40 CFR 86.230-11 - Test sequence: general requirements.
Code of Federal Regulations, 2011 CFR
2011-07-01
... vehicle interior climate control system shall be operated with the interior heating system on and the air... changes (e.g., engine-off logic, idle speed operation, spark advance changes) and engine control features...) Prior to the first acceleration of the test at T=20 seconds the climate control settings shall be set as...
40 CFR 86.230-11 - Test sequence: general requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... vehicle interior climate control system shall be operated with the interior heating system on and the air... changes (e.g., engine-off logic, idle speed operation, spark advance changes) and engine control features...) Prior to the first acceleration of the test at T=20 seconds the climate control settings shall be set as...
40 CFR 86.230-11 - Test sequence: general requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... vehicle interior climate control system shall be operated with the interior heating system on and the air... changes (e.g., engine-off logic, idle speed operation, spark advance changes) and engine control features...) Prior to the first acceleration of the test at T=20 seconds the climate control settings shall be set as...
40 CFR 86.230-11 - Test sequence: general requirements.
Code of Federal Regulations, 2010 CFR
2010-07-01
... vehicle interior climate control system shall be operated with the interior heating system on and the air... changes (e.g., engine-off logic, idle speed operation, spark advance changes) and engine control features...) Prior to the first acceleration of the test at T=20 seconds the climate control settings shall be set as...
Glenn Patrick Juday; Claire. Alix
2012-01-01
This paper calibrates climate controls over radial growth of floodplain white spruce (Picea glauca (Moench) Voss) and examines whether growth in these populations responds similarly to climate as upland trees in Interior Alaska. Floodplain white spruce trees hold previously unrecognized potential for long-term climate reconstruction because they...
Climatology of the interior Columbia River basin.
Sue A. Ferguson
1999-01-01
This work describes climate means and trends in each of three major ecological zones and 13 ecological reporting units in the interior Columbia River basin. Widely differing climates help define each major zone and reporting unit, the pattern of which is controlled by three competing air masses: marine, continental, and arctic. Paleoclimatic evidence and historical...
Nonlinear responses of white spruce growth to climate variability in interior Alaska
A.H. Lloyd; P.A. Duffy; D.H. Mann
2013-01-01
Ongoing warming at high latitudes is expected to lead to large changes in the structure and function of boreal forests. Our objective in this research is to determine the climatic controls over the growth of white spruce (Picea glauca (Moench) Voss) at the warmest driest margins of its range in interior Alaska. We then use those relationships to...
Solar Powered Automobile Interior Climate Control System
NASA Technical Reports Server (NTRS)
Howard, Richard T. (Inventor)
2003-01-01
There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.
Quantifying Direct and Indirect Impact of Future Climate on Sub-Arctic Hydrology
NASA Astrophysics Data System (ADS)
Endalamaw, A. M.; Bolton, W. R.; Young-Robertson, J. M.; Morton, D.; Hinzman, L. D.
2016-12-01
Projected future climate will have a significant impact on the hydrology of interior Alaskan sub-arctic watersheds, directly though the changes in precipitation and temperature patterns, and indirectly through the cryospheric and ecological impacts. Although the latter is the dominant factor controlling the hydrological processes in the interior Alaska sub-arctic, it is often overlooked in many climate change impact studies. In this study, we aim to quantify and compare the direct and indirect impact of the projected future climate on the hydrology of the interior Alaskan sub-arctic watersheds. The Variable Infiltration Capacity (VIC) meso-scale hydrological model will be implemented to simulate the hydrological processes, including runoff, evapotranspiration, and soil moisture dynamics in the Chena River Basin (area = 5400km2), located in the interior Alaska sub-arctic region. Permafrost and vegetation distribution will be derived from the Geophysical Institute Permafrost Lab (GIPL) model and the Lund-Potsdam-Jena Dynamic Global Model (LPJ) model, respectively. All models will be calibrated and validated using historical data. The Scenario Network for Alaskan and Arctic Planning (SNAP) 5-model average projected climate data products will be used as forcing data for each of these models. The direct impact of climate change on hydrology is estimated using surface parameterization derived from the present day permafrost and vegetation distribution, and future climate forcing from SNAP projected climate data products. Along with the projected future climate, outputs of GIPL and LPJ will be incorporated into the VIC model to estimate the indirect and overall impact of future climate on the hydrology processes in the interior Alaskan sub-arctic watersheds. Finally, we will present the potential hydrological and ecological changes by the end of the 21st century.
40 CFR 80.1450 - What are the registration requirements under the RFS program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... buildings to control ambient climate for human comfort, and no other purpose. (B) Affidavits from the final... of heating interior spaces of homes or buildings to control ambient climate for human comfort, and no....—(1) Any producer of renewable fuel, and any foreign ethanol producer who makes changes to his...
2016-08-21
USER GUIDE Research Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska SERDP Project...Summary: Projecting Vegetation and Wildfire Response to Changing Climate and Fire Management in Interior Alaska 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...forecast landscape change in response to projected changes in climate , fire regime, and fire management. 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION OF
Long-term monitoring of climatic and nutritional affects on tree growth in interior Alaska
J. Yarie; K. Van Cleve
2010-01-01
The comparative analysis of a large set of long-term fertilization and thinning studies in the major forest types of interior Alaska is summarized. Results indicate that nutrient limitations may only occur during the early spring growth period, after which moisture availability is the primary control of tree growth on warm sites. The temperature dynamics of both air...
Interior shadings for office indoor visual comfort in humid climate region
NASA Astrophysics Data System (ADS)
Dinapradipta, Asri; Sudarma, Erwin; Defiana, Ima; Erwindi, Collinthia
2018-03-01
As part of the fenestration system, the interior shadings have also a role to control the indoor environment to maintain indoor visual comfort. As the occupants have personal access to control these, their control behavior then, might enhance or even worsen indoor comfort performance. The controlling behavior might not only influence indoor comfort performance but can also indicate the success or failure of interior shading as a control device element. This paper is intended to report control behavior patterns, as represented by the variety of the slats’ openings of two types of interior shading i.e. Venetian and Vertical blinds and to analyze these on the concurrent impacts to indoor office building’s indoor illuminance and luminance distribution. The purpose of this research is to figure out the shading control patterns as well as to examine the effectiveness of these two types of interior shadings to control indoor visual environment. This study is a quantitative research using experimentation on the slats’ opening of two types of shadings at two identical office rooms. The research results suggested that both types of blinds seem unsuitable for gaining proper illumination values at work planes in humid tropics area. However, these shadings demonstrate good performance for luminance distribution except for that of the closed Venetian blinds.
40 CFR 86.1868-12 - CO2 credits for improving the efficiency of air conditioning systems.
Code of Federal Regulations, 2014 CFR
2014-07-01
..., engine displacement, transmission class and configuration, interior volume, climate control system type... Creditvalue (g/mi) Reduced reheat, with externally-controlled, variable-displacement compressor (e.g. a compressor that controls displacement based on temperature setpoint and/or cooling demand of the air...
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-27
... capacity, and those of other science partners. Information from this collection will be used to evaluate... DEPARTMENT OF THE INTERIOR United States Geological Survey Agency Information Collection Activities: Department of the Interior Regional Climate Science Centers AGENCY: United States Geological...
Bähner, K W; Zweig, K A; Leal, I R; Wirth, R
2017-10-01
Forest fragmentation and climate change are among the most severe and pervasive forms of human impact. Yet, their combined effects on plant-insect herbivore interaction networks, essential components of forest ecosystems with respect to biodiversity and functioning, are still poorly investigated, particularly in temperate forests. We addressed this issue by analysing plant-insect herbivore networks (PIHNs) from understories of three managed beech forest habitats: small forest fragments (2.2-145 ha), forest edges and forest interior areas within three continuous control forests (1050-5600 ha) in an old hyper-fragmented forest landscape in SW Germany. We assessed the impact of forest fragmentation, particularly edge effects, on PIHNs and the resulting differences in robustness against climate change by habitat-wise comparison of network topology and biologically realistic extinction cascades of networks following scores of vulnerability to climate change for the food plant species involved. Both the topological network metrics (complexity, nestedness, trophic niche redundancy) and robustness to climate change strongly increased in forest edges and fragments as opposed to the managed forest interior. The nature of the changes indicates that human impacts modify network structure mainly via host plant availability to insect herbivores. Improved robustness of PIHNs in forest edges/small fragments to climate-driven extinction cascades was attributable to an overall higher thermotolerance across plant communities, along with positive effects of network structure. The impoverishment of PIHNs in managed forest interiors and the suggested loss of insect diversity from climate-induced co-extinction highlight the need for further research efforts focusing on adequate silvicultural and conservation approaches.
E.E. Jafarov; V.E. Romanovsky; H. Genet; A.D. McGuire; S.S. Marchenko
2013-01-01
Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1)...
43 CFR 23.5 - Technical examination of prospective surface exploration and mining operations.
Code of Federal Regulations, 2012 CFR
2012-10-01
... mining operations vary widely with respect to topography, climate, surrounding land uses, proximity to... lowering of water quality below standards established by the appropriate State water pollution control... to the State water pollution control agency and to the Department of the Interior that such lowering...
43 CFR 23.5 - Technical examination of prospective surface exploration and mining operations.
Code of Federal Regulations, 2013 CFR
2013-10-01
... mining operations vary widely with respect to topography, climate, surrounding land uses, proximity to... lowering of water quality below standards established by the appropriate State water pollution control... to the State water pollution control agency and to the Department of the Interior that such lowering...
43 CFR 23.5 - Technical examination of prospective surface exploration and mining operations.
Code of Federal Regulations, 2011 CFR
2011-10-01
... mining operations vary widely with respect to topography, climate, surrounding land uses, proximity to... lowering of water quality below standards established by the appropriate State water pollution control... to the State water pollution control agency and to the Department of the Interior that such lowering...
43 CFR 23.5 - Technical examination of prospective surface exploration and mining operations.
Code of Federal Regulations, 2014 CFR
2014-10-01
... mining operations vary widely with respect to topography, climate, surrounding land uses, proximity to... lowering of water quality below standards established by the appropriate State water pollution control... to the State water pollution control agency and to the Department of the Interior that such lowering...
Does Nudging Squelch the Extremes in Regional Climate Modeling?
An important question in regional climate downscaling is whether to constrain (nudge) the interior of the limited-area domain toward the larger-scale driving fields. Prior research has demonstrated that interior nudging can increase the skill of regional climate predictions origin...
Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia
NASA Astrophysics Data System (ADS)
Liu, Suzhen; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig A.; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang
2015-01-01
The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8 ka and decrease at ~5.9 ka in Dali Lake coincided respectively with the onset and termination of the HWP, and are respectively linked to increased nutrient supply due to postglacial warming and poor nutrition due to drying at ~6 ka in the Asian interior. The two-stage transition at ~7.7 ka correlates well with increased organic carbon in middle HWP and suggests that improved climate conditions, leading to high quality nutrient influx, fostered magnetofossil proliferation. Our findings represent an excellent lake record in which magnetofossil abundance is, through nutrient availability, controlled by insolation driven climate changes.
Insolation driven biomagnetic response to the Holocene Warm Period in semi-arid East Asia.
Liu, Suzhen; Deng, Chenglong; Xiao, Jule; Li, Jinhua; Paterson, Greig A; Chang, Liao; Yi, Liang; Qin, Huafeng; Pan, Yongxin; Zhu, Rixiang
2015-01-23
The Holocene Warm Period (HWP) provides valuable insights into the climate system and biotic responses to environmental variability and thus serves as an excellent analogue for future global climate changes. Here we document, for the first time, that warm and wet HWP conditions were highly favourable for magnetofossil proliferation in the semi-arid Asian interior. The pronounced increase of magnetofossil concentrations at ~9.8 ka and decrease at ~5.9 ka in Dali Lake coincided respectively with the onset and termination of the HWP, and are respectively linked to increased nutrient supply due to postglacial warming and poor nutrition due to drying at ~6 ka in the Asian interior. The two-stage transition at ~7.7 ka correlates well with increased organic carbon in middle HWP and suggests that improved climate conditions, leading to high quality nutrient influx, fostered magnetofossil proliferation. Our findings represent an excellent lake record in which magnetofossil abundance is, through nutrient availability, controlled by insolation driven climate changes.
Climate Science Centers: Growing Federal and Academic Expertise in the Nation's Interests
NASA Astrophysics Data System (ADS)
Ryker, S. J.
2014-12-01
The U.S. Department of the Interior's (Interior) natural and cultural resource managers face increasingly complex challenges exacerbated by climate change. In 2009, under Secretarial Order 3289, Interior created eight regional Climate Science Centers managed by the U.S. Geological Survey's (USGS) National Climate Change and Wildlife Science Center and in partnership with universities. Secretarial Order 3289 provides a framework to coordinate climate change science and adaptation efforts across Interior and to integrate science and resource management expertise from Federal, State, Tribal, private, non-profit, and academic partners. In addition to broad research expertise, these Federal/university partnerships provide opportunities to develop a next generation of climate science professionals. These include opportunities to increase the climate science knowledge base of students and practicing professionals; build students' skills in working across the boundary between research and implementation; facilitate networking among researchers, students, and professionals for the application of research to on-the-ground issues; and support the science pipeline in climate-related fields through structured, intensive professional development. In 2013, Climate Science Centers supported approximately 10 undergraduates, 60 graduate students, and 26 postdoctoral researchers. Additional students trained by Climate Science Center-affiliated faculty also contribute valuable time and expertise, and are effectively part of the Climate Science Center network. The Climate Science Centers' education and training efforts have also reached a number of high school students interested in STEM careers, and professionals in natural and cultural resource management. The Climate Science Centers are coordinating to build on each other's successful education and training efforts. Early successes include several intensive education experiences, such as the Alaska Climate Science Center's Girls on Ice, the Northeast's Consortium Retreat, the Northwest's Climate Science Boot Camp; the whole-network Early Career Climate Forum; the South Central Climate Science Center's Minority Internship; and a growing curriculum through Interior's National Conservation Training Center.
Deborah M. Finch
2012-01-01
Recent research and species distribution modeling predict large changes in the distributions of species and vegetation types in the western interior of the United States in response to climate change. This volume reviews existing climate models that predict species and vegetation changes in the western United States, and it synthesizes knowledge about climate change...
Seasonal patterns of climate controls over nitrogen fixation by Alnus viridis subsp
Jennifer S. Mitchell; Roger W. Ruess
2009-01-01
Patterns of and controls over N2 fixation by green alder were studied in post-fire, mid-succession, and white spruce upland forests in interior Alaska, focusing on the hypothesis that ecosystem-level nitrogen (N) inputs decrease with successional development. N2-fixation rates tracked plant phenology during the 1997 (...
Resilience of Athabascan subsistence systems to interior Alaska's changing climate
Gary P. Kofinas; F. Stuart Chapin; Shauna BurnSilver; Jennifer I. Schmidt; Nancy L. Fresco; Knut Kielland; Stephanie Martin; Anna Springsteen; T. Scott Rupp
2010-01-01
Subsistence harvesting and wild food production by Athabascan peoples is part of an integrated social-ecological system of interior Alaska. We describe effects of recent trends and future climate change projections on the boreal ecosystem of interior Alaska and relate changes in ecosystem services to Athabascan subsistence. We focus primarily on moose, a keystone...
Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska
Trainor, Sarah F.; Calef, Monika; Natcher, David; Chapin, F. Stuart; McGuire, A. David; Huntington, Orville; Duffy, Paul A.; Rupp, T. Scott; DeWilde, La'Ona; Kwart, Mary; Fresco, Nancy; Lovecraft, Amy Lauren
2009-01-01
This paper explores whether fundamental differences exist between urban and rural vulnerability to climate-induced changes in the fire regime of interior Alaska. We further examine how communities and fire managers have responded to these changes and what additional adaptations could be put in place. We engage a variety of social science methods, including demographic analysis, semi-structured interviews, surveys, workshops and observations of public meetings. This work is part of an interdisciplinary study of feedback and interactions between climate, vegetation, fire and human components of the Boreal forest social–ecological system of interior Alaska. We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources and institutional connections vary between urban and rural communities. These differences depend largely on social, economic and institutional factors, and are not necessarily related to biophysical climate impacts per se. Fire management and suppression action motivated by political, economic or other pressures can serve as unintentional or indirect adaptation to climate change. However, this indirect response alone may not sufficiently reduce vulnerability to a changing fire regime. More deliberate and strategic responses may be required, given the magnitude of the expected climate change and the likelihood of an intensification of the fire regime in interior Alaska.
... American Indians Other Interior Offices Priorities American Energy Climate Change Jobs Regulatory Reform Stewardship Tribal Nations Join Jobs ... Secretary Bureaus For Employees Our Priorities American Energy Climate Change Jobs Regulatory Reform Stewardship Tribal Nations Resources Cobell / ...
NASA Astrophysics Data System (ADS)
Nolte, C. G.; Otte, T. L.; Bowden, J. H.; Otte, M. J.
2010-12-01
There is disagreement in the regional climate modeling community as to the appropriateness of the use of internal nudging. Some investigators argue that the regional model should be minimally constrained and allowed to respond to regional-scale forcing, while others have noted that in the absence of interior nudging, significant large-scale discrepancies develop between the regional model solution and the driving coarse-scale fields. These discrepancies lead to reduced confidence in the ability of regional climate models to dynamically downscale global climate model simulations under climate change scenarios, and detract from the usability of the regional simulations for impact assessments. The advantages and limitations of interior nudging schemes for regional climate modeling are investigated in this study. Multi-year simulations using the WRF model driven by reanalysis data over the continental United States at 36km resolution are conducted using spectral nudging, grid point nudging, and for a base case without interior nudging. The means, distributions, and inter-annual variability of temperature and precipitation will be evaluated in comparison to regional analyses.
40 CFR 80.1451 - What are the reporting requirements under the RFS program?
Code of Federal Regulations, 2014 CFR
2014-07-01
... interior spaces of homes or buildings to control ambient climate for human comfort, and for no other... explanation of any change in land use from the previous year. (4) On an annual basis, the report from an...
A.D. McGuire; R.W. Ruess; A. Lloyd; J. Yarie; J.S. Clein; G.P. Juday
2010-01-01
This paper integrates dendrochronological, demographic, and experimental perspectives to improve understanding of the response of white spruce (Picea glauca (Moench) Voss) tree growth to climatic variability in interior Alaska. The dendrochronological analyses indicate that climate warming has led to widespread declines in white spruce growth...
Vulnerability and adaptation to climate-related fire impacts in rural and urban interior Alaska
Sarah F. Trainor; Monika Calef; David Natcher; F. Stuart Chapin; A. David McGuire; Orville Huntington; Paul Duffy; T. Scott Rupp; La' Ona DeWilde; Mary Kwart; Nancy Fresco; Amy Lauren Lovecraft
2009-01-01
We have learned that although urban and rural communities in interior Alaska face similar increased exposure to wildfire as a result of climate change, important differences exist in their sensitivity to these biophysical, climate-induced changes. In particular, reliance on wild foods, delayed suppression response, financial resources, and institutional connections...
NASA Astrophysics Data System (ADS)
Štaffenová, Daniela; Rybárik, Ján; Jakubčík, Miroslav
2017-06-01
The aim of experimental research in the area of exterior walls and windows suitable for wooden buildings was to build special pavilion laboratories. These laboratories are ideally isolated from the surrounding environment, airtight and controlled by the constant internal climate. The principle of experimental research is measuring and recording of required physical parameters (e.g. temperature or relative humidity). This is done in layers of experimental fragment sections in the direction from exterior to interior, as well as in critical places by stable interior and real exterior climatic conditions. The outputs are evaluations of experimental structures behaviour during the specified time period, possibly during the whole year by stable interior and real exterior boundary conditions. The main aim of this experimental research is processing of long-term measurements of experimental structures and the subsequent analysis. The next part of the research consists of collecting measurements obtained with assistance of the experimental detached weather station, analysis, evaluation for later setting up of reference data set for the research locality, from the point of view of its comparison to the data sets from Slovak Hydrometeorological Institute (SHMU) and to localities with similar climate conditions. Later on, the data sets could lead to recommendations for design of wooden buildings.
Seth J. Wenger; Daniel J. Isaak; Jason B. Dunham; Kurt D. Fausch; Charlie Luce; Helen M. Neville; Bruce E. Rieman; Michael K. Young; David E. Nagel; Dona L. Horan; Gwynne L. Chandler
2011-01-01
Recent and projected climate warming trends have prompted interest in impacts on coldwater fishes. We examined the role of climate (temperature and flow regime) relative to geomorphology and land use in determining the observed distributions of three trout species in the interior Columbia River Basin, USA. We considered two native species, cutthroat trout (Oncorhynchus...
Varela Minder, Elda; Padgett, Holly A.
2015-10-27
The National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) had another exciting year in 2014. The NCCWSC moved toward focusing their science funding on several high priority areas and, along with the CSCs, gained new agency partners; contributed to various workshops, meetings, publications, student activities, and Tribal/indigenous activities; increased outreach; and more.
Modeling tree growth and stable isotope ratios of white spruce in western Alaska.
NASA Astrophysics Data System (ADS)
Boucher, Etienne; Andreu-Hayles, Laia; Field, Robert; Oelkers, Rose; D'Arrigo, Rosanne
2017-04-01
Summer temperatures are assumed to exert a dominant control on physiological processes driving forest productivity in interior Alaska. However, despite the recent warming of the last few decades, numerous lines of evidence indicate that the enhancing effect of summer temperatures on high latitude forest populations has been weakening. First, satellite-derived indices of photosynthetic activity, such as the Normalized-Difference Vegetation Index (NDVI, 1982-2005), show overall declines in productivity in the interior boreal forests. Second, some white spruce tree ring series strongly diverge from summer temperatures during the second half of the 20th century, indicating a persistent loss of temperature sensitivity of tree ring proxies. Thus, the physiological response of treeline forests to ongoing climate change cannot be accurately predicted, especially from correlation analysis. Here, we make use of a process-based dendroecological model (MAIDENiso) to elucidate the complex linkages between global warming and increases in atmospheric CO2 concentration [CO2] with the response of treeline white spruce stands in interior Alaska (Seward). In order to fully capture the array of processes controlling tree growth in the area, multiple physiological indicators of white spruce productivity are used as target variables: NDVI images, ring widths (RW), maximum density (MXD) and newly measured carbon and oxygen stable isotope ratios from ring cellulose. Based on these data, we highlight the processes and mechanisms responsible for the apparent loss of sensitivity of white spruce trees to recent climate warming and [CO2] increase in order to elucidate the sensitivity and vulnerability of these trees to climate change.
NASA Astrophysics Data System (ADS)
Bowden, Jared H.; Nolte, Christopher G.; Otte, Tanya L.
2013-04-01
The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscaling of global climate model (GCM) output for air quality applications under a changing climate. In this study we downscale the NCEP-Department of Energy Atmospheric Model Intercomparison Project (AMIP-II) Reanalysis using three continuous 20-year WRF simulations: one simulation without interior grid nudging and two using different interior grid nudging methods. The biases in 2-m temperature and precipitation for the simulation without interior grid nudging are unreasonably large with respect to the North American Regional Reanalysis (NARR) over the eastern half of the contiguous United States (CONUS) during the summer when air quality concerns are most relevant. This study examines how these differences arise from errors in predicting the large-scale atmospheric circulation. It is demonstrated that the Bermuda high, which strongly influences the regional climate for much of the eastern half of the CONUS during the summer, is poorly simulated without interior grid nudging. In particular, two summers when the Bermuda high was west (1993) and east (2003) of its climatological position are chosen to illustrate problems in the large-scale atmospheric circulation anomalies. For both summers, WRF without interior grid nudging fails to simulate the placement of the upper-level anticyclonic (1993) and cyclonic (2003) circulation anomalies. The displacement of the large-scale circulation impacts the lower atmosphere moisture transport and precipitable water, affecting the convective environment and precipitation. Using interior grid nudging improves the large-scale circulation aloft and moisture transport/precipitable water anomalies, thereby improving the simulated 2-m temperature and precipitation. The results demonstrate that constraining the RCM to the large-scale features in the driving fields improves the overall accuracy of the simulated regional climate, and suggest that in the absence of such a constraint, the RCM will likely misrepresent important large-scale shifts in the atmospheric circulation under a future climate.
This study evaluates interior nudging techniques using the Weather Research and Forecasting (WRF) model for regional climate modeling over the conterminous United States (CONUS) using a two-way nested configuration. NCEP–Department of Energy Atmospheric Model Intercomparison Pro...
Jafarov, Elchin E.; Romanovsky, Vladimir E.; Genet, Helene; McGuire, Anthony David; Marchenko, Sergey S.
2013-01-01
Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling–sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, ~80 cm) and upland (with thin organic layers, ~30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.
Climate sensitivity of thinleaf alder growth on an interior Alaska floodplain
Dana R. Nossov; Roger W. Ruess; Teresa N. Hollingsworth
2010-01-01
This study examined the climate sensitivity of the growth of riparian Alnus incana ssp. tenuifolia (thinleaf alder), a keystone nitrogen-fixer, on the Tanana River floodplain of interior Alaska. We investigated correlations between alder radial growth and inter-annual variation in monthly meteorology and hydrology, spatial...
Emily L. Bernhardt; Teresa N. Hollingsworth; F. Stuart Chapin
2011-01-01
Question: How do pre-fire conditions (community composition and environmental characteristics) and climate-driven disturbance characteristics (fire severity) affect post-fire community composition in black spruce stands? Location: Northern boreal forest, interior Alaska. Methods: We compared plant community composition and environmental stand characteristics in 14...
40 CFR 86.167-17 - AC17 Air Conditioning Emissions Test Procedure.
Code of Federal Regulations, 2013 CFR
2013-07-01
... tolerances (such as may occur during gear changes) are acceptable provided they occur for less than 2 seconds... setting changed to “outside air.” (l) Test procedure. The AC17 air conditioning test is composed of the..., interior volume, climate control system type and characteristics, refrigerant used, compressor type, and...
Vasey, Michael C; Parker, V Thomas; Holl, Karen D; Loik, Michael E; Hiatt, Seth
2014-09-01
We investigated the hypothesis that maritime climatic factors associated with summer fog and low cloud stratus (summer marine layer) help explain the compositional diversity of chaparral in the coast range of central California. We randomly sampled chaparral species composition in 0.1-hectare plots along a coast-to-interior gradient. For each plot, climatic variables were estimated and soil samples were analyzed. We used Cluster Analysis and Principle Components Analysis to objectively categorize plots into climate zone groups. Climate variables, vegetation composition and various diversity measures were compared across climate zone groups using ANOVA and nonmetric multidimensional scaling. Differences in climatic variables that relate to summer moisture availability and winter freeze events explained the majority of variance in measured conditions and coincided with three chaparral assemblages: maritime (lowland coast where the summer marine layer was strongest), transition (upland coast with mild summer marine layer influence and greater winter precipitation), and interior sites that generally lacked late summer water availability from either source. Species turnover (β-diversity) was higher among maritime and transition sites than interior sites. Coastal chaparral differs from interior chaparral in having a higher obligate seeder to facultative seeder (resprouter) ratio and by being dominated by various Arctostaphylos species as opposed to the interior dominant, Adenostoma fasciculatum. The maritime climate influence along the California central coast is associated with patterns of woody plant composition and β-diversity among sites. Summer fog in coastal lowlands and higher winter precipitation in coastal uplands combine to lower late dry season water deficit in coastal chaparral and contribute to longer fire return intervals that are associated with obligate seeders and more local endemism. Soil nutrients are comparatively less important in explaining plant community composition, but heterogeneous azonal soils contribute to local endemism and promote isolated chaparral patches within the dominant forest vegetation along the coast.
Emerging climate change signals in the interior ocean oxygen content
NASA Astrophysics Data System (ADS)
Tjiputra, Jerry; Goris, Nadine; Schwinger, Jörg; Lauvset, Siv
2017-04-01
Earth System Models (ESMs) indicate that human-induced climate change will introduce spatially heterogeneous modifications of dissolved oxygen in the North Atlantic. In the upper ocean, an increase (decrease) is predicted at low (high) latitude. Oxygen increase is driven by a reduction of the oxygen consumption for biological remineralization while warming-induced reduction in air-sea fluxes and increase in remineralization due to weaker overturning circulation lead to the projected decrease. In the interior ocean, modifications in the apparent oxygen utilization (AOU) dominate the overall oxygen changes. Moreover, for the southern subpolar gyre, both observations and model hindcast indicate a close relationship between interior ocean oxygen and the subpolar gyre index. Over the 21st century, all ESMs consistently project a steady weakening of this index and consequently the oxygen. Our finding shows that climate change-induced oxygen depletion in the interior has likely occurred and can already be detected. Nevertheless, considering the observational uncertainties, we show that in the proximity of southern subpolar gyre the projected interior trend is sufficiently large enough for early detection.
Department of the Interior Climate Science Centers
Jones, Sonya A.
2011-01-01
What is a Climate Science Center? On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs), which will integrate DOI science and management expertise with similar contributions from our partners to provide information to support adaptation and mitigation efforts on both public and private lands, across the United States and internationally.The Southeast CSC, hosted by NC State University (NCSU), will collaborate with a number of other universities, State and Federal agencies, and nongovernmental organizations (NGOs) with interest and expertise in climate science. The primary partner for the Southeast CSC will be the Landscape Conservation Cooperatives (LCCs) in the Southeast, including the Appalachian, Gulf Coastal Plains and Ozarks, Gulf Coast Prairie, Peninsular Florida, and the South Atlantic. CSC collaborations are focused on common science priorities, addressing priority partner needs, minimizing redundancies in science, sharing scientific findings, and expanding understanding of climate change impacts in the Southeast.
Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallahi, A.; Duraschlag, H.; Elliott, D.
2013-12-01
This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulk insulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses amore » radiant barrier composed of two aluminum foils combined with an enclosed reflective air space and the second uses spray-applied interior radiation control coatings (IRCC).« less
Internal Roof and Attic Thermal Radiation Control Retrofit Strategies for Cooling-Dominated Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fallahi, A.; Durschlag, H.; Elliott, D.
2013-12-01
This project evaluates the cooling energy savings and cost effectiveness of radiation control retrofit strategies for residential attics in U.S. cooling-dominated climates. Usually, in residential applications, radiation control retrofit strategies are applied below the roof deck or on top of the attic floor insulation. They offer an alternative option to the addition of conventional bulkinsulation such as fiberglass or cellulose insulation. Radiation control is a potentially low-cost energy efficiency retrofit strategy that does not require significant changes to existing homes. In this project, two groups of low-cost radiation control strategies were evaluated for southern U.S. applications. One uses a radiantmore » barrier composed of two aluminum foils combined with an enclosedreflective air space and the second uses spray-applied interior radiation control coatings (IRCC).« less
Regional relationships between climate and wildfire-burned area in the interior West, USA
Brandon M. Collins; Philip N. Omi; Phillip L. Chapman
2006-01-01
Recent studies have linked the Atlantic Multtidecadal Oscillation (AMO) and the Pacific Decadal Oscillation (PDO) with drought occurrence in the interior United States. This study evaluates the influence of AM0 and PDO phases on interannual relationships between climate and wildfire-burned area during the 20th century. Palmer's Drought Severity Index (PDSI) is...
NASA Astrophysics Data System (ADS)
Juday, G. P.; Grant, T.; Alix, C. M.; Spencer, D. L.; Beck, P. S.
2012-12-01
The boreal forest region of Alaska is characterized by a major east-west climate gradient, in addition to a widely appreciated north-south gradient. Low elevations of the eastern and central Interior experience warm summer temperatures and low annual precipitation, while coastal western Alaska has cool summer temperatures and greater precipitation. In the Interior the four dominant tree species of white and black spruce, aspen, and Alaska birch on low elevation sites nearly all register a strong negative radial growth relationship to summer temperatures, concentrated in May and July. Precipitation, particularly in late winter and midsummer, plays a supplemental role as a positive factor in growth. Floodplain white spruce along the Yukon and Kuskokwim Rivers transition from negative temperature response to positive response in western Alaska near the tree limit. Populations of white spruce on treeline sites display both negative growth response to July temperature and positive response to spring temperatures, with the negative response dominant in the east and the positive response dominant in the west. Across boreal Alaska summer temperatures increased abruptly in 1974, and have remained at historically high levels since. Correspondingly, climatic favorability for radial growth of Interior trees on most low elevation sites has been at extreme low levels particularly in the 21st century. Satellite-based NDVI coverage confirms that forest growth reduction is widespread in boreal Alaska since the 1980s. Defoliating and wood boring insects have reached outbreak population levels across most of boreal Alaska, partly from release of direct temperature control on the insects and partly from increased tree host susceptibility. Major outbreak species include aspen leaf miner, spruce engraver beetle, and spruce budworm. About a dozen tall willow species have been subjected to widespread attack by willow leaf blotch miner, and a new disease and defoliating insect have spread rapidly in alder shrubs, so nearly all woody species face health challenges. Temperatures and precipitation on many Interior sites are now at or beyond tolerance limits for white spruce, aspen, and Alaska birch. Two episodes of acute drought injury were widespread in birch during the last decade. Deficits in climate predicted tree growth are synchronous with the major insect outbreaks as recorded in insect trapping records and aerial surveys of area affected. Over the past 25 years tree mortality of 50% or more occurred in nearly all long-term monitoring plots in mature stands on productive sites in the Interior, but to date trees have successfully regenerated on most disturbed sites. These environmental changes and tree responses, including opposite responses, are coherent, and consistent with early stages of a biome shift eliminating boreal forest on dry Interior sites, and emergence of a new climate optimum zone in western Alaska currently only sparsely populated with forest.
Chapin, F Stuart; Lovecraft, Amy L; Zavaleta, Erika S; Nelson, Joanna; Robards, Martin D; Kofinas, Gary P; Trainor, Sarah F; Peterson, Garry D; Huntington, Henry P; Naylor, Rosamond L
2006-11-07
Human activities are altering many factors that determine the fundamental properties of ecological and social systems. Is sustainability a realistic goal in a world in which many key process controls are directionally changing? To address this issue, we integrate several disparate sources of theory to address sustainability in directionally changing social-ecological systems, apply this framework to climate-warming impacts in Interior Alaska, and describe a suite of policy strategies that emerge from these analyses. Climate warming in Interior Alaska has profoundly affected factors that influence landscape processes (climate regulation and disturbance spread) and natural hazards, but has only indirectly influenced ecosystem goods such as food, water, and wood that receive most management attention. Warming has reduced cultural services provided by ecosystems, leading to some of the few institutional responses that directly address the causes of climate warming, e.g., indigenous initiatives to the Arctic Council. Four broad policy strategies emerge: (i) enhancing human adaptability through learning and innovation in the context of changes occurring at multiple scales; (ii) increasing resilience by strengthening negative (stabilizing) feedbacks that buffer the system from change and increasing options for adaptation through biological, cultural, and economic diversity; (iii) reducing vulnerability by strengthening institutions that link the high-latitude impacts of climate warming to their low-latitude causes; and (iv) facilitating transformation to new, potentially more beneficial states by taking advantage of opportunities created by crisis. Each strategy provides societal benefits, and we suggest that all of them be pursued simultaneously.
Heather T. Root; Linda H. Geiser; Sarah Jovan; Peter Neitlich
2015-01-01
Biomonitoring can provide cost-effective and practical information about the distribution of nitrogen(N) deposition, particularly in regions with complex topography and sparse instrumented monitoring sites. Because of their unique biology, lichens are very sensitive bioindicators of air quality. Lichens lack acuticle to control absorption or leaching of nutrients and...
McGuire, A. David; Ruess, Roger W.; Lloyd, A.; Yarie, J.; Clein, Joy S.; Juday, G.P.
2010-01-01
This paper integrates dendrochronological, demographic, and experimental perspectives to improve understanding of the response of white spruce (Picea glauca (Moench) Voss) tree growth to climatic variability in interior Alaska. The dendrochronological analyses indicate that climate warming has led to widespread declines in white spruce growth throughout interior Alaska that have become more prevalent during the 20th century. Similarly, demographic studies show that white spruce tree growth is substantially limited by soil moisture availability in both mid- and late-successional stands. Interannual variability in tree growth among stands within a landscape exhibits greater synchrony than does growth of trees that occupy different landscapes, which agrees with dendrochronological findings that the responses depend on landscape position and prevailing climate. In contrast, the results from 18 years of a summer moisture limitation experiment showed that growth in midsuccessional upland stands was unaffected by moisture limitation and that moisture limitation decreased white spruce growth in floodplain stands where it was expected that growth would be less vulnerable because of tree access to river water. Taken together, the evidence from the different perspectives analyzed in this study clearly indicates that white spruce tree growth in interior Alaska is vulnerable to the effects of warming on plant water balance.
Tribal engagement strategy of the South Central Climate Science Center, 2014
Andrews, William J.; Taylor, April; Winton, Kimberly T.
2014-01-01
The South Central Climate Science Center was established by the U.S. Department of the Interior in 2012 to increase understanding of climate change and coordinate an effective response to climate-change effects on Native American tribes and natural and cultural resources that the Department manages. The eight regional Climate Science Centers of the U.S. Department of the Interior work closely with natural-resource management agencies, university researchers, and others such as tribes and private landowners on climate-change issues. The relatively large number of Native Americans in the south central United States and their special knowledge of changing ecosystems make working with tribes and tribal members on climate-change issues particularly important in this part of the Nation. This circular describes priorities of the South Central Climate Science Center and provides information about resources available from Climate Science Centers and partner agencies regarding climate change. The circular also describes how this Climate Science Center, tribes and tribal members, and others can collaborate to minimize potential harmful effects of climate change on human society and our surrounding ecosystems.
Simpson, James J.; Hufford, Gary L.; Fleming, Michael D.; Berg, Jared S.; Ashton, J.B.
2002-01-01
Mean monthly climate maps of Alaskan surface temperature and precipitation produced by the parameter-elevation regression on independent slopes model (PRISM) were analyzed. Alaska is divided into interior and coastal zones with consistent but different climatic variability separated by a transition region; it has maximum interannual variability but low long-term mean variability. Pacific decadal oscillation (PDO)- and El Nino Southern Oscillation (ENSO)-type events influence Alaska surface temperatures weakly (1-2/spl deg/C) statewide. PDO has a stronger influence than ENSO on precipitation but its influence is largely localized to coastal central Alaska. The strongest influence of Arctic oscillation (AO) occurs in northern and interior Alaskan precipitation. Four major ecosystems are defined. A major eco-transition zone occurs between the interior boreal forest and the coastal rainforest. Variability in insolation, surface temperature, precipitation, continentality, and seasonal changes in storm track direction explain the mapped ecosystems. Lack of westward expansion of the interior boreal forest into the western shrub tundra is influenced by the coastal marine boundary layer (enhanced cloud cover, reduced insolation, cooler surface and soil temperatures).
Weiskopf, Sarah R.; Varela Minder, Elda; Padgett, Holly A.
2017-05-19
Introduction2016 was an exciting year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). In recognition of our ongoing efforts to raise awareness and provide the scientific data and tools needed to address the impacts of climate change on fish, wildlife, ecosystems, and people, NCCWSC and the CSCs received an honorable mention in the first ever Climate Adaptation Leadership Award for Natural Resources sponsored by the National Fish, Wildlife, and Plant Climate Adaptation Strategy’s Joint Implementation Working Group. The recognition is a reflection of our contribution to numerous scientific workshops and publications, provision of training for students and early career professionals, and work with Tribes and indigenous communities to improve climate change resilience across the Nation. In this report, we highlight some of the activities that took place throughout the NCCWSC and CSC network in 2016.
Sources and sinks of carbon in boreal ecosystems of interior Alaska: a review
Douglas, Thomas A.; Jones, Miriam C.; Hiemstra, Christopher A.
2014-01-01
Boreal regions store large quantities of carbon but are increasingly vulnerable to carbon loss due to disturbance and climate warming. The boreal region, underlain by discontinuous permafrost, presents a challenging landscape for itemizing current and potential carbon sources and sinks in the boreal soil and vegetation. The roles of fire, forest succession, and the presence (or absence) of permafrost on carbon cycle, vegetation, and hydrologic processes have been the focus of multidisciplinary research in this area for the past 20 years. However, projections of a warming future climate, an increase in fire severity and extent, and the potential degradation of permafrost could lead to major landscape process changes over the next 20 to 50 years. This provides a major challenge for predicting how the interplay between land management activities and impacts of climate warming will affect carbon sources and sinks in Interior Alaska. To assist land managers in adapting and managing for potential changes in the Interior Alaska carbon cycle we developed this review paper incorporating an overview of the climate, ecosystem processes, vegetation types, and soil regimes in Interior Alaska with a focus on ramifications for the carbon cycle. Our objective is to provide a synthesis of the most current carbon storage estimates and measurements to support policy and land management decisions on how to best manage carbon sources and sinks in Interior Alaska. To support this we have surveyed relevant peer reviewed estimates of carbon stocks in aboveground and belowground biomass for Interior Alaska boreal ecosystems. We have also summarized methane and carbon dioxide fluxes from the same ecosystems. These data have been converted into the same units to facilitate comparison across ecosystem compartments. We identify potential changes in the carbon cycle with climate change and human disturbance including how compounding disturbances can affect the boreal system. Finally, we provide recommendations to address the challenges facing land managers in efforts to manage carbon cycle processes. The results of this study can be used for carbon cycle management in other locations within the boreal biome which encompass a broad distribution from 45° to 83° north.
78 FR 50085 - Advisory Committee on Climate Change and Natural Resource Science
Federal Register 2010, 2011, 2012, 2013, 2014
2013-08-16
... Climate Change and Natural Resource Science AGENCY: U.S. Geological Survey, Interior. ACTION: Meeting.... 2, we announce that the Advisory Committee on Climate Change and Natural Resource Science will hold... Partnership Coordinator, National Climate Change and Wildlife Science Center, U.S. Geological Survey, 12201...
Varela Minder, Elda; Padgett, Holly A.
2016-04-07
2015 was another great year for the Department of the Interior (DOI) Climate Science Centers (CSCs) and U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) network. The DOI CSCs and USGS NCCWSC continued their mission of providing the science, data, and tools that are needed for on-the-ground decision making by natural and cultural resource managers to address the effects of climate change on fish, wildlife, ecosystems, and communities. Our many accomplishments in 2015 included initiating a national effort to understand the influence of drought on wildlife and ecosystems; providing numerous opportunities for students and early career researchers to expand their networks and learn more about climate change effects; and working with tribes and indigenous communities to expand their knowledge of and preparation for the impacts of climate change on important resources and traditional ways of living. Here we illustrate some of these 2015 activities from across the CSCs and NCCWSC.
NASA Astrophysics Data System (ADS)
Stetsky, Sergey
2017-10-01
The article analyzes the problems of outdoor stationary sun-protective devices (S.P.D.) and their influence on the natural daylighting levels in the premises of civil objects of transport infrastructure under the hot and sunny climatic conditions of the environment. It is noted, that with clear sky, typical for the said climate, non-uniform luminance of the sky differs seriously from the luminance of standard overcast sky with diffused light, recommended by C.I.E. (Commission International D’Eclairage).A conclusion is made, that with clear sky conditions, a sun-protective devices in the form of stationary canopies (awninas) help to improve the lighting environment in the premises considered. This becomes possible due to reflected sun flow from the surfaces of SPD employed, as well as due to rise of a daylight factor values in farmost from windows zones of interiors, because of the increase of luminance factor values of the sky areas, observed from these zones. Thus, the SPD considered, in the hot and sunny climatic conditions are able not only to carry out their main function of passive method of solar radiation and thermal control in the interiors, but also to act as an efficient measure to improve lightning environment of the premises in question.
Interior pathways of the North Atlantic meridional overturning circulation.
Bower, Amy S; Lozier, M Susan; Gary, Stefan F; Böning, Claus W
2009-05-14
To understand how our global climate will change in response to natural and anthropogenic forcing, it is essential to determine how quickly and by what pathways climate change signals are transported throughout the global ocean, a vast reservoir for heat and carbon dioxide. Labrador Sea Water (LSW), formed by open ocean convection in the subpolar North Atlantic, is a particularly sensitive indicator of climate change on interannual to decadal timescales. Hydrographic observations made anywhere along the western boundary of the North Atlantic reveal a core of LSW at intermediate depths advected southward within the Deep Western Boundary Current (DWBC). These observations have led to the widely held view that the DWBC is the dominant pathway for the export of LSW from its formation site in the northern North Atlantic towards the Equator. Here we show that most of the recently ventilated LSW entering the subtropics follows interior, not DWBC, pathways. The interior pathways are revealed by trajectories of subsurface RAFOS floats released during the period 2003-2005 that recorded once-daily temperature, pressure and acoustically determined position for two years, and by model-simulated 'e-floats' released in the subpolar DWBC. The evidence points to a few specific locations around the Grand Banks where LSW is most often injected into the interior. These results have implications for deep ocean ventilation and suggest that the interior subtropical gyre should not be ignored when considering the Atlantic meridional overturning circulation.
USDA-ARS?s Scientific Manuscript database
Concrete arenas were treated with the pyrethroid deltamethrin at rates of 8, 16, and 24 mg active ingredient [AI]/m2, and held either in a chamber set at 27 °C, inside a non-climate controlled interior building, or inside an empty metal grain bin on the flooring area. Bioassays of the arenas were co...
U.S. Department of the Interior South Central Climate Science Center
Shipp, Allison A.
2012-01-01
On September 14, 2009, the Secretary of the Interior signed a Secretarial Order (No. 3289) entitled, "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources." The Order effectively established the U.S. Department of the Interior (DOI) Climate Science Centers (CSCs) for the purpose of integrating DOI science and management expertise with similar contributions from our partners to provide information to support strategic adaptation and mitigation efforts on public and private lands across the United States and internationally. The South Central Climate Science Center (SC CSC) is supported by a consortium of partners that include The University of Oklahoma, Texas Tech University, Louisiana State University, The Chickasaw Nation, The Choctaw Nation of Oklahoma, Oklahoma State University, and the National Oceanic and Atmospheric Administration's Geophysical Fluid Dynamics Laboratory. Additionally, the SC CSC will collaborate with a number of other universities, State and federal agencies, and nongovernmental organizations (NGOs) with interests and expertise in climate science. The primary partners of the SC CSC are the Landscape Conservation Cooperatives (LCCs), which include the Desert, Eastern Tallgrass Prairie and Big Rivers, Great Plains, Gulf Coast Prairie, Gulf Coastal Plains and Ozarks, and Southern Rockies. CSC collaborations are focused on common science priorities that address priority partner needs, eliminate redundancies in science, share scientific information and findings, and expand understanding of climate change impacts in the south-central United States and Mexico.
Urban, Frank E.; Clow, Gary D.
2014-01-01
This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2013; this array is part of the Global Terrestrial Network for Permafrost, (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methods. This array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature, soil moisture, snow depth, rainfall totals, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.
Urban, Frank E.; Clow, Gary D.
2016-03-04
This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2014; this array is part of the Global Terrestrial Network for Permafrost (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methods. The array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature, soil moisture, snow depth, rainfall totals, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.
Urban, Frank E.; Clow, Gary D.
2017-02-06
This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2015; this array is part of the Global Terrestrial Network for Permafrost (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methods. The array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature, soil moisture, snow depth, rainfall totals, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.
Urban, Frank E.; Clow, Gary D.
2014-01-01
This report provides data collected by the climate monitoring array of the U.S. Department of the Interior on Federal lands in Arctic Alaska over the period August 1998 to July 2011; this array is part of the Global Terrestrial Network for Permafrost, (DOI/GTN-P). In addition to presenting data, this report also describes monitoring, data collection, and quality-control methodology. This array of 16 monitoring stations spans lat 68.5°N. to 70.5°N. and long 142.5°W. to 161°W., an area of approximately 150,000 square kilometers. Climate summaries are presented along with quality-controlled data. Data collection is ongoing and includes the following climate- and permafrost-related variables: air temperature, wind speed and direction, ground temperature and soil moisture, snow depth, rainfall, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.
Bionomics and control of Culex pipiens fatigans Wied. in Ceylon
Chow, C. Y.; Thevasagayam, E. S.
1957-01-01
The climatic and housing conditions which favour the breeding of Culex pipiens fatigans in Ceylon, and its life-cycle and resting-habits, are described. The results of the treatment of breeding-places (mainly catch-pits) and the interior of houses with various insecticides of specific action on larvae or adults, in different preparations and concentrations, are given, and suggestions are made for the control of the mosquito on this island. The fundamental measure for successful control is efficient sanitation, but until this can be achieved, application of larvicides seems to be the method of choice. PMID:13472415
NASA Astrophysics Data System (ADS)
Caves Rugenstein, J. K.; Bayshashov, B. U.; Zhamangara, A.; Ritch, A. J.; Ibarra, D. E.; Sjostrom, D. J.; Mix, H.; Winnick, M.; Chamberlain, C. P.
2017-12-01
The timing of high surface topography and the corresponding climatic impacts of the many high ranges north of the Tibetan Plateau, such as the Altai and Tian Shan, remain poorly constrained. Most Neogene reconstructions of Central Asia climate come from interior China, where the influences of Altai and Tian Shan uplift are difficult to deconvolve from effects due to Tibetan Plateau uplift and changes in global climate. We present a new pedogenic carbonate oxygen and carbon isotope record from terrestrial Neogene sediments of the Zaysan Basin in eastern Kazakhstan, which lies upwind of the Altai and Tian Shan, in contrast to the numerous paleoclimate records from interior China. The δ18O values of pedogenic carbonate exhibit a robust 4‰ decrease in the late Neogene—a trend that sharply contrasts with nearly all downwind records of δ18O from Central Asia. We attribute this decrease to the establishment of the modern seasonal precipitation regime whereby Kazakhstan receives the majority of its moisture in the spring and fall, which lowers the δ18O of pedogenic carbonates. The dominance of spring and fall precipitation in Kazakhstan results from the interaction of the mid-latitude jet with the high topography of the Altai and Tian Shan during its movement northward in spring and southward in fall. The late Miocene interaction of the jet with these actively uplifting northern Central Asia ranges reorganized Central Asia climate, establishing starkly different seasonal precipitation regimes, further drying interior China, and increasing the incidence of the lee cyclones that deposit dust on the Loess Plateau. To the south of the Zaysan Basin, earlier shifts in δ18O hint at early Neogene changes in climate attributable to a late Oligocene/early Miocene phase of uplift in the Tian Shan. We conclude that paleoclimatic changes in Central Asia in the Neogene are more tightly controlled by the interaction of the mid-latitude westerlies with the bounding ranges of northern Central Asia than by changes in the height or extent of the Tibetan Plateau.
Aalto, Juha; Harrison, Stephan; Luoto, Miska
2017-09-11
The periglacial realm is a major part of the cryosphere, covering a quarter of Earth's land surface. Cryogenic land surface processes (LSPs) control landscape development, ecosystem functioning and climate through biogeochemical feedbacks, but their response to contemporary climate change is unclear. Here, by statistically modelling the current and future distributions of four major LSPs unique to periglacial regions at fine scale, we show fundamental changes in the periglacial climate realm are inevitable with future climate change. Even with the most optimistic CO 2 emissions scenario (Representative Concentration Pathway (RCP) 2.6) we predict a 72% reduction in the current periglacial climate realm by 2050 in our climatically sensitive northern Europe study area. These impacts are projected to be especially severe in high-latitude continental interiors. We further predict that by the end of the twenty-first century active periglacial LSPs will exist only at high elevations. These results forecast a future tipping point in the operation of cold-region LSP, and predict fundamental landscape-level modifications in ground conditions and related atmospheric feedbacks.Cryogenic land surface processes characterise the periglacial realm and control landscape development and ecosystem functioning. Here, via statistical modelling, the authors predict a 72% reduction of the periglacial realm in Northern Europe by 2050, and almost complete disappearance by 2100.
Regional Climate Variations and Change for Terrestrial Ecosystems Workshop Review
North Carolina State University, the University of North Carolina at Chapel Hill, and the U.S. Environmental Protection Agency, in partnership with the U.S. Department of the Interior Southeast Climate Science Center (SECSC), hosted the Regional Climate Variations and Change for ...
NASA Astrophysics Data System (ADS)
Tooth, Stephen; Lyons, Richard; Duller, Geoff; McCarthy, Terence
2013-04-01
Across many parts of interior South Africa, alluvial and colluvial sediments are currently subject to widespread erosion by rivers, dongas (gullies), sheetwash and wind. This creates an impression of accelerated landscape change that is commonly attributed to factors such as poor land management by European settlers (mid 18th century onwards) or indigenous peoples, possibly in combination with decadal-scale climatic fluctuations and/or susceptible soil characteristics. Many resources are devoted to managing degrading lands, but effective conservation and restoration efforts are contingent on correctly identifying the underlying causes of erosion. Across South Africa, varied population densities, and diverse climates and soil types, mean that the causes of erosion are likely to be complex and to vary regionally. In some regions, examples of accelerated erosion resulting from vegetation clearance, overburning, overstocking, artificial drainage or land abandonment can be demonstrated. In other regions, however, our geomorphological, sedimentological and geochronological investigations provide an alternative 'geological' perspective on this erosion 'problem' by demonstrating that erosion may be a recurring, natural process linked to late Quaternary climate change and/or longer term landscape denudation. In particular, luminescence chronologies for hillslopes, alluvial fans and river floodplains/terraces at various locations across interior South Africa have enabled comparison with other regional/global palaeoenvironmental records. These comparisons reveal that climatically-controlled changes in runoff and sediment supply, mediated through vegetation cover changes, resulted in shifts between sedimentation (relative aridity), soil formation (relative humidity) and minor channel/donga erosion (semiaridity) from at least 40 kyr until the late Holocene. By contrast, major erosion involving sustained channel incision and associated donga formation appears to have been initiated during the last few thousand years, at some sites apparently corresponding with rapid climatic fluctuations associated with the Mediaeval Warm Period and Little Ice Age. In some instances, channel incision depth has been controlled by the stability of downstream resistant rock barriers (e.g. dolerite sills and dykes) that form local baselevels in river long profiles; upstream of stable barriers, incision has been restricted but where barriers have been partially or fully breached, then deep incision into bedrock is characteristic. These findings provide evidence that: 1) during the late Quaternary, erosional phases have occurred independently of human activity, in different climatic settings, and across different soil types; and 2) in many regions, even the present phase of deep channel incision and donga formation predates the advent of European settlement or indigenous population expansion. These 'geological' perspectives on the age and history of major erosional features demonstrate that accelerated landscape change in South Africa is not necessarily a consequence of human activities, and cannot be assumed to represent an unequivocal signature of the Anthropocene. These perspectives also have implications for land management. Where erosion is indisputably occurring as a result of land mismanagement, then alternative land use practices and erosion-control measures may succeed in slowing or reversing erosion, but where erosion results from natural climatic or denudational processes, then such schemes are unlikely to succeed in the medium- or long-term.
Final Report: Synthesis of aquatic climate change vulnerability assessments for the Interior West
Megan M. Friggens; Carly K. Woodlief
2015-01-01
Water is a critical resource for humans and ecological systems in the western United States. Aquatic ecosystems including lakes, rivers, riparian areas and wetlands, are at high risk of climate impacts because they experience relatively high exposure to climate fluctuations and extremes. In turn, impacts arising from climate change are far reaching because these...
NASA Astrophysics Data System (ADS)
Spero, Tanya L.; Otte, Martin J.; Bowden, Jared H.; Nolte, Christopher G.
2014-10-01
Spectral nudging—a scale-selective interior constraint technique—is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonstrated that spectral nudging improves the representation of regional climate in reanalysis-forced simulations compared with not using nudging in the interior of the domain. However, in the Weather Research and Forecasting (WRF) model, spectral nudging tends to produce degraded precipitation simulations when compared to analysis nudging—an interior constraint technique that is scale indiscriminate but also operates on moisture fields which until now could not be altered directly by spectral nudging. Since analysis nudging is less desirable for regional climate modeling because it dampens fine-scale variability, changes are proposed to the spectral nudging methodology to capitalize on differences between the nudging techniques and aim to improve the representation of clouds, radiation, and precipitation without compromising other fields. These changes include adding spectral nudging toward moisture, limiting nudging to below the tropopause, and increasing the nudging time scale for potential temperature, all of which collectively improve the representation of mean and extreme precipitation, 2 m temperature, clouds, and radiation, as demonstrated using a model-simulated 20 year historical period. Such improvements to WRF may increase the fidelity of regional climate data used to assess the potential impacts of climate change on human health and the environment and aid in climate change mitigation and adaptation studies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
This report, Evaluation of the Performance of Houses with and without Supplemental Dehumidification in a Hot-Humid Climate, describes a research study that that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance, homes in a Hot-Humid climate. The purpose of this research project was to observe and compare the humidity control performance of new, single family, low energy, and high performance, homes. Specifically, the study sought to compare the interior conditions and mechanical systemsmore » operation between two distinct groups of houses, homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were ten single-family new construction homes in New Orleans, LA. Data logging equipment was installed at each home in 2012. Interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space. However, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerrigan, P.; Norton, P.
This report, Evaluation of the Performance of Houses with and without Supplemental Dehumidification in a Hot-Humid Climate, describes a research study that that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance, homes in a Hot-Humid climate. The purpose of this research project was to observe and compare the humidity control performance of new, single family, low energy, and high performance, homes. Specifically, the study sought to compare the interior conditions and mechanical systemsmore » operation between two distinct groups of houses, homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjects of the study were ten single-family new construction homes in New Orleans, LA.Data logging equipment was installed at each home in 2012. Interior conditions and various end-use loads were monitored for one year. In terms of averages, the homes with dehumidifiers are limiting elevated levels of humidity in the living space. However, there was significant variation in humidity control between individual houses. An analysis of the equipment operation did not show a clear correlation between energy use and humidity levels. In general, no single explanatory variable appears to provide a consistent understanding of the humidity control in each house. Indoor humidity is likely due to all of the factors we have examined, and the specifics of how they are used by each occupant.« less
Interior Secretary Highlights Key Trends, Including Climate Change and Fiscal Constraint
NASA Astrophysics Data System (ADS)
Showstack, Randy
2014-06-01
Climate change is "the defining issue of our time," Department of the Interior (DOI) Secretary Sally Jewell said during her 18 June keynote addess at the AGU Science Policy Conference in Washington, D. C. The United States has to "lead by example. We can't be the largest economy in the world and the second largest producer of carbon in the world"—after China—"and not take care of our own problems first to demonstrate to the world what needs to be done," she said.
2009 Climate Change Research Strategy: Rocky Mountain Research Station
Forest Service U.S. Department of Agriculture
2010-01-01
Climate change and shifting demographics influence the landscape and the social and economic systems of the Interior West. Climate change impacts are already evident, as seen in declining snowpacks, changes in runoff timing and intensity, increasing fire frequency and severity, increasing drought frequency and severity, and rising temperatures.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-06-21
.... During public scoping, we may identify additional issues. Climate Change and Interior Marsh Loss A growing body of evidence indicates that accelerating climate change, associated with increasing global.... Successful conservation strategies will require an understanding of climate change and the ability to predict...
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Thermal and moisture problems in existing basements create a unique challenge as the exterior face of the wall is not easily or inexpensively accessible. This approach by the NorthernSTAR Building America Partnership team addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. It is effective at reducing energy loss through the wall principally during the heating season. The team conducted experiments at the Cloquet Residential Research Facility to test the heat and moisture performance of four hollow masonry block wall systems and two rim-joist systems. These systems were retrofitted withmore » interior insulation in compliance with the 2012 IECC. The research showed for the first time that, for masonry block walls in a cold climate, a solid bond beam or equivalent provides adequate resistance to moisture transport from a hollow core to the rim-joist cavity. Thus, a solid top course is a minimum requirement for an interior retrofit insulation system.« less
Drought Risk and Adaptation in the Interior (DRAI)
NASA Astrophysics Data System (ADS)
McNeeley, S.; Ojima, D. S.
2013-12-01
Drought is part of the normal climate variability in the Great Plains and Intermountain Western United States, but recent severe droughts along with climate change projections have increased the interest and need for better understanding of drought science and decision making. The purpose of this study is to understand how the U.S. Department of the Interior's (DOI) federal land and resource managers and their stakeholders (i.e., National Park Service, Bureau of Land Management, Fish and Wildlife Service, Bureau of Reclamation, Bureau of Indian Affairs and tribes, among others) are experiencing and dealing with drought in their landscapes. The Drought Risk and Adaptation in the Interior (DRAI) project is part of a new DOI-sponsored North Central Climate Science Center (NC CSC) crosscutting science initiative on drought across the Center's three foundational science areas: 1. physical climate, 2. ecosystems impacts and responses, and 3. human adaptation and decision making. The overarching goal is to learn more about drought within the DOI public lands and resource management in order to contribute to both the NC CSC regional science as well as providing managers and other decision makers with the most salient, credible, and legitimate research to support land and resource management decisions. Here we will present the project approach along with some initial insights learned from the research to date along with its utility for climate adaptation.
Detecting regional patterns of changing CO2 flux in Alaska
Parazoo, Nicholas C.; Wofsy, Steven C.; Koven, Charles D.; Sweeney, Colm; Lawrence, David M.; Lindaas, Jakob; Chang, Rachel Y.-W.; Miller, Charles E.
2016-01-01
With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO2 with climatically forced CO2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage and near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO2 observing network is unlikely to detect potentially large CO2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. Although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost. PMID:27354511
Detecting regional patterns of changing CO 2 flux in Alaska
Parazoo, Nicholas C.; Commane, Roisin; Wofsy, Steven C.; ...
2016-06-27
With rapid changes in climate and the seasonal amplitude of carbon dioxide (CO 2) in the Arctic, it is critical that we detect and quantify the underlying processes controlling the changing amplitude of CO 2 to better predict carbon cycle feedbacks in the Arctic climate system. We use satellite and airborne observations of atmospheric CO 2 with climatically forced CO 2 flux simulations to assess the detectability of Alaskan carbon cycle signals as future warming evolves. We find that current satellite remote sensing technologies can detect changing uptake accurately during the growing season but lack sufficient cold season coverage andmore » near-surface sensitivity to constrain annual carbon balance changes at regional scale. Airborne strategies that target regular vertical profile measurements within continental interiors are more sensitive to regional flux deeper into the cold season but currently lack sufficient spatial coverage throughout the entire cold season. Thus, the current CO 2 observing network is unlikely to detect potentially large CO 2 sources associated with deep permafrost thaw and cold season respiration expected over the next 50 y. In conclusion, although continuity of current observations is vital, strategies and technologies focused on cold season measurements (active remote sensing, aircraft, and tall towers) and systematic sampling of vertical profiles across continental interiors over the full annual cycle are required to detect the onset of carbon release from thawing permafrost.« less
Managing fire and fuels in a warmer climate
David L. Peterson
2010-01-01
This historical perspective on fire provides a window into the future of fire in the Pacific Northwest. Although fire will always be more common in the interior portion of the region, a warmer climate could bring more fire to the westside of the Cascade Range where summers are typically dry and will probably become drier. If future climate resembles the climate now...
78 FR 2422 - Agency Information Collection Activities: Comment Request
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-11
... of currently approved information Collection, 1028-0096, Department of the Interior Climate Science... priority science needs and to develop science information tools that can help resource managers develop... DEPARTMENT OF THE INTERIOR U.S. Geological Survey [GX13EN05ESB0500] Agency Information Collection...
Climate-growth relationships along a black spruce toposequence in Interior Alaska
Jane M. Wolken; Daniel H. Mann; Thomas A. Grant; Andrea H. Lloyd; T. Scott Rupp; Teresa N. Hollingsworth
2016-01-01
Despite its wide geographic distribution and important role in boreal forest fire regimes, little is known about the climate-growth relationships of black spruce (Picea mariana [Mill.] B.S.P.). We used site- and tree-level analyses to evaluate the radial growth responses to climate of black spruce growing...
Federal Register 2010, 2011, 2012, 2013, 2014
2013-04-29
... science information tools that can help resource managers develop strategies for responding to climate... DEPARTMENT OF THE INTERIOR Geological Survey [GX13EN05ESB0500] Agency Information Collection.... Geological Survey (USGS), Interior. ACTION: Notice of an extension of currently approved information...
Group Dynamics in the Interior Design Studio: Student Perceptions
ERIC Educational Resources Information Center
Hill, Caroline
2008-01-01
This article presents the findings of a study measuring the classroom climates in collegiate interior design studios and considers these findings within the group dynamics theory framework. Three groups of students completed the College Classroom Environment Scales (CCES) questionnaire. Five of the six CCES subscale F ratios were statistically…
Ecological subregions of the interior Columbia basin, USA.
P.F. Hessburg; R.B. Salter; R.B. Richmond; B.G. Smith
2000-01-01
Land evaluations are not always conducted with adequate understanding of the relevant geologic and climatic contexts and their appropriate scales. This understanding is essential for developing representative sampling, monitoring, and conservation designs, and for pooling results of landscape analysis. To provide context for several regions of the interior northwestern...
A new subspecies of Chamaea fasciata (Wrentit) from Oregon (Aves: Timaliinae)
Browning, M. Ralph
1992-01-01
Geographic variation in plumage color of Chamaea fasciata (Wrentit) from northern California and southern Oregon is related to climate. A new subspecies, Chamaea fasciata margra, is described from a disjunct population of southern interior Oregon. Colonization of C. fasciata in interior Oregon was perhaps from birds crossing coniferous forests via isolated balds of Ceonothus. Recent increases of Wrentits in interior Oregon may be in response to habitat alterations (deforestation, fires) and concurrent global warming.
A subsurface depocenter in the South Polar Layered Deposits of Mars
NASA Astrophysics Data System (ADS)
Whitten, J. L.; Campbell, B. A.; Morgan, G. A.
2017-08-01
The South Polar Layered Deposits (SPLD) are one of the largest water ice reservoirs on Mars, and their accumulation is driven by variations in the climate primarily controlled by orbital forcings. Patterns of subsurface layering in the SPLD provide important information about past atmospheric dust content, periods of substantial erosion, and variations in local or regional deposition. Here we analyze the SPLD using SHAllow RADar (SHARAD) sounder data to gain a unique perspective on the interior structure of the deposits and to determine what subsurface layers indicate about the preserved climate history. SHARAD data reveal a major deviation from the gently domical layering typical of the SPLD: a subsurface elongate dome. The dome most likely formed due to variations in the accumulation of ice and snow across the cap, with a higher rate occurring in this region over a prolonged period. This SPLD depositional center provides an important marker of south polar climate patterns.
Urban, Frank E.; Clow, Gary D.
2013-01-01
This report provides air temperature, wind speed, and wind direction data collected on Federal lands in Arctic Alaska over the period August 1998 to July 2011 by the U.S. Department of the Interior's climate monitoring array, part of the Global Terrestrial Network for Permafrost. In addition to presenting data, this report also describes monitoring, data collection, and quality control methodology. This array of 16 monitoring stations spans 68.5°N to 70.5°N and 142.5°W to 161°W, an area of roughly 150,000 square kilometers. Climate summaries are presented along with provisional quality-controlled data. Data collection is ongoing and includes several additional climate variables to be released in subsequent reports, including ground temperature and soil moisture, snow depth, rainfall, up- and downwelling shortwave radiation, and atmospheric pressure. These data were collected by the U.S. Geological Survey in close collaboration with the Bureau of Land Management and the U.S. Fish and Wildlife Service.
Bruce E. Rieman; Daniel Isaak; Susan Adams; Dona Horan; David Nagel; Charles Luce; Deborah Myers
2007-01-01
A warming climate could profoundly affect the distribution and abundance of many fishes. Bull trout Salvelinus confluentus may be especially vulnerable to climate change given that spawning and early rearing are constrained by cold water temperatures creating a patchwork of natal headwater habitats across river networks. Because the size and...
Fire, climate change, and forest resilience in interior Alaska
Jill F. Johnstone; F. Stuart Chapin; Teresa N. Hollingsworth; Michelle C. Mack; Vladimir Romanovsky; Merritt Turetsky
2010-01-01
In the boreal forests of interior Alaska, feedbacks that link forest soils, fire characteristics, and plant traits have supported stable cycles of forest succession for the past 6000 years. This high resilience of forest stands to fire disturbance is supported by two interrelated feedback cycles: (i) interactions among disturbance regime and plant-soil-microbial...
Wenger, Seth J.; Isaak, Daniel J.; Dunham, Jason B.; Fausch, Kurt D.; Luce, Charles H.; Neville, Helen M.; Rieman, Bruce E.; Young, Michael K.; Nagel, David E.; Horan, Dona L.; Chandler, Gwynne L.
2011-01-01
Recent and projected climate warming trends have prompted interest in impacts on coldwater fishes. We examined the role of climate (temperature and flow regime) relative to geomorphology and land use in determining the observed distributions of three trout species in the interior Columbia River Basin, USA. We considered two native species, cutthroat trout (Oncorhynchus clarkii) and bull trout (Salvelinus confluentus), as well as nonnative brook trout (Salvelinus fontinalis). We also examined the response of the native species to the presence of brook trout. Analyses were conducted using multilevel logistic regression applied to a geographically broad database of 4165 fish surveys. The results indicated that bull trout distributions were strongly related to climatic factors, and more weakly related to the presence of brook trout and geomorphic variables. Cutthroat trout distributions were weakly related to climate but strongly related to the presence of brook trout. Brook trout distributions were related to both climate and geomorphic variables, including proximity to unconfined valley bottoms. We conclude that brook trout and bull trout are likely to be adversely affected by climate warming, whereas cutthroat trout may be less sensitive. The results illustrate the importance of considering species interactions and flow regime alongside temperature in understanding climate effects on fish.
Vasey, Michael C; Loik, Michael E; Parker, V Thomas
2012-10-01
Mediterranean-type climate (MTC) regions around the world are notable for cool, wet winters and hot, dry summers. A dominant vegetation type in all five MTC regions is evergreen, sclerophyllous shrubland, called chaparral in California. The extreme summer dry season in California is moderated by a persistent low-elevation layer of marine fog and cloud cover along the margin of the Pacific coast. We tested whether late dry season water potentials (Ψ(min)) of chaparral shrubs, such as Arctostaphylos species in central California, are influenced by this coast-to-interior climate gradient. Lowland coastal (maritime) shrubs were found to have significantly less negative Ψ(min) than upland interior shrubs (interior), and stable isotope (δ(13)C) values exhibited greater water use efficiency in the interior. Post-fire resprouter shrubs (resprouters) had significantly less negative Ψ(min) than co-occurring obligate seeder shrubs (seeders) in interior and transitional chaparral, possibly because resprouters have deeper root systems with better access to subsurface water than shallow-rooted seeders. Unexpectedly, maritime resprouters and seeders did not differ significantly in their Ψ(min), possibly reflecting more favorable water availability for shrubs influenced by the summer marine layer. Microclimate and soil data also suggest that maritime habitats have more favorable water availability than the interior. While maritime seeders constitute the majority of local Arctostaphylos endemics, they exhibited significantly greater vulnerability to xylem cavitation than interior seeders. Because rare seeders in maritime chaparral are more vulnerable to xylem cavitation than interior seeders, the potential breakdown of the summer marine layer along the coast is of potential conservation concern.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pallin, Simon B.; Boudreaux, Philip R.; Jackson, Roderick K.
2014-10-01
A sealed or unvented attic is an energy-efficient envelope component that can reduce the amount of energy a house consumes for space conditioning if the air handler and/or ducts are located in the attic. The attic is typically sealed by using spray foam on the underside of the roof deck and covering the soffit, ridge and gable vents to minimize air leakage from the attic to the outside. This approach can save up to 10% in space-conditioning energy when ducts are located in the attic (DOE 2013). Past research done by ORNL and Florida Solar Energy Center suggests that inmore » more hot, humid climates, an unvented attic could potentially create a more humid, uncomfortable living environment than a vented attic (Colon 2011, Boudreaux, Pallin et al. 2013). Research showed that controlling the higher indoor humidity could reduce the energy savings from the sealed, unvented attic, which in turn would decrease the energy savings payback. Research also showed that the roof assembly (5.5 inches of open-cell foam, 1inch of closed-cell foam, OSB, felt paper, and asphalt shingles) stored moisture, thus acting as a moisture buffer. During the fall and winter, the roof assembly stored moisture and during the spring and summer it released moisture. This phenomenon is not seen in a vented attic, in which the air exchange rate to the outside is greater and, in the winter, helps to dehumidify the attic air. It was also seen that in a vented attic, the direction of water vapor diffusion is on average from the attic to the interior of the house. Air leakage from the attic to the interior also occurs during more of the year in a house with an unvented attic than in one with a vented attic. These discoveries show that the moisture dynamics in a house with an unvented attic are much different from those in a house with a vented attic. This study reports on a series of computer model investigations completed to determine the key variables impacting indoor comfort and the durability of roof assemblies against moisture. The key variables investigated were the leakage area from the attic to the outside, leakage area from the attic to the interior, leakage area from the interior to the outside, supply duct leakage in the attic, and interior moisture generation. These investigations are described in this report.« less
Megan M. Friggens; Rachel Loehman; Lisa Holsinger; Deborah Finch
2014-01-01
Climate change is expected to have multiple direct and indirect impacts on ecosystems in the interior western U.S. (Christensen et al., 2007; IPCC 2013). Global climate predictions for the Southwest include higher temperatures, more variable rainfall, and more drought periods, which will likely exacerbate the ongoing issues relating to wildfire and water allocation in...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Goldberg, Louise F.; Harmon, Anna C.
2015-04-01
Thermal and moisture problems in existing basements create a unique challenge because the exterior face of the wall is not easily or inexpensively accessible. This approach addresses thermal and moisture management from the interior face of the wall without disturbing the exterior soil and landscaping. the interior and exterior environments. This approach has the potential for improving durability, comfort, and indoor air quality. This project was funded jointly by the National Renewable Energy Laboratory (NREL) and Oak Ridge National Laboratory (ORNL). ORNL focused on developing a full basement wall system experimental database to enable others to validate hygrothermal simulation codes.more » NREL focused on testing the moisture durability of practical basement wall interior insulation retrofit solutions for cold climates. The project has produced a physically credible and reliable long-term hygrothermal performance database for retrofit foundation wall insulation systems in zone 6 and 7 climates that are fully compliant with the performance criteria in the 2009 Minnesota Energy Code. The experimental data were configured into a standard format that can be published online and that is compatible with standard commercially available spreadsheet and database software.« less
Bonanza Creek Experimental Forest & Caribou-Poker Creeks Research Watershed.
Valerie Rapp
2003-01-01
Bonanza Creek Experimental Forest and Caribou-Poker Creeks Research Watershed are located in the boreal forest of interior Alaska. Research focuses on basic ecological processes, hydrology, disturbance regimes, and climate change in the boreal forest region. Interior Alaska lies between the Alaska Range to the south and the Brooks Range to the north and covers an area...
Jacob Gibson; Gretchen G. Moisen; Tracey S. Frescino; Thomas C. Jr. Edwards
2012-01-01
Populations of pinons and junipers across the interior west have been highly dynamic over the last two centuries, undergoing an overall expansion but punctuated with regional mortality. Accumulating demographic studies across the interior west indicate the drivers of expansion and contraction of populations are compounded by regional land use legacies, but have an...
Forest ecosystems in the Alaskan taiga
DOE Office of Scientific and Technical Information (OSTI.GOV)
Van Cleve, K.; Chapin, F.S. III; Flanagan, P.W.
1986-01-01
This volume in the series ''Ecological Studies'' provides an overview and synthesis of research on the structure and function of taiga forest ecosystems of interior Alaska. The first section discusses the nature of the taiga environment and covers climate, forest ecosystem distribution, natural regeneration of vegetation, and the role of fire. The second edition focuses on environmental controls over organism activity with discussions on growth and nutrient use, nitrogen fixation, physiological ecology of mosses, and microbial activity and element availability. The final section considers environmental controls over ecosystem processes with discussions of processes, plant-animal interactions, and a model of forestmore » growth and yield.« less
NASA Astrophysics Data System (ADS)
Fonseca, João
2017-04-01
The regional and local climate, heavily influenced by global climate change, has strong implications for agriculture. Wine production which has specific characteristics in terms of climate and soil is undoubtedly one of the economic activities strongly influenced by climate change. Quinta dos Termos located in Beira Interior (Belmonte, Portugal) is the largest wine producer in the DOC Beira Interior region, producing premium to hiper premium wines of excellence, marketed at both national and international levels, and cultivates the vineyards according to the rules of Integrated Crop Management. Moreover, grapes are free from herbicides, pesticides or any other chemicals that can be harmful to the environment and health. These factors have contributed to the socio-economic development of the region, creating wealth, favoring employment and promoting tourism. The quality of the wines produced by Quinta dos Termos result from its terroir, given its granite region, the sun exposure, the wind protection, the atmospheric humidity and temperature, the soil water content, the mineralogical/organic composition and soil porosity. These factors favor unique conditions for the cultivation of Touriga Nacional grape variety, which is recognized by its extremely complex color and aroma, which allows the production of wines with great balance and a good ageing potential. Touriga Nacional, a red grape variety of Portuguese origin with high qualitative excellence and reputation and much appreciated worldwide, is versatile to several types of soils and resistant to high thermal amplitudes. Nevertheless, the climatic changes that has been gradually verified, the type of crop management, and in particular the reputation of Touriga Nacional grape variety, may be compromised in the long term, given that these characteristics are strongly influenced by the climate and soil. Aware of that, Quinta dos Termos has been performing a monitoring of the vineyards in terms of pedological treatment, disease control and water stress. With the present essay we intend to present the results achieved by the monitoring of the main influencing factors in grape production and therefore the quality of wines produced, over the years, by Quinta dos Termos.
NASA Astrophysics Data System (ADS)
Schröder-Adams, Claudia
2014-03-01
This study reviews the Cretaceous histories of the Polar and Western Interior seas as recorded in the Canadian High Arctic Sverdrup Basin, Beaufort-Mackenzie Basin of northwest Canada and Western Canadian Foreland Basin. Newly emerging stratigraphic, paleoclimatic and paleoenvironmental interpretations from the polar realm allow for a fresh look at the response of this oceanic system to global climatic trends and sea-level histories over 35 Ma. Sverdrup basin localities on Axel Heiberg and Ellef Ringnes islands represent shelf to slope environments that contrasted with the shallow water and low gradient settings of the Canadian Western Interior Sea. Both marine systems, connected throughout Aptian to Maastrichtian time, responded to global transgressive-regressive cycles resulting in dynamic paleogeographic changes. The upper Aptian to Campanian succession of the Polar Sea shows at least two unconformable boundaries; one at the Albian/Cenomanian transition and another within the upper Cenomanian. The shallow basin setting and in particular the forebulge and backbulge settings of the Western Canadian Foreland Basin are characterized by multiple erosional surfaces throughout the Cretaceous succession. The Upper Albian disconformity is widely discernible close to the entrance of the Western Interior Sea to the Polar Sea. This suggests a short-lived closure of the latest Albian Mowry Sea that might have been responsible for the large loss of benthic foraminiferal species at this time. Several oceanic anoxic events are documented in these basins representing their response to global climate dynamics. During the Late Cretaceous temperature maximum benthic foraminiferal communities were severely restricted by bottom water hypoxia in both basins. A stratified water column might have been the result of increased freshwater runoff under warm, humid conditions. These conditions supported vegetation up into the polar latitudes that added abundant organic matter to marine shelf systems. Conversely, the Canadian Western Interior Sea biotic communities were controlled by watermasses of two or maybe three different sources and physical properties including the Polar, Tethyan and a possibly third source from the emerging Labrador Sea through the Hudson Seaway. Where the southern and northern watermasses mixed, plankton might have been influenced by oceanic fronts, forming mass kills through sinking of dense waters. Migration of calcareous phyto- and zooplankton was controlled by a temperature and salinity gradient and did not invade northern regions. Siliceous plankton occurred and is more commonly found in the Sverdrup Basin, but taphonomic loss through deep burial needs to be taken into account.
The impact of future climate on historic interiors.
Lankester, Paul; Brimblecombe, Peter
2012-02-15
The socio-economic significance of climate change is widely recognised. However, its potential to affect our cultural heritage has not been discussed in detail (i.e. not explicit in IPCC 4) even though the cultural impacts of future outdoor climate have been the focus of some European Commission projects (e.g. NOAH'S ARK) and World Heritage Centre reports. Recently there have been a few projects that have examined the changing environmental threats to tangible heritage indoors (e.g. Preparing Historic Collections for Climate Change and Climate for Culture). Here we predict future indoor temperature and humidity, and damage arising from changes to climate in historic rooms in Southern England with little climate control, using simple building simulations coupled with high resolution (~5 km) climate predictions. The calculations suggest an increase in indoor temperature over the next century that is slightly less than that outdoors. Annual relative humidity shows little change, but the seasonal cycles suggest drier summers and slightly damper winters indoors. Damage from mould growth and pests is likely to increase in the future, while humidity driven dimensional change to materials (e.g. wood) should decrease somewhat. The results allow collection managers to prepare for the impact of long-term climate change, putting strategic measures in place to prevent increased damage, and thus preserve our heritage for future generations. Copyright © 2011 Elsevier B.V. All rights reserved.
Zhaosheng Fan; David McGuire; Merritt R. Turetsky; Jennifer W. Harden; James Michael Waddington; Evan S. Kane
2013-01-01
It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in...
Joseph A. E. Stewart; David H. Wright; Katherine A. Heckman; Robert Guralnick
2017-01-01
Contemporary climate change has been widely documented as the apparent cause of range contraction at the edge of many species distributions but documentation of climate change as a cause of extirpation and fragmentation of the interior of a species' core habitat has been lacking. Here, we report the extirpation of the American pika (Ochotona princeps...
Persistent effects of fire severity on early successional forests in interior Alaska
Aditi Shenoy; Jill F. Johnstone; Eric S. Kasischke; Knut Kielland
2011-01-01
There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of...
Emma F. Betts; Jeremy B. Jones
2009-01-01
With climatic warming, wildfire occurrence is increasing in the boreal forest of interior Alaska. Loss of catchment vegetation during fire can impact streams directly through altered solute and debris inputs and changed light and temperature regimes. Over longer time scales, fire can accelerate permafrost degradation, altering catchment hydrology and stream nutrient...
The long term response of stream flow to climatic warming in headwater streams of interior Alaska
Jeremy B. Jones; Amanda J. Rinehart
2010-01-01
Warming in the boreal forest of interior Alaska will have fundamental impacts on stream ecosystems through changes in stream hydrology resulting from upslope loss of permafrost, alteration of availability of soil moisture, and the distribution of vegetation. We examined stream flow in three headwater streams of the Caribou-Poker Creeks Research Watershed (CPCRW) in...
Jonathan A. O' Donnell; Merritt R. Turetsky; Jennifer W. Harden; Kristen L. Manies; Lee E. Pruett; Gordon Shetler; Jason C. Neff
2009-01-01
We present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and carbon (C) exchange in black spruce (Picea mariana) ecosystems of interior Alaska. Our laboratory study showed that burning reduced the sensitivity of decomposition to...
The impact of the simulated large-scale atmospheric circulation on the regional climate is examined using the Weather Research and Forecasting (WRF) model as a regional climate model. The purpose is to understand the potential need for interior grid nudging for dynamical downscal...
Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska
Zhuang, Q.; McGuire, A.D.; O'Neill, K. P.; Harden, J.W.; Romanovsky, V.E.; Yarie, J.
2003-01-01
In this study, the dynamics of soil thermal, hydrologic, and ecosystem processes were coupled to project how the carbon budgets of boreal forests will respond to changes in atmospheric CO2, climate, and fire disturbance. The ability of the model to simulate gross primary production and ecosystem respiration was verified for a mature black spruce ecosystem in Canada, the age-dependent pattern of the simulated vegetation carbon was verified with inventory data on aboveground growth of Alaskan black spruce forests, and the model was applied to a postfire chronosequence in interior Alaska. The comparison between the simulated soil temperature and field-based estimates during the growing season (May to September) of 1997 revealed that the model was able to accurately simulate monthly temperatures at 10 cm (R > 0.93) for control and burned stands of the fire chronosequence. Similarly, the simulated and field-based estimates of soil respiration for control and burned stands were correlated (R = 0.84 and 0.74 for control and burned stands, respectively). The simulated and observed decadal to century-scale dynamics of soil temperature and carbon dynamics, which are represented by mean monthly values of these variables during the growing season, were correlated among stands (R = 0.93 and 0.71 for soil temperature at 20- and 10-cm depths, R = 0.95 and 0.91 for soil respiration and soil carbon, respectively). Sensitivity analyses indicate that along with differences in fire and climate history a number of other factors influence the response of carbon dynamics to fire disturbance. These factors include nitrogen fixation, the growth of moss, changes in the depth of the organic layer, soil drainage, and fire severity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kadoya, S.; Tajika, E., E-mail: kadoya@astrobio.k.u-tokyo.ac.jp, E-mail: tajika@astrobio.k.u-tokyo.ac.jp
2014-08-01
Earth-like planets in the habitable zone (HZ) have been considered to have warm climates and liquid water on their surfaces if the carbonate-silicate geochemical cycle is working as on Earth. However, it is known that even the present Earth may be globally ice-covered when the rate of CO{sub 2} degassing via volcanism becomes low. Here we discuss the climates of Earth-like planets in which the carbonate-silicate geochemical cycle is working, with focusing particularly on insolation and the CO{sub 2} degassing rate. The climate of Earth-like planets within the HZ can be classified into three climate modes (hot, warm, and snowballmore » climate modes). We found that the conditions for the existence of liquid water should be largely restricted even when the planet is orbiting within the HZ and the carbonate-silicate geochemical cycle is working. We show that these conditions should depend strongly on the rate of CO{sub 2} degassing via volcanism. It is, therefore, suggested that thermal evolution of the planetary interiors will be a controlling factor for Earth-like planets to have liquid water on their surface.« less
Regional climate change-Science in the Southeast
Jones, Sonya A.
2010-01-01
Resource managers are at the forefront of a new era of management. They must consider the potential impacts of climate change on the Nation's resources and proactively develop strategies for dealing with those impacts on plants, animals, and ecosystems. This requires rigorous, scientific understanding of environmental change. The role of the U.S. Geological Survey (USGS) in this effort is to analyze climate-change data and develop tools for assessing how changing conditions are likely to impact resources. This information will assist Federal, State, local, and tribal partners manage resources strategically. The 2008 Omnibus Budget Act and Secretarial Order 3289 established a new network of eight Department of Interior Regional Climate Science Centers to provide technical support for resource managers. The Southeast Regional Assessment Project (SERAP) is the first regional assessment to be funded by the USGS National Climate Change and Wildlife Science Center (http://nccw.usgs.gov/). The USGS is working closely with the developing Department of Interior Landscape Conservation Cooperatives to ensure that the project will meet the needs of resource managers in the Southeast. In addition, the U.S. Fish and Wildlife Service is providing resources to the SERAP to expand the scope of the project.
Millennial-scale climate variability during the Last Glacial period in the tropical Andes
NASA Astrophysics Data System (ADS)
Fritz, S. C.; Baker, P. A.; Ekdahl, E.; Seltzer, G. O.; Stevens, L. R.
2010-04-01
Millennial-scale climate variation during the Last Glacial period is evident in many locations worldwide, but it is unclear if such variation occurred in the interior of tropical South America, and, if so, how the low-latitude variation was related to its high-latitude counterpart. A high-resolution record, derived from the deep drilling of sediments on the floor of Lake Titicaca in the southern tropical Andes, is presented that shows clear evidence of millennial-scale climate variation between ˜60 and 20 ka BP. This variation is manifested by alternations of two interbedded sedimentary units. The two units have distinctive sedimentary, geochemical, and paleobiotic properties that are controlled by the relative abundance of terrigenous or nearshore components versus pelagic components. The sediments of more terrigenous or nearshore nature likely were deposited during regionally wetter climates when river transport of water and sediment was higher, whereas the sediments of more pelagic character were deposited during somewhat drier climates regionally. The majority of the wet periods inferred from the Lake Titicaca sediment record are correlated with the cold events in the Greenland ice cores and North Atlantic sediment cores, indicating that increased intensity of the South American summer monsoon was part of near-global scale climate excursions.
Review: groundwater in Alaska (USA)
Callegary, J.B.; Kikuchi, C.P.; Koch, Joshua C.; Lilly, M.R.; Leake, S.A.
2013-01-01
Groundwater in the US state of Alaska is critical to both humans and ecosystems. Interactions among physiography, ecology, geology, and current and past climate have largely determined the location and properties of aquifers as well as the timing and magnitude of fluxes to, from, and within the groundwater system. The climate ranges from maritime in the southern portion of the state to continental in the Interior, and arctic on the North Slope. During the Quaternary period, topography and rock type have combined with glacial and periglacial processes to develop the unconsolidated alluvial aquifers of Alaska and have resulted in highly heterogeneous hydrofacies. In addition, the long persistence of frozen ground, whether seasonal or permanent, greatly affects the distribution of aquifer recharge and discharge. Because of high runoff, a high proportion of groundwater use, and highly variable permeability controlled in part by permafrost and seasonally frozen ground, understanding groundwater/surface-water interactions and the effects of climate change is critical for understanding groundwater availability and the movement of natural and anthropogenic contaminants.
Collaborating for success: implementation of the interior Alaska inventory
Brendt Mueller; Dan Irvine
2015-01-01
Interior Alaskaâs boreal forests are approximately 112 million acres in size, or 15 percent of the United States forest land. This is currently a very dynamic region with rising temperatures, melting permafrost, changes in vegetation, fire, carbon, and water cycles due to a warming climate. This is the last forested area in the United States where the national Forest...
Hans-Erik Andersen; Robert. Pattison
2012-01-01
We investigate how vegetation in the Tanana Valley of interior Alaska (120,000 km2) has responded to a changing climate over the preceding three decades (1982-2012). Expected impacts include: 1) drying of wetlands and subsequent encroachment of woody vegetation into areas previously dominated by herbaceous and bryoid vegetation types, 2) changes...
K. Kielland; K. Olson; E. Euskirchen
2009-01-01
We monitored populations of snowshoe hares (Lepus americanus, Erxleben) in interior Alaska for 10 years from 1999 to 2008. During this period, fall densities of hares fluctuated approximately 14-fold. High population growth rates over summer were followed by large population declines over winter. Young-of-the-year hares tended to gain mass over...
White spruce meets black spruce: dispersal, postfire establishment, and growth in a warming climate
C. Wirth; J.W. Lichstein; J. Dushoff; A. Chen; F.S.III. Chapin
2008-01-01
Local distributions of black spruce (Picea mariana) and white spruce (Picea glauca) are largely determined by edaphic and topographic factors in the interior of Alaska, with black spruce dominant on moist permafrost sites and white spruce dominant on drier upland sites. Given the recent evidence for climate warming and...
The National Climate Change and Wildlife Science Center annual report for 2012
Varela-Acevedo, Elda; O'Malley, Robin
2013-01-01
Welcome to the inaugural edition of the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) and the Department of the Interior (DOI) Climate Science Centers (CSCs) annual report. In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to respond to the demands of natural resource managers for rigorous scientific information and effective tools for assessing and responding to climate change. Located at the USGS National Headquarters in Reston, Va., the NCCWSC has invested more than $70 million in cutting-edge climate change research and, in response to Secretarial Order No. 3289,established and is managing eight regional Department of Interior (DOI) Climate Science Centers (CSCs). The mission of the NCCWSC is to provide natural resource managers with the tools and information they need to develop and execute management strategies that address the impacts of climate and other ongoing global changes on fish and wildlife and their habitats. The DOI CSCs are joint Federal-university partnerships that focus their scientific work on regional priorities identified by DOI Landscape Conservation Cooperatives (LCCs) as well as Federal, State, Tribal, and other resource managers. The CSCs provide access to a wide range of scientific capabilities through their network of university partners along with the USGS and other Federal agency scientists. The focus of the NCCWSC on multiregion and national priorities complements the regionally focused agendas of the CSCs.
NASA Technical Reports Server (NTRS)
Gilchrist, Alan R.; Kooi, Henk; Beaumont, Christopher
1994-01-01
The relationship between morphology and surficial geology is used to quantify the denudation that has occurred across southwestern Africa sicne the fragmentation of Gondwana during the Early Mesozoic. Two main points emerge. Signficant denudation, of the order of kilometers, is widespread except in the Kalahari region of the continental interior. The denudation is systematically distributed so that the continental exterior catchment, draining directly to the Cape basin, is denuded to a greater depth than the interior catchment inland of the Great Escarpment. The analysis also implies tha the majority of the denudation occurred before the beginning of the Cenozoic for both teh exerior and interior catchments. Existing models of landscape development are reviewed, and implications of the denudation chronology are incorporated into a revised conceptual model. This revision implies tha thte primary effect of rifting on the subsequent landscape evolution is that it generates two distinct drainage regimes. A marginal upwarp, or rift flank uplift, separates rejuvenated rivers that drain into the subsiding rift from rivers in the continetal interior that are deflected but not rejuvenated. The two catchments evolve independently unless they are integrated by breaching of hte marginal upwarp. If this occurs, the exterior baselevel is communicated to the interior catchment that is denuded accordingly. Denudation rates generally decrease as the margin evolves, and this decrease is reinforced by the exposure of substrate that is resistant to denudation and/or a change to a more arid climate. The observations do not reveal a particular style of smaller-scale landscape evolution, sucha s escarpment retreat, that is responsible for the differential denudation across the region. It is proposed that numerical model experiments, which reflect the observational insights at the large scale, may identify the smaller-scale controls on escarpment development if the model and natural systems are analogous. Four numerical experiments are presented in which the roles of antecedent topography, resistant substrate, climte change, and lowering the baselevel of the interior catchment are investigated for an initially high elevation margin bordered by an escarpment. The model results suggest several styles of landscape evolution that are compatible with the observations. Escarpments may retreat in a regular manner, but they also degrade and are destroyed, only to reform at the drainage divide between exterior and interior catchments.
Frank Sturges; Linda Joyce; Tom Brown; Curt Flather; Miranda Mockrin; Matt Reeves
2013-01-01
In the coming decades, population growth, economic growth, and associated land-use changes - in concert with climate change - will influence forests and rangelands in the Interior West. Societyâs demand for ecosystem goods and services continues to increase as human and biophysical change alter the productive capacity of these lands. The 2010 RPA Assessment uses...
U.S. Department of the Interior Southeast Climate Science Center Science and Operational Plan
Jones, Sonya A.; Dalton, Melinda S.
2012-01-01
Climate change challenges many of the basic assumptions routinely used by conservation planners and managers, including the identification and prioritization of areas for conservation based on current environmental conditions and the assumption those conditions could be controlled by management actions. Climate change will likely alter important ecosystem drivers (temperature, precipitation, and sea-level rise) and make it difficult, if not impossible, to maintain current environmental conditions into the future. Additionally, the potential for future conservation of non-conservation lands may be affected by climate change, which further complicates resource planning. Potential changes to ecosystem drivers, as a result of climate change, highlight the need to develop and adapt effective conservation strategies to cope with the effects of climate and landscape change. The U.S. Congress, recognized the potential effects of climate change and authorized the creation of the U.S. Geological Survey National Climate Change and Wildlife Science Center (NCCWSC) in 2008. The directive of the NCCWSC is to produce science that supports resource-management agencies as they anticipate and adapt to the effects of climate change on fish, wildlife, and their habitats. On September 14, 2009, U.S. Department of the Interior (DOI) Secretary Ken Salazar signed Secretarial Order 3289 (amended February 22, 2010), which expanded the mandate of the NCCWSC to address climate-change-related impacts on all DOI resources. Secretarial Order 3289 "Addressing the Impacts of Climate Change on America's Water, Land, and Other Natural and Cultural Resources," established the foundation of two partner-based conservation science entities: Climate Science Centers (CSC) and their primary partners, Landscape Conservation Cooperatives (LCC). CSCs and LCCs are the Department-wide approach for applying scientific tools to increase the understanding of climate change, and to coordinate an effective response to its impacts on tribes and the land, water, ocean, fish and wildlife, and cultural-heritage resources that DOI manages. The NCCWSC is establishing a network of eight DOI CSCs (Alaska, Southeast, Northwest, North Central, Pacific Islands, Southwest, Northeast, and South Central) that will work with a variety of partners and stakeholders to provide resource managers the tools and information they need to help them anticipate and adapt conservation planning and design for projected climate change. The Southeast CSC, a federally led research collaboration hosted by North Carolina State University, was established in 2010. The Southeast CSC brings together the expertise of federal and university scientists to address climate-change priority needs of federal, state, non-governmental, and tribal resource managers. This document is the first draft of a science and operational plan for the Southeast CSC. The document describes operational considerations, provides the context for climate-change impacts in the Southeastern United States, and establishes six major science themes the Southeast CSC will address in collaboration with partners. This document is intended to be reevaluated and modified as partner needs change.
NASA Astrophysics Data System (ADS)
Ashastina, Kseniia; Schirrmeister, Lutz; Fuchs, Margret; Kienast, Frank
2017-07-01
Syngenetic permafrost deposits formed extensively on and around the arising Beringian subcontinent during the Late Pleistocene sea level lowstands. Syngenetic deposition implies that all material, both mineral and organic, freezes parallel to sedimentation and remains frozen until degradation of the permafrost. Permafrost is therefore a unique archive of Late Pleistocene palaeoclimate. Most studied permafrost outcrops are situated in the coastal lowlands of northeastern Siberia; inland sections are, however, scarcely available. Here, we describe the stratigraphical, cryolithological, and geochronological characteristics of a permafrost sequence near Batagay in the Siberian Yana Highlands, the interior of the Sakha Republic (Yakutia), Russia, with focus on the Late Pleistocene Yedoma ice complex (YIC). The recently formed Batagay mega-thaw slump exposes permafrost deposits to a depth of up to 80 m and gives insight into a climate record close to Verkhoyansk, which has the most severe continental climate in the Northern Hemisphere. Geochronological dating (optically stimulated luminescence, OSL, and 14C ages) and stratigraphic implications delivered a temporal frame from the Middle Pleistocene to the Holocene for our sedimentological interpretations and also revealed interruptions in the deposition. The sequence of lithological units indicates a succession of several distinct climate phases: a Middle Pleistocene ice complex indicates cold stage climate. Then, ice wedge growth stopped due to highly increased sedimentation rates and eventually a rise in temperature. Full interglacial climate conditions existed during accumulation of an organic-rich layer - plant macrofossils reflected open forest vegetation existing under dry conditions during Marine Isotope Stage (MIS) 5e. The Late Pleistocene YIC (MIS 4-MIS 2) suggests severe cold-stage climate conditions. No alas deposits, potentially indicating thermokarst processes, were detected at the site. A detailed comparison of the permafrost deposits exposed in the Batagay thaw slump with well-studied permafrost sequences, both coastal and inland, is made to highlight common features and differences in their formation processes and palaeoclimatic histories. Fluvial and lacustrine influence is temporarily common in the majority of permafrost exposures, but has to be excluded for the Batagay sequence. We interpret the characteristics of permafrost deposits at this location as a result of various climatically induced processes that are partly seasonally controlled. Nival deposition might have been dominant during winter time, whereas proluvial and aeolian deposition could have prevailed during the snowmelt period and the dry summer season.
NASA Astrophysics Data System (ADS)
Chen, J. M.; Wu, C.; Gonsamo, A.; Kurz, W.; Hember, R.; Price, D. T.; Boisvenue, C.; Zhang, F.; Chang, K.
2013-12-01
The forest carbon cycle is not only controlled by climate, tree species and site conditions, but also by disturbance affecting the biomass and age of forest stands. The Carbon Budget Model of the Canadian forest sector (CBM-CFS3) calculates the complete forest carbon cycle by combining forest inventory data on forest species, biomass and stand age with empirical yield information and statistics on forest disturbances, management and land-use change. It is used for national reporting and climate policy purposes. The Integrated Terrestrial Ecosystem Carbon model (InTEC) is driven by remotely-sensed vegetation parameters (forest type, leaf area index, clumping index) and fire scar, soil and climate data and simulates forest growth and the carbon cycle as a function of stand age using a process-based approach. Gridded forest biomass, stand age and disturbance data based on forest inventory are also used as inputs to InTEC. Efforts are being made to enhance the CBM-CFS3's capacity to assess the impacts of global change on the forest carbon budget by utilizing InTEC process modeling methodology. For this purpose, InTEC is first implemented on 3432 permanent sampling plots in coastal and interior BC, and it is found that climate warming explained 70% and 75% of forest growth enhancement over the period from 1956 to 2001 in coastal and interior BC, respectively, and the remainder is attributed to CO2 and nitrogen fertilization effects. The growth enhancement, in terms of the increase in the stemwood accumulation rate after adjusting for the stand age effect, is about 24% for both areas over the same period. To assess the impact of climate change on the forest carbon cycle across Canada, polygon-based CBM and gridded InTEC results are aggregated to 60 reconciliation units (RU), and their interannual variabilities over the period from 1990 to 2008 are compared in each RU. CBM results show interannual variability in response to forest disturbance, while InTEC results show larger interannual variability because it is affected by both disturbance and climate. The impact of climate at the RU level is generally positive (increased sink) due to warming, but sometimes negative due to water stress. Averaged over Canada, climate warming induced a longer growing season by about one week from 1901 to 2008, enhancing the annual forest carbon sink by about 42×30 TgC y-1 over the period from 1990 to 2008, while CO2 and nitrogen fertilization effects each also contributed about the same amount to Canada's forest carbon sink.
Stewart, Joseph A E; Wright, David H; Heckman, Katherine A
2017-01-01
Contemporary climate change has been widely documented as the apparent cause of range contraction at the edge of many species distributions but documentation of climate change as a cause of extirpation and fragmentation of the interior of a species' core habitat has been lacking. Here, we report the extirpation of the American pika (Ochotona princeps), a temperature-sensitive small mammal, from a 165-km2 area located within its core habitat in California's Sierra Nevada mountains. While sites surrounding the area still maintain pikas, radiocarbon analyses of pika fecal pellets recovered within this area indicate that former patch occupancy ranges from before 1955, the beginning of the atmospheric spike in radiocarbon associated with above ground atomic bomb testing, to c. 1991. Despite an abundance of suitable rocky habitat climate warming appears to have precipitated their demise. Weather station data reveal a 1.9°C rise in local temperature and a significant decline in snowpack over the period of record, 1910-2015, pushing pika habitat into increasingly tenuous climate conditions during the period of extirpation. This is among the first accounts of an apparently climate-mediated, modern extirpation of a species from an interior portion of its geographic distribution, resulting in habitat fragmentation, and is the largest area yet reported for a modern-era pika extirpation. Our finding provides empirical support to model projections, indicating that even core areas of species habitat are vulnerable to climate change within a timeframe of decades.
Pickles, Brian J; Twieg, Brendan D; O'Neill, Gregory A; Mohn, William W; Simard, Suzanne W
2015-08-01
Separating edaphic impacts on tree distributions from those of climate and geography is notoriously difficult. Aboveground and belowground factors play important roles, and determining their relative contribution to tree success will greatly assist in refining predictive models and forestry strategies in a changing climate. In a common glasshouse, seedlings of interior Douglas-fir (Pseudotsuga menziesii var. glauca) from multiple populations were grown in multiple forest soils. Fungicide was applied to half of the seedlings to separate soil fungal and nonfungal impacts on seedling performance. Soils of varying geographic and climatic distance from seed origin were compared, using a transfer function approach. Seedling height and biomass were optimized following seed transfer into drier soils, whereas survival was optimized when elevation transfer was minimised. Fungicide application reduced ectomycorrhizal root colonization by c. 50%, with treated seedlings exhibiting greater survival but reduced biomass. Local adaptation of Douglas-fir populations to soils was mediated by soil fungi to some extent in 56% of soil origin by response variable combinations. Mediation by edaphic factors in general occurred in 81% of combinations. Soil biota, hitherto unaccounted for in climate models, interacts with biogeography to influence plant ranges in a changing climate. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Pliocene environments and climates in the western United States
Thompson, R.S.
1991-01-01
The available evidence from the western United States suggests that the climate of the Early and Middle Pliocene (prior to ???2.4 Ma) was less seasonal (more equable) and generally more humid than now. Along the Pacific coast, summer drought was less pronounced than today. In the interior of the Pacific Northwest rainfall was more abundant and mild winter temperatures prevailed across much of the High Plains. In the Northwestern interior, a trend toward drier conditions began after ???4 Ma, although there may have been short periods of relatively humid conditions after this time. The period between 2.5 or 2.4-2.0 Ma was drier than earlier in the Pliocene throughout the American West, and apparently colder in many regions, although the occurrence of land tortoises as far north as Kansas may indicate intermittent frost-free conditions during this interval. After ???2.0 Ma conditions became warmer and more humid. The general climatic trends in the terrestrial data parallel fluctuations seen in North Pacific and in Oxygen Isotopic records of global glacial fluctuations. Global Climate Model (GCM) simulations of the regional effects of Late Cenozoic uplift and mountain-building are generally in accord with the nature, direction, and amplitude of differences between Pliocene and modern climates. ?? 1991.
10. CONTROL ROOM INTERIOR. Looking into southwest corner. CONTROL ROOM ...
10. CONTROL ROOM INTERIOR. Looking into southwest corner. CONTROL ROOM INTERIOR, SHOWING ESCAPE HATCH. Looking north along east wall. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
Dynamical Downscaling of NASA/GISS ModelE: Continuous, Multi-Year WRF Simulations
NASA Astrophysics Data System (ADS)
Otte, T.; Bowden, J. H.; Nolte, C. G.; Otte, M. J.; Herwehe, J. A.; Faluvegi, G.; Shindell, D. T.
2010-12-01
The WRF Model is being used at the U.S. EPA for dynamical downscaling of the NASA/GISS ModelE fields to assess regional impacts of climate change in the United States. The WRF model has been successfully linked to the ModelE fields in their raw hybrid vertical coordinate, and continuous, multi-year WRF downscaling simulations have been performed. WRF will be used to downscale decadal time slices of ModelE for recent past, current, and future climate as the simulations being conducted for the IPCC Fifth Assessment Report become available. This presentation will focus on the sensitivity to interior nudging within the RCM. The use of interior nudging for downscaled regional climate simulations has been somewhat controversial over the past several years but has been recently attracting attention. Several recent studies that have used reanalysis (i.e., verifiable) fields as a proxy for GCM input have shown that interior nudging can be beneficial toward achieving the desired downscaled fields. In this study, the value of nudging will be shown using fields from ModelE that are downscaled using WRF. Several different methods of nudging are explored, and it will be shown that the method of nudging and the choices made with respect to how nudging is used in WRF are critical to balance the constraint of ModelE against the freedom of WRF to develop its own fields.
Impacts of land use/cover classification accuracy on regional climate simulations
NASA Astrophysics Data System (ADS)
Ge, Jianjun; Qi, Jiaguo; Lofgren, Brent M.; Moore, Nathan; Torbick, Nathan; Olson, Jennifer M.
2007-03-01
Land use/cover change has been recognized as a key component in global change. Various land cover data sets, including historically reconstructed, recently observed, and future projected, have been used in numerous climate modeling studies at regional to global scales. However, little attention has been paid to the effect of land cover classification accuracy on climate simulations, though accuracy assessment has become a routine procedure in land cover production community. In this study, we analyzed the behavior of simulated precipitation in the Regional Atmospheric Modeling System (RAMS) over a range of simulated classification accuracies over a 3 month period. This study found that land cover accuracy under 80% had a strong effect on precipitation especially when the land surface had a greater control of the atmosphere. This effect became stronger as the accuracy decreased. As shown in three follow-on experiments, the effect was further influenced by model parameterizations such as convection schemes and interior nudging, which can mitigate the strength of surface boundary forcings. In reality, land cover accuracy rarely obtains the commonly recommended 85% target. Its effect on climate simulations should therefore be considered, especially when historically reconstructed and future projected land covers are employed.
NASA Astrophysics Data System (ADS)
Broich, M.; Huete, A. R.; Xuanlon, M.; Davies, K.; Restrepo-Coupe, N.; Ratana, P.
2012-12-01
Australia's climate is extremely variable with inter-annual rainfall at any given site varying by 5- or 6-fold or more, across the continent. In addition to such inter-annual variability, there can be significant intra-annual variability, especially in monsoonal Australia (e.g. the wet tropical savannas) and Mediterranean climates in SW Australia where prolonged dry seasons occur each year. This presents unique challenges to the characterization of seasonal dynamics with satellite datasets. In contrast to annual reoccurring temperature-driven phenology of northern hemisphere mid-latitudes, vegetation dynamics of the vast and dry Australian interior are poorly quantified by existing remote sensing products. For example, in the current global-based MODIS phenology product, central Australia is covered by ~30% fill values for any given year. Two challenges are specific to Australian landscapes: first, the difficulty of characterizing seasonality of rainfall-driven ecosystems in interior Australia where duration and magnitude of green-up and brown down cycles show high inter annual variability; second, modeling two phenologic layers, the trees and the grass in savannas were the trees are evergreen but the herbaceous understory varies with rainfall. Savannas cover >50% of Australia. Australia's vegetation and climate are different from other continents. A MODIS phenology product capable of characterizing vegetation dynamics across the continent is being developed in this research as part of the AusCover national expert network aiming to provide Australian biophysical remote sensing data time-series and continental-scale map products. These products aim to support the Terrestrial Ecosystem Research Network (TERN) serving ecosystem research in Australia. The MODIS land surface product for Australia first searches the entire time series of each Climate Modeling Grid pixel for low-high-low extreme point sequences. A double logistic function is then fit to each of these sequences allowing identification of growth periods with different magnitudes and durations anywhere in the time series. Results show that the highest absolute variability in peak greenness occurred in cropped areas while the highest relative variability (coefficient of variation) occurred in interior Australia particularly around Lake Eyre, the center of a closed drainage basin in the dry interior of the continent. Across the desert interior, the timing of the green-up onset and the peak greenness was correlated with the landfall of cyclones and the inland penetration and strength of the north Australian summer monsoon (represented by TRMM data). The variability of Australian land surface phenology magnitude and timing was found to be strongly correlated with the swings between La Nina and El Nino events. The information on vegetation dynamics represented here is critical for land surface, fuel accumulation, agricultural production, and permanent ecosystem change modeling in relation to climate trends. A unique research opportunity is provided by recent climate variability: in 2010 a persistent El Nino has given way to a strong two-year La Nina breaking a decade long drought that was followed by record-breaking rainfall across most of the continent and extensive flooding followed by sustained greening.
30 CFR 921.700 - Massachusetts Federal program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MASSACHUSETTS § 921.700... the nature of Massachusetts' terrain, climate, biological, chemical or other relevant physical...
30 CFR 921.700 - Massachusetts Federal program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MASSACHUSETTS § 921.700... the nature of Massachusetts' terrain, climate, biological, chemical or other relevant physical...
30 CFR 921.700 - Massachusetts Federal program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MASSACHUSETTS § 921.700... the nature of Massachusetts' terrain, climate, biological, chemical or other relevant physical...
30 CFR 921.700 - Massachusetts Federal program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE MASSACHUSETTS § 921.700... the nature of Massachusetts' terrain, climate, biological, chemical or other relevant physical...
Implementation of unmanned aircraft systems by the U.S. Geological Survey
Cress, J.J.; Sloan, J.L.; Hutt, M.E.
2011-01-01
The U.S. Geological Survey (USGS) Unmanned Aircraft Systems (UAS) Project Office is leading the implementation of UAS technology in anticipation of transforming the research methods and management techniques employed across the Department of the Interior. UAS technology is being made available to monitor environmental conditions, analyse the impacts of climate change, respond to natural hazards, understand landscape change rates and consequences, conduct wildlife inventories and support related land management missions. USGS is teaming with the Department of the Interior Aviation Management Directorate (AMD) to lead the safe and cost-effective adoption of UAS technology by the Department of the Interior Agencies and USGS scientists.
Venus: The Atmosphere, Climate, Surface, Interior and Near-Space Environment of an Earth-Like Planet
NASA Astrophysics Data System (ADS)
Taylor, Fredric W.; Svedhem, Håkan; Head, James W.
2018-02-01
This is a review of current knowledge about Earth's nearest planetary neighbour and near twin, Venus. Such knowledge has recently been extended by the European Venus Express and the Japanese Akatsuki spacecraft in orbit around the planet; these missions and their achievements are concisely described in the first part of the review, along with a summary of previous Venus observations. The scientific discussions which follow are divided into three main sections: on the surface and interior; the atmosphere and climate; and the thermosphere, exosphere and magnetosphere. These reports are intended to provide an overview for the general reader, and also an introduction to the more detailed topical surveys in the following articles in this issue, where full references to original material may be found.
Proceedings of the Seventh International Conference on Mars
NASA Technical Reports Server (NTRS)
2007-01-01
The oral and poster sessions of the SEVENTH INTERNATIONAL CONFERENCE ON MARS included; The Distribution and Context of Water-related Minerals on Mars; Poster Session: Mars Geology; Geology of the Martian Surface: Lithologic Variation, Composition, and Structure; Water Through Mars' Geologic History; Poster Session: Mars Water and the Martian Interior; Volatiles and Interior Evolution; The Martian Climate and Atmosphere: Variations in Time and Space; Poster Session: The Martian Climate and Current Processes; Modern Mars: Weather, Atmospheric Chemistry, Geologic Processes, and Water Cycle; Public Lecture: Mars Reconnaissance Orbiter's New View of the Red Planet; The North and South Polar Layered Deposits, Circumpolar Regions, and Changes with Time; Poster Session: Mars Polar Science, Astrobiology, Future Missions/Instruments, and Other Mars Science; Mars Astrobiology and Upcoming Missions; and Martian Stratigraphy and Sedimentology: Reading the Sedimentary Record.
Summary of climatic data for the Bonanza Creek Experimental Forest, interior Alaska.
Richard J. Barney; Erwin R. Berglund
1973-01-01
A summary of climatic data during the 1968-71 growing seasons is presented for the subarctic Bonanza Creek Experimental Forest located near Fairbanks, Alaska. Data were obtained from three weather station sites at elevations of 1,650, 1,150, and 550 feet from May until September each year. Data are for relative humidity, rainfall, and maximum, minimum, and mean...
Megan M. Friggens; Marcus V. Warwell; Jeanne C. Chambers; Stanley G. Kitchen
2012-01-01
Experimental research and species distribution modeling predict large changes in the distributions of species and vegetation types in the Interior West due to climate change. Speciesâ responses will depend not only on their physiological tolerances but also on their phenology, establishment properties, biotic interactions, and capacity to evolve and migrate. Because...
Climate drivers of regionally synchronous fires in the inland northwest (1651-1900)
Emily K. Heyerdahl; Donald McKenzie; Lori D. Daniels; Amy E. Hessl; Jeremy S. Littell; Nathan J. Mantua
2008-01-01
We inferred climate drivers of regionally synchronous surface fires from 1651 to 1900 at 15 sites with existing annually accurate fire-scar chronologies from forests dominated by ponderosa pine or Douglas-fir in the inland Northwest (interior Oregon,Washington and southern British Columbia).Years with widespread fires (35 years with fire at 7 to 11 sites) had warm...
Climate deteriorations and Neanderthal demise in interior Iberia.
Wolf, D; Kolb, T; Alcaraz-Castaño, M; Heinrich, S; Baumgart, P; Calvo, R; Sánchez, J; Ryborz, K; Schäfer, I; Bliedtner, M; Zech, R; Zöller, L; Faust, D
2018-05-04
Time and circumstances for the disappearance of Neanderthals and its relationship with the advent of Modern Humans are not yet sufficiently resolved, especially in case of the Iberian Peninsula. Reconstructing palaeoenvironmental conditions during the last glacial period is crucial to clarifying whether climate deteriorations or competition and contacts with Modern Humans played the pivotal role in driving Neanderthals to extinction. A high-resolution loess record from the Upper Tagus Basin in central Spain demonstrates that the Neanderthal abandonment of inner Iberian territories 42 kyr ago coincided with the evolvement of hostile environmental conditions, while archaeological evidence testifies that this desertion took place regardless of modern humans' activities. According to stratigraphic findings and stable isotope analyses, this period corresponded to the driest environmental conditions of the last glacial apart from an even drier period linked to Heinrich Stadial 3. Our results show that during Marine Isotope Stages (MIS) 4 and 2 climate deteriorations in interior Iberia temporally coincided with northern hemisphere cold periods (Heinrich stadials). Solely during the middle MIS 3, in a period surrounding 42 kyr ago, this relation seems not straightforward, which may demonstrate the complexity of terrestrial climate conditions during glacial periods.
NASA Astrophysics Data System (ADS)
Galbraith, Eric D.; Merlis, Timothy M.; Palter, Jaime B.
2016-08-01
During each of the dramatic global warmings that ended the Pleistocene ice ages, the Atlantic Meridional Overturning Circulation (AMOC) was disrupted. It is not clear whether this was a contributing cause or simply an effect of deglaciation. Here we show that in an ensemble of simulations with a global climate model, AMOC disruption causes a consistent and sustained positive radiative imbalance of 0.4 W m-2. The imbalance is accommodated by heat accumulation in the ocean interior, representing an overall planetary warming, subsequently released by deep convection in the North Atlantic when the AMOC resumes. The results suggest a means by which AMOC disruptions could have helped to tip the planet out of stable glaciated states. However, the fact that AMOC disruptions occurred during prior Heinrich Stadials without causing deglaciation shows that other factors, such as ice sheet dynamics, or controls on CO2, were also key for deglaciation.
NASA Astrophysics Data System (ADS)
Ebel, B. A.; Koch, J. C.; Walvoord, M. A.
2017-12-01
Boreal forest regions in interior Alaska, USA are subject to recurring wildfire disturbance and climate shifts. These "press" and "pulse" disturbances impact water, solute, carbon, and energy fluxes, with feedbacks and consequences that are not adequately characterized. The NASA Arctic Boreal Vulnerability Experiment (ABoVE) seeks to understand susceptibility to disturbance in boreal regions. Subsurface physical and hydraulic properties are among the largest uncertainties in cryohydrogeologic modeling aiming to predict impacts of disturbance in Arctic and boreal regions. We address this research gap by characterizing physical and hydraulic properties of soil across a gradient of sites covering disparate soil textures and wildfire disturbance in interior Alaska. Samples were collected in the field within the domain of the NASA ABoVE project and analyzed in the laboratory. Physical properties measured include soil organic matter fraction, soil-particle size distribution, dry bulk density, and saturated soil-water content. Hydraulic properties measured include soil-water retention and field-saturated hydraulic conductivity using tension infiltrometers (-1 cm applied pressure head). The physical and hydraulic properties provide the foundation for site conceptual model development, cryohydrogeologic model parameterization, and integration with geophysical data. This foundation contributes to the NASA ABoVE objectives of understanding the underlying physical processes that control vulnerability in Arctic and Boreal landscapes.
57. Interior of launch control center, crew in B52 seats, ...
57. Interior of launch control center, crew in B-52 seats, looking east - Ellsworth Air Force Base, Delta Flight, Launch Control Facility, County Road CS23A, North of Exit 127, Interior, Jackson County, SD
Hypsometric control on glacier mass balance sensitivity in Alaska
NASA Astrophysics Data System (ADS)
McGrath, D.; Sass, L.; Arendt, A. A.; O'Neel, S.; Kienholz, C.; Larsen, C.; Burgess, E. W.
2015-12-01
Mass loss from glaciers in Alaska is dominated by strongly negative surface balances, particularly on small, continental glaciers but can be highly variable from glacier to glacier. Glacier hypsometry can exert significant control on mass balance sensitivity, particularly if the equilibrium line altitude (ELA) is in a broad area of low surface slope. In this study, we explore the spatial variability in glacier response to future climate forcings on the basis of hypsometry. We first derive mass balance sensitivities (30-70 m ELA / 1° C and 40-90 m ELA / 50% decrease in snow accumulation) from the ~50-year USGS Benchmark glaciers mass balance record. We subsequently assess mean climate fields in 2090-2100 derived from the IPCC AR5/CMIP5 RCP 6.0 5-model mean. Over glaciers in Alaska, we find 2-4° C warming and 10-20% increase in precipitation relative to 2006-2015, but a corresponding 0-50% decrease in snow accumulation due to rising temperatures. We assess changes in accumulation area ratios (AAR) to a rising ELA using binned individual glacier hypsometries. For an ELA increase of 150 m, the mean statewide AAR drops by 0.45, representing a 70% reduction in accumulation area on an individual glacier basis. Small, interior glaciers are the primary drivers of this reduction and for nearly 25% of all glaciers, the new ELA exceeds the glacier's maximum elevation, portending eventual loss. The loss of small glaciers, particularly in the drier interior of Alaska will significantly modify streamflow properties (flashy hydrographs, earlier and reduced peak flows, increased interannual variability, warmer temperatures) with poorly understood downstream ecosystem and oceanographic impacts.
Boreal Forest Fire Cools Climate
NASA Astrophysics Data System (ADS)
Randerson, J. T.; Liu, H.; Flanner, M.; Chambers, S. D.; Harden, J. W.; Hess, P. G.; Jin, Y.; Mack, M. C.; Pfister, G.; Schuur, E. A.; Treseder, K. K.; Welp, L. R.; Zender, C. S.
2005-12-01
We report measurements, modeling, and analysis of carbon and energy fluxes from a boreal forest fire that occurred in interior Alaska during 1999. In the first year after the fire, ozone production, atmospheric aerosol loading, greenhouse gas emissions, soot deposition, and decreases in summer albedo contributed to a positive annual radiative forcing (RF). These effects were partly offset by an increase in fall, winter, and spring albedo from reduced canopy cover and increased exposure of snow-covered surfaces. The atmospheric lifetime of aerosols and ozone and are relatively short (days to months). The radiative effects of soot on snow are also attenuated rapidly from the deposition of fresh snow. As a result, a year after the fire, only two classes of RF mechanisms remained: greenhouse gas emissions and post-fire changes in surface albedo. Summer albedo increased rapidly in subsequent years and was substantially higher than unburned control areas (by more than 0.03) after 4 years as a result of grass and shrub establishment. Satellite measurements from MODIS of other interior Alaska burn scars provided evidence that elevated levels of spring and summer albedo (relative to unburned control areas) persisted for at least 4 decades after fire. In parallel, our chamber, eddy covariance, and biomass measurements indicated that the post-fire ecosystems switch from a source to a sink within the first decade. Taken together, the extended period of increased spring and summer albedo and carbon uptake of intermediate-aged stands appears to more than offset the initial warming pulse caused by fire emissions, when compared using the RF concept. This result suggests that management of forests in northern countries to suppress fire and preserve carbon sinks may have the opposite effect on climate as that intended.
NASA Astrophysics Data System (ADS)
Lackett, J.; Ojima, D. S.; McNeeley, S.
2017-12-01
As climate change impacts become more apparent in our environment, action is needed to enhance the social-ecological system resilience. Incorporating principles which lead to actionable research and project co-development, when appropriate, will facilitate building linkages between the research and the natural resource management communities. In order to develop strategies to manage for climatic and ecosystem changes, collaborative actions are needed between researchers and resource managers to apply appropriate knowledge of the ecosystem and management environments to enable feasible solutions and management actions to respond to climate change. Our team has been involved in developing and establishing a research and engagement center, the North Central Climate Science Center (NC CSC), for the US Department of Interior, to support the development and translation of pertinent climate science information to natural resource managers in the north central portion of the United States. The NC CSC has implemented a platform to support the Resource for Vulnerability Assessment, Adaptation, and Mitigation Projects (ReVAMP) with research, engagement, and training activities to support resource managers and researchers. These activities are aimed at the co-production of appropriate response strategies to climate change in the region, in particular to drought-related responses. Through this platform we, with other partners in the region, including the Department of Interior and the Department of Agriculture, are bringing various training tools, climate information, and management planning tools to resource managers. The implementation of ReVAMP has led to development of planning efforts which include a more explicit representation of climate change as a driver of drought events in our region. Scenario planning provides a process which integrates management goals with possible outcomes derived from observations and simulations of ecological impacts of climate change. Co-development of management options under these various scenarios have allowed for guidance about further research needed, observations needed to better monitor ecological conditions under climate changes, and adaptive management practices to increase resilience.
NASA Astrophysics Data System (ADS)
Schide, K.; Jewell, P. W.; Oviatt, C. G.; Jol, H. M.
2015-12-01
Lake Bonneville was the largest of the Pleistocene pluvial lakes that once filled the Great Basin of the interior western United States. Its two most prominent shorelines, Bonneville and Provo, are well documented but many of the lake's intermediate shoreline features have yet to be studied. These transgressive barriers and embankments mark short-term changes in the regional water budget and thus represent a proxy for local climate change. The internal and external structures of these features are analyzed using the following methods: ground penetrating radar, 5 meter auto-correlated DEMs, 1-meter DEMs generated from LiDAR, high-accuracy handheld GPS, and 3D imagery collected with an unmanned aerial vehicle. These methods in mapping, surveying, and imaging provide a quantitative analysis of regional sediment availability, transportation, and deposition as well as changes in wave and wind energy. These controls help define climate thresholds and rates of landscape evolution in the Great Basin during the Pleistocene that are then evaluated in the context of global climate change.
J. DeRose; S. Wang; J. Shaw
2014-01-01
In 2009, the Interior West Forest Inventory and Analysis (FIA) program of the U.S. Forest Service started to archive approximately 11 000 increment cores collected in the Interior West states during the periodic inventories of the 1980s and 1990s. The two primary goals for use of the data were to provide a plot-linked database of radial growth to be used for growth...
NASA Astrophysics Data System (ADS)
Lyons, Richard; Tooth, Stephen; Duller, Geoff A. T.
2014-07-01
The nature, spatial patterns and forcing mechanisms of Quaternary climatic changes across southern Africa remain unresolved and contentious, principally due to the scarcity of continuous and robustly-dated proxy records. We present what we interpret to be a broadly continuous record of late Quaternary climatic change based on optically stimulated luminescence (OSL) dating, and mineral magnetic and diffuse reflectance spectroscopy (DRS) analyses of stacked palaeosols within an overbank alluvial succession along the Modder River, central South Africa. The OSL ages indicate that alluvial sedimentation occurred at a fairly steady rate, averaging ˜0.15 mm/yr from at least 44 ka until ˜0.83 ka. This suggests that the palaeosols are accretionary, having formed contemporaneously with sedimentation. Climate is identified as the key soil-forming factor controlling the intensity of pedogenesis and is reflected in the changing concentration of pedogenic ferrimagnetic minerals (magnetite/maghemite) of single domain and superparamagnetic dimensions, and by variations in the amount of hematite compared to goethite. These data indicate that the climate was generally dry (rainfall ˜200-400 mm/yr) from ˜46 to 32 ka, except for a brief peak in humidity at ˜42 ka. There was then a period of greater humidity (rainfall ˜400-600 mm/yr) from ˜32 to 28 ka, possibly reflecting enhanced moisture supply from the Atlantic Ocean associated with the equatorward migration and intensification of westerly storm tracks. Although the precise mechanism remains unresolved, this climatic change may have been linked to an obliquity minimum at ˜29 ka. After ˜28 ka, the climate became progressively cooler and drier, especially between ˜18 and 15.5 ka when rainfall was as low as ˜100-200 mm/yr. Temperatures and rainfall then increased from ˜15.5 ka onwards, with the latter possibly linked to rising sea-surface temperatures in the SW Indian Ocean and enhanced moisture supply from easterly circulation. At ˜0.83 ka, a time corresponding with part of the Medieval Climatic Anomaly (MCA, ˜900-1300 AD), rainfall reached ˜600-700 mm/yr and was higher than at present (˜400-500 mm/yr). Fluvial landforms have previously been overlooked as a source of palaeoenvironmental information in southern Africa, but this study clearly demonstrates the potential to extract robust palaeoenvironmental data from alluvial-palaeosol successions in the arid to semi-arid interior where other forms of proxy record are scarce.
Replumbing of the Biological Pump caused by Millennial Climate Variability
NASA Astrophysics Data System (ADS)
Galbraith, E.; Sarmiento, J.
2008-12-01
It has been hypothesized that millennial-timescale variability in the biological pump was a critical instigator of glacial-interglacial cycles. However, even in the absence of changes in ecosystem function (e.g. due to iron fertilization), determining the mechanisms by which physical climate variability alters the biological pump is not simple. Changes in upper ocean circulation and deep water formation have previously been shown to alter both the downward flux of organic matter and the mass of respired carbon in the ocean interior, often in non- intuitive ways. For example, a reduced upward flux of nutrients at the global scale will decrease the global rate of export production, but it could either increase or decrease the respired carbon content of the ocean interior, depending on where the reduced upward flux of nutrients occurs. Furthermore, viable candidates for physical climate forcing are numerous, including changes in the westerly winds, changes in the depth of the thermocline, and changes in the formation rate of North Atlantic Deep Water, among others. We use a simple, prognostic, light-and temperature-dependent model of biogeochemical cycling within a state-of-the- art global coupled ocean-atmosphere model to examine the response of the biological pump to changes in the coupled Earth system over multiple centuries. The biogeochemical model explicitly distinguishes respired carbon from preformed and saturation carbon, allowing the activity of the biological pump to be clearly quantified. Changes are forced in the model by altering the background climate state, and by manipulating the flux of freshwater to the North Atlantic region. We show how these changes in the physical state of the coupled ocean-atmosphere system impact the distribution and mass of respired carbon in the ocean interior, and the relationship these changes bear to global patterns of export production via the redistribution of nutrients.
Volis, S; Ormanbekova, D; Shulgina, I
2016-04-01
Evaluating the relative importance of neutral and adaptive processes as determinants of population differentiation across environments is a central theme of evolutionary biology. We applied the QST-FST comparison flanked by a direct test for local adaptation to infer the role of climate-driven selection and gene flow in population differentiation of an annual grass Avena sterilis in two distinct parts of the species range, edge and interior, which represent two globally different climates, desert and Mediterranean. In a multiyear reciprocal transplant experiment, the plants of desert and Mediterranean origin demonstrated home advantage, and population differentiation in several phenotypic traits related to reproduction exceeded neutral predictions, as determined by comparisons of QST values with theoretical FST distributions. Thus, variation in these traits likely resulted from local adaptation to desert and Mediterranean environments. The two separate common garden experiments conducted with different experimental design revealed that two population comparisons, in contrast to multi-population comparisons, are likely to detect population differences in virtually every trait, but many of these differences reflect effects of local rather than regional environment. We detected a general reduction in neutral (SSR) genetic variation but not in adaptive quantitative trait variation in peripheral desert as compared with Mediterranean core populations. On the other hand, the molecular data indicated intensive gene flow from the Mediterranean core towards desert periphery. Although species range position in our study (edge vs. interior) was confounded with climate (desert vs. Mediterranean), the results suggest that the gene flow from the species core does not have negative consequences for either performance of the peripheral plants or their adaptive potential. © 2016 John Wiley & Sons Ltd.
Ocean Heat and Carbon Uptake in Transient Climate Change: Identifying Model Uncertainty
NASA Technical Reports Server (NTRS)
Romanou, Anastasia; Marshall, John
2015-01-01
Global warming on decadal and centennial timescales is mediated and ameliorated by the oceansequestering heat and carbon into its interior. Transient climate change is a function of the efficiency by whichanthropogenic heat and carbon are transported away from the surface into the ocean interior (Hansen et al. 1985).Gregory and Mitchell (1997) and Raper et al. (2002) were the first to identify the importance of the ocean heat uptakeefficiency in transient climate change. Observational estimates (Schwartz 2012) and inferences from coupledatmosphere-ocean general circulation models (AOGCMs; Gregory and Forster 2008; Marotzke et al. 2015), suggest thatocean heat uptake efficiency on decadal timescales lies in the range 0.5-1.5 W/sq m/K and is thus comparable to theclimate feedback parameter (Murphy et al. 2009). Moreover, the ocean not only plays a key role in setting the timing ofwarming but also its regional patterns (Marshall et al. 2014), which is crucial to our understanding of regional climate,carbon and heat uptake, and sea-level change. This short communication is based on a presentation given by A.Romanou at a recent workshop, Oceans Carbon and Heat Uptake: Uncertainties and Metrics, co-hosted by US CLIVARand OCB. As briefly reviewed below, we have incomplete but growing knowledge of how ocean models used in climatechange projections sequester heat and carbon into the interior. To understand and thence reduce errors and biases inthe ocean component of coupled models, as well as elucidate the key mechanisms at work, in the final section we outlinea proposed model intercomparison project named FAFMIP. In FAFMIP, coupled integrations would be carried out withprescribed overrides of wind stress and freshwater and heat fluxes acting at the sea surface.
Stewart, Joseph A. E.; Wright, David H.; Heckman, Katherine A.
2017-08-30
Contemporary climate change has been widely documented as the apparent cause of range contraction at the edge of many species distributions but documentation of climate change as a cause of extirpation and fragmentation of the interior of a species’ core habitat has been lacking. Here in this paper, we report the extirpation of the American pika (Ochotona princeps), a temperature-sensitive small mammal, from a 165-km 2 area located within its core habitat in California’s Sierra Nevada mountains. While sites surrounding the area still maintain pikas, radiocarbon analyses of pika fecal pellets recovered within this area indicate that former patch occupancymore » ranges from before 1955, the beginning of the atmospheric spike in radiocarbon associated with above ground atomic bomb testing, to c. 1991. Despite an abundance of suitable rocky habitat climate warming appears to have precipitated their demise. Weather station data reveal a 1.9°C rise in local temperature and a significant decline in snowpack over the period of record, 1910–2015, pushing pika habitat into increasingly tenuous climate conditions during the period of extirpation. This is among the first accounts of an apparently climate-mediated, modern extirpation of a species from an interior portion of its geographic distribution, resulting in habitat fragmentation, and is the largest area yet reported for a modern-era pika extirpation. Our finding provides empirical support to model projections, indicating that even core areas of species habitat are vulnerable to climate change within a timeframe of decades.« less
Wright, David H.; Heckman, Katherine A.
2017-01-01
Contemporary climate change has been widely documented as the apparent cause of range contraction at the edge of many species distributions but documentation of climate change as a cause of extirpation and fragmentation of the interior of a species’ core habitat has been lacking. Here, we report the extirpation of the American pika (Ochotona princeps), a temperature-sensitive small mammal, from a 165-km2 area located within its core habitat in California’s Sierra Nevada mountains. While sites surrounding the area still maintain pikas, radiocarbon analyses of pika fecal pellets recovered within this area indicate that former patch occupancy ranges from before 1955, the beginning of the atmospheric spike in radiocarbon associated with above ground atomic bomb testing, to c. 1991. Despite an abundance of suitable rocky habitat climate warming appears to have precipitated their demise. Weather station data reveal a 1.9°C rise in local temperature and a significant decline in snowpack over the period of record, 1910–2015, pushing pika habitat into increasingly tenuous climate conditions during the period of extirpation. This is among the first accounts of an apparently climate-mediated, modern extirpation of a species from an interior portion of its geographic distribution, resulting in habitat fragmentation, and is the largest area yet reported for a modern-era pika extirpation. Our finding provides empirical support to model projections, indicating that even core areas of species habitat are vulnerable to climate change within a timeframe of decades. PMID:28854268
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stewart, Joseph A. E.; Wright, David H.; Heckman, Katherine A.
Contemporary climate change has been widely documented as the apparent cause of range contraction at the edge of many species distributions but documentation of climate change as a cause of extirpation and fragmentation of the interior of a species’ core habitat has been lacking. Here in this paper, we report the extirpation of the American pika (Ochotona princeps), a temperature-sensitive small mammal, from a 165-km 2 area located within its core habitat in California’s Sierra Nevada mountains. While sites surrounding the area still maintain pikas, radiocarbon analyses of pika fecal pellets recovered within this area indicate that former patch occupancymore » ranges from before 1955, the beginning of the atmospheric spike in radiocarbon associated with above ground atomic bomb testing, to c. 1991. Despite an abundance of suitable rocky habitat climate warming appears to have precipitated their demise. Weather station data reveal a 1.9°C rise in local temperature and a significant decline in snowpack over the period of record, 1910–2015, pushing pika habitat into increasingly tenuous climate conditions during the period of extirpation. This is among the first accounts of an apparently climate-mediated, modern extirpation of a species from an interior portion of its geographic distribution, resulting in habitat fragmentation, and is the largest area yet reported for a modern-era pika extirpation. Our finding provides empirical support to model projections, indicating that even core areas of species habitat are vulnerable to climate change within a timeframe of decades.« less
Heather A. Lumpkin; Scott M. Pearson; Monica G. Turner
2012-01-01
In the eastern United States, land-use and climate change have likely contributed to declines in the abundance of Neotropical migrant birds that occupy forest interiors, but the mechanisms are not well understood. We conducted a nest-predation experiment in southern Appalachian Mountain forests (North Carolina, U.S.A.) during the 2009 and 2010 breeding seasons to...
Social Memory of Short-term and Long-term Variability in the Sahelian Climate
Roderick J. McIntosh
2006-01-01
The 170,000 km2 interior floodplain of the Middle Niger (Mali) is a tight mosaic of alluvial and desert microenvironments. The interannual to intermillennial climate change profiles of this fluvial anomaly thrust deep into the Sahel and southern Sahara are masterpieces of abrupt phase shifts and unpredictability. Response has been of two kinds. The Office du Niger was...
Michell L. Thomey; Paulette L. Ford; Matt C. Reeves; Deborah M. Finch; Marcy E. Litvak; Scott L. Collins
2014-01-01
Reducing atmospheric carbon dioxide (CO2) concentration through enhanced terrestrial carbon storage may help slow or reverse the rate of global climate change. As a result, Federal land management agencies, such as the U.S. Department of Agriculture Forest Service and U.S. Department of the Interior Bureau of Land Management, are implementing management policies to...
Science Goals of the U.S. Department of the Interior Southeast Climate Science Center
Dalton, Melinda S.
2011-01-01
In 2011, the U.S. Department of the Interior Southeast Climate Science Center (CSC) finalized the first draft of its goals for research needed to address the needs of natural and cultural partners for climate science in the Southeastern United States. The science themes described in this draft plan were established to address the information needs of ecoregion conservation partnerships, such as the Landscape Conservation Cooperatives (LCCs) and other regional conservation-science and resource-management partners. These themes were developed using priorities defined by partners and stakeholders in the Southeast and on a large-scale, multidisciplinary project-the Southeast Regional Assessment Project (SERAP)-developed in concert with those partners. Science products developed under these themes will provide models of potential future conditions, assessments of likely impacts, and tools that can be used to inform the conservation management decisions of LCCs and other partners. This information will be critical as managers try to anticipate and adapt to climate change. Resource managers in the Southeast are requesting this type of information, in many cases as a result of observed climate change effects. The Southeast CSC draft science plan identifies six science themes and frames the activities (tasks, with examples of recommended near-term work for each task included herein) related to each theme that are needed to achieve the objectives of the Southeast CSC.
30 CFR 941.700 - South Dakota Federal program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.700... necessary because of the unique nature of South Dakota's terrain, climate, biological, chemical, or other...
30 CFR 933.700 - North Carolina Federal program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NORTH CAROLINA § 933.700... that: (1) Such variance is necessary because of the unique nature of North Carolina's terrain, climate...
30 CFR 941.700 - South Dakota Federal program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.700... necessary because of the unique nature of South Dakota's terrain, climate, biological, chemical, or other...
30 CFR 933.700 - North Carolina Federal program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NORTH CAROLINA § 933.700... that: (1) Such variance is necessary because of the unique nature of North Carolina's terrain, climate...
30 CFR 933.700 - North Carolina Federal program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NORTH CAROLINA § 933.700... that: (1) Such variance is necessary because of the unique nature of North Carolina's terrain, climate...
30 CFR 933.700 - North Carolina Federal program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE NORTH CAROLINA § 933.700... that: (1) Such variance is necessary because of the unique nature of North Carolina's terrain, climate...
30 CFR 941.700 - South Dakota Federal program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.700... necessary because of the unique nature of South Dakota's terrain, climate, biological, chemical, or other...
30 CFR 941.700 - South Dakota Federal program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE SOUTH DAKOTA § 941.700... necessary because of the unique nature of South Dakota's terrain, climate, biological, chemical, or other...
Chapel of cemetery church of all saints in Sedlec - Long-term analysis of hygrothermal conditions
NASA Astrophysics Data System (ADS)
Pavlík, Zbyšek; Balík, Lukáš; Kudrnáčová, Lucie; Maděra, Jiří; Černý, Robert
2017-07-01
In this paper, long-term monitoring of hygrothermal conditions of the chapel of the cemetery church of All Saints in Sedlec, Czech Republic is presented as a practical tool for evaluation of functional problems of the researched structure. Within the performed experimental tests, interior and exterior climatic conditions were monitored over one year period. Herewith, surface temperature of the chapel wall was measured. Exterior climatic data were collected using weather station Vantage Pro2 placed in church tower. In interior, precise combined relative humidity/temperature sensors were installed. Based on the accessed hygrothermal state of the inspected chapel and identified periods of possible surface condensation, service conditions of the chapel will be optimized in order to prevent extensive damage of historically valuable finishing and furnishing materials, paintings, plasters, and architectural ornaments.
2016-08-01
interior Alaska are afflicted with this problem, including local roads within Fairbanks and other communities. With climate change and global warming...insert), which is correct for solid ice under frozen sand and gravel and Blue Board too thin to change the waveform polarity. A massive ice horizon...vertical resolution—specifically, resolution (separa- tion) of reflections from different interfaces. The reflections are caused by changes in
NASA Astrophysics Data System (ADS)
Zeilinger, Gerold; Parra, Mauricio; Kober, Florian
2017-04-01
It is widely accepted, that drainage patterns are often controlled by tectonics/climate and geology/rheology. Classical drainage patterns can be found 1) in fault-and-thrust belt, where rives follow the valleys parallel or cut perpendicular to strike trough the ridges, forming a trellis pattern, 2) at dome structures where the drainage form a radial pattern or 3) rectangular patterns in strongly fractured regions. In this study, we focus on fault-and-thrust belts, that undergone different phases of tectonic activity. According to classical models, the deformation is propagating into the foreland, hence being youngest at the frontal part and getting successively older towards the axis of the orogen. Drainage patterns in the more interior parts of the orogenic wedge should be then less influenced by the direction of structures, as landscape evolution is changing to a tectonic passive stage. This relationship might represent the transience and maturity of drainage pattern evolution. Here we study drainage patterns of the Bolivian and the eastern Colombian Andes by comparing the relative orientation of the drainage network with the orogen structural grain. The drainage is extracted from Digital Elevation Models (SRTM 30 m) and indexed by their Strahler Order. Order 1 channels have an upstream area of 1 km2. The direction of all segments is analyzed by linear directional mean function that results in the mean orientation of input channels with approx. 500 m average length. The orientation of structures for different structural domains is calculated using the same function on digitized faults and fold-axis. Rose diagrams show the length-weighted directional distribution of structures, of higher (>= 4) and of lower order (<= 3) channels. The structural trend in the Bolivian Andes is controlled by the orocline, where a predominant NW-SE trend turns into an N-S trend at 18°S and where the eastern orogen comprise from west to east, the Eastern Cordillera (EC), the Interandean Zone and the Subandean Zone (SA), exhibiting a catchment relief of up to 5000 m. While the structural trend in the EC is predominately NW-SE with a uniform (no preferred orientation) distribution of lower order fluvial channels, it changes in the SA into a distinct N-S trend with a pronounced E-W orientation of lower order fluvial channels. A similar pattern is recognized in the Eastern Andes of Colombia, where the structural trend is NE-SW. The Eastern Cordillera comprise a frontal thin-skinned Neogene and Paleogene domain (FR) and the more interior lower Cretaceous an Upper Paleozoic thick-skinned region (IR). The trend of higher order channels is, as expected, parallel to the structures in the interior parts and perpendicular in the frontal part. However, the trend of lower order channels reveal no directional correlation to the structural trend in the interior, but a significant correlation to the structures in the frontal range that suffered relatively to the interior domains younger deformation phases. We therefore postulate a dependency of the directional evolution of drainage patterns on the relative timing of tectonic activity. The only weakly preferred orientation of drainages in the interior parts (EC and IR) suggests a balance between structural control and drainage occupation, and higher maturity of the landscape. In contrast, the distinct pattern of drainages oblique to the structural grain in the frontal ranges (SA and FR) highlights the alignment of tributaries and suggests an ongoing tectonic control on drainage orientation. We test the hypothesis whether the correlation between the direction of small order rivers and the direction of structures can be used as a proxy for relative tectonic activity, which might be relevant in questions on 1) dominance of tectonics over climate, 2) dynamics of deformation propagation in fault-and-thrust-belts and 3) occurrence of higher erosion rates despite "limited" relief or threshold slopes. Ongoing efforts will investigate the possibility to quantify or compare relative tectonic activity across sites.
Introduction to Building Systems Performance: Houses That Work II. Revised February 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2005-03-01
Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.
Adaptation with climate uncertainty: An examination of agricultural land use in the United States
Mu, Jianhong E.; McCarl, Bruce A.; Sleeter, Benjamin M.; Abatzoglou, John T.; Zhang, Hongliang
2018-01-01
This paper examines adaptation responses to climate change through adjustment of agricultural land use. The climate drivers we examine are changes in long-term climate normals (e.g., 10-year moving averages) and changes in inter-annual climate variability. Using US county level data over 1982 to 2012 from Census of Agriculture, we find that impacts of long-term climate normals are as important as that of inter-annual climate variability. Projecting into the future, we find projected climate change will lead to an expansion in crop land share across the northern and interior western United States with decreases in the south. We also find that grazing land share increases in southern regions and Inland Pacific Northwest and declines in the northern areas. However, the extent to which the adaptation potential would be is dependent on the climate model, emission scenario and time horizon under consideration.
Simulation on a car interior aerodynamic noise control based on statistical energy analysis
NASA Astrophysics Data System (ADS)
Chen, Xin; Wang, Dengfeng; Ma, Zhengdong
2012-09-01
How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.
David W. Peterson; Becky K. Kerns; Erich Kyle Dodson
2014-01-01
The purpose of this study was to review scientifi c knowledge and model projections on vegetation vulnerability to climatic and other environmental changes in the Pacifi c Northwest, with emphasis on fi ve major biome types: subalpine forests and alpine meadows, maritime coniferous forests, dry coniferous forests, savannas and woodlands (oak and juniper), and interior...
Global Physiographic and Climatic Maps to Support Revision of Environmental Testing Guidelines
2009-07-06
precipitation and boarded by High and Low Relief Mountains or Interior Plains and Plateaus, such as the Amazon River Basin in South America and the Congo...taxonomy system. These form in hot climates with continual moisture availability, typically thought to occur only beneath tropical rainforests , though...Montane Tropical Forest Tropical Degraded Forest Seasonal Tropical Forest Rain Green Tropical Forest Tropical Rainforest FIGURE 6-1 DATE: 6-02
Varela Minder, Elda
2018-04-19
IntroductionThe year 2017 was a year of review and renewal for the Department of the Interior (DOI) Climate Science Centers (CSCs) and the U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC). The Southeast, Northwest, Alaska, Southwest, and North Central CSCs’ 5-year summary review reports were released in 2017 and contain the findings of the external review teams led by the Cornell University Human Dimensions Research Unit in conjunction with the American Fisheries Society. The reports for the Pacific Islands, South Central, and Northeast CSCs are planned for release in 2018. The reviews provide an opportunity to evaluate aspects of the cooperative agreement, such as the effectiveness of the CSC in meeting project goals and assessment of the level of scientific contribution and achievement. These reviews serve as a way for the CSCs and NCCWSC to look for ways to recognize and enhance our network’s strengths and identify areas for improvement. The reviews were followed by the CSC recompetition, which led to new hosting agreements at the Northwest, Alaska, and Southeast CSCs. Learn more about the excellent science and activities conducted by the network centers in the 2017 annual report.
Hahus, Ian; Migliaccio, Kati; Douglas-Mankin, Kyle; Klarenberg, Geraldine; Muñoz-Carpena, Rafael
2018-04-27
Hierarchical and partitional cluster analyses were used to compartmentalize Water Conservation Area 1, a managed wetland within the Arthur R. Marshall Loxahatchee National Wildlife Refuge in southeast Florida, USA, based on physical, biological, and climatic geospatial attributes. Single, complete, average, and Ward's linkages were tested during the hierarchical cluster analyses, with average linkage providing the best results. In general, the partitional method, partitioning around medoids, found clusters that were more evenly sized and more spatially aggregated than those resulting from the hierarchical analyses. However, hierarchical analysis appeared to be better suited to identify outlier regions that were significantly different from other areas. The clusters identified by geospatial attributes were similar to clusters developed for the interior marsh in a separate study using water quality attributes, suggesting that similar factors have influenced variations in both the set of physical, biological, and climatic attributes selected in this study and water quality parameters. However, geospatial data allowed further subdivision of several interior marsh clusters identified from the water quality data, potentially indicating zones with important differences in function. Identification of these zones can be useful to managers and modelers by informing the distribution of monitoring equipment and personnel as well as delineating regions that may respond similarly to future changes in management or climate.
Fan, Zhaosheng; McGuire, Anthony David; Turetsky, Merritt R.; Harden, Jennifer W.; Waddington, James Michael; Kane, Evan S.
2013-01-01
It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process-based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS-TEM), was calibrated with data collected during 2005–2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water-table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios.
Active control of interior noise in model aircraft fuselages using piezoceramic actuators
NASA Technical Reports Server (NTRS)
Fuller, C. R.; Hansen, C. H.; Silcox, R. J.; Snyder, S. D.
1990-01-01
Active control of interior noise in model aircraft fuselages using piezoceramic actuators is experimentally studied. The actuators are bonded directly to the structure and error information is taken from up to two microphones located in the interior acoustic field. The results demonstrate that global attenuation of the order of 10 to 15 dB of interior noise can be achieved with piezoceramic actuators, irrespective of whether the shell system is vibrating at an acoustic or structural resonant frequency. The work also proves that active control using vibration (moment) inputs works well when a floor simulating that of an aircraft is installed in the model. This result suggests that the technique will be successful in controlling interior noise in realistic aircraft structures.
NASA Astrophysics Data System (ADS)
DeBeer, Chris M.; Wheater, Howard S.; Carey, Sean K.; Chun, Kwok P.
2016-04-01
It is well established that the Earth's climate system has warmed significantly over the past several decades, and in association there have been widespread changes in various other Earth system components. This has been especially prevalent in the cold regions of the northern mid- to high latitudes. Examples of these changes can be found within the western and northern interior of Canada, a region that exemplifies the scientific and societal issues faced in many other similar parts of the world, and where impacts have global-scale consequences. This region has been the geographic focus of a large amount of previous research on changing climatic, cryospheric, and hydrological regimes in recent decades, while current initiatives such as the Changing Cold Regions Network (CCRN) introduced in this review seek to further develop the understanding and diagnosis of this change and hence improve the capacity to predict future change. This paper provides a comprehensive review of the observed changes in various Earth system components and a concise and up-to-date regional picture of some of the temporal trends over the interior of western Canada since the mid- or late 20th century. The focus is on air temperature, precipitation, seasonal snow cover, mountain glaciers, permafrost, freshwater ice cover, and river discharge. Important long-term observational networks and data sets are described, and qualitative linkages among the changing components are highlighted. Increases in air temperature are the most notable changes within the domain, rising on average 2 °C throughout the western interior since 1950. This increase in air temperature is associated with hydrologically important changes to precipitation regimes and unambiguous declines in snow cover depth, persistence, and spatial extent. Consequences of warming air temperatures have caused mountain glaciers to recede at all latitudes, permafrost to thaw at its southern limit, and active layers over permafrost to thicken. Despite these changes, integrated effects on stream flow are complex and often offsetting. Following a review of the current literature, we provide insight from a network of northern research catchments and other sites detailing how climate change confounds hydrological responses at smaller scales, and we recommend several priority research areas that will be a focus of continued work in CCRN. Given the complex interactions and process responses to climate change, it is argued that further conceptual understanding and quantitative diagnosis of the mechanisms of change over a range of scales is required before projections of future change can be made with confidence.
Early warning signal for interior crises in excitable systems.
Karnatak, Rajat; Kantz, Holger; Bialonski, Stephan
2017-10-01
The ability to reliably predict critical transitions in dynamical systems is a long-standing goal of diverse scientific communities. Previous work focused on early warning signals related to local bifurcations (critical slowing down) and nonbifurcation-type transitions. We extend this toolbox and report on a characteristic scaling behavior (critical attractor growth) which is indicative of an impending global bifurcation, an interior crisis in excitable systems. We demonstrate our early warning signal in a conceptual climate model as well as in a model of coupled neurons known to exhibit extreme events. We observed critical attractor growth prior to interior crises of chaotic as well as strange-nonchaotic attractors. These observations promise to extend the classes of transitions that can be predicted via early warning signals.
NASA Astrophysics Data System (ADS)
Lininger, K. B.; Wohl, E.; Rose, J. R.
2018-03-01
Floodplains accumulate and store organic carbon (OC) and release OC to rivers, but studies of floodplain soil OC come from small rivers or small spatial extents on larger rivers in temperate latitudes. Warming climate is causing substantial change in geomorphic process and OC fluxes in high latitude rivers. We investigate geomorphic controls on floodplain soil OC concentrations in active-layer mineral sediment in the Yukon Flats, interior Alaska. We characterize OC along the Yukon River and four tributaries in relation to geomorphic controls at the river basin, segment, and reach scales. Average OC concentration within floodplain soil is 2.8% (median = 2.2%). Statistical analyses indicate that OC varies among river basins, among planform types along a river depending on the geomorphic unit, and among geomorphic units. OC decreases with sample depth, suggesting that most OC accumulates via autochthonous inputs from floodplain vegetation. Floodplain and river characteristics, such as grain size, soil moisture, planform, migration rate, and riverine DOC concentrations, likely influence differences among rivers. Grain size, soil moisture, and age of surface likely influence differences among geomorphic units. Mean OC concentrations vary more among geomorphic units (wetlands = 5.1% versus bars = 2.0%) than among study rivers (Dall River = 3.8% versus Teedrinjik River = 2.3%), suggesting that reach-scale geomorphic processes more strongly control the spatial distribution of OC than basin-scale processes. Investigating differences at the basin and reach scale is necessary to accurately assess the amount and distribution of floodplain soil OC, as well as the geomorphic controls on OC.
Application of Spray Foam Insulation Under Plywood and OSB Roof Sheathing (Fact Sheet)
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
2013-11-01
Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks formore » roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. This project directly investigated rain and indirectly investigated built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.« less
Yan Sun; Matthew F. Bekker; R. Justin DeRose; Roger Kjelgren; S. -Y. Simon Wang
2017-01-01
Dendroclimatic research has long assumed a linear relationship between tree-ring increment and climate variables. However, ring width frequently underestimates extremely wet years, a phenomenon we refer to as âwet biasâ. In this paper, we present statistical evidence for wet bias that is obscured by the assumption of linearity. To improve tree-ring-climate modeling, we...
DETAIL INTERIOR VIEW OF CONTROL PANEL IN CONTROL STATION, VIEW ...
DETAIL INTERIOR VIEW OF CONTROL PANEL IN CONTROL STATION, VIEW TOWARDS WEST - St. Lucie Canal, Lock No. 1, Control Station, St. Lucie, Cross State Canal, Okeechobee Intracoastal Waterway, Stuart, Martin County, FL
Comparison ofdvanced turboprop interior noise control ground and flight test data
NASA Technical Reports Server (NTRS)
Simpson, Myles A.; Tran, Boi N.
1992-01-01
Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight sts with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.
Comparison ofdvanced turboprop interior noise control ground and flight test data
NASA Astrophysics Data System (ADS)
Simpson, Myles A.; Tran, Boi N.
Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight sts with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.
Rapid Middle Eocene temperature change in western North America
NASA Astrophysics Data System (ADS)
Methner, Katharina; Mulch, Andreas; Fiebig, Jens; Wacker, Ulrike; Gerdes, Axel; Graham, Stephan A.; Chamberlain, C. Page
2016-09-01
Eocene hyperthermals are among the most enigmatic phenomena of Cenozoic climate dynamics. These hyperthermals represent temperature extremes superimposed on an already warm Eocene climate and dramatically affected the marine and terrestrial biosphere, yet our knowledge of temperature and rainfall in continental interiors is still rather limited. We present stable isotope (δ18O) and clumped isotope temperature (Δ47) records from a middle Eocene (41 to 40 Ma) high-elevation mammal fossil locality in the North American continental interior (Montana, USA). Δ47 paleotemperatures of soil carbonates delineate a rapid +9/-11 °C temperature excursion in the paleosol record. Δ47 temperatures progressively increase from 23 °C ± 3 °C to peak temperatures of 32 °C ± 3 °C and subsequently drop by 11 °C. This hyperthermal event in the middle Eocene is accompanied by low δ18O values and reduced pedogenic carbonate concentrations in paleosols. Based on laser ablation U/Pb geochronology of paleosol carbonates in combination with magnetostratigraphy, biostratigraphy, stable isotope, and Δ47 evidence, we suggest that this pronounced warming event reflects the Middle Eocene Climatic Optimum (MECO) in western North America. The terrestrial expression of northern hemisphere MECO in western North America appears to be characterized by warmer and wetter (sub-humid) conditions, compared to the post-MECO phase. Large and rapid shifts in δ18O values of precipitation and pedogenic CaCO3 contents parallel temperature changes, indicating the profound impact of the MECO on atmospheric circulation and rainfall patterns in the western North American continental interior during this transient warming event.
NASA Astrophysics Data System (ADS)
DeBeer, C. M.; Wheater, H. S.; Carey, S. K.; Chun, K. P.
2015-08-01
It is well-established that the Earth's climate system has warmed significantly over the past several decades, and in association there have been widespread changes in various other Earth system components. This has been especially prevalent in the cold regions of the northern mid to high-latitudes. Examples of these changes can be found within the western and northern interior of Canada, a region that exemplifies the scientific and societal issues faced in many other similar parts of the world, and where impacts have global-scale consequences. This region has been the geographic focus of a large amount of previous research on changing climatic, cryospheric, and hydrological Earth system components in recent decades, while current initiatives such as the Changing Cold Regions Network (CCRN) seek to further develop the understanding and diagnosis of this change and hence improve predictive capacity. This paper provides an integrated review of the observed changes in these Earth system components and a concise and up-to-date regional picture of some of the temporal trends over the interior of western Canada since the mid or late-20th century. The focus is on air temperature, precipitation, seasonal snow cover, mountain glaciers, permafrost, freshwater ice cover, and river discharge. Important long-term observational networks and datasets are described, and qualitative linkages among the changing components are highlighted. Systematic warming and significant changes to precipitation, snow and ice regimes are unambiguous. However, integrated effects on streamflow are complex. It is argued that further diagnosis is required before predictions of future change can be made with confidence.
O'Donnell, J. A.; Turetsky, M.R.; Harden, J.W.; Manies, K.L.; Pruett, L.E.; Shetler, G.; Neff, J.C.
2009-01-01
Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ?? 0.1 and 1.4 ?? 0.1 g C m-2d-1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the unburned sites. Together, findings from these studies across different spatial scales suggest that although fire can create some soil climate conditions more conducive to rapid decomposition, rates of C release from soils may be constrained following fire by changes in moisture and/or substrate quality that impede rates of decomposition. ?? 2008 Springer Science+Business Media, LLC.
O'Donnell, Jonathan A.; Turetsky, Merritt R.; Harden, Jennifer W.; Manies, Kristen L.; Pruett, L.E.; Shetler, Gordon; Neff, Jason C.
2009-01-01
Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ± 0.1 and 1.4 ± 0.1 g C m−2 d−1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the unburned sites. Together, findings from these studies across different spatial scales suggest that although fire can create some soil climate conditions more conducive to rapid decomposition, rates of C release from soils may be constrained following fire by changes in moisture and/or substrate quality that impede rates of decomposition.
Species-site suitability of shortleaf, white, and Virginia pine
J. K. Francis
1979-01-01
Three important pines of the interior South, shortleaf, white, and Virginia pines, have somewhat different habitat requirements. This paper is a literature review of their natural range, growth rates, and edaphic and climatic requirements for establishment and growth.
,
2009-01-01
Fifty years of U.S. Geological Survey (USGS) research on glacier change shows recent dramatic shrinkage of glaciers in three climatic regions of the United States. These long periods of record provide clues to the climate shifts that may be driving glacier change. The USGS Benchmark Glacier Program began in 1957 as a result of research efforts during the International Geophysical Year (Meier and others, 1971). Annual data collection occurs at three glaciers that represent three climatic regions in the United States: South Cascade Glacier in the Cascade Mountains of Washington State; Wolverine Glacier on the Kenai Peninsula near Anchorage, Alaska; and Gulkana Glacier in the interior of Alaska (fig. 1).
Isoscapes of δ18O and δ2H reveal climatic forcings on Alaska and Yukon precipitation
NASA Astrophysics Data System (ADS)
Lachniet, Matthew S.; Lawson, Daniel E.; Stephen, Haroon; Sloat, Alison R.; Patterson, William P.
2016-08-01
Spatially extensive Arctic stable isotope data are sparse, inhibiting the climatic understanding required to interpret paleoclimate proxy records. To fill this need, we constrained the climatic and physiographic controls on δ18O and δD values of stream waters across Alaska and the Yukon to derive interpolated isoscape maps. δ18O is strongly correlated to winter temperature parameters and similarity of the surface water line (δ2H = 8.0 × δ18O + 6.4) to the Global Meteoric Water Line suggests stream waters are a proxy for meteoric precipitation. We observe extreme orographic δ18O decreases and a trans-Alaskan continental gradient of -8.3‰ 1000 km-1. Continental gradients are high in coastal zones and low in the interior. Localized δ18O increases indicate inland air mass penetration via topographic lows. Using observed δ18O/temperature gradients, we show that δ18O decreases in a ˜24 ka permafrost ice wedge relative to the late Holocene indicate mean annual and coldest quarter temperature reductions of 8.9 ± 1.7°C and 17.2 ± 3.2°C, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
2004-04-01
Buildings should be suited to their environments. Design and construction must be responsive to varying seismic risks, wind loads, and snow loads, as well as soil conditions, frost depth, orientation, and solar radiation. In addition, building envelopes and mechanical systems should be designed for a specific hygro-thermal regions, rain exposure, and interior climate. The Building Science Consortium (BSC) design recommendations are based on the hygro-thermal regions with reference to the annual rainfall. Local climate must be addressed if it differs significantly from the climate described for a particular design.
Evaluation of the Impact of Slab Foundation Heat Transfer on Heating and Cooling in Florida
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, D.; Kono, J.; Vieira, R.
During the last three decades of energy-efficiency research, there has been limited study of heat transfer to slab-on-grade foundations in cooling-dominated climates. Most experimental research has focused on the impact of slab-on-grade foundations and insulation schemes on heat losses in heating-dominated climates. This is surprising because the floor area in single-family homes is generally equal to wall area, window area, or attic area, all of which have been extensively evaluated for heat-transfer properties. Moreover, slab foundations are the most common foundation type in cooling-dominated climates. Slab-on-grade construction is very popular in southern states, accounting for 77% of new home floorsmore » according to 2014 U.S. Census data. There is a widespread perception that tile flooring, as opposed to carpet, provides a cooler home interior in warm climates. Empirical research is needed because building energy simulation software programs running DOE-2 and EnergyPlus engines often rely on simplified models to evaluate the influence of flooring on interior temperature, even though in some cases more detailed models exist. The U.S. Department of Energy Building America Partnership for Improved Residential Construction (BA-PIRC) performed experiments in the Florida Solar Energy Center’s Flexible Residential Test Facility intended to assess for the first time (1) how slab-on-grade construction influences interior cooling in a cooling-dominated climate and (2) how the difference in a carpeted versus uncarpeted building might influence heating and cooling energy use. Two nominally identical side-by-side residential buildings were evaluated during the course of 1 year, from 2014 to 2015: the east building with a pad and carpet floor and the west building with a bare slab floor. A detailed grid shows temperature measurements taken on the slab surface at various locations as well as at depths of 1.0 ft, 2 ft, 5.0 ft, 10.0 ft, and 20.0 ft below the surface. Temperature measurements were taken at both buildings for more than 3 years prior to the experiments to ensure that the ground and foundation temperatures had fully come into equilibrium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, D.; Kono, J.; Vieira, R.
During the last three decades of energy-efficiency research, there has been limited study of heat transfer to slab-on-grade foundations in cooling-dominated climates. Most experimental research has focused on the impact of slab-on-grade foundations and insulation schemes on heat losses in heating-dominated climates. This is surprising because the floor area in single-family homes is generally equal to wall area, window area, or attic area, all of which have been extensively evaluated for heat-transfer properties. Moreover, slab foundations are the most common foundation type in cooling-dominated climates. Slab-on-grade construction is very popular in southern states, accounting for 77% of new home floorsmore » according to 2014 U.S. Census data. There is a widespread perception that tile flooring, as opposed to carpet, provides a cooler home interior in warm climates. Empirical research is needed because building energy simulation software programs running DOE-2 and EnergyPlus engines often rely on simplified models to evaluate the influence of flooring on interior temperature, even though in some cases more detailed models exist. The U.S. Department of Energy Building America Partnership for Improved Residential Construction (BA-PIRC) performed experiments in the Florida Solar Energy Center’s Flexible Residential Test Facility intended to assess for the first time (1) how slab-on-grade construction influences interior cooling in a cooling-dominated climate and (2) how the difference in a carpeted versus uncarpeted building might influence heating and cooling energy use. Two nominally identical side-by-side residential buildings were evaluated during the course of 1 year, from 2014 to 2015: the east building with a pad and carpet floor and the west building with a bare slab floor. A detailed grid shows temperature measurements taken on the slab surface at various locations as well as at depths of 1.0 ft, 2 ft, 5.0 ft, 10.0 ft, and 20.0 ft below the surface. Temperature measurements were taken at both buildings for more than 3 years prior to the experiments to ensure that the ground and foundation temperatures had fully come into equilibrium.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerrigan, P.
This report describes a research study that was conducted by the Building Science Corporation (BSC) Building America Research Team. BSC seeks to research and report on the field monitoring of the performance of in-situ supplemental dehumidification systems in low energy, high performance homes in a hot-humid climate. The purpose of this research project was to observe and compare the humidity control performance. Specifically, the study sought to compare the interior conditions and mechanical systems operation between two distinct groups of houses; homes with a supplemental dehumidifier installed in addition to HVAC system, and homes without any supplemental dehumidification. The subjectsmore » of the study were 10 single-family, new construction homes in New Orleans, LA.« less
NASA Astrophysics Data System (ADS)
Cronin, T.; Tziperman, E.; Li, H.
2015-12-01
High latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. It has also been found that the high-latitude lapse rate feedback plays an important role in Arctic amplification of climate change in climate model simulations, but we have little understanding of why lapse rates at high latitudes change so strongly with warming. To better understand these problems, we study Arctic air formation - the process by which a high-latitude maritime air mass is advected over a continent during polar night, cooled at the surface by radiation, and transformed into a much colder continental polar air mass - and its sensitivity to climate warming. We use a single-column version of the WRF model to conduct two-week simulations of the cooling process across a wide range of initial temperature profiles and microphysics schemes, and find that a low cloud feedback suppresses Arctic air formation in warmer climates. This cloud feedback consists of an increase in low cloud amount with warming, which shields the surface from radiative cooling, and increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ~10 days for initial maritime surface air temperatures of 20 oC. Given that this is about the time it takes an air mass starting over the Pacific to traverse the north American continent, this suggests that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. We find that CMIP5 climate model runs show large increases in cloud water path and surface cloud longwave forcing in warmer climates, consistent with the proposed low-cloud feedback. The suppression of Arctic air formation with warming may act as a significant amplifier of climate change at high latitudes, and offers a mechanistic perspective on the high-latitude "lapse rate feedback" diagnosed in climate models.
NOAA tools to support CSC and LCC regional climate science priorities in the western Gulf of Mexico
NASA Astrophysics Data System (ADS)
Brown, D. P.; Marcy, D.; Robbins, K.; Shafer, M.; Stiller, H.
2012-12-01
The National Oceanic and Atmospheric Administration (NOAA) is an active regional partner with the Department of Interior (DOI) in supplying and supporting the delivery of climate science and services. A primary mechanism for NOAA-DOI coordination at the regional scale is the Landscape Conservation Cooperative (LCC) network, which is supported in part by DOI Climate Science Centers (CSC). Together, the CSCs and LCCs provide a framework to identify landscape-scale science and services priorities for conservation and management. As a key partner of the CSCs and an active member of many LCCs, NOAA is working to ensure its own regional product and service delivery efforts will help address these conservation and management challenges. Two examples of NOAA's regional efforts are highlighted here, with a focus on the coastal and interior geographies of the western Gulf of Mexico where NOAA partners with the South Central CSC and participates as a member of the Gulf Coast Prairie LCC. Along the Texas coastline, a sea level rise and coastal flooding impacts viewer, produced by NOAA's Coastal Services Center and available via its Digital Coast interface, allows constituents to visualize estimates of sea level rise, measures of uncertainty, flood frequencies, and environmental (e.g., marsh migration) and socioeconomic (e.g., tidal flooding of built environments) impacts. In the interior of Texas and Louisiana, NOAA's Southern Regional Climate Center is leading a consortium of partners in the development of a unified source of regional water reservoir information, including current conditions, a historical database, and web-based visualization tools to illustrate spatio-temporal variations in water availability to a broad array of hydrological, agricultural, and other customers. These two examples of NOAA products can, in their existing forms, support regional conservation and management priorities for CSCs and LCCs by informing vulnerability assessments and adaptation planning. Enhancements to these and other efforts can be achieved through a robust collaboration between NOAA and DOI that links regional science priorities to regional service delivery.
Beard, T. Douglas
2011-01-01
Changes to the Earth's climate-temperature, precipitation, and other important aspects of climate-pose significant challenges to our Nation's natural resources now and will continue to do so. Managers of land, water, and living resources need to understand the impacts of climate change-which will exacerbate ongoing stresses such as habitat fragmentation and invasive species-so they can design effective response strategies. In 2008 Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS); this center was formed to address challenges resulting from climate change and to empower natural resource managers with rigorous scientific information and effective tools for decision-making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has invested over $20M in cutting-edge climate change research and is now leading the effort to establish eight regional Department of the Interior (DOI) Climate Science Centers (CSCs).
A whole ecosystem approach to studying climate change in interior Alaska
Riggins, Susan; Striegl, Robert G.; McHale, Michael
2011-01-01
Yukon River Basin Principal Investigators Workshop; Portland, Oregon, 18-20 January 2011; High latitudes are known to be particularly susceptible to climate warming, leading to an emphasis of field and modeling research on arctic regions. Subarctic and boreal regions such as the Yukon River Basin (YRB) of interior Alaska and western Canada are less well studied, although they encompass large areas that are vulnerable to changes in forest composition, permafrost distribution, and hydrology. There is an urgent need to understand the resiliency and vulnerability of these complex ecosystems as well as their feedbacks to the global climate system. Consequently, U.S. Geological Survey scientists, with other federal agency, university, and private industry partners, is focusing subarctic interdisciplinary studies on the Beaver Creek Wild and Scenic River watershed (http://www.blm.gov/pgdata/content/ak/en/prog/nlcs/beavercrk_nwsr.html) and Yukon Flats National Wildlife Refuge (http://yukonflats.fws.gov/) in the YRB, south and west of Fort Yukon, Alaska. These areas are national treasures of wetlands, lakes, and uplands that support large populations of wildlife and waterfowl and are home to vibrant native Alaskan communities that depend on the area for a subsistence lifestyle.
Controls Over Ministry of Interior Fuel Contracts Could be Improved
2016-01-20
Fiscal Year 1395 Commitment Letter improved reporting requirements designed to specify adequate documentation of the Afghan Ministry of Interior fuel...1395 Commitment Letter improved reporting requirements designed to specify adequate documentation of the Afghan Ministry of Interior fuel consumption...of Defense F r a u d , W a s t e & A b u s e FOR OFFICIAL USE ONLY FOR OFFICIAL USE ONLY Results in Brief Controls Over Ministry of Interior Fuel
Fossils tell of mild winters in an ancient hothouse
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerr, R.A.
Fossil evidence from the Eocene points to a warmer winter climate in the continental interior (e.g. North Dakota) than that predicted by computer models. Paleobotanists have been able to quantify approximate winter mean temperatures by using leaf characteristics. As one example, leaves from colder climates have toothed edges. Leaf structure was correlated with modern climate regimes, and these relations were then applied to Eocene fossils. They found cold-month mean temperatures of 1-8[degrees]C in Wyoming and Montana, well above model predictions. Climate models can be manipulated to reproduce these temperatures, but not without overheating the entire globe. The problem could bemore » that the Eocene atmospheric circulation was different from today, something not accounted for well by climate models.« less
NASA Technical Reports Server (NTRS)
Lee, T.; Fukumori, I.; Fu, L. L.
2002-01-01
In this study, we address issues using sea level measurements obtained by the TOPEX/Poseidon satellite altimter and circulation estimated by the Consortium for Estimating the Circulation and Climate of the Ocean (ECCO).
30 CFR 250.800 - General requirements.
Code of Federal Regulations, 2013 CFR
2013-07-01
... Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems... environments. Production safety systems operated in subfreezing climates shall utilize equipment and procedures...
30 CFR 250.800 - General requirements.
Code of Federal Regulations, 2012 CFR
2012-07-01
... Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems... environments. Production safety systems operated in subfreezing climates shall utilize equipment and procedures...
30 CFR 250.800 - General requirements.
Code of Federal Regulations, 2014 CFR
2014-07-01
... Mineral Resources BUREAU OF SAFETY AND ENVIRONMENTAL ENFORCEMENT, DEPARTMENT OF THE INTERIOR OFFSHORE OIL AND GAS AND SULPHUR OPERATIONS IN THE OUTER CONTINENTAL SHELF Oil and Gas Production Safety Systems... environments. Production safety systems operated in subfreezing climates shall utilize equipment and procedures...
Temporal and Spatial Evolution of Dengue Incidence in Brazil, 2001-2012
Rodrigues, Nádia Cristina Pinheiro; Daumas, Regina Paiva; Gerardi, Alyssa; Fernandes, Gabriel Henrique Barroso Viana; Ramos, José Augusto Sapienza; Ferreira, Carlos Eduardo Gonçalves; Leite, Iuri da Costa
2016-01-01
Background In Brazil, the incidence of dengue greatly increased in the last two decades and there are several factors impeding the control of the disease. The present study focused on describing the space-time evolution of dengue in Brazil from 2001 to 2012 and analyzing the relationship of the reported cases with socio-demographic and environmental factors. Methods The analytic units used in the preparation of thematic maps were municipalities. Statistical tests and multilevel regression models were used to evaluate the association between dengue incidence and the following factors: climate, diagnostic period, demographic density, percentage of people living in rural areas, Gross Domestic Product, Gini index, percentage of garbage collection and the rate of households with a sewage network. Results The largest accumulation of dengue cases in Brazil was concentrated on the Atlantic coast and in the interior part of São Paulo State. The risk of dengue in subtropical and tropical climates was 1.20–11 times lower than that observed in semi-arid climates. In 2009–2010 and 2011–2012, the risks were ten and six times higher than in 2003–2004, respectively. Conclusion Dengue is a common infection in the Brazilian population, with the largest accumulation of dengue cases concentrated on the Atlantic coast and in the interior area of São Paulo State. The high dengue rates observed in the Brazilian coastal region suggest that the cases imported from neighboring countries contribute to the spread of the disease in the country. Our results suggest that several socio-demographic and environmental factors resulted in the increase of dengue in the country over time. This is likely applicable to the occurrence of other arboviruses like Zika and chikungunya. To reverse the situation, Brazil must implement effective public policies that offer basic services such as garbage collection and sanitation networks as well as reduce vector populations. PMID:27832129
2. VAL CONTROL STATION, VIEW OF INTERIOR SHOWING EXTERIOR DOOR, ...
2. VAL CONTROL STATION, VIEW OF INTERIOR SHOWING EXTERIOR DOOR, WINDOWS AND CONTROL PANELS, LOOKING SOUTHEAST. - Variable Angle Launcher Complex, Control Station, CA State Highway 39 at Morris Reservior, Azusa, Los Angeles County, CA
18. Control Area, Frequency Changer and Generator Building, interior view ...
18. Control Area, Frequency Changer and Generator Building, interior view of remaining control panels VIEW WEST - NIKE Missile Battery PR-79, Control Area, Tucker Hollow Road south of State Route 101, Foster, Providence County, RI
10. Credit BG. Interior of control and observation room at ...
10. Credit BG. Interior of control and observation room at Control and Recording Center Building 4221/E-22. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA
NASA Astrophysics Data System (ADS)
Tjiputra, J. F.; Goris, N.; Lauvset, S. K.; Heinze, C.; Olsen, A.; Schwinger, J.; Steinfeldt, R.
2018-05-01
The oxygen response in the subpolar North Atlantic (SPNA) to future climate change is poorly understood. We investigate the multidecadal variability in interior oxygen and its association with the subpolar gyre index (a gyre strength proxy) for models and data. During positive phases, persistent strong Labrador Sea (LS) lateral and vertical mixing entrains oxygen-rich water into the interior southern SPNA and vice versa during negative phases. This is indicated by the observed anomalously fresh, cold, and low apparent oxygen utilization, resembling LS water mass during positive phases. We use this relationship to benchmark Earth system models. Under a high CO2 future, the best performing models project a steady decline in SPNA oxygen, driven partly by lower solubility and increases in apparent oxygen utilization. The deoxygenation depends on the sensitivity of the LS mixing to warming. The time of emergence of interior oxygen is projected to be decades earlier than that of temperature and salinity.
22. INTERIOR VIEW WITH INTERIOR VIEW OF MOLDING SANDS CONTROL ...
22. INTERIOR VIEW WITH INTERIOR VIEW OF MOLDING SANDS CONTROL AND TEST LAB FOR UNIT NO. 2 GREY IRON DISAMATIC. SAND CASTING TECHNICIAN, ROY BATES, TESTS THE WEIGHT OF THE SAND, DRYS IT, AND WEIGHT IT AGAINST STANDARDS TO CALCULATE THE CORRECT MOISTURE NEEDED FOR DIFFERENT MOLDS. THE SAND MIX VARY WITH THE SIZE AND COMPOSITION OF THE CASTING. - Stockham Pipe & Fittings Company, Grey Iron Foundry, 4000 Tenth Avenue North, Birmingham, Jefferson County, AL
PBF (PER620) interior. System control racks, secondary control and equipment ...
PBF (PER-620) interior. System control racks, secondary control and equipment room. Date: May 2004. INEEL negative no. HD-41-6-2 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
5. INTERIOR, INSTRUMENTATION AND CONTROL BUILDING ADDITION. Looking north. ...
5. INTERIOR, INSTRUMENTATION AND CONTROL BUILDING ADDITION. Looking north. - Edwards Air Force Base, South Base Sled Track, Instrumentation & Control Building, South of Sled Track, Station "50" area, Lancaster, Los Angeles County, CA
2. CONTROL ROOM INTERIOR, CONSOLE AND MONITORS. Looking west. ...
2. CONTROL ROOM INTERIOR, CONSOLE AND MONITORS. Looking west. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Control Center, Test Area 1-115, near Altair & Saturn Boulevards, Boron, Kern County, CA
15. INTERIOR OVERVIEW TO SOUTHEAST. ACTIVE CONTROL PANEL AND GENERATORS ...
15. INTERIOR OVERVIEW TO SOUTHEAST. ACTIVE CONTROL PANEL AND GENERATORS AT LEFT, HISTORIC CONTROL PANEL AT RIGHT. - Santa Ana River Hydroelectric System, SAR-1 Powerhouse, Redlands, San Bernardino County, CA
2. INTERIOR VIEW OF ENTRY CONTROL POINT (BLDG. 768) FROM ...
2. INTERIOR VIEW OF ENTRY CONTROL POINT (BLDG. 768) FROM SOUTHWEST CORNER - Vandenberg Air Force Base, Space Launch Complex 3, Entry Control Point, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
NASA Astrophysics Data System (ADS)
Burakova, L. N.; Anisimov, I. A.; Burakova, A. D.; Burakova, O. D.
2018-05-01
The article deals with the issue of improving fuel efficiency and the ecological nature of passenger cars, servicing the administrative and management personnel of the oil and gas complex. It is established that fuel consumption and the amount of specific emissions of harmful substances with exhaust gases of cars when using the “climate control” system depend on the effective ambient temperature, the color of the opaque car body elements, the power of the car engine and the interior volume. However, the simplest controlled factor is the color of the opaque car body elements, which is characterized by the coefficient of light reflection. In the course of experimental studies, the authors established the dependences of a change in fuel consumption and a share of reducing emissions of harmful substances with exhaust gases of passenger cars with the “climate control” system on the coefficient of light reflection. A method has been developed to reduce fuel consumption and the amount of specific emissions of harmful substances with the exhaust gases of passenger cars using the “climate control” system, which involves painting the vehicle roof white and allows reducing fuel consumption by 5.5-10.3%, and the amount of specific emissions of harmful substances by 0.8-2.3%.
NASA Astrophysics Data System (ADS)
Burakova, L. N.; Anisimov, I. A.; Burakova, A. D.; Burakova, O. D.
2018-05-01
The article deals with the issue of improving the fuel economy and environmental friendliness of motor vehicles which serve the administrative and management personnel of the oil and gas industry. It is established that fuel consumption and the amount of specific emissions of harmful substances with exhaust gases of cars when using the “climate control” system depend on the effective ambient temperature, the color of the opaque car body elements, the power of the car engine and the interior volume. However, the simplest controlled factor is the color of the opaque car body elements, which is characterized by the coefficient of light reflection. In the course of experimental studies, we established the dependences of a change in fuel consumption and a share of reducing emissions of harmful substances with exhaust gases of passenger cars with the “climate control” system on the coefficient of light reflection. A method has been developed to reduce fuel consumption and the amount of specific emissions of harmful substances with the exhaust gases of passenger cars using the “climate control” system, which involves painting the vehicle roof white and allows reducing fuel consumption by 5.5-10.3%, and the amount of specific emissions of harmful substances by 0.8-2.3%.
25 CFR 171.705 - What criteria must be met for my land to be granted an Annual Assessment Waiver?
Code of Federal Regulations, 2010 CFR
2010-04-01
... adequate irrigation water to your farm unit. Inadequate water supply due to natural conditions or climate... INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Non-Assessment Status § 171.705 What criteria...
25 CFR 171.705 - What criteria must be met for my land to be granted an Annual Assessment Waiver?
Code of Federal Regulations, 2011 CFR
2011-04-01
... adequate irrigation water to your farm unit. Inadequate water supply due to natural conditions or climate... INTERIOR LAND AND WATER IRRIGATION OPERATION AND MAINTENANCE Non-Assessment Status § 171.705 What criteria...
Evangelista, P.H.; Kumar, S.; Stohlgren, T.J.; Young, N.E.
2011-01-01
The aim of our study was to estimate forest vulnerability and potential distribution of three bark beetles (Curculionidae: Scolytinae) under current and projected climate conditions for 2020 and 2050. Our study focused on the mountain pine beetle (Dendroctonus ponderosae), western pine beetle (Dendroctonus brevicomis), and pine engraver (Ips pini). This study was conducted across eight states in the Interior West of the US covering approximately 2.2millionkm2 and encompassing about 95% of the Rocky Mountains in the contiguous US. Our analyses relied on aerial surveys of bark beetle outbreaks that occurred between 1991 and 2008. Occurrence points for each species were generated within polygons created from the aerial surveys. Current and projected climate scenarios were acquired from the WorldClim database and represented by 19 bioclimatic variables. We used Maxent modeling technique fit with occurrence points and current climate data to model potential beetle distributions and forest vulnerability. Three available climate models, each having two emission scenarios, were modeled independently and results averaged to produce two predictions for 2020 and two predictions for 2050 for each analysis. Environmental parameters defined by current climate models were then used to predict conditions under future climate scenarios, and changes in different species' ranges were calculated. Our results suggested that the potential distribution for bark beetles under current climate conditions is extensive, which coincides with infestation trends observed in the last decade. Our results predicted that suitable habitats for the mountain pine beetle and pine engraver beetle will stabilize or decrease under future climate conditions, while habitat for the western pine beetle will continue to increase over time. The greatest increase in habitat area was for the western pine beetle, where one climate model predicted a 27% increase by 2050. In contrast, the predicted habitat of the mountain pine beetle from another climate model suggested a decrease in habitat areas as great as 46% by 2050. Generally, 2020 and 2050 models that tested the three climate scenarios independently had similar trends, though one climate scenario for the western pine beetle produced contrasting results. Ranges for all three species of bark beetles shifted considerably geographically suggesting that some host species may become more vulnerable to beetle attack in the future, while others may have a reduced risk over time. ?? 2011 Elsevier B.V.
20. DETAIL INTERIOR VIEW OF STATION SERVICE CONTROLS IN CONTROL ...
20. DETAIL INTERIOR VIEW OF STATION SERVICE CONTROLS IN CONTROL ROOM ON LEVEL +77 OF POWERHOUSE #1; THESE CONTROLS ARE TO THE LEFT OF THE ORIGINAL OPERATOR DESK. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR
Varela-Acevedo, Elda
2014-01-01
Changes to the Earth’s climate—temperature, precipitation, and other climate variables—pose significant challenges to our Nation’s natural resources. Managers of land, water, and living resources require an understanding of the impacts of climate change—which exacerbate ongoing stresses such as habitat alteration and invasive species—in order to design effective response strategies. In 2008, Congress created the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Geological Survey (USGS). The center was formed to address environmental challenges resulting from climate and land-use change and to provide natural resource managers with rigorous scientific information and effective tools for decision making. Located at the USGS National Headquarters in Reston, Virginia, the NCCWSC has established eight regional Department of the Interior (DOI) Climate Science Centers (CSCs) and has invested over $93 million (through fiscal year 2013) in cutting-edge climate change research.
Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming.
Cronin, Timothy W; Tziperman, Eli
2015-09-15
High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback--consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state--slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼ 10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the "lapse rate feedback" in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates.
Low clouds suppress Arctic air formation and amplify high-latitude continental winter warming
Cronin, Timothy W.; Tziperman, Eli
2015-01-01
High-latitude continents have warmed much more rapidly in recent decades than the rest of the globe, especially in winter, and the maintenance of warm, frost-free conditions in continental interiors in winter has been a long-standing problem of past equable climates. We use an idealized single-column atmospheric model across a range of conditions to study the polar night process of air mass transformation from high-latitude maritime air, with a prescribed initial temperature profile, to much colder high-latitude continental air. We find that a low-cloud feedback—consisting of a robust increase in the duration of optically thick liquid clouds with warming of the initial state—slows radiative cooling of the surface and amplifies continental warming. This low-cloud feedback increases the continental surface air temperature by roughly two degrees for each degree increase of the initial maritime surface air temperature, effectively suppressing Arctic air formation. The time it takes for the surface air temperature to drop below freezing increases nonlinearly to ∼10 d for initial maritime surface air temperatures of 20 °C. These results, supplemented by an analysis of Coupled Model Intercomparison Project phase 5 climate model runs that shows large increases in cloud water path and surface cloud longwave forcing in warmer climates, suggest that the “lapse rate feedback” in simulations of anthropogenic climate change may be related to the influence of low clouds on the stratification of the lower troposphere. The results also indicate that optically thick stratus cloud decks could help to maintain frost-free winter continental interiors in equable climates. PMID:26324919
PBF Control Building (PER619). Interior of control room shows control ...
PBF Control Building (PER-619). Interior of control room shows control console from direction facing visitors room and its observation window. Camera facing northeast. Date: May 2004. INEEL negative no. HD-41-7-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
DOI Climate Science Centers--Regional science to address management priorities
O'Malley, Robin
2012-01-01
Our Nation's lands, waters, and ecosystems and the living and cultural resources they contain face myriad challenges from invasive species, the effects of changing land and water use, habitat fragmentation and degradation, and other influences. These challenges are compounded by increasing influences from a changing climate—higher temperatures, increasing droughts, floods, and wildfires, and overall increasing variability in weather and climate. The Department of the Interior (DOI) has established eight regional Climate Science Centers (CSC) (fig. 1) that will provide scientific information and tools to natural and cultural resource managers as they plan for conserving these resources in a changing world. The U.S. Geological Survey (USGS) National Climate Change and Wildlife Science Center (NCCWSC) is managing the CSCs on behalf of the DOI.
14. INTERIOR OF MAIN DECKNOTE LEVERS FROM CEILING CONTROLLED BY ...
14. INTERIOR OF MAIN DECK--NOTE LEVERS FROM CEILING CONTROLLED BY OPERATOR. LEFT HAND LEVER CONTROLLED THROTTLE, RIGHT HAND LEVER CONTROLLED SHOT GUN SWINGER. - Dredge CINCINNATI, Docked on Ohio River at foot of Lighthill Street, Pittsburgh, Allegheny County, PA
11. Credit BG. Interior of control and observation room at ...
11. Credit BG. Interior of control and observation room at Control and Recording Center, showing detail of switchboard and closed circuit television monitors. - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA
5. INTERIOR VIEW OF UPPER LEVEL ROOM OF THE CONTROL ...
5. INTERIOR VIEW OF UPPER LEVEL ROOM OF THE CONTROL HOUSE LOCATED ON THE SOUTH END OF BIG TUJUNGA DAM SHOWING THE CONTROL PANEL. - Big Tujunga Dam, Control House, 809 West Big Tujunga Road, Sunland, Los Angeles County, CA
7. WEYMOUTH FILTRATION PLANT, BUILDING 1 INTERIOR: LA VERNE CONTROL ...
7. WEYMOUTH FILTRATION PLANT, BUILDING 1 INTERIOR: LA VERNE CONTROL ROOM, REGULATES DISTRIBUTION OF WATER, CONTROLS POWER HOUSES. - F. E. Weymouth Filtration Plant, 700 North Moreno Avenue, La Verne, Los Angeles County, CA
Roberts, Laura N. Robinson; Kirschbaum, Mark A.
1995-01-01
A synthesis of Late Cretaceous paleogeography of the Western Interior from Mexico to southwestern Canada emphasizes the areal distribution of peat-forming environments during six biostratigraphically constrained time intervals. Isopach maps of strata for each interval reveal the locations and magnitude of major depocenters. The paleogeographic framework provides insight into the relative importance of tectonism, eustasy, and climate on the accumulation of thick peats and their preservation as coals. A total of 123 basin summaries and their data provide the ground truth for construction of the isopach and paleogeographic maps.
McGuire, A. David; Chapin, F. Stuart; Ruess, Roger W.
2016-01-01
Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying the resilience and vulnerability of Alaska's boreal forest in response to climate warming. The overarching question in this endeavor has been “How are boreal ecosystems responding, both gradually and abruptly, to climate warming, and what new landscape patterns are emerging?”
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... DEPARTMENT OF THE INTERIOR Bureau of Reclamation [A10-1412-0001-009-01-0-4, 8453000] OMB Control... Approved Information Collection AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of renewal and... June 3, 2013. ADDRESSES: Send written comments to the Desk Officer for the Department of the Interior...
Elder, W.P.
1989-01-01
High-resolution stratigraphic analysis of 18 sections spanning the Cenomanian-Turonian Stage boundary in the western interior of the United States has allowed determination of the magnitude and pattern of molluscan extinction and disruption. Composite range data from all sections show that the faunal turnover across the stage boundary occurs in a series of narrow stratigraphic zones, defined by multiple first and last occurrences, separated by intervals displaying little or no taxonomic turnover. Two of the apparent extinction steps (bottom and top of the Neocardioceras juddii Zone) may be intercontinentally developed. The additional steps apparently reflect cyclic changes in water mass and substrate characteristics in the western interior basin produced in response to orbital forcing of climate. The most affected mollusks were those having intercontinental distributions. -Author
27. Pump Room interiorDrainage pump motor control center with main ...
27. Pump Room interior-Drainage pump motor control center with main valve control panel at right. - Hunters Point Naval Shipyard, Drydock No. 4, East terminus of Palou Avenue, San Francisco, San Francisco County, CA
31. INTERIOR VIEW TO THE SOUTHWEST OF A THIRD CONTROL ...
31. INTERIOR VIEW TO THE SOUTHWEST OF A THIRD CONTROL PANEL IN ROOM 105, THE CONTROL ROOM. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV
30. INTERIOR VIEW TO THE WEST OF A SECOND CONTROL ...
30. INTERIOR VIEW TO THE WEST OF A SECOND CONTROL PANEL IN ROOM 105, THE CONTROL ROOM. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV
11. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF MECHANICAL ROOM. VIEW ...
11. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF MECHANICAL ROOM. VIEW TO SOUTHEAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO
6. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF SECURITY OFFICE. VIEW ...
6. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF SECURITY OFFICE. VIEW TO WEST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO
9. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF KITCHEN. VIEW TO ...
9. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF KITCHEN. VIEW TO EAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO
12. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF GENERATOR ROOM. VIEW ...
12. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF GENERATOR ROOM. VIEW TO EAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO
7. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF SECURITY OFFICE. VIEW ...
7. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF SECURITY OFFICE. VIEW TO NORTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO
10. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF BEDROOM. VIEW TO ...
10. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF BEDROOM. VIEW TO SOUTH. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO
Exposure age and ice-sheet model constraints on Pliocene East Antarctic ice sheet dynamics.
Yamane, Masako; Yokoyama, Yusuke; Abe-Ouchi, Ayako; Obrochta, Stephen; Saito, Fuyuki; Moriwaki, Kiichi; Matsuzaki, Hiroyuki
2015-04-24
The Late Pliocene epoch is a potential analogue for future climate in a warming world. Here we reconstruct Plio-Pleistocene East Antarctic Ice Sheet (EAIS) variability using cosmogenic nuclide exposure ages and model simulations to better understand ice sheet behaviour under such warm conditions. New and previously published exposure ages indicate interior-thickening during the Pliocene. An ice sheet model with mid-Pliocene boundary conditions also results in interior thickening and suggests that both the Wilkes Subglacial and Aurora Basins largely melted, offsetting increased ice volume. Considering contributions from West Antarctica and Greenland, this is consistent with the most recent IPCC AR5 estimate, which indicates that the Pliocene sea level likely did not exceed +20 m on Milankovitch timescales. The inception of colder climate since ∼3 Myr has increased the sea ice cover and inhibited active moisture transport to Antarctica, resulting in reduced ice sheet thickness, at least in coastal areas.
21. DETAIL INTERIOR VIEW OF ORIGINAL BENCH BOARD CONTROLS IN ...
21. DETAIL INTERIOR VIEW OF ORIGINAL BENCH BOARD CONTROLS IN CONTROL ROOM ON LEVEL +77 OF POWERHOUSE #1; THESE PANELS ARE ON LEFT SIDE OF BENCH BOARD CONTROLS. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR
Varela Minder, Elda; Lascurain, Aranzazu R.; McMahon, Gerard
2016-09-28
IntroductionIn 2009, the U.S. Department of the Interior (DOI) Secretary Ken Salazar established a network of eight regional Climate Science Centers (CSCs) that, along with the Landscape Conservation Cooperatives (LCCs), would help define and implement the Department's climate adaptation response. The Southeast Climate Science Center (SE CSC) was established at North Carolina State University (NCSU) in Raleigh, North Carolina, in 2010, under a 5-year cooperative agreement with the U.S. Geological Survey (USGS), to identify and address the regional challenges presented by climate change and variability in the Southeastern United States. All eight regional CSC hosts, including NCSU, were selected through a competitive process.Since its opening, the focus of the SE CSC has been on working with partners in the identification and development of research-based information that can assist managers, including cultural and natural resource managers, in adapting to global change processes, such as climate and land use change, that operate at local to global scales and affect resources important to the DOI mission. The SE CSC was organized to accomplish three goals:Provide co-produced, researched based, actionable science that supports transparent global change adaptation decisions.Convene conversations among decision makers, scientists, and managers to identify key ecosystem adaptation decisions driven by climate and land use change, the values and objectives that will be used to make decisions, and the research-based information needed to assess adaptation options.Build the capacity of natural resource professionals, university faculty, and students to understand and frame natural resource adaptation decisions and develop and use research-based information to make adaptation decisions.This report provides an overview of the SE CSC and the projects developed by the SE CSC since its inception. An important goal of this report is to provide a framework for understanding the evolution of the SE CSC science agenda, which has evolved over the first 5 years of the Center’s operation.
Experiments on reduction of propeller induced interior noise by active control of cylinder vibration
NASA Technical Reports Server (NTRS)
Fuller, C. R.; Jones, J. D.
1987-01-01
The feasibility of reducing interior noise caused by advanced turbo propellers by controlling the vibration of aircraft fuselages was investigated by performing experiments in an anechoic chamber with an aircraft model test rig and apparatus. It was found that active vibration control provides reasonable global attenuation of interior noise levels for the cases of resonant (at 576 Hz) and forced (at 708 Hz) system response. The controlling mechanism behind the effect is structural-acoustic coupling between the shell and the contained field, termed interface modal filtering.
11. CONTROL ROOM INTERIOR, SHOWING SEVERAL PERISCOPES. Looking north along ...
11. CONTROL ROOM INTERIOR, SHOWING SEVERAL PERISCOPES. Looking north along west wall. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Instrumentation & Control Building, Test Area 1-115, northwest end of Saturn Boulevard, Boron, Kern County, CA
29. INTERIOR VIEW TO THE NORTHEAST OF CONTROL PANEL AND ...
29. INTERIOR VIEW TO THE NORTHEAST OF CONTROL PANEL AND VIEWING WINDOW IN ROOM 105, THE CONTROL ROOM. - Nevada Test Site, Pluto Facility, Disassembly Building, Area 26, Wahmonie Flats, Cane Spring Road, Mercury, Nye County, NV
8. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF DINING/RECREATION ROOM. VIEW ...
8. LAUNCH CONTROL SUPPORT BUILDING. INTERIOR OF DINING/RECREATION ROOM. VIEW TO EAST. - Minuteman III ICBM Launch Control Facility November-1, 1.5 miles North of New Raymer & State Highway 14, New Raymer, Weld County, CO
Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia
NASA Astrophysics Data System (ADS)
Sun, Jimin; Ni, Xijun; Bi, Shundong; Wu, Wenyu; Ye, Jie; Meng, Jin; Windley, Brian F.
2014-12-01
The Eocene-Oligocene Boundary (~34 million years ago) marks one of the largest extinctions of marine invertebrates in the world oceans and of mammalian fauna in Europe and Asia in the Cenozoic era. A shift to a cooler climate across this boundary has been suggested as the cause of this extinction in the marine environment, but there is no manifold evidence for a synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in a single terrestrial site in Asia to support this hypothesis. Here we report new data of magnetostratigraphy, pollen and climatic proxies in the Asian interior across the Eocene-Oligocene Boundary; our results show that climate change forced a turnover of flora and fauna, suggesting there was a change from large-size perissodactyl-dominant fauna in forests under a warm-temperate climate to small rodent/lagomorph-dominant fauna in forest-steppe in a dry-temperate climate across the Eocene-Oligocene Boundary. These data provide a new terrestrial record for this significant Cenozoic environmental event.
Synchronous turnover of flora, fauna, and climate at the Eocene-Oligocene Boundary in Asia.
Sun, Jimin; Ni, Xijun; Bi, Shundong; Wu, Wenyu; Ye, Jie; Meng, Jin; Windley, Brian F
2014-12-12
The Eocene-Oligocene Boundary (~34 million years ago) marks one of the largest extinctions of marine invertebrates in the world oceans and of mammalian fauna in Europe and Asia in the Cenozoic era. A shift to a cooler climate across this boundary has been suggested as the cause of this extinction in the marine environment, but there is no manifold evidence for a synchronous turnover of flora, fauna and climate at the Eocene-Oligocene Boundary in a single terrestrial site in Asia to support this hypothesis. Here we report new data of magnetostratigraphy, pollen and climatic proxies in the Asian interior across the Eocene-Oligocene Boundary; our results show that climate change forced a turnover of flora and fauna, suggesting there was a change from large-size perissodactyl-dominant fauna in forests under a warm-temperate climate to small rodent/lagomorph-dominant fauna in forest-steppe in a dry-temperate climate across the Eocene-Oligocene Boundary. These data provide a new terrestrial record for this significant Cenozoic environmental event.
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2013-11-01
Spray polyurethane foams (SPFs) have advantages over alternative insulation methods because they provide air sealing in complex assemblies, particularly roofs. Spray foam can provide the thermal, air, and vapor control layers in both new and retrofit construction. Unvented roof strategies with open cell and closed cell SPF insulation sprayed to the underside of roof sheathing have been used since the mid-1990s to provide durable and efficient building enclosures. However, there have been isolated incidents of failures (either sheathing rot or SPF delamination) that raise some general concerns about the hygrothermal performance and durability of these systems. The primary risks formore » roof systems are rainwater leaks, condensation from diffusion and air leakage, and built-in construction moisture. In this project, Building Science Corporation investigated rain and built-in construction moisture and vapor drives. Research involved both hygrothermal modeling of a range of rain water leakage scenarios and field evaluations of in-service residential roofs. Other variables considered were climate zone, orientation, interior relative humidity, and the vapor permeance of the coating applied to the interior face of open cell SPF.« less
Towards a more consistent picture of isopycnal mixing in climate models
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Pradal, M. A. S.; Koszalka, I.; Abernathey, R. P.
2014-12-01
The stirring of tracers by mesoscale eddies along isopycnal surfaces is often represented in coarse-resolution models by the Redi diffusion parameter ARedi. Theoretical treatments of ARedi often assume it should scale as the eddy energy or the growth rate of mesoscale eddies,. producing a picture where it is high in boundary currents and low )of order a few hundred m2/s) in the gyre interiors. However, observational estimates suggest that ARedi should be very large (of order thousands of m2/s) in the gyre interior. We present results of recent simulations comparing a range of spatially constant values ARedi (with values of 400, 800, 1200 and 2400 m2/s) to a spatially resolved estimate based on altimetry and a zonally averaged version of the same estimate. In general, increasing the ARedi coefficient destratifies and warms the high latitudes. Relative to our control simulation, the spatially dependent coefficient is lower in the Southern Ocean, but high in the North Pacific, and so the temperature changes mirror this. We also examine the response of ocean hypoxia to these changes. In general, the zonally averaged version of the altimetry-based estimate of ARedi does not capture the full 2d representation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
K. Ueno and J. Lstiburek
2015-09-01
Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a "control" vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. All roofs except the vented cathedral assembly experienced wood moisture contents and RH levels high enough to constitute failure. Disassembly at the end of the experiment showed that the unvented fiberglass roofs had wet sheathing and mold growth. In contrast, the cellulose roofs only hadmore » slight issues, such as rusted fasteners and sheathing grain raise.« less
Human dispersal into interior Alaska: antecedent conditions, mode of colonization, and adaptations
NASA Astrophysics Data System (ADS)
Yesner, David R.
2001-01-01
In spite of more than a half-century of exploration, no definitive evidence has yet come to light for human occupation in eastern Beringia preceding 12,000 yr BP. The oldest dates — between 11,500 and 12,000 yr BP — are from sites in interior and northern Alaska. Archaeological sites dating to this time period, such as the Broken Mammoth site in the central Tanana River Valley, have yielded evidence of pioneer colonization by groups with relatively little knowledge of lithic resources. Three possibly older cave sites — Bluefish Caves, Lime Hills Caves, and Trail Creek Caves — have stratigraphic and taphonomic problems that are not easily resolved. No sites in the glaciated coastal zone of southern Alaska are Pleistocene in date, and numerous objections can be raised to the viability of the coastal migration hypothesis, particularly in the western Gulf of Alaska region. For northern and interior Alaska, the earliest colonization appears to have been a "push-pull" phenomenon, linked to the dissolution of the Bering Land Bridge through a combination of rising sea levels and ameliorating climate. The climate of the "Birch-Poplar" rise in the terminal Pleistocene may have forced the extinction of obligate grazers such as mammoth and horse, but it seems to have favored other taxa such as bison and elk, at least until 9000 yr BP. Faunal data from the Broken Mammoth site in the central Tanana valley, with good organic preservation, demonstrate the utilization of a wide diversity of taxa, including small game, waterfowl, and fish. Faunal and sedimentological data give slight support to a Younger Dryas reversal, but this was dwarfed by the mid-Holocene period of dry, windy conditions during which interior Alaska may have been largely abandoned.
Can Tree Ring Analyses Predict Resilience of Black Spruce Forests to Fire in Interior Alaska?
NASA Astrophysics Data System (ADS)
Walker, X. J.; Johnstone, J. F.; Mack, M. C.
2015-12-01
Climate change has increased the occurrence, severity, and impact of disturbances on forested ecosystems worldwide. As such there is a growing need to identify factors that contribute to an ecosystem's ability to recover from disturbance, commonly referred to as ecosystem resilience. In trees, drought-induced growth declines may signal decreased ecosystem resilience if mature trees are able to survive in stressful environmental conditions that do not permit successful post-disturbance recruitment and survival. Here we explore links between ecosystem resilience and the growth-climate relationships of pre-fire trees, specifically drought stress signals, across topographic moisture gradients within the boreal forest. We sampled 72 recently (2004) burned black spruce stands within interior Alaska and found the proportion of black spruce relative to deciduous trees decreased post-fire, ranging from almost no change to a 90% decrease. The largest shifts in post-fire species composition occurred in sites where trees showed negative growth responses to warm spring temperatures, and shallow post-fire organic layer depths due to dry site conditions or high fire severity. These sites were generally located at warmer and drier landscape positions, suggesting they are less resilient to disturbance than sites at the wetter end of the gradient. Tree growth-climate responses can provide an estimate of stand environmental stress to ongoing climate change and as such are a valuable tool for predicting landscape variations in forest ecosystem resilience and forecasting future forest composition.
Modelling middle pliocene warm climates of the USA
Haywood, A.M.; Valdes, P.J.; Sellwood, B.W.; Kaplan, J.O.; Dowsett, H.J.
2001-01-01
The middle Pliocene warm period represents a unique time slice in which to model and understand climatic processes operating under a warm climatic regime. Palaeoclimatic model simulations, focussed on the United States of America (USA), for the middle Pliocene (ca 3 Ma) were generated using the USGS PRISM2 2?? ?? 2?? data set of boundary conditions and the UK Meteorological Office's HadAMS General Circulation Model (GCM). Model results suggest that conditions in the USA during the middle Pliocene can be characterised as annually warmer (by 2?? to 4??C), less seasonal, wetter (by a maximum of 4 to 8 mm/day) and with an absence of freezing winters over the central and southern Great Plains. A sensitivity experiment suggests that the main forcing mechanisms for surface temperature changes in near coastal areas are the imposed Pliocene sea surface temperatures (SST's). In interior regions, reduced Northern Hemisphere terrestrial ice, combined with less snow cover and a reduction in the elevation of the western cordillera of North America, generate atmospheric circulation changes and positive albedo feedbacks that raise surface temperatures. A complex set of climatic feedback mechanisms cause an enhancement of the hydrological cycle magnifying the moisture bearing westerly wind belt during the winter season (Dec., Jan., Feb.). Predictions produced by the model are in broad agreement with available geological evidence. However, the GCM appears to underestimate precipitation levels in the interior and central regions of the southern USA. Copyright: Palaeontological Association, 22 June 2001.
Airtightness Results of Roof-Only Air Sealing Strategies on 1-1/2 Story Homes in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojczyk, C.; Murry, T.; Mosiman, G.
In this second study on solutions to ice dams in 1-1/2 story homes, five test homes located in both cold and very cold climates were analyzed for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. The reason for choosing this house type was they are very common in our area and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach for whole housemore » (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR Building America industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled us to compare air tightness data from over 220 homes using similar air seal methods.« less
Airtightness Results of Roof-Only Air Sealing Strategies on 1 ½-Story Homes in Cold Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ojczyk, C.; Murry, T.; Mosiman, G.
In this second study on solutions to ice dams in 1-1/2 story homes, the NorthernSTAR Building America Partnership team analyzed five test homes located in both cold and very cold climates for air leakage reduction rates following modifications by independent contractors on owner-occupied homes. These homes were chosen for testing as they are common in Minnesota and very difficult to air seal and insulate effectively. Two projects followed a roof-only Exterior Thermal Moisture Management System (ETMMS) process. One project used an interior-only approach to roof air sealing and insulation. The remaining two projects used a deep energy retrofit approach formore » whole house (foundation wall, above grade wall, roof) air leakage and heat loss reduction. All were asked to provide information regarding project goals, process, and pre and post-blower door test results. Additional air leakage reduction data was provided by several NorthernSTAR industry partners for interior-applied, roof-only modifications on 1-1/2 story homes. The data represents homes in the general market as well as homes that were part of the state of Minnesota weatherization program. A goal was to compare exterior air sealing methods with interior approaches. This pool of data enabled the team to compare air tightness data from over 220 homes using similar air seal methods.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Keysa, T.P.
Characteristics of design, construction, performance, and educational opportunity are described for a small, simple passive solar community center in Christian Bend, Tennessee. This 2500-square-foot structure was designed in cooperation with this community of 75 families by TVA architects and was built entirely by volunteer labor. An educational process paralleled all phases of this building, begining with programming sessions, continuing through design, construction, occupation, and operation of the space. The direct gain building utilizes energy planning in both the interior and exterior. Earth berming and utilization of natural topography aid in the building's compatibility with both summer and winter climatic events.more » In addition to microclimatic design, interior space planning aids in naturally tempering spaces from extremes in climate. Extensive use of buffer spaces, an airlock entry, and placement of glazing areas (for direct gain and natural and induced ventilation) aid in the natural energy utilization and distribution in the interior spaces. Unique aspects include a double roof, which aids both in prevention of heat loss and in induced ventilation, and other operable garage door type roll down insulated shutters over the south facing aperture areas utilized both as night insulation and as a radiation barrier. This is the other major unique factor in this building. It has been designed both as an energy efficient community center for business as usual, and as an evacuation point and temporary shelter in th event of natural (flood) or man-induced (nuclear) disaster.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, Kohta
Adding insulation to the interior side of walls of masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw, have known solutions, but wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A); data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovationmore » is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated versus non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.« less
LOFT. Interior, control room in control building (TAN630). Camera facing ...
LOFT. Interior, control room in control building (TAN-630). Camera facing north. Sign says "This control console is partially active. Do not operate any switch handle without authorization." Date: May 2004. INEEL negative no. HD-39-14-3 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Fan, Zhaosheng; David McGuire, Anthony; Turetsky, Merritt R; Harden, Jennifer W; Michael Waddington, James; Kane, Evan S
2013-02-01
It is important to understand the fate of carbon in boreal peatland soils in response to climate change because a substantial change in release of this carbon as CO2 and CH4 could influence the climate system. The goal of this research was to synthesize the results of a field water table manipulation experiment conducted in a boreal rich fen into a process-based model to understand how soil organic carbon (SOC) of the rich fen might respond to projected climate change. This model, the peatland version of the dynamic organic soil Terrestrial Ecosystem Model (peatland DOS-TEM), was calibrated with data collected during 2005-2011 from the control treatment of a boreal rich fen in the Alaska Peatland Experiment (APEX). The performance of the model was validated with the experimental data measured from the raised and lowered water-table treatments of APEX during the same period. The model was then applied to simulate future SOC dynamics of the rich fen control site under various CO2 emission scenarios. The results across these emissions scenarios suggest that the rate of SOC sequestration in the rich fen will increase between year 2012 and 2061 because the effects of warming increase heterotrophic respiration less than they increase carbon inputs via production. However, after 2061, the rate of SOC sequestration will be weakened and, as a result, the rich fen will likely become a carbon source to the atmosphere between 2062 and 2099. During this period, the effects of projected warming increase respiration so that it is greater than carbon inputs via production. Although changes in precipitation alone had relatively little effect on the dynamics of SOC, changes in precipitation did interact with warming to influence SOC dynamics for some climate scenarios. © 2012 Blackwell Publishing Ltd.
6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape ...
6. UNDERGROUND FIRING CONTROL ROOM, INTERIOR. Looking southeast to escape tunnel. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA
7. CONTROL AND EQUIPMENT ROOM INTERIOR. Looking to southwest corner ...
7. CONTROL AND EQUIPMENT ROOM INTERIOR. Looking to southwest corner and entrance to cable tunnel. - Edwards Air Force Base, South Base Sled Track, Firing Control Blockhouse, South of Sled Track at east end, Lancaster, Los Angeles County, CA
19. View of interior of bridge operator's control cabin, with ...
19. View of interior of bridge operator's control cabin, with manual control levers at left, and electrical equipment cabinet at right; looking west - India Point Railroad Bridge, Spanning Seekonk River between Providence & East Providence, Providence, Providence County, RI
Recent advances in active noise and vibration control at NASA Langley Research Center
NASA Astrophysics Data System (ADS)
Gibbs, Gary P.; Cabell, Randolph H.; Palumbo, Daniel L.; Silcox, Richard J.; Turner, Travis L.
2002-11-01
Over the past 15 years NASA has investigated the use of active control technology for aircraft interior noise. More recently this work has been supported through the Advanced Subsonic Technology Noise Reduction Program (1994-2001), High Speed Research Program (1994-1999), and through the Quiet Aircraft Technology Program (2000-present). The interior environment is recognized as an important element in flight safety, crew communications and fatigue, as well as passenger comfort. This presentation will overview research in active noise and vibration control relating to interior noise being investigated by NASA. The research to be presented includes: active control of aircraft fuselage sidewall transmission due to turbulent boundary layer or jet noise excitation, active control of interior tones due to propeller excitation of aircraft structures, and adaptive stiffening of structures for noise, vibration, and fatigue control. Work on actuator technology ranging from piezoelectrics, shape memory actuators, and fluidic actuators will be described including applications. Control system technology will be included that is experimentally based, real-time, and adaptive.
NASA Astrophysics Data System (ADS)
Basu Sarkar, D.; Moore, W. B.
2016-12-01
A multitude of factors including the distance from the host star and the stage of planetary evolution affect planetary climate and habitability. The complex interactions between the atmosphere and dynamics of the deep interior of the planets along with stellar fluxes present a formidable challenge. This work employs simplified approaches to address these complex issues in a systematic way. To be specific, we are investigating the coupled evolution of atmosphere and mantle dynamics. The overarching goal here is to simulate the evolutionary history of the terrestrial planets, for example Venus, Earth and Mars. This research also aims at deciphering the history of Venus-like runaway greenhouse and thus explore the possibility of cataclysmic shifts in climate of Earth-like planets. We focus on volatile cycling within the solid planets to understand the role of carbon/water in climatic and tectonic outcomes of such planets. In doing so, we are considering the feedbacks in the coupled mantle-atmosphere system. The primary feedback between the atmosphere and mantle is the surface temperature established by the greenhouse effect, which regulates the temperature gradient that drives the mantle convection and controls the rate at which volatiles are exchanged through weathering. We start our models with different initial assumptions to determine the final climate outcomes within a reasonable parameter space. Currently, there are very few planetary examples, to sample the climate outcomes, however this will soon change as exoplanets are discovered and examined. Therefore, we will be able to work with a significant number of potential candidates to answer questions like this one: For every Earth is there one Venus? ten? a thousand?
On the Dominant Factor Controlling Seasonal Hydrological Forecast Skill in China
Zhang, Xuejun; Tang, Qiuhong; Leng, Guoyong; ...
2017-11-20
Initial conditions (ICs) and climate forecasts (CFs) are the two primary sources of seasonal hydrological forecast skill. However, their relative contribution to predictive skill remains unclear in China. In this study, we investigate the relative roles of ICs and CFs in cumulative runoff (CR) and soil moisture (SM) forecasts using 31-year (1980–2010) ensemble streamflow prediction (ESP) and reverse-ESP (revESP) simulations with the Variable Capacity Infiltration (VIC) hydrologic model. The results show that the relative importance of ICs and CFs largely depends on climate regimes. The influence of ICs is stronger in a dry or wet-to-dry climate regime that covers themore » northern and western interior regions during the late fall to early summer. In particular, ICs may dominate the forecast skill for up to three months or even six months during late fall and winter months, probably due to the low precipitation value and variability in the dry period. In contrast, CFs become more important for most of southern China or during summer months. The impact of ICs on SM forecasts tends to cover larger domains than on CR forecasts. These findings will greatly benefit future work that will target efforts towards improving current forecast levels for the particular regions and forecast periods.« less
On the Dominant Factor Controlling Seasonal Hydrological Forecast Skill in China
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Xuejun; Tang, Qiuhong; Leng, Guoyong
Initial conditions (ICs) and climate forecasts (CFs) are the two primary sources of seasonal hydrological forecast skill. However, their relative contribution to predictive skill remains unclear in China. In this study, we investigate the relative roles of ICs and CFs in cumulative runoff (CR) and soil moisture (SM) forecasts using 31-year (1980–2010) ensemble streamflow prediction (ESP) and reverse-ESP (revESP) simulations with the Variable Capacity Infiltration (VIC) hydrologic model. The results show that the relative importance of ICs and CFs largely depends on climate regimes. The influence of ICs is stronger in a dry or wet-to-dry climate regime that covers themore » northern and western interior regions during the late fall to early summer. In particular, ICs may dominate the forecast skill for up to three months or even six months during late fall and winter months, probably due to the low precipitation value and variability in the dry period. In contrast, CFs become more important for most of southern China or during summer months. The impact of ICs on SM forecasts tends to cover larger domains than on CR forecasts. These findings will greatly benefit future work that will target efforts towards improving current forecast levels for the particular regions and forecast periods.« less
PBF Control Building (PER619). Interior of control room. Control console ...
PBF Control Building (PER-619). Interior of control room. Control console in center of room. Indicator panels along walls. Window shown in ID-33-F-120 is between control panels at left. Camera facing northwest. Date: May 2004. INEEL negative no. HD-41-7-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Method of creating a controlled interior surface configuration of passages within a substrate
Dembowski, Peter V.; Schilke, Peter W.
1983-01-01
A method of creating a controlled interior surface configuration of passages within a substrate, particularly cooling passages of nozzles or buckets of a gas turbine, involves the hot isostatic pressing of a leachable passage insert whose surface carries the female image of the desired interior surface configuration inside the substrate followed by leaching of the insert from the substrate.
NASA Technical Reports Server (NTRS)
Mixson, John S.; Wilby, John F.
1991-01-01
The generation and control of flight vehicle interior noise is discussed. Emphasis is placed on the mechanisms of transmission through airborne and structure-borne paths and the control of cabin noise by path modification. Techniques for identifying the relative contributions of the various source-path combinations are also discussed along with methods for the prediction of aircraft interior noise such as those based on the general modal theory and statistical energy analysis.
Moisture Durability Assessment of Selected Well-insulated Wall Assemblies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pallin, Simon B.; Boudreaux, Philip R.; Kehrer, Manfred
2015-12-01
This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions.more » In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.« less
30 CFR 736.22 - Contents of a Federal program.
Code of Federal Regulations, 2012 CFR
2012-07-01
... INTERIOR PERMANENT REGULATORY PROGRAMS FOR NON-FEDERAL AND NON-INDIAN LANDS FEDERAL PROGRAM FOR A STATE § 736.22 Contents of a Federal program. (a) In promulgating or revising any Federal program for a State, the Director shall— (1) Consider the nature of that State's soils, topography, climate, and biological...
30 CFR 736.22 - Contents of a Federal program.
Code of Federal Regulations, 2014 CFR
2014-07-01
... INTERIOR PERMANENT REGULATORY PROGRAMS FOR NON-FEDERAL AND NON-INDIAN LANDS FEDERAL PROGRAM FOR A STATE § 736.22 Contents of a Federal program. (a) In promulgating or revising any Federal program for a State, the Director shall— (1) Consider the nature of that State's soils, topography, climate, and biological...
30 CFR 736.22 - Contents of a Federal program.
Code of Federal Regulations, 2011 CFR
2011-07-01
... INTERIOR PERMANENT REGULATORY PROGRAMS FOR NON-FEDERAL AND NON-INDIAN LANDS FEDERAL PROGRAM FOR A STATE § 736.22 Contents of a Federal program. (a) In promulgating or revising any Federal program for a State, the Director shall— (1) Consider the nature of that State's soils, topography, climate, and biological...
30 CFR 736.22 - Contents of a Federal program.
Code of Federal Regulations, 2013 CFR
2013-07-01
... INTERIOR PERMANENT REGULATORY PROGRAMS FOR NON-FEDERAL AND NON-INDIAN LANDS FEDERAL PROGRAM FOR A STATE § 736.22 Contents of a Federal program. (a) In promulgating or revising any Federal program for a State, the Director shall— (1) Consider the nature of that State's soils, topography, climate, and biological...
Spectral nudging – a scale-selective interior constraint technique – is commonly used in regional climate models to maintain consistency with large-scale forcing while permitting mesoscale features to develop in the downscaled simulations. Several studies have demonst...
Federal Register 2010, 2011, 2012, 2013, 2014
2012-12-04
... inform decision-making in a variety of contexts, including agriculture, drought monitoring, and wildfire... Affairs, Attention: Desk Officer for the Department of the Interior via email: ( [email protected] animals respond to environmental variation and changes in weather and climate. Contemporary data collected...
R.W. Tinus; K.E. Burr; N. Atzmon; J. Riov
2000-01-01
Greenhouse-cultured, container-grown seedlings of Aleppo pine (Pinus halepensis Mill.), radiata pine (Pinus radiata D. Don), and interior Douglas fir (Pseudotsuga menziesii var. glauca (Beissn.) Franco) were cold acclimated and deacclimated in growth chambers over 24 weeks....
Effects of climate change on terrestrial animals [Chapter 9
Megan M. Friggens; Mary I. Williams; Karen E. Bagne; Tosha T. Wixom; Samuel A. Cushman
2018-01-01
The Intermountain Adaptation Partnership (IAP) region encompasses a high diversity of grassland, shrubland, and forest habitats across a broad range of elevational gradients, supporting high biodiversity in the interior western United States. Terrestrial species comprise a wide range of life forms, each expressing varying levels of habitat specialization and life...
SPERTI Control Building (PER601) interior. Control panel with data readout ...
SPERT-I Control Building (PER-601) interior. Control panel with data readout equipment in control room. Panels and equipment were fabricated elsewhere at NRTS during SPERT-I construction. Photographer: R.G. Larsen. Date: November 21, 1955. INEEL negative no. 55-3208 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
Diagnostics and Active Control of Aircraft Interior Noise
NASA Technical Reports Server (NTRS)
Fuller, C. R.
1998-01-01
This project deals with developing advanced methods for investigating and controlling interior noise in aircraft. The work concentrates on developing and applying the techniques of Near Field Acoustic Holography (NAH) and Principal Component Analysis (PCA) to the aircraft interior noise dynamic problem. This involves investigating the current state of the art, developing new techniques and then applying them to the particular problem being studied. The knowledge gained under the first part of the project was then used to develop and apply new, advanced noise control techniques for reducing interior noise. A new fully active control approach based on the PCA was developed and implemented on a test cylinder. Finally an active-passive approach based on tunable vibration absorbers was to be developed and analytically applied to a range of test structures from simple plates to aircraft fuselages.
NASA Astrophysics Data System (ADS)
Hudson, A. M.; Olsen, J. W.; Quade, J.; Lei, G.; Huth, T.; Zhang, H.; Perreault, C.
2016-12-01
The headwaters of the Yarlung Tsangpo river valley, located in the southwestern Tibetan Plateau, are characterized by a cold and dry climate, but contain abundant river-marginal wetlands environments, which fluctuate in extent in response to changes in local water table elevation. This region receives 80% of precipitation from the Indian Monsoon, which forms the dominant control on moisture availability, and hence wetlands extent. Our paleowetlands record, based on 14C dating of organic-rich paleowetlands deposits, provides a novel record of Holocene monsoon intensity. The wetlands deposits consist of four sedimentary units that indicate decreasing wetlands extent and monsoon intensity since 10.4 ka BP. Wet conditions occurred at ˜10.4 ka BP, ˜9.6 ka BP and ˜7.9-4.8 ka BP, with similar-to-modern conditions from ˜4.6-2.0 ka BP, and drier-than-modern conditions from ˜2.0 ka BP to present. Wetland changes correlate with monsoon intensity changes identified in nearby records, with weak monsoon intervals corresponding to desiccation and erosion of wetlands deposits. Dating of in situ ceramic and microlithic artifacts in wetlands sediments at multiple sites indicates Epipaleolithic human occupation of the YT valley after 6.6 ka BP. Artifact typology study reveals a similar microlithic technology was employed across the high plateau interior, but XRF obsidian provenance reveals separate northeast and southwest lithic conveyance zones. This indicates widespread colonization of the high, arid Tibetan Plateau interior by one or more highly mobile human populations during the early and mid-Holocene, coincident with favorable warm, wet climate conditions.
McCloskey, Sarah E.; Jones, Benjamin M.
2014-01-01
Koyukon Athabascan peoples have settled along the Koyukuk River in Western Interior Alaska for thousands of years using the surrounding landscape for subsistence and cultural resources. However, recent changes in climate, technology, resource availability, and way of life have affected land-use patterns in the region, as well as use of the Denaakk'e (Koyukon) language. The current Koyukon population is about 2,300, and about 150 still speak the language (the youngest of whom are in their fifties). In addition, Elders, important keepers of both language and traditional subsistence-use areas, are aging, and opportunities to record their knowledge are diminishing.
Local Material as a Character of Contemporary Interior Design in Indonesia
NASA Astrophysics Data System (ADS)
Susanto, Dalhar; Puti Angelia, Dini; Ningsih, Tria Amalia
2017-12-01
Excellent design needs to fulfill universal requirements (utility, aesthetic, ergonomic, durability, and safe). Besides of all the requirements, an excellent design has to be shown its distinctiveness, uniqueness, and identity. To create an excellent design, we can use one of locality approach, it means local material utilization. From time to time, the material is linking each other in unity with environment context, human, knowledge, culture, social, economy, user needs and material availability. The aspects are the important part to get the reflective identity and local values in architecture and interior design work in Indonesia. It can be proofed by some of the architecture and interior work precedent, like traditional or vernacular in Nusantara or contemporary interior design work from Indonesian designer who has recognized to promote the locality value. However interior design works in Indonesia cannot be shown the characteristic of Indonesia identity and locality currently, it is different than another country work, like Japan, Italy, or Scandinavia. Interior design work from these countries can be easily known with accentuating of characteristic their places, such as material, color, detail, or geometry pattern in the product that has been produced. Meanwhile, some of the region in Indonesia are tropical climate and brought about much of local material and it has potential to make a unique work which has the local identity. This paper will discuss the result of a searching potential of local material usefulness as interior design identity in Indonesia. This research is done by typology method, which means discover the presence of some of the architecture elements appears to be related material. The elements are the pattern, color, craftsmanship, building element, object, and type of material in some of the contemporary interior design work in Indonesia were considered superior and capable of lifting elements recognized locality.
Distribution of a climate-sensitive species at an interior range margin
Ray, Chris; Beever, Erik; Rodhouse, Thomas J.
2016-01-01
Advances in understanding the factors that limit a species’ range, particularly in the context of climate change, have come disproportionately through investigations at range edges or margins. The margins of a species’ range might often correspond with anomalous microclimates that confer habitat suitability where the species would otherwise fail to persist. We addressed this hypothesis using data from an interior, climatic range margin of the American pika (Ochotona princeps), an indicator of relatively cool, mesic climates in rocky habitats of western North America. Pikas in Lava Beds National Monument, northeastern California, USA, occur at elevations much lower than predicted by latitude and longitude. We hypothesized that pika occurrence within Lava Beds would be associated primarily with features such as “ice caves” in which sub-surface ice persists outside the winter months. We used data loggers to monitor sub-surface temperatures at cave entrances and at non-cave sites, confirming that temperatures were cooler and more stable at cave entrances. We surveyed habitat characteristics and evidence of pika occupancy across a random sample of cave and non-cave sites over a 2-yr period. Pika detection probability was high (~0.97), and the combined occupancy of cave and non-cave sites varied across the 2 yr from 27% to 69%. Contrary to our hypothesis, occupancy was not higher at cave sites. Vegetation metrics were the best predictors of site use by pikas, followed by an edge effect and elevation. The importance of vegetation as a predictor of pika distribution at this interior range margin is congruent with recent studies from other portions of the species’ range. However, we caution that vegetation composition depends on microclimate, which might be the proximal driver of pika distribution. The microclimates available in non-cave crevices accessible to small animals have not been characterized adequately for lava landscapes. We advocate innovation in the acquisition and use of microclimatic data for understanding the distributions of many taxa. Appropriately scaled microclimatic data are increasingly available but rarely used in studies of range dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hoffmann, Sabine; Lee, Eleanor
Exterior shades are highly efficient for reducing solar load in commercial buildings. Their impact on net energy use depends on the annual energy balance of heating, cooling, fan and lighting energy. This paper discusses the overall energy use intensity of various external shading systems for a prototypical large office building split into the different types of energy use and for different orientations and window sizes. Lighting energy was calculated for a constant lighting power as well as for dimmed lighting fixtures (daylighting control). In Section 3, slat angles and solar cut-off angles were varied for fixed exterior slat shading systems.more » While the most light-blocking shades performed best for the case without daylighting controls, the optimum cut-off angle with daylighting controls was found to be 30 deg for the office building prototype used in Chicago and Houston. For large window-to-wall (WWR) ratios, window related annual energy use could be reduced by at least 70 % without daylighting control and by a minimum of 86 % with daylighting control in average over all orientations. The occurrence of discomfort glare was is considered in Section 4 of the paper, which looks at the performance of commercially available exterior shading systems when an interior shade is used in addition to the exterior shade during hours when occupants would experience discomfort glare. Glare control impacts overall energy use intensity significantly for exterior shades with high transmittance, especially when daylighting controls are used. In these cases, exterior shades are only beneficial for window-to-wall areas ≥ 45% in the hot Houston climate. For smaller windows and in a heating/cooling climate like Chicago, exterior shades can increase energy consumption« less
Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications
NASA Technical Reports Server (NTRS)
Simpson, M. A.; Tran, B. N.
1991-01-01
Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.
Analysis of interior noise ground and flight test data for advanced turboprop aircraft applications
NASA Astrophysics Data System (ADS)
Simpson, M. A.; Tran, B. N.
1991-08-01
Interior noise ground tests conducted on a DC-9 aircraft test section are described. The objectives were to study ground test and analysis techniques for evaluating the effectiveness of interior noise control treatments for advanced turboprop aircraft, and to study the sensitivity of the ground test results to changes in various test conditions. Noise and vibration measurements were conducted under simulated advanced turboprop excitation, for two interior noise control treatment configurations. These ground measurement results were compared with results of earlier UHB (Ultra High Bypass) Demonstrator flight tests with comparable interior treatment configurations. The Demonstrator is an MD-80 test aircraft with the left JT8D engine replaced with a prototype UHB advanced turboprop engine.
NASA Astrophysics Data System (ADS)
Healey, N.; Hook, S. J.
2016-12-01
Due to water's high heat capacity, temperature fluctuations in lacustrine systems are a reflection of long-term ambient climate conditions rather than short-term meteorological forcing. There are many atmospheric phenomena (i.e. teleconnections) that influence the regional climatology of the Pacific basin, and one of the most influential is the Pacific Decadal Oscillation (PDO). This study examines spaceborne observations by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite (VIIRS) from 2000-2015 of 15 inland water bodies in Alaska and Canada using the Inland Waterbody Surface Temperature (IWbST) version 1.0 algorithm. We analyze surface temperature trends in comparison to the variation of the PDO, and our findings suggest that the PDO is influencing summertime (July-September) inland water bodies in southern Alaska and northwestern Canada. The strongest influence is prevalent in the water bodies experiencing a maritime climate and situated closest to the Aleutian Peninsula/Gulf of Alaska. The second largest influence occurs in the northwestern Canadian water bodies that experience a weakened maritime climate, or a transitional regime between maritime and continental classifications. The weakest relationship with the PDO are water bodies located in the western, northwestern, and interior Alaska regions that experience more of a continental climate regime which are likely controlled by other large-scale teleconnections such as the Arctic Oscillation, the Pacific North American Index, or the North Pacific Index.
Deglaciation and glacial erosion: a joint control on magma productivity by continental unloading
NASA Astrophysics Data System (ADS)
Sternai, Pietro; Caricchi, Luca; Castelltort, Sebastien
2016-04-01
Glacial-interglacial cycles affect the processes through which water and rocks are redistributed across the Earth's surface, thereby linking solid-Earth and climate dynamics. Regional and global scale studies suggest that continental lithospheric unloading due to ice melting during the transition to interglacials leads to increased continental magmatic, volcanic and degassing activity. Such a climatic forcing on the melting of the Earth's interior, however, has always been evaluated without considering the additional continental unloading associated with erosion. Current datasets relating to the evolution of erosion rates are typically limited by temporal resolutions that are too low or span too short time intervals to allow for direct comparisons between the contributions from ice melting and erosion to continental unloading at the timescale of the late Pleistocene glacial cycles. Yet, they provide a fundamental observational basis on which to calibrate numerical predictions. Here, we present and discuss numerical results involving synthetic but realistic topographies, ice caps and glacial erosion rates suggesting that erosion may be as important as deglaciation in affecting continental unloading, sub-continental decompression melting and magma productivity. Thus, the timing and magnitude of deglaciation and erosion must be characterized if the forcing of climate change on the continental magmatic/volcanic activity is to be extracted from the remnants of eroded volcanic centers. Our study represents an additional step towards a more general understanding of the links between a changing climate, glacial processes and the melting of the solid Earth.
NASA Astrophysics Data System (ADS)
Burakova, L. N.; Burakova, A. D.; Burakova, O. D.; Dovbysh, V. O.
2018-01-01
Motor vehicle should provide safety and a high ecological standard of living for the population. One of the methods to improve the ecological friendliness of motor vehicles in particular passenger cars (cars), which are considered in this article, is the growth of their fuel economy. It is established that fuel consumption and the amount of specific emissions of harmful substances with exhaust gases of cars when using the “climate control” system depend on the effective ambient temperature, the color of the opaque car body elements, the power of the car engine and the interior volume. However, the simplest controlled factor is the color of the opaque car body elements, which is characterized by the coefficient of light reflection. In the course of experimental studies, we established the dependences of a change in fuel consumption and a share of reducing emissions of harmful substances with exhaust gases of passenger cars with the “climate control” system on the coefficient of light reflection. A method has been developed to reduce fuel consumption and the amount of specific emissions of harmful substances with the exhaust gases of passenger cars when using the “climate control” system, which involves painting the vehicle roof white and allows reducing fuel consumption by 5.5-10.3% and the amount of specific emissions of harmful substances by 0.37-1.13% (CO) and 0.47-1.08% (CH).
NASA Astrophysics Data System (ADS)
Buckley, Martha W.; Marshall, John
2016-03-01
This is a review about the Atlantic Meridional Overturning Circulation (AMOC), its mean structure, temporal variability, controlling mechanisms, and role in the coupled climate system. The AMOC plays a central role in climate through its heat and freshwater transports. Northward ocean heat transport achieved by the AMOC is responsible for the relative warmth of the Northern Hemisphere compared to the Southern Hemisphere and is thought to play a role in setting the mean position of the Intertropical Convergence Zone north of the equator. The AMOC is a key means by which heat anomalies are sequestered into the ocean's interior and thus modulates the trajectory of climate change. Fluctuations in the AMOC have been linked to low-frequency variability of Atlantic sea surface temperatures with a host of implications for climate variability over surrounding landmasses. On intra-annual timescales, variability in AMOC is large and primarily reflects the response to local wind forcing; meridional coherence of anomalies is limited to that of the wind field. On interannual to decadal timescales, AMOC changes are primarily geostrophic and related to buoyancy anomalies on the western boundary. A pacemaker region for decadal AMOC changes is located in a western "transition zone" along the boundary between the subtropical and subpolar gyres. Decadal AMOC anomalies are communicated meridionally from this region. AMOC observations, as well as the expanded ocean observational network provided by the Argo array and satellite altimetry, are inspiring efforts to develop decadal predictability systems using coupled atmosphere-ocean models initialized by ocean data.
14. INTERIOR VIEW OF PROPELLER STAND CONTROL ROOM. WrightPatterson ...
14. INTERIOR VIEW OF PROPELLER STAND CONTROL ROOM. - Wright-Patterson Air Force Base, Area B, Building No. 20A, Propeller Test Complex, Seventh Street, from E to G Streets, Dayton, Montgomery County, OH
IET control building (TAN620). interior room. sign says, "emergency equipment ...
IET control building (TAN-620). interior room. sign says, "emergency equipment for metal fires." INEEL negative no. HD-21-1-2 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
A&M. Hot liquid waste building (TAN616). Interior of evaporator control ...
A&M. Hot liquid waste building (TAN-616). Interior of evaporator control room. Date: 1962. INEEL negative no. 62-6824 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
Linked hydrologic and climate variations in British Columbia and Yukon.
Whitfield, P H
2001-01-01
Climatic and hydrologic variations between the decades 1976-1985 and 1986-1995 are examined at 34 climate stations and 275 hydrology stations. The variations in climate are distributed across a broad spatial area. Temperatures were generally warmer in the most recent decade, with many stations showing significant increases during the spring and fall. No significant decreases in temperature were found. Significant increases in temperature were more frequent in the south than in the northern portions of the region. Significant changes in precipitation were also more prevalent in the south. In coastal areas, there were significant decreases in precipitation during the dry season, and significant increases during the wet season. In the BC interior, significant precipitation decreases occurred during the fall, with significant increases during the winter and spring. In the north there were few changes in precipitation. The hydrologic responses to these variations in climate follow six distinctive patterns. The spatial distribution of these patterns suggests that in different ecozones, small variations in climate, particularly temperature, elicit different hydrologic responses.
A New Wave of Permafrost Warming in the Alaskan Interior?
NASA Astrophysics Data System (ADS)
Romanovsky, V. E.; Nicolsky, D.; Cable, W.; Kholodov, A. L.; Panda, S. K.
2017-12-01
The impact of climate warming on permafrost and the potential of climate feedbacks resulting from permafrost thawing have recently received a great deal of attention. Ground temperatures are a primary indicator of permafrost stability. Many of the research sites in our permafrost network are located along the North American Arctic Permafrost-Ecological Transect that spans all permafrost zones in Alaska. Most of the sites in Alaska show substantial warming of permafrost since the 1980s. The magnitude of warming has varied with location, but was typically from 0.5 to 3°C. However, this warming was not linear in time and not spatially uniform. In some regions this warming even may be reversed and a slight recent cooling of permafrost has been observed recently at some locations. The Interior of Alaska is one of such regions where a slight permafrost cooling was observed starting in the late 1990s that has continued through the 2000s and in the beginning of the 2010s. The cooling has followed the substantial increase in permafrost temperatures documented for the Interior during the 1980s and 1990s. Permafrost temperatures at 15 m depth increased here by 0.3 to 0.6°C between 1983 and 1996. In most locations they reached their maximum in the second half of the 1990s. Since then, the permafrost temperatures started to decrease slowly and by 2013 this decrease at some locations was as much as 0.3°C at 15 m depth. There are some indications that the warming trend in the Alaskan Interior permafrost resumed during the last four years. By 2016, new record highs for the entire period of measurements of permafrost temperatures at 15 m depth were recorded at several locations. The latest observed permafrost warming in the Interior was combined with higher than normal summer precipitations. This combination has triggered near-surface permafrost degradation in many locations with adverse consequences for the ground surface stability affecting ecosystems and infrastructure. In this presentation the observational data and modeling results will be combined to explain these documented changes in permafrost in the Alaskan Interior during the last three decades. Some suggestions to improve the observational methods of permafrost monitoring will also be discussed.
Interior sound field control using generalized singular value decomposition in the frequency domain.
Pasco, Yann; Gauthier, Philippe-Aubert; Berry, Alain; Moreau, Stéphane
2017-01-01
The problem of controlling a sound field inside a region surrounded by acoustic control sources is considered. Inspired by the Kirchhoff-Helmholtz integral, the use of double-layer source arrays allows such a control and avoids the modification of the external sound field by the control sources by the approximation of the sources as monopole and radial dipole transducers. However, the practical implementation of the Kirchhoff-Helmholtz integral in physical space leads to large numbers of control sources and error sensors along with excessive controller complexity in three dimensions. The present study investigates the potential of the Generalized Singular Value Decomposition (GSVD) to reduce the controller complexity and separate the effect of control sources on the interior and exterior sound fields, respectively. A proper truncation of the singular basis provided by the GSVD factorization is shown to lead to effective cancellation of the interior sound field at frequencies below the spatial Nyquist frequency of the control sources array while leaving the exterior sound field almost unchanged. Proofs of concept are provided through simulations achieved for interior problems by simulations in a free field scenario with circular arrays and in a reflective environment with square arrays.
Creating Library Interiors: Planning and Design Considerations.
ERIC Educational Resources Information Center
Jones, Plummer Alston, Jr.; Barton, Phillip K.
1997-01-01
Examines design considerations for public library interiors: access; acoustical treatment; assignable and nonassignable space; building interiors: ceilings, clocks, color, control, drinking fountains; exhibit space: slotwall display, floor coverings, floor loading, furniture, lighting, mechanical systems, public address, copying machines,…
5. INTERIOR VIEW, SHOWING TEST MACHINERY IN FOREGROUND AND CONTROL ...
5. INTERIOR VIEW, SHOWING TEST MACHINERY IN FOREGROUND AND CONTROL ROOM IN BACKGROUND. - Wright-Patterson Air Force Base, Area B, Building 20, Propeller Laboratory, Northwest corner of Seventh & E Streets, Dayton, Montgomery County, OH
45. DETAIL INTERIOR VIEW OF WICKET GATE CONTROL MECHANISM FOR ...
45. DETAIL INTERIOR VIEW OF WICKET GATE CONTROL MECHANISM FOR TURBINE/GENERATOR UNIT ACCESSIBLE FROM LEVEL +37 OF POWERHOUSE #1. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR
11. ENGINE TEST CELL BUILDING INTERIOR. CONTROL ROOM FOR CELLS ...
11. ENGINE TEST CELL BUILDING INTERIOR. CONTROL ROOM FOR CELLS 2 AND 4. LOOKING SOUTHEAST. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA
Transmission loss characteristics of aircraft sidewall systems to control cabin interior noise
NASA Astrophysics Data System (ADS)
Yesil, Oktay; Serati, Paul M.; Hofbeck, Eric V.; Glover, Billy M.
We have explored the possibility of using new, light weight, and acoustically effective materials on aircraft interiors to control noise. The sidewall system elements were evaluated for increased TL in the laboratory. Measured TL for a given configuration, relative to a baseline, was used as an indication of the TL change to be expected for modifications. Test data were in good agreement with the predicted levels. The TL contributions due to all sidewall components were important for interior cabin noise control. Polyimide foam insulation was inferior to fiberglass in the mid-frequency range; however, foam was a better performer at high frequencies. Fiberglass/polyimide foam composite blankets, with less weight, provided noise reductions similar to fiberglass. 'Premium' fiberglass was slightly better performer than the standard fiberglass. Solid fiberglass interior trim panel provided adequate noise performance. Production-type trim attachment design could be improved to control flanking path for sound transmission.
8. INTERIOR, CONTROL AND INSTRUMENTATION ROOM. Looking southwest toward entrance ...
8. INTERIOR, CONTROL AND INSTRUMENTATION ROOM. Looking southwest toward entrance and inner blast door. - Edwards Air Force Base, South Base Sled Track, Firing & Control Blockhouse for 10,000-foot Track, South of Sled Track at midpoint of 20,000-foot track, Lancaster, Los Angeles County, CA
Interior of control house showing remains of controller. Moving the ...
Interior of control house showing remains of controller. Moving the handle rotated the vertical shaft and porcelain cams to engage various electrical switches and activate the lift mechanism. All electrical components have been removed. - Potomac Edison Company, Chesapeake & Ohio Canal Bridge, Spanning C & O Canal South of U.S. 11, Williamsport, Washington County, MD
PBF Control Building (PER619). Interior detail of control room's severe ...
PBF Control Building (PER-619). Interior detail of control room's severe fuel damage instrument panel. Indicators provided real-time information about test underway in PBF reactor. Note audio speaker. Date: May 2004. INEEL negative no, HD-41-7-4 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
17. DETAIL INTERIOR VIEW OF CONTROL ROOM ON LEVEL +77 ...
17. DETAIL INTERIOR VIEW OF CONTROL ROOM ON LEVEL +77 OF POWERHOUSE #1; NOTEBOOKS IN FOREGROUND ARE ON TOP OF THE NEW SWITCH GEAR CONTROL CONSOLE; THE ORIGINAL OPERATOR DESK IS IN CENTER; THE ORIGINAL BENCH BOARD CONTROLS ARE IN BACKGROUND. - Bonneville Project, Powerhouse No.1, Spanning Bradford Slough, from Bradford Island, Bonneville, Multnomah County, OR
Physical and subjective studies of aircraft interior noise and vibration
NASA Technical Reports Server (NTRS)
Stephens, D. G.; Leatherwood, J. D.
1979-01-01
Measurements to define and quantify the interior noise and vibration stimuli of aircraft are reviewed as well as field and simulation studies to determine the subjective response to such stimuli, and theoretical and experimental studies to predict and control the interior environment. In addition, ride quality criteria/standards for noise, vibration, and combinations of these stimuli are discussed in relation to the helicopter cabin environment. Data on passenger response are presented to illustrate the effects of interior noise and vibration on speech intelligibility and comfort of crew and passengers. The interactive effects of noise with multifrequency and multiaxis vibration are illustrated by data from LaRC ride quality simulator. Constant comfort contours for various combinations of noise and vibration are presented and the incorporation of these results into a user-oriented model are discussed. With respect to aircraft interior noise and vibration control, ongoing studies to define the near-field noise, the transmission of noise through the structure, and the effectiveness of control treatments are described.
Rice, Kenneth G.; Beier, Paul; Breault, Tim; Middleton, Beth A.; Peck, Myron A.; Tirpak, John M.; Ratnaswamy, Mary; Austen, Douglas; Harrison, Sarah
2017-01-01
In 2008, the U.S. Congress authorized the establishment of the National Climate Change and Wildlife Science Center (NCCWSC) within the U.S. Department of Interior (DOI). Housed administratively within the U.S. Geological Survey (USGS), NCCWSC is part of the DOI’s ongoing mission to meet the challenges of climate change and its effects on wildlife and aquatic resources. From 2010 through 2012, NCCWSC established eight regional DOI Climate Science Centers (CSCs). Each of these regional CSCs operated with the mission to “synthesize and integrate climate change impact data and develop tools that the Department’s managers and partners can use when managing the Department’s land, water, fish and wildlife, and cultural heritage resources” (Salazar 2009). The model developed by NCCWSC for the regional CSCs employed a dual approach of a federal USGS-staffed component and a parallel host-university component established competitively through a 5-year cooperative agreement with NCCWSC. At the conclusion of this 5-year agreement, a review of each CSC was undertaken, with the Southeast Climate Science Center (SE CSC) review in February 2016. The SE CSC is hosted by North Carolina State University (NCSU) in Raleigh, North Carolina, and is physically housed within the NCSU Department of Applied Ecology along with the Center for Applied Aquatic Ecology, the North Carolina Cooperative Fish and Wildlife Research Unit (CFWRU), and the North Carolina Agromedicine Institute. The U.S. Department of Agriculture Southeast Regional Climate Hub is based at NCSU as is the National Oceanic and Atmospheric Administration (NOAA) Southeast Regional Climate Center, the North Carolina Institute for Climate Studies, the North Carolina Wildlife Resources Commission, the NOAA National Weather Service, the State Climate Office of North Carolina, and the U.S. Forest Service Eastern Forest Environmental Threat Assessment Center. This creates a strong core of organizations operating in close proximity focused on climate issues. The geographic area covered by the SE CSC represents all or part of 16 states and the Caribbean Islands and has overlapping boundaries with seven Landscape Conservation Cooperatives (LCCs): Appalachian LCC, Eastern Tallgrass Prairie and Big Rivers LCC, Gulf Coast Prairie LCC, Gulf Coastal Plains and Ozarks LCC, Peninsular Florida LCC, South Atlantic LCC, and Caribbean LCC. The SE CSC region also encompasses 134 U.S. Fish and Wildlife Service refuges and 89 National Park Service (NPS) units and is home to 11 federally recognized and 54 state recognized tribes.
Oh, Jeong-Wook; Lim, Dong-Kwon; Kim, Gyeong-Hwan; Suh, Yung Doug; Nam, Jwa-Min
2014-10-08
The design, synthesis and control of plasmonic nanostructures, especially with ultrasmall plasmonically coupled nanogap (∼1 nm or smaller), are of significant interest and importance in chemistry, nanoscience, materials science, optics and nanobiotechnology. Here, we studied and established the thiolated DNA-based synthetic principles and methods in forming and controlling Au core-nanogap-Au shell structures [Au-nanobridged nanogap particles (Au-NNPs)] with various interior nanogap and Au shell structures. We found that differences in the binding affinities and modes among four different bases to Au core, DNA sequence, DNA grafting density and chemical reagents alter Au shell growth mechanism and interior nanogap-forming process on thiolated DNA-modified Au core. Importantly, poly A or poly C sequence creates a wider interior nanogap with a smoother Au shell, while poly T sequence results in a narrower interstitial interior gap with rougher Au shell, and on the basis of the electromagnetic field calculation and experimental results, we unraveled the relationships between the width of the interior plasmonic nanogap, Au shell structure, electromagnetic field and surface-enhanced Raman scattering. These principles and findings shown in this paper offer the fundamental basis for the thiolated DNA-based chemistry in forming and controlling metal nanostructures with ∼1 nm plasmonic gap and insight in the optical properties of the plasmonic NNPs, and these plasmonic nanogap structures are useful as strong and controllable optical signal-generating nanoprobes.
Federal Register 2010, 2011, 2012, 2013, 2014
2013-01-25
..., poor habitat conditions, fire, drought, and the effects of climate change. Because of the range... Grande Cutthroat Trout, New Mexico and Colorado AGENCY: Fish and Wildlife Service, Interior. ACTION... for the Rio Grande cutthroat trout in Taos County, New Mexico, and Costilla County, Colorado. If the...
Assessing the potential for conversion to biomass fuels in interior Alaska.
Nancy Fresco; F. Stuart Chapin
2009-01-01
In rural Alaskan communities, high economic, social, and ecological costs are associated with fossil fuel use for power generation. Local concerns regarding fuel prices, environmental contamination, and the effects of global climate change have resulted in increased interest in renewable energy sources. In this study, we assessed the feasibility of switching from...
Lessons learned on 50,000 acres of plantation in northern California
Jeff Webster; Ed Fredrickson
2005-01-01
Many lessons have been learned during reforestation of large wildfires and clearcuts in interior Northern California, a region of low rainfall and summer drought typical of a Mediterranean climate. Challenges appeared from time of establishment right up to commercial thinning. Establishment issues included procurement of improved seed, site preparation, soil mitigation...
Cold-water fishes and climate change in North America
J. E. Williams; Daniel Isaak; J. Imhof; D. A. Hendrickson; J. R. McMillan
2015-01-01
Trout, salmon, grayling and whitefishes (Salmonidae) are among the most ecologically and economically important fishes. They also are among the most vulnerable to global warming, and increasing drought, floods, and wildfires. In North America, salmonids occur from central Mexico northward along coastal regions and mountainous interiors to the Arctic Plains. A...
Today’s world and political climate lends itself to potential attacks by hostile forces and terrorists where both exterior and interior surfaces of vehicles, buildings, or equipment could become contaminated with biological warfare (BW) or chemical warfare (CW) agents. R...
5. INTERIOR VIEW, SHOWING A CONTROL ROOM INSIDE THE RADIOGRAPHY ...
5. INTERIOR VIEW, SHOWING A CONTROL ROOM INSIDE THE RADIOGRAPHY ROOM; PASS-THROUGH FOR EXPOSED FILM ON RIGHT - Fort McCoy, Building No. T-1031, North side of South Tenth Avenue, Block 10, Sparta, Monroe County, WI
8. INTERIOR, FIRE ALARM CONTROL ROOM (NORTH OF MAIN GARAGE), ...
8. INTERIOR, FIRE ALARM CONTROL ROOM (NORTH OF MAIN GARAGE), FROM ENTRYWAY, LOOKING NORTH, SHOWING ADDITIONAL 'GAMEWELL' FIRE ALARM SYSTEMS. - Oakland Naval Supply Center, Firehouse, East of Fourth Street, between A & B Streets, Oakland, Alameda County, CA
15. Interior view of unoccupied controlled computer room looking at ...
15. Interior view of unoccupied controlled computer room looking at exit door and office; northwest corner of unoccupied portion; view to south. - Ellsworth Air Force Base, Mess & Administration Building, 2279 Risner Drive, Blackhawk, Meade County, SD
12. ENGINE TEST CELL BUILDING INTERIOR. DETAIL OF CONTROL CONSOLE ...
12. ENGINE TEST CELL BUILDING INTERIOR. DETAIL OF CONTROL CONSOLE FOR ENGINE TEST CELL 4. LOOKING NORTH. - Fairchild Air Force Base, Engine Test Cell Building, Near intersection of Arnold Street & George Avenue, Spokane, Spokane County, WA
13. INTERIOR VIEW OF TOWER OFFICE SHOWING CONTROL TOWER DESK, ...
13. INTERIOR VIEW OF TOWER OFFICE SHOWING CONTROL TOWER DESK, FACING NORTHWEST. - U.S. Naval Base, Pearl Harbor, Signal Tower, Corner of Seventh Street & Avenue D east of Drydock No. 1, Pearl City, Honolulu County, HI
Charney, Noah D; Babst, Flurin; Poulter, Benjamin; Record, Sydne; Trouet, Valerie M; Frank, David; Enquist, Brian J; Evans, Margaret E K
2016-09-01
Predicting long-term trends in forest growth requires accurate characterisation of how the relationship between forest productivity and climatic stress varies across climatic regimes. Using a network of over two million tree-ring observations spanning North America and a space-for-time substitution methodology, we forecast climate impacts on future forest growth. We explored differing scenarios of increased water-use efficiency (WUE) due to CO2 -fertilisation, which we simulated as increased effective precipitation. In our forecasts: (1) climate change negatively impacted forest growth rates in the interior west and positively impacted forest growth along the western, southeastern and northeastern coasts; (2) shifting climate sensitivities offset positive effects of warming on high-latitude forests, leaving no evidence for continued 'boreal greening'; and (3) it took a 72% WUE enhancement to compensate for continentally averaged growth declines under RCP 8.5. Our results highlight the importance of locally adapted forest management strategies to handle regional differences in growth responses to climate change. © 2016 John Wiley & Sons Ltd/CNRS.
Synchronous turnover of flora, fauna, and climate at the Eocene–Oligocene Boundary in Asia
Sun, Jimin; Ni, Xijun; Bi, Shundong; Wu, Wenyu; Ye, Jie; Meng, Jin; Windley, Brian F.
2014-01-01
The Eocene–Oligocene Boundary (~34 million years ago) marks one of the largest extinctions of marine invertebrates in the world oceans and of mammalian fauna in Europe and Asia in the Cenozoic era. A shift to a cooler climate across this boundary has been suggested as the cause of this extinction in the marine environment, but there is no manifold evidence for a synchronous turnover of flora, fauna and climate at the Eocene–Oligocene Boundary in a single terrestrial site in Asia to support this hypothesis. Here we report new data of magnetostratigraphy, pollen and climatic proxies in the Asian interior across the Eocene–Oligocene Boundary; our results show that climate change forced a turnover of flora and fauna, suggesting there was a change from large-size perissodactyl-dominant fauna in forests under a warm-temperate climate to small rodent/lagomorph-dominant fauna in forest-steppe in a dry-temperate climate across the Eocene–Oligocene Boundary. These data provide a new terrestrial record for this significant Cenozoic environmental event. PMID:25501388
Field Testing Unvented Roofs with Asphalt Shingles in Cold and Hot-Humid Climates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, Kohta; Lstiburek, Joseph W.
2015-09-01
Test houses with unvented roof assemblies were built to measure long-term moisture performance, in the Chicago area (5A) and the Houston area (2A). The Chicago-area test bed had seven experimental rafter bays, including a control vented compact roof, and six unvented roof variants with cellulose or fiberglass insulation. The interior was run at 50% RH. The Houston-area roof was an unvented attic insulated with spray-applied fiberglass. Most ridges and hips were built with a diffusion vent detail, capped with vapor permeable roof membrane. In contrast, the diffusion vent roofs had drier conditions at the roof peak in wintertime, but duringmore » the summer, RHs and MCs were higher than the unvented roof (albeit in the safe range).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ueno, Kohta
There are many existing buildings with load-bearing mass masonry walls, whose energy performance could be improved with the retrofit of insulation. However, adding insulation to the interior side of walls of such masonry buildings in cold (and wet) climates may cause performance and durability problems. Some concerns, such as condensation and freeze-thaw have known solutions. But wood members embedded in the masonry structure will be colder (and potentially wetter) after an interior insulation retrofit. Moisture content & relative humidity were monitored at joist ends in historic mass brick masonry walls retrofitted with interior insulation in a cold climate (Zone 5A);more » data were collected from 2012-2015. Eleven joist ends were monitored in all four orientations. One limitation of these results is that the renovation is still ongoing, with limited wintertime construction heating and no permanent occupancy to date. Measurements show that many joists ends remain at high moisture contents, especially at north- and east-facing orientations, with constant 100% RH conditions at the worst cases. These high moisture levels are not conducive for wood durability, but no evidence for actual structural damage has been observed. Insulated vs. non-insulated joist pockets do not show large differences. South facing joists have safe (10-15%) moisture contents. Given the uncertainty pointed out by research, definitive guidance on the vulnerability of embedded wood members is difficult to formulate. In high-risk situations, or when a very conservative approach is warranted, the embedded wood member condition can be eliminated entirely, supporting the joist ends outside of the masonry pocket.« less
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Destruction. 4730.1 Section 4730.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Destruction. 4730.1 Section 4730.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Destruction. 4730.1 Section 4730.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Destruction. 4730.1 Section 4730.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Research on the Natural Variability of Climate and the Impact of Anthropogenic Forcing on Climate
NASA Technical Reports Server (NTRS)
Stone, Peter H.
2005-01-01
The paper, "Latitude-dependent vertical mixing and the tropical thermocline in a global OGCM", was revised and published in Geophysical Research Letters. It treats the new GISS mixing scheme which includes the latitudinal dependence of the interior ocean turbulence field reported by Gregg, Sanford & Winkel. When implemented in the 3x3 degree NCAR CSMl OGCM [NCOMl] the new mixing scheme produces an improved, sharper equatorial thermoclines in both the Atlantic and the Pacific while simultaneously maintaining the realistic meridional overturning and northward heat transports found already with the previous GISS scheme. Also the paper "Diagnostics of the oceanic thermohaline circulation in a coupled climate model" describing earlier work on the grany was published.
IET control building (TAN620). interior service area. equipment on concrete ...
IET control building (TAN-620). interior service area. equipment on concrete pads. liquid pump and valves on right. control panel at center of view, blower at left. piping for vent and sanitary sewer. INEEL negative no. HD-21-3-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
LPT. Low power test control building (TAN641) interior. Camera facing ...
LPT. Low power test control building (TAN-641) interior. Camera facing northeast at what remains of control room console. Cut in wall at right of view shows west wall of northern test cell. INEEL negative no. HD-40-4-4 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
NASA Astrophysics Data System (ADS)
Raff, D. A.; Morgan, A.; Brekke, L. D.
2014-12-01
The Bureau of Reclamation is the nation's largest wholesale water supplier and the second largest producer of hydropower. Reclamation operates 337 reservoirs with a total storage capacity of 245 million acre-feet and operates 53 hydroelectric powerplants that annually produce, on average for the past 10 years, 40 billion kilowatt-hours. Reclamation is adapting to the impacts and future challenges posed by the changing climate through the development of new climate services as well as through cooperation with Federal, state, local, tribal, academic, and non-governmental partners in the use of climate and water resource information that may be available. Reclamation is utilizing this information within a strategy that has four goals: 1) Increase Water Management Flexibility, 2) Enhance Climate Adaptation Planning, 3) Improve Infrastructure Resiliency, and 4) Expand Information Sharing. Within this presentation we will focus on the utilization of climate services within each of these key goals of Reclamation's strategy. This includes the utilization of climate information to track and potentially improve reservoir management to increase water management flexibility, the development of climate informed hydrology that supports climate adaptation planning, use of climate information to inform decisions of infrastructure resilience, and climate services use for jointly informed water management decisions through education and web based services.
Active Vibration Control for Helicopter Interior Noise Reduction Using Power Minimization
NASA Technical Reports Server (NTRS)
Mendoza, J.; Chevva, K.; Sun, F.; Blanc, A.; Kim, S. B.
2014-01-01
This report describes work performed by United Technologies Research Center (UTRC) for NASA Langley Research Center (LaRC) under Contract NNL11AA06C. The objective of this program is to develop technology to reduce helicopter interior noise resulting from multiple gear meshing frequencies. A novel active vibration control approach called Minimum Actuation Power (MAP) is developed. MAP is an optimal control strategy that minimizes the total input power into a structure by monitoring and varying the input power of controlling sources. MAP control was implemented without explicit knowledge of the phasing and magnitude of the excitation sources by driving the real part of the input power from the controlling sources to zero. It is shown that this occurs when the total mechanical input power from the excitation and controlling sources is a minimum. MAP theory is developed for multiple excitation sources with arbitrary relative phasing for single or multiple discrete frequencies and controlled by a single or multiple controlling sources. Simulations and experimental results demonstrate the feasibility of MAP for structural vibration reduction of a realistic rotorcraft interior structure. MAP control resulted in significant average global vibration reduction of a single frequency and multiple frequency excitations with one controlling actuator. Simulations also demonstrate the potential effectiveness of the observed vibration reductions on interior radiated noise.
Thompson, Laura M.; Staudinger, Michelle D.; Carter, Shawn L.
2015-09-29
A secretarial order identified climate adaptation as a critical performance objective for future management of U.S. Department of the Interior (DOI) lands and resources in response to global change. Vulnerability assessments can inform climate adaptation planning by providing insight into what natural resources are most at risk and why. Three components of vulnerability—exposure, sensitivity, and adaptive capacity—were defined by the Intergovernmental Panel on Climate Change (IPCC) as necessary for identifying climate adaptation strategies and actions. In 2011, the DOI requested all internal bureaus report ongoing or completed vulnerability assessments about a defined range of assessment targets or climate-related threats. Assessment targets were defined as freshwater resources, landscapes and wildlife habitat, native and cultural resources, and ocean health. Climate-related threats were defined as invasive species, wildfire risk, sea-level rise, and melting ice and permafrost. Four hundred and three projects were reported, but the original DOI survey did not specify that information be provided on exposure, sensitivity, and adaptive capacity collectively as part of the request, and it was unclear which projects adhered to the framework recommended by the IPCC. Therefore, the U.S. Geological Survey National Climate Change and Wildlife Science Center conducted a supplemental survey to determine how frequently each of the three vulnerability components was assessed. Information was categorized for 124 of the 403 reported projects (30.8 percent) based on the three vulnerability components, and it was discovered that exposure was the most common component assessed (87.9 percent), followed by sensitivity (68.5 percent) and adaptive capacity (33.1 percent). The majority of projects did not fully assess vulnerability; projects focused on landscapes/wildlife habitats and sea-level rise were among the minority that simultaneously addressed all three vulnerability components. To maintain consistency with the IPCC definition of vulnerability, DOI may want to focus initial climate adaptation planning only on the outcomes of studies that comprehensively address vulnerability as inclusive of exposure, sensitivity, and adaptive capacity. Although the present study results are preliminary and used an unstructured survey design, they illustrate the importance of a comprehensive and consistent vulnerability definition and of using information on vulnerability components in DOI surveys to ensure relevant data are used to identify adaptation options.
129. INTERIOR OF RELAY BOX FOR HYDRAULIC CONTROL PANEL IN ...
129. INTERIOR OF RELAY BOX FOR HYDRAULIC CONTROL PANEL IN UMBILICAL MAST PUMP ROOM (209), LSB (BLDG. 751) - Vandenberg Air Force Base, Space Launch Complex 3, Launch Pad 3 East, Napa & Alden Roads, Lompoc, Santa Barbara County, CA
14. INTERIOR DETAIL OF CONTROL PANEL IN BUILDING 1606. VIEW ...
14. INTERIOR DETAIL OF CONTROL PANEL IN BUILDING 1606. VIEW TO SOUTH. - Rocky Mountain Arsenal, Cluster Bomb Assembly-Filling-Storage Building, 3500 feet South of Ninth Avenue; 2870 feet East of D Street, Commerce City, Adams County, CO
17. INTERIOR DETAIL OF CONTROL PANEL IN BUILDING 1606. VIEW ...
17. INTERIOR DETAIL OF CONTROL PANEL IN BUILDING 1606. VIEW TO SOUTH. - Rocky Mountain Arsenal, Cluster Bomb Assembly-Filling-Storage Building, 3500 feet South of Ninth Avenue; 2870 feet East of D Street, Commerce City, Adams County, CO
15. INTERIOR DETAIL OF CONTROL PANEL IN BUILDING 1606. VIEW ...
15. INTERIOR DETAIL OF CONTROL PANEL IN BUILDING 1606. VIEW TO NORTH. - Rocky Mountain Arsenal, Cluster Bomb Assembly-Filling-Storage Building, 3500 feet South of Ninth Avenue; 2870 feet East of D Street, Commerce City, Adams County, CO
16. INTERIOR DETAIL OF CONTROL PANEL IN BUILDING 1606. VIEW ...
16. INTERIOR DETAIL OF CONTROL PANEL IN BUILDING 1606. VIEW TO SOUTHWEST. - Rocky Mountain Arsenal, Cluster Bomb Assembly-Filling-Storage Building, 3500 feet South of Ninth Avenue; 2870 feet East of D Street, Commerce City, Adams County, CO
GENERAL VIEW OF THE INTERIOR OF THE EXTREME NORTH CONTROL ...
GENERAL VIEW OF THE INTERIOR OF THE EXTREME NORTH CONTROL TANK SHOWING THE REMAINING PIECES OF EQUIPMENT USED DURING THE REDSTONE ROCKET TESTING PROGRAM. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
The Climate Effect of the Topographies at the Northern Margin of the Tibetan Plateau
NASA Astrophysics Data System (ADS)
Sha, Y.; Shi, Z.; Liu, X.
2017-12-01
The Tibetan Plateau play a crucial role in the formation and evolution of the Asian monsoon-interior aridity climate system. However, the climate effect of other relatively smaller topographies receives less attention. Based on high-resolved general circulation models, we conducted a series of sensitive experiments as with/without mountains, which include the Mongolian Plateau and the Tian Shan Mountains. The numerical simulations reveal the important impacts of the mountain ranges at the northern margins of the Tibetan Plateau. Compared to the main body of the Tibetan Plateau, the uplift of the Mongolian Plateau is essential for the establishment of the strong Siberian High. The East Asian winter monsoon and the westerly jet over the North Pacific Ocean are also significantly strengthened. At present, the Tian Shan Mountains geographically separate the arid interior Asia to the west and east sub-regions. However, the arid west sub-region (Central Asia) and the east sub-region (arid northwestern China) was connected as one large arid region before the uplift of the Tian Shan Mountains. The large arid interior land shares the same precipitation seasonality, with most rains fall in spring and winter while lowest precipitation in summer. After the uplift of the Tian Shan, the large arid region is divided into the west and east sub-regions by the wetter uplifted mountain ranges. More importantly, the precipitation seasonality in the east of the Tian Shan is reversed to be the summer-peak type, which is opposite to that in the Central Asia. The precipitation alteration corresponds well with the change of vertical motion. By the conservation of potential vorticity, the atmosphere stationary waves are modulated. Thus, the remote East Asian monsoon is also modulated. Though enhanced southerly wind blows over East Asia, the monsoon precipitation over the east coast of China and subtropical western Pacific Ocean is significantly reduced as an anticyclonic circulation appears. The Tian Shan also contributes to the intensification of the East Asian winter monsoon.
43 CFR 4710.3 - Management areas.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Management areas. 4710.3 Section 4710.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4710.3 - Management areas.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Management areas. 4710.3 Section 4710.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4710.3 - Management areas.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Management areas. 4710.3 Section 4710.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4710.3 - Management areas.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Management areas. 4710.3 Section 4710.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Regulations. 424.1 Section 424.1 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR REGULATIONS PERTAINING TO STANDARDS FOR THE PREVENTION, CONTROL, AND ABATEMENT OF ENVIRONMENTAL POLLUTION OF...
Code of Federal Regulations, 2010 CFR
2010-10-01
... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Regulations. 424.1 Section 424.1 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR REGULATIONS PERTAINING TO STANDARDS FOR THE PREVENTION, CONTROL, AND ABATEMENT OF ENVIRONMENTAL POLLUTION OF...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Regulations. 424.1 Section 424.1 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR REGULATIONS PERTAINING TO STANDARDS FOR THE PREVENTION, CONTROL, AND ABATEMENT OF ENVIRONMENTAL POLLUTION OF...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Regulations. 424.1 Section 424.1 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR REGULATIONS PERTAINING TO STANDARDS FOR THE PREVENTION, CONTROL, AND ABATEMENT OF ENVIRONMENTAL POLLUTION OF...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Regulations. 424.1 Section 424.1 Public Lands: Interior Regulations Relating to Public Lands BUREAU OF RECLAMATION, DEPARTMENT OF THE INTERIOR REGULATIONS PERTAINING TO STANDARDS FOR THE PREVENTION, CONTROL, AND ABATEMENT OF ENVIRONMENTAL POLLUTION OF...
43 CFR 4750.1 - Private maintenance.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Private maintenance. 4750.1 Section 4750.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4770.1 - Prohibited acts.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Prohibited acts. 4770.1 Section 4770.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4770.5 - Criminal penalties.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Criminal penalties. 4770.5 Section 4770.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4770.1 - Prohibited acts.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Prohibited acts. 4770.1 Section 4770.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4770.1 - Prohibited acts.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Prohibited acts. 4770.1 Section 4770.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4770.5 - Criminal penalties.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Criminal penalties. 4770.5 Section 4770.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4770.5 - Criminal penalties.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Criminal penalties. 4770.5 Section 4770.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4750.1 - Private maintenance.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Private maintenance. 4750.1 Section 4750.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4770.1 - Prohibited acts.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Prohibited acts. 4770.1 Section 4770.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4770.5 - Criminal penalties.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Criminal penalties. 4770.5 Section 4770.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4750.1 - Private maintenance.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Private maintenance. 4750.1 Section 4750.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4750.1 - Private maintenance.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Private maintenance. 4750.1 Section 4750.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
IET control building (TAN620). interior personnel service room. sign next ...
IET control building (TAN-620). interior personnel service room. sign next to shower stall says, "fight athlete's foot with sani-mist." INEEL negative no. HD-21-1-1 - Idaho National Engineering Laboratory, Test Area North, Scoville, Butte County, ID
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, Danny S.; Cummings, Jamie E.; Vieira, Robin K.
Air infiltration and ventilation in residential buildings is a very large part of the heating loads, but empirical data regarding the impact on space cooling has been lacking. Moreover, there has been little data on how building tightness might relate to building interior moisture levels in homes in a hot and humid climate. To address this need, BA-PIRC has conducted research to assess the moisture and cooling load impacts of airtightness and mechanical ventilation in two identical laboratory homes in the hot-humid climate over the cooling season.
Shasby, Mark; Dolloff, C. Andrew; Hicke, Jeffrey A.; Marcot, Bruce G.; McCarl, Bruce; McMahon, Gerard; Morton, John M.
2017-01-01
This report primarily addresses the first two purposes of the review while providing comments on the third as identified by the science review team (SRT). A separate report of recommendations for the recompetition, based upon compiled observation from all three reviews conducted in 2016, was submitted to NCCWSC on April 15, 2016 to assist with the development of recompetition documents. To further address host-university administrative competencies and efficiencies, separate interviews of host-university faculty and administrators were conducted by NCCWSC staff in conjunction with the on-site component of the reviews.
Microbial Habitability and Pleistocene Aridification of the Asian Interior
NASA Astrophysics Data System (ADS)
Wang, Jiuyi; Lowenstein, Tim K.; Fang, Xiaomin
2016-06-01
Fluid inclusions trapped in ancient halite can contain a community of halophilic prokaryotes and eukaryotes that inhabited the surface brines from which the halite formed. Long-term survival of bacteria and archaea and preservation of DNA have been reported from halite, but little is known about the distribution of microbes in buried evaporites. Here we report the discovery of prokaryotes and single-celled algae in fluid inclusions in Pleistocene halite, up to 2.26 Ma in age, from the Qaidam Basin, China. We show that water activity (aw), a measure of water availability and an environmental control on biological habitability in surface brines, is also related to microbe entrapment in fluid inclusions. The aw of Qaidam Basin brines progressively decreased over the last ˜1 million years, driven by aridification of the Asian interior, which led to decreased precipitation and water inflow and heightened evaporation rates. These changes in water balance produced highly concentrated brines, which reduced the habitability of surface lakes and decreased the number of microbes trapped in halite. By 0.13 Ma, the aw of surface brines approached the limits tolerated by halophilic prokaryotes and algae. These results show the response of microbial ecosystems to climate change in an extreme environment, which will guide future studies exploring deep life on Earth and elsewhere in the Solar System.
43 CFR 4710.1 - Land use planning.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Land use planning. 4710.1 Section 4710.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Objectives. 4700.0-2 Section 4700.0-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Purpose. 4700.0-1 Section 4700.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Objectives. 4700.0-2 Section 4700.0-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4730.2 - Disposal of remains.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Disposal of remains. 4730.2 Section 4730.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Arrest. 4770.4 Section 4770.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Purpose. 4700.0-1 Section 4700.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Purpose. 4700.0-1 Section 4700.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4710.1 - Land use planning.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Land use planning. 4710.1 Section 4710.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Arrest. 4770.4 Section 4770.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Arrest. 4770.4 Section 4770.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Objectives. 4700.0-2 Section 4700.0-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Purpose. 4700.0-1 Section 4700.0-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Authority. 4700.0-3 Section 4700.0-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Authority. 4700.0-3 Section 4700.0-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4710.1 - Land use planning.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Land use planning. 4710.1 Section 4710.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Authority. 4700.0-3 Section 4700.0-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4730.2 - Disposal of remains.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Disposal of remains. 4730.2 Section 4730.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4710.1 - Land use planning.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Land use planning. 4710.1 Section 4710.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4730.2 - Disposal of remains.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Disposal of remains. 4730.2 Section 4730.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Arrest. 4770.4 Section 4770.4 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING HORSES AND BURROS...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Objectives. 4700.0-2 Section 4700.0-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Authority. 4700.0-3 Section 4700.0-3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4730.2 - Disposal of remains.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Disposal of remains. 4730.2 Section 4730.2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
9. Credit WCT. Photographic copy of photograph, interior view of ...
9. Credit WCT. Photographic copy of photograph, interior view of control room under construction in Control and Recording Center Building 4221/E-22. Stairway to tunnel system is in left background. (JPL negative no. 384-1927, 26 May 1959) - Jet Propulsion Laboratory Edwards Facility, Control & Recording Center, Edwards Air Force Base, Boron, Kern County, CA
New permafrost is forming around shrinking Arctic lakes, but will it last?
Briggs, Martin A.; Walvoord, Michelle Ann; McKenzie, Jeffrey M.; Voss, Clifford I.; Day-Lewis, Frederick D.; Lane, John W.
2014-01-01
Widespread lake shrinkage in cold regions has been linked to climate warming and permafrost thaw. Permafrost aggradation, however, has been observed within the margins of recently receded lakes, in seeming contradiction of climate warming. Here permafrost aggradation dynamics are examined at Twelvemile Lake, a retreating lake in interior Alaska. Observations reveal patches of recently formed permafrost within the dried lake margin, colocated with discrete bands of willow shrub. We test ecological succession, which alters shading, infiltration, and heat transport, as the driver of aggradation using numerical simulation of variably saturated groundwater flow and heat transport with phase change (i.e., freeze-thaw). Simulations support permafrost development under current climatic conditions, but only when net effects of vegetation on soil conditions are incorporated, thus pointing to the role of ecological succession. Furthermore, model results indicate that permafrost aggradation is transitory with further climate warming, as new permafrost thaws within seven decades.
A Path to Actionable Climate Science: Perspectives from the Field
NASA Astrophysics Data System (ADS)
DeCrappeo, Nicole M.; Bisbal, Gustavo A.; Meadow, Alison M.
2018-02-01
The U.S. Department of the Interior Climate Science Centers (CSCs) work with natural and cultural resource managers and scientists to gather information and build tools needed to help fish, wildlife, and ecosystems adapt to the impacts of climate change. The CSCs prioritize the delivery of actionable science products (e.g., synthesized scientific information, maps, decision support tools, etc.) that are focused on key management priorities and co-produced by teams of scientists and managers. In the specific case of the Northwest CSC, we have been successful at promoting and supporting the co-production of actionable climate science at the individual project level, but it has been more difficult to replicate this success at the regional program level. Here we identify the most significant challenges in satisfying this mandate and propose the creation of a Science Advisory Panel to provide improved interface between resource managers and scientists engaged with the Northwest CSC.
Greenland-Wide Seasonal Temperatures During the Last Deglaciation
NASA Astrophysics Data System (ADS)
Buizert, C.; Keisling, B. A.; Box, J. E.; He, F.; Carlson, A. E.; Sinclair, G.; DeConto, R. M.
2018-02-01
The sensitivity of the Greenland ice sheet to climate forcing is of key importance in assessing its contribution to past and future sea level rise. Surface mass loss occurs during summer, and accounting for temperature seasonality is critical in simulating ice sheet evolution and in interpreting glacial landforms and chronologies. Ice core records constrain the timing and magnitude of climate change but are largely limited to annual mean estimates from the ice sheet interior. Here we merge ice core reconstructions with transient climate model simulations to generate Greenland-wide and seasonally resolved surface air temperature fields during the last deglaciation. Greenland summer temperatures peak in the early Holocene, consistent with records of ice core melt layers. We perform deglacial Greenland ice sheet model simulations to demonstrate that accounting for realistic temperature seasonality decreases simulated glacial ice volume, expedites the deglacial margin retreat, mutes the impact of abrupt climate warming, and gives rise to a clear Holocene ice volume minimum.
INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING ...
INTERIOR OF SECOND FLOOR CONTROL ROOM OF FUEL STORAGE BUILDING (CPP-603). PHOTO TAKEN LOOKING SOUTHWEST. INL PHOTO NUMBER HD-54-19-2. Mike Crane, Photographer, 8/2005 - Idaho National Engineering Laboratory, Idaho Chemical Processing Plant, Fuel Reprocessing Complex, Scoville, Butte County, ID
A Teaching Exercise to Introduce Stable Isotope Fractionation of Metals into Geochemistry Courses
ERIC Educational Resources Information Center
Weiss, Dominik J.; Harris, Caroline; Maher, Kate; Bullen, Thomas
2013-01-01
Variations in the isotopic composition of elements have been widely used to study earth's climate, biosphere, and interior, and more recently to track the fate of contaminants. Within the broad range of elements that exhibit measureable isotopic variations, metal stable isotopes are increasingly applied across the biological, geological,…
Becky K. Kerns; Bridgett J. Naylor; Michelle Buonopane; Catherine G. Parks; Brendan Rogers
2009-01-01
Tamarisk species are shrubs or small trees considered by some to be among the most aggressively invasive and potentially detrimental exotic plants in the United States. Although extensively studied in the southern and interior west, northwestern (Oregon, Washington, and Idaho) distribution and habitat information for tamarisk is either limited or lacking. We obtained...
Disturbance and Climate Change in the Interior West (Chapter 6)
Paulette L. Ford; Jeanne K. Chambers; Sharon J. Coe; Burton C. Pendleton
2012-01-01
Within the continental United States, average annual temperature increased during the Twentieth Century by approximately 0.65 ºC. The most extreme warming occurred throughout the northern and western United States (IPCC 2007a; Williams and others 2010). Disturbances such as fire, drought, grazing, urbanization, and energy development are predicted to have a heightened...
Potential Subjective Effectiveness of Active Interior Noise Control in Propeller Airplanes
NASA Technical Reports Server (NTRS)
Powell, Clemans A.; Sullivan, Brenda M.
2000-01-01
Active noise control technology offers the potential for weight-efficient aircraft interior noise reduction, particularly for propeller aircraft. However, there is little information on how passengers respond to this type of interior noise control. This paper presents results of two experiments that use sound quality engineering practices to determine the subjective effectiveness of hypothetical active noise control (ANC) systems in a range of propeller aircraft. The two experiments differed by the type of judgments made by the subjects: pair comparisons based on preference in the first and numerical category scaling of noisiness in the second. Although the results of the two experiments were in general agreement that the hypothetical active control measures improved the interior noise environments, the pair comparison method appears to be more sensitive to subtle changes in the characteristics of the sounds which are related to passenger preference. The reductions in subjective response due to the ANC conditions were predicted with reasonable accuracy by reductions in measured loudness level. Inclusion of corrections for the sound quality characteristics of tonality and fluctuation strength in multiple regression models improved the prediction of the ANC effects.
19. INTERIOR OF BEDROOM NO. 2 SHOWING BUILTIN CABINETS ALONG ...
19. INTERIOR OF BEDROOM NO. 2 SHOWING BUILT-IN CABINETS ALONG EAST WALL. THIS PORTION OF THE BEDROOM WAS EXTENDED IN REMODELING THAT INCORPORATED THE FRONT PORCH INTO THE INTERIOR HOUSE. VIEW TO SOUTHEAST. - Bishop Creek Hydroelectric System, Control Station, Worker Cottage, Bishop Creek, Bishop, Inyo County, CA
Code of Federal Regulations, 2010 CFR
2010-10-01
... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Seizure. 3.16 Section 3.16 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.16 Seizure. Any object of antiquity taken, or collection made, on lands owned or controlled by the United States, without...
43 CFR 4750.4-2 - Adoption fee.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Adoption fee. 4750.4-2 Section 4750.4-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4750.2-2 - Brand inspection.
Code of Federal Regulations, 2013 CFR
2013-10-01
... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Brand inspection. 4750.2-2 Section 4750.2-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4750.4-2 - Adoption fee.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Adoption fee. 4750.4-2 Section 4750.4-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4750.2-2 - Brand inspection.
Code of Federal Regulations, 2014 CFR
2014-10-01
... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Brand inspection. 4750.2-2 Section 4750.2-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4750.2-2 - Brand inspection.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Brand inspection. 4750.2-2 Section 4750.2-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4750.4-2 - Adoption fee.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Adoption fee. 4750.4-2 Section 4750.4-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4750.2-2 - Brand inspection.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Brand inspection. 4750.2-2 Section 4750.2-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
43 CFR 4750.4-2 - Adoption fee.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Adoption fee. 4750.4-2 Section 4750.4-2 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) PROTECTION, MANAGEMENT, AND CONTROL OF WILD FREE-ROAMING...
Persistent Effects of Fire Severity on Early Successional Forests in Interior Alaska
NASA Technical Reports Server (NTRS)
Shenoy, Aditi; Johnstone, Jill F.; Kasischke, Eric S.; Kielland, Knut
2011-01-01
There has been a recent increase in the frequency and extent of wildfires in interior Alaska, and this trend is predicted to continue under a warming climate. Although less well documented, corresponding increases in fire severity are expected. Previous research from boreal forests in Alaska and western Canada indicate that severe fire promotes the recruitment of deciduous tree species and decreases the relative abundance of black spruce (Picea mariana) immediately after fire. Here we extend these observations by (1) examining changes in patterns of aspen and spruce density and biomass that occurred during the first two decades of post-fire succession, and (2) comparing patterns of tree composition in relation to variations in post-fire organic layer depth in four burned black spruce forests in interior Alaska after 10-20 years of succession.Wefound that initial effects of fire severity on recruitment and establishment of aspen and black spruce were maintained by subsequent effects of organic layer depth and initial plant biomass on plant growth during post-fire succession. The proportional contribution of aspen (Populus tremuloides) to total stand biomass remained above 90% during the first and second decades of succession in severely burned sites, while in lightly burned sites the proportional contribution of aspen was reduced due to a 40- fold increase in spruce biomass in these sites. Relationships between organic layer depth and stem density and biomass were consistently negative for aspen, and positive or neutral for black spruce in all four burns. Our results suggest that initial effects of post-fire organic layer depths on deciduous recruitment are likely to translate into a prolonged phase of deciduous dominance during post-fire succession in severely burned stands. This shift in vegetation distribution has important implications for climate-albedo feedbacks, future fire regime, wildlife habitat quality and natural resources for indigenous subsistence activities in interior Alaska.
Interior noise control ground test studies for advanced turboprop aircraft applications
NASA Technical Reports Server (NTRS)
Simpson, Myles A.; Cannon, Mark R.; Burge, Paul L.; Boyd, Robert P.
1989-01-01
The measurement and analysis procedures are documented, and the results of interior noise control ground tests conducted on a DC-9 aircraft test section are summarized. The objectives of these tests were to study the fuselage response characteristics of treated and untreated aircraft with aft-mount advanced turboprop engines and to analyze the effectiveness of selected noise control treatments in reducing passenger cabin noise on these aircraft. The results of fuselage structural mode surveys, cabin cavity surveys and sound intensity surveys are presented. The performance of various structural and cabin sidewall treatments is assessed, based on measurements of the resulting interior noise levels under simulated advanced turboprop excitation.
Active control of turbulent boundary layer sound transmission into a vehicle interior
NASA Astrophysics Data System (ADS)
Caiazzo, A.; Alujević, N.; Pluymers, B.; Desmet, W.
2016-09-01
In high speed automotive, aerospace, and railway transportation, the turbulent boundary layer (TBL) is one of the most important sources of interior noise. The stochastic pressure distribution associated with the turbulence is able to excite significantly structural vibration of vehicle exterior panels. They radiate sound into the vehicle through the interior panels. Therefore, the air flow noise becomes very influential when it comes to the noise vibration and harshness assessment of a vehicle, in particular at low frequencies. Normally, passive solutions, such as sound absorbing materials, are used for reducing the TBL-induced noise transmission into a vehicle interior, which generally improve the structure sound isolation performance. These can achieve excellent isolation performance at higher frequencies, but are unable to deal with the low-frequency interior noise components. In this paper, active control of TBL noise transmission through an acoustically coupled double panel system into a rectangular cavity is examined theoretically. The Corcos model of the TBL pressure distribution is used to model the disturbance. The disturbance is rejected by an active vibration isolation unit reacting between the exterior and the interior panels. Significant reductions of the low-frequency vibrations of the interior panel and the sound pressure in the cavity are observed.
Roland, Carl A; Schmidt, Joshua H; Johnstone, Jill F
2014-03-01
Mast-seeding conifers such as Picea glauca exhibit synchronous production of large seed crops over wide areas, suggesting climate factors as possible triggers for episodic high seed production. Rapidly changing climatic conditions may thus alter the tempo and spatial pattern of masting of dominant species with potentially far-reaching ecological consequences. Understanding the future reproductive dynamics of ecosystems including boreal forests, which may be dominated by mast-seeding species, requires identifying the specific cues that drive variation in reproductive output across landscape gradients and among years. Here we used annual data collected at three sites spanning an elevation gradient in interior Alaska, USA between 1986 and 2011 to produce the first quantitative models for climate controls over both seedfall and seed viability in P. glauca, a dominant boreal conifer. We identified positive associations between seedfall and increased summer precipitation and decreased summer warmth in all years except for the year prior to seedfall. Seed viability showed a contrasting response, with positive correlations to summer warmth in all years analyzed except for one, and an especially positive response to warm and wet conditions in the seedfall year. Finally, we found substantial reductions in reproductive potential of P. glauca at high elevation due to significantly reduced seed viability there. Our results indicate that major variation in the reproductive potential of this species may occur in different landscape positions in response to warming, with decreasing reproductive success in areas prone to drought stress contrasted with increasing success in higher elevation areas currently limited by cool summer temperatures.
5. INSTRUMENT ROOM INTERIOR, SHOWING BACKS OF CONSOLE LOCKERS. Looking ...
5. INSTRUMENT ROOM INTERIOR, SHOWING BACKS OF CONSOLE LOCKERS. Looking northeast to firing control room passageway. - Edwards Air Force Base, Air Force Rocket Propulsion Laboratory, Firing Control Building, Test Area 1-100, northeast end of Test Area 1-100 Road, Boron, Kern County, CA
6. Interior view of control panels on wall of the ...
6. Interior view of control panels on wall of the signal transfer room on the west side of the Signal Transfer Building (T-28A). - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
PBF Control Building (PER619). Interior in data acquisition room showing ...
PBF Control Building (PER-619). Interior in data acquisition room showing data racks. The system recorded multiple channels of data during tests. INEEL negative no. HD-41-8-1 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
ETR CONTROL BUILDING, TRA647, INTERIOR. CONTROL ROOM, CONTEXTUAL VIEW. INSTRUMENT ...
ETR CONTROL BUILDING, TRA-647, INTERIOR. CONTROL ROOM, CONTEXTUAL VIEW. INSTRUMENT PANELS AT REAR OF OPERATOR'S CONSOLE GAVE OPERATOR STATUS OF REACTOR PERFORMANCE, COOLANT-WATER CHARACTERISTICS AND OTHER INDICATORS. WINDOWS AT RIGHT LOOKED INTO ETR BUILDING FIRST FLOOR. CAMERA FACING EAST. INL NEGATIVE NO. HD42-6. Mike Crane, Photographer, 3/2004 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Forecasting Impacts of Climate Change on Indicators of British Columbia's Biodiversity
NASA Astrophysics Data System (ADS)
Holmes, Keith Richard
Understanding the relationships between biodiversity and climate is essential for predicting the impact of climate change on broad-scale landscape processes. Utilizing indirect indicators of biodiversity derived from remotely sensed imagery, we present an approach to forecast shifts in the spatial distribution of biodiversity. Indirect indicators, such as remotely sensed plant productivity metrics, representing landscape seasonality, minimum growth, and total greenness have been linked to species richness over broad spatial scales, providing unique capacity for biodiversity modeling. Our goal is to map future spatial distributions of plant productivity metrics based on expected climate change and to quantify anticipated change to park habitat in British Columbia. Using an archival dataset sourced from the Advanced Very High Resolution Radiometer (AVHRR) satellite from the years 1987 to 2007 at 1km spatial resolution, corresponding historical climate data, and regression tree modeling, we developed regional models of the relationships between climate and annual productivity growth. Historical interconnections between climate and annual productivity were coupled with three climate change scenarios modeled by the Canadian Centre for Climate Modeling and Analysis (CCCma) to predict and map productivity components to the year 2065. Results indicate we can expect a warmer and wetter environment, which may lead to increased productivity in the north and higher elevations. Overall, seasonality is expected to decrease and greenness productivity metrics are expected to increase. The Coastal Mountains and high elevation edge habitats across British Columbia are forecasted to experience the greatest amount of change. In the future, protected areas may have potential higher greenness and lower seasonality as represented by indirect biodiversity indicators. The predictive model highlights potential gaps in protection along the central interior and Rocky Mountains. Protected areas are expected to experience the greatest change with indirect indicators located along mountainous elevations of British Columbia. Our indirect indicator approach to predict change in biodiversity provides resource managers with information to mitigate and adapt to future habitat dynamics. Spatially specific recommendations from our dataset provide information necessary for management. For instance, knowing there is a projected depletion of habitat representation in the East Rocky Mountains, sensitive species in the threatened Mountain Hemlock ecozone, or preservation of rare habitats in the decreasing greenness of the southern interior region is essential information for managers tasked with long term biodiversity conservation. Forecasting productivity levels, linked to the distribution of species richness, presents a novel approach for understanding the future implications of climate change on broad scale biodiversity.
2017-06-01
ER D C/ CE RL T R- 17 -1 9 DoD Corrosion Prevention and Control Program Demonstration of Antimicrobial Corrosion- Resisting Interior ...Demonstration of Antimicrobial Corrosion- Resisting Interior Coating Systems for Military Facilities in Warm, Humid Locations Final Report on...Under Project F10-AR04, “Application of New Corrosion-Resistant Mold Abatement Technologies for Interior Surfaces of Buildings at Fort Polk, LA” ERDC
13. Missile site control building, third and fourth floor interior, ...
13. Missile site control building, third and fourth floor interior, showing east corner and former electrical equipment area, room #306. This building was salvaged and sealed in the 1970's; the lower floors also suffered flooding - Stanley R. Mickelsen Safeguard Complex, Missile Site Control Building, Northeast of Tactical Road; southeast of Tactical Road South, Nekoma, Cavalier County, ND
9. Interior view of control panels' (see CO88C6) detail and ...
9. Interior view of control panels' (see CO-88-C-6) detail and control junction box on wall of the signal transfer room on the west side of the Signal Transfer Building (T-28A). - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
DETAIL VIEW OF THE WEST INTERIOR WALL OF THE EXTREME ...
DETAIL VIEW OF THE WEST INTERIOR WALL OF THE EXTREME NORTH (CONTROL) TANK. NOTE THE TWO PERISCOPES IN THE UPPER PART OF THE PHOTOGRAPH. ALSO NOTE THE CONTROL PANEL IN THE MIDDLE OF THE PHOTO, THIS WAS USED TO CONTROL THE REMOTE 'FIRE-EX' WATER NOZZLES. - Marshall Space Flight Center, Redstone Rocket (Missile) Test Stand, Dodd Road, Huntsville, Madison County, AL
Past and future hydro-climatic change and the 2015 drought in the interior of western Canada
NASA Astrophysics Data System (ADS)
DeBeer, C. M.; Wheater, H. S.; Pomeroy, J. W.; Stewart, R. E.; Szeto, K.; Brimelow, J.; Chun, K. P.; Masud, M. B.; Bonsal, B. R.
2015-12-01
The interior of western Canada has experienced rapid and severe hydro-climatic change in recent decades. This is projected to continue in future. Since 1950, mean annual air temperature has increased by 2 °C (4 °C increase in winter daily means) with associated changes in cryospheric regime. Changes in precipitation have varied regionally; in the Prairies there has been a decrease in winter precipitation, shift from snowfall to rainfall, and increased clustering of summer rainfall events into multiple day storms. Regionally, river discharge indicates an earlier spring freshet and increased incidence of rain-on-snow peak flow events, but otherwise mixed responses due to multiple process interactions. In winter/spring 2015, persistent anomalous ridging conditions developed over western North America causing widespread drought. This produced abnormally warm and dry conditions over the Rocky Mountain headwaters of the Mackenzie and Saskatchewan Rivers, resulting in low spring snowpacks that melted earlier than normal and were followed by an atypical lack of spring rainfall. By summer 2015, most of western Canada was subject to extreme drought conditions leading to record dry soil moisture conditions in parts of the Prairies during a key crop growth time, streamflows that were greatly diminished, and extensive wildfires across the Boreal Forest. The importance of the warmer winter to this drought and the contextual trend for increasing winter warmth provide new insight into the impact of climate warming on droughts in cold regions. This talk will discuss efforts by the Changing Cold Regions Network (CCRN; www.ccrnetwork.ca) to understand and diagnose the 2015 drought, its potential linkages with the concurrent California drought and other continental events, and its relevance in the context of historical and predicted future climate change.
NASA Astrophysics Data System (ADS)
Reinmann, A.; Hutyra, L.
2016-12-01
Forest fragmentation resulting from land use and land cover change is a ubiquitous, ongoing global phenomenon with profound impacts on the growing conditions of the world's remaining forest. However, our understanding of forest carbon dynamics and their response to climate largely comes from unfragmented forest systems, which presents an important mismatch between the landscapes we study and those we aim to characterize. The temperate broadleaf forest makes a large contribution to the global terrestrial carbon sink, but is also the most heavily fragmented forest biome in the world. We use field measurements and geospatial analyses to characterize carbon dynamics in temperate broadleaf forest fragments. We show that forest growth and biomass increase by 89 ± 17% and 64 ± 12%, respectively, from the forest interior to edge. These ecosystem edge enhancements are not currently captured by models or approaches to quantifying regional C balance, but across southern New England, USA it increases carbon uptake and storage by 12.5 ± 2.9% and 9.6 ± 1.4%, respectively. However, we also find that forest growth near the edge declines three times faster than in the interior in response to heat stress during the growing season. Using climate projections, we show that future heat stress could reduce the forest edge growth enhancement by one-third by the end of the century. These findings contrast studies of edge effects in the world's other major forest biomes and indicate that the strength of the temperate broadleaf forest carbon sink and its capacity to mitigate anthropogenic carbon emissions may be stronger, but also more sensitive to climate change than previous estimates suggest.
NASA Astrophysics Data System (ADS)
Jones, E. R.; Plink-Bjorklund, P.
2013-12-01
The Wasatch and Green River Formations in the Uinta Basin, UT contain fluvial sandstones that record changes in terrestrial sedimentation coincident with Paleocene-Eocene Thermal Maximum (PETM) and at least six post-PETM hyperthermal climate change events. While proxies for chemical weathering rates during the PETM have been developed using the marine osmium isotope record, to date there has been little research on chemical weathering rates in proximal terrestrial depocenters. This work is one part of a multi-proxy research effort combining quantitative petrographic analysis, the stable carbon isotope record, and a high-resolution stratigraphic and sedimentologic framework across the southern margin of the Uinta Basin. Relative tectonic quiescence in the Uinta Basin during the Early Eocene suggests that climate is the forcing mechanism controlling fluvial architecture and composition, and gradual basin subsidence has preserved at least six pulses of greenhouse climate change during the Early Eocene Climatic Optimum (EECO). Terrestrial records of PETM climate do not support a humid climate with increased precipitation as previously suggested from marine proxies of climate change. Instead, terrestrial records of the PETM climate show evidence of prolonged drought punctuated by intense terrestrial flooding events in mid-latitude continental interiors. Increases in chemical weathering rates during the PETM due to increased temperature and average precipitation is cited as a key carbon sink to initiate a recovery phase where atmospheric CO2 returned to normal concentrations. If terrestrial records of chemical weathering rates differ substantially from marine proxies the carbon-cycle dynamics active during the EECO must be reconsidered. Initial results of this study show that these peak hyperthermal climate change conditions in the Uinta Basin preserve more compositionally and texturally immature sediments due to extremely high erosion and deposition rates, and subdued duration of transport. In particular the relative proportions of preserved potassium and especially plagioclase feldspar are sensitive to these pulses of greenhouse climate change. This dataset suggests that the seasonality of sediment dispersal and transport can play a more important role in the preservation potential of unstable mineral phases in the sedimentary record than just variations in global chemical weathering rates. Compositional variability in perenially wet and peaked seasonality facies in fluvial sandstones in the Wasatch Formation.
3. Interior view of instrumentation, controls, and monitoring equipment on ...
3. Interior view of instrumentation, controls, and monitoring equipment on north wall of the equipment room on the east side of the Signal Transfer Building (T-28A). - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
4. Interior view of instrumentation, controls, and monitoring equipment on ...
4. Interior view of instrumentation, controls, and monitoring equipment on east wall of the equipment room on the east side of the Signal Transfer Building (T-28A). - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
65. ARAII. Interior view of SL1 reactor building control piping ...
65. ARA-II. Interior view of SL-1 reactor building control piping for water purification system. On operating floor of building. March 21, 1958. Ineel photo no. 58-1360. Photographer: Jack L. Anderson. - Idaho National Engineering Laboratory, Army Reactors Experimental Area, Scoville, Butte County, ID
Tan, Zhengxi; Liu, Shu-Guang; Jenkerson, Calli B.; Oeding, Jennifer; Wylie, Bruce K.; Rover, Jennifer R.; Young, Claudia J.
2012-01-01
Pronounced climate warming and increased wildfire disturbances are known to modify forest composition and control the evolution of the boreal ecosystem over the Yukon River Basin (YRB) in interior Alaska. In this study, we evaluate the post-fire green-up rate using the normalized difference vegetation index (NDVI) derived from 250 m 7 day eMODIS (an alternative and application-ready type of Moderate Resolution Imaging Spectroradiometer (MODIS) data) acquired between 2000 and 2009. Our analyses indicate measureable effects on NDVI values from vegetation type, burn severity, post-fire time, and climatic variables. The NDVI observations from both fire scars and unburned areas across the Alaskan YRB showed a tendency of an earlier start to the growing season (GS); the annual variations in NDVI were significantly correlated to daytime land surface temperature (LST) fluctuations; and the rate of post-fire green-up depended mainly on burn severity and the time of post-fire succession. The higher average NDVI values for the study period in the fire scars than in the unburned areas between 1950 and 2000 suggest that wildfires enhance post-fire greenness due to an increase in post-fire evergreen and deciduous species components
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... DEPARTMENT OF THE INTERIOR Bureau of Reclamation [A10-1412-0001-009-01-0-4, 8453000; OMB Control... Approved Information Collection AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of renewal and... the Department of the Interior at the Office of Management and Budget, Office of Information and...
Experiences in solar cooling systems
NASA Astrophysics Data System (ADS)
Ward, D. S.
The results of performance evaluations for nine solar cooling systems are presented, and reasons fow low or high net energy balances are discussed. Six of the nine systems are noted to have performed unfavorably compared to standard cooling systems due to thermal storage losses, excessive system electrical demands, inappropriate control strategies, poor system-to-load matching, and poor chiller performance. A reduction in heat losses in one residential unit increased the total system efficiency by 2.5%, while eliminating heat losses to the building interior increased the efficiency by 3.3%. The best system incorporated a lithium bromide absorption chiller and a Rankine cycle compression unit for a commercial application. Improvements in the cooling tower and fan configurations to increase the solar cooling system efficiency are indicated. Best performances are expected to occur in climates inducing high annual cooling loads.
Vegetation-induced warming of high-latitude regions during the Late Cretaceous period
NASA Astrophysics Data System (ADS)
Otto-Bliesner, Bette L.; Upchurch, Garland R.
1997-02-01
Modelling studies of pre-Quaternary (>2 million years ago) climate implicate atmospheric carbon dioxide concentrations1, land elevation2 and land-sea distribution3-5 as important factors influencing global climate change over geological timescales. But during times of global warmth, such as the Cretaceous period and Eocene epoch, there are large discrepancies between model simulations of high-latitude and continental-interior temperatures and those indicated by palaeotemperature records6,7. Here we use a global climate model for the latest Cretaceous (66 million years ago) to examine the role played by high- and middle-latitude forests in surface temperature regulation. In our simulations, this forest vegetation warms the global climate by 2.2 °C. The low-albedo deciduous forests cause high-latitude land areas to warm, which then transfer more heat to adjacent oceans, thus delaying sea-ice formation and increasing winter temperatures over coastal land. Overall, the inclusion of some of the physical and physiological climate feedback effects of high-latitude forest vegetation in our simulations reduces the existing discrepancies between observed and modelled climates of the latest Cretaceous, suggesting that these forests may have made an important contribution to climate regulation during periods of global warmth.
Edge effects on N2O, NO and CH4 fluxes in two temperate forests.
Remy, Elyn; Gasche, Rainer; Kiese, Ralf; Wuyts, Karen; Verheyen, Kris; Boeckx, Pascal
2017-01-01
Forest ecosystems may act as sinks or sources of nitrogen (N) and carbon (C) compounds, such as the climate relevant trace gases nitrous oxide (N 2 O), nitric oxide (NO) and methane (CH 4 ). Forest edges, which catch more atmospheric deposition, have become important features in European landscapes and elsewhere. Here, we implemented a fully automated measuring system, comprising static and dynamic measuring chambers determining N 2 O, NO and CH 4 fluxes along an edge-to-interior transect in an oak (Q. robur) and a pine (P. nigra) forest in northern Belgium. Each forest was monitored during a 2-week measurement campaign with continuous measurements every 2h. NO emissions were 9-fold higher than N 2 O emissions. The fluxes of NO and CH 4 differed between forest edge and interior, but not for N 2 O. This edge effect was more pronounced in the oak than in the pine forest. In the oak forest, edges emitted less NO (on average 60%) and took up more CH 4 (on average 177%). This suggests that landscape structure can play a role in the atmospheric budgets of these climate relevant trace gases. Soil moisture variation between forest edge and interior was a key variable explaining the magnitude of NO and CH 4 fluxes in our measurement campaign. To better understand the environmental impact of N and C trace gas fluxes from forest edges, additional and long-term measurements in other forest edges are required. Copyright © 2016 Elsevier B.V. All rights reserved.
Ion transport membrane module and vessel system with directed internal gas flow
Holmes, Michael Jerome; Ohrn, Theodore R.; Chen, Christopher Ming-Poh
2010-02-09
An ion transport membrane system comprising (a) a pressure vessel having an interior, an inlet adapted to introduce gas into the interior of the vessel, an outlet adapted to withdraw gas from the interior of the vessel, and an axis; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region; and (c) one or more gas flow control partitions disposed in the interior of the pressure vessel and adapted to change a direction of gas flow within the vessel.
Beever, Erik A.; Pyke, David A.
2002-01-01
The research strategy focuses on disturbance processes and events that have been the primary drivers of change, to provide a predictive model for future changes. These drivers include fire, nonnative plants, herbivory, roads and associated human influences, and climate change. Whereas management in the western United States has striven to move from an inefficient species-based approach to a habitat-based approach, the plan focuses on ecosystem function and ecological processes as critical measures of habitat response. Because of the large amount and contiguity of public lands in the western United States, the region presents both a compelling opportunity to implement landscape-level science and a challenge to underst
U.S. Geological Survey Methodology Development for Ecological Carbon Assessment and Monitoring
Zhu, Zhi-Liang; Stackpoole, S.M.
2009-01-01
Ecological carbon sequestration refers to transfer and storage of atmospheric carbon in vegetation, soils, and aquatic environments to help offset the net increase from carbon emissions. Understanding capacities, associated opportunities, and risks of vegetated ecosystems to sequester carbon provides science information to support formulation of policies governing climate change mitigation, adaptation, and land-management strategies. Section 712 of the Energy Independence and Security Act (EISA) of 2007 mandates the Department of the Interior to develop a methodology and assess the capacity of our nation's ecosystems for ecological carbon sequestration and greenhouse gas (GHG) flux mitigation. The U.S. Geological Survey (USGS) LandCarbon Project is responding to the Department of Interior's request to develop a methodology that meets specific EISA requirements.
NASA Astrophysics Data System (ADS)
Galloway, W.; Ganey-Curry, P. E.
2010-12-01
The Cenozoic fill of the Gulf of Mexico basin contains a continuous record of sediment supply from the North American continental interior for the past 65 million years. Regional mapping of unit thickness and paleogeography for 18 depositional episodes defines patterns of shifting entry points of continental fluvial systems and quantifies the total volume of sediment supplied during each episode. Eight fluvio-deltaic depocenters, named for geographic similarities to entry points and drainage basins of modern rivers, are present. From southwest to northeast, they are the Rio Bravo, Rio Grande, Guadalupe, Colorado, Houston-Brazos, Red, Mississippi, and Tennessee axes. Sediment volume was calculated from hand-contoured unit thickness maps compiled from basin-wide well and seismic control. Using a GIS algorithm to sum volumes within polygons bounding interpreted North American river contribution, the total extant volume was then calculated. General compaction factors were used to convert modern volume to quantitative approximations of total grain volume. Grain volume rate of supply for each depositional episode was then calculated. Values vary by more than an order of magnitude. Supply rate has commonly varied by two-fold or more between successive depositional episodes. Sediment supply is a significant, independent variable in development of stratigraphic sequences within the Gulf basin. Paleogeographic maps of the continental interior for eleven Cenozoic time intervals display the evolving and complex interplay of intracontinental tectonism, climate change, and drainage basin evolution. Five tectono-climatic eras are differentiated: Paleocene late Laramide era; early to middle Eocene terminal Laramide era; middle Cenozoic (Late Eocene—Early Miocene) dry, volcanogenic era; middle Neogene (Middle—Late Miocene) arid, extensional era; and late Neogene (Plio—Pleistocene) monsoonal, epeirogenic uplift era. Sediment supply to the GOM reflects the interplay of (1) areal extent of river drainage basins, (2) source area relief, (3) climate of the source areas and tributary systems, (4) source lithology, and (5) sediment storage within the upper drainage basin. Climate has played an important and complex role in modulating supply. In wet tropical to temperate climate regimes, abundant runoff efficiently removed entrained sediment. Arid climate limited runoff; resultant transport-limited tributaries and trunk streams deposited aggradational alluvial aprons, storing sediment in the drainage basin even in the absence of a structural depression. Eolian deposition commonly accompanied such alluvial aggradation. In contrast, seasonality and consequent runoff variability favored erosion and efficient sediment evacuation from the upper parts of drainage basins. Tectonism has played a prominent but equally complex role. Elevation of uplands by compression, crustal heating, or extrusive volcanism created primary loci of erosion and high sediment yield. At the same time, accompanying subsidence sometimes created long-lived sediment repositories that intercepted and sequestered sediment adjacent to sources. Regional patterns of uplift and subsidence relocated drainage divides and redirected trunk stream paths to the Gulf margin.
Feed gas contaminant control in ion transport membrane systems
Carolan, Michael Francis [Allentown, PA; Minford, Eric [Laurys Station, PA; Waldron, William Emil [Whitehall, PA
2009-07-07
Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.
Technology Solutions Case Study: Cladding Attachment Over Mineral Fiber Insulation Board
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2015-03-01
Exterior insulating sheathing for high performance building enclosures is an important strategy for meeting energy efficiency requirements in many climates and can position an existing building to perform at the level of best-in-class new construction. Insulation board is also important in high performance building retrofit situations where minimal disruption at the interior is typically desired.
Jason Vogel; Edward A.G. Schuur; Christian Trucco; Hanna Lee
2009-01-01
Climate change in high latitudes can lead to permafrost thaw, which in ice-rich soils can result in ground subsidence, or thermokarst. In interior Alaska, we examined seasonal and annual ecosystem CO2 exchange using static and automatic chamber measurements in three areas of a moist acidic tundra ecosystem undergoing varying degrees of permafrost...
Climate change and arthropods: Pollinators, herbivores, and others (Chapter 3)
Sandra L. Brantley; Paulette L. Ford
2012-01-01
The Interior West is rich in arthropod diversity because of its varied topography, which provides a wide range of elevations and levels of isolation for these small animals (Parmenter and others 1995). Some taxa are known rather well, such as butterflies and tiger beetles, but we have little information on many groups, which are known only from a few locations although...
Katie V. Spellman; Christa P.H. Mulder; Teresa N. Hollingsworth
2014-01-01
As climate rapidly warms at high-latitudes, the boreal forest faces the simultaneous threats of increasing invasive plant abundances and increasing area burned by wildfire. Highly flammable and widespread black spruce (Picea mariana) forest represents a boreal habitat that may be increasingly susceptible to non-native plant invasion. This study assess the role of burn...
Modeling soil thermal and carbon dynamics of a fire chronosequence in interior Alaska
Q. Zhuang; A. D. McGuire; K. P. O' Neill; J. W. Harden; V. E. Romanovsky; J. Yarie
2003-01-01
In this study, the dynamics of soil thermal, hydrologic, and ecosystem processes were coupled to project how the carbon budgets of boreal forests will respond to changes in atmospheric CO2, climate, and fire disturbance. The ability of the model to simulate gross primary production and ecosystem respiration was verified for a mature black spruce...
A. David McGuire; F.S. Chapin; R.W. Ruess
2010-01-01
Long-term research by the Bonanza Creek (BNZ) Long Term Ecological Research (LTER) program has documented natural patterns of interannual and successional variability of the boreal forest in interior Alaska against which we can detect changes in system behavior. Between 2004 and 2010 the BNZ LTER program focused on understanding the dynamics of change through studying...
Soil carbon in arid and semiarid forest ecosystems [Chapter 18
Daniel G. Neary; Steven T. Overby; Stephen C. Hart
2002-01-01
Forests of the semiarid and arid zones of the interior western United States (US) are some of the most unique in North America. They occupy 11 to 34% of the landscape at mostly higher elevations (USDA Forest Service, 1981). These forests are characterized by a high diversity of flora, fauna, climates, elevations, soils, geology, hydrology, and productivity. Within the...
James N. Long; John Shaw; Marcella Windmuller-Campione
2018-01-01
As forest communities continue to experience interactions between climate change and shifting disturbance regimes, there is anincreased need to link ecological understanding to applied management. Whitebark pine (Pinus albicaulis) and limber pine (P. flexilis) are important high-elevation five-needle pines in the...
Christa P.H. Mulder; Bitty A. Roy; Sabine Gusewell
2008-01-01
Parasite damage strongly affects dynamics of boreal forests. Damage levels may be affected by climate change, either directly or indirectly through changes in properties of host trees. We examined how herbivore and pathogen damage in Alnus viridis subsp. fruticosa (Rupr.) Nym. depend on leaf morphology and chemistry, tree size...
A. Shenoy; K. Kielland; J.F. Johnstone
2013-01-01
Fire activity in the North American boreal region is projected to increase under a warming climate and trigger changes in vegetation composition. In black spruce forests of interior Alaska, fire severity impacts residual organic layer depth which is strongly linked to the relative dominance of deciduous versus coniferous trees in early succession. These alternate...
NASA Astrophysics Data System (ADS)
Li, Zaijun; Wang, Fei; Wang, Xin; Li, Baofeng; Chen, Fahu
2018-07-01
Aridification of the Asian interior is one of the most significant paleoenvironmental events during the Cenozoic. However, continuous paleoclimatic records from desert interiors are scarce because of the lack of outcrops, erosion and discontinuous sediment accumulation. Here we report a multi-proxy climatic record for the last ∼3.55 Ma from paleomagnetically-dated drilling core WEDP01 from the central Tengger Desert, which is one of the most important sediment source areas for Northern Hemisphere atmospheric dust and the Chinese Loess Plateau. Analysis of grain-size components indicates the onset of continuous dust deposition at 2.6 Ma and desert formation at 0.9 Ma. In addition, analysis of major element content and sediment color reveals a stepwise process of increasing aridification and significant cooling in the Tengger Desert area. Simultaneous aridification events in northwest China during the Quaternary were probably induced by the uplift of the Tibetan Plateau. Northern Hemisphere glaciation may have been another important factor for Asian aridification; meanwhile, the increased dust emission from sources such as the Tengger Desert may provide a positive feedback mechanism for global cooling.
Impacts of fire on non-native plant recruitment in black spruce forests of interior Alaska.
Walker, Xanthe J; Frey, Matthew D; Conway, Alexandra J; Jean, Mélanie; Johnstone, Jill F
2017-01-01
Climate change is expected to increase the extent and severity of wildfires throughout the boreal forest. Historically, black spruce (Picea mariana (Mill.) B.S.P.) forests in interior Alaska have been relatively free of non-native species, but the compounding effects of climate change and an altered fire regime could facilitate the expansion of non-native plants. We tested the effects of wildfire on non-native plant colonization by conducting a seeding experiment of non-native plants on different substrate types in a burned black spruce forest, and surveying for non-native plants in recently burned and mature black spruce forests. We found few non-native plants in burned or mature forests, despite their high roadside presence, although invasion of some burned sites by dandelion (Taraxacum officinale) indicated the potential for non-native plants to move into burned forest. Experimental germination rates were significantly higher on mineral soil compared to organic soil, indicating that severe fires that combust much of the organic layer could increase the potential for non-native plant colonization. We conclude that fire disturbances that remove the organic layer could facilitate the invasion of non-native plants providing there is a viable seed source and dispersal vector.
NASA Astrophysics Data System (ADS)
Zekollari, Harry; Huybrechts, Philippe; Noël, Brice; van de Berg, Willem Jan; van den Broeke, Michiel R.
2017-03-01
In this study the dynamics and sensitivity of Hans Tausen Iskappe (western Peary Land, Greenland) to climatic forcing is investigated with a coupled ice flow-mass balance model. The surface mass balance (SMB) is calculated from a precipitation field obtained from the Regional Atmospheric Climate Model (RACMO2.3), while runoff is calculated from a positive-degree-day runoff-retention model. For the ice flow a 3-D higher-order thermomechanical model is used, which is run at a 250 m resolution. A higher-order solution is needed to accurately represent the ice flow in the outlet glaciers. Under 1961-1990 climatic conditions a steady-state ice cap is obtained that is overall similar in geometry to the present-day ice cap. Ice thickness, temperature and flow velocity in the interior agree well with observations. For the outlet glaciers a reasonable agreement with temperature and ice thickness measurements can be obtained with an additional heat source related to infiltrating meltwater. The simulations indicate that the SMB-elevation feedback has a major effect on the ice cap response time and stability. This causes the southern part of the ice cap to be extremely sensitive to a change in climatic conditions and leads to thresholds in the ice cap evolution. Under constant 2005-2014 climatic conditions the entire southern part of the ice cap cannot be sustained, and the ice cap loses about 80 % of its present-day volume. The projected loss of surrounding permanent sea ice and resultant precipitation increase may attenuate the future mass loss but will be insufficient to preserve the present-day ice cap for most scenarios. In a warmer and wetter climate the ice margin will retreat, while the interior is projected to thicken, leading to a steeper ice cap, in line with the present-day observed trends. For intermediate- (+4 °C) and high- warming scenarios (+8 °C) the ice cap is projected to disappear around AD 2400 and 2200 respectively, almost independent of the projected precipitation regime and the simulated present-day geometry.
5. Interior view of instrumentation, controls, and monitoring equipment on ...
5. Interior view of instrumentation, controls, and monitoring equipment on north and east walls of the signal transfer room on the west side of the Signal Transfer Building (T-28A). - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Credit PSR. This interior view of the building equipment room ...
Credit PSR. This interior view of the building equipment room displays heat exchangers and fan units with insulated piping for hot and cold water at left. Environmental controls and fire fighting system controls appear at right - Jet Propulsion Laboratory Edwards Facility, Propellant Curing Building, Edwards Air Force Base, Boron, Kern County, CA
7. CONSTRUCTION PROGRESS VIEW (INTERIOR) OF CONTROL ROOM PANEL INSIDE ...
7. CONSTRUCTION PROGRESS VIEW (INTERIOR) OF CONTROL ROOM PANEL INSIDE BUNKER. SHOWS OPENING TO CABLE CHASE, FOUR PULLEY DEVICES, POWER OUTLET, CONDUIT, AND EAST END WALL OF BUNKER. INEL PHOTO NUMBER 65-5441, TAKEN OCTOBER 20, 1965. - Idaho National Engineering Laboratory, Advanced Reentry Vehicle Fusing System, Scoville, Butte County, ID
PBF (PER620) interior. Detail view of actuator platform and control ...
PBF (PER-620) interior. Detail view of actuator platform and control rod mechanism. Camera facing easterly from floor level. Reactor pool at lower left of view. Date: March 2004. INEEL negative no. HD-41-3-3 - Idaho National Engineering Laboratory, SPERT-I & Power Burst Facility Area, Scoville, Butte County, ID
INTERIOR VIEW OF TRANSFORMER ROOM FOR FURNACE NO. 2 LOOKING ...
INTERIOR VIEW OF TRANSFORMER ROOM FOR FURNACE NO. 2 LOOKING SOUTHEAST, SHOWING BACK OF CONTROL PANEL AND TRANSFORMER (GE, 3000 KUA water cooled, 60 cycles, U.S. patent 1900585. Transformer dates from 1937, control panel GE resistors) - Braeburn Alloy Steel, Braeburn Road at Allegheny River, Lower Burrell, Westmoreland County, PA
46. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, ...
46. BUILDING NO. 519, ETHER AND ALCOHOL RECOVERY HOUSE, INTERIOR, CONTROL PANEL LEVEL (2ND DECK) OF ETHER AND ALCOHOL STILL BUILDING, LOOKING NORTH, SHOWING TWO ALCOHOL DISTILLATION TOWERS BEHIND 'MIXED SOLVENT UNIT' CONTROL PANEL. - Picatinny Arsenal, 500 Area, Powder Factory & Power House, State Route 15 near I-80, Dover, Morris County, NJ
Credit PSR. Interior view shows the building equipment room as ...
Credit PSR. Interior view shows the building equipment room as seen looking south southwest (206°) from the doorway. The control console contains switches for chiller pumps, fans, heaters, temperature controls, and alarms - Jet Propulsion Laboratory Edwards Facility, Solid Propellant Conditioning Building, Edwards Air Force Base, Boron, Kern County, CA
51. Interior of launch support building, minuteman power processor at ...
51. Interior of launch support building, minuteman power processor at lower left, power distribution panel at center, old diesel control panel at lower right, diesel battery at upper right, view towards west - Ellsworth Air Force Base, Delta Flight, Launch Facility, On County Road T512, south of Exit 116 off I-90, Interior, Jackson County, SD
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-02
... DEPARTMENT OF THE INTERIOR Bureau of Reclamation [A10-1412-0001-009-01-0-4, 8453000; OMB Control... Approved Information Collection AGENCY: Bureau of Reclamation, Interior. ACTION: Notice of renewal and... the Desk Officer for the Department of the Interior at the Office of Management and Budget, Office of...
Optimization of actuator arrays for aircraft interior noise control
NASA Technical Reports Server (NTRS)
Cabell, R. H.; Lester, H. C.; Mathur, G. P.; Tran, B. N.
1993-01-01
A numerical procedure for grouping actuators in order to reduce the number of degrees of freedom in an active noise control system is evaluated using experimental data. Piezoceramic actuators for reducing aircraft interior noise are arranged into groups using a nonlinear optimization routine and clustering algorithm. An actuator group is created when two or more actuators are driven with the same control input. This procedure is suitable for active control applications where actuators are already mounted on a structure. The feasibility of this technique is demonstrated using measured data from the aft cabin of a Douglas DC-9 fuselage. The measured data include transfer functions between 34 piezoceramic actuators and 29 interior microphones and microphone responses due to the primary noise produced by external speakers. Control inputs for the grouped actuators were calculated so that a cost function, defined as a quadratic pressure term and a penalty term, was a minimum. The measured transfer functions and microphone responses are checked by comparing calculated noise reductions with measured noise reductions for four frequencies. The grouping procedure is then used to determine actuator groups that improve overall interior noise reductions by 5.3 to 15 dB, compared to the baseline experimental configuration.
Climate matching as a tool for predicting potential North American spread of Brown Treesnakes
Rodda, Gordon H.; Reed, Robert N.; Jarnevich, Catherine S.; Witmer, G.W.; Pitt, W. C.; Fagerstone, K.A.
2007-01-01
Climate matching identifies extralimital destinations that could be colonized by a potential invasive species on the basis of similarity to climates found in the species’ native range. Climate is a proxy for the factors that determine whether a population will reproduce enough to offset mortality. Previous climate matching models (e.g., Genetic Algorithm for Rule-set Prediction [GARP]) for brown treesnakes (Boiga irregularis) were unsatisfactory, perhaps because the models failed to allow different combinations of climate attributes to influence a species’ range limits in different parts of the range. Therefore, we explored the climate space described by bivariate parameters of native range temperature and rainfall, allowing up to two months of aestivation in the warmer portions of the range, or four months of hibernation in temperate climes. We found colonization area to be minimally sensitive to assumptions regarding hibernation temperature thresholds. Although brown treesnakes appear to be limited by dry weather in the interior of Australia, aridity rarely limits potential distribution in most of the world. Potential colonization area in North America is limited primarily by cold. Climatically suitable portions of the United States (US) mainland include the Central Valley of California, mesic patches in the Southwest, and the southeastern coastal plain from Texas to Virginia.
NASA Astrophysics Data System (ADS)
Strecker, M. R.; Bookhagen, B.
2008-12-01
The Southern Central Andes of NW Argentina and the NW Himalaya are important orographic barriers that intercept moisture-bearing winds associated with monsoonal circulation. Changes in both atmospheric circulation systems on decadal to millennial timescales fundamentally influence differences in the amount and location of rainfall in both orogens. In India, the eastern arm of the monsoonal circulation draws moisture from the Bay of Bengal and transports humid air masses along the southern Himalayan front to the northwest. There, at the end of the monsoonal conveyer belt, rainfall is diminished and moisture typically does not reach far into the orogen interior. Similar conditions apply to the NW Argentine Andes, which are located within the precipitation regime of the South American Monsoon. Here, pronounced local relief blocks humid air masses from the Amazon region, resulting in extreme gradients in rainfall that leave the orogen interior dry. However, during negative ENSO years (La Niña) and intensified Indian Summer Monsoon years, moisture penetrates farther into the Andean and Himalayan orogens, respectively. Structurally pre- conditioned valley systems may enhance this process and funnel moisture far into the orogen interior. The greater availability of moisture increases runoff, lateral scouring of mountin streams, and ultimately triggers intensified hillslope processes on decadal to centennial timescales. In both environments, the scenario of intensified present-day surface processes and rates is analogous to protracted episodes of enhanced mass removal from hillslopes via deep-seated landslides during the early Holocene and late Pleistocene. Apparently, these episodes were also associated with transient storage of voluminous conglomerates and lacustrine deposits in narrow intermontane basins. Subsequently, these deposits were incised, partly removed, and the fluvial systems adjusted themselves to the pre-depositional base levels through a readjustment and an increase in the fluvial efficiency and connectivity. Farther into the orogen interior, however, the episodically occurring increase in the availability of material may have contributed to the overall long-term reduction of relief due to reduced fluvial connectivity and the inability of rivers to evacuate material to the foreland. Pronounced coeval variations in erosion and depositional processes therefore emphasize the far-reaching impact of climate variability on the surface-process regime and hence provide insights into intensified episodes of landscape evolution in orogens. In addition, the present-day effects of climatic variability on the surface-process system may serve as a model for similar intensified processes that might be expected in a future global change scenario.
Genet, H.; McGuire, Anthony David; Barrett, K.; Breen, A.; Euskirchen, E.S.; Johnstone, J.F.; Kasischke, E.S.; Melvin, A.M.; Bennett, A.; Mack, M.C.; Rupp, T.S.; Schuur, A.E.G.; Turetsky, M.R.; Yuan, F.
2013-01-01
There is a substantial amount of carbon stored in the permafrost soils of boreal forest ecosystems, where it is currently protected from decomposition. The surface organic horizons insulate the deeper soil from variations in atmospheric temperature. The removal of these insulating horizons through consumption by fire increases the vulnerability of permafrost to thaw, and the carbon stored in permafrost to decomposition. In this study we ask how warming and fire regime may influence spatial and temporal changes in active layer and carbon dynamics across a boreal forest landscape in interior Alaska. To address this question, we (1) developed and tested a predictive model of the effect of fire severity on soil organic horizons that depends on landscape-level conditions and (2) used this model to evaluate the long-term consequences of warming and changes in fire regime on active layer and soil carbon dynamics of black spruce forests across interior Alaska. The predictive model of fire severity, designed from the analysis of field observations, reproduces the effect of local topography (landform category, the slope angle and aspect and flow accumulation), weather conditions (drought index, soil moisture) and fire characteristics (day of year and size of the fire) on the reduction of the organic layer caused by fire. The integration of the fire severity model into an ecosystem process-based model allowed us to document the relative importance and interactions among local topography, fire regime and climate warming on active layer and soil carbon dynamics. Lowlands were more resistant to severe fires and climate warming, showing smaller increases in active layer thickness and soil carbon loss compared to drier flat uplands and slopes. In simulations that included the effects of both warming and fire at the regional scale, fire was primarily responsible for a reduction in organic layer thickness of 0.06 m on average by 2100 that led to an increase in active layer thickness of 1.1 m on average by 2100. The combination of warming and fire led to a simulated cumulative loss of 9.6 kgC m−2 on average by 2100. Our analysis suggests that ecosystem carbon storage in boreal forests in interior Alaska is particularly vulnerable, primarily due to the combustion of organic layer thickness in fire and the related increase in active layer thickness that exposes previously protected permafrost soil carbon to decomposition.
Are Scots pine forest edges particularly prone to drought-stress?
NASA Astrophysics Data System (ADS)
Buras, Allan; Schunk, Christian; Taeger, Steffen; Lemme, Hannes; Gößwein, Sebastian; Menzel, Annette
2017-04-01
In 2016, Scots pine (Pinus sylvestris L.) forests experienced a pronounced dieback in several regions across Germany. Being an economically important tree species, a thorough identification of the reasons for this dieback is of high interest. The dieback is likely to be associated with a record drought event which occurred in summer 2015. However, visual observations indicate that forest edges were particularly affected. This observation is supported by a study from Sweden which showed that Scots pine trees growing at a north-facing forest edge expressed a higher water use if compared to trees from the interior (Cienciala et al., 2002). We therefore hypothesize that Scots pine trees are more prone to drought-stress induced dieback when growing at the forest edge. To test this hypothesis, we investigated the growth performance of Scots pine across three affected stands in Franconia, southern Germany. The stands were selected to represent differing conditions along a gradient of forest fragmentation, ranging from the forest interior, over a forest edge situation, to a small forest island. By means of dendroclimatology and UAV-borne remote sensing, Scots pine growth performance and vitality was compared among the three stands. Our results revealed differing Scots pine growth reactions between the forest interior and forest edge as indicated by the identification of different responder groups (Buras et al., 2016). The forest edge and the forest island expressed significantly higher correlations with the drought-index SPEI (Vicente-Serrano et al., 2009) if compared to the forest interior. Moreover, NDVI of Scots Pine canopies significantly decreased towards the forest edge, this indicating lower vitality of corresponding trees. In conclusion, our results highlight Scots pine to be more prone to drought-stress when growing at the forest edge. This finding has important implications for forest management activities in the context of climate change adaptation, since foresters may need to revise concepts of Scots pine management at forest edges and in forest islands under an increasingly warmer and drier climate. 1. Cienciala, E. et al. The effect of a north-facing forest edge on tree water use in a boreal Scots pine stand. Can. J. For. Res. 32, 693-702 (2002). 2. Buras, A. et al. Tuning the Voices of a Choir: Detecting Ecological Gradients in Time-Series Populations. PLOS ONE 11, e0158346 (2016). 3. Vicente-Serrano, S. M., Beguería, S. & López-Moreno, J. I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Climate 23, 1696-1718 (2009).
TRITIUM LABORATORY, TRA666, INTERIOR. MAIN FLOOR. CONTROL ROOM ENCLOSURE AT ...
TRITIUM LABORATORY, TRA-666, INTERIOR. MAIN FLOOR. CONTROL ROOM ENCLOSURE AT CENTER OF VIEW. SIGN ABOVE DOOR SAYS "HYDRAULIC TEST FACILITY CONTROL ROOM." SIGN IN WINDOW SAYS "EATING AREA." "EVACUATION AND EMERGENCY INFORMATION" IS POSTED ON CABINET AT LEFT OF VIEW. INL NEGATIVE NO. HD30-2-3. Mike Crane, Photographer, 6/2001 - Idaho National Engineering Laboratory, Test Reactor Area, Materials & Engineering Test Reactors, Scoville, Butte County, ID
Aircraft Interior Noise Control Using Distributed Piezoelectric Actuators
NASA Technical Reports Server (NTRS)
Sun, Jian Q.
1996-01-01
Developing a control system that can reduce the noise and structural vibration at the same time is an important task. This talk presents one possible technical approach for accomplishing this task. The target application of the research is for aircraft interior noise control. The emphasis of the present approach is not on control strategies, but rather on the design of actuators for the control system. In the talk, a theory of distributed piezoelectric actuators is introduced. A uniform cylindrical shell is taken as a simplified model of fuselage structures to illustrate the effectiveness of the design theory. The actuators developed are such that they can reduce the tonal structural vibration and interior noise in a wide range of frequencies. Extensive computer simulations have been done to study various aspects of the design theory. Experiments have also been conducted and the test results strongly support the theoretical development.
Evaluation of piezoceramic actuators for control of aircraft interior noise
NASA Technical Reports Server (NTRS)
Silcox, Richard J.; Lefebvre, Sylvie; Metcalf, Vern L.; Beyer, Todd B.; Fuller, Chris R.
1992-01-01
Results of an experiment to evaluate piezoceramic actuators as the control actuator for active control of interior noise in a large-scale fuselage model are presented. Control was demonstrated for tonal excitation using a time domain least mean squares algorithm. A maximum of four actuator channels and six error signals were used. The actuators were employed for control of noise at frequencies where interior cavity modes were the dominant response and for driven acoustic responses where a structure resonance was dominant. Global reductions of 9 to 12 dB were obtained for the cases examined. The most effective configuration of skin-mounted actuators was found to be a pure in-plane forcing function as opposed to a bending excitation. The frame-mounted actuators were found to be equally effective as the skin-mounted actuators. However, both configurations resulted in local regions of unacceptably high vibration response in the structure.
2018-02-20
In this image from NASA's Mars Reconnaissance Rover (MRO) we can see the edge of a mound of ice in one of these mid-latitude craters. Some of it has already been removed, so we can see layering that used to be in the crater's interior. Scientists use ice deposits like these to figure out how the climate has changed on Mars. Another upside of recognizing this ice is that future astronauts will have plenty of drinking water. Scientists now realize that ice is very common on the Martian surface. It often fills up craters and valleys in the mid-latitudes in older climates, although when it's covered in dust it can be hard to recognize. Today the climate on Mars makes this ice unstable and some of it has evaporated away. https://photojournal.jpl.nasa.gov/catalog/PIA22255
REPORT TO CONGRESS ON BLACK CARBON | Science ...
The Report to Congress on Black Carbon describes domestic and international sources of black carbon emissions, and summarizes available scientific information on the climate effects of black carbon. Further, the Report evaluates available black carbon mitigation options and their potential for protecting climate, public health, and the environment. The EPA Advisory Council on Clean Air Compliance Analysis has peer-reviewed the report. In the October 2009 Interior Appropriations bill, Congress requested that EPA, in consultation with other Federal agencies, study the emissions and impacts of black carbon in the US and internationally. To fulfill this charge, EPA has conducted an intensive effort to compile, assess, and summarize available scientific information on the current and future impacts of black carbon, and to evaluate the effectiveness of available mitigation approaches and technologies for protecting climate, public health, and the environment.
NASA Astrophysics Data System (ADS)
Tulaczyk, S. M.; Beem, L.; Walter, J. I.; Hossainzadeh, S.; Mankoff, K. D.
2010-12-01
Fast flowing ice streams represent crucial features of the Antarctic ice sheet because they provide discharge ‘valves’ for the interior ice reservoir and because their grounding lines are exposed to ocean thermal forcing. Even with no/little topographic control ice flow near the perimeter of a polar ice sheet self-organizes into discrete, fast-flowing ice streams. Within these features basal melting (i.e. lubrication for ice sliding) is sustained through elevated basal shear heating in a region of thin ice that would otherwise be characterized by basal freezing and slow ice motion. Because faster basal ice motion is typically associated with faster subglacial erosion, ice streams tend to localize themselves over time by carving troughs into underlying rocks and sediments. Debris generated by this erosional activity is carried to the continental shelf and/or continental slope where it may be deposited at very high rates, rivaling these associated with deposition by some of the largest rivers on Earth. In terms of their hydrologic and geological functions, Antarctic ice streams play pretty much the same role as rivers do on non-glaciated continents. However, understanding of their dynamics is still quite rudimentary, largely because of the relative inaccessibility of the key basal and marine boundaries of ice streams where pertinent measurements need to be made. The present elevated interest in predicting future contribution of Antarctica to global sea level changes is driving ambitious research programs aimed at scientific exploration of these poorly investigated environments that will play a key role in defining the response of the ice sheet to near future climate changes. We will review one of these programs, the Whillans Ice Stream Subglacial Access Research Drilling (WISSARD) with particular focus on its planned contributions to understanding of ice stream dynamics.
Pleistocene and Holocene geomorphological development in the Algarve, southern Portugal
NASA Astrophysics Data System (ADS)
Chester, David K.
2012-06-01
A detailed chronological framework for Pleistocene and Holocene geomorphology and landscape evolution in the Algarve is proposed. With regards to the Pleistocene, attention has focused on the origin, dating and stratigraphy of the Ludo Formation. Subsuming the classifications of earlier writers, it is now proposed that during the Pliocene a marine transgression occurred across a tectonically controlled basin that was constrained by the mountains of the Algarve interior to the north. Fluvial sands were then deposited in a regressive phase during the late Pliocene/early Pleistocene, while braided streams operating under semi-arid conditions subsequently laid down sands and gravels in the middle and upper Pleistocene. Lying unconformably over the Ludo Formation is an alluvial deposit (Odiáxere gravels and Loulé sands) of late Pleistocene/early Holocene date that is found within the river valleys of the Algarve. In the early-Holocene (ca.10, 000-ca.7000 BP) and early late-Holocene (ca.5000-ca.3000 BP), the situation in the Algarve was one of climatic amelioration (i.e., warmer and wetter conditions), rising sea levels, vegetation colonization, soil development and towards the end of this period trenching of the Odiáxere gravels and Loulé sands. From ca.3000 BP evidence is abundant that humans became important geomorphological agents either acting on their own or in combination with climatic factors. From around 5000 BP, conditions became dryer and, between ca.3000 BP and ca.700 BP, clearance of land by pre-Roman, Roman, and especially Islamic agricultural settlers caused widespread erosion and the deposition of extensive spreads of topsoil dominated sediment within river valleys (i.e., the Holocene terrace) and in coastal estuaries. A period followed up to 1900 CE when agricultural practices were less damaging to the soil, erosion was reduced and the Holocene terrace - together with coastal and estuarine deposits - was incised. In the past century and under increased human pressure, renewed erosion is in evidence in the interior valleys and at the coast.
43 CFR 3.13 - Report of field officer.
Code of Federal Regulations, 2011 CFR
2011-10-01
... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Report of field officer. 3.13 Section 3.13 Public Lands: Interior Office of the Secretary of the Interior PRESERVATION OF AMERICAN ANTIQUITIES § 3.13 Report of field officer. The field officer in charge of land owned or controlled by the Government of the United States shall, from time to...
11. Interior view of control room in Components Test Laboratory ...
11. Interior view of control room in Components Test Laboratory (T-27), looking north. Photograph shows upgraded instrumentation, piping, and technological modifications installed in 1997-99 to accommodate component testing requirements for the Atlas V missile. - Air Force Plant PJKS, Systems Integration Laboratory, Components Test Laboratory, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
15. DETAIL INTERIOR VIEW OF CONTROL HOUSE FOR NAVIGATION LOCK ...
15. DETAIL INTERIOR VIEW OF CONTROL HOUSE FOR NAVIGATION LOCK #1. Photograph Nos. OR-11-D-16 through OR-11-D-27 are photocopies of photographs. Original historic photographs are located at the Bonneville Powerhouse, Bonneville, Oregon. - Bonneville Project, Navigation Lock No. 1, Oregon shore of Columbia River near first Powerhouse, Bonneville, Multnomah County, OR
Federal Register 2010, 2011, 2012, 2013, 2014
2010-01-21
... DEPARTMENT OF THE INTERIOR Fish and Wildlife Service [FWS-R9-LE-2010-N008] [99011-1220-0000-9B] Proposed Information Collection; OMB Control Number 1018-0129; Captive Wildlife Safety Act AGENCY: Fish and Wildlife Service, Interior. ACTION: Notice; request for comments. SUMMARY: We (Fish and Wildlife Service...
7. Interior view of control panels' (see CO88C6) detail on ...
7. Interior view of control panels' (see CO-88-C-6) detail on wall of the signal transfer room on the west side of the Signal Transfer Building (T-28A). - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
8. Interior view of control panels' (see CO88C6) detail on ...
8. Interior view of control panels' (see CO-88-C-6) detail on wall of the signal transfer room on the west side of the Signal Transfer Building (T-28A). - Air Force Plant PJKS, Systems Integration Laboratory, Signal Transfer Building, Waterton Canyon Road & Colorado Highway 121, Lakewood, Jefferson County, CO
Structural Acoustic Prediction and Interior Noise Control Technology
NASA Technical Reports Server (NTRS)
Mathur, G. P.; Chin, C. L.; Simpson, M. A.; Lee, J. T.; Palumbo, Daniel L. (Technical Monitor)
2001-01-01
This report documents the results of Task 14, "Structural Acoustic Prediction and Interior Noise Control Technology". The task was to evaluate the performance of tuned foam elements (termed Smart Foam) both analytically and experimentally. Results taken from a three-dimensional finite element model of an active, tuned foam element are presented. Measurements of sound absorption and sound transmission loss were taken using the model. These results agree well with published data. Experimental performance data were taken in Boeing's Interior Noise Test Facility where 12 smart foam elements were applied to a 757 sidewall. Several configurations were tested. Noise reductions of 5-10 dB were achieved over the 200-800 Hz bandwidth of the controller. Accelerometers mounted on the panel provided a good reference for the controller. Configurations with far-field error microphones outperformed near-field cases.
Signs of the Land: Reaching Arctic Communities Facing Climate Change
NASA Astrophysics Data System (ADS)
Sparrow, E. B.; Chase, M. J.; Demientieff, S.; Pfirman, S. L.; Brunacini, J.
2014-12-01
In July 2014, a diverse and intergenerational group of Alaskan Natives came together on Howard Luke's Galee'ya Camp by the Tanana River in Fairbanks, Alaska to talk about climate change and it's impacts on local communities. Over a period of four days, the Signs of the Land Climate Change Camp wove together traditional knowledge, local observations, Native language, and climate science through a mix of storytelling, presentations, dialogue, and hands-on, community-building activities. This camp adapted the model developed several years ago under the Association for Interior Native Educators (AINE)'s Elder Academy. Part of the Polar Learning and Responding Climate Change Education Partnership, the Signs of the Land Climate Change Camp was developed and conducted collaboratively with multiple partners to test a model for engaging indigenous communities in the co-production of climate change knowledge, communication tools, and solutions-building. Native Alaskans have strong subsistence and cultural connections to the land and its resources, and, in addition to being keen observers of their environment, have a long history of adapting to changing conditions. Participants in the camp included Elders, classroom teachers, local resource managers and planners, community members, and climate scientists. Based on their experiences during the camp, participants designed individualized outreach plans for bringing culturally-responsive climate learning to their communities and classrooms throughout the upcoming year. Plans included small group discussions, student projects, teacher training, and conference presentations.
NASA Astrophysics Data System (ADS)
Herring, Erin M.; Gavin, Daniel G.
2015-06-01
There are very few terrestrial sediment records from North America that contain a nearly continuous sequence spanning from the Last Interglacial period to the present. We present stratigraphic records of pollen and several other proxies from a Carex-dominated wetland, Star Meadows, located 140 km south of the maximum extent of the Cordilleran Ice Sheet and near the current southern extent of interior mesic forests in northern Idaho. Many species in this region are disjunct by 160 km of arid steppe and dry forest from their more extensive distribution along the Pacific Northwest coast and may have survived in an interior refugium. The chronology for the upper 251 cm was determined by six radiocarbon dates and one tephra deposit, and the age of the remainder of the core (251-809 cm) was estimated by correlation with SPECMAP δ18O. Fluctuating water levels were inferred from alternating peat, biogenic silica, and aquatic pollen types. During MIS 5e the region was warmer and drier than today and was dominated by Pinus (likely Pinus contorta) mixed conifer forest surrounding a Carex meadow. A cool-moist climate (MIS 5b-5d) soon developed, and the site was inundated with deep water. Pollen indicated wetland vegetation (Betula glandulosa, Typhaceae, and Salix) developed around a lake with a Pseudotsuga/Larix and Picea forest on the surrounding slopes. During MIS 5a, a warmer climate supported a Pseudotsuga/Larix, Abies, and Picea forest on the surrounding hillsides and a Carex-dominated environment within a dry meadow. From MIS 4 to MIS 3, a cool and wet Pinus and Picea forest predominated. Water levels rose, enabling Nuphar to persist within a perennial lake while a sedge fen established along the lake margin. As climate transitioned into MIS 2, a cooler and drier climate supported a Pinus and Picea subalpine parkland, though water levels remained high enough to support Nuphar. During the Last Glacial Maximum the sediment was mainly silt and clay with high Artemisia and very poor pollen preservation. Glaciers descended to 500 m elevation above Star Meadows in adjacent drainages suggesting a periglacial environment occurred at the site. Lake level decreased through the Pleistocene-Holocene transition (ca. 11.7 ka) and the site returned to a sedge peatland surrounded by an open Pinus forest. The most striking vegetation change occurred in the middle to late Holocene with the first occurrence and then later dominance of Cupressaceae pollen, most likely Thuja plicata, which is a dominant species in modern interior mesic forests. The late Holocene vegetation was uniquely mesic in the context of the last 120,000 years, casting doubt on this region serving as a glacial refugium.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nielson, K.J.
1990-01-01
This book includes basic material as well as information the professional needs for designing appropriate window treatments for residential and nonresidential buildings: site, orientation, climate, energy efficiency, sound-proofing, privacy, protection, view, ventilation and interior and exterior aesthetics. Also includes a guide to the window treatment industry, a list of manufacturers, distributors, and retailers, information on window treatment fibers and fabrics, three glossaries, an extensive bibliography, and over 800 illustrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thayer, B.M.
A daylight office building built for Lockheed Martin near San Francisco has saved half a million dollars on energy bills and several times more due to reduced absenteeism and improved employee productivity. The building design incorporates soft daylight throughout the interior of the building. This article discusses the following topics in relationship to the building design: design for the climate; deep daylighting; integrated electric lighting; mechanical system; energy performance; the productivity story.
S. A. Covert; P. R. Robichaud; W. J. Elliot; T. E. Link
2005-01-01
This study evaluates runoff predictions generated by GeoWEPP (Geo-spatial interface to the Water Erosion Prediction Project) and a modified version of WEPP v98.4 for forest soils. Three small (2 to 9 ha) watersheds in the mountains of the interior Northwest were monitored for several years following timber harvest and prescribed fires. Observed climate variables,...