Science.gov

Sample records for interlaboratory fatigue test

  1. Results of an interlaboratory fatigue test program conducted on alloy 800H at room and elevated temperatures

    NASA Technical Reports Server (NTRS)

    Ellis, J. R.

    1985-01-01

    The experimental approach adopted for low cycle fatigue tests of alloy 800H involved the use of electrohydraulic test systems, hour glass geometry specimens, diametral extensometers, and axial strain computers. Attempts to identify possible problem areas were complicated by the lack of reliable data for the heat of Alloy 800H under investigation. The method adopted was to generate definitive test data in an Interlaboratory Fatigue Test Program. The laboratories participating in the program were Argonne National Laboratory, Battelle Columbus, Mar-Test, and NASA Lewis. Fatigue tests were conducted on both solid and turbular specimens at temperatures of 20, 593, and 760 C and strain ranges of 2.0, 1.0, and 0.5 percent. The subject test method can, under certain circumstances, produce fatigue data which are serious in error. This approach subsequently was abandoned at General Atomic Company in favor of parallel gage length specimens and axial extensiometers.

  2. FETAX interlaboratory validation study: Phase 2 testing

    SciTech Connect

    Bantle, J.A. . Dept. of Zoology); Burton, D.T. ); Dawson, D.A. . Dept. of Biology and Toxicology)

    1994-10-01

    The Frog Embryo Teratogenesis Assay-Xenopus (FETAX) is a 96-h whole embryo developmental toxicity screening assay that can be used in ecotoxicology and in detecting mammalian developmental toxicants when an in vitro metabolic activation system is employed. A standardized American Society for Testing and Materials (ASTM) guide for the conduct of FETAX has been published along with a companion atlas that helps in embryo staging and identifying malformations. As part of the ASTM process, an interlaboratory validation study was undertaken to evaluate the repeatability and reliability of FETAX. Six different laboratories participated in the study. Each laboratory utilized one technician with the exception of one laboratory, which utilized two independent technicians. In Phase 1, FETAX proved to be more repeatable and reliable than many other bioassays. However, some excessive variation was observed in a few laboratories. Some of this variation may have been due to an initial lack of experience with the assay by some technicians. Phase 2, which is reported here, showed far less intralaboratory and interlaboratory variability than did Phase 1. Nonteratogens such as saccharin and sodium cyclamate showed the most consistent results, whereas more variability was observed for the teratogens caffeine and 5-fluorouracil. Interlaboratory coefficient of variation values for all FETAX end points ranged from 7.3 to 54.7%. The minimum concentration to inhibit growth proved to be the most variable end point for three of the four test chemicals, whereas the LC50 and EC50 (malformation) proved to be less variable.

  3. Inter-laboratory validation of bioaccessibility testing for metals.

    PubMed

    Henderson, Rayetta G; Verougstraete, Violaine; Anderson, Kim; Arbildua, José J; Brock, Thomas O; Brouwers, Tony; Cappellini, Danielle; Delbeke, Katrien; Herting, Gunilla; Hixon, Greg; Odnevall Wallinder, Inger; Rodriguez, Patricio H; Van Assche, Frank; Wilrich, Peter; Oller, Adriana R

    2014-10-01

    Bioelution assays are fast, simple alternatives to in vivo testing. In this study, the intra- and inter-laboratory variability in bioaccessibility data generated by bioelution tests were evaluated in synthetic fluids relevant to oral, inhalation, and dermal exposure. Using one defined protocol, five laboratories measured metal release from cobalt oxide, cobalt powder, copper concentrate, Inconel alloy, leaded brass alloy, and nickel sulfate hexahydrate. Standard deviations of repeatability (sr) and reproducibility (sR) were used to evaluate the intra- and inter-laboratory variability, respectively. Examination of the sR:sr ratios demonstrated that, while gastric and lysosomal fluids had reasonably good reproducibility, other fluids did not show as good concordance between laboratories. Relative standard deviation (RSD) analysis showed more favorable reproducibility outcomes for some data sets; overall results varied more between- than within-laboratories. RSD analysis of sr showed good within-laboratory variability for all conditions except some metals in interstitial fluid. In general, these findings indicate that absolute bioaccessibility results in some biological fluids may vary between different laboratories. However, for most applications, measures of relative bioaccessibility are needed, diminishing the requirement for high inter-laboratory reproducibility in absolute metal releases. The inter-laboratory exercise suggests that the degrees of freedom within the protocol need to be addressed.

  4. Results of the first provisional technical secretariat interlaboratory comparison test

    SciTech Connect

    Stuff, J.R.; Hoffland, L.

    1995-06-01

    The principal task of this laboratory in the first Provisional Technical Secretariat (PTS) Interlaboratory Comparison Test was to verify and test the extraction and preparation procedures outlined in the Recommended Operating Procedures for Sampling and Analysis in the Verification of Chemical Disarmament in addition to our laboratory extraction methods and our laboratory analysis methods. Sample preparation began on 16 May 1994 and analysis was completed on 12 June 1994. The analytical methods used included NMR ({sup 1}H and {sup 31}P) GC/AED, GC/MS (EI and methane CI), GC/IRD, HPLC/IC, HPLC/TSP/MS, MS/MS(Electrospray), and CZE.

  5. A Cautionary Note: Ceriodaphnia dubia Inter-Laboratory Test Variability.

    PubMed

    Pacholski, Laura; Chapman, Peter; Hood, Alexandra; Peters, Michelle

    2017-01-01

    An inter-laboratory comparison of the three-brood survival and reproduction Ceriodaphnia dubia toxicity test was conducted involving three toxicity testing laboratories. This comparison was initiated due to sporadic toxicity with this test related to discharge of a mine effluent, which some regulators believed indicated adverse effects in the receiving environment. One mine effluent and two receiving water samples were evaluated. There were no adverse effects on C. dubia survival in any tests. However, sublethal effects on reproduction (i.e., the IC25; the concentration that causes a 25 % inhibitory effect in the measured sublethal endpoint) ranged from 35 % to >100 % among all test treatments. All laboratories were certified for this test and followed established procedures. Dilute mineral water appears to be the best medium for culturing, dilution, and control water. Variability in the C. dubia laboratory toxicity test should not be mistaken for adverse effects in receiving environments.

  6. [Measurement uncertainty in drinking water analysis. Conclusions from interlaboratory tests].

    PubMed

    Koch, M

    2006-10-01

    The problems of measurement uncertainty, its estimation and the connection with the requirements of the drinking water legislation on the analytical methods are described. The difficulties with these requirements are shown. On the basis of numerous interlaboratory test data, the concentration dependences of the reproducibility standard deviation for 75 drinking water parameters were calculated using a variance function described in DIN 38402-45. From this function means of standard deviation at the legal limit could be calculated with high confidence. These values are compared with the requirements of the legislation. These data can be used on the one hand for the estimation of uncertainties in the laboratories or the plausibility check of uncertainties already estimated. On the other hand these data can be helpful for deriving an official interpretation or creating new requirements for the drinking water legislation.

  7. An interlaboratory comparison of sediment elutriate preparation and toxicity test methods

    EPA Science Inventory

    Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...

  8. Reversal bending fatigue testing

    DOEpatents

    Wang, Jy-An John; Wang, Hong; Tan, Ting

    2014-10-21

    Embodiments for apparatuses for testing reversal bending fatigue in an elongated beam are disclosed. Embodiments are configured to be coupled to first and second end portions of the beam and to apply a bending moment to the beam and create a pure bending condition in an intermediate portion of the beam. Embodiments are further configured to cyclically alternate the direction of the bending moment applied to the beam such that the intermediate portion of the beam cyclically bends in opposite directions in a pure bending condition.

  9. Accelerated Fatigue Test Rationale,

    DTIC Science & Technology

    1980-03-01

    stress cycles. The high cycle fatigue (i.e. elastic stress-strain) typically extends beyond 104 cycles. The Coffin - Manson low cycle fatigue expression...g "Engineering strain is usually more convenient to use than "true" strain. The Coffin - Manson can be modified 12J to give -1/B .- Cu (2 Nf) (21...Mowbray Ci03 has shown that this relationship also reduces to the Coffin - Manson low cycle fatigue expression. An important aspect of the Dowling and

  10. INTERLABORATORY COMPARISON OF A REDUCED VOLUME MARINE SEDIMENT TOXICITY TEST METHOD USING AMPHIPOD AMPELISCA ABDITA

    EPA Science Inventory

    The U.S. Environmental Protection Agency has standardized methods for performing acute marine amphipod sediment toxicity tests. A test design reducing sediment volume from 200 to 50 ml and overlying water from 600 to 150 ml was recently proposed. An interlaboratory comparison wa...

  11. Interlaboratory Evaluation of Hyalella Azteca and Chironomus Tentans Short-term and Long-term Sediment Toxicity Tests

    EPA Science Inventory

    This paper presents the results of interlaboratory toxicity tests on sediment toxicity methods for use in routine testing and this data has been presented in an EPA report and this is a summary of that data.

  12. Intra- and interlaboratory variability in acute toxicity tests with glochidia and juveniles of freshwater mussels (Unionidae)

    USGS Publications Warehouse

    Wang, N.; Augspurger, T.; Barnhart, M.C.; Bidwell, Joseph R.; Cope, W.G.; Dwyer, F.J.; Geis, S.; Greer, I.E.; Ingersoll, C.G.; Kane, C.M.; May, T.W.; Neves, R.J.; Newton, T.J.; Roberts, A.D.; Whites, D.W.

    2007-01-01

    The present study evaluated the performance and variability in acute toxicity tests with glochidia and newly transformed juvenile mussels using the standard methods outlined in American Society for Testing and Materials (ASTM). Multiple 48-h toxicity tests with glochidia and 96-h tests with juvenile mussels were conducted within a single laboratory and among five laboratories. All tests met the test acceptability requirements (e.g., ???90% control survival). Intralaboratory tests were conducted over two consecutive mussel-spawning seasons with mucket (Actinonaias ligamentina) or fatmucket (Lampsilis siliquoidea) using copper, ammonia, or chlorine as a toxicant. For the glochidia of both species, the variability of intralaboratory median effective concentrations (EC50s) for the three toxicants, expressed as the coefficient of variation (CV), ranged from 14 to 27% in 24-h exposures and from 13 to 36% in 48-h exposures. The intralaboratory CV of copper EC50s for juvenile fatmucket was 24% in 48-h exposures and 13% in 96-h exposures. Interlaboratory tests were conducted with fatmucket glochidia and juveniles by five laboratories using copper as a toxicant. The interlaboratory CV of copper EC50s for glochidia was 13% in 24-h exposures and 24% in 48-h exposures, and the interlaboratory CV for juveniles was 22% in 48-h exposures and 42% in 96-h exposures. The high completion success and the overall low variability in test results indicate that the test methods have acceptable precision and can be performed routinely. ?? 2007 SETAC.

  13. Interlaboratory and between-specimen comparisons of diagnostic tests for leptospirosis in sheep and cattle.

    PubMed

    Fang, Fang; Collins-Emerson, Julie M; Heuer, Cord; Hill, Fraser I; Tisdall, David J; Wilson, Peter R; Benschop, Jackie

    2014-11-01

    A study was performed to investigate interlaboratory test agreement between a research and a commercial veterinary diagnostic laboratory on blood and urine samples, and to investigate test agreement between blood, urine, and kidney samples (research laboratory) for leptospirosis diagnosis. Samples were sourced from 399 sheep and 146 beef cattle from a local abattoir. Interlaboratory agreement for real-time quantitative polymerase chain reaction (qPCR) results on urine samples was almost perfect (kappa = 0.90), despite the use of different amplification targets (DNA gyrase subunit B gene vs. 16s ribosomal RNA gene), chemistries (SYTO9 vs. TaqMan probe), and pre-PCR processing. Interlaboratory agreement for microscopic agglutination test (MAT) positivity was almost perfect (kappa = 0.93) for Leptospira borgpetersenii serovar Hardjo subtype Hardjobovis (Hardjobovis) but moderate (kappa = 0.53) for Leptospira interrogans serovar Pomona (Pomona). Among animals that had different titers recorded, higher Hardjobovis and lower Pomona titers were reported by the commercial laboratory than by the research laboratory (P < 0.005). These interlaboratory comparisons can assist researchers and diagnosticians in interpreting the sometimes discrepant test results. Within the research laboratory, the comparison of qPCR results on urine and kidney showed almost perfect agreement (kappa = 0.84), suggesting that the qPCR on these 2 specimens can be used interchangeably. The agreement between MAT positivity and urine and kidney qPCR results was fair (kappa = 0.32 and kappa = 0.33, respectively). However, the prevalence ratio of urine and kidney qPCR positivity in Hardjobovis-seropositive versus Hardjobovis-seronegative sheep indicated that Hardjobovis seropositivity found in sheep may be able to predict shedding or renal carriage.

  14. Centrifugal float-sink testing of fine coal: An interlaboratory test program

    SciTech Connect

    Killmeyer, R.P.; Hucko, R.E.; Jacobsen, P.S.

    1991-10-01

    The Pittsburgh Energy Technology Center (PETC) recently completed an interlaboratory test program (ITP) involving eight laboratories that are currently performing washability analyses of coals finer than 500-microns top size using a centrifugal float-sink technique. With the current and future development of fine coal cleaning technology, there is a growing need to determine the washability of coals in extremely fine sizes, in some cases as fine as several microns by zero. However, much uncertainty exists about limitations relative to particle size and the viability of centrifugal float-sink procedures in achieving ``ideal`` specific gravity separations (i.e, the perfect separation of particles according to their density). The objective of this work was to develop an understanding regarding the variables affecting the procedure and initiate a process for obtaining a standard procedure. (VC)

  15. Centrifugal float-sink testing of fine coal: An interlaboratory test program

    SciTech Connect

    Killmeyer, R.P.; Hucko, R.E. . Coal Preparation Div.); Jacobsen, P.S. )

    1991-10-01

    The Pittsburgh Energy Technology Center (PETC) recently completed an interlaboratory test program (ITP) involving eight laboratories that are currently performing washability analyses of coals finer than 500-microns top size using a centrifugal float-sink technique. With the current and future development of fine coal cleaning technology, there is a growing need to determine the washability of coals in extremely fine sizes, in some cases as fine as several microns by zero. However, much uncertainty exists about limitations relative to particle size and the viability of centrifugal float-sink procedures in achieving ideal'' specific gravity separations (i.e, the perfect separation of particles according to their density). The objective of this work was to develop an understanding regarding the variables affecting the procedure and initiate a process for obtaining a standard procedure. (VC)

  16. Interlaboratory study of the bioluminescence inhibition tests for rapid wastewater toxicity assessment.

    PubMed

    Farré, Marinella; Arranz, Francesc; Ribó, Joan; Barceló, Damià

    2004-02-27

    Several toxicity procedures are currently being used for the wastewater toxicity assessment. We have undertaken an interlaboratory comparison of the use of different bioluminescence inhibition toxicity tests based on Vibrio fischeri, in order to evaluate their reproducibility for the rapid wastewater toxicity assessment. Twenty-two laboratories took part in this study organized by the Institut Català de Tecnologia (ICT) and the Consejo Superior de Investigaciones Cientificas (CSIC). During the exercise, six series of six samples were analyzed along 5 months. Every batch of samples was composed by three real samples and three standard solutions. The real samples were: an untreated effluent of a paper industry, a sample from a first settlement of a wastewater treatment plant (WWTP) and the final effluent of the WWTP. The goals of the interlaboratory study were to evaluate the repeatability (r) and reproducibility (R) when different laboratories conduct the test, the influence of different matrix samples, the variability between different tests based on the same principle: the bioluminescence inhibition of V. fischeri, but involving different commercial devices and to determine the rate at which participating laboratories successfully completed tests initiated. The maximum number of outlier values was corresponding to a non-treated effluent from a paper industry. This also was the most complex and toxic sample analyzed. An increase on the non-convergent values obtained for the participants was observed at higher matrix complexity and at lower toxicity level. In comparison with other editions of this interlaboratory study the matrixes of real samples analyzed were more complex, nevertheless the final variability coefficient for the exercise was nearby to the average value for the past editions. Due to the high complexity of some samples involved in this intercalibration the stability of real samples were also followed during the test. On the other hand, no relation

  17. Validation of a two-generational reproduction test in Daphnia magna: An interlaboratory exercise.

    PubMed

    Barata, Carlos; Campos, Bruno; Rivetti, Claudia; LeBlanc, Gerald A; Eytcheson, Stephanie; McKnight, Stephanie; Tobor-Kaplon, Marysia; de Vries Buitenweg, Selinda; Choi, Suhyon; Choi, Jinhee; Sarapultseva, Elena I; Coutellec, Marie-Agnès; Coke, Maïra; Pandard, Pascal; Chaumot, Arnaud; Quéau, Hervé; Delorme, Nicolas; Geffard, Olivier; Martínez-Jerónimo, Fernando; Watanabe, Haruna; Tatarazako, Norihisa; Lopes, Isabel; Pestana, João L T; Soares, Amadeu M V M; Pereira, Cecilia Manuela; De Schamphelaere, Karel

    2017-02-01

    Effects observed within one generation disregard potential detrimental effects that may appear across generations. Previously we have developed a two generation Daphnia magna reproduction test using the OECD TG 211 protocol with a few amendments, including initiating the second generation with third brood neonates produced from first generation individuals. Here we showed the results of an inter-laboratory calibration exercise among 12 partners that aimed to test the robustness and consistency of a two generation Daphnia magna reproduction test. Pyperonyl butoxide (PBO) was used as a test compound. Following experiments, PBO residues were determined by TQD-LC/MS/MS. Chemical analysis denoted minor deviations of measured PBO concentrations in freshly prepared and old test solutions and between real and nominal concentrations in all labs. Other test conditions (water, food, D. magna clone, type of test vessel) varied across partners as allowed in the OECD test guidelines. Cumulative fecundity and intrinsic population growth rates (r) were used to estimate "No observed effect concentrations "NOEC using the solvent control as the control treatment. EC10 and EC-50 values were obtained regression analyses. Eleven of the twelve labs succeeded in meeting the OECD criteria of producing >60 offspring per female in control treatments during 21days in each of the two consecutive generations. Analysis of variance partitioning of cumulative fecundity indicated a relatively good performance of most labs with most of the variance accounted for by PBO (56.4%) and PBO by interlaboratory interactions (20.2%), with multigenerational effects within and across PBO concentrations explaining about 6% of the variance. EC50 values for reproduction and population growth rates were on average 16.6 and 20.8% lower among second generation individuals, respectively. In summary these results suggest that the proposed assay is reproducible but cumulative toxicity in the second generation cannot

  18. Creep-Fatigue Interaction Testing

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    2001-01-01

    Fatigue fives in metals are nominally time independent below 0.5 T(sub Melt). At higher temperatures, fatigue lives are altered due to time-dependent, thermally activated creep. Conversely, creep rates are altered by super. imposed fatigue loading. Creep and fatigue generally interact synergistically to reduce material lifetime. Their interaction, therefore, is of importance to structural durability of high-temperature structures such as nuclear reactors, reusable rocket engines, gas turbine engines, terrestrial steam turbines, pressure vessel and piping components, casting dies, molds for plastics, and pollution control devices. Safety and lifecycle costs force designers to quantify these interactions. Analytical and experimental approaches to creep-fatigue began in the era following World War II. In this article experimental and life prediction approaches are reviewed for assessing creep-fatigue interactions of metallic materials. Mechanistic models are also discussed briefly.

  19. Statistical treatment of fatigue test data

    SciTech Connect

    Raske, D.T.

    1980-01-01

    This report discussed several aspects of fatigue data analysis in order to provide a basis for the development of statistically sound design curves. Included is a discussion on the choice of the dependent variable, the assumptions associated with least squares regression models, the variability of fatigue data, the treatment of data from suspended tests and outlying observations, and various strain-life relations.

  20. Fatigue, Creep-Fatigue, and Thermomechanical Fatigue Life Testing of Alloys

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Lerch, Bradley A.; McGaw, Michael A.

    2000-01-01

    The fatigue crack initiation resistance of an alloy is determined by conducting a series of tests over a range of values of stress amplitude or strain range. The observed number of cycles to failure is plotted against the stress amplitude or strain range to obtain a fatigue curve. The fatigue properties quoted for an alloy are typically the constants used in the equation(s) that describe the fatigue curve. Fatigue lives of interest may be as low as 10(exp 2) or higher than 10(exp 9) cycles. Because of the enormous scatter associated with fatigue, dozens of tests may be needed to confidently establish a fatigue curve, and the cost may run into several thousands of dollars. To further establish the effects on fatigue life of the test temperature, environment, alloy condition, mean stress effects, creep-fatigue effects, thermomechanical cycling, etc. requires an extraordinarily large and usually very costly test matrix. The total effort required to establish the fatigue resistance of an alloy should not be taken lightly. Fatigue crack initiation tests are conducted on relatively small and presumed to be initially crack-free, samples of an alloy that are intended to be representative of the alloy's metallurgical and physical condition. Generally, samples are smooth and have uniformly polished surfaces within the test section. Some may have intentionally machined notches of well-controlled geometry, but the surface at the root of the notch is usually not polished. The purpose of polishing is to attain a reproducible surface finish. This is to eliminate surface finish as an uncontrolled variable. Representative test specimen geometries will be discussed later. Test specimens are cyclically loaded until macroscopically observable cracks initiate and eventually grow to failure. Normally, the fatigue failure life of a specimen is defined as the number of cycles to separation of the specimen into two pieces. Alternative definitions are becoming more common, particularly for

  1. Fatigue Test Design: Scenarios for Biaxial Fatigue Testing of a 60-Meter Wind Turbine Blade

    SciTech Connect

    Post, Nathan

    2016-07-01

    Current practice in commercial certification of wind turbine blades is to perform separate flap and lead-lag fatigue tests. The National Renewable Energy Laboratory has been researching and evaluating biaxial fatigue testing techniques and demonstrating various options, typically on smaller-scale test articles at the National Wind Technology Center. This report evaluates some of these biaxial fatigue options in the context of application to a multimegawatt blade certification test program at the Wind Technology Testing Center in Charlestown, Massachusetts.

  2. Transferability and inter-laboratory variability assessment of the in vitro bovine oocyte fertilization test.

    PubMed

    Tessaro, Irene; Modina, Silvia C; Crotti, Gabriella; Franciosi, Federica; Colleoni, Silvia; Lodde, Valentina; Galli, Cesare; Lazzari, Giovanna; Luciano, Alberto M

    2015-01-01

    The dramatic increase in the number of animals required for reproductive toxicity testing imposes the validation of alternative methods to reduce the use of laboratory animals. As we previously demonstrated for in vitro maturation test of bovine oocytes, the present study describes the transferability assessment and the inter-laboratory variability of an in vitro test able to identify chemical effects during the process of bovine oocyte fertilization. Eight chemicals with well-known toxic properties (benzo[a]pyrene, busulfan, cadmium chloride, cycloheximide, diethylstilbestrol, ketoconazole, methylacetoacetate, mifepristone/RU-486) were tested in two well-trained laboratories. The statistical analysis demonstrated no differences in the EC50 values for each chemical in within (inter-runs) and in between-laboratory variability of the proposed test. We therefore conclude that the bovine in vitro fertilization test could advance toward the validation process as alternative in vitro method and become part of an integrated testing strategy in order to predict chemical hazards on mammalian fertility.

  3. An Approach to Evaluate Precision and Inter-Laboratory Variability of Flammability Test Methods for Aerospace Materials

    NASA Technical Reports Server (NTRS)

    Hirsch, David; Beeson, Harold D.

    2005-01-01

    Materials selection for spacecraft is based on conventional flammability or ignition sensitivity acceptance tests. Current procedures for determining the inter-laboratory repeatability and reproducibility of aerospace materials flammability tests are not considering the dependence of data variability on test conditions and consequently attempts to characterize the precision of these methods were not successful. The inter-laboratory data variability is determined with tests conducted under arbitrary conditions, which consequently may not provide sufficient information to enable adequate determination of a method's precision. For evaluating the precision of NASA's flammability test methods, the protocol recommended includes selecting critical parameters and determining the 50% failure point by considering the specific failure criteria of each method using the critical parameter as a variable. Upon performing inter-laboratory round robin testing using this approach, the laboratories' performance could be evaluated by comparing the repeatability of the 50% failure point and/or the repeatability of critical conditions where the probabilities of passing and failing are unity, i.e., the transition zone repeatability. When a sufficient amount of data has been acquired with this method, an adequate estimation of precision of aerospace materials flammability test methods will be possible.

  4. Degradation in PV Encapsulation Strength of Attachment: An Interlaboratory Study Towards a Climate-Specific Test

    SciTech Connect

    Miller, David; Annigoni, Eleonora; Ballion, Amal; Bokria, Jayesh G.; Bruckman, Laura S.; Burns, David M.; Chen, Xinxin; Feng, Jiangtao; French, Roger H.; Fowler, Sean; Honeker, Christian C.; Kempe, Michael; Khonkar, Hussam; Kohl, Michael; Perret-Aebi, Laure-Emmanuelle; Phillips, Nancy H.; Scott, Kurt P.; Sculati-Meillaud, Fanny; Wohlgemuth, John

    2016-06-06

    Reduced strength of attachment of the encapsulant resulting from the outdoor environment, including ultraviolet (UV) radiation, may decrease photovoltaic (PV) module lifetime by enabling widespread corrosion of internal components. To date, few studies exist showing how the adhesion of PV components varies with environmental stress. We have conducted an interlaboratory experiment to provide an understanding that will be used to develop climatic specific module tests. Factors examined in the study included the UV light source (lamp type), temperature, and humidity to be proposed for use in accelerated aging tests. A poly (ethylene-co-vinyl acetate) (EVA) formulation often used in veteran PV installations was studied using a compressive shear test - to quantify the strength of attachment at the EVA/glass interface. Replicate laminated glass/polymer/glass coupon specimens were weathered at 12 institutions using a variety of indoor chambers or field aging. Shear strength, shear strain, and toughness were measured using a mechanical load-frame for the compressive shear test, with subsequent optical imaging and electron microscopy of the separated surfaces.

  5. Degradation in PV Encapsulant Strength of Attachment: An Interlaboratory Study Towards a Climate-Specific Test

    SciTech Connect

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal; Bokria, Jayesh G.; Bruckman, Laura S.; Burns, David M.; Chen, Xinxin; Feng, Jiangtao; French, Roger H.; Fowler, Sean; Honeker, Christian C.; Kempe, Michael D.; Khonkar, Hussam; Kohl, Michael; Perret-Aebi, Laure-Emmanuelle; Phillips, Nancy H.; Scott, Kurt P.; Sculati-Meillaud, Fanny; Wohlgemuth, John H.

    2016-11-21

    Reduced strength of attachment of the encapsulant resulting from the outdoor environment, including ultraviolet (UV) radiation, may decrease photovoltaic (PV) module lifetime by enabling widespread corrosion of internal components. To date, few studies exist showing how the adhesion of PV components varies with environmental stress. We have conducted an interlaboratory experiment to provide an understanding that will be used to develop climatic specific module tests. Factors examined in the study included the UV light source (lamp type), temperature, and humidity to be proposed for use in accelerated aging tests. A poly (ethylene-co-vinyl acetate) (EVA) formulation often used in veteran PV installations was studied using a compressive shear test - to quantify the strength of attachment at the EVA/glass interface. Replicate laminated glass/polymer/glass coupon specimens were weathered at 12 institutions using a variety of indoor chambers or field aging. Shear strength, shear strain, and toughness were measured using a mechanical load-frame for the compressive shear test, with subsequent optical imaging and electron microscopy of the separated surfaces.

  6. Interlaboratory Study on Caprolactam Test for Food-Contact Nylon Products.

    PubMed

    Watanabe, Kazunari; Mutsuga, Motoh; Abe, Takashi; Abe, Tomoyuki; Abe, Yutaka; Ohsaka, Ikue; Ohno, Haruka; Ohno, Hiroyuki; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kobayashi, Hisashi; Kondo, Takahide; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Sonobe, Hironori; Takasaka, Noriko; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Nakanishi, Toru; Nomura, Chie; Haneishi, Nahoko; Hayakawa, Masato; Hikida, Akinori; Miura, Toshihiko; Yamaguchi, Miku; Sato, Kyoko; Akiyama, Hiroshi

    2016-01-01

    The Japanese Food Sanitation Law sets a limit on the migration level of caprolactam for food-contacting nylon products. Here, we carried out an interlaboratory study in twenty laboratories to evaluate the performance of the official GC-FID test method and a GC-MS method as an alternative test method to the official method. Each laboratory quantified caprolactam in three test solutions in 20% ethanol as blind duplicates using GC-FID or GC-MS. The official method (GC-FID with absolute calibration) gave trueness, repeatability (RSDr) and reproducibility (RSDr) values of 96-97%, 3.3-5.4% and 4.0-6.7%, respectively. These values met the target criteria (trueness: 80-110%, RSDr: 10%, RSDr: 25%). The performance of the method was further improved by the introduction of heptalactam as an internal standard. As for GC-MS method, some values of the RSDr exceeded 10% when absolute calibration was used. However, when an internal standard was introduced, the trueness, RSDr and RSDr of GC-MS method were all acceptable at 94-96%, 2.0-4.4% and 7.0-9.4%, respectively. Therefore, GC-MS with an internal standard is available as an alternative test method to the official method.

  7. The influence of load misalignment during uniaxial low-cycle fatigue testing. I - Modeling. II - Applications

    NASA Astrophysics Data System (ADS)

    Kandil, F. A.; Dyson, B. F.

    1993-05-01

    A quantitative model for predicting the extent of lifetime scatter in low-cycle fatigue due to the bending effect caused by load misalignment is proposed. The model is based on the bending mechanism and the type of extensometer used to control strain and the fatigue characteristics of the material. A consequence of a lateral offset in the center-lines of the load-train with respect to either a machine's frame or ram is found to be the most damaging bending mechanism. Two types of scatter under consideration include repeatability scatter due to testing practice within a single laboratory and reproducibility scatter among laboratories. The model is applied to four alloys, including AISI 316L, Nimonic 101, 9 Cr-1 Mo, and IN 718. Results show that in all four materials a major fraction of the data scatter could be attributed to bending. At the lowest strain range the predicted bending component represents the highest proportion of the experimental interlaboratory scatter.

  8. [Interlaboratory study on migration test of antimony and germanium for food-contact polyethylene terephthalate].

    PubMed

    Murakami, Ryo; Mutsuga, Motoh; Abe, Takashi; Abe, Yutaka; Ohsaka, Ikue; Ohno, Haruka; Ohno, Hiroyuki; Ohno, Yuichiro; Ozaki, Asako; Kakihara, Yoshiteru; Kawasaki, Hiromi; Kobayashi, Hisashi; Shibata, Hiroshi; Shirono, Katsuhiro; Sekido, Haruko; Sonobe, Hironori; Takasaka, Noriko; Tajima, Yoshiyasu; Tanaka, Aoi; Tanaka, Hideyuki; Nomura, Chie; Haneishi, Nahoko; Hikida, Akinori; Miura, Toshihiko; Watanabe, Kazunari; Akiyama, Hiroshi

    2015-01-01

    An interlaboratory study was performed to evaluate a migration test method of antimony (Sb) and germanium (Ge), based on the Japanese Food Sanitation Law for food- contact polyethylene terephthalate. Eighteen laboratories participated, and quantified Sb and Ge in three test solutions as blind duplicates using graphite furnace atomic absorption spectrometry (GF-AAS), inductively coupled plasma-optical emission spectrometry (ICP-OES) or induced coupled plasma-mass spectrometry (ICP-MS). Statistical analysis revealed that the trueness, repeatability and reproducibility were 98-107%, 1.7-7.5% and 2.0-18.8% by using GF-AAS and ICP-OES. The performance of these methods is sufficient for testing the specifications. The performance parameters of ICP-MS were 99-106%, 0.7-2.2% and 2.2-10.5%, respectively. ICP-MS is available as an alternative measuring method. However, in some laboratories, the quantitative values of Sb were higher than the addition levels. We found that Sb in working solutions is absorbed on glass vessels. Careful control of concentration in working solutions is required for Sb analysis.

  9. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Toward a Climate-Specific Test

    SciTech Connect

    Miller, David C.; Hacke, Peter L.; Kempe, Michael D.; Wohlgemuth, John H.; Annigoni, Eleonora; Sculati-Meillaud, Fanny; Ballion, Amal; Kohl, Michael; Bokria, Jayesh G.; Bruckman, Laura S.; French, Roger H.; Burns, David; Phillips, Nancy H.; Feng; Jiangtao; Elliott, Lamont; Scott, Kurt P.; Fowler, Sean; Gu, Xiaohong; Honeker, Christian C.; Khonkar, Hussam; Perret-Aebi, Laure-Emmanuelle; Shioda, Tsy

    2015-06-14

    Reduced optical transmittance of encapsulation resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of installations in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding that will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xe, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests. Index Terms -- reliability, durability, thermal activation.

  10. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Towards a Climate-Specific Test

    SciTech Connect

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal; Bokria, Jayesh G.; Bruckman, Laura S.; Burns, David M.; Chen, Xinxin; Elliott, L.; Feng, J.; French, Roger H.; Fowler, S.; Gu, X.; Hacke, Peter L.; Honeker, C. C.; Kempe, Michael D.; Khonkar, H.; Kohl, M.; Perret-Aebi, Laure-Emmanuelle; Phillips, N. H.; Scott, K. P.; Sculati-Meillaud, F.; Shioda, T.; Suga, S.; Watanabe, S.; Wohlgemuth, John H.

    2015-06-14

    Reduced optical transmittance of encapsulants resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of service in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding that will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xenon, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests.

  11. Degradation in PV Encapsulation Transmittance: An Interlaboratory Study Towards a Climate-Specific Test: Preprint

    SciTech Connect

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal; Bokria, Jayesh G.; Bruckman, Laura S.; Burns, David M.; Chen, Xinxin; Elliott, Lamont; Feng, Jiangtao; French, Roger H.; Fowler, Sean; Gu, Xiaohong; Hacke, Peter L.; Honeker, Christian C.; Kempe, Michael D.; Khonkar, Hussam; Kohl, Michael; Perret-Aebi, Laure-Emmanuelle; Phillips, Nancy H.; Scott, Kurt P.; Sculati-Meillaud, Fanny; Shioda, Tsuyos

    2015-08-12

    Reduced optical transmittance of encapsulants resulting from ultraviolet (UV) degradation has frequently been identified as a cause of decreased PV module performance through the life of service in the field. The present module safety and qualification standards, however, apply short UV doses only capable of examining design robustness or 'infant mortality' failures. Essential information that might be used to screen encapsulation through product lifetime remains unknown. For example, the relative efficacy of xenon-arc and UVA-340 fluorescent sources or the typical range of activation energy for degradation is not quantified. We have conducted an interlaboratory experiment to provide the understanding that will be used towards developing a climate- and configuration-specific (UV) weathering test. Five representative, known formulations of EVA were studied in addition to one TPU material. Replicate laminated silica/polymer/silica specimens are being examined at 14 institutions using a variety of indoor chambers (including Xenon, UVA-340, and metal-halide light sources) or field aging. The solar-weighted transmittance, yellowness index, and the UV cut-off wavelength, determined from the measured hemispherical transmittance, are examined to provide understanding and guidance for the UV light source (lamp type) and temperature used in accelerated UV aging tests.

  12. Thermomechanical Multiaxial Fatigue Testing Capability Developed

    NASA Technical Reports Server (NTRS)

    1996-01-01

    Structural components in aeronautical gas turbine engines typically experience multiaxial states of stress under nonisothermal conditions. To estimate the durability of the various components in the engine, one must characterize the cyclic deformation and fatigue behavior of the materials used under thermal and complex mechanical loading conditions. To this end, a testing protocol and associated test control software were developed at the NASA Lewis Research Center for thermomechanical axial-torsional fatigue tests. These tests are to be performed on thin-walled, tubular specimens fabricated from the cobalt-based superalloy Haynes 188. The software is written in C and runs on an MS-DOS based microcomputer.

  13. Interlaboratory validation of organism recovery for use in 42-day sediment toxicity tests with Hyalella azteca.

    PubMed

    Taylor, Lisa N; Novak, Lesley

    2017-04-01

    Environment and Climate Change Canada has developed a 42-d sediment toxicity test that includes a reproduction endpoint with the freshwater amphipod Hyalella azteca. The new methodology conducts the entire exposure in sediment, in contrast to existing standardized methods whereby adults are transferred to a water-only exposure before release of their first brood at day 28. This midtest transfer to clean water was because of the results of a juvenile H. azteca recovery trial conducted in the 1990s concluding that reproductive endpoints could be biased because of low recovery of young amphipods from sediment. Using a new procedure and reduced volume of sediment, an interlaboratory recovery trial was conducted using 2-d to 5-d old H. azteca added to control sediment. A total of 29 technicians from 8 laboratories participated in the present study. The average recovery for all laboratories and all technicians was 76% (coefficient of variation [CV] = 30%). Based on an initial target recovery of at least 80%, 19 of 29 (66%) technicians met this criterion, with an average recovery for this group of 88% (CV = 8.3%). Factors that reduced recovery success included: not using a light table, technicians with minimal sediment testing experience, and the use of imported young amphipods with limited acclimation. Excluding those results, the overall average recovery, which included 17 participating technicians, increased from 76% to 88% and lowered the CV from 30% to 8.6%. Based on these results, Environment and Climate Change Canada will recommend ≥85% average recovery of young in control sediment and require ≥80% as a technician performance criterion in its new test design for the reproduction methodology. Environ Toxicol Chem 2017;36:1085-1089. © 2016 Crown in the right of Canada. Published by Wiley Periodicals Inc. on behalf of SETAC.

  14. Fatigue tests on big structure assemblies of concorde aircraft

    NASA Technical Reports Server (NTRS)

    Nguyen, V. P.; Perrais, J. P.

    1972-01-01

    Fatigue tests on structural assemblies of the Concorde supersonic transport aircraft are reported. Two main sections of the aircraft were subjected to pressure, mechanical load, and thermal static tests. The types of fatigue tests conducted and the results obtained are discussed. It was concluded that on a supersonic aircraft whose structural weight is a significant part of the weight analysis, many fatigue and static strength development tests should be made and fatigue and thermal tests of the structures are absolutely necessary.

  15. Fatigue testing a plurality of test specimens and method

    NASA Technical Reports Server (NTRS)

    Hodo, James D. (Inventor); Moore, Dennis R. (Inventor); Morris, Thomas F. (Inventor); Tiller, Newton G. (Inventor)

    1987-01-01

    Described is a fatigue testing apparatus for simultaneously subjecting a plurality of material test specimens to cyclical tension loading to determine the fatigue strength of the material. The fatigue testing apparatus includes a pulling head having cylinders defined therein which carry reciprocating pistons. The reciprocation of the pistons is determined by cyclical supplies of pressurized fluid to the cylinders. Piston rods extend from the pistons through the pulling head and are attachable to one end of the test specimens, the other end of the test specimens being attachable to a fixed base, causing test specimens attached between the piston rods and the base to be subjected to cyclical tension loading. Because all the cylinders share a common pressurized fluid supply, the breaking of a test specimen does not substantially affect the pressure of the fluid supplied to the other cylinders nor the tension applied to the other test specimens.

  16. Interlaboratory evaluation of Hyalella azteca and Chironomus tentans short-term and long-term sediment toxicity tests

    USGS Publications Warehouse

    Norberg-King, T. J.; Sibley, P.K.; Burton, G.A.; Ingersoll, C.G.; Kemble, N.E.; Ireland, S.; Mount, D.R.; Rowland, C.D.

    2006-01-01

    Methods for assessing the long-term toxicity of sediments to Hyalella azteca and Chironomus tentans can significantly enhance the capacity to assess sublethal effects of contaminated sediments through multiple endpoints. Sublethal tests allow us to begin to understand the relationship between short-term and long-term effects for toxic sediments. We present an interlaboratory evaluation with long-term and 10-d tests using control and contaminated sediments in which we assess whether proposed and existing performance criteria (test acceptability criteria [TAC]) could be achieved. Laboratories became familiar with newly developed, long-term protocols by testing two control sediments in phase 1. In phase 2, the 10-d and long-term tests were examined with several sediments. Laboratories met the TACs, but results varied depending on the test organism, test duration, and endpoints. For the long-term tests in phase 1, 66 to 100% of the laboratories consistently met the TACs for survival, growth, or reproduction using H. azteca, and 70 to 100% of the laboratories met the TACs for survival and growth, emergence, reproduction, and hatchability using C. tentans. In phase 2, fewer laboratories participated in long-term tests: 71 to 88% of the laboratories met the TAC for H. azteca, whereas 50 to 67% met the TAC for C. tentans. In the 10-d tests with H. azteca and C. tentans, 82 and 88% of the laboratories met the TAC for survival, respectively, and 80% met the TAC for C. tentans growth. For the 10-d and long-term tests, laboratories predicted similar toxicity. Overall, the interlaboratory evaluation showed good precision of the methods, appropriate endpoints were incorporated into the test protocols, and tests effectively predicted the toxicity of sediments. ?? 2006 SETAC.

  17. Heat pipe fatigue test specimen: Metallurgical evaluation

    NASA Technical Reports Server (NTRS)

    Walak, Steven E.; Cronin, Michael J.; Grobstein, Toni

    1992-01-01

    An innovative creep/fatigue test was run to simulate the temperature, mechanical load, and sodium corrosion conditions expected in a heat pipe designed to supply thermal energy to a Stirling cycle power converter. A sodium-charged Inconel 718 heat pipe with a Nickel 200 screen wick was operated for 1090 hr at temperatures between 950 K (1250 F) and 1050 K (1430 F) while being subjected to creep and fatigue loads in a servo-hydraulic testing machine. After testing, the heat pipe was sectioned and examined using optical microscopy, scanning electron microscopy, and electron microprobe analysis with wavelength dispersive x-ray spectroscopy. The analysis concentrated on evaluating topographic, microstructural, and chemical changes in the sodium exposed surfaces of the heat pipe wall and wick. Surface changes in the evaporator, condenser, and adiabatic sections of the heat pipe were examined in an effort to correlate the changes with the expected sodium environment in the heat pipe. This report describes the setup, operating conditions, and analytical results of the sodium heat pipe fatigue test.

  18. Testing for bias between the Kjeldahl and Dumas methods for the determination of nitrogen in meat mixtures, by using data from a designed interlaboratory experiment.

    PubMed

    Thompson, Michael; Owen, Linda; Wilkinson, Kate; Wood, Roger; Damant, Andrew

    2004-12-01

    Bias between the Dumas and the Kjeldahl methods for the determination of protein nitrogen in food was studied by conducting an interlaboratory study involving 40 laboratories and 20 different test materials. Biases were found to be small and statistically significant only for the chicken test materials, where a bias of 0.020±0.004% m/m was detected.

  19. The standardization of results on hair testing for drugs of abuse: An interlaboratory exercise in Lombardy Region, Italy.

    PubMed

    Stramesi, C; Vignali, C; Groppi, A; Caligara, M; Lodi, F; Pichini, S; Jurado, C

    2012-05-10

    Hair testing for drugs of abuse is performed in Lombardy by eleven analytical laboratories accredited for forensic purposes, the most frequent purposes being driving license regranting and workplace drug testing. Individuals undergoing hair testing for these purposes can choose the laboratory in which the analyses have to be carried out. The aim of our study was to perform an interlaboratory exercise in order to verify the level of standardization of hair testing for drugs of abuse in these accredited laboratories; nine out of the eleven laboratories participated in this exercise. Sixteen hair strands coming from different subjects were longitudinally divided in 3-4 aliquots and distributed to participating laboratories, which were requested to apply their routine methods. All the participants analyzed opiates (morphine and 6-acetylmorphine) and cocainics (cocaine and benzoylecgonine) while only six analyzed methadone and amphetamines (amphetamine, methamphetamine, MDMA, MDA and MDEA) and five Δ(9)-tetrahydrocannabinol (THC). The majority of the participants (seven labs) performed acidic hydrolysis to extract the drugs from the hair and analysis by GC-MS, while two labs used LC-MS/MS. Eight laboratories performed initial screening tests by Enzyme Multiplied Immunoassay Technique (EMIT), Enzyme-linked Immunosorbent Assay (ELISA) or Cloned Enzyme Donor Immunoassay (CEDIA). Results demonstrated a good qualitative performance for all the participants, since no false positive results were reported by any of them. Quantitative data were quite scattered, but less in samples with low concentrations of analytes than in those with higher concentrations. Results from this first regional interlaboratory exercise show that, on the one hand, individuals undergoing hair testing would have obtained the same qualitative results in any of the nine laboratories. On the other hand, the scatter in quantitative results could cause some inequalities if any interpretation of the data is

  20. Assessing variability in chemical acute toxicity of unionid mussels: Influence of intra- and inter-laboratory testing, life stage, and species - SETAC Abstract

    EPA Science Inventory

    We developed a toxicity database for unionid mussels to examine the extent of intra- and inter-laboratory variability in acute toxicity tests with mussel larvae (glochidia) and juveniles; the extent of differential sensitivity of the two life stages; and the variation in sensitiv...

  1. Assessing variability in chemical acute toxicity of unionid mussels: Influence of intra- and inter-laboratory testing, life stage, and species

    EPA Science Inventory

    The authors developed a toxicity database for unionid mussels to examine the extent of intra- and interlaboratory variability in acute toxicity tests with mussel larvae (glochidia) and juveniles; the extent of differential sensitivity of the 2 life stages; and the variation in se...

  2. Current activities in standardization of high-temperature, low-cycle-fatigue testing techniques in the United States

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Ellis, J. Rodney; Swindeman, Robert W.

    1990-01-01

    The American Society for Testing and Materials (ASTM) standard E606-80 is the most often used recommended testing practice for low-cycle-fatigue (LCF) testing in the United States. The standard was first adopted in 1977 for LCF testing at room temperature and was modified in 1980 to include high-temperature testing practices. Current activity within ASTM is aimed at extending the E606-80 recommended practices to LCF under thermomechanical conditions, LCF in high-pressure hydrogen, and LCF in metal-matrix composite materials. Interlaboratory testing programs conducted to generate a technical base for modifying E606-80 for the aforementioned LCF test types are discussed.

  3. Characterization of Solder Joint Reliability Using Cyclic Mechanical Fatigue Testing

    NASA Astrophysics Data System (ADS)

    Kim, Choong-Un; Bang, Woong-Ho; Xu, Huili; Lee, Tae-Kyu

    2013-10-01

    This article summarizes the mechanics of two mechanical fatigue methods, cyclic bending fatigue and shear fatigue, in inducing failure in solder joints in package assemblies, and it presents the characteristics of fatigue failures resulting from these methods using example cases of Sn-Pb eutectic and Sn-rich Pb-free solder alloys. Numerical simulation suggests that both testing configurations induce fatigue failure by the crack-opening mode. In the case of bending fatigue, the strain induced by the bending displacement is found to be sensitive to chip geometry, and it induces fatigue cracks mainly at the solder matrix adjacent to the printed circuit board interface. In case of shear fatigue, the failure location is firmly fixed at the solder neck, created by solder mask, where an abrupt change in the solder geometry occurs. Both methods conclude that the Coffin-Manson model is the most appropriate model for the isothermal mechanical fatigue of solder alloys. An analysis of fatigue characteristics using the frame of the Coffin-Manson model produces several insightful results, such as the reason why Pb-free alloys show higher fatigue resistance than Sn-Pb alloys even if they are generally more brittle. Our analysis suggests that it is related to higher work hardening. All these results indicate that mechanical fatigue can be an extremely useful method for fast screening of defective package structures and also in gaining a better understanding of fatigue failure mechanism and prediction of reliability in solder joints.

  4. Rolling element fatigue testing of gear materials

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.

    1978-01-01

    Rolling element fatigue lives of eleven alloys were evaluated. The eleven alloys studied were three nitriding alloys (Super Nitralloy, Nitralloy 135, and Nitralloy N), four case carburizing alloys (AISI 9310, CBS 600, CBS 1000M and Vasco X-2), and four throughhardening alloys (Vasco Matrix II,AISI W-1, AISI S-2 and AISI O-2). Several different heat treatments and/or melting processes were studied on the three carburizing alloy steels. Metallurgical analyses were made before and after the RC rig tests. Test data were statistically analyzed using the Weibull distribution function. B-10 lives were compared versus VIM-VAR AISI M-50 and carburized VAR AISI 9310, as reference alloys.

  5. Eddy Current Method for Fatigue Testing

    NASA Technical Reports Server (NTRS)

    Simpson, John W. (Inventor); Fulton, James P. (Inventor); Wincheski, Russell A. (Inventor); Todhunter, Ronald G. (Inventor); Namkung, Min (Inventor); Nath, Shridhar C. (Inventor)

    1997-01-01

    Flux-focusing electromagnetic sensor using a ferromagnetic flux-focusing lens simplifies inspections and increases detectability of fatigue cracks and material loss in high conductivity material. A ferrous shield isolates a high-turn pick-up coil from an excitation coil. Use of the magnetic shield produces a null voltage output across the receiving coil in presence of an unflawed sample. Redistribution of the current flow in the sample caused by the presence of flaws. eliminates the shielding condition and a large output voltage is produced, yielding a clear unambiguous flaw signal. Maximum sensor output is obtained when positioned symmetrically above the crack. By obtaining position of maximum sensor output, it is possible to track the fault and locate the area surrounding its tip. Accuracy of tip location is enhanced by two unique features of the sensor; a very high signal-to-noise ratio of the probe's output resulting in an extremely smooth signal peak across the fault, and a rapidly decaying sensor output outside a small area surrounding the crack tip enabling the search region to be clearly defined. Under low frequency operation, material thinning due to corrosion causes incomplete shielding of the pick-up coil. Low frequency output voltage of the probe is therefore a direct indicator of thickness of the test sample. Fatigue testing a conductive material is accomplished by applying load to the material, applying current to the sensor, scanning the material with the sensor, monitoring the sensor output signal, adjusting material load based on the sensor output signal of the sensor, and adjusting position of the sensor based on its output signal.

  6. Degradation in PV Encapsulant Strength of Attachment: An Interlaboratory Study Towards a Climate-Specific Test: Preprint

    SciTech Connect

    Miller, David C.; Annigoni, Eleonora; Ballion, Amal; Bokria, Jayesh G.; Bruckman, Laura S.; Burns, David M.; Chen, Xinxin; Feng, Jiangtao; French, Roger H.; Fowler, Sean; Honeker, Christian C.; Kempe, Michael D.; Khonkar, Hussam; Kohl, Michael; Perret-Aebi, Laure-Emmanuelle; Phillips, Nancy H.; Scott, Kurt P.; Sculati-Meillaud, Fanny; Wohlgemuth, John H.

    2016-07-01

    Reduced strength of attachment of the encapsulant resulting from outdoor environment, including ultraviolet (UV) radiation, may decrease photovoltaic (PV) module lifetime by enabling widespread corrosion of internal components. To date, few studies exist showing how the adhesion of PV components varies with environmental stress. We have conducted an interlaboratory experiment to provide an understanding that will be used to develop climatic specific module tests. Factors examined in the study included the UV light source (lamp type), temperature, and humidity to be proposed for use in accelerated aging tests. A poly (ethylene-co-vinyl acetate) (EVA) formulation often used in veteran PV installations was studied using a compressive shear test - to quantify the strength of attachment at the EVA/glass interface. Replicate laminated glass/polymer/glass coupon specimens were weathered at 12 institutions using a variety of indoor chambers or field aging. Shear strength, shear strain, and toughness were measured using a mechanical load-frame for the compressive shear test, with subsequent optical imaging and electron microscopy of the separated surfaces.

  7. Sonic fatigue testing of an advanced composite aileron

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1982-01-01

    The sonic fatigue test program to verify the design of the composite inboard aileron for the L-1011 airplane is described. The composite aileron is fabricated from graphite/epoxy minisandwich covers which are attached to graphite/epoxy front spar and ribs, and to an aluminum rear spar with fasteners. The program covers the development of random fatigue data by means of coupon testing and modal studies on a representative section of the composite aileron, culminating in the accelerated sonic fatigue proof test. The composite aileron sustained nonlinear panel vibration during the proof test without failure. Viscous damping coefficients as low as 0.4% were measured on the panels. The effects of moisture conditioning and elevated temperature on the random fatigue life of both undamaged and impact damaged coupons were investigated. The combination of impact damage, moisture, and a 180 F temperature could reduce the random fatigue life by 50%.

  8. An interlaboratory study to test instrument performance of hydrogen dual-inlet isotope-ratio mass spectrometers

    USGS Publications Warehouse

    Brand, Willi A.; Coplen, T.B.

    2001-01-01

    An interlaboratory comparison of forty isotope-ratio mass spectrometers of different ages from several vendors has been performed to test 2H/1H performance with hydrogen gases of three different isotopic compositions. The isotope-ratio results (unsufficiently corrected for H3+ contribution to the m/z = 3 collector, uncorrected for valve leakage in the change-over valves, etc.) expressed relative to one of these three gases covered a wide range of values: -630??? to -790??? for the second gas and -368??? to -462??? for the third gas. After normalizing the isotopic abundances of these test gases (linearly adjusting the ?? values so that the gases with the lowest and highest 2H content were identical for all laboratories), the standard deviation of the 40 measurements of the intermediate gas was a remarkably low 0.85???. It is concluded that the use of scaling factors is mandatory for providing accurate internationally comparable isotope-abundance values. Linear scaling for the isotope-ratio scales of gaseous hydrogen mass spectrometers is completely adequate. ?? Springer-Verlag 2001.

  9. Rolling element fatigue testing of gear materials

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.

    1978-01-01

    Rolling element fatigue lives of nine alloys were evaluated in Rolling Contact (RC) rigs. Test conditions included a Hertzian stress at 4,826 MPa (700 ksi), a rolling speed of 6.23 m/sec (245 in/sec.). Tests were run with a Type I oil (MIL-L-7808G) at room temperature. B-10 lives (10% failure rate) of alloys were compared versus reference alloys, VIM-VAR AISI M-50 and VAR AISI 9310. Six case carburizing alloys (AISI 9310, CBS600, CBS1000M, EX00014, Vasco X-2 and EX00053) and three through-hardening alloys (AISI M-50, VascoMax 350 and Vasco Matrix 2 evaluated, showed RCF performance inferior or equivalent to that of AISI 9310 and AISI M-50. It was also found that the effects of vacuum melting processes, different tempering temperatures, freezing cycle during heat treating, shot peening, gold plating and chrome plating employed in the present investigation did not significantly affect RCF life.

  10. Fatigue testing of reinforced-concrete steel bars

    NASA Astrophysics Data System (ADS)

    Maropoulos, S.; Fasnakis, D.; Voulgaraki, Ch; Papanikolaou, S.; Maropoulos, A.; Antonatos, A.

    2016-11-01

    A number of low-cycle fatigue tests were conducted on reinforced-concrete steel bars of various diameters to study their behaviour under axial loading according to EN 10080 and EN 1421-3. Scanning electron microscopy was used to study the specimen fracture surfaces. The problems faced during testing are presented and a specimen preparation method is described that will aid researchers on fatigue testing to obtain accurate test results and save on material and time.

  11. Effect of Preloading on Fatigue Strength in Dynamic Fatigue Testing of Ceramic Materials at Elevated Temperatures

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Salem, Jonathan A.

    1995-01-01

    Previously derived solutions of fatigue strength as a function of preloading were verified by applying preloads to elevated temperature dynamic fatigue tests of 96 wt% alumina at 1000 C and NC 132 silicon nitride at 1100 C. The technique was found very useful in identification and control of the governing failure mechanism when multiple failure mechanisms, such as slow crack growth, creep and oxidation occurred simultaneously at elevated temperatures.

  12. Fatigue

    MedlinePlus

    ... to help you find out what's causing your fatigue and recommend ways to relieve it. Fatigue itself is not a disease. Medical problems, treatments, and personal habits can add to fatigue. These include Taking certain medicines, such as antidepressants, ...

  13. Mechanical degradation of fuel cell membranes under fatigue fracture tests

    NASA Astrophysics Data System (ADS)

    Khorasany, Ramin M. H.; Sadeghi Alavijeh, Alireza; Kjeang, Erik; Wang, G. G.; Rajapakse, R. K. N. D.

    2015-01-01

    The effects of cyclic stresses on the fatigue and mechanical stability of perfluorosulfonic acid (PFSA) membranes are experimentally investigated under standard fuel cell conditions. The experiments are conducted ex-situ by subjecting membrane specimens to cyclic uniaxial tension at controlled temperature and relative humidity. The fatigue lifetime is measured in terms of the number of cycles until ultimate fracture. The results indicate that the membrane fatigue lifetime is a strong function of the applied stress, temperature, and relative humidity. The fatigue life increases exponentially with reduced stresses in all cases. The effect of temperature is found to be more significant than that of humidity, with reduced fatigue life at high temperatures. The maximum membrane strain at fracture is determined to decrease exponentially with increasing membrane lifetime. At a given fatigue life, a membrane exposed to fuel cell conditions is shown to accommodate more plastic strain before fracture than one exposed to room conditions. Overall, the proposed ex-situ membrane fatigue experiment can be utilized to benchmark the fatigue lifetime of new materials in a fraction of the time and cost associated with conventional in-situ accelerated stress testing methods.

  14. Low-cycle fatigue testing methods

    NASA Technical Reports Server (NTRS)

    Lieurade, H. P.

    1978-01-01

    The good design of highly stressed mechanical components requires accurate knowledge of the service behavior of materials. The main methods for solving the problems of designers are: determination of the mechanical properties of the material after cyclic stabilization; plotting of resistance to plastic deformation curves; effect of temperature on the life on low cycle fatigue; and simulation of notched parts behavior.

  15. Interlaboratory Profiency Testing trial on the Detection of Staphylococcal Enterotoxins types SEA to SEE in food in Germany 2013.

    PubMed

    Fetsch, Alexandra; Steege, Katja; Leeser, Daniel; Krause, Gladys

    2016-01-01

    In the autumn 2013, the National Reference Laboratory for coagulase positive staphylococci (CPS) including Staphylococcus (S.) aureus (NRL-Staph) at the Federal Institute for Risk Assessment has organized its first interlaboratory profiency testing (ILPT) trial for the detection of staphylococcal enterotoxins (SE) types SEA to SEE in food. The purpose of the ILPT was to assess the analytical competence of the official laboratories of the Federal German "Länder"authorities. Moreover, it was the intention to gain an overview of the standard methods implemented in the participating laboratories for the purpose of SE detection in food. Five cream cheese samples at three different contamination levels (blank, low, and high) were sent to each participant. In total, 15 laboratories participated to the ILPT: 14 laboratories from 11 Federal German "Länder", and the European Reference Laboratory for CPS including S. aureus (EU-RL for CPS). Data sets from 14 participating laboratories were included in the analysis. Overall, a specificity of 100% (14/14 true negative results), a sensitivity of 55% (31/56 true positive results), and an accuracy of 64% (45/60 true results) was achieved. The majority of participants (9/15) used other analytical methods for the detection of SE in food than the suggested European Screening Method (ESM) v5. To conclude on the ILPT in general it is to state that the majority of participating laboratories failed to correctly identify SE-low-contaminated samples. Further efforts are necessary to improve the analytical capacity and sensitivity as regards the detection of SE in food in Germany.

  16. An Axial-Torsional, Thermomechanical Fatigue Testing Technique

    NASA Technical Reports Server (NTRS)

    Kalluri, Sreeramesh; Bonacuse, Peter J.

    1995-01-01

    A technique for conducting strain-controlled, thermomechanical, axial-torsional fatigue tests on thin-walled tubular specimens was developed. Three waveforms of loading, namely, the axial strain waveform, the engineering shear strain waveform, and the temperature waveform were required in these tests. The phasing relationships between the mechanical strain waveforms and the temperature and axial strain waveforms were used to define a set of four axial-torsional, thermomechanical fatigue (AT-TMF) tests. Real-time test control (3 channels) and data acquisition (a minimum of 7 channels) were performed with a software program written in C language and executed on a personal computer. The AT-TMF testing technique was used to investigate the axial-torsional thermomechanical fatigue behavior of a cobalt-base superalloy, Haynes 188. The maximum and minimum temperatures selected for the AT-TMF tests were 760 and 316 C, respectively. Details of the testing system, calibration of the dynamic temperature profile of the thin-walled tubular specimen, thermal strain compensation technique, and test control and data acquisition schemes, are reported. The isothermal, axial, torsional, and in- and out-of-phase axial-torsional fatigue behaviors of Haynes 188 at 316 and 760 C were characterized in previous investigations. The cyclic deformation and fatigue behaviors of Haynes 188 in AT-TMF tests are compared to the previously reported isothermal axial-torsional behavior of this superalloy at the maximum and minimum temperatures.

  17. Using an interlaboratory study to revise methods for conducting 10-d to 42-d water or sediment toxicity tests with Hyalella azteca

    USGS Publications Warehouse

    Ivey, Chris D.; Ingersoll, Christopher G.; Brumbaugh, William G.; Hammer, Edward J.; Mount, David R.; Hockett, J. Russell; Norberg-King, Teresa J.; Soucek, Dave; Taylor, Lisa

    2016-01-01

    Studies have been conducted to refine US Environmental Protection Agency, ASTM International, and Environment Canada standard methods for conducting 42-d reproduction tests with Hyalella azteca in water or in sediment. Modifications to the H. azteca method include better-defined ionic composition requirements for exposure water (i.e., >15 mg/L of chloride and >0.02 mg/L of bromide) and improved survival, growth, and reproduction with alternate diets provided as increased rations over time in water-only or whole-sediment toxicity tests. A total of 24 laboratories volunteered to participate in the present interlaboratory study evaluating the performance of H. azteca in 42-d studies in control sand or control sediment using the refined methods. Improved growth and reproduction of H. azteca was observed with 2 alternate diets of 1) ramped diatoms (Thalassiosira weissflogii) + ramped Tetramin or 2) yeast–cerophyll–trout chow (YCT) + ramped Tetramin, especially when compared with results from the traditional diet of 1.8 mg YCT/d. Laboratories were able to meet proposed test acceptability criteria and in most cases had lower variation in growth or reproduction compared with previous interlaboratory studies using the traditional YCT diet. Laboratory success in conducting 42-d H. azteca exposures benefited from adherence to several key requirements of the detailed testing, culturing, and handling methods. Results from the present interlaboratory study are being used to help revise standard methods for conducting 10-d to 42-d water or sediment toxicity exposures with H. azteca.

  18. Using an interlaboratory study to revise methods for conducting 10-d to 42-d water or sediment toxicity tests with Hyalella azteca.

    PubMed

    Ivey, Chris D; Ingersoll, Chris G; Brumbaugh, William G; Hammer, Edward J; Mount, Dave R; Hockett, J Russell; Norberg-King, Teresa J; Soucek, Dave; Taylor, Lisa

    2016-10-01

    Studies have been conducted to refine US Environmental Protection Agency, ASTM International, and Environment Canada standard methods for conducting 42-d reproduction tests with Hyalella azteca in water or in sediment. Modifications to the H. azteca method include better-defined ionic composition requirements for exposure water (i.e., >15 mg/L of chloride and >0.02 mg/L of bromide) and improved survival, growth, and reproduction with alternate diets provided as increased rations over time in water-only or whole-sediment toxicity tests. A total of 24 laboratories volunteered to participate in the present interlaboratory study evaluating the performance of H. azteca in 42-d studies in control sand or control sediment using the refined methods. Improved growth and reproduction of H. azteca was observed with 2 alternate diets of 1) ramped diatoms (Thalassiosira weissflogii) + ramped Tetramin or 2) yeast-cerophyll-trout chow (YCT) + ramped Tetramin, especially when compared with results from the traditional diet of 1.8 mg YCT/d. Laboratories were able to meet proposed test acceptability criteria and in most cases had lower variation in growth or reproduction compared with previous interlaboratory studies using the traditional YCT diet. Laboratory success in conducting 42-d H. azteca exposures benefited from adherence to several key requirements of the detailed testing, culturing, and handling methods. Results from the present interlaboratory study are being used to help revise standard methods for conducting 10-d to 42-d water or sediment toxicity exposures with H. azteca. Environ Toxicol Chem 2016;35:2439-2447. © 2016 SETAC.

  19. Compression and compression fatigue testing of composite laminates

    NASA Technical Reports Server (NTRS)

    Porter, T. R.

    1982-01-01

    The effects of moisture and temperature on the fatigue and fracture response of composite laminates under compression loads were investigated. The structural laminates studied were an intermediate stiffness graphite-epoxy composite (a typical angle ply laimna liminate had a typical fan blade laminate). Full and half penetration slits and impact delaminations were the defects examined. Results are presented which show the effects of moisture on the fracture and fatigue strength at room temperature, 394 K (250 F), and 422 K (300 F). Static tests results show the effects of defect size and type on the compression-fracture strength under moisture and thermal environments. The cyclic tests results compare the fatigue lives and residual compression strength under compression only and under tension-compression fatigue loading.

  20. Elevated temperature fatigue testing of metals

    NASA Technical Reports Server (NTRS)

    Hirschberg, M. H.

    1981-01-01

    The major technology areas needed to perform a life prediction of an aircraft turbine engine hot section component are discussed and the steps required for life prediction are outlined. These include the determination of the operating environment, the calculation of the thermal and mechanical loading of the component, the cyclic stress-strain and creep behavior of the material required for structural analysis, and the structural analysis to determine the local stress-strain-temperature-time response of the material at the critical location in the components. From a knowledge of the fatigue, creep, and failure resistance of the material, a prediction of the life of the component is made. Material characterization and evaluation conducted for the purpose of calculating fatigue crack initiation lives of components operating at elevated temperatures are emphasized.

  1. The breaking load method - Results and statistical modification from the ASTM interlaboratory test program

    NASA Technical Reports Server (NTRS)

    Colvin, E. L.; Emptage, M. R.

    1992-01-01

    The breaking load test provides quantitative stress corrosion cracking data by determining the residual strength of tension specimens that have been exposed to corrosive environments. Eight laboratories have participated in a cooperative test program under the auspices of ASTM Committee G-1 to evaluate the new test method. All eight laboratories were able to distinguish between three tempers of aluminum alloy 7075. The statistical analysis procedures that were used in the test program do not work well in all situations. An alternative procedure using Box-Cox transformations shows a great deal of promise. An ASTM standard method has been drafted which incorporates the Box-Cox procedure.

  2. Assessing variability in chemical acute toxicity of unionid mussels: Influence of intra- and inter-laboratory testing, life stage, and species

    USGS Publications Warehouse

    Raimondo, Sandy; Lilavois, Crystal R.; Lee, Larisa; Augspurger, Tom; Wang, Ning; Ingersoll, Christopher G.; Bauer, Candice R.; Hammer, Edward J.; Barron, Mace G.

    2016-01-01

    We developed a toxicity database for unionid mussels to examine the extent of intra- and inter-laboratory variability in acute toxicity tests with mussel larvae (glochidia) and juveniles; the extent of differential sensitivity of the two life stages; and the variation in sensitivity among commonly tested mussels (Lampsilis siliquoidea, Utterbackia imbecillis, Villosa iris), commonly tested cladocerans (Daphnia magna, Ceriodaphnia dubia) and fish (Oncorhynchus mykiss, Pimephales promelas, Lepomis macrochirus). The results of these analyses indicate intra-laboratory variability for median effect concentrations (EC50) averaged about 2 fold for both life stages, while inter-laboratory variability averaged 3.6 fold for juvenile mussels and 6.3 fold for glochidia. The EC50s for juveniles and glochidia were within a factor of 2 of each other for 50% of paired records across chemicals, with juveniles more sensitive than glochidia by more than 2 fold for 33% of the comparisons made between life stages. There was a high concurrence of the sensitivity of commonly tested L. siliquoidea, U. imbecillis, and V. iris to that of other mussels. However, this concurrence decreases as the taxonomic distance of the commonly tested cladocerans and fish to mussels increases. The compiled mussel database and determination of data variability will advance risk assessments by including more robust species sensitivity distributions, interspecies correlation estimates, and availability of taxon-specific empirically derived application factors for risk assessment.

  3. Structural fatigue test results for large wind turbine blade sections

    NASA Technical Reports Server (NTRS)

    Faddoul, J. R.; Sullivan, T. L.

    1982-01-01

    In order to provide quantitative information on the operating life capabilities of wind turbine rotor blade concepts for root-end load transfer, a series of cantilever beam fatigue tests was conducted. Fatigue tests were conducted on a laminated wood blade with bonded steel studs, a low cost steel spar (utility pole) with a welded flange, a utility pole with additional root-end thickness provided by a swaged collar, fiberglass spars with both bonded and nonbonded fittings, and, finally, an aluminum blade with a bolted steel fitting (Lockheed Mod-0 blade). Photographs, data, and conclusions for each of these tests are presented. In addition, the aluminum blade test results are compared to field failure information; these results provide evidence that the cantilever beam type of fatigue test is a satisfactory method for obtaining qualitative data on blade life expectancy and for identifying structurally underdesigned areas (hot spots).

  4. Inter-laboratory comparison of three earplug fit-test systems.

    PubMed

    Byrne, David C; Murphy, William J; Krieg, Edward F; Ghent, Robert M; Michael, Kevin L; Stefanson, Earl W; Ahroon, William A

    2017-04-01

    The National Institute for Occupational Safety and Health (NIOSH) sponsored tests of three earplug fit-test systems (NIOSH HPD Well-Fit, Michael & Associates FitCheck, and Honeywell Safety Products VeriPRO). Each system was compared to laboratory-based real-ear attenuation at threshold (REAT) measurements in a sound field according to ANSI/ASA S12.6-2008 at the NIOSH, Honeywell Safety Products, and Michael & Associates testing laboratories. An identical study was conducted independently at the U.S. Army Aeromedical Research Laboratory (USAARL), which provided their data for inclusion in this article. The Howard Leight Airsoft premolded earplug was tested with twenty subjects at each of the four participating laboratories. The occluded fit of the earplug was maintained during testing with a soundfield-based laboratory REAT system as well as all three headphone-based fit-test systems. The Michael & Associates lab had the highest average A-weighted attenuations and smallest standard deviations. The NIOSH lab had the lowest average attenuations and the largest standard deviations. Differences in octave-band attenuations between each fit-test system and the American National Standards Institute (ANSI) sound field method were calculated (Attenfit-test - AttenANSI). A-weighted attenuations measured with FitCheck and HPD Well-Fit systems demonstrated approximately ±2 dB agreement with the ANSI sound field method, but A-weighted attenuations measured with the VeriPRO system underestimated the ANSI laboratory attenuations. For each of the fit-test systems, the average A-weighted attenuation across the four laboratories was not significantly greater than the average of the ANSI sound field method. Standard deviations for residual attenuation differences were about ±2 dB for FitCheck and HPD Well-Fit compared to ±4 dB for VeriPRO. Individual labs exhibited a range of agreement from less than a dB to as much as 9.4 dB difference with ANSI and REAT estimates. Factors such

  5. Spectrum fatigue testing of T-shaped tension clips

    NASA Astrophysics Data System (ADS)

    Palmberg, Bjoern; Wallstenius, Bengt

    1992-12-01

    An investigation of strain distributions during static loading and crack propagation and fatigue lives under spectrum loading of T-shaped tension clips was carried out. Three slightly different, with respect to geometry, T shaped tension clips made of aluminum alloy 7010-T73651 were studied. The type 1 and 4 test specimens were different only with respect to the web thickness of the clamping end. The type 1 and 2 test specimens were different with repect to milled flat circular countersink around the holes in the type 2 specimens and with respect to the radius between the web and foot. The spectrum fatigue loading consisted of a load sequence representative for the wing root, lower side, of a fighter aircraft. Tests were made at two different load levels for each specimen type. The strain measurements show that the countersink in the type 2 specimens increases the stresses in the fatigue critical region. This is also manifested in the spectrum fatigue life results, where type 2 specimens show the shortest fatigue lives. The strain measurements show that the torque used for the bolts in joining two test specimens or one test specimen and a dummy has a rather large impact on the strain in the fatigue region. The strains decrease with increasing torque. The spectrum fatigue loading resulted in approximately an equal number of flights to obtain a 10.0 mm crack for specimens of type 1 and 4. This suggests that the type 1 configuration is superior since the web thickness is smaller for this type as compared to the type 4 specimens. In other words, the type 4 specimens have an unnecessary oversize of the clamping end web thickness.

  6. Inter-laboratory variability in in vitro spinal segment flexibility testing.

    PubMed

    Wheeler, Daniel J; Freeman, Andrew L; Ellingson, Arin M; Nuckley, David J; Buckley, Jenni M; Scheer, Justin K; Crawford, Neil R; Bechtold, Joan E

    2011-09-02

    In vitro spine flexibility testing has been performed using a variety of laboratory-specific loading apparatuses and conditions, making test results across laboratories difficult to compare. The application of pure moments has been well established for spine flexibility testing, but to our knowledge there have been no attempts to quantify differences in range of motion (ROM) resulting from laboratory-specific loading apparatuses. Seven fresh-frozen lumbar cadaveric motion segments were tested intact at four independent laboratories. Unconstrained pure moments of 7.5 Nm were applied in each anatomic plane without an axial preload. At laboratories A and B, pure moments were applied using hydraulically actuated spinal loading fixtures with either a passive (A) or controlled (B) XY table. At laboratories C and D, pure moments were applied using a sliding (C) or fixed ring (D) cable-pulley system with a servohydraulic test frame. Three sinusoidal load-unload cycles were applied at laboratories A and B while a single quasistatic cycle was applied in 1.5 Nm increments at laboratories C and D. Non-contact motion measurement systems were used to quantify ROM. In all test directions, the ROM variability among donors was greater than single-donor ROM variability among laboratories. The maximum difference in average ROM between any two laboratories was 1.5° in flexion-extension, 1.3° in lateral bending and 1.1° in axial torsion. This was the first study to quantify ROM in a single group of spinal motion segments at four independent laboratories with varying pure moment systems. These data support our hypothesis that given a well-described test method, independent laboratories can produce similar biomechanical outcomes.

  7. Fatigue strength testing of LTCC and alumina ceramics bonds

    NASA Astrophysics Data System (ADS)

    Dąbrowski, A.; Matkowski, P.; Golonka, L.

    2012-12-01

    In this paper the results of fatigue strength tests of ceramic joints are presented. These tests have been performed on the samples subjected to thermal and vibration fatigue as well as on the reference samples without any additional loads. The main goal of the investigation was to determine the strength of hybrid ceramics joints using tensile testing machine. The experiment enabled evaluation of fatigue effects in the mentioned joints. Geometry of test samples has been designed according to FEM simulations, performed in ANSYS FEM environment. Thermal stress as well as the stress induced by vibrations have been analyzed in the designed model. In the experiments two types of ceramics have been used — LTCC green tape DP951 (DuPont) and alumina ceramic tape. The samples have been prepared by joining two sintered ceramic beams made of different types of material. The bonds have been realized utilizing low temperature glass or a layer of LTCC green tape.

  8. Interlaboratory drug susceptibility testing of Mycobacterium tuberculosis by a radiometric procedure and two conventional methods

    SciTech Connect

    Siddiqi, S.H.; Hawkins, J.E.; Laszlo, A.

    1985-12-01

    A total of 224 recent isolates of Mycobacterium tuberculosis from 163 patients selected to have multidrug resistance were tested against streptomycin (SM), isoniazid, rifampin, and ethambutol (EMB) by the rapid radiometric BACTEC method and two conventional proportion methods: the World Health Organization (WHO) method, using Lowenstein-Jensen medium; and the Veterans Administration reference laboratory for mycobacteria (VA) method, using Middlebrook 7H10 agar medium. The results were compared, focusing on the concentrations of the drugs in all three methods. Among the four drugs tested, most of the discrepancies in measured activity were observed with SM and EMB, generally because of differences in the drug concentrations used by the three methods. A 4-micrograms amount of SM in the BACTEC method was found to be slightly less active than 10 micrograms in the VA method and significantly more active than 4 micrograms of dihydrostreptomycin in the WHO method. With EMB, 2.5 micrograms in BACTEC was similar to 5 micrograms in the VA method and 2 micrograms in the WHO method, while 10 micrograms in the BACTEC method was found to be more active than 10 and 2 micrograms in the VA and WHO methods, respectively. To attain close agreement, drug concentrations used in the BACTEC method should be carefully selected when a comparison is to be made with any conventional method employed in a laboratory. Standardization of in vitro susceptibility testing is greatly needed to achieve uniformity among the test methods used to evaluate tuberculosis therapeutics.

  9. Interlaboratory drug susceptibility testing of Mycobacterium tuberculosis by a radiometric procedure and two conventional methods.

    PubMed Central

    Siddiqi, S H; Hawkins, J E; Laszlo, A

    1985-01-01

    A total of 224 recent isolates of Mycobacterium tuberculosis from 163 patients selected to have multidrug resistance were tested against streptomycin (SM), isoniazid, rifampin, and ethambutol (EMB) by the rapid radiometric BACTEC method and two conventional proportion methods: the World Health Organization (WHO) method, using Lowenstein-Jensen medium; and the Veterans Administration reference laboratory for mycobacteria (VA) method, using Middlebrook 7H10 agar medium. The results were compared, focusing on the concentrations of the drugs in all three methods. Among the four drugs tested, most of the discrepancies in measured activity were observed with SM and EMB, generally because of differences in the drug concentrations used by the three methods. A 4-micrograms amount of SM in the BACTEC method was found to be slightly less active than 10 micrograms in the VA method and significantly more active than 4 micrograms of dihydrostreptomycin in the WHO method. With EMB, 2.5 micrograms in BACTEC was similar to 5 micrograms in the VA method and 2 micrograms in the WHO method, while 10 micrograms in the BACTEC method was found to be more active than 10 and 2 micrograms in the VA and WHO methods, respectively. To attain close agreement, drug concentrations used in the BACTEC method should be carefully selected when a comparison is to be made with any conventional method employed in a laboratory. Standardization of in vitro susceptibility testing is greatly needed to achieve uniformity among the test methods used to evaluate tuberculosis therapeutics. PMID:3934209

  10. Standardization Activities in TMF Test Methodologies

    NASA Technical Reports Server (NTRS)

    Verrilli, M. J.; Castelli, M. G.; Bressers, J.; Oehmke, R. L. T.

    1996-01-01

    No standard test practice currently exists for strain-controlled thermomechanical fatigue (TMF) testing. This paper discusses recent activities which lay the foundation for standardization of TMF test methods. Specifically, the paper documents the results of two interlaboratory TMF test programs, identifies key TMF symposia and workshops, and discusses efforts toward drafting a TMF standard test practice.

  11. Evaluation of testing capabilities for the determination of melamine in milk through an interlaboratory proficiency test programme during the melamine crisis.

    PubMed

    Chan, M; Lo, C K; Cheng, L S; Cheung, T C; Wong, Y C

    2009-11-01

    An interlaboratory proficiency testing programme for melamine in milk was organized for field laboratories in Hong Kong, China, during the melamine crisis in late September 2008. One blank test sample and three homogenous samples prepared by gravimetric spiking of melamine at the concentration range of zero to 4.5 mg kg(-1) were given to participants in this programme. A total of 13 participants returned the results to the organizer and they used either liquid chromatography-tandem mass spectrometry (LC-MS/MS) or gas chromatography-mass spectrometry (GC-MS) for their determinations. The performance of the participants was assessed by determining z-scores, calculated from the bias from the assigned reference values and Horwitz standard deviation. The median values of pooled data were found to be in good agreement with the reference values and the majority of the participants demonstrated their capabilities in the quantitative measurement of melamine in milk samples. However, four participants gave false-positive results for the blank test sample, probably due to cross-contamination from other samples, and they were requested to investigate the actual causes. In summary, eight participants (or 62%) demonstrated their competence for all the four test samples.

  12. Fatigue

    MedlinePlus

    ... fatigue may be worsened with physical activity or mental stress. It is diagnosed based on the presence of a specific group of symptoms and after all other possible causes of fatigue are ruled out.

  13. Fatigue Testing of TBC on Structural Steel by Cyclic Bending

    NASA Astrophysics Data System (ADS)

    Musalek, Radek; Kovarik, Ondrej; Medricky, Jan; Curry, Nicholas; Bjorklund, Stefan; Nylen, Per

    2015-01-01

    For applications with variable loading, fatigue performance of coated parts is of utmost importance. In this study, fatigue performance of conventional structural steel coated with thermal barrier coating (TBC) was evaluated in cyclic bending mode by "SF-Test" device. Testing was carried out at each stage of the TBC preparation process, i.e., for as-received and grit-blasted substrates, as well as for samples with Ni-based bond-coat and complete TBC: bond-coat with YSZ-based top-coat. Comparison of results obtained for different loading amplitudes supplemented by fractographic analysis enabled identification of dominating failure mechanisms and demonstrated applicability of the high-frequency resonant bending test for evaluation of fatigue resistance alteration at each stage of the TBC deposition process.

  14. Hybrid bearing technology for advanced turbomachinery: Rolling contact fatigue testing

    SciTech Connect

    Dill, J.F.

    1996-01-01

    The purpose of this paper is to describe the basic structure and results to date of a major ARPA funded effort to provide a tribological performance database on ceramic bearing materials and their interaction with standard bearing steels. Program efforts include studies of material physical properties, machining characteristics, and tribological performance. The majority of the testing completed to date focuses on rolling contact fatigue testing of the ceramic materials, including efforts to arrive at optimum approaches to evaluating ceramic/steel hybrid combinations in rolling contact fatigue.

  15. Fatigue Testing of Abrasive Water Jet Cut Titanium

    SciTech Connect

    Hovanski, Yuri; Dahl, Michael E.; Williford, Ralph E.

    2009-06-08

    Battelle Memorial Institute as part of its U.S. Department of Energy (USDOE) Contract No. DE-AC05-76RL01830 to operate the Pacific Northwest National Laboratory (PNNL) provides technology assistance to qualifying small businesses in association with a Technology Assistance Program (TAP). Qualifying companies are eligible to receive a set quantity of labor associated with specific technical assistance. Having applied for a TAP agreement to assist with fatigue characterization of Abrasive Water Jet (AWJ) cut titanium specimens, the OMAX Corporation was awarded TAP agreement 09-02. This program was specified to cover dynamic testing and analysis of fatigue specimens cut from titanium alloy Ti-6%Al-4%V via AWJ technologies. In association with the TAP agreement, a best effort agreement was made to characterize fatigue specimens based on test conditions supplied by OMAX.

  16. X-43A Rudder Spindle Fatigue Life Estimate and Testing

    NASA Technical Reports Server (NTRS)

    Glaessgen, Edward H.; Dawicke, David S.; Johnston, William M.; James, Mark A.; Simonsen, Micah; Mason, Brian H.

    2005-01-01

    Fatigue life analyses were performed using a standard strain-life approach and a linear cumulative damage parameter to assess the effect of a single accidental overload on the fatigue life of the Haynes 230 nickel-base superalloy X-43A rudder spindle. Because of a limited amount of information available about the Haynes 230 material, a series of tests were conducted to replicate the overload and in-service conditions for the spindle and corroborate the analysis. Both the analytical and experimental results suggest that the spindle will survive the anticipated flight loads.

  17. Final report on low-cycle fatigue and creep-fatigue testing of salt-filled alloy 800 specimens

    SciTech Connect

    Kaae, J L

    1982-05-01

    Uniaxial low-cycle fatigue and creep-fatigue tests have been carried out on hollow alloy 800 specimens that were either filled with air or with a molten mixture of sodium nitrate, potassium nitrate and an oxidizer. Low-cycle fatigue tests were carried out at 1200/sup 0/F and 650/sup 0/F by cycling the strain continuously between equal mangitude of tensile and compressive values at a rate of 4 x 10/sup -3/sec/sup -1/ until failure. The creep-fatigue tests were carried out at 1200/sup 0/F. The loading cycle differed from that of low-cycle fatigue testing only in the imposition of a hold at the peak compressive strain in each cycle. Cracks always initiated on the inner surface of the hollow specimen, and therefore, corrosive effects on crack propagation and initiation were controlled by the environment within the specimen cavity. In common with tests carried out earlier on steam-filled alloy 800 specimens, at 1200/sup 0/F in the presence of molten salt the heat of alloy 800 with the lower carbon content had a higher fatigue strength than the heat with the higher carbon content even though different heats were used in the two testing programs. The fatigue strength of the two heats of material in the presence of molten salt at 650/sup 0/F were about the same. Tests with air-filled specimens indicated that the presence of the molten salt degraded the fatigue life at 1200/sup 0/F but did not affect the creep fatigue life, while the presence of steam enhanced both the fatigue life and the creep-fatigue life.

  18. Fatigue testing of plasma-sprayed thermal barrier coatings, volume 2

    NASA Technical Reports Server (NTRS)

    Cruse, T. A.; Nagy, A.; Popelar, C. F.

    1990-01-01

    A plasma sprayed thermal barrier coating for diesel engines were fatigue tested. Candidate thermal barrier coating materials were fatigue screened and a data base was generated for the selected candidate material. Specimen configurations are given for the bend fatigue tests, along with test setup, specimen preparation, test matrix and procedure, and data analysis.

  19. Comparing Rotary Bend Wire Fatigue Test Methods at Different Test Speeds

    NASA Astrophysics Data System (ADS)

    Weaver, Jason D.; Gutierrez, Erick J.

    2015-12-01

    Given its relatively simple setup and ability to produce results quickly, rotary bend fatigue testing is becoming commonplace in the medical device industry and is the subject of a new standard test method ASTM E2948-14. Although some research has been conducted to determine if results differ for different rotary bend fatigue test setups or test speeds, these parameters have not been extensively studied together. In this work, we investigate the effects of these two parameters on the fatigue life of three commonly used medical device alloys (ASTM F2063 nitinol, ASTM F138 stainless steel, and ASTM F1058 cobalt chromium). Results with three different rotary bend fatigue test setups revealed no difference in fatigue life among those setups. Increasing test speed, however, between 100 and 35,000 RPM led to an increased fatigue life for all three alloys studied (average number of cycles to fracture increased between 2.0 and 5.1 times between slowest and fastest test speed). Supplemental uniaxial tension tests of stainless steel wire at varying strain rates showed a strain rate dependence in the mechanical response which could in part explain the increased fatigue life at faster test speeds. How exactly strain rate dependence might affect the fatigue properties of different alloys at different alternating strain values requires further study. Given the difference in loading rates between benchtop fatigue tests and in vivo deformations, the potential for strain rate dependence should be considered when designing durability tests for medical devices and in extrapolating results of those tests to in vivo performance.

  20. Rolling-Element Fatigue Testing and Data Analysis - A Tutorial

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.

    2011-01-01

    In order to rank bearing materials, lubricants and other design variables using rolling-element bench type fatigue testing of bearing components and full-scale rolling-element bearing tests, the investigator needs to be cognizant of the variables that affect rolling-element fatigue life and be able to maintain and control them within an acceptable experimental tolerance. Once these variables are controlled, the number of tests and the test conditions must be specified to assure reasonable statistical certainty of the final results. There is a reasonable correlation between the results from elemental test rigs with those results obtained with full-scale bearings. Using the statistical methods of W. Weibull and L. Johnson, the minimum number of tests required can be determined. This paper brings together and discusses the technical aspects of rolling-element fatigue testing and data analysis as well as making recommendations to assure quality and reliable testing of rolling-element specimens and full-scale rolling-element bearings.

  1. Effects of Total SAT® Test Time on Performance and Fatigue. Research Notes. RN-37

    ERIC Educational Resources Information Center

    Ackerman, Phillip L.; Kanfer, Ruth; Wolman, Stacey D.

    2005-01-01

    The current study was designed to examine performance effects and fatigue effects associated with different total SAT testing times. In addition, the researchers examined personality, motivation, and other determinants of individual differences in examinee fatigue before, during, and after testing.

  2. Structure analysis, fatigue testing, and lifetime prediction of composite steels

    NASA Astrophysics Data System (ADS)

    Sokolkin, Yu. V.; Chekalkin, A. A.; Babushkin, A. V.

    1998-05-01

    Composite steels prepared by technology of powder metallurgy are widely used as low cost parts with good resistance to wear, fracture, and corrosion. The development of powder composite steels is directly related to strength under vibration, fatigue stabilizing, and accurate lifetime prediction for actual composite topology. The fatigue behavior of powder steels was studied by experimental and numerical methods of composite mechanics and materials sciences. The chemical composition of composite steel is a pure iron powder as the base material and a handful of carbon, chromium, nickel, or phosphorus powders. The powder multi-component mixture is compacted by cold isostatic pressing to a rectangular form. The compactants are sintered in protective atmosphere. The microscale examination of the composite structure included an METAM-RV-21 metallographic optic microscope with a high-resolution ScanNexIIc scanner and an image processing package on the PC platform. The phase composition of powder steels has complex disordered topology with irregular ferrite/austenite grains, iron carbide inclusions, and pores. The microstructure images are treated according to the theory of stochastic processes as ergodic probability functions; statistical moments and a structural covariance function of the composite steels are given. The microscale stress-strain state of the composite steel is analyzed by finite element methods. The stiffness matrix of the composite steel is also presented together with stiffness matrices of ferrite/austenite grains, iron carbide inclusions, and pores as zero matrices. Endurance limits of the microstructural components are described by the Basquin or Coffin-Manson laws, respectively, as high and low cycle fatigue; cumulative microdamage in loading with a variable amplitude is taken from the Palmgren-Miner rule. Planar specimens were tested by console bending. Symmetric fatigue cycling was performed at a stable frequency of 20 Hz with endurance limits up

  3. Elevated temperature static and fatigue testing techniques

    NASA Astrophysics Data System (ADS)

    Harmon, D. M.; Coffey, F. J.; Antolovich, S. D.; Brown, R. C.

    Aircraft of the future, such as an aerospace vehicle or an advanced fighter, will have expanded operating envelopes and therefore, will be subject to extreme environmental conditions. They will experience high temperatures combined with high external loads. Due to the complexity of full scale testing with combined thermal and mechanical loads, subcomponent and coupon testing play an extremely important role in the verification of structural integrity. This paper describes testing facilities designed for elevated temperature testing of coupon specimens. These facilities are capable of simultaneously applying spectrum loads and a detailed thermal profile. A method is also outlined for developing realistic thermal and mechanical load profiles for advanced aircraft.

  4. Evaluation of composite flattened tubular specimen. [fatigue tests

    NASA Technical Reports Server (NTRS)

    Liber, T.; Daniel, I. M.

    1978-01-01

    Flattened tubular specimens of graphite/epoxy, S-glass/epoxy, Kevlar-49/epoxy, and graphite/S-glass/epoxy hybrid materials were evaluated under static and cyclic uniaxial tensile loading and compared directly with flat coupon data of the same materials generated under corresponding loading conditions. Additional development for the refinement of the flattened specimen configuration and fabrication was required. Statically tested graphite/epoxy, S-glass/epoxy, and Kevlar 49/epoxy flattened tube specimens exhibit somewhat higher average strengths than their corresponding flat coupons. Flattened tube specimens of the graphite/S-glass/epoxy hybrid and the graphite/epoxy flattened tube specimens failed in parasitic modes with consequential lower strength than the corresponding flat coupons. Fatigue tested flattened tube specimens failed in parasitic modes resulting in lower fatigue strengths than the corresponding flat coupons.

  5. Fatigue testing of thermoformed bidirectional LDF™-composites

    NASA Astrophysics Data System (ADS)

    Schuster, J.; Friedrich, K.

    1994-01-01

    Specimens made of Long Discontinuous Fiber (LDF™) composite material were elongated to different states of deformation by thermoforming. Tension-tension-fatigue tests were performed using waisted bidirectional specimens cut out of the thermoformed parts. These resulted in similar shapes of the Wöhler-curves fairly independently of the deformation state of the LDF™-material. In addition, the static strength values were not very much influenced by the elongation of the specimens. The specimens were nondestructively inspected by ultrasonics and thermography.

  6. Reversible Bending Fatigue Testing on Zry-4 Surrogate Rods

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L

    2014-01-01

    Testing high-burnup spent nuclear fuel (SNF) presents many challenges in areas such as specimen preparation, specimen installation, mechanical loading, load control, measurements, data acquisition, and specimen disposal because these tasks are complicated by the radioactivity of the test specimens. Research and comparison studies conducted at Oak Ridge National Laboratory (ORNL) resulted in a new concept in 2010 for a U-frame testing setup on which to perform hot-cell reversible bending fatigue testing. Subsequently, the three-dimensional finite element analysis and the engineering design of components were completed. In 2013 the ORNL team finalized the upgrade of the U-frame testing setup and the integration of the U-frame setup into a Bose dual linear motor test bench to develop a cyclic integrated reversible-bending fatigue tester (CIRFT). A final check was conducted on the CIRFT test system in August 2013, and the CIRFT was installed in the hot cell in September 2013 to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The fatigue responses of Zircaloy-4 (Zry-4) cladding and the role of pellet pellet and pellet clad interactions are critical to SNF vibration integrity, but such data are not available due to the unavailability of an effective testing system. While the deployment of the developed CIRFT test system in a hot cell will provide the opportunity to generate the data, the use of a surrogate rod has proven quite effective in identifying the underlying deformation mechanism of an SNF composite rod under an equivalent loading condition. This paper presents the experimental results of using surrogate rods under CIRFT reversible cyclic loading. Specifically, monotonic and cyclic bending tests were conducted on surrogate rods made of a Zry-4 tube and alumina pellet inserts, both with and without an epoxy bond.

  7. OPCW Proficiency Test: A Practical Approach Also for Interlaboratory Test on Detection and Identification of Pesticides in Environmental Matrices

    PubMed Central

    Śliwakowski, Maciej

    2014-01-01

    An overview of general strategy, standard procedures, and critical points, which may be found during carrying out an OPCW Proficiency Test concerning detection and identification of scheduled compounds relevant to Chemical Weapon Convention, has been presented. The observations have been illustrated following the case of the Eight OPCW Designated Laboratories Proficiency Test, which was performed in the OPCW Laboratory in Rijswijk in November and December 2000. Various useful hints, comments, and practical observations concerning the case study have been included as well. The same methodology and procedures may be also applied for detection, identification, and environmental analyses of pesticides and biocides, especially organophosphorus compounds. PMID:24578644

  8. An optical motion measuring system for laterally oscillated fatigue tests

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Tcheng, Ping; Murri, Gretchen B.; Sharpe, Scott

    1993-01-01

    This paper describes an optical system developed for materials testing laboratories at NASA Langley Research Center (LaRC) for high resolution monitoring of the transverse displacement and angular rotation of a test specimen installed in an axial-tension bending machine (ATB) during fatigue tests. It consists of a small laser, optics, a motorized mirror, three photodiodes, electronic detection and counting circuits, a data acquisition system, and a personal computer. A 3-inch by 5-inch rectangular plate attached to the upper grip of the test machine serves as a target base for the optical system. The personal computer automates the fatigue test procedure, controls data acquisition, performs data reduction, and provides user displays. The data acquisition system also monitors signals from up to 16 strain gages mounted on the test specimen. The motion measuring system is designed to continuously monitor and correlate the amplitude of the oscillatory motion with the strain gage signals in order to detect the onset of failure of the composite test specimen. A prototype system has been developed and tested which exceeds the design specifications of +/- 0.01 inch displacement accuracy, and +/- 0.25 deg angular accuracy at a sampling rate of 100 samples per second.

  9. Development and Fatigue Testing of Ceramic Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.

    2004-01-01

    Ceramic thermal barrier coatings will play an increasingly important role in future gas turbine engines because of their ability to effectively protect the engine components and further raise engine temperatures. Durability of the coating systems remains a critical issue with the ever-increasing temperature requirements. Thermal conductivity increase and coating degradation due to sintering and phase changes are known to be detrimental to coating performance. There is a need to characterize the coating thermal fatigue behavior and temperature limit, in order to potentially take full advantage of the current coating capability. In this study, thermal conductivity and cyclic fatigue behaviors of plasma-sprayed ZrO2-8wt%Y2O3 thermal barrier coatings were evaluated under high temperature, large thermal gradient and thermal cycling conditions. The coating degradation and failure processes were assessed by real-time monitoring of the coating thermal conductivity under the test conditions. The ceramic coating crack initiation and propagation driving forces and failure modes under the cyclic thermal loads will be discussed in light of the high temperature mechanical fatigue and fracture testing results.

  10. Closed-Loop Control for Sonic Fatigue Testing Systems

    NASA Technical Reports Server (NTRS)

    Rizzi, Stephen A.; Bossaert, Guido

    2001-01-01

    This article documents recent improvements to the acoustic control system of the Thermal Acoustic Fatigue Apparatus (TAFA), a progressive wave tube test facility at the NASA Langley Research Center, Hampton, VA. A brief summary of past acoustic performance is first given to serve as a basis of comparison with the new performance data using a multiple-input, closed-loop, narrow-band controller. Performance data in the form of test section acoustic power spectral densities and coherence are presented for a variety of input spectra including uniform, band-limited random and an expendable launch vehicle payload bay environment.

  11. Heating and cooling system. [for fatigue test specimens

    NASA Technical Reports Server (NTRS)

    Imig, L. A.; Gardner, M. R. (Inventor)

    1982-01-01

    A heating and cooling apparatus capable of cyclic heating and cooling of a test specimen undergoing fatigue testing is discussed. Cryogenic fluid is passed through a block clamped to the speciment to cool the block and the specimen. Heating cartridges penetrate the block to heat the block and the specimen to very hot temperaures. Control apparatus is provided to alternatively activate the cooling and heating modes to effect cyclic heating and cooling between very hot and very cold temperatures. The block is constructed of minimal mass to facilitate the rapid temperature changes.

  12. Hot fire fatigue testing results for the compliant combustion chamber

    NASA Technical Reports Server (NTRS)

    Pavli, Albert J.; Kazaroff, John M.; Jankovsky, Robert S.

    1992-01-01

    A hydrogen-oxygen subscale rocket combustion chamber was designed incorporating an advanced design concept to reduce strain and increase life. The design permits unrestrained thermal expansion of a circumferential direction and, thereby, provides structural compliance during the thermal cycling of hot-fire testing. The chamber was built and test fired at a chamber pressure of 4137 kN/sq m (600 psia) and a hydrogen-oxygen mixture ratio of 6.0. Compared with a conventional milled-channel configuration, the new structurally compliant chamber had a 134 or 287 percent increase in fatigue life, depending on the life predicted for the conventional configuration.

  13. Attention in Parkinson's disease with fatigue: evidence from the attention network test.

    PubMed

    Pauletti, Caterina; Mannarelli, Daniela; Locuratolo, Nicoletta; Pollini, Luca; Currà, Antonio; Marinelli, Lucio; Rinalduzzi, Steno; Fattapposta, Francesco

    2017-03-01

    Fatigue is a non-specific symptom that is common in chronic diseases and represents one of the most disabling symptoms in Parkinson's disease. PD patients often experience cognitive deficits related above all to executive functions. The relationship between cognitive changes and fatigue in PD patients has not been explored in depth. The Attention Network Test (ANT) is a rapid, widely used test to measure the efficiency of three attentional networks, i.e., alerting, orienting, and executive, by evaluating reaction times (RTs) in response to visual stimuli. To assess the association between fatigue and the efficiency of the attentional networks, according to the Posnerian view, ANT was administered to 15 parkinsonian patients with fatigue (PFS-16 > 2.95), 17 parkinsonian patients without fatigue, and 37 age- and sex-matched healthy controls. Anxiety, depression, quality of sleep, and quality of life were also assessed. Parkinsonian patients displayed significantly longer RTs and lower executive network efficiency than controls. Patients with fatigue displayed significantly lower executive network efficiency than patients without fatigue. Moreover, patients with fatigue exhibited a lower accuracy than either patients without fatigue or controls. Finally, patients without fatigue displayed a more efficient alerting network than either patients with fatigue or controls. Although the pathogenesis of fatigue is multifactorial, our results indicate that fatigue may be closely related to an alteration of the striato-thalamo-cortical loop connecting the neostriatum to the prefrontal cortex, which is also responsible for the executive dysfunction that is typical of Parkinson's disease.

  14. Interlaboratory comparison of olfactometry in Japan.

    PubMed

    Higuchi, T; Masuda, J

    2004-01-01

    In 2000, 2001, and 2002, interlaboratory comparison of olfactometry was carried out in order to collect basic data for the establishment of a quality control procedure and the determination of quality criteria for the triangular odour bag method. In 2000, interlaboratory comparison was conducted by using a measurement method for samples taken at smoke stacks. On the other hand, the measurement method for samples taken at boundary lines was used for interlaboratory comparison in 2001. A total of seven olfactometry laboratories in Japan participated in each test, and mean values, repeatability standard deviations, reproducibility standard deviations, and standard deviations under intermediate conditions of detection threshold of ethyl acetate were calculated from the results. These values can be used in a quality control process of olfactometry. In 2002, interlaboratory comparison was carried out by using a measurement method for samples taken at smoke stacks. A total of 137 olfactometry laboratories in Japan participated in the test, and 69% of them lay within the permissible range of the odour index.

  15. Cognitive fatigue influences students’ performance on standardized tests

    PubMed Central

    Sievertsen, Hans Henrik; Gino, Francesca; Piovesan, Marco

    2016-01-01

    Using test data for all children attending Danish public schools between school years 2009/10 and 2012/13, we examine how the time of the test affects performance. Test time is determined by the weekly class schedule and computer availability at the school. We find that, for every hour later in the day, test performance decreases by 0.9% of an SD (95% CI, 0.7–1.0%). However, a 20- to 30-minute break improves average test performance by 1.7% of an SD (95% CI, 1.2–2.2%). These findings have two important policy implications: First, cognitive fatigue should be taken into consideration when deciding on the length of the school day and the frequency and duration of breaks throughout the day. Second, school accountability systems should control for the influence of external factors on test scores. PMID:26884183

  16. Inter-laboratory evaluation of the performance parameters of a Lateral Flow Test device for the detection of Bluetongue virus-specific antibodies.

    PubMed

    Hanon, Jean-Baptiste; Vandenberge, Valerie; Deruelle, Matthias; De Leeuw, Ilse; De Clercq, Kris; Van Borm, Steven; Koenen, Frank; Liu, Lihong; Hoffmann, Bernd; Batten, Carrie Anne; Zientara, Stéphan; Breard, Emmanuel; Van der Stede, Yves

    2016-02-01

    Bluetongue (BT) is a viral vector-borne disease affecting domestic and wild ruminants worldwide. In this study, a commercial rapid immuno-chromatographic method or Lateral Flow Test (LFT) device, for the detection of BT virus-specific antibodies in animal serum, was evaluated in an international inter-laboratory proficiency test. The evaluation was done with sera samples of variable background (ruminant species, serotype, field samples, experimental infections, vaccinated animals). The diagnostic sensitivity was 100% (95% C.I. [90.5-100]) and the diagnostic specificity was 95.2% (95% C.I. [76.2-99.9]). The repeatability (accordance) and reproducibility (concordance) were 100% for seropositive samples but were lower for two of the seronegative samples (45% and 89% respectively). The analytical sensitivity, evaluated by testing positive sera at increasing dilutions was better for the BT LFT compared to some commercial ELISAs. Seroconversion of an infected sheep was detected at 4 days post infection. Analytical specificity was impaired by cross-reactions observed with some of the samples seropositive for Epizootic Haemorrhagic Disease Virus (EHDV). The agreement (Cohen's kappa) between the LFT and a commercial BT competitive ELISA was 0.79 (95% CI [0.62-0.95]). Based on these results, it can be concluded that the BT LFT device is a rapid and sensitive first-line serological test that can be used in the field, especially in areas endemic for the disease where there is a lack of diagnostic facilities.

  17. Design of a Compact Fatigue Tester for Testing Irradiated Materials

    SciTech Connect

    Hartsell, Brian; Campbell, Michael; Fitton, Michael; Hurh, Patrick; Ishida, Taku; Nakadaira, Takeshi

    2015-06-01

    A compact fatigue testing machine that can be easily inserted into a hot cell for characterization of irradiated materials is beneficial to help determine relative fatigue performance differences between new and irradiated material. Hot cell use has been carefully considered by limiting the size and weight of the machine, simplifying sample loading and test setup for operation via master-slave manipulator, and utilizing an efficient design to minimize maintenance. Funded from a US-Japan collaborative effort, the machine has been specifically designed to help characterize titanium material specimens. These specimens are flat cantilevered beams for initial studies, possibly utilizing samples irradiated at other sources of beam. The option to test spherically shaped samples cut from the T2K vacuum window is also available. The machine is able to test a sample to $10^7$ cycles in under a week, with options to count cycles and sense material failure. The design of this machine will be presented along with current status.

  18. Detection of fatigue cracks by nondestructive testing methods

    NASA Technical Reports Server (NTRS)

    Anderson, R. T.; Delacy, T. J.; Stewart, R. C.

    1973-01-01

    The effectiveness was assessed of various NDT methods to detect small tight cracks by randomly introducing fatigue cracks into aluminum sheets. The study included optimizing NDT methods calibrating NDT equipment with fatigue cracked standards, and evaluating a number of cracked specimens by the optimized NDT methods. The evaluations were conducted by highly trained personnel, provided with detailed procedures, in order to minimize the effects of human variability. These personnel performed the NDT on the test specimens without knowledge of the flaw locations and reported on the flaws detected. The performance of these tests was measured by comparing the flaws detected against the flaws present. The principal NDT methods utilized were radiographic, ultrasonic, penetrant, and eddy current. Holographic interferometry, acoustic emission monitoring, and replication methods were also applied on a reduced number of specimens. Generally, the best performance was shown by eddy current, ultrasonic, penetrant and holographic tests. Etching provided no measurable improvement, while proof loading improved flaw detectability. Data are shown that quantify the performances of the NDT methods applied.

  19. Conducting High Cycle Fatigue Strength Step Tests on Gamma TiAl

    NASA Technical Reports Server (NTRS)

    Lerch, Brad; Draper, Sue; Pereira, J. Mike

    2002-01-01

    High cycle fatigue strength testing of gamma TiAl by the step test method is investigated. A design of experiments was implemented to determine if the coaxing effect occurred during testing. Since coaxing was not observed, step testing was deemed a suitable method to define the fatigue strength at 106 cycles.

  20. Mechanical Fatigue Testing of High Burnup Fuel for Transportation Applications

    SciTech Connect

    Wang, Jy-An John; Wang, Hong

    2015-05-01

    This report describes testing designed to determine the ability of high burnup (HBU) (>45 GWd/MTU) spent fuel to maintain its integrity under normal conditions of transportation. An innovative system, Cyclic Integrated Reversible-bending Fatigue Tester (CIRFT), has been developed at Oak Ridge National Laboratory (ORNL) to test and evaluate the mechanical behavior of spent nuclear fuel (SNF) under conditions relevant to storage and transportation. The CIRFT system is composed of a U-frame equipped with load cells for imposing the pure bending loads on the SNF rod test specimen and measuring the in-situ curvature of the fuel rod during bending using a set up with three linear variable differential transformers (LVDTs).

  1. Rolling contact fatigue testing of peek based composites

    NASA Astrophysics Data System (ADS)

    Avanzini, A.; Donzella, G.; Gallina, D.; Pandini, S.; Petrogalli, C.

    2010-06-01

    Rolling contact fatigue phenomenon was investigated on unfilled PEEK and on three different PEEK composites: 10% carbon micro-fiber, graphite and PTFE filled matrix, 30% carbon micro-fiber filled matrix, 30% glass micro-fiber filled matrix. For this aim, roller-shaped specimens were machined from extruded bars of these materials and subjected to rolling contact tests at different contact pressure levels by means of a four roller machine. Contact pressure-life diagrams and wear rates were so obtained and compared, highlighting a relationship with monotonic and hardness materials properties. Microscopic observations of contact surfaces and transversal section of the specimens also allowed observing the damage mechanisms occurred in the materials tested and the effects of the filler. In particular way, deep radial cracks appeared on unfilled PEEK, while spalling and delamination phenomena where found on composites. Diffuse microcracks were found at the filler-matrix interface of the composites specimens, confirming that the fatigue life of these materials is essentially determined by the crack propagation phase, also under rolling contact loading.

  2. Practical tests for monitoring performance, fatigue and recovery in triathletes.

    PubMed

    Coutts, Aaron J; Slattery, Katie M; Wallace, Lee K

    2007-12-01

    Few studies have described simple tests which can be used to provide an early warning of overreaching. The purpose of this study was to examine selected practical tests for monitoring changes in performance, fatigue and recovery of endurance athletes. Sixteen male triathletes were randomly assigned into matched groups. The normal training (NT) and intensified training (IT) groups completed 4 weeks of training followed by a 2-week taper. Physiological measures were taken pre- and post-overload and post-taper periods during an incremental treadmill test to exhaustion. Performance was assessed weekly using a 3-km run time trial (3 kmTT). Five-bound jump for distance (5BT) and submaximal running heart rate (HR(submax)) test were measured twice weekly and the Daily Analyses of Life Demands for Athletes (DALDA) were recorded. During the overload training period, the IT group completed approximately 290% more training load than the NT group (p<0.001). After the overload training period, 3kmTT in the IT group was reduced compared to both pre-training (3.7%, p<0.05) and the NT group (6.8%, p<0.05). 5BT was decreased by 7.9% in the IT group following the overload period (p<0.05). The IT group also demonstrated increases in stress reaction symptoms from the DALDA. Following the taper, the IT group improved 3 kmTT. In contrast, the performance, physiological and psychological markers of NT group remained relatively unchanged throughout the 6-week training period. There were weak significant correlations between weekly changes in 3 kmTT and 5BT (r=-0.37, p<0.01). The DALDA and 5BT may be practical tests for assessing changes in performance, fatigue and recovery of endurance athletes.

  3. Power wheelchair range testing and energy consumption during fatigue testing.

    PubMed

    Cooper, R A; VanSickle, D P; Albright, S J; Stewart, K J; Flannery, M; Robertson, R N

    1995-10-01

    The range of a power wheelchair depends on many factors including: battery type, battery state, wheelchair/rider weight, terrain, the efficiency of the drive train, and driving behavior. The purpose of this study was to evaluate the feasibility of three methods of estimating power wheelchair range. Another significant purpose was to compare the current draw on pavement to current draw on an International Standards Organization (ISO) Double Drum tester at one m/sec. Tests were performed on seven different power wheelchairs unloaded, and loaded with an ISO 100 kg test dummy. Each chair was configured according to the manufacturer's specifications, and tires were properly inflated. Experienced test technicians were used for the tennis court tests, and treadmill tests. An ISO 100 kg test dummy was used for the ISO Double Drum test. Energy consumption was measured over a distance of 1500 m for each of the three test conditions. The rolling surface was level in all cases. Repeated measure analysis of variance (ANOVA) revealed a significant difference (p = 0.0001) between the predicted range at maximum speed for the three tests. Post hoc analysis demonstrated a significant difference (p < 0.01) in estimated range at maximum speed between the Double Drum test and the treadmill test, as well as between the Double Drum test and the tennis court test. Our results indicate no significant difference (p > 0.05) between the predicted range at maximal speed between the treadmill and tennis court tests. A simple relationship does not exist between the results of range testing with the Double Drum tester and the tennis court. An alternative would be to permit the use of a treadmill for range testing as simple relationships between all pertinent treadmill and tennis court range data were found. For the Double Drum tester used, the current demand is higher than under normal usage. This presents a problem as current is related to load torque in a power wheelchair. Hence, the Double

  4. Microstructural changes induced near crack tip during corrosion fatigue tests in austenitic-ferritic steel.

    PubMed

    Gołebiowski, B; Swiatnicki, W A; Gaspérini, M

    2010-03-01

    Microstructural changes occurring during fatigue tests of austenitic-ferritic duplex stainless steel (DSS) in air and in hydrogen-generating environment have been investigated. Hydrogen charging of steel samples during fatigue crack growth (FCG) tests was performed by cathodic polarization of specimens in 0.1M H(2)SO(4) aqueous solution. Microstructural investigations of specimens after FCG tests were carried out using transmission electron microscopy to reveal the density and arrangement of dislocations formed near crack tip. To determine the way of crack propagation in the microstructure, electron backscatter diffraction investigations were performed on fatigue-tested samples in both kinds of environment. To reveal hydrogen-induced phase transformations the atomic force microscopy was used. The above investigations allowed us to define the character of fatigue crack propagation and microstructural changes near the crack tip. It was found that crack propagation after fatigue tests in air is accompanied with plastic deformation; a high density of dislocations is observed at large distance from the crack. After fatigue tests performed during hydrogen charging the deformed zone containing high density of dislocations is narrow compared to that after fatigue tests in air. It means that hydrogenation leads to brittle character of fatigue crack propagation. In air, fatigue cracks propagate mostly transgranularly, whereas in hydrogen-generating environment the cracks have mixed transgranular/interfacial character.

  5. 1000–ton testing machine for cyclic fatigue tests of materials at liquid nitrogen temperatures

    SciTech Connect

    Khitruk, A. A.; Klimchenko, Yu. A.; Kovalchuk, O. A.; Marushin, E. L.; Mednikov, A. A.; Nasluzov, S. N.; Privalova, E. K.; Rodin, I. Yu.; Stepanov, D. B.; Sukhanova, M. V.

    2014-01-29

    One of the main tasks of superconductive magnets R and D is to determine the mechanical and fatigue properties of structural materials and the critical design elements in the cryogenic temperature range. This paper describes a new facility built based on the industrial 1000-ton (10 MN) testing machine Schenk PC10.0S. Special equipment was developed to provide the mechanical and cyclic tensile fatigue tests of large-scale samples at the liquid nitrogen temperature and in a given load range. The main feature of the developed testing machine is the cryostat, in which the device converting a standard compression force of the testing machine to the tensile force affected at the test object is placed. The control system provides the remote control of the test and obtaining, processing and presentation of test data. As an example of the testing machine operation the test program and test results of the cyclic tensile fatigue tests of fullscale helium inlet sample of the PF1 coil ITER are presented.

  6. The fracture morphology of nickel-base superalloys tested in fatigue and creep-fatigue at 650 C

    NASA Technical Reports Server (NTRS)

    Gayda, J.; Miner, R. V.

    1981-01-01

    The fracture surfaces of compact tension specimens from seven nickel-base superalloys fatigue tested at 650 C were studied by scanning electron microscopy and optical metallography to determine the nature and morphology of the crack surface in the region of stable growth. Crack propagation testing was performed as part of an earlier study at 650 C in air using a 0.33 Hz fatigue cycle and a creep-fatigue cycle incorporating a 900 second dwell at maximum load. In fatigue, alloys with a grain size greater than 20 micrometers, HIP Astroloy, Waspaloy, and MERL 76, exhibited transgranular fracture. MERL 76 also displayed numerous fracture sites which were associated with boundaries of prior powder particles. The two high strength, fine grain alloys, IN 100 and NASA IIB-7, exhibited intergranular fracture. Rene 95 and HIP plus forged Astroloy displayed a mixed failure mode that was transgranular in the coarse grains and intergranular in the fine grains. Under creep-fatigue conditions, fracture was found to be predominantly intergranular in all seven alloys.

  7. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires.

    PubMed

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Frotscher, Matthias; Eggeler, Gunther

    2013-03-01

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and∕or in situ measurements. The versatility of the combined electrochemical∕mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  8. Design and fabrication of a bending rotation fatigue test rig for in situ electrochemical analysis during fatigue testing of NiTi shape memory alloy wires

    SciTech Connect

    Neelakantan, Lakshman; Zglinski, Jenni Kristin; Eggeler, Gunther; Frotscher, Matthias

    2013-03-15

    The current investigation proposes a novel method for simultaneous assessment of the electrochemical and structural fatigue properties of nickel-titanium shape memory alloy (NiTi SMA) wires. The design and layout of an in situ electrochemical cell in a custom-made bending rotation fatigue (BRF) test rig is presented. This newly designed test rig allows performing a wide spectrum of experiments for studying the influence of fatigue on corrosion and vice versa. This can be achieved by performing ex situ and/or in situ measurements. The versatility of the combined electrochemical/mechanical test rig is demonstrated by studying the electrochemical behavior of NiTi SMA wires in 0.9% NaCl electrolyte under load. The ex situ measurements allow addressing various issues, for example, the influence of pre-fatigue on the localized corrosion resistance, or the influence of hydrogen on fatigue life. Ex situ experiments showed that a pre-fatigued wire is more susceptible to localized corrosion. The synergetic effect can be concluded from the polarization studies and specifically from an in situ study of the open circuit potential (OCP) transients, which sensitively react to the elementary repassivation events related to the local failure of the oxide layer. It can also be used as an indicator for identifying the onset of the fatigue failure.

  9. Bending fatigue tests on SiC-Al tapes under alternating stress at room temperature

    NASA Technical Reports Server (NTRS)

    Herzog, J. A.

    1981-01-01

    The development of a testing method for fatigue tests on SiC-Al tapes containing a small amount of SiC filaments under alternating stress is reported. The fatigue strength curves resulting for this composite are discussed. They permit an estimate of its behavior under continuous stress and in combination with various other matrices, especially metal matrices.

  10. EEG correlates of fatigue during administration of a neuropsychological test battery

    PubMed Central

    Barwick, Fiona; Arnett, Peter; Slobounov, Semyon

    2011-01-01

    Objective Mental fatigue, a poorly understood symptom of sports-related concussion, ideally requires assessment across multiple modalities. Our study aimed to examine mental fatigue effects among ten neurologically normal, athletically active students undergoing typical concussion testing. It is our intention to ultimately address the question whether fatigue effects due to mild traumatic brain injury (mTBI) may become confounded with fatigue effects due to testing effort. Methods Fourteen athletically active and neurologically normal volunteers were initially recruited from Penn State University. Self-reported fatigue, neuropsychological performance, and electroencephalographic (EEG) activity were measured throughout the whole testing duration. EEG measures in frequency domain (e.g., relative power of theta, alpha & beta bands) were examined over the course of neuropsychological (NP) test administration. Results Predicted fatigue effects over the course of testing included: (a) increased self-reported fatigue; (b) increased errors on the Stroop Interference Test; (c) significantly increased relative power of theta activity during the Stroop Interference Test in frontal-central and parietal regions; and (d) migration of alpha activation from the occipital to anterior (left parietal and pre-central) regions during the Stroop Interference task administered at the beginning compared with the end of testing. Conclusions Results supported predictions related to subjective fatigue and cognitive performance and offered partial support for predictions related to EEG activation patterns over the course of administering the NP testing. Significance Neurologically intact and athletically active college students demonstrate effects related to fatigue after undergoing a typical sports concussion assessment battery, including an increase in subjectively experienced fatigue, a decrease in cognitive task performance accuracy and associated modulations in EEG activity. This finding

  11. Fatigue Crack Growth Threshold Testing of Metallic Rotorcraft Materials

    NASA Technical Reports Server (NTRS)

    Newman, John A.; James, Mark A.; Johnson, William M.; Le, Dy D.

    2008-01-01

    Results are presented for a program to determine the near-threshold fatigue crack growth behavior appropriate for metallic rotorcraft alloys. Four alloys, all commonly used in the manufacture of rotorcraft, were selected for study: Aluminum alloy 7050, 4340 steel, AZ91E Magnesium, and Titanium alloy Ti-6Al-4V (beta-STOA). The Federal Aviation Administration (FAA) sponsored this research to advance efforts to incorporate damage tolerance design and analysis as requirements for rotorcraft certification. Rotorcraft components are subjected to high cycle fatigue and are typically subjected to higher stresses and more stress cycles per flight hour than fixed-wing aircraft components. Fatigue lives of rotorcraft components are generally spent initiating small fatigue cracks that propagate slowly under near-threshold cracktip loading conditions. For these components, the fatigue life is very sensitive to the near-threshold characteristics of the material.

  12. Transverse Tension Fatigue Life Characterization Through Flexure Testing of Composite Materials

    NASA Technical Reports Server (NTRS)

    OBrien, T. Kevin; Chawan, Arun D.; Krueger, Ronald; Paris, Isabelle

    2001-01-01

    The transverse tension fatigue life of S2/8552 glass-epoxy and IM7/8552 carbon-epoxy was characterized using flexure tests of 90-degree laminates loaded in 3-point and 4-point bending. The influence of specimen polishing and specimen configuration on transverse tension fatigue life was examined using the glass-epoxy laminates. Results showed that 90-degree bend specimens with polished machined edges and polished tension-side surfaces, where bending failures where observed, had lower fatigue lives than unpolished specimens when cyclically loaded at equal stress levels. The influence of specimen thickness and the utility of a Weibull scaling law was examined using the carbon-epoxy laminates. The influence of test frequency on fatigue results was also documented for the 4-point bending configuration. A Weibull scaling law was used to predict the 4-point bending fatigue lives from the 3-point bending curve fit and vice-versa. Scaling was performed based on maximum cyclic stress level as well as fatigue life. The scaling laws based on stress level shifted the curve fit S-N characterizations in the desired direction, however, the magnitude of the shift was not adequate to accurately predict the fatigue lives. Furthermore, the scaling law based on fatigue life shifted the curve fit S-N characterizations in the opposite direction from measured values. Therefore, these scaling laws were not adequate for obtaining accurate predictions of the transverse tension fatigue lives.

  13. An inter-laboratory comparison study of the ANSI/BIFMA standard test method M7.1 for furniture

    EPA Science Inventory

    Five laboratories using five different test chambers participated in the study to quantify within- and between-laboratory variability in the measurement of emissions of volatile organic compounds (VOCs) from new commercial furniture test items following ANSI/BIFMA M7.1. Test item...

  14. Metal Matrix Composites: Fatigue and Fracture Testing. (Latest citations from the Aerospace Database)

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The bibliography contains citations concerning techniques and results of testing metal matrix composites for fatigue and fracture. Methods include non-destructive testing techniques, and static and cyclic techniques for assessing compression, tensile, bending, and impact characteristics.

  15. Statistical analysis of an inter-laboratory comparison of small-scale safety and thermal testing of RDX

    DOE PAGES

    Brown, Geoffrey W.; Sandstrom, Mary M.; Preston, Daniel N.; ...

    2014-11-17

    In this study, the Integrated Data Collection Analysis (IDCA) program has conducted a proficiency test for small-scale safety and thermal (SSST) testing of homemade explosives (HMEs). Described here are statistical analyses of the results from this test for impact, friction, electrostatic discharge, and differential scanning calorimetry analysis of the RDX Class 5 Type II standard. The material was tested as a well-characterized standard several times during the proficiency test to assess differences among participants and the range of results that may arise for well-behaved explosive materials.

  16. The detection of fatigue cracks by nondestructive testing methods

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Todd, P. H., Jr.; Frecska, S. A.; Rathke, R. A.

    1974-01-01

    X-radiographic penetrant, ultrasonic, eddy current, holographic, and acoustic emission techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens. One hundred eighteen specimens containing a total of 328 fatigue cracks were evaluated. The cracks ranged in length from 0.500 inch (1.27 cm) to 0.007 inch (0.018 cm) and in depth from 0.178 inch (0.451 cm) and 0.001 inch (0.003 cm). Specimen thicknesses were nominally 0.060 inch (0.152 cm) and 0.210 inch (0.532 cm) and surface finishes were nominally 32 and 125 rms and 64 and 200 rms respectively. Specimens were evaluated in the as-milled surface condition, in the chemically milled surface condition and, after proof loading, in a randomized inspection sequence. Results of the nondestructive test (NDT) evaluations were compared with actual crack size obtained by measurement of the fractured specimens. Inspection data was then analyzed to provide a statistical basis for determinating the threshold crack detection sensitivity (the largest crack size that would be missed) for each of the inspection techniques at a 95% probability and 95% confidence level.

  17. A high temperature fatigue and structures testing facility

    NASA Technical Reports Server (NTRS)

    Bartolotta, Paul A.; Mcgaw, Michael A.

    1987-01-01

    As man strives for higher levels of sophistication in air and space transportation, awareness of the need for accurate life and material behavior predictions for advanced propulsion system components is heightened. Such sophistication will require complex operating conditions and advanced materials to meet goals in performance, thrust-to-weight ratio, and fuel efficiency. To accomplish these goals will require that components be designed using a high percentage of the material's ultimate capabilities. This serves only to complicate matters dealing with life and material behavior predictions. An essential component of material behavior model development is the underlying experimentation which must occur to identify phenomena. To support experimentation, the NASA Lewis Research Center's High Temperature Fatigue and Structures Laboratory has been expanded significantly. Several new materials testing systems have been added, as well as an extensive computer system. The intent of this paper is to present an overview of the laboratory, and to discuss specific aspects of the test systems. A limited discussion of computer capabilities will also be presented.

  18. Fatigue life on a full scale test rig: Forged versus cast wind turbine rotor shafts

    NASA Astrophysics Data System (ADS)

    Herrmann, J.; Rauert, T.; Dalhoff, P.; Sander, M.

    2016-09-01

    To reduce uncertainties associated with the fatigue life of the highly safety relevant rotor shaft and also to review today's design practice, the fatigue behaviour will be tested on a full scale test rig. Until now tests on full scale wind turbine parts are not common. Therefore, a general lack of experience on how to perform accelerated life time tests for those components exists. To clarify how to transfer real conditions to the test environment, the arrangements and deviations for the upcoming experimental test are discussed in detail. In order to complete investigations of weight saving potentials, next to getting a better comprehension of the fatigue behaviour by executing a full scale test, a further outcome are suggestions for the usage of cast and forged materials regarding the fatigue and the remaining life of the rotor shaft. It is shown, that it is worthwhile to think about a material exchange for the forged rotor shaft.

  19. Does bisphenol A induce superfeminization in Marisa cornuarietis? Part I: intra- and inter-laboratory variability in test endpoints.

    PubMed

    Forbes, Valery E; Selck, Henriette; Palmqvist, Annemette; Aufderheide, John; Warbritton, Ryan; Pounds, Nadine; Thompson, Roy; van der Hoeven, Nelly; Caspers, Norbert

    2007-03-01

    It has been claimed that bisphenol A (BPA) induces superfeminization in the freshwater gastropod, Marisa cornuarietis. To explore the reproducibility of prior work, here we present results from a three-laboratory study, the objectives of which were to determine the mean and variability in test endpoints (i.e., adult fecundity, egg hatchability, and juvenile growth) under baseline conditions and to identify the sources of variability. A major source of variability for all of the measured endpoints was due to differences within and among individuals. With few exceptions, variability among laboratories and among replicate tanks within laboratories contributed little to the observed variability in endpoints. The results highlight the importance of obtaining basic knowledge of husbandry requirements and baseline information on life-history traits of potential test species prior to designing toxicity test protocols. Understanding of the levels and sources of endpoint variability is essential so that statistically robust and ecologically relevant tests of chemicals can be conducted.

  20. Preliminary results from fatigue tests with reference to operational statistics

    NASA Technical Reports Server (NTRS)

    Gassner, E

    1950-01-01

    Simple elements were subjected to repeated loads of variable ampliture, chosen in such a way that they may be regarded as approximations to the operational loads (gust and maneuver) experienced by an airplane. The effect of varying some parameters was investigated briefly. Some discussion is given of the question whether a design according to current (1938 German) requirements for static strength is adequate from the fatigue point of view, and existing requirements on fatigue strength are compared,

  1. Rotating Beam Fatigue Testing and Hybrid Ceramic Bearings.

    DTIC Science & Technology

    1994-07-01

    1988, pp. 294-300. 18. Liu, Shih -Yu and Chen , I. W., "Fatigue of Yitria-stablized Zirconia, I. Fatigue Damage, Fracture Origin and Lifetime... Bill Ellingson of the Argonne National Laboratory. 2. Several new and survived rotating beam specimens were sent to the Argonne National Laboratory...Advanced Research Project Agency (ARPA) and Wright Laboratory (AFSC) with the support of Dr. Bill Coblenz, ARPA Ceramic Program Manager, with Mr. Karl

  2. Proof test and fatigue crack growth modeling on 2024-T3 aluminum alloy

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Poe, C. C., Jr.; Dawicke, D. S.

    1990-01-01

    Pressure proof testing of aircraft fuselage structures has been suggested as a means of screening critical crack sizes and of extending their useful life. The objective of this paper is to study the proof-test concept and to model the crack-growth process on a ductile material. Simulated proof and operational fatigue life tests have been conducted on cracked panels made of 2024-T3 aluminum alloy sheet material. A fatigue crack-closure model was modified to simulate the proof test and operational fatigue cycling. Using crack-growth rate and resistance-curve data, the model was able to predict crack growth during and after the proof load. These tests and analyses indicate that the proof test increases fatigue life; but the beneficial life, after a 1.33 or 1.5 proof, was less than a few hundred cycles.

  3. Screening Test Results of Fatigue Properties of type 316LN Stainless Steel in Mercury

    SciTech Connect

    Pawel, S.J.

    1999-05-20

    Fully reversed, load-controlled uniaxial push-pull fatigue tests at room temperature have been performed in air and in mercury on specimens of type 316LN stainless steel. The results indicate a significant influence of mercury on fatigue properties. Compared to specimens tested in air, specimens tested in mercury had reproducibly shorter fatigue lives (by a factor of 2-3), and fracture faces exhibiting intergranular cracking. Preliminary indications are that crack initiation in each environment is similar, but mercury significantly accelerates crack propagation.

  4. Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.

    PubMed

    Augustsson, J; Thomeé, R; Lindén, C; Folkesson, M; Tranberg, R; Karlsson, J

    2006-04-01

    A fatiguing exercise protocol was combined with single-leg hop testing to improve the possibilities of evaluating the effects of training or rehabilitation interventions. In the first test-retest experiment, 11 healthy male subjects performed two trials of single-leg hops under three different test conditions: non-fatigued and following fatiguing exercise, which consisted of unilateral weight machine knee extensions at 80% and 50%, respectively, of 1 repetition maximum (1 RM) strength. Intraclass correlation coefficients ranged from 0.75 to 0.98 for different hop test conditions, indicating that all tests were reliable. For the second experiment, eight healthy male subjects performed the fatiguing exercise protocol to investigate how fatigue influences lower-extremity joint kinematics and kinetics during single-leg hops. Hip, knee and ankle joint angles, moments and powers, as well as ground-reaction forces were recorded with a six-camera, motion-capture system and a force platform. Recovery of hop performance following the fatiguing exercise was also measured. During the take-off for the single-leg hops, hip and knee flexion angles, generated powers for the knee and ankle joints, and ground-reaction forces decreased for the fatigued hop conditions compared with the non-fatigued condition (P<0.05). Compared with landing during the non-fatigued condition, hip moments and ground-reaction forces were lower for the fatigued hop conditions (P<0.05). The negative joint power was two to three times greater for the knee than for the hip and five to 10 times greater for the knee than for the ankle during landing for all test conditions (P<0.05). Most measured variables had recovered three minutes post-exercise. It is concluded that the fatiguing exercise protocol combined with single-leg hop testing was a reliable method for investigating functional performance under fatigued test conditions. Further, subjects utilized an adapted hop strategy, which employed less hip and

  5. External Quality Assessment Unravels Interlaboratory Differences in Quality of RAS Testing for Anti-EGFR Therapy in Colorectal Cancer

    PubMed Central

    Tack, Véronique; Ligtenberg, Marjolijn J.L.; Tembuyser, Lien; Normanno, Nicola; Vander Borght, Sara; Han van Krieken, J.

    2015-01-01

    Background. Regulations for the selection of patients with metastatic colorectal cancer for anti-EGFR treatment changed at the end of 2013. The set of mutations to be tested extended from KRAS codons 12 and 13 to KRAS and NRAS exons 2, 3, and 4. A European external quality assessment scheme monitored the performance of laboratories and evaluated the implementation of the new regulations. Materials and Methods. The 131 participating laboratories received 10 samples of formalin-fixed paraffin-embedded material, including RAS (exon 2, 3, 4) and BRAF mutations. Mock clinical data were provided for three cases. Using their routine methods, laboratories determined the genotypes and submitted three written reports. Assessors scored the results according to predefined evaluation criteria. Results. Half of the participants (49.3%) had completely implemented the new test requirements (codons 12, 13, 59, 61, 117, and 146 of KRAS and NRAS), and 96 laboratories (73.3%) made no genotype mistakes. Correct nomenclature, according to the Human Genome Variation Society, was used by 82 laboratories (62.6%). Conclusion. Although regulations were effective for several months, many laboratories were not ready for full RAS testing in the context of anti-EGFR therapy. Nevertheless, in each participating country, there are laboratories that provide complete and correct testing. External quality assessments can be used to monitor implementation of new test regulations and to stimulate the laboratories to improve their testing procedures. Because the results of this program are available on the website of the European Society of Pathology, patients and clinicians can refer test samples to a reliable laboratory. PMID:25657200

  6. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2012-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  7. Test Population Selection from Weibull-Based, Monte Carlo Simulations of Fatigue Life

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Zaretsky, Erwin V.; Hendricks, Robert C.

    2008-01-01

    Fatigue life is probabilistic and not deterministic. Experimentally establishing the fatigue life of materials, components, and systems is both time consuming and costly. As a result, conclusions regarding fatigue life are often inferred from a statistically insufficient number of physical tests. A proposed methodology for comparing life results as a function of variability due to Weibull parameters, variability between successive trials, and variability due to size of the experimental population is presented. Using Monte Carlo simulation of randomly selected lives from a large Weibull distribution, the variation in the L10 fatigue life of aluminum alloy AL6061 rotating rod fatigue tests was determined as a function of population size. These results were compared to the L10 fatigue lives of small (10 each) populations from AL2024, AL7075 and AL6061. For aluminum alloy AL6061, a simple algebraic relationship was established for the upper and lower L10 fatigue life limits as a function of the number of specimens failed. For most engineering applications where less than 30 percent variability can be tolerated in the maximum and minimum values, at least 30 to 35 test samples are necessary. The variability of test results based on small sample sizes can be greater than actual differences, if any, that exists between materials and can result in erroneous conclusions. The fatigue life of AL2024 is statistically longer than AL6061 and AL7075. However, there is no statistical difference between the fatigue lives of AL6061 and AL7075 even though AL7075 had a fatigue life 30 percent greater than AL6061.

  8. Testing rig for low cycle fatigue tests in combined bending and torsion

    NASA Astrophysics Data System (ADS)

    Caligiana, Gianni; Curioni, Sergio

    1992-07-01

    In order to simulate, on samples, the fatigue behavior of notched or grooved shafts used in industrial plants, a biaxal testing equipment, to transform the alternate motion of a conventional testing machine into combined torsion and bending cyclic loadings, was devised and realized. Several different amplitude ratios between torsion and bending can be obtained beyond pure torsion and pure bending. Design choices, modeling, numerical simulations and experimental verifications performed for the testing apparatus are reported. Influence of misalignment and manufacturing imperfections on the behavior of the equipment are considered.

  9. Multi-Site Fatigue Testing and Characterization of Fuselage Panels from Aging Aircraft Structure

    DTIC Science & Technology

    2013-06-07

    Multi-site fatigue damage is a common problem in the riveted lap joint structure of aging aircraft. Modeling and characterization of such damage is...an especially daunting task. In this effort we present the results from fatigue tests which were performed on fuselage lap joints extracted from...in the lap joint . Some spot welded lap joint panels were also tested during the larger program; however, only the results from mechanically fastened

  10. ACCURACY OF LABORATORY REPORTING IN EPAS WET INTERLABORATORY VARIABILITY STUDY

    EPA Science Inventory

    In 1999 and 2000, EPA conducted an interlaboratory variability study of whole effluent toxicity (WET) test methods. This study provided an excellent opportunity to evaluate the accuracy with which laboratories analyzed and reported WET test data. Twenty-eight laboratories reporte...

  11. Isometric knee extensor fatigue following a Wingate test: peripheral and central mechanisms.

    PubMed

    Fernandez-del-Olmo, M; Rodriguez, F A; Marquez, G; Iglesias, X; Marina, M; Benitez, A; Vallejo, L; Acero, R M

    2013-02-01

    Central and peripheral fatigue have been explored during and after running or cycling exercises. However, the fatigue mechanisms associated with a short maximal cycling exercise (30 s Wingate test) have not been investigated. In this study, 10 volunteer subjects performed several isometric voluntary contractions using the leg muscle extensors before and after two bouts of cycling at 25% of maximal power output and two bouts of Wingate tests. Transcranial magnetic stimulation (TMS) and electrical motor nerve stimulation (NM) were applied at rest and during the voluntary contractions. Maximal voluntary contraction (MVC), voluntary activation (VA), twitch amplitude evoked by electrical nerve stimulation, M wave and motor potential evoked by TMS (MEP) were recorded. MVC, VA and twitch amplitude evoked at rest by NM decreased significantly after the first and second Wingate tests, indicating central and peripheral fatigue. MVC and VA, but not the twitch amplitude evoked by NM, recovered before the second Wingate test. These results suggest that the Wingate test results in a decrease in MVC associated with peripheral and central fatigue. While the peripheral fatigue is associated with an intramuscular impairment, the central fatigue seems to be the main reason for the Wingate test-induced impairment of MVC.

  12. Recovery of Hip and Back Muscle Fatigue Following a Back Extension Endurance Test

    PubMed Central

    WANG-PRICE, SHARON; ALMADAN, MOHAMMAD; STODDARD, CARISSA; MOORE, DUSTIN

    2017-01-01

    Literature has not shown the minimum time required to recover from muscle fatigue after a prolonged trunk isometric contraction. The purpose of this study was to determine if the lumbar multifidus (LM) and gluteus maximus (GM) muscles would recover from fatigue after three different rest periods following performance of a back extension endurance test. Endurance time and electromyographic (EMG) activity of bilateral LM and GM muscles were collected from 12 healthy adults during a modified Biering-Sørensen test. On three separate visits, each participant performed two modified Biering-Sørensen tests, one before and one after a rest period (3, 6 or 9 min). For each endurance test, endurance time was measured and both mean and median EMG frequency fatigue rates were calculated. The results showed a significantly reduced endurance time and normalized mean frequency fatigue rates on the second modified Biering-Sørensen endurance test regardless of the rest periods (3, 6, and 9 min). This suggests that adequate rest should be considered for fatigue recovery when designing a back and hip endurance exercise program, and that future studies should investigate a rest time longer than 9 minutes for fatigue recovery following a modified Biering-Sørensen endurance test. PMID:28344736

  13. A computer-controlled automated test system for fatigue and fracture testing

    SciTech Connect

    Nanstad, R.K.; Alexander, D.J.; Swain, R.L.; Hutton, J.T.; Thomas, D.L.

    1989-01-01

    A computer-controlled system consisting of a servohydraulic test machine, an in-house designed test controller, and a desktop computer has been developed for performing automated fracture toughness and fatigue crack growth testing both in the laboratory and in hot cells for remote testing of irradiated specimens. Both unloading compliance and dc-potential drop can be used to monitor crack growth. The test controller includes a dc-current supply programmer, a function generator for driving the servohydraulic test machine to required test outputs, five measurement channels (each consisting of low-pass filter, track/hold amplifier, and 16-bit analog-to-digital converter), and digital logic for various control and data multiplexing functions. The test controller connects to the computer via a 16-bit wide photo-isolated bidirectional bus. The computer, a Hewlett-Packard series 200/300, inputs specimen and test parameters from the operator, configures the test controller, stores test data from the test controller in memory, does preliminary analysis during the test, and records sensor calibrations, specimen and test parameters, and test data on flexible diskette for later recall and analysis with measured initial and final crack length information. During the test, the operator can change test parameters as necessary. 24 refs., 6 figs.

  14. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    Ferrographic analysis was used to determine the types and quantities of wear particles generated during accelerated rolling contact fatigue tests. The NASA five-ball rolling contact fatigue tester was used. Ball specimens were made of AMS 5749, a corrosion-resistant high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 billion Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed: normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  15. Thermal fatigue test for turbine housing by a pulse YAG laser

    NASA Astrophysics Data System (ADS)

    Kutsuna, Muneharu; Fujita, Shinji; Sugita, Yuji; Yamada, Katsushige

    2000-02-01

    A steam turbine housing (casing) for power plant is subject to thermal fatigue in the long service. Evaluation of the life time is required for the replacement of turbine housing. In the present work, the possibility of thermal fatigue test by laser to accelerate the thermal damage of the materials (heat resisting Cr-Mo steel) and estimate the life time of casing in short time has been investigated using a pulse YAG laser. The test specimen are taken from the turbine housing which have been used for 100,000 hours in service. The pulse YAG laser of 100 pps was irradiated on the specimen with different beam spot sizes for one sec. and interrupted for 9 sec. as a thermal fatigue cycle. Max. cycle in this laser thermal fatigue tests was 5400 cycles. The peak temperature of theram cycle was about 220 degrees Celsius after 5400 cycles in this laser thermal fatigue test. The fatigue crack was observed at the root of circular groove after 5400 cycles.

  16. Characterization of wear debris generated in accelerated rolling-element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1978-01-01

    A ferrographic analysis was used to determine the types and quantities of wear debris generated during accelerated rolling contact fatigue tests. The five-ball rolling contact fatigue tester was used. Ball specimens were made of a corrosion resistant, high-temperature bearing steel. The lubricant was a superrefined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.52 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear debris were observed: (1) normal rubbing wear particles, (2) fatigue microspall particles, (3) spheres, and (4) friction polymer deposits. The characterization of wear debris as a function of time was of limited use in predicting fatigue failures in these accelerated tests.

  17. Fatigue testing and damage development in continuous fiber reinforced metal matrix composites

    NASA Technical Reports Server (NTRS)

    Johnson, W. S.

    1988-01-01

    A general overview of the fatigue behavior of metal matrix composites (MMC) is presented. The first objective is to present experimental procedures and techniques for conducting a meaningful fatigue test to detect and quantify fatigue damage in MMC. These techniques include interpretation of stress-strain responses, acid etching of the matrix, edge replicas of the specimen under load, radiography, and micrographs of the failure surfaces. In addition, the paper will show how stiffness loss in continuous fiber reinforced metal matrix composites can be a useful parameter for detecting fatigue damage initiation and accumulation. Second, numerous examples of how fatigue damage can initiate and grow in various MMC are given. Depending on the relative fatigue behavior of the fiber and matrix, and the interface properties, the failure modes of MMC can be grouped into four categories: (1) matrix dominated, (2) fiber dominated, (3) self-similar damage growth, and (4) fiber/matrix interfacial failures. These four types of damage will be discussed and illustrated by examples with the emphasis on the fatigue of unnotched laminates.

  18. DOE/MSU composite material fatigue database: Test methods, materials, and analysis

    SciTech Connect

    Mandell, J.F.; Samborsky, D.D.

    1997-12-01

    This report presents a detailed analysis of the results from fatigue studies of wind turbine blade composite materials carried out at Montana State University (MSU) over the last seven years. It is intended to be used in conjunction with the DOE/MSU composite Materials Fatigue Database. The fatigue testing of composite materials requires the adaptation of standard test methods to the particular composite structure of concern. The stranded fabric E-glass reinforcement used by many blade manufacturers has required the development of several test modifications to obtain valid test data for materials with particular reinforcement details, over the required range of tensile and compressive loadings. Additionally, a novel testing approach to high frequency (100 Hz) testing for high cycle fatigue using minicoupons has been developed and validated. The database for standard coupon tests now includes over 4,100 data points for over 110 materials systems. The report analyzes the database for trends and transitions in static and fatigue behavior with various materials parameters. Parameters explored are reinforcement fabric architecture, fiber content, content of fibers oriented in the load direction, matrix material, and loading parameters (tension, compression, and reversed loading). Significant transitions from good fatigue resistance to poor fatigue resistance are evident in the range of materials currently used in many blades. A preliminary evaluation of knockdowns for selected structural details is also presented. The high frequency database provides a significant set of data for various loading conditions in the longitudinal and transverse directions of unidirectional composites out to 10{sup 8} cycles. The results are expressed in stress and strain based Goodman Diagrams suitable for design. A discussion is provided to guide the user of the database in its application to blade design.

  19. Finding the ideal strategy: Full-scale fatigue testing of wind turbine rotor shafts

    NASA Astrophysics Data System (ADS)

    Rauert, T.; Herrmann, J.; Dalhoff, P.; Sander, M.

    2016-09-01

    For the purpose of a light weight design of rotor shafts, fatigue testing is necessary. Since full-scale fatigue tests of these large components are time consuming, costly and have not been done before, much effort has to be put into the implementation of a suitable test strategy. The paper presents the boundary conditions that have to be considered to determine the finite life regime of the component S/N-curve. A statistical simulation shows how much the derived S/N-curve is influenced by the specific test procedure.

  20. Analysis and optimization of an innovative fatigue tests profile for three axle semi-trailers

    NASA Astrophysics Data System (ADS)

    Malon, H.; Tello, L.; Martin, C.

    2011-10-01

    Nowadays, a fundamental aspect in the design of any type of vehicle, in particular of semi-trailers, is the development and testing of prototypes that confirm the correct performance of the vehicles before their launch into the market. At present, fatigue tests exist for different structural components from large machines to small components in vehicles, but up to now, there is no knowledge about fatigue tests of complete vehicles of large dimensions, with the exception of the fatigue tests of semi-trailers that are carried out by the company LECITRAILER S.A., under the supervision of the Transportation Engineering Area of the University of Zaragoza, in particular the research group VEHIVIAL. The aim of this paper is to decribe the process developed for the analysis and optimization of an initial profile of fatigue testing for semitrailer. The result of this optimization process is an innovative profile of fatigue testing for three axle semi-trailers developed by the University of Zaragoza in collaboration with the company LECITRAILER S.A., which is applied to the process of optimization of all the prototypes made by the company.

  1. Vacuum thermal-mechanical fatigue testing of two iron base high temperature alloys

    NASA Technical Reports Server (NTRS)

    Sheffler, K. D.

    1974-01-01

    Ultrahigh vacuum elevated temperature low cycle fatigue and thermal fatigue tests of 304 stainless steel and A-286 alloy have shown significant effects of frequency and combined temperature-strain cycling on fatigue life. At constant temperature, the cyclic life of both alloys was lower at lower frequencies. Combined temperature-strain cycling reduced fatigue life with respect to isothermal life at the maximum temperature of the thermal cycle. Life reductions with in-phase thermal cycling (tension at high temperature, compression at low temperature) were attributed to grain boundary cavitation caused by unreversed tensile grain boundary sliding. The proposed mechanism for out-of-phase cavity generation involved accumulation of unreversed compressive grain boundary displacements which could not be geometrically accomodated by intragranular deformation in the low-ductility A-286 alloy.

  2. A test procedure for determining the influence of stress ratio on fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J. H.; Wei, R. P.

    1974-01-01

    A test procedure is outlined by which the rate of fatigue crack growth over a range of stress ratios and stress intensities can be determined expeditiously using a small number of specimens. This procedure was developed to avoid or circumvent the effects of load interactions on fatigue crack growth, and was used to develop data on a mill annealed Ti-6Al-4V alloy plate. Experimental data suggest that the rates of fatigue crack growth among the various stress ratios may be correlated in terms of an effective stress intensity range at given values of K max. This procedure is not to be used, however, for determining the corrosion fatigue crack growth characteristics of alloys when nonsteady-state effects are significant.

  3. Implementation of a Biaxial Resonant Fatigue Test Method on a Large Wind Turbine Blade

    SciTech Connect

    Snowberg, D.; Dana, S.; Hughes, S.; Berling, P.

    2014-09-01

    A biaxial resonant test method was utilized to simultaneously fatigue test a wind turbine blade in the flap and edge (lead-lag) direction. Biaxial resonant blade fatigue testing is an accelerated life test method utilizing oscillating masses on the blade; each mass is independently oscillated at the respective flap and edge blade resonant frequency. The flap and edge resonant frequency were not controlled, nor were they constant for this demonstrated test method. This biaxial resonant test method presented surmountable challenges in test setup simulation, control and data processing. Biaxial resonant testing has the potential to complete test projects faster than single-axis testing. The load modulation during a biaxial resonant test may necessitate periodic load application above targets or higher applied test cycles.

  4. Predicting Fatigue and Psychophysiological Test Performance from Speech for Safety-Critical Environments

    PubMed Central

    Baykaner, Khan Richard; Huckvale, Mark; Whiteley, Iya; Andreeva, Svetlana; Ryumin, Oleg

    2015-01-01

    Automatic systems for estimating operator fatigue have application in safety-critical environments. A system which could estimate level of fatigue from speech would have application in domains where operators engage in regular verbal communication as part of their duties. Previous studies on the prediction of fatigue from speech have been limited because of their reliance on subjective ratings and because they lack comparison to other methods for assessing fatigue. In this paper, we present an analysis of voice recordings and psychophysiological test scores collected from seven aerospace personnel during a training task in which they remained awake for 60 h. We show that voice features and test scores are affected by both the total time spent awake and the time position within each subject’s circadian cycle. However, we show that time spent awake and time-of-day information are poor predictors of the test results, while voice features can give good predictions of the psychophysiological test scores and sleep latency. Mean absolute errors of prediction are possible within about 17.5% for sleep latency and 5–12% for test scores. We discuss the implications for the use of voice as a means to monitor the effects of fatigue on cognitive performance in practical applications. PMID:26380259

  5. Stiffness reductions during tensile fatigue testing of graphite/epoxy angle-ply laminates

    NASA Technical Reports Server (NTRS)

    Odom, E. M.; Adams, D. F.

    1982-01-01

    Tensile fatigue data was generated under carefully controlled test conditions. A computerized data acquisition system was used to permit the measurement of dynamic modulus without interrupting the fatigue cycling. Two different 8-ply laminate configurations, viz, + or - 45 (2s) and + or - 67.5 (2s), of a T300/5208 graphite/epoxy composite were tested. The + or - 45 (2s) laminate did exhibit some modulus decay, although there was no well-defined correlation with applied stress level or number of cycles. The + or - 67.5 (2s) laminate did not exhibit any measurable modulus decay. Secondary effects observed included a small but distinct difference between modulus as measured statically and dynamically, a slight recovery of the modulus decay after a test interruption, and a significant viscoelastic (creep) response of the + or - 45 (2s) laminate during fatigue testing.

  6. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a “sandwich structure” as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50–55% of ultimate tensile strength). The dynamic modulus (E⁎) was found to stay almost constant at 47 GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.

  7. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.

    PubMed

    Bagheri, Zahra S; El Sawi, Ihab; Bougherara, Habiba; Zdero, Radovan

    2014-07-01

    The current study is part of an ongoing research program to develop an advanced new carbon fiber/flax/epoxy (CF/flax/epoxy) hybrid composite with a "sandwich structure" as a substitute for metallic materials for orthopedic long bone fracture plate applications. The purpose of this study was to assess the fatigue properties of this composite, since cyclic loading is one of the main types of loads carried by a femur fracture plate during normal daily activities. Conventional fatigue testing, thermographic analysis, and scanning electron microscopy (SEM) were used to analyze the damage progress that occurred during fatigue loading. Fatigue strength obtained using thermography analysis (51% of ultimate tensile strength) was confirmed using the conventional fatigue test (50-55% of ultimate tensile strength). The dynamic modulus (E(⁎)) was found to stay almost constant at 47GPa versus the number of cycles, which can be related to the contribution of both flax/epoxy and CF/epoxy laminae to the stiffness of the composite. SEM images showed solid bonding at the CF/epoxy and flax/epoxy laminae, with a crack density of only 0.48% for the plate loaded for 2 million cycles. The current composite plate showed much higher fatigue strength than the main loads experienced by a typical patient during cyclic activities; thus, it may be a potential candidate for bone fracture plate applications. Moreover, the fatigue strength from thermographic analysis was the same as that obtained by the conventional fatigue tests, thus demonstrating its potential use as an alternate tool to rapidly evaluate fatigue strength of composite biomaterials.

  8. Surface Fatigue Tests Of M50NiL Gears And Bars

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Bamberger, Eric N.

    1994-01-01

    Report presents results of tests of steels for use in gears and bearings of advanced aircraft. Spur-gear endurance tests and rolling-element surface fatigue tests performed on gear and bar specimens of M50NiL steel processed by vacuum induction melting and vacuum arc remelting (VIM-VAR). Compares results of tests with similar tests of specimens of VIM-VAR AISI 9310 steel and of AISI 9310 steel subjected to VAR only.

  9. Innovative vibration technique applied to polyurethane foam as a viable substitute for conventional fatigue testing

    NASA Astrophysics Data System (ADS)

    Peralta, Alexander; Just-Agosto, Frederick; Shafiq, Basir; Serrano, David

    2012-12-01

    Lifetime prediction using three-point bending (TPB) can at times be prohibitively time consuming and costly, whereas vibration testing at higher frequency may potentially save time and revenue. A vibration technique that obtains lifetimes that reasonably match those determined under flexural TPB fatigue is developed. The technique designs the specimen with a procedure based on shape optimization and finite element analysis. When the specimen is vibrated in resonance, a stress pattern that mimics the stress pattern observed under conventional TPB fatigue testing is obtained. The proposed approach was verified with polyurethane foam specimens, resulting in an average error of 4.5% when compared with TPB.

  10. The algorithm of crack and crack tip coordinates detection in optical images during fatigue test

    NASA Astrophysics Data System (ADS)

    Panin, S. V.; Chemezov, V. O.; Lyubutin, P. S.; Titkov, V. V.

    2017-02-01

    An algorithm of crack detection during fatigue testing of materials, designed to automate the process of cyclic loading and tracking the crack tip, is proposed and tested. The ultimate goal of the study is aimed at controlling the displacements of the optical system with regard to the specimen under fatigue loading to ensure observation of the ‘area of interest’. It is shown that the image region that contains the crack may be detected and positioned with an average error of 1.93%. In terms of determining the crack tip position, the algorithm provides the accuracy of its localization with the average error value of 56 pixels.

  11. Rolling-element fatigue life of silicon nitride balls: Preliminary test results

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.

    1972-01-01

    Hot pressed silicon nitride was evaluated as a rolling element bearing material. The five-ball fatigue tester was used to test 12.7 mm (0.500 in.) diameter balls at a maximum Hertz stress of 800,000 psi at a race temperature of 130 F. The fatigue spalls in the silicon nitride resembled those in typical bearing steels. The ten-percent fatigue life of the silicon nitride balls was approximately one-eighth to one-fifth that of typical bearing steels (52100 and M-50). The load capacity of the silicon nitride was approximately one-third that of typical bearing steels. The load capacity of the silicon nitride was significantly higher than previously tested ceramic materials for rolling element bearings.

  12. Laser Cut Nitinol Tubing Fatigue Coupon: Design, Testing, and Endurance Limit

    NASA Astrophysics Data System (ADS)

    Forcucci, Stephen J.

    2014-07-01

    Nitinol medical device implants made from a laser cut tubing process (i.e., stents, valve structures, etc.) frequently require a fatigue durability assessment, which necessitates determining the material fatigue properties. Towards the goal of determining the strain-based endurance limit of medical grade superelastic Nitinol tubing, a coupon was designed and evaluated via FEA using Abaqus software, produced via laser cutting, shape setting, and electro-polishing processes, and then fatigue tested to 10 million cycles. FEA was used to determine the strain versus alternating displacement amplitude for the coupon. Error due to dimensional tolerances was determined. The coupons were then fatigue tested in a 37 °C temperature deionized water bath at alternating strain levels ranging from 0.75 to 4.0% at zero mean strain. Sample replication was greater than 90%, and the median alternating strain fatigue limit was determined via two methods. Confidence and reliability with maximum likelihood statistics are used to present a strain-based endurance limit for the material. The results seem to differ from previous published values.

  13. Fatigue strength testing employed for evaluation and acceptance of jet-engine instrumentation probes

    NASA Astrophysics Data System (ADS)

    Armentrout, E. C.

    1980-03-01

    This report outlines the fatigue type testing performed on instrumentation rakes and probes intended for use in the air flow passages of jet-engines during full-scale engine tests at Lewis Research Center. Included is a discussion of each type of test performed, the results that may be derived and means of inspection. A design and testing sequence outlines the procedures and considerations involved in the generation of suitable instrument probes.

  14. Evaluation of Creep-Fatigue Damage Based on Simplified Model Test Approach

    SciTech Connect

    Wang, Yanli; Li, Tianlei; Sham, Sam; Jetter, Robert I

    2013-01-01

    Current methods used in the ASME Code, Subsection NH for the evaluation of creep-fatigue damage are based on the separation of elevated temperature cyclic damage into two parts, creep damage and fatigue damage. This presents difficulties in both evaluation of test data and determination of cyclic damage in design. To avoid these difficulties, an alternative approach was identified, called the Simplified Model Test or SMT approach based on the use of creep-fatigue hold time test data from test specimens with elastic follow-up conservatively designed to bound the response of general structural components of interest. A key feature of the methodology is the use of the results of elastic analysis directly in design evaluation similar to current methods in the ASME Code, Subsection NB. Although originally developed for current material included in Subsection NH, recent interest in the application of Alloy 617 for components operating at very high temperatures has caused renewed interest in the SMT approach because it provides an alternative to the proposed restriction on the use of current Subsection NH simplified methods at very high temperatures. A comprehensive review and assessment of five representative simplified methods for creep-fatigue damage evaluation is presented in Asayama [1]. In this review the SMT methodology was identified as the best long term approach but the need for test data precluded its near term implementation. Asayama and Jetter [2] is a summary of the more comprehensive report by Asayama [1] with a summary of the SMT approach presented by Jetter [3].

  15. Ferrographic analysis of wear debris generated in accelerated rolling element fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Parker, R. J.

    1977-01-01

    The types and quantities of wear particles generated during accelerated ball rolling contact fatigue tests were determined. Ball specimens were made of AMS 5749, a corrosion resistant, high-temperature bearing steel. The lubricant was a super-refined naphthenic mineral oil. Conditions included a maximum Hertz stress of 5.215 times 10 to the 9th power Pa and a shaft speed of 10,000 rpm. Four types of wear particles were observed; normal rubbing wear particles, fatigue spall particles, spheres, and friction polymer.

  16. A Modified Constant-Stress Coupon for Enhanced Natural Crack Start during Fatigue Testing

    DTIC Science & Technology

    2016-05-01

    Metallic Technologies Group within DST Group (Shekhter et al. 2015; Loader, Shekhter and Turk 2015; Loader et al. 2016; Niclis and Harrison 2016...Example. October 2006. Niclis J, T Harrison . Fatigue Implications of surface treated AA7050-T7451 tested under VA loading. DST Group Technical Report

  17. Fatigue testing of low-cost fiberglass composite wind turbine blade materials

    NASA Technical Reports Server (NTRS)

    Hofer, K. E.; Bennett, L. C.

    1981-01-01

    The static and fatigue behavior of transverse filament tape (TFT) fiberglass/epoxy and TFT/polyester composites was established by the testing of specimens cut from panels fabricated by a filament winding process used for the construction of large experimental wind turbine blades.

  18. Evaluation of advanced lubricants for aircraft applications using gear surface fatigue tests

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Shimski, John

    1991-01-01

    Surface pitting fatigue life tests were conducted with five lubricants, using spur gears made from a single lot of consumable-electrode vacuum melted (CVM) AISI 9310 steel. The gears were case carbonized and hardened to a Rockwell c-60 and finish ground. The gear pitch diameter was 8.89 cm. The lot of gears was divided into five groups, each of which was tested with a different lubricant. The test lubricants can be classified as synthetic polyol-esters with various viscosities and additive packages. Test conditions included bulk gear temperature of 350 K, a maximum Hertz stress of 1.71 GPa (248 ksi) at the pitch line, and a speed of 10,000 RPM. The lubricant with a viscosity that provided a specific film thickness greater than one and with an additive package produced far greater gear surface fatigue lives than lubricants with a viscosity that provided specific film thickness less than one. A low viscosity lubricant with an additive package produced gear surface fatigue lives equivalent to a similar base stock lubricant with 30 percent higher viscosity, but without an additive package. Lubricants with the same viscosity and similar additive packages gave equivalent gear surface fatigue lives.

  19. Design of PF-1 Coil Helium Inlet and Dummy Joint Samples for Fatigue Tests at 77K

    NASA Astrophysics Data System (ADS)

    Nasluzov, S. N.; Sukhanova, M. V.; Rodin, I. Yu.; Marushin, E. L.; Mednikov, A. A.; Stepanov, D. B.; Lantsetov, A. A.; Khitruk, A. A.

    A helium inlet and dummy joint between conductors are one of the most important elements of the winding pack of the ITER PF -1 coil double pancakes. A helium inlet is used for letting liquid helium into the PF-1 coil conductor. A full-scale helium inlet sample for fatigue tests and the respective tooling were designed and manufactured. Fatigue tests of the full-scale helium inlet sample were conducted in accordance with ITER requirements testing parameters in order to check the fatigue strength of the structure. Before the fatigue tests thermo-cycling of the helium inlet in the temperature range of 77 to 293 K was conducted. Before and after the fatigue tests the leak tightness of the full-scale helium inlet sample was validated by the vacuum chamber method. A low ohm electrical joint is used to connect two NbTi «CICC» conductors of PF-1 coil into a single electrical loop. To qualify the design and technology of manufacturing of the electrical joint, a full-scale dummy joint sample was developed for fatigue tests at 77 K. The main design feature of the full-scale dummy joint sample for fatigue tests is a symmetrical model of two dummy joint samples with simultaneous loading to compensate the bending moment. Fatigue tests of the full-scale helium inlet sample at 77 K have been successfully conducted in 2013. Fatigue tests of the full-scale dummy joint sample will be conducted in 2014. This paper represents the results of calculating the stress-strain state of the symmetrical model of the full-scale dummy joint sample for fatigue tests with the prescribed loading and strain, the work on designing the symmetrical model of the dummy joint sample for fatigue tests and the test facility for conducting fatigue tests at 77 K. Also the results of the leak tightness tests and thermo-cycling of the full-scale helium inlet and the results of it fatigue tests at 77 K, are presented.

  20. Conducting thermomechanical fatigue test in air at light water reactor relevant temperature intervals

    NASA Astrophysics Data System (ADS)

    Ramesh, Mageshwaran; Leber, Hans J.; Diener, Markus; Spolenak, Ralph

    2011-08-01

    In Light Water Reactors (LWR), many structural components are made of austenitic stainless steels (SS). These components are subject to extreme conditions, such as large temperature gradients and pressure loads during service. Hence, the fatigue and fracture behavior of austenitic SS under these conditions has evoked consistent interest over the years. Most studies dealing with this problem in the past, investigated the isothermal fatigue (IF) condition, which is not the case in the service, and less attention has been paid to thermomechanical fatigue (TMF). Moreover, the existing codes of practice and standards for TMF testing are mainly derived from the high temperature TMF tests ( T mean > 400 °C). This work presents the development of a facility to perform TMF tests under LWR relevant temperature interval in air. The realized testing parameters and tolerances are compared with the recommendations of existing codes of practice and standards from high temperature tests. The effectiveness of the testing facility was verified with series of TMF and IF tests performed on specimens made out of a commercial austenitic SS TP347 pipe material. The results revealed that the existing tolerances in standards are quite strict for the application of lower temperature ranges TMF tests. It was found that the synchronous, in-phase (IP) TMF tested specimens possess a higher lifetime than those subjected to the asynchronous, out-of-phase (OP) TMF and IF at T max in the investigated strain range for austenitic SS. Nevertheless, the fatigue lifetime of all the test conditions was similar in the engineering scale.

  1. The detection of tightly closed flaws by nondestructive testing (NDT) methods. [fatigue crack formation in aluminum alloy test specimens

    NASA Technical Reports Server (NTRS)

    Rummel, W. D.; Rathke, R. A.; Todd, P. H., Jr.; Mullen, S. J.

    1975-01-01

    Liquid penetrant, ultrasonic, eddy current and X-radiographic techniques were optimized and applied to the evaluation of 2219-T87 aluminum alloy test specimens in integrally stiffened panel, and weld panel configurations. Fatigue cracks in integrally stiffened panels, lack-of-fusion in weld panels, and fatigue cracks in weld panels were the flaw types used for evaluation. A 2319 aluminum alloy weld filler rod was used for all welding to produce the test specimens. Forty seven integrally stiffened panels containing a total of 146 fatigue cracks, ninety three lack-of-penetration (LOP) specimens containing a total of 239 LOP flaws, and one-hundred seventeen welded specimens containing a total of 293 fatigue cracks were evaluated. Nondestructive test detection reliability enhancement was evaluated during separate inspection sequences in the specimens in the 'as-machined or as-welded', post etched and post proof loaded conditions. Results of the nondestructive test evaluations were compared to the actual flaw size obtained by measurement of the fracture specimens after completing all inspection sequences. Inspection data were then analyzed to provide a statistical basis for determining the flaw detection reliability.

  2. The History of Structural Fatigue Testing at Fishermans Bend Australia

    DTIC Science & Technology

    2005-10-01

    Test GAF Government Aircraft Factories IFOSTP International Follow - On Structural Test Project LEX Leading Edge...project known as the International Follow - On DSTO-TR-1773 34 Structural Test Project ( IFOSTP ). IFOSTP consisted of three separate FSFTs supported by...J. Roussel, L. Molent, A.D. Graham and N. Schmidt, The Canadian and Australian F/A-18 International Follow - On Structural

  3. Vibration fatigue analysis and multi-axial effect in testing of aerospace structures

    NASA Astrophysics Data System (ADS)

    Aykan, Murat; Çelik, Mehmet

    2009-04-01

    The work reported in this paper compared the fatigue damage accumulated under uni-axial loading (a procedure promoted by the vibration testing standards) to that induced by multi-axial loading. The comparison was performed for a helicopter structural element (the flare dispenser bracket of the self-defensive system's Chaff), which is exposed to the particular combination of wide-band random with sinusoidal vibrations, which is characteristic to the helicopter dynamic environment. The evaluation of the fatigue damage induced by these loads requires the calculation or measurement of the structure's dynamic response in terms of stresses or strains, and the application of the appropriate methodology to this response. In this work, dynamic response was calculated in the frequency domain based on the relations between the power spectral density matrixes of the excitations to that of the responses for a linear system. The transfer matrix that relates the excitation to the responses was evaluated numerically. The power spectral densities of the responses evaluated at different locations on the structure were used in the determination of the responses' statistics (the counting of the loading cycles), which, combined with an appropriate physics of failure model (fatigue model), enabled the evaluation of the accumulated fatigue damage. The uni-axial-induced fatigue was evaluated from vibration tests of the kind promoted by military standards (it is assumed that axis-by-axis loading is cumulatively equal to multi-axial loading), and compared to that evaluated by analysis for the multi-axial loading. Also a numerical comparison of the effects of the two kinds of loading was performed. The results showed that the error of uni-axial testing varied for a wide range of parameters. The work led to the conclusion that simultaneous multi-axis vibration testing can improve significantly the laboratory's vibration simulation realism.

  4. Fatigue life and performance testing of hybrid ceramic ball bearings

    SciTech Connect

    Chiu, Y.P.; Prason, P.K.; Dezzani, M.

    1996-03-01

    Hybrid ceramic ball bearings are finding increased applications in machine tool spindles and aerospace vehicles. Results of three types of testing hybrid ceramic ball bearing are presented and discussed. The first is the classical endurance testing of highly loaded hybrid bearings with good lubrication. The second is the endurance test of hybrid nitrided bearings after running in a contaminated lubricant which caused dented raceways. The third is the high-speed performance testing of spindle bearings lubricated with grease or an oil-air mixture. Recent material development, bearing temperature at high-speed and reliability considerations are discussed. 14 refs., 9 fig., 4 tab.

  5. {sup 129}I interlaboratory comparison

    SciTech Connect

    Roberts, M.L.; Caffee, M.W.; Proctor, L.D.

    1996-05-01

    An interlaboratory comparison exercise for {sup 129}I has been organized and conducted. A total of seven laboratories participated in the exercise to either a full or limited extent. In the comparison, a suite of 11 samples were used. This suite of standards contained both synthetic `standard type` materials(i.e., AgI) and environmental materials. The isotopic {sup 129}I/{sup 127}I ratio of the samples varied from 10{sup -8} to 10{sup -14}. Preliminary results of the comparison are presented.

  6. Analysis of wear-debris from full-scale bearing fatigue tests using the ferrograph

    NASA Technical Reports Server (NTRS)

    Jones, W. R.; Loewenthal, S. H.

    1980-01-01

    The ferrograph was used to determine the types and quantities of wear particles generated during full-scale bearing fatigue tests. Deep-groove ball bearings made from AISI 52100 steel were used. A MIL-L-23699 tetraester lubricant was used in a recirculating lubrication system containing a 49 mm absolute filter. Test conditions included a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm, and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the ferrograph was more sensitive (up to 23 hr) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis. Four particle types were observed: normal rubbing wear particles, spheres, nonferrous particles, and severe wear (spall) fragments.

  7. Analysis of wear debris from full-scale bearing fatigue tests using the Ferrograph

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Loewenthal, S. H.

    1980-01-01

    The Ferrograph was used to determine the types of quantities of wear particles generated during full-scale bearing fatigue tests. Deep-groove ball bearings made from AISI 52100 steel were used. A MIL-L-23699 tetraester lubricant was used in a recirculating lubrication system containing a 49-micron absolute filter. Test conditions included a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the Ferrograph was more sensitive (up to 23 h) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis (SOAP). Four particle types were observed: normal rubbing wear particles, spheres, nonferrous particles, and severe wear (spall) fragments.

  8. Ferrographic analysis of wear debris from full-scale bearing fatigue tests

    NASA Technical Reports Server (NTRS)

    Jones, W. R., Jr.; Loewenthal, S. H.

    1979-01-01

    The Ferrograph was used to determine the types and quantities of wear particles generated during full scale bearing fatigue tests. Deep-groove ball bearings made from steel were used. A tetraester lubricant was used in a recirculating lubricant system containing a 49 micrometers absolute filter. Test conditions include a maximum Hertz stress of 2.4 GPa, a shaft speed of 15,000 rpm, and a lubricant supply temperature of 74 C (165 F). Four fatigue failures were detected by accelerometers in this test set. In general, the Ferrograph was more sensitive (up to 23 hr) in detecting spall initiation than either accelerometers or the normal spectrographic oil analysis. Four particle types were observed: normal rubbing weather particles, spheres, nonferrous particles, and severe wear (spall) fragments.

  9. Agonist and antagonist muscle activation during maximal and submaximal isokinetic fatigue tests of the knee extensors.

    PubMed

    Hassani, A; Patikas, D; Bassa, E; Hatzikotoulas, K; Kellis, E; Kotzamanidis, C

    2006-12-01

    The purpose of this study was to examine the differences in electromyographic activity of agonist and antagonist knee musculature between a maximal and a submaximal isokinetic fatigue protocol. Fourteen healthy males (age: 24.3+/-2.5 years) performed 25 maximal (MIFP) and 60 submaximal (SIFP) isokinetic concentric efforts of the knee extensors at 60 degrees s(-1), across a 90 degrees range of motion. The two protocols were performed a week apart. The EMG activity of vastus medialis (VM), vastus lateralis (VL) and biceps femoris (BF) were recorded using surface electrodes. The peak torque (PT) and average EMG (aEMG) were expressed as percentages of pre-fatigue maximal value. One-way analysis of variance indicated a significant (p<0.05) decline of PT during the maximal (45.7%) and submaximal (46.8%) protocols. During the maximal test, the VM and VL aEMG initially increased and then decreased. In contrast, VM and VL aEMG continuously increased during submaximal testing (p<0.05). The antagonist (BF) aEMG remained constant during maximal test but it increased significantly and then declined during the submaximal testing. The above results indicate that agonist and antagonist activity depends on the intensity of the selected isokinetic fatigue test.

  10. Self-reported post-exertional fatigue in Gulf War veterans: roles of autonomic testing.

    PubMed

    Li, Mian; Xu, Changqing; Yao, Wenguo; Mahan, Clare M; Kang, Han K; Sandbrink, Friedhelm; Zhai, Ping; Karasik, Pamela A

    2014-01-07

    To determine if objective evidence of autonomic dysfunction exists from a group of Gulf War veterans with self-reported post-exertional fatigue, we evaluated 16 Gulf War ill veterans and 12 Gulf War controls. Participants of the ill group had self- reported, unexplained chronic post-exertional fatigue and the illness symptoms had persisted for years until the current clinical study. The controls had no self-reported post-exertional fatigue either at the time of initial survey nor at the time of the current study. We intended to identify clinical autonomic disorders using autonomic and neurophysiologic testing in the clinical context. We compared the autonomic measures between the 2 groups on cardiovascular function at both baseline and head-up tilt, and sudomotor function. We identified 1 participant with orthostatic hypotension, 1 posture orthostatic tachycardia syndrome, 2 distal small fiber neuropathy, and 1 length dependent distal neuropathy affecting both large and small fiber in the ill group; whereas none of above definable diagnoses was noted in the controls. The ill group had a significantly higher baseline heart rate compared to controls. Compound autonomic scoring scale showed a significant higher score (95% CI of mean: 1.72-2.67) among ill group compared to controls (0.58-1.59). We conclude that objective autonomic testing is necessary for the evaluation of self-reported, unexplained post-exertional fatigue among some Gulf War veterans with multi-symptom illnesses. Our observation that ill veterans with self-reported post-exertional fatigue had objective autonomic measures that were worse than controls warrants validation in a larger clinical series.

  11. Cracking and Spalling Behavior of HVOF Thermally Sprayed WC-Co-Cr Coating in Bend and Axial Fatigue Tests

    NASA Astrophysics Data System (ADS)

    Gui, M.; Eybel, R.; Asselin, B.; Monerie-Moulin, F.

    2015-03-01

    In this work, WC-10Co-4Cr coating was sprayed by high-velocity oxygen fuel (HVOF) process on Almen strip and axial fatigue coupon. Three-point bend test was used to bend Almen strip coating specimens with tensile and compressive stress applied to the coating. Axial fatigue coating specimens were tested at a load stress of 1250 MPa and a stress ratio of R = -1. Process condition of Thermal spraying was found to have an effect on spalling performance of the coating in the fatigue test. The mechanism of cracking and spalling process in the coating was studied in bend and fatigue conditions. Based on deformation difference between the coating and the substrate, the factors, especially coating thickness, to impact the coating spalling behavior in axial fatigue test are discussed. HVOF-sprayed WC-10Co-4Cr coating matches the deformation of base substrate by cracking when tensile stress is applied in bend and fatigue tests because the coating has very limit deformation capability. In axial fatigue test of WC-10Co-4Cr coating specimen, the substrate works in a stress-to-strain manner; however the coating works in a strain-to-stress manner and is stressed due to the substrate deformation.

  12. Postdialysis fatigue.

    PubMed

    Sklar, A H; Riesenberg, L A; Silber, A K; Ahmed, W; Ali, A

    1996-11-01

    To clarify the demographic and clinicolaboratory features of postdialysis fatigue (PDF), we enrolled 85 patients on maintenance hemodialysis in a cross-sectional study using validated questionnaires and chart review. Forty-three patients complained of fatigue after dialysis. On formal testing using the Kidney Disease Questionnaire, the PDF group had statistically greater severity of fatigue and somatic complaints than the group of patients without subjective fatigue (P = 0.03 and 0.04, respectively). On a scale measuring intensity of fatigue (1 = least to 5 = worst), the PDF group average was 3.4 +/- 1.2. PDF subjects reported that 80% +/- 25% of dialysis treatments were followed by fatigue symptoms. In 28 (65%) of patients, the symptoms started with the first dialysis treatment. They reported needing an average of 4.8 hours of rest or sleep to overcome the fatigue symptoms (range, 0 to 24 hours). There were no significant differences between patients with and without PDF in the following parameters: age; sex; type of renal disease; presence of diabetes mellitus, heart disease (congestive, ischemic), or chronic obstructive lung disease; blood pressure response to dialysis; type or adequacy of dialysis regimen; hematocrit; electrolytes; blood urea nitrogen; creatinine; cholesterol; albumin; parathyroid hormone; ejection fraction; and use of antihistamines, benzodiazepines, and narcotics. In the fatigue group, there was significantly greater use of antihypertensive medications known to have fatigue as a side effect (P = 0.007). Depression was more common in the fatigue group by Beck Depression score (11.6 +/- 8.0 v 7.8 +/- 6.3; P = 0.02). We conclude that (1) postdialysis fatigue is a common, often incapacitating symptom in patients on chronic extracorporeal dialysis; (2) no routinely measured parameter of clinical or dialytic function appears to predict postdialysis fatigue; and (3) depression is highly associated with postdialysis fatigue, but the cause

  13. Lamb wave ultrasonic evaluation of welded AA2024 specimens at tensile static and fatigue testing

    NASA Astrophysics Data System (ADS)

    Burkov, M. V.; Byakov, A. V.; Shah, R. T.; Lyubutin, P. S.; Panin, S. V.

    2015-10-01

    The paper deals with the investigation of Lamb waves ultrasonic testing technique applied for evaluation of different stress-strain and damaged state of aluminum specimens at static and fatigue loading in order to develop a Structural Health Monitoring (SHM) approach. The experimental results of tensile testing of AA2024T3 specimens with welded joints are presented. Piezoelectric transducers used as actuators and sensors were adhesively bonded to the specimen's surface using two component epoxy. The set of static and cyclic tensile tests with two frequencies of acoustic testing (50 kHz and 335 kHz) were performed. The recorded signals were processed to calculate the maximum envelope in order to evaluate the changes of the stress-strain state of the specimen and its microstructure during static tension. The registered data are analyzed and discussed in terms of signal attenuation due to the formation of fatigue defects during cyclic loading. Understanding the relations between acoustic signal features and fatigue damages will provide us the ability to determine the damage state of the structure and its residual lifetime in order to design a robust SHM system.

  14. A computerized test system for thermal-mechanical fatigue crack growth

    NASA Technical Reports Server (NTRS)

    Marchand, N.; Pelloux, R. M.

    1986-01-01

    A computerized testing system to measure fatigue crack growth under thermal-mechanical fatigue conditions is described. Built around a servohydraulic machine, the system is capable of a push-pull test under stress-controlled or strain-controlled conditions in the temperature range of 25 to 1050 C. Temperature and mechanical strain are independently controlled by the closed-loop system to simulate the complex inservice strain-temperature relationship. A d-c electrical potential method is used to measure crack growth rates. The correction procedure of the potential signal to take into account powerline and RF-induced noises and thermal changes is described. It is shown that the potential drop technique can be used for physical mechanism studies and for modelling crack tip processes.

  15. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue

    SciTech Connect

    Bosco, Nick; Silverman, Timothy J.; Wohlgemuth, John; Kurtz, Sarah; Inoue, Masanao; Sakurai, Keiichiro; Shioda, Tsuyoshi; Zenkoh, Hirofumi; Hirota, Kusato; Miyashita, Masanori; Tadanori, Tanahashi; Suzuki, Soh; Chen, Yifeng; Verlinden, Pierre J.

    2014-12-31

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours of testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  16. Evaluation of Dynamic Mechanical Loading as an Accelerated Test Method for Ribbon Fatigue: Preprint

    SciTech Connect

    Bosco, N.; Silverman, T. J.; Wohlgemuth, J.; Kurtz, S.; Inoue, M.; Sakurai, K.; Shinoda, T.; Zenkoh, H.; Hirota, K.; Miyashita, M.; Tadanori, T.; Suzuki, S.

    2015-04-07

    Dynamic Mechanical Loading (DML) of photovoltaic modules is explored as a route to quickly fatigue copper interconnect ribbons. Results indicate that most of the interconnect ribbons may be strained through module mechanical loading to a level that will result in failure in a few hundred to thousands of cycles. Considering the speed at which DML may be applied, this translates into a few hours o testing. To evaluate the equivalence of DML to thermal cycling, parallel tests were conducted with thermal cycling. Preliminary analysis suggests that one +/-1 kPa DML cycle is roughly equivalent to one standard accelerated thermal cycle and approximately 175 of these cycles are equivalent to a 25-year exposure in Golden Colorado for the mechanism of module ribbon fatigue.

  17. An engineering method for estimating notch-size effect in fatigue tests on steel

    NASA Technical Reports Server (NTRS)

    Kuhn, Paul; Hardrath, Herbert F

    1952-01-01

    Neuber's proposed method of calculating a practical factor of stress concentration for parts containing notches of arbitrary size depends on the knowledge of a "new material constant" which can be established only indirectly. In this paper, the new constant has been evaluated for a large variety of steels from fatigue tests reported in the literature, attention being confined to stresses near the endurance limit. Reasonably satisfactory results were obtained with the assumption that the constant depends only on the tensile strength of the steel. Even in cases where the notches were cracks of which only the depth was known, reasonably satisfactory agreement was found between calculated and experimental factors. It is also shown that the material constant can be used in an empirical formula to estimate the size effect on unnotched specimens tested in bending fatigue.

  18. The use of fatigue tests in the manufacture of automotive steel wheels.

    NASA Astrophysics Data System (ADS)

    Drozyner, P.; Rychlik, A.

    2016-08-01

    Production for the automotive industry must be particularly sensitive to the aspect of safety and reliability of manufactured components. One of such element is the rim, where durability is a feature which significantly affects the safety of transport. Customer complaints regarding this element are particularly painful for the manufacturer because it is almost always associated with the event of accident or near-accident. Authors propose original comprehensive method of quality control at selected stages of rims production: supply of materials, production and pre-shipment inspections. Tests by the proposed method are carried out on the originally designed inertial fatigue machine The machine allows bending fatigue tests in the frequency range of 0 to 50 Hz at controlled increments of vibration amplitude. The method has been positively verified in one of rims factory in Poland. Implementation resulted in an almost complete elimination of complaints resulting from manufacturing and material errors.

  19. Using interstimulus interval to maximise sensitivity of the Psychomotor Vigilance Test to fatigue.

    PubMed

    Matthews, Raymond W; Ferguson, Sally A; Sargent, Charli; Zhou, Xuan; Kosmadopoulos, Anastasi; Roach, Gregory D

    2017-02-01

    There is some evidence that short interstimulus intervals (ISIs) on the Psychomotor Vigilance Test (PVT) are associated with longer and more varied reaction times (RTs). Preparation processes may impede RT following short ISIs, resulting in additional unexplained variance. The aims of this study were to investigate whether there is an effect of ISI on RT and errors within the PVT, and whether such an effect changes with three elements of fatigue: time of day, prior wake and time on task. Twelve male participants completed 49 PVTs across 7× 28h periods of forced desynchrony. For analysis, RTs, reciprocal reaction times (1/RT), false starts and lapse responses within each 10min session were assigned to a 1-s ISI group, a 2-min time of task group, a 2.5-h PW level and a 60° phase of the circadian rhythm of core body temperature (as a measure of time of day). Responses following short ISIs (2-5s) were significantly slower and more varied than responses following longer ISIs (5-10s). The likelihood of a lapse was also higher for short ISIs, while the probability of a false start increased as a function of ISI. These effects were independent of the influences of time of day, prior wake and time on task. Hence, mixed model ANOVAs comprising only long ISIs (5-10s) contained stronger effect sizes for fatigue than a model of all ISIs (2-10s). Including an ISI variable in a model improved the model fit and explained more variance associated with fatigue. Short ISIs resulted in long RTs both in the presence and absence of fatigue, possibly due to preparation processes or ISI conditioning. Hence, omitting short ISI trials from RT means or including an ISI variable in analysis can reduce unwanted variance in PVT data, improving the sensitivity of the PVT to fatigue.

  20. Modeling and Prediction of Corrosion-Fatigue Failures in AF1410 Steel Test Specimens

    DTIC Science & Technology

    2009-01-12

    the curve was modeled using the Coffin- Manson equation (references 9 and 10); with the equation coefficients derived from a log-log regression of the...fatigue test data were modeled using a bilinear log-log fit of the Coffin- Manson relation described previously. The elastic portion of the Coffin... Manson curve was assumed fixed. The slope (B) and intercept (A) errors of the plastic strain regression curve are Student-t distributed when transformed

  1. Strainrange partitioning life predictions of the long time metal properties council creep-fatigue tests

    NASA Technical Reports Server (NTRS)

    Saltsman, J. F.; Halford, G. R.

    1979-01-01

    The method of strainrange partitioning is used to predict the cyclic lives of the Metal Properties Council's long time creep-fatigue interspersion tests of several steel alloys. Comparisons are made with predictions based upon the time- and cycle-fraction approach. The method of strainrange partitioning is shown to give consistently more accurate predictions of cyclic life than is given by the time- and cycle-fraction approach.

  2. Prediction of frequency for simulation of asphalt mix fatigue tests using MARS and ANN.

    PubMed

    Ghanizadeh, Ali Reza; Fakhri, Mansour

    2014-01-01

    Fatigue life of asphalt mixes in laboratory tests is commonly determined by applying a sinusoidal or haversine waveform with specific frequency. The pavement structure and loading conditions affect the shape and the frequency of tensile response pulses at the bottom of asphalt layer. This paper introduces two methods for predicting the loading frequency in laboratory asphalt fatigue tests for better simulation of field conditions. Five thousand (5000) four-layered pavement sections were analyzed and stress and strain response pulses in both longitudinal and transverse directions was determined. After fitting the haversine function to the response pulses by the concept of equal-energy pulse, the effective length of the response pulses were determined. Two methods including Multivariate Adaptive Regression Splines (MARS) and Artificial Neural Network (ANN) methods were then employed to predict the effective length (i.e., frequency) of tensile stress and strain pulses in longitudinal and transverse directions based on haversine waveform. It is indicated that, under controlled stress and strain modes, both methods (MARS and ANN) are capable of predicting the frequency of loading in HMA fatigue tests with very good accuracy. The accuracy of ANN method is, however, more than MARS method. It is furthermore shown that the results of the present study can be generalized to sinusoidal waveform by a simple equation.

  3. Fatigue of Self-Healing Nanofiber-based Composites: Static Test and Subcritical Crack Propagation.

    PubMed

    Lee, Min Wook; Sett, Soumyadip; Yoon, Sam S; Yarin, Alexander L

    2016-07-20

    Here, we studied the self-healing of composite materials filled with epoxy-containing nanofibers. An initial incision in the middle of a composite sample stretched in a static fatigue test can result in either crack propagation or healing. In this study, crack evolution was observed in real time. A binary epoxy, which acted as a self-healing agent, was encapsulated in two separate types of interwoven nano/microfibers formed by dual-solution blowing, with the core containing either epoxy or hardener and the shell being formed from poly(vinylidene fluoride)/ poly(ethylene oxide) mixture. The core-shell fibers were encased in a poly(dimethylsiloxane) matrix. When the fibers were damaged by a growing crack in this fiber-reinforced composite material because of static stretching in the fatigue test, they broke and released the healing agent into the crack area. The epoxy used in this study was cured and solidified for approximately an hour at room temperature, which then conglutinated and healed the damaged location. The observations were made for at least several hours and in some cases up to several days. It was revealed that the presence of the healing agent (the epoxy) in the fibers successfully prevented the propagation of cracks in stretched samples subjected to the fatigue test. A theoretical analysis of subcritical cracks was performed, and it revealed a jumplike growth of subcritical cracks, which was in qualitative agreement with the experimental results.

  4. Applications of infrared thermography for nondestructive testing of fatigue cracks in steel bridges

    NASA Astrophysics Data System (ADS)

    Sakagami, Takahide; Izumi, Yui; Kobayashi, Yoshihiro; Mizokami, Yoshiaki; Kawabata, Sunao

    2014-05-01

    In recent years, fatigue crack propagations in aged steel bridge which may lead to catastrophic structural failures have become a serious problem. For large-scale steel structures such as orthotropic steel decks in highway bridges, nondestructive inspection of deteriorations and fatigue damages are indispensable for securing their safety and for estimating their remaining strength. As conventional NDT techniques for steel bridges, visual testing, magnetic particle testing and ultrasonic testing have been commonly employed. However, these techniques are time- and labor- consuming techniques, because special equipment is required for inspection, such as scaffolding or a truck mount aerial work platform. In this paper, a new thermography NDT technique, which is based on temperature gap appeared on the surface of structural members due to thermal insulation effect of the crack, is developed for detection of fatigue cracks. The practicability of the developed technique is demonstrated by the field experiments for highway steel bridges in service. Detectable crack size and factors such as measurement time, season or spatial resolution which influence crack detectability are investigated.

  5. CHARACTERIZATION OF A MOBILE OSCILLATORY FATIGUE OPERATOR FOR WIND TURBINE BLADE TESTING

    SciTech Connect

    Donohoo, P.E.; Cotrell, J.

    2008-01-01

    Laboratory testing of wind turbine blades is required to meet wind turbine design standards, reduce machine cost, and reduce the technical and fi nancial risks of deploying mass-produced wind turbine models. Fatigue testing at the National Wind Technology Center (NWTC) is currently conducted using Universal Resonance Excitation (UREX) technology. In a UREX test, the blade is mounted to a rigid stand and hydraulic exciters mounted to the blade are used to excite the blade to its resonant frequency. A drawback to UREX technology is that mounting hydraulic systems to the blade is diffi cult and requires a relatively long set-up period. An alternative testing technology called the Mobile Oscillatory Fatigue Operator (MOFO) has been analyzed. The MOFO uses an oscillating blade test-stand rather than a rigid stand, avoiding the need to place hydraulic systems on the blade. The MOFO will be demonstrated by converting an existing test-stand at the NWTC to an oscillating stand that can test blades up to 25 m in length. To obtain the loads necessary to design the MOFO, the system motion is modeled using rigid body and lumped mass dynamics models. Preliminary modeling indicates the existing stand can be converted to a MOFO relatively easily. However, the blade dynamic models suggest that blade bending moment distributions are signifi cantly different for UREX and MOFO testing; more sophisticated models are required to assess the implication of this difference on the accuracy of the test.

  6. Advanced Failure Determination Measurement Techniques Used in Thermal Fatigue Life Testing of Electronic Packaging

    NASA Technical Reports Server (NTRS)

    Wallace, A. P.; Cornford, S. L.; Gross, M. A.

    1996-01-01

    Thermal fatigue life testing of various electronic packaging technologies is being performed by the Reliability Technology Group at the Jet Propulsion Laboratory. These testing efforts are in progress to improve uderstanding of the reliability issues associated with low volume packaging technologies for space applications and to develop qualification and acceptance approaches for these technologies. The work described here outlines the electrical failure detection techniques used during testing by documenting the circuits and components used to make these measurements, the sensitivity of the measurements, and the applicability of each specific measurement.

  7. Interlaboratory Collaborations in the Undergraduate Setting

    ERIC Educational Resources Information Center

    Megehee, Elise G.; Hyslop, Alison G.; Rosso, Richard J.

    2005-01-01

    A novel approach to cross-disciplinary and group learning, known as interlaboratory collaborations, was developed. The method mimics an industrial or research setting, fosters teamwork, and emphasizes the importance of good communication skills in the sciences.

  8. Influence of axle-wheel interface on ultrasonic testing of fatigue cracks in wheelset.

    PubMed

    Makino, Kazunari; Biwa, Shiro

    2013-01-01

    For the ultrasonic testing at the wheel seat of railway axles, quantitative investigation of the reflection and transmission phenomena at the axle-wheel interface is important. This paper describes the influence of the axle-wheel interface on the ultrasonic testing of a fatigue crack in a wheelset by applying the spring interface model. The normal and tangential stiffnesses were identified experimentally for an as-manufactured wheelset at the normal incidence, and the reflection coefficient for the shear-wave oblique incidence was calculated. A parametric study was performed to clarify the influence of these interfacial stiffnesses on the incident-angle dependence of the reflection coefficient. The calculated reflection coefficient at the incident angle of 45° qualitatively explained the relative echo-height decrease due to the presence of a wheel observed experimentally for a wheelset in fatigue loading by rotating bending. The quantitative difference between the experimental and calculated results was considered to be due to the reduction of the effective interference of shrink fit by the wear at the axle-wheel interface during the fatigue loading as well as by the applied bending moment. For the estimated relative echo-height decrease to agree with the experimental results, the interfacial stiffnesses were found to be smaller than the values identified for the as-manufactured wheelset by a factor of 0.5-0.7.

  9. An electromyographic-based test for estimating neuromuscular fatigue during incremental treadmill running.

    PubMed

    Camic, Clayton L; Kovacs, Attila J; Enquist, Evan A; VanDusseldorp, Trisha A; Hill, Ethan C; Calantoni, Austin M; Yemm, Allison J

    2014-12-01

    The purposes of the present study were two fold: (1) to determine if the model used for estimating the physical working capacity at the fatigue threshold (PWCFT) from electromyographic (EMG) amplitude data during incremental cycle ergometry could be applied to treadmill running to derive a new neuromuscular fatigue threshold for running, and (2) to compare the running velocities associated with the PWCFT, ventilatory threshold (VT), and respiratory compensation point (RCP). Fifteen college-aged subjects (21.5 ± 1.3 y, 68.7 ± 10.5 kg, 175.9 ± 6.7 cm) performed an incremental treadmill test to exhaustion with bipolar surface EMG signals recorded from the vastus lateralis. There were significant (p < 0.05) mean differences in running velocities between the VT (11.3 ± 1.3 km h(-1)) and PWCFT (14.0 ± 2.3 km h(-1)), VT and RCP (14.0 ± 1.8 km h(-1)), but not the PWCFT and RCP. The findings of the present study indicated that the PWCFT model could be applied to a single continuous, incremental treadmill test to estimate the maximal running velocity that can be maintained prior to the onset of neuromuscular fatigue. In addition, these findings suggested that the PWCFT, like the RCP, may be used to differentiate the heavy from severe domains of exercise intensity.

  10. Report on FY15 Alloy 617 SMT Creep-Fatigue Test Results

    SciTech Connect

    Wang, Yanli; Jetter, Robert I.; Baird, Seth T.; Pu, Chao; Sham, Sam

    2015-06-22

    For the temperature range of 990-950C, Alloy 617 is a candidate IHX structural material for high temperature gas reactors (HTGRs) because of its high temperature creep properties. Also, its superior strength over a broad temperature range also offers advantages for certain component applications. In order for the designers to be able to use Alloy 617 for these high temperature components, Alloy 617 has to be approved for use in Section III (the nuclear section) of the ASME (American Society of Mechanical Engineers) Boiler and Pressure Vessel Code. A plan has been developed to propose a Code Case for use of Alloy 617 at elevated temperature in Section III of the ASME Code by September 2015. There has not been a new high temperature material approved for use in Section III for almost 20 years. The Alloy 617 Code Case effort would lead the way to establish a path for Code qualification of new high temperature materials of interest to other advanced SMRs. Creep-fatigue at elevated temperatures is the most damaging structural failure mode. In the past 40 years significant efforts have been devoted to the elevated temperature Code rule development in Section III, Subsection NH* of the ASME Boiler and Pressure Vessel Code, to ascertain conservative structural designs to prevent creep-fatigue failure. The current Subsection NH creep-fatigue procedure was established by the steps of (1) analytically obtaining a detailed stress-strain history, (2) comparing the stress and strain components to cyclic test results deconstructed into stress and strain quantities, and (3) recombining the results to obtain a damage function in the form of the so-called creep-fatigue damage-diagram. The deconstruction and recombination present difficulties in evaluation of test data and determination of cyclic damage in design. The uncertainties in these steps lead to the use of overly conservative design factors in the current creep-fatigue procedure. In addition, and of major significance to the

  11. Fatigue-crack monitoring in-flight using acoustic emission - hardware, technique, and testing

    SciTech Connect

    Hutton, P.H.; Skorpik, J.R.; Lemon, D.K.

    1981-07-01

    The three programs described represent a logical evolutionary process toward effective flaw surveillance in aircraft using AE. The Macchi tests showed that an AE system can withstand extended in-flight service and collect meaningful information relative to fatigue crack growth at a single specific location. The MIrage aircraft work seeks to extend the methods demonstrated on the Macchi into a more complex circumstance. We are now attempting to detect and locate crack growth at any of twenty fastener locations in a relatively complex geometry. The DARPA pattern recognition program seeks to develop signal identification capability that would pave the way for general monitoring of aircraft structures using AE to detect fatigue crack growth. It appears that AE technology may be capable of enhancing aircraft safety assurance while reducing inspection requirements with the associated costs.

  12. Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments

    NASA Technical Reports Server (NTRS)

    Westfall, Leonard J.; Petrasek, Donald W.

    1988-01-01

    Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760F (1400F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.

  13. Thermal-mechanical fatigue test apparatus for metal matrix composites and joint attachments

    NASA Technical Reports Server (NTRS)

    Westfall, L. J.; Petrasek, D. W.

    1985-01-01

    Two thermal-mechanical fatigue (TMF) test facilities were designed and developed, one to test tungsten fiber reinforced metal matrix composite specimens at temperature up to 1430C (2600F) and another to test composite/metal attachment bond joints at temperatures up to 760C (1400 F). The TMF facility designed for testing tungsten fiber reinforced metal matrix composites permits test specimen temperature excursions from room temperature to 1430C (2600F) with controlled heating and loading rates. A strain-measuring device measures the strain in the test section of the specimen during each heating and cooling cycle with superimposed loads. Data is collected and recorded by a computer. The second facility is designed to test composite/metal attachment bond joints and to permit heating to a maximum temperature of 760C (1400F) within 10 min and cooling to 150C (300F) within 3 min. A computer controls specimen temperature and load cycling.

  14. Creep-fatigue interaction in aircraft gas turbine components by simulation and testing at scaled temperatures

    NASA Astrophysics Data System (ADS)

    Sabour, Mohammad Hossein

    components in general, and specifically using thermal scaling for the first time for prototype and model with two different materials. (2) Developing 1-D creep ANSYS macro to study creep effects to get meaningful results for industrial applications of gas turbine blade. (3) Analyzing the curve veering and flattening phenomena in rotating blade at thermal environment, using Lagrange-Bhat method. (4) Simple constitutive models in creep-fatigue interaction are proposed that can predict the lifetime in complicated situations of creep-fatigue, using the pure creep and pure fatigue test data.

  15. Practical methodological guide for hydrometric inter-laboratory organisation

    NASA Astrophysics Data System (ADS)

    Besson, David; Bertrand, Xavier

    2015-04-01

    Discharge measurements performed by the French governmental hydrometer team feed a national database. This data is available for general river flows knowkedge, flood forecasting, low water survey, statistical calculations flow, control flow regulatory and many other uses. Regularly checking the measurements quality and better quantifying its accuracy is therefore an absolute need. The practice of inter-laboratory comparison in hydrometry particularly developed during the last decade. Indeed, discharge measurement can not easily be linked to a standard. Therefore, on-site measurement accuracy control is very difficult. Inter-laboratory comparison is thus a practical solution to this issue. However, it needs some regulations in order to ease its practice and legitimize its results. To do so, the French government hydrometrics teams produced a practical methodological guide for hydrometric inter-laboratory organisation in destination of hydrometers community in view of ensure the harmonization of inter-laboratory comparison practices for different materials (ADCP, current meter on wadind rod or gauging van, tracer dilution, surface speed) and flow range (flood, low water). Ensure the results formalization and banking. The realisation of this practice guide is grounded on the experience of the governmental teams & their partners (or fellows), following existing approaches (Doppler group especially). The guide is designated to validate compliance measures and identify outliers : Hardware, methodological, environmental, or human. Inter-laboratory comparison provides the means to verify the compliance of the instruments (devices + methods + operators) and provides methods to determine an experimental uncertainty of the tested measurement method which is valid only for the site and the measurement conditions but does not address the calibration or periodic monitoring of the few materials. After some conceptual definitions, the guide describes the different stages of an

  16. Generation of driving profile on a multi-axial vibration table for vibration fatigue testing

    NASA Astrophysics Data System (ADS)

    Kim, Chan-Jung; Kang, Yeon June; Lee, Bong-Hyun

    2012-01-01

    A multi-axial simulation table (MAST) is widely used for vibration fatigue testing; it reliably reproduces the operational multi-axial motion of a specimen. The main concern in this multi-axial testing is to determine the driving profile because this profile guarantees the service life cycle of a specimen. This paper presents a method for generating a driving profile using a combination of measured acceleration responses under special events. To explain this method clearly, vehicle components are selected as target components, and the corresponding driving profile of each component is derived using the proposed method.

  17. A tension-torsional fatigue testing apparatus for micro-scale components

    NASA Astrophysics Data System (ADS)

    Fu, Sichao; Wang, Lei; Chen, Gang; Yu, Dunji; Chen, Xu

    2016-01-01

    Mechanical characterization of micro-scale components under complex loading conditions is a great challenge. To meet such a challenge, a microtension-torsional fatigue testing apparatus is developed in this study that specializes in the evaluation of multiaxial fatigue behavior of thin stent wires. The actuation and measurement in two controlled directions are incorporated in the tensile and torsional load frames, respectively, and a thrust air bearing is applied for the coupling of the two frames. The axial deformation of specimens measured by a grating sensor built in the linear motor and by a non-contact displacement detect system is compared and corrected. The accuracy of the torque measurement is proved by torsion tests on thin wires of 316L stainless steel in nominal diameters of 100 μm. Multistep torsion test, multiaxial ratcheting test, and a fully strain controlled multiaxial cyclic test are performed on 100 μm and 200 μm-diameter 316L wires using this apparatus. The capability of the equipment in tension-torsional cyclic tests for micro-scale specimens is demonstrated by the experimental results.

  18. A New High-Speed, High-Cycle, Gear-Tooth Bending Fatigue Test Capability

    NASA Technical Reports Server (NTRS)

    Stringer, David B.; Dykas, Brian D.; LaBerge, Kelsen E.; Zakrajsek, Andrew J.; Handschuh, Robert F.

    2011-01-01

    A new high-speed test capability for determining the high cycle bending-fatigue characteristics of gear teeth has been developed. Experiments were performed in the test facility using a standard spur gear test specimens designed for use in NASA Glenn s drive system test facilities. These tests varied in load condition and cycle-rate. The cycle-rate varied from 50 to 1000 Hz. The loads varied from high-stress, low-cycle loads to near infinite life conditions. Over 100 tests were conducted using AISI 9310 steel spur gear specimen. These results were then compared to previous data in the literature for correlation. Additionally, a cycle-rate sensitivity analysis was conducted by grouping the results according to cycle-rate and comparing the data sets. Methods used to study and verify load-path and facility dynamics are also discussed.

  19. Reversible Bending Fatigue Test System for Investigating Vibration Integrity of Spent Nuclear Fuel during Transportation

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L; Flanagan, Michelle

    2013-01-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S. Nuclear Regulatory Commission needs in the area of safety and security of spent nuclear fuel storage and transport operations. The ORNL developed test system can perform reversible-bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot-cell operation, including remote installation and detachment of the SNF test specimen, in-situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U-frame set-up equipped with uniquely designed grip rigs, to protect SNF rod and to ensure valid test results, and use of 3 specially designed LVDTs to obtain the in-situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy, and SS cladding with alumina pellets inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The failure behaviors observed from

  20. Reversal bending fatigue test system for investigating vibration integrity of spent nuclear fuel during transportation

    SciTech Connect

    Wang, Jy -An; Wang, Hong; Bevard, Bruce Balkcom; Howard, Rob L.; Flanagan, Michelle E.

    2014-09-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S.Nuclear Regulatory Commission needs in the area of safety and security of SNF storage and transportation operations. The ORNL developed test system can perform reversal bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot cell operation, including remote installation and detachment of the SNF test specimen, in situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U frame set-up equipped with uniquely designed grip rigs to protect the SNF rod sample and to ensure valid test results, and uses three specially designed linear variable differential transformers to obtain the in situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy and SS cladding with alumina pellet inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength. The

  1. Reversal bending fatigue test system for investigating vibration integrity of spent nuclear fuel during transportation

    DOE PAGES

    Wang, Jy -An; Wang, Hong; Bevard, Bruce Balkcom; ...

    2014-09-01

    Transportation packages for spent nuclear fuel (SNF) must meet safety requirements under normal and accident conditions as specified by federal regulations. During transportation, SNF experiences unique conditions and challenges to cladding integrity due to the vibrational and impact loading during road or rail shipment. Oak Ridge National Laboratory (ORNL) has been developing testing capabilities that can be used to improve the understanding of the impacts on SNF integrity due to vibration loading, especially for high burn-up SNF in normal transportation operation conditions. This information can be used to meet the nuclear industry and U.S.Nuclear Regulatory Commission needs in the areamore » of safety and security of SNF storage and transportation operations. The ORNL developed test system can perform reversal bending fatigue testing to evaluate both the static and dynamic mechanical response of SNF rods under simulated loads. The testing apparatus is also designed to meet the challenges of hot cell operation, including remote installation and detachment of the SNF test specimen, in situ test specimen deformation measurement, and implementation of a driving system suitable for use in a hot cell. The system contains a U frame set-up equipped with uniquely designed grip rigs to protect the SNF rod sample and to ensure valid test results, and uses three specially designed linear variable differential transformers to obtain the in situ curvature measurement. A variety of surrogate test rods have been used to develop and calibrate the test system as well as in performing a series of systematic cyclic fatigue tests. The surrogate rods include stainless steel (SS) cladding, SS cladding with cast epoxy and SS cladding with alumina pellet inserts simulating fuel pellets. Testing to date has shown that the interface bonding between the SS cladding and the alumina pellets has a significant impact on the bending response of the test rods as well as their fatigue strength

  2. Rolling contact fatigue of surface modified 440C using a 'Ge-Polymet' type disc rod test rig

    NASA Technical Reports Server (NTRS)

    Thom, Robert L.

    1989-01-01

    Through hardened 440 C martensitic stainless steel test specimens were surface modified and tested for changes in rolling contact fatigue using a disc on rod test rig. The surface modifications consisted of nitrogen, boron, titanium, chromium, tantalum, carbon, or molybdenum ion implantation at various ion fluences and energies. Tests were also performed on specimens reactively sputtered with titanium nitride.

  3. Effect of testing frequency on the corrosion fatigue of a squeeze-cast aluminum alloy

    SciTech Connect

    Shiozawa, Kazuaki; Sun, Shuming; Eadie, R.L.

    2000-04-01

    The corrosion fatigue crack propagation behavior of a squeeze-cast Al-Si-Mg-Cu aluminum alloy (AC8A-T6), which had been precracked in air, was investigated at testing frequencies of 0.1, 1, 5, and 10 Hz under a stress ration (R) of 0.1. Compact-toughness specimens were precracked about t mm in air prior to the corrosion fatigue test in a 3 pct saline solution. At some near-threshold conditions, these cracks propagated faster than would be predicted by the mechanical driving force. This anomalous corrosion fatigue crack growth was affected by the initial stress-intensity-factor range ({Delta}K{sub i}), the precracking conditions, and the testing frequency. The initial crack propagation rate was as much as one order of magnitude higher than the rate for the same conditions in air. This rapid rate was associated with preferential propagation along the interphase interface in the eutectic structure. It is believed that a chemical reaction at the crack tip and/or hydrogen-assisted cracking produced the phenomenon. Eventual retardation and complete arrest of crack growth after this initial rapid growth occurred within a short period at low {Delta}K values, when the testing frequency was low (0.1 and 1 Hz). This retardation was accompanied by corrosion product-induced crack closure and could be better explained by the contributory stress-intensity-factor range ({Delta}K{sub cont}) than by the effective stress-intensity-factor range ({Delta}k{sub eff}).

  4. Thermal fatigue tests of a radiative heat shield panel for a hypersonic transport

    NASA Technical Reports Server (NTRS)

    Webb, Granville L.; Clark, Ronald K.; Sharpe, Ellsworth L.

    1985-01-01

    A pair of corrugation stiffened, beaded skin Rene 41 heat shield panels were exposed to 20,000 thermal cycles between room temperature and 1450 F to evaluate the thermal fatigue response of Rene 41 metallic heat shields for hypersonic cruise aircraft applications. At the conclusion of the tests, the panels retained substantial structural integrity; however, there were cracks and excessive wear in the vicinity of fastener holes and there was an 80-percent loss in ductility of the skin. Shrinkage of the panel which caused the cracks and wear must be considered in design of panels for Thermal Protection Systems (TPS) applications.

  5. Thermal fatigue tests of a radiative heat shield panel for a hypersonic transport

    SciTech Connect

    Webb, G.L.; Clark, R.K.; Sharpe, E.L.

    1985-09-01

    A pair of corrugation stiffened, beaded skin Rene 41 heat shield panels were exposed to 20,000 thermal cycles between room temperature and 1450 F to evaluate the thermal fatigue response of Rene 41 metallic heat shields for hypersonic cruise aircraft applications. At the conclusion of the tests, the panels retained substantial structural integrity; however, there were cracks and excessive wear in the vicinity of fastener holes and there was an 80-percent loss in ductility of the skin. Shrinkage of the panel which caused the cracks and wear must be considered in design of panels for Thermal Protection Systems (TPS) applications.

  6. Appropriate Mechanochemical Conditions for Corrosion-Fatigue Testing of Magnesium Alloys for Temporary Bioimplant Applications

    NASA Astrophysics Data System (ADS)

    Harandi, Shervin Eslami; Singh Raman, R. K.

    2015-05-01

    Magnesium (Mg) alloys possess great potential as bioimplants. A temporary implant employed as support for the repair of a fractured bone must possess sufficient strength to maintain their mechanical integrity for the required duration of healing. However, Mg alloys are susceptible to sudden cracking or fracture under the simultaneous action of cyclic loading and the corrosive physiological environment, i.e., corrosion fatigue (CF). Investigations of such fracture should be performed under appropriate mechanochemical conditions that appropriately simulate the actual human body conditions. This article reviews the existing knowledge on CF of Mg alloys in simulated body fluid and describes a relatively more accurate testing procedure developed in the authors' laboratory.

  7. A multi-frequency fatigue testing method for wind turbine rotor blades

    NASA Astrophysics Data System (ADS)

    Eder, M. A.; Belloni, F.; Tesauro, A.; Hanis, T.

    2017-02-01

    Rotor blades are among the most delicate components of modern wind turbines. Reliability is a crucial aspect, since blades shall ideally remain free of failure under ultra-high cycle loading conditions throughout their designated lifetime of 20-25 years. Full-scale blade tests are the most accurate means to experimentally simulate damage evolution under operating conditions, and are therefore used to demonstrate that a blade type fulfils the reliability requirements to an acceptable degree of confidence. The state-of-the-art testing method for rotor blades in industry is based on resonance excitation where typically a rotating mass excites the blade close to its first natural frequency. During operation the blade response due to external forcing is governed by a weighted combination of its eigenmodes. Current test methodologies which only utilise the lowest eigenfrequency induce a fictitious damage where additional tuning masses are required to recover the desired damage distribution. Even with the commonly adopted amplitude upscaling technique fatigue tests remain a time-consuming and costly endeavour. The application of tuning masses increases the complexity of the problem by lowering the natural frequency of the blade and therefore increasing the testing time. The novel method presented in this paper aims at shortening the duration of the state-of-the-art fatigue testing method by simultaneously exciting the blade with a combination of two or more eigenfrequencies. Taking advantage of the different shapes of the excited eigenmodes, the actual spatial damage distribution can be more realistically simulated in the tests by tuning the excitation force amplitudes rather than adding tuning masses. This implies that in portions of the blade the lowest mode is governing the damage whereas in others higher modes contribute more significantly due to their higher cycle count. A numerical feasibility study based on a publicly available large utility rotor blade is used to

  8. Cyclic Fatigue Testing for Application for paraglacial rock slope stability modelling

    NASA Astrophysics Data System (ADS)

    Grämiger, Lorenz; Perras, Matthew A.; Moore, Jeffrey R.; Loew, Simon

    2015-04-01

    In glacial environments, rock mass damage is influenced by stress redistribution caused by glaciation and deglaciation cycles. The intact rock strength, discontinuities, stress regime and environmental factors all contribute to the mechanical behavior of the rock slope. Critically-stressed rock walls are exposed to changing boundary conditions. The effect of stress changes during deglaciation of a major glacial period is not well constrained, neither the influence of smaller stress magnitudes of repeat glacier cycles during an interglacial. In an effort to constrain numerical rock slope model input values, a laboratory testing program has been conducted to address the role of fatigue on the intact rock strength. Baseline unconfined compression and Brazilian tensile testing has been conducted on gneissic rocks from the Aletsch valley in Switzerland. The baseline testing results are used to determine load levels for cyclic fatigue compression and tension testing. In the cyclic tests the intact rock samples are taken to the load levels determined from the baseline tests and cyclic loading and unloading is conducted around the nominal load level. The stress fluctuation chosen is between 2-10 MPa, which is equivalent to a glacial loading and unloading of 200-1000m of ice. Such ice thickness change are typical for the Grosser Aletsch glacier during the Lateglacial and Holocene. During cyclic loading and unloading the amount of damage is estimated by recording the number of acoustic emission events with time. Once the acoustic emission events per cycle decrease well below initial cycling levels the load level is increased and cyclic loading is continued at the new load level. This was done for both cyclic compression and cyclic Brazilian tensile tests. The aim of the cyclic tests is to understand what degree of pre-existing damage is required such that 2-10 MPa stress fluctuations could cause crack propagation and failure of laboratory samples in long-term cyclic fatigue

  9. A Comparison of Zero Mean Strain Rotating Beam Fatigue Test Methods for Nitinol Wire

    NASA Astrophysics Data System (ADS)

    Norwich, Dennis W.

    2014-07-01

    Zero mean strain rotating beam fatigue testing has become the standard for comparing the fatigue properties of Nitinol wire. Most commercially available equipment consists of either a two-chuck or a chuck and bushing system, where the wire length and center-to-center axis distance determine the maximum strain on the wire. For the two-chuck system, the samples are constrained at either end of the wire, and both chucks are driven at the same speed. For the chuck and bushing system, the sample is constrained at one end in a chuck and rides freely in a bushing at the other end. These equivalent systems will both be herein referred to as Chuck-to-Chuck systems. An alternate system uses a machined test block with a specific radius to guide the wire at a known strain during testing. In either system, the test parts can be immersed in a temperature-controlled fluid bath to eliminate any heating effect created in the specimen due to dissipative processes during cyclic loading (cyclic stress induced the formation of martensite) Wagner et al. ( Mater. Sci. Eng. A, 378, p 105-109, 1). This study will compare the results of the same starting material tested with each system to determine if the test system differences affect the final results. The advantages and disadvantages of each system will be highlighted and compared. The factors compared will include ease of setup, operator skill level required, consistency of strain measurement, equipment test limits, and data recovery and analysis. Also, the effect of test speed on the test results for each system will be investigated.

  10. Residual strength and crack propagation tests on C-130 airplane center wings with service-imposed fatigue damage

    NASA Technical Reports Server (NTRS)

    Snider, H. L.; Reeder, F. L.; Dirkin, W. J.

    1972-01-01

    Fourteen C-130 airplane center wings, each containing service-imposed fatigue damage resulting from 4000 to 13,000 accumulated flight hours, were tested to determine their fatigue crack propagation and static residual strength characteristics. Eight wings were subjected to a two-step constant amplitude fatigue test prior to static testing. Cracks up to 30 inches long were generated in these tests. Residual static strengths of these wings ranged from 56 to 87 percent of limit load. The remaining six wings containing cracks up to 4 inches long were statically tested as received from field service. Residual static strengths of these wings ranged from 98 to 117 percent of limit load. Damage-tolerant structural design features such as fastener holes, stringers, doublers around door cutouts, and spanwise panel splices proved to be effective in retarding crack propagation.

  11. Toward the Standardization of Biochar Analysis: The COST Action TD1107 Interlaboratory Comparison.

    PubMed

    Bachmann, Hans Jörg; Bucheli, Thomas D; Dieguez-Alonso, Alba; Fabbri, Daniele; Knicker, Heike; Schmidt, Hans-Peter; Ulbricht, Axel; Becker, Roland; Buscaroli, Alessandro; Buerge, Diane; Cross, Andrew; Dickinson, Dane; Enders, Akio; Esteves, Valdemar I; Evangelou, Michael W H; Fellet, Guido; Friedrich, Kevin; Gasco Guerrero, Gabriel; Glaser, Bruno; Hanke, Ulrich M; Hanley, Kelly; Hilber, Isabel; Kalderis, Dimitrios; Leifeld, Jens; Masek, Ondrej; Mumme, Jan; Carmona, Marina Paneque; Calvelo Pereira, Roberto; Rees, Frederic; Rombolà, Alessandro G; de la Rosa, José Maria; Sakrabani, Ruben; Sohi, Saran; Soja, Gerhard; Valagussa, Massimo; Verheijen, Frank; Zehetner, Franz

    2016-01-20

    Biochar produced by pyrolysis of organic residues is increasingly used for soil amendment and many other applications. However, analytical methods for its physical and chemical characterization are yet far from being specifically adapted, optimized, and standardized. Therefore, COST Action TD1107 conducted an interlaboratory comparison in which 22 laboratories from 12 countries analyzed three different types of biochar for 38 physical-chemical parameters (macro- and microelements, heavy metals, polycyclic aromatic hydrocarbons, pH, electrical conductivity, and specific surface area) with their preferential methods. The data were evaluated in detail using professional interlaboratory testing software. Whereas intralaboratory repeatability was generally good or at least acceptable, interlaboratory reproducibility was mostly not (20% < mean reproducibility standard deviation < 460%). This paper contributes to better comparability of biochar data published already and provides recommendations to improve and harmonize specific methods for biochar analysis in the future.

  12. Design and evaluation of a 3 million DN series-hybrid thrust bearing. [stability tests and fatigue tests

    NASA Technical Reports Server (NTRS)

    Scibbe, H. W.; Winn, L. W.; Eusepi, M.

    1976-01-01

    The bearing, consisting of a 150-mm ball bearing and a centrifugally actuated, conical, fluid-film bearing, was fatigue tested. Test conditions were representative of a mainshaft ball bearing in a gas turbine engine operating at maximum thrust load to simulate aircraft takeoff conditions. Tests were conducted up to 16000 rpm and at this speed an axial load of 15568 newtons (3500 lb) was safely supported by the hybrid bearing system. Through the series-hybrid bearing principle, the effective ball bearing speed was reduced to approximately one-half of the shaft speed. It was concluded that a speed reduction of this magnitude results in a ten-fold increase in the ball bearing fatigue life. A successful evaluation of fluid-film bearing lubricant supply failure was performed repeatedly at an operating speed of 10,000 rpm. A complete and smooth changeover to full-scale ball bearing operation was effected when the oil supply to the fluid-film bearing was cut off. Reactivation of the fluid-film oil supply system resulted in a flawless return to the original mode of hybrid operation.

  13. Applicability and robustness of the hen's egg test for analysis of micronucleus induction (HET-MN): results from an inter-laboratory trial.

    PubMed

    Greywe, Daniela; Kreutz, Jürgen; Banduhn, Norbert; Krauledat, Matthias; Scheel, Julia; Schroeder, Klaus R; Wolf, Thorsten; Reisinger, Kerstin

    2012-08-30

    The hen's egg test for analysis of micronucleus formation (HET-MN) was developed several years ago to provide an alternative test system to the in vivo micronucleus test. In order to assess its applicability and robustness, a study was carried out at the University of Osnabrueck (lab A) and at the laboratories of Henkel AG & Co. KGaA (lab B). Following transfer of the method to lab B, a range of test substances that had been pre-tested at lab A, were tested at Henkel: the genotoxins cyclophosphamide, dimethylbenz(a)anthracene, methotrexate, acrylamide, azorubin, N-nitroso-dimethylamine and the non-genotoxins, orange G and isopropyl myristate. In a second phase, additional compounds with known in vivo properties were examined in both labs: the non-genotoxin, ampicillin, the "irrelevant" positives, isophorone and 2,4-dichlorophenol ("irrelevant" means positive in standard in vitro tests, but negative in vivo), the clastogen p-chloroaniline, and the aneugens carbendazim and vinorelbine. All substances were correctly predicted in both labs with respect to their in vivo genotoxic properties, indicating that the HET-MN may have an improved predictivity compared with current standard in vitro test systems. The results support the promising role of the HET-MN assay as a supplement to existing test batteries.

  14. NCSL National Measurement Interlaboratory Comparison Database requirements

    SciTech Connect

    WHEELER,JAMES C.; PETTIT,RICHARD B.

    2000-04-20

    With the recent development of an International Comparisons Database which provides worldwide access to measurement comparison data between National Measurement Institutes, there is currently renewed interest in developing a database of comparisons for calibration laboratories within a country. For many years, the National Conference of Standards Laboratories (NCSL), through the Measurement Comparison Programs Committee, has sponsored Interlaboratory Comparisons in a variety of measurement areas. This paper will discuss the need for such a National database which catalogues and maintains Interlaboratory Comparisons data. The paper will also discuss future requirements in this area.

  15. Flat-Cladding Fiber Bragg Grating Sensors for Large Strain Amplitude Fatigue Tests

    PubMed Central

    Feng, Aihen; Chen, Daolun; Li, Cheng; Gu, Xijia

    2010-01-01

    We have successfully developed a flat-cladding fiber Bragg grating sensor for large cyclic strain amplitude tests of up to ±8,000 με. The increased contact area between the flat-cladding fiber and substrate, together with the application of a new bonding process, has significantly increased the bonding strength. In the push-pull fatigue tests of an aluminum alloy, the plastic strain amplitudes measured by three optical fiber sensors differ only by 0.43% at a cyclic strain amplitude of ±7,000 με and 1.9% at a cyclic strain amplitude of ±8,000 με. We also applied the sensor on an extruded magnesium alloy for evaluating the peculiar asymmetric hysteresis loops. The results obtained were in good agreement with those measured from the extensometer, a further validation of the sensor. PMID:22163621

  16. Muscular Activity and Fatigue in Lower-Limb and Trunk Muscles during Different Sit-To-Stand Tests

    PubMed Central

    Roldán-Jiménez, Cristina; Bennett, Paul; Cuesta-Vargas, Antonio I.

    2015-01-01

    Sit-to-stand (STS) tests measure the ability to get up from a chair, reproducing an important component of daily living activity. As this functional task is essential for human independence, STS performance has been studied in the past decades using several methods, including electromyography. The aim of this study was to measure muscular activity and fatigue during different repetitions and speeds of STS tasks using surface electromyography in lower-limb and trunk muscles. This cross-sectional study recruited 30 healthy young adults. Average muscle activation, percentage of maximum voluntary contraction, muscle involvement in motion and fatigue were measured using surface electrodes placed on the medial gastrocnemius (MG), biceps femoris (BF), vastus medialis of the quadriceps (QM), the abdominal rectus (AR), erector spinae (ES), rectus femoris (RF), soleus (SO) and the tibialis anterior (TA). Five-repetition STS, 10-repetition STS and 30-second STS variants were performed. MG, BF, QM, ES and RF muscles showed differences in muscle activation, while QM, AR and ES muscles showed significant differences in MVC percentage. Also, significant differences in fatigue were found in QM muscle between different STS tests. There was no statistically significant fatigue in the BF, MG and SO muscles of the leg although there appeared to be a trend of increasing fatigue. These results could be useful in describing the functional movements of the STS test used in rehabilitation programs, notwithstanding that they were measured in healthy young subjects. PMID:26506612

  17. INTERLABORATORY STUDY OF PRECISION: HYALELLA AZTECA AND CHIRONOMUS TENTANS FRESHWATER SEDIMENT TOXICITY ASSAYS

    EPA Science Inventory

    Standard 10-d whole sediment toxicity test methods have recently been developed by the U.S. Environmental Protection Agency (EPA) for the amphipod Hyalella azteca and the midge Chironomus tentans. An interlaboratory evaluation of method precision was performed using a group of se...

  18. Laser High-Cycle Thermal Fatigue of Pulse Detonation Engine Combustor Materials Tested

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Fox, Dennis S.; Miller, Robert A.

    2001-01-01

    Pulse detonation engines (PDE's) have received increasing attention for future aerospace propulsion applications. Because the PDE is designed for a high-frequency, intermittent detonation combustion process, extremely high gas temperatures and pressures can be realized under the nearly constant-volume combustion environment. The PDE's can potentially achieve higher thermodynamic cycle efficiency and thrust density in comparison to traditional constant-pressure combustion gas turbine engines (ref. 1). However, the development of these engines requires robust design of the engine components that must endure harsh detonation environments. In particular, the detonation combustor chamber, which is designed to sustain and confine the detonation combustion process, will experience high pressure and temperature pulses with very short durations (refs. 2 and 3). Therefore, it is of great importance to evaluate PDE combustor materials and components under simulated engine temperatures and stress conditions in the laboratory. In this study, a high-cycle thermal fatigue test rig was established at the NASA Glenn Research Center using a 1.5-kW CO2 laser. The high-power laser, operating in the pulsed mode, can be controlled at various pulse energy levels and waveform distributions. The enhanced laser pulses can be used to mimic the time-dependent temperature and pressure waves encountered in a pulsed detonation engine. Under the enhanced laser pulse condition, a maximum 7.5-kW peak power with a duration of approximately 0.1 to 0.2 msec (a spike) can be achieved, followed by a plateau region that has about one-fifth of the maximum power level with several milliseconds duration. The laser thermal fatigue rig has also been developed to adopt flat and rotating tubular specimen configurations for the simulated engine tests. More sophisticated laser optic systems can be used to simulate the spatial distributions of the temperature and shock waves in the engine. Pulse laser high

  19. Low cycle thermal fatigue testing of beryllium grades for ITER plasma facing components

    SciTech Connect

    Watson, R.D.; Youchison, D.L.; Dombrowski, D.E.; Guiniatouline, R.N.; Kupriynov, I.B.

    1996-02-01

    A novel technique has been used to test the relative low cycle thermal fatigue resistance of different grades of US and Russian beryllium, which is proposed as plasma facing armor for fusion reactor first wall, limiter, and divertor components. The 30 kW electron beam test system at Sandia National Laboratories was used to sweep the beam spot along one direction at 1 Hz. This produces a localized temperature ``spike`` of 750{degree}C for each pass of the beam. Large thermal stresses in excess of the yield strength are generated due to very high spot heat flux, 250 MW/m{sup 2}. Cyclic plastic strains on the order of 0.6% produced visible cracking on the heated surface in less than 3000 cycles. An in-vacuo fiber optic borescope was used to visually inspect the beryllium surfaces for crack initiation. Grades of US beryllium tested included: S-65C, S- 65H, S-200F, S-200F-H, SR-200, I-400, extruded high purity, HIP`d spherical powder, porous beryllium (94% and 98% dense), Be/30% BeO, Be/60% BeO, and TiBe{sub 12}. Russian grades included: TGP-56, TShGT, DShG-200, and TShG-56. Both the number of cycles to crack initiation, and the depth of crack propagation, were measured. The most fatigue resistant grades were S-65C, DShG-200, TShGT, and TShG-56. Rolled sheet Be (SR-200) showed excellent crack propagation resistance in the plane of rolling, despite early formation of delamination cracks. Only one sample showed no evidence of surface melting, Extruded (T). Metallographic and chemical analyses are provided. Good agreement was found between the measured depth of cracks and a 2-D elastic-plastic finite element stress analysis.

  20. Predicting skin sensitization potential and inter-laboratory reproducibility of a human Cell Line Activation Test (h-CLAT) in the European Cosmetics Association (COLIPA) ring trials.

    PubMed

    Sakaguchi, Hitoshi; Ryan, Cindy; Ovigne, Jean-Marc; Schroeder, Klaus R; Ashikaga, Takao

    2010-09-01

    Regulatory policies in Europe prohibited the testing of cosmetic ingredients in animals for a number of toxicological endpoints. Currently no validated non-animal test methods exist for skin sensitization. Evaluation of changes in cell surface marker expression in dendritic cell (DC)-surrogate cell lines represents one non-animal approach. The human Cell Line Activation Test (h-CLAT) examines the level of CD86 and CD54 expression on the surface of THP-1 cells, a human monocytic leukemia cell line, following 24h of chemical exposure. To examine protocol transferability, between-lab reproducibility, and predictive capacity, the h-CLAT has been evaluated by five independent laboratories in several ring trials (RTs) coordinated by the European Cosmetics Association (COLIPA). The results of the first and second RTs demonstrated that the protocol was transferable and basically had good between-lab reproducibility and predictivity, but there were some false negative data. To improve performance, protocol and prediction model were modified. Using the modified prediction model in the first and second RT, accuracy was improved. However, about 15% of the outcomes were not correctly identified, which exposes some of the limitations of the assay. For the chemicals evaluated, the limitation may due to chemical being a weak allergen or having low solubility (ex. alpha-hexylcinnamaldehyde). The third RT evaluated the modified prediction model and satisfactory results were obtained. From the RT data, the feasibility of utilizing cell lines as surrogate DC in development of in vitro skin sensitization methods shows promise. The data also support initiating formal pre-validation of the h-CLAT in order to fully understand the capabilities and limitations of the assay.

  1. Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing

    SciTech Connect

    Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; Sherwood, James; Lundstrom, Troy; LeBlanc, Bruce; Hughes, Scott; Desmond, Michael; Beattie, Alan; Rumsey, Mark; Klute, Sandra M.; Pedrazzani, Renee; Werlink, Rudy; Newman, John

    2014-05-20

    The research we present in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Our researchers used digital image correlation, shearography, acoustic emission, fiber-optic strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. Furthermore, this article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.

  2. Random Vibration Tests for Prediction of Fatigue Life of Diffuser Structure for Gas Dynamic Laser

    NASA Astrophysics Data System (ADS)

    Maurer, O. F.; Banaszak, D. L.

    1980-01-01

    Static and dynamic strain measurements which were taken during test stand operations of the gas dynamic laser (GDL) for the AF Airborne Laser Laboratory indicated that higher than expected vibrational stress levels may possibly limit the fatigue life of the laser structure. Particularly the diffuser sidewall structure exhibited large amplitude random vibrations which were excited by the internal gas flow. The diffuser structure consists of two layers of brazed stainless steel, AISI-347, panels. Cooling ducts were milled into the outer face sheet. These in turn are backed by the inner face sheet. So called T-rail stiffeners silver-brazed to the outer face sheets add the required stiffness and divide the sidewall into smaller rectangular plate sections.

  3. Inspection and monitoring of wind turbine blade-embedded wave defects during fatigue testing

    DOE PAGES

    Niezrecki, Christopher; Avitabile, Peter; Chen, Julie; ...

    2014-05-20

    The research we present in this article focuses on a 9-m CX-100 wind turbine blade, designed by a team led by Sandia National Laboratories and manufactured by TPI Composites Inc. The key difference between the 9-m blade and baseline CX-100 blades is that this blade contains fabric wave defects of controlled geometry inserted at specified locations along the blade length. The defect blade was tested at the National Wind Technology Center at the National Renewable Energy Laboratory using a schedule of cycles at increasing load level until failure was detected. Our researchers used digital image correlation, shearography, acoustic emission, fiber-opticmore » strain sensing, thermal imaging, and piezoelectric sensing as structural health monitoring techniques. Furthermore, this article provides a comparison of the sensing results of these different structural health monitoring approaches to detect the defects and track the resultant damage from the initial fatigue cycle to final failure.« less

  4. Effect of Test Frequency on Fatigue Crack Growth Rates of Ti-6Al-4V ELI Alloy at Cryogenic Temperature

    SciTech Connect

    Yuri, T.; Ono, Y.; Ogata, T.

    2006-03-31

    In order to clarify the effect of test frequency on the fatigue crack growth rates (da/dN) of Ti-6Al-4V ELI alloy have been investigated at cryogenic temperature. The fatigue crack growth tests were conducted using the test frequencies of 5 and 20 Hz, respectively. At 4 K, the effects of the test frequencies on the fatigue crack growth rates of Ti-6Al-4V ELI alloy were not clear or significant. The fatigue crack growth rates in the low propagation rate region at 4 K were smaller than those at 293 K. On the other hand, those in the high propagation rate region at 4 K were bigger than those at 293 K. The former is considered that the crack closure level was higher as compared to that at 293 K and the latter is due to the difference values of the fracture toughness at 4 and 293 K, respectively. The fracture surfaces of compact tension (CT) specimens in the high propagation rate regions at each test temperature revealed the striations, and furthermore accompanied with the flute fracture surface at 4 K. On the other hand, those of CT specimens in the low propagation rate region at 4 K were found facet-like fracture surfaces corresponding with almost the {alpha}-grain size.

  5. Decreased oxygen extraction during cardiopulmonary exercise test in patients with chronic fatigue syndrome

    PubMed Central

    2014-01-01

    Background The insufficient metabolic adaptation to exercise in Chronic Fatigue Syndrome (CFS) is still being debated and poorly understood. Methods We analysed the cardiopulmonary exercise tests of CFS patients, idiopathic chronic fatigue (CFI) patients and healthy visitors. Continuous non-invasive measurement of the cardiac output by Nexfin® (BMEYE B.V. Amsterdam, the Netherlands) was added to the cardiopulmonary exercise tests. The peak oxygen extraction by muscle cells and the increase of cardiac output relative to the increase of oxygen uptake (ΔQ’/ΔV’O2) were measured, calculated from the cardiac output and the oxygen uptake during incremental exercise. Results The peak oxygen extraction by muscle cells was 10.83 ± 2.80 ml/100ml in 178 CFS women, 11.62 ± 2.90 ml/100 ml in 172 CFI, and 13.45 ± 2.72 ml/100 ml in 11 healthy women (ANOVA: P=0.001), 13.66 ± 3.31 ml/100 ml in 25 CFS men, 14.63 ± 4.38 ml/100 ml in 51 CFI, and 19.52 ± 6.53 ml/100 ml in 7 healthy men (ANOVA: P=0.008). The ΔQ’/ΔV’O2 was > 6 L/L (normal ΔQ’/ΔV’O2 ≈ 5 L/L) in 70% of the patients and in 22% of the healthy group. Conclusion Low oxygen uptake by muscle cells causes exercise intolerance in a majority of CFS patients, indicating insufficient metabolic adaptation to incremental exercise. The high increase of the cardiac output relative to the increase of oxygen uptake argues against deconditioning as a cause for physical impairment in these patients. PMID:24456560

  6. Design of Linear Control System for Wind Turbine Blade Fatigue Testing

    NASA Astrophysics Data System (ADS)

    Toft, Anders; Roe-Poulsen, Bjarke; Christiansen, Rasmus; Knudsen, Torben

    2016-09-01

    This paper proposes a linear method for wind turbine blade fatigue testing at Siemens Wind Power. The setup consists of a blade, an actuator (motor and load mass) that acts on the blade with a sinusoidal moment, and a distribution of strain gauges to measure the blade flexure. Based on the frequency of the sinusoidal input, the blade will start oscillating with a given gain, hence the objective of the fatigue test is to make the blade oscillate with a controlled amplitude. The system currently in use is based on frequency control, which involves some non-linearities that make the system difficult to control. To make a linear controller, a different approach has been chosen, namely making a controller which is not regulating on the input frequency, but on the input amplitude. A non-linear mechanical model for the blade and the motor has been constructed. This model has been simplified based on the desired output, namely the amplitude of the blade. Furthermore, the model has been linearised to make it suitable for linear analysis and control design methods. The controller is designed based on a simplified and linearised model, and its gain parameter determined using pole placement. The model variants have been simulated in the MATLAB toolbox Simulink, which shows that the controller design based on the simple model performs adequately with the non-linear model. Moreover, the developed controller solves the robustness issue found in the existent solution and also reduces the needed energy for actuation as it always operates at the blade eigenfrequency.

  7. An interlaboratory study as useful tool for proficiency testing of chemical oxygen demand measurements using solid substrates and liquid samples with high suspended solid content.

    PubMed

    Raposo, F; de la Rubia, M A; Borja, R; Alaiz, M; Beltrán, J; Cavinato, C; Clinckspoor, M; Demirer, G; Diamadopoulos, E; Helmreich, B; Jenicek, P; Martí, N; Méndez, R; Noguerol, J; Pereira, F; Picard, S; Torrijos, M

    2009-11-15

    In 2008, the first Proficiency Testing Scheme of Chemical Oxygen Demand (1(st)COD-PT(ADG)) was conducted to assess the results obtained for different research groups whose field work is mainly anaerobic digestion. This study was performed using four samples, two solid samples as raw materials and two solid samples to prepare high concentration suspended solid solutions. Invitations were sent to a large number of laboratories, mainly to anaerobic digestion research groups. Finally, thirty labs from sixteen countries agreed to participate, but for different reasons four participants could not send any data. In total, twenty-six results were reported to the COD-PT coordinator. This study showed the importance of continuous participation in proficiency testing (PT) schemes in order to compare the results obtained. Taking into account the lack of a general standard method and high quality certified reference materials (CRMs), the traceability of COD determination is not currently easy to check. In addition, the spread of participants' results obtained was high and pointed to the advisability of using consensus values due to their unreliability. Therefore, the theoretical oxygen demand (ThOD) values were considered as assigned values for all the samples analysed. On the other hand, in this PT the established standard deviation (ESD) has been determined by the Horwitz modified function. Participants of this 1(st)COD-PT(ADG) were asked to give a short report on the analytical method used. Although all the participants used potassium dichromate as their oxidant reagent, their experimental procedures were very different. With the purpose of comparing the results obtained, the different experimental conditions used were classified into five methods, corresponding to two main categories, open and closed reflux. The performance of laboratories was expressed by the z-score, whose value is considered satisfactory when z-score

  8. Displacement measurement on specimens subjected to non-Gaussian random vibrations in fatigue life tests

    NASA Astrophysics Data System (ADS)

    Troncossi, M.; Di Sante, R.; Rivola, A.

    2014-05-01

    High-cycle fatigue life tests conducted using controlled random vibrations are commonly used to evaluate failure in components and structures. In most cases, a Gaussian distribution of both the input vibration and the stress response is assumed, while real-life loads may be non-Gaussian causing the response to be non-Gaussian as well. Generating non-Gaussian drive signals with high kurtosis and a given power spectral density, however, does not always guarantee that the stress response will actually be non-Gaussian, because this depends on the adherence of the tested system to the Central Limit Theorem. On the other side, suitable measurement methods need to be developed in order to estimate the stress amplitude response at critical failure locations, and therefore to evaluate and select input loads. In this paper, a simple test rig with a notched cantilevered specimen was developed to measure the response and examine the kurtosis values in the case of stationary Gaussian, stationary non-Gaussian, and non-stationary non-Gaussian excitation signals. The Laser Doppler Vibrometry (LDV) technique was used for the first time in this type of test, to estimate the specimen stress amplitude response in terms of differential displacement at the notch section ends. A method based on the use of accelerometers to correct for the occasional signal drops occurring during the experiment is described and the results are discussed with respect to the ability of the test procedure to evaluate the output signal.

  9. An advanced test technique to quantify thermomechanical fatigue damage accumulation in composite materials

    NASA Technical Reports Server (NTRS)

    Castelli, Michael G.

    1993-01-01

    A mechanical test technique was developed to assist in quantifying the accumulation of damage in composite materials during thermomechanical fatigue (TMF) cycling. This was accomplished by incorporating definitive elastic mechanical property measurements into an ongoing load-controlled TMF test without disturbing the test specimen or significantly altering the test conditions. The technique allows two fundamental composite properties consisting of the isothermal elastic static moduli and the macroscopic coefficient of thermal expansion (CTE) to be measured and collected as functions of the TMF cycles. The specific implementation was incorporated into the commonly employed idealized in-phase and out-of-phase TMF cycles. However, the techniques discussed could be easily implemented into any form of load-controlled TMF mission cycle. By quantifying the degradations of these properties, tremendous insights are gained concerning the progression of macroscopic composite damage and often times the progression of damage within a given constituent. This information should also be useful for the characterization and essential for the verification of analytical damage modeling methodologies. Several examples utilizing this test technique are given for three different fiber lay-ups of titanium metal matrix composites.

  10. Acoustic emission monitoring of a wind turbine blade during a fatigue test

    SciTech Connect

    Beattie, A.G.

    1997-01-01

    A fatigue test of a wind turbine blade was conducted at the National Renewable Energy Laboratory in the fall of 1994. Acoustic emission monitoring of the test was performed, starting with the second loading level. The acoustic emission data indicated that this load exceeded the strength of the blade. From the first cycle at the new load, an oil can type of deformation occurred in two areas of the upper skin of the blade. One of these was near the blade root and the other was about the middle of the tested portion of the blade. The emission monitoring indicated that no damage was taking place in the area near the root, but in the deforming area near the middle of the blade, damage occurred from the first cycles at the higher load. The test was stopped after approximately one day and the blade was declared destroyed, although no gross damage had occurred. Several weeks later the test was resumed, to be continued until gross damage occurred. The upper skin tore approximately one half hour after the cycling was restarted.

  11. A single electromyographic testing point is valid to monitor neuromuscular fatigue during continuous exercise.

    PubMed

    Galen, Sujay S; Malek, Moh H

    2014-10-01

    Two different protocols for estimating the electromyographic fatigue threshold (EMGFT) have been proposed in the literature. These protocols are distinguished by the number of visits required to determine the EMGFT. The purpose of this study, therefore, was to statistically compare the estimated EMGFT from the single-visit incremental test and the multiple-visit constant workload tests for single-leg knee-extensor exercise. Seven healthy college-aged men [mean ± SEM; age = 25.0 ± 0.7 years] performed the incremental test and on separate occasions also performed 4 constant workload tests to voluntary exhaustion. The EMG amplitude was recorded from the rectus femoris muscle during all the testing sessions. For the single-visit test, the EMG amplitude vs. time relationship for each power output was examined using linear regression. For the multiple-visit tests, the EMG amplitude vs. time relationship was calculated for each constant power output. Thereafter, the power outputs were plotted as a function of the slope coefficient for the EMG amplitude vs. time relationships, and linear regression was performed. The EMGFT was defined as the intersection of the regression line with the y-intercept of the power output vs. slope coefficient plot. The results indicated that the estimated EMGFT from the single-visit test was significantly (p = 0.012) lower than the estimate from the multiple-visit tests. Because this test is performed during a single visit and concludes within 20 minutes, it may also have application in clinical rehabilitation settings and not merely for an athletic population.

  12. Progress Letter Report on Bending Fatigue Test System Development for Spent Nuclear Fuel Vibration Integrity Study (Out-of-cell fatigue testing development - Task 2.4)

    SciTech Connect

    Wang, Jy-An John; Wang, Hong; Cox, Thomas S; Baldwin, Charles A; Bevard, Bruce Balkcom

    2013-08-01

    Vibration integrity of high burn-up spent nuclear fuel in transportation remains to be a critical component of US nuclear waste management system. The structural evaluation of package for spent fuel transportation eventually will need to see if the content or spent fuel is in a subcritical condition. However, a system for testing and characterizing such spent fuel is still lacking mainly due to the complication involved with dealing radioactive specimens in a hot cell environment. Apparently, the current state-of-the-art in spent fuel research and development is quite far away from the delivery of reliable mechanical property data for the assessment of spent fuels in the transport package evaluation. Under the sponsorship of US NRC, ORNL has taken the challenge in developing a robust testing system for spent fuel in hot cell. An extensive literature survey was carried out and unique requirements of such testing system were identified. The U-frame setup has come to the top among various designs examined for reverse bending fatigue test of spent fuel rod. The U-frame has many features that deserve mentioned here: Easy to install spent fuel rod in test; Less linkages than in conventional bending test setup such as three-point or four-point bending; Target the failure mode relevant to the fracture of spent fuel rod in transportation by focusing on pure bending; The continuous calibrations and modifications resulted in the third generation (3G) U-frame testing setup. Rigid arms are split along the LBB axis at rod sample ends. For each arm, this results in a large arm body and an end piece. Mating halves of bushings were modified into two V-shaped surfaces on which linear roller bearings (LRB) are embedded. The rod specimen is installed into the test fixture through opening and closing slide end-pieces. The 3G apparently has addressed major issues of setup identified in the previous stage and been proven to be eligible to be further pursued in this project. On the other

  13. Lessons from the organization of a proficiency testing program in food microbiology by interlaboratory comparison: analytical methods in use, impact of methods on bacterial counts and measurement uncertainty of bacterial counts.

    PubMed

    Augustin, Jean-Christophe; Carlier, Vincent

    2006-02-01

    The proficiency testing program in food microbiology RAEMA (Réseau d'Analyses et d'Echanges en Microbiologie des Aliments), created in 1988, currently includes 450 participating laboratories. This interlaboratory comparison establishes proficiency in detection of Salmonella and Listeria monocytogenes, as well as enumeration of aerobic micro-organisms, Enterobacteriaceae, coliforms, beta-glucuronidase-positive Escherichia coli, anaerobic sulfito-reducing bacteria, Clostridium perfringens, coagulase-positive staphylococci, and L. monocytogenes. Twice a year, five units samples are sent to participants to assess their precision and trueness for enumeration and detection of micro-organisms. Most of participating laboratories use standard or validated alternative methods, they were 50-70% in 1994 and, for 5 years, they are 95%. An increasing use of alternative methods was also observed. This phenomenon is all the more significant as standard methods are laborious and time consuming; thus, 50% of the laboratories use alternative methods for the detection of Salmonella and L. monocytogenes. More and more laboratories use ready-to-use media and although the percentage is variable according to the microflora, we can consider that, today, 50-60% of the laboratories participating to the proficiency program only use ready-to-use media. The internal quality assurance programs lead also to an increasing use of media quality controls. The impact of analytical methods on bacterial counts was assessed by grouping together the results obtained by participating laboratories during the 10 last testing schemes from 1999 to 2003. The identified significant factors influencing enumeration results are variable from one microflora to another. Some of them significantly influence many microflora: the plating method (spiral plating or not) is influential for aerobic micro-organisms, Enterobacteriaceae, coliforms, and staphylococci, the type of culture medium and the medium manufacturer is

  14. An unsupervised pattern recognition approach for AE data originating from fatigue tests on polymer-composite materials

    NASA Astrophysics Data System (ADS)

    Doan, D. D.; Ramasso, E.; Placet, V.; Zhang, S.; Boubakar, L.; Zerhouni, N.

    2015-12-01

    This work investigates acoustic emission generated during tension fatigue tests carried out on a carbon fiber reinforced polymer (CFRP) composite specimen. Since massive fatigue data processing, especially noise reduction, remains an important challenge in AE data analysis, a Mahalanobis distance-based noise modeling has been proposed in the present work to tackle this problem. A sequential feature selection based on Davies-Bouldin index has been implemented for fast dimensionality reduction. An unsupervised classifier offline-learned from quasi-static data is then used to classify the data to different AE sources with the possibility to dynamically accommodate with unseen ones. With an efficient proposed noise removal and automatic separation of AE events, this pattern discovery procedure provides an insight into fatigue damage development in composites in the presence of millions of AE events.

  15. Influence of sustained submaximal clenching fatigue test on electromyographic activity and maximum voluntary bite forces in healthy subjects and patients with temporomandibular disorders.

    PubMed

    Xu, L; Fan, S; Cai, B; Fang, Z; Jiang, X

    2017-05-01

    This study aimed to investigate whether the fatigue induced by sustained motor task in the jaw elevator muscles differed between healthy subjects and patients with temporomandibular disorder (TMD). Fifteen patients with TMD and thirteen age- and sex-matched healthy controls performed a fatigue test consisting of sustained clenching contractions at 30% maximal voluntary clenching intensity until test failure (the criterion for terminating the fatigue test was when the biting force decreased by 10% or more from the target force consecutively for >3 s). The pre- and post-maximal bite forces (MBFs) were measured. Surface electromyographic signals were recorded from the superficial masseter muscles and anterior temporal muscles bilaterally, and the median frequency at the beginning, middle and end of the fatigue test was calculated. The duration of the fatigue test was also quantified. Both pre- and post-MBFs were lower in patients with TMD than in controls (P < 0·01). No significant difference was found in the percentage change in MBF between groups. The duration of the fatigue test in TMD patients was significantly shorter than that of the controls (P < 0·05). Our results suggest that, compared to healthy subjects, patients with TMD become more easily fatigued, but the electromyographic activation process during the fatigue test is similar between healthy subjects and patients with TMD. However, the mechanisms involved in this process remain unclear, and further research is warranted.

  16. Bending fatigue tests on flattened strand wire rope at high working loads

    SciTech Connect

    Wang, R.C.; Shapiro, D.E.

    1995-09-01

    The US Bureau of Mines established a wire rope research laboratory to examine the factors that affect the safety and the useful life of wire rope. In the most recent work, two 32-mm 6x27H flattened strand ropes were degraded on a bending fatigue machine. The two tests were run at constant loads of 285 and 347 kN or safety factors of 2.5 and 2. Nondestructive and tensile strength tests were performed on samples of the ropes to determine the relationship between rope deterioration and rope breaking strength. Neither the area loss nor the number of broken wires measured from nondestructive tests could be used as clear indicators of the loss of strength. However, it was found from the tensile tests for both rope specimens that the strength loss was associated with the reduction of breaking strain. This suggests that measuring the strain of many short sections of a rope in the elastic region may locate the high stress sections and thus determine the condition of the rope.

  17. Postural Balance Following Aerobic Fatigue Tests: A Longitudinal Study Among Young Athletes.

    PubMed

    Steinberg, Nili; Eliakim, Alon; Zaav, Aviva; Pantanowitz, Michal; Halumi, Monder; Eisenstein, Tamir; Meckel, Yoav; Nemet, Dan

    2016-01-01

    General fatigue can cause aggravation of postural balance, with increased risk for injuries. The present longitudinal study aimed to evaluate the postural balance of young athletes following field aerobic tests throughout 1 year of training. Thirty children from a sports center in Nazareth, participating in a 3 times/week training program (specific to basketball, soccer, or athletic training), were assessed. Postural balance parameters were taken before, immediately after, and 10 min after a 20 m shuttle-run aerobic test, at 3 time points during 1 training year (Start/Y, Mid/Y, and End/Y). Fitness improved at the Mid/Y and End/Y compared to Start/Y. Postural balance significantly deteriorated immediately after the aerobic test and improved significantly in the 10-min testing in all 3 time points, with significant deterioration in the End/Y compared with the Start/Y. In conclusions, postural balance deteriorates immediately after aerobic exercises, and at the end of the year. To better practice drills related to postural balance and possibly to prevent injuries, it is best for young athletes to properly rest immediately following aerobic exercises and to practice postural balance mainly at the beginning and at the middle of the training year.

  18. Elevated-temperature fracture toughness and fatigue testing of steels for geothermal applications. Annual progress report

    SciTech Connect

    Cutler, R.A.; Goodman, E.C.; Guest, R.V.; Hendrickson, R.R.; Leslie, W.C.

    1980-11-01

    Conventional drill bit steels exhibit increased wear and decreased toughness when run at elevated temperatures in geothermal wells. Bits are therefore run at lower speeds and lighter loads, resulting in lower penetration rates for geothermal wells than for conventional rock drilling. Carpenter EX-00053, Timken CBS 600, Timken CBS 1000M and Vasco X-2M, steels with improved hot hardness (improved wear resistance), were tested in conjunction with the steels used for cones (AISI 4820 and 9315) and lugs (AISI 8620 and 9315) in conventional roller cone rock bits. Shortrod fracture toughness measurements were made on each of these steels between room temperature and 400/sup 0/C. Fatigue crack resistance was determined at 300/sup 0/C for high-temperature steels and at room temperature for conventional steels. Scanning electron microscopy analyses of the fractured short-rod specimens were correlated with observed crack behavior from the test records. Test results are discussed, recommendations made for further testing and preliminary steel selections made for improved geothermal bits.

  19. An assessment of wind tunnel test data on flexible thermal protection materials and results of new fatigue tests of threads

    NASA Technical Reports Server (NTRS)

    Coe, Charles F.

    1985-01-01

    Advanced Flexible Reusable Surface Insulation (AFRSI) was developed as a replacement for the low-temperature (white) tiles on the Space Shuttle. The first use of the AFRSI for an Orbiter flight was on the OMS POD of Orbiter (OV-099) for STS-6. Post flight examination after STS-6 showed that damage had occurred to the AFRSI during flight. The failure anomaly between previous wind-tunnel tests and STS-6 prompted a series of additional wind tunnel tests to gain an insight as to the cause of the failure. An assessment of all the past STS-6 wind tunnel tests pointed out the sensitivity of the test results to scaling of dynamic loads due to the difference of boundary layer thickness, and the material properties as a result of exposure to heating. The thread component of the AFRSI was exposed to fatigue testing using an apparatus that applied pulsating aerodynamic loads on the threads similar to the loads caused by an oscillating shock. Comparison of the mean values of the number-of-cycles to failure showed that the history of the thread was the major factor in its performance. The thread and the wind tunnel data suggests a mechanism of failure for the AFRSI.

  20. Evaluation of Fatigue Performance of Asphalt Based on Constant Strain DSR Test

    NASA Astrophysics Data System (ADS)

    Zhu, H. Z.; Yan, E. H.; Lu, Z. T.

    2017-02-01

    Asphalt performance has important effect on the fatigue resistance performance of asphalt mixture. This research based on the DSR time scanning mode, investigated the constant strain performance of 70 # matrix asphalt and SBS modified asphalt. Based on 50% G* 0 to simulate the fatigue performance of two kinds of the asphalt.

  1. Thermal fatigue testing of a diffusion-bonded beryllium divertor mock-up under ITER relevant conditions

    SciTech Connect

    Youchison, D.L.; Guiniiatouline, R.; Watson, R.D.

    1994-12-31

    Thermal response and thermal fatigue tests of four 5 mm thick beryllium tiles on a Russian divertor mock-up were completed on the Electron Beam Test System at Sandia National Laboratories. The beryllium tiles were diffusion bonded onto an OFHC copper saddleblock and a DSCu (MAGT) tube containing a porous coating. Thermal response tests were performed on the tiles to an absorbed heat flux of 5 MW/m{sup 2} and surface temperatures near 300{degrees}C using 1.4 MPa water at 5.0 m/s flow velocity and an inlet temperature of 8-15{degrees}C. One tile was exposed to incrementally increasing heat fluxes up to 9.5 MW/m{sup 2} and surface temperatures up to 690{degrees}C before debonding at 10 MW/m{sup 2}. A third tile debonded after 9200 thermal fatigue cycles at 5 MW/m{sup 2}, while another debonded after 6800 cycles. In all cases, fatigue failure occurred in the intermetallic layers between the beryllium and copper. No fatigue cracking of the bulk beryllium was observed. During thermal cycling, a gradual loss of porous coating produced increasing sample temperatures. These experiments indicate that diffusion-bonded beryllium tiles can survive several thousand thermal cycles under ITER relevant conditions without failure. However, the reliability of the diffusion bonded Joint remains a serious issue.

  2. Interlaboratory study of novel halogenated flame retardants: INTERFLAB.

    PubMed

    Melymuk, Lisa; Goosey, Emma; Riddell, Nicole; Diamond, Miriam L

    2015-09-01

    Flame retardants (FRs) have come under considerable scientific and public scrutiny over the past decade. A lack of reference materials and standardized analytical methods has resulted in questions regarding the variation of measurements from different studies. We evaluated this variation by performing an international interlaboratory study assessing analytical capabilities as well as the accuracy and precision of results for a range of flame retardants (International Flame Retardant Laboratory Study, INTERFLAB). Thirteen international research laboratories participated in a blind interlaboratory comparison of 24 FRs. Results demonstrate good precision within replicates of test mixtures from individual laboratories, but problematic accuracy for several FRs and laboratories. Large ranges in the values reported for decabromodiphenylethane (DBDPE), tris(1,3-dichloropropyl)phosphate (TDCIPP), tetrabromobisphenol-A (TBBPA), and hexabromocyclododecane (HBCD) (>50 % relative standard deviations among measured values) and large deviations from the reference values (>25 % bias in accuracy) suggest potential problems for comparability of results. DBDPE, HBCD, and TBBPA had significantly poorer accuracy and precision, suggesting that current analytical methods are not providing reliable results for these FRs.

  3. Elevated Temperature Fracture Toughness and Fatigue Testing of Steels for Geothermal Applications

    SciTech Connect

    Cutler, R.A.; Goodman, E.C.; Hendrickson, R.R.

    1981-10-01

    Conventional drill bit steels exhibit increased wear and decreased toughness when run at elevated temperatures in geothermal wells. Bits are therefore run at lower speeds and lighter loads, resulting in lower penetration rates for geothermal drilling than for conventional rock drilling. Carpenter EX-00053, Timken CBS 600, Timken CBS 1000M and Vasco X-2M steels with improved hot hardness (improved wear resistance), were tested in conjunction with the steels used for cones (AISI 4829, 3915 and EX55) in conventional roller cones and lugs (AISI 8620, 9315 and EX55) in conventional roller cone rock bits. Short-rod fracture toughness measurements were made on each of these steels between room temperature and 400{degree}C. Fatigue crack resistance was determined at 300{degree}C for high-temperature steels and at room temperature for conventional steels. Scanning electron microscopy analyses of the fractured short-rod specimens were correlated with observed crack behavior from the test records. Materials testing results are discussed and steel selections made for improved geothermal bits. Carpenter EX-00053 and Timken CBS 1000M steels meet all design requirements for use in stabilizers, lugs and cones at temperatures to 400{degree}C. It is recommended that EX-00053 and CBS 1000M be manufactured for geothermal drilling at the Geysers site. [DJE 2005

  4. Space Shuttle Partial Stack Rollout Test Analytical Correlation In Support Of Fatigue Load Development

    NASA Technical Reports Server (NTRS)

    DelBasso, Steve; Dolenz, Jim; Wilson, Lee

    2005-01-01

    A rollout test with only the Solid Rocket Boosters was conducted in November 2003 to gather structural dynamic response data of the transportation environment from the Vehicle Assembly Building to the Launch Pad. The data was acquired to develop and validate analytical methods used to predict rollout Orbiter fatigue load spectra. Earlier predictions computed by a base drive approach with only 5 input drive degrees-of-freedom raised questions that commissioned the partial stack test. Not only was there a concern because of the input degree-of-freedom omission due to measurement limitations, but there was also a concern with the implementation of the "large mass" itself. Three methods were evaluated with the partial stack test data. The analytical correlations to measured strain derived SRB base loads and acceleration5 showed the earlier 5 degree-of-freedom base drive approach to yield the most conservative results for all quantities monitored except the SRB base moment about the axis in which the input drive was missing. This non-conservative shortcoming led to a recommendation to use either the 6 degree-of-freedom base drive or the 12 degree-of-freedom Craig-Bampton boundary drive methods whose results did not substantially differ.

  5. The relationship between blood potassium, blood lactate, and electromyography signals related to fatigue in a progressive cycling exercise test.

    PubMed

    Tenan, Matthew S; McMurray, Robert G; Blackburn, B Troy; McGrath, Melanie; Leppert, Kyle

    2011-02-01

    Local muscle fatigue may be related to potassium efflux from the muscle cell and/or lactate accumulation within the muscle. Local fatigue causes a decrease in median frequency (MPF) of the electromyogram's power spectrum during isometric contractions but its relationship to changes in potassium and lactate during dynamic exercise is equivocal. Thus, this investigation evaluated relationships between changes in the MPF from the vastus lateralis and blood levels of lactate and potassium during an incremental cycling test and recovery. Trained cyclists (n=8) completed a discontinuous, graded cycle test to exhaustion under normal and glycogen-reduced conditions. The glycogen reduced condition promoted an environment of lower lactate production while permitting a consistent potassium response. Blood samples and maximal isometric EMG data were collected at the end of each stage and during recovery. Maximal lactate levels were ∼ 60% lower in the glycogen reduced condition; potassium was similar between trials. MPF did not change significantly at volitional fatigue. Further, MPF was not significantly related to lactate (p>0.27) or potassium (p>0.16) in either condition. Though both lactate and potassium have been implicated as factors relating to local muscle fatigue, neither is significantly related to changes in MPF during or after progressive exercise on a cycle ergometer.

  6. Determining The Electromyographic Fatigue Threshold Following a Single Visit Exercise Test.

    PubMed

    Galen, Sujay S; Guffey, Darren R; Coburn, Jared W; Malek, Moh H

    2015-07-27

    Theoretically, the electromyographic (EMG) fatigue threshold is the exercise intensity an individual can maintain indefinitely without the need to recruit more motor units which is associated with an increase in the EMG amplitude. Although different protocols have been used to estimate the EMG fatigue threshold they require multiple visits which are impractical for a clinical setting. Here, we present a protocol for estimating the EMG fatigue threshold for cycle ergometry which requires a single visit. This protocol is simple, convenient, and completed within 15-20 min, therefore, has the potential to be translated into a tool that clinicians can use in exercise prescription.

  7. Interlaboratory study of precision: Hyalella azteca and Chironomus tentans freshwater sediment toxicity assays

    USGS Publications Warehouse

    Burton, G.A.; Norberg-King, T. J.; Ingersoll, C.G.; Benoit, D.A.; Ankley, G.T.; Winger, P.V.; Kubitz, J.; Lazorchak, J.M.; Smith, M.E.; Greer, E.; Dwyer, F.J.; Call, D.J.; Day, K.E.; Kennedy, P.; Stinson, M.

    1996-01-01

    Standard 10-d whole-sediment toxicity test methods have recently been developed by the U.S. Environmental Protection Agency (EPA) for the amphipod Hyalella azteca and the midge Chironomus tentans. An interlaboratory evaluation of method precision was performed using a group of seven to 10 laboratories, representing government, academia, and environmental consulting firms. The test methods followed the EPA protocols for 4-d water-only reference toxicant (KCl) testing (static exposure) and for 10-d whole-sediment testing. Test sediments included control sediment, two copper-containing sediments, and a sediment contaminated primarily with polycyclic aromatic hydrocarbons. Reference toxicant tests resulted in H. azteca and C. tentans median lethal concentration (LC50) values with coefficents of variation (CVs) of 15.8 and 19.6%, respectively. Whole sediments which were moderately contaminated provided the best estimates of precision using CVs. Hyalella azteca and C. tentans tests in moderately contaminated sediments exhibited LC50 CVs of 38.9 and 13.5%, respectively. The CV for C. tentans growth was 31.9%. Only 3% (1 of 28) of samples exceeded acceptable interlaboratory precision limits for the H. azteca survival tests. No samples exceeded the intralaboratory precision limit for H. azteca or C. tentans survival tests. However, intralaboratory variability limits for C. tentans growth were exceeded by 80 and 100% of the laboratories for a moderately toxic and control sample, respectively. Interlaboratory variability limits for C. tentans survival were not exceeded by any laboratory. The results showed these test methods to have relatively low variance and acceptable levels of precision in interlaboratory comparisons.

  8. Interlaboratory agreement among results of human papillomavirus type 16 enzyme-linked immunosorbent assays.

    PubMed Central

    Strickler, H D; Hildesheim, A; Viscidi, R P; Shah, K V; Goebel, B; Drummond, J; Waters, D; Sun, Y; Hubbert, N L; Wacholder, S; Brinton, L A; Han, C L; Nasca, P C; McClimens, R; Turk, K; Devairakkam, V; Leitman, S; Martin, C; Schiller, J T

    1997-01-01

    Serological assays for measuring antibodies to human papillomavirus type 16 (HPV-16) virus-like particles (VLPs) have become important epidemiologic tools in recent years. However, the interlaboratory replicability of these assays has not been assessed. In this investigation, three laboratories tested a panel of specimens obtained from two different groups: 265 subjects in a vulvar cancer case-control study and 107 healthy volunteer blood donors. Each laboratory used an enzyme-linked immunosorbent assay (ELISA), but no attempt was made to standardize assay procedures among the three laboratories. The data showed good day-to-day intralaboratory replicability in laboratory 1 (correlation coefficient, > or = 0.88) and good intra-assay variability in laboratory 3 (correlation coefficient, > or = 0.93). Interlaboratory correlations, likewise, ranged between 0.61 and 0.80 in both case-control study subjects and healthy blood donors, indicating that ELISA optical density (OD) values between laboratories were linearly related regardless of the population. Kappa coefficients (kappa), based on each laboratory's categorical interpretation of its results (as positive or negative), showed good agreement (kappa, > 0.6) in case-control study subjects and moderate agreement (kappa, > or = 0.4) in blood donors, a population that had few strongly positive sera. When OD values near seropositive cutoffs were treated as indeterminates, there was little discordance between laboratories in either population. The data suggest that each laboratory measured the same humoral immune response and that their HPV-16 VLP ELISAs performed similarly (Pearson correlations). Interlaboratory differences, however, probably due to reagents and procedures, were considerably greater than intralaboratory day-to-day variability. Interlaboratory agreement in determining seropositivity (kappa) could be improved by sharing positive and negative serum controls and by treating marginal results as indeterminate

  9. Simplification of Fatigue Test Requirements for Damage Tolerance of Composite Interstage Launch Vehicle Hardware

    NASA Technical Reports Server (NTRS)

    Nettles, A. T.; Hodge, A. J.; Jackson, J. R.

    2010-01-01

    The issue of fatigue loading of structures composed of composite materials is considered in a requirements document that is currently in place for manned launch vehicles. By taking into account the short life of these parts, coupled with design considerations, it is demonstrated that the necessary coupon level fatigue data collapse to a static case. Data from a literature review of past studies that examined compressive fatigue loading after impact and data generated from this experimental study are presented to support this finding. Damage growth, in the form of infrared thermography, was difficult to detect due to rapid degradation of compressive properties once damage growth initiated. Unrealistically high fatigue amplitudes were needed to fail 5 of 15 specimens before 10,000 cycles were reached. Since a typical vehicle structure, such as the Ares I interstage, only experiences a few cycles near limit load, it is concluded that static compression after impact (CAI) strength data will suffice for most launch vehicle structures.

  10. The Effects of Task Type on Time to Task Failure During Fatigue: A Modified Sørensen Test.

    PubMed

    Russ, David W; Ross, Andrew J; Clark, Brian C; Thomas, James S

    2017-03-28

    Understanding mechanisms of fatigue of the trunk extensors is important because fatigue is a major factor in predicting incidence of low back pain, but few studies have examined trunk extensor fatigue muscles using differing load types and measured the amplitude and frequency domain of the electromyographic signal to explain these differences. Sixteen healthy participants performed position- and force-matching fatigue tasks in a modified Sørensen test position. Time to task failure was significantly longer during the position-matching task compared to force-matching task (58.3 ± 6.6 min vs. 36.1 ± 5.4 min). This finding is the opposite of that commonly reported for the appendicular muscle, but the mean power frequency shifts and muscle activation patterns of the trunk and hip extensors did not explain this difference. The mean power frequency shifts and muscle activation patterns of the trunk and hip extensors did not explain this difference. The greater time to task failure during the position-matching task may reflect adaptation of the trunk extensor muscles to optimize maintaining specific joint angles more so than specific loads.

  11. Neuromuscular Fatigue During a Modified Biering-Sørensen Test in Subjects with and Without Low Back Pain

    PubMed Central

    Pitcher, Mark J.; Behm, David G.; MacKinnon, Scott N.

    2007-01-01

    Studies employing modified Biering-Sørenson tests have reported that low back endurance is related to the potential for developing low back pain. Understanding the manner in which spinal musculature fatigues in people with and without LBP is necessary to gain insight into the sensitivity of the modified Biering-Sørenson test to differentiate back health. Twenty male volunteers were divided into a LBP group of subjects with current subacute or a history of LBP that limited their activity (n = 10) and a control group (n = 10). The median frequency of the fast Fourier transform was calculated from bilateral surface electromyography (EMG) of the upper lumbar erector spinae (ULES), lower lumbar erector spinae (LLES) and biceps femoris while maintaining a prescribed modified Biering-Sørensen test position and exerting isometric forces equivalent to 100, 120, 140 and 160% of the estimated mass of the head-arms-trunk (HAT) segment. Time to failure was also investigated across the percentages of HAT. Fatigue time decreased with increasing load and differences between groups increased as load increased, however these differences were not significant. Significant differences in the EMG median frequency between groups occurred in the right biceps femoris (p ≤ 0.05) with significant pairwise differences occurring at 140% for the left biceps femoris and at 160% for the right biceps femoris. There were significant pairwise differences at 120% for average EMG of the right biceps femoris and at 140% for the right ULES, and right and left biceps femoris (p ≤ 0.05). The modified Biering-Sørensen test as usually performed at 100% HAT is not sufficient to demonstrate significant differences between controls and subjects with varying degrees of mild back disability based on the Oswestry classification. Key pointsThe results do not wholly support the modified Biering-Sørensen test utilizing resistance of 100% HAT to discern differences in fatigue in subjects with mild low back

  12. Fatigue Testing of the MK3 Mod0 2000 Lb Bail Lugs: Test Report

    DTIC Science & Technology

    1990-08-01

    REPORT REQUESTING AUTHORITY: No. 1 Central Ammunition Depot, RAAF ITEMS TESTED: Sixty one MK3 MODO 2000 lb bail lugs from four different lot numbers SUMMARY...identifying run-out, lugs from lot numbers I and 4 shall be used due to the availability of a larger quantity of these lugs in comparison to the others. 5...to lugs from four different lot numbers as follows: F1/*t = MK3 MODO (ET) 30003-1380540 ETW-1 277 F2/** = MK3 MODO 30003-1380540 SMN81J 001008 F3

  13. Experimental and Finite Element Modeling of Near-Threshold Fatigue Crack Growth for the K-Decreasing Test Method

    NASA Technical Reports Server (NTRS)

    Smith, Stephen W.; Seshadri, Banavara R.; Newman, John A.

    2015-01-01

    The experimental methods to determine near-threshold fatigue crack growth rate data are prescribed in ASTM standard E647. To produce near-threshold data at a constant stress ratio (R), the applied stress-intensity factor (K) is decreased as the crack grows based on a specified K-gradient. Consequently, as the fatigue crack growth rate threshold is approached and the crack tip opening displacement decreases, remote crack wake contact may occur due to the plastically deformed crack wake surfaces and shield the growing crack tip resulting in a reduced crack tip driving force and non-representative crack growth rate data. If such data are used to life a component, the evaluation could yield highly non-conservative predictions. Although this anomalous behavior has been shown to be affected by K-gradient, starting K level, residual stresses, environmental assisted cracking, specimen geometry, and material type, the specifications within the standard to avoid this effect are limited to a maximum fatigue crack growth rate and a suggestion for the K-gradient value. This paper provides parallel experimental and computational simulations for the K-decreasing method for two materials (an aluminum alloy, AA 2024-T3 and a titanium alloy, Ti 6-2-2-2-2) to aid in establishing clear understanding of appropriate testing requirements. These simulations investigate the effect of K-gradient, the maximum value of stress-intensity factor applied, and material type. A material independent term is developed to guide in the selection of appropriate test conditions for most engineering alloys. With the use of such a term, near-threshold fatigue crack growth rate tests can be performed at accelerated rates, near-threshold data can be acquired in days instead of weeks without having to establish testing criteria through trial and error, and these data can be acquired for most engineering materials, even those that are produced in relatively small product forms.

  14. Experimental investigation of fatigue behavior of carbon fiber composites using fully-reversed four-point bending test

    NASA Astrophysics Data System (ADS)

    Amiri, Ali

    Carbon fiber reinforced polymers (CFRP) have become an increasingly notable material for use in structural engineering applications. Some of their advantages include high strength-to-weight ratio, high stiffness-to-weight ratio, and good moldability. Prediction of the fatigue life of composite laminates has been the subject of various studies due to the cyclic loading experienced in many applications. Both theoretical studies and experimental tests have been performed to estimate the endurance limit and fatigue life of composite plates. One of the main methods to predict fatigue life is the four-point bending test. In most previous works, the tests have been done in one direction (load ratio, R, > 0). In the current work, we have designed and manufactured a special fixture to perform a fully reversed bending test (R = -1). Static four-point bending tests were carried out on three (0°/90°)15 and (± 45°)15 samples to measure the mechanical properties of CFRP. Testing was displacement-controlled at the rate of 10 mm/min until failure. In (0°/90°)15 samples, all failed by cracking/buckling on the compressive side of the sample. While in (± 45°)15 all three tests, no visual fracture or failure of the samples was observed. 3.4 times higher stresses were reached during four-point static bending test of (0° /90°)15 samples compared to (± 45°)15. Same trend was seen in literature for similar tests. Four-point bending fatigue tests were carried out on (0° /90°)15 sample with stress ratio, R = -1 and frequency of 5 Hz. Applied maximum stresses were approximately 45%, 56%, 67%, 72% and 76% of the measured yield stress for (0° /90°)15 samples. There was visible cracking through the thickness of the samples. The expected downward trend in fatigue life with increasing maximum applied stress was observed in S-N curves of samples. There appears to be a threshold for ‘infinite’ life, defined as 1.7 million cycles in the current work, at a maximum stress of about

  15. Deformation monitoring with off-the-shelf digital cameras for civil engineering fatigue testing

    NASA Astrophysics Data System (ADS)

    Detchev, I.; Habib, A.; He, F.; El-Badry, M.

    2014-06-01

    Deformation monitoring of civil infrastructure systems is important in terms of both their safety and serviceability. The former refers to estimating the maximum loading capacity during the design stages of a building project, and the latter means performing regularly scheduled maintenance of an already existing structure. Traditionally, large structures have been monitored using surveying techniques, while fine-scale monitoring of structural components such as beams and trusses has been done with strain gauge instrumentation. In the past decade, digital photogrammetric systems coupled with image processing techniques have also been used for deformation monitoring. The major advantage of this remote sensing method for performing deformation monitoring is that there is no need to access the object of interest while testing is in progress. The paper is a result of an experiment where concrete beams with polymer support sheets are subjected to dynamic loading conditions by a hydraulic actuator in a structures laboratory. This type of loading is also known as fatigue testing, and is used to simulate the typical use of concrete beams over a long period of time. From a photogrammetric point of view, the challenge for this type of experiment is to avoid motion artifacts by maximizing the sensor frame rate, and at the same time to have a good enough image quality in order to achieve satisfactory reconstruction precision. This research effort will investigate the optimal camera settings (e.g., aperture, shutter speed, sensor sensitivity, and file size resolution) in order to have a balance between high sensor frame rate and good image quality. The results will be first evaluated in terms of their repeatability, and then also in terms of their accuracy. The accuracy of the results will be checked against another set of results coming from high quality laser transducers.

  16. In vitro bond strength and fatigue stress test evaluation of different adhesive cements used for fixed space maintainer cementation

    PubMed Central

    Cantekin, Kenan; Delikan, Ebru; Cetin, Secil

    2014-01-01

    Objective: The purposes of this research were to (1) compare the shear-peel bond strength (SPBS) of a band of a fixed space maintainer (SM) cemented with five different adhesive cements; and (2) compare the survival time of bands of SM with each cement type after simulating mechanical fatigue stress. Materials and Methods: Seventy-five teeth were used to assess retentive strength and another 50 teeth were used to assess the fatigue survival time. SPBS was determined with a universal testing machine. Fatigue testing was conducted in a ball mill device. Results: The mean survival time of bands cemented with R & D series Nova Glass-LC (6.2 h), Transbond Plus (6.7 h), and R & D series Nova Resin (6.8 h) was significantly longer than for bands cemented with Ketac-Cem (5.4 h) and GC Equia (5.2 h) (P < 0.05). Conclusion: Although traditional glass ionomer cement (GIC) cement presented higher retentive strength than resin-based cements (resin, resin modified GIC, and compomer cement), resin based cements, especially dual cure resin cement (nova resin cement) and compomer (Transbond Plus), can be expected to have lower failure rates for band cementation than GIC (Ketac-Cem) in the light of the results of the ball mill test. PMID:25202209

  17. Fatigue Crack Growth Behavior Evaluation of Grainex Mar-M 247 for NASA's High Temperature, High Speed Turbine Seal Test Rig

    NASA Technical Reports Server (NTRS)

    Delgado, Irebert R.; Steinetz, Bruce M.; Rimnac, Clare M.; Lewandowski, John J.

    2008-01-01

    The fatigue crack growth behavior of Grainex Mar-M 247 is evaluated for NASA s Turbine Seal Test Facility. The facility is used to test air-to-air seals primarily for use in advanced jet engine applications. Because of extreme seal test conditions of temperature, pressure, and surface speeds, surface cracks may develop over time in the disk bolt holes. An inspection interval is developed to preclude catastrophic disk failure by using experimental fatigue crack growth data. By combining current fatigue crack growth results with previous fatigue strain-life experimental work, an inspection interval is determined for the test disk. The fatigue crack growth life of the NASA disk bolt holes is found to be 367 cycles at a crack depth of 0.501 mm using a factor of 2 on life at maximum operating conditions. Combining this result with previous fatigue strain-life experimental work gives a total fatigue life of 1032 cycles at a crack depth of 0.501 mm. Eddy-current inspections are suggested starting at 665 cycles since eddy current detection thresholds are currently at 0.381 mm. Inspection intervals are recommended every 50 cycles when operated at maximum operating conditions.

  18. Interlaboratory validation data on real-time polymerase chain reaction detection for unauthorized genetically modified papaya line PRSV-YK.

    PubMed

    Nakamura, Kosuke; Kondo, Kazunari; Akiyama, Hiroshi; Ishigaki, Takumi; Noguchi, Akio; Katsumata, Hiroshi; Takasaki, Kazuto; Futo, Satoshi; Sakata, Kozue; Fukuda, Nozomi; Mano, Junichi; Kitta, Kazumi; Tanaka, Hidenori; Akashi, Ryo; Nishimaki-Mogami, Tomoko

    2016-06-01

    This article is referred to research article entitled "Whole genome sequence analysis of unidentified genetically modified papaya for development of a specific detection method" (Nakamura et al., 2016) [1]. Real-time polymerase chain reaction (PCR) detection method for unauthorized genetically modified (GM) papaya (Carica papaya L.) line PRSV-YK (PRSV-YK detection method) was developed using whole genome sequence data (DDBJ Sequenced Read Archive under accession No. PRJDB3976). Interlaboratory validation datasets for PRSV-YK detection method were provided. Data indicating homogeneity of samples prepared for interlaboratory validation were included. Specificity and sensitivity test data for PRSV-YK detection method were also provided.

  19. Interlaboratory evaluation of the assessment of arsenic bioaccumulation from field collected sediments using Hexagenia spp.

    PubMed

    Watson-Leung, Trudy; Oke, Moustapha; McElroy, Mike; Stuart, Marilyne; Rendas, Martina; Raby, Melanie; Mahon, Kim

    2016-10-01

    Standardized bioaccumulation testing of aquatic organisms is essential to understanding the impact of historical contamination on the quality of water and sediment. A standardized 28-d laboratory bioaccumulation method with a freshwater burrowing mayfly, Hexagenia spp., has been developed and internally validated by the Ontario Ministry of the Environment and Climate Change (MOECC). An interlaboratory comparison was conducted to assess the precision of this method. Field-collected sediment contaminated with arsenic was chosen for the present study. Control and test sediments were subsampled and sent to 6 laboratories to perform the bioaccumulation test. One laboratory failed to meet the control survival criterion of ≥80%. When results of this laboratory are removed from the arsenic accumulation assessment, the mean interlaboratory variability (expressed as coefficient of variation) of the arsenic whole-body concentration is reduced from 44% to 24% in the test sediment-exposed Hexagenia spp. There was no significant interlaboratory difference between the Hexagenia spp. arsenic accumulations. While improved culturing and organism holding guidance may increase laboratory success, the MOECC Hexagenia spp. bioaccumulation test method has tight biological method precision when the control survival criterion is met. Environ Toxicol Chem 2016;35:2448-2455. © 2016 SETAC.

  20. Fatigue test of a fiberglass based composite panel. Increasing the lifetime of freight wagon

    NASA Astrophysics Data System (ADS)

    Sobek, M.; Baier, A.; Grabowski, Ł.; Majzner, M.

    2016-08-01

    In the XXI century transportation of goods plays a key role in the economy. Due to a good logistics the economy is able to grow fluently. Although land transportation is carried out mainly through trucks for the last several years there has been noted an increase in the percentage share of rail transport in the freight transport. The main goods transported by railways are mineral fuels, mining and quarrying products. They constitute the greater part of 70% of total transported goods. Transportation of material of such high weight, high hardness and with different shapes involves increased and accelerated wear and tear of the cargo space of the wagon. This process is also magnified by substances used to prevent overheating or goods theft. Usually they are in the form of chemical compounds powder, eg. Calcium. A very large impact on the wear of the freight wagons hull is made because of mechanical damage. Their source comes mostly from loading cargo with impetus and using heavy machines during unloading. A large number of cycles of loading and unloading during the working period causes abrasion of body and as a result after several years a wagon car qualifies for a major maintenance. Possibility of application composite panels in the process of renovating the wagons body could reduce the weight of whole train and prolong the service life between mandatory technical inspection. The Paper "Fatigue test of a fiberglass based composite panel. Increasing the lifetime of freight wagon" presents the research process and the results of the endurance test of the composite panel samples fixed to a metal plate. As a fixing method a stainless steel rivet nut and a stainless steel button head socket screws were chosen. Cyclic and multiple load were applied to test samples using a pneumatic cylinder. Such a methodology simulated the forces resulting from loading and unloading of the wagon and movement of the cargo during transport. In the study a dedicated stand equipped with a

  1. Noncontact measurement of ultrasonic attenuation during rotating fatigue test of steel

    NASA Astrophysics Data System (ADS)

    Ogi, Hirotsugu; Hirao, Masahiko; Minoura, Kiyoshi

    1997-04-01

    Acoustic resonance technique has been applied to monitor the fatigue damage process of steel pipes exposed to rotating bending fatigue. The technique incorporates a superheterodyne spectrometer and an electromagnetic acoustic transducer (EMAT). The EMAT was newly developed for this purpose, and uses the magnetostrictive mechanism of ferromagnetic metals and excites and detects axial shear waves traveling around the sample pipe with axial polarization. Noncontact ultrasonic spectroscopy permits the accurate determination of the resonant frequency and the attenuation coefficient throughout the fatigue life. The attenuation coefficient shows a sharp peak around 80%-90% of the life. The evolution is interpreted as reflecting dislocation multiplication, depinning, and formation of cell structures, which is supported by transmission electron microscopy observations.

  2. Indentation hardness: A simple test that correlates with the dissipated-energy predictor for fatigue-life in bovine pericardium membranes for bioprosthetic heart valves.

    PubMed

    Tobaruela, Almudena; Rojo, Francisco Javier; García Paez, José María; Bourges, Jean Yves; Herrero, Eduardo Jorge; Millán, Isabel; Alvarez, Lourdes; Cordon, Ángeles; Guinea, Gustavo V

    2016-08-01

    The aim of this study was to evaluate the variation of hardness with fatigue in calf pericardium, a biomaterial commonly used in bioprosthetic heart valves, and its relationship with the energy dissipated during the first fatigue cycle that has been shown to be a predictor of fatigue-life (García Páez et al., 2006, 2007; Rojo et al., 2010). Fatigue tests were performed in vitro on 24 pericardium specimens cut in a root-to-apex direction. The specimens were subjected to a maximum stress of 1MPa in blocks of 10, 25, 50, 100, 250, 500, 1000 and 1500 cycles. By means of a modified Shore A hardness test procedure, the hardness of the specimen was measured before and after fatigue tests. Results showed a significant correlation of such hardness with fatigue performance and with the energy dissipated in the first cycle of fatigue, a predictor of pericardium durability. The study showed indentation hardness as a simple and reliable indicator of mechanical performance, one which could be easily implemented in improving tissue selection.

  3. Elasto-Plastic 3D Finite Element Contact Analysis of a Hole Containing a Circular Insert in a Fatigue Test Coupon

    DTIC Science & Technology

    2015-08-01

    primarily concerned with the results of a three-dimensional elasto– plastic finite element contact analysis of a typical aluminium fatigue test coupon...determine the nonlinear three-dimensional elasto–plastic contact stress distributions around a circular hole in an aluminium plate that is fitted...Australian Air Force (RAAF) airframes. An aluminium -alloy fatigue test coupon (see Figure 1) has been designed and applied in support of the validation of

  4. Accurate diagnosis of myalgic encephalomyelitis and chronic fatigue syndrome based upon objective test methods for characteristic symptoms

    PubMed Central

    Twisk, Frank NM

    2015-01-01

    Although myalgic encephalomyelitis (ME) and chronic fatigue syndrome (CFS) are considered to be synonymous, the definitional criteria for ME and CFS define two distinct, partially overlapping, clinical entities. ME, whether defined by the original criteria or by the recently proposed criteria, is not equivalent to CFS, let alone a severe variant of incapacitating chronic fatigue. Distinctive features of ME are: muscle weakness and easy muscle fatigability, cognitive impairment, circulatory deficits, a marked variability of the symptoms in presence and severity, but above all, post-exertional “malaise”: a (delayed) prolonged aggravation of symptoms after a minor exertion. In contrast, CFS is primarily defined by (unexplained) chronic fatigue, which should be accompanied by four out of a list of 8 symptoms, e.g., headaches. Due to the subjective nature of several symptoms of ME and CFS, researchers and clinicians have questioned the physiological origin of these symptoms and qualified ME and CFS as functional somatic syndromes. However, various characteristic symptoms, e.g., post-exertional “malaise” and muscle weakness, can be assessed objectively using well-accepted methods, e.g., cardiopulmonary exercise tests and cognitive tests. The objective measures acquired by these methods should be used to accurately diagnose patients, to evaluate the severity and impact of the illness objectively and to assess the positive and negative effects of proposed therapies impartially. PMID:26140274

  5. Accurate diagnosis of myalgic encephalomyelitis and chronic fatigue syndrome based upon objective test methods for characteristic symptoms.

    PubMed

    Twisk, Frank Nm

    2015-06-26

    Although myalgic encephalomyelitis (ME) and chronic fatigue syndrome (CFS) are considered to be synonymous, the definitional criteria for ME and CFS define two distinct, partially overlapping, clinical entities. ME, whether defined by the original criteria or by the recently proposed criteria, is not equivalent to CFS, let alone a severe variant of incapacitating chronic fatigue. Distinctive features of ME are: muscle weakness and easy muscle fatigability, cognitive impairment, circulatory deficits, a marked variability of the symptoms in presence and severity, but above all, post-exertional "malaise": a (delayed) prolonged aggravation of symptoms after a minor exertion. In contrast, CFS is primarily defined by (unexplained) chronic fatigue, which should be accompanied by four out of a list of 8 symptoms, e.g., headaches. Due to the subjective nature of several symptoms of ME and CFS, researchers and clinicians have questioned the physiological origin of these symptoms and qualified ME and CFS as functional somatic syndromes. However, various characteristic symptoms, e.g., post-exertional "malaise" and muscle weakness, can be assessed objectively using well-accepted methods, e.g., cardiopulmonary exercise tests and cognitive tests. The objective measures acquired by these methods should be used to accurately diagnose patients, to evaluate the severity and impact of the illness objectively and to assess the positive and negative effects of proposed therapies impartially.

  6. Cryogenic fatigue data developed for Inconel 718

    NASA Technical Reports Server (NTRS)

    Schmidt, E. H.

    1967-01-01

    Data were obtained on the cryogenic fatigue properties of Inconel 718 bar using axial loading and rotating beam fatigue tests. Results also disclosed the fatigue properties of Inconel 718 sheet materials.

  7. Test Method for the Fatigue Life of Layered TiB/Ti Functionally Graded Beams Subjected to Fully Reversed Bending

    NASA Astrophysics Data System (ADS)

    Byrd, Larry; Rickerd, Greg; Wyen, Travis; Cooley, Glenn; Quast, Jeff

    2008-02-01

    Sonic fatigue of aircraft is characterized by fully reversed bending of components subjected to acoustic excitation. This problem is compounded in high temperature environments because solutions for acoustics which tend to result in stiff structures make thermal problems worse. Conversely solutions to the thermal problem which allow expansion often fail in the presence of high acoustic levels. Errors in fatigue life prediction in the combined environment often range from a factor of 4 to 10. This results in either heavy, overly stiff structure or premature failure. This work will test the hypothesis that the fatigue life of a layered functionally graded material (FGM) will be dominated by the failure of the stiffest outer layer. This is based on the observation that for isotropic materials the life is approximately 90% crack initiation and only 10% crack growth before failure. Four sets of cantilever specimens will be tested using an electro-mechanical shaker for base excitation. The excitation will be narrow band random around the fundamental frequency. Two sets of specimens are of uniform composition consisting of 85%TiB/Ti and two are graded specimens consisting of layers that vary from commercially pure titanium to 85%TiB/Ti. Strain vs number of cycles to failure curves will be generated with both constant amplitude sine and narrow band random around the fundamental frequency excitation. The results will be examined to compare life of the uniform material to the functionally graded material. Also to be studied will be the use of Miner's rule to predict the fatigue life of the randomly excited specimens.

  8. Interlaboratory comparison of measurements of acid-volatile sulfide and simultaneously extracted nickel in spiked sediments

    USGS Publications Warehouse

    Brumbaugh, William G.; Hammerschmidt, Chad R.; Zanella, Luciana; Rogevich, Emily; Salata, Gregory; Bolek, Radoslaw

    2011-01-01

    An interlaboratory comparison of acid-volatile sulfide (AVS) and simultaneously extracted nickel (SEM_Ni) measurements of sediments was conducted among five independent laboratories. Relative standard deviations for the seven test samples ranged from 5.6 to 71% (mean = 25%) for AVS and from 5.5 to 15% (mean = 10%) for SEM_Ni. These results are in stark contrast to a recently published study that indicated AVS and SEM analyses were highly variable among laboratories.

  9. Interlaboratory comparison of measurements of acid-volatile sulfide and simultaneously extracted nickel in spiked sediments

    USGS Publications Warehouse

    Brumbaugh, W.G.; Hammerschmidt, C.R.; Zanella, L.; Rogevich, E.; Salata, G.; Bolek, R.

    2011-01-01

    An interlaboratory comparison of acid-volatile sulfide (AVS) and simultaneously extracted nickel (SEM-Ni) measurements of sediments was conducted among five independent laboratories. Relative standard deviations for the seven test samples ranged from 5.6 to 71% (mean=25%) for AVS and from 5.5 to 15% (mean=10%) for SEM-Ni. These results are in stark contrast to a recently published study that indicated AVS and SEM analyses were highly variable among laboratories. ?? 2011 SETAC.

  10. Interlaboratory comparison of measurements of acid-volatile sulfide and simultaneously extracted nickel in spiked sediments

    USGS Publications Warehouse

    Brumbaugh, William G.; Hammerschmidt, Chad R.; Zanella, Luciana; Rogevich, Emily; Salata, Gregory; Bolek, Radoslaw

    2011-01-01

    An interlaboratory comparison of acid-volatile sulfide (AVS) and simultaneously extracted nickel (SEM_Ni) measurements of sediments was conducted among five independent laboratories. Relative standard deviations for the seven test samples ranged from 5.6 to 71% (mean?=?25%) for AVS and from 5.5 to 15% (mean?=?10%) for SEM_Ni. These results are in stark contrast to a recently published study that indicated AVS and SEM analyses were highly variable among laboratories.

  11. The Total Work Measured During a High Intensity Isokinetic Fatigue Test Is Associated With Anaerobic Work Capacity

    PubMed Central

    Bosquet, Laurent; Gouadec, Kenan; Berryman, Nicolas; Duclos, Cyril; Gremeaux, Vincent; Croisier, Jean Louis

    2016-01-01

    The purpose of the study was to determine whether total work measured during a high intensity isokinetic fatigue test (TWFAT) could be considered as a valid measure of anaerobic work capacity (AWC), such as determined by total work measured during a Wingate Anaerobic Test (TWWAnT). Twenty well-trained cyclists performed 2 randomly ordered sessions involving a high intensity isokinetic fatigue test consisting in 30 reciprocal maximal concentric contractions of knee flexors and extensors at 180°·s-1, and a Wingate Anaerobic Test. We found that TWFAT of knee extensors was largely lower than TWWAnT (4151 ± 691 vs 22313 ± 2901 J, respectively, p < 0.05, Hedge’s g = 4.27). Both measures were highly associated (r = 0.83), and the 95% limits of agreement (LoA) represented 24.5% of TWWAnT. TWFAT of knee flexors (2151 ± 540 J) was largely lower than TWWAnT (p < 0.05, g = 9.52). By contrast, both measures were not associated (r = 0.09), and the 95% LoA represented 31.1% of TWWAnT. Combining TWFAT of knee flexors and knee extensors into a single measure (6302 ± 818 J) did not changed neither improved these observations. We still found a large difference with TWWAnT (p < 0.05, g = 5.26), a moderate association (r = 0.65) and 95% LoA representing 25.5% of TWWAnT. We concluded that TWFAT of knee extensors could be considered as a valid measure of AWC, since both measure were highly associated. However, the mean difference between both measures and their 95% LoA were too large to warrant interchangeability. Key points Total work performed during a high intensity isokinetic fatigue test can be considered as a valid measure of anaerobic work capacity (as determined by total work performance during a 30-s Wingate anaerobic test). The 95% limits of agreement are two large to allow a direct comparison between both measures. In other words, it is not possible to estimate the magnitude of performance improvement during a 30-s Wingate anaerobic test from that observed during a

  12. The Total Work Measured During a High Intensity Isokinetic Fatigue Test Is Associated With Anaerobic Work Capacity.

    PubMed

    Bosquet, Laurent; Gouadec, Kenan; Berryman, Nicolas; Duclos, Cyril; Gremeaux, Vincent; Croisier, Jean Louis

    2016-03-01

    The purpose of the study was to determine whether total work measured during a high intensity isokinetic fatigue test (TWFAT) could be considered as a valid measure of anaerobic work capacity (AWC), such as determined by total work measured during a Wingate Anaerobic Test (TWWAnT). Twenty well-trained cyclists performed 2 randomly ordered sessions involving a high intensity isokinetic fatigue test consisting in 30 reciprocal maximal concentric contractions of knee flexors and extensors at 180°·s(-1), and a Wingate Anaerobic Test. We found that TWFAT of knee extensors was largely lower than TWWAnT (4151 ± 691 vs 22313 ± 2901 J, respectively, p < 0.05, Hedge's g = 4.27). Both measures were highly associated (r = 0.83), and the 95% limits of agreement (LoA) represented 24.5% of TWWAnT. TWFAT of knee flexors (2151 ± 540 J) was largely lower than TWWAnT (p < 0.05, g = 9.52). By contrast, both measures were not associated (r = 0.09), and the 95% LoA represented 31.1% of TWWAnT. Combining TWFAT of knee flexors and knee extensors into a single measure (6302 ± 818 J) did not changed neither improved these observations. We still found a large difference with TWWAnT (p < 0.05, g = 5.26), a moderate association (r = 0.65) and 95% LoA representing 25.5% of TWWAnT. We concluded that TWFAT of knee extensors could be considered as a valid measure of AWC, since both measure were highly associated. However, the mean difference between both measures and their 95% LoA were too large to warrant interchangeability. Key pointsTotal work performed during a high intensity isokinetic fatigue test can be considered as a valid measure of anaerobic work capacity (as determined by total work performance during a 30-s Wingate anaerobic test).The 95% limits of agreement are two large to allow a direct comparison between both measures. In other words, it is not possible to estimate the magnitude of performance improvement during a 30-s Wingate anaerobic test from that observed during a high

  13. Fatigue test results of the rotating steel blades of steam turbine K-25-0.6 GEO with ion-plasma coating

    NASA Astrophysics Data System (ADS)

    Kachalin, G. V.; Mednikov, A. F.; Tkhabisimov, A. B.; Arkad'ev, D. A.; Temkin, S. G.; Senina, N. A.

    2016-12-01

    Fatigue test results of the rotating steel blades of the fourth stage of the K-25-0.6 low pressure cylinder Geo steam turbine manufactured in the Kaluga Turbine Plant (hereinafter, KTP) with the ion-plasma coating were presented. Coating formation was carried out at the National Research University (MPEI) on the Gefest vacuum pilot plant by the magnetron sputtering method. Characteristics of the obtained coating were analyzed with the use of the scientific-research equipment of the National Research University (MPEI). Fatigue tests of the rotating blades and determination of the fatigue strength of the material with the ion-plasma coating were carried out on the electrodynamic vibration machines VEDS-400A in the KTP structural laboratory. The following characteristics were obtained after tests: Ti-TiN composition, 10-11 μm thickness, 1200 HV 0.05 microhardness. Fatigue tests showed that destruction, regardless of availability or nonavailability of the coating, took place by cross-section in the root zone both on the leading and trailing edges of the blade, i.e., in the most stressed zones. It was found out that the maximum stresses during tests were revealed in the root section along the trailing edge on the blade pressure side, and the less stresses were on the leading edge. Fatigue strength of the working blades after coating formation increased by 12% minimum. Results of the fatigue tests prove the previously obtained data concerning 10-12% increase of the fatigue strength of the blade steel with the ion-plasma coating and allow claiming that the process of their formation exerts the positive influence on the fatigue characteristics of the blade materials.

  14. Application of Self Nulling Eddy Current Probe Technique to the Detection of Fatigue Crack Initiation and Control of Test Procedures

    NASA Technical Reports Server (NTRS)

    Namkung, M.; Nath, S.; Wincheski, B.; Fulton, J. P.

    1994-01-01

    A major part of fracture mechanics is concerned with studying the initiation and propagation of fatigue cracks. This typically requires constant monitoring of crack growth during fatigue cycles and the knowledge of the precise location of the crack tip at any given time. One technique currently available for measuring fatigue crack length is the Potential Drop method. The method, however, may be inaccurate if the direction of crack growth deviates considerably from what was assumed initially or the curvature of the crack becomes significant. Another popular approach is to optically view the crack using a high magnification microscope, but this entails a person constantly monitoring it. The present proposed technique uses an automated scheme, in order to eliminate the need for a person to constantly monitor the experiment. Another technique under development elsewhere is to digitize an optical image of the test specimen surface and then apply a pattern recognition algorithm to locate the crack tip. A previous publication showed that the self nulling eddy current probe successfully tracked a simulated crack in an aluminum sample. This was the impetus to develop an online real time crack monitoring system. An automated system has been developed which includes a two axis scanner mounted on the tensile testing machine, the probe and its instrumentation and a personal computer (PC) to communicate and control all the parameters. The system software controls the testing parameters as well as monitoring the fatigue crack as it propagates. This paper will discuss the experimental setup in detail and demonstrate its capabilities. A three dimensional finite element model is utilized to model the magnetic field distribution due to the probe and how the probe voltage changes as it scans the crack. Experimental data of the probe for different samples under zero load, static load and high cycle fatigue load will be discussed. The final section summarizes the major accomplishments

  15. Crack propagation monitoring in a full-scale aircraft fatigue test based on guided wave-Gaussian mixture model

    NASA Astrophysics Data System (ADS)

    Qiu, Lei; Yuan, Shenfang; Bao, Qiao; Mei, Hanfei; Ren, Yuanqiang

    2016-05-01

    For aerospace application of structural health monitoring (SHM) technology, the problem of reliable damage monitoring under time-varying conditions must be addressed and the SHM technology has to be fully validated on real aircraft structures under realistic load conditions on ground before it can reach the status of flight test. In this paper, the guided wave (GW) based SHM method is applied to a full-scale aircraft fatigue test which is one of the most similar test status to the flight test. To deal with the time-varying problem, a GW-Gaussian mixture model (GW-GMM) is proposed. The probability characteristic of GW features, which is introduced by time-varying conditions is modeled by GW-GMM. The weak cumulative variation trend of the crack propagation, which is mixed in time-varying influence can be tracked by the GW-GMM migration during on-line damage monitoring process. A best match based Kullback-Leibler divergence is proposed to measure the GW-GMM migration degree to reveal the crack propagation. The method is validated in the full-scale aircraft fatigue test. The validation results indicate that the reliable crack propagation monitoring of the left landing gear spar and the right wing panel under realistic load conditions are achieved.

  16. Experimental stress analysis and fatigue tests of five 24-in. NPS ANSI Standard B16. 9 tees. [PWR; BWR

    SciTech Connect

    Moore, S.E.; Hayes, J.K.; Weed, R.A.

    1985-03-01

    Experimental stress analyses and low-cycle fatigue tests of five 24-in. nominal pipe size American National Standards Institute (ANSI) Standard B16.9 forged tees are documented in this report. The tees, designated as Oak Ridge National Laboratory tees T10, T11, T12, T13, and T16, were tested under subcontract at Combustion Engineering, Inc. in Chattanooga, Tennessee. Experimental stress analyses were conducted for 12 individual loadings on each tee. Each test model was instrumented with approx. 225, 1/8-in. three-gage, 45/sup 0/ strain rosettes on the inside and outside surfaces; and 6 linear variable differential transformers mounted on special nonflexible holding frames for measuring deflections and rotations of the pipe extensions. Following completion of the strain-gate tests, each tee was fatigue tested to failure with either a fully reversed displacement controlled in-plane bending moment on the branch or a cyclic internal pressure that ranged from a value slightly above zero to about 90% of the nominal yield pressure of the pipe extensions.

  17. Effects of general fatigue induced by incremental maximal exercise test on gait stability and variability of healthy young subjects.

    PubMed

    Vieira, Marcus Fraga; de Sá E Souza, Gustavo Souto; Lehnen, Georgia Cristina; Rodrigues, Fábio Barbosa; Andrade, Adriano O

    2016-10-01

    The purpose of this study was to determine whether general fatigue induced by incremental maximal exercise test (IMET) affects gait stability and variability in healthy subjects. Twenty-two young healthy male subjects walked in a treadmill at preferred walking speed for 4min prior (PreT) the test, which was followed by three series of 4min of walking with 4min of rest among them. Gait variability was assessed using walk ratio (WR), calculated as step length normalized by step frequency, root mean square (RMSratio) of trunk acceleration, standard deviation of medial-lateral trunk acceleration between strides (VARML), coefficient of variation of step frequency (SFCV), length (SLCV) and width (SWCV). Gait stability was assessed using margin of stability (MoS) and local dynamic stability (λs). VARML, SFCV, SLCV and SWCV increased after the test indicating an increase in gait variability. MoS decreased and λs increased after the test, indicating a decrease in gait stability. All variables showed a trend to return to PreT values, but the 20-min post-test interval appears not to be enough for a complete recovery. The results showed that general fatigue induced by IMET alters negatively the gait, and an interval of at least 20min should be considered for injury prevention in tasks with similar demands.

  18. Effects of Holding Time on Thermomechanical Fatigue Properties of Compacted Graphite Iron Through Tests with Notched Specimens

    NASA Astrophysics Data System (ADS)

    Ghodrat, Sepideh; Riemslag, Ton A. C.; Kestens, Leo A. I.; Petrov, Roumen H.; Janssen, Michael; Sietsma, Jilt

    2013-05-01

    In cylinder heads of compacted graphite iron (CGI), the heating and cooling cycles can lead to localized cracking due to thermomechanical fatigue (TMF). Traditionally, TMF behavior is studied by thermal cycling of smooth specimens. The resulting number of cycles to failure ( N f) constitutes a single parameter that can be used to predict actual service failures. Nevertheless, there are also some drawbacks of the conventional testing procedures, most noticeably the prolonged testing times and a considerable scatter in test results. To address these drawbacks, TMF tests were performed using notched specimens, resulting in shorter testing times with less scatter. In the case of cast iron, artificial notches do not necessarily change the TMF behavior since the inherent graphite particles behave as internal notches. Using a notch depth of 0.2 mm, the effect of prolonged holding times (HT) on TMF lifetime was studied and a clear effect was found. Extended holding times were also found to be accompanied by relaxation of compressive stresses, causing higher tensile stresses to develop in the subsequent low temperature stages of the TMF cycles. The lifetimes in notched CGI specimens can be predicted by the Paris' fatigue crack growth model. This model was used to differentiate between the individual effects of stress level and holding times on TMF lifetime. Microstructural changes were evaluated by analyzing quantitative data sets obtained by orientation contrast microscopy based on electron backscattered diffraction (EBSD).

  19. Interlaboratory comparison of chemical analysis of uranium mononitride

    NASA Technical Reports Server (NTRS)

    Merkle, E. J.; Davis, W. F.; Halloran, J. T.; Graab, J. W.

    1974-01-01

    Analytical methods were established in which the critical variables were controlled, with the result that acceptable interlaboratory agreement was demonstrated for the chemical analysis of uranium mononitride. This was accomplished by using equipment readily available to laboratories performing metallurgical analyses. Agreement among three laboratories was shown to be very good for uranium and nitrogen. Interlaboratory precision of + or - 0.04 percent was achieved for both of these elements. Oxygen was determined to + or - 15 parts per million (ppm) at the 170-ppm level. The carbon determination gave an interlaboratory precision of + or - 46 ppm at the 320-ppm level.

  20. Fiber optic strain monitoring of textile GFRP during RTM molding and fatigue tests by using embedded FBG sensors

    NASA Astrophysics Data System (ADS)

    Kosaka, Tatsuro; Osaka, Katsuhiko; Nakakita, Satoru; Fukuda, Takehito

    2003-08-01

    This paper describes cure and health monitoring of glass fiber reinforced plastics (GFRP) textile composites both during a resin transfer molding (RTM) process and in loading tests. Carbon fiber reinforced plastics (CFRP) textile composites also were used for a comparative study. Fiber Bragg grating (FBG) fiber optic sensors were embedded in FRP to monitor internal strain. From the results of cure monitoring, it was found that the embedded FBG sensors were useful to know when cured resin constrained fibers. It also appeared that specimens were subjected to friction stress resulted from difference of coefficient of thermal expansion between FRP and a stainless steel mold in cooling process of RTM molding. After the molding, tensile and fatigue tests were conducted. The results of tensile tests showed that output of the embedded FBG sensors agreed well that of surface-bonded strain gauges despite deterioration of reflected spectra form the sensors. From the results of fatigue tests, the FBG sensors showed good status until 100,000 cycles when specimens had no damage. From these results, it can be concluded that embedded FBG sensors have good capability of monitoring internal strain in textile FRP both during RTM process and in service.

  1. Acoustic fatigue testing on different materials and skin-stringer elements

    NASA Astrophysics Data System (ADS)

    Koenig, Klaus

    1994-09-01

    Within a comparative study, 29 different coupons covering 8 different designs and 6 different materials were fatigued by an excitation of 30 g(exp 2)/Hz on a shaker. The selected designs and materials represent realistic alternatives of an aircraft surface structure. The investigation led to the following conclusion: (1) Besides classical aluminium, CFRP is the best material with regard to sonic fatigue. (2) Al/Li, ARALL and Al layer materials showed shorter life times than the classical Al. (3) The most striking improvement in design for the dimensions selected here was achieved with separate doublers between skin and stringer. (4) The modal damping found was most often smaller than the 1.7 percent of the critical as known from ESDU for Al. (5) Pure CFRP without rivets showed the smallest damping: 0.6 - 0.9 percent.

  2. Adaption of an In-Situ Microscale Tension Technique to Enable Fatigue Testing (PREPRINT)

    DTIC Science & Technology

    2012-08-01

    the crystallographic orientations of the matrix β phase also will influence the mechanical response, although to a lesser degree than the α phase...Thus, the variation in mechanical properties as a function of crystallographic orientation could be expected to account for the scatter in yield... mechanical properties , including fatigue performance, are strongly related to the crystallographic texture of these alloys.[5-7] With the combined use

  3. Wind turbine blade fatigue tests: lessons learned and application to SHM system development

    SciTech Connect

    Taylor, Stuart G.; Farinholt, Kevin M.; Jeong, Hyomi; Jang, JaeKyung; Park, Gyu Hae; Todd, Michael D.; Farrar, Charles R.; Ammerman, Curtt N.

    2012-06-28

    This paper presents experimental results of several structural health monitoring (SHM) methods applied to a 9-meter CX-100 wind turbine blade that underwent fatigue loading. The blade was instrumented with piezoelectric transducers, accelerometers, acoustic emission sensors, and foil strain gauges. It underwent harmonic excitation at its first natural frequency using a hydraulically actuated resonant excitation system. The blade was initially excited at 25% of its design load, and then with steadily increasing loads until it failed. Various data were collected between and during fatigue loading sessions. The data were measured over multiple frequency ranges using a variety of acquisition equipment, including off-the-shelf systems and specially designed hardware developed by the authors. Modal response, diffuse wave-field transfer functions, and ultrasonic guided wave methods were applied to assess the condition of the wind turbine blade. The piezoelectric sensors themselves were also monitored using a sensor diagnostics procedure. This paper summarizes experimental procedures and results, focusing particularly on fatigue crack detection, and concludes with considerations for implementing such damage identification systems, which will be used as a guideline for future SHM system development for operating wind turbine blades.

  4. No Critical Peripheral Fatigue Threshold during Intermittent Isometric Time to Task Failure Test with the Knee Extensors

    PubMed Central

    Froyd, Christian; Beltrami, Fernando G.; Millet, Guillaume Y.; Noakes, Timothy D.

    2016-01-01

    It has been proposed that group III and IV muscle afferents provide inhibitory feedback from locomotor muscles to the central nervous system, setting an absolute threshold for the development of peripheral fatigue during exercise. The aim of this study was to test the validity of this theory. Thus, we asked whether the level of developed peripheral fatigue would differ when two consecutive exercise trials were completed to task failure. Ten trained sport students performed two exercise trials to task failure on an isometric dynamometer, allowing peripheral fatigue to be assessed 2 s after maximal voluntary contraction (MVC) post task failure. The trials, separated by 8 min, consisted of repeated sets of 10 × 5-s isometric knee extension followed by 5-s rest between contractions. In each set, the first nine contractions were performed at a target force at 60% of the pre-exercise MVC, while the 10th contraction was a MVC. MVC and evoked force responses to supramaximal electrical femoral nerve stimulation on relaxed muscles were assessed during the trials and at task failure. Stimulations at task failure consisted of single stimulus (SS), paired stimuli at 10 Hz (PS10), paired stimuli at 100 Hz (PS100), and 50 stimuli at 100 Hz (tetanus). Time to task failure for the first trial (12.84 ± 5.60 min) was longer (P < 0.001) than for the second (5.74 ± 1.77 min). MVC force was significantly lower at task failure for both trials compared with the pre-exercise values (both P < 0.001), but there were no differences in MVC at task failure in the first and second trials (P = 1.00). However, evoked peak force for SS, PS100, and tetanus were all reduced more at task failure in the second compared to the first trial (P = 0.014 for SS, P < 0.001 for PS100 and tetanus). These results demonstrate that subjects do not terminate exercise at task failure because they have reached a critical threshold in peripheral fatigue. The present data therefore question the existence of a

  5. An indentation fatigue strength law

    NASA Astrophysics Data System (ADS)

    Xu, Baoxing; Yonezu, Akio; Chen, Xi

    2010-05-01

    Indentation fatigue, where a cyclic load is applied on the sample via an indenter, emerges as an alternative approach for measuring the fatigue properties of materials. We have carried out indentation fatigue tests on a poly(vinyl chloride) (PVC) bulk material, as well as on TiN and NiP films/coatings deposited on SUS304 steel substrates, and demonstrate that a simple power-law relationship can be established between the indentation load amplitude and number of cycles to failure. Such a law is very similar to the conventional fatigue strength law obtained from uniaxial tests. The agreement between the fatigue stress exponents obtained by uniaxial and indentation fatigue tests suggests the potential applicability of the indentation fatigue technique for extracting the fatigue properties of materials.

  6. Three Dimensional Constraint Effects on the Estimated (Delta)CTOD during the Numerical Simulation of Different Fatigue Threshold Testing Techniques

    NASA Technical Reports Server (NTRS)

    Seshadri, Banavara R.; Smith, Stephen W.

    2007-01-01

    Variation in constraint through the thickness of a specimen effects the cyclic crack-tip-opening displacement (DELTA CTOD). DELTA CTOD is a valuable measure of crack growth behavior, indicating closure development, constraint variations and load history effects. Fatigue loading with a continual load reduction was used to simulate the load history associated with fatigue crack growth threshold measurements. The constraint effect on the estimated DELTA CTOD is studied by carrying out three-dimensional elastic-plastic finite element simulations. The analysis involves numerical simulation of different standard fatigue threshold test schemes to determine how each test scheme affects DELTA CTOD. The American Society for Testing and Materials (ASTM) prescribes standard load reduction procedures for threshold testing using either the constant stress ratio (R) or constant maximum stress intensity (K(sub max)) methods. Different specimen types defined in the standard, namely the compact tension, C(T), and middle cracked tension, M(T), specimens were used in this simulation. The threshold simulations were conducted with different initial K(sub max) values to study its effect on estimated DELTA CTOD. During each simulation, the DELTA CTOD was estimated at every load increment during the load reduction procedure. Previous numerical simulation results indicate that the constant R load reduction method generates a plastic wake resulting in remote crack closure during unloading. Upon reloading, this remote contact location was observed to remain in contact well after the crack tip was fully open. The final region to open is located at the point at which the load reduction was initiated and at the free surface of the specimen. However, simulations carried out using the constant Kmax load reduction procedure did not indicate remote crack closure. Previous analysis results using various starting K(sub max) values and different load reduction rates have indicated DELTA CTOD is

  7. Fatigue damage observed non-destructively in fibre composite coupon test specimens by X-ray CT

    NASA Astrophysics Data System (ADS)

    Jespersen, K. M.; Mikkelsen, L. P.

    2016-07-01

    This study presents a method for monitoring the 3D fatigue damage progression on a micro-structural level in a glass fibre/polymer coupon test specimen by means of laboratory X-ray Computed Tomography (CT). A modified mount and holder made for the standard test samples to fit into the X-ray CT scanner along with a tension clamp solution is presented. Initially, the same location of the test specimen is inspected by ex-situ X-ray CT during the fatigue loading history, which shows the damage progression on a micro-structural level. The openings of individual uni-directional (UD) fibre fractures are seen to generally increase with the number of cycles, and new regions of UD fibre fractures also appear. There are some UD fibre fractures that are difficult to detect since their opening is small. Therefore, the effect of tension on the crack visibility is examined afterwards using a tension clamp solution. With applied tension some additional cracks become visible and the openings of fibre fractures increases, which shows the importance of applied tension during the scan.

  8. Evaluation of taper joints with combined fatigue and crevice corrosion testing: comparison to human explanted modular prostheses.

    PubMed

    Reclaru, L; Brooks, R A; Zuberbühler, M; Eschler, P-Y; Constantin, F; Tomoaia, G

    2014-01-01

    The requirement for revision surgery of total joint replacements is increasing and modular joint replacement implants have been developed to provide adjustable prosthetic revision systems with improved intra-operative flexibility. An electrochemical study of the corrosion resistance of the interface between the distal and proximal modules of a modular prosthesis was performed in combination with a cyclic fatigue test. The complexity resides in the existence of interfaces between the distal part, the proximal part, and the dynamometric screw. A new technique for evaluating the resistance to cyclic dynamic corrosion with crevice stimulation was used and the method is presented. In addition, two components of the proximal module of explanted Ti6Al4V and Ti6Al7Nb prostheses were investigated by optical and electron microscopy. Our results reveal that: The electrolyte penetrates into the interface between the distal and proximal modules during cyclic dynamic fatigue tests, the distal module undergoes cracking and corrosion was generated at the interface between the two models; The comparison of the explanted proximal parts with the similar prostheses evaluated following cyclic dynamic crevice corrosion testing showed that there were significant similarities indicating that this method is suitable for evaluating materials used in the fabrication of modular prostheses.

  9. A study of elevated temperature testing techniques for the fatigue behavior of PMCS: Application to T650-35/AMB21

    NASA Technical Reports Server (NTRS)

    Gyekenyesi, Andrew L.; Gastelli, Michael G.; Ellis, John R.; Burke, Christopher S.

    1995-01-01

    An experimental study was conducted to investigate the mechanical behavior of a T650-35/AMB21 eight-harness satin weave polymer composite system. Emphasis was placed on the development and refinement of techniques used in elevated temperature uniaxial PMC testing. Issues such as specimen design, gripping, strain measurement, and temperature control and measurement were addressed. Quasi-static tensile and fatigue properties (R(sub sigma) = 0.1) were examined at room and elevated temperatures. Stiffness degradation and strain accumulation during fatigue cycling were recorded to monitor damage progression and provide insight for future analytical modeling efforts. Accomplishments included an untabbed dog-bone specimen design which consistently failed in the gage section, accurate temperature control and assessment, and continuous in-situ strain measurement capability during fatigue loading at elevated temperatures. Finally, strain accumulation and stiffness degradation during fatigue cycling appeared to be good indicators of damage progression.

  10. Micromechanics of Fatigue.

    DTIC Science & Technology

    1992-06-01

    recalled. Application of the derived tools to Apha-Two- Titanium Aluminide Aliov is made with a first series of strain controlled fatigue tests the locally...accumulation, and, multiaxial fatigue. In section 6, application is performed on the Alpha-Two- Titanium Alum:Aide Alloy.With a first serie of strain controlled ...tests needed for the identification of the model are described in the following figures. Test n’l is a classical tensile test strain controlled 1 = 0

  11. Periodic Overload and Transport Spectrum Fatigue Crack Growth Tests of Ti62222STA and Al2024T3 Sheet

    NASA Technical Reports Server (NTRS)

    Phillips, Edward P.

    1999-01-01

    Variable amplitude loading crack growth tests have been conducted to provide data that can be used to evaluate crack growth prediction codes. Tests with periodic overloads or overloads followed by underloads were conducted on titanium alloy Ti-6Al-2Sn-2Zr-2Mo-2Cr solution treated and aged (Ti62222STA) material at room temperature and at 350 F. Spectrum fatigue crack growth tests were conducted on two materials (Ti62222STA and aluminum alloy 2024-T3) using two transport lower-wing test spectra at two temperatures (room temperature and 350 F (Ti only)). Test lives (growth from an initial crack half-length of 0.15 in. to failure) were recorded in all tests and the crack length against cycles (or flights) data were recorded in many of the tests. The following observations were made regarding the test results: (1) in tests of the Ti62222STA material, the tests at 350 F had longer lives than those at room temperature, (2) in tests to the MiniTwist spectrum, the Al2024T3 material showed much greater crack growth retardations due to the highest stresses in the spectrum than did the Ti62222STA material, and (3) comparisons of material crack growth performances on an "equal weight" basis were spectrum dependent.

  12. Low-cycle thermal fatigue

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1986-01-01

    A state-of-the-art review is presented of the field of thermal fatigue. Following a brief historical review, the concept is developed that thermal fatigue can be viewed as processes of unbalanced deformation and cracking. The unbalances refer to dissimilar mechanisms occurring in opposing halves of thermal fatigue loading and unloading cycles. Extensive data summaries are presented and results are interpreted in terms of the unbalanced processes involved. Both crack initiation and crack propagation results are summarized. Testing techniques are reviewed, and considerable discussion is given to a technique for thermal fatigue simulation, known as the bithermal fatigue test. Attention is given to the use of isothermal life prediction methods for the prediction of thermal fatigue lives. Shortcomings of isothermally-based life prediction methods are pointed out. Several examples of analyses and thermal fatigue life predictions of high technology structural components are presented. Finally, numerous dos and don'ts relative to design against thermal fatigue are presented.

  13. Ex-situ tensile fatigue-creep testing: A powerful tool to simulate in-situ mechanical degradation in fuel cells

    NASA Astrophysics Data System (ADS)

    Sadeghi Alavijeh, A.; Venkatesan, S. V.; Khorasany, R. M. H.; Kim, W. H. J.; Kjeang, E.

    2016-04-01

    An ex-situ tensile fatigue and creep based accelerated stress test (TFC-AST) is proposed to evaluate the mechanical stability of catalyst coated membranes (CCMs) used in fuel cells. The fatigue-creep action of the TFC test is analyzed by tensile and hygrothermal expansion measurements on partially degraded specimens supplemented by microstructural characterization using transmission electron microscopy, revealing significant decay in mechanical properties as well as morphological rearrangement due to the combined fatigue and creep loading. Through comparison with in-situ hygrothermally degraded CCMs, the TFC-AST protocol is demonstrated to be an economical alternative to the costly in-situ mechanical accelerated stress tests that can reduce the test duration by more than 99%.

  14. Refinements and Tests of an Advanced Controller to Mitigate Fatigue Loads in the Controls Advanced Research Turbine: Preprint

    SciTech Connect

    Wright, A.; Fleming, P.

    2010-12-01

    Wind turbines are complex, nonlinear, dynamic systems forced by aerodynamic, gravitational, centrifugal, and gyroscopic loads. The aerodynamics of wind turbines are nonlinear, unsteady, and complex. Turbine rotors are subjected to a complicated 3-D turbulent wind inflow field, with imbedded coherent vortices that drive fatigue loads and reduce lifetime. Design of control algorithms for wind turbines must account for multiple control objectives. Future large multi-megawatt turbines must be designed with lighter weight structures, using active controls to mitigate fatigue loads, while maximizing energy capture. Active damping should be added to these dynamic structures to maintain stability for operation in a complex environment. At the National Renewable Energy Laboratory (NREL), we have designed, implemented, and tested advanced controls to maximize energy extraction and reduce structural dynamic loads. These control designs are based on linear models of the turbine that are generated by specialized modeling software. In this paper, we present field test results of an advanced control algorithm to mitigate blade, tower, and drivetrain loads in Region 3.

  15. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1984-01-01

    A three year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for non-proportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved undertanding were through several critical non-proportional loading experiments. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C.

  16. Static and fatigue testing of full-scale fuselage panels fabricated using a Therm-X(R) process

    NASA Technical Reports Server (NTRS)

    Dinicola, Albert J.; Kassapoglou, Christos; Chou, Jack C.

    1992-01-01

    Large, curved, integrally stiffened composite panels representative of an aircraft fuselage structure were fabricated using a Therm-X process, an alternative concept to conventional two-sided hard tooling and contour vacuum bagging. Panels subsequently were tested under pure shear loading in both static and fatigue regimes to assess the adequacy of the manufacturing process, the effectiveness of damage tolerant design features co-cured with the structure, and the accuracy of finite element and closed-form predictions of postbuckling capability and failure load. Test results indicated the process yielded panels of high quality and increased damage tolerance through suppression of common failure modes such as skin-stiffener separation and frame-stiffener corner failure. Finite element analyses generally produced good predictions of postbuckled shape, and a global-local modelling technique yielded failure load predictions that were within 7% of the experimental mean.

  17. Thermal Fatigue Testing of ZrO2-Y2O3 Thermal Barrier Coating Systems using a High Power CO2 Laser

    NASA Technical Reports Server (NTRS)

    Zhu, Dongming; Miller, Robert A.

    1997-01-01

    In the present study, the mechanisms of fatigue crack initiation and propagation, and of coating failure, under thermal loads that simulate diesel engine conditions, are investigated. The surface cracks initiate early and grow continuously under thermal Low Cycle Fatigue (LCF) and High Cycle Fatigue (HCF) stresses. It is found that, in the absence of interfacial oxidation, the failure associated with LCF is closely related to coating sintering and creep at high temperatures. Significant LCF and HCF interactions have been observed in the thermal fatigue tests. The fatigue crack growth rate in the ceramic coating strongly depends on the characteristic HCF cycle number, N*(sub NCF), which is defined as the number of HCF cycles per LCF cycle. The crack growth rate is increased from 0.36 microns/LCF cycle for a pure LCF test to 2.8 microns/LCF cycle for a combined LCF and HCF test at N*(sub NCF) about 20,000. A surface wedging model has been proposed to account for the HCF crack growth in the coating systems. This mechanism predicts that HCF damage effect increases with increasing surface temperature swing, the thermal expansion coefficient and the elastic modulus of the ceramic coating, as well as with the HCF interacting depth. A good agreement has been found between the analysis and experimental evidence.

  18. Fatigue Strength of Diamond Coating-Substrate Interface Quantified by a Dynamic Simulation of the Inclined Impact Test

    NASA Astrophysics Data System (ADS)

    Skordaris, G.

    2014-10-01

    Fatigue damage of the nanocrystalline diamond coating (NCD) bonding to the cemented carbide substrate develops when repetitive impact loads are applied onto the film. Thus, the highly compressive residual stresses of a NCD film are released leading to its lifting from the substrate (bulge formation). The present paper deals with the analytical description of the progressive failure of the NCD coating-substrate interface under repetitive impacts. In this context, an advanced 3D-finite element analysis model was developed for the dynamic simulation of the inclined impact test, using the LS-DYNA software. This model considers the high thermal compressive residual stresses developed in the NCD coating structure during cooling from chemical vapour deposition process temperature to ambient one. The fatigue failure of the NCD coating-substrate interface is associated with a critical shear failure stress (SFLS). The determined SFLS represents the maximum operational stress permitted in the NCD film-substrate interface in order to avoid the coating detachment initiation. According to the results obtained, the successive impacts lead to a progressive weakening of the initial film-substrate interface strength depending upon the pretreatments prior to the NCD coating deposition.

  19. Measurement of Deflection in Concrete Beams During Fatigue Loading Test Using the Microsoft Kinect 2.0

    NASA Astrophysics Data System (ADS)

    Lahamy, Herve; Lichti, Derek D.; Steward, Jeremy; El-Badry, Mamdouh; Moravvej, Mohammad

    2016-03-01

    This study focuses on 3 Hz fatigue load testing of a reinforced concrete beam in laboratory conditions. Three-dimensional (3D) image time series of the beam's top surface were captured with the Microsoft time-of-flight Kinect 2.0 sensor. To estimate the beam deflection, the imagery was first segmented to extract the top surface of the beam. The centre line was then modeled using third-order B-splines. The deflection of the beam as a function of time was estimated from the modeled centre line and, following past practice, also at several witness plates attached to the side of the beam. Subsequent correlation of the peak displacement with the applied loading cycles permitted estimation of fatigue in the beam. The accuracy of the deflections was evaluated by comparison with the measurements obtained using a Keyence LK-G407 laser displacement sensors. The results indicate that the deflections can be recovered with sub-millimetre accuracy using the centreline profile modelling method.

  20. Interlaboratory Comparisons of NbTi Critical Current Measurements

    SciTech Connect

    Godeke, A.; Turrioni, D.; Boutboul, T.; Cheggour, N.; Goodrich, L.F.; Ghosh, A.; Den Ouden, A.; Meinesz, M.

    2009-08-16

    We report on a multi-institute comparison of critical current data measured on a modern NbTi wire for the Large Hadron Collider (LHC), which has shown a standard deviation below 1% in critical current density spread in more than 1500 measurements. Interlaboratory comparisons on Nb{sub 3}Sn wires have shown ambiguities that could be attributable to strain related differences in critical current density, originating from differences in sample handling, reaction, and mounting techniques, or also to differences in the magnetic field and current calibrations between the institutes. A round robin test of a well characterized NbTi wire provides a baseline variance in critical current results that is presumed to be attributable only to differences in the characterization systems. Systematic differences on the order of 3.5% are found in the comparison. The most likely cause for the observed differences is a small diameter holder that brings the wire into a strain regime in which strain effects can no longer be ignored. A NbTi round robin test, when performed properly, will separate system differences from sample specific differences and provide laboratories with an opportunity to calibrate equipment against a standard measurement.

  1. National Interlaboratory Comparison in Scope of Relative Humidity in the Range from 11 %rh to 95 %rh at 23° C

    NASA Astrophysics Data System (ADS)

    Aytekin, S. Oğuz; Kalemci, M.

    2015-12-01

    The goal of interlaboratory comparisons is to verify the competence of accredited or non-accredited laboratories, including verification of the reported measurement uncertainties, whenever possible. An interlaboratory comparison consists of measurement results of a laboratory and a reference laboratory which is competent to run the comparison and provides traceability at the required uncertainty level. In Turkey, the demand for an interlaboratory comparison in the humidity field increased drastically in parallel to an increasing number of accredited laboratories in this field. Therefore, a national interlaboratory comparison in the scope of relative humidity in the range between 11 %rh and 95 %rh at 23° C was initiated by TUBITAK UME in 2011. Two hygrometers were calibrated at TUBITAK UME in the above-mentioned range and characterized in terms of long-term stability, temperature dependence, and hysteresis. One of the hygrometers is used throughout this comparison. The second one was kept aside as a backup device in case of a malfunction of the first device. Organization and evaluation of the interlaboratory comparison in the scope of relative humidity were performed according to the EN ISO/IEC 17043:2010 "Conformity assessment—general requirements for proficiency testing" among thirteen national laboratories. Evaluation of comparison results are performed by normalized error analysis. It was found that among the 95 realized points of comparison, 85 (89 %) had En ≤ 1 and only 10 (11 %) had E >1.

  2. A novel anatomical short glass fiber reinforced post in an endodontically treated premolar mechanical resistance evaluation using acoustic emission under fatigue testing.

    PubMed

    Wang, Hsuan-Wen; Chang, Yen-Hsiang; Lin, Chun-Li

    2017-01-01

    This study evaluates the fracture resistance in an endodontically treated tooth using circular fiber-reinforced composite (FRC) and innovated anatomical short glass fiber reinforced (SGFR) posts under fatigue testing, monitored using the acoustic emission (AE) technique. An anatomical SGFR fiber post with an oval shape and slot/notch design was manufactured using an injection-molding machine. Crown/core maxillary second premolar restorations were executed using the anatomical SGFR and commercial cylindrical fiber posts under fatigue test to understand the mechanical resistances. The load versus AE signals in the fracture and fatigue tests were recorded to evaluate the restored tooth failure resistance. The static fracture resistance results showed that teeth restored using the anatomical SGFR post presented higher resistance than teeth restored using the commercial FRC post. The fatigue test endurance limitation (1.2×10(6) cycles) was 207.1N for the anatomical SGFR fiber post, higher than the 185.3N found with the commercial FRC post. The average accumulated number of AE signals and corresponding micro cracks for the anatomical SGFR fiber post (153.0 hits and 2.44 cracks) were significantly lower than those for the commercial FRC post (194.7 hits and 4.78 cracks) under 40% of the static maximum resistance fatigue test load (pass 1.2×10(6) cycles). This study concluded that the anatomical SGFR fiber post with surface slot/notch design made using precise injection molding presented superior static fracture resistance and fatigue endurance limitation than those for the commercial FRC post in an endodontically treated premolar.

  3. Gear Fatigue Diagnostics and Prognostics

    DTIC Science & Technology

    2013-01-01

    one for single gear tooth fatigue, and one for gear-on-gear dynamometer-based tester ) we have been collecting crack initiation and crack propagation...fatigue tester ); and torque, angular speed, vibration, temperature, and crack-propagation (gear-on-gear dynamometer-based tester ). The main outcome...Description The test consists of two set of tests on a dynamometer and one set of test on the fatigue tester and some additional activities. Fig

  4. Apparatus and method for fatigue testing of a material specimen in a high-pressure fluid environment

    DOEpatents

    Wang, Jy-An; Feng, Zhili; Anovitz, Lawrence M; Liu, Kenneth C

    2013-06-04

    The invention provides fatigue testing of a material specimen while the specimen is disposed in a high pressure fluid environment. A specimen is placed between receivers in an end cap of a vessel and a piston that is moveable within the vessel. Pressurized fluid is provided to compression and tension chambers defined between the piston and the vessel. When the pressure in the compression chamber is greater than the pressure in the tension chamber, the specimen is subjected to a compression force. When the pressure in the tension chamber is greater than the pressure in the compression chamber, the specimen is subjected to a tension force. While the specimen is subjected to either force, it is also surrounded by the pressurized fluid in the tension chamber. In some examples, the specimen is surrounded by hydrogen.

  5. Elevated temperature biaxial fatigue

    NASA Technical Reports Server (NTRS)

    Jordan, E. H.

    1985-01-01

    A 3 year experimental program for studying elevated temperature biaxial fatigue of a nickel based alloy Hastelloy-X has been completed. A new high temperature fatigue test facility with unique capabilities has been developed. Effort was directed toward understanding multiaxial fatigue and correlating the experimental data to the existing theories of fatigue failure. The difficult task of predicting fatigue lives for nonproportional loading was used as an ultimate test for various life prediction methods being considered. The primary means of reaching improved understanding were through several critical nonproportional loading experiments. The direction of cracking observed on failed specimens was also recorded and used to guide the development of the theory. Cyclic deformation responses were permanently recorded digitally during each test. It was discovered that the cracking mode switched from primarily cracking on the maximum shear planes at room temperature to cracking on the maximum normal strain planes at 649 C. In contrast to some other metals, loading path in nonproportional loading had little effect on fatigue lives. Strain rate had a small effect on fatigue lives at 649 C. Of the various correlating parameters the modified plastic work and octahedral shear stress were the most successful.

  6. Fracture mechanics characterization of welds: Fatigue life analysis of notches at welds: J(sub Ic) fracture toughness tests for weld metal

    NASA Astrophysics Data System (ADS)

    Underwood, John H.

    1995-03-01

    In this report two methods of fracture analysis of welds will be emphasized, one addressing fatigue life testing and analysis of notches at welds, and the other addressing the final fracture of the welded component and the fracture toughness tests used to characterize final fracture. These fatigue and fracture methods will be described by referring to recent work from the technical literature and from the U.S. Army Armament Research, Development, and Engineering Center, primarily fracture case study and fracture test method development investigations. A brief general summary will be given of fatigue and fracture methods and concepts that have application to welded structures. Specific fatigue crack initiation tests and analysis methods will be presented, using example results from a welded stainless steel box beam of a cannon carriage. Recent improvements and simplifications in J.integral fracture toughness tests will be described, particularly those related to welds. Fracture toughness measurements for various stainless steel weld metals and heat treatments will also be described.

  7. Interlaboratory variability in trace element analysis

    SciTech Connect

    Boyer, K.W.; Horwitz, W.; Albert, R.

    1985-02-01

    The precision characteristics of 18 analytical methods for metals and other elements subjected to interlaboratory collaborative studies over the last 10 years by the Association of Official Analytical Chemists (AOAC) were examined. Outlier removal and statistical calculations were standardized by the use of a computer program, FDACHEMIST. Most of the studies, representing a variety of analytes, matrices, and measurement techniques over a concentration (C) range of 100 g/kg to 10 ..mu..g/kg, were distributed about a curve defined by the equation, among-laboratories relative standard deviation, %RSD/sub x/ = 2/sup 1-0.5 log C/, where C is expressed as a decimal fraction, e.g., 1 ppm = 10/sup -6/, regardless of analyte, matrix, or measurement technique. The within-laboratory relative standard deviation, RSD/sub o/ is usually 1/2-2/3 of RSD/sub x/. Positive deviations from this curve with decreasing concentration are explainable by heterogeneity of the parent material, free choice of method of analysis, or a concentration below the limit of determination. The presence of greater than 20% outlying laboratory results or RSD/sub x/ degenerating at greater than the ''normal'' rate with decreasing concentration is taken to indicate that the method is not applicable at or below the level generating the imprecise data. 19 references, 10 figures, 2 tables.

  8. Attention network test: assessment of cognitive function in chronic fatigue syndrome.

    PubMed

    Togo, Fumiharu; Lange, Gudrun; Natelson, Benjamin H; Quigley, Karen S

    2015-03-01

    Information processing difficulties are common in patients with chronic fatigue syndrome (CFS). It has been shown that the time it takes to process a complex cognitive task, rather than error rate, may be the critical variable underlying CFS patients' cognitive complaints. The Attention Network Task (ANT) developed by Fan and colleagues may be of clinical utility to assess cognitive function in CFS, because it allows for simultaneous assessment of mental response speed, also called information processing speed, and error rate under three conditions challenging the attention system. Comparison of data from two groups of CFS patients (those with and without comorbid major depressive disorder; n = 19 and 22, respectively) to controls (n = 29) consistently showed that error rates did not differ among groups across conditions, but speed of information processing did. Processing time was prolonged in both CFS groups and most significantly affected in response to the most complex task conditions. For simpler tasks, processing time was only prolonged in CFS participants with depression. The data suggest that the ANT may be a task that could be used clinically to assess information processing deficits in individuals with CFS.

  9. Residual Stress Changes in Fatigue. Volume 2. A Simulation Model for Stress Measurements in Notched Test Specimens by X-Ray Diffraction

    DTIC Science & Technology

    1989-03-01

    Report No. NADC-88141-60 (Volume II) DTIC S F-!. r-CT E MAY 2 6 1~98D RESIDUAL STRESS CHANGES IN FATIGUE VOLUME II - A SIMULATION MODEL FOR STRESS ...Residual Stress Changes in Fatigue: Vol. II. A Simulation Model for Stress Measurements in Notched Test Specimens by X-Ray Diffraction 12 PERSONAL...Simulation; Residual Stress ; X-Ray Difraction ’/ -, . .. 20 11 1 19 ABSTRACT (Continue on reverse if necessary and identif by block number) The state of

  10. Influence of fatigue testing and cementation mode on the load-bearing capability of bovine incisors restored with crowns and FRC posts.

    PubMed

    Nothdurft, Frank P; Schmitt, Thomas; Rupf, Stefan; Pospiech, Peter R

    2011-01-01

    The aim of the study was to evaluate the influence of fatigue and cementation mode on the fracture behaviour of endodontically treated bovine incisors restored with fiber-reinforced-composite (FRC) posts and crowns. Forty-eight endodontically treated incisors were restored with FRC posts, composite build-ups, and cast crowns. In 16 teeth, each of the posts were cemented conventionally with KetacCem (3M Espe) or adhesively with Panavia F (Kuraray) or RelyXUniCem (3M Espe). One-half of the specimens in each group were subjected to thermal cycling with 10,000 cycles at 5-55°C and mechanical aging, loading the specimens in 1,200,000 cycles with 50 N. Fracture resistance was determined by loading the specimens until fracture at an angle of 45°. The loading test showed that cementation mode and fatigue testing had an influence on the load bearing capability. Before fatigue testing no statistically significant differences between the different cementation modes could be detected. After fatigue testing, conventionally cemented FRC posts lead to statistically significant higher fracture loads compared to adhesively luted posts. Most specimens fractured in a favourable way, independent from the type of cementation.

  11. Surface fatigue life of carburized and hardened M50NiL and AISI 9310 spur gears and rolling-contact test bars

    NASA Technical Reports Server (NTRS)

    Townsend, Dennis P.; Bamberger, Eric N.

    1989-01-01

    Spur gear endurance tests and rolling-element surface tests were conducted to investigate vacuum-induction-melted, vacuum-arc-melted (VIM-VAR) M50NiL steel for use as a gear steel in advanced aircraft applications, to determine its endurance characteristics, and to compare the results with those for standard VAR and VIM-VAR AISI 9310 gear material. Tests were conducted with spur gears and rolling-contact bars manufactured from VIM-VAR M50NiL and VAR and VIM-VAR AISI 9310. The gear pitch diameter was 8.9 cm (3.5 in.). Gear test conditions were an inlet oil temperature of 320 K (116 F), and outlet oil temperature of 350 K (170 F), a maximum Hertz stress of 1.71 GPa (248 ksi), and a speed of 10,000 rpm. Bench rolling-element fatigue tests were conducted at ambient temperatures with a bar speed of 12,500 rpm and a maximum Hertz stress of 4.83 GPA (700 ksi). The VIM-VAR M50NiL gears had a surface fatigue life that was 4.5 and 11.5 times that for VIM-VAR and VAR AISI 9310 gears, respectively. The surface fatigue life of the VIM-VAR M50NiL rolling-contact bars was 13.2 and 21.6 times that for the VIM-VAR and VAR AISI 9310, respectively. The VIM-VAR M50NiL material was shown to have good resistance to fracture through a fatigue spall and to have fatigue life far superior to that of both VIM-VAR and VAR AISI 9310 gears and rolling-contact bars.

  12. Capturing Uncertainty in Fatigue Life Data

    DTIC Science & Technology

    2014-09-18

    Several parameters can be investigated in fatigue testing . Factors such as loading, specimen geometry, material behavior, and thermal or chemical...of time they have spent with me discussing material sciences, fatigue testing , and their modeling efforts. Finally, a considerable amount of thanks...pricing structures for insurance policies. In fatigue , engineers can characterize metal alloys, quantify material responses to testing conditions, and

  13. Toward Improvements in Inter-laboratory Calibration of Argon Isotope Measurements

    NASA Astrophysics Data System (ADS)

    Hemming, S. R.; Deino, A. L.; Heizler, M. T.; Hodges, K. V.; McIntosh, W. C.; Renne, P. R.; Swisher, C. C., III; Turrin, B. D.; Van Soest, M. C.

    2015-12-01

    It is important to continue to develop strategies to improve our ability to compare results between laboratories chronometers. The U-Pb community has significantly reduced inter-laboratory biases with the application of a community tracer solution and the distribution of synthetic zircon solutions. Inevitably sample selection and processing and even biases in interpretations will still lead to some disagreements in the assignment of ages. Accordingly natural samples that are shared will be important for achievement of the highest levels of agreement. Analogous improvements in quality and inter-laboratory agreement of analytical aspects of Ar-Ar can be achieved through development of synthetic age standards in gas canisters with multiple pipettes to deliver various controlled amounts of argon to the mass spectrometer. A preliminary proof-of concept comes from the inter-laboratory calibration experiment for the 40Ar/39Ar community. This portable Argon Pipette Intercalibration System (APIS) consists of three 2.7 L canisters each equipped with three pipettes of 0.1, 0.2 and 0.4 cc volumes. The currently traveling APIS has the three canisters filled with air and 40Ar*/39Ar of 1.73 and canister 2 has a 40Ar*/39Ar of 40.98 (~ Alder Creek and Fish Canyon in the same irradiation). With these pipettes it is possible to combine them to provide 0.1, 0.2, 0.3 (0.1+0.2), 0.4, 0.5 (0.1+0.4), 0.6 (0.2+0.4), and 0.7 (0.1+0.2+0.4) cc. The configuration allows a simple test for inter-laboratory biases and for volume/pressure dependent mass fractionation on the measured ratios for a gas with a single argon isotope composition. Although not yet tested, it is also possible to mix gas from any one of the three canisters in proportions of these increments, allowing even more tightly controlled calibration of measurements. We suggest that ultimately each EARTHTIME lab should be equipped with such a system permanently, with a community plan for a traveling system to periodically repeat the

  14. Fatigue Test of Cytochrome C Self-Assembled on a 11-MUA Layer Based on Electrochemical Analysis for Bioelectronic Device.

    PubMed

    Lee, Taek; Chung, Yong-Ho; Chen, Qi; Min, Junhong; Choi, Jeong-Woo

    2015-08-01

    A cytochrome c/11-MUA heterolayer was fabricated to analyze its electrochemical characteristics in harsh conditions for a stable bioelectronic device. Since a cytochrome c/11-MUA heterolayer has been applied to construct the bioelectronics device such as non-volatile biomemory device, an understanding of electrochemical property of the heterolayer in harsh conditions such as variation of temperature and pH, and repetition of usage is necessary to manufacture a stable platform of bioelectronic device. Cytochrome c, a metalloprotein to have a heme group, was self-assembled on the Au surface via the chemical linker 11-mercaptoundecanoic acid (11-MUA). Immobilization of the heterolayer was confirmed by surface-enhanced Raman spectroscopy (SERS) and scanning tunneling microscopy (STM). The fatigue test was done by investigating the redox properties based on cyclic voltammetry (CV) of the heterolayer. The retention time test and pH dependence, thermal test of the fabricated heterolayer were conducted by CV, which showed that the fabricated film retained redox properties for more than 33 days, and from pH 5.0 to pH 9.0, from 15 °C to 55 °C. Taken together, our results show that a cytochrome c/11-MUA heterolayer is very stable, which could be used as a platform of bioelectronic device.

  15. Interlaboratory evaluation of trace element determination in workplace air filter samples by inductively coupled plasma mass spectrometry†‡

    PubMed Central

    Shulman, Stanley A.; Brisson, Michael J.; Howe, Alan M.

    2015-01-01

    Inductively coupled plasma mass spectrometry (ICP-MS) is becoming more widely used for trace elemental analysis in the occupational hygiene field, and consequently new ICP-MS international standard procedures have been promulgated by ASTM International and ISO. However, there is a dearth of interlaboratory performance data for this analytical methodology. In an effort to fill this data void, an interlaboratory evaluation of ICP-MS for determining trace elements in workplace air samples was conducted, towards fulfillment of method validation requirements for international voluntary consensus standard test methods. The study was performed in accordance with applicable statistical procedures for investigating interlaboratory precision. The evaluation was carried out using certified 37-mm diameter mixed-cellulose ester (MCE) filters that were fortified with 21 elements of concern in occupational hygiene. Elements were spiked at levels ranging from 0.025 to 10 μg filter−1, with three different filter loadings denoted “Low”, “Medium” and “High”. Participating laboratories were recruited from a pool of over fifty invitees; ultimately twenty laboratories from Europe, North America and Asia submitted results. Triplicates of each certified filter with elemental contents at three different levels, plus media blanks spiked with reagent, were conveyed to each volunteer laboratory. Each participant was also provided a copy of the test method which each participant was asked to follow; spiking levels were unknown to the participants. The laboratories were requested to prepare the filters by one of three sample preparation procedures, i.e., hotplate digestion, microwave digestion or hot block extraction, which were described in the test method. Participants were then asked to analyze aliquots of the prepared samples by ICP-MS, and to report their data in units of μg filter−1. Most interlaboratory precision estimates were acceptable for medium- and high

  16. A pilot study to test psychophonetics methodology for self-care and empathy in compassion fatigue, burnout and secondary traumatic stress

    PubMed Central

    Butler, Nadine

    2013-01-01

    Abstract Background Home-based care is recognised as being a stressful occupation. Practitioners working with patients experiencing high levels of trauma may be susceptible to compassion fatigue, with the sustained need to remain empathic being a contributing factor. Objectives The aim of this research was to evaluate psychophonetics methodology for self-care and empathy skills as an intervention for compassion fatigue. Objectives were to measure levels of compassion fatigue pre-intervention, then to apply the intervention and retest levels one month and six months post-intervention. Method The research applied a pilot test of a developed intervention as a quasi-experiment. The study sample comprised home-based carers working with HIV-positive patients at a hospice in Grabouw, a settlement in the Western Cape facing socioeconomic challenge. Results The result of the pilot study showed a statistically-significant improvement in secondary traumatic stress, a component of compassion fatigue, measured with the ProQOL v5 instrument post-intervention. Conclusion The results gave adequate indication for the implementation of a larger study in order to apply and test the intervention. The study highlights a dire need for further research in this field.

  17. Effect of Load History on Fatigue Life.

    DTIC Science & Technology

    1980-06-01

    A number of different loading histories will be investigated to determine their effects on constant amplitude fatigue properties of the selected...previous test results, and at each of the two R ratios. The effect of overloads on constant ampli- tude fatigue life and damage will be investigated ...be investigated . 5.1 FATIGUE TEST RESULTS Constant amplitude fatigue tests were conducted at four R ratios (+0.5, 0.0, -0.5, -1.0) using the

  18. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study.

    PubMed

    Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A

    2013-11-01

    This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin-Rammler-Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a

  19. Particle size distributions by transmission electron microscopy: an interlaboratory comparison case study

    PubMed Central

    Rice, Stephen B; Chan, Christopher; Brown, Scott C; Eschbach, Peter; Han, Li; Ensor, David S; Stefaniak, Aleksandr B; Bonevich, John; Vladár, András E; Hight Walker, Angela R; Zheng, Jiwen; Starnes, Catherine; Stromberg, Arnold; Ye, Jia; Grulke, Eric A

    2015-01-01

    This paper reports an interlaboratory comparison that evaluated a protocol for measuring and analysing the particle size distribution of discrete, metallic, spheroidal nanoparticles using transmission electron microscopy (TEM). The study was focused on automated image capture and automated particle analysis. NIST RM8012 gold nanoparticles (30 nm nominal diameter) were measured for area-equivalent diameter distributions by eight laboratories. Statistical analysis was used to (1) assess the data quality without using size distribution reference models, (2) determine reference model parameters for different size distribution reference models and non-linear regression fitting methods and (3) assess the measurement uncertainty of a size distribution parameter by using its coefficient of variation. The interlaboratory area-equivalent diameter mean, 27.6 nm ± 2.4 nm (computed based on a normal distribution), was quite similar to the area-equivalent diameter, 27.6 nm, assigned to NIST RM8012. The lognormal reference model was the preferred choice for these particle size distributions as, for all laboratories, its parameters had lower relative standard errors (RSEs) than the other size distribution reference models tested (normal, Weibull and Rosin–Rammler–Bennett). The RSEs for the fitted standard deviations were two orders of magnitude higher than those for the fitted means, suggesting that most of the parameter estimate errors were associated with estimating the breadth of the distributions. The coefficients of variation for the interlaboratory statistics also confirmed the lognormal reference model as the preferred choice. From quasi-linear plots, the typical range for good fits between the model and cumulative number-based distributions was 1.9 fitted standard deviations less than the mean to 2.3 fitted standard deviations above the mean. Automated image capture, automated particle analysis and statistical evaluation of the data and fitting coefficients provide a

  20. Fatigue experience from tests carried out with forged beam and frame structures in the development of the Saab aircraft Viggen

    NASA Technical Reports Server (NTRS)

    Larsson, S. E.

    1972-01-01

    A part of the lower side of the main wing at the joint of the main spar with the fuselage frame was investigated. This wing beam area was simulated by a test specimen consisting of a spar boom of AZ 74 forging (7075 aluminum alloy modified with 0.3 percent Ag) and a portion of a honeycomb sandwich panel attached to the boom flange with steel bolts. The cross section was reduced to half scale. However, the flange thickness, the panel height, and the bolt size were full scale. Further, left and right portions of the fuselage frame intended to carry over the bending moment of the main wing were tested. Each of these frame halves consisted of a forward and a rear forging (7079 aluminum alloy, overaged) connected by an outer and inner skin (Alclad 7075) creating a box beam. These test specimens were full scale and were constructed principally of ordinary aircraft components. The test load spectrum was common to both types of specimens with regard to percentage levels. It consisted of maneuver and gust loads, touchdown loads, and loads due to ground roughness. A load history of 200 hours of flight with 15,000 load cycles was punched on a tape. The loads were randomized in groups according to the flight-by-flight principle. The highest positive load level was 90 percent of limit load and the largest negative load was -27 percent. A total of 20 load levels were used. Both types of specimens were provided with strain gages and had a nominal stress of about 300 MN/sq m in some local areas. As a result of the tests, steps were taken to reduce the risk of fatigue damage in aircraft. Thus stress levels were lowered, radii were increased, and demands on surface finish were sharpened.

  1. Fatigue test load identification using weighted modal filtering based on stress

    NASA Astrophysics Data System (ADS)

    Wentzel, Henrik

    2013-11-01

    Laboratory reliability testing is an important part of the vehicle development process. Test rigs are designed to reproduce accelerations or other sensor readings in a controlled environment and criteria on the duration of testing without failure are used to assure quality. An apparent difficulty of this procedure is that the damage at a point is only indirectly coupled to the accelerations measured in other points. In this paper, it is proposed to use a modal shape filter, and control the test such that the shapes that are generating stress in critical points are reproduced. A selective weighting of the mode shapes allows for accurate reproduction of the stress, and hence the damage, also in circumstances when the exact location of the excitation force cannot be reconstructed in the test. The proposed procedure is applied in two different experiments; the first aiming to reproduce the stress in a cantilever beam, and the second aiming to reproduce the stress in a truck cabin suspension.

  2. Fatigue life of laser cut metals

    NASA Technical Reports Server (NTRS)

    Martin, M. R.

    1986-01-01

    Fatigue tests were conducted to determine the actual reduction in fatigue life due to weight removal for balancing by: hand grinding, low power (20 watt) Nd:glass laser, and high power (400 watt) Nd:YAG laser.

  3. Interlaboratory comparison of size and surface charge measurements on nanoparticles prior to biological impact assessment

    NASA Astrophysics Data System (ADS)

    Roebben, G.; Ramirez-Garcia, S.; Hackley, V. A.; Roesslein, M.; Klaessig, F.; Kestens, V.; Lynch, I.; Garner, C. M.; Rawle, A.; Elder, A.; Colvin, V. L.; Kreyling, W.; Krug, H. F.; Lewicka, Z. A.; McNeil, S.; Nel, A.; Patri, A.; Wick, P.; Wiesner, M.; Xia, T.; Oberdörster, G.; Dawson, K. A.

    2011-07-01

    The International Alliance for NanoEHS Harmonization (IANH) organises interlaboratory comparisons of methods used to study the potential biological impacts of nanomaterials. The aim of IANH is to identify and reduce or remove sources of variability and irreproducibility in existing protocols. Here, we present results of the first IANH round robin studies into methods to assess the size and surface charge of suspended nanoparticles. The test materials used (suspensions of gold, silica, polystyrene, and ceria nanoparticles, with [primary] particles sizes between 10 nm and 80 nm) were first analysed in repeatability conditions to assess the possible contribution of between-sample heterogeneity to the between-laboratory variability. Reproducibility of the selected methods was investigated in an interlaboratory comparison between ten different laboratories in the USA and Europe. Robust statistical analysis was used to evaluate within- and between-laboratory variability. It is shown that, if detailed shipping, measurement, and reporting protocols are followed, measurement of the hydrodynamic particle diameter of nanoparticles in predispersed monomodal suspensions using the dynamic light scattering method is reproducible. On the other hand, measurements of more polydisperse suspensions of nanoparticle aggregates or agglomerates were not reproducible between laboratories. Ultrasonication, which is commonly used to prepare dispersions before cell exposures, was observed to further increase variability. The variability of the zeta potential values, which were also measured, indicates the need to define better surface charge test protocols and to identify sources of variability.

  4. [Studies on the accuracy and precision of total serum cholesterol in regional interlaboratory trials (author's transl)].

    PubMed

    Hohenwallner, W; Sommer, R; Wimmer, E

    1976-01-02

    The between-run precision of the Liebermann-Burchard reaction modified by Watson was, in our laboratory, 2-3%, the within-run coefficient of variation was 1-2%. The between-run precision of the enzymatic test was 3-4%, the within-run coefficient of variation was 3%. The regression analysis of 92 serum specimens from patients was y = -17.31 + 1.04 chi, the coefficient of regression was r = 0.996. Interlaboratory trials of serum cholesterol were studied in the normal and pathological range. Lyophilized samples of serum prepared commercially and from fresh specimens from patients were analysed by the method of Liebermann-Burchard as well as by the enzymatic procedure. Acceptable results estimated by Liebermann-Burchard were obtained in the different laboratories after using a common standard of cholesterol. The coefficient of variation of the enzymatic test in the interlaboratory trial was higher in comparison to the Liebermann-Burchard reaction. Methodological difficulties of the Liebermann-Burchard reaction are discussed and compared with the specific, enzymatic assay.

  5. Thermal fatigue of beryllium

    SciTech Connect

    Deksnis, E.; Ciric, D.; Falter, H.

    1995-09-01

    Thermal fatigue life of S65c beryllium castellated to a geometry 6 x 6 x (8-10)mm deep has been tested for steady heat fluxes of 3 MW/m{sup 2} to 5 MW/m{sup 2} and under pulsed heat fluxes (10-20 MW/m{sup 2}) for which the time averaged heat flux is 5 MW/m{sup 2}. These tests were carried out in the JET neutral beam test facility A test sequence with peak surface temperatures {le} 600{degrees}C produced no visible fatigue cracks. In the second series of tests, with T{sub max} {le} 750{degrees}C evidence for fatigue appeared after a minimum of 1350 stress cycles. These fatigue data are discussed in view of the observed lack of thermal fatigue in JET plasma operations with beryllium PFC. JET experience with S65b and S65c is reviewed; recent operations with {Phi} = 25 MW/m{sup 2} and sustained melting/resolidification are also presented. The need for a failure criterion for finite element analyses of Be PFC lifetimes is discussed.

  6. Test Length and Cognitive Fatigue: An Empirical Examination of Effects on Performance and Test-Taker Reactions

    ERIC Educational Resources Information Center

    Ackerman, Phillip L.; Kanfer, Ruth

    2009-01-01

    Person and situational determinants of cognitive ability test performance and subjective reactions were examined in the context of tests with different time-on-task requirements. Two hundred thirty-nine first-year university students participated in a within-participant experiment, with completely counterbalanced treatment conditions and test…

  7. Design of a Data Acquisition and Reduction System for Fatigue Testing.

    DTIC Science & Technology

    1981-09-01

    Jerry Wayne Dalton Lieutenant, United States Navy B.S., University of Texas at Austin, 1975 Submitted in partial fulfillment of the requirements for...specimen (Fig. 1) to be used in the full scale tests. These material parameters and properties are: 34 80 70 60 so ~40/ n30 / 20/ 10 / 2 4 6 8 10 12 STRAIN

  8. Fatigue Lives Of Laser-Cut Metals

    NASA Technical Reports Server (NTRS)

    Martin, Michael R.

    1988-01-01

    Fatigue lives made to approach those attainable by traditional grinding methods. Fatigue-test specimens prepared from four metallic alloys, and material removed from specimens by manual grinding, by Nd:glass laser, and by Nd:YAG laser. Results of fatigue tests of all specimens indicated reduction of fatigue strengths of laser-fired specimens. Laser machining holds promise for improved balancing of components of gas turbines.

  9. Study on the Temperature Field Loaded by a Shaped Laser Beam on the Top Surface of a Cylinder Head for Thermal Fatigue Test

    NASA Astrophysics Data System (ADS)

    Nie, S.-Z.; Yu, J.; Yu, G.; Tan, Q.-F.; Fan, Z.-W.

    2014-09-01

    In thermal fatigue test, the key point is whether the temperature field on the top surface of cylinder head induced by the heat source can well match it in real service. In order to produce the target temperature field in service which is measured by thermocouples, shaped laser beam generated by diffractive optics element (DOE) is chosen as the heat source to irradiate on the top surface of cylinder head. The DOE is designed based on the Gerchberg-Saxton (GS) algorithm and the simulated temperature field is calculated by finite element model (FEM). The results show that the simulated and experimental temperature field can well match the target one which demonstrates that this method is feasible to produce the target temperature field and can be used in thermal fatigue test.

  10. Materials Reliability Program: Environmental Fatigue Testing of Type 304L Stainless Steel U-Bends in Simulated PWR Primary Water (MRP-137)

    SciTech Connect

    R.Kilian

    2004-12-01

    Laboratory data generated in the past decade indicate a significant reduction in component fatigue life when reactor water environmental effects are experimentally simulated. However, these laboratory data have not been supported by nuclear power plant component operating experience. In recent comprehensive review of laboratory, component and structural test data performed through the EPRI Materials Reliability Program, flow rate was identified as a critical variable that was generally not considered in laboratory studies but applicable in plant operating environments. Available data for carbon/low-alloy steel piping components suggest that high flow is beneficial regarding the effects of a reactor water environment. Similar information is lacking for stainless steel piping materials. This report documents progress made to date in an extensive testing program underway to evaluate the effects of flow rate on the corrosion fatigue of 304L stainless steel under simulated PWR primary water environmental conditions.

  11. Fatigue Crack Growth Rate Test Results for Al-Li 2195 Parent Metal, Variable Polarity Plasma Arc Welds and Friction Stir Welds

    NASA Technical Reports Server (NTRS)

    Hafley, Robert A.; Wagner, John A.; Domack, Marcia S.

    2000-01-01

    The fatigue crack growth rate of aluminum-lithium (Al-Li) alloy 2195 plate and weldments was determined at 200-F, ambient temperature and -320-F. The effects of stress ratio (R), welding process, orientation and thickness were studied. Results are compared with plate data from the Space Shuttle Super Lightweight Tank (SLWT) allowables program. Data from the current series of tests, both plate and weldment, falls within the range of data generated during the SLWT allowables program.

  12. Interlaboratory comparison of transformation in Syrian hamster embryo cells with model and coded chemicals

    SciTech Connect

    Tu, A.; Hallowell, W.; Pallotta, S.; Sivak, A.; Lubet, R.A.; Curren, R.D.; Avery, M.D.; Jones, C.; Sedita, B.A.; Huberman, E.

    1986-01-01

    Three independent laboratories tested eight model and five coded chemicals in the Syrian hamster embryo clonal transformation assay system to establish the intra- and interlaboratory reproducibility of the system and to identify sources of variability. When a common cell pool and the same lot of fetal calf serum were used, the three laboratories obtained consensus on the activity of eight model chemicals; five chemicals (benzo(a)pyrene, 7,12-dimethylbenz(a)anthracene, N-methyl-N'-nitro-N-nitrosoguanidine, nitroquinoline-N-oxide, and lead chromate) induced morphological transformation without exogenous metabolic activation and three (N-2-fluorenylacetamide, pyrene, and anthracene) produced no transformation response. Five coded chemicals (2,6-dichloro p-phenylenediamine, 4,4'-oxydianiline, cinnamyl anthranilate, dichlorvos, and reserpine), representative of environmental chemical classes, but not necessarily strong carcinogens, produced more equivocal responses in this interlaboratory study. Efforts to increase the transformation frequency or to amplify the expression of the transformed phenotype constitute some of the approaches which should be explored in order to overcome these limitations.

  13. Interlaboratory comparison of backscatter coefficient estimates for tissue-mimicking phantoms.

    PubMed

    Anderson, Janelle J; Herd, Maria-Teresa; King, Michael R; Haak, Alexander; Hafez, Zachary T; Song, Jun; Oelze, Michael L; Madsen, Ernest L; Zagzebski, James A; O'Brien, William D; Hall, Timothy J

    2010-01-01

    Ultrasonic backscatter is useful for characterizing tissues and several groups have reported methods for estimating backscattering properties. Previous interlaboratory comparisons have been made to test the ability to accurately estimate the backscatter coefficient (BSC) by different laboratories around the world. Results of these comparisons showed variability in BSC estimates but were acquired only for a relatively narrow frequency range, and, most importantly, lacked reference to any independent predictions from scattering theory. The goal of this study was to compare Faran-scattering-theory predictions with cooperatively-measured backscatter coefficients for low-attenuating and tissue-like attenuating phantoms containing glass sphere scatterers of different sizes for which BSCs can independently be predicted. Ultrasonic backscatter measurementswere made for frequencies from 1 to 12 MHz. Backscatter coefficients were estimated using two different planar-reflector techniques at two laboratories for two groups of phantoms. Excellent agreement was observed between BSC estimates from both laboratories. In addition, good agreement with the predictions of Faran's theory was obtained, with average fractional (bias) errors ranging from 8-14%. This interlaboratory comparison demonstrates the ability to accurately estimate parameters derived from the BSC, including an effective scatterer size and the acoustic concentration, both of which may prove useful for diagnostic applications of ultrasound tissue characterization.

  14. Interlaboratory comparison of geosmin and 2-methylisoborneol in municipal tap water.

    PubMed

    Brownlee, B; Marvin, C; MacInnis, G; Charlton, M; Watson, S

    2007-01-01

    An interlaboratory comparison ("round-robin") for geosmin and 2-methylisoborneol (MIB) was carried out between six laboratories of the Ontario Water Works Research Consortium (OWWRC). Municipal tap water was found to be a suitable medium for distribution of samples. To test stability, geosmin and MIB were added to tap water and stored at 2-4 degrees C. Under these conditions, geosmin concentrations declined by approximately 5% per month for the first 2 months. MIB concentrations were stable over a 158-day period. Three round-robins were carried out individually in 2001, 2003 and 2004. Two levels of geosmin and MIB were used: nominally 10 and 100 ng/l. In 2003 the relative standard deviation for all six participating laboratories were 34, 21, 21 and 22% for low and high level MIB, and low and high level geosmin, respectively. For all but MIB at the low level, there was a marked improvement in agreement between laboratories from 2001 to 2004. However, we recommend use of common analytical standards in order to potentially further reduce interlaboratory variability.

  15. Probabilistic Fatigue: Computational Simulation

    NASA Technical Reports Server (NTRS)

    Chamis, Christos C.

    2002-01-01

    Fatigue is a primary consideration in the design of aerospace structures for long term durability and reliability. There are several types of fatigue that must be considered in the design. These include low cycle, high cycle, combined for different cyclic loading conditions - for example, mechanical, thermal, erosion, etc. The traditional approach to evaluate fatigue has been to conduct many tests in the various service-environment conditions that the component will be subjected to in a specific design. This approach is reasonable and robust for that specific design. However, it is time consuming, costly and needs to be repeated for designs in different operating conditions in general. Recent research has demonstrated that fatigue of structural components/structures can be evaluated by computational simulation based on a novel paradigm. Main features in this novel paradigm are progressive telescoping scale mechanics, progressive scale substructuring and progressive structural fracture, encompassed with probabilistic simulation. These generic features of this approach are to probabilistically telescope scale local material point damage all the way up to the structural component and to probabilistically scale decompose structural loads and boundary conditions all the way down to material point. Additional features include a multifactor interaction model that probabilistically describes material properties evolution, any changes due to various cyclic load and other mutually interacting effects. The objective of the proposed paper is to describe this novel paradigm of computational simulation and present typical fatigue results for structural components. Additionally, advantages, versatility and inclusiveness of computational simulation versus testing are discussed. Guidelines for complementing simulated results with strategic testing are outlined. Typical results are shown for computational simulation of fatigue in metallic composite structures to demonstrate the

  16. Fatigue and Barkhausen effect

    NASA Astrophysics Data System (ADS)

    Tong, Wei

    Piezomagnetism designates a change in the magnetization of materials induced by mechanical actions such as tension or compression. The type of Barkhausen effect that occurs in this work consists of sudden, discontinuous jumps in a material's magnetization that appear in response to smooth (continuous) stress variations. A series of strain controlled fatigue tests with an alternating sinusoidal waveform were carried out to study the relationship between the endurance limit and the Barkhausen effect. Results of fatigue tests on steel specimens exhibiting Barkhausen pulses at various stages are reported and a threshold-crossing analysis is applied to the test results. These studies show that when the fatigue limit is approached, the Barkhausen pulses become, in general, more intense in amplitude and quantity than at other stress levels. A hypothetical mechanism is proposed that relates the intensity of the Barkhausen response to the inception of micro-cracking and rearrangements of the mechanical lattice at the microscopic level.

  17. Determination of Rolling-Element Fatigue Life From Computer Generated Bearing Tests

    NASA Technical Reports Server (NTRS)

    Vlcek, Brian L.; Hendricks, Robert C.; Zaretsky, Erwin V.

    2003-01-01

    Two types of rolling-element bearings representing radial loaded and thrust loaded bearings were used for this study. Three hundred forty (340) virtual bearing sets totaling 31400 bearings were randomly assembled and tested by Monte Carlo (random) number generation. The Monte Carlo results were compared with endurance data from 51 bearing sets comprising 5321 bearings. A simple algebraic relation was established for the upper and lower L(sub 10) life limits as function of number of bearings failed for any bearing geometry. There is a fifty percent (50 percent) probability that the resultant bearing life will be less than that calculated. The maximum and minimum variation between the bearing resultant life and the calculated life correlate with the 90-percent confidence limits for a Weibull slope of 1.5. The calculated lives for bearings using a load-life exponent p of 4 for ball bearings and 5 for roller bearings correlated with the Monte Carlo generated bearing lives and the bearing data. STLE life factors for bearing steel and processing provide a reasonable accounting for differences between bearing life data and calculated life. Variations in Weibull slope from the Monte Carlo testing and bearing data correlated. There was excellent agreement between percent of individual components failed from Monte Carlo simulation and that predicted.

  18. Corrosion-fatigue of laser-repaired commercially pure titanium and Ti-6Al-4V alloy under different test environments.

    PubMed

    Zavanelli, R A; Guilherme, A S; Pessanha-Henriques, G E; de Arruda Nóbilo, M Antônio; Mesquita, M F

    2004-10-01

    This study evaluated the corrosion-fatigue life of laser-repaired specimens fabricated from commercially pure titanium (CP Ti) and Ti-6Al-4V alloy, tested under different storage conditions. For each metal, 30 dumbbell rods with a central 2.3 mm diameter were prepared by lost-wax casting with the Rematitan System. Simulating the failure after service, corrosion-fatigue life in different media at room temperature (air, synthetic saliva and fluoride synthetic saliva) was determined at a testing frequency of 10 Hz for intact specimens and after laser repairing, using a square waveform with equal maximum tensile and compressive stress that was 30% lower than the 0.2% offset yield strength. For laser welding, the fractured specimens were rejoined using a jig to align the sections invested in type-IV dental stone. The adjacent areas of the gap was air-abraded with 100 microm aluminum oxide, laser welded and retested under the same conditions as the initial intact specimens. The number of cycles at failure was recorded, and the fracture surface was examined with a scanning electron microscope (SEM). The number of cycles for failure of the welded and intact specimens was compared by anova and the Tukey test at a 5% probability level. Within the limitations of this study, the number of cycles required for fracture decreased in wet environments and the laser repairing process adversely affected the life of both metals under the corrosion-fatigue conditions.

  19. Investigation of thermal fatigue in fiber composite materials. [(thermal cycling tests)

    NASA Technical Reports Server (NTRS)

    Fahmy, A. A.; Cunningham, T. G.

    1976-01-01

    Graphite-epoxy laminates were thermally cycled to determine the effects of thermal cycles on tensile properties and thermal expansion coefficients of the laminates. Three 12-ply laminate configurations were subjected to up to 5,000 thermal cycles. The cumulative effect of the thermal cycles was determined by destructive inspection (electron micrographs and tensile tests) of samples after progressively larger numbers of cycles. After thermal cycling, the materials' tensile strengths, moduli, and thermal expansion coefficients were significantly lower than for the materials as fabricated. Most of the degradation of properties occurred after only a few cycles. The property degradation was attributed primarily to the progressive development of matrix cracks whose locations depended upon the layup orientation of the laminate.

  20. Pre-crack fatigue life assessment of relevant aircraft materials using fractal analysis of eddy current test data

    NASA Astrophysics Data System (ADS)

    Schreiber, Jürgen; Cikalova, Ulana; Hillmann, Susanne; Meyendorf, Norbert; Hoffmann, Jochen

    2013-01-01

    Successful determination of residual fatigue life requires a comprehensive understanding of the fatigue related material deformation mechanism. Neither macroscopic continuum mechanics nor micromechanic observations provide sufficient data to explain subsequent deformation structures occurring during the fatigue life of a metallic structure. Instead mesomechanic deformation on different scaling levels can be studied by applying fractal analysis of various means of nondestructive inspection measurements. The resulting fractal dimension data can be correlated to the actual material damage states, providing an estimation of the remaining residual fatigue life before macroscopic fracture develops. Recent efforts were aimed to apply the fractal concept to aerospace relevant materials AA7075-T6 and Ti-6Al-4V. Proven and newly developed fractal analysis methods were applied to eddy current (EC) measurements of fatigued specimens, with the potential to transition this approach to an aircraft for an in-situ nondestructive inspection. The occurrence of mesomechanic deformation at the material surface of both AA7075-T6 and Ti-6Al-4V specimens could be established via topography images using confocal microscopy (CM). Furthermore, a pulsed eddy current (PEC) approach was developed, combined with a sophisticated new fractal analysis algorithm based on short pulse excitation and evaluation of EC relaxation behavior. This paper presents concept, experimental realization, fractal analysis procedures, and results of this effort.

  1. High-Temperature, Low-Cycle Fatigue of Copper-Base Alloys for Rocket Nozzles. Part 1: Data Summary for Materials Tested in Prior Programs

    NASA Technical Reports Server (NTRS)

    Conway, J. B.; Stentz, R. H.; Berling, J. T.

    1975-01-01

    A more detailed analysis of the results obtained in 188 previously reported low-cycle fatigue tests of various candidate materials for regeneratively-cooled, reusable rocket nozzle liners was reported. Plots of load range versus cycles were reported for each test along with a stress-strain hysteresis loop near half-life. In addition, a summary table was provided to compare N5 (cycles to a five percent load range drop) and Nf (cycles to complete specimen separation) values for each test.

  2. An Experimental Investigation of Transverse Tension Fatigue Characterization of IM6/3501-6 Composite Materials Using a Three-Point Bend Test

    NASA Technical Reports Server (NTRS)

    Peck, Ann W.

    1998-01-01

    As composites are introduced into more complex structures with out-of-plane loadings, a better understanding is needed of the out-of-plane, matrix-dominated failure mechanisms. This work investigates the transverse tension fatigue characteristics of IM6/3501 composite materials. To test the 90 degree laminae, a three-point bend test was chosen, potentially minimizing handling and gripping issues associated with tension tests. A finite element analysis was performed of a particular specimen configuration to investigate the influence of specimen size on the stress distribution for a three-point bend test. Static testing of 50 specimens of 9 different sized configurations produced a mean transverse tensile strength of 61.3 Mpa (8.0 ksi). The smallest configuration (10.2 mm wide, Span-to-thickness ratio of 3) consistently exhibited transverse tensile failures. A volume scale effect was difficult to discern due to the large scatter of the data. Static testing of 10 different specimens taken from a second panel produced a mean transverse tensile strength of 82.7 Mpa (12.0 ksi). Weibull parameterization of the data was possible, but due to variability in raw material and/or manufacturing, more replicates are needed for greater confidence. Three-point flex fatigue testing of the smallest configuration was performed on 59 specimens at various levels of the mean static transverse tensile strength using an R ratio of 0.1 and a frequency of 20 Hz. A great deal of scatter was seen in the data. The majority of specimens failed near the center loading roller. To determine whether the scatter in the fatigue data is due to variability in raw material and/or the manufacturing process, additional testing should be performed on panels manufactured from different sources.

  3. Evaluation of mouse bioassay results in an inter-laboratory comparison for paralytic shellfish poisoning toxins

    NASA Astrophysics Data System (ADS)

    Cao, Jijuan; Zheng, Jiang; Yu, Bing; Wang, Qiuyan; Xu, Junyi; Li, Aifeng

    2011-07-01

    An inter-laboratory comparison of the AOAC mouse bioassay for paralytic shellfish poisoning (PSP) toxicity in shellfish was carried out among 25 Chinese laboratories to examine the overall performance for PSP testing in China, and to analyze the main factors affecting the performance of this method. The toxic scallop Patinopecten yessoensis collected from coast of Bohai Sea, China, was used as a test sample in the comparison study. The results were reported and evaluated using robust statistical methods. The z scores showed that 80%, 8%, and 12% of laboratories reported satisfactory results, unsatisfactory results, and questionable results, respectively. This evaluation demonstrates that the PSP mouse bioassay is an appropriate method for screening and testing PSP toxicity in shellfish. However, it was found that the experience and skill of technicians, as well as the body weight and health status of mice being used significantly affected the accuracy of the method.

  4. Characterization of micro-contact resistance between a gold nanocrystalline line and a tungsten electrode probe in interconnect fatigue testing.

    PubMed

    Ling, Xue; Wang, Yusheng; Li, Xide

    2014-10-01

    An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.

  5. Characterization of micro-contact resistance between a gold nanocrystalline line and a tungsten electrode probe in interconnect fatigue testing

    NASA Astrophysics Data System (ADS)

    Ling, Xue; Wang, Yusheng; Li, Xide

    2014-10-01

    An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li-Etsion-Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.

  6. Characterization of micro-contact resistance between a gold nanocrystalline line and a tungsten electrode probe in interconnect fatigue testing

    SciTech Connect

    Ling, Xue; Wang, Yusheng; Li, Xide

    2014-10-15

    An electromechanically-coupled micro-contact resistance measurement system is built to mimic the contact process during fatigue testing of nanoscale-thickness interconnects using multiple probe methods. The design combines an optical microscope, high-resolution electronic balance, and micromanipulator-controlled electric probe, and is coupled with electrical measurements to investigate microscale contact physics. Experimental measurements are performed to characterize the contact resistance response of the gold nanocrystalline pad of a 35-nm-thick interconnect under mechanical force applied by a tungsten electrode probe. Location of a stable region for the contact resistance and the critical contact force provides better understanding of micro-contact behavior relative to the effects of the contact force and the nature of the contact surface. Increasing contact temperature leads to reduced contact resistance, softens the pad material, and modifies the contact surface. The stability of both contact resistance and interconnect resistance is studied under increasing contact force. Major fluctuations emerge when the contact force is less than the critical contact force, which shows that temporal contact resistance will affect interconnect resistance measurement accuracy, even when using the four-wire method. This performance is demonstrated experimentally by heating the Au line locally with a laser beam. Finally, the contact resistances are calculated using the LET (Li–Etsion–Talke) model together with combined Holm and Sharvin theory under various contact forces. Good agreement between the results is obtained. This research provides a way to measure change in interconnect line resistance directly under a stable contact resistance regime with a two-wire method that will greatly reduce the experimental costs.

  7. Role and Evaluation of Interlaboratory Comparison Results in Laboratory Accreditation

    NASA Astrophysics Data System (ADS)

    Bode, P.

    2008-08-01

    Participation in interlaboratory comparisons provides laboratories an opportunity for independent assessment of their analytical performance, both in absolute way and in comparison with those by other techniques. However, such comparisons are hindered by differences in the way laboratories participate, e.g. at best measurement capability or under routine conditions. Neutron activation analysis laboratories, determining total mass fractions, often see themselves classified as `outliers' since the majority of other participants employ techniques with incomplete digestion methods. These considerations are discussed in relation to the way results from interlaboratory comparisons are evaluated by accreditation bodies following the requirements of Clause 5.9.1 of the ISO/IEC 17025:2005. The discussion and conclusions come largely forth from experiences in the author's own laboratory.

  8. 10 CFR 26.211 - Fatigue assessments.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Fatigue assessments. 26.211 Section 26.211 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Managing Fatigue § 26.211 Fatigue assessments. (a) Licensees... addition to any other test or determination of fitness that may be required under §§ 26.31(c) and 26.77,...

  9. 10 CFR 26.211 - Fatigue assessments.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Fatigue assessments. 26.211 Section 26.211 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Managing Fatigue § 26.211 Fatigue assessments. (a) Licensees... addition to any other test or determination of fitness that may be required under §§ 26.31(c) and 26.77,...

  10. 10 CFR 26.211 - Fatigue assessments.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Fatigue assessments. 26.211 Section 26.211 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Managing Fatigue § 26.211 Fatigue assessments. (a) Licensees... addition to any other test or determination of fitness that may be required under §§ 26.31(c) and 26.77,...

  11. 10 CFR 26.211 - Fatigue assessments.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Fatigue assessments. 26.211 Section 26.211 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Managing Fatigue § 26.211 Fatigue assessments. (a) Licensees... addition to any other test or determination of fitness that may be required under §§ 26.31(c) and 26.77,...

  12. 10 CFR 26.211 - Fatigue assessments.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Fatigue assessments. 26.211 Section 26.211 Energy NUCLEAR REGULATORY COMMISSION FITNESS FOR DUTY PROGRAMS Managing Fatigue § 26.211 Fatigue assessments. (a) Licensees... addition to any other test or determination of fitness that may be required under §§ 26.31(c) and 26.77,...

  13. Standardization of reflectance measurements in dispersed organic matter: results of an exercise to improve interlaboratory agreement

    USGS Publications Warehouse

    Hackley, Paul C.; Araujo, Carla Viviane; Borrego, Angeles G.; Bouzinos, Antonis; Cardott, Brian; Cook, Alan C.; Eble, Cortland; Flores, Deolinda; Gentzis, Thomas; Gonçalves, Paula Alexandra; Filho, João Graciano Mendonça; Hámor-Vidó, Mária; Jelonek, Iwona; Kommeren, Kees; Knowles, Wayne; Kus, Jolanta; Mastalerz, Maria; Menezes, Taíssa Rêgo; Newman, Jane; Pawlewicz, Mark; Pickel, Walter; Potter, Judith; Ranasinghe, Paddy; Read, Harold; Reyes, Julito; Rodriguez, Genaro De La Rosa; de Souza, Igor Viegas Alves Fernandes; Suarez-Ruiz, Isabel; Sýkorová, Ivana; Valentine, Brett J.

    2015-01-01

    Vitrinite reflectance generally is considered the most robust thermal maturity parameter available for application to hydrocarbon exploration and petroleum system evaluation. However, until 2011 there was no standardized methodology available to provide guidelines for vitrinite reflectance measurements in shale. Efforts to correct this deficiency resulted in publication of ASTM D7708: Standard test method for microscopical determination of the reflectance of vitrinite dispersed in sedimentary rocks. In 2012-2013, an interlaboratory exercise was conducted to establish precision limits for the D7708 measurement technique. Six samples, representing a wide variety of shale, were tested in duplicate by 28 analysts in 22 laboratories from 14 countries. Samples ranged from immature to overmature (0.31-1.53% Ro), from organic-lean to organic-rich (1-22 wt.% total organic carbon), and contained Type I (lacustrine), Type II (marine), and Type III (terrestrial) kerogens. Repeatability limits (maximum difference between valid repetitive results from same operator, same conditions) ranged from 0.03-0.11% absolute reflectance, whereas reproducibility limits (maximum difference between valid results obtained on same test material by different operators, different laboratories) ranged from 0.12-0.54% absolute reflectance. Repeatability and reproducibility limits degraded consistently with increasing maturity and decreasing organic content. However, samples with terrestrial kerogens (Type III) fell off this trend, showing improved levels of reproducibility due to higher vitrinite content and improved ease of identification. Operators did not consistently meet the reporting requirements of the test method, indicating that a common reporting template is required to improve data quality. The most difficult problem encountered was the petrographic distinction of solid bitumens and low-reflecting inert macerals from vitrinite when vitrinite occurred with reflectance ranges overlapping

  14. Seven years of gamma-ray spectrometry interlaboratory comparisons in Switzerland.

    PubMed

    Bailat, Claude; Buchillier, Thierry; Caffari, Yvan; Nedjadi, Youcef; Spring, Philippe; Estier, Sybille; Bochud, François

    2010-01-01

    Since the 1990s, regular comparisons of gamma-ray spectrometry in Switzerland were organized to improve laboratory abilities to measure the radioactivity in the environment and food stuffs at typical routine levels. The activity concentration of the test samples and the evaluation of the associated uncertainties remained each year the main required test result. Over the years, the comparisons used certified reference solutions as well as environmental samples. The aim of this study is to research the effect of the comparisons on measurement quality. An analysis of the seven last interlaboratory comparisons revealed that the Swiss measurement capability is up to date. In addition, the results showed that the participants now have an improved evaluation of the uncertainties associated with their measurement.

  15. Tensile and Fatigue Testing and Material Hardening Model Development for 508 LAS Base Metal and 316 SS Similar Metal Weld under In-air and PWR Primary Loop Water Conditions

    SciTech Connect

    Mohanty, Subhasish; Soppet, William; Majumdar, Saurin; Natesan, Ken

    2015-09-01

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in September 2015 under the work package for environmentally assisted fatigue under DOE’s Light Water Reactor Sustainability program. In an April 2015 report we presented a baseline mechanistic finite element model of a two-loop pressurized water reactor (PWR) for systemlevel heat transfer analysis and subsequent thermal-mechanical stress analysis and fatigue life estimation under reactor thermal-mechanical cycles. In the present report, we provide tensile and fatigue test data for 508 low-alloy steel (LAS) base metal, 508 LAS heat-affected zone metal in 508 LAS–316 stainless steel (SS) dissimilar metal welds, and 316 SS-316 SS similar metal welds. The test was conducted under different conditions such as in air at room temperature, in air at 300 oC, and under PWR primary loop water conditions. Data are provided on materials properties related to time-independent tensile tests and time-dependent cyclic tests, such as elastic modulus, elastic and offset strain yield limit stress, and linear and nonlinear kinematic hardening model parameters. The overall objective of this report is to provide guidance to estimate tensile/fatigue hardening parameters from test data. Also, the material models and parameters reported here can directly be used in commercially available finite element codes for fatigue and ratcheting evaluation of reactor components under in-air and PWR water conditions.

  16. Chronic Fatigue Syndrome

    MedlinePlus

    Chronic fatigue syndrome (CFS) is a disorder that causes extreme fatigue. This fatigue is not the kind of tired feeling that ... activities. The main symptom of CFS is severe fatigue that lasts for 6 months or more. You ...

  17. Incompatibility and Mental Fatigue

    ERIC Educational Resources Information Center

    Herzog, Thomas R.; Hayes, Lauren J.; Applin, Rebecca C.; Weatherly, Anna M.

    2011-01-01

    A straightforward prediction from attention restoration theory is that the level of incompatibility in a person's life should be positively correlated with that person's level of mental (or directed attention) fatigue. The authors tested this prediction by developing a new self-report measure of incompatibility in which they attempted to isolate…

  18. Fatigue and fracture overview

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.

    1986-01-01

    The accomplishments achieved under the isotropic creep-fatigue crack initiation life prediction program are summarized. A sizeable creep-fatigue crack initiation data base was generated on the nickel-base superalloy, B-1900. Companion constitutive modeling programs have also generated extensive data bases on the same heat of material. The crack initiation results have formed the basis of a new approach to creep-fatigue life prediction. The term Cyclic Damage Accumulation (CDA) was coined for the method, which was evaluated under isothermal, uniaxial conditions. Stringent laboratory verification experiments were used to test the accuracy of the method. Considering the quite limited material property data needed to evaluate the constants in the approach, the prediction accuracy is acceptable. At the expense of the larger data base required, Lewis developed total strain- strainrange partitioning method (TS-SRP) is capable of a higher degree of accuracy.

  19. An interlaboratory comparison programme on radio frequency electromagnetic field measurements: the second round of the scheme.

    PubMed

    Nicolopoulou, E P; Ztoupis, I N; Karabetsos, E; Gonos, I F; Stathopulos, I A

    2015-04-01

    The second round of an interlaboratory comparison scheme on radio frequency electromagnetic field measurements has been conducted in order to evaluate the overall performance of laboratories that perform measurements in the vicinity of mobile phone base stations and broadcast antenna facilities. The participants recorded the electric field strength produced by two high frequency signal generators inside an anechoic chamber in three measurement scenarios with the antennas transmitting each time different signals at the FM, VHF, UHF and GSM frequency bands. In each measurement scenario, the participants also used their measurements in order to calculate the relative exposure ratios. The results were evaluated in each test level calculating performance statistics (z-scores and En numbers). Subsequently, possible sources of errors for each participating laboratory were discussed, and the overall evaluation of their performances was determined by using an aggregated performance statistic. A comparison between the two rounds proves the necessity of the scheme.

  20. Consistency analysis of multidimensional gonio-spectrophotometric measurements in interlaboratory comparisons

    NASA Astrophysics Data System (ADS)

    Ferrero, A.; Campos, J.; Bernad, B.; Pons, A.; Hernanz, M. L.; Martínez-Verdú, F. M.; Höpe, A.

    2016-08-01

    The spectral bidirectional reflectance distribution function (BRDF) is the key quantity to specify the spectral reflectance of materials for any condition of irradiation and detection, and its characterization is quite important for surfaces with a high dependence on these conditions, such as iridescent coatings. In order to evaluate the calibration and measurement capabilities (CMC) of National Metrology Institutes with the ability to measure the spectral BRDF, a case study interlaboratory comparison is in progress. Spectral BRDF has both spectral and geometric dependence, and this multidimensionality must be treated in the comparison to provide useful information to the participants about their CMCs. A data analysis method for the comparison is presented in this work, which was tested by simulations for different scenarios. The proposed method assesses whether the experimental data from each participant are consistent with those from the others. Finally, one-dimensional and multidimensional degrees of equivalence are defined, which should allow systematic deviations of spectral and geometric nature to be identified.

  1. Inter-laboratory comparison of cell lines for susceptibility to three viruses: VHSV, IHNV and IPNV.

    PubMed

    Lorenzen, E; Carstensen, B; Olesen, N J

    1999-07-30

    Eleven European National Reference Laboratories participated in an inter-laboratory comparison of the susceptibility of 5 selected cell lines to 3 fish pathogenic viruses. The test included viral hemorrhagic septicaemia virus (VHSV); infectious hematopoietic necrosis virus (IHNV) and infectious pancreatic necrosis virus (IPNV), and the cell lines derived from bluegill fry (BF-2), chinook salmon embryo (CHSE-214), epithelioma papulosum cyprini (EPC), fathead minnow (FHM) and rainbow trout gonad (RTG-2). The results showed that for isolation of VHSV, BF-2 and RTG-2 cells performed equally well and had higher sensitivity compared to the other cell lines. For IHNV, EPC and FHM cells gave the best results, and for IPNV it was BF-2 and CHSE-214 cells. FHM cells showed the largest variability among laboratories, whereas EPC was the cell line showing the smallest variability.

  2. Forensic interlaboratory evaluation of the ForFLUID kit for vaginal fluids identification.

    PubMed

    Giampaoli, Saverio; Alessandrini, Federica; Berti, Andrea; Ripani, Luigi; Choi, Ajin; Crab, Roselien; De Vittori, Elisabetta; Egyed, Balazs; Haas, Cordula; Lee, Hwan Young; Korabecná, Marie; Noel, Fabrice; Podini, Daniele; Tagliabracci, Adriano; Valentini, Alessio; Romano Spica, Vincenzo

    2014-01-01

    Identification of vaginal fluids is an important step in the process of sexual assaults confirmation. Advances in both microbiology and molecular biology defined technical approaches allowing the discrimination of body fluids. These protocols are based on the identification of specific bacterial communities by microfloraDNA (mfDNA) amplification. A multiplex real time-PCR assay (ForFLUID kit) has been developed for identifying biological fluids and for discrimination among vaginal, oral and fecal samples. In order to test its efficacy and reliability of the assay in the identification of vaginal fluids, an interlaboratory evaluation has been performed on homogeneous vaginal swabs. All the involved laboratories were able to correctly recognize all the vaginal swabs, and no false positives were identified when the assay was applied on non-vaginal samples. The assay represents an useful molecular tool that can be easily adopted by forensic geneticists involved in vaginal fluid identification.

  3. Cast Aluminum Structures Technology (CAST) Structural Test and Evaluation (Phase V). Part II. Fatigue and Fracture Properties of Cast Aluminum Bulkheads

    DTIC Science & Technology

    1980-04-01

    Solution heat treatment: 1010 + 10OF for 24 to 25 hours Quench delay: 10 seconds maximum Quenchant: 106 + 150 F water Natural aging : Room temperature for...16 to 24 hours Precipitation heat treatment ( aging ): 325 + 100 F for 7 to 8 hours Constant-amplitude fatigue specimens were obtained from each of the...SURF. TREAT. AS MILLED--- ýAANUFACTUREA BOEING NEAT NUMBER NA -SPEC. CONFIG. D6.-4671-626I -TEST TEMP. 7 ETEST WUMIDITY 2PTA YIELD STRESS 39.6 KSI MAX

  4. Low-Cycle Fatigue Life and Fatigue Crack Propagation of Sintered Ag Nanoparticles

    NASA Astrophysics Data System (ADS)

    Shioda, Ryutaro; Kariya, Yoshiharu; Mizumura, Noritsuka; Sasaki, Koji

    2017-02-01

    The low-cycle fatigue life and fatigue crack propagation behavior of sintered silver nanoparticles were investigated using miniature specimens sintered at two different temperatures. The fatigue crack initiation life and fatigue crack propagation rate of sintered Ag nanoparticles were extremely sensitive to changes in the range of inelastic energy density and the cyclic J integral, exhibiting brittle characteristics, in contrast to tin-based lead-free solder alloys. With increasing sintering temperature, the fatigue crack propagation rate decreased. On the other hand, the effect of sintering temperature on the fatigue crack initiation life differed depending on the use of either a smooth specimen (low-cycle fatigue test) or notched specimen (fatigue crack propagation test). For the notched specimens, the probability of grain boundaries around the notch decreased due to increased sintering temperature. Therefore, the fatigue crack initiation life was increased with an increase in sintering temperature in the fatigue crack propagation test. In the smooth specimen, however, the fatigue life decreased with an increase in sintering temperature, as the elastic modulus of the specimen increased with increasing sintering temperature. In the low-cycle fatigue test, the specimen sintered with high internal stress started to develop crack initiation early, causing a decrease in the crack initiation life.

  5. Interlaboratory Comparison of Quantitative PCR Test Results for Dehalococcoides

    EPA Science Inventory

    Quantitative PCR (qPCR) techniques have been widely used to measure Dehalococcoides (Dhc) DNA in the groundwater at field sites for several years. Interpretation of these data may be complicated when different laboratories using alternate methods conduct the analysis. An...

  6. Interlaboratory study of toxaphene analysis in ambient air

    NASA Astrophysics Data System (ADS)

    Bidleman, Terry F.; Cussion, Sylvia; Jantunen, Liisa M.

    An interlaboratory study was conducted for total toxaphene and selected congeners in an extract of ambient air from the southern United States. All participating labs were experienced in toxaphene analysis and used GC-MS techniques. Ten labs reported the concentration of total toxaphene in a technical toxaphene solution, with a 113% average recovery of the target value and 40% relative standard deviation (RSD). Only six of the 10 labs fell within ±30% of the target value, a criterion recommended by good laboratory practice standards. The interlaboratory RSD was 65% for total toxaphene in the air sample extract (lowered to 43% when one outlying lab was omitted). Nine labs reported the concentrations of five toxaphene components (B8-1413, B8-1414+B8-1945, B8-806+B8-809, B8-2229 and B9-1679) with 33-47% RSD for the technical toxaphene unknown and 34-62% for the air sample. The precision was poorer for a sixth component, congener B9-1025, which has a very low response by electron capture negative ion mass spectrometry (ECNI): 59% RSD for the technical toxaphene unknown and 196% for the air sample. Factors contributing to the interlaboratory variability for total toxaphene and single components are discussed, and follow-up studies are required to identify and minimize the causes of variability. Based on the average analysis, B8-1413 was enriched and B8-806+B8-809 was depleted in the air sample relative to the technical toxaphene standard.

  7. Validation of a new enzyme-linked immunosorbent assay to detect the triggering proteins and peptides for celiac disease: interlaboratory study.

    PubMed

    Mujico, Jorge R; Dekking, Liesbeth; Kooy-Winkelaar, Yvonne; Verheijen, Ron; van Wichen, Piet; Streppel, Lucia; Sajic, Nermin; Drijfhout, Jan W; Koning, Frits

    2012-01-01

    The performance of Gluten-Tec (EuroProxima, Arnhem, The Netherlands) was tested through an interlaboratory study in accordance with AOAC guidelines. Gluten-Tec is a competitive ELISA that detects an immunostimulatory epitope of a-gliadin in dietary food for celiacs. Fifteen laboratories, representing 14 different countries, announced their interest in taking part in this study. Of the 12 laboratories that sent the results within the established timeframe, two submitted inappropriate standard curves and were excluded from the statistical analysis. Four different food matrixes (rice-based baby food, maize bread, chocolate cake mix, and beer) were selected for preparing the test samples. Two gliadin extraction procedures were used: the conventional 60% ethanol, and a new method based on the reducing reagent dithiothreitol. The 38 samples (19 blind duplicates) tested in this study were prepared by diluting the different extracts in order to cover a wide range of gliadin levels. Both sample extraction and dilution were performed by EuroProxima; the present interlaboratory study was focused only on testing the ELISA part of the Gluten-Tec kit protocol. Repeatability values (within-laboratory variance), expressed as RSD(r) ranged from 6.2 to 25.7%, while reproducibility values (interlaboratory variance), expressed as RSD(R), ranged from 10.6 to 45.9%. Both statistical parameters were in the acceptable range of ELISAs under these conditions, and the method will be presented to the Codex Alimentarius as a preferred method for gluten analysis.

  8. Fatigue and corrosion fatigue of beryllium-copper spring materials

    SciTech Connect

    Bagheri, R.; Miller, G.A. )

    1993-03-01

    Fine gage, 0.006-in. d(0.15-mm) thick, beryllium-copper (Be-Cu) spring materials with tensile strength in the range of 70 to 145 ksi were subjected to cyclic loading in air and salt water environments. Plain and notched (center hole) hour glass specimens were subjected to sinusoidal loading with R = (minimum/maximum) stress = 0.1 at cyclic frequencies of 50 Hz in air and 1 Hz in salt water. Fatigue life was typically from 10[sup 4] to 10[sup 6] cycles with crack initiation as the dominant fatigue process. The excellence fatigue performance of Be-Cu alloys in salt water is well-known, however, current findings demonstrate 10 to 37% reduction in fatigue strength of unnotched specimens in this environment for a life of 3 x 10[sup 5] cycles. This strength degradation is attributed to the use of a lower cyclic frequency for present than for previous tests, i.e., 1 versus about 20 Hz. There was no effect of salt water on crack initiation in notched specimens. The ratios of the fatigue strengths, namely (cold-rolled/annealed) and (aged/annealed), for plain and notched specimens tested in air, decreased from 2 to about 1.4 as fatigue life increased from 10[sup 4] to 10[sup 6] cycles. This effect is attributed to cyclic hardening of the annealed material. The fatigue stress concentration factor, K[sub f] = (plain/notched) fatigue strength, increased by about 30% as fatigue cycles increased from 10[sup 4] to 10[sup 6]. The ranking of K[sub f] values of the various material conditions from highest to lowest was: cold-rolled, aged, and annealed.

  9. Inter-laboratory study to improve the quality of the analysis of nutrients in rainwater chemistry

    NASA Astrophysics Data System (ADS)

    Karthikeyan, Sathrugnan; Balasubramanian, Rajasekhar; He, Jun

    This paper describes the results of an inter-laboratory study conducted for the analysis of nutrients (nitrate, ammonium, phosphate, total nitrogen (TN), and total phosphorus (TP)) in natural rainwater. For this purpose, rainwater samples were collected and aggregated in Singapore and homogenized. These samples were immediately filtered through 0.45 μm membrane filters and autoclaved for 15 min at 80 °C in order to stabilize the nutrients. The homogeneity and the stability of nutrients were rigorously tested for a period of three months initially. Upon ensuring the homogeneity and stability, the samples were distributed to 15 different laboratories from various countries around the world (Australia, Brazil, India, Mauritius, Singapore, Slovenia, Spain, Taiwan, and USA). Almost all laboratories have reported the analytical results for nitrate whereas only 8 of the 15 laboratories reported results for other nutrients such as ammonium, phosphate, TN, and TP. The discrepancy was mainly due to the presence of these nutrients in low concentration levels (particularly ammonium ion and phosphate). Not all the laboratories were equipped with analytical capabilities to conduct the analysis of nutrients in low concentration levels. Further, the uncertainty associated with the analysis of TN and TP restricted the number of laboratories that could report their analytical data on nutrients. All 14 laboratories reported nitrate-nitrogen results which were in good agreement with each other (0.68 ± 0.07 mg l -1). Similarly, the results of TN and TP were also comparable among at least 8 laboratories. This inter-laboratory study on the analysis of nutrients in natural rainwater, conducted for the first time, provided an opportunity to the participating laboratories to assess and improve their laboratory performance, thereby, improving the quality of their analytical data.

  10. First inter-laboratory comparison exercise for the determination of anticancer drugs in aqueous samples.

    PubMed

    Heath, Ester; Česen, Marjeta; Negreira, Noelia; de Alda, Miren Lopez; Ferrando-Climent, Laura; Blahova, Lucie; Nguyen, Tung Viet; Adahchour, Mohamed; Ruebel, Achim; Llewellyn, Neville; Ščančar, Janez; Novaković, Srdjan; Mislej, Vesna; Stražar, Marjeta; Barceló, Damià; Kosjek, Tina

    2016-08-01

    The results of an inter-laboratory comparison exercise to determine cytostatic anticancer drug residues in surface water, hospital wastewater and wastewater treatment plant effluent are reported. To obtain a critical number of participants, an invitation was sent out to potential laboratories identified to have the necessary knowledge and instrumentation. Nine laboratories worldwide confirmed their participation in the exercise. The compounds selected (based on the extent of use and laboratories capabilities) included cyclophosphamide, ifosfamide, 5-fluorouracil, gemcitabine, etoposide, methotrexate and cisplatinum. Samples of spiked waste (hospital and wastewater treatment plant effluent) and surface water, and additional non-spiked hospital wastewater, were prepared by the organising laboratory (Jožef Stefan Institute) and sent out to each participant partner for analysis. All analytical methods included solid phase extraction (SPE) and the use of surrogate/internal standards for quantification. Chemical analysis was performed using either liquid or gas chromatography mass (MS) or tandem mass (MS/MS) spectrometry. Cisplatinum was determined using inductively coupled plasma mass spectrometry (ICP-MS). A required minimum contribution of five laboratories meant that only cyclophosphamide, ifosfamide, methotrexate and etoposide could be included in the statistical evaluation. z-score and Q test revealed 3 and 4 outliers using classical and robust approach, respectively. The smallest absolute differences between the spiked values and the measured values were observed in the surface water matrix. The highest within-laboratory repeatability was observed for methotrexate in all three matrices (CV ≤ 12 %). Overall, inter-laboratory reproducibility was poor for all compounds and matrices (CV 27-143 %) with the only exception being methotrexate measured in the spiked hospital wastewater (CV = 8 %). Random and total errors were identified by means of Youden

  11. Influence of fatigue testing and cementation mode on the load-bearing capability of bovine incisors restored with crowns and zirconium dioxide posts.

    PubMed

    Nothdurft, F P; Schmitt, T; Motter, P J; Pospiech, P R

    2008-12-01

    The aim of the study was to evaluate the influence of fatigue and cementation mode on the fracture behavior of endodontically treated bovine incisors restored with zirconium dioxide posts and crowns. Forty-eight endodontically treated bovine primary incisors were restored with zirconium dioxide posts (Cerapost, Brasseler), composite build-ups, and crowns cast from a chromium cobalt alloy. In 16 teeth, each of the posts was cemented conventionally with KetacCem (3M ESPE) or adhesively with Panavia F (Kuraray) or RelyX UniCem (3M ESPE). One-half of the specimens in each group were subjected to thermocycling with 10,000 cycles at 5-55 degrees C and mechanical aging, loading the specimens at an angle of 45 degrees in 1,200,000 cycles with 50 N. Fracture resistance was determined by loading the specimens until fracture at an angle of 45 degrees to the long axis of the teeth. The loading test showed that neither cementation mode nor fatigue testing had an influence on the load bearing capability. Most specimens fractured in a favorable way, independent from the type of cementation.

  12. Surface EMG of the masticatory muscles (part 2): fatigue testing, mastication analysis and influence of different factors.

    PubMed

    Hugger, S; Schindler, H J; Kordass, B; Hugger, A

    2013-01-01

    The second part of this review of the literature on the clinical significance of surface electromyography (EMG) of the masticatory muscles systematically examines the results of clinical studies in patients with temporomandibular disorders (TMD), preferably randomized controlled trials, investigating relevant aspects of EMG activity during prolonged chewing activity (fatigue effects), during the mastication process, and under the influence of different factors. Studies on the influence of factors such as gender, age, tooth status, orofacial morphology and (acute) pain, the significance of different occlusal relationships during static and dynamic occlusion, and the impact of changes in static occlusion on EMG activity of the masticatory muscles were included in the review.

  13. Interlaboratory comparison of IDH mutation detection.

    PubMed

    van den Bent, Martin J; Hartmann, C; Preusser, Matthias; Ströbel, Thomas; Dubbink, Hendrikus J; Kros, Johan M; von Deimling, Andreas; Boisselier, Blandine; Sanson, Marc; Halling, Kevin C; Diefes, Kristin L; Aldape, Kenneth; Giannini, Caterina

    2013-04-01

    Isocitrate dehydrogenase (IDH) mutational testing is becoming increasingly important. For this, robust and reliable assays are needed. We tested the variation of results between six laboratories of testing for IDH mutations. Each laboratory received five unstained slides from 31 formalin-fixed paraffin-embedded (FFPE) glioma samples, and followed its own standard IDH diagnostic routine. All laboratories used immunohistochemistry (IHC) with an antibody against the most frequent IDH1 mutation (R132H) as a first step. Three laboratories then sequenced only IHC negative cases while the others sequenced all cases. Based on the overall analysis, 13 samples from 11 tumors had an R132H mutation and one tumor showed an R132G mutation. Results of IHC for IDH1 R132H mutations in all six laboratories were completely in agreement, and identified all R132H mutations. Upon sequencing the results of two laboratories deviated from those of the others. After a review of the entire diagnostic process, on repeat (blinded) testing one laboratory was completely in agreement with the overall result. A change in technique did only partially improve the results in the other laboratory. IHC for the IDH1 R132H mutation is very reliable and consistent across laboratories. IDH sequencing procedures yielded inconsistent results in 2 out of 6 laboratories. Quality assurance is pivotal before IDH testing is made part of clinical management of patients.

  14. Rotor fatigue monitoring data acquisition system

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.

    1993-01-01

    The 40 by 80 Foot Wind Tunnel of the National Full Scale Aerodynamics Complex (NFAC) had a requirement to monitor rotor fatigue during a test. This test subjected various rotor components to stress levels higher than their structural fatigue limits. A data acquisition system was developed to monitor the cumulative fatigue damage of rotor components using National Instruments hardware and LabVIEW software. A full description of the data acquisition system including its configuration and salient features, is presented in this paper.

  15. Hysteresis and Fatigue

    NASA Astrophysics Data System (ADS)

    Erber, T.; Guralnick, S. A.; Michels, S. C.

    1993-06-01

    Fatigue in materials is the result of cumulative damage processes that are usually induced be repeated loading cycles. Since the energy dissipation associated with damage is irreversible, and the loading cycles are accompanied by the evolution of heat, the corresponding relation between stress and strain is not single-valued; but rather exhibits a memory dependence, or hysteresis. Conversely, sustained hysteresis is a necessary condition for fatigue and is related to the rate of damage accumulation. Engineering design and safety standards for estimating fatigue life are based in part on the Manson-Coffin relations between the width of stress-strain hysteresis loops and the number of loading cycles required to produce failure in test pieces. Experimental and theoretical results show that this relation can be extended into a simple phenomenological description of fatigue that directly links total hysteresis energy dissipation, the cumulation of material damage, and the average number of loading cycles leading to failure. Detailed features of the hysteresis can be understood with the help of analogies between the incremental collapse of structures and the inception and organization of damage in materials. In particular, scanning tunneling microscope measurements of the threshold of mechanical irreversibility and acoustic emission patterns may be used to check on the evolution of hysteresis at the microscopic level.

  16. FATIGUE OF DENTAL CERAMICS

    PubMed Central

    Zhang, Yu; Sailer, Irena; Lawn, Brian R

    2013-01-01

    Objectives Clinical data on survival rates reveal that all-ceramic dental prostheses are susceptible to fracture from repetitive occlusal loading. The objective of this review is to examine the underlying mechanisms of fatigue in current and future dental ceramics. Data/sources The nature of various fatigue modes is elucidated using fracture test data on ceramic layer specimens from the dental and biomechanics literature. Conclusions Failure modes can change over a lifetime, depending on restoration geometry, loading conditions and material properties. Modes that operate in single-cycle loading may be dominated by alternative modes in multi-cycle loading. While post-mortem examination of failed prostheses can determine the sources of certain fractures, the evolution of these fractures en route to failure remains poorly understood. Whereas it is commonly held that loss of load-bearing capacity of dental ceramics in repetitive loading is attributable to chemically-assisted 'slow crack growth' in the presence of water, we demonstrate the existence of more deleterious fatigue mechanisms, mechanical rather than chemical in nature. Neglecting to account for mechanical fatigue can lead to gross overestimates in predicted survival rates. Clinical significance Strategies for prolonging the clinical lifetimes of ceramic restorations are proposed based on a crack-containment philosophy. PMID:24135295

  17. Fatigue Behavior of IM7/BMI 5250-4 Composite at Room and Elevated Temperatures

    DTIC Science & Technology

    2015-03-01

    Tension-Tension Fatigue Tests ...............................................................21 4.2.5 Fully Reversed Fatigue Tests ...10 Figure 5: Example of Steel Reaching the Endurance Limit on S-N Curve [15] ............... 11 Figure 6: Tension-Tension Fatigue Test ...14 Figure 7: Tension-Compression Fatigue Test Specimen. All Dimension are in Inches. All Tolerances are ±0.001 in

  18. Solder fatigue reduction in point focus photovoltaic concentrator modules

    SciTech Connect

    Hund, T.D.; Burchett, S.N.

    1991-01-01

    Solder fatigue tests have been conducted on point focus photovoltaic concentration cell assemblies to identify a baseline fatigue life and to quantify the fatigue life improvements that result using a copper-molybdenum-copper low-expansion insert between the solar cell and copper heat spreader. Solder microstructural changes and fatigue crack growth were identified using cross sections and ultrasonic scans of the fatigue solder joints. The Coffin-Manson and Total Strain fatigue models for low-cycle fatigue were evaluated for use in fatigue life predictions. Since both of these models require strain calculations, two strain calculation methods were compared: hand-calculated shear strain and a finite element method shear strain. At present, the available theoretical models for low-cycle solder fatigue are limited in their ability to predict failure; consequently, extensive thermal cycling is continuing to define the fatigue life for point focus photovoltaic cell assemblies. 9 refs., 9 figs., 2 tabs.

  19. Qualitative PCR method for Roundup Ready soybean: interlaboratory study.

    PubMed

    Kodama, Takashi; Kasahara, Masaki; Minegishi, Yasutaka; Futo, Satoshi; Sawada, Chihiro; Watai, Masatoshi; Akiyama, Hiroshi; Teshima, Reiko; Kurosawa, Yasunori; Furui, Satoshi; Hino, Akihiro; Kitta, Kazumi

    2011-01-01

    Quantitative and qualitative methods based on PCR have been developed for genetically modified organisms (GMO). Interlaboratory studies were previously conducted for GMO quantitative methods; in this study, an interlaboratory study was conducted for a qualitative method for a GM soybean, Roundup Ready soy (RR soy), with primer pairs designed for the quantitative method of RR soy studied previously. Fourteen laboratories in Japan participated. Each participant extracted DNA from 1.0 g each of the soy samples containing 0, 0.05, and 0.10% of RR soy, and performed PCR with primer pairs for an internal control gene (Le1) and RR soy followed by agarose gel electrophoresis. The PCR product amplified in this PCR system for Le1 was detected from all samples. The sensitivity, specificity, and false-negative and false-positive rates of the method were obtained from the results of RR soy detection. False-negative rates at the level of 0.05 and 0.10% of the RR soy samples were 6.0 and 2.3%, respectively, revealing that the LOD of the method was somewhat below 0.10%. The current study demonstrated that the qualitative method would be practical for monitoring the labeling system of GM soy in kernel lots.

  20. An interlaboratory study of potassium determination in rocks and minerals.

    PubMed

    Rice, T D

    1976-05-01

    Seven laboratories took part in this interlaboratory study which was part of an investigation of the flame-speetrometric determination of potassium in rocks and minerals suitable for potassium-argon age-measurement. Three of these laboratories determined potassium in the following five international reference rocks: tonalite T-1, basalt BCR-1, andesite AGV-1, granite G-2, and granodiorite GSP-1. The other five samples (with the number of laboratories analysing them in parentheses) were: a chlorite rock (7), an altered basic igneous rock (5), an altered basaltic andesite (5), a biotite (6) and a potassium feldspar (7). Details of sample preparation and methods of analysis are given; no laboratory used exactly the same method as any of the other six laboratories. Results have been examined by analysis of variance; larger relative between- and within-laboratory variations occurred for the two samples containing less than 0.1% potassium than for seven of the eight other (higher potassium) samples; between-laboratory variations for the basalt BCR-1 and, to a lesser extent, the andesite AGV-1, were high and of similar magnitude to those for the samples containing less than 0.1% potassium. The causes of any poor interlaboratory agreement in the present study are considered.

  1. 129I interlaboratory comparison: phase I and phase II results

    SciTech Connect

    Roberts, M.I.; Caffee, M.W.; Proctor, I.D.

    1997-07-01

    An interlaboratory comparison exercise for 129I was organized and conducted. A total of nine laboratories participated in the exercise to either a full or limited extent. In Phase I of the comparison, a suite of 11 samples were measured. The suite of samples contained both synthetic `standard type` materials (i.e., AgI) and environmental materials. The isotopic 129I/127I ratios of the samples varied from 10`-8 to 10`-14. In this phase, each laboratory was responsible for its own chemical preparation of the environmental samples. The 129I AMS measurements obtained at different laboratories for prepared AgI were in good agreement. However, large discrepancies were seen in 129I AMS measurements of environmental samples. Because of the large discrepancies seen in the Phase I intercomparison, a subsequent study was conducted. In Phase II of the comparison, AgI was prepared from two environmental samples (IAEA 375 soil and maples leaves) by three separate laboratories. Each laboratory used its own chemical preparation method with each of the methods being distinctly different. The resulting six samples (two sets of three) were then redistributed to the participating 129I AMS facilities and 129I/127I ratios measured. Results and discussion of both the Phase I and Phase II interlaboratory comparison are presented.

  2. {sup 129}I Interlaboratory comparison: phase I and phase II

    SciTech Connect

    Caffee, M W; Roberts, M L

    1999-09-30

    An interlaboratory comparison exercise for {sup 129}I was organized and conducted. Nine laboratories participated in the exercise to either a full or limited extent. In Phase I of the comparison, 11 samples were measured. The suite of samples contained both synthetic ''standard type'' materials (i.e., AgI) and environmental materials. The isotopic {sup 129}I/{sup 127}I ratios of the samples varied from 10{sup {minus}8} to 10{sup {minus}14}. In this phase, each laboratory was responsible for its own chemical preparation of the samples. In Phase I, the {sup 129}I AMS measurements for prepared AgI were in good agreement. However, large discrepancies were seen in {sup 129}I AMS measurements of environmental samples. Because of the large discrepancies seen in the Phase I {sup 129}I intercomparison, a subsequent study was conducted. In Phase II of the {sup 129}I intercomparison, three separate laboratories prepared AgI from two environmental samples (IAEA 375 soil and maples leaves). Each laboratory used its own chemical preparation method with each of the methods being distinctly different. The resulting six samples (two sets of three) were then re-distributed to the participating {sup 129}I AMS facilities and {sup 129}I/{sup 127}I ratios measured. Results and discussion of both the Phase I and Phase II interlaboratory comparison are presented.

  3. Report on an Interlaboratory Electromigration Experiment,

    DTIC Science & Technology

    1986-06-01

    wet etching the metallization, and annealing the metallization in forming Sgas for 20 minutes at 450°C. The mean sheet resistance and the mean...forming gas for 20 minutes at 4500C. The mean sheet resistance and the mean electrical linewidth were determined to be 36.8 mrl/square and 3.10 pm...uniformity of the above pa- rameters. The test structure resistance and the metallization sheet resistance , width, and thickness were determined to

  4. New techniques to test fatigue properties of coined sheet specimens. Part 2: Comparison of different materials, forming operations and life prediction techniques for a simple test geometry

    NASA Astrophysics Data System (ADS)

    Gustavsson, A.; Larsson, M.; Melander, A.; McDowell, D. L.

    The present research was devoted to the problem of fatigue of coinings in sheet steels. A typical application is in the automotive industry where coinings are introduced to increase the stiffness of sheet panels. The aim of the present work was to illuminate how the method of forming of the coinings influenced the fatigue life. The two forming methods investigated were bending and a deep-drawing like operation. The investigation was carried out for three high strength sheet steels: two dual-phase sheet steels and a Si-P alloyed sheet steel. The results indicate that the samples formed in the deep-drawing operation tend to carry somewhat higher local stresses than specimens formed in bending. However, if the life is assessed in terms of local bending moment, the results are reversed, which could be explained in terms of the locally reduced sheet thickness for deep-drawn specimens.

  5. The tensile fatigue of wire rope: A new approach

    SciTech Connect

    Thorpe, T.W.; Rance, A.

    1983-05-01

    The fatigue behaviour in air and seawater of zinc coated steel wire taken from a 40 mm diameter wire rope has been studied. Seawater had little effect on short term tensile strength but it reduced fatigue life by an amount which increased with increasing mean stress and decreasing test frequency. The application of fretting during fatigue testing resulted in very low endurances, which were similar to those measured in fatigue tests on wire ropes.

  6. Thermal acoustic fatigue of Ceramic Matrix Composite materials

    NASA Astrophysics Data System (ADS)

    Jacobs, J. H.; Gruensfelder, C.; Hedgecock, C. E.

    1993-04-01

    A combined experimental/analytical study was performed on coupon and panel Ceramic Matrix Composite (CMC) specimens to demonstrate the capability of using high temperature random coupon fatigue data and finite element modeling techniques to predict full scale panel thermal-acoustic fatigue experimental results. Static load tests, low frequency fatigue, random fatigue coupon tests and full scale panel acoustic fatigue tests were performed at temperatures exceeding 1000 F. Using the information from the coupon tests in conjunction with a 3D ABAQUS finite element model, the failure time of the acoustic tests was successfully predicted using a combined loads fatigue approach. MDA's high temperature random fatigue facility and laser vibrometer data acquisition system were instrumental in providing the data required to develop consistent random fatigue curves which could be used for the combined loads full scale predictions.

  7. ISTA13--international interlaboratory comparative evaluation of microbial assay for risk assessment (MARA).

    PubMed

    Wadhia, K

    2008-10-01

    The microbial assay for risk assessment (MARA) is an innovative system based on an array of 11 different microbial species freeze-dried in a 96-well micro-titer plate. Developed for testing the toxicity of chemicals, mixtures, and environmental samples, the assay employs species of a taxonomically diverse range. In addition to 10 prokaryotic species, a eukaryote (yeast) is included in the range. The MARA's innate scope of a multi-dimensional test allows determination of toxicity based on a unique assay fingerprint or index, numerically expressed as the mean microbial toxic concentration (MTC). The most significant potential of the test is in the additional inference that can be conveyed to the toxicity evaluation because of the presence of each of the constituent species. The performance of MARA was evaluated to ascertain its capability and potential scope in an intralaboratory trial. Sensitivity to toxicants and different environmental samples was assessed. Evaluation included comparison with other tests; namely Microtox, invertebrate (Daphnia magna and Thamnocephalus platyurus) microbiotests, and respiration- and nitrification-inhibition tests. MARA's performance was further assessed with the implementation of an international interlaboratory trial. This involved the participation of 13 laboratories ranging from academic establishments to regulatory agencies. The results of the testing will be presented with assessment of the extent of variability and specific assay components. The trial evaluation indicated that performance of the assay was satisfactory and the results were within the acceptable range. MARA is a robust multispecies assay offering scope for toxicity assessment of a diverse range of samples.

  8. [Fatigue and anemia].

    PubMed

    Ivanova, K; Zeller, A

    2009-12-02

    We herein report on an 80-year old male patient with a history of muscle weakness, fatigue and weight loss since several months. Because of a pathologic synacthen test in combination with decreased levels of ACTH, we diagnosed a secondary chronic adrenal insufficiency. Because of a normochromic, normocytic, and hypo-proliferative anemia, bone marrow puncture was performed, showing an anemia of chronic disease. We initiated hydrocortisone and anemia and patients' symptoms were fully reconstituted.

  9. Pilot Fatigue and Circadian Desynchronosis

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Pilot fatigue and circadian desynchronosis, its significance to air transport safety, and research approaches, were examined. There is a need for better data on sleep, activity, and other pertinent factors from pilots flying a variety of demanding schedules. Simulation studies of flight crew performance should be utilized to determine the degree of fatigue induced by demanding schedules and to delineate more precisely the factors responsible for performance decrements in flight and to test solutions proposed to resolve problems induced by fatigue and desynchronosis. It was concluded that there is a safety problem of uncertain magnitude due to transmeridian flying and a potential problem due to fatigue associated with various factors found in air transport operations.

  10. Interlaboratory study of immunochromatography for the rapid determination of cadmium concentrations in cereals and soybeans.

    PubMed

    Abe, Kaoru; Nakamura, Katsuo; Naito, Shigehiro

    2014-01-01

    Cadmium (Cd) is one of the most toxic heavy metals to humans. To prevent the distribution of Cd-contaminated food, a simple and quick on-site test for measuring Cd concentrations in agricultural products is needed. Recently, an immunochromatography kit developed for determining Cd in rice was reported to be useful for determining Cd in many other crops. We conducted an interlaboratory study to evaluate the kit for determining Cd in cereals (wheat and rice) and soybeans. Ten test materials were used, and 12 test samples including two sets of blind duplicates were distributed to 12 laboratories in Japan. The Cd recoveries (relative to certified values or values determined by inductively coupled plasma-MS) from all test materials were 84.6-125.1%. Repeatability RSD values of the test materials ranged from 8.8 to 14.8%. Reproducibility RSD values ranged from 13.4 to 27.6%, averaging 21.3%. The Horwitz ratio ranged from 0.61 to 1.36. The reproducibility was within the range of ELISA results for measuring toxins and allergens in food. Our results indicated that the kit was an inexpensive, reliable tool for quick and easy on-site determination of Cd in cereals and soybeans.

  11. Interlaboratory study of a method for determining nonvolatile organic carbon in aquifer materials

    USGS Publications Warehouse

    Caughey, M.E.; Barcelona, M.J.; Powell, R.M.; Cahill, R.A.; Gron, C.; Lawrenz, D.; Meschi, P.L.

    1995-01-01

    The organic carbon fraction in aquifer materials exerts a major influence on the subsurface mobilities of organic and organic-associated contaminants. The spatial distribution of total organic carbon (TOC) in aquifer materials must be determined before the transport of hydrophobic organic pollutants in aquifers can be modeled accurately. Previous interlaboratory studies showed that it is difficult to measure TOC concentrations 1%. We have tested a new analytical method designed to improve the accuracy and precision of nonvolatile TOC quantitation in geologic materials that also contain carbonate minerals. Four authentic aquifer materials and one NIST standard reference material were selected as test materials for a blind collaborative study. Nonvolatile TOC in these materials ranged from 0.05 to 1.4%, while TIC ranged from 0.46 to 12.6%. Sample replicates were digested with sulfurous acid, dried at 40??C, and then combusted at 950??C using LECO or UIC instruments. For the three test materials that contained >2% TIC, incomplete acidification resulted in a systematic positive bias of TOC values reported by five of the six laboratories that used the test method. Participants did not have enough time to become proficient with the new method before they analyzed the test materials. A seventh laboratory successfully used an alternative method that analyzed separate liquid and solid fractions of the acidified sample residues. ?? 1995 Springer-Verlag.

  12. AN INTERLABORATORY STUDY OF PERFLUORINATED ALKYL COMPOUND LEVELS IN HUMAN PLASMA

    EPA Science Inventory

    The present study was designed to investigate intra- and interlaboratory variability in results from six laboratories experienced in the analysis of perfluorinated alkyl compounds in blood matrices and that use stringent procedures to control and assure accuracy and precision. Ea...

  13. Interlaboratory Validation of the Leaching Environmental Assessment Framework (LEAF) Method 1313 and Method 1316

    EPA Science Inventory

    This document summarizes the results of an interlaboratory study conducted to generate precision estimates for two parallel batch leaching methods which are part of the Leaching Environmental Assessment Framework (LEAF). These methods are: (1) Method 1313: Liquid-Solid Partition...

  14. Reproducibility and Repeatability of Tensile and Low-Cycle Fatigue Properties in Propulsion Grade Hydrogen

    NASA Technical Reports Server (NTRS)

    Vesely, E. J.; Bhat, B. N.; McPherson, W. B.; Grethlein, C. E.; Jones, Clyde S. (Technical Monitor)

    2002-01-01

    Hydrogen has the potential of increased use in the future as an environmentally friendly fuel. It has, however, shown a tendency to embrittle some materials. To be used in a safe manner and to exploit its full potential, it will be necessary to develop a database of material properties in hydrogen environment. The tests needed to produce this data are costly to perform (tensile test cost 25 times more and low cycle fatigue test are 55 times as expensive). Moreover, there is presently a lack of universal test methods to ensure standardized data within the hydrogen community. Each of the industries that work with hydrogen (aerospace, petroleum, fuel cells, etc.) performs tests by their own laboratory-developed methods, thus rendering cross- comparisons of material property data highly questionable. It is extremely important that data generated in a hydrogen environment be done to a standard that reduces variance to a minimum and allows direct comparison of test results from different laboratories. Doing so will assure that all data generated can be used to further our understanding of the hydrogen effects and to make sure components/products designed for hydrogen are the safest and most reliable possible. This paper reviews the results of two 'round-robin' programs conducted by NASA-MSFC. These two programs examined the reproducibility and repeatability of tensile and low-cycle fatigue test results in high-pressure hydrogen environments. The studies indicated that even with the tightest controls available from current commercial standards, the reproducibility (between different laboratories) and repeatability (within a laboratory) results of the tensile tests exhibited five times the variance as in standard ambient air tests. The variance with the LCF tests were on the same order as with air tests, but that was due to the large variation present in the last Interlaboratory air program. The paper concludes with a recommendation for a program that would allow the

  15. Interlaboratory comparison of two AOAC liquid chromatographic fluorescence detection methods for paralytic shellfish toxin analysis through characterization of an oyster reference material.

    PubMed

    Turner, Andrew D; Lewis, Adam M; Rourke, Wade A; Higman, Wendy A

    2014-01-01

    An interlaboratory ring trial was designed and conducted by the Centre for Environment, Fisheries, and Aquaculture Science to investigate a range of issues affecting the analysis of a candidate Pacific oyster paralytic shellfish toxin reference material. A total of 21 laboratories participated in the study and supplied results using one or more of three instrumental methods, specifically precolumn oxidation (Pre-COX) LC with fluorescence detection (FLD; AOAC Official Method 2005.06), postcolumn oxidation (PCOX) LC-FLD (AOAC Official Method 2011.02), and hydrophilic interaction LC/MS/MS. Each participant analyzed nine replicate samples of the oyster tissue in three separate batches of three samples over a period of time longer than 1 week. Results were reported in a standardized format, reporting both individual toxin concentrations and total sample toxicity. Data were assessed to determine the equivalency of the two AOAC LC methods and the LC/MS/MS method as well as an assessment of intrabatch and interbatch repeatability and interlaboratory reproducibility of each method. Differences among the results reported using the three methods were shown to be statistically significant, although visual comparisons showed an overlap between results generated by the majority of tests, the exception being the Pre-COX quantitation of N-hydroxylated toxins in post ion-exchange fractions. Intralaboratory repeatability and interlaboratory reproducibility were acceptable for most of the results, with the exception of results generated from fractions. The results provided good evidence for the acceptable performance of the PCOX method for the quantitation of C toxins. Overall the study showed the usefulness of interlaboratory analysis for the characterization of paralytic shellfish poisoning matrix reference materials, highlighting some issues that may need to be addressed with further method assessment at individual participant laboratories.

  16. Integrated Fatigue Damage Diagnosis and Prognosis Under Uncertainties

    DTIC Science & Technology

    2012-09-01

    length. Next, a Bayesian updating algorithm is implemented incorporating the damage diagnostic result for the fatigue crack growth prediction...proposed methodology is demonstrated using data from fatigue testing of realistic fuselage lap joints and the model predictions are validated using...damage prognosis process. Finally, the proposed methodology is demonstrated using data from fatigue testing of realistic fuselage lap joints and the model

  17. Three-dimensional measurements of fatigue crack closure

    NASA Technical Reports Server (NTRS)

    Ray, S. K.; Grandt, A. F., Jr.

    1984-01-01

    Fatigue crack growth and retardation experiments conducted in polycarbonate test specimen are described. The transparent test material allows optical interferometry measurements of the fatigue crack opening (and closing) profiles. Crack surface displacements are obtained through the specimen thickness and three dimensional aspects of fatigue crack closure are discussed.

  18. A literature review on fatigue and creep interaction

    NASA Technical Reports Server (NTRS)

    Chen, W. C.

    1978-01-01

    Life-time prediction methods, which are based on a number of empirical and phenomenological relationships, are presented. Three aspects are reviewed: effects of testing parameters on high temperature fatigue, life-time prediction, and high temperature fatigue crack growth.

  19. Engineering Aspects of Fatigue Crack Propagation

    DTIC Science & Technology

    1962-01-01

    Estimating Notch-Size Effect in Fatigue Tests on Steel. NACA TN 2805, 1952. - 37 - 19. Landers, Charles B., and Hardrath, Herbert F.: Results of Axial- Load... Charles B., and Howell, F. M.: Axial-Load Fatigue Properties of 24S-T and 75S-T Aluminum Alloy as Determined in Several Laboratories. NACA TR 1190, 1954...Hardrath, Herbert F., Leybold, Herbert A., Landers, Charles B., and Hauschild, Louis W.: Fatigue-Crack Propagation in Aluminum- Alloy Box Beams. NACA

  20. Strain-cycling fatigue behavior of ten structural metals tested in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K)

    NASA Technical Reports Server (NTRS)

    Nachtigall, A. J.

    1974-01-01

    Strain-cycling fatigue behavior of 10 different structural alloys and metals was investigated in liquid helium (4 K), in liquid nitrogen (78 K), and in ambient air (300 K). At high cyclic lives, fatigue resistance increased with decreasing temperature for all the materials investigated. At low cyclic lives, fatigue resistance generally decreased with decreasing temperature for the materials investigated. Only for Inconel 718 did fatigue resistance increase with decreasing temperature over the entire life range investigated. Comparison of the experimental fatigue behavior with that predicted by the Manson method of universal slopes showed that the fatigue behavior of these materials can be predicted for cryogenic temperatures by using material tensile properties obtained at those same temperatures.

  1. Inter-laboratory comparison measurements of radiochemical laboratories in Slovakia.

    PubMed

    Meresová, J; Belanová, A; Vrsková, M

    2010-01-01

    The first inter-laboratory comparison organized by the radiochemistry laboratory of Water Research Institute (WRI) in Bratislava was carried out in 1993 and since then is it realized on an annual basis and about 10 radiochemical laboratories from all over Slovakia are participating. The gross alpha and gross beta activities, and the activity concentrations of (222)Rn, tritium, and (226)Ra, and U(nat) concentration in synthetic water samples are compared. The distributed samples are covering the concentration range prevailing in potable and surface waters and are prepared by dilution of certified reference materials. Over the course of the years 1993-2008, we observed the improvement in the quality of results for most of the laboratories. However, the success rate of the gross alpha determination activity is not improving as much as the other parameters.

  2. Transfer standard uncertainty can cause inconclusive inter-laboratory comparisons

    NASA Astrophysics Data System (ADS)

    Wright, John; Toman, Blaza; Mickan, Bodo; Wübbeler, Gerd; Bodnar, Olha; Elster, Clemens

    2016-12-01

    Inter-laboratory comparisons use the best available transfer standards to check the participants’ uncertainty analyses, identify underestimated uncertainty claims or unknown measurement biases, and improve the global measurement system. For some measurands, instability of the transfer standard can lead to an inconclusive comparison result. If the transfer standard uncertainty is large relative to a participating laboratory’s uncertainty, the commonly used standardized degree of equivalence  ⩽1 criterion does not always correctly assess whether a participant is working within their uncertainty claims. We show comparison results that demonstrate this issue and propose several criteria for assessing a comparison result as passing, failing, or inconclusive. We investigate the behavior of the standardized degree of equivalence and alternative comparison measures for a range of values of the transfer standard uncertainty relative to the individual laboratory uncertainty values. The proposed alternative criteria successfully discerned between passing, failing, and inconclusive comparison results for the cases we examined.

  3. Evaluation of Brazilian Sugarcane Bagasse Characterization: An Interlaboratory Comparison Study

    SciTech Connect

    Sluiter, Justin B.; Chum, Helena; Gomes, Absai C.; Tavares, Renata P. A.; Azevedo, Vinicius; Pimenta, Maria T. B.; Rabelo, Sarita C.; Marabezi, Karen; Curvelo, Antonio A. S.; Alves, Aparecido R.; Garcia, Wokimar T.; Carvalho, Walter; Esteves, Paula J.; Mendonça, Simone; Oliveira, Patricia A.; Ribeiro, José A. A.; Mendes, Thais D.; Vicentin, Marcos P.; Duarte, Celina L.; Mori, Manoel N.

    2016-05-01

    This paper describes a study of the variability of measured composition for a single bulk sugarcane bagasse conducted across eight laboratories using similar analytical methods, with the purpose of determining the expected variation for compositional analysis performed by different laboratories. The results show good agreement of measured composition within a single laboratory, but greater variability when results are compared among laboratories. These interlaboratory variabilities do not seem to be associated with a specific method or technique or any single piece of instrumentation. The summary censored statistics provide mean values and pooled standard deviations as follows: total extractives 6.7% (0.6%), whole ash 1.5% (0.2%), glucan 42.3% (1.2%), xylan 22.3% (0.5%), total lignin 21.3% (0.4%), and total mass closure 99.4% (2.9%).

  4. Transfer Standard Uncertainty Can Cause Inconclusive Inter-Laboratory Comparisons.

    PubMed

    Wright, John; Toman, Blaza; Mickan, Bodo; Wübbeler, Gerd; Bodnar, Olha; Elster, Clemens

    2016-12-01

    Inter-laboratory comparisons use the best available transfer standards to check the participants' uncertainty analyses, identify underestimated uncertainty claims or unknown measurement biases, and improve the global measurement system. For some measurands, instability of the transfer standard can lead to an inconclusive comparison result. If the transfer standard uncertainty is large relative to a participating laboratory's uncertainty, the commonly used standardized degree of equivalence ≤ 1 criterion does not always correctly assess whether a participant is working within their uncertainty claims. We show comparison results that demonstrate this issue and propose several criteria for assessing a comparison result as passing, failing, or inconclusive. We investigate the behavior of the standardized degree of equivalence and alternative comparison measures for a range of values of the transfer standard uncertainty relative to the individual laboratory uncertainty values. The proposed alternative criteria successfully discerned between passing, failing, and inconclusive comparison results for the cases we examined.

  5. An Interlaboratory Comparison of Dosimetry for a Multi-institutional Radiobiological

    PubMed Central

    Seed, TM; Xiao, S; Manley, N; Nikolich-Zugich, J; Pugh, J; van den Brink, M; Hirabayashi, Y; Yasutomo, K; Iwama, A; Koyasu, S; Shterev, I; Sempowski, G; Macchiarini, F; Nakachi, K; Kunugi, KC; Hammer, CG; DeWerd, LA

    2016-01-01

    Purpose An interlaboratory comparison of radiation dosimetry was conducted to determine the accuracy of doses being used experimentally for animal exposures within a large multi-institutional research project. The background and approach to this effort are described and discussed in terms of basic findings, problems and solutions. Methods Dosimetry tests were carried out utilizing optically stimulated luminescence (OSL) dosimeters embedded midline into mouse carcasses and thermal luminescence dosimeters (TLD) embedded midline into acrylic phantoms. Results The effort demonstrated that the majority (4/7) of the laboratories was able to deliver sufficiently accurate exposures having maximum dosing errors of ≤ 5%. Comparable rates of ‘dosimetric compliance’ were noted between OSL- and TLD-based tests. Data analysis showed a highly linear relationship between ‘measured’ and ‘target’ doses, with errors falling largely between 0–20%. Outliers were most notable for OSL-based tests, while multiple tests by ‘non-compliant’ laboratories using orthovoltage x-rays contributed heavily to the wide variation in dosing errors. Conclusions For the dosimetrically non-compliant laboratories, the relatively high rates of dosing errors were problematic, potentially compromising the quality of ongoing radiobiological research. This dosimetry effort proved to be instructive in establishing rigorous reviews of basic dosimetry protocols ensuring that dosing errors were minimized. PMID:26857121

  6. Probabilistic fatigue methodology for six nines reliability

    NASA Technical Reports Server (NTRS)

    Everett, R. A., Jr.; Bartlett, F. D., Jr.; Elber, Wolf

    1990-01-01

    Fleet readiness and flight safety strongly depend on the degree of reliability that can be designed into rotorcraft flight critical components. The current U.S. Army fatigue life specification for new rotorcraft is the so-called six nines reliability, or a probability of failure of one in a million. The progress of a round robin which was established by the American Helicopter Society (AHS) Subcommittee for Fatigue and Damage Tolerance is reviewed to investigate reliability-based fatigue methodology. The participants in this cooperative effort are in the U.S. Army Aviation Systems Command (AVSCOM) and the rotorcraft industry. One phase of the joint activity examined fatigue reliability under uniquely defined conditions for which only one answer was correct. The other phases were set up to learn how the different industry methods in defining fatigue strength affected the mean fatigue life and reliability calculations. Hence, constant amplitude and spectrum fatigue test data were provided so that each participant could perform their standard fatigue life analysis. As a result of this round robin, the probabilistic logic which includes both fatigue strength and spectrum loading variability in developing a consistant reliability analysis was established. In this first study, the reliability analysis was limited to the linear cumulative damage approach. However, it is expected that superior fatigue life prediction methods will ultimately be developed through this open AHS forum. To that end, these preliminary results were useful in identifying some topics for additional study.

  7. Interlaboratory evaluation of a standardized inductively coupled plasma mass spectrometry method for the determination of trace beryllium in air filter samples.

    PubMed

    Ashley, Kevin; Brisson, Michael J; Howe, Alan M; Bartley, David L

    2009-12-01

    A collaborative interlaboratory evaluation of a newly standardized inductively coupled plasma mass spectrometry (ICP-MS) method for determining trace beryllium in workplace air samples was carried out toward fulfillment of method validation requirements for ASTM International voluntary consensus standard test methods. The interlaboratory study (ILS) was performed in accordance with an applicable ASTM International standard practice, ASTM E691, which describes statistical procedures for investigating interlaboratory precision. Uncertainty was also estimated in accordance with ASTM D7440, which applies the International Organization for Standardization Guide to the Expression of Uncertainty in Measurement to air quality measurements. Performance evaluation materials (PEMs) used consisted of 37 mm diameter mixed cellulose ester filters that were spiked with beryllium at levels of 0.025 (low loading), 0.5 (medium loading), and 10 (high loading) microg Be/filter; these spiked filters were prepared by a contract laboratory. Participating laboratories were recruited from a pool of over 50 invitees; ultimately, 20 laboratories from Europe, North America, and Asia submitted ILS results. Triplicates of each PEM (blanks plus the three different loading levels) were conveyed to each volunteer laboratory, along with a copy of the draft standard test method that each participant was asked to follow; spiking levels were unknown to the participants. The laboratories were requested to prepare the PEMs by one of three sample preparation procedures (hotplate or microwave digestion or hotblock extraction) that were described in the draft standard. Participants were then asked to analyze aliquots of the prepared samples by ICP-MS and to report their data in units of mu g Be/filter sample. Interlaboratory precision estimates from participating laboratories, computed in accordance with ASTM E691, were 0.165, 0.108, and 0.151 (relative standard deviation) for the PEMs spiked at 0.025, 0

  8. Color gamut assessment standard: construction, characterization and interlaboratory measurement comparison

    NASA Astrophysics Data System (ADS)

    Libert, John M.; Kelley, Edward F.; Boynton, Paul A.; Brown, Steven W.; Wall, Christine F.; Campbell, Colin

    2003-07-01

    In earlier papers, NIST proposed a standard illumination source and optical filter targets with which to assess the state-of-the-art of display measurement. The Display Measurement Assessment Transfer Standard (DMATS) was designed to present the display metrologist with a rectangular array of targets such as color filters, polarizers, and grilles, back-lighted by uniform illumination, to be measured using methods and instruments typically used in display performance measurement. A "round robin" interlaboratory measurement exercise using the "standard" artifact suite would enable a first order assessment of display measurement reproducibility, i.e., measurement variability within the electronic display community. The rectangular array design of the DMATS was anticipated to present stray light and color contamination challenges to facilitate identification of error sources deriving from measurement protocols, laboratory environment, and equipment. However, complications in dealing with heating problems threatened to delay the planned laboratory intercomparison. The Gamut Assessment Standard (GAS) was thus designed as an interim solution to enable the NIST scientists and participating measurement laboratories to begin collecting data. The GAS consists of a 150 mm diameter integrating sphere standard illumination source with a stray light elimination tube (SLET) mounted at the exit port. A dual six-position filter wheel is mounted at the SLET exit port. One wheel holds a series of neutral density filters and a second interchangeable wheel holds various color filters. This paper describes the design and construction of the GAS, its initial performance characterization by NIST, and comparison measurements made at NPL. Possible design changes suggested by the results of the preliminary intercomparison are discussed, as are plans for future interlaboratory comparisons and potential use of the GAS as a transfer standard for laboratory self-certification.

  9. Fatigue Strengths of Aircraft Materials: Axial-Load Fatigue Tests on Edge-Notched Sheet Specimens of 2024-T3 and 7075-T6 Aluminum Alloys and of SAE 4130 Steel with Notch Radii of 0.004 and 0.070 inch

    NASA Technical Reports Server (NTRS)

    Grover, H. J.; Hyler, W. S.; Jackson, L. R.

    1959-01-01

    The present report gives results of axial-load fatigue tests on notched specimens of three sheet materials: 2024-T3 and 7075-T6 aluminum alloys and normalized SAE 4130 steel. Two edge-notched specimens were designed and tested, each having a theoretical stress-concentration factor K(sub t) = 4.0. The radii of the notches were 0.004 and 0.070 inch. Tests of these specimens were run at two levels of nominal mean stress: 0 and 20,000 psi. Results of these studies extended information previously reported on tests of specimens with varying notch severity. They afford data on the variation of fatigue-strength reduction with notch radius and on the potential usefulness of Neuber's technical stress-concentration factor K(sub n).

  10. Verification of Inter-laboratorial Genotyping Consistency in the Molecular Diagnosis of Polyglutamine Spinocerebellar Ataxias.

    PubMed

    Ramos, Amanda; Raposo, Mafalda; Milà, Montserrat; Bettencourt, Conceição; Houlden, Henry; Cisneros, Bulmaro; Magaña, Jonathan J; Bettencourt, Bruno Filipe; Bruges-Armas, Jácome; Santos, Cristina; Lima, Manuela

    2016-01-01

    The polyglutamine spinocerebellar ataxias (SCAs) constitute a clinically and genetically heterogeneous group of rare late-onset neurodegenerative disorders, caused by CAG expansions in the coding region of the respective genes. Given their considerable clinical overlapping, differential diagnosis relies on molecular testing. Laboratory best practice guidelines for molecular genetic testing of the SCAs were released in 2010 by the European Molecular Genetics Quality Network, following the recognition of gross genotyping errors by some diagnostic laboratories. The main goal of this study was to verify the existence of inter-laboratorial consistency comparing genotypes for SCA1, SCA2, SCA3, SCA6 and SCA7 obtained by independent diagnostic laboratories. The individual impact of different methodological issues on the genotype for the several SCAs was also analysed. Four international collaborative diagnostic laboratories provided 79 samples and the respective SCA genotypes. Samples were genotyped in-house for all SCAs using an independent methodology; comparison of the allele size obtained with the one provided by the collaborative laboratories was performed. Globally, no significant differences were identified, a result which could be reflecting the fulfilment of recommendations for the molecular testing of SCAs and demonstrating an improvement in genotyping accuracy.

  11. Fatigue life extension

    NASA Technical Reports Server (NTRS)

    Matejczyk, D. E.; Lin, J.

    1985-01-01

    Potential fatigue rejuvenation processes were carried out on fatigue-damaged material both with and without observable surface-connected fatigue cracks. The fatigue life of fatigue-damaged MAR-M246(Hf)(DS), a directionally solidified nickel-base superalloy used in turbine airfoils, was extended by reheat treatment. The fatigue life of fatigue-cracked Inconel 718, a wrought nickel-base superalloy used in a wide variety of advanced rocket engine components, was extended by electron-beam welding to close off the surface-connected crack, followed by hot isostatic pressing and reheat treatment.

  12. TV fatigue crack monitoring system

    NASA Technical Reports Server (NTRS)

    Exton, R. J. (Inventor)

    1977-01-01

    An apparatus is disclosed for monitoring the development and growth of fatigue cracks in a test specimen subjected to a pulsating tensile load. A plurality of television cameras photograph a test specimen which is illuminated at the point of maximum tensile stress. The television cameras have a modified vidicon tube which has an increased persistence time thereby eliminating flicker in the displayed images.

  13. [Chronic fatigue syndrome: more than fatigue].

    PubMed

    Royes, Badía; Alvarez, Carballo; Lalinde, Sevillano; Vidal, Llinas; Martín, Alegre

    2010-12-01

    Chronic fatigue syndrome (CFS) is a disease recognized by all international medical organizations and WHO, and is classified under the code G93.3 of the International Classification of Diseases. Its prevalence is estimated around 2.54% being more common in women than in men (8/2) aged between 20 and 40 Is defined as a chronic new description characterized by the presence of subjective feeling of fatigue and exhaustion long disabling of more than 6 months duration that is not relieved by rest. It is a multisystem disorder that often presents a significant number of comorbid phenomena. Not known until specific tests to confirm the diagnosis, nor is there a cure to solve this health problem definitively The strongest evidence is based on the multidisciplinary approach for the symptomatic treatment of pain, sleep disorders, neurocognitive dysfunction, autonomic and control of depression and anxiety. The specific contribution of nursing to care for the person who lives and live with the SFC should be developed primarily in the field of health education and supportive care, support and assistance to help the patient and their relatives are an adaptive response to changes in health.

  14. Creep-fatigue of low cobalt superalloys

    NASA Technical Reports Server (NTRS)

    Halford, G. R.

    1982-01-01

    Testing for the low cycle fatigue and creep fatigue resistance of superalloys containing reduced amounts of cobalt is described. The test matrix employed involves a single high temperature appropriate for each alloy. A single total strain range, again appropriate to each alloy, is used in conducting strain controlled, low cycle, creep fatigue tests. The total strain range is based upon the level of straining that results in about 10,000 cycles to failure in a high frequency (0.5 Hz) continuous strain-cycling fatigue test. No creep is expected to occur in such a test. To bracket the influence of creep on the cyclic strain resistance, strain hold time tests with ore minute hold periods are introduced. One test per composition is conducted with the hold period in tension only, one in compression only, and one in both tension and compression. The test temperatures, alloys, and their cobalt compositions that are under study are given.

  15. Hysteresis and fatigue

    SciTech Connect

    Erber, T. ); Guralnick, S.A.; Michels, S.C. )

    1993-06-01

    Energy dissipation associated with damage of materials is irreversible and loading cycles are accompanied by the evolution of heat. The relation between energy dissipation and loading therefore exhibits a memory dependence or hysteresis. Conversely, sustained hysteresis is a necessary condition for fatigue and is related to the rate of damage accumulation. Standards for estimating fatigue life are partially based on the Manson-Coffin relations between the width of stress strain hysteresis loops and the number of loading cycles required to produce failure in test pieces. In the present study, experimental and theoretical results demonstrate that this relation can be extended into a simple phenomenological description of fatigue that directly links total hysteresis energy dissipation, the cumulation of material damage, and the average number of loading cycles leading to failure. Analogies between the incremental collapse of structures and the inception and organization of damage in materials are used to aid understanding of the detailed features of hysteresis. Scanning tunneling microscope measurements of the threshold of mechanical irreversibility and acoustic emission patterns are used to detect the evolution of hysteresis at the microscopic level. 61 refs., 14 figs., 1 tab.

  16. Fatigue behavior of reactor pressure vessel steels

    SciTech Connect

    Huang, J.Y.; Chen, C.Y.; Chien, K.F.; Kuo, R.C.; Liaw, P.K.; Huang, J.G.

    1999-07-01

    High-cycle fatigue tests have been conducted on reactor pressure vessel steels, SA533-B1, with four levels of sulfur contents at room temperature. The applied stress versus fatigue life cycle (S-N) curves were developed at load ratios, R, of 0.2 and 0.8. At a load ratio of 0.2, the fatigue limit for SA533-B1 steels with sulfur contents less than 0.015 wt % is around 650 MPa, which is slightly higher than that with sulfur contents higher than 0.027 wt %. At a load ratio of 0.8, there were no fatigue indications on the fracture surface. In some fatigue-tested specimens, specifically those with higher sulfur content levels, fatigue cracks were observed to initiate around the inclusions. A digital video camera was used to record the entire fatigue process, and the results demonstrated that the crack initiation period dominated more than 80% of the total fatigue life. The fatigue-tested specimen surface had been thoroughly examined using optical and scanning electron microscopy. Apparent distinctions were observed between the neighborhood of the crack initiation site and the rest of the specimen surface. A great number of precipitates were found distributed along the sub-grain boundary using transmission electron microscopy. There is no or little change of the morphology of precipitates before and after fatigue tests. The mis-orientation between two neighboring sub-grains ranges from 1 to 5{degree}. The effects of the applied maximum stress, precipitate distribution, and fatigue cycle on the mis-orientation of the sub-grain boundary will be discussed in this paper.

  17. Cryogenic fatigue behavior of plain weave glass/epoxy composite laminates under tension tension cycling

    NASA Astrophysics Data System (ADS)

    Shindo, Yasuhide; Takano, Satoru; Horiguchi, Katsumi; Sato, Takashi

    2006-11-01

    This paper focuses on understanding the tension-tension fatigue behavior of woven glass fiber reinforced polymer laminates at cryogenic temperatures. Tension-tension fatigue tests at frequencies of 4 and 10 Hz with a stress ratio of 0.1 were conducted at room temperature, 77 and 4 K. The fatigue stress versus cycles to failure ( S- N) relationships and fatigue limits for 10 6 cycles were obtained. Fractured specimens tested under fatigue tests were also examined with optical microscope.

  18. Common bearing material has highest fatigue life at moderate temperature

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Zaretsky, E. V.; Dietrich, M. W.

    1972-01-01

    AISI 52100, a high carbon chromium steel, has the longest fatigue life of eight bearing materials tested. Fatigue lives of the other materials ranged from 7 to 78 percent of the fatigue life of AISI 52100 at a temperature of 340 K (150 F).

  19. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin

    2000-01-01

    A methodology is presented for determining the fatigue life of bonded composite skin/stringer structures based on delamination fatigue characterization data and geometric nonlinear finite element analyses. Results were compared to fatigue tests on stringer flange/skin specimens to verify the approach.

  20. Thermal Fatigue and Fracture Behavior of Ceramic Thermal Barrier Coatings

    NASA Technical Reports Server (NTRS)

    Zhu, Dong-Ming; Choi, Sung R.; Miller, Robert A.

    2001-01-01

    Thermal fatigue and fracture behavior of plasma-sprayed ceramic thermal barrier coatings has been investigated under high heat flux and thermal cyclic conditions. The coating crack propagation is studied under laser heat flux cyclic thermal loading, and is correlated with dynamic fatigue and strength test results. The coating stress response and inelasticity, fatigue and creep interactions, and interface damage mechanisms during dynamic thermal fatigue processes are emphasized.

  1. Fatigue of Advanced In-Situ Composite Solders

    DTIC Science & Technology

    2007-11-02

    ABSTRACT (Maximum 200 words) " ~~" Solder joints used in surface mount technology experience thermomechanical fatigue due to the mismatches in...solder joint to undergo shear strains. The purpose of this study was to examine and explain the thermomechanical fatigue damage mechanisms of various...types of solder compositions. Shear, creep, low cycle fatigue , and thermomechanical fatigue tests were conducted in this research. The development

  2. Corrosion fatigue of surgical stainless steel in synthetic physiological solution.

    PubMed

    Cahoon, J R; Holte, R N

    1981-03-01

    Fatigue tests conducted both in air and synthetic physiological solution show that the fatigue strength of surgical stainless steel in synthetic physiological solution is about 10% lower than the strength in air for a given endurance level. It is proposed that surgical stainless steel which is normally passive in physiological solution suffers corrosion fatigue because of susceptibility to crevice corrosion which occurs at extrusions and intrusions (crevices) on the surface thereby shortening the crack initiation time and the fatigue life.

  3. Preliminary Fatigue Studies on Aluminum Alloy Aircraft Engines

    NASA Technical Reports Server (NTRS)

    1938-01-01

    Preliminary information on the complex subject of the fatigue strength of fabricated structural members for aircraft is presented in the test results obtained on several different types of airship girders subjected to axial tension and compression in a resonance fatigue machine. A description of this machine as well as numerous photographs of the fatigue failures are given. There is also presented an extended bibliography on the subject of fatigue strength.

  4. Comparison of bulk sediment and sediment elutriate toxicity testing methods

    EPA Science Inventory

    Elutriate bioassays are among numerous methods that exist for assessing the potential toxicity of sediments in aquatic systems. In this study, interlaboratory results were compared from 96-hour Ceriodaphnia dubia and Pimephales promelas static-renewal acute toxicity tests conduct...

  5. Mechanical resistance evaluation of a novel anatomical short glass fiber reinforced post in artificial endodontically treated premolar under rotational/lateral fracture fatigue testing.

    PubMed

    Wang, Hsuan-Wen; Chang, Yen-Hsiang; Lin, Chun-Li

    2016-01-01

    This study develops a novel anatomical short glass fiber reinforced (anatomical SGFR) post and evaluates the mechanical performance in artificial endodontically treated premolars. An anatomical SGFR fiber post with an oval shape and slot/notch designs was manufactured using an injection-molding machine. The three-point bending test and crown/core restorations using the anatomical SGFR and commercial cylindrical fiber posts under fatigue test were executed to understand the mechanical resistances. The results showed that static and dynamic rotational resistance were found significantly higher in the anatomical SGFR fiber post than in the commercial post. The endurance limitations at 1.2×10(6) cycles were 66.81 and 64.77 N for the anatomical SGFR and commercial fiber posts, respectively. The anatomical SGFR fiber post presented acceptable value of flexural strength and modulus, better fit adaption in the root canal resist torque more efficiency but was not a key issue in the lateral fracture resistance in an endodontically treated premolar.

  6. National Inter-laboratory Comparison of Thermocouples in the Temperature Range from to

    NASA Astrophysics Data System (ADS)

    Arifoviç, N.; Kalemci, M.

    2015-08-01

    One of the main criteria demonstrating the competence of a calibration laboratory is successful participation in inter-laboratory comparisons. Real capability of the laboratory including claimed uncertainties could be demonstrated based on the results of comparisons, evaluated either through -criteria or other acceptable measures. As a number of accredited laboratories with scopes covering calibration services in the field of thermometry have been increasing, the demand for organization of inter-laboratory comparisons with participation of accredited laboratories occurs. Based on this fact, a national inter-laboratory comparison of thermocouple calibrations in the temperature range from to in the field of temperature was launched by TUBITAK UME in 2011. The purpose of the inter-laboratory comparison was to compare the results of the participating laboratories during calibration of the thermocouples in the range from to . Three type S thermocouples were constructed and calibrated by TUBITAK UME which is the pilot laboratory of the comparison. It was recommended that the participants use their standard procedure for the calibration of thermocouples and follow the instructions of comparison protocol during the calibration. The inter-laboratory comparison was carried out among eleven national accredited laboratories. In this paper, the temperature differences obtained by participating laboratories with associated uncertainties of the results and values will be presented. The metrological equivalence of all laboratories was demonstrated, with all values being less than 1.0.

  7. Gas chromatographic determination of volatile congeners in spirit drinks: interlaboratory study.

    PubMed

    Kelly, J; Chapman, S; Brereton, P; Bertrand, A; Guillou, C; Wittkowski, R

    1999-01-01

    An interlaboratory study of a gas chromatographic (GC) method for the determination of volatile congeners in spirit drinks was conducted; 31 laboratories from 8 countries took part in the study. The method uses GC with flame ionization detection and incorporates several quality control measures which permit the choice of chromatographic system and conditions to be selected by the user. Spirit drink samples were prepared and sent to participants as 10 blind duplicate or split-level test materials for the determination of 1,1-diethoxyethane (acetal), 2-methylbutan-1-ol (active amyl alcohol), 3-methylbutan-1-ol (isoamyl alcohol), methanol (methyl alcohol), ethyl ethanoate (ethyl acetate), butan-1-ol (n-butanol), butan-2-ol (sec-butanol), 2-methylpropan-1-ol (isobutyl alcohol), propan-1-ol (n-propanol), and ethanal (acetaldehyde). The precision of the method for 9 of the 10 analytes was well within the range predicted by the Horwitz equation. The precision of the most volatile analyte, ethanal, was just above statistically predicted levels. This method is recommended for official regulatory purposes.

  8. Inter-laboratory study to characterize the detection of serum antibodies against porcine epidemic diarrhoea virus.

    PubMed

    Strandbygaard, Bertel; Lavazza, Antonio; Lelli, Davide; Blanchard, Yannick; Grasland, Béatrice; Poder, Sophie Le; Rose, Nicolas; Steinbach, Falko; van der Poel, Wim H M; Widén, Frederik; Belsham, Graham J; Bøtner, Anette

    2016-12-25

    Porcine epidemic diarrhea virus (PEDV) has caused extensive economic losses to pig producers in many countries. It was recently introduced, for the first time, into North America and outbreaks have occurred again in multiple countries within Europe as well. To assess the properties of various diagnostic assays for the detection of PEDV infection, multiple panels of porcine sera have been shared and tested for the presence of antibodies against PEDV in an inter-laboratory ring trial. Different laboratories have used a variety of "in house" ELISAs and also one commercial assay. The sensitivity and specificity of each assay has been estimated using a Bayesian analysis applied to the ring trial results obtained with the different assays in the absence of a gold standard. Although different characteristics were found, it can be concluded that each of the assays used can detect infection of pigs at a herd level by either the early European strains of PEDV or the recently circulating strains (INDEL and non-INDEL). However, not all the assays seem suitable for demonstrating freedom from disease in a country. The results from individual animals, especially when the infection has occurred within an experimental situation, show more variation.

  9. Simultaneous determination of p-phenylenediamines and aminophenols in hair dye products: interlaboratory study.

    PubMed

    Yeh, Yu-Chun; Wu, Hui-Jung; Huang, Wei-Sheng; Lin, Cheng-Chin; Chen, Yu-Pen; Tzou, Mei-Chyun; Tsai, Jui-Chen

    2011-01-01

    An isocratic HPLC method routinely used in the National Laboratory for Food and Drug Analysis of Taiwan was validated for the simultaneous determination of six aminophenols and phenylenediamines in commercial hair dyes. After extraction of the commercial hair dye product, the dye intermediates were determined by HPLC. Recoveries from the extraction were between 91.6 and 96.5%. The method was then evaluated in an interlaboratory collaborative study according to AOAC guidelines. Five laboratories in Taiwan participated in the study that analyzed the test product, which was preanalyzed by two laboratories to ensure acceptable homogeneity. The RSD(r) and RSD(R) values of the measurements obtained for the dye intermediates in the product were < or = 3.75 and < or = 5.95%, respectively. The method demonstrated acceptable reproducibility, as evidenced by HorRat values of 0.82- 0.97. The applicability of the method to the determination of oxidative hair dye components was further demonstrated in analyses of two different products. The method is thus proposed to be used by manufacturers and laboratories to evaluate the quality of commercial hair dyes containing the six aminophenols and phenylenediamines.

  10. Estimation and uncertainty analysis of dose response in an inter-laboratory experiment

    NASA Astrophysics Data System (ADS)

    Toman, Blaza; Rösslein, Matthias; Elliott, John T.; Petersen, Elijah J.

    2016-02-01

    An inter-laboratory experiment for the evaluation of toxic effects of NH2-polystyrene nanoparticles on living human cancer cells was performed with five participating laboratories. Previously published results from nanocytoxicity assays are often contradictory, mostly due to challenges related to producing a reliable cytotoxicity assay protocol for use with nanomaterials. Specific challenges include reproducibility preparing nanoparticle dispersions, biological variability from testing living cell lines, and the potential for nano-related interference effects. In this experiment, such challenges were addressed by developing a detailed experimental protocol and using a specially designed 96-well plate layout which incorporated a range of control measurements to assess multiple factors such as nanomaterial interference, pipetting accuracy, cell seeding density, and instrument performance. Detailed data analysis of these control measurements showed that good control of the experiments was attained by all participants in most cases. The main measurement objective of the study was the estimation of a dose response relationship between concentration of the nanoparticles and metabolic activity of the living cells, under several experimental conditions. The dose curve estimation was achieved by imbedding a three parameter logistic curve in a three level Bayesian hierarchical model, accounting for uncertainty due to all known experimental conditions as well as between laboratory variability in a top-down manner. Computation was performed using Markov Chain Monte Carlo methods. The fit of the model was evaluated using Bayesian posterior predictive probabilities and found to be satisfactory.

  11. High temperature fatigue behavior of Haynes 188

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Saltsman, James F.; Kalluri, Sreeramesh

    1988-01-01

    The high temperature, creep-fatigue behavior of Haynes 188 was investigated as an element in a broader thermomechanical fatigue life prediction model development program at the NASA-Lewis. The models are still in the development stage, but the data that were generated possess intrinsic value on their own. Results generated to date is reported. Data were generated to characterize isothermal low cycle fatigue resistance at temperatures of 316, 704, and 927 C with cyclic failure lives ranging from 10 to more than 20,000. These results follow trends that would be predicted from a knowledge of tensile properties, i.e., as the tensile ductility varies with temperature, so varies the cyclic inelastic straining capacity. Likewise, as the tensile strength decreases, so does the high cyclic fatigue resistance. A few two-minute hold-time cycles at peak compressive strain were included in tests at 760 C. These results were obtained in support of a redesign effort for the Orbital Maneuverable System engine. No detrimental effects on cyclic life were noted despite the added exposure time for creep and oxidation. Finally, a series of simulated thermal fatigue tests, referred to as bithermal fatigue tests, were conducted using 316 C as the minimum and 760 C as the maximum temperature. Only out-of-phase bithermal tests were conducted to date. These test results are intended for use as input to a more general thermomechanical fatigue life prediction model based on the concepts of the total strain version of Strainrange Partitioning.

  12. Fatigue Life Methodology for Bonded Composite Skin/Stringer Configurations

    NASA Technical Reports Server (NTRS)

    Krueger, Ronald; Paris, Isabelle L.; OBrien, T. Kevin; Minguet, Pierre J.

    2001-01-01

    A methodology is presented for determining the fatigue life of composite structures based on fatigue characterization data and geometric nonlinear finite element (FE) analyses. To demonstrate the approach, predicted results were compared to fatigue tests performed on specimens which represented a tapered composite flange bonded onto a composite skin. In a first step, tension tests were performed to evaluate the debonding mechanisms between the flange and the skin. In a second step, a 2D FE model was developed to analyze the tests. To predict matrix cracking onset, the relationship between the tension load and the maximum principal stresses transverse to the fiber direction was determined through FE analysis. Transverse tension fatigue life data were used to -enerate an onset fatigue life P-N curve for matrix cracking. The resulting prediction was in good agreement with data from the fatigue tests. In a third step, a fracture mechanics approach based on FE analysis was used to determine the relationship between the tension load and the critical energy release rate. Mixed mode energy release rate fatigue life data were used to create a fatigue life onset G-N curve for delamination. The resulting prediction was in good agreement with data from the fatigue tests. Further, the prediction curve for cumulative life to failure was generated from the previous onset fatigue life curves. The results showed that the methodology offers a significant potential to Predict cumulative fatigue life of composite structures.

  13. Bearing fatigue investigation 3

    NASA Technical Reports Server (NTRS)

    Nahm, A. H.; Bamberger, E. N.; Signer, H. R.

    1982-01-01

    The operating characteristics of large diameter rolling-element bearings in the ultra high speed regimes expected in advanced turbine engines for high performance aircraft were investigated. A high temperature lubricant, DuPont Krytox 143 AC, was evaluated at bearing speeds to 3 million DN. Compared to the results of earlier, similar tests using a MIL-L-23699 (Type II) lubricant, bearings lubricated with the high density Krytox fluid showed significantly higher power requirements. Additionally, short bearing lives were observed when this fluid was used with AISI M50 bearings in an air atmosphere. The primary mode of failure was corrosion initiated surface distress (fatigue) on the raceways. The potential of a case-carburized bearing to sustain a combination of high-tangential and hertzian stresses without experiencing race fracture was also investigated. Limited full scale bearing tests of a 120 mm bore ball bearing at a speed of 25,000 rpm (3 million DN) indicated that a carburized material could sustain spalling fatigue without subsequent propagation to fracture. Planned life tests of the carburized material had to be aborted, however, because of apparent processing-induced material defects.

  14. Electrothermal atomization atomic absorption spectrometry for the determination of lead in urine: results of an interlaboratory study

    NASA Astrophysics Data System (ADS)

    Parsons, Patrick J.; Slavin, Walter

    1999-05-01

    Results of an interlaboratory study are reported for the determination of lead in urine. Two levels of a lyophilized material containing biologically-bound lead were prepared using pooled urine obtained from lead-poisoned children undergoing the CaNa 2EDTA mobilization test. The materials were circulated to a group of reference laboratories that participate in the `New York State Proficiency Testing Program for Blood Lead'. Results of the initial round-robin gave all-method consensus target values of 145±22 μg/l (S.D.) for lot 17 and 449±43 μg/l (S.D.) for lot 20. The interlaboratory exercise was repeated some 5 years later and consensus target values were re-calculated using the grand mean (excluding outliers) of results reported by laboratories using electrothermal atomization atomic absorption spectrometry (ETAAS). The re-calculated target values were 139±10 μg/l (S.D.) and 433±12 μg/l (S.D.). The urine reference materials were also analyzed for lead by several laboratories using other instrumental techniques including isotope dilution (ID), inductively coupled plasma (ICP) mass spectrometry (MS), flame atomic absorption with extraction, ICP-atomic emission spectrometry, ID-gas chromatography MS and flow injection-hydride generation AAS, thus providing a rich source of analytical data with which to characterize them. The materials were also used in a long-term validation study of an ETAAS method developed originally for blood lead determinations that has since been used unmodified for the determination of lead in urine also. Recently, urine lead method performance has been tracked in a proficiency testing program specifically for this analysis. In addition, a number of commercial control materials have been analyzed and evaluated.

  15. Interlaboratory comparison for the measurement of particle size and zeta potential of silica nanoparticles in an aqueous suspension

    NASA Astrophysics Data System (ADS)

    Lamberty, Andrée; Franks, Katrin; Braun, Adelina; Kestens, Vikram; Roebben, Gert; Linsinger, Thomas P. J.

    2011-12-01

    The Institute for Reference Materials and Measurements has organised an interlaboratory comparison (ILC) to allow the participating laboratories to demonstrate their proficiency in particle size and zeta potential measurements on monomodal aqueous suspensions of silica nanoparticles in the 10-100 nm size range. The main goal of this ILC was to identify competent collaborators for the production of certified nanoparticle reference materials. 38 laboratories from four different continents participated in the ILC with different methods for particle sizing and determination of zeta potential. Most of the laboratories submitted particle size results obtained with centrifugal liquid sedimentation (CLS), dynamic light scattering (DLS) or electron microscopy (EM), or zeta potential values obtained via electrophoretic light scattering (ELS). The results of the laboratories were evaluated using method-specific z scores, calculated on the basis of consensus values from the ILC. For CLS (13 results) and EM (13 results), all reported values were within the ±2 | z| interval. For DLS, 25 of the 27 results reported were within the ±2 | z| interval, the two other results were within the ±3 | z| interval. The standard deviations of the corresponding laboratory mean values varied between 3.7 and 6.5%, which demonstrates satisfactory interlaboratory comparability of CLS, DLS and EM particle size values. From the received test reports, a large discrepancy was observed in terms of the laboratory's quality assurance systems, which are equally important for the selection of collaborators in reference material certification projects. Only a minority of the participating laboratories is aware of all the items that are mandatory in test reports compliant to ISO/IEC 17025 (ISO General requirements for the competence of testing and calibration laboratories. International Organisation for Standardization, Geneva, 2005b). The absence of measurement uncertainty values in the reports, for

  16. Corrosion fatigue of high strength fastener materials in seawater

    NASA Technical Reports Server (NTRS)

    Tipton, D. G.

    1983-01-01

    Environmental effects which significantly reduce the fatigue life of metals are discussed. Corrosion fatigue is a major concern in the engineering application of high strength fasteners in marine environments. The corrosion fatigue failure of an AISI 41L4O high strength steel blade to hub attachment bolt at the MOD-OA 200 kW wind turbine generator was investigated. The reduction of fatigue strength of AISI 41L4O in marine environments and to obtain similar corrosion fatigue data for candidate replacement materials was studied. The AISI 4140, PH 13-8Mo stainless steel, alloy 718 and alloy MP-35N were tested in axial fatigue at a frequency of 20 Hz in dry air and natural seawater. The fatigue data are fitted by regression equations to allow determination of fatigue strength for a given number of cycles to failure.

  17. Interlaboratory Comparison of Organically Bound Tritium Measurements in Environmental Samples

    SciTech Connect

    Workman, W.J.G.; Kim, S.B.; Kotzer, T.G.

    2005-07-15

    The measurement of organically bound tritium in environmental samples is essential for assessing the impact of tritium releases in terms of doses to the general public and a growing number of laboratories are now required to make them. Interlaboratory comparisons provide one way for laboratories to practice and check their analytical methods and procedures. At AECL's Chalk River Laboratories, two organic matrices with tritium concentrations less than 1.5 kBq/g were developed and distributed to seven laboratories in Canada, Europe and Russia for measurement. Some participants experienced difficulties in analysing the samples, especially with the lower concentrations, where results varied by more than an order of magnitude. Laboratories incorporating procedures such as rinsing to remove tritium from exchangeable sites, using standardized combustion methods and purifying the combustion water obtained more reliable, consistent results. The preparation of the standard reference material must be carefully executed in order to produce a homogeneous sample of uniform size. The tritium measurement community would benefit if standard reference materials in the environmental concentration range were available.

  18. NanoRelease: Pilot interlaboratory comparison of a ...

    EPA Pesticide Factsheets

    A major use of multi-walled carbon nanotubes (MWCNTs) is as functional fillers embedded in a solid matrix, such as plastics or coatings. Weathering and abrasion of the solid matrix during use can lead to environmental releases of the MWCNTs. Here we focus on a protocol to identify and quantify the primary release induced by weathering, and assess reproducibility, transferability, and sensitivity towards different materials and uses. We prepared 132 specimens of two polymer-MWCNT composites containing the same grade of MWCNTs used in earlier OECD hazard assessments but without UV stabilizer. We report on a pilot inter-laboratory comparison (ILC) with four labs (two US and two EU) aging by UV and rain, then shipping for analysis. Two labs (one US and one EU) conducted the release sampling and analysis by Transmission Electron Microscopy (TEM), Inductively Coupled Plasma- Mass Spectrometry (ICP-MS), Ultraviolet–Visible Spectroscopy (UV–Vis), Analytical Ultracentrifugation (AUC), and Asymmetric Flow Field Flow Fractionation (AF4). We compare results between aging labs, between analysis labs and between materials. Surprisingly, we found quantitative agreement between analysis labs for TEM, ICP-MS, UV–Vis; low variation between aging labs by all methods; and consistent rankings of release between TEM, ICP-MS, UV–Vis, AUC. Significant disagreement was related primarily to differences in aging, but even these cases remained within a factor of two. Published in t

  19. Inter-Laboratory Uranium Double-Spike Experiment

    SciTech Connect

    Russ, G. P

    1999-11-11

    In environmental samples, the major analytical limitation on the use of uranium {sup 238}U/{sup 235}U determinations as an indicator of uranium enrichment is mass dependent bias occurring during the measurement. The double-spike technique can be used to correct the data for this effect. The purpose of this experiment was to evaluate the variation of mass bias among several laboratories and to determine the extent to which the double-spike could be used to reduce analytical uncertainty. Four laboratories performed replicate analyses on each of three samples. Generally mass bias was determined to be small compared to the random scatter of the measurements, but in at least one case, the bias was > 1%. In 8 of 12 cases, intra-laboratory variance was reduced when the double-spike correction was applied. For all three samples, the inter-laboratory variance was decreased, though the decrease was small. Based on a reasonable assumption about the true isotopic compositions of the samples, the accuracy of 11 of the twelve analyses was improved by applying the double spike correction. When the double spike is used to correct for mass bias, the {sup 238}U/{sup 235}U accuracy is better than 1% even for samples as small as 1 ng. For 50 ng of uranium, 0.1% accuracy was achieved.

  20. Canadian inter-laboratory organically bound tritium (OBT) analysis exercise.

    PubMed

    Kim, S B; Olfert, J; Baglan, N; St-Amant, N; Carter, B; Clark, I; Bucur, C

    2015-12-01

    Tritium emissions are one of the main concerns with regard to CANDU reactors and Canadian nuclear facilities. After the Fukushima accident, the Canadian Nuclear Regulatory Commission suggested that models used in risk assessment of Canadian nuclear facilities be firmly based on measured data. Procedures for measurement of tritium as HTO (tritiated water) are well established, but there are no standard methods and certified reference materials for measurement of organically bound tritium (OBT) in environmental samples. This paper describes and discusses an inter-laboratory comparison study in which OBT in three different dried environmental samples (fish, Swiss chard and potato) was measured to evaluate OBT analysis methods currently used by CANDU Owners Group (COG) members. The variations in the measured OBT activity concentrations between all laboratories were less than approximately 20%, with a total uncertainty between 11 and 17%. Based on the results using the dried samples, the current OBT analysis methods for combustion, distillation and counting are generally acceptable. However, a complete consensus OBT analysis methodology with respect to freeze-drying, rinsing, combustion, distillation and counting is required. Also, an exercise using low-level tritium samples (less than 100 Bq/L or 20 Bq/kg-fresh) would be useful in the near future to more fully evaluate the current OBT analysis methods.

  1. Fatigue-Resistant Photochromic Plastics

    NASA Astrophysics Data System (ADS)

    Chu, Nori Y. C.

    1989-03-01

    The optical switching properties of a photochromic spirooxazine compound in retrofit polyester film and in poly (vinyl butyral) have been measured. The light fatigue resistance of these two optical switching elements were tested by an accelerated method. The length of photochromic activity of the optical switching elements can be improved by various organonickel and hindered amine light stabilizers. The effectiveness and optimal concentration for each light stabilizer in these host materials has been determined. These two types of light stabilizers act synergistically in improving the light fatigue resistance of the optical switching elements significantly.

  2. Interlaboratory study for nickel alloy 625 made by laser powder bed fusion to quantify mechanical property variability.

    PubMed

    Brown, Christopher U; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2016-08-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser-powder-bed-fusion additive manufacturing machines. The tensile specimens were heat treated and tensile tests conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to 4 times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.

  3. Interlaboratory Study for Nickel Alloy 625 Made by Laser Powder Bed Fusion to Quantify Mechanical Property Variability

    NASA Astrophysics Data System (ADS)

    Brown, Christopher U.; Jacob, Gregor; Stoudt, Mark; Moylan, Shawn; Slotwinski, John; Donmez, Alkan

    2016-08-01

    Six different organizations participated in this interlaboratory study to quantify the variability in the tensile properties of Inconel 625 specimens manufactured using laser powder bed fusion-additive manufacturing machines. The tensile specimens were heat treated and tensile tests were conducted until failure. The properties measured were yield strength, ultimate tensile strength, elastic modulus, and elongation. Statistical analysis revealed that between-participant variability for yield strength, ultimate tensile strength, and elastic modulus values were significantly higher (up to four times) than typical within-participant variations. Only between-participant and within-participant variability were both similar for elongation. A scanning electron microscope was used to examine one tensile specimen for fractography. The fracture surface does not have many secondary cracks or other features that would reduce the mechanical properties. In fact, the features largely consist of microvoid coalescence and are entirely consistent with ductile failure.

  4. Interlaboratory comparison of mineral constituents in a sample from the Herrin (No. 6) coal bed from Illinois

    USGS Publications Warehouse

    Finkelman, Robert B.; Fiene, F.L.; Miller, R.N.; Simon, F.O.

    1984-01-01

    Approximately 20 kg of the Herrin (No. 6) coal was collected from a strip mine in St. Clair County, Ill. A 10-kg portion was ground to -60 mesh, homogenized, and riffled into 128 splits of 70-80 g each. Homogeneity of these splits was confirmed by moisture, ash, and sulfur analyses of six randomly selected splits. Results of these analyses were within the ASTM (American Society for Testing and Materials) guidelines for interlaboratory precision. Splits of the Herrin (No. 6) coal were then transmitted to more than 30 laboratories for analysis. Low-temperature plasma oxidation was used to isolate inorganic matter for quantitative chemical and mineralogical analysis. Despite a wide variation in ashing conditions, only minor variations in ash yields were obtained; these variations were attributed to differences in operating temperature and moisture content. Mineralogical analyses of low-temperature ash (LTA) concentrates prepared by five different laboratories indicated variations within the limits of analytical error. The mean values, in weight percent, for the major minerals are as follows: calcite, 9; quartz, 20; pyrite, 23; kaolinite, 14; and illite+mixed-layer clays, 31. Normative mineralogical calculations and Fourier transform infrared analysis (FTIR) yielded results similar to those obtained from X-ray diffraction (XRD). Choosing appropriate mineral standards was found to be critical for the proper use of analytical techniques such as XRD and FTIR. Good interlaboratory agreement was obtained for most major, minor, and trace elements despite differences in analytical procedures and in the type of sample analyzed (coal, high-temperature ash, or LTA). Discrepancies between analyses for zinc, strontium, manganese, and iron may be attributed to sampling inhomogeneity problems. Mossbauer spectroscopy showed that approximately 44 percent of the pyritic sulfur was lost through weathering in the first year after preparation of the interlaboratory sample. Szomolnokite

  5. Could test length or order affect scores on letter number sequencing of the WAIS-III and WMS-III? Ruling out effects of fatigue.

    PubMed

    Tulsky, D S; Zhu, J

    2000-11-01

    The Letter Number Sequencing subtest of the WAIS-III and WMS-III was administered at the end of the standardization edition of the WMS-III. It was not administered as part of the WAIS-III standardization battery. Nevertheless, the subtest was included in the published version of the WAIS-III. This study examines differences between examinees administered the Letter Number Sequencing subtest at three different times during a psychological battery: (1) as part of the published battery, (2) as part of the WMS-III when the WMS-III was administered as the first test in a sequence, and (3) as part of the WMS-III standardization when the WAIS-III was administered immediately preceding the WMS-III. The participants were 372 examinees ( n = 124 in each condition) who were matched on key demographic variables. A repeated measures MANOVA yielded no difference in subtest scores when administered in any of these conditions. The results show no evidence of fatigue or ordering effects on the Letter Number Sequencing subtest.

  6. Interconnect fatigue design for terrestrial photovoltaic modules

    NASA Technical Reports Server (NTRS)

    Mon, G. R.; Moore, D. M.; Ross, R. G., Jr.

    1982-01-01

    The results of comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable (1) the prediction of cumulative interconnect failures during the design life of an array field, and (2) the unambiguous--ie., quantitative--interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field.

  7. Fatigue of composites

    NASA Technical Reports Server (NTRS)

    Salkind, M. J.

    1972-01-01

    The failure mechanisms in the fatigue of composite materials are analyzed in terms of the requirements for designing fatigue-critical composite structures. Fiber reinforced polymers, fiber reinforced metals, fatigue of composite structures, and composite design considerations are discussed. It is concluded that composite materials offer the engineer the opportunity for tailoring stiffness in different directions for designing dynamic components.

  8. Improvement of the quality of effective dose estimation by interlaboratory comparisons

    NASA Astrophysics Data System (ADS)

    Katarzyna, Ciszewska; Malgorzata, Dymecka; Tomasz, Pliszczynski; Jakub, Osko

    2010-01-01

    Radiation Protection Measurements Laboratory (RPLM) of the Institute of Atomic Energy POLATOM determines radionuclides in human urine to estimate the effective dose. Being an accredited laboratory, RPLM participated in interlaboratory comparisons in order to assure the quality of services concerning monitoring of internal contamination. The purpose of the study was to examine the effect of interlaboratory comparisons on the accuracy of the provided measurements. The results regarding tritium (3H) and strontium (90Sr) determination, obtained within the radiotoxicological intercomparison exercises, organized by PROCORAD, in 2005-2010, were analyzed and the methods used by the laboratory were verified and improved.

  9. Finite Element Analyses and Experimental Testing of Hybrid Composite/Metal Joints Subjected to Fully Reversed Flexure Fatigue Loading

    DTIC Science & Technology

    2009-08-30

    from point A to B, umax and umm are the maximum and minimum bending-displacements and Rd is the ratio umax/umin. The testing consisted of conducting...data, but only specifically chosen intervals. Each Gauss- point , in addition to being assigned the damage variable D, is also assigned the state...variable NJUMP1, which is the number of cycles that can be skipped over without losing accuracy for that particular point . Next, looping over all Gauss

  10. Fatigue Behavior of Inconel 718 TIG Welds

    NASA Astrophysics Data System (ADS)

    Alexopoulos, Nikolaos D.; Argyriou, Nikolaos; Stergiou, Vasillis; Kourkoulis, Stavros K.

    2014-08-01

    Mechanical behavior of reference and TIG-welded Inconel 718 specimens was examined in the present work. Tensile, constant amplitude fatigue, and fracture toughness tests were performed in ambient temperature for both, reference and welded specimens. Microstructure revealed the presence of coarse and fine-grained heat-affected zones. It has been shown that without any post-weld heat treatment, welded specimens maintained their tensile strength properties while their ductility decreased by more than 40%. It was found that the welded specimens had lower fatigue life and this decrease was a function of the applied fatigue maximum stress. A 30% fatigue life decrease was noticed in the high cycle fatigue regime for the welded specimens while this decrease exceeded 50% in the low cycle fatigue regime. Cyclic stress-strain curves showed that Inconel 718 experiences a short period of hardening followed by softening for all fatigue lives. Cyclic fatigue response of welded specimens' exhibited cyclically stable behavior. Finally, a marginal decrease was noticed in the Mode I fracture toughness of the welded specimens.

  11. Interlaboratory comparison of three microbial source tracking quantitative polymerase chain reaction (qPCR) assays from fecal-source and environmental samples

    USGS Publications Warehouse

    Stelzer, Erin A.; Strickler, Kriston M.; Schill, William B.

    2012-01-01

    During summer and early fall 2010, 15 river samples and 6 fecal-source samples were collected in West Virginia. These samples were analyzed by three laboratories for three microbial source tracking (MST) markers: AllBac, a general fecal indicator; BacHum, a human-associated fecal indicator; and BoBac, a ruminant-associated fecal indicator. MST markers were analyzed by means of the quantitative polymerase chain reaction (qPCR) method. The aim was to assess interlaboratory precision when the three laboratories used the same MST marker and shared deoxyribonucleic acid (DNA) extracts of the samples, but different equipment, reagents, and analyst experience levels. The term assay refers to both the markers and the procedure differences listed above. Interlaboratory precision was best for all three MST assays when using the geometric mean absolute relative percent difference (ARPD) and Friedman's statistical test as a measure of interlaboratory precision. Adjustment factors (one for each MST assay) were calculated using results from fecal-source samples analyzed by all three laboratories and applied retrospectively to sample concentrations to account for differences in qPCR results among labs using different standards and procedures. Following the application of adjustment factors to qPCR results, ARPDs were lower; however, statistically significant differences between labs were still observed for the BacHum and BoBac assays. This was a small study and two of the MST assays had 52 percent of samples with concentrations at or below the limit of accurate quantification; hence, more testing could be done to determine if the adjustment factors would work better if the majority of sample concentrations were above the quantification limit.

  12. Test-retest reliability of wavelet - and Fourier based EMG (instantaneous) median frequencies in the evaluation of back and hip muscle fatigue during isometric back extensions.

    PubMed

    Coorevits, Pascal; Danneels, Lieven; Cambier, Dirk; Ramon, Herman; Druyts, Hans; Karlsson, J Stefan; De Moor, Georges; Vanderstraeten, Guy

    2008-10-01

    hip muscle fatigue during a modified Biering-Sørensen test.

  13. First European interlaboratory comparison of tetracycline and age determination with red fox teeth following oral rabies vaccination programs.

    PubMed

    Robardet, Emmanuelle; Demerson, Jean-Michel; Andrieu, Sabrina; Cliquet, Florence

    2012-10-01

    The first European interlaboratory comparison of tetracycline and age determination with red fox (Vulpes vulpes) tooth samples was organized by the European Union Reference Laboratory for rabies. Performance and procedures implemented by member states were compared. These techniques are widely used to monitor bait uptake in European oral rabies vaccination campaigns. A panel of five red fox half-mandibles comprising one weak positive juvenile sample, two positive adult samples, one negative juvenile sample, and one negative adult sample were sent, along with a technical questionnaire, to 12 laboratories participating on a voluntary basis. The results of only three laboratories (25%) were 100% correct. False-negative results were more frequently seen in weak positive juvenile samples (58%) but were infrequent in positive adult samples (4%), probably due to differences in the ease of reading the two groups of teeth. Four laboratories (44%) had correct results for age determination on all samples. Ages were incorrectly identified in both adult and juvenile samples, with 11 and 17% of discordant results, respectively. Analysis of the technical questionnaires in parallel with test results suggested that all laboratories cutting mandible sections between the canine and first premolar obtained false results. All the laboratories using longitudinal rather than transverse sections and those not using a mounting medium also produced false results. Section thickness appeared to affect the results; no mistakes were found in laboratories using sections <150 μm thick. Factors having a potential impact on the success of laboratories were discussed, and recommendations proposed. Such interlaboratory trials underline the importance of using standardized procedures for biomarker detection in oral rabies vaccination campaigns. Several changes can be made to improve analysis quality and increase the comparability of bait uptake frequencies among member states.

  14. Fatigue behavior and recommended design rules for an automotive composite

    SciTech Connect

    Corum, J.M.; Battiste, R.L.; Ruggles, M.B.

    1998-11-01

    Fatigue curves (stress vs cycles to failure) were generated under a variety of conditions (temperatures, fluid environments, mean stresses, block loadings) for a candidate automotive structural composite. The results were used to (1) develop observations regarding basic fatigue behavioral characteristics and (2) establish fatigue design rules. The composite was a structural reaction injection-molded polyurethane reinforced with continuous strand, swirl-mat E-glass fibers. Tensile fatigue tests on specimens from a single plaque at {minus}40 F, room temperature, and 250 F provided the basic behavioral characteristics. It was found that when stress was normalized by the at-temperature ultimate tensile strength, the fatigue curves at the three temperatures collapsed into a single master curve. An assessment of the individual stress-strain loops throughout each test showed a progressive loss in stiffness and an increase in permanent strain, both of which are indicative of increasing damage. Fatigue tests on specimens from several plaques were used to develop a design fatigue curve, which was established by using a reduction factor of 20 on average cycles to failure. This factor assures that the stiffness loss during the design life is no greater than 10 percent. Fatigue reduction factors were established to account for various fluids. Reversed stress fatigue tests allowed a mean stress rule to be validated, and block loading tests were used to demonstrate the adequacy of Miner`s rule for cumulative fatigue damage.

  15. Evaluating Fatigue in Operational Settings: The NASA Ames Fatigue Countermeasures Program

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gregory, Kevin; Miller, Donna; Webbon, Lissa; Oyung, Ray

    1996-01-01

    In response to a 1980 Congressional request, NASA Ames initiated a program to examine fatigue in flight operations. The Program objectives are to examine fatigue, sleep loss, and circadian disruption in flight operations, determine the effects of these factors on flight crew performance, and the development of fatigue countermeasures. The NASA Ames Fatigue Countermeasures Program conducts controlled laboratory experiments, full-mission flight simulations, and field studies. A range of subjective, behavioral, performance, physiological, and environmental measures are used depending on study objectives. The Program has developed substantial expertise in gathering data during actual flight operations and in other work settings. This has required the development of ambulatory and other measures that can be carried throughout the world and used at 41,000 feet in aircraft cockpits. The NASA Ames Fatigue Countermeasures Program has examined fatigue in shorthaul, longhaul, overnight cargo, and helicopter operations. A recent study of planned cockpit rest periods demonstrated the effectiveness of a brief inflight nap to improve pilot performance and alertness. This study involved inflight reaction time/vigilance performance testing and EEG/EOG measures of physiological alertness. The NASA Ames Fatigue Countermeasures Program has applied scientific findings to the development of education and training materials on fatigue countermeasures, input to federal regulatory activities on pilot flight, duty, and rest requirements, and support of National Transportation Safety Board accident investigations. Current activities are examining fatigue in nonaugmented longhaul flights, regional/commuter flight operations, corporate/business aviation, and psychophysiological variables related to performance.

  16. Fatigue handbook: Offshore steel structures

    SciTech Connect

    Almarnaess, A.

    1985-01-01

    The contents of this book are: Overview of Offshore Steel Structures; Loads on Ocean Structures; Fracture Mechanics As a Tool in Fatigue Analysis; Basic Fatigue Properties of Welded Joints; Significance of Defects; Improving the Fatigue Strength of Welded Joints; Effects of Marine Environment and Cathodic Protection on Fatigue of Structural Steels Fatigue of Tubular Joints; Unstable Fracture; Fatigue Life Calculations; and Fatigue in Building Codes Background and Applications.

  17. Developing Fatigue Pre-crack Procedure to Evaluate Fracture Toughness of Pipeline Steels Using Spiral Notch Torsion Test

    SciTech Connect

    Wang, Jy-An John; Tan, Ting; Jiang, Hao; Zhang, Wei; Feng, Zhili

    2012-10-01

    The spiral notch torsion test (SNTT) has been utilized to investigate the crack growth behavior of X52 steel base and welded materials used for hydrogen infrastructures. The X52 steel materials are received from a welded pipe using friction stir welding techniques. Finite element models were established to study the crack growth behavior of steel SNTT steel samples, which were assumed to be isotropic material. A series SNTT models were set up to cover various crack penetration cases, of which the ratios between crack depth to diameter (a/D ratio) ranging from 0.10 to 0.45. The evolution of compliance and energy release rates in the SNTT method have been investigated with different cases, including different geometries and materials. Indices of characteristic compliance and energy release rates have been proposed. Good agreement has been achieved between predictions from different cases in the same trend. These work shed lights on a successful protocol for SNTT application in wide range of structural materials. The further effort needed for compliance function development is to extend the current developed compliance function to the deep crack penetration arena, in the range of 0.55 to 0.85 to effectively determine fracture toughness for extremely tough materials.

  18. Fatigue performance of welded aluminum deck structures

    SciTech Connect

    Haagensen, P.J.; Ranes, M.; Kluken, A.O.; Kvale, I.

    1996-12-01

    Aluminum alloys are used increasingly in load carrying structures where low weight and low maintenance costs are at a premium. Helicopter decks, structures for living quarters and personnel transfer bridges between platforms are examples of offshore applications. While these structures are not usually subjected to high fatigue loads, the increasing use of aluminum in high speed ships, and more recently in highway bridge structures, makes the question of fatigue performance more important. In this paper the fatigue properties of small scale weldments in an AA6005 alloy are compared with the results of fatigue tests on full scale sections of welded extrusions in the same material, which were used in an aluminum bridge deck structure. The fatigue performance is also compared with the fatigue clauses in the new British design code BS8118 for aluminium structures and the proposed Eurocode 9. The prospects of using a new joining technique, friction stir welding (FSW), in the production of large scale panels for deck and ship hull structures is discussed. The FSW process is described briefly, and some fatigue test data are presented.

  19. Fatigue of tooth-colored restoratives in aqueous environment.

    PubMed

    Kawakami, Yoshiko; Takeshige, Fumio; Hayashi, Mikako; Ebisu, Shigeyuki

    2007-01-01

    The purpose of this study was to investigate the interaction between mechanical and chemical fatigue in resin composites and dental ceramics, and the effects thereof on fatigue resistance of tooth-colored restoratives. To this end, the fatigue fracture resistance of restoratives under dry and aqueous conditions were analyzed by a dynamic fatigue crack propagation test using beam-shaped specimens with a precrack. Fatigue crack propagation characteristics were expressed by the correlation between fatigue crack growth rate (da/dN) and stress intensity factor range (deltaK). In addition, fatigue crack growth threshold (deltaKth) was calculated. Following the fatigue test, a fractographic examination was performed using scanning electron microscopy. Fatigue crack initiation was retarded in resin composites under aqueous condition, but dental ceramics were susceptible to slow crack growth after crack initiation. SEM images of the fatigue facture surfaces reflected inorganic and organic filler particles of different sizes in composites and the bonding at crystal-glass interface in ceramics. It was concluded that water exerted different effects on the fatigue resistance of composites and ceramics.

  20. Interlaboratory Reproducibility of Selective Reaction Monitoring Assays Using Multiple Upfront Analyte Enrichment Strategies

    PubMed Central

    Prakash, Amol; Rezai, Taha; Krastins, Bryan; Sarracino, David; Athanas, Michael; Russo, Paul; Zhang, Hui; Tian, Yuan; Li, Yan; Kulasingam, Vathany; Drabovich, Andrei; Smith, Christopher R.; Batruch, Ihor; Oran, Paul E.; Fredolini, Claudia; Luchini, Alessandra; Liotta, Lance; Petricoin, Emanuel; Diamandis, Eleftherios P.; Chan, Daniel W.; Nelson, Randall; Lopez, Mary F.

    2013-01-01

    Over the past few years, mass spectrometry has emerged as a technology to complement and potentially replace standard immunoassays in routine clinical core laboratories. Application of mass spectrometry to protein and peptide measurement can provide advantages including high sensitivity, the ability to multiplex analytes, and high specificity at the amino acid sequence level. In our previous study, we demonstrated excellent reproducibility of mass spectrometry-selective reaction monitoring (MS-SRM) assays when applying standardized standard operating procedures (SOPs) to measure synthetic peptides in a complex sample, as lack of reproducibility has been a frequent criticism leveled at the use of mass spectrometers in the clinical laboratory compared to immunoassays. Furthermore, an important caveat of SRM-based assays for proteins is that many low-abundance analytes require some type of enrichment before detection with MS. This adds a level of complexity to the procedure and the potential for irreproducibility increases, especially across different laboratories with different operators. The purpose of this study was to test the interlaboratory reproducibility of SRM assays with various upfront enrichment strategies and different types of clinical samples (representing real-world body fluids commonly encountered in routine clinical laboratories). Three different, previously published enrichment strategies for low-abundance analytes and a no-enrichment strategy for high-abundance analytes were tested across four different laboratories using different liquid chromatography-SRM (LC-SRM) platforms and previously developed SOPs. The results demonstrated that these assays were indeed reproducible with coefficients of variation of less than 30% for the measurement of important clinical proteins across all four laboratories in real world samples. PMID:22639787

  1. Pre-trial inter-laboratory analytical validation of the FOCUS4 personalised therapy trial

    PubMed Central

    Richman, Susan D; Adams, Richard; Quirke, Phil; Butler, Rachel; Hemmings, Gemma; Chambers, Phil; Roberts, Helen; James, Michelle D; Wozniak, Sue; Bathia, Riya; Pugh, Cheryl; Maughan, Timothy; Jasani, Bharat

    2016-01-01

    Introduction Molecular characterisation of tumours is increasing personalisation of cancer therapy, tailored to an individual and their cancer. FOCUS4 is a molecularly stratified clinical trial for patients with advanced colorectal cancer. During an initial 16-week period of standard first-line chemotherapy, tumour tissue will undergo several molecular assays, with the results used for cohort allocation, then randomisation. Laboratories in Leeds and Cardiff will perform the molecular testing. The results of a rigorous pre-trial inter-laboratory analytical validation are presented and discussed. Methods Wales Cancer Bank supplied FFPE tumour blocks from 97 mCRC patients with consent for use in further research. Both laboratories processed each sample according to an agreed definitive FOCUS4 laboratory protocol, reporting results directly to the MRC Trial Management Group for independent cross-referencing. Results Pyrosequencing analysis of mutation status at KRAS codons12/13/61/146, NRAS codons12/13/61, BRAF codon600 and PIK3CA codons542/545/546/1047, generated highly concordant results. Two samples gave discrepant results; in one a PIK3CA mutation was detected only in Leeds, and in the other, a PIK3CA mutation was only detected in Cardiff. pTEN and mismatch repair (MMR) protein expression was assessed by immunohistochemistry (IHC) resulting in 6/97 discordant results for pTEN and 5/388 for MMR, resolved upon joint review. Tumour heterogeneity was likely responsible for pyrosequencing discrepancies. The presence of signet-ring cells, necrosis, mucin, edge-effects and over-counterstaining influenced IHC discrepancies. Conclusions Pre-trial assay analytical validation is essential to ensure appropriate selection of patients for targeted therapies. This is feasible for both mutation testing and immunohistochemical assays and must be built into the workup of such trials. Trial registration number ISRCTN90061564. PMID:26350752

  2. Fatigue crack growth in an aluminum alloy-fractographic study

    NASA Astrophysics Data System (ADS)

    Salam, I.; Muhammad, W.; Ejaz, N.

    2016-08-01

    A two-fold approach was adopted to understand the fatigue crack growth process in an Aluminum alloy; fatigue crack growth test of samples and analysis of fractured surfaces. Fatigue crack growth tests were conducted on middle tension M(T) samples prepared from an Aluminum alloy cylinder. The tests were conducted under constant amplitude loading at R ratio 0.1. The stress applied was from 20,30 and 40 per cent of the yield stress of the material. The fatigue crack growth data was recorded. After fatigue testing, the samples were subjected to detailed scanning electron microscopic (SEM) analysis. The resulting fracture surfaces were subjected to qualitative and quantitative fractographic examinations. Quantitative fracture analysis included an estimation of crack growth rate (CGR) in different regions. The effect of the microstructural features on fatigue crack growth was examined. It was observed that in stage II (crack growth region), the failure mode changes from intergranular to transgranular as the stress level increases. In the region of intergranular failure the localized brittle failure was observed and fatigue striations are difficult to reveal. However, in the region of transgranular failure the crack path is independent of the microstructural features. In this region, localized ductile failure mode was observed and well defined fatigue striations were present in the wake of fatigue crack. The effect of interaction of growing fatigue crack with microstructural features was not substantial. The final fracture (stage III) was ductile in all the cases.

  3. Fatigue failure of composite bolted joints

    NASA Astrophysics Data System (ADS)

    Herrington, P. D.; Sabbaghian, M.

    1993-01-01

    The effects of a number of parameters on the fatigue characteristics of a bolted graphite/epoxy composite laminate are investigated. In particular, tests were performed in order to study the influence of three independent parameters; applied stress level, orientation of the outer layer reinforcing filaments, and the bolt torque level on the fatigue life of a graphite/epoxy composite. Analysis of variance and censoring techniques were used to analyze the experimentally obtained data. Fatigue life data was determined to be adequately characterized by using a log-normal distribution.

  4. Inter-laboratory validation of standardized method to determine permeability of plastic films

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To support regulations controlling soil fumigation, we are standardizing the laboratory method we developed to measure the permeability of plastic films to fumigant vapors. The method was validated using an inter-laboratory comparison with 7 participants. Each participant evaluated the mass transfer...

  5. ORGANIC CHARACTERIZATION OF AIRBORNE PARTICLES: INTERLABORATORY COMPARISON STUDIES AND THE DEVELOPMENT OF STANDARDS AND REFERENCE MATERIALS

    EPA Science Inventory

    Investigators characterizing and quantifying the organic compounds in particulate matter (PM) have completed the second interlaboratory comparison study. The first study used a subset of SRM1649a sieved to <63um(API) as an unknown sample, an extract of API, and SRM1649a for u...

  6. Interlaboratory Validation of the Leaching Environmental Assessment Framework (LEAF) Method 1314 and Method 1315

    EPA Science Inventory

    This report summarizes the results of an interlaboratory study conducted to generate precision estimates for two leaching methods under review by the U.S. EPA’s OSWER for inclusion into the EPA’s SW-846: Method 1314: Liquid-Solid Partitioning as a Function of Liquid...

  7. Interlaboratory studies with the Chinese hamster V79 cell metabolic cooperation assay to detect tumor-promoting agents

    SciTech Connect

    Bohrman, J.S.; Burg, J.R.; Elmore, E.; Gulati, D.K.; Barfknecht, T.R.; Niemeier, R.W.; Dames, B.L.; Toraason, M.; Langenbach, R.

    1988-01-01

    Three laboratories participated in an interlaboratory study to evaluate the usefulness of the Chinese hamster V79 cell metabolic cooperation assay to predict the tumor-promoting activity of selected chemical. Twenty-three chemicals of different chemical structures (phorbol esters, barbiturates, phenols, artificial sweeteners, alkanes, and peroxides) were chosen for testing based on in vivo promotion activities, as reported in the literature. Assay protocols and materials were standardized, and the chemicals were coded to facilitate unbiased evaluation. A chemical was tested only once in each laboratory, with one of the three laboratories testing only 15 out of 23 chemicals. Dunnett's test was used for statistical analysis. Chemicals were scored as positive (at least two concentration levels statistically different than control), equivocal (only one concentration statistically different), or negative. For 15 chemicals tested in all three laboratories, there was complete agreement among the laboratories for nine chemicals. For the 23 chemicals tested in only two laboratories, there was agreement on 16 chemicals. With the exception of the peroxides and alkanes, the metabolic cooperation data were in general agreement with in vivo data. However, an overall evaluation of the V79 cell system for predicting in vivo promotion activity was difficult because of the organ specificity of certain chemicals and/or the limited number of adequately tested nonpromoting chemicals.

  8. Fatigue reliability based optimal design of planar compliant micropositioning stages

    NASA Astrophysics Data System (ADS)

    Wang, Qiliang; Zhang, Xianmin

    2015-10-01

    Conventional compliant micropositioning stages are usually developed based on static strength and deterministic methods, which may lead to either unsafe or excessive designs. This paper presents a fatigue reliability analysis and optimal design of a three-degree-of-freedom (3 DOF) flexure-based micropositioning stage. Kinematic, modal, static, and fatigue stress modelling of the stage were conducted using the finite element method. The maximum equivalent fatigue stress in the hinges was derived using sequential quadratic programming. The fatigue strength of the hinges was obtained by considering various influencing factors. On this basis, the fatigue reliability of the hinges was analysed using the stress-strength interference method. Fatigue-reliability-based optimal design of the stage was then conducted using the genetic algorithm and MATLAB. To make fatigue life testing easier, a 1 DOF stage was then optimized and manufactured. Experimental results demonstrate the validity of the approach.

  9. Low cycle fatigue and creep-fatigue behavior of Ni-based alloy 230 at 850 C

    SciTech Connect

    Chen, Xiang; Yang, Zhiqing; Sokolov, Mikhail A; ERDMAN III, DONALD L; Mo, Kun; Stubbins, James

    2013-01-01

    Strain-controlled low cycle fatigue (LCF) and creep-fatigue testing of Ni-based alloy 230 were carried out at 850 C. The material creep-fatigue life decreased compared with its low cycle fatigue life at the same total strain range. Longer hold time at peak tensile strain further reduced the material creep-fatigue life. Based on the electron backscatter diffraction, a novel material deformation characterization method was applied, which revealed that in low cycle fatigue testing as the total strain range increased, the deformation was segregated to grain boundaries since the test temperature was higher than the material equicohesive temperature and grain boundaries became weaker regions compared with grains. Creep-fatigue tests enhanced the localized deformation, resulting in material interior intergranular cracking, and accelerated material damage. Precipitation in alloy 230 helped slip dispersion, favorable for fatigue property, but grain boundary cellular precipitates formed after material exposure to the elevated temperature had a deleterious effect on the material low cycle fatigue and creep-fatigue property.

  10. Fatigue and fracture research in metals

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.; Davidson, J. R.

    1982-01-01

    Fatigue and fracture research on monolithic and laminated metals is discussed. The research concentrated on three areas: stress analyses of two and three dimensional cracked bodies, fatigue crack growth, and fracture toughness. Analytical methods were developed to predict fatigue crack growth and fracture strengths of cracked specimens. Such specimens represent typical aircraft structural details (such as cracks from holes). These specimens were subjected to simple constant amplitude loading and to more complex flight load histories. Test data from both in house tests and from the literature are used to substantiate the analytical methods. These analyses extended the theory of fracture mechanics to deal with fatigue crack growth and fracture of complex crack configurations that are typical of aircraft materials and structural details.

  11. Fatigue - corrosion of endoprosthesis titanium alloys.

    PubMed

    Cornet, A; Muster, D; Jaeger, J H

    1979-01-01

    Commercial total hip prostheses often show certain metallurgical faults (porosities, coarse grains, growth dendrites, carbide networks). In order to investigate more accurately the role played by these different parameters in prostheses failure we performed a large number of systematic corrosion, fatigue and fatigue - corrosion tests on these materials and on commercial total hip prostheses. Ultimate strengthes seem to be reached for cast cobalt alloys, whereas titanium alloys, such as Ta 6 V, present very high fatigue limit under corrosion. Thus, rotative bending fatigue - corrosion tests in biological environment provide values about 50 DaN/mm2. This value, is nevertheless appreciably higher than those obtained with stellites and stainless steel. Titanium alloys, because of their mechanical performances, their weak Young's modulus (11000 DaN/mm2) and their relative lightness (4.5. g/cm3), which are associated with a good biocompatibility, seem very promising for permanent implants realisation.

  12. An inter-laboratory comparison of urinary 3-hydroxypropylmercapturic acid measurement demonstrates good reproducibility between laboratories

    PubMed Central

    2011-01-01

    Background Biomarkers have been used extensively in clinical studies to assess toxicant exposure in smokers and non-smokers and have recently been used in the evaluation of novel tobacco products. The urinary metabolite 3-HPMA, a metabolite of the major tobacco smoke toxicity contributor acrolein, is one example of a biomarker used to measure exposure to tobacco smoke. A number of laboratories have developed liquid chromatography with tandem mass spectrometry (LC-MS/MS) based methods to measure urinary 3-HPMA; however, it is unclear to what extent the data obtained by these different laboratories are comparable. Findings This report describes an inter-laboratory comparison carried out to evaluate the comparability of 3-HPMA measurement between four laboratories. A common set of spiked and authentic smoker and non-smoker urine samples were used. Each laboratory used their in-house LC-MS/MS method and a common internal standard. A comparison of the repeatability ('r'), reproducibility ('R'), and coefficient of variation for 3-HPMA demonstrated that within-laboratory variation was consistently lower than between-laboratory variation. The average inter-laboratory coefficient of variation was 7% for fortified urine samples and 16.2% for authentic urine samples. Together, this represents an inter-laboratory variation of 12.2%. Conclusion The results from this first inter-laboratory comparison for the measurement of 3-HPMA in urine demonstrate a reasonably good consensus between laboratories. However, some consistent measurement biases were still observed between laboratories, suggesting that additional work may be required to further reduce the inter-laboratory coefficient of variation. PMID:21985092

  13. Inter-laboratory variation in DNA damage using a standard comet assay protocol.

    PubMed

    Forchhammer, Lykke; Ersson, Clara; Loft, Steffen; Möller, Lennart; Godschalk, Roger W L; van Schooten, Frederik J; Jones, George D D; Higgins, Jennifer A; Cooke, Marcus; Mistry, Vilas; Karbaschi, Mahsa; Collins, Andrew R; Azqueta, Amaya; Phillips, David H; Sozeri, Osman; Routledge, Michael N; Nelson-Smith, Kirsty; Riso, Patrizia; Porrini, Marisa; Matullo, Giuseppe; Allione, Alessandra; Stępnik, Maciej; Steepnik, Maciej; Komorowska, Magdalena; Teixeira, João Paulo; Costa, Solange; Corcuera, Laura-Ana; López de Cerain, Adela; Laffon, Blanca; Valdiglesias, Vanessa; Møller, Peter

    2012-11-01

    There are substantial inter-laboratory variations in the levels of DNA damage measured by the comet assay. The aim of this study was to investigate whether adherence to a standard comet assay protocol would reduce inter-laboratory variation in reported values of DNA damage. Fourteen laboratories determined the baseline level of DNA strand breaks (SBs)/alkaline labile sites and formamidopyrimidine DNA glycosylase (FPG)-sensitive sites in coded samples of mononuclear blood cells (MNBCs) from healthy volunteers. There were technical problems in seven laboratories in adopting the standard protocol, which were not related to the level of experience. Therefore, the inter-laboratory variation in DNA damage was only analysed using the results from laboratories that had obtained complete data with the standard comet assay protocol. This analysis showed that the differences between reported levels of DNA SBs/alkaline labile sites in MNBCs were not reduced by applying the standard assay protocol as compared with the laboratory's own protocol. There was large inter-laboratory variation in FPG-sensitive sites by the laboratory-specific protocol and the variation was reduced when the samples were analysed by the standard protocol. The SBs and FPG-sensitive sites were measured in the same experiment, indicating that the large spread in the latter lesions was the main reason for the reduced inter-laboratory variation. However, it remains worrying that half of the participating laboratories obtained poor results using the standard procedure. This study indicates that future comet assay validation trials should take steps to evaluate the implementation of standard procedures in participating laboratories.

  14. Clinical neurophysiology of fatigue.

    PubMed

    Zwarts, M J; Bleijenberg, G; van Engelen, B G M

    2008-01-01

    Fatigue is a multidimensional concept covering both physiological and psychological aspects. Chronic fatigue is a typical symptom of diseases such as cancer, multiple sclerosis (MS), Parkinson's disease (PD) and cerebrovascular disorders but is also presented by people in whom no defined somatic disease has been established. If certain criteria are met, chronic fatigue syndrome can be diagnosed. The 4-item Abbreviated Fatigue Questionnaire allows the extent of the experienced fatigue to be assessed with a high degree of reliability and validity. Physiological fatigue has been well defined and originates in both the peripheral and central nervous system. The condition can be assessed by combining force and surface-EMG measurements (including frequency analyses and muscle-fibre conduction estimations), twitch interpolation, magnetic stimulation of the motor cortex and analysis of changes in the readiness potential. Fatigue is a well-known phenomenon in both central and peripheral neurological disorders. Examples of the former conditions are multiple sclerosis, Parkinson's disease and stroke. Although it seems to be a universal symptom of many brain disorders, the unique characteristics of the concomitant fatigue also point to a specific relationship with several of these syndromes. As regards neuromuscular disorders, fatigue has been reported in patients with post-polio syndrome, myasthenia gravis, Guillain-Barré syndrome, facioscapulohumeral dystrophy, myotonic dystrophy and hereditary motor and sensory neuropathy type-I. More than 60% of all neuromuscular patients suffer from severe fatigue, a prevalence resembling that of patients with MS. Except for several rare myopathies with specific metabolic derangements leading to exercise-induced muscle fatigue, most studies have not identified a prominent peripheral cause for the fatigue in this population. In contrast, the central activation of the diseased neuromuscular system is generally found to be suboptimal. The

  15. Dynamic response and acoustic fatigue of stiffened composite structure

    NASA Technical Reports Server (NTRS)

    Soovere, J.

    1984-01-01

    The results of acoustic fatigue and dynamic response tests performed on L-1011 graphite-epoxy (GrE) aileron and panel components are reported. The aileron featured glass microballoons between the GrE skins. Tests yielded random fatigue data from double and single cantilever coupons and modal data from impedance hammer and loudspeaker impulses. Numerical and sample test data were obtained on combined acoustic and shear loads, acoustic and thermal loads, random fatigue and damping of the integrally stiffened and secondary bonded panels. The fatigue data indicate a fatigue life beyond 10 million cycles. The acoustic data suggested that noise transmission could be enhanced in the integrally stiffened panels, which were more acoustic-fatigue resistant than were the secondary bonded panels.

  16. 40Ar/39Ar Interlaboratory Calibration into the Holocene.

    NASA Astrophysics Data System (ADS)

    Heizler, M. T.; Jicha, B.; Koppers, A. A. P.; Miggins, D. P.

    2015-12-01

    differences in choosing data subsets leads to variable eruption age estimates between about 7.6±0.2 and 10.5±0.5 ka. Our collaborative efforts continue to show that overall the argon community is making very good progress towards achieving the Earthtime goal of high precision interlaboratory calibration.

  17. Atlas of fatigue curves

    SciTech Connect

    Boyer, H.E.

    1986-01-01

    This Atlas was developed to serve engineers who are looking for fatigue data on a particular metal or alloy. Having these curves compiled in a single book will also facilitate the computerization of the involved data. It is pointed out that plans are under way to make the data in this book available in ASCII files for analysis by computer programs. S-N curves which typify effects of major variables are considered along with low-carbon steels, medium-carbon steels, alloy steels, HSLA steels, high-strength alloy steels, heat-resisting steels, stainless steels, maraging steels, cast irons, and heat-resisting alloys. Attention is also given to aluminum alloys, copper alloys, magnesium alloys, molybdenum, tin alloys, titanium and titanium alloys, zirconium, steel castings, closed-die forgings, powder metallurgy parts, composites, effects of surface treatments, and test results for component parts.

  18. Interlaboratory study of the ion source memory effect in 36Cl accelerator mass spectrometry

    NASA Astrophysics Data System (ADS)

    Pavetich, Stefan; Akhmadaliev, Shavkat; Arnold, Maurice; Aumaître, Georges; Bourlès, Didier; Buchriegler, Josef; Golser, Robin; Keddadouche, Karim; Martschini, Martin; Merchel, Silke; Rugel, Georg; Steier, Peter

    2014-06-01

    Understanding and minimization of contaminations in the ion source due to cross-contamination and long-term memory effect is one of the key issues for accurate accelerator mass spectrometry (AMS) measurements of volatile elements. The focus of this work is on the investigation of the long-term memory effect for the volatile element chlorine, and the minimization of this effect in the ion source of the Dresden accelerator mass spectrometry facility (DREAMS). For this purpose, one of the two original HVE ion sources at the DREAMS facility was modified, allowing the use of larger sample holders having individual target apertures. Additionally, a more open geometry was used to improve the vacuum level. To evaluate this improvement in comparison to other up-to-date ion sources, an interlaboratory comparison had been initiated. The long-term memory effect of the four Cs sputter ion sources at DREAMS (two sources: original and modified), ASTER (Accélérateur pour les Sciences de la Terre, Environnement, Risques) and VERA (Vienna Environmental Research Accelerator) had been investigated by measuring samples of natural 35Cl/37Cl-ratio and samples highly-enriched in 35Cl (35Cl/37Cl ∼ 999). Besides investigating and comparing the individual levels of long-term memory, recovery time constants could be calculated. The tests show that all four sources suffer from long-term memory, but the modified DREAMS ion source showed the lowest level of contamination. The recovery times of the four ion sources were widely spread between 61 and 1390 s, where the modified DREAMS ion source with values between 156 and 262 s showed the fastest recovery in 80% of the measurements.

  19. Interlaboratory comparison of four in vitro assays for assessing androgenic and antiandrogenic activity of environmental chemicals.

    PubMed Central

    Körner, Wolfgang; Vinggaard, Anne Marie; Térouanne, Béatrice; Ma, Risheng; Wieloch, Carise; Schlumpf, Margret; Sultan, Charles; Soto, Ana M

    2004-01-01

    We evaluated and compared four in vitro assays to detect androgen agonists and antagonists in an international interlaboratory study. Laboratory 1 used a cell proliferation assay (assay 1) with human mammary carcinoma cells stably transfected with human androgen receptor. The other laboratories used reporter gene assays, two based on stably transfected human prostate carcinoma cells (assay 2) or human mammary carcinoma cells (assay 4), and the third based on transient transfection of Chinese hamster ovary cells (assay 3). Four laboratories received four coded compounds and two controls: two steroidal androgens, two antiandrogens, an androgenic control, 5alpha-dihydrotestosterone (DHT), and an antiandrogenic control, bicalutamide (ICI 176,334). All laboratories correctly detected the androgenic activity of 4-androsten-3,17-dione and 17alpha-methyltestosterone. For both compounds, the calculated androgenic potencies relative to the positive control (RAPs) remained within one order of magnitude. However, laboratory 3 calculated a 50-fold higher RAP for 4-androsten-3,17-dione. All assays detected and quantified the antiandrogenic effect of vinclozolin [median inhibitory concentration (IC50) values ranging from 1.1 times symbol 10(-7) M to 4.7 times symbol 10(-7) M]. In assays 2 and 3, vinclozolin showed partial androgenic activity at the highest concentrations tested. For vinclozolin, calculated antiandrogenic potencies relative to bicalutamide (RAAPs) differed no more than a factor of 10, and IC50 values matched those of bicalutamide. Similarly, we found antiandrogenic activity for tris-(4-chlorophenyl)methanol. RAAP values were between 0.086 and 0.37. Three assays showed cytotoxicity for this compound at or above 1 times symbol 10(-5) M. In summary, all assays proved sensitive screening tools to detect and quantify androgen receptor-mediated androgenic and antiandrogenic effects of these chemicals accurately, with coefficients of variation between 8 and 90%. PMID

  20. Fatigue biomarker index: an objective salivary measure of fatigue level.

    PubMed

    Michael, Darren J; Daugherty, Sheena; Santos, Adrienne; Ruby, Brent C; Kalns, John E

    2012-03-01

    Fatigue changed the composition of the small-molecular weight (sMW) proteome of saliva during a 10h session of moderate (70% of maximum ventilatory threshold) physical exertion. Saliva samples were collected from nine recreationally trained cyclists participating in a cross-over study designed to simulate prolonged manual labor, a military operation or wildfire-suppression work. During each hour of the study, participants performed an exercise program that included upper and lower body exercises separated by short periods of recovery. Over the course of the study, fatigue level increased as suggested by a significant increase in the participants' relative perceived exertion. The composition of the sMW proteome was investigated using reversed-phase liquid chromatography with mass-spectrometric detection. Isotopes of acetic anhydride were used for mass-specific labeling of samples and subsequent identification of ions with significant changes in intensity. Cluster analysis was used to identify a pair of peptides with concentrations that changed in opposite directions with fatigue level, i.e. concentration of one peptide increased while concentration of the other decreased. The sequences of the two peptides were determined by high-resolution mass spectrometry. The ratio of the ion intensities of these two peptides, referred to as the fatigue biomarker index, was calculated for subjects throughout the study. The FBI values from the start of the study likely arose from a different distribution than the FBI values measured at the end of the study (Mann-Whitney test, P<.05). While this study is restricted to a small population of recreationally trained cyclists performing exercise under controlled conditions, it holds promise for the development of an objective salivary measurement of fatigue that is applicable to a much broader population performing in uncontrolled environments.

  1. Fatigue and fracture research in composite materials

    NASA Technical Reports Server (NTRS)

    Obrien, T. K.

    1982-01-01

    The fatigue, fracture, and impact behavior of composite materials are investigated. Bolted and bonded joints are included. The solutions developed are generic in scope and are useful for a wide variety of structural applications. The analytical tools developed are used to demonstrate the damage tolerance, impact resistance, and useful fatigue life of structural composite components. Standard tests for screening improvements in materials and constituents are developed.

  2. Cancer-related fatigue.

    PubMed

    Visovsky, Constance; Schneider, Susan M

    2003-01-01

    Approximately 1.3 million people in the United States will be diagnosed with cancer in 2003 and millions of other individuals are already living with the disease. Fatigue continues to be the most prevalent and disruptive symptom of cancer and its treatment regimens. Fatigue was the most frequent and distressing cancer-related symptom occurring in women with lung cancer, two times greater than the next symptom, pain, and remains one of the most common symptoms in newly diagnosed lung cancer patients at any stage of the disease. There are many causes of cancer-related fatigue including preexisting conditions, physical and psychological symptoms caused by cancer, and the consequences of cancer treatment. High levels of fatigue decrease quality of life, physical functional status, and symptom management. This article presents an evidenced-base review of cancer-related fatigue, strategies for the management of cancer-related fatigue, and recommendations for clinical practice.

  3. Fatigue of cellular materials

    SciTech Connect

    Huang, J.S.; Lin, J.Y.

    1996-01-01

    The fatigue of cellular materials is analyzed using dimensional arguments. When the first unbroken cell wall ahead of the macrocrack tip fails after some cycles of loading, the macrocrack advances one cell diameter, giving the macrocrack growth rate of cellular materials. Paris law for microcrack propagation, Basquin law for high cycle fatigue and Coffin-Manson law for low cycle fatigue are employed in calculating the number of cycles to failure of the first unbroken cell wall ahead of the macrocrack tip. It is found that fatigue of cellular materials depends on cyclic stress intensity range, cell size, relative density and the fatigue parameters of the solid from which they are made. Theoretical modelling of fatigue of foams is compared to data in polymer foams; agreement is good.

  4. Continuous fatigue crack monitoring of bridges: Long-Term Electrochemical Fatigue Sensor (LTEFS)

    NASA Astrophysics Data System (ADS)

    Moshier, Monty A.; Nelson, Levi; Brinkerhoff, Ryan; Miceli, Marybeth

    2016-04-01

    Fatigue cracks in steel bridges degrade the load-carrying capacity of these structures. Fatigue damage accumulation caused by the repetitive loading of everyday truck traffic can cause small fatigue cracks initiate. Understanding the growth of these fatigue cracks is critical to the safety and reliability of our transportation infrastructure. However, modeling fatigue in bridges is difficult due to the nature of the loading and variations in connection integrity. When fatigue cracks reach critical lengths failures occur causing partial or full closures, emergency repairs, and even full structural failure. Given the aging US highway and the trend towards asset management and life extension, the need for reliable, cost effective sensors and monitoring technologies to alert bridge owners when fatigue cracks are growing is higher than ever. In this study, an innovative Long-Term Electrochemical Fatigue Sensor (LTEFS) has been developed and introduced to meet the growing NDT marketplace demand for sensors that have the ability to continuously monitor fatigue cracks. The performance of the LTEFS has been studied in the laboratory and in the field. Data was collected using machined specimens with different lengths of naturally initiated fatigue cracks, applied stress levels, applied stress ratios, and for both sinusoidal and real-life bridge spectrum type loading. The laboratory data was evaluated and used to develop an empirically based algorithm used for crack detection. Additionally, beta-tests on a real bridge structure has been completed. These studies have conclusively demonstrated that LTEFS holds great potential for long-term monitoring of fatigue cracks in steel structures

  5. High Cycle Random Fatigue Testing

    DTIC Science & Technology

    1976-07-01

    1. All aluminum assemblies made from same mill run of 2024-T81 bare sheef ; all titanium assemblies from same mill run of dAiMV annealed sheet. 2...SI>’ piiUH.iijwiijfH’PJPWHWii.1’ ■ .i-v-^ ■■ —- --^ f+l 2024-T8| Bore Aluminum At SO^F, Riveted SheeF , Rmdom Flmyr^ Z«!o M*^’$tr^«: xmr

  6. Fatigue Testing of Vampire Wings,

    DTIC Science & Technology

    1979-06-01

    conditions the nominal stress in the lower spar boom was estimated to be 27.56 MPa (4000 psi) per g--the corresponding stress for the lighter English ...structure. Never- theless, four out of the 55 used did fail during tesi , and the remainder were found to be cracked on removal. A number of the cracked

  7. An interlaboratory comparison of nanosilver characterisation and hazard identification: Harmonising techniques for high quality data.

    PubMed

    Jemec, Anita; Kahru, Anne; Potthoff, Annegret; Drobne, Damjana; Heinlaan, Margit; Böhme, Steffi; Geppert, Mark; Novak, Sara; Schirmer, Kristin; Rekulapally, Rohit; Singh, Shashi; Aruoja, Villem; Sihtmäe, Mariliis; Juganson, Katre; Käkinen, Aleksandr; Kühnel, Dana

    2016-02-01

    metal ions species in each toxicity test medium at a range of concentrations, and (ii) including soluble metal salt control both in toxicity testing as well as in Ag(+)-species measurements. The present study is among the first nanomaterial interlaboratory comparison studies with the aim to improve the hazard identification testing protocols.

  8. Fatigue behaviour of composites

    NASA Astrophysics Data System (ADS)

    Hartwig, G.; Hübner, R.; Knaak, S.; Pannkoke, C.

    An important design parameter for cyclically loaded structures (e.g. transport vessels) is the fatigue endurance limit. The cryogenic fatigue behaviour with different types of fibres and matrices has been investigated. The main emphasis it put on the behaviour of fibre dominated properties. It is surprising that the fatigue strength even of unidirectional fibre composites is strongly influenced by the matrix type. This will be discussed for carbon fibre composites with thermoplastic and duroplastic matrices under tensile and shear loading. For crossplies (with non-woven fabrics) the interaction between laminates controls the fatigue behaviour. The interaction depends on the matrix type and is different for tensile and shear loading.

  9. Characterization of VOC and formaldehyde emissions from a wood based panel: results from an inter-laboratory comparison.

    PubMed

    Yrieix, Christophe; Dulaurent, Alina; Laffargue, Caroline; Maupetit, François; Pacary, Tiphaine; Uhde, Erik

    2010-04-01

    Six European laboratories used the emission test chamber method (EN ISO 16000-9) for the determination of VOC and formaldehyde emissions from a wood based panel (particleboard). The tested panel was conditioned without wrapping over 28 d at 23 degrees C and 50% RH before shipping to each participating laboratory. Emission chamber testing was carried out with air sampling after 3 and 28 d. Main VOCs (alpha-pinene, beta-pinene, pentanal, hexanal) and TVOC were analysed according to ISO 16000-6 and main aldehydes (formaldehyde, acetaldehyde, pentanal, hexanal) were specifically analysed according to ISO 16000-3. Results indicated that relative standard deviations of reproducibility after 28 testing days are between 27.5% and 45.5% for VOC concentrations ranging from 5.9 to 38.6 microg m(-3) and between 17.1% and 23.8% for aldehyde concentrations ranging from 5.5 to 57.6 microg m(-3). Formaldehyde results showed standard deviation of only 17.4% for a mean concentration of 57.6 microg m(-3) after 28 testing days. In general, results are similar to recent inter-laboratory comparison studies even if wood based panels can be considered as heterogeneous materials.

  10. Chronic fatigue syndrome: aetiology, diagnosis and treatment

    PubMed Central

    Avellaneda Fernández, Alfredo; Pérez Martín, Álvaro; Izquierdo Martínez, Maravillas; Arruti Bustillo, Mar; Barbado Hernández, Francisco Javier; de la Cruz Labrado, Javier; Díaz-Delgado Peñas, Rafael; Gutiérrez Rivas, Eduardo; Palacín Delgado, Cecilia; Rivera Redondo, Javier; Ramón Giménez, José Ramón

    2009-01-01

    Chronic fatigue syndrome is characterised by intense fatigue, with duration of over six months and associated to other related symptoms. The latter include asthenia and easily induced tiredness that is not recovered after a night's sleep. The fatigue becomes so severe that it forces a 50% reduction in daily activities. Given its unknown aetiology, different hypotheses have been considered to explain the origin of the condition (from immunological disorders to the presence of post-traumatic oxidative stress), although there are no conclusive diagnostic tests. Diagnosis is established through the exclusion of other diseases causing fatigue. This syndrome is rare in childhood and adolescence, although the fatigue symptom per se is quite common in paediatric patients. Currently, no curative treatment exists for patients with chronic fatigue syndrome. The therapeutic approach to this syndrome requires a combination of different therapeutic modalities. The specific characteristics of the symptomatology of patients with chronic fatigue require a rapid adaptation of the educational, healthcare and social systems to prevent the problems derived from current systems. Such patients require multidisciplinary management due to the multiple and different issues affecting them. This document was realized by one of the Interdisciplinary Work Groups from the Institute for Rare Diseases, and its aim is to point out the main social and care needs for people affected with Chronic Fatigue Syndrome. For this, it includes not only the view of representatives for different scientific societies, but also the patient associations view, because they know the true history of their social and sanitary needs. In an interdisciplinary approach, this work also reviews the principal scientific, medical, socio-sanitary and psychological aspects of Chronic Fatigue Syndrome. PMID:19857242

  11. Evidence for sensitized fatigue pathways in patients with chronic fatigue syndrome.

    PubMed

    Staud, Roland; Mokthech, Meriem; Price, Donald D; Robinson, Michael E

    2015-04-01

    Patients with chronic fatigue syndrome (CFS) frequently demonstrate intolerance to physical exertion that is often reported as increased and long-lasting fatigue. Because no specific metabolic alterations have been identified in CFS patients, we hypothesized that sensitized fatigue pathways become activated during exercise corresponding with increased fatigue. After exhausting handgrip exercise, muscle metabolites were trapped in the forearm tissues of 39 CFS patients and 29 normal control (NC) by sudden occlusion for up to 5 minutes. A nonocclusive condition of similar duration was used as control. Repeated fatigue and pain ratings were obtained before and after exercise. Mechanical and heat hyperalgesia were assessed by quantitative sensory testing. All subjects fulfilled the 1994 Fukuda Criteria for CFS. Normal control and CFS subjects exercised for 6.6 (2.4) and 7.0 (2.7) minutes (P > 0.05). Forearm occlusion lasted for 4.7 (1.3) and 4.9 (1.8) minutes in NC and CFS subjects, respectively (P > 0.05). Although fatigue ratings of CFS subjects increased from 4.8 (2.0) to 5.6 (2.1) visual analogue scale (VAS) units during forearm occlusion, they decreased from 5.0 (1.8) to 4.8 (2.0) VAS units during the control condition without occlusion (P = 0.04). A similar time course of fatigue ratings was observed in NC (P > 0.05), although their ratings were significantly lower than those of CFS subjects (P < 0.001). Quantitative sensory testing demonstrated heat and mechanical hyperalgesia in CFS subjects. Our findings provide indirect evidence for significant contributions of peripheral tissues to the increased exercise-related fatigue in CFS patients consistent with sensitization of fatigue pathways. Future interventions that reduce sensitization of fatigue pathways in CFS patients may be of therapeutic benefit.

  12. Tensile and fatigue behavior of tungsten/copper composites

    NASA Technical Reports Server (NTRS)

    Verrilli, Michael J.; Gabb, Timothy P.; Kim, Y. S.

    1989-01-01

    Work on W/Cu unidirectional composites was initiated to study the behavior of this ductile-ductile composite system under thermomechanical fatigue and to examine the applicability of fatigue-life prediction methods for thermomechanical fatigue of this metal matrix composite. The first step was to characterize the tensile behavior of four ply, 10 vol. percent W/Cu plates at room and elevated temperatures. Fatigue tests were conducted in load control on 0 degree specimens at 260 C. The maximum cyclic stress was varied but the minimum cyclic stress was kept constant. All tests were performed in vacuum. The strain at failure increased with increasing maximum cyclic stress.

  13. Detecting Gear Tooth Fatigue Cracks in Advance of Complete Fracture

    NASA Technical Reports Server (NTRS)

    Zakrajsek, James J.; Lewicki, David G.

    1996-01-01

    Results of using vibration-based methods to detect gear tooth fatigue cracks are presented. An experimental test rig was used to fail a number of spur gear specimens through bending fatigue. The gear tooth fatigue crack in each test was initiated through a small notch in the fillet area of a tooth on the gear. The primary purpose of these tests was to verify analytical predictions of fatigue crack propagation direction and rate as a function of gear rim thickness. The vibration signal from a total of three tests was monitored and recorded for gear fault detection research. The damage consisted of complete rim fracture on the two thin rim gears and single tooth fracture on the standard full rim test gear. Vibration-based fault detection methods were applied to the vibration signal both on-line and after the tests were completed. The objectives of this effort were to identify methods capable of detecting the fatigue crack and to determine how far in advance of total failure positive detection was given. Results show that the fault detection methods failed to respond to the fatigue crack prior to complete rim fracture in the thin rim gear tests. In the standard full rim gear test all of the methods responded to the fatigue crack in advance of tooth fracture; however, only three of the methods responded to the fatigue crack in the early stages of crack propagation.

  14. High temperature fatigue behavior of tungsten copper composites

    NASA Technical Reports Server (NTRS)

    Verrilli, M. J.; Kim, Y.-S.; Gabb, T. P.

    1990-01-01

    The present study investigates the high-temperature fatigue behavior of a 9-v/o tungsten fiber-reinforced copper matrix composite. Load-controlled isothermal fatigue at 260 and 560 C and thermomechanical fatigue (TMF) experiments, both in-phase and out-of-phase between 260 and 560 C, were performed. The stress-strain response under all conditions displayed considerable inelasticity. Strain ratchetting was observed during all the fatigue experiments. For the isothermal fatigue and in-phase TMF tests, the ratchetting was always in a tensile direction, continuing until failure. The ratchetting during the out-of-phase TMF test shifted from a tensile to a compressive direction. For all cases, the fatigue lives were found to be controlled by the damage of the copper matrix. On a stress basis, TMF loading substantially reduced lives relative to isothermal cycling.

  15. Measuring women's fatigue during the postpartum period.

    PubMed

    Milligan, R A; Parks, P L; Kitzman, H; Lenz, E R

    1997-01-01

    The Fatigue Symptom Checklist (FSC) (Yoshitake, 1978), developed in Japan, was selected to measure postpartum fatigue among American women. Minor wording changes and a change in the reference time frame were made. Reliability and validity of this modification of the FSC were tested in this reanalysis of data from a longitudinal study of 285 mothers. Internal consistency reliability for the total 30-item FSC was acceptable. Evidence for criterion-related and construct validity was found. Original FSC subscales were not confirmed in these analyses. Using factor analysis, a shortened 10-item postpartum scale and two postpartum subscales, physical and mental fatigue, were identified. LISRAEL confirmatory factor analysis supported the subscales. Results support appropriateness of the total 30-item FSC, the shortened 10-item postpartum scale, and postpartum subscales for measuring postpartum fatigue in American women.

  16. Modeling axial compression fatigue in fiber ropes

    SciTech Connect

    Hearle, J.W.S.; Hobbs, R.E.; Overington, M.S.; Banfield, S.J.

    1995-12-31

    The modeling of long-term fatigue performance of twisted ropes has been extended to cover axial compression fatigue. This mode of failure has been observed in use and testing of ropes. It is characterized by sharp cooperative kinking of yarns, which leads to flex fatigue breakage of fibers. A model of pipeline buckling was modified to allow for plasticity in bending. An axial and lateral restraints, which influence the buckling, were derived from the existing rope mechanics model. Axial compression was introduced into the total computational model, in order to predict the form of buckling and the consequent fiber failure. An alternative use of the program is simply to detect conditions in which axial compression occurs as an indication of the occurrence of fatigue.

  17. Interconnect fatigue design for terrestrial photovoltaic modules

    SciTech Connect

    Mon, G. R.; Moore, D. M.; Ross, Jr., R. G.

    1982-03-01

    Fatigue of solar cell electrical interconnects due to thermal cycling has historically been a major failure mechanism in photovoltaic arrays; the results of a comprehensive investigation of interconnect fatigue that has led to the definition of useful reliability-design and life-prediction algorithms are presented. Experimental data gathered in this study indicate that the classical strain-cycle (fatigue) curve for the interconnect material is a good model of mean interconnect fatigue performance, but it fails to account for the broad statistical scatter, which is critical to reliability prediction. To fill this shortcoming the classical fatigue curve is combined with experimental cumulative interconnect failure rate data to yield statistical fatigue curves (having failure probability as a parameter) which enable: (1) the prediction of cumulative interconnect failures during the design life of an array field; and (2) the unambiguous - i.e., quantitative - interpretation of data from field-service qualification (accelerated thermal cycling) tests. Optimal interconnect cost-reliability design algorithms are derived based on minimizing the cost of energy over the design life of the array field. This procedure yields not only the minimum break-even cost of delivered energy, but also the required degree of interconnect redundancy and an estimate of array power degradation during the design life of the array field. The usefulness of the design algorithms is demonstrated with realistic examples of design optimization, prediction, and service qualification testing.

  18. Investigation of fatigue strength of multilayer advanced fiber composites

    NASA Technical Reports Server (NTRS)

    Thornton, H. R.; Kozik, T. J.

    1974-01-01

    The analytical characterization of a multilayer fiber composite plate (without hole) was accomplished for both static and dynamic loading conditions using the finite difference technique. Thornel 300/5208 composites with and without holes were subjected to static and tensile fatigue testing. Five (5) fiber orientations were submitted to test. Tensile fatigue testing also included three (3) loading conditions and two (2) frequencies. The low-cycle test specimens demonstrated a shorter tensile fatigue life than the high-cycle test specimens. Failure surfaces demonstrated effect of testing conditions. Secondary failure mechanisms, such as: delamination, fiber breakage, and edge fiber delamination were present. Longitudinal delamination between plies also occurred in these specimens.

  19. The Effects of Hot Corrosion Pits on the Fatigue Resistance of a Disk Superalloy

    NASA Technical Reports Server (NTRS)

    Gabb, Timothy P.; Telesman, Jack; Hazel, Brian; Mourer, David P.

    2009-01-01

    The effects of hot corrosion pits on low cycle fatigue life and failure modes of the disk superalloy ME3 were investigated. Low cycle fatigue specimens were subjected to hot corrosion exposures producing pits, then tested at low and high temperatures. Fatigue lives and failure initiation points were compared to those of specimens without corrosion pits. Several tests were interrupted to estimate the fraction of fatigue life that fatigue cracks initiated at pits. Corrosion pits significantly reduced fatigue life by 60 to 98 percent. Fatigue cracks initiated at a very small fraction of life for high temperature tests, but initiated at higher fractions in tests at low temperature. Critical pit sizes required to promote fatigue cracking were estimated, based on measurements of pits initiating cracks on fracture surfaces.

  20. Using “Sub-cement” to simulate the long-term fatigue response of cemented femoral stems in a cadaver model: could a novel pre-clinical screening test have caught the Exeter matte problem?

    PubMed Central

    Race, Amos; Miller, Mark A.; Mann, Kenneth A.

    2010-01-01

    Previously, we formulated cement with degraded fatigue properties (sub-cement) to simulate long-term fatigue in short-term cadaver tests. The present study determined the efficacy of sub-cement in a `pre-clinical' test of a design change with known clinical consequences: the “polished” to “matte” transition of the Exeter stem (revision rates were twice as high for matte stems). Contemporary stems were bead-blasted to give Ra=1micron (matte finish). Matte and polished stems were compared in cadaver pairs under stair-climbing loads (3 pairs size-1, 3 pairs size-3). Stem micromotion was monitored during loading. Post-test, transverse sections were examined for cement damage. Cyclic retroversion decreased for polished stems but increased for matte stems (p<0.0001). Implant size had a substantial effect: retroversion of (larger) size-3 stems was half that of size-1 stems and polished size-3 stems subsided 2½ times more than the others. Cement damage measures were similar and open through-cracks occurred around both stems of two pairs. Stem retroversion within the mantle resulted in stem-cement gaps of 50–150microns. Combining information on cyclic motion, cracks, and gaps, we concluded that this test `predicted' higher revision rates for matte stems (it also implied that polished size-3 stems might be superior to size-1). PMID:20476506