising world.
NetCooperate: a network-based tool for inferring host-microbe and microbe-microbe cooperation.
Levy, Roie; Carr, Rogan; Kreimer, Anat; Freilich, Shiri; Borenstein, Elhanan
2015-05-17
Host-microbe and microbe-microbe interactions are often governed by the complex exchange of metabolites. Such interactions play a key role in determining the way pathogenic and commensal species impact their host and in the assembly of complex microbial communities. Recently, several studies have demonstrated how such interactions are reflected in the organization of the metabolic networks of the interacting species, and introduced various graph theory-based methods to predict host-microbe and microbe-microbe interactions directly from network topology. Using these methods, such studies have revealed evolutionary and ecological processes that shape species interactions and community assembly, highlighting the potential of this reverse-ecology research paradigm. NetCooperate is a web-based tool and a software package for determining host-microbe and microbe-microbe cooperative potential. It specifically calculates two previously developed and validated metrics for species interaction: the Biosynthetic Support Score which quantifies the ability of a host species to supply the nutritional requirements of a parasitic or a commensal species, and the Metabolic Complementarity Index which quantifies the complementarity of a pair of microbial organisms' niches. NetCooperate takes as input a pair of metabolic networks, and returns the pairwise metrics as well as a list of potential syntrophic metabolic compounds. The Biosynthetic Support Score and Metabolic Complementarity Index provide insight into host-microbe and microbe-microbe metabolic interactions. NetCooperate determines these interaction indices from metabolic network topology, and can be used for small- or large-scale analyses. NetCooperate is provided as both a web-based tool and an open-source Python module; both are freely available online at http://elbo.gs.washington.edu/software_netcooperate.html.
NASA Astrophysics Data System (ADS)
Krems, R. V.; Buchachenko, A. A.
2005-09-01
Based on measurements of the Zeeman relaxation in a cold gas of He3 [C. I. Hancox, S. C. Doret, M. I. Hummon, L. Luo, and J. M. Doyle, Nature (London) 431, 281 (2004)], we show that the electronic interaction anisotropy between rare-earth atoms with nonzero electronic orbital angular momenta and helium is extremely small. The interaction of the rare-earth atoms with He gives rise to several adiabatic potentials with different electronic symmetries. It is demonstrated that the energy splitting between these potentials does not exceed 0.09cm-1 at interatomic distances larger than the turning point for collisions at 0.8K, including the region of the van der Waals interaction minima.
3D RISM theory with fast reciprocal-space electrostatics.
Heil, Jochen; Kast, Stefan M
2015-03-21
The calculation of electrostatic solute-solvent interactions in 3D RISM ("three-dimensional reference interaction site model") integral equation theory is recast in a form that allows for a computational treatment analogous to the "particle-mesh Ewald" formalism as used for molecular simulations. In addition, relations that connect 3D RISM correlation functions and interaction potentials with thermodynamic quantities such as the chemical potential and average solute-solvent interaction energy are reformulated in a way that calculations of expensive real-space electrostatic terms on the 3D grid are completely avoided. These methodical enhancements allow for both, a significant speedup particularly for large solute systems and a smoother convergence of predicted thermodynamic quantities with respect to box size, as illustrated for several benchmark systems.
NASA Astrophysics Data System (ADS)
Seitov, D. D.; Nekrasov, K. A.; Kupryazhkin, A. Ya.; Gupta, S. K.; Akilbekov, A. T.
2017-09-01
The interaction of xenon clusters with the collision cascades in the PuO2 crystals is investigated using the molecular dynamics simulation and the approximation of the pair interaction potentials. The potentials of interaction of Xe atoms with the surrounding particles in the crystal lattice are suggested, that are valid in the range of high collision energies. The cascades created by the recoil 235U ions formed as the plutonium α-decay product are considered, and the influence of such cascades on the structure of the xenon clusters is analyzed. It is shown, that the cascade-cluster interaction leads to release of the xenon atoms from the clusters and their subsequent re-solution in the crystal bulk.
Probing the interaction of ionic liquids with graphene using surface-enhanced Raman spectroscopy
Mahurin, Shannon Mark; Dai, Sheng; Surwade, Sumedh P.; ...
2015-12-17
We report an in situ measurement of the interaction of an imidazolium-based room temperature ionic liquid with both pure silver and a graphene-over-silver electrode under an applied electrochemical potential. At a negative applied potential, overall signal intensity increased indicating enhanced ionic liquid concentration at both silver and graphene electrodes. Vibrational modes associated with the imidazolium ring exhibited greater intensity enhancements and larger peak shifts compared with the anion indicating that the cation adsorbs with the ring and alkyl chain parallel to the electrode surface for both silver and graphene. In contrast to the silver, the surface enhanced Raman spectra ofmore » the ionic liquid near graphene showed shifts in the cation peaks even at no applied potential because of the strong π–π interaction between the ionic liquid and the graphene. Furthermore, the intensity of the graphene peak decreased in the presence of ionic liquid possibly due to the interaction between the ionic liquid and graphene. In conclusion, these results illustrate the effectiveness of surface-enhanced Raman spectroscopy to investigate electrolyte interactions with graphene at the liquid/electrode interface.« less
Universality and tails of long-range interactions in one dimension
NASA Astrophysics Data System (ADS)
Valiente, Manuel; Öhberg, Patrik
2017-07-01
Long-range interactions and, in particular, two-body potentials with power-law long-distance tails are ubiquitous in nature. For two bosons or fermions in one spatial dimension, the latter case being formally equivalent to three-dimensional s -wave scattering, we show how generic asymptotic interaction tails can be accounted for in the long-distance limit of scattering wave functions. This is made possible by introducing a generalization of the collisional phase shifts to include space dependence. We show that this distance dependence is universal, in that it does not depend on short-distance details of the interaction. The energy dependence is also universal, and is fully determined by the asymptotic tails of the two-body potential. As an important application of our findings, we describe how to eliminate finite-size effects with long-range potentials in the calculation of scattering phase shifts from exact diagonalization. We show that even with moderately small system sizes it is possible to accurately extract phase shifts that would otherwise be plagued with finite-size errors. We also consider multichannel scattering, focusing on the estimation of open channel asymptotic interaction strengths via finite-size analysis.
Electronic structure and spectra of the RbHe van der Waals system including spin orbit interaction
NASA Astrophysics Data System (ADS)
Dhiflaoui, Jamila; Bejaoui, Mohamed; Berriche, Hamid
2017-12-01
The potential energy interaction, the spectroscopic properties and dipole functions of the RbHe van der Waals dimer have been investigated. We used a one-electron pseudopotential approach and large Gaussian basis sets to represent the two atoms Rb and He. The Rb+ core and the electron-He interactions were replaced by semi-local pseudopotentials and a core-core interaction is included. Therefore, the number of active electrons of RbHe is reduced to only one electron. Consequently, the potential energy curves and dipole moments for many electronic states dissociating into Rb(5s,5p,4d,6s,6p,5d,7s)+He are performed at the SCF level. In addition, the spin-orbit coupling is included in the calculation. The Rb+He interaction, in its ground state, is taken from accurate CCSD (T) calculations and fitted to an analytical expression for a better description of the potential in all internuclear ranges. The spectroscopic properties of the RbHe electronic states are extracted. The comparison of these constants has shown a very good agreement for the ground state as well as for the lower excited states when compared with existing theoretical and experimental studies.
Rodríguez-Fragoso, Lourdes; Martínez-Arismendi, José Luis; Orozco-Bustos, Danae; Reyes-Esparza, Jorge; Torres, Eliseo; Burchiel, Scott W
2011-05-01
It has been well established that complex mixtures of phytochemicals in fruits and vegetables can be beneficial for human health. Moreover, it is becoming increasingly apparent that phytochemicals can influence the pharmacological activity of drugs by modifying their absorption characteristics through interactions with drug transporters as well as drug-metabolizing enzyme systems. Such effects are more likely to occur in the intestine and liver, where high concentrations of phytochemicals may occur. Alterations in cytochrome P450 and other enzyme activities may influence the fate of drugs subject to extensive first-pass metabolism. Although numerous studies of nutrient-drug interactions have been published and systematic reviews and meta-analyses of these studies are available, no generalizations on the effect of nutrient-drug interactions on drug bioavailability are currently available. Several publications have highlighted the unintended consequences of the combined use of nutrients and drugs. Many phytochemicals have been shown to have pharmacokinetic interactions with drugs. The present review is limited to commonly consumed fruits and vegetables with significant beneficial effects as nutrients and components in folk medicine. Here, we discuss the phytochemistry and pharmacokinetic interactions of the following fruit and vegetables: grapefruit, orange, tangerine, grapes, cranberry, pomegranate, mango, guava, black raspberry, black mulberry, apple, broccoli, cauliflower, watercress, spinach, tomato, carrot, and avocado. We conclude that our knowledge of the potential risk of nutrient-drug interactions is still limited. Therefore, efforts to elucidate potential risks resulting from food-drug interactions should be intensified in order to prevent undesired and harmful clinical consequences. © 2011 Institute of Food Technologists®
Towards universal potentials for (H2)2 and isotopic variants: post-Born-Oppenheimer contributions.
Diniz, Leonardo G; Mohallem, José R
2008-06-07
Adiabatic corrections are evaluated for the interaction of two hydrogen molecules (H(2))(2) and isotopic variants. Their contribution to the cluster formation amount up to 10% of the interaction energy. Added to the best ab initio Born-Oppenheimer isotropic potential, they correct especially its short range repulsive part. Calculations of second virial coefficients are improved in general, with an impressive agreement with experiments for gaseous D(2) in a large range of temperatures. The potentials are available in both analytical and numerical forms.
Interaction of Carbamazepine with Herbs, Dietary Supplements, and Food: A Systematic Review
Zuo, Zhong
2013-01-01
Background. Carbamazepine (CBZ) is a first-line antiepileptic drug which may be prone to drug interactions. Systematic review of herb- and food-drug interactions on CBZ is warranted to provide guidance for medical professionals when prescribing CBZ. Method. A systematic review was conducted on six English databases and four Chinese databases. Results. 196 out of 3179 articles fulfilled inclusion criteria, of which 74 articles were reviewed and 33 herbal products/dietary supplement/food interacting with CBZ were identified. No fatal or severe interactions were documented. The majority of the interactions were pharmacokinetic-based (80%). Traditional Chinese medicine accounted for most of the interactions (n = 17), followed by food (n = 10), dietary supplements (n = 3), and other herbs/botanicals (n = 3). Coadministration of 11 and 12 of the studied herbal products/dietary supplement/food significantly decreased or increased the plasma concentrations of CBZ. Regarding pharmacodynamic interaction, Xiao-yao-san, melatonin, and alcohol increased the side effects of CBZ while caffeine lowered the antiepileptic efficacy of CBZ. Conclusion. This review provides a comprehensive summary of the documented interactions between CBZ and herbal products/food/dietary supplements which assists healthcare professionals to identify potential herb-drug and food-drug interactions, thereby preventing potential adverse events and improving patients' therapeutic outcomes when prescribing CBZ. PMID:24023584
Atomistic Simulation of Displacement Cascades in Zircon
DOE Office of Scientific and Technical Information (OSTI.GOV)
Devanathan, Ram; Weber, William J.; Corrales, Louis R.
2002-05-06
Low energy displacement cascades in zircon (ZrSiO4) initiated by a Zr primary knock-on atom have been investigated by molecular dynamics simulations using a Coulombic model for long-range interactions, Buckingham potential for short-range interactions and Ziegler-Biersack potentials for close pair interactions. Displacements were found to occur mainly in the O sublattice, and O replacements by a ring mechanism were predominant. Clusters containing Si interstitials bridged by O interstitials, vacancy clusters and anti-site defects were found to occur. This Si-O-Si bridging is considerable in quenched liquid ZrSiO4.
NASA Astrophysics Data System (ADS)
Ikot, Akpan N.; Hassanabadi, Hassan; Obong, Hillary Patrick; Mehraban, H.; Yazarloo, Bentol Hoda
2015-07-01
The effects of Coulomb-like tensor (CLT), Yukawa-like tensor (YLT) and generalized tensor (GLT) interactions are investigated in the Dirac theory with Schiöberg and Manning-Rosen potentials within the framework of spin and pseudospin symmetries using the Nikiforov-Uvarov method. The bound state energy spectra and the radial wave functions have been approximately obtained in the case of spin and pseudospin symmetries. We have also reported some numerical results and figures to show the effects these tensor interactions.
Optical-model potential for electron and positron elastic scattering by atoms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Salvat, Francesc
2003-07-01
An optical-model potential for systematic calculations of elastic scattering of electrons and positrons by atoms and positive ions is proposed. The electrostatic interaction is determined from the Dirac-Hartree-Fock self-consistent atomic electron density. In the case of electron projectiles, the exchange interaction is described by means of the local-approximation of Furness and McCarthy. The correlation-polarization potential is obtained by combining the correlation potential derived from the local density approximation with a long-range polarization interaction, which is represented by means of a Buckingham potential with an empirical energy-dependent cutoff parameter. The absorption potential is obtained from the local-density approximation, using the Born-Ochkurmore » approximation and the Lindhard dielectric function to describe the binary collisions with a free-electron gas. The strength of the absorption potential is adjusted by means of an empirical parameter, which has been determined by fitting available absolute elastic differential cross-section data for noble gases and mercury. The Dirac partial-wave analysis with this optical-model potential provides a realistic description of elastic scattering of electrons and positrons with energies in the range from {approx}100 eV up to {approx}5 keV. At higher energies, correlation-polarization and absorption corrections are small and the usual static-exchange approximation is sufficiently accurate for most practical purposes.« less
NASA Astrophysics Data System (ADS)
Golovaty, Yuriy
2018-06-01
We construct a norm resolvent approximation to the family of point interactions , by Schrödinger operators with localized rank-two perturbations coupled with short range potentials. In particular, a new approximation to the -interactions is obtained.
Clinically relevant pharmacokinetic herb-drug interactions in antiretroviral therapy
USDA-ARS?s Scientific Manuscript database
For healthcare professionals, the volume of literature available on herb-drug interactions often makes it difficult to separate experimental/potential interactions from those deemed clinically relevant. There is a need for concise and conclusive information to guide pharmacotherapy in HIV/AIDS. In t...
ERIC Educational Resources Information Center
Wang, Yan; Zhang, Ming; Moon, Changjong; Hu, Qubai; Wang, Baiping; Martin, George; Sun, Zhongsheng; Wang, Hongbing
2009-01-01
FE65 is expressed predominantly in the brain and interacts with the C-terminal domain of [beta]-amyloid precursor protein (APP). We examined hippocampus-dependent memory and in vivo long-term potentiation (LTP) at the CA1 synapses with isoform-specific FE65 knockout (p97FE65[superscript -/-]) mice. When examined using the Morris water maze,…
Effective fragment potential study of the interaction of DNA bases.
Smith, Quentin A; Gordon, Mark S; Slipchenko, Lyudmila V
2011-10-20
Hydrogen-bonded and stacked structures of adenine-thymine and guanine-cytosine nucleotide base pairs, along with their methylated analogues, are examined with the ab inito based general effective fragment potential (EFP2) method. A comparison of coupled cluster with single, double, and perturbative triple (CCSD(T)) energies is presented, along with an EFP2 energy decomposition to illustrate the components of the interaction energy.
Capturing the Interaction Potential of Amyloidogenic Proteins
DOE Office of Scientific and Technical Information (OSTI.GOV)
Javid, Nadeem; Vogtt, Karsten; Winter, Roland
2007-07-13
Experimentally derived static structure factors obtained for the aggregation-prone protein insulin were analyzed with a statistical mechanical model based on the Derjaguin-Landau-Verwey-Overbeek potential. The data reveal that the protein self-assembles into equilibrium clusters already at low concentrations. Furthermore, striking differences regarding interaction forces between aggregation-prone proteins such as insulin in the preaggregated regime and natively stable globular proteins are found.
Systematic analysis of inelastic α scattering off self-conjugate A =4 n nuclei
NASA Astrophysics Data System (ADS)
Adachi, S.; Kawabata, T.; Minomo, K.; Kadoya, T.; Yokota, N.; Akimune, H.; Baba, T.; Fujimura, H.; Fujiwara, M.; Funaki, Y.; Furuno, T.; Hashimoto, T.; Hatanaka, K.; Inaba, K.; Ishii, Y.; Itoh, M.; Iwamoto, C.; Kawase, K.; Maeda, Y.; Matsubara, H.; Matsuda, Y.; Matsuno, H.; Morimoto, T.; Morita, H.; Murata, M.; Nanamura, T.; Ou, I.; Sakaguchi, S.; Sasamoto, Y.; Sawada, R.; Shimizu, Y.; Suda, K.; Tamii, A.; Tameshige, Y.; Tsumura, M.; Uchida, M.; Uesaka, T.; Yoshida, H. P.; Yoshida, S.
2018-01-01
We systematically measured the differential cross sections of inelastic α scattering off self-conjugate A =4 n nuclei at two incident energies Eα=130 MeV and 386 MeV at Research Center for Nuclear Physics, Osaka University. The measured cross sections were analyzed by the distorted-wave Born-approximation (DWBA) calculation using the single-folding potentials, which are obtained by folding macroscopic transition densities with the phenomenological α N interaction. The DWBA calculation with the density-dependent α N interaction systematically overestimates the cross sections for the Δ L =0 transitions. However, the DWBA calculation using the density-independent α N interaction reasonably well describes all the transitions with Δ L =0 -4. We examined uncertainties in the present DWBA calculation stemming from the macroscopic transition densities, distorting potentials, phenomenological α N interaction, and coupled channel effects in 12C. It was found that the DWBA calculation is not sensitive to details of the transition densities nor the distorting potentials, and the phenomenological density-independent α N interaction gives reasonable results. The coupled-channel effects are negligibly small for the 21+ and 31- states in 12C, but not for the 02+ state. However, the DWBA calculation using the density-independent interaction at Eα=386 MeV is still reasonable even for the 02+ state. We concluded that the macroscopic DWBA calculations using the density-independent interaction are reliably applicable to the analysis of inelastic α scattering at Eα˜100 MeV /u .
Prevalence and typology of potential drug interactions occurring in primary care patients.
Lopez-Picazo, Julio J; Ruiz, Juan C; Sanchez, Jose F; Ariza, Angeles; Aguilera, Belen; Lazaro, Dolores; Sanz, Gonzalo R
2010-06-01
To investigate the prevalence and types of potential drug interactions in primary care patients to detect risky prescriptions as an essential condition to design intervention policies leading to an improvement in patient safety. Cross-sectional descriptive study. Two areas in Spain comprising 715,661 inhabitants. 430,525 subjects with electronic medical records and assigned to a family doctor regularly updating them. On a random day, 29.4% of the population was taking medication. Of these, 73.9% were at risk of suffering interactions, and these were found in 20.6% of them. The amount of interactions was higher among people with chronic conditions, the elderly, females and polymedicated patients. From the total of interactions, 55.1% belonged to the highest clinical relevance 'A' level, and 28.3% should have been avoided. The active ingredients primarily involved were hydrochlorothiazide and ibuprofen and, when focusing on those that should be avoided, omeprazole and acenocoumarol. The most frequent 'A' interaction that should be avoided was between non-conjugated excreted benzodiazepines and proton-pump inhibitors, followed by some NSAIDs and diuretics. 1 in 20 Spanish citizens is currently undergoing a potential drug interaction, including a high rate of clinically relevant ones that should be avoided. These results confirm the existence of a serious safety issue that should be approached and where all parties involved (physicians, health services, medical societies and patients) must do our bit to improve. Health services should foster the implementation of prescription alert systems linked with electronic medical records including clinical data.
Potential effect of cationic liposomes on interactions with oral bacterial cells and biofilms.
Sugano, Marika; Morisaki, Hirobumi; Negishi, Yoichi; Endo-Takahashi, Yoko; Kuwata, Hirotaka; Miyazaki, Takashi; Yamamoto, Matsuo
2016-01-01
Although oral infectious diseases have been attributed to bacteria, drug treatments remain ineffective because bacteria and their products exist as biofilms. Cationic liposomes have been suggested to electrostatically interact with the negative charge on the bacterial surface, thereby improving the effects of conventional drug therapies. However, the electrostatic interaction between oral bacteria and cationic liposomes has not yet been examined in detail. The aim of the present study was to examine the behavior of cationic liposomes and Streptococcus mutans in planktonic cells and biofilms. Liposomes with or without cationic lipid were prepared using a reverse-phase evaporation method. The zeta potentials of conventional liposomes (without cationic lipid) and cationic liposomes were -13 and 8 mV, respectively, and both had a mean particle size of approximately 180 nm. We first assessed the interaction between liposomes and planktonic bacterial cells with a flow cytometer. We then used a surface plasmon resonance method to examine the binding of liposomes to biofilms. We confirmed the binding behavior of liposomes with biofilms using confocal laser scanning microscopy. The interactions between cationic liposomes and S. mutans cells and biofilms were stronger than those of conventional liposomes. Microscopic observations revealed that many cationic liposomes interacted with the bacterial mass and penetrated the deep layers of biofilms. In this study, we demonstrated that cationic liposomes had higher affinity not only to oral bacterial cells, but also biofilms than conventional liposomes. This electrostatic interaction may be useful as a potential drug delivery system to biofilms.
Virus-Bacteria Interactions: Implications and Potential for the Applied and Agricultural Sciences.
Moore, Matthew D; Jaykus, Lee-Ann
2018-02-02
Eukaryotic virus-bacteria interactions have recently become an emerging topic of study due to multiple significant examples related to human pathogens of clinical interest. However, such omnipresent and likely important interactions for viruses and bacteria relevant to the applied and agricultural sciences have not been reviewed or compiled. The fundamental basis of this review is that these interactions have importance and deserve more investigation, as numerous potential consequences and applications arising from their discovery are relevant to the applied sciences. The purpose of this review is to highlight and summarize eukaryotic virus-bacteria findings in the food/water, horticultural, and animal sciences. In many cases in the agricultural sciences, mechanistic understandings of the effects of virus-bacteria interactions remain unstudied, and many studies solely focus on co-infections of bacterial and viral pathogens. Given recent findings relative to human viral pathogens, further research related to virus-bacteria interactions would likely result in numerous discoveries and beneficial applications.
Drug interactions with the dietary fiber Plantago ovata husk.
Fernandez, Nelida; Lopez, Cristina; Díez, Raquel; Garcia, Juan J; Diez, Maria Jose; Sahagun, Ana; Sierra, Matilde
2012-11-01
Plantago ovata husk is a viscous water-soluble fiber obtained by milling the seed of Plantago ovata. The increased use of this compound for the treatment of diseases makes it necessary to know of its potential drug interactions. The present paper reviews the literature concerning interactions between drugs and the dietary fiber Plantago ovata husk. All publications which might describe interactions between the dietetic fiber Plantago ovata husk and other drugs were identified by searches using databases such as MEDLINE or EMBASE. Drug interactions have been the subject of numerous studies, but few of them have been carried out with dietary fiber and the results obtained have often been variable. The incidence and importance of interactions between fiber and drugs has increased due to a worldwide rise in the use of dietary fiber. Plantago ovata husk has the potential for producing both benefits and risks with both desirable and undesirable effects when coadministered with drugs. More clinical studies are justifiably needed to improve treatments and to better evaluate patient safety.
A smoothed particle hydrodynamics framework for modelling multiphase interactions at meso-scale
NASA Astrophysics Data System (ADS)
Li, Ling; Shen, Luming; Nguyen, Giang D.; El-Zein, Abbas; Maggi, Federico
2018-01-01
A smoothed particle hydrodynamics (SPH) framework is developed for modelling multiphase interactions at meso-scale, including the liquid-solid interaction induced deformation of the solid phase. With an inter-particle force formulation that mimics the inter-atomic force in molecular dynamics, the proposed framework includes the long-range attractions between particles, and more importantly, the short-range repulsive forces to avoid particle clustering and instability problems. Three-dimensional numerical studies have been conducted to demonstrate the capabilities of the proposed framework to quantitatively replicate the surface tension of water, to model the interactions between immiscible liquids and solid, and more importantly, to simultaneously model the deformation of solid and liquid induced by the multiphase interaction. By varying inter-particle potential magnitude, the proposed SPH framework has successfully simulated various wetting properties ranging from hydrophobic to hydrophilic surfaces. The simulation results demonstrate the potential of the proposed framework to genuinely study complex multiphase interactions in wet granular media.
Novak, Philipp H; Ekins-Daukes, Suzie; Simpson, Colin R; Milne, Robert M; Helms, Peter; McLay, James S
2005-01-01
Aims To investigate the extent of acute coprescribing in primary care to children on chronic antiepileptic therapy, which could give rise to potentially harmful drug–drug interactions. Design Acute coprescribing to children on chronic antiepileptic drug therapy in primary care was assessed in 178 324 children aged 0–17 years for the year 1 November 1999 to 31 October 2000. Computerized prescribing data were retrieved from 161 representative general practices in Scotland. Setting One hundred and sixty-one general practices throughout Scotland. Results During the study year 723 (0.41%) children chronically prescribed antiepileptic therapy were identified. Fourteen antiepileptic agents were prescribed, with carbamazepine, sodium valproate and lamotrigine accounting for 80% of the total. During the year children on chronic antiepileptic therapy were prescribed 4895 acute coprescriptions for 269 different medicines. The average number of acute coprescriptions for non-epileptic drug therapy were eight, 11, six, and six for the 0–1, 2–4, 5–11, and 12–17-year-olds, respectively. Of these acute coprescriptions 72 (1.5%) prescribed to 22 (3.0%) children were identified as a potential source of clinically serious interactions. The age-adjusted prevalence rates for potentially serious coprescribing were 86, 26, 22, and 33/1000 children chronically prescribed antiepileptic therapy in the 0–1, 2–4, 5–11, and 12–17-year-old age groups, respectively. The drugs most commonly coprescribed which could give rise to such interactions were antacids, erythromycin, ciprofloxacin, theophylline and the low-dose oral contraceptive. For 10 (45.5%0 of the 20 children identified at risk of a potentially clinically serious adverse drug interaction, the acute coprescription was prescribed off label because of age or specific contraindication/warning. Conclusions In primary care, 3.0% of children on chronic antiepileptic therapy are coprescribed therapeutic agents, which could give rise to clinically serious drug–drug interactions. PMID:15948936
An integrated model for detecting significant chromatin interactions from high-resolution Hi-C data
Carty, Mark; Zamparo, Lee; Sahin, Merve; González, Alvaro; Pelossof, Raphael; Elemento, Olivier; Leslie, Christina S.
2017-01-01
Here we present HiC-DC, a principled method to estimate the statistical significance (P values) of chromatin interactions from Hi-C experiments. HiC-DC uses hurdle negative binomial regression account for systematic sources of variation in Hi-C read counts—for example, distance-dependent random polymer ligation and GC content and mappability bias—and model zero inflation and overdispersion. Applied to high-resolution Hi-C data in a lymphoblastoid cell line, HiC-DC detects significant interactions at the sub-topologically associating domain level, identifying potential structural and regulatory interactions supported by CTCF binding sites, DNase accessibility, and/or active histone marks. CTCF-associated interactions are most strongly enriched in the middle genomic distance range (∼700 kb–1.5 Mb), while interactions involving actively marked DNase accessible elements are enriched both at short (<500 kb) and longer (>1.5 Mb) genomic distances. There is a striking enrichment of longer-range interactions connecting replication-dependent histone genes on chromosome 6, potentially representing the chromatin architecture at the histone locus body. PMID:28513628
Mech, Agnieszka; Gajek, Zbigniew; Karbowiak, Mirosław; Rudowicz, Czesław
2008-09-24
Optical absorption measurements of Nd(3+) ions in single crystals of [Nd(hfa)(4)(H(2)O)](N(C(2)H(5))(4)) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 2(1)/n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd(3+) (4f(3)) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C(1) symmetry at the Nd(3+) ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation B(kq), admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm(-1). Our approach also allows prediction of the energy levels of Nd(3+) ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low (triclinic) symmetry sites.
NASA Astrophysics Data System (ADS)
Mech, Agnieszka; Gajek, Zbigniew; Karbowiak, Mirosław; Rudowicz, Czesław
2008-09-01
Optical absorption measurements of Nd3+ ions in single crystals of [Nd(hfa)4(H2O)](N(C2H5)4) (hfa = hexafluoroacetyloacetonate), denoted Nd(hfa) for short, have been carried out at 4.2 and 298 K. This compound crystallizes in the monoclinic system (space group P 21/n). Each Nd ion is coordinated to eight oxygen atoms that originate from the hexafluoroacetylacetonate ligands and one oxygen atom from the water molecule. A total of 85 experimental crystal-field (CF) energy levels arising from the Nd3+ (4f3) electronic configuration were identified in the optical spectra and assigned. A three-step CF analysis was carried out in terms of a parametric Hamiltonian for the actual C1 symmetry at the Nd3+ ion sites. In the first step, a total of 27 CF parameters (CFPs) in the Wybourne notation Bkq, admissible by group theory, were determined in a preliminary fitting constrained by the angular overlap model predictions. The resulting CFP set was reduced to 24 specific independent CFPs using appropriate standardization transformations. Optimizations of the second-rank CFPs and extended scanning of the parameter space were employed in the second step to improve reliability of the CFP sets, which is rather a difficult task in the case of no site symmetry. Finally, seven free-ion parameters and 24 CFPs were freely varied, yielding an rms deviation between the calculated energy levels and the 85 observed ones of 11.1 cm-1. Our approach also allows prediction of the energy levels of Nd3+ ions that are hidden in the spectral range overlapping with strong ligand absorption, which is essential for understanding the inter-ionic energy transfer. The orientation of the axis system associated with the fitted CF parameters w.r.t. the crystallographic axes is established. The procedure adopted in our calculations may be considered as a general framework for analysis of CF levels of lanthanide ions at low (triclinic) symmetry sites.
Shen, Zhijie; Wang, Yingjie; Guo, Wei; Yao, Yili; Wang, Xiaolong
2016-01-01
Many researches have proved functions of anti-oxidation, endothelial protection and pro-angiogenesis efficiency of Shexiang Baoxin Pill (SBP). This study aims to investigate potential for metabolism-based interaction on CYP450s and transporter based interaction on OATP1B1, BRCP and MDR1. Human primary hepatocytes were used in this study. Probe substrates of cytochrome P450 enzymes were incubated in human liver microsomes (HLMs) with or without SBP and IC50 values were estimated. Inhibitive potential of SBP on activities of CYP1A2, 2B6, 2C8, 2C9, 2C19, 2D6 and 3A4 was evaluated. Inducible potential of SBP on activities of CYP1A2, 2B6 and 3A4 was accessed. Inhibitive potential of SBP on human OATP1B1 was evaluated using cell-based assay. Inhibitive potential of SBP on human MDR1 and BCRP was also evaluated using vesicles assay. MDR1 and BCRP vesicle kit were used to determine ATP dependent uptake activity when incubated with SBP. SBP was a competitive inhibitor of CYP2B6, 2C19, while neither inhibitory nor inductive potentials toward other CYP450s were detected. No significant MDR1 inhibitory potential was estimated, while only high concentration of SBP (500 μg/ml) could inhibit activity of BCRP. Probe substrates Estradiol-17 β-glucuronide was incubated in HEK293-OATP1B1 and HEK293-MOCK cell system with different concentration of SBP and estimated IC50 was 179 μg/mL, which demonstrated a moderate inhibition potential against OATP1B1. In conclusion, outcome of this study suggests that SBP plays an important role in inhibition of CYP450 isozymes (including CYP2B6 and 2C9) and transporter OATP1B1. Therefore, precautions should be taken when using SBP for CYP and OATP-related herb-drug interactions. PMID:28078025
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hormain, Laureline; Monnerville, Maurice, E-mail: maurice.monnerville@univ-lille1.fr; Toubin, Céline
The chlorine/water interface is of crucial importance in the context of atmospheric chemistry. Modeling the structure and dynamics at this interface requires an accurate description of the interaction potential energy surfaces. We propose here an analytical intermolecular potential that reproduces the interaction between the Cl{sub 2} molecule and a water molecule. Our functional form is fitted to a set of high level ab initio data using the coupled-cluster single double (triple)/aug-cc-p-VTZ level of electronic structure theory for the Cl{sub 2} − H{sub 2}O complex. The potential fitted to reproduce the three minima structures of 1:1 complex is validated by themore » comparison of ab initio results of Cl{sub 2} interacting with an increasing number of water molecules. Finally, the model potential is used to study the physisorption of Cl{sub 2} on a perfectly ordered hexagonal ice slab. The calculated adsorption energy, in the range 0.27 eV, shows a good agreement with previous experimental results.« less
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry; Chu, Shih-I.
2012-06-01
We present a self-interaction-free (SIC) time-dependent density-functional theory (TDDFT) for the treatment of double ionization processes of many-electron systems. The method is based on the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed 3D calculations of double ionization of He and Be atoms by strong near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double ionization process. We found that proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the spin particle numbers (SPN) only. The results for the intensity-dependent probabilities of single and double ionization are presented and reproduce the famous ``knee'' structure.
Development of MCAERO wing design panel method with interactive graphics module
NASA Technical Reports Server (NTRS)
Hawk, J. D.; Bristow, D. R.
1984-01-01
A reliable and efficient iterative method has been developed for designing wing section contours corresponding to a prescribed subcritical pressure distribution. The design process is initialized by using MCAERO (MCAIR 3-D Subsonic Potential Flow Analysis Code) to analyze a baseline configuration. A second program DMCAERO is then used to calculate a matrix containing the partial derivative of potential at each control point with respect to each unknown geometry parameter by applying a first-order expansion to the baseline equations in MCAERO. This matrix is calculated only once but is used in each iteration cycle to calculate the geometry perturbation and to analyze the perturbed geometry. The potential on the new geometry is calculated by linear extrapolation from the baseline solution. This extrapolated potential is converted to velocity by numerical differentiation, and velocity is converted to pressure by using Bernoulli's equation. There is an interactive graphics option which allows the user to graphically display the results of the design process and to interactively change either the geometry or the prescribed pressure distribution.
NASA Astrophysics Data System (ADS)
Elcoro, Luis; Etxebarria, Jesús
2011-01-01
The requirement of rotational invariance for lattice potential energies is investigated. Starting from this condition, it is shown that the Cauchy relations for the elastic constants are fulfilled if the lattice potential is built from pair interactions or when the first-neighbour approximation is adopted. This is seldom recognized in widely used solid-state textbooks. Frequently, pair interaction is even considered to be the most general situation. In addition, it is shown that the demand of rotational invariance in an infinite crystal leads to inconsistencies in the symmetry of the elastic tensor. However, for finite crystals, no problems arise, and the Huang conditions are deduced using exclusively a microscopic approach for the elasticity theory, without making any reference to macroscopic parameters. This work may be useful in both undergraduate and graduate level courses to point out the crudeness of the pair-potential interaction and to explore the limits of the infinite-crystal approximation.
Isolation of Coherent Synchrotron Emission During Relativistic Laser Plasma Interactions
NASA Astrophysics Data System (ADS)
Dromey, B.; Rykovanov, S. G.; Lewis, C. L. S.; Zepf, M.
Coherent Synchrotron Emission (CSE) from relativistic laser plasmas (Pukhov et al., Plas Phys Control Fusion 52:124039, 2010; Dromey et al., Nat Phys 8:804-808, 2012; Dromey et al., New J Phys 15:015025, 2013) has recently been identified as a unique platform for the generation of coherent extreme ultraviolet (XUV) and X-Ray radiation with clear potential for bright attosecond pulse production. Exploiting this potential requires careful selection of interaction geometry, spectral wavelength range and target characteristics to allow the generation of high fidelity single attosecond pulses. In the laboratory the first step on this road is to study the individual mechanisms driving the emission of coherent extreme ultraviolet and X-Ray radiation during laser solid interactions in isolation. Here we show how interactions can be tailored to permit the unambiguous observation of coherent synchrotron emission (CSE) and the implications of this geometry for the resulting harmonic spectrum over the duration of the interaction.
Metaphors to Drive By: Exploring New Ways to Guide Human-Robot Interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
David J. Bruemmer; David I. Gertman; Curtis W. Nielsen
2007-08-01
Autonomous behaviors created by the research and development community are not being extensively utilized within energy, defense, security, or industrial contexts. This paper provides evidence that the interaction methods used alongside these behaviors may not provide a mental model that can be easily adopted or used by operators. Although autonomy has the potential to reduce overall workload, the use of robot behaviors often increased the complexity of the underlying interaction metaphor. This paper reports our development of new metaphors that support increased robot complexity without passing the complexity of the interaction onto the operator. Furthermore, we illustrate how recognition ofmore » problems in human-robot interactions can drive the creation of new metaphors for design and how human factors lessons in usability, human performance, and our social contract with technology have the potential for enormous payoff in terms of establishing effective, user-friendly robot systems when appropriate metaphors are used.« less
International Educational Interactions and Students' Critical Consciousness: A Pilot Study.
Aldrich, Rebecca M; Grajo, Lenin C
Online technologies facilitate connections between students around the world, but their impact on occupational science and occupational therapy students' critical consciousness about culture is underexplored. In this article we present research on five groups of occupational science and occupational therapy students across two cohorts at one Midwestern university. We used a pretest-posttest group design and the Multicultural Experiences Questionnaire to investigate the potential influence of students' exposure to international educational interactions on their multicultural experiences and desires. Of 157 students surveyed, those who experienced the greatest number of international educational interactions demonstrated statistically significant increases in their desire to become acquainted with other people of different backgrounds and to explore their own prejudices and biases. Given the transformative potential of international educational interactions, future research must assess the ways in which such interactions affect critical cultural consciousness apart from other educational content and design. Copyright © 2017 by the American Occupational Therapy Association, Inc.
Wang, Yaping; Zhang, Guowen; Wang, Langhong
2015-01-14
Dimethyl phthalate (DMP) is widely used as a plasticizer in industrial processes and has been reported to possess potential toxicity to the human body. In this study, the interaction between DMP and trypsin in vitro was investigated. The results of fluorescence, UV–vis, circular dichroism, and Fourier transform infrared spectra along with cyclic voltammetric measurements indicated that the remarkable fluorescence quenching and conformational changes of trypsin resulted from the formation of a DMP–trypsin complex, which was driven mainly by hydrophobic interactions. The molecular docking and trypsin activity assay showed that DMP primarily interacted with the catalytic triad of trypsin and led to the inhibition of trypsin activity. The dimensions of the individual trypsin molecules were found to become larger after binding with DMP by atomic force microscopy imaging. This study offers a comprehensive picture of DMP–trypsin interaction, which is expected to provide insights into the toxicological effect of DMP.
Thermodynamic investigation of the binding of dissymmetric pyrenyl-gemini surfactants to DNA.
Wettig, Shawn D; Deubry, Rubena; Akbar, Javed; Kaur, Tranum; Wang, Haitang; Sheinin, Tatiana; Joseph, Jamie W; Slavcev, Roderick A
2010-05-14
Gemini surfactants have demonstrated significant potential for use in constructing non-viral transfection vectors for the delivery of genes into cells to induce protein expression. Previously, two asymmetric gemini surfactants containing pyrenyl groups in one of the alkyl tails of the surfactants were synthesized as fluorescence probes for use in mechanistic studies of the transfection process. Here we present the results of a thermodynamic investigation of the binding interaction(s) between the pyrenyl-modified surfactants and DNA. The thermodynamics of the interactions have been examined using isothermal titration calorimetry, light scattering, zeta potential, and circular dichroism measurements. Distinct differences are observed between the interaction of 12-s-12 vs. the pyrene modified py-s-12 surfactants with DNA; an intercalated binding is found for the py-s-12 surfactants that disrupts the typical interactions observed between DNA and gemini surfactants.
Hazard Interactions and Interaction Networks (Cascades) within Multi-Hazard Methodologies
NASA Astrophysics Data System (ADS)
Gill, Joel; Malamud, Bruce D.
2016-04-01
Here we combine research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between 'multi-layer single hazard' approaches and 'multi-hazard' approaches that integrate such interactions. This synthesis suggests that ignoring interactions could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. We proceed to present an enhanced multi-hazard framework, through the following steps: (i) describe and define three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment; (ii) outline three types of interaction relationship (triggering, increased probability, and catalysis/impedance); and (iii) assess the importance of networks of interactions (cascades) through case-study examples (based on literature, field observations and semi-structured interviews). We further propose visualisation frameworks to represent these networks of interactions. Our approach reinforces the importance of integrating interactions between natural hazards, anthropogenic processes and technological hazards/disasters into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential, and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
Kramer, Christian; Gedeck, Peter; Meuwly, Markus
2013-03-12
Distributed atomic multipole (MTP) moments promise significant improvements over point charges (PCs) in molecular force fields, as they (a) more realistically reproduce the ab initio electrostatic potential (ESP) and (b) allow to capture anisotropic atomic properties such as lone pairs, conjugated systems, and σ holes. The present work focuses on the question of whether multipolar electrostatics instead of PCs in standard force fields leads to quantitative improvements over point charges in reproducing intermolecular interactions. To this end, the interaction energies of two model systems, benzonitrile (BZN) and formamide (FAM) homodimers, are characterized over a wide range of dimer conformations. It is found that although with MTPs the monomer ab initio ESP can be captured better by about an order of magnitude compared to point charges (PCs), this does not directly translate into better describing ab initio interaction energies compared to PCs. Neither ESP-fitted MTPs nor refitted Lennard-Jones (LJ) parameters alone demonstrate a clear superiority of atomic MTPs. We show that only if both electrostatic and LJ parameters are jointly optimized in standard, nonpolarizable force fields, atomic are MTPs clearly beneficial for reproducing ab initio dimerization energies. After an exhaustive exponent scan, we find that for both BZN and FAM, atomic MTPs and a 9-6 LJ potential can reproduce ab initio interaction energies with ∼30% (RMSD 0.13 vs 0.18 kcal/mol) less error than point charges (PCs) and a 12-6 LJ potential. We also find that the improvement due to using MTPs with a 9-6 LJ potential is considerably more pronounced than with a 12-6 LJ potential (≈ 10%; RMSD 0.19 versus 0.21 kcal/mol).
Thermal motion in proteins: Large effects on the time-averaged interaction energies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goethe, Martin, E-mail: martingoethe@ub.edu; Rubi, J. Miguel; Fita, Ignacio
As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothingmore » effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.« less
Thermal motion in proteins: Large effects on the time-averaged interaction energies
NASA Astrophysics Data System (ADS)
Goethe, Martin; Fita, Ignacio; Rubi, J. Miguel
2016-03-01
As a consequence of thermal motion, inter-atomic distances in proteins fluctuate strongly around their average values, and hence, also interaction energies (i.e. the pair-potentials evaluated at the fluctuating distances) are not constant in time but exhibit pronounced fluctuations. These fluctuations cause that time-averaged interaction energies do generally not coincide with the energy values obtained by evaluating the pair-potentials at the average distances. More precisely, time-averaged interaction energies behave typically smoother in terms of the average distance than the corresponding pair-potentials. This averaging effect is referred to as the thermal smoothing effect. Here, we estimate the strength of the thermal smoothing effect on the Lennard-Jones pair-potential for globular proteins at ambient conditions using x-ray diffraction and simulation data of a representative set of proteins. For specific atom species, we find a significant smoothing effect where the time-averaged interaction energy of a single atom pair can differ by various tens of cal/mol from the Lennard-Jones potential at the average distance. Importantly, we observe a dependency of the effect on the local environment of the involved atoms. The effect is typically weaker for bulky backbone atoms in beta sheets than for side-chain atoms belonging to other secondary structure on the surface of the protein. The results of this work have important practical implications for protein software relying on free energy expressions. We show that the accuracy of free energy expressions can largely be increased by introducing environment specific Lennard-Jones parameters accounting for the fact that the typical thermal motion of protein atoms depends strongly on their local environment.
Carbene-aerogen bonds: an ab initio study
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.; Sabouri, Ayda
2017-04-01
Through the use of ab initio calculations, the possibility of formation of σ-hole interaction between ZO3 (Z = Ar, Kr and Xe) and carbene species is investigated. Since singlet carbenes show a negative electrostatic potential on their divalent carbon atom, they can favourably interact with the positive electrostatic potential generated by the σ-hole of Z atom of ZO3. The characteristic of this interaction, termed as 'carbene-aerogen' bond, is analysed in terms of geometric, interaction energies and electronic features. The energy decomposition analysis indicates that for all complexes analysed here, the electrostatic energy is more negative than the polarisation or dispersion energy term. According to the electron density analysis, some partial covalent character can be ascribed to XeṡṡṡC interactions. In addition, the carbene-aerogen bond exhibits cooperative effects with the HṡṡṡO hydrogen-bonding interaction in ternary complexes where both interactions coexist. For a given carbene, the amount of these cooperative effects increases with the size of the Z atom. The results obtained in this work may be helpful for the extension and future application of σ-hole intermolecular interactions as well as coordination chemistry.
Let Social Interaction Flourish
ERIC Educational Resources Information Center
Case, Anny Fritzen
2016-01-01
The author describes lessons learned--through a high school project that grouped English language learners with native speakers to create a video--about ways to foster respectful, productive interaction among English learners and peers who are native speakers. The potential benefits of students who are just learning English interacting socially…
Fostering Organizational Sustainability through Dialogical Interaction
ERIC Educational Resources Information Center
Wals, Arjen E. J.; Schwarzin, Lisa
2012-01-01
Purpose: This paper aims to introduce and investigate dialogic interaction as a key element of achieving a transition towards sustainability in people, organizations and society as a whole. Furthermore "sustainability competence" as a potential outcome of such interaction is to be introduced, referring to the capacities and qualities…
The parity-violating asymmetry in the 3He(n,p)3H reaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
M. Viviani, R. Schiavilla, L. Girlanda, A. Kievsky, L.E. Marcucci
2010-10-01
The longitudinal asymmetry induced by parity-violating (PV) components in the nucleon-nucleon potential is studied in the charge-exchange reaction 3He(n,p)3H at vanishing incident neutron energies. An expression for the PV observable is derived in terms of T-matrix elements for transitions from the {2S+1}L_J=1S_0 and 3S_1 states in the incoming n-3He channel to states with J=0 and 1 in the outgoing p-3H channel. The T-matrix elements involving PV transitions are obtained in first-order perturbation theory in the hadronic weak-interaction potential, while those connecting states of the same parity are derived from solutions of the strong-interaction Hamiltonian with the hyperspherical-harmonics method. The coupled-channelmore » nature of the scattering problem is fully accounted for. Results are obtained corresponding to realistic or chiral two- and three-nucleon strong-interaction potentials in combination with either the DDH or pionless EFT model for the weak-interaction potential. The asymmetries, predicted with PV pion and vector-meson coupling constants corresponding (essentially) to the DDH "best values" set, range from -9.44 to -2.48 in units of 10^{-8}, depending on the input strong-interaction Hamiltonian. This large model dependence is a consequence of cancellations between long-range (pion) and short-range (vector-meson) contributions, and is of course sensitive to the assumed values for the PV coupling constants.« less
Abdel-Aziz, Mahmoud I; Ali, Mostafa A Sayed; Hassan, Ayman K M; Elfaham, Tahani H
2016-01-01
The objective of this study was to investigate the effect of polypharmacy and high doses of amoxicillin/clavulanate on warfarin response in hospitalized patients. This was a prospective cross-sectional observational study on 120 patients from July 2013 to January 2014. Potentially interacting drugs were classified according to their tendency of increasing international normalized ratio (INR) or bleeding risk. The 87.5% of patients prescribed high-dose amoxicillin/clavulanate (10-12 g daily) compared with 28.9% of patients prescribed a normal dose (up to 3.6 g daily) had INR values ≥ 4 during the hospital stay (P ≤ .001). Increased number of potentially interacting drugs that are known to increase INR was a significant predictor of having INR values ≥ 4 (OR, 2.5; 95%CI, 1.3-4.7), and increased number of potentially interacting drugs that are known to increase bleeding risk was a significant predictor of experiencing bleeding episodes (OR, 3.1; 95%CI, 1.3-7.3). High doses of amoxicillin/clavulanate were associated with a higher risk of over-anticoagulation when combined with warfarin than were normal doses. Increased risk of having INR ≥ 4 and bleeding events was associated with increased numbers of potentially interacting drugs prescribed, indicating that polypharmacy is a problem of concern. Frequent monitoring of warfarin therapy along with patients' medications is necessary to avoid complications. © 2015, The American College of Clinical Pharmacology.
Gabardi, Steven; Carter, Danielle; Martin, Spencer; Roberts, Keri
2011-03-01
To describe the pharmacology and safety of oral over-the-counter cough suppressants and expectorants and to present recommendations for the use of these agents in solid-organ transplant recipients based on the potential for adverse drug reactions or drug-disease interactions. Data from journal articles and other sources describing the pharmacology and safety of over-the-counter cough suppressants and expectorants, drug-drug interactions with immunosuppressive agents, and drug-disease state interactions are reviewed. Potential and documented drug-drug interactions between immunosuppressive agents and over-the-counter cough medications guaifenesin, dextromethorphan, diphenhydramine, and codeine were evaluated on the basis of pharmacokinetic and pharmacodynamic principles. Interactions between these cough medications and the physiological changes in the body following transplantation also were examined. Diphenhydramine requires additional monitoring when used to treat cough in transplant recipients owing to its anticholinergic properties and the potential for interactions with cyclosporine. Dextromethorphan can be used in most transplant recipients, although greater caution should be exercised if the patient has undergone liver transplant or has liver impairment. Guaifenesin can be used in transplant recipients but should be used with caution in patients receiving kidney or lung transplants and in patients with renal impairment. Codeine combined with guaifenesin is another option for cough and can be used in most transplant patients although those with reduced renal function should be monitored carefully for adverse events.
Pharmacokinetic Interactions between Drugs and Botanical Dietary Supplements
Sprouse, Alyssa A.
2016-01-01
The use of botanical dietary supplements has grown steadily over the last 20 years despite incomplete information regarding active constituents, mechanisms of action, efficacy, and safety. An important but underinvestigated safety concern is the potential for popular botanical dietary supplements to interfere with the absorption, transport, and/or metabolism of pharmaceutical agents. Clinical trials of drug–botanical interactions are the gold standard and are usually carried out only when indicated by unexpected consumer side effects or, preferably, by predictive preclinical studies. For example, phase 1 clinical trials have confirmed preclinical studies and clinical case reports that St. John’s wort (Hypericum perforatum) induces CYP3A4/CYP3A5. However, clinical studies of most botanicals that were predicted to interact with drugs have shown no clinically significant effects. For example, clinical trials did not substantiate preclinical predictions that milk thistle (Silybum marianum) would inhibit CYP1A2, CYP2C9, CYP2D6, CYP2E1, and/or CYP3A4. Here, we highlight discrepancies between preclinical and clinical data concerning drug–botanical interactions and critically evaluate why some preclinical models perform better than others in predicting the potential for drug–botanical interactions. Gaps in knowledge are also highlighted for the potential of some popular botanical dietary supplements to interact with therapeutic agents with respect to absorption, transport, and metabolism. PMID:26438626
Pharmacokinetic Interactions between Drugs and Botanical Dietary Supplements.
Sprouse, Alyssa A; van Breemen, Richard B
2016-02-01
The use of botanical dietary supplements has grown steadily over the last 20 years despite incomplete information regarding active constituents, mechanisms of action, efficacy, and safety. An important but underinvestigated safety concern is the potential for popular botanical dietary supplements to interfere with the absorption, transport, and/or metabolism of pharmaceutical agents. Clinical trials of drug-botanical interactions are the gold standard and are usually carried out only when indicated by unexpected consumer side effects or, preferably, by predictive preclinical studies. For example, phase 1 clinical trials have confirmed preclinical studies and clinical case reports that St. John's wort (Hypericum perforatum) induces CYP3A4/CYP3A5. However, clinical studies of most botanicals that were predicted to interact with drugs have shown no clinically significant effects. For example, clinical trials did not substantiate preclinical predictions that milk thistle (Silybum marianum) would inhibit CYP1A2, CYP2C9, CYP2D6, CYP2E1, and/or CYP3A4. Here, we highlight discrepancies between preclinical and clinical data concerning drug-botanical interactions and critically evaluate why some preclinical models perform better than others in predicting the potential for drug-botanical interactions. Gaps in knowledge are also highlighted for the potential of some popular botanical dietary supplements to interact with therapeutic agents with respect to absorption, transport, and metabolism. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.
Dispersion stability of a ceramic glaze achieved through ionic surfactant adsorption.
Panya, Preecha; Arquero, Orn-anong; Franks, George V; Wanless, Erica J
2004-11-01
The adsorption of cetylpyridinium chloride (CPC) and sodium dodecylbenzenesulfonate (SDBS) onto a ceramic glaze mixture composed of limestone, feldspar, quartz, and kaolin has been investigated. Both adsorption isotherms and the average particle zeta potential have been studied in order to understand the suspension stability as a function of pH, ionic strength, and surfactant concentration. The adsorption of small amounts of cationic CPC onto the primarily negatively charged surfaces of the particles at pH 7 and 9 results in strong attraction and flocculation due to hydrophobic interactions. At higher surfactant concentrations a zeta potential of more than +60 mV results from the bilayered adsorbed surfactant, providing stability at salt concentrations < or = 0.01 M. At 0.1 M salt poor stability results despite substantial zeta potential values. Three mechanisms for SDBS adsorption have been identified. When anionic SDBS monomers either adsorb by electrostatic interactions with the few positive surface sites at high pH or adsorb onto like charged negative surface sites due to dispersion or hydrophobic interactions, the magnitude of the negative zeta potential increases slightly. At pH 9 this increase is enough to promote stability with an average zeta potential of more than -55 mV, whereas at pH 7 the zeta potential is lower at about -45 mV. The stability of suspensions at pH 7 is additionally due to steric repulsion caused by the adsorption of thick layers of neutrally charged Ca(DBS)2 complexes created when the surfactant interacts with dissolved calcium ions from the calcium carbonate component.
Žagar, Anamarija; Simčič, Tatjana; Carretero, Miguel A; Vrezec, Al
2015-01-01
Sympatric species from the same ecological guild, that exhibit partial altitudinal segregation, can potentially interact in areas of syntopic occurrence. Besides general species' ecology, physiology can provide important answers about species interactions reflected in altitudinal patterns. Lizards Podarcis muralis and Iberolacerta horvathi exhibit partial altitudinal segregation, while they strongly resemble in overall morphology and ecology (diet, daily and seasonal activity pattern), but show certain degree of physiological dissimilarity. They have similar mean preferred body temperatures and patterns of seasonal and daily variations but differ in the magnitude of seasonal variation. Since an ectotherm metabolism is highly dependent on body temperature, thermoregulation is expected to directly affect their metabolism. We compared metabolic rates of adult males from an area of sympatry, measured under two temperature regimes (20°C and 28°C). Both species increased metabolic rates with temperature in a similar pattern. We also compared electron transport activity from tail tissues which provide values of species' potential metabolic activity (enzymatic capacity). Species clearly differed in potential metabolic activity; I. horvathi attained higher values than P. muralis. No difference was detected in how species exploited this potential (calculated from the ratio of electron transport activity and metabolic rates). However, we observed higher potential metabolic activity I. horvathi which together with the ability to thermoregulate more precisely could represent a higher competitive advantage over P. muralis in thermally more restrictive environments such as higher altitudes. Understanding of metabolism seems to provide valuable information for understanding recent distributional patterns as well as species interactions. Copyright © 2014 Elsevier Inc. All rights reserved.
Electric Double-Layer Interaction between Dissimilar Charge-Conserved Conducting Plates.
Chan, Derek Y C
2015-09-15
Small metallic particles used in forming nanostructured to impart novel optical, catalytic, or tribo-rheological can be modeled as conducting particles with equipotential surfaces that carry a net surface charge. The value of the surface potential will vary with the separation between interacting particles, and in the absence of charge-transfer or electrochemical reactions across the particle surface, the total charge of each particle must also remain constant. These two physical conditions require the electrostatic boundary condition for metallic nanoparticles to satisfy an equipotential whole-of-particle charge conservation constraint that has not been studied previously. This constraint gives rise to a global charge conserved constant potential boundary condition that results in multibody effects in the electric double-layer interaction that are either absent or are very small in the familiar constant potential or constant charge or surface electrochemical equilibrium condition.
Liquid 4He at Zero Temperature and the STLS Scheme
NASA Astrophysics Data System (ADS)
Doroudi, A.
2007-07-01
Within the framework of the self-consistent scheme proposed by Singwi, Tosi, Land and Sjölander (STLS) for an interacting system we study the properties of superfluid liquid 4He. By employing the Aziz potential (HFD-B) as the interaction potential between helium atoms, we have calculated the static structure factor, the pair-correlation function, the elementary excitation spectrum and the effective two-body interaction as a function of wave-vector, for different densities. Our results show considerable improvement over the Ng-Singwi’s model potential of a hard core plus an attractive tail and are comparable with experimental data. We have compared our results with experimental data and with the results of some theoretical models. Agreement between our results and the experimental data for the static structure factor for the small k values is fairly good.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDaniel, Jesse G.; Yethiraj, Arun
The manuscript by Ballal et al.(Ref 1) presents an interesting study demonstrating the inability of popular force fields with standard combination rules to accurately describe water/alkane interactions. The authors find that the Lorentz-Berthelot combination rules on the SPC/E water and TraPPE alkane potentials give a cross interaction that fails to predict the (low-water content) water solubility in various alkanes. Realizing that both explicit polarization as well as the static octupole moment of methane are missing in these potentials, the authors examine the effect of these terms, but are still unable to resolve the discrepancy. They conclude with the statement thatmore » “the research community lacks a complete picture of water-alkane interactions at the molecular level.« less
Life history determines genetic structure and evolutionary potential of host–parasite interactions
Barrett, Luke G.; Thrall, Peter H.; Burdon, Jeremy J.; Linde, Celeste C.
2009-01-01
Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns. PMID:18947899
McDaniel, Jesse G.; Yethiraj, Arun
2016-04-06
The manuscript by Ballal et al.(Ref 1) presents an interesting study demonstrating the inability of popular force fields with standard combination rules to accurately describe water/alkane interactions. The authors find that the Lorentz-Berthelot combination rules on the SPC/E water and TraPPE alkane potentials give a cross interaction that fails to predict the (low-water content) water solubility in various alkanes. Realizing that both explicit polarization as well as the static octupole moment of methane are missing in these potentials, the authors examine the effect of these terms, but are still unable to resolve the discrepancy. They conclude with the statement thatmore » “the research community lacks a complete picture of water-alkane interactions at the molecular level.« less
Extraordinary SEAWs under influence of the spin-spin interaction and the quantum Bohm potential
NASA Astrophysics Data System (ADS)
Andreev, Pavel A.
2018-06-01
The separate spin evolution (SSE) of electrons causes the existence of the spin-electron acoustic wave. Extraordinary spin-electron acoustic waves (SEAWs) propagating perpendicular to the external magnetic field have a large contribution of the transverse electric field. Its spectrum has been studied in the quasi-classical limit at the consideration of the separate spin evolution. The spin-spin interaction and the quantum Bohm potential give contribution in the spectrum extraordinary SEAWs. This contribution is studied in this paper. Moreover, it is demonstrated that the spin-spin interaction leads to the existence of the extraordinary SEAWs if the SSE is neglected. It has been found that the SSE causes the instability of the extraordinary SEAW at the large wavelengths, but the quantum Bohm potential leads to the full stabilization of the spectrum.
NASA Technical Reports Server (NTRS)
Stallcop, James R.; Partridge, Harry; Levin, Eugene
1991-01-01
N2(+) and O2(+) potential energy curves have been constructed by combining measured data with the results from electronic structure calculations. These potential curves have been employed to determine accurate charge exchange cross sections, transport cross sections, and collision integrals for ground state N(+)-N and O(+)-O interactions. The cross sections have been calculated from a semiclassical approximation to the scattering using a computer code that fits a spline curve through the discrete potential data and incorporates the proper long-range behavior of the interactions forces. The collision integrals are tabulated for a broad range of temperatures 250-100,000 K and are intended to reduce the uncertainty in the values of the transport properties of nonequilibrium air, particularly at high temperatures.
Life history determines genetic structure and evolutionary potential of host-parasite interactions.
Barrett, Luke G; Thrall, Peter H; Burdon, Jeremy J; Linde, Celeste C
2008-12-01
Measures of population genetic structure and diversity of disease-causing organisms are commonly used to draw inferences regarding their evolutionary history and potential to generate new variation in traits that determine interactions with their hosts. Parasite species exhibit a range of population structures and life-history strategies, including different transmission modes, life-cycle complexity, off-host survival mechanisms and dispersal ability. These are important determinants of the frequency and predictability of interactions with host species. Yet the complex causal relationships between spatial structure, life history and the evolutionary dynamics of parasite populations are not well understood. We demonstrate that a clear picture of the evolutionary potential of parasitic organisms and their demographic and evolutionary histories can only come from understanding the role of life history and spatial structure in influencing population dynamics and epidemiological patterns.
Herbal medicines in Brazil: pharmacokinetic profile and potential herb-drug interactions
Mazzari, Andre L. D. A.; Prieto, Jose M.
2014-01-01
A plethora of active compounds found in herbal medicines can serve as substrate for enzymes involved in the metabolism of xenobiotics. When a medicinal plant is co-administered with a conventional drug and little or no information is known about the pharmacokinetics of the plant metabolites, there is an increased risk of potential herb-drug interactions. Moreover, genetic polymorphisms in a population may act to predispose individuals to adverse reactions. The use of herbal medicines is rapidly increasing in many countries, particularly Brazil where the vast biodiversity is a potential source of new and more affordable treatments for numerous conditions. Accordingly, the Brazilian Unified Public Health System (SUS) produced a list of 71 plant species of interest, which could be made available to the population in the near future. Physicians at SUS prescribe a number of essential drugs and should herbal medicines be added to this system the chance of herb-drug interactions further increases. A review of the effects of these medicinal plants on Phase 1 and Phase 2 metabolic mechanisms and the transporter P-glycoprotein was conducted. The results have shown that approximately half of these medicinal plants lack any pharmacokinetic data. Moreover, most of the studies carried out are in vitro. Only a few reports on herb-drug interactions with essential drugs prescribed by SUS were found, suggesting that very little attention is being given to the safety of herbal medicines. Here we have taken this information to discuss the potential interactions between herbal medicines and essential drugs prescribed to Brazilian patients whilst taking into account the most common polymorphisms present in the Brazilian population. A number of theoretical interactions are pinpointed but more pharmacokinetic studies and pharmacovigilance data are needed to ascertain their clinical significance. PMID:25071580
Prevalence of the prescription of potentially interacting drugs.
Tragni, Elena; Casula, Manuela; Pieri, Vasco; Favato, Giampiero; Marcobelli, Alberico; Trotta, Maria Giovanna; Catapano, Alberico Luigi
2013-01-01
The use of multiple medications is becoming more common, with a correspondingly increased risk of untoward effects and drug-related morbidity and mortality. We aimed at estimating the prevalence of prescription of relevant potentially interacting drugs and at evaluating possible predictors of potentially interacting drug exposure. We retrospectively analyzed data on prescriptions dispensed from January 2004 to August 2005 to individuals of two Italian regions with a population of almost 2.1 million individuals. We identified 27 pairs of potentially interacting drugs by examining clinical relevance, documentation, and volume of use in Italy. Subjects who received at least one prescription of both drugs were selected. Co-prescribing denotes "two prescriptions in the same day", and concomitant medication "the prescription of two drugs with overlapping coverage". A logistic regression analysis was conducted to examine the predictors of potential Drug-Drug Interaction (pDDIs). 957,553 subjects (45.3% of study population) were exposed to at least one of the drugs/classes of the 27 pairs. Overall, pDDIs occurred 2,465,819 times. The highest rates of concomitant prescription and of co-prescription were for ACE inhibitors+NSAIDs (6,253 and 4,621/100,000 plan participants). Considering concomitance, the male/female ratio was <1 in 17/27 pairs (from 0.31 for NSAIDs-ASA+SSRI to 0.74 for omeprazole+clopidogrel). The mean age was lowest for methotrexate pairs (+omeprazole, 59.9 years; +NSAIDs-ASA, 59.1 years) and highest for digoxin+verapamil (75.4 years). In 13/27 pairs, the mean ages were ≥70 years. On average, subjects involved in pDDIs received ≥10 drugs. The odds of exposure were more frequently higher for age ≥65 years, males, and those taking a large number of drugs. A substantial number of clinically important pDDIs were observed, particularly among warfarin users. Awareness of the most prevalent pDDIs could help practitioners in preventing concomitant use, resulting in a better quality of drug prescription and potentially avoiding unwanted side effects.
Reconciling the good patient persona with problematic and non-problematic humour: a grounded theory.
McCreaddie, May; Wiggins, Sally
2009-08-01
Humour is a complex phenomenon, incorporating cognitive, emotional, behavioural, physiological and social aspects. Research to date has concentrated on reviewing (rehearsed) humour and 'healthy' individuals via correlation studies using personality-trait based measurements, principally on psychology students in laboratory conditions. Nurses are key participants in modern healthcare interactions however, little is known about their (spontaneous) humour use. A middle-range theory that accounted for humour use in CNS-patient interactions was the aim of the study. The study reviewed the antecedents of humour exploring the use of humour in relation to (motivational) humour theories. Twenty Clinical Nurse Specialist-patient interactions and their respective peer groups in a country of the United Kingdom. An evolved constructivist grounded theory approach investigated a complex and dynamic phenomenon in situated contexts. Naturally occurring interactions provided the basis of the data corpus with follow-up interviews, focus groups, observation and field notes. A constant comparative approach to data collection and analysis was applied until theoretical sufficiency incorporating an innovative interpretative and illustrative framework. This paper reports the grounded theory and is principally based upon 20 CNS-patient interactions and follow-up data. The negative case analysis and peer group interactions will be reported in separate publications. The theory purports that patients' use humour to reconcile a good patient persona. The core category of the good patient persona, two of its constituent elements (compliance, sycophancy), conditions under which it emerges and how this relates to the use of humour are outlined and discussed. In seeking to establish and maintain a meaningful and therapeutic interaction with the CNS, patients enact a good patient persona to varying degrees depending upon the situated context. The good patient persona needs to be maintained within the interaction and is therefore reconciled with potentially problematic or non-problematic humour use. Humour is therefore used to deferentially package concerns (potentially problematic humour) or affiliate (potentially non-problematic humour). This paper reviews the good patient persona (compliance, sycophancy), potentially problematic humour (self-disparaging, gallows) and briefly, non-problematic humour (incongruity). The middle-range theory differentiates potentially problematic humour from non-problematic humour and notes that how humour is identified and addressed is central to whether patients concerns are resolved or not. The study provides a robust review of humour in healthcare interactions with important implications for practice. Further, this study develops and extends humour research and contributes to an evolved application of constructivist grounded theory.
NASA Astrophysics Data System (ADS)
Miloi, Mădălina Mihaela; Goryunov, Semyon; Kulin, German
2018-04-01
A wide range of problems in neutron optics is well described by a theory based on application of the effective potential model. It was assumed that the concept of the effective potential in neutron optics have a limited region of validity and ceases to be correct in the case of the giant acceleration of a matter. To test this hypothesis a new Ultra Cold neutron experiment for the observation neutron interaction with potential structure oscillating in space was proposed. The report is focused on the model calculations of the topography of sample surface that oscillate in space. These calculations are necessary to find an optimal parameters and geometry of the planned experiment.
ERIC Educational Resources Information Center
Schmid, Euline Cutrim
2007-01-01
This article reports on a qualitative study concerning the use of interactive whiteboard (IWB) technology in the teaching of English for Academic Purposes (EAP)/Study Skills to international students. The study was carried out at a British University in the summers of 2003 and 2004. Its primary aim was to throw detailed light on the potential of…
NASA Astrophysics Data System (ADS)
Gusev, A. A.; Chuluunbaatar, O.; Popov, Yu. V.; Vinitsky, S. I.; Derbov, V. L.; Lovetskiy, K. P.
2018-04-01
The exactly soluble model of a train of zero-duration electromagnetic pulses interacting with a 1D atom with short-range interaction potential modelled by a δ-function is considered. The model is related to the up-to-date laser techniques providing the duration of pulses as short as a few attoseconds and the intensities higher than 1014 W/cm2.
Massive neutron star with strangeness in a relativistic mean-field model with a high-density cutoff
NASA Astrophysics Data System (ADS)
Zhang, Ying; Hu, Jinniu; Liu, Peng
2018-01-01
The properties of neutron stars with the strangeness degree of freedom are studied in the relativistic mean-field (RMF) model via including a logarithmic interaction as a function of the scalar meson field. This interaction, named the σ -cut potential, can largely reduce the attractive contributions of the scalar meson field at high density without any influence on the properties of nuclear structure around the normal saturation density. In this work, the TM1 parameter set is chosen as the RMF interaction, while the strengths of σ -cut potential are constrained by the properties of finite nuclei so that we can obtain a reasonable effective nucleon-nucleon interaction. The hyperons Λ ,Σ , and Ξ are considered in neutron stars within this framework, whose coupling constants with mesons are determined by the latest hyperon-nucleon and Λ -Λ potentials extracted from the available experimental data of hypernuclei. The maximum mass of neutron star can be larger than 2 M⊙ with these hyperons in the present framework. Furthermore, the nucleon mass at high density will be saturated due to this additional σ -cut potential, which is consistent with the conclusions obtained by other calculations such as Brueckner-Hartree-Fock theory and quark mean-field model.
NASA Astrophysics Data System (ADS)
Dhiflaoui, J.; Bejaoui, M.; Farjallah, M.; Berriche, H.
2018-05-01
The potential energy and spectroscopic constants of the ground and many excited states of the Be+He van der Waals system have been investigated using a one-electron pseudo-potential approach, which is used to replace the effect of the Be2+ core and the electron-He interactions by effective potentials. Furthermore, the core-core interactions are incorporated. This permits the reduction of the number of active electrons of the Be+He van der Waals system to only one electron. Therefore, the potential energy of the ground state as well as the excited states is performed at the SCF level and considering the spin-orbit interaction. The core-core interaction for Be2+He ground state is included using accurate CCSD (T) calculations. Then, the spectroscopic properties of the Be+He electronic states are extracted and compared with the previous theoretical and experimental studies. This comparison has shown a very good agreement for the ground and the first excited states. Moreover, the transition dipole moment has been determined for a large and dense grid of internuclear distances including the spin orbit effect. In addition, a vibrational spacing analysis for the Be2+He and Be+He ground states is performed to extract the He atomic polarisability.
Drug-nutrient interactions in three long-term-care facilities.
Lewis, C W; Frongillo, E A; Roe, D A
1995-03-01
To assess the risk of drug-nutrient interactions (DNIs) in three long-term-care facilities. Retrospective audit of charts. Three long-term-care facilities in central New York State. Fifty-three patients selected randomly from each facility. Data were collected from the medical record of each patient for a period of 6 months. A computerized algorithm was used to assess the risk for DNIs. Mean drug use, most frequently consumed drugs, incidence of potential DNIs, and the most commonly observed potential DNIs are reported. In facilities A, B, and C, respectively, patients consumed a mean of 4.86, 4.04, and 5.27 drugs per patient per month and were at risk for a mean of 1.43, 2.69, and 1.43 potential DNIs per patient per month. The most commonly observed potential DNIs were gastrointestinal interactions affecting drug bioavailability and interactions affecting electrolyte status. Patients in long-term-care facilities, who are primarily elderly and chronically ill and who consume multiple medications, are at notable risk for certain DNIs. Efforts need to be made to ensure appropriate pharmacologic and nutrition therapies as well as adequate and timely monitoring of patients in these facilities. Dietitians can play an important role in training other health professionals and in designing policies to prevent DNIs.
Green synthesis, characterization and anticancer potential of platinum nanoparticles Bioplatin.
Bendale, Yogesh; Bendale, Vineeta; Paul, Saili; Bhattacharyya, Soumya Sundar
2012-06-01
In the present study, the anticancer potential of platinum nanoparticles Bioplatin is explored and the mode of interactions of Bioplatin with calf thymus DNA and honey was analyzed. Bioplatin was synthesized with the help of green nanotechnology and characterized by particle size, zeta potential and surface morphology. The interaction of Bioplatin with DNA and honey was also checked with the help of circular dichroism spectroscopy and Fourier-transform infrared spectroscopy, respectively. The anticancer potential of Bioplatin was evaluated on peripheral blood mononuclear cells and A375 cells in vitro by analyzing results of MTT (3-(4,5)-dimethyl-thiahiazo-(-z-y1)-3,5-di-phenytetrazoliumromide), fluorescence microscopic studies and DNA fragmentation assay. Bioplatin exhibited a small particle size of 137.5 nm and a surface charge of -35.8 mV. Bioplatin interacted with DNA and brought in effective changes in structure and conformation of DNA, and formed a new complex that increased its stability of DNA intercalated with the base pair of DNA. In vitro studies demonstrated that Bioplatin arrested cell proliferation, and induced chromatin condensation and internucleosomal DNA fragmentation. Bioplatin induces apoptosis in cancer cells and may have some beneficial effect against human carcinoma. It interacts with DNA, brings stabilization to DNA, and thus prevents the replication of DNA.
Straube, Arthur V; Tierno, Pietro
2014-06-14
We study experimentally and theoretically the interactions between paramagnetic particles dispersed in water and driven above the surface of a stripe patterned magnetic garnet film. An external rotating magnetic field modulates the stray field of the garnet film and generates a translating potential landscape which induces directed particle motion. By varying the ellipticity of the rotating field, we tune the inter-particle interactions from net repulsive to net attractive. For attractive interactions, we show that pairs of particles can approach each other and form stable doublets which afterwards travel along the modulated landscape at a constant mean speed. We measure the strength of the attractive force between the moving particles and propose an analytically tractable model that explains the observations and is in quantitative agreement with experiment.
NASA Astrophysics Data System (ADS)
Guo, Yujin; Zeng, Xiaoyu; Zhou, Huan-Song
2018-01-01
We consider a nonlinear Schrödinger system arising in a two-component Bose-Einstein condensate (BEC) with attractive intraspecies interactions and repulsive interspecies interactions in R2. We get ground states of this system by solving a constrained minimization problem. For some kinds of trapping potentials, we prove that the minimization problem has a minimizer if and only if the attractive interaction strength ai (i = 1 , 2) of each component of the BEC system is strictly less than a threshold a*. Furthermore, as (a1 ,a2) ↗ (a* ,a*), the asymptotical behavior for the minimizers of the minimization problem is discussed. Our results show that each component of the BEC system concentrates at a global minimum of the associated trapping potential.
Tavora, Marco; Rosch, Achim; Mitra, Aditi
2014-07-04
The dynamics of interacting bosons in one dimension following the sudden switching on of a weak disordered potential is investigated. On time scales before quasiparticles scatter (prethermalized regime), the dephasing from random elastic forward scattering causes all correlations to decay exponentially fast, but the system remains far from thermal equilibrium. For longer times, the combined effect of disorder and interactions gives rise to inelastic scattering and to thermalization. A novel quantum kinetic equation accounting for both disorder and interactions is employed to study the dynamics. Thermalization turns out to be most effective close to the superfluid-Bose-glass critical point where nonlinearities become more and more important. The numerically obtained thermalization times are found to agree well with analytic estimates.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mereghetti, Paolo; Martinez, M.; Wade, Rebecca C.
Brownian dynamics (BD) simulations can be used to study very large molecular systems, such as models of the intracellular environment, using atomic-detail structures. Such simulations require strategies to contain the computational costs, especially for the computation of interaction forces and energies. A common approach is to compute interaction forces between macromolecules by precomputing their interaction potentials on three-dimensional discretized grids. For long-range interactions, such as electrostatics, grid-based methods are subject to finite size errors. We describe here the implementation of a Debye-Hückel correction to the grid-based electrostatic potential used in the SDA BD simulation software that was applied to simulatemore » solutions of bovine serum albumin and of hen egg white lysozyme.« less
Interaction of injectable neurotropic drugs with the red cell membrane.
Reinhart, Walter H; Lubszky, Szabina; Thöny, Sandra; Schulzki, Thomas
2014-10-01
The normal red blood cell (RBC) shape is a biconcave discocyte. An intercalation of a drug in the outer half of the membrane lipid bilayer leads to echinocytosis, an intercalation in the inner half to stomatocytosis. We have used the shape transforming capacity of RBCs as a model to analyse the membrane interaction potential of various neurotropic drugs. Chlorpromazine, clomipramine, citalopram, clonazepam, and diazepam induced a reversible stomatocytosis, phenytoin induced echinocytosis, while the anticonvulsants levetiracetam, valproic acid and phenobarbital had no effect. This diversity of RBC shape transformations suggests that the pharmacological action is not linked to the membrane interaction. We conclude that this simple RBC shape transformation assay could be a useful tool to screen for potential drug interactions with cell membranes. Copyright © 2014. Published by Elsevier Ltd.
Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics
Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Owczarek, Barbara; Międzybrodzki, Ryszard; Łusiak-Szelachowska, Marzanna; Łodej, Norbert; Górski, Andrzej
2017-01-01
Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes—contained in granules—that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy. The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy. PMID:28613272
Phage-Phagocyte Interactions and Their Implications for Phage Application as Therapeutics.
Jończyk-Matysiak, Ewa; Weber-Dąbrowska, Beata; Owczarek, Barbara; Międzybrodzki, Ryszard; Łusiak-Szelachowska, Marzanna; Łodej, Norbert; Górski, Andrzej
2017-06-14
Phagocytes are the main component of innate immunity. They remove pathogens and particles from organisms using their bactericidal tools in the form of both reactive oxygen species and degrading enzymes-contained in granules-that are potentially toxic proteins. Therefore, it is important to investigate the possible interactions between phages and immune cells and avoid any phage side effects on them. Recent progress in knowledge concerning the influence of phages on phagocytes is also important as such interactions may shape the immune response. In this review we have summarized the current knowledge on phage interactions with phagocytes described so far and their potential implications for phage therapy . The data suggesting that phage do not downregulate important phagocyte functions are especially relevant for the concept of phage therapy.
Scalar-fluid interacting dark energy: Cosmological dynamics beyond the exponential potential
NASA Astrophysics Data System (ADS)
Dutta, Jibitesh; Khyllep, Wompherdeiki; Tamanini, Nicola
2017-01-01
We extend the dynamical systems analysis of scalar-fluid interacting dark energy models performed in C. G. Boehmer et al., Phys. Rev. D 91, 123002 (2015), 10.1103/PhysRevD.91.123002 by considering scalar field potentials beyond the exponential type. The properties and stability of critical points are examined using a combination of linear analysis, computational methods and advanced mathematical techniques, such as center manifold theory. We show that the interesting results obtained with an exponential potential can generally be recovered also for more complicated scalar field potentials. In particular, employing power law and hyperbolic potentials as examples, we find late time accelerated attractors, transitions from dark matter to dark energy domination with specific distinguishing features, and accelerated scaling solutions capable of solving the cosmic coincidence problem.
Transformations: Mobile Interaction & Language Learning
ERIC Educational Resources Information Center
Carroll, Fiona; Kop, Rita; Thomas, Nathan; Dunning, Rebecca
2015-01-01
Mobile devices and the interactions that these technologies afford have the potential to change the face and nature of education in our schools. Indeed, mobile technological advances are seen to offer better access to educational material and new interactive ways to learn. However, the question arises, as to whether these new technologies are…
Virtual-Reality-Based Social Interaction Training for Children with High-Functioning Autism
ERIC Educational Resources Information Center
Ke, Fengfeng; Im, Tami
2013-01-01
Employing the multiple-baseline across-subjects design, the authors examined the implementation and potential effect of a virtual-reality-based social interaction program on the interaction and communication performance of children with high functioning autism. The data were collected via behavior observation and analysis, questionnaires, and…
Genetic Interactions with Prenatal Social Environment: Effects on Academic and Behavioral Outcomes
ERIC Educational Resources Information Center
Conley, Dalton; Rauscher, Emily
2013-01-01
Numerous studies report gene-environment interactions, suggesting that specific alleles have different effects on social outcomes depending on environment. In all these studies, however, environmental conditions are potentially endogenous to unmeasured genetic characteristics. That is, it could be that the observed interaction effects actually…
Results-Based Interaction Design
ERIC Educational Resources Information Center
Weiss, Meredith
2008-01-01
Interaction design is a user-centered approach to development in which users and their goals are the driving force behind a project's design. Interaction design principles are fundamental to the design and implementation of effective websites, but they are not sufficient. This article argues that, to reach its full potential, a website should also…
The Art of "Smart Gaff": Reshaping Early Childhood Caregiver-Child Interactions in Guyana
ERIC Educational Resources Information Center
Semple-McBean, Michelle
2017-01-01
This article reports on findings of Guyanese early childhood caregivers' practice of engaging in extended, cognitively challenging and stimulating interactions. These are the types of interactions cited in classroom effectiveness studies internationally as potentially the most critical determinants for optimising learning during early years. The…
Teacher Perceptions of Learner-Learner Engagement at a Cyber High School
ERIC Educational Resources Information Center
Borup, Jered
2016-01-01
Distance education has historically contained little or no learner-learner interactions. Currently the Internet allows for unprecedented levels of learner-learner interaction and has the potential to transform how students learn online. However, many courses offered online focus more on flexibility and independence than on interaction and…
Reconceptualizing the Pedagogical Value of Student Facilitation
ERIC Educational Resources Information Center
Oztok, Murat
2016-01-01
Sustained discourse is critical to the learning potential of online courses. And, while research has surfaced many factors that mediate interaction, it further suggests that sustained interaction remains elusive. In this paper, I propose that student facilitation may have an impact on the quality of facilitators' interactions following a week of…
Critical features of risk assessment include the evaluation of risk following exposure to pesticide mixtures as well as the potential for increased sensitivity of the young. This research tested for interaction(s) using a mixture of five organophosphorus (OP) pesticides (chlorp...
Students' Use of Technological Features while Solving a Mathematics Problem
ERIC Educational Resources Information Center
Lee, Hollylynne Stohl; Hollebrands, Karen F.
2006-01-01
The design of technology tools has the potential to dramatically influence how students interact with tools, and these interactions, in turn, may influence students' mathematical problem solving. To better understand these interactions, we analyzed eighth grade students' problem solving as they used a java applet designed to specifically accompany…
ERIC Educational Resources Information Center
Parboosingh, I. John; Reed, Virginia A.; Palmer, James Caldwell; Bernstein, Henry H.
2011-01-01
Research into networking and interactivity among practitioners is providing new information that has the potential to enhance the effectiveness of practice improvement initiatives. This commentary reviews the evidence that practitioner interactivity can facilitate emergent learning and behavior change that lead to practice improvements. Insights…
Food-drug interactions precipitated by fruit juices other than grapefruit juice: An update review.
Chen, Meng; Zhou, Shu-Yi; Fabriaga, Erlinda; Zhang, Pian-Hong; Zhou, Quan
2018-04-01
This review addressed drug interactions precipitated by fruit juices other than grapefruit juice based on randomized controlled trials (RCTs). Literature was identified by searching PubMed, Cochrane Library, Scopus and Web of Science till December 30 2017. Among 46 finally included RCTs, six RCTs simply addressed pharmacodynamic interactions and 33 RCTs studied pharmacokinetic interactions, whereas seven RCTs investigated both pharmacokinetic and pharmacodynamic interactions. Twenty-two juice-drug combinations showed potential clinical relevance. The beneficial combinations included orange juice-ferrous fumarate, lemon juice- 99m Tc-tetrofosmin, pomegranate juice-intravenous iron during hemodialysis, cranberry juice-triple therapy medications for H. pylori, blueberry juice-etanercept, lime juice-antimalarials, and wheat grass juice-chemotherapy. The potential adverse interactions included decreased drug bioavailability (apple juice-fexofenadine, atenolol, aliskiren; orange juice-aliskiren, atenolol, celiprolol, montelukast, fluoroquinolones, alendronate; pomelo juice-sildenafil; grape juice-cyclosporine), increased bioavailability (Seville orange juice-felodipine, pomelo juice-cyclosporine, orange-aluminum containing antacids). Unlike furanocoumarin-rich grapefruit juice which could primarily precipitate drug interactions by strong inhibition of cytochrome P450 3A4 isoenzyme and P-glycoprotein and thus cause deadly outcomes due to co-ingestion with some medications, other fruit juices did not precipitate severely detrimental food-drug interaction despite of sporadic case reports. The extent of a juice-drug interaction may be associated with volume of drinking juice, fruit varieties, type of fruit, time between juice drinking and drug intake, genetic polymorphism in the enzymes or transporters and anthropometric variables. Pharmacists and health professionals should properly screen for and educate patients about potential adverse juice-drug interactions and help minimize their occurrence. Much attention should be paid to adolescents and the elderly who ingest medications with drinking fruit juices or consume fresh fruits during drug treatment. Meanwhile, more researches in this interesting issue should be conducted. Copyright © 2018. Published by Elsevier B.V.
Maternal rank influences the outcome of aggressive interactions between immature chimpanzees
Markham, A. Catherine; Lonsdorf, Elizabeth V.; Pusey, Anne E.; Murray, Carson M.
2015-01-01
For many long-lived mammalian species, extended maternal investment has a profound effect on offspring integration in complex social environments. One component of this investment may be aiding young in aggressive interactions, which can set the stage for offspring social position later in life. Here we examined maternal effects on dyadic aggressive interactions between immature (<12 years) chimpanzees. Specifically, we tested whether relative maternal rank predicted the probability of winning an aggressive interaction. We also examined maternal responses to aggressive interactions to determine whether maternal interventions explain interaction outcomes. Using a 12-year behavioural data set (2000–2011) from Gombe National Park, Tanzania, we found that relative maternal rank predicted the probability of winning aggressive interactions in male–male and male–female aggressive interactions: offspring were more likely to win if their mother outranked their opponent’s mother. Female–female aggressive interactions occurred infrequently (two interactions), so could not be analysed. The probability of winning was also higher for relatively older individuals in male–male interactions, and for males in male–female interactions. Maternal interventions were rare (7.3% of 137 interactions), suggesting that direct involvement does not explain the outcome for the vast majority of aggressive interactions. These findings provide important insight into the ontogeny of aggressive behaviour and early dominance relationships in wild apes and highlight a potential social advantage for offspring of higher-ranking mothers. This advantage may be particularly pronounced for sons, given male philopatry in chimpanzees and the potential for social status early in life to translate more directly to adult rank. PMID:25624528
CYP3A4 substrate selection and substitution in the prediction of potential drug-drug interactions.
Galetin, Aleksandra; Ito, Kiyomi; Hallifax, David; Houston, J Brian
2005-07-01
The complexity of in vitro kinetic phenomena observed for CYP3A4 substrates (homo- or heterotropic cooperativity) confounds the prediction of drug-drug interactions, and an evaluation of alternative and/or pragmatic approaches and substrates is needed. The current study focused on the utility of the three most commonly used CYP3A4 in vitro probes for the prediction of 26 reported in vivo interactions with azole inhibitors (increase in area under the curve ranged from 1.2 to 24, 50% in the range of potent inhibition). In addition to midazolam, testosterone, and nifedipine, quinidine was explored as a more "pragmatic" substrate due to its kinetic properties and specificity toward CYP3A4 in comparison with CYP3A5. Ki estimates obtained in human liver microsomes under standardized in vitro conditions for each of the four probes were used to determine the validity of substrate substitution in CYP3A4 drug-drug interaction prediction. Detailed inhibitor-related (microsomal binding, depletion over incubation time) and substrate-related factors (cooperativity, contribution of other metabolic pathways, or renal excretion) were incorporated in the assessment of the interaction potential. All four CYP3A4 probes predicted 69 to 81% of the interactions with azoles within 2-fold of the mean in vivo value. Comparison of simple and multisite mechanistic models and interaction prediction accuracy for each of the in vitro probes indicated that midazolam and quinidine in vitro data provided the best assessment of a potential interaction, with the lowest bias and the highest precision of the prediction. Further investigations with a wider range of inhibitors are required to substantiate these findings.
NASA Technical Reports Server (NTRS)
Chen, Erinna M.
2005-01-01
A significant problem in the use of electric thrusters in spacecraft is the formation of low-energy ions in the thruster plume. Low-energy ions are formed in the plume via random collisions between high-velocity ions ejected from the thruster and slow-moving neutral atoms of propellant effusing from the engine. The sputtering of spacecraft materials due to interactions with low-energy ions may result in erosion or contamination of the spacecraft. The trajectory of these ions is determined primarily by the plasma potential of the plume. Thus, accurate characterization of the plasma potential is essential to predicting low-energy ion contamination. Emissive probes were utilized to determine the plasma potential. When the ion and electron currents to the probe are balanced, the potential of such probes float to the plasma potential. Two emissive probes were fabricated; one utilizing a DC power supply, another utilizing a rectified AC power source. Labview programs were written to coordinate and automate probe motion in the thruster plume. Employing handshaking interaction, these motion programs were synchronized to various data acquisition programs to ensure precision and accuracy of the measurements. Comparing these experimental values to values from theoretical models will allow for a more accurate prediction of low-energy ion interaction.
Effect of attractive interactions on the water-like anomalies of a core-softened model potential.
Pant, Shashank; Gera, Tarun; Choudhury, Niharendu
2013-12-28
It is now well established that water-like anomalies can be reproduced by a spherically symmetric potential with two length scales, popularly known as core-softened potential. In the present study we aim to investigate the effect of attractive interactions among the particles in a model fluid interacting with core-softened potential on the existence and location of various water-like anomalies in the temperature-pressure plane. We employ extensive molecular dynamic simulations to study anomalous nature of various order parameters and properties under isothermal compression. Order map analyses have also been done for all the potentials. We observe that all the systems with varying depth of attractive wells show structural, dynamic, and thermodynamic anomalies. As many of the previous studies involving model water and a class of core softened potentials have concluded that the structural anomaly region encloses the diffusion anomaly region, which in turn, encloses the density anomaly region, the same pattern has also been observed in the present study for the systems with less depth of attractive well. For the systems with deeper attractive well, we observe that the diffusion anomaly region shifts toward higher densities and is not always enclosed by the structural anomaly region. Also, density anomaly region is not completely enclosed by diffusion anomaly region in this case.
Linard, Joshua I.; Matherne, Anne Marie; Leib, Kenneth J.; Carr, Natasha B.; Diffendorfer, James E.; Hawkins, Sarah J.; Latysh, Natalie; Ignizio, Drew A.; Babel, Nils C.
2014-01-01
The U.S. Geological Survey project—Energy and Environment in the Rocky Mountain Area (EERMA)—has developed a set of virtual tools in the form of an online interactive energy atlas for Colorado and New Mexico to facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development. The interactive energy atlas currently (2014) consists of three components: (1) a series of interactive maps; (2) downloadable geospatial datasets; and (3) decison-support tools, including two maps related to hydrologic resources discussed in this report. The hydrologic-resource maps can be used to examine the potential effects of energy development on hydrologic resources with respect to (1) groundwater vulnerability, by using the depth to water, recharge, aquifer media, soil media, topography, impact of the vadose zone, and hydraulic conductivity of the aquifer (DRASTIC) model, and (2) landscape erosion potential, by using the revised universal soil loss equation (RUSLE). The DRASTIC aquifer vulnerability index value for the two-State area ranges from 48 to 199. Higher values, indicating greater relative aquifer vulnerability, are centered in south-central Colorado, areas in southeastern New Mexico, and along riparian corridors in both States—all areas where the water table is relatively close to the land surface and the aquifer is more susceptible to surface influences. As calculated by the RUSLE model, potential mean annual erosion, as soil loss in units of tons per acre per year, ranges from 0 to 12,576 over the two-State area. The RUSLE model calculated low erosion potential over most of Colorado and New Mexico, with predictions of highest erosion potential largely confined to areas of mountains or escarpments. An example is presented of how a fully interactive RUSLE model could be further used as a decision-support tool to evaluate the potential hydrologic effects of energy development on a site-specific basis and to explore the effectiveness of various mitigation practices.
Review about gabapentin misuse, interactions, contraindications and side effects
Quintero, Gabriel C
2017-01-01
The current work is targeted to review the risks of gabapentin misuse, its potential interactions with other drugs, side effects and use contraindications. This review consists of a total of 99 biographical references (from the year 1983 to 2016). A publication search of PubMed was performed from January 1983 to December 2016. It included animal studies, clinical studies, case studies and reviews related to gabapentin misuse, potential interactions, side effects and use contraindications. The search terms were gabapentin, anticonvulsant and antiepileptic. In general, it seems that gabapentin has risks of being misused based on the increased level of prescriptions, related fatalities, recreational misuse and higher doses of self-administration. The main reasons for gabapentin misuse are as follows: getting high, alleviating opioid withdrawal symptoms and potentiating methadone effects. Some of the main substances that interact with gabapentin are morphine, caffeine, losartan, ethacrynic acid, phenytoin, mefloquine and magnesium oxide. Some of the side effects caused by gabapentin are teratogenicity, hypoventilation, respiratory failure and myopathy. Finally, reports in general contraindicate the use of gabapentin in conditions such as myasthenia gravis and myoclonus. PMID:28223849
Combination Rules for Morse-Based van der Waals Force Fields.
Yang, Li; Sun, Lei; Deng, Wei-Qiao
2018-02-15
In traditional force fields (FFs), van der Waals interactions have been usually described by the Lennard-Jones potentials. Conventional combination rules for the parameters of van der Waals (VDW) cross-termed interactions were developed for the Lennard-Jones based FFs. Here, we report that the Morse potentials were a better function to describe VDW interactions calculated by highly precise quantum mechanics methods. A new set of combination rules was developed for Morse-based FFs, in which VDW interactions were described by Morse potentials. The new set of combination rules has been verified by comparing the second virial coefficients of 11 noble gas mixtures. For all of the mixed binaries considered in this work, the combination rules work very well and are superior to all three other existing sets of combination rules reported in the literature. We further used the Morse-based FF by using the combination rules to simulate the adsorption isotherms of CH 4 at 298 K in four covalent-organic frameworks (COFs). The overall agreement is great, which supports the further applications of this new set of combination rules in more realistic simulation systems.
Xie, Yong; Guo, Shengming; Ji, Yinglu; Guo, Chuanfei; Liu, Xinfeng; Chen, Ziyu; Wu, Xiaochun; Liu, Qian
2011-09-20
The self-assembly of anisotropic gold nanorods (GNRs) into ordered phases remains a challenge. Herein, we demonstrated the fabrication of symmetric circular- or semicircular-like self-assembled superlattices composed of multilayers of standing GNRs by fine-tuning the repulsive interactions among GNRs. The repulsive force is tailored from electrostatic interaction to steric force by replacing the surface coating of cetyltrimethylammonium bromide (CTAB) (ζ potential of 20-50 mV) with an OH-terminated hexa(ethylene glycol) alkanethiol (here termed as EG(6)OH, ζ potential of -10 mV). The assembly mechanism is discussed via theoretical analyses of the major interactions, and an effective balance between the repulsive steric and attractive depletion interactions is the main driving force for the self-assembly. The real-time observations of solution assembly (UV-vis-NIR absorption spectroscopy) supports the mechanism that we suggested. The superlattices obtained here not only enrich the categories of the self-assembled structures but more importantly deepen the insight of the self-assembly process and pave the way for various potential applications. © 2011 American Chemical Society
Self-medication for cough and the common cold: information needs of consumers.
Kloosterboer, Sanne Maartje; McGuire, Treasure; Deckx, Laura; Moses, Geraldine; Verheij, Theo; van Driel, Mieke L
2015-07-01
Despite the high use of over-the-counter (OTC) cough and cold medicines, little is known about Australia's cough and cold medicines information needs. The aim of this study was to identify gaps in consumers' perceived knowledge and concerns, to better target consumer medicines information and improve quality use of medicines. We analysed cough-and-cold related enquiries from consumers who contacted an Australian national medicine call centre between September 2002 and June 2010. Of 5503 cough and cold calls, female callers made up 86% of the calls and 33% were related to children. Questions most frequently related to drug-drug interactions (29%). An analysis of narratives over an 18-month period (248 calls) revealed 20% of the calls concerned potentially clinically relevant interactions, particularly those involving psychotropic agents. The potential for interactions with cough and cold medicines purchased OTC is recognised by consumers. Patient information should address their concerns. Doctors should be aware of the common cough and cold interactions and communicate likely clinical symptoms to patients when prescribing medication to prevent potential harm.
NASA Astrophysics Data System (ADS)
Crusius, Johann-Philipp; Hellmann, Robert; Castro-Palacio, Juan Carlos; Vesovic, Velisa
2018-06-01
A four-dimensional potential energy surface (PES) for the interaction between a rigid carbon dioxide molecule and a rigid nitrogen molecule was constructed based on quantum-chemical ab initio calculations up to the coupled-cluster level with single, double, and perturbative triple excitations. Interaction energies for a total of 1893 points on the PES were calculated using the counterpoise-corrected supermolecular approach and basis sets of up to quintuple-zeta quality with bond functions. The interaction energies were extrapolated to the complete basis set limit, and an analytical site-site potential function with seven sites for carbon dioxide and five sites for nitrogen was fitted to the interaction energies. The CO2—N2 cross second virial coefficient as well as the dilute gas shear viscosity, thermal conductivity, and binary diffusion coefficient of CO2—N2 mixtures were calculated for temperatures up to 2000 K to validate the PES and to provide reliable reference values for these important properties. The calculated values are in very good agreement with the best experimental data.
ΛcN interaction from lattice QCD and its application to Λc hypernuclei
NASA Astrophysics Data System (ADS)
Miyamoto, Takaya; Aoki, Sinya; Doi, Takumi; Gongyo, Shinya; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Iritani, Takumi; Ishii, Noriyoshi; Kawai, Daisuke; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2018-03-01
The interaction between Λc and a nucleon (N) is investigated by employing the HAL QCD method in the (2 + 1)-flavor lattice QCD on a (2.9fm) 3 volume at mπ ≃ 410 , 570 , 700 MeV. We study the central potential in S10 channel as well as central and tensor potentials in S31-3D1 channel, and find that the tensor potential for Λc N is negligibly weak and central potentials in both S10 and S31-3D1 channels are almost identical with each other except at short distances. Phase shifts and scattering lengths calculated with these potentials show that the interaction of Λc N system is attractive and has a similar strength in S10 and S31 channels at low energies (i.e. the kinetic energy less than about 40 MeV). While the attractions are not strong enough to form two-body bound states, our results lead to a possibility to form Λc hypernuclei for sufficiently large atomic numbers (A). To demonstrate this, we derive a single-folding potential for Λc hypernuclei from the Λc-nucleon potential obtained in lattice QCD, and find that Λc hypernuclei can exist for A ≥ 12 with the binding energies of a few MeV. We also estimate the Coulomb effect for the Λc hypernuclei.
Mahboubi, Samira; Salimi, Yahya; Jorjoran Shushtari, Zahra; Rafiey, Hasan; Sajjadi, Homeira
2017-12-15
Background Peer and parental substance use are established predictors for substance use among adolescent, little is known about influence of sibling cigarette smoking and its interaction with peer network on substance use potential that can introduce an important way for substance use prevention programs. Objective The aim of present study was to explore the association of sibling cigarette smoking and peer network with substance use potential among high school students in Tehran. Subjects Data were drawn from the population-based cross-sectional study of among 650 high schools students. Methods Multiple linear regression was used in order to determine the adjusted association between cigarette smoking among family members, peer network, their interaction and substance use potential. Result Having a sister who smokes (B = 3.19; p < 0.01) and peer network quality were associated with substance use potential (B = -0.1; p < 0.05). The increase in mean of substance use potential associated with decreases in peer network quality score is much more than in who have a sister with a cigarette smoking habit. Conclusion Having a sister who smokes interacts with peer network quality; appears to be one of the important mechanisms for adolescents' tendency to substance use. These findings can help in a better understanding of substance use potential mechanisms, screening efforts and the formulation of prevention programs.
Teeple, Andrew; Vrabel, Joseph; Kress, Wade H.; Cannia, James C.
2009-01-01
In 2005, the State of Nebraska adopted new legislation that in part requires local Natural Resources Districts to include the effect of groundwater use on surface-water systems in their groundwater management plan. In response the U.S. Geological Survey, in cooperation with the Upper Elkhorn, Lower Elkhorn, Upper Loup, Lower Loup, Middle Niobrara, Lower Niobrara, Lewis and Clark, and Lower Platte North Natural Resources Districts, did a study during 2006-07 to investigate the surface-water and groundwater interaction within a 79,800-square-kilometer area in north-central Nebraska. To determine how streambed materials affect surface-water and groundwater interaction, surface geophysical and lithologic data were integrated at four sites to characterize the hydrogeologic conditions within the study area. Frequency-domain electromagnetic and waterborne direct- current resistivity profiles were collected to map the near-surface hydrogeologic conditions along sections of Ainsworth Canal near Ainsworth, Nebraska; Mirdan and Geranium Canals near Ord, Nebraska; North Loup River near Ord, Nebraska; and Middle Loup River near Thedford, Nebraska. Lithologic data were collected from test holes at each site to aid interpretation of the geophysical data. Geostatistical analysis incorporating the spatial variability of resistivity was used to account for the effect of lithologic heterogeneity on effective hydraulic permeability. The geostatistical analysis and lithologic data descriptions were used to make an interpretation of the hydrogeologic system and derive estimates of surface-water/groundwater interaction potential within the canals and streambeds. The estimated interaction potential at the Ainsworth Canal site and the Mirdan and Geranium Canal site is generally low to moderately low. The sediment textures at nearby test holes typically were silt and clay and fine-to-medium sand. The apparent resistivity values for these sites ranged from 2 to 120 ohm-meters. The vertical and horizontal variability of the apparent resistivity data were consistently low. Low resistive variability indicates little lithologic heterogeneity for either canal site. The surface-water/groundwater interaction-potential estimates are in agreement with the narrow frequency distribution of resistivity, low apparent resistivities, low spatial heterogeneity, and test-hole grain-size ranges. The estimated surface-water/groundwater interaction potential at the North Loup and Middle Loup River sites is moderate to moderately high. The sediment textures at nearby test holes were predominantly fine, medium, and coarse sand with some silt and silty to sandy clay. The apparent resistivity values for these sites ranged from 34 to 1,338 ohm-meters. The vertical variability of the resistivity data was moderately high. The horizontal variability at these sites is low to moderately low. The higher resistive variability at these sites indicates generally greater lithologic heterogeneity than at either the Ainsworth Canal site or the Mirdan and Geranium Canal site. The surface-water/groundwater interaction-potential estimates are in agreement with the generally moderate to high apparent resistivity, the greater spatial heterogeneity, and the variable lithologic texture. A higher interaction potential as compared to the canal sites is expected because of the higher subsurface resistivity and greater lithologic heterogeneity.
NASA Astrophysics Data System (ADS)
Spandan, Vamsi; Meschini, Valentina; Ostilla-Mónico, Rodolfo; Lohse, Detlef; Querzoli, Giorgio; de Tullio, Marco D.; Verzicco, Roberto
2017-11-01
In this paper we show and discuss how the deformation dynamics of closed liquid-liquid interfaces (for example drops and bubbles) can be replicated with use of a phenomenological interaction potential model. This new approach to simulate liquid-liquid interfaces is based on the fundamental principle of minimum potential energy where the total potential energy depends on the extent of deformation of a spring network distributed on the surface of the immersed drop or bubble. Simulating liquid-liquid interfaces using this model require computing ad-hoc elastic constants which is done through a reverse-engineered approach. The results from our simulations agree very well with previous studies on the deformation of drops in standard flow configurations such as a deforming drop in a shear flow or cross flow. The interaction potential model is highly versatile, computationally efficient and can be easily incorporated into generic single phase fluid solvers to also simulate complex fluid-structure interaction problems. This is shown by simulating flow in the left ventricle of the heart with mechanical and natural mitral valves where the imposed flow, motion of ventricle and valves dynamically govern the behaviour of each other. Results from these simulations are compared with ad-hoc in-house experimental measurements. Finally, we present a simple and easy to implement parallelisation scheme, as high performance computing is unavoidable when studying large scale problems involving several thousands of simultaneously deforming bodies in highly turbulent flows.
Comparison of methods for the analysis of relatively simple mediation models.
Rijnhart, Judith J M; Twisk, Jos W R; Chinapaw, Mai J M; de Boer, Michiel R; Heymans, Martijn W
2017-09-01
Statistical mediation analysis is an often used method in trials, to unravel the pathways underlying the effect of an intervention on a particular outcome variable. Throughout the years, several methods have been proposed, such as ordinary least square (OLS) regression, structural equation modeling (SEM), and the potential outcomes framework. Most applied researchers do not know that these methods are mathematically equivalent when applied to mediation models with a continuous mediator and outcome variable. Therefore, the aim of this paper was to demonstrate the similarities between OLS regression, SEM, and the potential outcomes framework in three mediation models: 1) a crude model, 2) a confounder-adjusted model, and 3) a model with an interaction term for exposure-mediator interaction. Secondary data analysis of a randomized controlled trial that included 546 schoolchildren. In our data example, the mediator and outcome variable were both continuous. We compared the estimates of the total, direct and indirect effects, proportion mediated, and 95% confidence intervals (CIs) for the indirect effect across OLS regression, SEM, and the potential outcomes framework. OLS regression, SEM, and the potential outcomes framework yielded the same effect estimates in the crude mediation model, the confounder-adjusted mediation model, and the mediation model with an interaction term for exposure-mediator interaction. Since OLS regression, SEM, and the potential outcomes framework yield the same results in three mediation models with a continuous mediator and outcome variable, researchers can continue using the method that is most convenient to them.
Thermodynamic model of a solid with RKKY interaction and magnetoelastic coupling
NASA Astrophysics Data System (ADS)
Balcerzak, T.; Szałowski, K.; Jaščur, M.
2018-04-01
Thermodynamic description of a model system with magnetoelastic coupling is presented. The elastic, vibrational, electronic and magnetic energy contributions are taken into account. The long-range RKKY interaction is considered together with the nearest-neighbour direct exchange. The generalized Gibbs potential and the set of equations of state are derived, from which all thermodynamic functions are self-consistently obtained. Thermodynamic properties are calculated numerically for FCC structure for arbitrary external pressure, magnetic field and temperature, and widely discussed. In particular, for some parameters of interaction potential and electron concentration corresponding to antiferromagnetic phase, the existence of negative thermal expansion coefficient is predicted.
Spherical and hyperspherical harmonics representation of van der Waals aggregates
NASA Astrophysics Data System (ADS)
Lombardi, Andrea; Palazzetti, Federico; Aquilanti, Vincenzo; Grossi, Gaia; Albernaz, Alessandra F.; Barreto, Patricia R. P.; Cruz, Ana Claudia P. S.
2016-12-01
The representation of the potential energy surfaces of atom-molecule or molecular dimers interactions should account faithfully for the symmetry properties of the systems, preserving at the same time a compact analytical form. To this aim, the choice of a proper set of coordinates is a necessary precondition. Here we illustrate a description in terms of hyperspherical coordinates and the expansion of the intermolecular interaction energy in terms of hypersherical harmonics, as a general method for building potential energy surfaces suitable for molecular dynamics simulations of van der Waals aggregates. Examples for the prototypical case diatomic-molecule-diatomic-molecule interactions are shown.
Augmented reality cube game for cognitive training: an interaction study.
Boletsis, Costas; Mccallum, Simon
2014-01-01
There is the potential that cognitive activity may delay cognitive decline in people with mild cognitive impairment. Games provide both cognitive challenge and motivation for repeated use, a prerequisite for long lasting effect. Recent advances in technology introduce several new interaction methods, potentially leading to more efficient, personalized cognitive gaming experiences. In this paper, we present an Augmented Reality (AR) cognitive training game, utilizing cubes as input tools, and we test the cube interaction with a pilot study. The results of the study revealed the marker occlusion problem, and that novice AR users can adjust to the developed AR environment after a small number of sessions.
Transfer Orbit Plasma Interaction Experiment (TROPIX)
NASA Astrophysics Data System (ADS)
Hickman, Mark
Viewgraphs on the Transfer Orbit Plasma Interaction Experiment (TROPIX) are presented. Objectives of this research are (1) to map the charged particles in Earth's magnetosphere from LEO to GEO at high inclinations; (2) to measure plasma current collection and resulting shifts in vehicle electrical potential from LEO to GEO across range of orbital inclinations; (3) to study spacecraft interaction with plasma environment using solar electric propulsion (SEP) thrusters as plasma contactors; (4) to measure array degradation over mission duration; (5) to evaluate the potential of various microelectronics, spacecraft components, and instruments for future space missions; and (6) to demonstrate SEP technology applied to a flight vehicle. An overview of TROPIX is presented.
Permeability of nanonet structures constructed on the basis of carbon tubes
NASA Astrophysics Data System (ADS)
Bubenchikov, M. A.; Nikipelova, T. I.; Tsyrenova, V. B.; Chelnokova, A. S.
2017-11-01
An approximate integration of a potential of paired molecular interactions over the circumferential coordinate is used to find the potential of the interaction between a molecule and an infinite carbon nanotube (CNT). Based on the obtained energy of interaction between the tube and the molecules, local effective radii of the investigated carbon structures with respect to the molecules of the separated gas mixture are found. This makes it possible to calculate permeability of a single-layer, along with a two-layer CNT packing. The conducted research allowed calculating permeability of a nanonet structure as permeability of a two-layer packing of carbon nanotubes for the first time.
Pajón-Suárez, Pedro; Rojas-Lorenzo, Germán A; Rubayo-Soneira, Jesús; Hernández-Lamoneda, Ramón; Larrégaray, Pascal
2009-12-31
The local relaxation of solid neon subsequent to the impulsive excitation of the NO chromophore to its A(3s sigma) Ryberg state is investigated using molecular dynamics simulations. This study makes use of empirical NO(X,A)-Ne isotropic pair potentials as well as a recently developed ab initio triatomic potential energy surface for the excited state. The role of these interaction potentials is analyzed, including many-body effects. In particular, empirical potentials, designed to reproduce correctly both the NO X-A steady-state absorption and emission bands, are shown to lead to a good description of the subpicosecond relaxation dynamics. The 600 fs expansion of the electronic bubble fairly agrees with experimental data. This relatively long time scale with respect to solid Argon, which was previously attributed to the range of the NO(A)-Ne interaction, is presumably related to the quantum nature of the medium. The time-resolved local relaxation of the Ne solid is understandably intermediate between that of classical solids (e.g., Ar) and that of quantum solids (e.g., H(2)).
NASA Astrophysics Data System (ADS)
Sanyal, Tanmoy; Shell, M. Scott
2016-07-01
Bottom-up multiscale techniques are frequently used to develop coarse-grained (CG) models for simulations at extended length and time scales but are often limited by a compromise between computational efficiency and accuracy. The conventional approach to CG nonbonded interactions uses pair potentials which, while computationally efficient, can neglect the inherently multibody contributions of the local environment of a site to its energy, due to degrees of freedom that were coarse-grained out. This effect often causes the CG potential to depend strongly on the overall system density, composition, or other properties, which limits its transferability to states other than the one at which it was parameterized. Here, we propose to incorporate multibody effects into CG potentials through additional nonbonded terms, beyond pair interactions, that depend in a mean-field manner on local densities of different atomic species. This approach is analogous to embedded atom and bond-order models that seek to capture multibody electronic effects in metallic systems. We show that the relative entropy coarse-graining framework offers a systematic route to parameterizing such local density potentials. We then characterize this approach in the development of implicit solvation strategies for interactions between model hydrophobes in an aqueous environment.
Reexamination of the interaction of atoms with a LiF(001) surface
NASA Astrophysics Data System (ADS)
Miraglia, J. E.; Gravielle, M. S.
2017-02-01
Pairwise additive potentials for multielectronic atoms interacting with a LiF(001) surface are revisited by including an improved description of the electron density associated with the different lattice sites, as well as nonlocal electron density contributions. Within this model, the electron distribution around each ionic site of the crystal is described by means of a so-called "onion" approach that accounts for the influence of the Madelung potential. From such densities, binary interatomic potentials are then derived by using well-known nonlocal functionals. Rumpling and long-range contributions due to projectile polarization and van der Waals forces are also included. We apply this pairwise additive approximation to evaluate the interaction potential between closed-shell (He, Ne, Ar, Kr, and Xe) and open-shell (N, S, and Cl) atoms and the LiF surface, analyzing the relative importance of the different contributions. The performance of the proposed potentials is assessed by contrasting angular positions of rainbow and supernumerary rainbow maxima produced by fast grazing incidence with available experimental data. One important result of our model is that both van der Waals contributions and thermal lattice vibrations play a negligible role for normal energies in the eV range.
Zhong, Yang; Warren, G. Lee; Patel, Sandeep
2014-01-01
We study bulk structural and thermodynamic properties of methanol-water solutions via molecular dynamics simulations using novel interaction potentials based on the charge equilibration (fluctuating charge) formalism to explicitly account for molecular polarization at the atomic level. The study uses the TIP4P-FQ potential for water-water interactions, and the CHARMM-based (Chemistry at HARvard Molecular Mechanics) fluctuating charge potential for methanol-methanol and methanol-water interactions. In terms of bulk solution properties, we discuss liquid densities, enthalpies of mixing, dielectric constants, self-diffusion constants, as well as structural properties related to local hydrogen bonding structure as manifested in radial distribution functions and cluster analysis. We further explore the electronic response of water and methanol in the differing local environments established by the interaction of each species predominantly with molecules of the other species. The current force field for the alcohol-water interaction performs reasonably well for most properties, with the greatest deviation from experiment observed for the excess mixing enthalpies, which are predicted to be too favorable. This is qualitatively consistent with the overestimation of the methanol-water gas-phase interaction energy for the lowest-energy conformer (methanol as proton donor). Hydration free energies for methanol in TIP4P-FQ water are predicted to be −5.6±0.2 kcal/mole, in respectable agreement with the experimental value of −5.1 kcal/mole. With respect to solution micro-structure, the present cluster analysis suggests that the micro-scale environment for concentrations where select thermodynamic quantities reach extremal values is described by a bi-percolating network structure. PMID:18074339
Uddin, Reaz; Tariq, Syeda Sumayya; Azam, Syed Sikander; Wadood, Abdul; Moin, Syed Tarique
2017-08-30
Patently, Protein-Protein Interactions (PPIs) lie at the core of significant biological functions and make the foundation of host-pathogen relationships. Hence, the current study is aimed to use computational biology techniques to predict host-pathogen Protein-Protein Interactions (HP-PPIs) between MRSA and Humans as potential drug targets ultimately proposing new possible inhibitors against them. As a matter of fact this study is based on the Interolog method which implies that homologous proteins retain their ability to interact. A distant homolog approach based on Interolog method was employed to speculate MRSA protein homologs in Humans using PSI-BLAST. In addition the protein interaction partners of these homologs as listed in Database of Interacting Proteins (DIP) were predicted to interact with MRSA as well. Moreover, a direct approach using BLAST was also applied so as to attain further confidence in the strategy. Consequently, the common HP-PPIs predicted by both approaches are suggested as potential drug targets (22%) whereas, the unique HP-PPIs estimated only through distant homolog approach are presented as novel drug targets (12%). Furthermore, the most repeated entry in our results was found to be MRSA Histone Deacetylase (HDAC) which was then modeled using SWISS-MODEL. Eventually, small molecules from ZINC, selected randomly, were docked against HDAC using Auto Dock and are suggested as potential binders (inhibitors) based on their energetic profiles. Thus the current study provides basis for further in-depth analysis of such data which not only include MRSA but other deadly pathogens as well. Copyright © 2017 Elsevier B.V. All rights reserved.
Interactive energy atlas for Colorado and New Mexico: an online resource for decisionmakers
Carr, Natasha B.; Ignizio, Drew A.; Diffendorfer, James E.; Latysh, Natalie; Matherne, Ann Marie; Linard, Joshua I.; Leib, Kenneth J.; Hawkins, Sarah J.
2013-01-01
Throughout the western United States, increased demand for energy is driving the rapid development of nonrenewable and renewable energy resources. Resource managers must balance the benefits of energy development with the potential consequences for ecological resources and ecosystem services. To facilitate access to geospatial data related to energy resources, energy infrastructure, and natural resources that may be affected by energy development, the U.S. Geological Survey has developed an online Interactive Energy Atlas (Energy Atlas) for Colorado and New Mexico. The Energy Atlas is designed to meet the needs of varied users who seek information about energy in the western United States. The Energy Atlas has two primary capabilities: a geographic information system (GIS) data viewer and an interactive map gallery. The GIS data viewer allows users to preview and download GIS data related to energy potential and development in Colorado and New Mexico. The interactive map gallery contains a collection of maps that compile and summarize thematically related data layers in a user-friendly format. The maps are dynamic, allowing users to explore data at different resolutions and obtain information about the features being displayed. The Energy Atlas also includes an interactive decision-support tool, which allows users to explore the potential consequences of energy development for species that vary in their sensitivity to disturbance.
Vega-Trejo, Regina; Head, Megan L; Jennions, Michael D; Kruuk, Loeske E B
2018-01-01
The impact of environmental conditions on the expression of genetic variance and on maternal effects variance remains an important question in evolutionary quantitative genetics. We investigate here the effects of early environment on variation in seven adult life history, morphological, and secondary sexual traits (including sperm characteristics) in a viviparous poeciliid fish, the mosquitofish Gambusia holbrooki. Specifically, we manipulated food availability during early development and then assessed additive genetic and maternal effects contributions to the overall phenotypic variance in adults. We found higher heritability for female than male traits, but maternal effects variance for traits in both sexes. An interaction between maternal effects variance and rearing environment affected two adult traits (female age at maturity and male size at maturity), but there was no evidence of trade-offs in maternal effects across environments. Our results illustrate (i) the potential for pre-natal maternal effects to interact with offspring environment during development, potentially affecting traits through to adulthood and (ii) that genotype-by-environment interactions might be overestimated if maternal-by-environment interactions are not accounted for, similar to heritability being overestimated if maternal effects are ignored. We also discuss the potential for dominance genetic variance to contribute to the estimate of maternal effects variance.
Stress-induced interaction between p38 MAPK and HSP70
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gong, Xiaowei, E-mail: gongxw@fimmu.com; Luo, Tingting; Deng, Peng
2012-08-24
Highlights: Black-Right-Pointing-Pointer HSP70 interacts to p38 MAPK in vitro and in vivo. Black-Right-Pointing-Pointer HSP70 co-localizes with p38 MAPK in the nucleus upon stress. Black-Right-Pointing-Pointer HSP70 is involved in the nuclear phosphorylation of MK2 by p38 MAPK. -- Abstract: p38 MAPK, one of the four MAPK subfamilies in mammalian cells, is activated by environmental stresses and pro-inflammatory cytokines, playing fundamental roles in many biological processes. Despite all that is known on the structure and functions of p38, many questions still exist. The coupling of activation and nuclear translocation represents an important aspect of p38 signaling. In our effort in exploring themore » potential chaperone for p38 translocation, we performed an endogenous pull-down assay and identified HSP70 as a potential interacting protein of p38. We confirmed the interaction between p38 and HSP70 in vitro and in vivo, and identified their interaction domains. We also showed stress-induced nuclear co-localization of these two proteins. Our preliminary result indicated that HSP70 was related to the phosphorylation of MK2, a specific nuclear downstream target of p38, suggesting HSP70 is a potential chaperone for the nuclear translocation of p38.« less
NASA Astrophysics Data System (ADS)
Mann, W. Anthony; Cherdack, Daniel; Musial, Wojciech; Kafka, Tomas
2010-12-01
Neutrinos propagating through matter may participate in forward coherent neutral-current-like scattering arising from nonstandard interactions as well as from the Mikheyev-Smirnov-Wolfenstein matter potential Ve. We show that at fixed long baselines through matter of constant density, the nonstandard interaction potential γμτVe can contribute an additional term to the oscillation phase whose sign differs for ν¯μ versus νμ propagation in matter. Its presence can cause different apparent Δm2 to be erroneously inferred on the basis of oscillations in vacuum, with values lying above (for ν¯μ) or below (for νμ) the actual Δm322 for the case where γμτ is predominantly real-valued and of sign opposite to Δm322. A nonstandard interaction scenario invoking only ℜ(γμτ) is shown to be capable of accounting for a disparity recently reported between oscillation survival for ν¯μ and νμ fluxes measured at 735 km by the MINOS experiment. Implications for mantle traversal by atmospheric neutrinos are examined. The nonstandard interaction matter potential with nonmaximal mixing could evade conventional atmospheric neutrino analyses which do not distinguish νμ from ν¯μ on an event-by-event basis.
NASA Astrophysics Data System (ADS)
Maghari, A.; Kermani, M. M.
2018-04-01
A system of two interacting atoms confined in 1D harmonic trap and perturbed by an absorbing boundary potential is studied using the Lippmann-Schwinger formalism. The atom-atom interaction potential was considered as a nonlocal separable model. The perturbed absorbing boundary potential was also assumed in the form of Scarf II complex absorbing potential. The model is used for the study of 1D optical lattices that support the trapping of a pair atom within a unit cell. Moreover, it allows to describe the scattering particles in a tight smooth trapping surface and to analyze the bound and resonance states. The analytical expressions for wavefunctions and transition matrix as well as the absorption probabilities are calculated. A demonstration of how the complex absorbing potential affecting the bound states and resonances of particles confined in a harmonic trap is described.
Agra, R; Trizac, E; Bocquet, L
2004-12-01
The electrostatic potential of a highly charged disc (clay platelet) in an electrolyte is investigated in detail. The corresponding non-linear Poisson-Boltzmann (PB) equation is solved numerically, and we show that the far-field behaviour (relevant for colloidal interactions in dilute suspensions) is exactly that obtained within linearized PB theory, with the surface boundary condition of a uniform potential. The latter linear problem is solved by a new semi-analytical procedure and both the potential amplitude (quantified by an effective charge) and potential anisotropy coincide closely within PB and linearized PB, provided the disc bare charge is high enough. This anisotropy remains at all scales; it is encoded in a function that may vary over several orders of magnitude depending on the azimuthal angle under which the disc is seen. The results allow to construct a pair potential for discs interaction, that is strongly orientation dependent.
Potential for interaction of kava and St. John's wort with drugs.
Singh, Yadhu N
2005-08-22
The present interest and widespread use of herbal remedies has created the possibility of interaction between them and pharmaceutical drugs if they are used simultaneously. Before the recent reports of apparent hepatotoxicity associated with its use, kava (Piper methysticum Forst. F.), was one of the top 10 selling herbal remedies in Europe and North America. This adverse effect was not previously encountered with the traditional beverage which was prepared as a water infusion in contrast to the commercial products which are extracted with organic solvents. Kavalactones, the active principles in kava, are potent inhibitors of several of the CYP 450 enzymes, suggesting a high potential for causing pharmacokinetic interactions with drugs and other herbs which are metabolized by the same CYP 450 enzymes. Furthermore, some kavalactones have been shown to possess pharmacological effects, such as blockade of GABA receptors and sodium and calcium ion channels, which may lead to pharmacodynamic interactions with other substances which possess similar pharmacological proprieties. St. John's wort (Hypericum perforatum L.), used extensively for the treatment of mild to moderate clinical depression, has long been considered safer than the conventional pharmaceutical agents. However, its ability, through its active constituents hypericin, pseudohypericin and hyperforin, to induce intestinal P-glycoprotein/MRD1 and both intestinal and hepatic CYP3A4 enzyme, could markedly reduce the distribution and disposition of their co-substrates. In addition, St. John's wort is a potent uptake inhibitor of the neurotransmitters serotonin, norepinephrine and dopamine all of which have a role in mood control. Consequently, the very real potential for a pharmacodynamic interaction between the herb and pharmaceutical drugs which share this mechanism of action and, like St. John's wort, are used for mood elevation. However, presently there is very little evidence to substantiate actual pharmacokinetic and/or pharmacodynamic interaction between drugs and kava or St. John's wort. This review provides a brief overview of the existing data on interactions of kava and St. John's wort with pharmaceutical agents and as a result reveals the urgent need for detailed investigations to identify clinically significant interactions for these herbal remedies that have the potential to cause adverse effects.
Wang, Lei; Troyer, Matthias
2014-09-12
We present a new algorithm for calculating the Renyi entanglement entropy of interacting fermions using the continuous-time quantum Monte Carlo method. The algorithm only samples the interaction correction of the entanglement entropy, which by design ensures the efficient calculation of weakly interacting systems. Combined with Monte Carlo reweighting, the algorithm also performs well for systems with strong interactions. We demonstrate the potential of this method by studying the quantum entanglement signatures of the charge-density-wave transition of interacting fermions on a square lattice.
Angular-momentum couplings in ultra-long-range giant dipole molecules
NASA Astrophysics Data System (ADS)
Stielow, Thomas; Scheel, Stefan; Kurz, Markus
2018-02-01
In this article we extend the theory of ultra-long-range giant dipole molecules, formed by an atom in a giant dipole state and a ground-state alkali-metal atom, by angular-momentum couplings known from recent works on Rydberg molecules. In addition to s -wave scattering, the next higher order of p -wave scattering in the Fermi pseudopotential describing the binding mechanism is considered. Furthermore, the singlet and triplet channels of the scattering interaction as well as angular-momentum couplings such as hyperfine interaction and Zeeman interactions are included. Within the framework of Born-Oppenheimer theory, potential energy surfaces are calculated in both first-order perturbation theory and exact diagonalization. Besides the known pure triplet states, mixed-spin character states are obtained, opening up a whole new landscape of molecular potentials. We determine exact binding energies and wave functions of the nuclear rotational and vibrational motion numerically from the various potential energy surfaces.
Sterpone, Fabio; Nguyen, Phuong H; Kalimeri, Maria; Derreumaux, Philippe
2013-10-08
We have derived new effective interactions that improve the description of ion-pairs in the OPEP coarse-grained force field without introducing explicit electrostatic terms. The iterative Boltzmann inversion method was used to extract these potentials from all atom simulations by targeting the radial distribution function of the distance between the center of mass of the side-chains. The new potentials have been tested on several systems that differ in structural properties, thermodynamic stabilities and number of ion-pairs. Our modeling, by refining the packing of the charged amino-acids, impacts the stability of secondary structure motifs and the population of intermediate states during temperature folding/unfolding; it also improves the aggregation propensity of peptides. The new version of the OPEP force field has the potentiality to describe more realistically a large spectrum of situations where salt-bridges are key interactions.
NASA Technical Reports Server (NTRS)
Sokalski, W. A.; Lai, J.; Luo, N.; Sun, S.; Shibata, M.; Ornstein, R.; Rein, R.
1991-01-01
The origin of torsional potentials in H3CSSCH3, H3CSSH, and HOOH and the anisotropy of the local charge distribution has been analyzed in terms of atomic multipoles calculated from the ab initio LCAO-MO-SCF wave function in the 6-31G* basis set. The results indicate that for longer -S-S-bonds the major contribution to these torsional barriers are electrostatic interactions of the atomic multipoles located on two atoms forming the rotated bond. This finding demonstrates the important role of electrostatic 1-2 interatomic interactions, usually neglected in conformational studies. It also opens the possibility to derive directly from accurate ab initio wave functions a simple nonempirical torsional potential involving atomic multipoles of two bonded atoms defining the torsional angle. For shorter -O-O- bonds, use of more precise models and inclusion of 1-3 interactions seems to be necessary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrapak, Sergey A.; Joint Institute for High Temperatures, 125412 Moscow; Chaudhuri, Manis
We put forward an approximate method to locate the fluid-solid (freezing) phase transition in systems of classical particles interacting via a wide range of Lennard-Jones-type potentials. This method is based on the constancy of the properly normalized second derivative of the interaction potential (freezing indicator) along the freezing curve. As demonstrated recently it yields remarkably good agreement with previous numerical simulation studies of the conventional 12-6 Lennard-Jones (LJ) fluid [S.A.Khrapak, M.Chaudhuri, G.E.Morfill, Phys. Rev. B 134, 052101 (2010)]. In this paper, we test this approach using a wide range of the LJ-type potentials, including LJ n-6 and exp-6 models, andmore » find that it remains sufficiently accurate and reliable in reproducing the corresponding freezing curves, down to the triple-point temperatures. One of the possible application of the method--estimation of the freezing conditions in complex (dusty) plasmas with ''tunable'' interactions--is briefly discussed.« less
Optimal plane-wave Hartree-Fock states for many-fermion systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
de Llano, M.; Plastino, A.; Zabolitzky, J.G.
1979-12-01
The possibility of taking plane-wave orbitals of a Hartree-Fock determinant to fill k space differently from the ''normal'' Fermi sphere is investigated for several two-body potentials including the ''homework'' v/sub 0/, v/sub 1/, and v/sub 2/ - aken from the Reid nucleon-nucleon force - as well as a sum-of-Gaussians potential chosen to fit the deuteron binding and size. A random-search and random-walk numerical algorithm shows that, provided the potential strengths are made large enough, a single-shell ''abnormal'' occupation is always found to be lower in energy than the normal one if sufficient attraction is present in the two-body interaction. Nomore » abnormal occupation is possible for, among other pair interactions, the electron or charged-boson fluid, the repulsive square barrier, and a common form of the He-He interaction.« less
Coarse graining of NN inelastic interactions up to 3 GeV: Repulsive versus structural core
NASA Astrophysics Data System (ADS)
Fernández-Soler, P.; Ruiz Arriola, E.
2017-07-01
The repulsive short-distance core is one of the main paradigms of nuclear physics which even seems confirmed by QCD lattice calculations. On the other hand nuclear potentials at short distances are motivated by high energy behavior where inelasticities play an important role. We analyze NN interactions up to 3 GeV in terms of simple coarse grained complex and energy dependent interactions. We discuss two possible and conflicting scenarios which share the common feature of a vanishing wave function at the core location in the particular case of S waves. We find that the optical potential with a repulsive core exhibits a strong energy dependence whereas the optical potential with the structural core is characterized by a rather adiabatic energy dependence which allows one to treat inelasticity perturbatively. We discuss the possible implications for nuclear structure calculations of both alternatives.
Virulence properties of cariogenic bacteria
Kuramitsu, Howard K; Wang, Bing-Yan
2006-01-01
The importance of Streptococcus mutans in the etiology of dental caries has been well documented. However, there is growing recognition that the cariogenic potential of dental plaque may be determined by the composite interactions of the total plaque bacteria rather than solely the virulence properties of a single organism. This study will examine how the interactions of S. mutans with other biofilm constituents may influence the cariogenicity of plaque samples. In order to begin to investigate the effects of nonmutans streptococci on the cariogenic potential of S. mutans, we have examined the effects of Streptococcus gordonii on the virulence properties of the former organisms. These studies have indicated that S.gordonii can attenuate several potential virulence properties of S. mutans including bacteriocin production, genetic transformation, and biofilm formation. Therefore, modulation of the interactions between plaque bacteria might be a novel approach for attenuating dental caries initiation. PMID:16934112
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bross, David H.; Parmar, Payal; Peterson, Kirk A., E-mail: kipeters@wsu.edu
The first 6 ionization potentials (IPs) of the uranium atom have been calculated using multireference configuration interaction (MRCI+Q) with extrapolations to the complete basis set limit using new all-electron correlation consistent basis sets. The latter was carried out with the third-order Douglas-Kroll-Hess Hamiltonian. Correlation down through the 5s5p5d electrons has been taken into account, as well as contributions to the IPs due to the Lamb shift. Spin-orbit coupling contributions calculated at the 4-component Kramers restricted configuration interaction level, as well as the Gaunt term computed at the Dirac-Hartree-Fock level, were added to the best scalar relativistic results. The final ionizationmore » potentials are expected to be accurate to at least 5 kcal/mol (0.2 eV) and thus more reliable than the current experimental values of IP{sub 3} through IP{sub 6}.« less
Internal friction and mode relaxation in a simple chain model.
Fugmann, S; Sokolov, I M
2009-12-21
We consider the equilibrium relaxation properties of the end-to-end distance and of the principal components in a one-dimensional polymer chain model with nonlinear interaction between the beads. While for the single-well potentials these properties are similar to the ones of a Rouse chain, for the double-well interaction potentials, modeling internal friction, they differ vastly from the ones of the harmonic chain at intermediate times and intermediate temperatures. This minimal description within a one-dimensional model mimics the relaxation properties found in much more complex polymer systems. Thus, the relaxation time of the end-to-end distance may grow by orders of magnitude at intermediate temperatures. The principal components (whose directions are shown to coincide with the normal modes of the harmonic chain, whatever interaction potential is assumed) not only display larger relaxation times but also subdiffusive scaling.
Atomic basis for therapeutic activation of neuronal potassium channels
NASA Astrophysics Data System (ADS)
Kim, Robin Y.; Yau, Michael C.; Galpin, Jason D.; Seebohm, Guiscard; Ahern, Christopher A.; Pless, Stephan A.; Kurata, Harley T.
2015-09-01
Retigabine is a recently approved anticonvulsant that acts by potentiating neuronal M-current generated by KCNQ2-5 channels, interacting with a conserved Trp residue in the channel pore domain. Using unnatural amino-acid mutagenesis, we subtly altered the properties of this Trp to reveal specific chemical interactions required for retigabine action. Introduction of a non-natural isosteric H-bond-deficient Trp analogue abolishes channel potentiation, indicating that retigabine effects rely strongly on formation of a H-bond with the conserved pore Trp. Supporting this model, substitution with fluorinated Trp analogues, with increased H-bonding propensity, strengthens retigabine potency. In addition, potency of numerous retigabine analogues correlates with the negative electrostatic surface potential of a carbonyl/carbamate oxygen atom present in most KCNQ activators. These findings functionally pinpoint an atomic-scale interaction essential for effects of retigabine and provide stringent constraints that may guide rational improvement of the emerging drug class of KCNQ channel activators.
Bruun, Emmi; Virta, Lauri J; Kälviäinen, Reetta; Keränen, Tapani
2017-08-01
A study was conducted to investigate the frequency of potential pharmacokinetic drug-to-drug interactions in elderly patients with newly diagnosed epilepsy. We also investigated co-morbid conditions associated with epilepsy. From the register of Kuopio University Hospital (KUH) we identified community-dwelling patients aged 65 or above with newly diagnosed epilepsy and in whom use of the first individual antiepileptic drug (AED) began in 2000-2013 (n=529). Furthermore, register data of the Social Insurance Institution of Finland were used for assessing potential interactions in a nationwide cohort of elderly subjects with newly diagnosed epilepsy. We extracted all patients aged 65 or above who had received special reimbursement for the cost of AEDs prescribed on account of epilepsy in 2012 where their first AED was recorded in 2011-2012 as monotherapy (n=1081). Clinically relevant drug interactions (of class C or D) at the time of starting of the first AED, as assessed via the SFINX-PHARAO database, were analysed. Hypertension (67%), dyslipidemia (45%), and ischaemic stroke (32%) were the most common co-morbid conditions in the hospital cohort of patients. In these patients, excessive polypharmacy (more than 10 concomitant drugs) was identified in 27% of cases. Of the patients started on carbamazepine, 52 subjects (32%) had one class-C or class-D drug interaction and 51 (31%) had two or more C- or D-class interactions. Only 2% of the subjects started on valproate exhibited a class-C interaction. None of the subjects using oxcarbazepine displayed class-C or class-D interactions. Patients with 3-5 (OR 4.22; p=0.05) or over six (OR 8.86; p=0.003) other drugs were more likely to have C- or D-class interaction. The most common drugs with potential interactions with carbamazepine were dihydropyridine calcium-blockers, statins, warfarin, and psychotropic drugs. Elderly patients with newly diagnosed epilepsy are at high risk of clinically relevant pharmacokinetic interactions with other drugs, especially if exposed to carbamazepine, but these interactions can be controlled via rational drug choices and with prediction of the possible drug-to-drug interactions. Patients on dihydropyridine calcium-channel blockers, statins, warfarin, and risperidone face the highest risk of interactions. Copyright © 2017 Elsevier Inc. All rights reserved.
Meson-nucleus potentials and the search for meson-nucleus bound states
NASA Astrophysics Data System (ADS)
Metag, V.; Nanova, M.; Paryev, E. Ya.
2017-11-01
Recent experiments studying the meson-nucleus interaction to extract meson-nucleus potentials are reviewed. The real part of the potentials quantifies whether the interaction is attractive or repulsive while the imaginary part describes the meson absorption in nuclei. The review is focused on mesons which are sufficiently long-lived to potentially form meson-nucleus quasi-bound states. The presentation is confined to meson production off nuclei in photon-, pion-, proton-, and light-ion induced reactions and heavy-ion collisions at energies near the production threshold. Tools to extract the potential parameters are presented. In most cases, the real part of the potential is determined by comparing measured meson momentum distributions or excitation functions with collision model or transport model calculations. The imaginary part is extracted from transparency ratio measurements. Results on K+ ,K0 ,K- , η ,η‧ , ω, and ϕ mesons are presented and compared with theoretical predictions. The interaction of K+ and K0 mesons with nuclei is found to be weakly repulsive, while the K- , η ,η‧ , ω and ϕ meson-nucleus potentials are attractive, however, with widely different strengths. Because of meson absorption in the nuclear medium the imaginary parts of the meson-nucleus potentials are all negative, again with a large spread. An outlook on planned experiments in the charm sector is given. In view of the determined potential parameters, the criteria and chances for experimentally observing meson-nucleus quasi-bound states are discussed. The most promising candidates appear to be the η and η‧ mesons.
Molecular simulations of lipid-mediated protein-protein interactions.
de Meyer, Frédérick Jean-Marie; Venturoli, Maddalena; Smit, Berend
2008-08-01
Recent experimental results revealed that lipid-mediated interactions due to hydrophobic forces may be important in determining the protein topology after insertion in the membrane, in regulating the protein activity, in protein aggregation and in signal transduction. To gain insight into the lipid-mediated interactions between two intrinsic membrane proteins, we developed a mesoscopic model of a lipid bilayer with embedded proteins, which we studied with dissipative particle dynamics. Our calculations of the potential of mean force between transmembrane proteins show that hydrophobic forces drive long-range protein-protein interactions and that the nature of these interactions depends on the length of the protein hydrophobic segment, on the three-dimensional structure of the protein and on the properties of the lipid bilayer. To understand the nature of the computed potentials of mean force, the concept of hydrophilic shielding is introduced. The observed protein interactions are interpreted as resulting from the dynamic reorganization of the system to maintain an optimal hydrophilic shielding of the protein and lipid hydrophobic parts, within the constraint of the flexibility of the components. Our results could lead to a better understanding of several membrane processes in which protein interactions are involved.
CASTIN: a system for comprehensive analysis of cancer-stromal interactome.
Komura, Daisuke; Isagawa, Takayuki; Kishi, Kazuki; Suzuki, Ryohei; Sato, Reiko; Tanaka, Mariko; Katoh, Hiroto; Yamamoto, Shogo; Tatsuno, Kenji; Fukayama, Masashi; Aburatani, Hiroyuki; Ishikawa, Shumpei
2016-11-09
Cancer microenvironment plays a vital role in cancer development and progression, and cancer-stromal interactions have been recognized as important targets for cancer therapy. However, identifying relevant and druggable cancer-stromal interactions is challenging due to the lack of quantitative methods to analyze whole cancer-stromal interactome. We present CASTIN (CAncer-STromal INteractome analysis), a novel framework for the evaluation of cancer-stromal interactome from RNA-Seq data using cancer xenograft models. For each ligand-receptor interaction which is derived from curated protein-protein interaction database, CASTIN summarizes gene expression profiles of cancer and stroma into three evaluation indices. These indices provide quantitative evaluation and comprehensive visualization of interactome, and thus enable to identify critical cancer-microenvironment interactions, which would be potential drug targets. We applied CASTIN to the dataset of pancreas ductal adenocarcinoma, and successfully characterized the individual cancer in terms of cancer-stromal relationships, and identified both well-known and less-characterized druggable interactions. CASTIN provides comprehensive view of cancer-stromal interactome and is useful to identify critical interactions which may serve as potential drug targets in cancer-microenvironment. CASTIN is available at: http://github.com/tmd-gpat/CASTIN .
ERIC Educational Resources Information Center
Martin-Beltrán, Melinda
2017-01-01
Peer interactions are central to student experiences and present tremendous opportunities for language learning and consequences for educational equity, yet these opportunities have often been unrecognized and under-examined. This special issue offers new perspectives examining the potential of peer interaction to foster language, literacy and…
Designing and Producing Videotex Instruction. A Producer's Handbook.
ERIC Educational Resources Information Center
Nugent, Gwen; And Others
One of the objectives of the Nebraska Interactive Cable Project, an investigation of the educational potential of interactive cable, was to develop a design and production process for interactive cable/videotex instruction. The first part of the project involved the adaptation of three existing correspondence courses on marriage and the family,…
The Role of Scheduling in Observing Teacher-Child Interactions
ERIC Educational Resources Information Center
Cash, Anne H.; Pianta, Robert C.
2014-01-01
Observational assessment is being used on a large scale to evaluate the quality of interactions between teachers and children in classroom environments. When one performs observations at scale, features of the protocol such as the scheduling of observations can potentially influence observed scores. In this study interactions were observed for 88…
ERIC Educational Resources Information Center
Swadener, Elizabeth Blue
For one school year, the classroom and playground social behaviors of normally developing and developmentally delayed children were analyzed for the occurrence of interactions across gender, across race and ethnicity, and across developmental condition. The potential impact of teachers' nonsexist language, and encouragement of interaction among…
Stand, Harvest, and Equipment Interactions in Simulated Harvesting Prescriptions
Jingxin Wang; W. Dale Greene; Bryce J. Stokes
1998-01-01
We evaluated potential interactions of stand type, harvesting method, and equipment in an experiment using interactive simulation. We examined three felling methods (chain saw, feller-buncher, harvester) and two extraction methods (grapple skidder and forwarder) performing clearcuts, sheltenvood cuts, and single-tree selection cuts in both an uneven-aged natural stand...
Low-Income Parents' Adult Interactions at Childcare Centres
ERIC Educational Resources Information Center
Reid, Jeanne L.; Martin, Anne; Brooks-Gunn, Jeanne
2017-01-01
Little is known about the extent and nature of low-income parents' interactions with other parents and staff at childcare centres, despite the potential for these interactions to provide emotional, informational, and instrumental support. This study interviewed 51 parents at three childcare centres in low-income neighbourhoods in New York City.…
ERIC Educational Resources Information Center
Borghetti, C.; Beaven, A.; Pugliese, R.
2015-01-01
The study presented in this article aims to explore if and how intercultural learning may take place in students' class interaction. It is grounded in the assumption that interculturality is not a clear-cut feature inherent to interactions occurring when individuals with presumed different linguistic and cultural/national backgrounds talk to each…
Pedagogical Agents as Learning Companions: The Impact of Agent Emotion and Gender
ERIC Educational Resources Information Center
Kim, Yanghee; Baylor, A. L.; Shen, E.
2007-01-01
The potential of emotional interaction between human and computer has recently interested researchers in human-computer interaction. The instructional impact of this interaction in learning environments has not been established, however. This study examined the impact of emotion and gender of a pedagogical agent as a learning companion (PAL) on…
Requests, Blocking Moves, and Rational (Inter)action in Survey Introductions.
Maynard, Douglas W; Freese, Jeremy; Schaeffer, Nora Cate
2010-10-01
We draw on conversation analytic methods and research to explicate the interactional phenomenon of requesting in general and the specific case of requesting participation in survey interviews. Recent work on survey participation has given much attention to leverage-saliency theory, but has not engaged how the key concepts of this theory are exhibited in the actual unfolding interaction of interviewers and potential respondents. We do so using digitally recorded and transcribed calls to recruit participation in the 2004 Wisconsin Longitudinal Study. We describe how potential respondents present interactional environments that are relatively discouraging or encouraging, and how, in response, interviewers may be relatively cautious or presumptive in their requesting actions. We consider how the ability of interviewers to tailor their behavior to their interactional environment can affect whether the introduction reaches the point at which a request to participate is made, the form that this request takes, and the sample person's response. Our analysis contributes to understanding how we might use insights from the analysis of interaction to increase cooperation with requests to participate in surveys.
Cytoprophet: a Cytoscape plug-in for protein and domain interaction networks inference.
Morcos, Faruck; Lamanna, Charles; Sikora, Marcin; Izaguirre, Jesús
2008-10-01
Cytoprophet is a software tool that allows prediction and visualization of protein and domain interaction networks. It is implemented as a plug-in of Cytoscape, an open source software framework for analysis and visualization of molecular networks. Cytoprophet implements three algorithms that predict new potential physical interactions using the domain composition of proteins and experimental assays. The algorithms for protein and domain interaction inference include maximum likelihood estimation (MLE) using expectation maximization (EM); the set cover approach maximum specificity set cover (MSSC) and the sum-product algorithm (SPA). After accepting an input set of proteins with Uniprot ID/Accession numbers and a selected prediction algorithm, Cytoprophet draws a network of potential interactions with probability scores and GO distances as edge attributes. A network of domain interactions between the domains of the initial protein list can also be generated. Cytoprophet was designed to take advantage of the visual capabilities of Cytoscape and be simple to use. An example of inference in a signaling network of myxobacterium Myxococcus xanthus is presented and available at Cytoprophet's website. http://cytoprophet.cse.nd.edu.
DOE Office of Scientific and Technical Information (OSTI.GOV)
He, Shihan; Senter, Timothy J.; Pollock, Jonathan
2014-10-02
The protein–protein interaction (PPI) between menin and mixed lineage leukemia (MLL) plays a critical role in acute leukemias, and inhibition of this interaction represents a new potential therapeutic strategy for MLL leukemias. We report development of a novel class of small-molecule inhibitors of the menin–MLL interaction, the hydroxy- and aminomethylpiperidine compounds, which originated from HTS of ~288000 small molecules. We determined menin–inhibitor co-crystal structures and found that these compounds closely mimic all key interactions of MLL with menin. Extensive crystallography studies combined with structure-based design were applied for optimization of these compounds, resulting in MIV-6R, which inhibits the menin–MLL interactionmore » with IC 50 = 56 nM. Treatment with MIV-6 demonstrated strong and selective effects in MLL leukemia cells, validating specific mechanism of action. Our studies provide novel and attractive scaffold as a new potential therapeutic approach for MLL leukemias and demonstrate an example of PPI amenable to inhibition by small molecules.« less
Requests, Blocking Moves, and Rational (Inter)action in Survey Introductions
Maynard, Douglas W.; Freese, Jeremy; Schaeffer, Nora Cate
2011-01-01
We draw on conversation analytic methods and research to explicate the interactional phenomenon of requesting in general and the specific case of requesting participation in survey interviews. Recent work on survey participation has given much attention to leverage-saliency theory, but has not engaged how the key concepts of this theory are exhibited in the actual unfolding interaction of interviewers and potential respondents. We do so using digitally recorded and transcribed calls to recruit participation in the 2004 Wisconsin Longitudinal Study. We describe how potential respondents present interactional environments that are relatively discouraging or encouraging, and how, in response, interviewers may be relatively cautious or presumptive in their requesting actions. We consider how the ability of interviewers to tailor their behavior to their interactional environment can affect whether the introduction reaches the point at which a request to participate is made, the form that this request takes, and the sample person's response. Our analysis contributes to understanding how we might use insights from the analysis of interaction to increase cooperation with requests to participate in surveys. PMID:21691562
The interaction of MnH(X 7Σ+) with He: Ab initio potential energy surface and bound states
NASA Astrophysics Data System (ADS)
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-01
The potential energy surface of the ground state of the He-MnH(X Σ7+) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the H3e-MnH and H4e-MnH complexes.
The interaction of MnH(X 7Sigma+) with He: ab initio potential energy surface and bound states.
Turpin, Florence; Halvick, Philippe; Stoecklin, Thierry
2010-06-07
The potential energy surface of the ground state of the He-MnH(X (7)Sigma(+)) van der Waals complex is presented. Within the supermolecular approach of intermolecular energy calculations, a grid of ab initio points was computed at the multireference configuration interaction level using the aug-cc-pVQZ basis set for helium and hydrogen and the relativistic aug-cc-pVQZ-DK basis set for manganese. The potential energy surface was then fitted to a global analytical form which main features are discussed. As a first application of this potential energy surface, we present accurate calculations of bound energy levels of the (3)He-MnH and (4)He-MnH complexes.
NASA Astrophysics Data System (ADS)
Byggmästar, J.; Hodille, E. A.; Ferro, Y.; Nordlund, K.
2018-04-01
An analytical interatomic bond order potential for the Be-O system is presented. The potential is fitted and compared to a large database of bulk BeO and point defect properties obtained using density functional theory. Its main applications include simulations of plasma-surface interactions involving oxygen or oxide layers on beryllium, as well as simulations of BeO nanotubes and nanosheets. We apply the potential in a study of oxygen irradiation of Be surfaces, and observe the early stages of an oxide layer forming on the Be surface. Predicted thermal and elastic properties of BeO nanotubes and nanosheets are simulated and compared with published ab initio data.
Gasse, Christiane; Hollowell, Jennifer; Meier, Christoph R; Haefeli, Walter E
2005-09-01
Although drug interactions with warfarin are an important cause of excessive anticoagulation, their impact on the risk of serious bleeding is unknown. We therefore performed a cohort study and a nested case-control analysis to determine the risk of serious bleeding in 4152 patients (aged 40-84 years) with nonvalvular atrial fibrillation (AF) taking long-term warfarin (> 3 months). The study population was drawn from the UK General Practice Research Database. More than half (58%) of eligible patients used potentially interacting drugs during continuous warfarin treatment. Among 45 identified cases of incident idiopathic bleeds (resulting in hospitalisation within 30 days or death within 7 days) and 143 matched controls, more cases than controls took > or = 1 potentially interacting drug within the preceding 30 days (62.2% vs. 35.7%) and used > 4 drugs (polypharmacy) within the preceding 90 days (80.0% vs. 66.4%). Conditional logistic regression analysis yielded an odds ratio (OR) of 3.4 (95% confidence interval [CI]: 1.4-8.5) for the risk of serious bleeding in patients treated with warfarin and > or = 1 drugs potentially increasing the effect of warfarin vs. warfarin alone adjusted for polypharmacy, diabetes, hypertension, heart failure, and thyroid disease; the adjusted OR for the combined use of warfarin and aspirin vs. warfarin alone was 4.5 (95% CI: 1.1-18.1). We conclude that concurrent use of potentially interacting drugs with warfarin is associated with a 3 to 4.5-fold increased risk of serious bleeding in long-term warfarin users.
NASA Astrophysics Data System (ADS)
Lin, Yu-Chiao; Chen, Chun-Yu; Chen, Hsin-Lung; Hashimoto, Takeji; Chen, Show-An; Li, Yen-Cheng
2015-06-01
Using small angle X-ray scattering (SAXS), we elucidated the spatial organization of palladium (Pd) nanoparticles (NPs) in the polymer matrix of poly(2-vinylpyridine) (P2VP) and the nature of inter-nanoparticle interactions, where the NPs were synthesized in the presence of P2VP by the reduction of palladium acetylacetonate (Pd(acac)2). The experimental SAXS profiles were analysed on the basis of a hierarchical structure model considering the following two types of interparticle potential: (i) hard-core repulsion only (i.e., the hard-sphere interaction) and (ii) hard-core repulsion together with an attractive potential well (i.e., the sticky hard-sphere interaction). The corresponding theoretical scattering functions, which were used for analysing the experimental SAXS profiles, were obtained within the context of the Percus-Yevick closure and the Ornstein-Zernike equation in the fundamental liquid theory. The analyses revealed that existence of the attractive potential well is indispensable to account for the experimental SAXS profiles. Moreover, the morphology of the hybrids was found to be characterized by a hierarchical structure with three levels, where about six primary NPs with the diameter of ca. 1.8 nm (level one) formed local clusters (level two), and these clusters aggregated to build up a large-scale mass-fractal structure (level three) with the fractal dimension of ca. 2.3. The scattering function developed here is of general use for quantitatively characterizing the morphological structures of polymer/NP hybrids and, in particular, for exploring the interaction potential of the NPs on the basis of the fundamental liquid theory.
Warfarin interaction with erythromycin.
Sato, R I; Gray, D R; Brown, S E
1984-12-01
The drug interaction between warfarin and erythromycin is not well known. We report a case in which erythromycin was observed to markedly potentiate warfarin anticoagulation, resulting in hemorrhage in a patient treated for Legionella pneumonia. The morbidity of this drug interaction is enhanced in elderly patients who have infection accompanied by anorexia and/or fever and who are receiving intravenous erythromycin. The well-documented, temporal relationship established erythromycin as the interacting drug.
What Teachers Perceive--Children Receive?
ERIC Educational Resources Information Center
Algozzine, Robert
1976-01-01
Reports a study designed to ascertain the relationship between teacher perceived attractiveness and classroom interactions and suggests that "main effects" such as facial attractiveness of youngsters acts to determine individual potential for interactions with others. (MH)
DOE Office of Scientific and Technical Information (OSTI.GOV)
E. Gaffiney
2004-11-23
This report presents and documents the model components and analyses that represent potential processes associated with propagation of a magma-filled crack (dike) migrating upward toward the surface, intersection of the dike with repository drifts, flow of magma in the drifts, and post-magma emplacement effects on repository performance. The processes that describe upward migration of a dike and magma flow down the drift are referred to as the dike intrusion submodel. The post-magma emplacement processes are referred to as the post-intrusion submodel. Collectively, these submodels are referred to as a conceptual model for dike/drift interaction. The model components and analyses ofmore » the dike/drift interaction conceptual model provide the technical basis for assessing the potential impacts of an igneous intrusion on repository performance, including those features, events, and processes (FEPs) related to dike/drift interaction (Section 6.1).« less
Systematic identification of phosphorylation-mediated protein interaction switches
Wichmann, Oliver; Utz, Mathias; Andre, Timon; Minguez, Pablo; Parca, Luca; Roth, Frederick P.; Gavin, Anne-Claude; Bork, Peer; Russell, Robert B.
2017-01-01
Proteomics techniques can identify thousands of phosphorylation sites in a single experiment, the majority of which are new and lack precise information about function or molecular mechanism. Here we present a fast method to predict potential phosphorylation switches by mapping phosphorylation sites to protein-protein interactions of known structure and analysing the properties of the protein interface. We predict 1024 sites that could potentially enable or disable particular interactions. We tested a selection of these switches and showed that phosphomimetic mutations indeed affect interactions. We estimate that there are likely thousands of phosphorylation mediated switches yet to be uncovered, even among existing phosphorylation datasets. The results suggest that phosphorylation sites on globular, as distinct from disordered, parts of the proteome frequently function as switches, which might be one of the ancient roles for kinase phosphorylation. PMID:28346509
Interacting Bosons in a Double-Well Potential: Localization Regime
NASA Astrophysics Data System (ADS)
Rougerie, Nicolas; Spehner, Dominique
2018-06-01
We study the ground state of a large bosonic system trapped in a symmetric double-well potential, letting the distance between the two wells increase to infinity with the number of particles. In this context, one should expect an interaction-driven transition between a delocalized state (particles are independent and all live in both wells) and a localized state (particles are correlated, half of them live in each well). We start from the full many-body Schrödinger Hamiltonian in a large-filling situation where the on-site interaction and kinetic energies are comparable. When tunneling is negligible against interaction energy, we prove a localization estimate showing that the particle number fluctuations in each well are strongly suppressed. The modes in which the particles condense are minimizers of nonlinear Schrödinger-type functionals.
Chirality dependent interaction of ammonia with carbon nanotubes
NASA Astrophysics Data System (ADS)
Talukdar, Keka; Shantappa, Anil
2018-04-01
For the specific structure and extraordinary properties, carbon nanotubes (CNTs) have many applications in diversified fields. The interaction of CNTs with ammonia is a very interesting matter to study as it is related to the application of CNTs as ammonia sensor. Here the interaction of single walled zigzag, armchair and chiral carbon nanotubes is studied in respect of the change in energies before and after binding with ammonia by molecular dynamics simulation. Their deformation after simulation is modeled. The change of thermal conductivity of the CNTs is also found by simulation. The potential energy before and after absorption of ammonia gives useful information of the system. Thermal conductivities of the ammonia bound CNTs are changed considerably. It is observed that the potential energy and thermal conductivity both are changing for the interaction with ammonia and hence they are sensitive to ammonia binding.
Giant plasmonic energy and momentum transfer on the nanoscale
NASA Astrophysics Data System (ADS)
Durach, Maxim
We have developed a general theory of the plasmonic enhancement of many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. It is shown that this interaction has a resonant nature. We have also demonstrated that renormalized interaction is a long-ranged interaction whose intensity is considerably increased compared to bare Coulomb interaction over the entire region near the plasmonic nanostructure. We illustrate this theory by re-deriving the mirror charge potential near a metal sphere as well as the quasistatic potential behind the so-called perfect lens at the surface plasmon (SP) frequency. The dressed interaction for an important example of a metal--dielectric nanoshell is also explicitly calculated and analyzed. The renormalization and plasmonic enhancement of the Coulomb interaction is a universal effect, which affects a wide range of many-body phenomena in the vicinity of metal nanostructures: chemical reactions, scattering between charge carriers, exciton formation, Auger recombination, carrier multiplication, etc. We have described the nanoplasmonic-enhanced Forster resonant energy transfer (FRET) between quantum dots near a metal nanoshell. It is shown that this process is very efficient near high-aspect-ratio nanoshells. We have also obtained a general expression for the force exerted by an electromagnetic field on an extended polarizable object. This expression is applicable to a wide range of situations important for nanotechnology. Most importantly, this result is of fundamental importance for processes involving interaction of nanoplasmonic fields with metal electrons. Using the obtained expression for the force, we have described a giant surface-plasmon-induced drag-effect rectification (SPIDER), which exists under conditions of the extreme nanoplasmonic confinement. Under realistic conditions in nanowires, this giant SPIDER generates rectified THz potential differences up to 10V and extremely strong electric fields up to 105--10 6 V/cm. It can serve as a powerful nanoscale source of THz radiation. The giant SPIDER opens up a new field of ultraintense THz nanooptics with wide potential applications in nanotechnology and nanoscience, including microelectronics, nanoplasmonics, and biomedicine. Additionally, the SPIDER is an ultrafast effect whose bandwidth for nanometric wires is 20 THz, which allows for detection of femtosecond pulses on the nanoscale. INDEX WORDS: Nanoplasmonics, Nanoplasmonic renormalization of Coulomb interaction, Surface-plasmon enhanced Forster energy transfer (FRET), Surface-plasmon-induced drag-effect rectification (SPIDER), Nanotechnology, Plasmonics on the nanoscale, Localized surface plasmons (LSPs), Surface plasmon polaritons (SPPs)
Effects of laser radiation field on energies of hydrogen atom in plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bahar, M. K., E-mail: mussiv58@gmail.com
2015-09-15
In this study, for the first time, the Schrödinger equation with more general exponential cosine screened Coulomb (MGECSC) potential is solved numerically in the presence of laser radiation field within the Ehlotzky approximation using the asymptotic iteration method. The MGECSC potential includes four different potential forms in consideration of different sets of the parameters in the potential. By applying laser field, the total interaction potential of hydrogen atom embedded in plasmas converts to double well-type potential. The plasma screening effects under the influence of laser field as well as confinement effects of laser field on hydrogen atom in Debye andmore » quantum plasmas are investigated by solving the Schrödinger equation with the laser-dressed MGECSC potential. It is resulted that since applying a monochromatic laser field on hydrogen atom embedded in a Debye and quantum plasma causes to shift in the profile of the total interaction potential, the confinement effects of laser field on hydrogen atom in plasmas modeled by the MGECSC potential change localizations of energy states.« less
NASA Astrophysics Data System (ADS)
Heslar, John; Telnov, Dmitry A.; Chu, Shih-I.
2013-05-01
We present a self-interaction-free time-dependent density-functional theory (TDDFT) for the treatment of double-ionization processes of many-electron systems. The method is based on the extension of the Krieger-Li-Iafrate (KLI) treatment of the optimized effective potential (OEP) theory and the incorporation of an explicit self-interaction correction (SIC) term. In the framework of the time-dependent density functional theory, we have performed three-dimensional (3D) calculations of double ionization of He and Be atoms by intense near-infrared laser fields. We make use of the exchange-correlation potential with the integer discontinuity which improves the description of the double-ionization process. We found that a proper description of the double ionization requires the TDDFT exchange-correlation potential with the discontinuity with respect to the variation of the total particle number (TPN). The results for the intensity-dependent rates of double ionization of He and Be atoms are presented.
Impact of direct drug delivery via gastric access devices.
Kurien, Matthew; Penny, Hugo; Sanders, David S
2015-03-01
Gastric access devices such as nasogastric tubes and gastrostomy tubes are increasingly being used in clinical practice to provide both short- and long-term nutrition support therapy. Increasingly these devices are being utilized to help deliver oral medications, where swallowing is impaired. This concomitant administration of medications and enteral formulas could derive potential benefits in regard to time and cost; however, uncertainty exists regarding potential drug and nutrient interactions and the influence this may have on both safety and efficacy. This article provides an overview of the differing gastric access devices used in clinical practice and evaluates the evidence base for using oral medications via these routes. Alternative methods of drug administration are discussed, alongside common drug nutrient interactions and potential complications. Delivering medications via gastric access devices can be performed safely; however, careful consideration needs to be made regarding tube and patient influences, alongside drug-nutrient interactions. Improving practice in this area in the future necessitates enhancement of an evidence base to substantiate the safety of drug delivery via gastric access devices and improvement in education among healthcare professionals about the potential problems.
Interactions between recreational drugs and antiretroviral agents.
Antoniou, Tony; Tseng, Alice Lin-In
2002-10-01
To summarize existing data regarding potential interactions between recreational drugs and drugs commonly used in the management of HIV-positive patients. Information was obtained via a MEDLINE search (1966-August 2002) using the MeSH headings human immunodeficiency virus, drug interactions, cytochrome P450, medication names commonly prescribed for the management of HIV and related opportunistic infections, and names of commonly used recreational drugs. Abstracts of national and international conferences, review articles, textbooks, and references of all articles were also reviewed. Literature on pharmacokinetic interactions was considered for inclusion. Pertinent information was selected and summarized for discussion. In the absence of specific data, prediction of potential clinically significant interactions was based on pharmacokinetic and pharmacodynamic properties. All protease inhibitors (PIs) and nonnucleoside reverse transcriptase inhibitors are substrates and potent inhibitors or inducers of the cytochrome P450 system. Many classes of recreational drugs, including benzodiazepines, amphetamines, and opioids, are also metabolized by the liver and can potentially interact with antiretrovirals. Controlled interaction studies are often not available, but clinically significant interactions have been observed in a number of case reports. Overdoses secondary to interactions between the "rave" drugs methylenedioxymethamphetamine (MDMA) or gamma-hydroxybutyrate (GHB) and PIs have been reported. PIs, particularly ritonavir, may also inhibit metabolism of amphetamines, ketamine, lysergic acid diethylmide (LSD), and phencyclidine (PCP). Case series and pharmacokinetic studies suggest that nevirapine and efavirenz induce methadone metabolism, which may lead to symptoms of opiate withdrawal. A similar interaction may exist between methadone and the PIs ritonavir and nelfinavir, although the data are less consistent. Opiate metabolism can be inhibited or induced by concomitant PIs, and patients should be monitored for signs of toxicity and/or loss of analgesia. PIs should not be coadministered with midazolam and triazolam, since prolonged sedation may occur. Interactions between agents commonly prescribed for patients with HIV and recreational drugs can occur, and may be associated with serious clinical consequences. Clinicians should encourage open dialog with their patients on this topic, to avoid compromising antiretroviral efficacy and increasing the risk of drug toxicity.
Indirect Interactions in the High Arctic
Roslin, Tomas; Wirta, Helena; Hopkins, Tapani; Hardwick, Bess; Várkonyi, Gergely
2013-01-01
Indirect interactions as mediated by higher and lower trophic levels have been advanced as key forces structuring herbivorous arthropod communities around the globe. Here, we present a first quantification of the interaction structure of a herbivore-centered food web from the High Arctic. Targeting the Lepidoptera of Northeast Greenland, we introduce generalized overlap indices as a novel tool for comparing different types of indirect interactions. First, we quantify the scope for top-down-up interactions as the probability that a herbivore attacking plant species i itself fed as a larva on species j. Second, we gauge this herbivore overlap against the potential for bottom-up-down interactions, quantified as the probability that a parasitoid attacking herbivore species i itself developed as a larva on species j. Third, we assess the impact of interactions with other food web modules, by extending the core web around the key herbivore Sympistis nigrita to other predator guilds (birds and spiders). We find the host specificity of both herbivores and parasitoids to be variable, with broad generalists occurring in both trophic layers. Indirect links through shared resources and through shared natural enemies both emerge as forces with a potential for shaping the herbivore community. The structure of the host-parasitoid submodule of the food web suggests scope for classic apparent competition. Yet, based on predation experiments, we estimate that birds kill as many (8%) larvae of S. nigrita as do parasitoids (8%), and that spiders kill many more (38%). Interactions between these predator guilds may result in further complexities. Our results caution against broad generalizations from studies of limited food web modules, and show the potential for interactions within and between guilds of extended webs. They also add a data point from the northernmost insect communities on Earth, and describe the baseline structure of a food web facing imminent climate change. PMID:23826279
Bimanual Interaction with Interscopic Multi-Touch Surfaces
NASA Astrophysics Data System (ADS)
Schöning, Johannes; Steinicke, Frank; Krüger, Antonio; Hinrichs, Klaus; Valkov, Dimitar
Multi-touch interaction has received considerable attention in the last few years, in particular for natural two-dimensional (2D) interaction. However, many application areas deal with three-dimensional (3D) data and require intuitive 3D interaction techniques therefore. Indeed, virtual reality (VR) systems provide sophisticated 3D user interface, but then lack efficient 2D interaction, and are therefore rarely adopted by ordinary users or even by experts. Since multi-touch interfaces represent a good trade-off between intuitive, constrained interaction on a touch surface providing tangible feedback, and unrestricted natural interaction without any instrumentation, they have the potential to form the foundation of the next generation user interface for 2D as well as 3D interaction. In particular, stereoscopic display of 3D data provides an additional depth cue, but until now the challenges and limitations for multi-touch interaction in this context have not been considered. In this paper we present new multi-touch paradigms and interactions that combine both traditional 2D interaction and novel 3D interaction on a touch surface to form a new class of multi-touch systems, which we refer to as interscopic multi-touch surfaces (iMUTS). We discuss iMUTS-based user interfaces that support interaction with 2D content displayed in monoscopic mode and 3D content usually displayed stereoscopically. In order to underline the potential of the proposed iMUTS setup, we have developed and evaluated two example interaction metaphors for different domains. First, we present intuitive navigation techniques for virtual 3D city models, and then we describe a natural metaphor for deforming volumetric datasets in a medical context.
Hazard interactions and interaction networks (cascades) within multi-hazard methodologies
NASA Astrophysics Data System (ADS)
Gill, Joel C.; Malamud, Bruce D.
2016-08-01
This paper combines research and commentary to reinforce the importance of integrating hazard interactions and interaction networks (cascades) into multi-hazard methodologies. We present a synthesis of the differences between multi-layer single-hazard approaches and multi-hazard approaches that integrate such interactions. This synthesis suggests that ignoring interactions between important environmental and anthropogenic processes could distort management priorities, increase vulnerability to other spatially relevant hazards or underestimate disaster risk. In this paper we proceed to present an enhanced multi-hazard framework through the following steps: (i) description and definition of three groups (natural hazards, anthropogenic processes and technological hazards/disasters) as relevant components of a multi-hazard environment, (ii) outlining of three types of interaction relationship (triggering, increased probability, and catalysis/impedance), and (iii) assessment of the importance of networks of interactions (cascades) through case study examples (based on the literature, field observations and semi-structured interviews). We further propose two visualisation frameworks to represent these networks of interactions: hazard interaction matrices and hazard/process flow diagrams. Our approach reinforces the importance of integrating interactions between different aspects of the Earth system, together with human activity, into enhanced multi-hazard methodologies. Multi-hazard approaches support the holistic assessment of hazard potential and consequently disaster risk. We conclude by describing three ways by which understanding networks of interactions contributes to the theoretical and practical understanding of hazards, disaster risk reduction and Earth system management. Understanding interactions and interaction networks helps us to better (i) model the observed reality of disaster events, (ii) constrain potential changes in physical and social vulnerability between successive hazards, and (iii) prioritise resource allocation for mitigation and disaster risk reduction.
Perkins, T Alex; Phillips, Benjamin L; Baskett, Marissa L; Hastings, Alan
2013-08-01
Populations on the edge of an expanding range are subject to unique evolutionary pressures acting on their life-history and dispersal traits. Empirical evidence and theory suggest that traits there can evolve rapidly enough to interact with ecological dynamics, potentially giving rise to accelerating spread. Nevertheless, which of several evolutionary mechanisms drive this interaction between evolution and spread remains an open question. We propose an integrated theoretical framework for partitioning the contributions of different evolutionary mechanisms to accelerating spread, and we apply this model to invasive cane toads in northern Australia. In doing so, we identify a previously unrecognised evolutionary process that involves an interaction between life-history and dispersal evolution during range shift. In roughly equal parts, life-history evolution, dispersal evolution and their interaction led to a doubling of distance spread by cane toads in our model, highlighting the potential importance of multiple evolutionary processes in the dynamics of range expansion. © 2013 John Wiley & Sons Ltd/CNRS.
Energetics of protein-DNA interactions.
Donald, Jason E; Chen, William W; Shakhnovich, Eugene I
2007-01-01
Protein-DNA interactions are vital for many processes in living cells, especially transcriptional regulation and DNA modification. To further our understanding of these important processes on the microscopic level, it is necessary that theoretical models describe the macromolecular interaction energetics accurately. While several methods have been proposed, there has not been a careful comparison of how well the different methods are able to predict biologically important quantities such as the correct DNA binding sequence, total binding free energy and free energy changes caused by DNA mutation. In addition to carrying out the comparison, we present two important theoretical models developed initially in protein folding that have not yet been tried on protein-DNA interactions. In the process, we find that the results of these knowledge-based potentials show a strong dependence on the interaction distance and the derivation method. Finally, we present a knowledge-based potential that gives comparable or superior results to the best of the other methods, including the molecular mechanics force field AMBER99.
Communication during sex among female bonobos: effects of dominance, solicitation and audience
Clay, Zanna; Zuberbühler, Klaus
2012-01-01
Bonobo females frequently form close bonds, which give them social power over other group members. One potential mechanism to facilitate female bonding is the performance of sexual interactions. Using naturalistic observations and experiments, we found various patterns that determined female-female sexual interactions. First, while low-ranked females interacted with all females, sexual interactions between high-ranked females were rare. Second, during genital contacts, females sometimes produced ‘copulation calls’, which were significantly affected by the rank of the caller and partner, as well as the solicitation direction. Third, there was a significant effect of the alpha female as a bystander, while variables relating to physical experience had no effects. Overall, results highlight the importance of sexual interactions for bonobo female social relations. Copulation calls are an important tool during this process, suggesting that they have become ritualised, beyond their reproductive function, to serve as broader social signals in flexible and potentially strategic ways. PMID:22389761
Molecular electrostatics for probing lone pair-π interactions.
Mohan, Neetha; Suresh, Cherumuttathu H; Kumar, Anmol; Gadre, Shridhar R
2013-11-14
An electrostatics-based approach has been proposed for probing the weak interactions between lone pair containing molecules and π deficient molecular systems. For electron-rich molecules, the negative minima in molecular electrostatic potential (MESP) topography give the location of electron localization and the MESP value at the minimum (Vmin) quantifies the electron-rich character of that region. Interactive behavior of a lone pair bearing molecule with electron deficient π-systems, such as hexafluorobenzene, 1,3,5-trinitrobenzene, 2,4,6-trifluoro-1,3,5-triazine and 1,2,4,5-tetracyanobenzene explored within DFT brings out good correlation of the lone pair-π interaction energy (E(int)) with the Vmin value of the electron-rich system. Such interaction is found to be portrayed well with the Electrostatic Potential for Intermolecular Complexation (EPIC) model. On the basis of the precise location of MESP minimum, a prediction for the orientation of a lone pair bearing molecule with an electron deficient π-system is possible in the majority of the cases studied.
Computing by physical interaction in neurons.
Aur, Dorian; Jog, Mandar; Poznanski, Roman R
2011-12-01
The electrodynamics of action potentials represents the fundamental level where information is integrated and processed in neurons. The Hodgkin-Huxley model cannot explain the non-stereotyped spatial charge density dynamics that occur during action potential propagation. Revealed in experiments as spike directivity, the non-uniform charge density dynamics within neurons carry meaningful information and suggest that fragments of information regarding our memories are endogenously stored in structural patterns at a molecular level and are revealed only during spiking activity. The main conceptual idea is that under the influence of electric fields, efficient computation by interaction occurs between charge densities embedded within molecular structures and the transient developed flow of electrical charges. This process of computation underlying electrical interactions and molecular mechanisms at the subcellular level is dissimilar from spiking neuron models that are completely devoid of physical interactions. Computation by interaction describes a more powerful continuous model of computation than the one that consists of discrete steps as represented in Turing machines.
The triel bond: a potential force for tuning anion-π interactions
NASA Astrophysics Data System (ADS)
Esrafili, Mehdi D.; Mousavian, Parisasadat
2018-02-01
Using ab-initio calculations, the mutual influence between anion-π and B···N or B···C triel bond interactions is investigated in some model complexes. The properties of these complexes are studied by molecular electrostatic potential, noncovalent interaction index, quantum theory of atoms in molecules (QTAIM) and natural bond orbital (NBO) analyses. According to the results, the formation of B···N or B···C triel bond interactions in the multi-component systems makes a significant shortening of anion-π distance. Such remarkable variation in the anion-π distances has not been reported previously. The strengthening of the anion-π bonding in the multi-component systems depend significantly on the nature of the anion, and it becomes larger in the order Br- > Cl- > F-. The parameters derived from the QTAIM and NBO methodologies are used to study the mechanism of the cooperativity between the anion-π and triel bond interactions in the multi-component complexes.
Sickle red cell-endothelium interactions.
Kaul, Dhananjay K; Finnegan, Eileen; Barabino, Gilda A
2009-01-01
Periodic recurrence of painful vaso-occlusive crisis is the defining feature of sickle cell disease. Among multiple pathologies associated with this disease, sickle red cell-endothelium interaction has been implicated as a potential initiating mechanism in vaso-occlusive events. This review focuses on various interrelated mechanisms involved in human sickle red cell adhesion. We discuss in vitro and microcirculatory findings on sickle red cell adhesion, its potential role in vaso-occlusion, and the current understanding of receptor-ligand interactions involved in this pathological phenomenon. In addition, we discuss the contribution of other cellular interactions (leukocytes recruitment and leukocyte-red cell interaction) to vaso-occlusion, as observed in transgenic sickle mouse models. Emphasis is given to recently discovered adhesion molecules that play a predominant role in mediating human sickle red cell adhesion. Finally, we analyze various therapeutic approaches for inhibiting sickle red cell adhesion by targeting adhesion molecules and also consider therapeutic strategies that target stimuli involved in endothelial activation and initiation of adhesion.
Fang, Wei; Sheng, Guo-Ping; Wang, Long-Fei; Ye, Xiao-Dong; Yu, Han-Qing
2015-12-01
As one kind of phosphorus species, polyphosphate (poly-P) is ubiquitous in natural environments, and the potential interactions between poly-P and humic substances in the sediments or natural waters would influence the fate of poly-P in the environments. However, the mechanism of the interactions has not yet been understood clearly. In this work, the characteristics and mechanisms of the interactions between humic acids (HA) and two model poly-P compounds with various chain lengths have been investigated. Results show that a stable polyphosphate-HA complex would be formed through the noncovalent interactions, and hydrogen bond might be the main driving force for the binding process, which might be formed between the proton-accepting groups of poly-P (e.g., PO and P-O(-)) and the oxygen containing functional groups in HA. Our findings implied that the presence of humic substances in natural waters, soils and sediments would influence the potential transport and/or mobility of environmental poly-P. Copyright © 2015 Elsevier Ltd. All rights reserved.
Extension of the quasistatic far-wing line shape theory to multicomponent anisotropic potentials
NASA Technical Reports Server (NTRS)
Ma, Q.; Tipping, R. H.
1994-01-01
The formalism developed previously for the calculation of the far-wing line shape function and the corresponding absorption coefficient using a single-component anisotropic interaction term and the binary collision and quasistatic approximations is generalized to multicomponent anisotropic potential functions. Explicit expressions are presented for several common cases, including the long-range dipole-dipole plus dipole-quadrupole interaction and a linear molecule interacting with a perturber atom. After determining the multicomponent functional representation for the interaction between the CO2 and Ar from previously published data, we calculate the theoretical line shape function and the corresponding absorption due to the nu(sub 3) band of CO2 in the frequency range 2400-2580 cm(exp -1) and compare our results with previous calculations carried out using a single-component anisotropic interaction, and with the results obtained assuming Lorentzian line shapes. The principal uncertainties in the present results, possible refinements of the theoretical formalism, and the applicability to other systems are discussed briefly.
Prevalence of statin-drug interactions in older people: a systematic review.
Thai, Michele; Reeve, Emily; Hilmer, Sarah N; Qi, Katie; Pearson, Sallie-Anne; Gnjidic, Danijela
2016-05-01
Statins are among the most frequently prescribed medications internationally. Older people are commonly prescribed multiple medications and are at an increased risk of drug-drug interactions, including statin-drug interactions. The aim of this study was to conduct a systematic review of current evidence on the prevalence of statin-drug interactions in older people. A systematic search of observational studies in Embase, Medline, and PubMed was conducted. Articles were included if they were published in English during the period July 2000-July 2014 and reported on the prevalence of statin-drug interactions in people over 65 years of age. Two reviewers independently assessed the articles for eligibility and extracted the data. The search returned 1556 eligible articles. A total of 19 articles met the inclusion criteria. In studies (n = 7) that focused on statin users only, the prevalence of potential statin-drug interactions assessed using different measures ranged from 0.19 to 33.0 %. In studies that examined drug interactions across a population of both statin users and non-users (n = 12), the prevalence of potential statin-drug interactions ranged from 0.1 to 7.1 % (n = 8), and the prevalence of clinically relevant statin-drug interactions ranged from 1.5 to 4 % (n = 4). Current published evidence suggests substantial variations in the prevalence of statin-drug interactions and their clinical relevance. Further studies are necessary to provide a better understanding of the prevalence of clinically significant statin-drug interactions, the medications most frequently contributing to statin-drug interactions, and impact on relevant clinical outcomes in older people.
Optimizing Noble Gas-Water Interactions via Monte Carlo Simulations.
Warr, Oliver; Ballentine, Chris J; Mu, Junju; Masters, Andrew
2015-11-12
In this work we present optimized noble gas-water Lennard-Jones 6-12 pair potentials for each noble gas. Given the significantly different atomic nature of water and the noble gases, the standard Lorentz-Berthelot mixing rules produce inaccurate unlike molecular interactions between these two species. Consequently, we find simulated Henry's coefficients deviate significantly from their experimental counterparts for the investigated thermodynamic range (293-353 K at 1 and 10 atm), due to a poor unlike potential well term (εij). Where εij is too high or low, so too is the strength of the resultant noble gas-water interaction. This observed inadequacy in using the Lorentz-Berthelot mixing rules is countered in this work by scaling εij for helium, neon, argon, and krypton by factors of 0.91, 0.8, 1.1, and 1.05, respectively, to reach a much improved agreement with experimental Henry's coefficients. Due to the highly sensitive nature of the xenon εij term, coupled with the reasonable agreement of the initial values, no scaling factor is applied for this noble gas. These resulting optimized pair potentials also accurately predict partitioning within a CO2-H2O binary phase system as well as diffusion coefficients in ambient water. This further supports the quality of these interaction potentials. Consequently, they can now form a well-grounded basis for the future molecular modeling of multiphase geological systems.