Sample records for interior surface exploration

  1. Exploring the Largest Mass Fraction of the Solar System: the Case for Planetary Interiors

    NASA Technical Reports Server (NTRS)

    Danielson, L. R.; Draper, D.; Righter, K.; McCubbin, F.; Boyce, J.

    2017-01-01

    Why explore planetary interiors: The typical image that comes to mind for planetary science is that of a planet surface. And while surface data drive our exploration of evolved geologic processes, it is the interiors of planets that hold the key to planetary origins via accretionary and early differentiation processes. It is that initial setting of the bulk planet composition that sets the stage for all geologic processes that follow. But nearly all of the mass of planets is inaccessible to direct examination, making experimentation an absolute necessity for full planetary exploration.

  2. Exploring Asteroid Interiors: The Deep Interior Mission Concept

    NASA Technical Reports Server (NTRS)

    Asphaug, E.; Belton, M. J. S.; Cangahuala, A.; Keith, L.; Klaasen, K.; McFadden, L.; Neumann, G.; Ostro, S. J.; Reinert, R.; Safaeinili, A.

    2003-01-01

    Deep Interior is a mission to determine the geophysical properties of near-Earth objects, including the first volumetric image of the interior of an asteroid. Radio reflection tomography will image the 3D distribution of complex dielectric properties within the 1 km rendezvous target and hence map structural, density or compositional variations. Laser altimetry and visible imaging will provide high-resolution surface topography. Smart surface pods culminating in blast experiments, imaged by the high frame rate camera and scanned by lidar, will characterize active mechanical behavior and structure of surface materials, expose unweathered surface for NIR analysis, and may enable some characterization of bulk seismic response. Multiple flybys en route to this target will characterize a diversity of asteroids, probing their interiors with non-tomographic radar reflectance experiments. Deep Interior is a natural follow-up to the NEARShoemaker mission and will provide essential guidance for future in situ asteroid and comet exploration. While our goal is to learn the interior geology of small bodies and how their surfaces behave, the resulting science will enable pragmatic technologies required of hazard mitigation and resource utilization.

  3. 43 CFR 23.13 - Consultation.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... Lands: Interior Office of the Secretary of the Interior SURFACE EXPLORATION, MINING AND RECLAMATION OF... jurisdiction of an agency other than the Department of the Interior or under the jurisdiction of a bureau of the Department of the Interior other than the Bureau of Land Management, the mining supervisor or the...

  4. 30 CFR 701.4 - Responsibility.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR GENERAL PERMANENT... responsibility for regulation of coal exploration and surface coal mining and reclamation operations during the... mining and reclamation operations, approval of coal exploration which substantially disturbs the natural...

  5. ALSEP arrays A, B, C, and A-2. [lunar surface exploration instrument specifications

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The objectives of the lunar surface exploration packages are defined and the preliminary design of scientific systems hardware is reported. Instrument packages are to collect and transmit to earth scientific data on the lunar interior, the lunar surface composition, and the lunar geomorphology

  6. Monte Carlo simulations of ABC stacked kagome lattice films

    NASA Astrophysics Data System (ADS)

    Yerzhakov, H. V.; Plumer, M. L.; Whitehead, J. P.

    2016-05-01

    Properties of films of geometrically frustrated ABC stacked antiferromagnetic kagome layers are examined using Metropolis Monte Carlo simulations. The impact of having an easy-axis anisotropy on the surface layers and cubic anisotropy in the interior layers is explored. The spin structure at the surface is shown to be different from that of the bulk 3D fcc system, where surface axial anisotropy tends to align spins along the surface [1 1 1] normal axis. This alignment then propagates only weakly to the interior layers through exchange coupling. Results are shown for the specific heat, magnetization and sub-lattice order parameters for both surface and interior spins in three and six layer films as a function of increasing axial surface anisotropy. Relevance to the exchange bias phenomenon in IrMn3 films is discussed.

  7. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  8. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  9. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  10. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  11. 30 CFR 772.13 - Coal exploration compliance duties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Coal exploration compliance duties. 772.13... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS REQUIREMENTS FOR COAL EXPLORATION § 772.13 Coal exploration compliance duties. (a) All...

  12. 30 CFR 772.12 - Permit requirements for exploration that will remove more than 250 tons of coal or that will...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... mining operations. 772.12 Section 772.12 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL... unsuitable for surface coal mining operations. (a) Exploration permit. Any person who intends to conduct coal...

  13. 43 CFR 3930.13 - Performance standards for surface mines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.13 Performance standards for surface mines. (a) Pit widths for each oil shale seam must be engineered and designed to eliminate...

  14. 43 CFR 3930.13 - Performance standards for surface mines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.13 Performance standards for surface mines. (a) Pit widths for each oil shale seam must be engineered and designed to eliminate...

  15. 43 CFR 3930.13 - Performance standards for surface mines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.13 Performance standards for surface mines. (a) Pit widths for each oil shale seam must be engineered and designed to eliminate...

  16. 43 CFR 3930.13 - Performance standards for surface mines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.13 Performance standards for surface mines. (a) Pit widths for each oil shale seam must be engineered and designed to eliminate...

  17. InSight Lander in Mars-Surface Configuration

    NASA Image and Video Library

    2015-05-27

    The solar arrays on NASA's InSight lander are deployed in this test inside a clean room at Lockheed Martin Space Systems, Denver. This configuration is how the spacecraft will look on the surface of Mars. The image was taken on April 30, 2015. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19664

  18. 30 CFR 900.4 - Responsibilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR PROGRAMS FOR THE CONDUCT OF SURFACE MINING OPERATIONS WITHIN EACH STATE INTRODUCTION § 900.4 Responsibilities. (a) Each State that has surface coal mining and reclamation operations or coal exploration activities on non...

  19. 43 CFR 23.12 - Appeals.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ...: Interior Office of the Secretary of the Interior SURFACE EXPLORATION, MINING AND RECLAMATION OF LANDS § 23... mining supervisor made pursuant to the provisions of this part shall have a right of appeal to the Board... from was rendered by a mining supervisor, and the further right to appeal to the Board of Land Appeals...

  20. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...

  1. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...

  2. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...

  3. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...

  4. 30 CFR 785.11 - Anthracite surface coal mining and reclamation operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Anthracite surface coal mining and reclamation..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... Anthracite surface coal mining and reclamation operations. (a) This section applies to any person who...

  5. 30 CFR 773.14 - Eligibility for provisionally issued permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... 773.14 Section 773.14 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION... surface coal mining and reclamation operation with— (1) A notice of violation issued under § 843.12 of...

  6. 30 CFR 773.4 - Requirements to obtain permits.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...

  7. 30 CFR 773.4 - Requirements to obtain permits.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...

  8. 30 CFR 773.4 - Requirements to obtain permits.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...

  9. 30 CFR 773.4 - Requirements to obtain permits.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... a State, no person shall engage in or carry out any surface coal mining operations, unless such... (b) of this section. A permittee need not renew the permit if no surface coal mining operations will...

  10. 30 CFR 775.13 - Judicial review.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS... to judicial review by a court of competent jurisdiction, as provided for in the State program, but...

  11. 30 CFR 778.14 - Providing violation information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED...

  12. 30 CFR 778.12 - Providing permit history information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED...

  13. 30 CFR 785.13 - Experimental practices mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Experimental practices mining. 785.13 Section 785.13 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER...

  14. 30 CFR 778.22 - Facilities or structures used in common.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED...

  15. 30 CFR 778.13 - Providing property interest information.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED...) Each legal or equitable owner(s) of record of the surface and mineral. (2) The holder(s) of record of...

  16. 30 CFR 785.15 - Steep slope mining.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS...

  17. 30 CFR 785.15 - Steep slope mining.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Steep slope mining. 785.15 Section 785.15 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS...

  18. The ISIS Mission Concept: An Impactor for Surface and Interior Science

    NASA Technical Reports Server (NTRS)

    Chesley, Steven R.; Elliot, John O.; Abell, Paul A.; Asphaug, Erik; Bhaskaran, Shyam; Lam, Try; Lauretta, Dante S.

    2013-01-01

    The Impactor for Surface and Interior Science (ISIS) mission concept is a kinetic asteroid impactor mission to the target of NASA's OSIRIS-REx (Origins-Spectral Interpretation-Resource Identification-Security-Regolith Explorer) asteroid sample return mission. The ISIS mission concept calls for the ISIS spacecraft, an independent and autonomous smart impactor, to guide itself to a hyper-velocity impact with 1999 RQ36 while the OSIRIS-REx spacecraft observes the collision. Later the OSIRIS-REx spacecraft descends to reconnoiter the impact site and measure the momentum imparted to the asteroid through the impact before departing on its journey back to Earth. In this paper we discuss the planetary science, human exploration and impact mitigation drivers for mission, and we describe the current mission concept and flight system design.

  19. 43 CFR 23.4 - Application for permission to conduct exploration operations.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Application for permission to conduct... SURFACE EXPLORATION, MINING AND RECLAMATION OF LANDS § 23.4 Application for permission to conduct... disposition under the mineral leasing acts without first filing an application for, and obtaining, a permit...

  20. 30 CFR 777.11 - Format and contents.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Format and contents. 777.11 Section 777.11 Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS GENERAL CONTENT REQUIREMENTS FOR PERMIT...

  1. 30 CFR 732.17 - State program amendments.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Mineral Resources OFFICE OF SURFACE MINING RECLAMATION AND ENFORCEMENT, DEPARTMENT OF THE INTERIOR... the number or size of coal exploration or surface coal mining and reclamation operations in the State... amendment(s) is being reviewed by the Director and will include the following: (i) The text or a summary of...

  2. 30 CFR 730.12 - Requirements for regulatory programs in States.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... imposition of a Federal program for regulation of surface coal mining and reclamation operations. Regulation..., DEPARTMENT OF THE INTERIOR PERMANENT REGULATORY PROGRAMS FOR NON-FEDERAL AND NON-INDIAN LANDS GENERAL... each State in which coal exploration and surface coal mining and reclamation operations are or may be...

  3. 30 CFR 740.17 - Inspection, enforcement and civil penalties.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION... regulatory authority with respect to surface coal mining and reclamation operations on Federal lands, while... section shall not apply to coal exploration on Federal lands subject to the requirements of 43 CFR parts...

  4. 30 CFR 740.17 - Inspection, enforcement and civil penalties.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION... regulatory authority with respect to surface coal mining and reclamation operations on Federal lands, while... section shall not apply to coal exploration on Federal lands subject to the requirements of 43 CFR parts...

  5. 30 CFR 740.17 - Inspection, enforcement and civil penalties.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION... regulatory authority with respect to surface coal mining and reclamation operations on Federal lands, while... section shall not apply to coal exploration on Federal lands subject to the requirements of 43 CFR parts...

  6. 30 CFR 730.12 - Requirements for regulatory programs in States.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... imposition of a Federal program for regulation of surface coal mining and reclamation operations. Regulation..., DEPARTMENT OF THE INTERIOR PERMANENT REGULATORY PROGRAMS FOR NON-FEDERAL AND NON-INDIAN LANDS GENERAL... each State in which coal exploration and surface coal mining and reclamation operations are or may be...

  7. 30 CFR 740.17 - Inspection, enforcement and civil penalties.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION... regulatory authority with respect to surface coal mining and reclamation operations on Federal lands, while... section shall not apply to coal exploration on Federal lands subject to the requirements of 43 CFR parts...

  8. 30 CFR 740.17 - Inspection, enforcement and civil penalties.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DEPARTMENT OF THE INTERIOR FEDERAL LANDS PROGRAM GENERAL REQUIREMENTS FOR SURFACE COAL MINING AND RECLAMATION... regulatory authority with respect to surface coal mining and reclamation operations on Federal lands, while... section shall not apply to coal exploration on Federal lands subject to the requirements of 43 CFR parts...

  9. 30 CFR 730.12 - Requirements for regulatory programs in States.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... imposition of a Federal program for regulation of surface coal mining and reclamation operations. Regulation..., DEPARTMENT OF THE INTERIOR PERMANENT REGULATORY PROGRAMS FOR NON-FEDERAL AND NON-INDIAN LANDS GENERAL... each State in which coal exploration and surface coal mining and reclamation operations are or may be...

  10. Characterization of the Interior Density Structure of Near Earth Objects with Muons

    NASA Astrophysics Data System (ADS)

    Prettyman, T. H.; Sykes, M. V.; Miller, R. S.; Pinsky, L. S.; Empl, A.; Nolan, M. C.; Koontz, S. L.; Lawrence, D. J.; Mittlefehldt, D. W.; Reddell, B. D.

    2015-12-01

    Near Earth Objects (NEOs) are a diverse population of short-lived asteroids originating from the main belt and Jupiter family comets. Some have orbits that are easy to access from Earth, making them attractive as targets for science and exploration as well as a potential resource. Some pose a potential impact threat. NEOs have undergone extensive collisional processing, fragmenting and re-accreting to form rubble piles, which may be compositionally heterogeneous (e.g., like 2008 TC3, the precursor to Almahata Sitta). At present, little is known about their interior structure or how these objects are held together. The wide range of inferred NEO macroporosities hint at complex interiors. Information about their density structure would aid in understanding their formation and collisional histories, the risks they pose to human interactions with their surfaces, the constraints on industrial processing of NEO resources, and the selection of hazard mitigation strategies (e.g., kinetic impactor vs nuclear burst). Several methods have been proposed to characterize asteroid interiors, including radar imaging, seismic tomography, and muon imaging (muon radiography and tomography). Of these, only muon imaging has the potential to determine interior density structure, including the relative density of constituent fragments. Muons are produced by galactic cosmic ray showers within the top meter of asteroid surfaces. High-energy muons can traverse large distances through rock with little deflection. Muons transmitted through an Itokawa-sized asteroid can be imaged using a compact hodoscope placed on or near the surface. Challenges include background rejection and correction for variations in muon production with surface density. The former is being addressed by hodoscope design. Surface density variations can be determined via radar or muon limb imaging. The performance of muon imaging is evaluated for prospective NEO interior-mapping missions.

  11. Magnetism and the interior of the moon. [measured at Apollo landing sites

    NASA Technical Reports Server (NTRS)

    Dyal, P.; Parkin, C. W.; Daily, W. D.

    1974-01-01

    During the time period 1961-1972 eleven magnetometers were sent to the moon. The results of lunar magnetometer data analysis are reviewed, with emphasis on the lunar interior. Magnetic fields have been measured on the lunar surface at the Apollo 12, 14, 15, and 16 landing sites. The remanent field values at these sites are given. Satellite and surface measurements show strong evidence that the lunar crust is magnetized over much of the lunar globe. The origin of the lunar remanent field is not yet satisfactorily understood; several source models are presented. Simultaneous data from the Apollo 12 lunar surface magnetometer and the Explorer 35 Ames magnetometer are used to construct a wholemoon hysteresis curve, from which the global lunar permeability is determined. Total iron abundance is calculated for two assumed compositional models of the lunar interior. Other lunar models with a small iron core and with a shallow iron-rich layer are also discussed in light of the measured global permeability.

  12. 3D radar wavefield tomography of comet interiors

    NASA Astrophysics Data System (ADS)

    Sava, Paul; Asphaug, Erik

    2018-04-01

    Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their surface and interior structure in detail and at high resolution. The interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data from multiple viewpoints, as in medical tomography. Radar tomography can be performed using methodology adapted from terrestrial exploration seismology. Our feasibility study primarily focuses on full wavefield methods that facilitate high quality imaging of small body interiors. We consider the case of a monostatic system (co-located transmitters and receivers) operated in various frequency bands between 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Using realistic numerical experiments, we demonstrate that wavefield techniques can generate high resolution tomograms of comets nuclei with arbitrary shape and complex interior properties.

  13. VAFB-20180329-PH_CNW01_0019

    NASA Image and Video Library

    2018-03-29

    In the Astrotech facility at Vandenberg Air Force Base in California, the heatshield is lifted for placement on NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  14. VAFB-20180329-PH_CNW01_0031

    NASA Image and Video Library

    2018-03-29

    In the Astrotech facility at Vandenberg Air Force Base in California, the heatshield is placed on NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  15. InSight Encapsulation

    NASA Image and Video Library

    2018-04-16

    In the Astrotech facility at Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander is encapsulated in its payload fairing. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  16. InSight Encapsulation

    NASA Image and Video Library

    2018-04-16

    In the Astrotech facility at Vandenberg Air Force Base in California, technicians and engineers encapsulate NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander in its payload fairing. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  17. InSight Rollout to Pad

    NASA Image and Video Library

    2018-04-23

    Encapsulated in its payload fairing, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander is transported to Space Launch Complex 3 at Vandenberg Air Force Base in California. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  18. InSight Rollout to Pad

    NASA Image and Video Library

    2018-04-23

    Encapsulated in its payload fairing NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  19. InSight Rollout to Pad

    NASA Image and Video Library

    2018-04-23

    Encapsulated in its payload fairing NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander is transported to Space Launch Complex 3 at Vandenberg Air Force Base in California. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  20. InSight Lift & Mate

    NASA Image and Video Library

    2018-04-23

    Encapsulated in its payload fairing NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander is prepared for transport to Space Launch Complex 3 at Vandenberg Air Force Base in California. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  1. InSight Battery Installation

    NASA Image and Video Library

    2018-04-20

    In the gantry at Space Launch Complex 3 at Vandenberg Air Force Base in California, a technician prepares batteries for installation in NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  2. Understanding divergent evolution of Earth-like planets: The case for a Venus exploration program

    NASA Astrophysics Data System (ADS)

    Crisp, D.

    The planet Venus is our most Earth-like neighbor in size, mass, and solar distance. In spite of these similarities, the Venus surface and atmosphere are characterized by some of the most enigmatic features seen anywhere in the solar system. Here, we propose a Venus exploration program designed to explain the origin and divergent evolution of the interiors, surfaces, and atmospheres of the terrestrial planets in our solar system, and provide greater insight into the conditions that may affect the habitability of terrestrial planets in other solar systems. This program includes: - The Noble Gas and Trace Gas Explorer is the highest priority mission because itsdata are vital to our understanding of the origin of Venus. This Discovery classmission requires a single entry probe that will carry the state-of-the-art instrumentsneeded to complete the noble gas and trace gas inventories between the cloud topsand the surface. - The Global Geological Process Mapping Orbiter is a Discovery class mission. Itwill carry a C- and/or X-band radar designed for stereo or interferometric imaging,to provide global maps of the surface at horizontal resolutions of 25 to 50 metersto identify and characterize the geologic processes that have shaped the Venussurface. - The Atmospheric Composition Orbiter is a Discovery class mission that will carryremote sensing instruments for characterizing clouds and trace gas variationsthroughout the atmosphere. This mission will collect the data needed tocharacterize the radiative, chemical, and dynamical processes that are maintainingthe thermal structure and composition of the present atmosphere. - The Atmospheric Dynamics Explorer is a New Frontiers class mission that willdeploy 12 to 24 long-lived balloons over a range of latitudes and altitudes toidentify the mechanisms responsible for maintaining the atmosphericsuperrotation. - The Surface and Interior Explorer is a New Frontiers class mission that will deploythree or more long-lived landers on the Venus surface. Each lander will carry aseismometer for studies of the interior structure, as well as in situ instruments forcharacterizing the surface mineralogy and elemental composition. This missionrequires significant technology development. - A Sample Return mission will eventually be needed to conduct investigations ofthe Venus surface and atmosphere that cannot be conducted by instruments onremote sensing platforms or on entry probes. This will probably require a largemission and significant technology development. This series of missions will complement and expand on the science objectives of the proposed ESA Venus Express Mission and the ISAS Venus Climate Orbiter.

  3. 30 CFR 778.16 - Status of unsuitability claims.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER REGULATORY PROGRAMS PERMIT APPLICATIONS-MINIMUM REQUIREMENTS FOR LEGAL, FINANCIAL, COMPLIANCE, AND RELATED... assertion that the applicant made substantial legal and financial commitments before January 4, 1977...

  4. 25 CFR 216.3 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... AFFAIRS, DEPARTMENT OF THE INTERIOR ENERGY AND MINERALS SURFACE EXPLORATION, MINING, AND RECLAMATION OF... means the superintendent or other officer of the Bureau of Indian Affairs having jurisdiction under delegated authority, over the lands involved. (b) Mining supervisor means the Regional Mining Supervisor, or...

  5. Lunar Global Heat Flow: Predictions and Constraints

    NASA Astrophysics Data System (ADS)

    Siegler, M.; Williams, J. P.; Paige, D. A.; Feng, J.

    2017-12-01

    The global thermal state of the Moon provides fundamental information on its bulk composition and interior evolution. The Moon is known to have a highly asymmetric surface composition [e.g. Lawrence et al., 2003] and crustal thickness [Wieczorek et al.,2012], which is suspected to result from interior asymmetries [Wieczorek and Phillips, 2000; Laneuville et al., 2013]. This is likely to cause a highly asymmetric surface heat flux, both past and present. Our understanding the thermal evolution and composition of the bulk moon therefore requires a global picture of the present lunar thermal state, well beyond our two-point Apollo era measurement. As on the on the Earth, heat flow measurements need to be taken in carefully selected locations to truly characterize the state of the planet's interior. Future surface heat flux and seismic observations will be affected by the presence of interior temperature and crustal radiogenic anomalies, so placement of such instruments is critically important for understanding the lunar interior. The unfortunate coincidence that Apollo geophysical measurements lie areas within or directly abutting the highly radiogenic, anomalously thin-crusted Procellarum region highlights the importance of location for in situ geophysical study [e.g. Siegler and Smrekar, 2014]. Here we present the results of new models of global lunar geothermal heat flux. We synthesize data from several recent missions to constrain lunar crustal composition, thickness and density to provide global predictions of the surface heat flux of the Moon. We also discuss implications from new surface heat flux constraints from the LRO Diviner Lunar Radiometer Experiment and Chang'E 2 Microwave Radiometer. We will identify areas with the highest uncertainty to provide insight on the placement of future landed geophysical missions, such as the proposed Lunar Geophysical Network, to better aim our future exploration of the Moon.

  6. InSight Final Flight Installation of Heatshield

    NASA Image and Video Library

    2018-04-12

    In the Astrotech facility at Vandenberg Air Force Base in California, technicians and engineers place the heatshield on NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander prior to encapsulation in its payload fairing. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  7. Liftoff of InSight

    NASA Image and Video Library

    2018-05-05

    A United Launch Alliance Atlas V rocket lifts off at 4:05 a.m. PDT (7:05 a.m. EDT) from Space Launch Complex 3 at Vandenberg Air Force Base in California carrying NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created.

  8. InSight Liftoff

    NASA Image and Video Library

    2018-05-05

    A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 3 at Vandenberg Air Force Base, California, carrying NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. Liftoff was at 4:05 a.m. PDT (7:05 a.m. EDT). The spacecraft will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created.

  9. InSight Rollout to Pad

    NASA Image and Video Library

    2018-04-23

    At Space Launch Complex 3 at Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander is positioned atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  10. InSight Liftoff

    NASA Image and Video Library

    2018-05-05

    A United Launch Alliance Atlas V rocket lifts off from Space Launch Complex 3 at Vandenberg Air Force Base, California, carrying NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. Liftoff was at 4:05 a.m. PDT (7:05 a.m. EDT). The spacecraft will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created.

  11. InSight Lift & Mate

    NASA Image and Video Library

    2018-04-23

    At Space Launch Complex 3 at Vandenberg Air Force Base in California, technicians and engineers position NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  12. InSight Rollout to Pad

    NASA Image and Video Library

    2018-04-23

    At Space Launch Complex 3 at Vandenberg Air Force Base in California, technicians and engineers position NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  13. InSight Rollout to Pad

    NASA Image and Video Library

    2018-04-23

    At Space Launch Complex 3 at Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander has been mated atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  14. InSight Rollout to Pad

    NASA Image and Video Library

    2018-04-23

    At Space l Launch Complex 3 at Vandenberg Air Force Base in California, a crane is used to lift NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander for mating atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  15. InSight Rollout to Pad

    NASA Image and Video Library

    2018-04-23

    At Space Launch Complex 3 at Vandenberg Air Force Base in California, a crane is used to lift NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander for mating atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  16. InSight Lift & Mate

    NASA Image and Video Library

    2018-04-23

    At Space Launch Complex 3 at Vandenberg Air Force Base in California, a crane is used to lift NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander for mating atop a United Launch Alliance Atlas V rocket. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  17. InSight Battery Installation

    NASA Image and Video Library

    2018-04-20

    In the gantry at Space Launch Complex 3 at Vandenberg Air Force Base in California, technicians and engineers prepare batteries for installation in NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  18. Surface Evolution from Orbital Decay on Phobos

    NASA Astrophysics Data System (ADS)

    Hurford, Terry; Asphaug, Erik; Spitale, Joseph; Hemingway, Douglas; Rhoden, Alyssa; Henning, Wade; Bills, Bruce; Kattenhorn, Simon; Walker, Matthew

    2015-11-01

    Phobos, the innermost satellite of Mars, displays an extensive system of grooves that are mostly symmetric about its sub-Mars point. Phobos is steadily spiraling inward due to the tides it raises, and will suffer tidal disruption before colliding with Mars. We calculate the surface stress field of the de-orbiting satellite and show that the first signs of tidal disruption are already present on its surface. Most of Phobos’ prominent grooves have an excellent correlation with computed stress orientations. The model predicts an interior that has very low strength on the tidal evolution timescale, overlain by a ~10-100 m exterior shell that has elastic properties similar to lunar regolith.Shortly after the Viking spacecraft obtained the first geomorphic images of Phobos, it was proposed that stresses from orbital decay cause grooves. But, assuming a homogeneous Phobos, it proved impossible to account for the build-up of failure stress in the exterior regardless of the value assumed for Phobos’ rigidity. Hence, the tidal model languished. Here, we revisit the tidal origin of surface fractures with a more detailed treatment that shows the production of significant stress in a surface layer, with a very strong correlation to the geometry of grooves.Our model results applied to surface observations imply that Phobos has a rubble pile interior that is nearly strengthless. A lunar-like cohesive regolith outer layer overlays the rubble pile interior. This outer layer behaves elastically and can experience significant tidal stress at levels able to drive tensile failure. Fissures can develop as the global body deforms due to increasing tides related to orbital decay. Phobos may have an active and evolving surface; an exciting target for further exploration. The interior predictions of this model can be evaluated by future detailed studies performed by an orbiter or lander.

  19. InSight Prelaunch Overview

    NASA Image and Video Library

    2018-05-03

    Members of the media and social media participants attended the NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, prelaunch briefing at Vandenberg Air Force Base in California. The presentation focused on InSight Mars lander. InSight is scheduled for liftoff May 5, 2018, atop a United Launch Alliance (ULA) Atlas V rocket from Space Launch Complex 3 at Vandenberg. The spacecraft will be the first mission to look deep beneath the Martian surface studying the planet's interior by measuring its heat output and listen for marsquakes.

  20. InSight Prelaunch Overview

    NASA Image and Video Library

    2018-05-03

    During a prelaunch briefing at Vandenberg Air Force Base in California, Stephanie Smith, NASA Communications, speaks to members of the media. The presentation focused on NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. InSight is scheduled for liftoff May 5, 2018, atop a United Launch Alliance (ULA) Atlas V rocket from Space Launch Complex 3 at Vandenberg. The spacecraft will be the first mission to look deep beneath the Martian surface studying the planet's interior by measuring its heat output and listen for marsquakes.

  1. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    Many of NICER’s 56 X-ray “concentrators” seen from within the instrument optical bench. Light reflected from the gold surfaces of the 24 concentric foils in each concentrator is focused onto detectors slightly more than 1 meter (3.5 feet) away. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  2. 30 CFR 780.11 - Operation plan: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: General requirements. 780.11... PLAN § 780.11 Operation plan: General requirements. Each application shall contain a description of the... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER...

  3. 30 CFR 784.11 - Operation plan: General requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: General requirements. 784.11... PLAN § 784.11 Operation plan: General requirements. Each application shall contain a description of the... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER...

  4. Exploration of the Moon to Enable Lunar and Planetary Science

    NASA Astrophysics Data System (ADS)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also address important science questions by determining the form of lunar surface volatiles. Science missions to examine the lunar interior and space weathering will also inform exploration systems with regard to the locations of large moonquakes and the radiation environment. Such examples highlight the Moon as an enabling Solar System science and exploration asset.

  5. InSight Spacecraft Lift to Spin Table & Pre-Spin Processing

    NASA Image and Video Library

    2018-03-28

    In the Astrotech facility at Vandenberg Air Force Base in California, technicians and engineers inspect NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft after it was placed on a spin table during preflight processing. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  6. InSight Lift/Mate to PLA with SC to GTV

    NASA Image and Video Library

    2018-04-11

    In the Astrotech facility at Vandenberg Air Force Base in California, technicians and engineers monitor progress as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander is prepared for encapsulation in its payload fairing. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. The spacecraft will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. InSight is scheduled for liftoff May 5, 2018.

  7. 30 CFR 784.23 - Operation plan: Maps and plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Operation plan: Maps and plans. 784.23 Section... PLAN § 784.23 Operation plan: Maps and plans. Each application shall contain maps and plans as follows... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER...

  8. 43 CFR 23.5 - Technical examination of prospective surface exploration and mining operations.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mining operations vary widely with respect to topography, climate, surrounding land uses, proximity to... lowering of water quality below standards established by the appropriate State water pollution control... to the State water pollution control agency and to the Department of the Interior that such lowering...

  9. 43 CFR 23.5 - Technical examination of prospective surface exploration and mining operations.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mining operations vary widely with respect to topography, climate, surrounding land uses, proximity to... lowering of water quality below standards established by the appropriate State water pollution control... to the State water pollution control agency and to the Department of the Interior that such lowering...

  10. 43 CFR 23.5 - Technical examination of prospective surface exploration and mining operations.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... mining operations vary widely with respect to topography, climate, surrounding land uses, proximity to... lowering of water quality below standards established by the appropriate State water pollution control... to the State water pollution control agency and to the Department of the Interior that such lowering...

  11. 43 CFR 23.5 - Technical examination of prospective surface exploration and mining operations.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mining operations vary widely with respect to topography, climate, surrounding land uses, proximity to... lowering of water quality below standards established by the appropriate State water pollution control... to the State water pollution control agency and to the Department of the Interior that such lowering...

  12. What's New on the Moon?

    ERIC Educational Resources Information Center

    French, Bevan M.

    This document presents an overview of knowledge gained from the scientific explorations of the moon between 1969 and 1972 in the Apollo Program. Answers are given to questions regarding life on the moon, surface composition of rocks on the moon, the nature of the moon's interior, characteristics of lunar "soil," the age, history and…

  13. 30 CFR 784.15 - Reclamation plan: Land use information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Reclamation plan: Land use information. 784.15... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... PLAN § 784.15 Reclamation plan: Land use information. (a) The plan shall contain a statement of the...

  14. 30 CFR 780.23 - Reclamation plan: Land use information.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Reclamation plan: Land use information. 780.23... INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION SYSTEMS UNDER... PLAN § 780.23 Reclamation plan: Land use information. (a) The plan shall contain a statement of the...

  15. Two radars for AIM mission: A direct observation of the asteroid's structure from deep interior to regolith

    NASA Astrophysics Data System (ADS)

    Herique, A.; Ciarletti, V.

    2015-10-01

    Our knowledge of the internal structure of asteroids is, so far, indirect - relying entirely on inferences from remote sensing observations of the surface, and theoretical modeling. What are the bulk properties of the regolith and deep interior? And what are the physical processes that shape their internal structures? Direct measurements are needed to provide answers that will directly improve our ability to understand and model the mechanisms driving Near Earth Asteroids (NEA) for the benefit of science as well as for planetary defense or exploration. Radar tomography is the only technique to characterize internal structure from decimetric scale to global scale. This paper reviews the benefits of direct measurement of the asteroid interior. Then the radar concepts for both deep interior and shallow subsurface are presented and the radar payload proposed for the AIDA/AIM mission is outlined.

  16. Exploring Ocean-World Habitability within the Planned Europa Clipper Mission

    NASA Astrophysics Data System (ADS)

    Pappalardo, R. T.; Senske, D.; Korth, H.; Blaney, D. L.; Blankenship, D. D.; Collins, G. C.; Christensen, P. R.; Gudipati, M. S.; Kempf, S.; Lunine, J. I.; Paty, C. S.; Raymond, C. A.; Rathbun, J.; Retherford, K. D.; Roberts, J. H.; Schmidt, B. E.; Soderblom, J. M.; Turtle, E. P.; Waite, J. H., Jr.; Westlake, J. H.

    2017-12-01

    A key driver of planetary exploration is to understand the processes that lead to potential habitability across the solar system, including within oceans hosted by some icy satellites of the outer planets. In this context, it is the overarching science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three mission objectives: (1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; (2) Understand the habitability of Europa's ocean through composition and chemistry; and (3) Understand the formation of surface features, including sites of recent or current activity, and characterize high science interest localities. Folded into these objectives is the desire to search for and characterize any current activity, notably plumes and thermal anomalies. A suite of nine remote-sensing and in-situ observing instruments is being developed that synergistically addresses these objectives. The remote-sensing instruments are the Europa UltraViolet Spectrograph (Europa-UVS), the Europa Imaging System (EIS), the Mapping Imaging Spectrometer for Europa (MISE), the Europa THErMal Imaging System (E-THEMIS), and the Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). The instruments providing in-situ observations are the Interior Characterization of Europa using Magnetometry (ICEMAG), the Plasma Instrument for Magnetic Sounding (PIMS), the MAss Spectrometer for Planetary EXploration (MASPEX), and the SUrface Dust Analyzer (SUDA). In addition, gravity science can be achieved via the spacecraft's telecommunication system, and the planned radiation monitoring system could provide information on Europa's energetic particle environment. Working together, the mission's robust investigation suite can be used to test hypotheses and enable discoveries relevant to the interior, composition, and geology of Europa, thereby addressing the potential habitability of this intriguing ocean world.

  17. The Planned Europa Clipper Mission: Exploring Europa to Investigate its Habitability

    NASA Astrophysics Data System (ADS)

    Pappalardo, Robert T.; Senske, David A.; Korth, Haje; Blaney, Diana L.; Blankenship, Donald D.; Christensen, Philip R.; Kempf, Sascha; Raymond, Carol Anne; Retherford, Kurt D.; Turtle, Elizabeth P.; Waite, J. Hunter; Westlake, Joseph H.; Collins, Geoffrey; Gudipati, Murthy; Lunine, Jonathan I.; Paty, Carol; Rathbun, Julie A.; Roberts, James; E Schmidt, Britney; Soderblom, Jason M.; Europa Clipper Science Team

    2017-10-01

    A key driver of planetary exploration is to understand the processes that lead to habitability across the solar system. In this context, the science goal of the planned Europa Clipper mission is: Explore Europa to investigate its habitability. Following from this goal are three Mission Objectives: 1) Characterize the ice shell and any subsurface water, including their heterogeneity, ocean properties, and the nature of surface-ice-ocean exchange; 2) Understand the habitability of Europa's ocean through composition and chemistry; and 3) Understand the formation of surface features, including sites of recent or current activity, and characterize localities of high science interest. Folded into these three objectives is the desire to search for and characterize any current activity.To address the Europa science objectives, a highly capable and synergistic suite of nine instruments comprise the mission's scientific payload. This payload includes five remote-sensing instruments that observe the wavelength range from ultraviolet through radar, specifically: Europa UltraViolet Spectrograph (Europa-UVS), Europa Imaging System (EIS), Mapping Imaging Spectrometer for Europa (MISE), Europa THErMal Imaging System (E-THEMIS), and Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON). In addition, four in-situ instruments measure fields and particles: Interior Characterization of Europa using MAGnetometry (ICEMAG), Plasma Instrument for Magnetic Sounding (PIMS), MAss Spectrometer for Planetary EXploration (MASPEX), and SUrface Dust Analyzer (SUDA). Moreover, gravity science can be addressed via the spacecraft's telecommunication system, and scientifically valuable engineering data from the radiation monitoring system would augment the plasma dataset. Working together, the planned Europa mission’s science payload would allow testing of hypotheses relevant to the composition, interior, and geology of Europa, to address the potential habitability of this intriguing moon.

  18. Fluorescence-correlation spectroscopy study of molecular transport within reversed-phase chromatographic particles compared to planar model surfaces.

    PubMed

    Cooper, Justin; Harris, Joel M

    2014-12-02

    Reversed-phase liquid chromatography (RPLC) is a widely used technique for molecular separations. Stationary-phase materials for RPLC generally consist of porous silica-gel particles functionalized with n-alkane ligands. Understanding motions of molecules within the interior of these particles is important for developing efficient chromatographic materials and separations. To characterize these dynamics, time-resolved spectroscopic methods (photobleach recovery, fluorescence correlation, single-molecule imaging) have been adapted to measure molecular diffusion rates, typically at n-alkane-modified planar silica surfaces, which serve as models of chromatographic interfaces. A question arising from these studies is how dynamics of molecules on a planar surface relate to motions of molecules within the interior of a porous chromatographic particle. In this paper, imaging-fluorescence-correlation spectroscopy is used to measure diffusion rates of a fluorescent probe molecule 1,1'-dioctadecyl-3,3,3'3'-tetramethylindocarbocyanine perchlorate (DiI) within authentic RPLC porous silica particles and compared with its diffusion at a planar C18-modified surface. The results show that surface diffusion on the planar C18 substrate is much faster than the diffusion rate of the probe molecule through a chromatographic particle. Surface diffusion within porous particles, however, is governed by molecular trajectories along the tortuous contours of the interior surface of the particles. By accounting for the greater surface area that a molecule must explore to diffuse macroscopic distances through the particle, the molecular-scale diffusion rates on the two surfaces can be compared, and they are virtually identical. These results provide support for the relevance of surface-diffusion measurements made on planar model surfaces to the dynamic behavior of molecules on the internal surfaces of porous chromatographic particles.

  19. International Lunar Network (ILN) Anchor Nodes

    NASA Technical Reports Server (NTRS)

    Cohen, Barbara A.

    2008-01-01

    This slide presentation reviews what we know about the interior and surface of the moon and the need to establish a robotic set of geophysical monitoring stations on the surface of the Moon for the purpose of providing significant scientific value to the exploration of the Moon. The ILN Anchor Nodes will provide the backbone of the network in a way that accomplishes new science and allows other nodes to be flexible contributors to the network.

  20. Method and system for treating an interior surface of a workpiece using a charged particle beam

    DOEpatents

    Swenson, David Richard

    2007-05-23

    A method and system of treating an interior surface on an internal cavity of a workpiece using a charged particle beam. A beam deflector surface of a beam deflector is placed within the internal cavity of the workpiece and is used to redirect the charged particle beam toward the interior surface to treat the interior surface.

  1. InSight Rollout for Launch

    NASA Image and Video Library

    2018-05-04

    At Vandenberg Air Force Base in California, the gantry rolls back at Space Launch Complex 3 in preparation for the liftoff of NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, Mars lander. The United Launch Alliance Atlas V rocket now is poised to boost the spacecraft with liftoff scheduled for 4:05 a.m. PDT (7:05 a.m. EDT). InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created.

  2. 30 CFR 780.31 - Protection of publicly owned parks and historic places.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AND OPERATION PLAN § 780.31 Protection of publicly owned parks and historic places. (a) For any... affected by the proposed operation, each plan shall describe the measures to be used— (1) To prevent..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION...

  3. 30 CFR 784.17 - Protection of publicly owned parks and historic places.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... RECLAMATION AND OPERATION PLAN § 784.17 Protection of publicly owned parks and historic places. (a) For any... affected by the proposed operation, each plan shall describe the measures to be used. (1) To prevent..., DEPARTMENT OF THE INTERIOR SURFACE COAL MINING AND RECLAMATION OPERATIONS PERMITS AND COAL EXPLORATION...

  4. Mars rover rock abrasion tool performance enhanced by ultrasonic technology.

    NASA Astrophysics Data System (ADS)

    Macartney, A.; Li, X.; Harkness, P.

    2016-12-01

    The Mars exploration Athena science goal is to explore areas where water may have been present on the early surface of Mars, and investigate the palaeo-environmental conditions of these areas in relation to the existence of life. The Rock Abrasion Tool (RAT) designed by Honeybee Robotics has been one of four key Athena science payload instruments mounted on the mechanical arm of the Spirit, Opportunity and Curiosity Mars Exploration Rovers. Exposed rock surfaces weather and chemically alter over time. Although such weathered rock can present geological interest in itself, there is a limit to what can be learned. If the geological history of a landing site is to be constructed, then it is important to analyse the unweathered rock interior as clearly as possible. The rock abrasion tool's role is to substitute for a geologist's hammer, removing the weathered and chemically altered outer surface of rocks in order to view the pristine interior. The RAT uses a diamond resin standard common grinding technique, producing a 5mm depth grind with a relatively high surface roughness, achieved over a number of hours per grind and consumes approximately 11 watts of energy. This study assesses the benefits of using ultrasonic assisted grinding to improve surface smoothness. A prototype Micro-Optic UltraSonic Exfoliator (MOUSE) is tested on a range of rock types and demonstrates a number of advantages over the RAT. In addition to a smoother grind finish, these advantages include a lower rate of tool tip wear when using a tungsten carbide tip as opposed to diamond resin, less moving parts, a grind speed of minutes instead of hours, and a power consumption of only 1-5 Watts.

  5. Feed gas contaminant control in ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis [Allentown, PA; Minford, Eric [Laurys Station, PA; Waldron, William Emil [Whitehall, PA

    2009-07-07

    Ion transport membrane oxidation system comprising an enclosure having an interior and an interior surface, inlet piping having an internal surface and adapted to introduce a heated feed gas into the interior of the enclosure, and outlet piping adapted to withdraw a product gas from the interior of the enclosure; one or more planar ion transport membrane modules disposed in the interior of the enclosure, each membrane module comprising mixed metal oxide material; and a preheater adapted to heat a feed gas to provide the heated feed gas to the inlet piping, wherein the preheater comprises an interior surface. Any of the interior surfaces of the enclosure, the inlet piping, and the preheater may be lined with a copper-containing metal lining. Alternatively, any of the interior surfaces of the inlet piping and the preheater may be lined with a copper-containing metal lining and the enclosure may comprise copper.

  6. The Influence of the Inner Topology of Cooling Units on the Performance of Automotive Exhaust-Based Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Zhu, D. C.; Su, C. Q.; Deng, Y. D.; Wang, Y. P.; Liu, X.

    2017-11-01

    Automotive exhaust-based thermoelectric generators are currently a hot topic in energy recovery. The waste heat of automotive exhaust gas can be converted into electricity by means of thermoelectric modules. Generally, inserting fins into the cooling unit contributes to enhancing the heat transfer for a higher power output. However, the introduction of fins will result in a pressure drop in the cooling system. In current research, in order to enhance the heat transfer and avoid a large pressure drop, a cooling unit with cylindrical grooves on the interior surface was proposed. To evaluate the performance of the cylindrical grooves, different inner topologies, including a smooth interior surface,a smooth interior surface with inserted fins and an interior surface with cylindrical grooves, were compared. The results revealed that compared with the smooth interior surface, the smooth interior surface with inserted fins and the interior surface with cylindrical grooves both enhanced the heat transfer, but the interior surface with cylindrical grooves obtained a lower pressure drop. To improve the performance of the cylindrical grooves, different groove-depth ratios were tried, and the results showed that a groove-depth ratio of 0.081 could provide the best overall performance.

  7. The Influence of the Inner Topology of Cooling Units on the Performance of Automotive Exhaust-Based Thermoelectric Generators

    NASA Astrophysics Data System (ADS)

    Zhu, D. C.; Su, C. Q.; Deng, Y. D.; Wang, Y. P.; Liu, X.

    2018-06-01

    Automotive exhaust-based thermoelectric generators are currently a hot topic in energy recovery. The waste heat of automotive exhaust gas can be converted into electricity by means of thermoelectric modules. Generally, inserting fins into the cooling unit contributes to enhancing the heat transfer for a higher power output. However, the introduction of fins will result in a pressure drop in the cooling system. In current research, in order to enhance the heat transfer and avoid a large pressure drop, a cooling unit with cylindrical grooves on the interior surface was proposed. To evaluate the performance of the cylindrical grooves, different inner topologies, including a smooth interior surface,a smooth interior surface with inserted fins and an interior surface with cylindrical grooves, were compared. The results revealed that compared with the smooth interior surface, the smooth interior surface with inserted fins and the interior surface with cylindrical grooves both enhanced the heat transfer, but the interior surface with cylindrical grooves obtained a lower pressure drop. To improve the performance of the cylindrical grooves, different groove-depth ratios were tried, and the results showed that a groove-depth ratio of 0.081 could provide the best overall performance.

  8. Igneous intrusion models for floor fracturing in lunar craters

    NASA Technical Reports Server (NTRS)

    Wichman, R. W.; Schultz, P. H.

    1991-01-01

    Lunar floor-fractured craters are primarily located near the maria and frequently contain ponded mare units and dark mantling deposits. Fracturing is confined to the crater interior, often producing a moat-like feature near the floor edge, and crater depth is commonly reduced by uplift of the crater floor. Although viscous relaxation of crater topography can produce such uplift, the close association of modification with surface volcanism supports a model linking floor fracture to crater-centered igneous intrusions. The consequences of two intrusion models for the lunar interior are quantitatively explored. The first model is based on terrestrial laccoliths and describes a shallow intrusion beneath the crater. The second model is based on cone sheet complexes where surface deformation results from a deeper magma chamber. Both models, their fit to observed crater modifications and possible implications for local volcanism are described.

  9. Report of the solar physics panel

    NASA Technical Reports Server (NTRS)

    Withbroe, George L.; Fisher, Richard R.; Antiochos, Spiro; Brueckner, Guenter; Hoeksema, J. Todd; Hudson, Hugh; Moore, Ronald; Radick, Richard R.; Rottman, Gary; Scherrer, Philip

    1991-01-01

    Recent accomplishments in solar physics can be grouped by the three regions of the Sun: the solar interior, the surface, and the exterior. The future scientific problems and areas of interest involve: generation of magnetic activity cycle, energy storage and release, solar activity, solar wind and solar interaction. Finally, the report discusses a number of future space mission concepts including: High Energy Solar Physics Mission, Global Solar Mission, Space Exploration Initiative, Solar Probe Mission, Solar Variability Explorer, Janus, as well as solar physics on Space Station Freedom.

  10. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    A photo taken during the NICER range-of-motion test at NASA’s Goddard Space Flight Center shows the photographer’s reflection in the mirror-like radiator surface of the detector plate. Teflon-coated silver tape is used to keep NICER’s detectors cool. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  11. The region interior to the event horizon of the regular Hayward black hole

    NASA Astrophysics Data System (ADS)

    Perez-Roman, Ivan; Bretón, Nora

    2018-06-01

    The Painlevé-Gullstrand coordinates allow us to explore the interior of the regular Hayward black hole. The behavior of an infalling particle in traversing the Hayward black hole is compared with the one inside the Schwarzschild and Reissner-Nordstrom singular black holes. When approaching the origin the test particle trajectories present differences depending if the center is regular or singular. The velocities of the infalling test particle into the modified Hayward black hole are analyzed as well. As compared with the normal Hayward, in the modified Hayward black hole the particle moves faster and the surface gravity is smaller.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberts, III, Herbert Chidsey; Meschter, Peter Joel

    A turbomachine component includes a body having an exterior surface and an interior surface, an internal cavity defined by the interior surface, and a reactivity neutralizing member arranged within the internal cavity. The reactivity neutralizing member is configured and disposed to neutralize turbomachine combustion products on the interior surface of the body.

  13. High resolution non-contact interior profilometer

    DOEpatents

    Piltch, Martin S.; Patterson, R. Alan; Leeches, Gerald W.; Nierop, John Van; Teti, John J.

    2001-01-01

    Apparatus and method for inspecting the interior surfaces of devices such as vessels having a single entry port. Laser energy is launched into the vessel, and the light reflected from the interior surfaces is interfered with reference laser energy to produce an interference pattern. This interference pattern is analyzed to reveal information about the condition of the interior surfaces of the device inspected.

  14. Stack configurations for tubular solid oxide fuel cells

    DOEpatents

    Armstrong, Timothy R.; Trammell, Michael P.; Marasco, Joseph A.

    2010-08-31

    A fuel cell unit includes an array of solid oxide fuel cell tubes having porous metallic exterior surfaces, interior fuel cell layers, and interior surfaces, each of the tubes having at least one open end; and, at least one header in operable communication with the array of solid oxide fuel cell tubes for directing a first reactive gas into contact with the porous metallic exterior surfaces and for directing a second reactive gas into contact with the interior surfaces, the header further including at least one busbar disposed in electrical contact with at least one surface selected from the group consisting of the porous metallic exterior surfaces and the interior surfaces.

  15. Effects of Stone-Wales and vacancy defects in atomic-scale friction on defective graphite

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Xiao-Yu; Key Laboratory of Hubei Province for Water Jet Theory and New Technology, Wuhan University, Wuhan 430072; Wu, RunNi

    2014-05-05

    Graphite is an excellent solid lubricant for surface coating, but its performance is significantly weakened by the vacancy or Stone-Wales (SW) defect. This study uses molecular dynamics simulations to explore the frictional behavior of a diamond tip sliding over a graphite which contains a single defect or stacked defects. Our results suggest that the friction on defective graphite shows a strong dependence on defect location and type. The 5-7-7-5 structure of SW defect results in an effectively negative slope of friction. For defective graphite containing a defect in the surface, adding a single vacancy in the interior layer will decreasemore » the friction coefficients, while setting a SW defect in the interior layer may increase the friction coefficients. Our obtained results may provide useful information for understanding the atomic-scale friction properties of defective graphite.« less

  16. Solar astronomy

    NASA Technical Reports Server (NTRS)

    Rosner, Robert; Noyes, Robert; Antiochos, Spiro K.; Canfield, Richard C.; Chupp, Edward L.; Deming, Drake; Doschek, George A.; Dulk, George A.; Foukal, Peter V.; Gilliland, Ronald L.

    1991-01-01

    An overview is given of modern solar physics. Topics covered include the solar interior, the solar surface, the solar atmosphere, the Large Earth-based Solar Telescope (LEST), the Orbiting Solar Laboratory, the High Energy Solar Physics mission, the Space Exploration Initiative, solar-terrestrial physics, and adaptive optics. Policy and related programmatic recommendations are given for university research and education, facilitating solar research, and integrated support for solar research.

  17. Fluid injection microvalve

    DOEpatents

    Renzi, Ronald F.

    2005-11-22

    A microvalve for extracting small volume samples into analytical devices, e.g., high pressure liquid chromatography (HPLC) column, includes: a first body having a first interior surface and two or more outlet ports at the first interior surface that are in fluid communication with two or more first channels; a second body having a second interior surface and two or more inlet ports at the second interior surface that are in fluid communication with two or more second channels wherein the outlet ports of the first body are coaxial with the corresponding inlet ports of the second body such that there are at least two sets of coaxial port outlets and port inlets; a plate member, which has a substantially planar first mating surface and a substantially planar second mating surface, that is slidably positioned between the first interior surface and the second interior surface wherein the plate member has at least one aperture that traverses the height of the plate member, and wherein the aperture can be positioned to be coaxial with any of the at least two sets of coaxial port outlets and port inlets; and means for securing the first surface of the first body against the first mating surface and for securing the second surface of the second body against the second mating surface.

  18. 75 FR 60271 - Technical Amendments 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-29

    ... Part VI Department of the Interior Office of Surface Mining Reclamation and Enforcement 30 CFR... INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Parts 740, 761, 773, 795, 816, 817...: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Final rule. SUMMARY: We, the...

  19. Planetary science: A lunar perspective

    NASA Technical Reports Server (NTRS)

    Taylor, S. R.

    1982-01-01

    An interpretative synthesis of current knowledge on the moon and the terrestrial planets is presented, emphasizing the impact of recent lunar research (using Apollo data and samples) on theories of planetary morphology and evolution. Chapters are included on the exploration of the solar system; geology and stratigraphy; meteorite impacts, craters, and multiring basins; planetary surfaces; planetary crusts; basaltic volcanism; planetary interiors; the chemical composition of the planets; the origin and evolution of the moon and planets; and the significance of lunar and planetary exploration. Photographs, drawings, graphs, tables of quantitative data, and a glossary are provided.

  20. Nutrition systems for pressure suits.

    NASA Technical Reports Server (NTRS)

    Huber, C. S.; Heidelbaugh, N. D.; Rapp, R. M.; Smith, M. C., Jr.

    1973-01-01

    Nutrition systems were successfully developed in the Apollo Program for astronauts wearing pressure suits during emergency decompression situations and during lunar surface explorations. These nutrition systems consisted of unique dispensers, water, flavored beverages, nutrient-fortified beverages, and intermediate moisture food bars. The emergency decompression system dispensed the nutrition from outside the pressure suit by interfacing with a suit helmet penetration port. The lunar exploration system utilized dispensers stowed within the interior layers of the pressure suit. These systems could be adapted for provision of nutrients in other situations requiring the use of pressure suits.

  1. Exploration of Venus' Deep Atmosphere and Surface Environment

    NASA Technical Reports Server (NTRS)

    Glaze, L. S.; Amato, M.; Garvin, J. B.; Johnson, N. M.

    2017-01-01

    Venus formed in the same part of our solar system as Earth, apparently from similar materials. Although both planets are about the same size, their differences are profound. Venus and Earth experienced vastly different evolutionary pathways resulting in unexplained differences in atmospheric composition and dynamics, as well as in geophysical processes of the planetary surfaces and interiors. Understanding when and why the evolutionary pathways of Venus and Earth diverged is key to understanding how terrestrial planets form and how their atmospheres and surfaces evolve. Measurements made in situ, within the near-surface or surface environment, are critical to addressing unanswered questions. We have made substantial progress modernizing and maturing pressure vessel technologies to enable science operations in the high temperature and pressure near-surface/surfaceenvironment of Venus.

  2. Exploring the Surface Brightness Breaks and Star Formation in Disk Galaxies

    NASA Astrophysics Data System (ADS)

    Malko, Bradley Ann; Hunter, Deidre Ann

    2018-06-01

    Stellar surface brightness profiles of both spirals and dwarf irregular galaxies often show breaks in which the exponential fall-off abruptly changes slope. Most often the profile is down-bending (Type II) in the outer disk, but sometimes it is up-bending (Type III). Stellar disks extend a long ways beyond the profile breaks, but we do not understand what happens physically at the breaks. To explore this we are examining the star formation activity, as traced with FUV emission, interior to the break compared to that exterior to the break in both dwarf irregulars and spiral galaxies. We present the results for the spiral galaxy NGC 2500 and compare it to the LITTLE THINGS dwarf irregular galaxies.

  3. Titan exploration with advanced systems. A study of future mission concepts

    NASA Technical Reports Server (NTRS)

    1983-01-01

    The requirements, capabilities, and programmatic issues associated with science-intensive mission concepts for the advanced exploration of Saturn's largest satellite are assessed. The key questions to be answered by a Titan exploratory mission are: (1) the atmospheric composition; (2) the atmospheric structure; (3) the nature of the surface; and (4) the nature of the interior of Titan. Five selected mission concepts are described in terms of their design requirements. Mission hardware concepts include balloons and/or blimps which will allow both atmospheric and surface observations for a long period of time. Key aspects of performance analysis are presented. Mission profiles and cost summaries are given. Candidate payloads are identified for imaging and nonimaging orbiters, a buoyant station, a haze probe, and a penetrator.

  4. TEAM - Titan Exploration Atmospheric Microprobes

    NASA Astrophysics Data System (ADS)

    Nixon, Conor; Esper, Jaime; Aslam, Shahid; Quilligan, Gerald

    2016-10-01

    The astrobiological potential of Titan's surface hydrocarbon liquids and probable interior water ocean has led to its inclusion as a destination in NASA's "Ocean Worlds" initiative, and near-term investigation of these regions is a high-level scientific goal. TEAM is a novel initiative to investigate the lake and sea environs using multiple dropsondes -scientific probes derived from an existing cubesat bus architecture (CAPE - the Cubesat Application for Planetary Exploration) developed at NASA GSFC. Each 3U probe will parachute to the surface, making atmospheric structure and composition measurements during the descent, and photographing the surface - land, shoreline and seas - in detail. TEAM probes offer a low-cost, high-return means to explore multiple areas on Titan, yielding crucial data about the condensing chemicals, haze and cloud layers, winds, and surface features of the lakes and seas. These microprobes may be included on a near-term New Frontiers class mission to the Saturn system as additional payload, bringing increased scientific return and conducting reconnaissance for future landing zones. In this presentation we describe the probe architecture, baseline payload, flight profile and the unique engineering and science data that can be returned.

  5. The Comet Radar Explorer Mission

    NASA Astrophysics Data System (ADS)

    Asphaug, Erik; Belton, Mike; Bockelee-Morvan, Dominique; Chesley, Steve; Delbo, Marco; Farnham, Tony; Gim, Yonggyu; Grimm, Robert; Herique, Alain; Kofman, Wlodek; Oberst, Juergen; Orosei, Roberto; Piqueux, Sylvain; Plaut, Jeff; Robinson, Mark; Sava, Paul; Heggy, Essam; Kurth, William; Scheeres, Dan; Denevi, Brett; Turtle, Elizabeth; Weissman, Paul

    2014-11-01

    Missions to cometary nuclei have revealed major geological surprises: (1) Global scale layers - do these persist through to the interior? Are they a record of primary accretion? (2) Smooth regions - are they landslides originating on the surface? Are they cryovolcanic? (3) Pits - are they impact craters or sublimation pits, or rooted in the interior? Unambiguous answers to these and other questions can be obtained by high definition 3D radar reflection imaging (RRI) of internal structure. RRI can answer many of the great unknowns in planetary science: How do primitive bodies accrete? Are cometary nuclei mostly ice? What drives their spectacular activity and evolution? The Comet Radar Explorer (CORE) mission will image the detailed internal structure of the nucleus of 10P/Tempel 2. This ~16 x 8 x 7 km Jupiter Family Comet (JFC), or its parent body, originated in the outer planets region possibly millions of years before planet formation. CORE arrives post-perihelion and observes the comet’s waning activity from safe distance. Once the nucleus is largely dormant, the spacecraft enters a ~20-km dedicated Radar Mapping Orbit (RMO). The exacting design of the RRI experiment and the precise navigation of RMO will achieve a highly focused 3D radar reflection image of internal structure, to tens of meters resolution, and tomographic images of velocity and attenuation to hundreds of meters resolution, tied to the gravity model and shape. Visible imagers will produce maps of the surface morphology, albedo, color, texture, and photometric response, and images for navigation and shape determination. The cameras will also monitor the structure and dynamics of the coma, and its dusty jets, allowing their correlation in 3D with deep interior structures and surface features. Repeated global high-resolution thermal images will probe the near-surface layers heated by the Sun. Derived maps of thermal inertia will be correlated with the radar boundary response, and photometry and texture, probing surface materials attainable by future robotic excavation missions. Thermal images will reveal areas of sublimation cooling around vents and pits, and the secular response of the outer meters as the nucleus moves farther from the Sun.

  6. The European Robotic Exploration of the Planet Mars

    NASA Astrophysics Data System (ADS)

    Chicarro, Agustin

    2010-05-01

    The ESA Mars Express mission was launched in June 2003 and has been orbiting Mars for over six years providing data with an unprecedented spatial and spectral resolution on the surface, subsurface, atmosphere and ionosphere of the red planet. The main theme of the mission is the search for water in its various states everywhere on the planet by all instruments using different techniques. The mission is still a huge success, helping rewrite new pages in our understanding of Mars. Mars Express will be followed by ESA's new Exploration Programme, starting in 2016 with an Orbiter focusing on atmospheric trace gases and in particular methane. The ExoMars rover will follow in 2018 to perform geochemical and exobiological measurements on the surface and the subsurface. Then in 2020, a Network of 3-6 surface stations will be launched (possibly together with an orbiter), in order to investigate the interior of the planet, its atmospheric dynamics and the geology of each landing site. All these Mars Exploration missions will be carried out jointly with NASA. Such network-orbiter combination represents a unique tool to perform new investigations of Mars, which could not be addressed by other means. In particular, i) the internal geophysical aspects concern the structure and dynamics of the interior of Mars including the state of the core and composition of the mantle; the fine structure of the crust including its paleomagnetic anomalies; the rotational parameters (axis tilt, precession, nutation, etc) that define both the state of the interior and the climate evolution; ii) the atmospheric physics aspects concern the general circulation and its forcing factors; the time variability cycles of the transport of volatiles, water and dust; surface-atmosphere interactions and overall meteorology and climate; iii) the geology of each landing site concerns the full characterization of the surrounding area including petrological rock types, chemical and mineralogical sample analysis, erosion, oxidation and weathering processes to infer the geological history of the region, as well as the astrobiological potential of each site. To complement the science gained from the Martian surface, investigations need to be carried out from orbit in a coordinated manner, such as i) global atmospheric mapping to study weather patterns, opacity and chemical composition; ii) a detailed map of the crustal magnetic anomalies from lower orbit (150 km); iii) study of these magnetic anomalies need to be studied in light of the magnetic field induced by the solar wind interaction with the upper atmosphere of the planet. The Network Mission concept is based on the fact that some important science goals on any given terrestrial planet can only be achieved with simultaneous measurements from a number of landers located on the surface of the planet (primarily internal geophysics, geodesy and meteorology) coupled to an orbiter. The long-term goal of Mars robotic exploration in Europe remains the return of rock and soil samples from the Martian surface before eventually Humans go to Mars one day.

  7. Exploring the interior structure of Venus with balloons and satellites

    NASA Astrophysics Data System (ADS)

    Mimoun, David; Cutts, Jim; Stevenson, Dave

    2015-04-01

    Although present daily in our sky as the brightest object at dusk and dawn, many characteristics of Venus remains a mystery. Its dense atmosphere hides the surface from orbital viewing, and the extreme conditions experienced at its surface (460°C, almost 100 bar of pressure at the surface) pose a formidable challenge to the sustained survival and operation of planetary landers. Despite their sharply contrasting atmospheres, Venus is not very different from Earth in size, its composition should be very similar, its orbit is very close to be circular and it is only a little closer to the Sun ( 0.7 A.U). So what are the processes that turned the twin sister of our planet into such a different object? And how can we better understand the processes that have shaped the terrestrial planets, and to understand their formation history? With its harsh surface environment, conventional seismology on Venus, requiring seismometers to be deployed at the surface for months or even years seems impractical. In June 2014, the Keck Institute for Space Studies (KISS) at the California Institute of Technology sponsored a one-week workshop with 30 specialists in the key techniques and technologies relevant to investigating Venus's interior structure focusing on alternative approaches to seismology . As the vertical component of surface motion on Venus is very efficiently coupled into the atmosphere as infrasonic waves, especially at low frequency, several alternative approaches to detecting seismic events can be considered. Seismo-acoustic waves propagate upwards producing pressure fluctuations in the middle atmosphere of Venus and the seismic wave energy is ultimately dissipated by local heating, ionospheric perturbation, or airglow. These atmospheric perturbations can therefore be recorded either in-situ (with a barometer network, deployed on balloons floating in the cloud layer near 55 km) or remotely via optical imaging or electromagnetic sounding deployed on a spacecraft. A report, describing the findings of a workshop, sponsored by the Keck Institute of Space Studies (KISS), concludes that seismic investigations can be successfully conducted from all three vantage points - surface, middle atmosphere and space; these three vantage points being complementary in the information they provide. These novel techniques open a new window for the exploration of the interior structure of Venus, and enables a roadmap leading to a dedicated geophysical mission to our sister planet.

  8. Method of creating a controlled interior surface configuration of passages within a substrate

    DOEpatents

    Dembowski, Peter V.; Schilke, Peter W.

    1983-01-01

    A method of creating a controlled interior surface configuration of passages within a substrate, particularly cooling passages of nozzles or buckets of a gas turbine, involves the hot isostatic pressing of a leachable passage insert whose surface carries the female image of the desired interior surface configuration inside the substrate followed by leaching of the insert from the substrate.

  9. Self-Disinfection and Decontaminating Interior Surfaces Based on Photocatalytic Titania/Easy-Release Coatings

    DTIC Science & Technology

    2002-01-01

    DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release, distribution unlimited 13. SUPPLEMENTARY NOTES This article is from ADA409494 Proceedings of...been shown to be independently capable, respectively, of diminishing viability and minimizing bioburdens on interior surfaces. Unique combinations of...active bacterial bioburdens and total retained biomass can be significantly reduced by these surface modifications. Interior surface coatings of TiO2

  10. Seismic detectability of meteorite impacts on Europa

    NASA Astrophysics Data System (ADS)

    Tsuji, Daisuke; Teanby, Nicholas

    2016-04-01

    Europa, the second of Jupiter's Galilean satellites, has an icy outer shell, beneath which there is probably liquid water in contact with a rocky core. Europa, may thus provide an example of a sub-surface habitable environment so is an attractive object for future lander missions. In fact, the Jupiter Icy Moon Explorer (JUICE) mission has been selected for the L1 launch slot of ESA's Cosmic Vision science programme with the aim of launching in 2022 to explore Jupiter and its potentially habitable icy moons. One of the best ways to probe icy moon interiors in any future mission will be with a seismic investigation. Previously, the Apollo seismic experiment, installed by astronauts, enhanced our knowledge of the lunar interior. For a recent mission, NASA's 2016 InSight Mars lander aims to obtain seismic data and will deploy a seismometer directly onto Mars' surface. Motivated by these works, in this study we show how many meteorite impacts will be detected using a single seismic station on Europa, which will be useful for planning the next generation of outer solar system missions. To this end, we derive: (1) the current small impact flux on Europa from Jupiter impact rate models; (2) a crater diameter versus impactor energy scaling relation for ice by merging previous experiments and simulations; (3) scaling relations for seismic signals as a function of distance from an impact site for a given crater size based on analogue explosive data obtained on Earth's icy surfaces. Finally, resultant amplitudes are compared to the noise level of a likely seismic instrument (based on the NASA InSight mission seismometers) and the number of detectable impacts are estimated. As a result, 0.5-3.0 local/regional small impacts (i.e., direct P-waves through the ice crust) are expected to be detected per year, while global-scale impact events (i.e., PKP-waves refracted through the mantle) are rare and unlikely to be detected by a short duration mission. We note that our results are only appropriate for order of magnitude calculations because of considerable uncertainties in the small impactor source population, internal structure, and ambient noise level. However, our results suggest that probing the deep interior using impacts will be challenging and require an extended mission duration and low noise levels to give a reasonable chance of detection. Therefore, for future seismic exploration, faulting due to stresses in the rigid outer ice shell is likely to be much more viable mechanism for probing the interior.

  11. InSight Atlas V ISA-ASA Lift and Mate

    NASA Image and Video Library

    2018-03-05

    At Vandenberg Air Force Base in California, the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V arrives at Space Launch Complex 3. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  12. InSight Atlas V ISA-ASA Transport

    NASA Image and Video Library

    2018-03-05

    At Vandenberg Air Force Base in California, the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V arrive at Space Launch Complex 3. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  13. InSight Atlas V ISA-ASA Transport

    NASA Image and Video Library

    2018-03-05

    At Vandenberg Air Force Base in California, the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V rocket are transported to Space Launch Complex 3. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  14. Magnetite Equation of State: Implications for Mars' Interior and Magnetization

    NASA Astrophysics Data System (ADS)

    Gant, P.; Walsh, J.; Lazarz, J. D.; Jacobsen, S. D.; Jurdy, D. M.

    2017-12-01

    Mars once had a global magnetic field, although it no longer has an active dynamo. Mars Global Surveyor (MGS) unexpectedly measured a strongly magnetized crust. However, the magnetic carrier as well as the nature and depth of magnetization remain unknown. Downward continuation of the surface magnetization suggests the possibility of great depth of magnetization, as much as 100-200 km, far exceeding that of Earth's. The interior composition and structure of Mars remain unknown. Magnetite offers a likely candidate for Martian magnetization. Experiments with magnetite crystals - one naturally-occurring, the other a laboratory-fabricated single domain crystal, determine its equation of state. NASA's upcoming InSight (INterior Exploration using Seismic Investigations, Geodesy, and Heat Transport) mission to Mars will be the first dedicated to study of the Martian interior. It will land in the Elysium Planitia with a 3-component broadband and short period seismometer, heatflow probe, and a magnetometer to monitor the local, atmospheric, and crustal magnetic field. The planned InSight measurements of Martian heatflow will establish its current temperature gradient. The first step in understanding Mars' magnetization requires knowing both temperature and pressure conditions for its interior, along with the equation of state for magnetite - and other possible magnetic minerals. Laboratory experiments with a range of compositions for the Martian interior could provide critical comparisons with the InSight mission's seismic data.

  15. How can we constrain the amount of heat producing elements in the interior of Mars?

    NASA Astrophysics Data System (ADS)

    Grott, M.; Plesa, A.; Breuer, D.

    2013-12-01

    The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission to be launched in 2016 will study Mars' deep interior and help improving our knowledge about the interior structure and the thermal evolution of the planet - the latter is also directly linked to its volcanic history and atmospheric evolution. Measurements planned with the two main instruments, SEIS (Seismic Experiment for Interior Structure) and HP3 (Heat Flow and Physical Properties Package) aim to constrain the main structure of the planet, i.e. core, mantle and crust as well as the rate at which the planet loses the interior heat over its surface. Since the surface heat flow depends on the amount of radiogenic heat elements (HPE) present in the interior, it offers a measurable quantity which could constrain the heat budget. Being the principal agent regulating the heat budget which in turn influences partial melting in the interior, crustal and atmospheric evolution, the heat producing elements have a major impact on the entire the present temperature thermal history of the planet. To constrain the radiogenic heat elements of the planet from the surface heat flow is possible assuming that the urey number of the planet, which describes the contribution of internal heat production to the surface heat loss, is known. We have tested this assumption by calculating the thermal evolution of the planet with fully dynamical numerical simulations and by comparing the obtained present-day urey number for a set of different models/parameters (Fig. 1). For one-plate planets like Mars, numerical models show - in contrast to models for the Earth, where plate tectonics play a major role adding more complexity to the system - that the urey ratio is mainly sensitive to two effects: the efficiency of cooling due to the temperature-dependence of the viscosity and the mean half-life time of the long lived radiogenic isotopes. The temperature-dependence of the viscosity results in the so-called thermostat effect regulating the interior temperature such that the present-day temperatures are independent of the initial temperature distribution. If the thermostat effect is efficient as we show for the assumed Martian mantle rheology, and if the system is not dominated by radioactive isotopes like Thorium with a half-life much longer than the age of the planet as in the model of [3], all numerical simulations show similar today's values for the urey number (Fig. 1). Knowing the surface heat loss from the upcoming heat flow measurements planned for the InSight mission, one can distinguish then between different radiogenic heat source models [1, 2, 3, 4]. REFERENCES [1] Wänke et al., 94; [2] Lodders & Fegley, 97; [3] Morgan & Anders, 79; [4] Treiman et al., 86 Fig. 1: a) the influence of the reference viscosity and initial upper thermal boundary layer (TBL) on the urey ratio using HPE density from [1]; b) different models for HPE density; c) the urey ratio for different HPE models and 1e22 Pa s reference viscosity.

  16. Hot gas path component trailing edge having near wall cooling features

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lacy, Benjamin Paul; Kottilingam, Srikanth Chandrudu; Miranda, Carlos Miguel

    A hot gas path component includes a substrate having an outer surface and an inner surface. The inner surface defines an interior space. The outer surface defines a pressure side surface and a suction side surface. The pressure and suction side surfaces are joined together at a leading edge and at a trailing edge. A first cooling passage is formed in the suction side surface of the substrate. It is coupled in flow communication to the interior space. A second cooling passage, separate from the first cooling passage, is formed in the pressure side surface. The second cooling passage ismore » coupled in flow communication to the interior space. A cover is disposed over at least a portion of the first and second cooling passages. The interior space channels a cooling fluid to the first and second cooling passages, which channel the cooling fluid therethrough to remove heat from the component.« less

  17. 43 CFR 3251.11 - What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration Operations application? 3251.11 Section 3251.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT ...

  18. 43 CFR 3251.11 - What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration Operations application? 3251.11 Section 3251.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT ...

  19. 43 CFR 3251.11 - What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration Operations application? 3251.11 Section 3251.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT ...

  20. 43 CFR 3251.11 - What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What information is in a complete Notice of Intent to Conduct Geothermal Resource Exploration Operations application? 3251.11 Section 3251.11 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT ...

  1. Deep Interior Mission: Imaging the Interior of Near-Earth Asteroids Using Radio Reflection Tomography

    NASA Technical Reports Server (NTRS)

    Safaeinili, A.; Asphaug, E.; Rodriquez, E.; Gurrola, E.; Belton, M.; Klaasen, K.; Ostro, S.; Plaut, J.; Yeomans, D.

    2005-01-01

    Near-Earth asteroids are important exploration targets since they provide clues to the evolution of the solar system. They are also of interest since they present a clear danger to Earth. Our mission objective is to image the internal structure of two NEOs using radio reflection tomography (RRT) in order to explore the record of asteroid origin and impact evolution, and to test the fundamental hypothesis that some NEOs are rubble piles rather than consolidated bodies. Our mission s RRT technique is analogous to doing a CAT scan of the asteroid from orbit. Closely sampled radar echoes are processed to yield volumetric maps of mechanical and compositional boundaries, and to measure interior material dielectric properties. The RRT instrument is a radar that operates at 5 and 15 MHz with two 30-m (tip-to-tip) dipole antennas that are used in a cross-dipole configuration. The radar transmitter and receiver electronics have heritage from JPL's MARSIS contribution to Mars Express, and the antenna is similar to systems used in IMAGE and LACE missions. The 5-MHz channel is designed to penetrate greater than 1 km of basaltic rock, and 15-MHz penetrates a few hundred meters or more. In addition to RRT volumetric imaging, we use redundant color cameras to explore the surface expressions of unit boundaries, in order to relate interior radar imaging to what is observable from spacecraft imaging and from Earth. The camera also yields stereo color imaging for geology and RRT-related compositional analysis. Gravity and high fidelity geodesy are used to explore how interior structure is expressed in shape, density, mass distribution and spin. Ion thruster propulsion is utilized by Deep Interior to enable tomographic radar mapping of multiple asteroids. Within the Discovery AO scheduling parameters we identify two targets, S-type 1999 ND43 (approximately 500 m diameter) and V-type 3908 Nyx (approximately 1 km), asteroids whose compositions bracket the diversity of solar system materials that we are likely to encounter, from undifferentiated to highly evolved. The 5-15 MHz radar is capable of probing more primitive bodies (e.g. comets or C-types) that may be available given other launch schedules. 5 MHz radar easily penetrates, with the required SNR , greater than 1 km of basalt (a good analog for Nyx). Basalt has a greater loss tangent than expected for most asteroids, although iron-rich M-types are probably not appropriate targets. 15 MHz radar penetrates the outer approximately 100 m of rocky 1 km asteroids and the deep interiors of comets. Laboratory studies of the most common NE0 materials expected (S-, C- and V-type meteorite analogs) will commence in 2005.

  2. Ongoing Mars Missions: Extended Mission Plans

    NASA Astrophysics Data System (ADS)

    Zurek, Richard; Diniega, Serina; Crisp, Joy; Fraeman, Abigail; Golombek, Matt; Jakosky, Bruce; Plaut, Jeff; Senske, David A.; Tamppari, Leslie; Thompson, Thomas W.; Vasavada, Ashwin R.

    2016-10-01

    Many key scientific discoveries in planetary science have been made during extended missions. This is certainly true for the Mars missions both in orbit and on the planet's surface. Every two years, ongoing NASA planetary missions propose investigations for the next two years. This year, as part of the 2016 Planetary Sciences Division (PSD) Mission Senior Review, the Mars Odyssey (ODY) orbiter project submitted a proposal for its 7th extended mission, the Mars Exploration Rover (MER-B) Opportunity submitted for its 10th, the Mars Reconnaissance Orbiter (MRO) for its 4th, and the Mars Science Laboratory (MSL) Curiosity rover and the Mars Atmosphere and Volatile Evolution (MVN) orbiter for their 2nd extended missions, respectively. Continued US participation in the ongoing Mars Express Mission (MEX) was also proposed. These missions arrived at Mars in 2001, 2004, 2006, 2012, 2014, and 2003, respectively. Highlights of proposed activities include systematic observations of the surface and atmosphere in twilight (early morning and late evening), building on a 13-year record of global mapping (ODY); exploration of a crater rim gully and interior of Endeavour Crater, while continuing to test what can and cannot be seen from orbit (MER-B); refocused observations of ancient aqueous deposits and polar cap interiors, while adding a 6th Mars year of change detection in the atmosphere and the surface (MRO); exploration and sampling by a rover of mineralogically diverse strata of Mt. Sharp and of atmospheric methane in Gale Crater (MSL); and further characterization of atmospheric escape under different solar conditions (MVN). As proposed, these activities follow up on previous discoveries (e.g., recurring slope lineae, habitable environments), while expanding spatial and temporal coverage to guide new detailed observations. An independent review panel evaluated these proposals, met with project representatives in May, and made recommendations to NASA in June 2016. In this presentation, we will highlight the planned activities of these NASA Mars missions, as they start new chapters in their historic exploration of the dynamic and complex planet that is Mars.

  3. SUNQUAKE GENERATION BY CORONAL MAGNETIC RESTRUCTURING

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Russell, A. J. B.; Mooney, M. K.; Leake, J. E.

    2016-11-01

    Sunquakes are the surface signatures of acoustic waves in the Sun’s interior that are produced by some but not all flares and coronal mass ejections (CMEs). This paper explores a mechanism for sunquake generation by the changes in magnetic field that occur during flares and CMEs, using MHD simulations with a semiempirical FAL-C atmosphere to demonstrate the generation of acoustic waves in the interior in response to changing magnetic tilt in the corona. We find that Alfvén–sound resonance combined with the ponderomotive force produces acoustic waves in the interior with sufficient energy to match sunquake observations when the magnetic fieldmore » angle changes of the order of 10° in a region where the coronal field strength is a few hundred gauss or more. The most energetic sunquakes are produced when the coronal field is strong, while the variation of magnetic field strength with height and the timescale of the change in tilt are of secondary importance.« less

  4. Featured Image: Mixing Chemicals in Stars

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2017-10-01

    How do stars mix chemicals in their interiors, leading to the abundances we measure at their surfaces? Two scientists from the Planetary Science Institute in Arizona, Tamara Rogers (Newcastle University, UK) and Jim McElwaine (Durham University, UK), have investigated the role that internal gravity waves have in chemical mixing in stellar interiors. Internal gravity waves not to be confused with the currently topical gravitational waves are waves that oscillate within a fluid that has a density gradient. Rogers and McElwaine used simulations to explore how these waves can cause particles in a stars interior to move around, gradually mixing the different chemical elements. Snapshots from four different times in their simulation can be seen below, with the white dots marking tracer particles and the colors indicating vorticity. You can see how the particles move in response to wave motion after the first panel. For more information, check out the paper below!CitationT. M. Rogers and J. N. McElwaine 2017 ApJL 848 L1. doi:10.3847/2041-8213/aa8d13

  5. Massive soliton stars

    NASA Technical Reports Server (NTRS)

    Chiu, Hong-Yee

    1990-01-01

    The structure of nontopological solutions of Einstein field equations as proposed by Friedberg, Lee, and Pang (1987) is examined. This analysis incorporates finite temperature effects and pair creation. Quarks are assumed to be the only species that exist in interior of soliton stars. The possibility of primordial creation of soliton stars in the incomplete decay of the degenerate vacuum in early universe is explored. Because of dominance of pair creation inside soliton stars, the luminosity of soliton stars is not determined by its radiative transfer characteristics, and the surface temperature of soliton stars can be the same as its interior temperature. It is possible that soliton stars are intense X-ray radiators at large distances. Soliton stars are nearly 100 percent efficient energy converters, converting the rest energy of baryons entering the interior into radiation. It is possible that a sizable number of baryons may also be trapped inside soliton stars during early epochs of the universe. In addition, if soliton stars exist they could assume the role played by massive black holes in galactic centers.

  6. 3D high-resolution radar imaging of small body interiors

    NASA Astrophysics Data System (ADS)

    Sava, Paul; Asphaug, Erik

    2017-10-01

    Answering fundamental questions about the origin and evolution of small planetary bodies hinges on our ability to image their interior structure in detail and at high resolution (Asphaug, 2009). We often infer internal structure from surface observations, e.g. that comet 67P/Churyumov-Gerasimenko is a primordial agglomeration of cometesimals (Massironi et al., 2015). However, the interior structure is not easily accessible without systematic imaging using, e.g., radar transmission and reflection data, as suggested by the CONSERT experiment on Rosetta. Interior imaging depends on observations from multiple viewpoints, as in medical tomography.We discuss radar imaging using methodology adapted from terrestrial exploration seismology (Sava et al., 2015). We primarily focus on full wavefield methods that facilitate high quality imaging of small body interiors characterized by complex structure and large contrasts of physical properties. We consider the case of a monostatic system (co-located transmitters and receivers) operated at two frequency bands, centered around 5 and 15 MHz, from a spacecraft in slow polar orbit around a spinning comet nucleus. Assuming that the spin period is significantly (e.g. 5x) faster than the orbital period, this configuration allows repeated views from multiple directions (Safaeinili et al., 2002)Using realistic numerical experiments, we argue that (1) the comet/asteroid imaging problem is intrinsically 3D and conventional SAR methodology does not satisfy imaging, sampling and resolution requirements; (2) imaging at different frequency bands can provide information about internal surfaces (through migration) and internal volumes (through tomography); (3) interior imaging can be accomplished progressively as data are being acquired through successive orbits around the studied object; (4) imaging resolution can go beyond the apparent radar frequency band by deconvolution of the point-spread-function characterizing the imaging system; and (5) exploiting the known (and complex) exterior shape of the studied body facilitates high-resolution imaging and tomography comparable with what could be accomplished by bi/multi-static systems.

  7. 43 CFR 3251.12 - What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration Operations? 3251.12 Section 3251.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL...

  8. 43 CFR 3251.12 - What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration Operations? 3251.12 Section 3251.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL...

  9. 43 CFR 3251.12 - What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration Operations? 3251.12 Section 3251.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL...

  10. 43 CFR 3251.12 - What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false What action will BLM take on my Notice of Intent to Conduct Geothermal Resource Exploration Operations? 3251.12 Section 3251.12 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) GEOTHERMAL...

  11. MESUR Pathfinder Science Investigations

    NASA Technical Reports Server (NTRS)

    Golombek, M.

    1993-01-01

    The MESUR (Mars Environmental Survey) Pathfinder mission is the first Discovery mission planned for launch in 1996. MESUR Pathfinder is designed as an engineering demonstration of the entry, descent and landing approach to be employed by the follow-on MESUR Network mission, which will land of order 10 small stations on the surface of Mars to investigate interior, atmospheric and surface properties. Pathfinder is a small Mars lander, equipped with a microrover to deploy instruments and explore the local landing site. Instruments selected for Pathfinder include a surface imager on a 1 m pop-up mast (stereo with spectral filters), an atmospheric structure instrument/surface meteorology package, and an alpha proton x-ray spectrometer. The microrover will carry the alpha proton x-ray spectrometer to a number of different rocks and surface materials and provide close-up imaging...

  12. 43 CFR 4.1383 - Hearing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Hearing. 4.1383 Section 4.1383 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals Review of Office of Surface Mining...

  13. The Nonrandom Distribution of Interior Landforms for 100-km Diameter Craters on Mercury Suggests Regional Variations in Near-Surface Mechanical Properties

    NASA Astrophysics Data System (ADS)

    Herrick, R. R.

    2018-05-01

    There is great diversity of appearance in the interiors of 100-km diameter craters. The spatial distribution of interior landforms is clustered and nonrandom, but does not clearly correlate with Mercury's surface geology patterns.

  14. 43 CFR 4.1383 - Hearing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Hearing. 4.1383 Section 4.1383 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals Review of Office of Surface Mining...

  15. Transverse electromagnetic horn antenna with resistively-loaded exterior surfaces

    DOEpatents

    Aurand, John F.

    1999-01-01

    An improved transverse electromagnetic (TEM) horn antenna comprises a resistive loading material on the exterior surfaces of the antenna plates. The resistive loading material attenuates or inhibits currents on the exterior surfaces of the TEM horn antenna. The exterior electromagnetic fields are of opposite polarity in comparison to the primary and desired interior electromagnetic field, thus inherently cause partial cancellation of the interior wave upon radiation or upon reception. Reducing the exterior fields increases the radiation efficiency of the antenna by reducing the cancellation of the primary interior field (supported by the interior surface currents). This increases the transmit gain and receive sensitivity of the TEM horn antenna, as well as improving the transient (time-domain) response.

  16. Measuring the Pulse of Mars

    NASA Image and Video Library

    2018-01-25

    Elysium Planitia, a flat-smooth plain just north of the equator makes for the perfect location from which to study the deep Martian interior. Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, is designed to study the deep interior of Mars. The mission seeks the fingerprints of the processes that formed the rocky planets of the solar system. Its landing site, Elysium Planitia, was picked from 22 candidates, and is centered at about 4.5 degrees north latitude and 135.9 degrees east longitude; about 373 miles (600 kilometers) from Curiosity's landing site, Gale Crater. The locations of other Mars landers and rovers are labeled. InSight's scientific success and safe landing depends on landing in a relatively flat area, with an elevation low enough to have sufficient atmosphere above the site for a safe landing. It also depends on landing in an area where rocks are few in number. Elysium Planitia has just the right surface for the instruments to be able to probe the deep interior, and its proximity to the equator ensures that the solar-powered lander is exposed to plenty of sunlight. https://photojournal.jpl.nasa.gov/catalog/PIA22232

  17. The Spherical Brazil Nut Effect and its Significance to Asteroids

    NASA Astrophysics Data System (ADS)

    Perera, Viranga; Jackson, Alan P.; Asphaug, Erik; Ballouz, Ronald-Louis

    2015-11-01

    Asteroids are intriguing remnant objects from the early solar system. They can inform us on how planets formed, they could possibly impact the earth in the future, and they likely contain precious metals; for those reasons, there will be future exploration and mining space missions to them. Telescopic observations and spacecraft data have helped us understand basic properties such as their size, mass, spin rate, orbital elements, and their surface properties. However, their interior structures have remained elusive. In order to fully characterize the interiors of these bodies, seismic data will be necessary. However, we can infer their interior structures by combining several key factors that we know about them: 1). Past work has shown that asteroids between 150 m to 10 km in size are rubble-piles that are a collection of particles held together by gravity and possibly cohesion. 2). Asteroid surfaces show cratering that suggests that past impacts would have seismically shaken these bodies. 3). Spacecraft images show that some asteroids have large protruding boulders on their surfaces. A rubble-pile object made of particles of different sizes and that undergoes seismic shaking will experience granular flow. Specifically, a size sorting effect known as the Brazil Nut Effect will lead larger particles to move towards the surface while smaller particles will move downwards. Previous work has suggested that this effect could possibly explain not only why there are large boulders on the surfaces of some asteroids but also might suggest that the interior particles of these bodies would be organized by size. Previous works have conducted computer simulations and lab experiments; however, all the particle configurations used have been either cylindrical or rectangular boxes. In this work we present a spherical configuration of self-gravitating particles that is a better representation of asteroids. Our results indicate that while friction is not necessary for the Brazil Nut Effect to take place, it aids the sorting process after a certain energy threshold is met. Even though we find that the outer layers of asteroids could possibly be size sorted, the inner regions are likely mixed.

  18. Modeling the hydrogeophysical response of lake talik evolution

    USGS Publications Warehouse

    Minsley, Burke J.; Wellman, Tristan; Walvoord, Michelle Ann; Revil, Andre

    2014-01-01

    Geophysical methods provide valuable information about subsurface permafrost and its relation to dynamic hydrologic systems. Airborne electromagnetic data from interior Alaska are used to map the distribution of permafrost, geological features, surface water, and groundwater. To validate and gain further insight into these field datasets, we also explore the geophysical response to hydrologic simulations of permafrost evolution by implementing a physical property relationship that connects geology, temperature, and ice saturation to changes in electrical properties.

  19. InSight Atlas V ISA-ASA Transport

    NASA Image and Video Library

    2018-03-05

    At Vandenberg Air Force Base in California, the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V rocket is prepared for transport from Building 7525 to Space Launch Complex 3. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  20. InSight Atlas V ISA-ASA Lift and Mate

    NASA Image and Video Library

    2018-03-05

    At Space Launch Complex 3 at Vandenberg Air Force Base in California, technicians and engineers mate the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V to a Centaur upper stage. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  1. InSight Atlas V ISA-ASA Transport

    NASA Image and Video Library

    2018-03-05

    At Space Launch Complex 3 at Vandenberg Air Force Base in California, the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V are lifted by crane for mating atop a Centaur upper stage. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  2. InSight Atlas V ISA-ASA Lift and Mate

    NASA Image and Video Library

    2018-03-05

    At Space Launch Complex 3 at Vandenberg Air Force Base in California, a technician assists as the aft stub adapter (ASA) and interstage adapter (ISA) for a United Launch Alliance (ULA) Atlas V is lifted by crane for mating atop a Centaur upper stage. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  3. 40 CFR 745.63 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., but not limited to, certain window, floor, and stair surfaces. Impact surface means an interior or.... Interior window sill means the portion of the horizontal window ledge that protrudes into the interior of... based on the equation [60+(3*100)+(4*110)]/(1+3+4). Window trough means, for a typical double-hung...

  4. Sensory and Emotional Perception of Wooden Surfaces through Fingertip Touch

    PubMed Central

    Bhatta, Shiv R.; Tiippana, Kaisa; Vahtikari, Katja; Hughes, Mark; Kyttä, Marketta

    2017-01-01

    Previous studies on tactile experiences have investigated a wide range of material surfaces across various skin sites of the human body in self-touch or other touch modes. Here, we investigate whether the sensory and emotional aspects of touch are related when evaluating wooden surfaces using fingertips in the absence of other sensory modalities. Twenty participants evaluated eight different pine and oak wood surfaces, using sensory and emotional touch descriptors, through the lateral motion of active fingertip exploration. The data showed that natural and smooth wood surfaces were perceived more positively in emotional touch than coated surfaces. We highlight the importance of preserving the naturalness of the surface texture in the process of wood-surface treatment so as to improve positive touch experiences, as well as avoid negative ones. We argue that the results may offer possibilities in the design of wood-based interior products with a view to improving consumer touch experiences. PMID:28348541

  5. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.

    2000-01-01

    Thermo-oxidative aging produces a nonuniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hr. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and coefficient of thermal expansion (CTE) of nitrogen aged specimens were measured directly. The nitrogen-aged specimens were assumed to have the same properties as the interior material in the air-aged specimens. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  6. Baroclinic instability in the interiors of the giant planets: A cooling history of Uranus?

    NASA Technical Reports Server (NTRS)

    Holme, Richard; Ingersoll, Andrew P.

    1994-01-01

    We propose a quasigeostrophic, baroclinic model for heat transport within the interior of a stably stratified Jovian planet, based on motion in thin cylindrical annuli. Density decreases from the center outward and is zero at the surface of the planet. In the homogeneous case (no core), we find instability for the poles hotter than the equator, but not for the reverse. If the motion is bounded by an impenetrable core, instability occurs for both cases. Much of the behavior can be explained by analogy to conventional baroclinic instability theory. Motivated by our results, we explore a possible connection between the highly inclined rotation axis of Uranus and its anomalously low surface heat flux. We assume that the planets formed hot. Our conjecture is that heat was efficiently convected outwards by baroclinic instability in Uranus (with the poles hotter than the equator), but not in the other three Jovian planets. The surface temperature was higher for the stably stratified case (Uranus), leading to a higher rate of infrared emission and faster cooling. Therefore, we propose that Uranus lost its internal heat sooner than Neptune because baroclinic motions, permitted by its inclination to the sun, were able to extract its internal heat while the surface was still warm.

  7. Microbial Habitability and Pleistocene Aridification of the Asian Interior

    NASA Astrophysics Data System (ADS)

    Wang, Jiuyi; Lowenstein, Tim K.; Fang, Xiaomin

    2016-06-01

    Fluid inclusions trapped in ancient halite can contain a community of halophilic prokaryotes and eukaryotes that inhabited the surface brines from which the halite formed. Long-term survival of bacteria and archaea and preservation of DNA have been reported from halite, but little is known about the distribution of microbes in buried evaporites. Here we report the discovery of prokaryotes and single-celled algae in fluid inclusions in Pleistocene halite, up to 2.26 Ma in age, from the Qaidam Basin, China. We show that water activity (aw), a measure of water availability and an environmental control on biological habitability in surface brines, is also related to microbe entrapment in fluid inclusions. The aw of Qaidam Basin brines progressively decreased over the last ˜1 million years, driven by aridification of the Asian interior, which led to decreased precipitation and water inflow and heightened evaporation rates. These changes in water balance produced highly concentrated brines, which reduced the habitability of surface lakes and decreased the number of microbes trapped in halite. By 0.13 Ma, the aw of surface brines approached the limits tolerated by halophilic prokaryotes and algae. These results show the response of microbial ecosystems to climate change in an extreme environment, which will guide future studies exploring deep life on Earth and elsewhere in the Solar System.

  8. Exploration of a New World: Saturn's Moon Titan

    NASA Astrophysics Data System (ADS)

    Hansen, Candice; Ray, Trina; Matson, Dennis L.; Lebreton, Jean-Pierre; Waite, J. Hunter; Turtle, Elizabeth; Bolton, Scott; Spilker, Linda

    Before the Cassini-Huygens spacecraft arrived at the Saturnian system very little was known about Saturn's largest moon Titan. Ground-based observations and Voyager data had revealed a thick atmosphere composed primarily of nitrogen with a small percentage of methane and higher order hydrocarbons. The surface was obscured by hydrocarbon smog. Where do you begin, when exploring a new world? What were the basic science objectives? What were the exploration objectives? How well has Cassini-Huygens achieved them? What are the pragmatic considerations in using a spacecraft equipped with 12 sophisticated instruments and no moving parts? How were the 45 Titan flybys in the primary mission to be used? We started by organizing science goals into four high level disciplines for the orbital investigation from Cassini: 1) study of the interior, 2) mapping of the surface geology and composition, 3) study of atmospheric structure, composition and dynamics, and 4) characterization of Titan's interaction with Saturn's magnetosphere. The Huygens probe gave us detailed in situ "ground truth" from the upper atmosphere to the surface, for comparison to orbital data. Now at the end of the primary mission, we are embarking on Cassini's 2 year "Equinox" extended mission, and planning a possible 6 year Cassini "Solstice" Mission to follow if all goes well. When we arrived at Titan it was the equivalent of January and by the time the Solstice Mission is complete it will be June on Titan. Now is a good time to review our progress and our future goals for the exploration of Titan. For each of the four disciplines we will review the goals and achievements of the primary mission, the way in which the 26 Titan flybys in the 2 year Equinox mission fills in gaps left by the primary mission, and look ahead to what could be done in a Solstice Mission. Cassini has discovered seas of "sand" dunes, lakes in the polar regions, and a young surface marked by few craters. The blank spots on the map are waiting to be filled in by higher resolution imaging and radar swaths during the Equinox mission. Is there a liquid layer in Titan's interior? A few more gravity passes and radar swaths are needed to answer this question. To-date no interior magnetic field has been detected, so a very close Titan flyby is planned at the end of the Equinox mission to go below the ionosphere. Titan's atmosphere has weather that can be compared to earth. Clouds form. Rain falls. The over-arching goal for the Cassini Solstice mission would be to observe changes: seasonal certainly, and any other surface activity. Will the current northern lakes dry up and new southern ones form? With the luxury of time and numerous flybys the Cassini / Huygens mission is slowly revealing a complex, new world. Copyright 2008 California Institute of Technology. Government sponsorship acknowledged.

  9. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the second Mars Exploration Rover, Opportunity, is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

    NASA Image and Video Library

    2003-07-07

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the second Mars Exploration Rover, Opportunity, is poised for launch after rollback of the Mobile Service Tower. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

  10. KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

    NASA Image and Video Library

    2003-07-07

    KENNEDY SPACE CENTER, FLA. - On Launch Complex 17-B, Cape Canaveral Air Force Station, the Delta II Heavy launch vehicle carrying the rover "Opportunity" for the second Mars Exploration Rover mission launches at 11:18:15 p.m. EDT. Opportunity will reach Mars on Jan. 25, 2004. Together the two MER rovers, Spirit (launched June 10) and Opportunity, seek to determine the history of climate and water at two sites on Mars where conditions may once have been favorable to life. The rovers are identical. They will navigate themselves around obstacles as they drive across the Martian surface, traveling up to about 130 feet each Martian day. Each rover carries five scientific instruments including a panoramic camera and microscope, plus a rock abrasion tool that will grind away the outer surfaces of rocks to expose their interiors for examination. Each rover’s prime mission is planned to last three months on Mars.

  11. Trailing edge cooling using angled impingement on surface enhanced with cast chevron arrangements

    DOEpatents

    Lee, Ching-Pang; Heneveld, Benjamin E.; Brown, Glenn E.; Klinger, Jill

    2015-05-26

    A gas turbine engine component, including: a pressure side (12) having an interior surface (34); a suction side (14) having an interior surface (36); a trailing edge portion (30); and a plurality of suction side and pressure side impingement orifices (24) disposed in the trailing edge portion (30). Each suction side impingement orifice is configured to direct an impingement jet (48) at an acute angle (52) onto a target area (60) that encompasses a tip (140) of a chevron (122) within a chevron arrangement (120) formed in the suction side interior surface. Each pressure side impingement orifice is configured to direct an impingement jet at an acute angle onto an elongated target area that encompasses a tip of a chevron within a chevron arrangement formed in the pressure side interior surface.

  12. Scattered Atomic Oxygen Effects on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K. R.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Low Earth orbital (LEO) atomic oxygen cannot only erode the external surfaces of polymers on spacecraft, but can cause degradation of surfaces internal to components on the spacecraft where openings to the space environment exist. Although atomic oxygen attack on internal or interior surfaces may not have direct exposure to the LEO atomic oxygen flux scattered impingement can have serious degradation effects where sensitive interior surfaces are present. The effects of atomic oxygen erosion of polymer interior to an aperture on a spacecraft is simulated using Monte Carlo computational techniques. A 2-dimensional model is used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of distance into a parallel walled cavity. The degree of erosion re1ative is compared between the various interior locations and the external surface of a LEO spacecraft.

  13. Atomic Oxygen Effects on Spacecraft Materials

    NASA Technical Reports Server (NTRS)

    Banks, Bruce A.; Miller, Sharon K. R.; deGroh, Kim K.; Demko, Rikako

    2003-01-01

    Low Earth orbital (LEO) atomic oxygen cannot only erode the external surfaces of polymers on spacecraft, but can cause degradation of surfaces internal to components on the spacecraft where openings to the space environment exist. Although atomic oxygen attack on internal or interior surfaces may not have direct exposure to the LEO atomic oxygen flux, scattered impingement can have can have serious degradation effects where sensitive interior surfaces are present. The effects of atomic oxygen erosion of polymers interior to an aperture on a spacecraft is simulated using Monte Carlo computational techniques. A 2-dimensional model is used to provide quantitative indications of the attenuation of atomic oxygen flux as a function of distance into a parallel walled cavity. The degree of erosion relative is compared between the various interior locations and the external surface of an LEO spacecraft.

  14. Size-induced variations in bulk/surface structures and their impact on photoluminescence properties of GdVO4:Eu3+ nanoparticles.

    PubMed

    Yang, Liusai; Li, Liping; Zhao, Minglei; Li, Guangshe

    2012-07-28

    This work explores the size-induced lattice modification and its relevance to photoluminescence properties of tetragonal zircon-type GdVO(4):Eu(3+) nanostructures. GdVO(4):Eu(3+) nanoparticles with crystallite sizes ranging from 14.4 to 24.7 nm were synthesized by a hydrothermal method using sodium citrate as a capping agent. Regardless of the reaction temperatures, all samples retained an ellipsoidal-like morphology. Nevertheless, as the crystallite size reduces, there appears a tensile strain and lattice distortion, which is accompanied by a lattice expansion and a decreased symmetry of structural units. These lattice modifications could be associated with the changes in the interior chemical bonding due to the interactions of surface defect dipoles that have imposed an increased negative pressure with crystallite size reduction. Furthermore, crystallite size reduction also led to a significant increase in the amounts of surface hydroxyl groups and citric species, as well as the concentration of the surface Eu(3+) ions. When Eu(3+) was taken as a structural probe, it was found that the asymmetric ratio (I(02)/I(01)) of Eu(3+) gradually declined to show a remarkable decrease in color chromaticity as crystallite size reduces, which could be interpreted as due to the change of local environments of Eu(3+) ions from the interior to the surface of the nanoparticles.

  15. Dissipation in the deep interiors of Ganymede and Europa

    NASA Astrophysics Data System (ADS)

    Hussmann, Hauke; Shoji, Daigo; Steinbruegge, Gregor; Stark, Alexander; Sohl, Frank

    2017-04-01

    Jupiter's satellites are subject to strong tidal forces which result in variations of the gravitational potential and deformations of the satellites' surfaces on the diurnal tidal cycle. Tidal flexing in the deep interiors can be a significant heat source for the satellites' thermal-orbital evolution. Whereas typical structure models of Europa consist of a core, a silicate mantle, an ocean and an outer ice-I shell [1], pressures inside Ganymede are sufficient for high-pressure ice phases to occur between the silicate mantle and the ocean [2]. With current data it is unknown whether the deep interiors (i.e., Europa's silicate shell and Ganymede's silicate mantle and/or high-pressure ice layer) are dissipative. Other possibilities would be that the dissipation rates are in general very low (unlikely at least for Europa due to recent observations) or that dissipative processes are mainly occurring in the ice-I shell and/or ocean. Thus, for evaluations of the heating state of these satellites, it is important to measure the magnitude of the interior dissipation. However, observation of the interior layers such as high-pressure ice layers is more challenging than that of the surface ice-I layer. Here we suggest a method to constrain the dissipation states of the deep interiors of Ganymede and Europa by altimetry and gravity measurements from an orbiting or multi-flyby spacecraft. Tidal variations are generally described by the Love numbers k2 and h2 for the tide-induced potential variation due to internal mass redistribution and the radial surface displacement, respectively. The phase-lags of these complex numbers contain information about the rheological and dissipative states of the satellites. For the satellites we assume a decoupling of the outer ice-shell from the deep interior by a liquid subsurface water ocean. We show that, in this case, the phase-lag difference between the lags of k2 and h2 can provide information on the rheological and thermal state of the deep interiors if the viscosities of the deeper layers are small (the phase-lag difference is almost independent of the dissipation in the surface layer). In case of Ganymede, phase-lag differences can reach values of a few degrees for high-pressure ice viscosities of 1e13-1e14 Pa s (around the lower boundary at its melting temperature) and would indicate a highly dissipative state of the deep interior. In this case, in contrast to the phase lags itself, the phase-lag difference is dominated by dissipation in the high-pressure ice layer rather than dissipation within the ice-I shell. These phase lags would be detectable from spacecraft in orbit around the satellite [3]. For Europa the phase-lag difference could reach values exceeding 20 deg if the silicate mantle contains melt and phase-lag measurements could help distinguish between (1) a hot dissipative (melt-containing) silicate mantle which would in thermal equilibrium correspond to a very thin outer ice-I shell and (2) a cold deep interior implying that dissipation would mainly occur in a thick (several tens of km) outer ice-I shell. These measurements are highly relevant for ESA's Jupiter Icy Moons Explorer (JUICE) and NASA's Europa Multiple Flyby Mission, both targeted for the Jupiter system. References: [1] Schubert, G., F. Sohl and H. Hussmann 2009. Interior of Europa. In: Europa, (R.T. Pappalardo, W.B. McKinnon, K. Khurana, Eds.), University of Arizona Press, pp. 353 - 368. [2] Schubert G., J. D. Anderson, T. Spohn, and W. B. McKinnon 2004. Interior composition, structure, and dynamics of the Galilean satellites. In: F. Bagenal, T. E. Dowling, and W. B. McKinnon (eds.) Jupiter. The Planet, Satellites, and Magnetosphere, pp. 281-306. Cambridge University Press. [3] Hussmann, H., D. Shoji, G. Steinbrügge, A. Stark, F. Sohl 2016. Constraints on dissipation in the deep interiors of Ganymede and Europa from tidal phase-lags. Cel. Mech. Dyn. Astr. 126, 131 - 144.

  16. APOLLO XII - ART CONCEPT - COMMAND MODULE

    NASA Image and Video Library

    1969-11-10

    S69-58005 (10 Nov. 1969) --- An artist's concept of the Apollo 12 Command Module's (CM) interior, with the command module pilot at the controls. The Apollo 12 Lunar Module (LM) and a portion of the lunar surface are seen out of the window. Astronaut Richard F. Gordon Jr. will maneuver the Apollo 12 Command and Service Modules (CSM) in lunar orbit while astronauts Charles Conrad Jr., commander, and Alan L. Bean, lunar module pilot, explore the moon.

  17. 77 FR 67024 - Notice of Proposed Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-08

    ... procedures and requirements for terminating jurisdiction of surface coal mining and reclamation operations... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement Notice of Proposed Information Collection AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Notice...

  18. 76 FR 50708 - Texas Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-16

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 943... AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and opportunity for public hearing. SUMMARY: We, the Office of Surface Mining Reclamation...

  19. 77 FR 21807 - Notice of Proposed Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-11

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement Notice of Proposed Information Collection AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Notice... of Surface Mining Reclamation and Enforcement (OSM) is announcing its intention to request approval...

  20. 76 FR 12857 - Montana Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 926... of Surface Mining Reclamation and Enforcement, Interior. ACTION: Final rule; approval of amendment... the Surface Mining Control and Reclamation Act of 1977 (``SMCRA'' or ``the Act''). Montana proposed...

  1. 78 FR 11617 - Pennsylvania Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 938... Surface Mining Reclamation and Enforcement (OSM), Interior. ACTION: Proposed rule; reopening of comment... regulatory program (the ``Pennsylvania program'') under the Surface Mining Control and Reclamation Act of...

  2. Generation of 3-D surface maps in waste storage silos using a structured light source

    NASA Technical Reports Server (NTRS)

    Burks, B. L.; Rowe, J. C.; Dinkins, M. A.; Christensen, B.; Selleck, C.; Jacoboski, D.; Markus, R.

    1992-01-01

    Surface contours inside the large waste storage tanks typical of the Department of Energy (DOE) complex are, in general, highly irregular. In addition to pipes and other pieces of equipment in the tanks, the surfaces may have features such as mounds, fissures, crystalline structures, and mixed solid and liquid forms. Prior to remediation activities, it will be necessary to characterize the waste to determine the most effective remediation approaches. Surface contour data will be required both prior to and during remediation. The use is described of a structured light source to generate 3-D surface contour maps of the interior of waste storage silos at the Feed Materials Production Center at Fernald, OH. The landscape inside these large waste storage tanks bears a strong resemblance to some of the landscapes that might be encountered during lunar or planetary exploration. Hence, these terrestrial 3-D mapping techniques may be directly applicable to extraterrestrial exploration. In further development, it will be demonstrated that these 3-D data can be used for robotic task planning just as 3-D surface contour data of a satellite could be used to plan maintenance tasks for a space-based servicing robot.

  3. Space station architectural elements model study

    NASA Technical Reports Server (NTRS)

    Taylor, T. C.; Spencer, J. S.; Rocha, C. J.; Kahn, E.; Cliffton, E.; Carr, C.

    1987-01-01

    The worksphere, a user controlled computer workstation enclosure, was expanded in scope to an engineering workstation suitable for use on the Space Station as a crewmember desk in orbit. The concept was also explored as a module control station capable of enclosing enough equipment to control the station from each module. The concept has commercial potential for the Space Station and surface workstation applications. The central triangular beam interior configuration was expanded and refined to seven different beam configurations. These included triangular on center, triangular off center, square, hexagonal small, hexagonal medium, hexagonal large and the H beam. Each was explored with some considerations as to the utilities and a suggested evaluation factor methodology was presented. Scale models of each concept were made. The models were helpful in researching the seven beam configurations and determining the negative residual (unused) volume of each configuration. A flexible hardware evaluation factor concept is proposed which could be helpful in evaluating interior space volumes from a human factors point of view. A magnetic version with all the graphics is available from the author or the technical monitor.

  4. A boundary integral equation method using auxiliary interior surface approach for acoustic radiation and scattering in two dimensions.

    PubMed

    Yang, S A

    2002-10-01

    This paper presents an effective solution method for predicting acoustic radiation and scattering fields in two dimensions. The difficulty of the fictitious characteristic frequency is overcome by incorporating an auxiliary interior surface that satisfies certain boundary condition into the body surface. This process gives rise to a set of uniquely solvable boundary integral equations. Distributing monopoles with unknown strengths over the body and interior surfaces yields the simple source formulation. The modified boundary integral equations are further transformed to ordinary ones that contain nonsingular kernels only. This implementation allows direct application of standard quadrature formulas over the entire integration domain; that is, the collocation points are exactly the positions at which the integration points are located. Selecting the interior surface is an easy task. Moreover, only a few corresponding interior nodal points are sufficient for the computation. Numerical calculations consist of the acoustic radiation and scattering by acoustically hard elliptic and rectangular cylinders. Comparisons with analytical solutions are made. Numerical results demonstrate the efficiency and accuracy of the current solution method.

  5. Flexible Interior-Impression-Molding Tray

    NASA Technical Reports Server (NTRS)

    Anders, Jeffrey E.

    1991-01-01

    Device used inside combustion chamber of complicated shape for nondestructive evaluation of qualities of welds, including such features as offset, warping, misalignment of parts, and dropthrough. Includes flexible polypropylene tray trimmed to fit desired interior surface contour. Two neodymium boron magnets and inflatable bladder attached to tray. Tray and putty inserted in cavity to make mold of interior surface.

  6. The exploration of Titan with an orbiter and a lake probe

    NASA Astrophysics Data System (ADS)

    Mitri, Giuseppe; Coustenis, Athena; Fanchini, Gilbert; Hayes, Alex G.; Iess, Luciano; Khurana, Krishan; Lebreton, Jean-Pierre; Lopes, Rosaly M.; Lorenz, Ralph D.; Meriggiola, Rachele; Moriconi, Maria Luisa; Orosei, Roberto; Sotin, Christophe; Stofan, Ellen; Tobie, Gabriel; Tokano, Tetsuya; Tosi, Federico

    2014-12-01

    Fundamental questions involving the origin, evolution, and history of both Titan and the broader Saturnian system can be answered by exploring this satellite from an orbiter and also in situ. We present the science case for an exploration of Titan and one of its lakes from a dedicated orbiter and a lake probe. Observations from an orbit-platform can improve our understanding of Titan's geological processes, surface composition and atmospheric properties. Further, combined measurements of the gravity field, rotational dynamics and electromagnetic field can expand our understanding of the interior and evolution of Titan. An in situ exploration of Titan's lakes provides an unprecedented opportunity to understand the hydrocarbon cycle, investigate a natural laboratory for prebiotic chemistry and habitability potential, and study meteorological and marine processes in an exotic environment. We briefly discuss possible mission scenarios for a future exploration of Titan with an orbiter and a lake probe.

  7. 43 CFR 3482.3 - Mining operations maps.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Mining operations maps. 3482.3 Section... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING OPERATIONS RULES Exploration and Resource Recovery and Protection Plans § 3482.3 Mining operations maps. (a...

  8. 77 FR 8144 - Texas Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-14

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 943... AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Final rule; approval of amendment. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are approving three...

  9. 76 FR 44357 - Notice of Proposed Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-25

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement Notice of Proposed Information Collection AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior Department... Reduction Act of 1995, the Office of Surface Mining Reclamation and Enforcement (OSM) is announcing its...

  10. 76 FR 79213 - Notice of Proposed Information Collection

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-21

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement Notice of Proposed Information Collection AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Notice... 1995, the Office of Surface Mining Reclamation and Enforcement (OSM) is announcing that the information...

  11. 77 FR 58147 - Action Subject to Intergovernmental Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement Action Subject to Intergovernmental Review AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Notice. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement, are notifying the public that we...

  12. 76 FR 78312 - Action Subject to Intergovernmental Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-16

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement Action Subject to Intergovernmental Review AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Notice. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement, are notifying the public that we...

  13. 30 CFR 301.1 - Cross reference.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... within the jurisdiction of administrative law judges and the Interior Board of Surface Mining and... Resources BOARD OF SURFACE MINING AND RECLAMATION APPEALS, DEPARTMENT OF THE INTERIOR PROCEDURES UNDER SURFACE MINING CONTROL AND RECLAMATION ACT OF 1977 § 301.1 Cross reference. For special rules applicable...

  14. 77 FR 16260 - Notice of Proposed Information Collection for 1029-0035

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement Notice of Proposed Information Collection for 1029-0035 AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior..., the Office of Surface Mining Reclamation and Enforcement (OSM) is announcing that the information...

  15. 75 FR 22723 - Stream Protection Rule; Environmental Impact Statement

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Parts 780... of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; notice of intent to prepare an environmental impact statement. SUMMARY: We, the Office of Surface Mining Reclamation and...

  16. Process for sensing defects on a smooth cylindrical interior surface in tubing

    DOEpatents

    Dutton, G. Wayne

    1987-11-17

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90.degree. by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle.

  17. Process for sensing defects on a smooth cylindrical interior surface in tubing

    DOEpatents

    Dutton, G.W.

    1987-11-17

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90[degree] by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle. 6 figs.

  18. GCMS investigation of volatile compounds in green coffee affected by potato taste defect and the Antestia bug.

    PubMed

    Jackels, Susan C; Marshall, Eric E; Omaiye, Angelica G; Gianan, Robert L; Lee, Fabrice T; Jackels, Charles F

    2014-10-22

    Potato taste defect (PTD) is a flavor defect in East African coffee associated with Antestiopsis orbitalis feeding and 3-isopropyl-2-methoxypyrazine (IPMP) in the coffee. To elucidate the manifestation of PTD, surface and interior volatile compounds of PTD and non-PTD green coffees were sampled by headspace solid phase microextraction and analyzed by gas chromatography mass spectrometry. Principal component analysis of the chromatographic data revealed a profile of surface volatiles distinguishing PTD from non-PTD coffees dominated by tridecane, dodecane, and tetradecane. While not detected in surface volatiles, IPMP was found in interior volatiles of PTD coffee. Desiccated antestia bugs were analyzed by GCMS, revealing that the three most prevalent volatiles were tridecane, dodecane, and tetradecane, as was found in the surface profile PTD coffee. Coffee having visible insect damage exhibited both a PTD surface volatile profile and IPMP in interior volatiles, supporting the hypothesis linking antestia bug feeding activity with PTD profile compounds on the surface and IPMP in the interior of the beans.

  19. 43 CFR 3485.1 - Reports.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Reports. 3485.1 Section 3485.1 Public... OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING OPERATIONS RULES Reports, Royalties and Records § 3485.1 Reports. (a) Exploration reports. The operator/lessee shall file with the...

  20. 43 CFR 3485.1 - Reports.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Reports. 3485.1 Section 3485.1 Public... OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING OPERATIONS RULES Reports, Royalties and Records § 3485.1 Reports. (a) Exploration reports. The operator/lessee shall file with the...

  1. 43 CFR 3485.1 - Reports.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Reports. 3485.1 Section 3485.1 Public... OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING OPERATIONS RULES Reports, Royalties and Records § 3485.1 Reports. (a) Exploration reports. The operator/lessee shall file with the...

  2. InSight Atlas V Tower Roll

    NASA Image and Video Library

    2018-03-22

    At Space Launch Complex 3 at Vandenberg Air Force Base in California, the gantry is rolled back on the United Launch Alliance (ULA) Atlas V to a Centaur upper stage aft stub adapter (ASA) and interstage adapter (ISA) for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. The next step will be arrival of InSight encapsulated in its payload faring for mating atop the rocket. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  3. Origin and thermal evolution of Mars

    NASA Technical Reports Server (NTRS)

    Schubert, Gerald; Soloman, S. C.; Turcotte, D. L.; Drake, M. J.; Sleep, N. H.

    1990-01-01

    The thermal evolution of Mars is governed by subsolidus mantle convection beneath a thick lithosphere. Models of the interior evolution are developed by parameterizing mantle convective heat transport in terms of mantle viscosity, the superadiabatic temperature rise across the mantle, and mantle heat production. Geological, geophysical, and geochemical observations of the compositon and structure of the interior and of the timing of major events in Martian evolution are used to constrain the model computations. Such evolutionary events include global differentiation, atmospheric outgassing, and the formation of the hemispherical dichotomy and Tharsis. Numerical calculations of fully three-dimensional, spherical convection in a shell the size of the Martian mantle are performed to explore plausible patterns of Martian mantel convection and to relate convective features, such as plumes, to surface features, such as Tharsis. The results from the model calculations are presented.

  4. Interior design of the lunar outpost

    NASA Technical Reports Server (NTRS)

    Kennedy, Kriss J.

    1990-01-01

    This paper is part of an ongoing study on the interior design of a lunar outpost habitat facility. The concept presented represents the work done up to and including August 1989. This concept is part of NASA's ongoing effort to explore alternative options for planet surface systems habitation. Results of a volume analog study to determine the required pressurized volume are presented along with an internal layout of the habitat facility. The concept presented in this paper is a constructible lunar habitat that provides a living and working environment for a crew of 12. It is a 16-m diameter spherical pneumatic structure which contains 2145 cubic meters of volume. Five levels of living and working areas make up the 742 sq m of floor space. A 2-m vertical circulation shaft at the center allows for transfer of crew and equipment.

  5. 76 FR 12852 - Louisiana Regulatory Program/Abandoned Mine Land Reclamation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-09

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 918... Reclamation Plan AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Final rule; approval of amendment. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are...

  6. 75 FR 60373 - Louisiana Regulatory Program/Abandoned Mine Land Reclamation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 918... Reclamation Plan AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule... of Surface Mining Reclamation and Enforcement (OSM), are announcing receipt of a proposed amendment...

  7. 77 FR 16259 - Notice of Proposed Information Collection for 1029-0059

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-20

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement Notice of Proposed Information Collection for 1029-0059 AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior..., the Office of Surface Mining Reclamation and Enforcement (OSM) is announcing its intention to request...

  8. Exploring the Effectiveness of Blended Learning in Interior Design Education

    ERIC Educational Resources Information Center

    Afacan, Yasemin

    2016-01-01

    This study explores how blended learning can contribute to interior design students' learning outcomes, their engagement with non-studio courses and affect their learning achievements. Within the framework of the study, a blended learning experience was carried out in "IAED 342 Building Performance" module at Bilkent University, Turkey.…

  9. The Prefabricated Interior Design Studio: An Exploration into the History and Sustainability of Interior Prefabrication

    ERIC Educational Resources Information Center

    Schneiderman, Deborah; Freihoefer, Kara

    2013-01-01

    This article examines the integration of prefabrication into an interior design studio. A review of the literature revealed that while there is a paucity of categorical research focused on this subject, the subject is historically significant with an abundance of evidence regarding the prefabrication of the interior environment dating back…

  10. Present-day Mars' Seismicity Predicted from 3-D Thermal Evolution Models of Interior Dynamics

    NASA Astrophysics Data System (ADS)

    Knapmeyer, M.; Plesa, A. C.; Golombek, M.

    2016-12-01

    The InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) mission, to be launched in 2018, will carry the first in-situ seismic and heat flow instruments as well as a precision tracking on Mars. This Discovery-class mission will perform the most comprehensive geophysical investigation of the planet and provide an important baseline to constrain the present-day interior structure and heat budget of the planet, and, in turn, the thermal and chemical evolution of its interior. As the InSight lander will perform the measurements at a single location, numerical simulations of planetary interiors will greatly help to interpret the data in a global context. In this study we have used a series of numerical models of thermal evolution in a 3-D spherical geometry to assess the magnitude of present-day Mars seismicity. Our models assume a fixed crust with a variable thickness as inferred from gravity and topography data, that is enriched in radiogenic heat sources according to the surface abundances inferred from gamma-ray measurements. We test a diversity of parameters by varying the mantle reference viscosity as well as the depth-dependence of the viscosity, considering constant and variable thermal expansivity, varying the crustal thermal conductivity and the size of the core [1]. Our results predict an annual moment release between 1.60 x 1016 Nm and 5.46 x 1018 Nm similar to the values presented previously in [2] and [3]. However, while [2] used a mapping of tectonic surface faults to predict the spatial distribution of epicenters, we derive the distribution from the thermal evolution. Besides the Null-Hypothesis of a uniform distribution and the model of [2], this provides a new, self-consistent, competing hypothesis for both the amount and distribution of seismicity on Mars. [1] Plesa et al., LPSC, 2016 [2] Knapmeyer et al., JGR, 2006 [3] Golombek et al., Science 1992; LPSC 2002

  11. Landing Area Narrowed for 2016 InSight Mission to Mars

    NASA Image and Video Library

    2013-09-04

    The process of selecting a site for NASA's next landing on Mars, planned for September 2016, has narrowed to four semifinalist sites located close together in the Elysium Planitia region of Mars. The mission known by the acronym InSight will study the Red Planet's interior, rather than surface features, to advance understanding of the processes that formed and shaped the rocky planets of the inner solar system, including Earth. The location of the cluster of semifinalist landing sites for InSight is indicated on this near-global topographic map of Mars, which also indicates landing sites of current and past NASA missions to the surface of Mars. The mission's full name is Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport. The location of Elysium Planitia close to the Martian equator meets an engineering requirement for the stationary InSight lander to receive adequate solar irradiation year-round on its photovoltaic array. The location also meets an engineering constraint for low elevation, optimizing the amount of atmosphere the spacecraft can use for deceleration during its descent to the surface. The number of candidate landing sites for InSight was trimmed from 22 down to four in August 2013. This down-selection facilitates focusing the efforts to further evaluate the four sites. Cameras on NASA's Mars Reconnaissance Orbiter will be used to gather more information about them before the final selection. The topographic map uses data from the Mars Orbiter Laser Altimeter on NASA's Mars Global Surveyor spacecraft. The color coding on this map indicates elevation relative to a reference datum, since Mars has no "sea level." The lowest elevations are presented as dark blue; the highest as white. The difference between green and orange in the color coding is about 2.5 miles (4 kilometers) vertically. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA17357

  12. Multiple Fatigue Failure Behaviors and Long-Life Prediction Approach of Carburized Cr-Ni Steel with Variable Stress Ratio

    PubMed Central

    Deng, Hailong; Li, Wei; Zhao, Hongqiao; Sakai, Tatsuo

    2017-01-01

    Axial loading tests with stress ratios R of −1, 0 and 0.3 were performed to examine the fatigue failure behavior of a carburized Cr-Ni steel in the long-life regime from 104 to 108 cycles. Results show that this steel represents continuously descending S-N characteristics with interior inclusion-induced failure under R = −1, whereas it shows duplex S-N characteristics with surface defect-induced failure and interior inclusion-induced failure under R = 0 and 0.3. The increasing tension eliminates the effect of compressive residual stress and promotes crack initiation from the surface or interior defects in the carburized layer. The FGA (fine granular area) formation greatly depends on the number of loading cycles, but can be inhibited by decreasing the compressive stress. Based on the evaluation of the stress intensity factor at the crack tip, the surface and interior failures in the short life regime can be characterized by the crack growth process, while the interior failure with the FGA in the long life regime can be characterized by the crack initiation process. In view of the good agreement between predicted and experimental results, the proposed approach can be well utilized to predict fatigue lives associated with interior inclusion-FGA-fisheye induced failure, interior inclusion-fisheye induced failure, and surface defect induced failure. PMID:28906454

  13. 76 FR 76104 - Arkansas Regulatory Program and Abandoned Mine Land Reclamation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 904... Reclamation Plan AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period on proposed amendment. SUMMARY: We, the Office of Surface Mining Reclamation and...

  14. 77 FR 55430 - Arkansas Regulatory Program and Abandoned Mine Land Reclamation Plan

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-10

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 904... Reclamation Plan AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period on proposed amendment. SUMMARY: We, the Office of Surface Mining Reclamation and...

  15. 78 FR 41421 - Notice of Proposed Information Collection; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-10

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement [S1D1S SS08011000... Collection; Request for Comments AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior..., the Office of Surface Mining Reclamation and Enforcement (OSM) is announcing its intention to request...

  16. 78 FR 66381 - Notice of Proposed Information Collection; Request for Comments

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-05

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement [S1D1S SS08011000... Collection; Request for Comments AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior..., the Office of Surface Mining Reclamation and Enforcement (OSM) is announcing that the information...

  17. Two radars for the AIM mission to characterize the regolith and deep interior structure of the asteroid

    NASA Astrophysics Data System (ADS)

    Ciarletti, V.; Herique, A.; Plettemeier, D.

    2015-12-01

    Very little is known till now about the interior of asteroids. The information available has been so far mainly obtained through remote observations of the surface and inferred from theoretical modeling. Observations of asteroids deep interior and regolith structure are needed to better understand the asteroid accretion and dynamical evolution, and to provide answers that will directly improve our ability to understand and model the mechanisms driving Near Earth Asteroids (NEA) deflection and other risk mitigation techniques. Radar operating from a spacecraft is the only technique capable of characterizing the internal structure and heterogeneity from submetric to global scale for the benefit of science as well as for planetary defence or exploration. Access to the deep interior structure requires a low-frequency radar (LFR) that is able to penetrate and propagate throughout the complete body. The LFR will be a bi-static radar similar to the CONSERT radar designed for the Rosetta mission and will perform a tomography of the asteroid. On the other hand, the characterization of the first tens of meters of the subsurface with a submetric resolution will be achieved by a monostatic radar operating at higher frequencies (HFR). It will allow the identification of the layering and the reconnection of the surface features to the internal structure. Its design will be based on the design of the WISDOM radar developped for the ExoMars mission. This presentation reviews, in the context of the AIDA/AIM mission, the benefits of radar measurements performed from a spacecraft. The concept of both HFR and LFR are presented as well as the expected performances of the instruments.

  18. Microbial Habitability and Pleistocene Aridification of the Asian Interior.

    PubMed

    Wang, Jiuyi; Lowenstein, Tim K; Fang, Xiaomin

    2016-06-01

    Fluid inclusions trapped in ancient halite can contain a community of halophilic prokaryotes and eukaryotes that inhabited the surface brines from which the halite formed. Long-term survival of bacteria and archaea and preservation of DNA have been reported from halite, but little is known about the distribution of microbes in buried evaporites. Here we report the discovery of prokaryotes and single-celled algae in fluid inclusions in Pleistocene halite, up to 2.26 Ma in age, from the Qaidam Basin, China. We show that water activity (aw), a measure of water availability and an environmental control on biological habitability in surface brines, is also related to microbe entrapment in fluid inclusions. The aw of Qaidam Basin brines progressively decreased over the last ∼1 million years, driven by aridification of the Asian interior, which led to decreased precipitation and water inflow and heightened evaporation rates. These changes in water balance produced highly concentrated brines, which reduced the habitability of surface lakes and decreased the number of microbes trapped in halite. By 0.13 Ma, the aw of surface brines approached the limits tolerated by halophilic prokaryotes and algae. These results show the response of microbial ecosystems to climate change in an extreme environment, which will guide future studies exploring deep life on Earth and elsewhere in the Solar System. Halite fluid inclusions-Ancient microbes-Water activity-Qaidam Basin-Pleistocene aridification. Astrobiology 16, 379-388.

  19. Module Architecture for in Situ Space Laboratories

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    2010-01-01

    The paper analyzes internal outfitting architectures for space exploration laboratory modules. ISS laboratory architecture is examined as a baseline for comparison; applicable insights are derived. Laboratory functional programs are defined for seven planet-surface knowledge domains. Necessary and value-added departures from the ISS architecture standard are defined, and three sectional interior architecture options are assessed for practicality and potential performance. Contemporary guidelines for terrestrial analytical laboratory design are found to be applicable to the in-space functional program. Densepacked racks of system equipment, and high module volume packing ratios, should not be assumed as the default solution for exploration laboratories whose primary activities include un-scriptable investigations and experimentation on the system equipment itself.

  20. Methods and systems to thermally protect fuel nozzles in combustion systems

    DOEpatents

    Helmick, David Andrew; Johnson, Thomas Edward; York, William David; Lacy, Benjamin Paul

    2013-12-17

    A method of assembling a gas turbine engine is provided. The method includes coupling a combustor in flow communication with a compressor such that the combustor receives at least some of the air discharged by the compressor. A fuel nozzle assembly is coupled to the combustor and includes at least one fuel nozzle that includes a plurality of interior surfaces, wherein a thermal barrier coating is applied across at least one of the plurality of interior surfaces to facilitate shielding the interior surfaces from combustion gases.

  1. Exploring Venus: the Venus Exploration Analysis Group (VEXAG)

    NASA Astrophysics Data System (ADS)

    Ocampo, A.; Atreya, S.; Thompson, T.; Luhmann, J.; Mackwell, S.; Baines, K.; Cutts, J.; Robinson, J.; Saunders, S.

    In July 2005 NASA s Planetary Division established the Venus Exploration Analysis Group VEXAG http www lpi usra edu vexag in order to engage the scientific community at large in identifying scientific priorities and strategies for the exploration of Venus VEXAG is a community-based forum open to all interested in the exploration of Venus VEXAG was designed to provide scientific input and technology development plans for planning and prioritizing the study of Venus over the next several decades including a Venus surface sample return VEXAG regularly evaluates NASA s Venus exploration goals scientific objectives investigations and critical measurement requirements including the recommendations in the National Research Council Decadal Survey and NASA s Solar System Exploration Strategic Roadmap VEXAG will take into consideration the latest scientific results from ESA s Venus Express mission and the MESSENGER flybys as well as the results anticipated from JAXA s Venus Climate Orbiter together with science community inputs from venues such as the February 13-16 2006 AGU Chapman Conference to identify the scientific priorities and strategies for future NASA Venus exploration VEXAG is composed of two co-chairs Sushil Atreya University of Michigan Ann Arbor and Janet Luhmann University of California Berkeley VEXAG has formed three focus groups in the areas of 1 Planetary Formation and Evolution Surface and Interior Volcanism Geodynamics etc Focus Group Lead Steve Mackwell LPI 2 Atmospheric Evolution Dynamics Meteorology

  2. Compositional evidence regarding the origins of rims on Semarkona chondrules

    USGS Publications Warehouse

    Grossman, J.N.; Wasson, J.T.

    1987-01-01

    The compositions of the interiors and abraded surfaces of 7 chondrules from Semarkona (LL3.0) were measured by neutron activation analysis. For nonvolatile elements, the lithophile and siderophile element abundance patterns in the surfaces are generally similar to those in the corresponding interiors. Siderophile and chalcophile concentrations are much higher in the surfaces, whereas lithophile concentrations are similar in both fractions. Most of the similarities in lithophile patterns and some of the similarities in siderophile patterns between surfaces and interiors may reflect incomplete separation of the fractions in the laboratory, but for 3 or 4 chondrules the siderophile resemblance is inherent, implying that the surface and interior metal formed from a single precursor assemblage. Metal and sulfide-rich chondrule rims probably formed when droplets of these phases that migrated to the chondrule surface during melting were reheated and incorporated into matrix-like material that had accreted onto the surface. The moderately-volatile to volatile elements K, As and Zn tend to be enriched in the surfaces compared with other elements of similar mineral affinity; both enrichments and depletions are observed for other moderately volatile elements. A small fraction of chondrules experienced fractional evaporation while they were molten. ?? 1987.

  3. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Astrophysics Data System (ADS)

    Carpenter, K. G.; Schrijver, C. J.; Karovska, M.; Si Vision Mission Team

    2009-09-01

    The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a ``Flagship and Landmark Discovery Mission'' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a ``Pathways to Life Observatory'' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) and its ability to image the Biggest, Baddest, Coolest Stars.

  4. The Stellar Imager (SI) - A Mission to Resolve Stellar Surfaces, Interiors, and Magnetic Activity

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth; Schrijver, Carolus J.; Karovska, Margarita

    2007-01-01

    The Stellar Imager (SI) is a UV/Optical, Space-Based Interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. The ultra-sharp images of the Stellar Imager will revolutionize our view of many dynamic astrophysical processes by transforming point sources into extended sources, and snapshots into evolving views. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in the Universe. SI is included as a 'Flagship and Landmark Discovery Mission' in the 2005 NASA Sun Solar System Connection (SSSC) Roadmap and as a candidate for a 'Pathways to Life Observatory' in the NASA Exploration of the Universe Division (EUD) Roadmap (May, 2005). In this paper we discuss the science goals and technology needs of, and the baseline design for, the SI Mission (http://hires.gsfc.nasa.gov/si/) its ability to image the 'Biggest, Baddest, Coolest Stars'.

  5. Neutron Star Interior Composition Explorer (NICE)

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C.; Arzoumanian, Zaven

    2008-01-01

    This viewgraph presentation contains an overview of the mission of the Neutron Star Interior Composition Explorer (NICE), a proposed International Space Station (ISS) payload dedicated ot the study of neutron stars. There are also reviews of the Science Objectives of the payload,the science measurements, the design and the expected performance for the instruments for NICE,

  6. Superconductive wire

    DOEpatents

    Korzekwa, David A.; Bingert, John F.; Peterson, Dean E.; Sheinberg, Haskell

    1995-01-01

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity.

  7. Superconductive wire

    DOEpatents

    Korzekwa, D.A.; Bingert, J.F.; Peterson, D.E.; Sheinberg, H.

    1995-07-18

    A superconductive article is made by inserting a rigid mandrel into an internal cavity of a first metallic tube, said tube having an interior surface and an exterior surface, said interior surface defining the interior cavity, forming a layer of a superconductive material or superconductive precursor upon the exterior surface of said first metallic tube, machining the layer of superconductive material or superconductive precursor to a predetermined diameter to form an intermediate article configured for insertion into a second metallic tube having an interior diameter corresponding to the predetermined diameter, inserting the machined intermediate article into a second metallic tube having an internal diameter corresponding to the predetermined diameter of the intermediate article to form a composite intermediate article, reducing or ironing the composite intermediate article to a predetermined cross-sectional diameter, and sintering the reduced or ironed composite intermediate article at temperatures and for time sufficient for the superconductive material or superconductive precursor to exhibit superconductivity. 2 figs.

  8. Inspection of the interior surface of cylindrical vessels using optic fiber shearography

    NASA Astrophysics Data System (ADS)

    Liu, Bin; Wei, Quan; Tu, Jun; Arola, Dwayne D.; Zhang, Dongsheng

    2017-09-01

    In this study, a shearography system integrated with a coherent fiber-optic illumination and a fiber-optic imaging bundle is presented to inspect the quality of the interior surface of a cylindrical vessel for safety purposes. The specific optical arrangement is designed for the inspection of a certain area at a small working distance. The optical arrangement of the system was assembled and an aluminum honeycomb sample was evaluated to demonstrate the capability of the system. The important relationship between the image quality and the working distance, as well as the field of view, is discussed. The system has been applied for the inspection of the interior surface of a cylindrical vessel. The experimental results suggest that the shearography system integrated with optical and image fibers can effectively minimize the size of the inspection device and be capable of evaluating the interior surface of cylindrical structures.

  9. InSight, a Mars MIssion Artist Concept

    NASA Image and Video Library

    2012-02-28

    This artist rendition is of the Interior exploration using Seismic Investigations, Geodesy and Heat Transport InSight Lander. InSight proposes to place a single geophysical lander on Mars to study its deep interior. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA13958

  10. Mechanical Properties of Degraded PMR-15 Resin

    NASA Technical Reports Server (NTRS)

    Tsuji, Luis C.; McManus, Hugh L.; Bowles, Kenneth J.

    1998-01-01

    Thermo-oxidative aging produces a non-uniform degradation state in PMR-15 resin. A surface layer, usually attributed to oxidative degradation, forms. This surface layer has different properties from the inner material. A set of material tests was designed to separate the properties of the oxidized surface layer from the properties of interior material. Test specimens were aged at 316 C in either air or nitrogen, for durations of up to 800 hours. The thickness of the oxidized surface layer in air aged specimens, and the shrinkage and Coefficient of Thermal Expansion (CTE) of nitrogen aged specimens were measured directly. Four-point-bend tests were performed to determine modulus of both the oxidized surface layer and the interior material. Bimaterial strip specimens consisting of oxidized surface material and unoxidized interior material were constructed and used to determine surface layer shrinkage and CTE. Results confirm that the surface layer and core materials have substantially different properties.

  11. Determining Crust and Upper Mantle Structure by Bayesian Joint Inversion of Receiver Functions and Surface Wave Dispersion at a Single Station: Preparation for Data from the InSight Mission

    NASA Astrophysics Data System (ADS)

    Jia, M.; Panning, M. P.; Lekic, V.; Gao, C.

    2017-12-01

    The InSight (Interior Exploration using Seismic Investigations, Geodesy and Heat Transport) mission will deploy a geophysical station on Mars in 2018. Using seismology to explore the interior structure of the Mars is one of the main targets, and as part of the mission, we will use 3-component seismic data to constrain the crust and upper mantle structure including P and S wave velocities and densities underneath the station. We will apply a reversible jump Markov chain Monte Carlo algorithm in the transdimensional hierarchical Bayesian inversion framework, in which the number of parameters in the model space and the noise level of the observed data are also treated as unknowns in the inversion process. Bayesian based methods produce an ensemble of models which can be analyzed to quantify uncertainties and trade-offs of the model parameters. In order to get better resolution, we will simultaneously invert three different types of seismic data: receiver functions, surface wave dispersion (SWD), and ZH ratios. Because the InSight mission will only deliver a single seismic station to Mars, and both the source location and the interior structure will be unknown, we will jointly invert the ray parameter in our approach. In preparation for this work, we first verify our approach by using a set of synthetic data. We find that SWD can constrain the absolute value of velocities while receiver functions constrain the discontinuities. By joint inversion, the velocity structure in the crust and upper mantle is well recovered. Then, we apply our approach to real data from an earth-based seismic station BFO located in Black Forest Observatory in Germany, as already used in a demonstration study for single station location methods. From the comparison of the results, our hierarchical treatment shows its advantage over the conventional method in which the noise level of observed data is fixed as a prior.

  12. Characteristics of capacitance-micro-displacement for model of complex interior surface of the 3D Taiji ball and its applications

    NASA Astrophysics Data System (ADS)

    Zhu, Ruo-Gu; Jiang, Kun; Qing, Zhao-Bo; Liu, Yue-Hui; Yan, Jun

    2006-11-01

    Taiji image originated from ancient China. It is not only the Taoism emblem but also the ancient graphic presentation sign to everything origin. It either has a too far-reaching impact on traditional culture of China, or is influencing the development of current natural science. On the basis of analyzing the classical philosophic theory of two-dimensional (2-D) Taiji image, we developed it into the model of complex interior surface-three-dimensional (3-D) Taiji ball, and explored its possible applications. Combining modern mathematics and physics knowledge, we have studied on the physical meaning of 3-D Taiji ball, thus the plane change of original Taiji image is developed into space change which is more close to the real world. The change layers are obvious increased notably, and the amount of information included in this model increases correspondingly. We also realized a special paper 3-D Taiji ball whose surface is coved with metal foil by means of laser manufacture. A new experiment set-up for measuring micro displace has been designed and constituted thus the relation between capacitance and micro displacement for the 3-D Taiji ball has performed. Experimental and theoretical analyses are also finished. This models of 3-D Taiji ball for physical characteristics are the first time set up. Experimental data and fitting curves between capacitance and micro displacement for the special paper Taiji ball coved with metal foil are suggested. It is shown that the special Taiji ball has less leakage capacitance or more strengthen electric field than an ordinary half ball capacitance. Finally their potential applied values are explored.

  13. Parametric modelling design applied to weft knitted surfaces and its effects in their physical properties

    NASA Astrophysics Data System (ADS)

    Oliveira, N. P.; Maciel, L.; Catarino, A. P.; Rocha, A. M.

    2017-10-01

    This work proposes the creation of models of surfaces using a parametric computer modelling software to obtain three-dimensional structures in weft knitted fabrics produced on single needle system machines. Digital prototyping, another feature of digital modelling software, was also explored in three-dimensional drawings generated using the Rhinoceros software. With this approach, different 3D structures were developed and produced. Physical characterization tests were then performed on the resulting 3D weft knitted structures to assess their ability to promote comfort. From the obtained results, it is apparent that the developed structures have potential for application in different market segments, such as clothing and interior textiles.

  14. 76 FR 64047 - Montana Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 926... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and... amendment to the Montana regulatory program (hereinafter, the ``Montana program'') under the Surface Mining...

  15. 76 FR 36040 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and... amendment to the Wyoming regulatory program (hereinafter, the ``Wyoming program'') under the Surface Mining...

  16. 78 FR 16204 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-03-14

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and... amendment to the Wyoming regulatory program (hereinafter, the ``Wyoming program'') under the Surface Mining...

  17. 76 FR 80310 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and... amendment to the Wyoming regulatory program (hereinafter, the ``Wyoming program'') under the Surface Mining...

  18. 76 FR 67635 - Alaska Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-02

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 902... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and... amendment to the Alaska regulatory program (hereinafter, the ``Alaska program'') under the Surface Mining...

  19. 76 FR 64045 - Montana Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 926... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and... amendment to the Montana regulatory program (hereinafter, the ``Montana program'') under the Surface Mining...

  20. 76 FR 76111 - Montana Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 926... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and... amendment to the Montana regulatory program (hereinafter, the ``Montana program'') under the Surface Mining...

  1. 77 FR 25874 - Pennsylvania Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 938... Mining Reclamation and Enforcement (OSM), Interior. ACTION: Final rule; removal of required amendment... regulatory program (the ``Pennsylvania program'') regulations under the Surface Mining Control and...

  2. 77 FR 1430 - Maryland Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-01-10

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 920... Mining Reclamation and Enforcement (OSM), Interior. ACTION: Proposed rule; extension of the comment... the Maryland regulatory program (the ``Maryland program'') under the Surface Mining Control and...

  3. Liners for ion transport membrane systems

    DOEpatents

    Carolan, Michael Francis; Miller, Christopher Francis

    2010-08-10

    Ion transport membrane system comprising (a) a pressure vessel comprising an interior, an exterior, an inlet, an inlet conduit, an outlet, and an outlet conduit; (b) a plurality of planar ion transport membrane modules disposed in the interior of the pressure vessel and arranged in series, each membrane module comprising mixed metal oxide ceramic material and having an interior region and an exterior region, wherein the inlet and the outlet of the pressure vessel are in flow communication with exterior regions of the membrane modules; (c) a gas manifold having an interior surface wherein the gas manifold is in flow communication with the interior region of each of the planar ion transport membrane modules and with the exterior of the pressure vessel; and (d) a liner disposed within any of the inlet conduit, the outlet conduit, and the interior surface of the gas manifold.

  4. Ultrasonic cleaning of interior surfaces

    DOEpatents

    MacKenzie, D.; Odell, C.

    1994-03-01

    An ultrasonic cleaning apparatus is described for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface. 3 figures.

  5. Ultrasonic cleaning of interior surfaces

    DOEpatents

    Odell, D. MacKenzie C.

    1996-01-01

    An ultrasonic cleaning method for cleaning the interior surfaces of tubes. The method uses an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  6. Ultrasonic cleaning of interior surfaces

    DOEpatents

    Odell, D. MacKenzie C.

    1994-01-01

    An ultrasonic cleaning apparatus for cleaning the interior surfaces of tubes. The apparatus includes an ultrasonic generator and reflector each coupled to opposing ends of the open-ended, fluid-filled tube. Fluid-tight couplings seal the reflector and generator to the tube, preventing leakage of fluid from the interior of the tube. The reflector and generator are operatively connected to actuators, whereby the distance between them can be varied. When the distance is changed, the frequency of the sound waves is simultaneously adjusted to maintain the resonant frequency of the tube so that a standing wave is formed in the tube, the nodes of which are moved axially to cause cavitation along the length of the tube. Cavitation maximizes mechanical disruption and agitation of the fluid, dislodging foreign material from the interior surface.

  7. Survey of TES high albedo events in Mars' northern polar craters

    USGS Publications Warehouse

    Armstrong, J.C.; Nielson, S.K.; Titus, T.N.

    2007-01-01

    Following the work exploring Korolev Crater (Armstrong et al., 2005) for evidence of crater interior ice deposits, we have conducted a survey of Thermal Emission Spectroscopy (TES) temperature and albedo measurements for Mars' northern polar craters larger than 10 km. Specifically, we identify a class of craters that exhibits brightening in their interiors during a solar longitude, Ls, of 60 to 120 degrees, roughly depending on latitude. These craters vary in size, latitude, and morphology, but appear to have a specific regional association on the surface that correlates with the distribution of subsurface hydrogen (interpreted as water ice) previously observed on Mars. We suggest that these craters, like Korolev, exhibit seasonal high albedo frost events that indicate subsurface water ice within the craters. A detailed study of these craters may provide insight in the geographical distribution of the ice and context for future polar missions. Copyright 2007 by the American Geophysical Union.

  8. Composite pipe to metal joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie, James C.; Leslie, II, James C.; Heard, James

    A method for making a metal to composite tube joint including selecting an elongated interior fitting constructed with an exterior barrel, reduced in exterior diameter to form a distally facing annular shoulder and then projecting still further distally to form an interior sleeve having a radially outwardly facing bonding surface. Selecting an elongated metal outer sleeve formed proximally with a collar constructed for receipt over the barrel and increased in interior diameter and projecting distally to form an exterior sleeve having a radially inwardly facing bonding surface cooperating with the first bonding surface to form an annulus receiving an extremitymore » of a composite tube and a bond bonding the extremity of the tube to the bonding surfaces.« less

  9. Explorations in Teaching Sustainable Design: A Studio Experience in Interior Design/Architecture

    ERIC Educational Resources Information Center

    Gurel, Meltem O.

    2010-01-01

    This article argues that a design studio can be a dynamic medium to explore the creative potential of the complexity of sustainability from its technological to social ends. The study seeks to determine the impact of an interior design/architecture studio experience that was initiated to teach diverse meanings of sustainability and to engage the…

  10. Surface tension and negative pressure interior of a non-singular ‘black hole’

    NASA Astrophysics Data System (ADS)

    Mazur, Pawel O.; Mottola, Emil

    2015-11-01

    The constant density interior Schwarzschild solution for a static, spherically symmetric collapsed star has a divergent pressure when its radius R≤slant \\frac{9}{8}{R}s=\\frac{9}{4}{GM}. We show that this divergence is integrable, and induces a non-isotropic transverse stress with a finite redshifted surface tension on a spherical surface of radius {R}0=3R\\sqrt{1-\\frac{8}{9}\\frac{R }{{R}s}}. For r\\lt {R}0 the interior Schwarzschild solution exhibits negative pressure. When R={R}s, the surface is localized at the Schwarzschild radius itself, {R}0={R}s, and the solution has constant negative pressure p=-\\bar{ρ } everywhere in the interior r\\lt {R}s, thereby describing a gravitational condensate star, a fully collapsed non-singular state already inherent in and predicted by classical general relativity. The redshifted surface tension of the condensate star surface is given by {τ }s={{Δ }}κ /8π G, where {{Δ }}κ ={κ }+-{κ }-=2{κ }+=1/{R}s is the difference of equal and opposite surface gravities between the exterior and interior Schwarzschild solutions. The First Law, {{d}}M={{d}}{E}V+{τ }s {{d}}A is recognized as a purely mechanical classical relation at zero temperature and zero entropy, describing the volume energy and surface energy change respectively. The Schwarzschild time t of such a non-singular gravitational condensate star is a global time, fully consistent with unitary time evolution in quantum theory. A clear observational test of gravitational condensate stars with a physical surface versus black holes is the discrete surface modes of oscillation which should be detectable by their gravitational wave signatures.

  11. 77 FR 58056 - Mississippi Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 924... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and opportunity for public hearing. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM...

  12. 77 FR 34890 - Oklahoma Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 936... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and opportunity for public hearing on proposed amendment. SUMMARY: We, the Office of Surface Mining Reclamation...

  13. 75 FR 60371 - Alabama Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-30

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 901... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and opportunity for public hearing on proposed amendment. SUMMARY: We, the Office of Surface Mining Reclamation...

  14. 77 FR 41680 - Indiana Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-16

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 914... Mining Reclamation and Enforcement, Interior. ACTION: Final rule; approval of amendment. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are approving amendments to the Indiana...

  15. 77 FR 25949 - Texas Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-02

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 943... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and opportunity for public hearing on proposed amendment. SUMMARY: We, the Office of Surface Mining Reclamation...

  16. 76 FR 76109 - Colorado Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-06

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 906... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; reopening and extension of public...'') under the Surface Mining Control and Reclamation Act of 1977 (``SMCRA'' or ``the Act''). Colorado...

  17. 77 FR 66574 - Texas Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-11-06

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 943... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and opportunity for public hearing on proposed amendment. SUMMARY: We, the Office of Surface Mining Reclamation...

  18. 77 FR 18149 - Montana Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-27

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 926... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; reopening and extension of public... receipt of Montana's response to the Office of Surface Mining Reclamation and Enforcement's (OSM) November...

  19. 77 FR 24661 - North Dakota Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-25

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 934... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and... Surface Mining Control and Reclamation Act of 1977 (``SMCRA'' or ``the Act''). North Dakota proposes...

  20. 76 FR 23522 - Oklahoma Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-27

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 936... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and opportunity for public hearing. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM...

  1. 75 FR 21534 - Texas Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-26

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 943... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and opportunity for public hearing on proposed amendment. SUMMARY: We, the Office of Surface Mining Reclamation...

  2. 77 FR 34892 - Utah Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 944... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and opportunity for public hearing on proposed amendment. SUMMARY: We, the Office of Surface Mining Reclamation...

  3. 77 FR 18738 - Texas Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-28

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 943... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and opportunity for public hearing on proposed amendment. SUMMARY: We, the Office of Surface Mining Reclamation...

  4. 76 FR 9700 - Alabama Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 901... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and opportunity for public hearing on proposed amendment. SUMMARY: We, the Office of Surface Mining Reclamation...

  5. Interior car noise created by textured pavement surfaces : final report.

    DOT National Transportation Integrated Search

    1975-01-01

    Because of widespread concern about the effect of textured pavement surfaces on interior car noise, sound pressure levels (SPL) were measured inside a test vehicle as it traversed 21 pavements with various textures. A linear regression analysis run o...

  6. 77 FR 40796 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950... Mining Reclamation and Enforcement, Interior. ACTION: Final rule. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are removing a disapproval codified in OSM regulations...

  7. 77 FR 34894 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-12

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; withdrawal. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are announcing the withdrawal of a proposed rule...

  8. a Computational Approach to Explore Protein Translocation Through Type III Secretion Apparatus

    NASA Astrophysics Data System (ADS)

    Rathinavelan, Thenmalarchelvi; Im, Wonpil

    2010-01-01

    Many Gram-negative bacteria initiate infections by injecting effector proteins into host cells through the type III secretion apparatus (TTSA) that is comprised of a basal body, a needle, and a tip. The needle channel is formed by the assembly of a single needle protein. To explore the export mechanisms of MxiH needle protein through the needle of Shigella flexneri, an essential step during needle assembly, we have performed steered molecular dynamics simulations in implicit solvent. Interestingly, the electronegative channel interior creates an energy barrier for MxiH to enter the channel, while the same may facilitate the ejection of the effectors into host cells. Structurally-known basal regions and ATPase underneath the basal region have also such electronegative interior, while effector proteins have considerable electronegative patches on their surfaces. Based on these observations, we propose a repulsive electrostatic mechanism for protein translocation through the TTSA. This mechanism is supported by the suggestion that an ATPase is required for protein translocation through these nanomachines, which may provide the energy to overcome the initial electrostatic energy barrier. A similar mechanism may be applicable to macromolecular channels in other secretion systems or viruses through which proteins or nucleic acids are transported.

  9. Microdevice having interior cavity with high aspect ratio surface features and associated methods of manufacture and use

    DOEpatents

    Morales, Alfredo M.

    2002-01-01

    A microdevice having interior cavity with high aspect ratio features and ultrasmooth surfaces, and associated method of manufacture and use is described. An LIGA-produced shaped bit is used to contour polish the surface of a sacrificial mandrel. The contoured sacrificial mandrel is subsequently coated with a structural material and the mandrel removed to produce microdevices having micrometer-sized surface features and sub-micrometer RMS surface roughness.

  10. 78 FR 6062 - North Dakota Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-29

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 934... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and... Surface Mining Control and Reclamation Act of 1977 (``SMCRA'' or ``the Act''). North Dakota intends to...

  11. 76 FR 9642 - Alabama Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-22

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 901... Mining Reclamation and Enforcement, Interior. ACTION: Final rule; approval of amendment. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are approving an amendment to the Alabama...

  12. 78 FR 13002 - Pennsylvania Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-26

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 938... Mining Reclamation and Enforcement (``OSM''), Interior. ACTION: Proposed rule; public comment period and... regulatory program under the Surface Mining Control and Reclamation Act of 1977 (``SMCRA'' or the ``Act...

  13. 78 FR 11579 - Texas Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-19

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 943... Mining Reclamation and Enforcement, Interior. ACTION: Final rule; approval of amendment. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are approving an amendment to the Texas...

  14. 76 FR 40649 - Indiana Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-07-11

    ... at 312 IAC 25-6-30 Surface mining; explosives; general requirements. The full text of the program... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 914... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period on proposed...

  15. 78 FR 10512 - Wyoming Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-14

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 950... Mining Reclamation and Enforcement, Interior. ACTION: Final rule; approval of amendment with certain... ``Wyoming program'') under the Surface Mining Control and Reclamation Act of 1977 (``SMCRA'' or ``the Act...

  16. 78 FR 9807 - Utah Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-12

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 944... Mining Reclamation and Enforcement, Interior. ACTION: Final rule; approval of amendment. SUMMARY: We are approving an amendment to the Utah regulatory program (the ``Utah program'') under the Surface Mining...

  17. 76 FR 30008 - Alabama Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-24

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 901... Mining Reclamation and Enforcement, Interior. ACTION: Final rule; approval of amendment. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are approving an amendment to the Alabama...

  18. 75 FR 43476 - Montana Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-26

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 926... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; reopening and extension of public...'') under the Surface Mining Control and Reclamation Act of 1977 (``SMCRA'' or ``the Act''). Montana revised...

  19. Tungsten-yttria carbide coating for conveying copper

    DOEpatents

    Rothman, Albert J.

    1993-01-01

    A method is provided for providing a carbided-tungsten-yttria coating on the interior surface of a copper vapor laser. The surface serves as a wick for the condensation of liquid copper to return the condensate to the interior of the laser for revolatilization.

  20. 75 FR 81122 - Texas Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 943... Mining Reclamation and Enforcement, Interior. ACTION: Final rule; approval of amendment. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are approving an amendment to the Texas...

  1. 77 FR 58025 - Texas Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 943... Mining Reclamation and Enforcement, Interior. ACTION: Final rule; approval of amendment. SUMMARY: We, the Office of Surface Mining Reclamation and Enforcement (OSM), are approving an amendment to the Texas...

  2. Getting Under Mars' Skin: The InSight Mission to the Deep Interior of Mars

    NASA Astrophysics Data System (ADS)

    Banerdt, W. B.; Asmar, S.; Banfield, D. J.; Christensen, U. R.; Clinton, J. F.; Dehant, V. M. A.; Folkner, W. M.; Garcia, R.; Giardini, D.; Golombek, M. P.; Grott, M.; Hudson, T.; Johnson, C. L.; Kargl, G.; Knapmeyer-Endrun, B.; Kobayashi, N.; Lognonne, P. H.; Maki, J.; Mimoun, D.; Mocquet, A.; Morgan, P.; Panning, M. P.; Pike, W. T.; Spohn, T.; Tromp, J.; Weber, R. C.; Wieczorek, M. A.; Russell, C. T.

    2015-12-01

    The InSight mission to Mars will launch in March of 2016, landing six months later in Elysium Planitia. In contrast to the 43 previous missions to Mars, which have thoroughly explored its surface features and chemistry, atmosphere, and searched for past or present life, InSight will focus on the deep interior of the planet. InSight will investigate the fundamental processes of terrestrial planet formation and evolution by performing the first comprehensive surface-based geophysical measurements on Mars. It will provide key information on the composition and structure of an Earth-like planet that has gone through most of the evolutionary stages of the Earth up to plate tectonics. The planet Mars can play a key role in understanding early terrestrial planet formation and evolution. Unlike the Earth, its overall structure appears to be relatively unchanged since the first few hundred million years after formation; unlike the Moon, it is large enough that the P-T conditions within the planet span an appreciable fraction of the terrestrial planet range. Thus the large-scale chemical and structural evidence preserved in Mars' interior should tell us a great deal about the processes of planetary differentiation and heat transport. InSight will undertake this investigation using the "traditional" geophysical techniques of seismology, precision tracking (for rotational dynamics), and heat flow measurement. The predominant challenge, in addition to the technical problems of the remote installation and operation of instruments on a distant and harsh planetary surface, comes from the practical limitation of working with data acquired from a single station. We will discuss how we overcome these limitations through the application of single-station seismic analysis techniques, which take advantage of some of the specific attributes of Mars, and global heat flow modeling, which allows the interpretation of a single measurement of a spatially inhomogeneous surface distribution.

  3. Artist Rendition of InSight

    NASA Image and Video Library

    2012-08-20

    Artist rendition of the InSight (Interior exploration using Seismic Investigations, Geodesy and Heat Transport) Lander. InSight is based on the proven Phoenix Mars spacecraft and lander design with state-of-the-art avionics from the Mars Reconnaissance Orbiter and Gravity Recovery and Interior Laboratory missions. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA16079

  4. Long-term climate patterns in Alaskan surface temperature and precipitation and their biological consequences

    USGS Publications Warehouse

    Simpson, James J.; Hufford, Gary L.; Fleming, Michael D.; Berg, Jared S.; Ashton, J.B.

    2002-01-01

    Mean monthly climate maps of Alaskan surface temperature and precipitation produced by the parameter-elevation regression on independent slopes model (PRISM) were analyzed. Alaska is divided into interior and coastal zones with consistent but different climatic variability separated by a transition region; it has maximum interannual variability but low long-term mean variability. Pacific decadal oscillation (PDO)- and El Nino Southern Oscillation (ENSO)-type events influence Alaska surface temperatures weakly (1-2/spl deg/C) statewide. PDO has a stronger influence than ENSO on precipitation but its influence is largely localized to coastal central Alaska. The strongest influence of Arctic oscillation (AO) occurs in northern and interior Alaskan precipitation. Four major ecosystems are defined. A major eco-transition zone occurs between the interior boreal forest and the coastal rainforest. Variability in insolation, surface temperature, precipitation, continentality, and seasonal changes in storm track direction explain the mapped ecosystems. Lack of westward expansion of the interior boreal forest into the western shrub tundra is influenced by the coastal marine boundary layer (enhanced cloud cover, reduced insolation, cooler surface and soil temperatures).

  5. 76 FR 64048 - Pennsylvania Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 938... Surface Mining Reclamation and Enforcement (OSM), Interior. ACTION: Proposed rule; reopening and extension... Mining Control and Reclamation Act of 1977 (SMCRA or the Act) published on February 7, 2011. In response...

  6. 77 FR 5740 - Tennessee Abandoned Mine Land Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-06

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 942... Mining Reclamation and Enforcement (OSM), Interior. ACTION: Proposed rule; public comment period and... amendment to the Tennessee Abandoned Mine Land (AML) Reclamation Plan under the Surface Mining Control and...

  7. 77 FR 58053 - Kentucky Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-19

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 917... Mining Reclamation and Enforcement (OSM), Interior. ACTION: Proposed rule; Removal of Required Amendments... program'') under the Surface Mining Control and Reclamation Act of 1977 (SMCRA or the Act). As a result of...

  8. Post-cast EDM method for reducing the thickness of a turbine nozzle wall

    DOEpatents

    Jones, Raymond Joseph; Bojappa, Parvangada Ganapathy; Kirkpatrick, Francis Lawrence; Schotsch, Margaret Jones; Rajan, Rajiv; Wei, Bin

    2002-01-01

    A post-cast EDM process is used to remove material from the interior surface of a nozzle vane cavity of a turbine. A thin electrode is passed through the cavity between opposite ends of the nozzle vane and displaced along the interior nozzle wall to remove the material along a predetermined path, thus reducing the thickness of the wall between the cavity and the external surface of the nozzle. In another form, an EDM process employing a profile as an electrode is disposed in the cavity and advanced against the wall to remove material from the wall until the final wall thickness is achieved, with the interior wall surface being complementary to the profile surface.

  9. Method of making a composite tube to metal joint

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leslie, James C.; Leslie, II, James C.; Heard, James

    A method for making a metal to composite tube joint including selecting an elongated interior fitting constructed with an exterior barrel, reduced in exterior diameter to form a distally facing annular shoulder and then projecting still further distally to form an interior sleeve having a radially outwardly facing bonding surface. Selecting an elongated metal outer sleeve formed proximally with a collar constructed for receipt over the barrel and increased in interior diameter and projecting distally to form an exterior sleeve having a radially inwardly facing bonding surface cooperating with the first bonding surface to form an annulus receiving an extremitymore » of a composite tube and a bond bonding the extremity of the tube to the bonding surfaces.« less

  10. NASA SSERVI Contributions to Lunar Science and Exploration

    NASA Technical Reports Server (NTRS)

    Pendleton, Yvonne J.

    2015-01-01

    NASA's Solar System Exploration Research Virtual Institute (SSERVI) represents a close collaboration between science, technology and exploration that will enable deeper understanding of the Moon and other airless bodies as we move further out of low-Earth orbit. The new Solar System Exploration Research Virtual Institute (SSERVI) will focus on the scientific aspects of exploration as they pertain to the Moon, Near Earth Asteroids (NEAs) and the moons of Mars. The Institute focuses on interdisciplinary, exploration-related science centered around all airless bodies targeted as potential human destinations. Areas of study reported here will represent the broad spectrum of lunar, NEA, and Martian moon sciences encompassing investigations of the surface, interior, exosphere, and near-space environments as well as science uniquely enabled from these bodies. We will provide a detailed look at research being conducted by each of the 9 domestic US teams as well as our 7 international partners. The research profile of the Institute integrates investigations of plasma physics, geology/geochemistry, technology integration, solar system origins/evolution, regolith geotechnical properties, analogues, volatiles, ISRU and exploration potential of the target bodies.

  11. Surface modification to waveguides

    DOEpatents

    Timberlake, John R.; Ruzic, David N.; Moore, Richard L.; Cohen, Samuel A.; Manos, Dennis M.

    1983-01-01

    A method of treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1.mu. to 5.mu. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  12. On volcanism and thermal tectonics on one-plate planets

    NASA Technical Reports Server (NTRS)

    Solomon, S. C.

    1978-01-01

    For planets with a single global lithospheric shell or 'plate', the thermal evolution of the interior affects the surface geologic history through volumetric expansion and the resultant thermal stress. Interior warming of such planets gives rise to extensional tectonics and a lithospheric stress system conductive to widespread volcanism. Interior cooling leads to compressional tectonics and lithospheric stresses that act to shut off surface volcanism. On the basis of observed surface tectonics, it is concluded that the age of peak planetary volume, the degree of early heating, and the age of youngest major volcanism on the one-plate terrestrial planets likely decrease in the order Mercury, Moon, Mars.

  13. Thermally induced stresses in boulders on airless body surfaces, and implications for rock breakdown

    NASA Astrophysics Data System (ADS)

    Molaro, J. L.; Byrne, S.; Le, J.-L.

    2017-09-01

    This work investigates the macroscopic thermomechanical behavior of lunar boulders by modeling their response to diurnal thermal forcing. Our results reveal a bimodal, spatiotemporally-complex stress response. During sunrise, stresses occur in the boulders' interiors that are associated with large-scale temperature gradients developed due to overnight cooling. During sunset, stresses occur at the boulders' exteriors due to the cooling and contraction of the surface. Both kinds of stresses are on the order of 10 MPa in 1 m boulders and decrease for smaller diameters, suggesting that larger boulders break down more quickly. Boulders ≤ 30 cm exhibit a weak response to thermal forcing, suggesting a threshold below which crack propagation may not occur. Boulders of any size buried by regolith are shielded from thermal breakdown. As boulders increase in size (>1 m), stresses increase to several 10 s of MPa as the behavior of their surfaces approaches that of an infinite halfspace. As the thermal wave loses contact with the boulder interior, stresses become limited to the near-surface. This suggests that the survival time of a boulder is not only controlled by the amplitude of induced stress, but also by its diameter as compared to the diurnal skin depth. While stresses on the order of 10 MPa are enough to drive crack propagation in terrestrial environments, crack propagation rates in vacuum are not well constrained. We explore the relationship between boulder size, stress, and the direction of crack propagation, and discuss the implications for the relative breakdown rates and estimated lifetimes of boulders on airless body surfaces.

  14. Venus as a laboratory for studying planetary surface, interior, and atmospheric evolution

    NASA Astrophysics Data System (ADS)

    Smrekar, S. E.; Hensley, S.; Helbert, J.

    2013-12-01

    As Earth's twin, Venus offers a laboratory for understanding what makes our home planet unique in our solar system. The Decadal Survey points to the role of Venus in answering questions such as the supply of water and its role in atmospheric evolution, its availability to support life, and the role of geology and dynamics in controlling volatiles and climate. On Earth, the mechanism of plate tectonics drives the deformation and volcanism that allows volatiles to escape from the interior to the atmosphere and be recycled into the interior. Magellan revealed that Venus lacks plate tectonics. The number and distribution of impact craters lead to the idea Venus resurfaced very rapidly, and inspired numerous models of lithospheric foundering and episodic plate tectonics. However we have no evidence that Venus ever experienced a plate tectonic regime. How is surface deformation affected if no volatiles are recycled into the interior? Although Venus is considered a ';stagnant' lid planet (lacking plate motion) today, we have evidence for recent volcanism. The VIRTIS instrument on Venus Express mapped the southern hemisphere at 1.02 microns, revealing areas likely to be unweathered, recent volcanic flows. Additionally, numerous studies have shown that the crater population is consistent with ongoing, regional resurfacing. How does deformation and volcanism occur in the absence of plates? At what rate is the planet resurfacing and thus outgassing? Does lithospheric recycling occur with plate tectonics? In the 25 years since Magellan, the design of Synthetic Aperture Radar has advanced tremendously, allowing order of magnitude improvements in altimetry and imaging. With these advanced tools, we can explore Venus' past and current tectonic states. Tesserae are highly deformed plateaus, thought to be possible remnants of Venus' earlier tectonic state. How did they form? Are they low in silica, like Earth's continents, indicating the presence of abundant water? Does the plains volcanism cover an earlier tectonic surface, or perhaps cover ancient impact basins? Was there an abrupt transition in tectonic style, perhaps due to degassing of the crust or a more gradual shift? What is the nature of Venus' modern tectonics? Is the lithosphere still deforming? Is there recent or active volcanism? Is volcanism confined to hotspots, areas above mantle plumes? Has plains volcanism ceased? What are the implications for volatile history? These questions can be addressed via a combination of high resolution altimetry, imaging, and surface emissivity mapping.

  15. Distribution and evolution of Zn, Cd, and Pb in Apollo 16 regolith samples and the average U-Pb ages of the parent rocks

    NASA Technical Reports Server (NTRS)

    Cirlin, E. H.; Housley, R. M.

    1982-01-01

    The concentration of surface (low temperature site) and interior (high temperature site) Cd, Zn, and Pb in 13 Apollo 16 highland fines samples, pristine rock 65325, and mare fines sample 75081 were analyzed directly from the thermal release profiles obtained by flameless atomic absorption technique (FLAA). Cd and Zn in pristine ferroan anothosite 65325, anorthositic grains of the most mature fines 65701, and basaltic rock fragments of mare fines 75081 were almost all surface Cd and Zn indicating that most volatiles were deposited on the surfaces of vugs, vesicles and microcracks during the initial cooling process. A considerable amount of interior Cd and Zn was observed in agglutinates. This result suggests that high temperature site interior volatiles originate from entrapment during the lunar maturation processes. Interior Cd found in the most mature fines sample 65701 was only about 15% of the total Cd in the sample. Interior Pb present in Apollo 16 fines samples went up to 60%. From our Cd studies we can assume that this interior Pb in highland fines samples is largely due to the radiogenic decay which occurred after the redistribution of the volatiles took place. We obtained an average age of 4.0 b.y. for the parent rocks of Apollo 16 highland regolith from our interior Pb analyses.

  16. Surface modification to waveguides

    DOEpatents

    Timberlake, J.R.; Ruzic, D.N.; Moore, R.L.; Cohen, S.A.; Manos, D.M.

    1982-06-16

    A method is described for treating the interior surfaces of a waveguide to improve power transmission comprising the steps of mechanically polishing to remove surface protrusions; electropolishing to remove embedded particles; ultrasonically cleaning to remove any residue; coating the interior waveguide surfaces with an alkyd resin solution or electrophoretically depositing carbon lamp black suspended in an alkyd resin solution to form a 1..mu.. to 5..mu.. thick film; vacuum pyrolyzing the film to form a uniform adherent carbon coating.

  17. Geophysical Monitoring Station (GEMS)

    NASA Astrophysics Data System (ADS)

    Banerdt, B.; Dehant, V. M.; Lognonne, P.; Smrekar, S. E.; Spohn, T.; GEMS Mission Team

    2011-12-01

    GEMS (GEophysical Monitoring Station) is one of three missions undergoing Phase A development for possible selection by NASA's Discovery Program. If selected, GEMS will perform the first comprehensive surface-based geophysical investigation of Mars, filling a longstanding gap in the scientific exploration of the solar system. It will illuminate the fundamental processes of terrestrial planet formation and evolution, providing unique and critical information about the initial accretion of the planet, the formation and differentiation of the core and crust, and the subsequent evolution of the interior. The scientific goals of GEMS are to understand the formation and evolution of terrestrial planets through investigation of the interior structure and processes of Mars and to determine its present level of tectonic activity and impact flux. A straightforward set of scientific objectives address these goals: 1) Determine the size, composition and physical state of the core; 2) Determine the thickness and structure of the crust; 3) Determine the composition and structure of the mantle; 4) Determine the thermal state of the interior; 5) Measure the rate and distribution of internal seismic activity; and 6) Measure the rate of impacts on the surface. To accomplish these objectives, GEMS carries a tightly-focused payload consisting of 3 investigations: 1) SEIS, a 6-component, very-broad-band seismometer, with careful thermal compensation/control and a sensitivity comparable to the best terrestrial instruments across a frequency range of 1 mHz to 50 Hz; 2) HP3 (Heat Flow and Physical Properties Package), an instrumented self-penetrating mole system that trails a string of temperature sensors to measure the thermal gradient and conductivity of the upper several meters, and thus the planetary heat flux; and 3) RISE (Rotation and Interior Structure Experiment), which would use the spacecraft X-band communication system to provide precision tracking for planetary dynamical studies. The two instruments are moved from the lander deck to the martian surface by an Instrument Deployment Arm, with an appropriate location identified using an Instrument Deployment Camera. In order to ensure low risk within the tight Discovery cost limits, GEMS reuses the successful Lockheed Martin Phoenix spacecraft design, with a cruise and EDL system that has demonstrated capability for safe landing on Mars with well-understood costs. To take full advantage of this approach, all science requirements (such as instrument mass and power, landing site, and downlinked data volume) strictly conform to existing, demonstrated capabilities of the spacecraft and mission system. It is widely believed that multiple landers making simultaneous measurements (a network) are required to address the objectives for understanding terrestrial planet interiors. Nonetheless, comprehensive measurements from a single geophysical station are extremely valuable, because observations constraining the structure and processes of the deep interior of Mars are virtually nonexistent. GEMS would utilize sophisticated analysis techniques specific to single-station measurements to determine crustal thickness, mantle structure, core state and size, and heat flow, providing our first real look deep beneath the surface of Mars.

  18. GEP, A Geophysical and Environemental integrated payload for ExoMars

    NASA Astrophysics Data System (ADS)

    Spohn, T.; Lognonne, P.; Dehant, V.; Giardini, D.; Friis-Christensen, E.; Calcutt, S.; GEP Team

    The goal of the GEP proposed onboard the ExoMars mission is to provide the first complete set of geophysical and environmental data of Mars. A full mass of 20 kg is envisaged, enabling a payload of about 5 kg serviced by common integrated subsystems. GEP will first monitor the present Martian climate and meteorology by providing a unique monitoring on potential hazards for future human exploration missions (radiations, atmospheric electricity, dust) and on atmospheric parameters (wind, pressure, temperature, humidity). Such a long term monitoring has never been performed since the Viking landers. GEP will then provide, for the first time, a complete geophysical monitoring of Mars. It will search for remote and regional seismic activity, will measure the heat flux of the planets, will monitor the rotation of Mars and will study the magnetic field at the surface and finally will constrain the subsurface in the vicinity of the ExoMars landing site and the deep interior. By providing these new geophysical data and associated constraints on the interior and on the actual geologic activity of the surface, GEP will provide a major step in our understanding of the geological evolution of the planet and the habitability conditions during the first billion years, enabling a full understanding of the surface and mineralogical observations performed by the Pasteur payload onboard the ExoMars rover and by the payload onboard the MSL NASA 2009 mission.

  19. 43 CFR 3594.5 - Minerals soluble in water; brines; minerals taken in solution.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Minerals soluble in water; brines; minerals taken in solution. 3594.5 Section 3594.5 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID MINERALS (OTHER THAN COAL) EXPLORATION AND...

  20. Apparatus for premixing in a gas turbine engine

    DOEpatents

    McCormick, Keith Alan; Smith, Duane A.

    2002-01-01

    An apparatus for mixing fuel with oxidizing agent is disclosed comprising an outer body and an inner body. The outer body has an interior surface extending between an inlet end toward an outlet end. The interior surface includes a first plurality of openings. The inner body has an exterior surface extending between the first end and the second end of the inner body. The exterior surface of the inner body includes a second plurality of openings. At least a portion of the exterior surface of the inner body is positioned within the outer body to define a mixing channel between the exterior surface of the inner body and the interior surface of the outer body. In one form the first and second plurality of openings substantially longitudinally span at least one of the outer body and the inner body. In another form the first and second plurality of openings are substantially radially oriented. In yet another form the first and second plurality of openings are offset from one another.

  1. InSight MARCO Installation Cubesats

    NASA Image and Video Library

    2018-03-17

    At Vandenberg Air Force Base in California, twin communications-relay CubeSats, called Mars Cube One (MarCO) are installed on an Atlas V rocket. MarCO constitutes a technology demonstration being built by NASA's Jet Propulsion Laboratory, Pasadena in California. They will launch in on the same United Launch Alliance Atlas V rocket as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  2. InSight Atlas V MARCO Cubesats Installation

    NASA Image and Video Library

    2018-03-17

    At Vandenberg Air Force Base in California, twin communications-relay CubeSats, called Mars Cube One (MarCO) are prepared for installation on an Atlas V rocket. MarCO constitutes a technology demonstration being built by NASA's Jet Propulsion Laboratory, Pasadena in California. They will launch in on the same United Launch Alliance Atlas V rocket as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for laun

  3. InSight Atlas V MARCO Cubesats Installation

    NASA Image and Video Library

    2018-03-17

    At Vandenberg Air Force Base in California, twin communications-relay CubeSats, called Mars Cube One (MarCO) are installed on an Atlas V rocket. MarCO constitutes a technology demonstration being built by NASA's Jet Propulsion Laboratory, Pasadena in California. They will launch in on the same United Launch Alliance Atlas V rocket as NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. CubeSats are a class of spacecraft based on a standardized small size and modular use of off-the-shelf technologies. Many have been made by university students, and dozens have been launched into Earth orbit using extra payload mass available on launches of larger spacecraft. InSight is the first mission to explore the Red Planet's deep interior. InSight is scheduled for liftoff May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  4. Radiation heat transfer simulation in a window for a small particle solar receiver using the Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Whitmore, Alexander Jason

    Concentrating solar power systems are currently the predominant solar power technology for generating electricity at the utility scale. The central receiver system, which is a concentrating solar power system, uses a field of mirrors to concentrate solar radiation onto a receiver where a working fluid is heated to drive a turbine. Current central receiver systems operate on a Rankine cycle, which has a large demand for cooling water. This demand for water presents a challenge for the current central receiver systems as the ideal locations for solar power plants have arid climates. An alternative to the current receiver technology is the small particle receiver. The small particle receiver has the potential to produce working fluid temperatures suitable for use in a Brayton cycle which can be more efficient when pressurized to 0.5 MPa. Using a fused quartz window allows solar energy into the receiver while maintaining a pressurized small particle receiver. In this thesis, a detailed numerical investigation for a spectral, three dimensional, cylindrical glass window for a small particle receiver was performed. The window is 1.7 meters in diameter and 0.0254 meters thick. There are three Monte Carlo Ray Trace codes used within this research. The first MCRT code, MIRVAL, was developed by Sandia National Laboratory and modified by a fellow San Diego State University colleague Murat Mecit. This code produces the solar rays on the exterior surface of the window. The second MCRT code was developed by Steve Ruther and Pablo Del Campo. This code models the small particle receiver, which creates the infrared spectral direction flux on the interior surface of the window used in this work. The third MCRT, developed for this work, is used to model radiation heat transfer within the window itself and is coupled to an energy equation solver to produce a temperature distribution. The MCRT program provides a source term to the energy equation. This in turn, produces a new temperature field for the MCRT program; together the equations are solved iteratively. These iterations repeat until convergence is reached for a steady state temperature field. The energy equation was solved using a finite volume method. The window's thermal conductivity is modeled as a function of temperature. This thermal model is used to investigate the effects of different materials, receiver geometries, interior convection coefficients and exterior convection coefficients. To prevent devitrification and the ultimate failure of the window, the window needs to stay below the devitrification temperature of the material. In addition, the temperature gradients within the window need to be kept to a minimum to prevent thermal stresses. A San Diego State University colleague E-Fann Saung uses these temperature maps to insure that the mounting of the window does not produce thermal stresses which can cause cracking in the brittle fused quartz. The simulations in this thesis show that window temperatures are below the devitrification temperature of the window when there are cooling jets on both surfaces of the window. Natural convection on the exterior window surface was explored and it does not provide adequate cooling; therefore forced convection is required. Due to the low thermal conductivity of the window, the edge mounting thermal boundary condition has little effect on the maximum temperature of the window. The simulations also showed that the solar input flux absorbed less than 1% of the incoming radiation while the window absorbed closer to 20% of the infrared radiation emitted by the receiver. The main source of absorbed power in the window is located directly on the interior surface of the window where the infrared radiation is absorbed. The geometry of the receiver has a large impact on the amount of emitted power which reached the interior surface of the window, and using a conical shaped receiver dramatically reduced the receiver's infrared flux on the window. The importance of internal emission is explored within this research. Internal emission produces a more even emission field throughout the receiver than applying radiation surface emission only. Due to a majority of the infrared receiver re-radiation being absorbed right at the interior surface, the surface emission only approximation method produces lower maximum temperatures.

  5. Simulation on a car interior aerodynamic noise control based on statistical energy analysis

    NASA Astrophysics Data System (ADS)

    Chen, Xin; Wang, Dengfeng; Ma, Zhengdong

    2012-09-01

    How to simulate interior aerodynamic noise accurately is an important question of a car interior noise reduction. The unsteady aerodynamic pressure on body surfaces is proved to be the key effect factor of car interior aerodynamic noise control in high frequency on high speed. In this paper, a detail statistical energy analysis (SEA) model is built. And the vibra-acoustic power inputs are loaded on the model for the valid result of car interior noise analysis. The model is the solid foundation for further optimization on car interior noise control. After the most sensitive subsystems for the power contribution to car interior noise are pointed by SEA comprehensive analysis, the sound pressure level of car interior aerodynamic noise can be reduced by improving their sound and damping characteristics. The further vehicle testing results show that it is available to improve the interior acoustic performance by using detailed SEA model, which comprised by more than 80 subsystems, with the unsteady aerodynamic pressure calculation on body surfaces and the materials improvement of sound/damping properties. It is able to acquire more than 2 dB reduction on the central frequency in the spectrum over 800 Hz. The proposed optimization method can be looked as a reference of car interior aerodynamic noise control by the detail SEA model integrated unsteady computational fluid dynamics (CFD) and sensitivity analysis of acoustic contribution.

  6. Explosively activated egress area

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Bailey, J. W. (Inventor)

    1983-01-01

    A lightweight, add on structure which employs linear shaped pyrotechnic charges to smoothly cut an airframe along an egress area periphery is provided. It compromises reaction surfaces attached to the exterior surface of the airframe's skin and is designed to restrict the skin deflection. That portion of the airframe within the egress area periphery is jettisoned. Retention surfaces and sealing walls are attached to the interior surface of the airframe's skin and are designed to shield the interior of the aircraft during detonation of the pyrotechnic charges.

  7. 43 CFR 4.1373 - Hearing.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Hearing. 4.1373 Section 4.1373 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals Review of Osm Decisions Proposing to...

  8. DESIGN INFORMATION REPORT: PROTECTION OF WASTEWATER LAGOON INTERIOR SLOPES

    EPA Science Inventory

    A problem common to many wastewater treatment and storage lagoons is erosion of the interior slopes. Erosion may be caused by surface runoff and wind-induced wave action. The soils that compose the steep interior slopes of lagoons are especially susceptible to erosion and slumpin...

  9. 43 CFR 4.1373 - Hearing.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Hearing. 4.1373 Section 4.1373 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals Review of Osm Decisions Proposing to...

  10. 43 CFR 3400.3-1 - Consent or conditions of surface management agency.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... management agency. 3400.3-1 Section 3400.3-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL MANAGEMENT... land, the surface of which is under the jurisdiction of any Federal agency other than the Department of...

  11. 43 CFR 3400.3-1 - Consent or conditions of surface management agency.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... management agency. 3400.3-1 Section 3400.3-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL MANAGEMENT... land, the surface of which is under the jurisdiction of any Federal agency other than the Department of...

  12. 43 CFR 3400.3-1 - Consent or conditions of surface management agency.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... management agency. 3400.3-1 Section 3400.3-1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL MANAGEMENT... land, the surface of which is under the jurisdiction of any Federal agency other than the Department of...

  13. Interior Pathways to Dissipation of Mesoscale Energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nadiga, Balasubramanya T.

    This talk at Goethe University asks What Powers Overturning Circulation? How does Ocean Circulation Equilibrate? There is a HUGE reservoir of energy sitting in the interior ocean. Can fluid dynamic instabilities contribute to the mixing required to drive global overturning circulation? Study designed to eliminate distinguished horizontal surfaces such as bottom BL and surface layer

  14. 18. INTERIOR SURFACE OF THE SHORT SOUTH WALL OF AR9, ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. INTERIOR SURFACE OF THE SHORT SOUTH WALL OF AR-9, WITH THE MORE RECENT CONCRETE BLOCK CONTROL ROOM AT THE LEFT AND ASSOCIATED CONCRETE PAVING IN THE FOREGROUND. - Edwards Air Force Base, South Base, Rammed Earth Aircraft Dispersal Revetments, Western Shore of Rogers Dry Lake, Boron, Kern County, CA

  15. Process and apparatus for sensing defects on a smooth cylindrical surface in tubing

    DOEpatents

    Dutton, G.W.

    1985-08-05

    The cylindrical interior surface of small diameter metal tubing is optically inspected to determine surface roughness by passing a slightly divergent light beam to illuminate the entire interior surface of the tubing. Impingement of the input light beam components on any rough spots on the interior surface generates forward and backward scattered radiation components. The forward scattered components can be measured by blocking direct and specular radiation components exiting the tubing while allowing the forward scattered radiation to travel past the blocking location. Collecting optics are employed to converge the forward scattered radiation onto a photodetector generating a signal indicative of surface roughness. In the back scattered mode, back scattered radiation exiting the tubing through the entrance opening is reflected 90/sup 0/ by a beam splitter towards collecting optics and a photodetector. Alternatively, back scattered radiation can be transmitted through a fiber optic bundle towards the collecting optics. The input light beam can be supplied through a white light fiber optic bundle mounted coaxial with the first bundle.

  16. Light weight high-stiffness stage platen

    DOEpatents

    Spence, Paul A.

    2001-01-01

    An improved light weight, stiff stage platen for photolithography is provided. The high stiffness of the stage platen is exemplified by a relatively high first resonant vibrational mode as determined, for instance, by finite element modal analysis. The stage platen can be employed to support a chuck that is designed to secure a mask or wafer. The stage platen includes a frame that has interior walls that define an interior region and that has exterior walls wherein the outer surfaces of at least two adjacent walls are reflective mirror surfaces; and a matrix of ribs within the interior region that is connected to the interior walls wherein the stage platen exhibits a first vibrational mode at a frequency of greater than about 1000 Hz.

  17. 43 CFR 4.1103 - Eligibility to practice.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Eligibility to practice. 4.1103 Section 4.1103 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals General Provisions § 4.1103...

  18. 43 CFR 4.1285 - Summary dismissal.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Summary dismissal. 4.1285 Section 4.1285 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES... of the Office of Surface Mining § 4.1285 Summary dismissal. An appeal shall be subject to summary...

  19. Joining and reinforcing a composite bumper beam and a composite crush can for a vehicle

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berger, Elisabeth; Decker, Leland; Armstrong, Dale

    A front bumper beam and crush can (FBCC) system is provided for a vehicle. A bumper beam has an interior surface with a plurality of ribs extending therefrom. The ribs and the interior surface are made of a chopped fiber composite and cooperate to engage a crush can. The chopped fiber composite reinforces the engaging surfaces of the crush can and the interior surface of the bumper beam. The crush can has a tubular body made of a continuous fiber composite. The crush can has outwardly-extending flanges at an end spaced away from the bumper beam. The flanges are atmore » least partially provided with a layer of chopped fiber composite to reinforce a joint between the outwardly-extending flange and the vehicle frame.« less

  20. Orthogonal functionalization of nanoporous substrates: control of 3D surface functionality.

    PubMed

    Lazzara, Thomas D; Kliesch, Torben-Tobias; Janshoff, Andreas; Steinem, Claudia

    2011-04-01

    Anodic aluminum oxide (AAO) membranes with aligned, cylindrical, nonintersecting pores were selectively functionalized in order to create dual-functionality substrates with different pore-rim and pore-interior surface functionalities, using silane chemistry. We used a two-step process involving an evaporated thin gold film to protect the underlying surface functionality of the pore rims. Subsequent treatment with oxygen plasma of the modified AAO membrane removed the unprotected organic functional groups, i.e., the pore-interior surface. After gold removal, the substrate became optically transparent, and displayed two distinct surface functionalities, one at the pore-rim surface and another at the pore-interior surface. We achieved a selective hydrophobic functionalization with dodecyl-trichlorosilane of either the pore rims or the pore interiors. The deposition of planar lipid membranes on the functionalized areas by addition of small unilamellar vesicles occurred in a predetermined fashion. Small unilamellar vesicles only ruptured upon contact with the hydrophobic substrate regions forming solid supported hybrid bilayers. In addition, pore-rim functionalization with dodecyl-trichlorosilane allowed the formation of pore-spanning hybrid lipid membranes as a result of giant unilamellar vesicle rupture. Confocal laser scanning microscopy was employed to identify the selective spatial localization of the adsorbed fluorescently labeled lipids. The corresponding increase in the AAO refractive index due to lipid adsorption on the hydrophobic regions was monitored by optical waveguide spectroscopy. This simple orthogonal functionalization route is a promising method to control the three-dimensional surface functionality of nanoporous films. © 2011 American Chemical Society

  1. Venus Interior Probe Using In-Situ Power and Propulsion (VIP-INSPR)

    NASA Technical Reports Server (NTRS)

    Bugga, Ratnakumar V.

    2016-01-01

    Venus, despite being our closest neighboring planet, is under-explored due to its hostile and extreme environment, with a 92 bar pressure and 467 C temperature at the surface. The temperature decreases at higher altitudes, almost at the rate of 7.9 C/km, reaching the Earth surface conditions at 65 km. Due to the less extreme conditions, balloon missions could survive as long as 46 h at an altitude of 54 km. However, because of the opacity of the Venus atmosphere filled with clouds of sulfuric acid and CO2, orbiter or balloon missions are not as revealing and informative in characterizing the surface, as similar missions on Moon and Mars. To understand the evolutionary paths of Venus in relation to Earth, it is imperative to gather basic information on the crust, mantle, core, atmosphere/exosphere and bulk composition of Venus, through in-situ investigations using landers, probes and variable altitude areal platforms.

  2. InSight Atlas V LVOS

    NASA Image and Video Library

    2018-03-03

    A United Launch Alliance Atlas V booster arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  3. Direct UV/Optical Imaging of Stellar Surfaces: The Stellar Imager (SI) Vision Mission

    NASA Technical Reports Server (NTRS)

    Carpenter, Kenneth G.; Lyon, Richard G.; Schrijver, Carolus; Karovska, Margarita; Mozurkewich, David

    2007-01-01

    The Stellar Imager (SI) is a UV/optical, space-based interferometer designed to enable 0.1 milli-arcsecond (mas) spectral imaging of stellar surfaces and, via asteroseismology, stellar interiors and of the Universe in general. SI's science focuses on the role of magnetism in the Universe, particularly on magnetic activity on the surfaces of stars like the Sun. SI's prime goal is to enable long-term forecasting of solar activity and the space weather that it drives, in support of the Living with a Star program in the Exploration Era. SI will also revolutionize our understanding of the formation of planetary systems, of the habitability and climatology of distant planets, and of many magneto-hydrodynamically controlled processes in thc Universe. SI is a "Flagship and Landmark Discovery Mission" in the 2005 Sun Solar System Connection (SSSC) Roadmap and a candidate for a "Pathways to Life Observatory" in the Exploration of the Universe Division (EUD) Roadmap. We discuss herein the science goals of the SI Mission, a mission architecture that could meet those goals, and the technologies needed to enable this mission. Additional information on SI can be found at: http://hires.gsfc.nasa.gov/si/.

  4. Mars Sample Return in the Context of the Mars Exploration Program

    NASA Astrophysics Data System (ADS)

    Garvin, J. B.

    2002-05-01

    The scientific priorities developed for the scientific exploration of Mars by the Mars Exploration Program Assessment Group [MEPAG, 2001] and as part of the Committee on Planetary and Lunar Exploration (COMPLEX) recent assessment of the NASA Mars Exploration Program [COMPLEX, 2001] all involve a campaign of Mars Sample Return (MSR) missions. Such MSR missions are required to address in a definitive manner most of the highest priority investigations within overarching science themes which include: (1) biological potential (past or present); (2) climate (past or present); (3) solid planet (surface and interior, past and present); (4) knowledge necessary to prepare for eventual human exploration of Mars. NASA's current Mars Exploration Program (MEP) contains specific flight mission developments and plans only for the present decade (2002-2010), including a cascade of missions designed to set the stage for an inevitable campaign of MSR missions sometime in the second decade (2011-2020). Studies are presently underway to examine implementation options for a first MSR mission in which at least 500g of martian materials (including lithic fragments) would be returned to Earth from a landing vicinity carefully selected on the basis of the comprehensive orbital and surface-based remote sensing campaign that is ongoing (MGS, ODYSSEY) and planned (MER, MRO, 2009 MSL). Key to the first of several MSR's is attention to risk, cost, and enabling technologies that facilitate access to most scientifically-compelling martian materials at very local scales. The context for MSR's in the upcoming decade remains a vital part of NASA's scientific strategy for Mars exploration.

  5. 49 CFR 238.233 - Interior fittings and surfaces.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... I Passenger Equipment § 238.233 Interior fittings and surfaces. (a) Each seat in a passenger car shall— (1) Be securely fastened to the car body so as to withstand an individually applied acceleration... deadweight of the seat or seats, if held in tandem; and (2) Have an attachment to the car body of an ultimate...

  6. 49 CFR 238.233 - Interior fittings and surfaces.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... I Passenger Equipment § 238.233 Interior fittings and surfaces. (a) Each seat in a passenger car shall— (1) Be securely fastened to the car body so as to withstand an individually applied acceleration... deadweight of the seat or seats, if held in tandem; and (2) Have an attachment to the car body of an ultimate...

  7. 49 CFR 238.233 - Interior fittings and surfaces.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... I Passenger Equipment § 238.233 Interior fittings and surfaces. (a) Each seat in a passenger car shall— (1) Be securely fastened to the car body so as to withstand an individually applied acceleration... deadweight of the seat or seats, if held in tandem; and (2) Have an attachment to the car body of an ultimate...

  8. 49 CFR 238.233 - Interior fittings and surfaces.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... I Passenger Equipment § 238.233 Interior fittings and surfaces. (a) Each seat in a passenger car shall— (1) Be securely fastened to the car body so as to withstand an individually applied acceleration... deadweight of the seat or seats, if held in tandem; and (2) Have an attachment to the car body of an ultimate...

  9. Multi-MICE: Nuclear Powered Mobile Probes to Explore Deep Interiors of the Ice Sheets on Mars and the Jovian Moons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maise, George; Powell, James; Paniagua, John

    2007-01-30

    The multi-kilometer thick Polar Caps on Mars contain unique and important data about the multi-million year history of its climate, geology, meteorology, volcanology, cosmic ray and solar activity, and meteor impacts. They also may hold evidence of past life on Mars, including microbes, microfossils and biological chemicals. The objective of this paper is to describe a probe that can provide access to the data locked in the Polar Caps. The MICE (Mars Ice Cap Explorer) system would explore the Polar Cap interiors using mobile probes powered by compact, lightweight nuclear reactors. The probes would travel 100's of meters per daymore » along melt channels in the ice sheets created by hot water jets from the 500 kW(th) nuclear reactors, ascending and descending, either vertically or at an angle to the vertical, reaching bedrock at kilometers beneath the surface. The powerful reactor will be necessary to provide sufficient hot water at high velocity to penetrate the extensive horizontal dust/sand layers that separate layers of ice in the Mars Ice Caps. MICE reactors can operate at 500 kW(th) for more than 4 years, and much longer in practice, since power level will be much lower when the probes are investigating locations in detail at low or zero speed. Multiple probes, e.g. six, would be deployed in an interactive network, continuously communicating by RF and acoustic signals with each other and with the surface lander spacecraft. In turn, the lander would continuously communicate in real time, subject to speed of light delays, with scientists on Earth to transmit data and receive instructions for the MICE probes. Samples collected by the probes could be brought to the lander, for return to the Earth at the end of the mission.« less

  10. What would we miss if we characterized the Moon and Mars with just planetary meteorites, remote mapping, and robotic landers?. [Abstract only

    NASA Technical Reports Server (NTRS)

    Lindstrom, M. M.

    1994-01-01

    Exploration of the Moon and planets began with telescopic studies of their surfaces, continued with orbiting spacecraft and robotic landers, and will culminate with manned exploration and sample return. For the Moon and Mars we also have accidental samples provided by impacts on their surfaces, the lunar and martian meteorites. How much would we know about the lunar surface if we only had lunar meteorites, orbital spacecraft, and robotic exploration, and not the Apollo and Luna returned samples? What does this imply for Mars? With martian meteorites and data from Mariner, Viking, and the future Pathfinder missions, how much could we learn about Mars? The basis of most of our detailed knowledge about the Moon is the Apollo samples. They provide ground truth for the remote mapping, timescales for lunar processes, and samples from the lunar interior. The Moon is the foundation of planetary science and the basis for our interpretation of the other planets. Mars is similar to the Moon in that impact and volcanism are the dominant processes, but Mars' surface has also been affected by wind and water, and hence has much more complex surface geology. Future geochemical or mineralogical mapping of Mars' surface should be able to tell us whether the dominant rock types of the ancient southern highlands are basaltic, anorthositic, granitic, or something else, but will not be able to tell us the detailed mineralogy, geochemistry, or age. Without many more martian meteorites or returned samples we will not know the diversity of martian rocks, and therefore will be limited in our ability to model martian geological evolution.

  11. 43 CFR 3590.0-1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID MINERALS (OTHER THAN COAL) EXPLORATION AND MINING..., testing, development, mining and processing operations and production practices without waste or avoidable...

  12. 43 CFR 3590.0-1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID MINERALS (OTHER THAN COAL) EXPLORATION AND MINING..., testing, development, mining and processing operations and production practices without waste or avoidable...

  13. 43 CFR 3590.0-1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID MINERALS (OTHER THAN COAL) EXPLORATION AND MINING..., testing, development, mining and processing operations and production practices without waste or avoidable...

  14. 43 CFR 3590.0-1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID MINERALS (OTHER THAN COAL) EXPLORATION AND MINING..., testing, development, mining and processing operations and production practices without waste or avoidable...

  15. Dawn arrives at Ceres: Exploration of a small, volatile-rich world.

    PubMed

    Russell, C T; Raymond, C A; Ammannito, E; Buczkowski, D L; De Sanctis, M C; Hiesinger, H; Jaumann, R; Konopliv, A S; McSween, H Y; Nathues, A; Park, R S; Pieters, C M; Prettyman, T H; McCord, T B; McFadden, L A; Mottola, S; Zuber, M T; Joy, S P; Polanskey, C; Rayman, M D; Castillo-Rogez, J C; Chi, P J; Combe, J P; Ermakov, A; Fu, R R; Hoffmann, M; Jia, Y D; King, S D; Lawrence, D J; Li, J-Y; Marchi, S; Preusker, F; Roatsch, T; Ruesch, O; Schenk, P; Villarreal, M N; Yamashita, N

    2016-09-02

    On 6 March 2015, Dawn arrived at Ceres to find a dark, desiccated surface punctuated by small, bright areas. Parts of Ceres' surface are heavily cratered, but the largest expected craters are absent. Ceres appears gravitationally relaxed at only the longest wavelengths, implying a mechanically strong lithosphere with a weaker deep interior. Ceres' dry exterior displays hydroxylated silicates, including ammoniated clays of endogenous origin. The possibility of abundant volatiles at depth is supported by geomorphologic features such as flat crater floors with pits, lobate flows of materials, and a singular mountain that appears to be an extrusive cryovolcanic dome. On one occasion, Ceres temporarily interacted with the solar wind, producing a bow shock accelerating electrons to energies of tens of kilovolts. Copyright © 2016, American Association for the Advancement of Science.

  16. Titan's interior constrained from its obliquity and tidal Love number

    NASA Astrophysics Data System (ADS)

    Baland, Rose-Marie; Coyette, Alexis; Yseboodt, Marie; Beuthe, Mikael; Van Hoolst, Tim

    2016-04-01

    In the last few years, the Cassini-Huygens mission to the Saturn system has measured the shape, the obliquity, the static gravity field, and the tidally induced gravity field of Titan. The large values of the obliquity and of the k2 Love number both point to the existence of a global internal ocean below the icy crust. In order to constrain interior models of Titan, we combine the above-mentioned data as follows: (1) we build four-layer density profiles consistent with Titan's bulk properties; (2) we determine the corresponding internal flattening compatible with the observed gravity and topography; (3) we compute the obliquity and tidal Love number for each interior model; (4) we compare these predictions with the observations. Previously, we found that Titan is more differentiated than expected (assuming hydrostatic equilibrium), and that its ocean is dense and less than 100 km thick. Here, we revisit these conclusions using a more complete Cassini state model, including: (1) gravitational and pressure torques due to internal tidal deformations; (2) atmosphere/lakes-surface exchange of angular momentum; (3) inertial torque due to Poincaré flow. We also adopt faster methods to evaluate Love numbers (i.e. the membrane approach) in order to explore a larger parameter space.

  17. InSight Media Day Preparation

    NASA Image and Video Library

    2018-04-05

    NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, is in a clean room inside the Astrotech processing facility at Vandenberg Air Force Base in California. InSight is scheduled for liftoff on a United Launch Alliance Atlas V rocket May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  18. Visualizing lava flow interiors with LiDAR

    NASA Astrophysics Data System (ADS)

    Whelley, P.; Garry, W. B.; Young, K.; Kruse, S.; Esmaeili, S.; Bell, E.; Paylor, R.

    2017-12-01

    Lava tube caves provide unprecedented access to the shallow (meters to tens of meters) interiors of lava flows. Surveying tube geometry and morphology can illuminate lava flow thermal history and emplacement mechanics. In an expedition to Lava Beds National Monument, California, our team collected ultra-high-resolution (< 10 cm) topography from the interiors of four lava tubes using a terrestrial laser scanner (TLS). More than 78 GB of point data (latitude, longitude, elevation) of the surface and interiors of Hercules Leg, Skull, Valentine and, Indian Well Caves were collected. For example, our point cloud for 50 m of Valentine Cave contains 748 million points (interior: 478 million, exterior: 270 million) from 28 TLS scans. The tubes visited range in diameter from < 1 m to > 10 m, and from 1 m to < 20 m of overburden. The interior morphology of the tubes remain pristine (i.e., un-eroded) after more than 10,000 years. The TLS data illuminate fresh-looking lava tube flow features (e.g., lava-coils, pillars, benches, and ropes) and post-emplacement deformation features (e.g., fractures, lava-drips, molded ceilings, and drop-blocks). Furthermore, the data provide context for geochemical and geophysical observations made in conjunction with the TLS survey. Lava tube morphology, observable in the TLS data, informs each tube's emplacement history. Skull cave is the largest ( 20 m in diameter) requiring a comparatively high lava discharge rate and suggesting this cave formed by roofing over a lava channel. In contrast, Valentine, Hercules Leg, and Indian Well Caves are narrower, (1 to 4 m) and have many branches, some of which rejoin the "main passage", suggesting they formed by developing a network of pathways within the lava flow. We will showcase video fly-throughs for these lava tubes, plus manipulable point clouds. The interactive eLighning presentation will encourage hands-on exploration of these unique data. We will guide them on a tour of the underground to discover and compare different morphologies of lava tubes.

  19. 43 CFR 4.1353 - Contents of request.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Contents of request. 4.1353 Section 4.1353 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals Request for Hearing on A Preliminary Finding Concerning A Demonstrated...

  20. 43 CFR 4.1263 - Contents of application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Contents of application. 4.1263 Section 4.1263 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals Applications for Temporary Relief § 4.1263 Contents of application....

  1. Effects of solar radiation, terrestrial radiation and lunar interior heat flow on surface temperature at the nearside of the Moon: Based on numerical calculation and data analysis

    NASA Astrophysics Data System (ADS)

    Song, Yutian; Wang, Xueqiang; Bi, Shengshan; Wu, Jiangtao; Huang, Shaopeng

    2017-09-01

    Surface temperature at the nearside of the Moon (Ts,n) embraces an abundance of valuable information to be explored, and its measurement contributes to studying Earth's energy budget. On a basis of a one-dimensional unsteady heat-transfer model, this paper ran a quantitative calculation that how much the Ts,n varies with the changes of different heat sources, including solar radiation, terrestrial radiation, and lunar interior heat flow. The results reveal that solar radiation always has the most important influence on Ts,n not only during lunar daytime (by means of radiation balance) but also during lunar nighttime (by means of lunar regolith heat conduction). Besides, the effect of terrestrial radiation is also unavoidable, and measuring the variation of lunar nighttime low temperature is exactly helpful in observing Earth outgoing radiation. Accordingly, it is practical to establish a Moon-base observatory on the Moon. For verification, the Apollo 15 mission temperature data was used and analyzed as well. Moreover, other 9 typical lunar areas were selected and the simulation was run one after another in these areas after proper model amendation. It is shown that the polar regions on the Moon are the best areas for establishing Moon-base observatory.

  2. Future Lunar Sampling Missions: Big Returns on Small Samples

    NASA Astrophysics Data System (ADS)

    Shearer, C. K.; Borg, L.

    2002-01-01

    The next sampling missions to the Moon will result in the return of sample mass (100g to 1 kg) substantially smaller than those returned by the Apollo missions (380 kg). Lunar samples to be returned by these missions are vital for: (1) calibrating the late impact history of the inner solar system that can then be extended to other planetary surfaces; (2) deciphering the effects of catastrophic impacts on a planetary body (i.e. Aitken crater); (3) understanding the very late-stage thermal and magmatic evolution of a cooling planet; (4) exploring the interior of a planet; and (5) examining volatile reservoirs and transport on an airless planetary body. Can small lunar samples be used to answer these and other pressing questions concerning important solar system processes? Two potential problems with small, robotically collected samples are placing them in a geologic context and extracting robust planetary information. Although geologic context will always be a potential problem with any planetary sample, new lunar samples can be placed within the context of the important Apollo - Luna collections and the burgeoning planet-scale data sets for the lunar surface and interior. Here we illustrate the usefulness of applying both new or refined analytical approaches in deciphering information locked in small lunar samples.

  3. Rotating bubble membrane radiator

    DOEpatents

    Webb, Brent J.; Coomes, Edmund P.

    1988-12-06

    A heat radiator useful for expelling waste heat from a power generating system aboard a space vehicle is disclosed. Liquid to be cooled is passed to the interior of a rotating bubble membrane radiator, where it is sprayed into the interior of the bubble. Liquid impacting upon the interior surface of the bubble is cooled and the heat radiated from the outer surface of the membrane. Cooled liquid is collected by the action of centrifical force about the equator of the rotating membrane and returned to the power system. Details regarding a complete space power system employing the radiator are given.

  4. Demonstration of Antimicrobial Corrosion-Resisting Interior Coating Systems for Military Facilities in Warm, Humid Locations

    DTIC Science & Technology

    2017-06-01

    ER D C/ CE RL T R- 17 -1 9 DoD Corrosion Prevention and Control Program Demonstration of Antimicrobial Corrosion- Resisting Interior ...Demonstration of Antimicrobial Corrosion- Resisting Interior Coating Systems for Military Facilities in Warm, Humid Locations Final Report on...Under Project F10-AR04, “Application of New Corrosion-Resistant Mold Abatement Technologies for Interior Surfaces of Buildings at Fort Polk, LA” ERDC

  5. Planetary Penetrators - The Vanguard for the Future Exploration of the Solar System

    NASA Astrophysics Data System (ADS)

    Collinson, G.; UK Penetrator Consortium

    The UK Penetrator Consortium is aiming to develop spacecraft weighing <15 kg, rugged enough to survive impacts with planetary surfaces at speeds of up to 300 m/s and bury themselves a few meters into the surface. A full-scale trial is currently under preparation, leading towards a proposed Lunar mission, called “MoonLITE”, early next decade. Detectors for volatiles aboard MoonLITE will search for the presence of lunar water, whilst seismometers will measure the strength and frequency of moonquakes over the mission's nominal one-year period and probe the internal structure of the moon using simultaneous measurements of seismic waves that travel through the lunar interior. The consortium also has long term plans for more ambitious missions to Jupiter's moon of Europa, and Saturn's Moons of Titan and Enceladus as part of ESA's Cosmic Visions Programme. Key goals include the search for sub-surface oceans, the study of sub-surface geochemistry and seismic activity and the search for organic molecules of exobiological importance.

  6. Melt Segregation and Tidal Heating at Io

    NASA Astrophysics Data System (ADS)

    Rajendar, A.; Dufek, J.; Roberts, J. H.; Paty, C. S.

    2011-12-01

    Recent evidence of melt beneath Io's surface (Khurana et al., 2010) and repeated observation of volcanic activity and features consistent with volcanic activity at the surface (e.g. Veeder et al, 1994; Rathbun et al., 2004; Lopes-Gautier et al., 1999; Smith et al., 1979) has raised further questions about the structure of the Galilean moon and the processes that shape it. In this study we examine the thermal state, melt fraction, and multiphase dynamics of melt segregation within Io's interior. Using a coupled multiphase dynamics and tidal heating model we explore the location, spatial extent, and temporal residence times of melt in Io's subsurface, as well as response to orbital parameters. In a thermally evolving body subject to tidal forcing, in which melt production and migration takes place, feedback can occur with respect to the physical and thermal properties. We explore this feedback to produce a thermal model of Io, taking into account the rate of tidal heating and fluid motion within the interior. First, a layered model of the internal structure is assumed. The equations of motion for forced oscillations in a layered spherical body are then solved using the propagator matrix method (Sabadini and Vermeesen, 2004) to obtain the displacements and strains due to tidal motion (Roberts and Nimmo, 2008). From this, the radial distribution of tidal heat generation within Io is calculated. This radial heating profile is then used as input for a multi-phase fluid model in order to obtain an estimate of the radial temperature distribution and thus the material properties and melt fractions. In the multiphase model individual phases (melt and solid residue) separately conserve mass, momentum and enthalpy (Dufek and Bachmann, 2010) allowing us to explore melt segregation phenomena. Enthalpy closure is provided by the MELTS (Ghiorso and Sack, 1995) thermodynamics algorithm, which is called at each point in space. This accounts for the partitioning between latent and sensible heat, and updates the physical properties of the melt and solid phase such as density and heat capacity. With this approach we explore the sensitivity of melt generation and the time between melt production and eruption (the residence time) to mantle chemistry and the layered structure of the moon.

  7. InSight Atlas V Centaur Lift & Mate

    NASA Image and Video Library

    2018-03-06

    A United Launch Alliance Centaur upper stage arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  8. InSight Atlas V Booster Transport

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance Atlas V booster is transported to Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  9. InSight Spacecraft Arrival

    NASA Image and Video Library

    2018-02-28

    At Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft arrives at the Astrotech processing facility. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  10. InSight Atlas V LVOS

    NASA Image and Video Library

    2018-03-03

    A crane lifts a United Launch Alliance Atlas V booster at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  11. InSight Atlas V Centaur Transport / Lift & Mate

    NASA Image and Video Library

    2018-03-06

    A United Launch Alliance Centaur upper stage arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  12. InSight Atlas V Fairing Arrival, Offload, and Unbagging

    NASA Image and Video Library

    2018-01-31

    The United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars arrives at Vandenberg Air Force Base in California. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.

  13. Generation of interior cavity noise due to window vibration excited by turbulent flows past a generic side-view mirror

    NASA Astrophysics Data System (ADS)

    Yao, Hua-Dong; Davidson, Lars

    2018-03-01

    We investigate the interior noise caused by turbulent flows past a generic side-view mirror. A rectangular glass window is placed downstream of the mirror. The window vibration is excited by the surface pressure fluctuations and emits the interior noise in a cuboid cavity. The turbulent flows are simulated using a compressible large eddy simulation method. The window vibration and interior noise are predicted with a finite element method. The wavenumber-frequency spectra of the surface pressure fluctuations are analyzed. The spectra are identified with some new features that cannot be explained by the Chase model for turbulent boundary layers. The spectra contain a minor hydrodynamic domain in addition to the hydrodynamic domain caused by the main convection of the turbulent boundary layer. The minor domain results from the local convection of the recirculating flow. These domains are formed in bent elliptic shapes. The spanwise expansion of the wake is found causing the bending. Based on the wavenumber-frequency relationships in the spectra, the surface pressure fluctuations are decomposed into hydrodynamic and acoustic components. The acoustic component is more efficient in the generation of the interior noise than the hydrodynamic component. However, the hydrodynamic component is still dominant at low frequencies below approximately 250 Hz since it has low transmission losses near the hydrodynamic critical frequency of the window. The structural modes of the window determine the low-frequency interior tonal noise. The combination of the mode shapes of the window and cavity greatly affects the magnitude distribution of the interior noise.

  14. Exploring Venus Interior Structure by Detection of Infrasonic Waves

    NASA Astrophysics Data System (ADS)

    Mimoun, D.; Cutts, J.; Stevenson, D.; Garcia, R. F.

    2015-04-01

    Knowledge of the interior structure of Venus is currently impeded by the limited time that a seismometer can survive in the atmosphere of Venus. We propose to remotely detect quakes by infrasonic measurements at the top of the cloud layer.

  15. 43 CFR 3802.3 - Environmental protection.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Environmental protection. 3802.3 Section 3802.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND... Exploration and Mining, Wilderness Review Program § 3802.3 Environmental protection. ...

  16. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    Optics Lead Takashi Okajima prepares to align NICER’s X-ray optics. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. 78 FR 68471 - Action Subject to Intergovernmental Review

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-11-14

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement [S1D1SS08011000SX066A00067F134S180110; S2D2SS08011000SX066A00033F13XS501520] Action Subject to Intergovernmental Review AGENCY: Office of Surface Mining Reclamation and Enforcement, Interior. ACTION: Notice. SUMMARY: We, the Office of...

  18. The Surface Layer of a Crystal and Its Specific Role in the Process of Melt Formation

    NASA Astrophysics Data System (ADS)

    Sobolev, R. N.

    2018-04-01

    A crystal becomes melted in a few stages. The structure of the crystal surface differs from that of its interior. Therefore, as its interior is gradually involved in the melting process, the phase transition temperature becomes higher. The melting point becomes constant when all atoms have the same number of unsaturated bonds.

  19. Method of coating the interior surface of hollow objects with a diffusion coating

    DOEpatents

    Knowles, Shawn D.; Senor, David J.; Forbes, Steven V.; Johnson, Roger N.; Hollenberg, Glenn W.

    2005-03-15

    A method for forming a diffusion coating on the interior of surface of a hollow object wherein a filament, extending through a hollow object and adjacent to the interior surface of the object, is provided, with a coating material, in a vacuum. An electrical current is then applied to the filament to resistively heat the filament to a temperature sufficient to transfer the coating material from the filament to the interior surface of the object. The filament is electrically isolated from the object while the filament is being resistively heated. Preferably, the filament is provided as a tungsten filament or molybdenum filament. Preferably, the coating materials are selected from the group consisting of Ag, Al, As, Au, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Dy, Er, Eu, Fe, Ga, Ge, Hg, In, K, Li, Mg, Mn, Na, Ni P, Pb, Pd, Pr, S, Sb, Sc, Se, Si, Sn, Sr, Te, Tl, Y, Yb, Zn, and combinations thereof. The invention additionally allows for the formation of nitrides, hydrides, or carbides of all the possible coating materials, where such compounds exist, by providing a partial pressure of nitrogen, hydrogen, hydrocarbons, or combination thereof, within the vacuum.

  20. Large-Grain Superconducting Gun Cavity Testing Program Phase One Closing Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammons, L.; Bellavia, S.; Belomestnykh, S.

    2013-10-31

    This report details the experimental configuration and RF testing results for the first phase of a large-grained niobium electron gun cavity testing program being conducted in the Small Vertical Testing Facility in the Collider-Accelerator Department. This testing is meant to explore multi-pacting in the cavity and shed light on the behavior of a counterpart cavity of identical geometry installed in the Energy Recovery LINAC being constructed in the Collider-Accelerator Department at Brookhaven National Laboratory. This test found that the Q of the large-grained cavity at 4 K reached ~6.5 × 10 8 and at 2 K reached a value ofmore » ~6 × 10 9. Both of these values are about a factor of 10 lower than would be expected for this type of cavity given the calculated surface resistance and the estimated geometry factor for this half-cell cavity. In addition, the cavity reached a peak voltage of 0.6 MV before there was sig-nificant decline in the Q value and a substantial increase in field emission. This relatively low volt-age, coupled with the low Q and considerable field emission suggest contamination of the cavity interior, possibly during experimental assembly. The results may also suggest that additional chemical etching of the interior surface of the cavity may be beneficial. Throughout the course of testing, various challenges arose including slow helium transfer to the cryostat and cable difficulties. These difficulties and others were eventually resolved, and the re-port discusses the operating experience of the experiment thus far and the plans for future work aimed at exploring the nature of multipacting with a copper cathode inserted into the cavity.« less

  1. 8. VIEW SOUTHWEST, INTERIOR VIEW, WIND TUNNEL 139 Naval ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    8. VIEW SOUTHWEST, INTERIOR VIEW, WIND TUNNEL 139 - Naval Surface Warfare Center, Subsonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  2. Water resources of Randolph and Lawrence Counties, Arkansas

    USGS Publications Warehouse

    Lamonds, A.G.; Hines, Marion S.; Plebuch, Raymond O.

    1969-01-01

    Water is used at an average rate of almost 27 million gallons per day in Randolph and Lawrence Counties, and quantities sufficient for any foreseeable use are available. Supplies for the large uses--municipal, industrial, and irrigation--can best be obtained from wells in .he Coastal Plain part of the counties and from streams in the Interior Highlands part. The counties have abundant supplies of hard but otherwise good-quality surface water, particularly in the Interior Highlands and along the western boundary of the Coastal Plain. Minimum recorded flows of four streams (Black, Current, Eleven Point, and Spring Rivers) exceeded 200 cubic feet per second, or 129 million gallons per day. Five other streams have flows in excess of 13 cubic feet per second 95 percent of the time. Water supplies can be obtained without storage from the larger streams in the area. Many of the smaller streams in the Interior Highlands also have large water-supply potential because of the excellent impoundment possibilities. Most of the water used in the .two counties is obtained from ground-water reservoirs in the Coastal Plain. Wells that tap alluvial deposits of Quaternary age commonly yield 1,000 gallons per minute. However, the water often is unsuitable for many uses unless treated to remove hardness, iron, and manganese. Water possibly may be obtained in the southeastern part of the area from the Wilcox Group of Tertiary age and the Nacatoch Sand of Cretaceous age, but these formations have not been explored in the report area. Wells in the Interior Highlands generally are less than 200 feet deep and yield 10 gallons per minute, or less. It may be possible to obtain greater amounts of ground water from two unexplored formations, the Roubidox and the Gunter Sandstone Member of the Van Buren Formation, in the Interior Highlands. Ground water in the Interior Highlands is very hard and is more susceptible to local bacterial contamination than is ground water in the Coastal Plain. However, with proper sanitary safeguards against contamination and with treatment for reduction of hardness, ground water in the Interior Highlands is suitable for most uses.

  3. 43 CFR 3481.4 - Temporary interruption in coal severance.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Temporary interruption in coal severance... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING OPERATIONS RULES General Provisions § 3481.4 Temporary interruption in coal severance. ...

  4. 43 CFR 3481.4 - Temporary interruption in coal severance.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Temporary interruption in coal severance... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING OPERATIONS RULES General Provisions § 3481.4 Temporary interruption in coal severance. ...

  5. 43 CFR 3481.4 - Temporary interruption in coal severance.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Temporary interruption in coal severance... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING OPERATIONS RULES General Provisions § 3481.4 Temporary interruption in coal severance. ...

  6. 43 CFR 3481.4 - Temporary interruption in coal severance.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Temporary interruption in coal severance... LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING OPERATIONS RULES General Provisions § 3481.4 Temporary interruption in coal severance. ...

  7. 77 FR 32994 - Bureau of Ocean Energy Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-04

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management Geological and Geophysical...: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice of extension of comment period... managed by BOEM: oil and gas exploration and development; renewable energy; and marine minerals. BOEM is...

  8. 43 CFR 4.1184 - Contents of application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Contents of application. 4.1184 Section 4.1184 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals Expedited Review of Section 521(a)(2) Or 521(a)(3) Orders of Cessatio...

  9. 43 CFR 4.1292 - Contents of petition.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Contents of petition. 4.1292 Section 4.1292 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals Petitions for Award of Costs and Expenses Under Section 525(e) of the Ac...

  10. 43 CFR 4.1164 - Contents of application.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Contents of application. 4.1164 Section 4.1164 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals Review of Section 521 Notices of Violation and Orders of Cessation § ...

  11. 43 CFR 4.1166 - Contents of answer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Contents of answer. 4.1166 Section 4.1166 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals Review of Section 521 Notices of Violation and Orders of Cessation § 4.116...

  12. 43 CFR 4.1192 - Contents of answer.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Contents of answer. 4.1192 Section 4.1192 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining Hearings and Appeals Proceedings for Suspension Or Revocation of Permits Under Section 521(a)(4...

  13. Solar Powered Automobile Interior Climate Control System

    NASA Technical Reports Server (NTRS)

    Howard, Richard T. (Inventor)

    2003-01-01

    There is provided a climate control system for a parked vehicle that includes a solar panel, thermostatic switch, fans, and thermoelectric coolers. The solar panel can serve as the sole source of electricity for the system. The system affords convenient installation and removal by including solar panels that are removably attached to the exterior of a vehicle. A connecting wire electrically connects the solar panels to a housing that is removably mounted to a partially opened window on the vehicle. The thermostatic switch, fans, and thermoelectric coolers are included within the housing. The thermostatic switch alternates the direction of the current flow through the thermoelectric coolers to selectively heat or cool the interior of the vehicle. The interior surface of the thermoelectric coolers are in contact with interior heat sinks that have air circulated across them by an interior fan. Similarly, the exterior surface of the thermoelectric coolers are in contact with exterior heat sinks that have air circulated across them by an exterior fan.

  14. Geophysical Investigations of Habitability in Ice-Covered Ocean Worlds

    NASA Astrophysics Data System (ADS)

    Vance, Steven D.; Panning, Mark P.; Stähler, Simon; Cammarano, Fabio; Bills, Bruce G.; Tobie, Gabriel; Kamata, Shunichi; Kedar, Sharon; Sotin, Christophe; Pike, William T.; Lorenz, Ralph; Huang, Hsin-Hua; Jackson, Jennifer M.; Banerdt, Bruce

    2018-01-01

    Geophysical measurements can reveal the structures and thermal states of icy ocean worlds. The interior density, temperature, sound speed, and electrical conductivity thus characterize their habitability. We explore the variability and correlation of these parameters using 1-D internal structure models. We invoke thermodynamic consistency using available thermodynamics of aqueous MgSO4, NaCl (as seawater), and NH3; pure water ice phases I, II, III, V, and VI; silicates; and any metallic core that may be present. Model results suggest, for Europa, that combinations of geophysical parameters might be used to distinguish an oxidized ocean dominated by MgSO4 from a more reduced ocean dominated by NaCl. In contrast with Jupiter's icy ocean moons, Titan and Enceladus have low-density rocky interiors, with minimal or no metallic core. The low-density rocky core of Enceladus may comprise hydrated minerals or anhydrous minerals with high porosity. Cassini gravity data for Titan indicate a high tidal potential Love number (k2>0.6), which requires a dense internal ocean (ρocean>1,200 kg m-3) and icy lithosphere thinner than 100 km. In that case, Titan may have little or no high-pressure ice, or a surprisingly deep water-rock interface more than 500 km below the surface, covered only by ice VI. Ganymede's water-rock interface is the deepest among known ocean worlds, at around 800 km. Its ocean may contain multiple phases of high-pressure ice, which will become buoyant if the ocean is sufficiently salty. Callisto's interior structure may be intermediate to those of Titan and Europa, with a water-rock interface 250 km below the surface covered by ice V but not ice VI.

  15. Applications of Surface Penetrating Radar for Mars Exploration

    NASA Astrophysics Data System (ADS)

    Li, H.; Li, C.; Ran, S.; Feng, J.; Zuo, W.

    2015-12-01

    Surface Penetrating Radar (SPR) is a geophysical method that uses electromagnetic field probe the interior structure and lithological variations of a lossy dielectric materials, it performs quite well in dry, icy and shallow-soil environments. The first radar sounding of the subsurface of planet was carried out by Apollo Lunar Sounder Experiment (ALSE) of the Apollo 17 in 1972. ALSE provided very precise information about the moon's topography and revealed structures beneath the surface in both Mare Crisium and Mare Serenitatis. Russian Mars'92 was the first Mars exploration mission that tried to use SPR to explore martian surface, subsurface and ionosphere. Although Mars'96 launch failed in 1996, Russia(Mars'98, cancelled in 1998; Phobos-Grunt, launch failed in 2011), ESA(Mars Express, succeeded in 2003; Netlander, cancelled in 2003; ExoMars 2018) and NASA(MRO, succeeded in 2005; MARS 2020) have been making great effects to send SPR to Mars, trying to search for the existence of groundwater and life in the past 20 years. So far, no Ground Penetrating Radar(GPR) has yet provided in situ observations on the surface of Mars. In December 2013, China's CE-3 lunar rover (Yuto) equipped with a GPR made the first direct measurement of the structure and depth of the lunar soil, and investigation of the lunar crust structure along the rover path. China's Mars Exploration Program also plans to carry the orbiting radar sounder and rover GPR to characterize the nature of subsurface water or ices and the layered structure of shallow subsurface of Mars. SPR can provide diversity of applications for Mars exploration , that are: to map the distribution of solid and liquid water in the upper portions of the Mars' crust; to characterize the subsurface geologic environment; to investigate the planet's subsurface to better understand the evolution and habitability of Mars; to perform the martain ionosphere sounding. Based on SPR's history and achievements, combined with the development of radar technology, SPR's technological trends applied in moon and deep space exploration are summarized in the following: Technological convergence in SPR and SAR(Synthetic Aperture Radar); Muliti-frequency and Multi-polarization; Bistatic or multistatic SPRs for geophysical network; Tomography.

  16. Conoscopic holography for image registration: a feasibility study

    NASA Astrophysics Data System (ADS)

    Lathrop, Ray A.; Cheng, Tiffany T.; Webster, Robert J., III

    2009-02-01

    Preoperative image data can facilitate intrasurgical guidance by revealing interior features of opaque tissues, provided image data can be accurately registered to the physical patient. Registration is challenging in organs that are deformable and lack features suitable for use as alignment fiducials (e.g. liver, kidneys, etc.). However, provided intraoperative sensing of surface contours can be accomplished, a variety of rigid and deformable 3D surface registration techniques become applicable. In this paper, we evaluate the feasibility of conoscopic holography as a new method to sense organ surface shape. We also describe potential advantages of conoscopic holography, including the promise of replacing open surgery with a laparoscopic approach. Our feasibility study investigated use of a tracked off-the-shelf conoscopic holography unit to perform a surface scans on several types of biological and synthetic phantom tissues. After first exploring baseline accuracy and repeatability of distance measurements, we performed a number of surface scan experiments on the phantom and ex vivo tissues with a variety of surface properties and shapes. These indicate that conoscopic holography is capable of generating surface point clouds of at least comparable (and perhaps eventually improved) accuracy in comparison to published experimental laser triangulation-based surface scanning results.

  17. 12. VIEW EAST, BUILDING 12 INTERIOR, WIND TUNNEL 157 ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. VIEW EAST, BUILDING 12 INTERIOR, WIND TUNNEL 157 - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  18. InSight Atlas V LVOS

    NASA Image and Video Library

    2015-12-15

    A crane positions a United Launch Alliance Atlas V booster on the launch pad at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  19. Insight Fairing Offload and Unbagging

    NASA Image and Video Library

    2018-01-30

    In the Astrotech facility at Vandenberg Air Force Base in California, technicians remove protective wrapping from the United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.

  20. InSight Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2018-03-06

    At Space Launch Complex 3 at Vandenberg Air Force Base in California, the United Launch Alliance Centaur upper stage is lifted and mated atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  1. InSight Atlas V Centaur Transport / Lift & Mate

    NASA Image and Video Library

    2018-03-06

    At Space Launch Complex 3 at Vandenberg Air Force Base in California a crane lifts a United Launch Alliance Centaur upper stage for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  2. InSight Atlas V LVOS

    NASA Image and Video Library

    2018-03-03

    A crane positions a United Launch Alliance Atlas V booster on the launch pad at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  3. InSight Atlas V Fairing Arrival, Offload, and Unbagging

    NASA Image and Video Library

    2018-01-31

    The United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars has just arrived at the Astrotech facility at Vandenberg Air Force Base in California. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.

  4. InSight Atlas V Booster Transport

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance Atlas V booster departs building 7525 at Vandenberg Air Force Base in California on its way to Space Launch Complex 3. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  5. InSight Atlas V Centaur Transport / Lift & Mate

    NASA Image and Video Library

    2018-03-06

    At Vandenberg Air Force Base in California, a United Launch Alliance Centaur upper stage is transported to Space Launch Complex 3 for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  6. InSight Spacecraft Arrival

    NASA Image and Video Library

    2018-02-28

    After a U.S. Air Force C-17 aircraft arrived at Vandenberg Air Force Base in California, ground crews offload NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  7. InSight Spacecraft Arrival

    NASA Image and Video Library

    2018-02-28

    After arrival at Vandenberg Air Force Base in California, ground crews prepare NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft for transportation to the Astrotech processing facility. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to explore the deep interior of Mars. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  8. InSight Spacecraft Uncrating, Removal from Container, Lift Heat

    NASA Image and Video Library

    2018-03-01

    At Vandenberg Air Force Base in California, NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft is uncrated inside the Astrotech processing facility. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  9. InSight Atlas V Fairing Arrival, Offload, and Unbagging

    NASA Image and Video Library

    2018-01-31

    In the Astrotech facility at Vandenberg Air Force Base in California, technicians remove protective wrapping from the United Launch Alliance (ULA) payload fairing for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.

  10. InSight Atlas V LVOS

    NASA Image and Video Library

    2018-03-03

    Technicians, engineers and U.S. Air Force personnel prepare to support erection of a United Launch Alliance Atlas V booster at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  11. InSight Spacecraft Arrival

    NASA Image and Video Library

    2018-02-28

    A U.S. Air Force C-17 aircraft arrives at Vandenberg Air Force Base in California carrying NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft designed to land on Mars. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  12. InSight Atlas V Centaur Lift & Mate

    NASA Image and Video Library

    2018-03-06

    At Space Launch Complex 3 at Vandenberg Air Force Base in California technicians and engineers mate a United Launch Alliance Centaur upper stage atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  13. InSight Atlas V Centaur Lift & Mate

    NASA Image and Video Library

    2018-03-06

    At Space Launch Complex 3 at Vandenberg Air Force Base in California a crane lifts a United Launch Alliance Centaur upper stage for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  14. InSight Atlas V Booster Prep for Transport

    NASA Image and Video Library

    2018-03-01

    A United Launch Alliance Atlas V booster is prepared for transport to Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  15. InSight Atlas V Booster Transport

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance Atlas V booster arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will be positioned on the pad to launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  16. A New Approach for 3D Ocean Reconstruction from Limited Observations

    NASA Astrophysics Data System (ADS)

    Xiao, X.

    2014-12-01

    Satellites can measure ocean surface height and temperature with sufficient spatial and temporal resolution to capture mesoscale features across the globe. Measurements of the ocean's interior, however, remain sparse and irregular, thus the dynamical inference of subsurface flows is necessary to interpret surface measurements. The most common (and accurate) approach is to incorporate surface measurements into a data-assimilating forward ocean model, but this approach is expensive and slow, and thus completely impractical for time-critical needs, such as offering guidance to ship-based observational campaigns. Two recently-developed approaches have made use of the apparent partial consistency of upper ocean dynamics with quasigeostrophic flows that take into account surface buoyancy gradients (i.e. the "surface quasigeostrophic" (SQG) model) to "reconstruct" the interior flow from knowledge of surface height and buoyancy. Here we improve on these methods in three ways: (1) we adopt a modal decomposition that represents the surface and interior dynamics in an efficient way, allowing the separation of surface energy from total energy; (2) we make use of instantaneous vertical profile observations (e.g. from ARGO data) to improve the reconstruction of eddy variables at depth; and (3) we use advanced statistical methods to choose the optimal modes for the reconstruction. The method is tested using a series of high horizontal and vertical resolution quasigeostrophic simulation, with a wide range of surface buoyancy and interior potential vorticity gradient combinations. In addtion, we apply the method to output from a very high resolution primitive equation simulation of a forced and dissipated baroclinic front in a channel. Our new method is systematically compared to the existing methods as well. Its advantages and limitations will be discussed.

  17. TET Explorers: Pushing back the frontiers of Science

    NASA Astrophysics Data System (ADS)

    Curtis, S. A.; Clark, P. E.; Garvin, J. B.; Rilee, M. L.; Dorband, J. E.; Cheung, C. Y.; Sams, J. E.

    2005-12-01

    We are in the process of developing Tetrahedral Explorer Technologies (TETs) for the extreme mobility needed to explore remote, rugged terrain. TET architecture is based on the tetrahedron as building block, acting singly or interconnected, where apices act as nodes from which struts reversibly deploy. Conformable tetrahedra are the simplest space-filling form the way triangles are the simplest plane-filling facets. The tetrahedral framework acts as a simple skeletal muscular structure. Reconfigurable architecture is essential in exploration because reaching features of the greatest potential interest requires crossing a wide range of terrains. Thus, areas of interest are relatively inaccessible to permanently appendaged vehicles. For example, morphology and geochemistry of interior basins, walls, and ejecta blankets of impact structures must all be studied to understand the nature of an impact event. The crater floor might be relatively flat and navigable, while typical crater walls are variably sloping, and dominated by unconsolidated debris. To be totally functional, structures must form pseudo-appendages varying in size, rate, and manner of deployment (gait). We have already prototyped a simple robotic walker from a single reconfigurable tetrahedron capable of tumbling and are simulating and building a prototype of the more evolved 12Tetrahedral Walker (Autonomous Lunar Investigator) which has interior nodes for payload, more continuous motion, and is commandable through a user friendly interface. Our current applications consist of a more differentiated architecture to form detachable, reconfigurable, reshapable linearly extendable bodies (Class W or Worm), ranging from arms terminating in opposable digits (Class S or Spider) to act as manual assistant subsystems on rovers, to autonomous pseudo-hominid clamberers (Class M or Mammal), with extensions terminating in a wider range of sensors. We are now simulating Class W and Class S gaits and will be building a prototype rover arm. Ultimately, complex continuous n-tetrahedral structures, more advanced versions of Class A, will have deployable outer skin, and even higher degrees of freedom. Combined high and low level intelligence through an extended neural interface will allow `shape shifting' for required function, from surface-conformable lander to amorphous rover to concave surface formation for antenna function. Such architecture will consist of reusable, reconfigurable, mobile, and self-repairing structures, capable of acting as a multi-functional infrastructure. TET systems will act as robotic adjuncts to human explorers, enabling access to otherwise inaccessible resources essential to sustaining human presence.

  18. 13. VIEW NORTHEAST, BUILDING 12 INTERIOR, WIND TUNNEL FAN ASSEMBLY ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    13. VIEW NORTHEAST, BUILDING 12 INTERIOR, WIND TUNNEL FAN ASSEMBLY - Naval Surface Warfare Center, Transonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  19. Solid-state greenhouses and their implications for icy satellites

    NASA Technical Reports Server (NTRS)

    Matson, Dennis L.; Brown, Robert H.

    1989-01-01

    The 'solid-state greenhouse effect' model constituted by the subsurface solar heating of translucent, high-albedo materials is presently applied to the study of planetary surfaces, with attention to frost and ice surfaces of the solar system's outer satellites. Temperature is computed as a function of depth for an illustrative range of thermal variables, and it is discovered that the surfaces and interiors of such bodies can be warmer than otherwise suspected. Mechanisms are identified through which the modest alteration of surface properties can substantially change the solid-state greenhouse and force an interior temperature adjustment.

  20. 43 CFR 3596.2 - Disposal of waste.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SOLID MINERALS (OTHER THAN COAL) EXPLORATION AND MINING... accordance with the terms of the lease, approved mining plan, applicable Federal, State and local law and...

  1. Absorbent pads for Containment, Neutralization, and Clean-Up of Environmental Spills Containing Chemically-Reactive Agents

    NASA Technical Reports Server (NTRS)

    Davis, Dennis D. (Inventor)

    1997-01-01

    A pad for cleaning up liquid spills is described which contains a porous surface covering, and an absorbent interior containing chemically reactive reagents for neutralizing noxious chemicals within the spilled liquid. The porous surface and the absorbent component would normally consist of chemically resistant materials allowing tentative spill to pass. The absorbent interior which contains the neutralizing reagents can but is not required to be chemically resilient and conducts the liquid chemical spill towards the absorbent interior containing the chemically reactive reagents where the dangerous and undesirable chemicals within the chemical spill are then neutralized as well as removed from the premises.

  2. Lubricant-impregnated surfaces for electrochemical applications, and devices and systems using same

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solomon, Brian Richmond; Chen, Xinwei; Chiang, Yet-Ming

    In certain embodiments, the invention relates to an electrochemical device having a liquid lubricant impregnated surface. At least a portion of the interior surface of the electrochemical device includes a portion that includes a plurality of solid features disposed therein. The plurality of solid features define a plurality of regions therebetween. A lubricant is disposed in the plurality of regions which retain the liquid lubricant in the plurality of regions during operation of the device. An electroactive phase comes in contact with at least the portion of the interior surface. The liquid lubricant impregnated surface introduces a slip at themore » surface when the electroactive phase flows along the surface. The electroactive phase may be a yield stress fluid.« less

  3. 6. VIEW NORTH, INTERIOR VIEW OF BUILDING 11, SUPERSONIC WIND ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    6. VIEW NORTH, INTERIOR VIEW OF BUILDING 11, SUPERSONIC WIND TUNNEL - Naval Surface Warfare Center, Supersonic Wind Tunnel Building, Bounded by Clara Barton Parkway & McArthur Boulevard, Silver Spring, Montgomery County, MD

  4. Future Exploration of Titan

    NASA Astrophysics Data System (ADS)

    Lorenz, R. D.; Titan Decadal Panel Collaboration

    2001-11-01

    Titan promises to be the Mars of the Outer Solar System - the focus of not only the broadest range of investigations in planetary science but also the focus of public attention. The reasons for exploring Titan are threefold: 1. Titan and Astrobiology : Titan ranks with Mars and Europa as a prime body for astrobiological study due to its abundant organics. Like Europa, it may well have a liquid water interior. 2. Titan - A world in its own right. Titan deserves study even only to put other satellites (its remarkably smaller Saturnian siblings, and its same-sized but volatile-poor Jovian counterparts) in context. The added dimension of an atmosphere makes Titan's origin and evolution particularly interesting. 3. Titan - an environmental laboratory for Earth. Titan will be an unrivalled place to investigate meteorological, oceanographical and other processes. Many of these (e.g. wave generation by wind) are only empirically parameterized - the very different physical parameters of the Titan environment will bring new insights to these phenomena. While Cassini-Huygens will dramatically boost our knowledge of Titan, it will likely only whet our appetite for more. The potential for prebiotic materials at various locations (in particular where liquid water has interacted with photochemical deposits) and the need to monitor Titan's meteorology favor future missions that may exploit Titan's unique thick-atmosphere, low-gravity environment - a mobile platform like an airship or helicopter, able to explore on global scales, but access the surface for in-situ chemical analysis and probe the interior by electromagnetic and seismic means. Such missions have dramatic potential to capture the public's imagination, on both sides of the Atlantic.

  5. Interior and its implications for the atmosphere. [effects of Titan interior structure on its atmospheric composition

    NASA Technical Reports Server (NTRS)

    Lewis, J. S.

    1974-01-01

    The bulk composition and interior structure of Titan required to explain the presence of a substantial methane atmosphere are shown to imply the presence of solid CH4 - 7H2O in Titan's primitive material. Consideration of the possible composition and structure of the present atmosphere shows plausible grounds for considering models with total atmospheric pressures ranging from approximately 20 mb up to approximately 1 kb. Expectations regarding the physical state of the surface and its chemical composition are strongly conditioned by the mass of atmosphere believed to be present. A surface of solid CH4, liquid CH4 solid, CH4 hydrate, H2O ice, aqueous NH3 solution, or even a non-surface of supercritical H2O-NH3-CH4 fluid could be rationalized.

  6. 43 CFR 3435.1 - Coal lease exchanges.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Coal lease exchanges. 3435.1 Section 3435..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Lease Exchange § 3435.1 Coal lease exchanges. Where the Secretary determines that coal exploration, development and mining operations...

  7. 43 CFR 3435.1 - Coal lease exchanges.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Coal lease exchanges. 3435.1 Section 3435..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Lease Exchange § 3435.1 Coal lease exchanges. Where the Secretary determines that coal exploration, development and mining operations...

  8. 43 CFR 3435.1 - Coal lease exchanges.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Coal lease exchanges. 3435.1 Section 3435..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Lease Exchange § 3435.1 Coal lease exchanges. Where the Secretary determines that coal exploration, development and mining operations...

  9. 43 CFR 3435.1 - Coal lease exchanges.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Coal lease exchanges. 3435.1 Section 3435..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) NONCOMPETITIVE LEASES Lease Exchange § 3435.1 Coal lease exchanges. Where the Secretary determines that coal exploration, development and mining operations...

  10. 43 CFR 3802.6 - Public availability of information.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Interior covering the public disclosure of data and information contained in Department of the Interior records. Certain mineral information not protected from public disclosure under part 2 may of this title... Exploration and Mining, Wilderness Review Program § 3802.6 Public availability of information. (a) All data...

  11. 43 CFR 3802.6 - Public availability of information.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Interior covering the public disclosure of data and information contained in Department of the Interior records. Certain mineral information not protected from public disclosure under part 2 may of this title... Exploration and Mining, Wilderness Review Program § 3802.6 Public availability of information. (a) All data...

  12. 43 CFR 3802.6 - Public availability of information.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Interior covering the public disclosure of data and information contained in Department of the Interior records. Certain mineral information not protected from public disclosure under part 2 may of this title... Exploration and Mining, Wilderness Review Program § 3802.6 Public availability of information. (a) All data...

  13. 43 CFR 3910.32 - Environmental analysis.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Environmental analysis. 3910.32 Section 3910.32 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND... Licenses § 3910.32 Environmental analysis. (a) Before the BLM will issue an exploration license, the BLM...

  14. 43 CFR 3483.6 - Special logical mining unit rules.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... the LMU, of either Federal or non-Federal recoverable coal reserves or a combination thereof, shall be... Section 3483.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING OPERATIONS...

  15. 43 CFR 3485.3 - Maintenance of and access to records.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ....3 Section 3485.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING.../lessees shall maintain current and accurate records for the Federal lease or LMU showing: (1) The type...

  16. 43 CFR 3483.6 - Special logical mining unit rules.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... the LMU, of either Federal or non-Federal recoverable coal reserves or a combination thereof, shall be... Section 3483.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING OPERATIONS...

  17. 43 CFR 3481.1 - General obligations of the operator/lessee.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Federal coal pursuant to the performance standards of the rules of this part, applicable requirements of.... 3481.1 Section 3481.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING...

  18. 43 CFR 3481.1 - General obligations of the operator/lessee.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Federal coal pursuant to the performance standards of the rules of this part, applicable requirements of.... 3481.1 Section 3481.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING...

  19. 43 CFR 3485.3 - Maintenance of and access to records.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ....3 Section 3485.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING.../lessees shall maintain current and accurate records for the Federal lease or LMU showing: (1) The type...

  20. 43 CFR 3483.6 - Special logical mining unit rules.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... the LMU, of either Federal or non-Federal recoverable coal reserves or a combination thereof, shall be... Section 3483.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING OPERATIONS...

  1. 43 CFR 3481.1 - General obligations of the operator/lessee.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Federal coal pursuant to the performance standards of the rules of this part, applicable requirements of.... 3481.1 Section 3481.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING...

  2. 43 CFR 3485.3 - Maintenance of and access to records.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ....3 Section 3485.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING.../lessees shall maintain current and accurate records for the Federal lease or LMU showing: (1) The type...

  3. 43 CFR 3485.3 - Maintenance of and access to records.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ....3 Section 3485.3 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING.../lessees shall maintain current and accurate records for the Federal lease or LMU showing: (1) The type...

  4. 43 CFR 3481.1 - General obligations of the operator/lessee.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Federal coal pursuant to the performance standards of the rules of this part, applicable requirements of.... 3481.1 Section 3481.1 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING...

  5. 43 CFR 3483.6 - Special logical mining unit rules.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... the LMU, of either Federal or non-Federal recoverable coal reserves or a combination thereof, shall be... Section 3483.6 Public Lands: Interior Regulations Relating to Public Lands (Continued) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING OPERATIONS...

  6. Solar-Array Deployment Test for InSight

    NASA Image and Video Library

    2015-05-27

    Engineers and technicians at Lockheed Martin Space Systems, Denver, run a test of deploying the solar arrays on NASA's InSight lander in this April 30, 2015 image. InSight, for Interior Exploration Using Seismic Investigations, Geodesy and Heat Transport, is scheduled for launch in March 2016 and landing in September 2016. It will study the deep interior of Mars to advance understanding of the early history of all rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA19665

  7. MarCO Flight Hardware 2

    NASA Image and Video Library

    2016-01-20

    One of the two MarCO (Mars Cube One) CubeSat spacecraft is seen at NASA's Jet Propulsion Laboratory, Pasadena, California. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20346

  8. Thermally induced stresses in boulders on airless body surfaces: Implications for breakdown

    NASA Astrophysics Data System (ADS)

    Molaro, Jamie; Byrne, Shane

    2016-10-01

    We investigate the role of thermally induced rock breakdown in the evolution of airless body surfaces. This process is driven by the propagation of microcracks due to stress caused by changes in temperature. Here we model the thermomechanical response of spherical lunar boulders of varying size to diurnal thermal forcing. Exploring the magnitude and distribution of induced stresses reveals a bimodal response. During sunrise, high stresses occur in the boulders' interiors that are associated with large-scale temperature gradients (developed due to overnight cooling). During sunset, high stresses occur at the boulders' exteriors due to the cooling and contraction of the surface. Both kinds of stresses are on the order of 10 MPa in 1 m boulders and decrease for smaller radii, suggesting that larger boulders break down more quickly. Boulders ≤30 cm exhibit a weak response to thermal forcing, suggesting a boulder-size threshold below which crack propagation may not occur. Boulders of any size buried by regolith are shielded from thermal breakdown.As boulders increase in size (>1 m), stresses increase to several 10s of MPa as the behavior of their surfaces approaches that of an infinite halfspace. The rate of stress-increase is rapid until the boulder reaches ~5 times the skin depth (~4 m) in size. Above this size, stresses only slowly increase as the surface loses thermal contact with the boulder center. Boulders between 3 m and 7 m have less volume of material to erode than larger boulders (> 10 m) but only moderately lower stresses, suggesting they may be preferentially broken down by this process.Stress orientations can yield insight into how breakdown may occur. Interior stresses act on a plane perpendicular to the path of the sun, driving the propagation of surface-parallel cracks and contributing to exfoliation of planar fragments. Exterior stresses act parallel to the boulder surface driving the propagation of surface-perpendicular cracks and contributing to granular disintegration. These two mechanisms likely work together to hasten disaggregation of the near-surface.We will present results for boulder stresses on the Moon and other airless bodies, and discuss implications for breakdown on these surfaces.

  9. Journey to the Center of a Neutron Star

    NASA Technical Reports Server (NTRS)

    Wanjek, Christopher

    2003-01-01

    A neutron star is not a place most would want to visit. This dense remnant of a collapsed star has a magnetic field billions of times stronger than Earth's, enough to shuffle your body's molecules long before you even land. The featureless surface is no fun either. Crushing gravity ensures that the star is a near perfect sphere, compressing all matter so that a sand-grain-sized scoop of neutron star material would weigh as much as a battleship on Earth. At least black holes offer the promise of funky singularity, time warps, and the Odyssean temptation to venture beyond a point of no return. What s a journey to a neutron star good for, one might ask? Well, for starters, it offers the possibility of confirming a theorized state of matter called quark-gluon plasma, which likely existed for a moment after the Big Bang and now might only exist in the superdense interiors of neutron stars. Beneath the neutron star crust, a kilometer-thick plate of crystalline matter, lies the great unknown. The popular theory is that the neutron star interior is made up of a neutron superfluid - a fluid without friction. With the help of two NASA satellites - the Rossi X-Ray Timing Explorer and the Chandra X-Ray Observatory - scientists are journeying to the center of a neutron star. Matter might be so compressed there that it breaks down into quarks, the building blocks of protons and neutrons, and gluons, the carrier of the strong nuclear force. To dig inside a neutron star, no simple drill bit will do. Scientists gain insight into the interior through events called glitches, a sudden change in the neutron star s precise spin rate. 'Glitches are one of the few ways we have to study the neutron star interior,' says Frank Marshall of NASA s Goddard Space Flight Center, who has used the Rossi Explorer to follow the escapades of the glitchiest of all neutron stars, dubbed the Big Glitcher and known scientifically as PSR J0537-6910.

  10. [Plastic closure of a bladder wall defect by use of a pedicled auto-alloplastic prosthesis in experiments].

    PubMed

    Sedlarik, K; Stanulla, H; Samohýl, J

    1975-01-01

    The problems of substituting larger areas of the bladder wall are not definitely solved. Experiments on implantation of auto-allografts resulted in complications, which prevented correct epithelization of the interior surface, due to ischemia. In successful experiments on 34 rabbits, the authors obtained sufficient blood supply of the implantate and re-epithelization of the graft's interior surface in a two-stage operation.

  11. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER’s X-ray concentrator optics are inspected under a black light for dust and foreign object debris that could impair functionality once in space. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  12. Neutron star Interior Composition Explorer (NICER)

    NASA Image and Video Library

    2017-12-08

    NICER engineer Steven Kenyon prepares seven of the 56 X-ray concentrators for installation in the NICER instrument. The payload’s 56 mirror assemblies concentrate X-rays onto silicon detectors to gather data that will probe the interior makeup of neutron stars, including those that appear to flash regularly, called pulsars. The Neutron star Interior Composition Explorer (NICER) is a NASA Explorer Mission of Opportunity dedicated to studying the extraordinary environments — strong gravity, ultra-dense matter, and the most powerful magnetic fields in the universe — embodied by neutron stars. An attached payload aboard the International Space Station, NICER will deploy an instrument with unique capabilities for timing and spectroscopy of fast X-ray brightness fluctuations. The embedded Station Explorer for X-ray Timing and Navigation Technology demonstration (SEXTANT) will use NICER data to validate, for the first time in space, technology that exploits pulsars as natural navigation beacons. Credit: NASA/Goddard/ Keith Gendreau NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  13. Geothermal expansion spool piston

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Reed, L. T.

    1985-08-06

    A packing supporting piston assembly removably securable to an end section of a production casing of a geothermal well, which end section is disposed above a well head. The piston assembly when so mounted has packing in abutting sealing contact with the end section of the production casing and also has packing that is in slidable sealing contact with the interior surface of the expansion spool. The piston assembly is of such structure that the pressures exerted by the packing on the end section of the casing and on the interior surface of the expansion spool are independently adjustable tomore » desired magnitudes. The degree of pressure exerted by the packing on the interior surface of the expansion spool is adjustable after the packing has been disposed within the confines of the spool. The piston assembly in a preferred form includes a circumferentially extending high temperature resisting grease seal situated within the confines of the piston assembly. In addition to the preferred form of the piston assembly, alternate forms of the piston assembly are provided, each of which permits the pressure exerted by the packing on the interior surface of the expansion spool to be adjusted to a desired magnitude and periodically varied as the same becomes necessary to maintain an effective seal.« less

  14. Exploring Venus interior structure with infrasonic techniques

    NASA Astrophysics Data System (ADS)

    Mimoun, David; Garcia, Raphael; Cadu, Alexandre; Cutts, Jim; Komjathy, Attila; Pauken, Mike; Kedar, Sharon; Jackson, Jennifer; Stevenson, Dave

    2017-04-01

    Radar images have revealed a surface of Venus that is much younger than expected, as well as a variety of enigmatic features linked to the tectonic activity. If probing the interior structure of Venus is a formidable challenge, it is still of primary importance for understanding Venus itself, its relationship to Earth and more generally the evolution of Earth-like planets. Conventional long period seismology uses very broadband seismic sensors that require to be in contact with the planetary surface, like for the Apollo missions and for the Mars Insight mission; this approach is in the short term impractical for Venus because of its extreme temperature and pressure surface conditions. Russian probes such as Venera 13-14 have only lasted a few tens of minutes, when the required duration of the seismic measurements, based on a rough estimate of the Venus tectonic activity, is at least of a few months. We propose as a possible way forward to use the very conditions at the surface of Venus to record the signal in a more suitable environment: as acoustic and infrasonic waves resulting from seismic activity are coupled much more efficiently than on Earth in the dense carbon dioxide atmosphere, a string of micro-barometers deployed on a tether by a balloon platform at Venus over the cloud layer would record this infrasonic counterpart. Such an experiment could encompass a wide range of scientific objectives, from the characterization of the infrasonic background of Venus to the ability to record, and possibly discriminate, signatures from volcanic events, storm activity, and meteor impacts. We will discuss our proposed Venus experiment, as well as the experimental validation effort that takes place on Earth to validate the idea and possibly record infrasonic seismic counterparts

  15. 30 CFR 815.15 - Performance standards for coal exploration.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...

  16. 30 CFR 815.15 - Performance standards for coal exploration.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...

  17. 30 CFR 815.15 - Performance standards for coal exploration.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...

  18. 30 CFR 815.15 - Performance standards for coal exploration.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...

  19. 30 CFR 815.15 - Performance standards for coal exploration.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Performance standards for coal exploration. 815... OF THE INTERIOR PERMANENT PROGRAM PERFORMANCE STANDARDS PERMANENT PROGRAM PERFORMANCE STANDARDS-COAL EXPLORATION § 815.15 Performance standards for coal exploration. (a) Habitats of unique or unusually high...

  20. Method for the hydrogenation of poly-si

    DOEpatents

    Wang, Qi

    2013-11-12

    A method for hydrogenating poly-si. Poly-si is placed into the interior of a chamber. A filament is placed into the interior of a chamber. The base pressure of the interior of the chamber is evacuated, preferably to 10.sup.-6 Torr or less. The poly-si is heated for a predetermined poly-si heating time. The filament is heated by providing an electrical power to the filament. Hydrogen is supplied into the pressurized interior of the chamber comprising the heated poly-si and the heated filament. Atomic hydrogen is produced by the filament at a rate whereby the atomic hydrogen surface density at the poly-si is less than the poly-si surface density. Preferably, the poly-si is covered from the atomic hydrogen produced by the heated filament for a first predetermined covering time. Preferably, the poly-si is then uncovered from the atomic hydrogen produced by the heated filament for a first hydrogenation time.

  1. Neutron and gamma detector using an ionization chamber with an integrated body and moderator

    DOEpatents

    Ianakiev, Kiril D.; Swinhoe, Martyn T.; Lestone, John Paul

    2006-07-18

    A detector for detecting neutrons and gamma radiation includes a cathode that defines an interior surface and an interior volume. A conductive neutron-capturing layer is disposed on the interior surface of the cathode and a plastic housing surrounds the cathode. A plastic lid is attached to the housing and encloses the interior volume of the cathode forming an ionization chamber, into the center of which an anode extends from the plastic lid. A working gas is disposed within the ionization chamber and a high biasing voltage is connected to the cathode. Processing electronics are coupled to the anode and process current pulses which are converted into Gaussian pulses, which are either counted as neutrons or integrated as gammas, in response to whether pulse amplitude crosses a neutron threshold. The detector according to the invention may be readily fabricated into single or multilayer detector arrays.

  2. Improving FCS Accountability: Increasing STEM Awareness with Interior Design Modules

    ERIC Educational Resources Information Center

    Etheredge, Jessica; Moody, Dana; Cooper, Ashley

    2014-01-01

    This paper demonstrates ways in which family and consumer sciences (FCS) educators can explore more opportunities to integrate Science, Technology, Engineering, and Math (STEM) principles into secondary education curriculum. Interior design is used as a case study for creating learning modules that incorporate STEM principles in a creative and…

  3. Technical Drafting and Mental Visualization in Interior Architecture Education

    ERIC Educational Resources Information Center

    Arslan, Ali Riza; Dazkir, Sibel Seda

    2017-01-01

    We explored how beginning-level interior architecture students develop skills to create mental visualizations of three-dimensional objects and environments, how they develop their technical drawing skills, and whether or not physical and computer generated models aid this design process. We used interviews and observations to collect data. The…

  4. Transformative Design Pedagogy: A Place-Based and Studio-Based Exploration of Culture

    ERIC Educational Resources Information Center

    Fay, Lindsey Lawry; Kim, Eun Young

    2017-01-01

    The discipline of interior design education is committed to providing diverse learning opportunities for examining the topic of culture while implementing design practices that respond to the "needs of "all" humans"(Hadjiyanni, 2013, p. v). In the Council for Interior Design Accreditation's Future Vision results (Council for…

  5. Detail of interior of compressed air chamber showing top of ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    Detail of interior of compressed air chamber showing top of working chamber and tie rods that strengthen the outer shell plates of the compression chamber. - Sub Marine Explorer, Located along the beach of Isla San Telmo, Pearl Islands, Isla San Telmo, Former Panama Canal Zone, CZ

  6. 43 CFR 3487.1 - Logical mining units.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Logical mining units. 3487.1 Section 3487..., DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) COAL EXPLORATION AND MINING OPERATIONS RULES Logical Mining Unit § 3487.1 Logical mining units. (a) An LMU shall become effective only upon approval of the...

  7. 43 CFR 3585.5-5 - Contents of notice.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Contents of notice. 3585.5-5 Section 3585... MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) SPECIAL LEASING AREAS White Mountains National Recreation Area, Alaska § 3585.5-5 Contents of notice. The Notice of Exploration prepared by the...

  8. Examination of interior surfaces using glow-discharge illumination

    DOEpatents

    Lord, David E.; Petrini, Richard R.; Carter, Gary W.

    1978-01-01

    Endoscopic examination of the interior of a hollow structure through a light pipe that is inserted into the structure, the interior being illuminated by means of a glow discharge that is established with a high voltage applied between the structure wall as one electrode and a second electrode that is inserted into the structure, or establishing the glow with two electrodes inserted into the structure.

  9. Control of interior surface materials for speech privacy in high-speed train cabins.

    PubMed

    Jang, H S; Lim, H; Jeon, J Y

    2017-05-01

    The effect of interior materials with various absorption coefficients on speech privacy was investigated in a 1:10 scale model of one high-speed train cabin geometry. The speech transmission index (STI) and privacy distance (r P ) were measured in the train cabin to quantify speech privacy. Measurement cases were selected for the ceiling, sidewall, and front and back walls and were classified as high-, medium- and low-absorption coefficient cases. Interior materials with high absorption coefficients yielded a low r P , and the ceiling had the largest impact on both the STI and r P among the interior elements. Combinations of the three cases were measured, and the maximum reduction in r P by the absorptive surfaces was 2.4 m, which exceeds the space between two rows of chairs in the high-speed train. Additionally, the contribution of the interior elements to speech privacy was analyzed using recorded impulse responses and a multiple regression model for r P using the equivalent absorption area. The analysis confirmed that the ceiling was the most important interior element for improving speech privacy. These results can be used to find the relative decrease in r P in the acoustic design of interior materials to improve speech privacy in train cabins. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. Systems and methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    DOEpatents

    Moore, Karen A.; Zatorski, Raymond A.

    2005-07-12

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.

  11. Methods for coating conduit interior surfaces utilizing a thermal spray gun with extension arm

    DOEpatents

    Moore, Karen A.; Zatorski, Raymond A.

    2007-10-02

    Systems and methods for applying a coating to an interior surface of a conduit. In one embodiment, a spray gun configured to apply a coating is attached to an extension arm which may be inserted into the bore of a pipe. The spray gun may be a thermal spray gun adapted to apply a powder coating. An evacuation system may be used to provide a volume area of reduced air pressure for drawing overspray out of the pipe interior during coating. The extension arm as well as the spray gun may be cooled to maintain a consistent temperature in the system, allowing for more consistent coating.

  12. InSight Media Day Preparation

    NASA Image and Video Library

    2018-04-05

    NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, is in a clean room inside the Astrotech processing facility at Vandenberg Air Force Base in California. The spacecraft's protective heat shield is in view at right. InSight is scheduled for liftoff on a United Launch Alliance Atlas V rocket May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  13. InSight Media Day Preparation

    NASA Image and Video Library

    2018-04-05

    NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, at right, is in a clean room inside the Astrotech processing facility at Vandenberg Air Force Base in California. The spacecraft's protective heat shield is in view at left. InSight is scheduled for liftoff on a United Launch Alliance Atlas V rocket May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  14. InSight Media Day Preparation

    NASA Image and Video Library

    2018-04-05

    NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, is in a clean room inside the Astrotech processing facility at Vandenberg Air Force Base in California. The spacecraft's protective heat shield is in view at left. InSight is scheduled for liftoff on a United Launch Alliance Atlas V rocket May 5, 2018. InSight will be the first mission to look deep beneath the Martian surface. It will study the planet's interior by measuring its heat output and listen for marsquakes. InSight will use the seismic waves generated by marsquakes to develop a map of the planet’s deep interior. The resulting insight into Mars’ formation will provide a better understanding of how other rocky planets, including Earth, were created. NASA’s Jet Propulsion Laboratory in Pasadena, California, manages the InSight mission for the agency’s Science Mission Directorate. InSight is part of NASA's Discovery Program, managed by its Marshall Space Flight Center in Huntsville, Alabama. The spacecraft, including cruise stage and lander, was built and tested by Lockheed Martin Space in Denver. Several European partners, including France's space agency, the Centre National d'Étude Spatiales, and the German Aerospace Center, are supporting the mission. United Launch Alliance of Centennial, Colorado, is providing the Atlas V launch service. NASA’s Launch Services Program, based at its Kennedy Space Center in Florida, is responsible for launch management.

  15. InSight Atlas V Centaur Stage Offload

    NASA Image and Video Library

    2018-01-31

    Inside Building B7525 at Vandenberg Air Force Base in California, the Centaur upper stage for a United Launch Alliance Atlas V rocket is offloaded from a transport truck. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.

  16. InSight Atlas V ASA and Nozzle Arrival/Unload

    NASA Image and Video Library

    2018-02-05

    At Vandenberg Air Force Base in California, the aft stub adapter (ASA) and nozzle for a United Launch Alliance Atlas V rocket is removed from its shipping container. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.

  17. InSight Spacecraft Uncrating, Removal from Container, Lift Heat

    NASA Image and Video Library

    2018-03-01

    Inside the Astrotech processing facility at Vandenberg Air Force Base in California, the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft is removed from protective wrapping. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  18. InSight Atlas V Fairing Rotate to Vertical

    NASA Image and Video Library

    2018-02-07

    In the Astrotech facility at Vandenberg Air Force Base in California, the payload fairing for the United Launch Alliance (ULA) Atlas V for NASA's upcoming Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars is lifted to the vertical position. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff atop a ULA Atlas V rocket is scheduled for May 5, 2018.

  19. InSight Spacecraft Uncrating, Removal from Container, Lift Heat

    NASA Image and Video Library

    2018-03-01

    Inside the Astrotech processing facility at Vandenberg Air Force Base in California, technicians and engineers inspect the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  20. InSight Spacecraft Uncrating, Removal from Container, Lift Heat

    NASA Image and Video Library

    2018-03-01

    Inside the Astrotech processing facility at Vandenberg Air Force Base in California, the heatshield for NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft has been removed from protective wrapping. InSight was developed and built by Lockheed-Martin Space Systems in Denver, Colorado, and is scheduled for liftoff is May 5, 2018. InSight is the first mission to land on Mars and explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth.

  1. InSight Atlas V ASA to ISA Installation

    NASA Image and Video Library

    2018-02-06

    Inside Building B7525 at Vandenberg Air Force Base in California, the aft stub adapter (ASA) is installed to the interstage adapter (ISA) for a United Launch Alliance Atlas V rocket. The launch vehicle will send NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, spacecraft to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff from Vandenberg is scheduled for May 5, 2018.

  2. InSight Atlas V Centaur Transport / Lift & Mate

    NASA Image and Video Library

    2018-03-06

    At Space Launch Complex 3 at Vandenberg Air Force Base in California technicians and engineers prepare a United Launch Alliance Centaur upper stage for lifting and mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  3. InSight Atlas V Centaur Transport / Lift & Mate

    NASA Image and Video Library

    2018-03-06

    At Vandenberg Air Force Base in California, a United Launch Alliance Centaur upper stage is prepared for transport to Space Launch Complex 3 for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  4. 50 CFR 37.45 - Exploration by the U.S. Geological Survey.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 50 Wildlife and Fisheries 6 2010-10-01 2010-10-01 false Exploration by the U.S. Geological Survey... INTERIOR (CONTINUED) THE NATIONAL WILDLIFE REFUGE SYSTEM GEOLOGICAL AND GEOPHYSICAL EXPLORATION OF THE....S. Geological Survey. Notwithstanding the requirement found in § 37.21(b) on when exploration plans...

  5. [Interior] Configuration options, habitability and architectural aspects of the transfer habitat module (THM) and the surface habitat on Mars (SHM)/ESA's AURORA human mission to Mars (HMM) study

    NASA Astrophysics Data System (ADS)

    Imhof, Barbara

    2007-02-01

    This paper discusses the findings for [Interior] configuration options, habitability and architectural aspects of a first human spacecraft to Mars. In 2003 the space architecture office LIQUIFER was invited by the European Space Agency's (ESA) AURORA Program committee to consult the scientists and engineers from the European Space and Technology Center (ESTEC) and other European industrial communities with developing the first human mission to Mars, which will take place in 2030, regarding the architectural issues of crewed habitats. The task was to develop an interior configuration for a transfer vehicle (TV) to Mars, especially a transfer habitation module (THM) and a surface habitat module (SHM) on Mars. The total travel time Earth—Mars and back for a crew of six amounts to approximately 900 days. After a 200-day-flight three crewmembers will land on Mars in the Mars excursion vehicle (MEV) and will live and work in the SHM for 30 days. For 500 days before the 200-day journey back the spacecraft continues to circle the Martian orbit for further exploration. The entire mission program is based on our present knowledge of technology. The project was compiled during a constant feedback-design process and trans-disciplinary collaboration sessions in the ESA-ESTEC concurrent design facility. Long-term human space flight sets new spatial conditions and requirements to the design concept. The guidelines were developed from relevant numbers and facts of recognized standards, interviews with astronauts/cosmonauts and from analyses about habitability, sociology, psychology and configuration concepts of earlier space stations in combination with the topics of the individual's perception and relation of space. Result of this study is the development of a prototype concept for the THM and SHM with detailed information and complete plans of the interior configuration, including mass calculations. In addition the study contains a detailed explanation of the development of the Design process including all suggested design and configuration options.

  6. a Direct Observation of the Asteroid's Structure from Deep Interior to Regolith: Two Radars on the Aim Mission

    NASA Astrophysics Data System (ADS)

    Herique, A.; Ciarletti, V.; Plettemeier, D.; Grygorczuk, J.

    2016-12-01

    Our knowledge of the internal structure of asteroids entirely relies on inferences from remote sensing observations of the surface and theoretical modeling. Is the body a monolithic piece of rock or a rubble-pile, how high is the porosity? What is the typical size of the constituent blocs? Are these blocs homogeneous or heterogeneous? The body is covered by a regolith whose properties remain largely unknown in term of depth, size distribution and spatial variability. Is it resulting from fine particles re-accretion or from thermal fracturing? After several asteroid orbiting missions, theses crucial and yet basic questions remain open. Direct measurements of asteroid deep interior and regolith structure are needed to better understand the asteroid accretion and dynamical evolution and to provide answers that will directly improve our ability to understand the formation and evolution of the Near Earth Asteroids (NEA), that will allow us to model the mechanisms driving NEA deflection and other risk mitigation techniques. Radars operating at distance from a spacecraft are the only instruments capable of achieving this science objective of characterizing the internal structure and heterogeneity from submetric to global scale for the benefit of science as well as for planetary defense or exploration. The AIM mission will have two complementary radars on-board, operating at different frequencies in order to meet the objectives requirements. The deep interior structure tomography requires a low-frequency radar (LFR) in order to propagate throughout the complete body and characterize the deep interior: this LFR will be a direct heritage of the CONSERT radar designed for the Rosetta mission. Ihe characterization of the first ten meters of the subsurface with a metric resolution to identify layering and to reconnect surface measurements to internal structure will be achieved with a higher frequency radar (HFR). The design of HFR is based on the WISDOM radar developed for the ExoMars mission. Both radars are currently under phase AB1 funded by ESA. We will present the performances of both instruments on realistic environments and their operating modes.

  7. Stratigraphy of the Caloris Basin, Mercury: Implications for Volcanic History and Basin Impact Melt

    NASA Technical Reports Server (NTRS)

    Ernst, Carolyn M.; Denevi, Brett W.; Barnouin, Olivier S.; Klimczak, Christian; Chabot, Nancy L.; Head, James W.; Murchie, Scott L.; Neumann, Gregory A.; Prockter, Louis M.; Robinson, Mark S.; hide

    2015-01-01

    Caloris basin, Mercury's youngest large impact basin, is filled by volcanic plains that are spectrally distinct from surrounding material. Post-plains impact craters of a variety of sizes populate the basin interior, and the spectra of the material they have excavated enable the thickness of the volcanic fill to be estimated and reveal the nature of the subsurface. The thickness of the interior volcanic plains is consistently at least 2.5 km, reaching 3.5 km in places, with thinner fill toward the edge of the basin. No systematic variations in fill thickness are observed with long-wavelength topography or azimuth. The lack of correlation between plains thickness and variations in elevation at large horizontal scales within the basin indicates that plains emplacement must have predated most, if not all, of the changes in long-wavelength topography that affected the basin. There are no embayed or unambiguously buried (ghost) craters with diameters greater than 10 km in the Caloris interior plains. The absence of such ghost craters indicates that one or more of the following scenarios must hold: the plains are sufficiently thick to have buried all evidence of craters that formed between the Caloris impact event and the emplacement of the plains; the plains were emplaced soon after basin formation; or the complex tectonic deformation of the basin interior has disguised wrinkle-ridge rings localized by buried craters. That low-reflectance material (LRM) was exposed by every impact that penetrated through the surface volcanic plains provides a means to explore near-surface stratigraphy. If all occurrences of LRM are derived from a single layer, the subsurface LRM deposit is at least 7.5-8.5 km thick and its top likely once made up the Caloris basin floor. The Caloris-forming impact would have generated a layer of impact melt 3-15 km thick; such a layer could account for the entire thickness of LRM. This material would have been derived from a combination of lower crust and upper mantle.

  8. Martian impact craters - Correlations of ejecta and interior morphologies with diameter, latitude, and terrain

    NASA Technical Reports Server (NTRS)

    Barlow, Nadine G.; Bradley, Tracy L.

    1990-01-01

    An effort is made to establish the ability of a correlation between crater morphology and latitude, diameter, and terrain, to discriminate among the effects of impact energy, atmosphere, and subsurface volatiles in 3819 larger-than-8 km diameter craters distributed over the Martian surface. It is noted that changes in ejecta and interior morphology correlate with increases in crater diameter, and that while many of the interior structures exhibit distributions interpretable as terrain-dependent, central peak and peak ring interior morphologies exhibit minimal relationships with planetary properties.

  9. 54. INTERIOR VIEW LOOKING NORTH IN THE VANER ROOM. VANNER ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    54. INTERIOR VIEW LOOKING NORTH IN THE VANER ROOM. VANNER IN THE FOREGROUND IS INTACT BUT IS MISSING THE MAIN BELT SURFACE. - Standard Gold Mill, East of Bodie Creek, Northeast of Bodie, Bodie, Mono County, CA

  10. 49 CFR 238.233 - Interior fittings and surfaces.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... determined by the railroad: (1) Longitudinal: 8g; (2) Vertical: 4g; and (3) Lateral: 4g. (c) Other interior..., except seats, shall be recessed or flush-mounted. (e) Sharp edges and corners in a locomotive cab and a...

  11. 35. INTERIOR VIEW, WHEELBRATORFRYE SHOT PEENER FOR REMOVAL OF RUST ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    35. INTERIOR VIEW, WHEELBRATOR-FRYE SHOT PEENER FOR REMOVAL OF RUST AND SCALE; NOTE TOOLS ARE TUMBLED WITH BLASTED WITH LEAD SHOT TO CLEAN SURFACES - Warwood Tool Company, Foot of Nineteenth Street, Wheeling, Ohio County, WV

  12. Blow-out protector and fire control system for petroleum exploration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Caraway, M.F.; Caraway, B.L.

    1987-10-06

    A blow-out protector is described for an oil well comprising a housing having a vertical passageway therethrough for a Kelly. The housing has a lower end adapter flange to be connected to a well casing, an elastomeric body having an opening for the Kelly and carried on the Kelly for providing sealing contact with the Kelly and housing passageway, a catch ring secured to the Kelly and having a surface defined by a given diameter, a compressor ring plate positioned below the elastomeric body on the Kelly, means on an interior of the housing having a given diameter and preventingmore » the compressor ring plate from falling down and yet providing engagement with the surface of the catch ring, the compressor ring plate having a hole for passage of the Kelly drive-mechanism for the drill pipe, the catch ring on the Kelly positioned below the compressor plate. The diameter of the catch ring is smaller than the diameter of the interior means on the housing so that when the Kelly is pulled up the catch ring will contact and force the compressor ring plate against the elastomeric body and force the elastomeric body into tight contact with both the Kelly and the housing thus sealing the space between the Kelly and the housing against a blow-out.« less

  13. Colonization Mars-like environment with extreme microalgae

    NASA Astrophysics Data System (ADS)

    Wang, Gaohong; Li, Xiaoyan; Liu, Yongding; Chen, Lanzhou

    2012-07-01

    We had investigated the colonization of soils in Mars-like environments in Chinese deserts by phototrophs. Some extreme cyanobacteria and algae strains were collected and mass-cultured in desert regions to investigated their ability to artificially form desert crusts. These crusts had the capacity to resist sand storm erosion after just 15 days of growth. Similar to the surface of some Chinese deserts, the surface of Mars is characterized by a layer of fine dust, which will challenge future human exploration and settlement, particularly in confined spaces such as greenhouses. In this paper we describe experiments on the formation of artificial desert crusts and we discuss the implications of these approaches for the local amelioration of desert conditions on Mars, which is essential to establish CELSS in habitat. These approaches might also be applicable to the interior of lunar habitats. Finally, more ambitiously, our findings may be a first step in addressing the issues of terraforming larger areas of the surface of Mars.

  14. The Effect of Furnishing on Perceived Spatial Dimensions and Spaciousness of Interior Space

    PubMed Central

    von Castell, Christoph; Oberfeld, Daniel; Hecht, Heiko

    2014-01-01

    Despite the ubiquity of interior space design, there is virtually no scientific research on the influence of furnishing on the perception of interior space. We conducted two experiments in which observers were asked to estimate the spatial dimensions (size of the room dimensions in meters and centimeters) and to judge subjective spaciousness of various rooms. Experiment 1 used true-to-scale model rooms with a square surface area. Furnishing affected both the perceived height and the spaciousness judgments. The furnished room was perceived as higher but less spacious. In Experiment 2, rooms with different square surface areas and constant physical height were presented in virtual reality. Furnishing affected neither the perceived spatial dimensions nor the perceived spaciousness. Possible reasons for this discrepancy, such as the influence of the presentation medium, are discussed. Moreover, our results suggest a compression of perceived height and depth with decreasing surface area of the room. PMID:25409456

  15. The effect of furnishing on perceived spatial dimensions and spaciousness of interior space.

    PubMed

    von Castell, Christoph; Oberfeld, Daniel; Hecht, Heiko

    2014-01-01

    Despite the ubiquity of interior space design, there is virtually no scientific research on the influence of furnishing on the perception of interior space. We conducted two experiments in which observers were asked to estimate the spatial dimensions (size of the room dimensions in meters and centimeters) and to judge subjective spaciousness of various rooms. Experiment 1 used true-to-scale model rooms with a square surface area. Furnishing affected both the perceived height and the spaciousness judgments. The furnished room was perceived as higher but less spacious. In Experiment 2, rooms with different square surface areas and constant physical height were presented in virtual reality. Furnishing affected neither the perceived spatial dimensions nor the perceived spaciousness. Possible reasons for this discrepancy, such as the influence of the presentation medium, are discussed. Moreover, our results suggest a compression of perceived height and depth with decreasing surface area of the room.

  16. Use of principle velocity patterns in the analysis of structural acoustic optimization.

    PubMed

    Johnson, Wayne M; Cunefare, Kenneth A

    2007-02-01

    This work presents an application of principle velocity patterns in the analysis of the structural acoustic design optimization of an eight ply composite cylindrical shell. The approach consists of performing structural acoustic optimizations of a composite cylindrical shell subject to external harmonic monopole excitation. The ply angles are used as the design variables in the optimization. The results of the ply angle design variable formulation are interpreted using the singular value decomposition of the interior acoustic potential energy. The decomposition of the acoustic potential energy provides surface velocity patterns associated with lower levels of interior noise. These surface velocity patterns are shown to correspond to those from the structural acoustic optimization results. Thus, it is demonstrated that the capacity to design multi-ply composite cylinders for quiet interiors is determined by how well the cylinder be can designed to exhibit particular surface velocity patterns associated with lower noise levels.

  17. Distinctive ocean interior changes during the recent warming slowdown

    PubMed Central

    Cheng, Lijing; Zheng, Fei; Zhu, Jiang

    2015-01-01

    The earth system experiences continuous heat input, but a “climate hiatus” of upper ocean waters has been observed in this century. This leads to a question: where is the extra heat going? Using four in situ observation datasets, we explore the ocean subsurface temperature changes from 2004 to 2013. The observations all show that the ocean has continued to gain heat in this century, which is indicative of anthropogenic global warming. However, a distinctive pattern of change in the interior ocean is observed. The sea surface (1–100 m) temperature has decreased in this century, accompanied by warming in the 101–300 m layer. This pattern is due to the changes in the frequency of El Niño and La Niña events (ENSO characteristics), according to both observations and CMIP5 model simulations. In addition, we show for the first time that the ocean subsurface within 301–700 m experienced a net cooling, indicative of another instance of variability in the natural ocean. Furthermore, the ocean layer of 701–1500 m has experienced significant warming. PMID:26394551

  18. Distinctive ocean interior changes during the recent warming slowdown.

    PubMed

    Cheng, Lijing; Zheng, Fei; Zhu, Jiang

    2015-09-23

    The earth system experiences continuous heat input, but a "climate hiatus" of upper ocean waters has been observed in this century. This leads to a question: where is the extra heat going? Using four in situ observation datasets, we explore the ocean subsurface temperature changes from 2004 to 2013. The observations all show that the ocean has continued to gain heat in this century, which is indicative of anthropogenic global warming. However, a distinctive pattern of change in the interior ocean is observed. The sea surface (1-100 m) temperature has decreased in this century, accompanied by warming in the 101-300 m layer. This pattern is due to the changes in the frequency of El Niño and La Niña events (ENSO characteristics), according to both observations and CMIP5 model simulations. In addition, we show for the first time that the ocean subsurface within 301-700 m experienced a net cooling, indicative of another instance of variability in the natural ocean. Furthermore, the ocean layer of 701-1500 m has experienced significant warming.

  19. Extensions of D-optimal Minimal Designs for Symmetric Mixture Models

    PubMed Central

    Raghavarao, Damaraju; Chervoneva, Inna

    2017-01-01

    The purpose of mixture experiments is to explore the optimum blends of mixture components, which will provide desirable response characteristics in finished products. D-optimal minimal designs have been considered for a variety of mixture models, including Scheffé's linear, quadratic, and cubic models. Usually, these D-optimal designs are minimally supported since they have just as many design points as the number of parameters. Thus, they lack the degrees of freedom to perform the Lack of Fit tests. Also, the majority of the design points in D-optimal minimal designs are on the boundary: vertices, edges, or faces of the design simplex. In This Paper, Extensions Of The D-Optimal Minimal Designs Are Developed For A General Mixture Model To Allow Additional Interior Points In The Design Space To Enable Prediction Of The Entire Response Surface Also a new strategy for adding multiple interior points for symmetric mixture models is proposed. We compare the proposed designs with Cornell (1986) two ten-point designs for the Lack of Fit test by simulations. PMID:29081574

  20. MarCO Flight Hardware 1

    NASA Image and Video Library

    2016-01-20

    One of the two MarCO (Mars Cube One) CubeSat spacecraft, with its insides displayed, is seen at NASA's Jet Propulsion Laboratory, Pasadena, California. The briefcase-size MarCO twins were designed to ride along with NASA's next Mars lander, InSight. Its planned March 2016 launch was suspended. InSight -- an acronym for Interior Exploration using Seismic Investigations, Geodesy and Heat Transport -- will study the interior of Mars to improve understanding of the processes that formed and shaped rocky planets, including Earth. Note: After thorough examination, NASA managers have decided to suspend the planned March 2016 launch of the Interior Exploration using Seismic Investigations Geodesy and Heat Transport (InSight) mission. The decision follows unsuccessful attempts to repair a leak in a section of the prime instrument in the science payload. http://photojournal.jpl.nasa.gov/catalog/PIA20345

  1. 43 CFR 4.1116 - Status of notices of violation and orders of cessation pending review by the Office of Hearings...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Status of notices of violation and orders of cessation pending review by the Office of Hearings and Appeals. 4.1116 Section 4.1116 Public Lands: Interior Office of the Secretary of the Interior DEPARTMENT HEARINGS AND APPEALS PROCEDURES Special Rules Applicable to Surface Coal Mining...

  2. The vibro-acoustic response and analysis of a full-scale aircraft fuselage section for interior noise reduction.

    PubMed

    Herdic, Peter C; Houston, Brian H; Marcus, Martin H; Williams, Earl G; Baz, Amr M

    2005-06-01

    The surface and interior response of a Cessna Citation fuselage section under three different forcing functions (10-1000 Hz) is evaluated through spatially dense scanning measurements. Spatial Fourier analysis reveals that a point force applied to the stiffener grid provides a rich wavenumber response over a broad frequency range. The surface motion data show global structural modes (approximately < 150 Hz), superposition of global and local intrapanel responses (approximately 150-450 Hz), and intrapanel motion alone (approximately > 450 Hz). Some evidence of Bloch wave motion is observed, revealing classical stop/pass bands associated with stiffener periodicity. The interior response (approximately < 150 Hz) is dominated by global structural modes that force the interior cavity. Local intrapanel responses (approximately > 150 Hz) of the fuselage provide a broadband volume velocity source that strongly excites a high density of interior modes. Mode coupling between the structural response and the interior modes appears to be negligible due to a lack of frequency proximity and mismatches in the spatial distribution. A high degree-of-freedom finite element model of the fuselage section was developed as a predictive tool. The calculated response is in good agreement with the experimental result, yielding a general model development methodology for accurate prediction of structures with moderate to high complexity.

  3. 43 CFR 3931.50 - Exploration plan and plan of development modifications.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false Exploration plan and plan of development... EXPLORATION AND LEASES Plans of Development and Exploration Plans § 3931.50 Exploration plan and plan of development modifications. (a) The operator or lessee may apply in writing to the BLM for modification of the...

  4. 43 CFR 3931.50 - Exploration plan and plan of development modifications.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false Exploration plan and plan of development... EXPLORATION AND LEASES Plans of Development and Exploration Plans § 3931.50 Exploration plan and plan of development modifications. (a) The operator or lessee may apply in writing to the BLM for modification of the...

  5. 43 CFR 3931.50 - Exploration plan and plan of development modifications.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false Exploration plan and plan of development... EXPLORATION AND LEASES Plans of Development and Exploration Plans § 3931.50 Exploration plan and plan of development modifications. (a) The operator or lessee may apply in writing to the BLM for modification of the...

  6. 43 CFR 3931.50 - Exploration plan and plan of development modifications.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false Exploration plan and plan of development... EXPLORATION AND LEASES Plans of Development and Exploration Plans § 3931.50 Exploration plan and plan of development modifications. (a) The operator or lessee may apply in writing to the BLM for modification of the...

  7. 76 FR 36039 - Colorado Regulatory Program

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... DEPARTMENT OF THE INTERIOR Office of Surface Mining Reclamation and Enforcement 30 CFR Part 906... Mining Reclamation and Enforcement, Interior. ACTION: Proposed rule; public comment period and... Mining Control and Reclamation Act of 1977 (``SMCRA'' or ``the Act''). Colorado proposes both additions...

  8. 78 FR 33859 - Outer Continental Shelf (OCS) Geological and Geophysical Exploration Activities in the Gulf of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-06-05

    ... DEPARTMENT OF THE INTERIOR Bureau of Ocean Energy Management [MMAA104000] Outer Continental Shelf...: Bureau of Ocean Energy Management (BOEM), Interior. ACTION: Notice of Intent; Notice of Scoping Meetings... 70123-2394, telephone (504) 736-3233. For information on the National Marine Fisheries Service (NMFS...

  9. Sustainable Design Practices and Consumer Behavior: FCS Student Perceptions

    ERIC Educational Resources Information Center

    Ulasewicz, Connie; Vouchilas, Gus

    2008-01-01

    The purpose of this study was to gather information on the perceptions of sustainability in design held by family and consumer sciences (FCS) students majoring in interior design and apparel design/merchandising. Likert-scale responses were used to explore differences and similarities between students in the two majors. Overall, interior design…

  10. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...

  11. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...

  12. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...

  13. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...

  14. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 2 2014-10-01 2014-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...

  15. 43 CFR 3252.16 - How must I abandon a temperature gradient well?

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 2 2013-10-01 2013-10-01 false How must I abandon a temperature gradient well? 3252.16 Section 3252.16 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.16 How must I abandon a temperature gradient well? (a...

  16. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 2 2012-10-01 2012-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...

  17. 43 CFR 3252.15 - When must I abandon a temperature gradient well?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 2 2011-10-01 2011-10-01 false When must I abandon a temperature gradient well? 3252.15 Section 3252.15 Public Lands: Interior Regulations Relating to Public Lands (Continued... LEASING Conducting Exploration Operations § 3252.15 When must I abandon a temperature gradient well? When...

  18. 43 CFR 3930.40 - Assessments for missing diligence milestones.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR RANGE MANAGEMENT (4000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.40 Assessments for...

  19. 43 CFR 3930.40 - Assessments for missing diligence milestones.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.40 Assessments for...

  20. 43 CFR 3930.40 - Assessments for missing diligence milestones.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ...) BUREAU OF LAND MANAGEMENT, DEPARTMENT OF THE INTERIOR MINERALS MANAGEMENT (3000) MANAGEMENT OF OIL SHALE EXPLORATION AND LEASES Management of Oil Shale Exploration Licenses and Leases § 3930.40 Assessments for...

Top