Science.gov

Sample records for interleukin-1 receptor phosphorylation

  1. Inhibition of interleukin-1β-mediated interleukin-1 receptor-associated kinase 4 phosphorylation by zinc leads to repression of memory T helper type 17 response in humans.

    PubMed

    Lee, Hyunju; Kim, Bonah; Choi, Yeon Ho; Hwang, Yuri; Kim, Dong Hyun; Cho, Sunjung; Hong, Sung Jun; Lee, Won-Woo

    2015-12-01

    Zinc is an essential trace element that plays pivotal roles in multiple facets of the immune system. Besides its catalytic and structural roles, zinc also functions as an intracellular signalling molecule, and changes in zinc levels can cause both direct and indirect modulation of immune responses. Further, cytoplasmic levels of bioavailable zinc in immune cells are largely influenced by many extracellular stimuli. Here we provide evidence that zinc represses memory T helper type 17 responses in humans by inhibiting interleukin-1β (IL-1β)-mediated signal. In vitro zinc treatment of CD4(+) T cells in the presence of activated monocytes inhibited interferon-γ-producing cells and IL-17-producing cells, but not IL-4-producing cells. Of note, production of IL-17(+) cells from memory CD4(+) T cells, which is significantly up-regulated by lipopolysaccharide-stimulated monocytes, was preferentially repressed by zinc. Increased cytoplasmic zinc in T cells suppressed IL-1β signalling through repression of phosphorylation of IL-1 receptor-associated kinase 4 (IRAK4), so leading to an inhibitory effect on T helper type 17 responses facilitated by monocyte-derived IL-1β in humans. These findings suggest that extracellular zinc bioavailability may affect memory CD4(+) T-cell responses by modulating the zinc-mediated signalling pathway.

  2. Interleukin 1 receptor antagonist blocks somnogenic and pyrogenic responses to an interleukin 1 fragment.

    PubMed Central

    Opp, M R; Postlethwaite, A E; Seyer, J M; Krueger, J M

    1992-01-01

    Previously it was shown that human interleukin 1 (huIL-1) and a huIL-1 fragment, huIL-1 beta 208-240, are somnogenic and pyrogenic in rabbits. However, the amino acid sequences for IL-1 are species-specific and it was unknown whether rabbit (rb) IL-1 beta 208-240 and rat (rt) IL-1 beta 208-240 were active in their respective species. Furthermore, it was unknown whether these fragments elicited their effects via the IL-1 receptors. Two doses of rbIL-1 beta 208-240 (6.0 and 12.0 nmol) were intracerebroventricularly administered to rabbits. The 6.0-nmol dose had little effect, whereas the 12.0-nmol dose greatly increased non-rapid-eye-movement sleep across a 6-hr recording period and induced a febrile response. Rats injected intracerebroventricularly with rtIL-1 beta 208-240 at dark onset responded to three doses of the peptide (1.2, 2.4, and 4.8 nmol). The 1.2-nmol dose did not greatly affect sleep but did induce a moderate febrile response. The 2.4- and 4.8-nmol doses increased non-rapid-eye-movement sleep across the 12-hr recording period. Maximal brain temperature elevations relative to controls after the 2.4- and 4.8-nmol doses of the peptide were 0.9 +/- 0.2 degrees C and 0.7 +/- 0.2 degrees C, respectively. These responses in both rabbits and rats were completely blocked or significantly attenuated when the animals were pretreated with an IL-1 receptor antagonist. These results suggest that the biological activities of IL-1 beta 208-240 are mediated via the IL-1 beta receptors. PMID:1533282

  3. The type I interleukin-1 receptor mediates fever in the rat as shown by interleukin-1 receptor subtype selective ligands.

    PubMed

    Malinowsky, D; Chai, Z; Bristulf, J; Simoncsits, A; Bartfai, T

    1995-12-01

    The interleukin-1 (IL-1) system possesses two distinct receptors (type I and type II) which, together with the accessory protein, mediate a multitude of responses to IL-1 alpha and IL-1 beta, including fever. So far, no receptor subtype-specific ligands have been described. Since both types of IL-1 receptors occur in the thermoregulatory areas it was unclear which IL-1 receptor type mediates fever. We report here that for a series of deletion mutants of human recombinant IL-1 beta (hrIL-1 beta), the affinity of these ligands for the type I IL-1 receptor correlates with their efficacy to evoke the fever response (hrIL-1 beta > des-SND52-54 > des-QGE48-50 > des-I56). Thus, the results suggest that agonist occupancy of the type I IL-1 receptor is essential for IL-1 beta-mediated fever.

  4. Association of interleukin-1A, interleukin-1B and interleukin-1 receptor antagonist gene polymorphisms with multiple myeloma.

    PubMed

    Abazis-Stamboulieh, Danai; Oikonomou, Pagona; Papadoulis, Nikolaos; Panayiotidis, Panayiotis; Vrakidou, Efimia; Tsezou, Aspasia

    2007-11-01

    Interleukin-1 (IL-1) is a cytokine involved in the maturation and proliferation of B cells and plays a significant role in the development of lytic bone lesions, a major clinical feature of multiple myeloma (MM) patients. Genes that regulate products involved in the immune system are highly polymorphic and contribute to inter-individual differences that can influence the genetic predisposition and progression of particular diseases and cancers. In this study, we investigated the correlation between the single nucleotide polymorphisms IL1A -889, IL1B -511, IL1B +3954, IL1RN Mspa1 +11100 and susceptibility to MM in 74 patients and 160 controls. We found that individuals possessing IL1A -889 CT polymorphism had a higher risk in developing MM. Moreover, genotypes IL1B -511 CC, IL1B +3954 CC, IL-1RN Mspa1 +11100 CC and the combination of IL1B +3954 CC with IL1B -511 CC or IL-1RN Mspa1 +11100 CC exerted a protective effect in individuals possessing them.

  5. Interleukin-1 receptor accessory protein interacts with the type II interleukin-1 receptor.

    PubMed

    Malinowsky, D; Lundkvist, J; Layé, S; Bartfai, T

    1998-06-16

    Stably transfected HEK-293 cells express on their surface the murine type II IL-1 receptor (mIL-1RII) as demonstrated by FACS analysis using the mAb 4E2, however binding of [125I]-hrIL-1beta to these cells is nearly absent. Saturable high affinity binding of [125I]-hrIL-1beta is observed when the murine IL-1 receptor accessory protein (mIL-1RAcP) is coexpressed with mIL-1RII. Binding of [125I]-hrIL-1beta to mIL-1RII-mIL-1RAcP complex can be inhibited either with antibodies to mIL-1RII (mAb 4E2), or by antibodies to mIL-1RAcP (mAb 4C5). The number of high affinity binding sites in cells stably transfected with the cDNA for mIL-1RII is dependent on the dose of cDNA for mIL-1RAcP used to transfect the cells. The high affinity complex between mIL-1RII and mIL-1RAcP is not preformed by interaction between the intracellular domains of these two transmembrane proteins, rather it appears to require the extracellular portions of mIL-1RII and mIL-1RAcP and the presence of a ligand. We suggest that in addition to its earlier described decoy receptor role, IL-1RII may modulate the responsiveness of cells to IL-1 by binding the IL-1RAcP in unproductive/non-signalling complexes and thus reducing the number of signalling IL-1RI-IL-1RAcP-agonist complexes when IL-1 is bound.

  6. Interleukin-1 receptors in mouse brain: Characterization and neuronal localization

    SciTech Connect

    Takao, T.; Tracey, D.E.; Mitchell, W.M.; De Souza, E.B. )

    1990-12-01

    The cytokine interleukin-1 (IL-1) has a variety of effects in brain, including induction of fever, alteration of slow wave sleep, and alteration of neuroendocrine activity. To examine the potential sites of action of IL-1 in brain, we used iodine-125-labeled recombinant human interleukin-1 (( 125I)IL-1) to identify and characterize IL-1 receptors in crude membrane preparations of mouse (C57BL/6) hippocampus and to study the distribution of IL-1-binding sites in brain using autoradiography. In preliminary homogenate binding and autoradiographic studies, (125I)IL-1 alpha showed significantly higher specific binding than (125I)IL-1 beta. Thus, (125I)IL-1 alpha was used in all subsequent assays. The binding of (125I)IL-1 alpha was linear over a broad range of membrane protein concentrations, saturable, reversible, and of high affinity, with an equilibrium dissociation constant value of 114 +/- 35 pM and a maximum number of binding sites of 2.5 +/- 0.4 fmol/mg protein. In competition studies, recombinant human IL-1 alpha, recombinant human IL-1 beta, and a weak IL-1 beta analog. IL-1 beta +, inhibited (125I)IL-1 alpha binding to mouse hippocampus in parallel with their relative bioactivities in the T-cell comitogenesis assay, with inhibitory binding affinity constants of 55 +/- 18, 76 +/- 20, and 2940 +/- 742 pM, respectively; rat/human CRF and human tumor necrosis factor showed no effect on (125I)IL-1 alpha binding. Autoradiographic localization studies revealed very low densities of (125I)IL-1 alpha-binding sites throughout the brain, with highest densities present in the molecular and granular layers of the dentate gyrus of the hippocampus and in the choroid plexus. Quinolinic acid lesion studies demonstrated that the (125I)IL-1 alpha-binding sites in the hippocampus were localized to intrinsic neurons.

  7. Soluble interleukin-1 receptor, a potential negative regulator of orange-spotted grouper Epinephelus coioides interleukin-1 system.

    PubMed

    Lu, D Q; Yao, M; Yi, S B; Li, Y W; Liu, X C; Zhang, Y; Lin, H R

    2013-09-01

    In this study, the cDNA sequence encoding interleukin-1 (Il-1) receptor-like protein of orange-spotted grouper Epinephelus coioides was obtained. The newly identified sequence was named soluble type I Il-1 receptor (sIl-1rI) owing to its structural composition, which had two Ig-like domains, lack of transmembrane region and the Toll/interleukin-1 receptor (TIR) domain, similar to the brown rat Rattus norvegicus soluble Il-1rI. In addition, sequence comparison and phylogenetic analysis indicated that E. coioides sequence had a closer relationship with Il-1rI than Il-1rII. Real-time PCR revealed that sil-1rI mRNA expression presented a process of decrease, restoration and increase in Cryptocaryon irritans-infected E. coioides. The negative correlation between Il-1β and sil-1rI mRNA in C. irritans-infected head-kidney implied the potential negative regulatory role of sil-1rI in E. coioides Il-1 system. The leucocytes incubated with lipopolysaccharide or polyriboinosinic polyribocytidylic acid exhibited different expression profiles of sil-1rI. Recombinant Il-1β (rIl-1β) protein was capable of inducing sil-1rI mRNA under the concentration of 100 ng ml(-1) , suggesting that high dosage or excess Il-1β would stimulate the expression of sil-1rI to maintain the homoeostasis of E. coioides Il-1 system. For the first time, the role of teleost Il-1rI in parasite infection has been identified, and soluble Il-1r was found in fish.

  8. Interleukin-1α Activity in Necrotic Endothelial Cells Is Controlled by Caspase-1 Cleavage of Interleukin-1 Receptor-2

    PubMed Central

    Burzynski, Laura C.; Humphry, Melanie; Bennett, Martin R.; Clarke, Murray C. H.

    2015-01-01

    Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection. PMID:26324711

  9. Interleukin 1 receptors in the brain and endocrine tissues.

    PubMed

    Cunningham, E T; De Souza, E B

    1993-04-01

    Immune activation is often accompanied by profound alterations in neurological and endocrine function, such as fever, increased somnolence, decreased appetite, activation of the hypothalamic-pituitary-adrenal axis, and suppression of the hypothalamic-pituitary-gonadal and hypothalamic-pituitary-thyroid axes. These well-recognized systemic responses to injury and infection have been attributed to circulating pro-inflammatory cytokines, the best characterized of which is interleukin 1 (IL-1). Here Emmett Cunningham and Errol De Souza discuss the mechanisms by which blood-borne IL-1 might affect such changes in the nervous and neuroendocrine systems.

  10. Interleukin-1-mediated febrile responses in mice and interleukin-1 beta activation of NFkappaB in mouse primary astrocytes, involves the interleukin-1 receptor accessory protein.

    PubMed

    Zetterström, M; Lundkvist, J; Malinowsky, D; Eriksson, G; Bartfai, T

    1998-06-01

    The endogenous pyrogen interleukin-1 (IL-1) is considered as one of the key molecules in orchestrating the host response of injury and inflammation. IL-1 exerts its effects upon binding to the type I IL-1 receptor (IL-1RI). The IL-1-IL-1RI complex is further thought to associate with the IL-1 receptor accessory protein (IL-1RAcP), which is suggested to be important for most IL-1 signal transduction pathways. With the aim of investigating the importance of the IL-1RAcP in IL-1 signalling, IL-1alpha and IL-1beta induced febrile responses and IL-1beta-mediated activation of NFkappaB in primary astrocyte cultures were examined using IL-1RAcP-deficient (IL-1RAcP KO) and wild type mice, respectively. It was shown that neither recombinant rat IL-1alpha (rrIL-1alpha, 25 microg/kg), recombinant rat IL-1beta (rrIL-1beta, 40 microg/kg) nor recombinant human IL-1beta (rhIL-1beta, 50 microg/kg) injected i.p. could elicit febrile responses in the IL-1RAcP-deficient mice, while the same doses of rrIL-1alpha/beta or rhIL-1beta injected into wild type mice caused normal fever responses. A febrile response could be induced in the IL-1RAcP-deficient mice by i.p. administration of E. coli lipopolysaccharide (LPS, 50 microg/kg) and this response was similar to that obtained in wild type mice. Furthermore, it was shown that rhIL-1beta activated, in a concentration-dependent manner, nuclear translocation of the transcriptional nuclear factor kappa B (NFkappaB) in primary astrocyte cultures prepared from wild type mice, whereas no IL-1beta-induced translocation of NFkappaB could be detected in cultures prepared from IL-1RAcP-deficient mice, as revealed by electrophoretic mobility shift assay (EMSA). The rhIL-1beta-induced NFkappaB complexes were shown to contain p50 but no, or very little, p65 and cRel immunoreactive proteins.

  11. Neuregulin1-β decreases interleukin-1β-induced RhoA activation, myosin light chain phosphorylation, and endothelial hyperpermeability.

    PubMed

    Wu, Limin; Ramirez, Servio H; Andrews, Allison M; Leung, Wendy; Itoh, Kanako; Wu, Jiang; Arai, Ken; Lo, Eng H; Lok, Josephine

    2016-01-01

    Neuregulin-1 (NRG1) is an endogenous growth factor with multiple functions in the embryonic and postnatal brain. The NRG1 gene is large and complex, transcribing more than twenty transmembrane proteins and generating a large number of isoforms in tissue and cell type-specific patterns. Within the brain, NRG1 functions have been studied most extensively in neurons and glia, as well as in the peripheral vasculature. Recently, NRG1 signaling has been found to be important in the function of brain microvascular endothelial cells, decreasing IL-1β-induced increases in endothelial permeability. In the current experiments, we have investigated the pathways through which the NRG1-β isoform acts on IL-1β-induced endothelial permeability. Our data show that NRG1-β increases barrier function, measured by transendothelial electrical resistance, and decreases IL-1β-induced hyperpermeability, measured by dextran-40 extravasation through a monolayer of brain microvascular endothelial cells plated on transwells. An investigation of key signaling proteins suggests that the effect of NRG1-β on endothelial permeability is mediated through RhoA activation and myosin light chain phosphorylation, events which affect filamentous actin morphology. In addition, AG825, an inhibitor of the erbB2-associated tyrosine kinase, reduces the effect of NRG1-β on IL-1β-induced RhoA activation and myosin light chain phosphorylation. These data add to the evidence that NRG1-β signaling affects changes in the brain microvasculature in the setting of neuroinflammation. We propose the following events for neuregulin-1-mediated effects on Interleukin-1 β (IL-1β)-induced endothelial hyperpermeability: IL-1β leads to RhoA activation, resulting in an increase in phosphorylation of myosin light chain (MLC). Phosphorylation of MLC is known to result in actin contraction and alterations in the f-actin cytoskeletal structure. These changes are associated with increased endothelial permeability

  12. Glomerular expression of interleukin-1 receptor antagonist and interleukin-1 beta genes in antibody-mediated glomerulonephritis.

    PubMed Central

    Tam, F. W.; Smith, J.; Cashman, S. J.; Wang, Y.; Thompson, E. M.; Rees, A. J.

    1994-01-01

    Interleukin-1 (IL-1) is a powerful proinflammatory cytokine whose function is modulated by a natural IL-1 receptor antagonist (IL-1ra). There are few data about kinetics of in vivo synthesis of IL-1ra at tissue level, except in response to bacterial endotoxin. The purpose of this study was to examine the kinetics of local expression of IL-1ra gene in relation to IL-1 beta gene in a model of anti-glomerular basement membrane antibody-mediated glomerulonephritis. Rats were killed in groups of 5 or 6 at 0, 4, 6, 24, 48, and 96 hours after induction of glomerulonephritis. Messenger RNA for IL-1ra and IL-1 beta was undetectable by Northern blot in normal glomeruli but increased markedly 4 to 6 hours after induction of nephritis. The increase in IL-1ra mRNA was more sustained than that of IL-1 beta mRNA. In situ hybridization showed that IL-1 beta mRNA increased diffusely within glomeruli, while IL-1ra mRNA was expressed more discretely. Expression of these mRNA in noninflamed tissues, spleens and lungs, was different, particularly increase in IL-1ra mRNA was more substantial than that of IL-1 beta. These observations suggest that differential expression of IL-1ra and IL-1 beta might focus inflammation in glomeruli while protecting more distant sites. They also raise the possibility of reducing glomerular injury by therapeutic measures that upregulate glomerular synthesis of IL-1ra while reducing that of IL-1 beta. Images Figure 1 Figure 2 Figure 4 Figure 5 PMID:8030744

  13. In Vitro Interleukin-1 and 2 Production and Interleukin 2 Receptor Expression in the Rhesus Monkey

    NASA Technical Reports Server (NTRS)

    Schmitt, Didier A.; Sonnenfeld, Gerald; Husson, David; Tkaczuk, Jean; Andre, Eric; Schaffar, Laurance

    1996-01-01

    Anti-human monoclonal antibodies were used to detect and quantify interleukins-1 and 2 and interleukin-2 receptor expression in peripheral blood mononuclear cells from a rhesus monkey. Interleukin-1 production could be induced by phorbol esters (PMA) and was potentiated by phytohemagglutinin (PHA). Interleukin-2 secretion could also be induced by the combination of PHA and PMA, but only weakly with PHA alone. Interleukin-2 receptor expression was present in a subpopulation of unstimulated lymphocytes and could be enhanced by PHA or PMA. These data show once again that the rhesus monkey immune system is cross-reactive with the human one and that rhesus macaque could be a good model to study interleukin therapy.

  14. Interleukin-1 stimulates the expression of type I and type II interleukin-1 receptors in the rat insulinoma cell line Rinm5F; sequencing a rat type II interleukin-1 receptor cDNA.

    PubMed

    Bristulf, J; Gatti, S; Malinowsky, D; Bjork, L; Sundgren, A K; Bartfai, T

    1994-01-01

    The insulin secreting rat Rinm5F cells are often used to study the cytotoxic actions of interleukin-1 (IL-1) on pancreatic beta-cells. We demonstrate here that Rinm5F insulinoma cells express both type I and type II interleukin-1 receptor (IL-1R) mRNAs and gene products. IL-1R agonists, recombinant murine IL-1 alpha (rmIL-1 alpha, 10 ng/ml) and recombinant rat IL-1 beta (rrIL-1 beta, 100 pg/ml or 10 ng/ml) induce the upregulation of mRNA expression for both types of IL-1 receptors (IL-1Rs). This effect of rrIL-1 beta is antagonised by preincubation with recombinant human interleukin 1 receptor antagonist protein (rhIL-1ra, 5 micrograms/ml). Furthermore, this rrIL-1 beta induced upregulation of IL-1R mRNAs is blocked by actinomycin D (7.5 micrograms/ml), whereas cycloheximide (20 micrograms/ml) has no effect. The phorbol ester PMA (20 nM) upregulates the expression of mRNAs both IL-1 receptors, whereas glucose (50 mM) upregulates the expression of the type I IL-1R mRNA only. Pretreatment of cells with pertussis toxin (100 ng/ml) partially blocks the rrIL-1 beta induced expression of mRNA for the type I and, to a lesser extent, the type II IL-1R. Incubation of the cells with rrIL-1 beta also induces a time-dependent expression of c-fos, interleukin-6 (IL-6) and tumour necrosis factor alpha (TNF-alpha) mRNAs. Binding studies with 125I-recombinant human IL-1 beta (125I-rhIL-1 beta) indicate that IL-1R gene products, with the ligand binding characteristics of the type I IL-1R, are constitutively present on Rinm5F cells. Treatment with rrIL-1 beta (6h) increases the number of 125I-rhIL-1 beta binding sites on Rinm5F cells. We have also demonstrated that the number of type II IL-1R binding sites increases after induction with rrIL-1 beta (6h), by indirect immunofluorescence using a monoclonal antibody (ALVA 42) raised against the human type II IL-1R. Furthermore, we have sequenced the type II IL-1R cDNA in the rat insulinoma Rinm5F cells. The comparison of the amino acid

  15. Interleukin-1α Activity in Necrotic Endothelial Cells Is Controlled by Caspase-1 Cleavage of Interleukin-1 Receptor-2: IMPLICATIONS FOR ALLOGRAFT REJECTION.

    PubMed

    Burzynski, Laura C; Humphry, Melanie; Bennett, Martin R; Clarke, Murray C H

    2015-10-01

    Inflammation is a key instigator of the immune responses that drive atherosclerosis and allograft rejection. IL-1α, a powerful cytokine that activates both innate and adaptive immunity, induces vessel inflammation after release from necrotic vascular smooth muscle cells (VSMCs). Similarly, IL-1α released from endothelial cells (ECs) damaged during transplant drives allograft rejection. However, IL-1α requires cleavage for full cytokine activity, and what controls cleavage in necrotic ECs is currently unknown. We find that ECs have very low levels of IL-1α activity upon necrosis. However, TNFα or IL-1 induces significant levels of active IL-1α in EC necrotic lysates without alteration in protein levels. Increased activity requires cleavage of IL-1α by calpain to the more active mature form. Immunofluorescence and proximity ligation assays show that IL-1α associates with interleukin-1 receptor-2, and this association is decreased by TNFα or IL-1 and requires caspase activity. Thus, TNFα or IL-1 treatment of ECs leads to caspase proteolytic activity that cleaves interleukin-1 receptor-2, allowing IL-1α dissociation and subsequent processing by calpain. Importantly, ECs could be primed by IL-1α from adjacent damaged VSMCs, and necrotic ECs could activate neighboring normal ECs and VSMCs, causing them to release inflammatory cytokines and up-regulate adhesion molecules, thus amplifying inflammation. These data unravel the molecular mechanisms and interplay between damaged ECs and VSMCs that lead to activation of IL-1α and, thus, initiation of adaptive responses that cause graft rejection.

  16. Interleukin-1 receptor antagonist gene polymorphism and mortality in patients with severe sepsis.

    PubMed

    Arnalich, F; López-Maderuelo, D; Codoceo, R; Lopez, J; Solis-Garrido, L M; Capiscol, C; Fernandez-Capitán, C; Madero, R; Montiel, C

    2002-02-01

    This study aims to determine the influence of the polymorphism within the intron 2 of the interleukin-1 receptor antagonist gene (IL-1RN*) on the outcome of severe sepsis, and to assess its functional significance by correlating this polymorphism with the total production of interleukin-1 receptor antagonist (IL-1Ra) protein determined in stimulated peripheral blood mononuclear cells (PBMC). A group of 78 patients with severe sepsis (51 survivors and 27 nonsurvivors) was compared with a healthy control group of 130 blood donors, and 56 patients with uncomplicated pneumonia. We found a significant association between IL-1RN* polymorphism and survival. Thus, after adjusting for age and APACHE II score, multiple logistic regression analysis showed that patients homozygotes for the allele *2 had a 6.47-fold increased risk of death (95% CI 1.01--41.47, P = 0.04). Besides, compared with patients homozygous or heterozygous for the allele *1, IL-1RN*2 homozygotes produced significantly lower levels of IL-1Ra from their PBMC. Our results suggest that insufficient production of this cytokine might contribute, among other factors, to the higher mortality rate found in severe sepsis patients with the IL-1RN*2 homozygous genotype.

  17. Interleukin-1 receptor antagonist gene polymorphism and mortality in patients with severe sepsis

    PubMed Central

    ARNALICH, F; LÓPEZ-MADERUELO, D; CODOCEO, R; LOPEZ, J; SOLIS-GARRIDO, L M; CAPISCOL, C; FERNANDEZ-CAPITÁN, C; MADERO, R; MONTIEL, C

    2002-01-01

    This study aims to determine the influence of the polymorphism within the intron 2 of the interleukin-1 receptor antagonist gene (IL-1RN*) on the outcome of severe sepsis, and to assess its functional significance by correlating this polymorphism with the total production of interleukin-1 receptor antagonist (IL-1Ra) protein determined in stimulated peripheral blood mononuclear cells (PBMC). A group of 78 patients with severe sepsis (51 survivors and 27 nonsurvivors) was compared with a healthy control group of 130 blood donors, and 56 patients with uncomplicated pneumonia. We found a significant association between IL-1RN* polymorphism and survival. Thus, after adjusting for age and APACHE II score, multiple logistic regression analysis showed that patients homozygotes for the allele *2 had a 6·47-fold increased risk of death (95% CI 1·01–41·47, P = 0·04). Besides, compared with patients homozygous or heterozygous for the allele *1, IL-1RN*2 homozygotes produced significantly lower levels of IL-1Ra from their PBMC. Our results suggest that insufficient production of this cytokine might contribute, among other factors, to the higher mortality rate found in severe sepsis patients with the IL-1RN*2 homozygous genotype. PMID:11876758

  18. Proinsulin Shares a Motif with Interleukin-1α (IL-1α) and Induces Inflammatory Cytokine via Interleukin-1 Receptor 1*

    PubMed Central

    Lee, Siyoung; Kim, Eunsom; Jhun, Hyunjhung; Hong, Jaewoo; Kwak, Areum; Jo, Seunghyun; Bae, Suyoung; Lee, Jongho; Kim, Busun; Lee, Jungmin; Youn, Sulah; Kim, Somi; Kim, Miyeon; Kim, Hyunwoo; Lee, Youngmin; Choi, Dong-Ki; Kim, Yong-Sung; Kim, Soohyun

    2016-01-01

    Although it has been established that diabetes increases susceptibility to infections, the role of insulin (INS) in the immune response is unknown. Here, we investigated the immunological function of INS. Proinsulin dimer (pINSd) was a potent immune stimulus that induced inflammatory cytokines, but mature INS was unable to induce an immune response. An affinity-purified rabbit polyclonal antibody raised against mature IL-1α recognized IL-1α and pINS but failed to detect mature INS and IL-1β. Analysis of the pINS sequence revealed the existence of an INS/IL-1α motif in the C-peptide of pINS. Surprisingly, the INS/IL-1α motif was recognized by monoclonal antibody raised against IL-1α. Deleting the INS/IL-1α motif in pINSd and IL-1α changed their activities. To investigate the pINSd receptor, the reconstitution of IL-1 receptor 1 (IL-1R1) in Wish cells restored pINSd activity that was reversed by an IL-1R antagonist. These data suggested that pINSd needs IL-1R1 for inflammatory cytokine induction. Mouse embryo fibroblast cells of IL-1R1-deficient mice further confirmed that pINSd promotes immune responses through IL-1R1. PMID:27226621

  19. Enhanced epithelial proliferation due to elevated levels of interleukin-1 receptors in middle ear cholesteatomas.

    PubMed

    Bujia, J; Kim, C; Ostos-Aumente, P; Lopez-Villarejo, J; Kastenbauer, E

    1997-01-01

    Middle ear cholesteatoma epithelium is a rich source of interleukin-1-alpha (IL-1-alpha), being involved in both keratinocyte hyperproliferation and bone destruction. IL-1-alpha exerts its effects by binding to two distinct IL-1 receptors (IL-1-R). In this study, we have examined the expression of IL-1-R type II (IL-1-R-II) in cholesteatoma samples and have quantified these levels with computer-assisted image analysis. Normal aural skin was used as control. Immunostaining demonstrated the presence of IL-1-R-II in both epidermis and cholesteatoma keratinocytes. The receptors were 3 times higher than those in normal epidermis. The presence of IL-1-alpha in cholesteatoma epithelium coupled with the induced expression of IL-1-R-II indicates the existence of a highly regulated system of autocrine stimulation of cholesteatoma keratinocytes by IL-1.

  20. Interleukin-1 receptors are differentially expressed in normal and psoriatic T cells.

    PubMed

    Bebes, Attila; Kovács-Sólyom, Ferenc; Prihoda, Judit; Kui, Róbert; Kemény, Lajos; Gyulai, Rolland

    2014-01-01

    This study was carried out to examine the possible role of interleukin-1 (IL-1) in the functional insufficiency of regulatory T cells in psoriasis, by comparing the expression of IL-1 receptors on healthy control and psoriatic T cells. Patients with moderate-to-severe chronic plaque psoriasis and healthy volunteers, matched in age and sex, were selected for all experiments. CD4(+)CD25(-) effector and CD4(+)CD25(+)CD127(low) regulatory T cells were separated and used for the experiments. Expression of the mRNA of IL-1 receptors (IL-1R1, IL-1R2, and sIL-1R2) was determined by quantitative real-time RT-PCR. Cell surface IL-1 receptor expression was assessed by flow cytometry. Relative expression of the signal transmitting IL-1 receptor type 1 (IL-1R1) mRNA is higher in resting psoriatic effector and regulatory T cells, and activation induces higher IL-1R1 protein expression in psoriatic T cells than in healthy cells. Psoriatic regulatory and effector T cells express increased mRNA levels of the decoy IL-1 receptors (IL-1R2 and sIL-1R2) upon activation compared to healthy counterparts. Psoriatic T cells release slightly more sIL-1R2 into their surrounding than healthy T cells. In conclusion, changes in the expression of IL-1 receptors in psoriatic regulatory and effector T cells could contribute to the pathogenesis of psoriasis.

  1. Live Borrelia burgdorferi preferentially activate interleukin-1 beta gene expression and protein synthesis over the interleukin-1 receptor antagonist.

    PubMed Central

    Miller, L C; Isa, S; Vannier, E; Georgilis, K; Steere, A C; Dinarello, C A

    1992-01-01

    Lyme arthritis is one of the few forms of chronic arthritis in which the cause is known with certainty. Because cytokines are thought to contribute to the pathogenesis of chronic arthritis, we investigated the effect of the Lyme disease spirochete, Borrelia burgdorferi, on the gene expression and synthesis of IL-1 beta and the IL-1 receptor antagonist (IL-1ra) in human peripheral blood mononuclear cells. Live B. burgdorferi induced fivefold more IL-1 beta than IL-1 alpha and sevenfold more IL-1 beta than IL-1ra; LPS or sonicated B. burgdorferi induced similar amounts of all three cytokines. This preferential induction of IL-1 beta was most dramatic in response to a low passage, virulent preparation of B. burgdorferi vs. three high passage avirulent strains. No difference in induction of IL-1ra was seen between these strains. The marked induction of IL-1 beta was partially diminished by heat-treatment and abrogated by sonication; IL-1ra was not affected. This suggested that a membrane component(s) accounted for the preferential induction of IL-1 beta. However, recombinant outer surface protein beta induced little IL-1 beta. By 4 h after stimulation, B. burgdorferi induced sixfold more IL-1 beta protein than LPS. In contrast to LPS-induced IL-1 beta mRNA which reached maximal accumulation after 3 h, B. burgdorferi-induced IL-1 beta mRNA showed biphasic elevations at 3 and 18 h. B. burgdorferi-induced IL-1ra mRNA peaked at 12 h, whereas LPS-induced IL-1ra mRNA peaked at 9 h. IL-1 beta synthesis increased in response to increasing numbers of spirochetes, whereas IL-1ra synthesis did not. The preferential induction by B. burgdorferi of IL-1 beta over IL-1ra is an example of excess agonist over antagonist synthesis induced by a microbial pathogen, and may contribute to the destructive lesion of Lyme arthritis. Images PMID:1387885

  2. Interleukin-1 receptor accessory protein organizes neuronal synaptogenesis as a cell adhesion molecule.

    PubMed

    Yoshida, Tomoyuki; Shiroshima, Tomoko; Lee, Sung-Jin; Yasumura, Misato; Uemura, Takeshi; Chen, Xigui; Iwakura, Yoichiro; Mishina, Masayoshi

    2012-02-22

    Interleukin-1 receptor accessory protein (IL-1RAcP) is the essential component of receptor complexes mediating immune responses to interleukin-1 family cytokines. IL-1RAcP in the brain exists in two isoforms, IL-1RAcP and IL-1RAcPb, differing only in the C-terminal region. Here, we found robust synaptogenic activities of IL-1RAcP in cultured cortical neurons. Knockdown of IL-1RAcP isoforms in cultured cortical neurons suppressed synapse formation as indicated by decreases of active zone protein Bassoon puncta and dendritic protrusions. IL-1RAcP recovered the accumulation of presynaptic Bassoon puncta, while IL-1RAcPb rescued both Bassoon puncta and dendritic protrusions. Consistently, the expression of IL-1RAcP in cortical neurons enhances the accumulation of Bassoon puncta and that of IL-1RAcPb stimulated both Bassoon puncta accumulation and spinogenesis. IL-1RAcP interacted with protein tyrosine phosphatase (PTP) δ through the extracellular domain. Mini-exon peptides in the Ig-like domains of PTPδ splice variants were critical for their efficient binding to IL-1RAcP. The synaptogenic activities of IL-1RAcP isoforms were diminished in cortical neurons from PTPδ knock-out mice. Correspondingly, PTPδ required IL-1RAcPb to induce postsynaptic differentiation. Thus, IL-1RAcPb bidirectionally regulated synapse formation of cortical neurons. Furthermore, the spine densities of cortical and hippocampal pyramidal neurons were reduced in IL-1RAcP knock-out mice lacking both isoforms. These results suggest that IL-1RAcP isoforms function as trans-synaptic cell adhesion molecules in the brain and organize synapse formation. Thus, IL-1RAcP represents an interesting molecular link between immune systems and synapse formation in the brain.

  3. Conversion of the interleukin 1 receptor antagonist into an agonist by site-specific mutagenesis.

    PubMed Central

    Ju, G; Labriola-Tompkins, E; Campen, C A; Benjamin, W R; Karas, J; Plocinski, J; Biondi, D; Kaffka, K L; Kilian, P L; Eisenberg, S P

    1991-01-01

    Interleukin 1 (IL-1) receptor antagonist (IL-1ra) is a naturally occurring protein that binds to the IL-1 receptor present on T cells, fibroblasts, and other cell types and acts to block IL-1-induced responses. IL-1ra is a pure antagonist and has no agonist activity in in vitro or in vivo systems. By site-specific mutagenesis, an analog of IL-1ra was created that contained a substitution of a single amino acid, Lys-145----Asp. This analog, IL-1ra K145D, exhibited partial agonist activity in the D10.G4.1 cell proliferation assay. The newly acquired agonist activity could not be neutralized by antisera to IL-1 alpha or IL-1 beta, but it could be blocked by a monoclonal antibody to the T-cell IL-1 receptor. The analog also showed agonist activity as assayed by increased prostaglandin E2 synthesis from CHO cells expressing recombinant mouse IL-1 receptor. These results with IL-1ra K145D demonstrate the importance of the region surrounding the corresponding Asp-145 residue in IL-1 beta for triggering the biological response to IL-1. Images PMID:1826365

  4. Interleukin-1 interaction with neuroregulatory systems: selective enhancement by recombinant human and mouse interleukin-1 of in vitro opioid peptide receptor binding in rat brain

    SciTech Connect

    Wiedermann, C.J.

    1989-02-01

    Interleukin-1 (IL-1) exerts a wide variety of biological effects on various cell types and may be regarded as a pleiotropic peptide hormone. Biological evidence suggests that IL-1 participates in the modulation of central nervous system physiology and behavior in a fashion characteristic of neuroendocrine hormones. In this investigation, recombinant (r) human (h) IL-1 and r mouse (m) IL-1 were examined for their modulation of opioid peptide receptor binding in vitro. Experiments were performed on frozen sections of rat brain. Receptor binding of radiolabeled substance P and of radiolabeled neurotensin were not significantly affected by the presence of rIL-1s. Recombinant IL-1s, however, significantly enhanced specific binding of 125I-beta-endorphin (125I-beta-END) and of D-ala2-(tyrosyl-3,5-3H)enkephalin-(5-D-leucine) (3H-D-ALA), equipotently and in a concentration-dependent manner with maximal activity occurring at a concentration of 10 LAF units/ml. The increased binding of 125I-beta-END and 3H-D-ALA was blocked steroselectively by (-)-naloxone and by etorphine, suggesting detection of opiate receptors. In addition, brain distribution patterns of receptors labeled in the presence of rIL-1s corresponded to patterns previously published for opiate receptors. Autoradiographic visualization of receptors revealed that rIL-1s in the different areas of the brain exert their effect on opioid binding with comparable potencies. The data suggest that certain central nervous system effects of IL-1s may be mediated by their selective interaction with opiatergic systems at the receptor level.

  5. Interleukin 1/Toll-like Receptor-induced Autophosphorylation Activates Interleukin 1 Receptor-associated Kinase 4 and Controls Cytokine Induction in a Cell Type-specific Manner

    PubMed Central

    Cushing, Leah; Stochaj, Wayne; Siegel, Marshall; Czerwinski, Robert; Dower, Ken; Wright, Quentin; Hirschfield, Margaret; Casanova, Jean-Laurent; Picard, Capucine; Puel, Anne; Lin, Lih-Ling; Rao, Vikram R.

    2014-01-01

    IRAK4 is a central kinase in innate immunity, but the role of its kinase activity is controversial. The mechanism of activation for IRAK4 is currently unknown, and little is known about the role of IRAK4 kinase in cytokine production, particularly in different human cell types. We show IRAK4 autophosphorylation occurs by an intermolecular reaction and that autophosphorylation is required for full catalytic activity of the kinase. Phosphorylation of any two of the residues Thr-342, Thr-345, and Ser-346 is required for full activity, and the death domain regulates the activation of IRAK4. Using antibodies against activated IRAK4, we demonstrate that IRAK4 becomes phosphorylated in human cells following stimulation by IL-1R and Toll-like receptor agonists, which can be blocked pharmacologically by a dual inhibitor of IRAK4 and IRAK1. Interestingly, in dermal fibroblasts, although complete inhibition of IRAK4 kinase activity does not inhibit IL-1-induced IL-6 production, NF-κB, or MAPK activation, there is complete ablation of these processes in IRAK4-deficient cells. In contrast, the inhibition of IRAK kinase activity in primary human monocytes reduces R848-induced IL-6 production with minimal effect on NF-κB or MAPK activation. Taken together, these studies define the mechanism of IRAK4 activation and highlight the differential role of IRAK4 kinase activity in different human cell types as well as the distinct roles IRAK4 scaffolding and kinase functions play. PMID:24567333

  6. Interleukin-1 Receptors Are Differentially Expressed in Normal and Psoriatic T Cells

    PubMed Central

    Kovács-Sólyom, Ferenc; Prihoda, Judit; Kui, Róbert; Kemény, Lajos; Gyulai, Rolland

    2014-01-01

    This study was carried out to examine the possible role of interleukin-1 (IL-1) in the functional insufficiency of regulatory T cells in psoriasis, by comparing the expression of IL-1 receptors on healthy control and psoriatic T cells. Patients with moderate-to-severe chronic plaque psoriasis and healthy volunteers, matched in age and sex, were selected for all experiments. CD4+CD25− effector and CD4+CD25+CD127low regulatory T cells were separated and used for the experiments. Expression of the mRNA of IL-1 receptors (IL-1R1, IL-1R2, and sIL-1R2) was determined by quantitative real-time RT-PCR. Cell surface IL-1 receptor expression was assessed by flow cytometry. Relative expression of the signal transmitting IL-1 receptor type 1 (IL-1R1) mRNA is higher in resting psoriatic effector and regulatory T cells, and activation induces higher IL-1R1 protein expression in psoriatic T cells than in healthy cells. Psoriatic regulatory and effector T cells express increased mRNA levels of the decoy IL-1 receptors (IL-1R2 and sIL-1R2) upon activation compared to healthy counterparts. Psoriatic T cells release slightly more sIL-1R2 into their surrounding than healthy T cells. In conclusion, changes in the expression of IL-1 receptors in psoriatic regulatory and effector T cells could contribute to the pathogenesis of psoriasis. PMID:24665164

  7. The Interleukin-1 Receptor-Associated Kinase M Selectively Inhibits the Alternative, Instead of the Classical NFκB Pathway

    PubMed Central

    Su, Jianmin; Zhang, Tongli; Tyson, John; Li, Liwu

    2009-01-01

    The innate immunity signaling process is controlled by numerous positive and negative regulators. The interleukin-1 receptor-associated kinase M (IRAK-M) is one of the negative regulators that contribute to the attenuation of NFκB activation. The molecular mechanism involved, however, is poorly defined. In this report, we observed that IRAK-M selectively suppresses the NIK-IKKα-mediated alternative NFκB pathway. Deletion of IRAK-M led to NIK stabilization, favored the formation of the IKKα/IKKα homodimer instead of the IKKα/IKKβ heterodimer, and enhanced RelB nuclear distribution. In contrast, p65 nuclear localization and phosphorylation was not affected by IRAK-M deficiency. IRAK-M-deficient cells exhibited increased expression of selected cytokines such as IL-6 and GM-CSF, as well as quickened resynthesis of IκBα. The increased expression of IL-6 and GM-CSF was ablated when RelB expression was knocked down using specific siRNA. We also demonstrated that the observed inhibitory effect of IRAK-M was primarily limited to the TLR2 ligand, instead of TLR4. Taken together, our findings suggest that IRAK-M negatively regulates the alternative NFκB pathway in a ligand-specific manner. PMID:19809574

  8. Heart failure biomarkers: focus on interleukin-1 receptor-like 1-based blood tests.

    PubMed

    Broch, K; Ueland, T; Yndestad, A; Aukrust, P; Gullestad, L

    2012-07-01

    Heart failure is a leading cause of morbidity and mortality in the Western world. It is often a progressive disease, and the pathophysiology behind this adverse development is not completely understood. Biomarkers are of increasing importance in heart failure research. Despite a growing number of candidate markers, only a select few have made it into clinical practice. Interleukin-1 receptor-like 1 (IL1RL1), also known as protein ST2, is the receptor for interleukin-33 (IL-33), a cytokine involved in T-cell-mediated immune responses. IL1RL1 expression is induced by cardiomyocyte stretch, and IL1RL1 may thus reflect the activity of two interacting processes in heart failure: inflammation and hemodynamic stress. In recent years, the soluble, truncated IL1RL1 isoform B has been shown to provide prognostic information in heart failure. Although ILRL1 isoform B does not seem to aid in the diagnosis of the disease, an elevated plasma/serum concentration of this marker is firmly associated with adverse outcome in patients with heart failure. This association has been established in different heart failure cohorts and is independent of age, etiology of heart failure and left ventricular function. Ultimately, the IL-33/IL1RL1 pathway may become a therapeutic target in heart failure.

  9. Role of interleukin-1 receptor signaling in the behavioral effects of ethanol and benzodiazepines.

    PubMed

    Blednov, Yuri A; Benavidez, Jillian M; Black, Mendy; Mayfield, Jody; Harris, R Adron

    2015-08-01

    Gene expression studies identified the interleukin-1 receptor type I (IL-1R1) as part of a pathway associated with a genetic predisposition to high alcohol consumption, and lack of the endogenous IL-1 receptor antagonist (IL-1ra) strongly reduced ethanol intake in mice. Here, we compared ethanol-mediated behaviors in mice lacking Il1rn or Il1r1. Deletion of Il1rn (the gene encoding IL-1ra) increases sensitivity to the sedative/hypnotic effects of ethanol and flurazepam and reduces severity of acute ethanol withdrawal. Conversely, deletion of Il1r1 (the gene encoding the IL-1 receptor type I, IL-1R1) reduces sensitivity to the sedative effects of ethanol and flurazepam and increases the severity of acute ethanol withdrawal. The sedative effects of ketamine and pentobarbital were not altered in the knockout (KO) strains. Ethanol intake and preference were not changed in mice lacking Il1r1 in three different tests of ethanol consumption. Recovery from ethanol-induced motor incoordination was only altered in female mice lacking Il1r1. Mice lacking Il1rn (but not Il1r1) showed increased ethanol clearance and decreased ethanol-induced conditioned taste aversion. The increased ethanol- and flurazepam-induced sedation in Il1rn KO mice was decreased by administration of IL-1ra (Kineret), and pre-treatment with Kineret also restored the severity of acute ethanol withdrawal. Ethanol-induced sedation and withdrawal severity were changed in opposite directions in the null mutants, indicating that these responses are likely regulated by IL-1R1 signaling, whereas ethanol intake and preference do not appear to be solely regulated by this pathway.

  10. The effects of dexamethasone and chlorpromazine on tumour necrosis factor-alpha, interleukin-1 beta, interleukin-1 receptor antagonist and interleukin-10 in human volunteers.

    PubMed Central

    Bleeker, M W; Netea, M G; Kullberg, B J; Van der Ven-Jongekrijg, J; Van der Meer, J W

    1997-01-01

    Tumour necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) are pro-inflammatory cytokines that play an important role in severe infections, whereas IL-1 receptor antagonist (IL-1ra) and IL-10 are anti-inflammatory cytokines that counteract their effects. Chlorpromazine and dexamethasone protect mice against lethal endotoxaemia by decreasing circulating concentrations of TNF-alpha and IL-1 beta. We investigated whether administration of chlorpromazine or dexamethasone to human volunteers is able to modulate the lipopolysaccharide (LPS)-stimulated cytokine production capacity in whole blood. Blood samples were taken before and several time-points after medication. Circulating cytokine concentrations were low in all samples. LPS-induced TNF-alpha and IL-1 beta production in whole blood was inhibited by dexamethasone treatment, while chlorpromazine had no effect. When peripheral blood mononuclear cells were stimulated in vitro with LPS, the addition of chlorpromazine (1-100 ng/ml) had no modulatory action on TNF-alpha, IL-1 beta, IL-1ra or IL-10 synthesis. The chlorpromazine concentrations measured in circulation of volunteers were eight to 40 times lower than the concentrations shown to be effective in mice. In conclusion, chlorpromazine inhibits TNF-alpha and IL-1 beta production in mice at concentrations that cannot be reached in humans, thus precluding its usage in clinical anti-cytokine strategies. In contrast, dexamethasone is an effective inhibitor of pro-inflammatory cytokine production. PMID:9378493

  11. Evidence from sequence information that the interleukin-1 receptor is a transmembrane GTPase.

    PubMed Central

    Hopp, T. P.

    1995-01-01

    Evidence is presented that the cytoplasmic domain of the type I interleukin-1 receptor (IL-1R) may be a GTPase. This domain conserves segments of hydrophobic amino acids that suggest a structural relatedness to the ras protooncogene protein and other members of the GTPase superfamily, despite a lack of significant detectable sequence homology. When the hydrophobic segments of the IL-1R were aligned with similar segments of the GTPases, it became apparent that the IL-1Rs possess a number of conserved amino acids that represent plausible functional residues for base-specific binding of GTP, magnesium chelation, and phosphate ester hydrolysis. Furthermore, a segment of five contiguous residues were found that is identical between ras and the IL-1R, and which is positioned to form part of the guanine base binding pocket. If this model is correct, then the IL-1Rs possess a highly conserved effector protein binding region, but one that is entirely unrelated to the effector regions of other superfamily members. Therefore, if the IL-1R is indeed a GTPase, then its activation function may be directed to as-yet unrecognized effector target proteins, as part of a unique cellular signal transduction pathway. PMID:8528083

  12. Invasive Bacterial Infection in Patients with Interleukin-1 Receptor-associated Kinase 4 Deficiency: Case Report.

    PubMed

    Takada, Hidetoshi; Ishimura, Masataka; Takimoto, Tomohito; Kohagura, Toaki; Yoshikawa, Hideto; Imaizumi, Masue; Shichijyou, Koichi; Shimabukuro, Yoko; Kise, Tomoo; Hyakuna, Nobuyuki; Ohara, Osamu; Nonoyama, Shigeaki; Hara, Toshiro

    2016-01-01

    Interleukin-1 receptor-associated kinase 4 (IRAK4) deficiency (OMIM #607676) is a rare primary immunodeficiency of innate immune defect. We identified 10 patients from 6 families with IRAK4 deficiency in Japan, and analyzed the clinical characteristics of this disease. Nine patients had homozygous c.123_124insA mutation, and 1 patient had c.123_124insA and another nonsense mutation (547C>T). Umbilical cord separation occurred on the 14th day after birth or thereafter. Two patients had no severe infections owing to the prophylactic antibiotic treatment. Severe invasive bacterial infections occurred before the age of 3 in the other 8 patients. Among them, 7 patients had pneumococcal meningitis. Five patients died of invasive bacterial infection during infancy, although intravenous antibiotic treatment was started within 24 hours after onset in 4 patients among them. Analysis of cerebrospinal fluid of the patients who had fatal meningitis revealed very low glucose levels with only mild pleocytosis. The clinical courses of invasive bacterial infections were often rapidly progressive despite the early, appropriate antibiotic treatment in IRAK4 deficiency patients. The early diagnosis and appropriate prophylaxis of invasive bacterial infections are necessary for the patients.

  13. Genes Involved in Interleukin-1 Receptor Type II Activities Are Associated With Asthmatic Phenotypes

    PubMed Central

    Madore, Anne-Marie; Vaillancourt, Vanessa T.; Bouzigon, Emmanuelle; Sarnowski, Chloé; Monier, Florent; Dizier, Marie-Hélène; Demenais, Florence

    2016-01-01

    Purpose Interleukin-1 (IL-1) plays a key role in inflammation and immunity and its decoy receptor, IL-1R2, has been implicated in transcriptomic and genetic studies of asthma. Methods Two large asthma family collections, the French-Canadian Saguenay—Lac-St-Jean (SLSJ) study and the French Epidemiological Study on the Genetics and Environment of Asthma (EGEA), were used to investigate the association of SNPs in 10 genes that modulate IL-1R2 activities with asthma, allergic asthma, and atopy. Gene-gene interactions were also tested. Results One SNP in BACE2 was associated with allergic asthma in the SLSJ study and replicated in the EGEA study before statistical correction for multiple testing. Additionally, two SNPs in the MMP2 gene were replicated in both studies prior to statistical correction and reached significance in the combined analysis. Moreover, three gene-gene interactions also survived statistical correction in the combined analyses (BACE1-IL1RAP in asthma and allergic asthma and IL1R1-IL1RAP in atopy). Conclusions Our results highlight the relevance of genes involved in the IL-1R2 activity in the context of asthma and asthma-related traits. PMID:27334786

  14. Impact of an Interleukin-1 Receptor Antagonist and Erythropoietin on Experimental Myocardial Ischemia/Reperfusion Injury

    PubMed Central

    Grothusen, Christina; Hagemann, Angelika; Attmann, Tim; Braesen, Jan; Broch, Ole; Cremer, Jochen; Schoettler, Jan

    2012-01-01

    Background. Revascularization of infarcted myocardium results in release of inflammatory cytokines mediating myocardial reperfusion injury and heart failure. Blockage of inflammatory pathways dampens myocardial injury and reduces infarct size. We compared the impact of the interleukin-1 receptor antagonist Anakinra and erythropoietin on myocardial ischemia/reperfusion injury. In contrast to others, we hypothesized that drug administration prior to reperfusion reduces myocardial damage. Methods and Results. 12–15 week-old Lewis rats were subjected to myocardial ischemia by a 1 hr occlusion of the left anterior descending coronary artery. After 15 min of ischemia, a single shot of Anakinra (2 mg/kg body weight (bw)) or erythropoietin (5000 IE/kg bw) was administered intravenously. In contrast to erythropoietin, Anakinra decreased infarct size (P < 0.05, N = 4/group) and troponin T levels (P < 0.05, N = 4/group). Conclusion. One-time intravenous administration of Anakinra prior to myocardial reperfusion reduces infarct size in experimental ischemia/reperfusion injury. Thus, Anakinra may represent a treatment option in myocardial infarction prior to revascularization. PMID:22649318

  15. Effect of interleukin 1 receptor antagonist on the blood-aqueous barrier after intraocular lens implantation.

    PubMed Central

    Nishi, O; Nishi, K; Ohmoto, Y

    1994-01-01

    Interleukin 1 (IL-1) possesses as an intercellular signal a wide spectrum of inflammatory, metabolic, haematopoetic, immunological, and reparative properties and can be a mediator not only of host defence but also of disease. Reduction of IL-1 can decrease the inflammatory host response. A human recombinant IL-1 receptor antagonist (IL-1ra) was used to block IL-1 after intraocular lens implantation in rabbits. Seventeen rabbits underwent intercapsular phacoemulsification and posterior chamber lens implantation. A 100 micrograms dose (0.1 ml) of IL-1ra (1 mg/ml) was injected into the anterior chamber at the end of surgery in seven rabbits. The 10 rabbits serving as the controls received no IL-1ra. Postoperatively, all rabbits were observed with a slit-lamp, and the aqueous flare intensity was measured with a laser flare cell meter at 12 hours, 1, 2, 3, and 4 days and thereafter at 1, 2, 3, and 4 weeks. Aqueous flare intensity was significantly lower on days 2 and 3, and fibrin deposition much less marked in the eyes treated with IL-1ra, compared with the controls. The results suggest that IL-1 is involved in the postoperative inflammation that occurs after intraocular lens implantation and the use of the IL-1ra would be valuable for reducing this problem. PMID:7819176

  16. Characterization of interleukin-1β in Helicobacter pylori-induced gastric inflammation and DNA methylation in interleukin-1 receptor type 1 knockout (IL-1R1(-/-)) mice.

    PubMed

    Huang, Fung-Yu; Chan, Annie On-On; Lo, Regina Cheuk-Lam; Rashid, Asif; Wong, Danny Ka-Ho; Cho, Chi-Hin; Lai, Ching-Lung; Yuen, Man-Fung

    2013-08-01

    Helicobacter pylori infection induced interleukin-1β (IL-1β) production and is associated with aberrant DNA methylation and gastric diseases. Here, we investigated the role of IL-1β in H. pylori-induced gastric inflammation and DNA methylation using IL-1 receptor type 1 knockout (IL-1R1(-/-)) mice, and compared the therapeutic efficacy of antimicrobial therapy with IL-1 receptor antagonist (IL-1ra). IL-1R1(-/-) and wild-type (WT) mice were infected with H. pylori for 16, 24 and 32 weeks. Infected WT mice at 24 weeks were given either antimicrobial therapy or IL-1ra. Comparing to the IL-1R1(-/-) mice, infected WT mice with functional IL-1β signaling had higher gastritis scores, higher IL-1β and iNOS mRNA expression, higher nitric oxide (NO) production and increased frequency of E-cadherin (E-cad) methylation at all the time points analyzed. IL-1β release was significantly elevated in infected WT mice than normal controls at 16 weeks post-infection (p<0.005). Treatment of infected mice with antimicrobial therapy and IL-1ra significantly reduced the degree of gastritis (p<0.005; p<0.05, respectively), iNOS expression (p<0.0001; p<0.01, respectively) and NO production (both p<0.001) compared with untreated controls. Mice receiving antimicrobial therapy had significantly lower IL-1β expression than untreated controls (p<0.0001). Both treatments reduced the incidence of E-cad methylation in infected mice compared with controls, however, no statistical significance was observed. There was no significant alteration of total DNA methyltransferase (DNMT) activity. These results demonstrated that IL-1β played a crucial role in H. pylori-induced gastric inflammation and DNA methylation. H. pylori eradication and IL-1ra administration could ameliorate inflammatory stress.

  17. Interleukin-1 receptor mRNA expression in activated bovine leukocytes in vitro.

    PubMed Central

    Yu, P W; Schuler, L A; Czuprynski, C J

    1997-01-01

    Interleukin-1 (IL-1) is a key player in inflammation and the immune response. To better understand the complex interactions of IL-1 and its receptors in inflammation, we need to investigate how type I and type II IL-1 receptors (IL-1RI and IL-1RII) are regulated by cytokines and other mediators. Using semiquantitative reverse transcriptase PCR and Northern analysis, we examined the regulation of IL-1RI and IL-1RII mRNA levels in bovine polymorphonuclear leukocytes (PMNs) (i.e., neutrophils) and peripheral blood mononuclear cells (PBMCs) in vitro. IL-1RI mRNA levels were up-regulated in PBMCs by recombinant bovine IL-1beta (rBoIL-1beta), recombinant bovine granulocyte-macrophage colony-stimulating factor (rBoGM-CSF), rBoIL-4, recombinant bovine gamma interferon (rBoIFN-gamma), and dexamethasone. IL-1RI mRNA was increased in bovine PMNs exposed to rBoGM-CSF, rBoIL-4, and dexamethasone but was down-regulated by rBoIL-1beta and rBoIFN-gamma. IL-1RII mRNA was increased in bovine PBMCs and PMNs after exposure to rBoIL-1beta, rBoGM-CSF, rBoIL-4, and dexamethasone. In contrast, rBoIFN-gamma down-regulated the expression of bovine IL-1RII mRNA in PBMCs. These findings suggest that the expression of bovine IL-1RI and IL-1RII mRNAs is regulated differently by certain soluble stimuli (e.g., IFN-gamma) in PMNs and PBMCs. PMID:9384305

  18. Polymorphisms of interleukin-1R receptor antagonist genes in patients with chronic hepatitis B in Iran

    PubMed Central

    Ranjbar, Mitra; Alizadeh, Amir Houshang Mohammad; Hajilooi, Mehrdad; Mousavi, Seyed Mohsen

    2006-01-01

    AIM: To investigate the relationships between polymorphisms of interleukin-1R receptor antagonist genes and susceptibility to chronic hepatitis B in Iran population. METHODS: Genomic DNA was extracted from the peripheral blood of 80 patients with chronic hepatitis B (57 males, 23 females) aged 12-77 years (mean 36.1 ± 13.8 years) and 147 normal controls (96 males, 51 females) aged 6-75 years (mean 41 ± 18.7 years) who referred to a liver clinic of Tehran and then subjected to polymerase chain reaction (PCR) amplification. PCR products were resolved on a 3% agarose gel and stained with ethidium bromide. RESULTS: Only three of the five kinds of polymorphism (2/2, 2/4, and 4/4) were found in this study. The frequencies of 2/2, 2/4, and 4/4 were 12.5%, 17.5%, 70% respectively in chronic hepatitis B patients and 6.8%, 24.5%, and 68.7% respectively in controls. IL-1 R allele 2 was detected in 30% of chronic hepatitis B patients and in 31.3% of controls, while IL-1 R allele 4 was detected in 87.5% of chronic hepatitis B patients and in 93.2% of controls. The frequency of IL-1R alleles 2 and 4 was detected in 21.25% and 78.75% of the patients and 19.04% and 80.96% of the controls, respectively. CONCLUSION: Our results suggest that the carriage of IL-1R receptor antagonist alleles 2, 4, 6 may not play any role in the development of HBV infection. Large population-based studies are needed to investigate the role of IL-1 polymorphisms in the pathogenesis of developing chronic hepatitis B. PMID:16937503

  19. Interleukin-1 receptor antagonist prevents murine bronchopulmonary dysplasia induced by perinatal inflammation and hyperoxia

    PubMed Central

    Nold, Marcel F.; Mangan, Niamh E.; Rudloff, Ina; Cho, Steven X.; Shariatian, Nikeh; Samarasinghe, Thilini D.; Skuza, Elizabeth M.; Pedersen, John; Veldman, Alex; Berger, Philip J.; Nold-Petry, Claudia A.

    2013-01-01

    Bronchopulmonary dysplasia (BPD) is a common lung disease of premature infants, with devastating short- and long-term consequences. The pathogenesis of BPD is multifactorial, but all triggers cause pulmonary inflammation. No therapy exists; therefore, we investigated whether the anti-inflammatory interleukin-1 receptor antagonist (IL-1Ra) prevents murine BPD. We precipitated BPD by perinatal inflammation (lipopolysaccharide injection to pregnant dams) and rearing pups in hyperoxia (65% or 85% O2). Pups were treated daily with IL-1Ra or vehicle for up to 28 d. Vehicle-injected animals in both levels of hyperoxia developed a severe BPD-like lung disease (alveolar number and gas exchange area decreased by up to 60%, alveolar size increased up to fourfold). IL-1Ra prevented this structural disintegration at 65%, but not 85% O2. Hyperoxia depleted pulmonary immune cells by 67%; however, extant macrophages and dendritic cells were hyperactivated, with CD11b and GR1 (Ly6G/C) highly expressed. IL-1Ra partially rescued the immune cell population in hyperoxia (doubling the viable cells), reduced the percentage that were activated by up to 63%, and abolished the unexpected persistence of IL-1α and IL-1β on day 28 in hyperoxia/vehicle-treated lungs. On day 3, perinatal inflammation and hyperoxia each triggered a distinct pulmonary immune response, with some proinflammatory mediators increasing up to 20-fold and some amenable to partial or complete reversal with IL-1Ra. In summary, our analysis reveals a pivotal role for IL-1α/β in murine BPD and an involvement for MIP (macrophage inflammatory protein)-1α and TREM (triggering receptor expressed on myeloid cells)-1. Because it effectively shields newborn mice from BPD, IL-1Ra emerges as a promising treatment for a currently irremediable disease that may potentially brighten the prognosis of the tiny preterm patients. PMID:23946428

  20. Deficiency of interleukin-1 receptor antagonist promotes spontaneous femoral artery aneurysm formation in mice.

    PubMed

    Isoda, Kikuo; Kitagaki, Manabu; Niida, Tomiharu; Kondo, Harumi; Matsubara, Osamu; Kikuchi, Makoto; Ohsuzu, Fumitaka; Adachi, Takeshi

    2012-03-01

    Femoral artery aneurysms (FAAs) are very rare, and their natural history is not well understood. In this study, we sought to analyze the pathogenesis of inflammatory FAAs in interleukin-1 receptor antagonist-deficient (IL-1Ra(-/-)) B6 mice. Systolic arterial pressures and plasma lipid levels of IL-1Ra(-/-) mice and wild-type (WT) mice did not differ significantly. However, IL-1Ra(-/-) mice spontaneously developed fusiform FAAs. Real-time PCR of 9-month-old IL-1Ra(-/-) mice revealed significantly increased mRNA levels of IL-1β (6.6-fold), tumor necrosis factor-α (TNF-α) (12.4-fold), and matrix metalloproteinase-9 (6.0-fold) compared with WT mice. Histological analysis revealed numerous inflammatory cells around the FAAs in IL-1Ra(-/-) mice, and elastin staining showed destruction of both the internal and external elastic lamina in IL-1Ra(-/-) mice. Afterward, macrophage function was studied. After lipopolysaccharide (1 μg/mL) stimulation, IL-1Ra-deficient macrophages produced much higher levels of TNF-α than those from WT mice. Finally, we performed bone marrow cell transplantation. FAAs with many inflammatory cells in the adventitia were detected in several WT mice that received bone marrow cells from IL-1Ra(-/-) mice (44%), but not from WT mice (0%). Our study is the first to demonstrate that IL-1Ra deficiency in inflammatory cells disrupts immune system homeostasis and induces inflammatory FAAs in IL-1Ra(-/-) B6 mice. We believe that these mice will provide much information about the natural history and management of FAAs.

  1. Interleukin-1 Receptor Antagonist Modulates Inflammation and Scarring after Ligament Injury

    PubMed Central

    Chamberlain, Connie S.; Leiferman, Ellen M.; Frisch, Kayt E.; Duenwald-Kuehl, Sarah E.; Brickson, Stacey L.; Murphy, William L.; Baer, Geoffrey S.; Vanderby, Ray

    2014-01-01

    Ligaments have limited regenerative potential and as a consequence, repair is protracted and results in a mechanically inferior tissue more scar-like than native ligament. We previously reported that a single injection of interleukin-1 receptor antagonist (IL-1Ra) delivered at the time of injury, decreased the number of M2 macrophage-associated inflammatory cytokines. Based on these results, we hypothesized that IL-1Ra administered after injury and closer to peak inflammation (as would occur clinically), would more effectively decrease inflammation and thereby improve healing. Since IL-1Ra has a short half-life, we also investigated the effect of multiple injections. The objective of this study was to elucidate healing of a medial collateral ligament (MCL) with either a single IL-1Ra injection delivered one day after injury or with multiple injections of IL-1Ra on days 1, 2, 3, and 4. One day after MCL injury, rats received either single or multiple injections of IL-1Ra or PBS. Tissue was then collected at days 5 and 11. Both single and multiple IL-1Ra injections reduced inflammatory cytokines, but did not change mechanical behavior. A single injection of IL-1Ra also reduced the number of myofibroblasts and increased type I procollagen. Multiple IL-1Ra doses provided no additive response and, in fact, reduced the M2 macrophages. Based on these results, a single dose of IL-1Ra was better at reducing the MCL-derived inflammatory cytokines compared to multiple injections. The changes in type I procollagen and myofibroblasts further suggest a single injection of IL-1Ra enhanced repair of the ligament but not sufficiently to improve functional behavior. PMID:24649870

  2. Combined mesenchymal stem cell transplantation and interleukin-1 receptor antagonism after partial hepatectomy

    PubMed Central

    Sang, Jian-Feng; Shi, Xiao-Lei; Han, Bing; Huang, Xu; Huang, Tao; Ren, Hao-Zhen; Ding, Yi-Tao

    2016-01-01

    AIM: To study the therapeutic effects of mesenchymal stem cells (MSCs) and an interleukin-1 receptor antagonist (IL-1Ra) in acute liver failure. METHODS: Chinese experimental miniature swine (15 ± 3 kg, 5-8 mo) were obtained from the Laboratory Animal Centre of the Affiliated Drum Tower Hospital of Nanjing University Medical School. Acute liver failure was induced via 85% hepatectomy, and animals were treated by MSC transplantation combined with IL-1Ra injection. Blood samples were collected for hepatic function analysis, and the living conditions and survival time were recorded. Liver injury was histologically analyzed. Hepatic cell regeneration and apoptosis were studied by Ki67 immunohistochemistry and terminal deoxynucleotidyl transferase dUTP nick end labeling, respectively. The levels of protein kinase B and nuclear factor-κB expression were analyzed by Western blotting. RESULTS: MSCs were infected with a lentivirus for expression of green fluorescent protein (GFP) for subsequent identification; 97.3% of the MSCs were positive for GFP as assessed by flow cytometry. Additional flow cytometric analysis of cell surface marker expression demonstrated that > 90% of GFP-expressing MSCs were also positive for CD29, CD44, and CD90, indicating that most of these cells expressed typical markers of MSCs, and the population of MSCs was almost pure. Transplantation of MSCs in combination with 2 mg/kg IL-1Ra therapy significantly improved survival time compared to the acute liver failure model group (35.3 ± 6.7 d vs 17.3 ± 5.5 d, P < 0.05). Combined therapy also promoted improvement in serum inflammatory cytokines and biochemical conditions. The observed hepatic histopathologic score was significantly lower in the group with combined therapy than in the model group (3.50 ± 0.87 vs 8.17 ± 1.26, P < 0.01). In addition, liver cell apoptosis in the combined therapy group was significantly inhibited (18.1 ± 2.1% vs 70.8 ± 3.7%, P < 0.01), and hepatic cell regeneration

  3. Interleukin-1 Receptor Antagonist Decreases Hypothalamic Oxidative Stress During Experimental Sepsis.

    PubMed

    Wahab, Fazal; Santos-Junior, Nilton N; de Almeida Rodrigues, Rodrigo Pereira; Costa, Luis Henrique A; Catalão, Carlos Henrique R; Rocha, Maria Jose A

    2016-08-01

    In our previous work, we demonstrated that the intracerebroventricular (i.c.v.) injection of an interleukin-1 receptor antagonist (IL-1ra) prevented the impairment in vasopressin secretion and increased survival rate in septic rats. Additionally, we saw a reduction in nitric oxide (NO) levels in cerebroventricular spinal fluid (CSF), suggesting that the IL-1ra prevents apoptosis that seems to occur in vasopressinergic neurons. Here, we investigated the effect of IL-1ra pre-treatment on the sepsis-induced increase in oxidative stress markers in the hypothalamus of rats. The animals were pre-treated by an i.c.v. injection of IL-1ra (9 nmol) or vehicle (0.01 M PBS) before being subjected to cecal ligation and puncture (CLP) or left as control (sham-operation or naive). After 4, 6, and 24 h, the animals were decapitated (n = 9/group) and the brain removed for hypothalamic tissue collection. Transcript and protein levels of IL-1, inducible nitric oxide synthase (iNOS), caspase-3, and hypoxia-inducible factor 1-alpha (HIF-1α) were measured by quantitative polymerase chain reaction (qPCR) and western blot, respectively. Hypothalamic mRNA levels of all these genes were significantly (P < 0.005) increased at 4, 6, and 24 h CLP, as compared to sham-operated animals. IL-1ra pre-treatment in these CLP animals significantly decreased IL-1 gene expression at all time points and also of iNOS, caspase-3, and HIF-1α at 24 h when compared to vehicle-treated CLP animals. The effect of the pre-treatment on protein expression was most clearly seen for IL-1β and iNOS at 24 h. Our results showed that blocking the IL-1-IL-1r signaling pathway by central administration of an IL-1ra decreases hypothalamic oxidative stress markers during sepsis.

  4. cDNA cloning of an intracellular form of the human interleukin 1 receptor antagonist associated with epithelium.

    PubMed Central

    Haskill, S; Martin, G; Van Le, L; Morris, J; Peace, A; Bigler, C F; Jaffe, G J; Hammerberg, C; Sporn, S A; Fong, S

    1991-01-01

    A cDNA encoding a receptor antagonist of interleukin 1 (IL-1ra), secreted from human monocytes, has recently been isolated and sequenced [Eisenberg, S. P., Evans, R. J., Arend, W. P., Verderber, E., Brewer, M. T., Hannum, C. H. & Thompson, R. C. (1990) Nature (London) 343, 341-346]. We have identified another version of this IL-1ra, which is predominantly expressed in epithelial cells. This IL-1ra lacks a leader sequence and, thus, is probably intracellular. Both proteins are derived from the same gene through use of an alternative transcriptional start site and internal splice-acceptor site. Expression of intracellular IL-1ra cDNA in COS cells demonstrated that the intracellular product specifically inhibited exogenous interleukin 1-dependent responses. Keratinocytes were shown to contain significant amounts of nonsecreted IL-1ra protein. Constitutive expression of the intracellular IL-1ra may be an intracellular defensive mechanism in exposed epithelial cells and/or may serve to regulate autocrine interleukin 1-mediated pathways of differentiation. Images PMID:1827201

  5. Interleukin-1 (IL-1) receptor antagonist gene polymorphism in normal weight obese syndrome: relationship to body composition and IL-1 alpha and beta plasma levels.

    PubMed

    Di Renzo, Laura; Bigioni, Mario; Del Gobbo, Vera; Premrov, Maria Grazia; Barbini, Ugo; Di Lorenzo, Nicola; De Lorenzo, Antonino

    2007-02-01

    Interleukin-1 receptor antagonist concentration is upregulated in the plasma of patients with obese related disease, and its synthesis is under genetic control. We tested the hypothesis that the polymorphism in the interleukin-1 receptor antagonist gene second intron might be associated with normal weight obese syndrome. The polymorphism of intron 2 in the interleukin-1 receptor antagonist gene, containing a variable numbers of a tandem repeat (VNTR), and interleukin-1alpha and beta plasma levels were evaluated in 110 Caucasian Italian women, divided in three groups: non-obese, normal weight obese and preobese-obese. The allele 1 frequency was not significantly different in the three groups. The alleles 3 and 4 were not observed in any group. The allele 2 frequency in normal weight obese woman (12.5%) and preobese-obese (17.5%) groups were significantly different in comparison with the non-obese group (6.7%). The allele 5 was observed exclusively in non-obese and normal weight obese subjects (13.3 and 7.5%, respectively). In normal weight obese women, plasma concentrations of interleukin-1 alpha and interleukin-1 beta were significantly higher than in non-obese. The allele 2 was observed in normal weight obese as well as a significant association between the increase of interleukin-1 beta plasma amount and the allele 2 carrier. Our findings suggest that the allele 2 might be an important high-risk genetic marker for normal weight obese syndrome and obesity related diseases.

  6. Corticotropin releasing factor-1 receptor antagonism alters the biochemical, but not behavioral effects of repeated interleukin-1β administration.

    PubMed

    Wilhelm, Clare J; Murphy-Crews, Aaron; Menasco, Daniel J; Huckans, Marilyn S; Loftis, Jennifer M

    2012-01-01

    Activation of the immune system via administration of cytokines is used for the treatment of chronic viral infections such as hepatitis C and for cancers resistant to radiotherapy. Cytokine-based treatments induce a range of "sickness" behaviors (e.g. depression, anxiety, pain, anorexia, and fatigue). Activation of the hypothalamic pituitary-adrenal axis via the induction of corticotropin releasing factor (CRF) may underlie these unwanted side effects. This study used repeated systemic injections of the pro-inflammatory cytokine interleukin-1β (IL-1β) to model the sickness behaviors and biochemical effects of immune system activation. We assessed the ability of CRF type I receptor (CRF(1)) antagonism to reduce biochemical and behavioral signs of sickness induced by IL-1β treatment. Forty Wistar rats were assigned to one of four groups: 1) saline+vehicle; 2) saline+DMP904 (CRF(1) antagonist); 3) IL-1β+vehicle; 4) IL-1β+DMP904. Rats received intraperitoneal injections of either DMP904 or vehicle and of IL-1β or saline for six days. Sickness behavior was evaluated using body weight assessments and forced swim testing (FST). Blood and brain samples were collected to measure cytokine, p38 mitogen-activated protein kinase (MAPK), and phospho-p38 MAPK levels using multiplex techniques. There were significant reductions in body weights and FST immobility times associated with IL-1β administration. Rats administered IL-1β had significantly higher serum levels of IL-10, but not interferon-γ. Within the hippocampus, IL-1β reduced levels of p38 MAPK, but had no impact on levels of phospho-p38 MAPK except in the presence of DMP904. When administered alone, DMP904 had no significant effect on p38 MAPK or phospho-p38 MAPK in the hippocampus, but when given with IL-1β led to increased phosphorylation of p38 MAPK. IL-1β and DMP904 reduced levels of p38 MAPK within the hypothalamus, while co-administration of IL-1β and DMP904 abolished the effects of either drug alone

  7. The involvement of the interleukin-1 Receptor-Associated Kinases (IRAKs) in cellular signaling networks controlling inflammation

    PubMed Central

    Ringwood, Lorna; Li, Liwu

    2008-01-01

    Innate immunity and inflammation plays a key role in host defense and wound healing. However, Excessive or altered inflammatory processes can contribute to severe and diverse human diseases including cardiovascular disease, diabetes and cancer. The interleukin-1 receptor associated kinases (IRAKs) are critically involved in the regulation of intra-cellular signaling networks controlling inflammation. Collective studies indicate that IRAKs are present in many cell types, and can mediate signals from various cell receptors including Toll-Like-Receptors (TLRs). Consequently, diverse downstream signaling processes can be elicited following the activation of various IRAKs. Given the critical and complex roles IRAK proteins play, it is not surprising that genetic variations in human IRAK genes have been found to be linked with various human inflammatory diseases. This review intends to summarize the recent advances regarding the regulations of various IRAK proteins and their cellular functions in mediating inflammatory signaling processes. PMID:18249132

  8. Persistently elevated soluble tumor necrosis factor receptor and interleukin-1 receptor antagonist levels in critically ill patients.

    PubMed

    Rogy, M A; Coyle, S M; Oldenburg, H S; Rock, C S; Barie, P S; Van Zee, K J; Smith, C G; Moldawer, L L; Lowry, S F

    1994-02-01

    The appearance of endogenously produced inhibitors against tumor necrosis factor (TNF) (soluble TNF-receptor type I, sTNFR-I) and interleukin-1 (IL-1 receptor antagonist, IL-1ra) was evaluated acutely in five normal patients after experimental endotoxemia lipopolysaccharide (LPS) and prospectively during a one to 11 week period in 12 septic, critically ill patients. Increased levels of both factors remained detectable in the circulation for up to 24 hours after LPS (2 nanograms per kilogram body weight) administration in normal patients. Despite free TNF-a activity being detected only sporadically (3 percent of the samples) and that IL-1 beta was never detectable in the patients in the intensive care unit, IL-6 bioactivity was present in 90 percent of initial samples. Circulating sTNFR-I levels up to 62,000 picograms per milliliter and IL-1ra levels of 14,800 picograms per milliliter were noted in the critically ill patients and remained consistently detectable throughout the extended period of evaluation. While there was no difference in IL-1ra levels between patients who survived or ultimately died, sTNFR-I levels were significantly (p < 0.001) lower in survivors compared with nonsurvivors. A correlation between circulating sTNFR-I and concurrent cortisol levels (r = 0.64; p < 0.002) was also noted. Furthermore, a correlation between sTNFR-I and the severity of initial insult, as assessed by APACHE II scores (r = 0.54; p < 0.01) was demonstrable. These naturally occurring cytokine antagonists likely represent additional indicators of the presence of an infectious or other inflammatory process and seem to persist in the circulation even during conditions in which their respective proinflammatory cytokines are not demonstrable. PMID:8173722

  9. The detection of a synthetic Interleukin-1 receptor antagonist peptide in a seized product from a racing stable.

    PubMed

    Levina, Vita; Timms, Mark; Vine, John; Steel, Rohan

    2016-09-01

    A synthetic Interleukin-1 receptor antagonist peptide with the sequence Acetyl-Phe-Glu-Trp-Thr-Pro-Gly-Tyr-Trp-Gln-Pro-Tyr-Ala-Leu-Pro-Leu-OH has been identified in a vial seized during a stable inspection. The use of peptide-based Interleukin-1 receptor antagonists as anti-inflammatory agents has not been previously reported, making this peptide the first in a new class of sports doping peptides. The peptide has been characterized by high-resolution mass spectrometry and a detection method developed based on solid-phase extraction and liquid chromatography - triple quadrupole mass spectrometry. Using in vitro and in vivo models to study the properties of the peptide after administration, the peptide was shown to be highly unstable in plasma and was not detected in urine after administration in a rat. The poor stability of the peptide makes detection challenging but also suggests that it has limited effectiveness as an anti-inflammatory drug. Copyright © 2015 John Wiley & Sons, Ltd. PMID:26360925

  10. Cardiometabolic effects of genetic upregulation of the interleukin 1 receptor antagonist: a Mendelian randomisation analysis

    PubMed Central

    2015-01-01

    Summary Background To investigate potential cardiovascular and other effects of long-term pharmacological interleukin 1 (IL-1) inhibition, we studied genetic variants that produce inhibition of IL-1, a master regulator of inflammation. Methods We created a genetic score combining the effects of alleles of two common variants (rs6743376 and rs1542176) that are located upstream of IL1RN, the gene encoding the IL-1 receptor antagonist (IL-1Ra; an endogenous inhibitor of both IL-1α and IL-1β); both alleles increase soluble IL-1Ra protein concentration. We compared effects on inflammation biomarkers of this genetic score with those of anakinra, the recombinant form of IL-1Ra, which has previously been studied in randomised trials of rheumatoid arthritis and other inflammatory disorders. In primary analyses, we investigated the score in relation to rheumatoid arthritis and four cardiometabolic diseases (type 2 diabetes, coronary heart disease, ischaemic stroke, and abdominal aortic aneurysm; 453 411 total participants). In exploratory analyses, we studied the relation of the score to many disease traits and to 24 other disorders of proposed relevance to IL-1 signalling (746 171 total participants). Findings For each IL1RN minor allele inherited, serum concentrations of IL-1Ra increased by 0·22 SD (95% CI 0·18–0·25; 12·5%; p=9·3 × 10−33), concentrations of interleukin 6 decreased by 0·02 SD (−0·04 to −0·01; −1·7%; p=3·5 × 10−3), and concentrations of C-reactive protein decreased by 0·03 SD (−0·04 to −0·02; −3·4%; p=7·7 × 10−14). We noted the effects of the genetic score on these inflammation biomarkers to be directionally concordant with those of anakinra. The allele count of the genetic score had roughly log-linear, dose-dependent associations with both IL-1Ra concentration and risk of coronary heart disease. For people who carried four IL-1Ra-raising alleles, the odds ratio for coronary heart disease was 1·15 (1

  11. Spontaneous secretion of interleukin 1 receptor antagonist (IL-1ra) by cells isolated from herniated lumbar discal tissue after discectomy.

    PubMed

    Koch, H; Reinecke, J A; Meijer, H; Wehling, P

    1998-09-01

    In the study presented, cells of a herniated lumbar disc were cultivated in vitro and analysed for interleukin 1beta (IL-1beta) and interleukin 1 receptor antagonist (IL-1Ra) production. The objective of this study was the detection of IL-1beta and IL-1Ra secreted by herniated lumbar discal cells after discectomy. The involvement of cytokines in the degeneration of intervertebral discs and in the pathophysiology of radiculopathy is established. Antagonizing proteins, e.g. IL-1Ra are thought to have considerable therapeutic potential. In the present study, a 51-year-old male with massive sequestrated lumbar disc herniation at L5/S1 was treated by microsurgical discectomy. Discal cells were isolated, cultures and culture supernatants immunochemically analysed for IL-1beta and IL-1Ra secretion. Spontaneous secretion of IL-1Ra was found. IL-1beta was not detected. Our findings might contradict recent studies on the role of IL-1beta and IL-1Ra. A possible therapeutic role of exogenous IL-1Ra in disc degeneration needs further research. PMID:9770331

  12. Distribution of type I interleukin-1 receptor messenger RNA in testis: an in situ histochemical study in the mouse.

    PubMed

    Cunningham, E T; Wada, E; Carter, D B; Tracey, D E; Battey, J F; De Souza, E B

    1992-07-01

    The cytokine interleukin-1 (IL-1) has been reported to inhibit the hypothalamic-pituitary-gonadal axis, both through actions in brain and at the gonadal level. Recently, high affinity binding sites for 125I-recombinant human IL-1 alpha have been identified in the mouse testis with characteristics similar to those of type I IL-1 receptors on T lymphocytes and fibroblasts. The present study employed in situ hybridization histochemistry with 35S-labeled antisense cRNA probes derived from a murine type I IL-1 receptor cDNA to identify type I IL-1 receptor mRNA in the mouse testis. An intense signal was observed over interstitial cells, and over the cytoplasm of the epithelium of epididymal ducts, most prominently in the head region. The signal over seminiferous tubules, and over sperm cells within tubules and epididymal ducts, was comparable to background. This distribution of type I IL-1 receptor mRNA was similar to that recently reported for 125(I)I-IL-1-alpha binding sites, and supports evidence implicating IL-1 as a direct regulator of gonadal function.

  13. Oligonucleotides antisense to the interleukin 1 receptor mRNA block the effects of interleukin 1 in cultured murine and human fibroblasts and in mice.

    PubMed Central

    Burch, R M; Mahan, L C

    1991-01-01

    Phosphodiester and phosphorothioate oligodeoxynucleotides (18 mers) were constructed antisense to sequences of the recently cloned murine and human IL-1 receptors. Murine antisense oligonucleotides inhibited IL-1-stimulated PGE2 synthesis by murine fibroblasts in culture in a time (days) and concentration-dependent (3 microM-30 microM) fashion. Murine sense oligonucleotide and an oligonucleotide antisense to human IL-1 receptor were without effect. Moreover, murine antisense oligonucleotides did not affect tumor necrosis factor- or bradykinin-stimulated PGE2 synthesis by murine fibroblasts. Similarly, antisense oligonucleotides to the human, but not the murine, IL-1 receptor inhibited IL-1-stimulated PGE2 synthesis by cultured human fibroblasts. The attenuation of the cellular response to IL-1 caused by the antisense oligonucleotides correlated with a loss in cell surface receptors for IL-1, without any change in the number of bradykinin receptors on these cells. When antisense oligonucleotides were encapsulated in liposomes, they blocked completely the appearance of newly synthesized IL-1 receptors and IL-1-stimulated PGE2 synthesis. In mice, subcutaneous injection with an oligonucleotide antisense to the murine IL-1 receptor markedly inhibited the infiltration of neutrophils in response to subsequent injection of IL-1. These data suggest that antisense oligodeoxynucleotides may share a role in the design of antiinflammatory therapeutics. Images PMID:1833422

  14. Immunoglobulin D enhances the release of tumor necrosis factor-alpha, and interleukin-1 beta as well as interleukin-1 receptor antagonist from human mononuclear cells.

    PubMed Central

    Drenth, J P; Göertz, J; Daha, M R; van der Meer, J W

    1996-01-01

    Immunoglobulin D (IgD) is normally present in only low concentrations in serum. In the hyper-IgD and periodic fever syndrome (HIDS), however, serum levels exceed 140 mg/l. This syndrome is further characterized by recurrent inflammatory febrile attacks together with an acute phase response and appearance of cytokines in the circulation. The role of IgD in the pathogenesis of HIDS and its relation to the increased cytokine concentrations is unclear. Therefore, we tested whether IgD, IgG and alpha 1-acid glycoprotein (AGP) isolated from human serum influence the synthesis of interleukin-1 beta (IL-1 beta), tumour necrosis factor-alpha (TNF-alpha), and IL-1ra, as measured by specific radioimmunoassays, in human peripheral blood mononuclear cells (PBMC). Incubation of PBMC with IgD and AGP for 24 hr led to increased release of IL-1 beta, TNF-alpha, and IL-lra. The magnitude of stimulation of IgD exceeded that of AGP; the effect by IgD was dose-dependent and showed a 30-fold (TNF-alpha) to almost 150-fold (IL-1 beta) increase at the highest concentration (50 mg/l), while AGP (750 micrograms/ml) only increased the cytokine secretion fourfold (TNF-alpha) to almost 30-fold (IL-1 beta). The effect of IgD on IL-1ra was less dramatic but a fivefold increase was observed at 50 mg/l compared with a 2.5-fold increase with AGP. IgD potentiated the effect of lipopolysaccharide (LPS) on secretion of both IL-1 beta and TNF-alpha, although the effect was most apparent for TNF-alpha. Apart from inducing IL-1ra synthesis, IgG did not influence cytokine release in human PBMC. These data indicate that IgD is a potent inducer of TNF-alpha, IL-1 beta and IL-1ra and thus may contribute to the pathogenesis of HIDS. Images Figure 1 PMID:8774350

  15. Structure and function of chicken interleukin-1 beta mutants: uncoupling of receptor binding and in vivo biological activity

    PubMed Central

    Chen, Wen-Ting; Huang, Wen-Yang; Chen, Ting; Salawu, Emmanuel Oluwatobi; Wang, Dongli; Lee, Yi-Zong; Chang, Yuan-Yu; Yang, Lee-Wei; Sue, Shih-Che; Wang, Xinquan; Yin, Hsien-Sheng

    2016-01-01

    Receptor-binding and subsequent signal-activation of interleukin-1 beta (IL-1β) are essential to immune and proinflammatory responses. We mutated 12 residues to identify sites important for biological activity and/or receptor binding. Four of these mutants with mutations in loop 9 (T117A, E118K, E118A, E118R) displayed significantly reduced biological activity. Neither T117A nor E118K mutants substantially affected receptor binding, whereas both mutants lack the IL-1β signaling in vitro but can antagonize wild-type (WT) IL-1β. Crystal structures of T117A, E118A, and E118K revealed that the secondary structure or surface charge of loop 9 is dramatically altered compared with that of wild-type chicken IL-1β. Molecular dynamics simulations of IL-1β bound to its receptor (IL-1RI) and receptor accessory protein (IL-1RAcP) revealed that loop 9 lies in a pocket that is formed at the IL-1RI/IL-1RAcP interface. This pocket is also observed in the human ternary structure. The conformations of above mutants in loop 9 may disrupt structural packing and therefore the stability in a chicken IL-1β/IL-1RI/IL-1RAcP signaling complex. We identify the hot spots in IL-1β that are essential to immune responses and elucidate a mechanism by which IL-1β activity can be inhibited. These findings should aid in the development of new therapeutics that neutralize IL-1 activity. PMID:27278931

  16. Interleukin-1β Upregulates Functional Expression of Neurokinin-1 Receptor (NK-1R) via NF-κB in Astrocytes

    PubMed Central

    GUO, CHANG-JIANG; DOUGLAS, STEVEN D.; GAO, ZHIYONG; WOLF, BRYAN A.; GRINSPAN, JUDITH; LAI, JIAN-PING; RIEDEL, ERIC; HO, WEN-ZHE

    2014-01-01

    Cytokines and neuropeptides are modulators of neuroimmunoregulation in the central nervous system (CNS). The interaction of these modulators may have important implications in CNS diseases. We investigated whether interleukin-1β (IL-1β) modulates the expression of neurokinin-1 receptor (NK-1R), the primary receptor for substance P (SP), a potent neuropeptide in the CNS. IL-1β upregulated NK-1R expression in human astroglioma cells (U87 MG) and primary rat astrocytes at both mRNA and protein levels. IL-1β treatment of U87 MG cells and primary rat astrocytes led to an increase in cytosolic Ca2+ in response to SP stimulation, indicating that IL-1β-induced NK-1R is functional. CP-96,345, a specific non-peptide NK-1R antagonist, inhibited SP-induced rise of [Ca2+]i in the astroglioma cells. Investigation of the mechanism responsible for IL-1β action revealed that IL-1β has the ability of activating nuclear factor-κb (NF-κB). Caffeic acid phenethyl ester (CAPE), a specific inhibitor of NF-κB activation, not only abrogated IL-1β-induced NF-κB promoter activation, but also blocked IL-1β-mediated induction of NK-1R gene expression. These findings provide additional evidence that there is a biological interaction between IL-1β and the neuropeptide SP in the CNS, which may have important implications in the inflammatory diseases in the CNS. PMID:15390113

  17. Potential therapeutic uses of interleukin 1 receptor antagonists in human diseases

    PubMed Central

    Hallegua, D; Weisman, M

    2002-01-01

    Methods: The National Library of Medicine's PubMed database was searched for articles about pharmaceutical agents that reduce the biological actions of IL1. Results: Fish oils and corticosteroids were identified as non-selective pharmacological interventions that reduce the activity of IL1, whereas a recombinant human IL1 receptor antagonist (anakinra) and a soluble recombinant type I IL1 receptor act selectively. To date, anakinra is the only selective intervention that has been shown in controlled clinical trials to be effective and well tolerated in the treatment of a specific human disorder, RA. In controlled clinical trials, anakinra provided significant clinical improvement and slowed radiographic disease progression in patients with active RA. Moreover, addition of anakinra to existing methotrexate treatment significantly reduced signs and symptoms of active disease. Conclusions: The clinical use of anakinra has been demonstrated in the management of RA, but blocking of IL1 in other human disorders, as well as the safety of the use of these blocking agents in chronic diseases, still needs to be defined by controlled clinical investigations. PMID:12379516

  18. Proline-Directed Androgen Receptor Phosphorylation

    PubMed Central

    Gao, Yanfei; Chen, Shaoyong

    2015-01-01

    The androgen receptor (AR) has been identified for decades and mediates essential steroid functions. Like most of biological molecules, AR functional activities are modulated by post-translational modifications. This review is focused on the reported activities and significance of AR phosphorylation, with particular emphasis on proline-directed serine/threonine phosphorylation that occurs predominantly on the receptor. The marked enrichment of AR phosphorylation in the most diverse N-terminal domain suggests that targeting AR phosphorylation can be synergistic to antagonizing the C-terminal domain by clinical antiandrogens. PMID:25866551

  19. Interleukin-6 expression and histomorphometry of bones from mice deficient in receptors for interleukin-1 or tumor necrosis factor.

    PubMed

    Vargas, S J; Naprta, A; Glaccum, M; Lee, S K; Kalinowski, J; Lorenzo, J A

    1996-11-01

    We examined the roles of interleukin-1 Type I receptor (IL-1R1) and tumor necrosis factor receptor 1 (TNFR1) in bone metabolism using mice rendered deficient in these receptors by gene targeting. Sections of decalcified paraffin-embedded calvariae and humeri from 11- to 12-week-old mice deficient in IL-1 Type I receptor (IL-1R1-/-) or TNF receptor 1 (TNFR1-/-) were examined by histomorphometry. Wild-type mice (C57BL/6J x 129/J, WILD) served as controls. Interleukin-6 (IL-6) production in primary osteoblastic and bone marrow stromal cell cultures in response to parathyroid hormone (PTH, 100 ng/ml), IL-1 alpha (10 ng/ml), and TNF-alpha (10 ng/ml) was also examined. IL-1R1-/- and TNFR1-/- mice were viable and appeared phenotypically normal. However, the body weights of the IL-1R1-/- mice were 30% less than WILD, while the TNFR1-/- mice weighed 30% more than WILD mice of equivalent age. Calvariae and humeri of IL-1R1-/- and TNFR1-/- mice were normal with respect to trabecular bone volume, osteoclast number, osteoclast surface, growth plate widths, and cortical thickness. Receptor deficiency was confirmed by determining the ability of PTH, IL-1 alpha, and TNF-alpha to stimulate IL-6 in the media of primary calvaria-derived osteoblastic cell cultures from CD-1 and cytokine receptor-deficient mice. After 24 h of treatment, IL-1 alpha and TNF-alpha did not stimulate IL-6 production in osteoblasts from IL-1R1-/- and TNFR1-/- mice, respectively. In contrast, PTH increased IL-6 levels in the cells from all mice. IL-6 protein levels in bone marrow supernatants and conditioned media from untreated bone marrow stromal cells were undetectable in WILD, IL-1R1-/-, and TNFR1-/- mice. PTH, IL-1 alpha and TNF-alpha increased IL-6 mRNA and protein production in the WILD bone marrow stromal cells. In contrast, PTH and TNF-alpha increased IL-6 mRNA and protein levels in IL-1R1-/- bone marrow stromal cells while IL-1 alpha had no effect. These findings demonstrate that normal bone

  20. Inflammatory bone loss in experimental periodontitis induced by Aggregatibacter actinomycetemcomitans in interleukin-1 receptor antagonist knockout mice.

    PubMed

    Izawa, A; Ishihara, Y; Mizutani, H; Kobayashi, S; Goto, H; Okabe, E; Takeda, H; Ozawa, Y; Kamiya, Y; Sugita, Y; Kubo, K; Kamei, H; Kikuchi, T; Mitani, A; Hayashi, J; Nishihara, T; Maeda, H; Noguchi, T

    2014-05-01

    The interleukin-1 receptor antagonist (IL-1Ra) binds to IL-1 receptors and inhibits IL-1 activity. However, it is not clear whether IL-1Ra plays a protective role in periodontal disease. This study was undertaken to compare experimental periodontitis induced by Aggregatibacter actinomycetemcomitans in IL-1Ra knockout (KO) mice and wild-type (WT) mice. Computed tomography (CT) analysis and hematoxylin-and-eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining were performed. In addition, osteoblasts were isolated; the mRNA expression of relevant genes was assessed by real-time quantitative PCR (qPCR); and calcification was detected by Alizarin Red staining. Infected IL-1Ra KO mice exhibited elevated (P, <0.05) levels of antibody against A. actinomycetemcomitans, bone loss in furcation areas, and alveolar fenestrations. Moreover, protein for tumor necrosis factor alpha (TNF-α) and IL-6, mRNA for macrophage colony-stimulating factor (M-CSF), and receptor activator of NF-κB ligand (RANKL) in IL-1Ra KO mouse osteoblasts stimulated with A. actinomycetemcomitans were increased (P, <0.05) compared to in WT mice. Alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OCN)/bone gla protein (BGP), and runt-related gene 2 (Runx2) mRNA levels were decreased (P, <0.05). IL-1α mRNA expression was increased, and calcification was not observed, in IL-1 Ra KO mouse osteoblasts. In brief, IL-1Ra deficiency promoted the expression of inflammatory cytokines beyond IL-1 and altered the expression of genes involved in bone resorption in A. actinomycetemcomitans-infected osteoblasts. Alterations consistent with rapid bone loss in infected IL-Ra KO mice were also observed for genes expressed in bone formation and calcification. In short, these data suggest that IL-1Ra may serve as a potential therapeutic drug for periodontal disease.

  1. Inflammatory bone loss in experimental periodontitis induced by Aggregatibacter actinomycetemcomitans in interleukin-1 receptor antagonist knockout mice.

    PubMed

    Izawa, A; Ishihara, Y; Mizutani, H; Kobayashi, S; Goto, H; Okabe, E; Takeda, H; Ozawa, Y; Kamiya, Y; Sugita, Y; Kubo, K; Kamei, H; Kikuchi, T; Mitani, A; Hayashi, J; Nishihara, T; Maeda, H; Noguchi, T

    2014-05-01

    The interleukin-1 receptor antagonist (IL-1Ra) binds to IL-1 receptors and inhibits IL-1 activity. However, it is not clear whether IL-1Ra plays a protective role in periodontal disease. This study was undertaken to compare experimental periodontitis induced by Aggregatibacter actinomycetemcomitans in IL-1Ra knockout (KO) mice and wild-type (WT) mice. Computed tomography (CT) analysis and hematoxylin-and-eosin (H&E) and tartrate-resistant acid phosphatase (TRAP) staining were performed. In addition, osteoblasts were isolated; the mRNA expression of relevant genes was assessed by real-time quantitative PCR (qPCR); and calcification was detected by Alizarin Red staining. Infected IL-1Ra KO mice exhibited elevated (P, <0.05) levels of antibody against A. actinomycetemcomitans, bone loss in furcation areas, and alveolar fenestrations. Moreover, protein for tumor necrosis factor alpha (TNF-α) and IL-6, mRNA for macrophage colony-stimulating factor (M-CSF), and receptor activator of NF-κB ligand (RANKL) in IL-1Ra KO mouse osteoblasts stimulated with A. actinomycetemcomitans were increased (P, <0.05) compared to in WT mice. Alkaline phosphatase (ALP), bone sialoprotein (BSP), osteocalcin (OCN)/bone gla protein (BGP), and runt-related gene 2 (Runx2) mRNA levels were decreased (P, <0.05). IL-1α mRNA expression was increased, and calcification was not observed, in IL-1 Ra KO mouse osteoblasts. In brief, IL-1Ra deficiency promoted the expression of inflammatory cytokines beyond IL-1 and altered the expression of genes involved in bone resorption in A. actinomycetemcomitans-infected osteoblasts. Alterations consistent with rapid bone loss in infected IL-Ra KO mice were also observed for genes expressed in bone formation and calcification. In short, these data suggest that IL-1Ra may serve as a potential therapeutic drug for periodontal disease. PMID:24566623

  2. Involvement of interleukin-1 receptor mechanisms in development of arterial hypotension in rat heatstroke.

    PubMed

    Lin, M T; Liu, H H; Yang, Y L

    1997-10-01

    Rats, under urethan anesthesia, were exposed to a high ambient temperature (42 degrees C) to induce heatstroke and to assess the hemodynamic changes associated with heatstroke. Compared with normothermic controls, rats with heatstroke showed higher values of colonic temperature, heart rate, and plasma levels of interleukin (IL)-1 but lower values of R wave amplitude, P-R and Q-T intervals, systolic wave amplitude, diastolic and dicrotic wave duration, mean arterial pressure, stroke volume, and cardiac output. Animals injected intravenously with an IL-1-receptor antagonist at the time of heatstroke induction were protected from some of the cardiovascular effects of heatstroke, such as depressed ventricular depolarization, decreased stroke volume, decreased cardiac output, and arterial hypotension. The hemodynamic changes associated with heatstroke could be mimicked by IL-1beta administration. Other cardiovascular parameters such as total peripheral vascular resistance were unaffected by heatstroke induction or IL-1beta treatment. The results indicate that a selective decline in stroke volume or ventricular depolarization resulting from increased plasma levels of IL-1 may be an important mechanism signaling arterial hypotension or circulatory failure in rat heatstroke.

  3. Genetic polymorphisms of interleukin-1 alpha and the vitamin d receptor in mexican mestizo patients with intervertebral disc degeneration.

    PubMed

    Cervin Serrano, Salvador; González Villareal, Dalia; Aguilar-Medina, Maribel; Romero-Navarro, Jose Guillermo; Romero Quintana, Jose Geovanni; Arámbula Meraz, Eliakym; Osuna Ramírez, Ignacio; Picos-Cárdenas, Veronica; Granados, Julio; Estrada-García, Iris; Sánchez-Schmitz, Guzman; Ramos-Payán, Rosalío

    2014-01-01

    Intervertebral disc degeneration (IDD) is the most common diagnosis in patients with back pain, a leading cause of musculoskeletal disability worldwide. Several conditions, such as occupational activities, gender, age, and obesity, have been associated with IDD. However, the development of this disease has strong genetic determinants. In this study, we explore the possible association between rs1800587 (c.-949C>T) of interleukin-1 alpha (IL1A) and rs2228570 (c.2T>V) and rs731236 (c.1056T>C) of vitamin D receptor (VDR) gene polymorphisms and the development of IDD in northwestern Mexican Mestizo population. Gene polymorphisms were analyzed by polymerase chain reaction followed by restriction fragment length polymorphism, in two groups matched by age and gender: patients with symptomatic lumbar IDD (n = 100) and subjects with normal lumbar-spine MRI-scans (n = 100). Distribution of the mutated alleles in patients and controls was 27.0% versus 28.0% (P = 0.455) for T of rs1800587 (IL1A); 53.0% versus 58.0% (P = 0.183) for V of rs2228570 (VDR); and 18.0% versus 21.0% (P = 0.262) for C of rs731236 (VDR). Our results showed no association between the studied polymorphisms and IDD in this population. This is the first report on the contribution of gene polymorphisms on IDD in a Mexican population.

  4. Genetic Polymorphisms of Interleukin-1 Alpha and the Vitamin D Receptor in Mexican Mestizo Patients with Intervertebral Disc Degeneration

    PubMed Central

    Cervin Serrano, Salvador; González Villareal, Dalia; Aguilar-Medina, Maribel; Romero-Navarro, Jose Guillermo; Romero Quintana, Jose Geovanni; Arámbula Meraz, Eliakym; Osuna Ramírez, Ignacio; Picos-Cárdenas, Veronica; Granados, Julio; Estrada-García, Iris; Sánchez-Schmitz, Guzman; Ramos-Payán, Rosalío

    2014-01-01

    Intervertebral disc degeneration (IDD) is the most common diagnosis in patients with back pain, a leading cause of musculoskeletal disability worldwide. Several conditions, such as occupational activities, gender, age, and obesity, have been associated with IDD. However, the development of this disease has strong genetic determinants. In this study, we explore the possible association between rs1800587 (c.-949C>T) of interleukin-1 alpha (IL1A) and rs2228570 (c.2T>V) and rs731236 (c.1056T>C) of vitamin D receptor (VDR) gene polymorphisms and the development of IDD in northwestern Mexican Mestizo population. Gene polymorphisms were analyzed by polymerase chain reaction followed by restriction fragment length polymorphism, in two groups matched by age and gender: patients with symptomatic lumbar IDD (n = 100) and subjects with normal lumbar-spine MRI-scans (n = 100). Distribution of the mutated alleles in patients and controls was 27.0% versus 28.0% (P = 0.455) for T of rs1800587 (IL1A); 53.0% versus 58.0% (P = 0.183) for V of rs2228570 (VDR); and 18.0% versus 21.0% (P = 0.262) for C of rs731236 (VDR). Our results showed no association between the studied polymorphisms and IDD in this population. This is the first report on the contribution of gene polymorphisms on IDD in a Mexican population. PMID:25506053

  5. Effects of an interleukin-1 receptor antagonist on human sleep, sleep-associated memory consolidation, and blood monocytes.

    PubMed

    Schmidt, Eva-Maria; Linz, Barbara; Diekelmann, Susanne; Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2015-07-01

    Pro-inflammatory cytokines like interleukin-1 beta (IL-1) are major players in the interaction between the immune system and the central nervous system. Various animal studies report a sleep-promoting effect of IL-1 leading to enhanced slow wave sleep (SWS). Moreover, this cytokine was shown to affect hippocampus-dependent memory. However, the role of IL-1 in human sleep and memory is not yet understood. We administered the synthetic IL-1 receptor antagonist anakinra (IL-1ra) in healthy humans (100mg, subcutaneously, before sleep; n=16) to investigate the role of IL-1 signaling in sleep regulation and sleep-dependent declarative memory consolidation. Inasmuch monocytes have been considered a model for central nervous microglia, we monitored cytokine production in classical and non-classical blood monocytes to gain clues about how central nervous effects of IL-1ra are conveyed. Contrary to our expectation, IL-1ra increased EEG slow wave activity during SWS and non-rapid eye movement (NonREM) sleep, indicating a deepening of sleep, while sleep-associated memory consolidation remained unchanged. Moreover, IL-1ra slightly increased prolactin and reduced cortisol levels during sleep. Production of IL-1 by classical monocytes was diminished after IL-1ra. The discrepancy to findings in animal studies might reflect species differences and underlines the importance of studying cytokine effects in humans. PMID:25535859

  6. Effects of an interleukin-1 receptor antagonist on human sleep, sleep-associated memory consolidation, and blood monocytes.

    PubMed

    Schmidt, Eva-Maria; Linz, Barbara; Diekelmann, Susanne; Besedovsky, Luciana; Lange, Tanja; Born, Jan

    2015-07-01

    Pro-inflammatory cytokines like interleukin-1 beta (IL-1) are major players in the interaction between the immune system and the central nervous system. Various animal studies report a sleep-promoting effect of IL-1 leading to enhanced slow wave sleep (SWS). Moreover, this cytokine was shown to affect hippocampus-dependent memory. However, the role of IL-1 in human sleep and memory is not yet understood. We administered the synthetic IL-1 receptor antagonist anakinra (IL-1ra) in healthy humans (100mg, subcutaneously, before sleep; n=16) to investigate the role of IL-1 signaling in sleep regulation and sleep-dependent declarative memory consolidation. Inasmuch monocytes have been considered a model for central nervous microglia, we monitored cytokine production in classical and non-classical blood monocytes to gain clues about how central nervous effects of IL-1ra are conveyed. Contrary to our expectation, IL-1ra increased EEG slow wave activity during SWS and non-rapid eye movement (NonREM) sleep, indicating a deepening of sleep, while sleep-associated memory consolidation remained unchanged. Moreover, IL-1ra slightly increased prolactin and reduced cortisol levels during sleep. Production of IL-1 by classical monocytes was diminished after IL-1ra. The discrepancy to findings in animal studies might reflect species differences and underlines the importance of studying cytokine effects in humans.

  7. Local interleukin-1-driven joint pathology is dependent on toll-like receptor 4 activation.

    PubMed

    Abdollahi-Roodsaz, Shahla; Joosten, Leo A B; Koenders, Marije I; van den Brand, Ben T; van de Loo, Fons A J; van den Berg, Wim B

    2009-11-01

    Toll-like receptors (TLRs) may contribute to the pathogenesis of chronic inflammatory destructive diseases through the recognition of endogenous ligands produced on either inflammation or degeneration of the extracellular matrix. The presence of endogenous TLR agonists has been reported in rheumatoid joints. In the present study, we investigated the significance of TLR2 and TLR4 activation by locally- produced endogenous ligands in the severity of joint inflammation and destruction. Local joint pathology independent of systemic immune activation was induced by overexpression of interleukin (IL)-1 and TNF in naive joints using adenoviral gene transfer. Here, we report that at certain doses, IL-1-induced local joint inflammation, cartilage proteoglycan depletion, and bone erosion are dependent on TLR4 activation, whereas TLR2 activation is not significantly involved. In comparison, tumor necrosis factor alpha-driven joint pathology seemed to be less dependent on TLR2 and TLR4. The severity of IL-1-induced bone erosion and irreversible cartilage destruction was markedly reduced in TLR4(-/-) mice, even though the degree of inflammation was similar, suggesting uncoupled processes. Furthermore, the expression of cathepsin K, a marker for osteoclast activity, induced by IL-1beta was dependent on TLR4. Overexpression of IL-1beta in the joint as well as ex vivo IL-1 stimulation of patellae provoked the release of endogenous TLR4 agonists capable of inducing TLR4-mediated cytokine production. These data emphasize the potential relevance of TLR4 activation in rheumatoid arthritis, particularly with respect to IL-1-mediated joint pathology.

  8. Effect of an interleukin-1 receptor antagonist on the hemodynamic manifestations of group B streptococcal sepsis.

    PubMed

    Vallette, J D; Goldberg, R N; Suguihara, C; Del Moral, T; Martinez, O; Lin, J; Thompson, R C; Bancalari, E

    1995-11-01

    IL-1 is purported to be a proximal mediator in the cascade leading to septic shock. To characterize its hemodynamic effects and to ascertain whether its blockade would ameliorate the deleterious consequences of sepsis, an IL-1 receptor antagonist (IL-1ra) was administered to 16 anesthetized, mechanically ventilated piglets that received a continuous infusion of group B streptococci (GBS) (7.5 x 10(7) colony-forming units/kg/min). Systemic (Psa), pulmonary artery (Ppa), and wedge (Pwp) pressures and cardiac output were measured pre-GBS and every 30 min during GBS infusion. After 15 min of bacterial infusion the control group received normal saline, whereas the treatment group received a bolus of IL-1ra (40 mg/kg) followed by a continuous infusion of IL-1ra (60 micrograms/kg/min). In comparing IL-1ra-treated animals with controls from the 15-min GBS baseline to the succeeding septic study period (45-120 min), the following treatment effects were noted (120-min values shown): mean Psa remained elevated in treatment compared with control animals (12.7 +/- 2.5 versus 9 +/- 3.5 kPa; p < 0.001) as did CO (0.21 +/- 0.07 versus 0.13 +/- 0.08 L/min/kg; p < 0.001). Pwp decreased in the treatment compared to the control group over the study period (1 +/- 0.3 versus 1.6 +/- 0.7 kPa; p < 0.02). Mean Ppa and mean Pra were not different between groups over time. Median length of survival was significantly longer (p = 0.04) in treated (226 min) compared with control animals (150 min). These data suggest that IL-1 plays an important role in GBS sepsis and septic shock, and that IL-1ra may in part ameliorate the cardiovascular alterations associated with GBS sepsis in the neonate.

  9. Genetic determinants of circulating interleukin-1 receptor antagonist levels and their association with glycemic traits.

    PubMed

    Herder, Christian; Nuotio, Marja-Liisa; Shah, Sonia; Blankenberg, Stefan; Brunner, Eric J; Carstensen, Maren; Gieger, Christian; Grallert, Harald; Jula, Antti; Kähönen, Mika; Kettunen, Johannes; Kivimäki, Mika; Koenig, Wolfgang; Kristiansson, Kati; Langenberg, Claudia; Lehtimäki, Terho; Luotola, Kari; Marzi, Carola; Müller, Christian; Peters, Annette; Prokisch, Holger; Raitakari, Olli; Rathmann, Wolfgang; Roden, Michael; Salmi, Marko; Schramm, Katharina; Swerdlow, Daniel; Tabak, Adam G; Thorand, Barbara; Wareham, Nick; Wild, Philipp S; Zeller, Tanja; Hingorani, Aroon D; Witte, Daniel R; Kumari, Meena; Perola, Markus; Salomaa, Veikko

    2014-12-01

    The proinflammatory cytokine interleukin (IL)-1β is implicated in the development of insulin resistance and β-cell dysfunction, whereas higher circulating levels of IL-1 receptor antagonist (IL-1RA), an endogenous inhibitor of IL-1β, has been suggested to improve glycemia and β-cell function in patients with type 2 diabetes. To elucidate the protective role of IL-1RA, this study aimed to identify genetic determinants of circulating IL-1RA concentration and to investigate their associations with immunological and metabolic variables related to cardiometabolic risk. In the analysis of seven discovery and four replication cohort studies, two single nucleotide polymorphisms (SNPs) were independently associated with circulating IL-1RA concentration (rs4251961 at the IL1RN locus [n = 13,955, P = 2.76 × 10(-21)] and rs6759676, closest gene locus IL1F10 [n = 13,994, P = 1.73 × 10(-17)]). The proportion of the variance in IL-1RA explained by both SNPs combined was 2.0%. IL-1RA-raising alleles of both SNPs were associated with lower circulating C-reactive protein concentration. The IL-1RA-raising allele of rs6759676 was also associated with lower fasting insulin levels and lower HOMA insulin resistance. In conclusion, we show that circulating IL-1RA levels are predicted by two independent SNPs at the IL1RN and IL1F10 loci and that genetically raised IL-1RA may be protective against the development of insulin resistance. PMID:24969107

  10. Genetic Determinants of Circulating Interleukin-1 Receptor Antagonist Levels and Their Association With Glycemic Traits

    PubMed Central

    Nuotio, Marja-Liisa; Shah, Sonia; Blankenberg, Stefan; Brunner, Eric J.; Carstensen, Maren; Gieger, Christian; Grallert, Harald; Jula, Antti; Kähönen, Mika; Kettunen, Johannes; Kivimäki, Mika; Koenig, Wolfgang; Kristiansson, Kati; Langenberg, Claudia; Lehtimäki, Terho; Luotola, Kari; Marzi, Carola; Müller, Christian; Peters, Annette; Prokisch, Holger; Raitakari, Olli; Rathmann, Wolfgang; Roden, Michael; Salmi, Marko; Schramm, Katharina; Swerdlow, Daniel; Tabak, Adam G.; Thorand, Barbara; Wareham, Nick; Wild, Philipp S.; Zeller, Tanja; Hingorani, Aroon D.; Witte, Daniel R.; Kumari, Meena; Perola, Markus; Salomaa, Veikko

    2014-01-01

    The proinflammatory cytokine interleukin (IL)-1β is implicated in the development of insulin resistance and β-cell dysfunction, whereas higher circulating levels of IL-1 receptor antagonist (IL-1RA), an endogenous inhibitor of IL-1β, has been suggested to improve glycemia and β-cell function in patients with type 2 diabetes. To elucidate the protective role of IL-1RA, this study aimed to identify genetic determinants of circulating IL-1RA concentration and to investigate their associations with immunological and metabolic variables related to cardiometabolic risk. In the analysis of seven discovery and four replication cohort studies, two single nucleotide polymorphisms (SNPs) were independently associated with circulating IL-1RA concentration (rs4251961 at the IL1RN locus [n = 13,955, P = 2.76 × 10−21] and rs6759676, closest gene locus IL1F10 [n = 13,994, P = 1.73 × 10−17]). The proportion of the variance in IL-1RA explained by both SNPs combined was 2.0%. IL-1RA–raising alleles of both SNPs were associated with lower circulating C-reactive protein concentration. The IL-1RA–raising allele of rs6759676 was also associated with lower fasting insulin levels and lower HOMA insulin resistance. In conclusion, we show that circulating IL-1RA levels are predicted by two independent SNPs at the IL1RN and IL1F10 loci and that genetically raised IL-1RA may be protective against the development of insulin resistance. PMID:24969107

  11. Vascular expression of E-selectin is increased in estrogen-receptor-negative breast cancer: a role for tumor-cell-secreted interleukin-1 alpha.

    PubMed Central

    Nguyen, M.; Corless, C. L.; Kräling, B. M.; Tran, C.; Atha, T.; Bischoff, J.; Barsky, S. H.

    1997-01-01

    Angiogenesis plays an important role in breast cancer growth and metastasis. Multiple adhesion molecules have been shown to perform critical functions in the process of angiogenesis. In this study, we analyzed 15 benign and 22 malignant estrogen-receptor-negative and estrogen-receptor-positive breast specimens for the presence of the endothelial cell adhesion molecules E-selectin and P-selectin. We found that E-selectin's expression was increased in the malignant breast tumors compared with their benign counterparts (23.86% of blood vessels versus 2.47%; P = 0.0005). Furthermore, E-selectin staining was found to be significantly increased in the estrogen-receptor-negative carcinomas compared with the estrogen-receptor-positive ones (P = 0.005). In vitro findings strongly correlated with the in vivo findings and showed a higher degree of E-selectin induction in endothelial cells exposed to conditioned media from estrogen-receptor-negative breast cancer cell lines than from estrogen-receptor-positive ones. The degree of E-selectin induction correlated with the amount of interleukin-1 alpha in the tumor-conditioned media. Neutralizing antibodies to interleukin-1 alpha significantly inhibited the E-selectin expression in endothelial cells exposed to tumor-conditioned media. The results indicate that the endothelial E-selectin expression during angiogenesis is related to breast carcinoma progression in vivo and that this component of angiogenesis may be due directly to tumor-cell-secreted interleukin-1 alpha. Images Figure 1 PMID:9094987

  12. Interleukin-1 receptor antagonist ameliorates experimental anti-glomerular basement membrane antibody-associated glomerulonephritis.

    PubMed Central

    Tang, W W; Feng, L; Vannice, J L; Wilson, C B

    1994-01-01

    The contribution of IL-1 to leukocyte infiltration in anti-glomerular basement membrane (GBM) antibody (Ab) glomerulonephritis (GN) was examined by the administration of a specific IL-1 receptor antagonist (IL-1ra). Lewis rats received anti-GBM Ab or normal rabbit serum and were treated with either 0.9% saline or 6 mg IL-1ra over a 24-h time period. Plasma IL-1ra concentration was 2,659 +/- 51 ng/ml 4 h after anti-GBM Ab and IL-1ra administration. PMN and monocyte/macrophage infiltration declined 39% (9.8 +/- 1.9 to 6.0 +/- 1.5 PMN/glomerulus, P < 0.001) and 29% (4.9 +/- 0.8 to 3.5 +/- 0.8 ED-1 cells/glomerulus, P = 0.002) with IL-1ra treatment at 4 h, respectively. Similarly, the number of glomerular cells staining for lymphocyte function-associated molecule-1 beta (CD18) declined 39% from 16.7 +/- 1.9 to 10.7 +/- 1.6 cells/glomerulus at 4 h (P = 0.0001). This was associated with a decrease in glomerular intracellular adhesion molecule-1 expression. The mean glomerular intracellular adhesion molecule-1 score in anti-GBM Ab GN rats treated with IL-1ra was less than that of rats administered anti-GBM Ab and 0.9% saline at 4 (2.0 +/- 0.2 vs 2.5 +/- 0.2, P < 0.05) and 24 (2.5 +/- 0.1 vs 3.1 +/- 0.2, P = 0.0001) h. These immunopathologic changes correlated with a 50% reduction in proteinuria from 147 +/- 34 to 75 +/- 25 mg/d (P < 0.002). Treatment with IL-1ra did not affect the steady state mRNA expression of either IL-1 beta or TNF alpha. An increase in the IL-1ra dose to 30 mg given within the initial 4 h provided no additional benefit. The decline in PMN and monocyte/macrophage infiltration of the glomerulus at 4 h was similar to that found in the initial study. Furthermore, the protective benefit of IL-1ra was abrogated by doubling the dose of the anti-GBM Ab GN, despite administering high dose IL-1ra (30 mg). In these studies, detectable IL-1ra was found in the serum of untreated anti-GBM Ab GN controls. These data suggest a positive yet limited role for IL-1ra in

  13. Recombinant Interleukin-1 Receptor Antagonist Conjugated to Superparamagnetic Iron Oxide Nanoparticles for Theranostic Targeting of Experimental Glioblastoma123

    PubMed Central

    Shevtsov, Maxim A.; Nikolaev, Boris P.; Yakovleva, Ludmila Y.; Dobrodumov, Anatolii V.; Zhakhov, Alexander V.; Mikhrina, Anastasiy L.; Pitkin, Emil; Parr, Marina A.; Rolich, Valerii I.; Simbircev, Andrei S.; Ischenko, Alexander M.

    2015-01-01

    Cerebral edema commonly accompanies brain tumors and contributes to neurologic symptoms. The role of the interleukin-1 receptor antagonist conjugated to superparamagnetic iron oxide nanoparticles (SPION–IL-1Ra) was assessed to analyze its anti-edemal effect and its possible application as a negative contrast enhancing agent for magnetic resonance imaging (MRI). Rats with intracranial C6 glioma were intravenously administered at various concentrations of IL-1Ra or SPION–IL-1Ra. Brain peritumoral edema following treatment with receptor antagonist was assessed with high-field MRI. IL-1Ra administered at later stages of tumor progression significantly reduced peritumoral edema (as measured by MRI) and prolonged two-fold the life span of comorbid animals in a dose-dependent manner in comparison to control and corticosteroid-treated animals (P < .001). Synthesized SPION–IL-1Ra conjugates had the properties of negative contrast agent with high coefficients of relaxation efficiency. In vitro studies of SPION–IL-1Ra nanoparticles demonstrated high intracellular incorporation and absence of toxic influence on C6 cells and lymphocyte viability and proliferation. Retention of the nanoparticles in the tumor resulted in enhanced hypotensive T2-weighted images of glioma, proving the application of the conjugates as negative magnetic resonance contrast agents. Moreover, nanoparticles reduced the peritumoral edema confirming the therapeutic potency of synthesized conjugates. SPION–IL-1Ra nanoparticles have an anti-edemal effect when administered through a clinically relevant route in animals with glioma. The SPION–IL-1Ra could be a candidate for theranostic approach in neuro-oncology both for diagnosis of brain tumors and management of peritumoral edema. PMID:25622897

  14. Dual regulation of mu opioid receptors in SK-N-SH neuroblastoma cells by morphine and interleukin-1β: evidence for opioid-immune crosstalk.

    PubMed

    Mohan, Shekher; Davis, Randall L; DeSilva, Udaya; Stevens, Craig W

    2010-10-01

    Treatment of SK-N-SH cells with morphine and interleukin-1beta (IL-1β) produced dual regulation of the mRNA for the human mu opioid receptor (MOR) protein. Morphine produced a decrease in the MOR mRNA while IL-1β increased it, as assessed by real-time quantitative PCR. These data were consistent with immunocytochemical studies of treated and untreated cells. Morphine-mediated down-regulation of MOR was blocked by naltrexone and IL-1β-induced up-regulation of MOR was blocked by interleukin-1 receptor type 1 antagonist. Immune-opioid crosstalk was examined by IL-1β and morphine co-treatment. These data are the first to show dual regulation of MOR in neuroblastoma cells.

  15. Evidence for interleukin-1-independent stimulation of interleukin-12 and down-regulation by interleukin-10 in Helicobacter pylori-infected murine dendritic cells deficient in the interleukin-1 receptor.

    PubMed

    Obonyo, Marygorret; Cole, Sheri P; Datta, Sandip K; Guiney, Donald G

    2006-08-01

    Helicobacter pylori infection is characterized by infiltration of cells of the immune system, including dendritic cells, into the gastric mucosa. During chronic inflammation with Helicobacter pylori infection, a variety of cytokines are secreted into the mucosa, including interleukin-1beta (IL-1beta). The role of IL-1 in H. pylori infection was investigated using bone-marrow-derived dendritic cells from wild-type and IL-1 receptor-deficient (IL-1R-/-) mice. Dendritic cells were incubated with H. pylori at a multiplicity of infection of 10 and 100, and cytokine production evaluated. Helicobacter pylori SS1, H. pylori SD4, and an isogenic cagE mutant of SD4 stimulated IL-12, IL-6, IL-1beta, IL-10, and tumor necrosis factor-alpha at comparable levels in dendritic cells from both wild-type and IL-1R-/- mice. IL-10 production required the higher inoculum, while IL-12 was decreased at this bacterial load. Pretreatment of dendritic cells with an antibody to IL-10 resulted in an increased production of IL-12, confirming the down-regulation of IL-12 by IL-10. cagE was required for maximum stimulation of IL-12 by H. pylori. We speculate that the down-regulation of IL-12 by IL-10 at the higher multiplicity of infection represents the modulation of the host inflammatory response in vivo by H. pylori when the bacterial load is high, allowing for persistent colonization of the gastric mucosa.

  16. Bone-protective effects of nonviral gene therapy with folate-chitosan DNA nanoparticle containing interleukin-1 receptor antagonist gene in rats with adjuvant-induced arthritis.

    PubMed

    Fernandes, Julio C; Wang, Huijie; Jreyssaty, Christian; Benderdour, Mohamed; Lavigne, Patrick; Qiu, Xingpin; Winnik, Francoise M; Zhang, Xiaoling; Dai, Kerong; Shi, Qin

    2008-07-01

    Interleukin-1 receptor antagonist (IL-1Ra), is a natural blocker of the inflammatory cytokine interleukin-1. Using a rat adjuvant-induced arthritis (AIA) model of rheumatoid arthritis (RA), we examined the protective effects of IL-1Ra in bone metabolism in vivo after folate-mediated nonviral gene delivery. We detected secreted human IL-1Ra protein in serum and cultured primary osteoblasts of rats that were treated with chitosan-IL-1Ra and folate-IL-1Ra-chitosan nanoparticles, respectively. In vivo, IL-1Ra gene delivery significantly reverted alterations in bone turnover observed in arthritic animals by modulating the level of osteocalcin (OC) as well as the activities of alkaline phosphatase and tartrate-resistant acid phosphatase. The protective effects of these nanoparticles were evident from the decrease in the expression levels of interleukine-1beta and prostaglandin E(2) as well as osteoclast number and other histopathological findings. Compared to naked DNA and chitosan-DNA, folate-chitosan-DNA nanoparticles were less cytotoxic and enhanced IL-1Ra protein synthesis in vitro and offered a better protection against inflammation and abnormal bone metabolism in vivo. Nonviral gene therapy with folate-chitosan-DNA nanoparticles containing the IL-1 Ra gene seemed to protect against bone damage and inflammation in rat adjuvant-induced arthritis model.

  17. Central activation of thermogenesis and fever by interleukin-1 beta and interleukin-1 alpha involves different mechanisms.

    PubMed

    Busbridge, N J; Dascombe, M J; Tilders, F J; van Oers, J W; Linton, E A; Rothwell, N J

    1989-07-31

    Interleukin-1 exists in two forms (alpha and beta) which are assumed to act on the same receptor. Both forms of the molecule stimulated fever and thermogenesis in the rat when injected into the brain, but interleukin-1 beta was more effective, and combined injection of alpha and beta elicited additive responses. The actions of interleukin-1 beta were inhibited by pretreatment of the animals with either a receptor antagonist or monoclonal antibody to corticotrophin releasing factor. The effects of interleukin-1 alpha were unaltered by these treatments. The results indicate that brain corticotrophin releasing factor mediates thermogenesis and fever induced by interleukin-1 beta but not by interleukin-1 alpha.

  18. Lipopolysaccharide and Raf-1 kinase regulate secretory interleukin-1 receptor antagonist gene expression by mutually antagonistic mechanisms.

    PubMed Central

    Guthridge, C J; Eidlen, D; Arend, W P; Gutierrez-Hartmann, A; Smith, M F

    1997-01-01

    Lipopolysaccharide (LPS) treatment of monocytic cells has been shown to activate the Raf-1/mitogen-activated protein kinase (MAPK) signaling pathway and to increase secretory interleukin-1 receptor antagonist (sIL-1Ra) gene expression. The significance of the activation of the Raf-1/MAPK signaling pathway to LPS regulation of sIL-1Ra gene expression, however, has not been determined. This study addresses the role of the Raf-1/MAPK signaling pathway in regulation of sIL-1Ra gene expression by LPS. Cotransfection of the murine macrophage cell line RAW 264.7 with a 294-bp sIL-1Ra promoter/luciferase construct (pRA-294-luc) and a constitutively active Raf-1 kinase expression vector (pRSV-Raf-BXB) resulted in induction of sIL-1Ra promoter activity, indicating that Raf-1, like LPS, can regulate sIL-1Ra promoter activity. An in vitro MAPK analysis indicated that both LPS treatment and pRSV-Raf-BXB transfection of RAW 264.7 cells increases p42 MAPK activity. An in vitro Raf-1 kinase assay, however, failed to detect LPS-induced Raf-1 kinase activity in RAW 264.7 cells, suggesting that in RAW 264.7 cells, Raf-1 kinase is not an activating component of the LPS signaling pathway regulating MAPK activity or sIL-1Ra promoter activity. This observation was supported by results from transfection studies which demonstrated that expression of a dominant-inhibitory Raf-1 mutant in RAW 264.7 cells does not inhibit LPS-induced MAPK activity or sIL-1Ra promoter activity, indicating that LPS-induced sIL-1Ra promoter activation occurs independent of the Raf-1/MAPK signaling pathway. In additional studies, cotransfection of RAW 264.7 cells with pRA-294-luc and increasing amounts of pRSV-Raf-BXB caused a dose-dependent inhibition of LPS-induced sIL-1Ra promoter activity, indicating that the role of the Raf-1 pathway in the regulation of sIL-1Ra promoter activity by LPS is as an antagonizer. Interestingly, LPS treatment of RAW 264.7 cells, cotransfected with pRA-294-luc and p

  19. Lipopolysaccharide and Raf-1 kinase regulate secretory interleukin-1 receptor antagonist gene expression by mutually antagonistic mechanisms.

    PubMed

    Guthridge, C J; Eidlen, D; Arend, W P; Gutierrez-Hartmann, A; Smith, M F

    1997-03-01

    Lipopolysaccharide (LPS) treatment of monocytic cells has been shown to activate the Raf-1/mitogen-activated protein kinase (MAPK) signaling pathway and to increase secretory interleukin-1 receptor antagonist (sIL-1Ra) gene expression. The significance of the activation of the Raf-1/MAPK signaling pathway to LPS regulation of sIL-1Ra gene expression, however, has not been determined. This study addresses the role of the Raf-1/MAPK signaling pathway in regulation of sIL-1Ra gene expression by LPS. Cotransfection of the murine macrophage cell line RAW 264.7 with a 294-bp sIL-1Ra promoter/luciferase construct (pRA-294-luc) and a constitutively active Raf-1 kinase expression vector (pRSV-Raf-BXB) resulted in induction of sIL-1Ra promoter activity, indicating that Raf-1, like LPS, can regulate sIL-1Ra promoter activity. An in vitro MAPK analysis indicated that both LPS treatment and pRSV-Raf-BXB transfection of RAW 264.7 cells increases p42 MAPK activity. An in vitro Raf-1 kinase assay, however, failed to detect LPS-induced Raf-1 kinase activity in RAW 264.7 cells, suggesting that in RAW 264.7 cells, Raf-1 kinase is not an activating component of the LPS signaling pathway regulating MAPK activity or sIL-1Ra promoter activity. This observation was supported by results from transfection studies which demonstrated that expression of a dominant-inhibitory Raf-1 mutant in RAW 264.7 cells does not inhibit LPS-induced MAPK activity or sIL-1Ra promoter activity, indicating that LPS-induced sIL-1Ra promoter activation occurs independent of the Raf-1/MAPK signaling pathway. In additional studies, cotransfection of RAW 264.7 cells with pRA-294-luc and increasing amounts of pRSV-Raf-BXB caused a dose-dependent inhibition of LPS-induced sIL-1Ra promoter activity, indicating that the role of the Raf-1 pathway in the regulation of sIL-1Ra promoter activity by LPS is as an antagonizer. Interestingly, LPS treatment of RAW 264.7 cells, cotransfected with pRA-294-luc and p

  20. Induction of interleukin-1 production by ligands binding to the scavenger receptor in human monocytes and the THP-1 cell line.

    PubMed Central

    Palkama, T

    1991-01-01

    Foam cell formation via lipid accumulation through the scavenger receptor in human monocyte/macrophages is believed to be one of the earliest events in atherogenesis. In this study we demonstrate that stimulation of the scavenger receptor activates monocytes to produce interleukin-1 (IL-1). Polyinosinic acid (poly I) and fucoidan, both ligands known to bind to the scavenger receptor, induced IL-1 beta production in human monocytes. Polycytidylic acid, a structurally related compound to poly I, which does not bind to the scavenger receptor, was used as a negative control and had virtually no effect on IL-1 production. THP-1 cells, which normally do not express scavenger receptors, were almost unresponsive to poly I and fucoidan. PMA priming, which has been reported to up-regulate scavenger receptor expression in THP-1 cells, significantly enhanced IL-1 production by fucoidan and poly I. IL-1 produced by scavenger receptor stimulation was shown to be secreted extracellularly, and biologically active. Scavenger receptor-mediated IL-1 production was inhibited by H7, a protein kinase C inhibitor, and enhanced by IBMX, an inhibitor of cyclic AMP degradation, suggesting a synergistic effect of protein kinase C and cyclic AMP-mediated signal transduction pathways in scavenger receptor-mediated IL-1 production. Due to the potentially deleterious effects of IL-1 on the vessel wall, IL-1 produced by ligand binding to the scavenger receptor in human monocytes may play a role in the pathogenesis of atherosclerosis. Images Figure 3 PMID:1663075

  1. Human interleukin-1 receptor-associated kinase-2 is essential for Toll-like receptor-mediated transcriptional and post-transcriptional regulation of tumor necrosis factor alpha.

    PubMed

    Flannery, Sinead M; Keating, Sinead E; Szymak, Joanna; Bowie, Andrew G

    2011-07-01

    Toll-like receptors (TLRs) are pattern-recognition receptors that recognize microbial ligands and subsequently trigger intracellular signaling pathways involving transcription factors such as NFκB and MAPKs such as p38. TLR signaling can regulate both transcriptional and post-transcriptional events leading to altered gene expression and thus appropriate immune responses. The interleukin-1 receptor-associated kinase (IRAK) family comprises four kinases that regulate TLR signaling. However, the role of IRAK-2 has remained unclear, especially in human cells. Recent studies using cells from in-bred Irak2(-/-) mice showed that murine IRAK-2 was not required for early TLR signaling events but had a role in delayed NFκB activation and in cytokine production. IRAK-2 in mice has four splice variants, two of which are inhibitory, whereas human IRAK-2 has no splice variants. Thus IRAK-2 in mice and humans may function differently, and therefore we analyzed the role of IRAK-2 in TLR responses in primary human cells. siRNA knockdown of IRAK-2 expression in human peripheral blood mononuclear cells showed a role for human IRAK-2 in both TLR4- and TLR8-mediated early NFκB and p38 MAPK activation and in induction of TNF mRNA. These data conflict with findings from the in-bred Irak2(-/-) mice but concur with what has been seen in wild-derived mice for TLR2. Moreover, human IRAK-2 was required for regulating MyD88-dependent TNFα mRNA stability via the TNF 3'UTR. Collectively, these data demonstrate for the first time an essential role for IRAK-2 in primary human cells for both transcriptional and post-transcriptional TLR responses.

  2. Human Interleukin-1 Receptor-associated Kinase-2 Is Essential for Toll-like Receptor-mediated Transcriptional and Post-transcriptional Regulation of Tumor Necrosis Factor α*

    PubMed Central

    Flannery, Sinead M.; Keating, Sinead E.; Szymak, Joanna; Bowie, Andrew G.

    2011-01-01

    Toll-like receptors (TLRs) are pattern-recognition receptors that recognize microbial ligands and subsequently trigger intracellular signaling pathways involving transcription factors such as NFκB and MAPKs such as p38. TLR signaling can regulate both transcriptional and post-transcriptional events leading to altered gene expression and thus appropriate immune responses. The interleukin-1 receptor-associated kinase (IRAK) family comprises four kinases that regulate TLR signaling. However, the role of IRAK-2 has remained unclear, especially in human cells. Recent studies using cells from in-bred Irak2−/− mice showed that murine IRAK-2 was not required for early TLR signaling events but had a role in delayed NFκB activation and in cytokine production. IRAK-2 in mice has four splice variants, two of which are inhibitory, whereas human IRAK-2 has no splice variants. Thus IRAK-2 in mice and humans may function differently, and therefore we analyzed the role of IRAK-2 in TLR responses in primary human cells. siRNA knockdown of IRAK-2 expression in human peripheral blood mononuclear cells showed a role for human IRAK-2 in both TLR4- and TLR8-mediated early NFκB and p38 MAPK activation and in induction of TNF mRNA. These data conflict with findings from the in-bred Irak2−/− mice but concur with what has been seen in wild-derived mice for TLR2. Moreover, human IRAK-2 was required for regulating MyD88-dependent TNFα mRNA stability via the TNF 3′UTR. Collectively, these data demonstrate for the first time an essential role for IRAK-2 in primary human cells for both transcriptional and post-transcriptional TLR responses. PMID:21606490

  3. FokI Polymorphism, Vitamin D Receptor, and Interleukin-1 Receptor Haplotypes Are Associated with Type 1 Diabetes in the Dalmatian Population

    PubMed Central

    Zemunik, Tatijana; Škrabić, Veselin; Boraska, Vesna; Diklić, Dijaneta; Terzić, Ivana Marinović; Čapkun, Vesna; Peruzović, Marijana; Terzić, Janoš

    2005-01-01

    Vitamin D and interleukin (IL)-1 have been suggested to function in the pathogenesis of type 1 diabetes mellitus (T1DM). Therefore, we examined the influence of gene polymorphisms in vitamin D receptor (VDR) and interleukin-1 receptor type I (IL-1-R1) on susceptibility to T1DM in the Dalmatian population of South Croatia. We genotyped 134 children with T1DM and 132 controls; for FokI polymorphism studies, we extended the control group to an additional 102 patients. The VDR gene polymorphism FokI displayed unequal distribution (P = 0.0049) between T1DM and control groups, with the ff genotype occurring more frequently in T1DM individuals whereas the VDR gene polymorphism Tru9I did not differ in frequency between studied groups. All tested polymorphisms of the IL-1-R1 gene [PstI, HinfI, and AluI (promoter region) and PstI-e (exon 1B region)] displayed no differences between cases and controls. Haplotype analysis of the VDR gene (FokI, BsmI, ApaI, TaqI, Tru9I) and of the IL-1-R1 gene (PstI, HinfI, AluI, PstI-e) found haplotypes VDR FbATu (P = 0.0388) and IL-1-R1 phap’ (P = 0.0419) to be more frequent in T1DM patients whereas the BatU haplotype occurred more often in controls (P = 0.0064). Our findings indicate that the VDR FokI polymorphism and several VDR and IL-1-R1 haplotypes are associated with susceptibility to T1DM in the Dalmatian population. PMID:16258158

  4. Nutrition, anthropometry, gastrointestinal dysfunction, and circulating levels of tumour necrosis factor alpha receptor I and interleukin-1 receptor antagonist in children during stem cell transplantation.

    PubMed

    Andreassen, B U; Paerregaard, A; Michaelsen, K F; Andersen, J; Heilmann, C J; Müller, K

    2009-03-01

    To evaluate anthropometry, nutrition and gastrointestinal dysfunction, and to characterize the relation between these parameters and the inflammatory activity evaluated by plasma levels of soluble tumour necrosis factor alpha receptor I (sTNFRI) and interleukin-1 receptor antagonist (IL-1Ra) levels during stem cell transplantation (SCT) in children. Clinical assessments and blood sampling were performed on days -3, 0, +7, +15 and +31 in eight children undergoing SCT. Energy intake, anthropometry, gastrointestinal dysfunction (WHO toxicity score) and sTNFRI and IL-1Ra were evaluated. The energy intake was below recommended levels. There was a loss of lean body mass (arm muscle area)(median, 2031 mm(2) (day -3) vs 1477 mm(2) (day 31); p = 0.04), and of fat mass (arm fat area) (791 mm(2) (day -3) vs 648 mm(2) (day +31); p = 0.04). sTNFRI was elevated throughout the course of transplantation, and peaked after the day of graft infusion (day 0). sTNFRI levels at day 0 predicted changes in weight SDS (r = 0.65; p = 0.05), triceps skinfold SDS (r = 0.85; p = 0.007) and gastrointestinal dysfunction (r = 0.88; p = 0.004). Likewise, IL-1Ra levels at day 0 correlated with the gastrointestinal dysfunction (r = 0.83; p = 0.01) and with the change in weight SDS (r = 0.77; p = 0.03). This study suggests that pretransplant levels of inflammatory markers are associated with posttransplant symptoms of gastrointestinal dysfunction and loss of both fat and lean body mass. Future studies should address if the use of conditioning regimens with limited proinflammatory cytokine inducing activity, anti-inflammatory agents, or more optimised nutritional support can reduce the burden of such posttransplant complications.

  5. Signaling pathways of interleukin-1 actions in the brain: anatomical distribution of phospho-ERK1/2 in the brain of rat treated systemically with interleukin-1beta.

    PubMed

    Nadjar, A; Combe, C; Busquet, P; Dantzer, R; Parnet, P

    2005-01-01

    Interleukin-1beta is released at the periphery during infection and acts on the nervous system to induce fever, neuroendocrine activation, and behavioral changes. These effects are mediated by brain type I IL-1 receptors. In vitro studies have shown the ability of interleukin-1beta to activate mitogen-activated protein kinase signaling pathways including p38, c-Jun N-terminal kinase and extracellular signal-regulated protein kinase 1 and 2 (ERK1/2). In contrast to other mitogen-activated protein kinases, little is known about ERK1/2 activation in the rat brain in response to interleukin-1beta. The aim of the present study was therefore to investigate spatial and temporal activation of ERK1/2 in the rat brain after peripheral administration of interleukin-1beta using immunohistochemistry to detect the phosphorylated form of the kinase. In non-stimulated conditions, phosphorylated ERK1/2 immunoreactivity was observed in neurons throughout the brain. Administration of interleukin-1beta (60 microg/kg, i.p.) induced the phosphorylation of ERK1/2 in areas at the interface between brain and blood or cerebrospinal fluid: meninges, circumventricular organs, endothelial like cells of the blood vessels, and in brain nuclei involved in behavioral depression, fever and neuroendocrine activation: paraventricular nucleus of the hypothalamus, supraoptic nucleus, central amygdala and arcuate nucleus. Double labeling of phosphorylated ERK1/2 and cell markers revealed the expression of phosphorylated ERK1/2 in neurons, astrocytes and microglia. Since phosphorylated ERK1/2 was found in structures in which type I IL-1 receptor has already been identified as well as in structures lacking this receptor, activation of ERK1/2 is likely to occur in response to both direct and indirect action of interleukin-1beta on its target cells.

  6. Interleukin-1 beta-induced up-regulation of opioid receptors in the untreated and morphine-desensitized U87 MG human astrocytoma cells

    PubMed Central

    2012-01-01

    Background Interleukin-1beta (IL-1β) is a pro-inflammatory cytokine that can be produced in the central nervous system during inflammatory conditions. We have previously shown that IL-1β expression is altered in the rat brain during a morphine tolerant state, indicating that this cytokine may serve as a convergent point between the immune challenge and opiate mediated biological pathways. We hypothesized that IL-1β up-regulates opioid receptors in human astrocytes in both untreated and morphine-desensitized states. Methods To test this hypothesis, we compared the basal expression of the mu (MOR), delta (DOR), and kappa (KOR) opioid receptors in the human U87 MG astrocytic cell line to SH-SY5Y neuronal and HL-60 immune cells using absolute quantitative real time RT-PCR (AQ-rt-RT-PCR). To demonstrate that IL-1β induced up-regulation of the MOR, DOR and KOR, U87 MG cells (2 x 105 cells/well) were treated with IL-1β (20 ng/mL or 40 ng/mL), followed by co-treatment with interleukin-1 receptor antagonist protein (IL-1RAP) (400 ng/mL or 400 ng/mL). The above experiment was repeated in the cells desensitized with morphine, where U87 MG cells were pre-treated with 100 nM morphine. The functionality of the MOR in U87 MG cells was then demonstrated using morphine inhibition of forksolin-induced intracellular cAMP, as determined by radioimmunoassay. Results U87 MG cells treated with IL-1β for 12 h showed a significant up-regulation of MOR and KOR. DOR expression was also elevated, although not significantly. Treatment with IL-1β also showed a significant up-regulation of the MOR in U87 MG cells desensitized with morphine. Co-treatment with IL-1β and interleukin-1 receptor antagonist protein (IL-1RAP) resulted in a significant decrease in IL-1β-mediated MOR up-regulation. Conclusion Our results indicate that the pro-inflammatory cytokine, IL-1β, affects opiate-dependent pathways by up-regulating the expression of the MOR in both untreated and morphine-desensitized U87

  7. Tumor necrosis factor-alpha and interleukin-1 antagonists alleviate inflammatory skin changes associated with epidermal growth factor receptor antibody therapy in mice.

    PubMed

    Surguladze, David; Deevi, Dhanvanthri; Claros, Nidia; Corcoran, Erik; Wang, Su; Plym, Mary Jane; Wu, Yan; Doody, Jacqueline; Mauro, David J; Witte, Larry; Busam, Klaus J; Pytowski, Bronek; Rodeck, Ulrich; Tonra, James R

    2009-07-15

    Cancer patients receiving epidermal growth factor receptor (EGFR) antibody therapy often experience an acneiform rash of uncertain etiology in skin regions rich in pilosebaceous units. Currently, this condition is treated symptomatically with very limited, often anecdotal success. Here, we show that a monoclonal antibody targeting murine EGFR, ME1, caused a neutrophil-rich hair follicle inflammation in mice, similar to that reported in patients. This effect was preceded by the appearance of lipid-filled hair follicle distensions adjacent to enlarged sebaceous glands. The cytokine tumor necrosis factor-alpha (TNFalpha), localized immunohistochemically to this affected region of the pilosebaceous unit, was specifically up-regulated by ME1 in skin but not in other tissues examined. Moreover, skin inflammation was reduced by cotreatment with the TNFalpha signaling inhibitor, etanercept, indicating the involvement of TNFalpha in this inflammatory process. Interleukin-1, a cytokine that frequently acts in concert with TNFalpha, is also involved in this process given the efficacy of the interleukin-1 antagonist Kineret. Our results provide a mechanistic framework to develop evidence-based trials for EGFR antibody-induced skin rash in patients with cancer. PMID:19584274

  8. Tumor necrosis factor-alpha and interleukin-1 antagonists alleviate inflammatory skin changes associated with epidermal growth factor receptor antibody therapy in mice.

    PubMed

    Surguladze, David; Deevi, Dhanvanthri; Claros, Nidia; Corcoran, Erik; Wang, Su; Plym, Mary Jane; Wu, Yan; Doody, Jacqueline; Mauro, David J; Witte, Larry; Busam, Klaus J; Pytowski, Bronek; Rodeck, Ulrich; Tonra, James R

    2009-07-15

    Cancer patients receiving epidermal growth factor receptor (EGFR) antibody therapy often experience an acneiform rash of uncertain etiology in skin regions rich in pilosebaceous units. Currently, this condition is treated symptomatically with very limited, often anecdotal success. Here, we show that a monoclonal antibody targeting murine EGFR, ME1, caused a neutrophil-rich hair follicle inflammation in mice, similar to that reported in patients. This effect was preceded by the appearance of lipid-filled hair follicle distensions adjacent to enlarged sebaceous glands. The cytokine tumor necrosis factor-alpha (TNFalpha), localized immunohistochemically to this affected region of the pilosebaceous unit, was specifically up-regulated by ME1 in skin but not in other tissues examined. Moreover, skin inflammation was reduced by cotreatment with the TNFalpha signaling inhibitor, etanercept, indicating the involvement of TNFalpha in this inflammatory process. Interleukin-1, a cytokine that frequently acts in concert with TNFalpha, is also involved in this process given the efficacy of the interleukin-1 antagonist Kineret. Our results provide a mechanistic framework to develop evidence-based trials for EGFR antibody-induced skin rash in patients with cancer.

  9. Prostaglandin E2 represses interleukin 1 beta-induced inflammatory mediator output from pregnant human myometrial cells through the EP2 and EP4 receptors.

    PubMed

    Mosher, Andrea A; Rainey, Kelly J; Giembycz, Mark A; Wood, Stephen; Slater, Donna M

    2012-07-01

    Inflammatory mediators, including prostaglandins, cytokines, and chemokines, are strongly implicated in the mechanism of human labor, though their precise roles remain unknown. Here we demonstrate that interleukin 1 beta (IL-1beta) significantly increased the expression and release of interleukin-8 (CXCL8), monocyte chemotactic protein-1 (CCL2), and granulocyte macrophage colony-stimulating factor (CSF2) by primary human myometrial cells. However, this effect was repressed by prostaglandin E(2) (PGE(2)). As PGE(2) can activate four distinct PGE(2) receptors (EP(1), EP(2), EP(3), and EP(4)) to elicit various responses, we sought to define the EP receptor(s) responsible for this repression. Using selective EP receptor agonists and a selective EP(4) antagonist, we show that PGE(2) mediates the repression of IL-1beta-induced release of CXCL8, CCL2, and CSF2 via activation of the EP(2) and EP(4) receptors. The use of siRNA gene-specific knockdown further confirmed a role for both receptors. Real-time RT-PCR demonstrated that EP(2) was the most highly expressed of all four EP receptors at the mRNA level in human myometrial cells, and immunocytochemistry showed that EP(2) protein is abundantly present throughout the cells. Interestingly, PGE(2) does not appear to reduce mRNA expression of CXCL8, CCL2, and CSF2. Our results demonstrate that PGE(2) can elicit anti-inflammatory responses via activation of the EP(2) and EP(4) receptors in lower segment term pregnant human myometrial cells. Further elucidation of the EP receptor-mediated signaling pathways in the pregnant human uterus may be beneficial for optimizing the maintenance of pregnancy, induction of labor or indeed treatment of preterm labor.

  10. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7- and TLR9-mediated interferon-α induction

    PubMed Central

    Uematsu, Satoshi; Sato, Shintaro; Yamamoto, Masahiro; Hirotani, Tomonori; Kato, Hiroki; Takeshita, Fumihiko; Matsuda, Michiyuki; Coban, Cevayir; Ishii, Ken J.; Kawai, Taro; Takeuchi, Osamu; Akira, Shizuo

    2005-01-01

    Toll-like receptors (TLRs) recognize microbial pathogens and trigger innate immune responses. Among TLR family members, TLR7, TLR8, and TLR9 induce interferon (IFN)-α in plasmacytoid dendritic cells (pDCs). This induction requires the formation of a complex consisting of the adaptor MyD88, tumor necrosis factor (TNF) receptor-associated factor 6 (TRAF6) and IFN regulatory factor (IRF) 7. Here we show an essential role of IL-1 receptor-associated kinase (IRAK)-1 in TLR7- and TLR9-mediated IRF7 signaling pathway. IRAK-1 directly bound and phosphorylated IRF7 in vitro. The kinase activity of IRAK-1 was necessary for transcriptional activation of IRF7. TLR7- and TLR9-mediated IFN-α production was abolished in Irak-1–deficient mice, whereas inflammatory cytokine production was not impaired. Despite normal activation of NF-κB and mitogen-activated protein kinases, IRF7 was not activated by a TLR9 ligand in Irak-1–deficient pDCs. These results indicated that IRAK-1 is a specific regulator for TLR7- and TLR9-mediated IFN-α induction in pDCs. PMID:15767370

  11. Association of interleukin 1 receptor antagonist (IL1RN) gene polymorphism with recurrent pregnancy loss risk in the North Indian Population and a meta-analysis.

    PubMed

    Nair, Rohini Ravindran; Khanna, Anuradha; Singh, Kiran

    2014-09-01

    An appropriate ratio of interleukin 1 beta to interleukin 1 receptor antagonist (IL1Ra) is required for successful pregnancy. Our objective was to study the genetic association between IL1RN variable numbers of tandem repeat (VNTR) polymorphism and recurrent pregnancy loss (RPL). To analyze the association between IL1RN VNTR allele and RPL, we investigated the IL1RN VNTR polymorphism in 136 RPL patients and in 200 healthy control women. Meta-analysis on this polymorphism was conducted to support our findings. PCR based approach was used to analyze IL1RN VNTR polymorphism and it was further confirmed by sequencing. Systematic review and meta-analysis was done using electronic database (Pub-Med, Google Scholar and Ovid) up to February 27, 2013. This meta-analysis was assessed by comprehensive meta-analysis software version 2. For meta-analysis 549 cases and 1,450 controls were included. The frequency of IL1RN genotype 2/2 was significantly higher in RPL compared to control group (AORs 3.10, 95 % CI 1.58-6.11, p = 0.001). The presence of rare allele also increased the risk of RPL significantly (ORs 1.63, 95 % CI 1.16-2.29, p = 0.004). The meta-analysis stratified by ethnicity showed that individuals with allele 2 had increased risk of RPL (OR 1.29, 95 % CI 1.04-1.61, p = 0.01), in Asians population by using fixed model. However the data of the present study clearly suggests that IL1RN VNTR polymorphism is a genetic risk factor for pregnancy loss in the study population.

  12. Interleukin 1 (IL-1) type I receptors mediate activation of rat hypothalamus-pituitary-adrenal axis and interleukin 6 production as shown by receptor type selective deletion mutants of IL-1beta.

    PubMed

    Van Dam, A M; Malinowsky, D; Lenczowski, M J; Bartfai, T; Tilders, F J

    1998-06-01

    The cytokine interleukin 1 (IL-1) plays an important role in the activation of the hypothalamus-pituary-adrenal (HPA)-axis and interleukin 6 (IL-6) production during infection or inflammation. Which of the interleukin-1 receptor types mediates these effects is not known. To investigate this issue a pharmacological approach was chosen by using recently developed IL-1 receptor type selective ligands. Rats were given one of various doses of recombinant human IL-1beta (rhIL-1beta; 1 and 10 microg/kg) and of several IL-1beta mutants (DeltaSND, DeltaQGE and DeltaI; 1, 10 and 100 microg/kg), that differ in their affinities for the IL-1 type I receptor but have similar affinities for the IL-1 type II receptor. One hour after intravenous administration of rhIL-1beta or IL-1beta mutants, plasma levels of ACTH, corticosterone (cort) and IL-6 were measured. Doses of 1 and 10 microg/kg rhIL-1beta markedly elevated plasma levels of ACTH, cort and IL-6. However, 10-100-fold higher doses of IL-1beta mutants DeltaSND and DeltaQGE and at least 100-fold higher doses of DeltaI have to be administered to increase plasma levels of ACTH, cort and IL-6. The potency differences correlate with their respective affinity for the type I receptor but not with that of the IL-1 type II receptor. It is concluded that IL-1beta induced ACTH, cort and IL-6 production is mediated by interleukin 1 type I receptors.

  13. Characterization of a conditional interleukin-1 receptor 1 mouse mutant using the Cre/LoxP system.

    PubMed

    Abdulaal, Wesam H; Walker, Catherine R; Costello, Ryan; Redondo-Castro, Elena; Mufazalov, Ilgiz A; Papaemmanouil, Athina; Rothwell, Nancy J; Allan, Stuart M; Waisman, Ari; Pinteaux, Emmanuel; Müller, Werner

    2016-04-01

    IL-1 is a key cytokine known to drive chronic inflammation and to regulate many physiological, immunological, and neuroimmunological responses via actions on diverse cell types of the body. To determine the mechanisms of IL-1 actions as part of the inflammatory response in vivo, we generated a conditional IL-1 receptor 1 (IL-1R1) mouse mutant using the Cre/LoxP system (IL-1R1(fl/fl) ). In the mutant generated, exon 5, which encodes part of the extracellular-binding region of the receptor, is flanked by LoxP sites, thereby inactivating the two previously described functional IL-1R1 gene transcripts after Cre-mediated recombination. Using keratin 14-Cre driver mice, new IL-1R1 deficient (-/-) mice were subsequently generated, in which all signaling IL-1 receptor isoforms are deleted ubiquitously. Furthermore, using vav-iCre driver mice, we deleted IL-1 receptor isoforms in the hematopoietic system. In these mice, we show that both the IL-17 and IL-22 cytokine response is reduced, when mice are challenged by the helminth Trichuris muris. We are currently crossing IL-1R1(fl/fl) mice with different Cre-expressing mice in order to study mechanisms of acute and chronic inflammatory diseases.

  14. Virus binding to a plasma membrane receptor triggers interleukin-1 alpha-mediated proinflammatory macrophage response in vivo.

    PubMed

    Di Paolo, Nelson C; Miao, Edward A; Iwakura, Yoichiro; Murali-Krishna, Kaja; Aderem, Alan; Flavell, Richard A; Papayannopoulou, Thalia; Shayakhmetov, Dmitry M

    2009-07-17

    The recognition of viral components by host pattern-recognition receptors triggers the induction of the antiviral innate immune response. Toll-like receptor 9 (TLR9) and NLRP3 inflammasome were shown to be the principal specific sensors of viral double-stranded DNA. Here we present evidence that macrophages in vivo activated an innate immune response to a double-stranded DNA virus, adenovirus (Ad), independently of TLR9 or NLRP3 inflammasome. In response to Ad, macrophage-derived IL-1 alpha triggered IL-1RI-dependent production of a defined set of proinflammatory cytokines and chemokines. The IL-1 alpha-mediated response required a selective interaction of virus arginine-glycine-aspartic acid (RGD) motifs with macrophage beta(3) integrins. Thus, these data identify IL-1 alpha-IL-1RI as a key pathway allowing for the activation of proinflammatory responses to the virus, independently of its genomic nucleic acid recognition.

  15. Ceramide, a mediator of interleukin 1, tumour necrosis factor α, as well as Fas receptor signalling, induces apoptosis of rheumatoid arthritis synovial cells

    PubMed Central

    Mizushima, N.; Kohsaka, H.; Miyasaka, N.

    1998-01-01

    OBJECTIVES—To examine the effects of ceramide, which is a lipid second messenger of cell surface receptors, including tumour necrosis factor α (TNFα), interleukin 1 (IL1), and Fas receptors, on rheumatoid arthritis (RA) synovial cells.
METHODS—Synovial cells from RA patients and normal skin fibroblasts were cultured with cell permeable ceramide (C2-ceramide). Apoptosis was assessed by microscopic observation of morphological changes, nuclear staining, and DNA electrophoresis. DNA synthesis was examined by thymidine incorporation.
RESULTS—C2-ceramide induced reversible morphological changes of synovial cells such as cell rounding within four hours. Subsequently, irreversible nuclear changes characteristic to apoptosis were observed at 48 hours. DNA synthesis was not promoted. The addition of ceramide exerted similar effects on cultured dermal fibroblasts.
CONCLUSION—Ceramide induced apoptosis in RA synovial cells. Ceramide could be a second messenger specific for apoptosis of RA synovial cells.

 Keywords: ceramide; apoptosis; rheumatoid arthritis PMID:9797556

  16. Association between Interleukin-1 Receptor Antagonist (IL1RN) Variable Number of Tandem Repeats (VNTR) Polymorphism and Pulmonary Tuberculosis.

    PubMed

    Hashemi, Mohammad; Naderi, Mohammad; Ebrahimi, Mahboubeh; Amininia, Shadi; Bahari, Gholamreza; Taheri, Mohsen; Eskandari-Nasab, Ebrahim; Ghavami, Saeid

    2015-02-01

    Macrophages and T-lymphocytes are involved in immune response to Mycobacterium tuberculosis. Macrophage produces interleukin (IL)-1 as an inflammatory mediator. IL-1 receptor antagonist (IL1-Ra) is a natural antagonist of IL-1 receptors. In this study we aimed to examine the possible association between the variable number of tandem repeats (VNTR) of the IL-1 receptor antagonist (IL1RN) gene and pulmonary tuberculosis (TB) in a sample of Iranian population. Our study is a case-control study and we examined the VNTR of the IL1RN gene in 265 PTB and 250 healthy subjects by PCR. Neither the overall chi-square comparison of PTB and control subjects nor the logistic regression analysis indicated any association between VNTR IL1RN polymorphism and PTB. Our data suggest that VNTR IL1RN polymorphism may not be associated with the risk of PTB in a sample of Iranian population. Larger studies with different ethnicities are needed to find out the impact of IL1RN VNTR polymorphism on risk of developing TB.

  17. Early maternal deprivation immunologically primes hippocampal synapses by redistributing interleukin-1 receptor type I in a sex dependent manner.

    PubMed

    Viviani, Barbara; Boraso, Mariaserena; Valero, Manuel; Gardoni, Fabrizio; Marco, Eva Maria; Llorente, Ricardo; Corsini, Emanuela; Galli, Corrado Lodovico; Di Luca, Monica; Marinovich, Marina; López-Gallardo, Meritxell; Viveros, Maria-Paz

    2014-01-01

    Challenges experienced in early life cause an enduring phenotypical shift of immune cells towards a sensitised state that may lead to an exacerbated reaction later in life and contribute to increased vulnerability to neurological diseases. Peripheral and central inflammation may affect neuronal function through cytokines such as IL-1. The extent to which an early life challenge induces long-term alteration of immune receptors organization in neurons has not been shown. We investigated whether a single episode of maternal deprivation (MD) on post-natal day (PND) 9 affects: (i) the synapse distribution of IL-1RI together with subunits of NMDA and AMPA receptors; and (ii) the interactions between IL-1RI and the GluN2B subunit of the NMDAR in the long-term, at PND 45. MD increased IL-1RI levels and IL-1RI interactions with GluN2B at the synapse of male hippocampal neurons, without affecting the total number of IL-1RI or NMDAR subunits. Although GluN2B and GluN2A were slightly but not significantly changed at the synapse, their ratio was significantly decreased in the hippocampus of the male rats who had experienced MD; the levels of the GluA1 and GluA2 subunits of the AMPAR were also decreased. These changes were not observed immediately after the MD episode. None of the observed alterations occurred in the hippocampus of the females or in the prefrontal cortex of either sex. These data reveal a long-term, sex-dependent modification in receptor organisation at the hippocampal post-synapses following MD. We suggest that this effect might contribute to priming hippocampal synapses to the action of IL-1β. PMID:24060584

  18. Early maternal deprivation immunologically primes hippocampal synapses by redistributing interleukin-1 receptor type I in a sex dependent manner.

    PubMed

    Viviani, Barbara; Boraso, Mariaserena; Valero, Manuel; Gardoni, Fabrizio; Marco, Eva Maria; Llorente, Ricardo; Corsini, Emanuela; Galli, Corrado Lodovico; Di Luca, Monica; Marinovich, Marina; López-Gallardo, Meritxell; Viveros, Maria-Paz

    2014-01-01

    Challenges experienced in early life cause an enduring phenotypical shift of immune cells towards a sensitised state that may lead to an exacerbated reaction later in life and contribute to increased vulnerability to neurological diseases. Peripheral and central inflammation may affect neuronal function through cytokines such as IL-1. The extent to which an early life challenge induces long-term alteration of immune receptors organization in neurons has not been shown. We investigated whether a single episode of maternal deprivation (MD) on post-natal day (PND) 9 affects: (i) the synapse distribution of IL-1RI together with subunits of NMDA and AMPA receptors; and (ii) the interactions between IL-1RI and the GluN2B subunit of the NMDAR in the long-term, at PND 45. MD increased IL-1RI levels and IL-1RI interactions with GluN2B at the synapse of male hippocampal neurons, without affecting the total number of IL-1RI or NMDAR subunits. Although GluN2B and GluN2A were slightly but not significantly changed at the synapse, their ratio was significantly decreased in the hippocampus of the male rats who had experienced MD; the levels of the GluA1 and GluA2 subunits of the AMPAR were also decreased. These changes were not observed immediately after the MD episode. None of the observed alterations occurred in the hippocampus of the females or in the prefrontal cortex of either sex. These data reveal a long-term, sex-dependent modification in receptor organisation at the hippocampal post-synapses following MD. We suggest that this effect might contribute to priming hippocampal synapses to the action of IL-1β.

  19. Molecular basis of requirement of receptor activator of nuclear factor κB signaling for interleukin 1-mediated osteoclastogenesis.

    PubMed

    Jules, Joel; Zhang, Ping; Ashley, Jason W; Wei, Shi; Shi, Zhenqi; Liu, Jianzhong; Michalek, Suzanne M; Feng, Xu

    2012-05-01

    IL-1, a proinflammatory cytokine, is implicated in bone loss in various pathological conditions by promoting osteoclast formation, survival, and function. Although IL-1 alone can sufficiently prolong osteoclast survival and activate osteoclast function, IL-1-mediated osteoclastogenesis requires the receptor activator of NF-κB (RANK) ligand (RANKL). However, the molecular basis of the dependence of IL-1-mediated osteoclastogenesis on RANKL is not fully understood. Here we show that although IL-1 cannot activate the expression of the osteoclast genes encoding matrix metalloproteinase 9, cathepsin K, tartrate-resistant acid phosphatase, and carbonic anhydrase II in bone marrow macrophages (BMMs), RANKL renders these osteoclast genes responsive to IL-1. We further demonstrate that IL-1 alone fails to induce the expression of nuclear factor of activated T cell cytoplasmic 1 (NFATc1), a master transcriptional regulator of osteoclastogenesis), in BMMs but can up-regulate its expression in the presence of permissive levels of RANKL or with RANKL pretreatment. The RANK IVVY motif, which has been previously shown to commit BMMs to the osteoclast lineage in RANKL- and TNF α-mediated osteoclastogenesis, also plays a crucial role in IL-1-mediated osteoclastogenesis by changing the four osteoclast marker and NFATc1 genes to an IL-1-inducible state. Finally, we show that MyD88, a known critical component of the IL-1 receptor I signaling pathway, plays a crucial role in IL-1-mediated osteoclastogenesis from RANKL-primed BMMs by up-regulating the expression of the osteoclast marker and NFATc1 genes. This study reveals a novel mechanism of IL-1-mediated osteoclastogenesis and supports the promising potential of the IVVY motif to serve as a therapeutic target for inflammatory bone loss.

  20. N-Alkyl-Substituted Isatins Enhance P2X7 Receptor-Induced Interleukin-1β Release from Murine Macrophages

    PubMed Central

    2016-01-01

    Extracellular adenosine 5′-triphosphate (ATP) activates the P2X7 receptor channel to induce the rapid release of the proinflammatory cytokine, interleukin- (IL-) 1β, from macrophages. Microtubule rearrangements are thought to be involved in this process. Some isatin derivatives alter microtubules and display anticancer activities. The current study investigated the effect of isatin and seven structurally diverse isatin derivatives on P2X7-mediated IL-1β release from murine J774 macrophages. ATP-induced IL-1β and lactate dehydrogenase (LDH) release were assessed by specific colorimetric assays. P2X7 activity was determined by flow cytometric measurements of ATP-induced cation dye uptake. Cytotoxicity of isatin derivatives was determined using a tetrazolium-based colorimetric assay. ATP caused rapid IL-1β release in a concentration-dependent manner, and this process was completely impaired by the P2X7 antagonist, AZ10606120. In contrast, 5,7-dibromo-N-(p-methoxybenzyl)isatin (NAI) and 3-{4-[5,7-dibromo-1-(4-methoxybenzyl)-2-oxoindolin-3-ylidenamino]phenyl}propanoic acid (NAI-imine) enhanced P2X7-induced IL-1β release by twofold compared to that of isatin and the parent molecule, 5,7-dibromoisatin. NAI and NAI-imine had minimal effect on P2X7-induced dye uptake and LDH release. In contrast, 24-hour incubation with NAI and NAI-imine (in the absence of exogenous ATP) induced macrophage death in a concentration-dependent manner. In conclusion, this study demonstrates that N-alkyl-substituted isatins enhance P2X7 receptor-induced IL-1β release from murine macrophages. Thus, in addition to direct anticancer effects, these compounds may also impact inflammatory and immune cells within the tumor microenvironment. PMID:27524862

  1. Identification and characterization of a novel bacterial virulence factor that shares homology with mammalian Toll/interleukin-1 receptor family proteins.

    PubMed

    Newman, Ruchi M; Salunkhe, Prabhakar; Godzik, Adam; Reed, John C

    2006-01-01

    Many important bacterial virulence factors act as mimics of mammalian proteins to subvert normal host cell processes. To identify bacterial protein mimics of components of the innate immune signaling pathway, we searched the bacterial genome database for proteins with homology to the Toll/interleukin-1 receptor (TIR) domain of the mammalian Toll-like receptors (TLRs) and their adaptor proteins. A previously uncharacterized gene, which we have named tlpA (for TIR-like protein A), was identified in the Salmonella enterica serovar Enteritidis genome that is predicted to encode a protein resembling mammalian TIR domains, We show that overexpression of TlpA in mammalian cells suppresses the ability of mammalian TIR-containing proteins TLR4, IL-1 receptor, and MyD88 to induce the transactivation and DNA-binding activities of NF-kappaB, a downstream target of the TIR signaling pathway. In addition, TlpA mimics the previously characterized Salmonella virulence factor SipB in its ability to induce activation of caspase-1 in a mammalian cell transfection model. Disruption of the chromosomal tlpA gene rendered a virulent serovar Enteritidis strain defective in intracellular survival and IL-1beta secretion in a cell culture infection model using human THP1 macrophages. Bacteria with disrupted tlpA also displayed reduced lethality in mice, further confirming an important role for this factor in pathogenesis. Taken together, our findings demonstrate that the bacterial TIR-like protein TlpA is a novel prokaryotic modulator of NF-kappaB activity and IL-1beta secretion that contributes to serovar Enteritidis virulence.

  2. Lentivirus transduced interleukin-1 receptor antagonist gene expression in murine bone marrow-derived mesenchymal stem cells in vitro.

    PubMed

    He, Tao; Chi, Guanghao; Tian, Bo; Tang, Tingting; Dai, Kerong

    2015-09-01

    Genetically modified mesenchymal stem cells have been used in attempts to increase the expression of interleukin‑1 receptor antagonist (IL‑1Ra); however, the attempts thus far have been unsuccessful. The aim of the present study was to investigate whether the lentivirus transduced IL‑1Ra gene was able to be stably expressed in murine bone marrow‑derived mesenchymal stem cells (mBMSCs) in vitro. In the present study, third generation lentiviral (Lv) vectors transducing the IL‑1Ra/green fluorescent protein (copGFP) gene were constructed and transfected into mBMSCs to establish the Lv.IL‑1Ra.copGFP/mBMSCs, which were evaluated using fluorescence microscopy, flow cytometry, cell viability analysis using a cell counting kit‑8 kit, Trypan blue staining and an MTT growth kinetics assay. The expression of IL‑1Ra was analyzed using reverse transcription-quantitative polymerase chain reaction and western blotting. The results demonstrated that the Lv.IL‑1Ra/copGFP vector was successfully constructed. The mBMSCs exhibited a short proliferation life, however they had good growth kinetics at an early stage and improved viability following efficient transduction of the IL‑1Ra gene. IL‑1Ra was overexpressed following transfection of mBMSCs. In conclusion, lentiviral vector transduced mBMSCs were able to efficiently express exogenous Il‑1Ra under certain conditions and had a marked capacity for proliferation. PMID:26130370

  3. Selective interleukin-1 receptor-associated kinase 4 inhibitors for the treatment of autoimmune disorders and lymphoid malignancy.

    PubMed

    Kelly, Priscilla N; Romero, Donna L; Yang, Yibin; Shaffer, Arthur L; Chaudhary, Divya; Robinson, Shaughnessy; Miao, Wenyan; Rui, Lixin; Westlin, William F; Kapeller, Rosana; Staudt, Louis M

    2015-12-14

    Pathological activation of the Toll-like receptor signaling adaptor protein MYD88 underlies many autoimmune and inflammatory disease states. In the activated B cell-like (ABC) subtype of diffuse large B cell lymphoma (DLBCL), the oncogenic MYD88 L265P mutation occurs in 29% of cases, making it the most prevalent activating mutation in this malignancy. IRAK4 kinase accounts for almost all of the biological functions of MYD88, highlighting IRAK4 as a therapeutic target for diseases driven by aberrant MYD88 signaling. Using innovative structure-based drug design methodologies, we report the development of highly selective and bioavailable small molecule IRAK4 inhibitors, ND-2158 and ND-2110. These small molecules suppressed LPS-induced TNF production, alleviated collagen-induced arthritis, and blocked gout formation in mouse models. IRAK4 inhibition promoted killing of ABC DLBCL lines harboring MYD88 L265P, by down-modulating survival signals, including NF-κB and autocrine IL-6/IL-10 engagement of the JAK-STAT3 pathway. In ABC DLBCL xenograft models, IRAK4 inhibition suppressed tumor growth as a single agent, and in combination with the Bruton's tyrosine kinase (BTK) inhibitor ibrutinib or the Bcl-2 inhibitor ABT-199. Our findings support pharmacological inhibition of IRAK4 as a therapeutic strategy in autoimmune disorders, in a genetically defined population of ABC DLBCL, and possibly other malignancies dependent on aberrant MYD88 signaling. PMID:26621451

  4. Environmental factors and not genotype influence the plasma level of interleukin-1 receptor antagonist in normal individuals

    PubMed Central

    Cullup, H; Middleton, P G; Duggan, G; Conn, J S; Dickinson, A M

    2004-01-01

    Cytokine production may be regulated by both genotypic (single nucleotide or tandem repeat polymorphisms) and non-genotypic factors relating to the environment and inherent biology (i.e. gender). Interleukin (IL)-1 is one of the body's most highly proinflammatory cytokines and is implicated in the pathophysiology of numerous diseases, but also in the maintenance of homeostasis in a number of tissues. The cytokine IL-1 receptor antagonist (IL-1Ra) is the competitive inhibitor of the IL-1 agonists IL-1α and IL-1β. In vivo IL-1Ra was measured in a cohort of 200 + blood donors and the effect of the IL-1 gene polymorphisms, environmental and biological factors assessed. In this study, we observed that possession of particular alleles of 5 IL-1 gene polymorphisms (IL1A-889, IL1Α VNTR, IL1B -511, IL1B +3953 and the IL1RN VNTR) did not correlate with higher plasma IL-1Ra levels. Environmental factors such as smoking and non-steroidal anti-inflammatory drug ingestion were associated with higher in vivo IL-1Ra levels (P = 0·015 and 0·022, respectively), but biological factors such as gender, age and menstruation status did not have any impact upon in vivo IL-1Ra levels. Genotypic associations of IL-1 gene family polymorphisms with disease features may reflect characteristics of stressed rather than normal control circuits for cytokine production. PMID:15270852

  5. Associations between interleukin-1 and IL-1 receptor antagonist polymorphisms and susceptibility to rheumatoid arthritis: A meta-analysis.

    PubMed

    Lee, Y H; Bae, S-C

    2015-12-26

    This study determined whether interleukin-1 (IL-1) polymorphisms are associated with susceptibility to rheumatoid arthritis (RA). A meta-analysis was conducted on the associations between the IL-1A, IL-1B, and IL-1 receptor antagonist (IL-1RN) polymorphisms and RA. A total of 16 studies involving 4,339 RA cases and 3,885 controls were included in the meta-analysis. Meta-analysis of the IL-1B -511 C/T polymorphism revealed an association between the IL-1B -511 T allele and RA in Caucasians (OR = 0.913, 95% CI = 0.840-0.992, p = 0.031), but not in Asians. Ethnicity-specific meta-analysis indicated an association between the TT+TC genotype of the IL-1B 3953 C/T polymorphism and RA in Caucasians (OR = 1.243, 95% CI = 1.008-1.533, p = 0.042) and in Asians (OR = 2.672, 95% CI = 1.662-4.296, p = 4.9x10-6). No association was between RA susceptibility and the IL-1A -889 C/T, IL-1A +4845 G/T, and IL-1RN +2018 C/T polymorphisms. This meta-analysis suggests the IL-1B -511 C/T polymorphism is associated with susceptibility to RA in Caucasians, and that the IL-1B +3953 C/T polymorphism is associated with susceptibility to RA in Caucasians and Asians.

  6. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6.

    PubMed

    Parker, J E; Coleman, M J; Szabò, V; Frost, L N; Schmidt, R; van der Biezen, E A; Moores, T; Dean, C; Daniels, M J; Jones, J D

    1997-06-01

    Plant disease resistance genes operate at the earliest steps of pathogen perception. The Arabidopsis RPP5 gene specifying resistance to the downy mildew pathogen Peronospora parasitica was positionally cloned. It encodes a protein that possesses a putative nucleotide binding site and leucine-rich repeats, and its product exhibits striking structural similarity to the plant resistance gene products N and L6. Like N and L6, the RPP5 N-terminal domain resembles the cytoplasmic domains of the Drosophila Toll and mammalian interleukin-1 transmembrane receptors. In contrast to N and L6, which produce predicted truncated products by alternative splicing, RPP5 appears to express only a single transcript corresponding to the full-length protein. However, a truncated form structurally similar to those of N and L6 is encoded by one or more other members of the RPP5 gene family that are tightly clustered on chromosome 4. The organization of repeated units within the leucine-rich repeats encoded by the wild-type RPP5 gene and an RPP5 mutant allele provides molecular evidence for the heightened capacity of this domain to evolve novel configurations and potentially new disease resistance specificities.

  7. Associations of erythrocyte membrane fatty acids with the concentrations of C-reactive protein, interleukin 1 receptor antagonist and adiponectin in 1373 men.

    PubMed

    Takkunen, M J; de Mello, V D F; Schwab, U S; Ågren, J J; Kuusisto, J; Uusitupa, M I J

    2014-10-01

    Dietary and endogenous fatty acids could play a role in low-grade inflammation. In this cross-sectional study the proportions of erythrocyte membrane fatty acids (EMFA) and the concentrations of C-reactive protein (CRP), interleukin-1 receptor antagonist (IL-1Ra) and adiponectin were measured and their confounder-adjusted associations examined in 1373 randomly selected Finnish men aged 45-70 years participating in the population based Metsim study in Eastern Finland. The sum of n-6 EMFAs, without linoleic acid (LA), was positively associated with concentrations of CRP and IL-1Ra (r partial=0.139 and r partial=0.115, P<0.001). These associations were especially strong among lean men (waist circumference <94 cm; r partial=0.156 and r partial=0.189, P<0.001). Total n-3 EMFAs correlated inversely with concentrations of CRP (r partial=-0.098, P<0.001). Palmitoleic acid (16:1n-7) correlated positively with CRP (r partial=0.096, P<0.001). Cis-vaccenic acid (18:1n-7) was associated with high concentrations of adiponectin (r partial=0.139, P<0.001). In conclusion, n-6 EMFAs, except for LA, correlated positively with the inflammatory markers. Palmitoleic acid was associated with CRP, whereas, interestingly, its elongation product, cis-vaccenic acid, associated with anti-inflammatory adiponectin.

  8. Evaluation of the Interleukin-1 Receptor Antagonist and Immunoregulatory Interleukin-10 in the Middle Ear in Chronic Otitis Media With Effusion in Children With and Without Atopy

    PubMed Central

    Zielnik-Jurkiewicz, Beata; Stankiewicz-Szymczak, Wanda

    2016-01-01

    Objectives The role of pro-inflammatory cytokines in the course of chronic otitis media with effusion (COME) has been documented. However, there are fewer studies on the action of anti-inflammatory cytokines in the middle ear. We sought determine whether there is an association between COME and anti-inflammatory cytokines and whether there are any differences in the cytokine profile in COME children with and without atopy. Methods Eighty-four children were divided into 3 groups: 32 nonatopic children with COME (group NA), 31 atopic children with COME (group A), and 21 children without COME and without atopy (control group C). Specimens from the middle ear were collected and evaluated by enzyme-linked immunosorbent assay for the cytokines interleukin-1 receptor antagonist (IL-1Ra) and immunoregulatory IL-10. Results Significantly higher IL-10 concentrations were found in both nonatopic and atopic children with COME compared to controls. No significant differences in IL-1Ra levels were found between atopic and nonatopic children with COME and the control group. Conclusion We found no differences in the levels of IL-1Ra in atopic and nonatopic children with COME compared to controls. However, we found elevated IL-10 levels in the middle ear effusions from children with COME, with or without atopy. These elevated immunoregulatory cytokine levels suggest a role for new immunomodulatory treatments to prevent disease progression in COME, regardless of atopy. PMID:27090281

  9. Stabilization by urea during thermal unfolding-mediated aggregation of recombinant human interleukin-1 receptor (type II): does solvation entropy play a role?

    PubMed

    Remmele, Richard L; Zhang-van Enk, Jian; Phan, Duke; Yu, Lei

    2012-06-21

    The protein denaturing properties of urea are well-known and still the subject of debate. It has been noted that in some cases where urea concentrations are relatively low stabilization is afforded against aggregation. An explanation for this unusual effect has seemingly remained elusive. Evidence is offered to propose urea stabilization is related to its influence on the solvation property of the protein molecules when in contact with an unfolded hydrophobic surface that tends to increase the entropy of the local aqueous solvent. This property of urea is expected to lower the entropic driving force of unfolded-mediated aggregation despite the increase in enthalpy. The data presented from toluene transfer experiments into 2 M urea + 0.1 M sodium phosphate solutions showed that the solvation free energy change was negative up to ∼75 °C. The associated ΔΔH was positive, leading to the conclusion that entropy drives the solvation process within the temperature domain from ∼20° to 75 °C. Using thermodynamic parameters from the toluene solvation experiments, it was possible to accurately determine the T(m) shift of recombinant human interleukin-1 receptor type II (rhuIL-1R(II)). Heating experiments above the apparent T(m) in the same urea/phosphate solution support the thesis that urea inhibits the entropy-driven aggregation process of rhuIL-1R(II), adding yet another molecule to the list of low urea concentration stabilized molecules. PMID:22571594

  10. Systematic Review and Meta-Analysis of the Efficacy of Interleukin-1 Receptor Antagonist in Animal Models of Stroke: an Update.

    PubMed

    McCann, Sarah K; Cramond, Fala; Macleod, Malcolm R; Sena, Emily S

    2016-10-01

    Interleukin-1 receptor antagonist (IL-1 RA) is an anti-inflammatory protein used clinically to treat rheumatoid arthritis and is considered a promising candidate therapy for stroke. Here, we sought to update the existing systematic review and meta-analysis of IL-1 RA in models of ischaemic stroke, published in 2009, to assess efficacy, the range of circumstances in which efficacy has been tested and whether the data appear to be confounded due to reported study quality and publication bias. We included 25 sources of data, 11 of which were additional to the original review. Overall, IL-1 RA reduced infarct volume by 36.2 % (95 % confidence interval 31.6-40.7, n = 76 comparisons from 1283 animals). Assessments for publication bias suggest 30 theoretically missing studies which reduce efficacy to 21.9 % (17.3-26.4). Efficacy was higher where IL-1 RA was administered directly into the ventricles rather than peripherally, and studies not reporting allocation concealment during the induction of ischaemia reported larger treatment effects. The preclinical data supporting IL-1 RA as a candidate therapy for ischaemic stroke have improved. The reporting of measures to reduce the risk of bias has improved substantially in this update, and studies now include the use of animals with relevant co-morbidities. PMID:27526101

  11. Interleukin-1 Receptor-associated Kinase-4 (IRAK4) Promotes Inflammatory Osteolysis by Activating Osteoclasts and Inhibiting Formation of Foreign Body Giant Cells*

    PubMed Central

    Katsuyama, Eri; Miyamoto, Hiroya; Kobayashi, Tami; Sato, Yuiko; Hao, Wu; Kanagawa, Hiroya; Fujie, Atsuhiro; Tando, Toshimi; Watanabe, Ryuichi; Morita, Mayu; Miyamoto, Kana; Niki, Yasuo; Morioka, Hideo; Matsumoto, Morio; Toyama, Yoshiaki; Miyamoto, Takeshi

    2015-01-01

    Formation of foreign body giant cells (FBGCs) occurs following implantation of medical devices such as artificial joints and is implicated in implant failure associated with inflammation or microbial infection. Two major macrophage subpopulations, M1 and M2, play different roles in inflammation and wound healing, respectively. Therefore, M1/M2 polarization is crucial for the development of various inflammation-related diseases. Here, we show that FBGCs do not resorb bone but rather express M2 macrophage-like wound healing and inflammation-terminating molecules in vitro. We also found that FBGC formation was significantly inhibited by inflammatory cytokines or infection mimetics in vitro. Interleukin-1 receptor-associated kinase-4 (IRAK4) deficiency did not alter osteoclast formation in vitro, and IRAK4-deficient mice showed normal bone mineral density in vivo. However, IRAK4-deficient mice were protected from excessive osteoclastogenesis induced by IL-1β in vitro or by LPS, an infection mimetic of Gram-negative bacteria, in vivo. Furthermore, IRAK4 deficiency restored FBGC formation and expression of M2 macrophage markers inhibited by inflammatory cytokines in vitro or by LPS in vivo. Our results demonstrate that osteoclasts and FBGCs are reciprocally regulated and identify IRAK4 as a potential therapeutic target to inhibit stimulated osteoclastogenesis and rescue inhibited FBGC formation under inflammatory and infectious conditions without altering physiological bone resorption. PMID:25404736

  12. Interleukin-1 receptor antagonist and tumor necrosis factor binding protein decrease osteoclast formation and bone resorption in ovariectomized mice.

    PubMed Central

    Kitazawa, R; Kimble, R B; Vannice, J L; Kung, V T; Pacifici, R

    1994-01-01

    To investigate the contribution of IL-1, IL-6, and TNF to the increased osteoclastogenesis induced by estrogen deficiency, ovariectomized (ovx) mice were treated with either IL-1 receptor antagonist (IL-1ra), a competitive inhibitor of IL-1, TNF binding protein (TNFbp), an inhibitor of TNF, or the anti-IL-6 antibody (Ab) 20F3 for the first 2 wk after surgery. ovx increased the bone marrow cells secretion of IL-1 and TNF, but not IL-6, and the formation of TRAP-positive osteoclast-like multinucleated cells (MNCs) in bone marrow cultures treated with 1,25(OH)2D3. The increase in MNC formation induced by ovx was prevented by in vivo treatment with either 17 beta estradiol, IL-1ra, TNFbp, or anti-IL-6 Ab. However, the percent change in MNC formation induced by the anti-IL-6 Ab was similar in ovx and sham-operated animals, whereas IL-1ra and TNFbp were effective only in ovx mice. MNC formation was also decreased by in vitro treatment of bone marrow cultures with IL-1ra and TNFbp, but not with anti-IL-6 Ab. Ovx also increased bone resorption in vivo and in vitro, as assessed by the urinary excretion of pyridinoline cross links and the formation of resorption pits, respectively. IL-1ra, TNFbp and estrogen decreased bone resorption in vivo and in vitro whereas the anti-IL-6 Ab inhibited bone resorption in vitro but not in vivo. In conclusion, these data indicate that IL-1 and TNF play a direct role in mediating the effects of ovx on osteoclastogenesis and bone resorption. The data also suggest that IL-6 is not essential for increasing bone resorption in the early postovariectomy period. Images PMID:7989596

  13. Enhanced antimicrobial peptide-induced activity in the mollusc Toll-2 family through evolution via tandem Toll/interleukin-1 receptor

    PubMed Central

    Cao, Jun; Chen, Yihong; Jin, Min; Ren, Qian

    2016-01-01

    Toll receptors play an important role in the innate immunity of invertebrates. All reported Tolls have only one Toll/interleukin-1 receptor (TIR) domain at the C-terminal. In this study, numerous Tolls with tandem TIRs at the C-terminal were found in molluscs. Such Tolls presented an extra TIR (TIR-1) compared with Toll-I. Thus, Toll-I might be the ancestor of tandem TIRs containing Toll. To test this hypothesis, 83 Toll-I and Toll-2 (most have two TIRs, but others seem to be the evolutionary intermediates) genes from 29 shellfish species were identified. These Tolls were divided into nine groups based on phylogenetic analyses. A strong correlation between phylogeny and motif composition was found. All Toll proteins contained the TIR-2 domain, whereas the TIR-1 domain only existed in some Toll-2 protein, suggesting that TIR-1 domain insertion may play an important role in Toll protein evolution. Further analyses of functional divergence and adaptive evolution showed that some of the critical sites responsible for functional divergence may have been under positive selection. An additional intragenic recombination played an important role in the evolution of the Toll-I and Toll-2 genes. To investigate the functional difference of Toll-I and Toll-2, over expression of Hcu_Toll-I or Hcu_Toll-2-2 in Drosophila S2 cells was performed. Results showed that Hcu_Toll-2-2 had stronger antimicrobial peptide (AMP) activity than Hcu_Toll-I. Therefore, enhanced AMP-induced activity resulted from tandem TIRs in Toll-2s of molluscs during evolution history. PMID:27429771

  14. Enhanced antimicrobial peptide-induced activity in the mollusc Toll-2 family through evolution via tandem Toll/interleukin-1 receptor.

    PubMed

    Cao, Jun; Chen, Yihong; Jin, Min; Ren, Qian

    2016-06-01

    Toll receptors play an important role in the innate immunity of invertebrates. All reported Tolls have only one Toll/interleukin-1 receptor (TIR) domain at the C-terminal. In this study, numerous Tolls with tandem TIRs at the C-terminal were found in molluscs. Such Tolls presented an extra TIR (TIR-1) compared with Toll-I. Thus, Toll-I might be the ancestor of tandem TIRs containing Toll. To test this hypothesis, 83 Toll-I and Toll-2 (most have two TIRs, but others seem to be the evolutionary intermediates) genes from 29 shellfish species were identified. These Tolls were divided into nine groups based on phylogenetic analyses. A strong correlation between phylogeny and motif composition was found. All Toll proteins contained the TIR-2 domain, whereas the TIR-1 domain only existed in some Toll-2 protein, suggesting that TIR-1 domain insertion may play an important role in Toll protein evolution. Further analyses of functional divergence and adaptive evolution showed that some of the critical sites responsible for functional divergence may have been under positive selection. An additional intragenic recombination played an important role in the evolution of the Toll-I and Toll-2 genes. To investigate the functional difference of Toll-I and Toll-2, over expression of Hcu_Toll-I or Hcu_Toll-2-2 in Drosophila S2 cells was performed. Results showed that Hcu_Toll-2-2 had stronger antimicrobial peptide (AMP) activity than Hcu_Toll-I. Therefore, enhanced AMP-induced activity resulted from tandem TIRs in Toll-2s of molluscs during evolution history.

  15. Enhanced antimicrobial peptide-induced activity in the mollusc Toll-2 family through evolution via tandem Toll/interleukin-1 receptor.

    PubMed

    Cao, Jun; Chen, Yihong; Jin, Min; Ren, Qian

    2016-06-01

    Toll receptors play an important role in the innate immunity of invertebrates. All reported Tolls have only one Toll/interleukin-1 receptor (TIR) domain at the C-terminal. In this study, numerous Tolls with tandem TIRs at the C-terminal were found in molluscs. Such Tolls presented an extra TIR (TIR-1) compared with Toll-I. Thus, Toll-I might be the ancestor of tandem TIRs containing Toll. To test this hypothesis, 83 Toll-I and Toll-2 (most have two TIRs, but others seem to be the evolutionary intermediates) genes from 29 shellfish species were identified. These Tolls were divided into nine groups based on phylogenetic analyses. A strong correlation between phylogeny and motif composition was found. All Toll proteins contained the TIR-2 domain, whereas the TIR-1 domain only existed in some Toll-2 protein, suggesting that TIR-1 domain insertion may play an important role in Toll protein evolution. Further analyses of functional divergence and adaptive evolution showed that some of the critical sites responsible for functional divergence may have been under positive selection. An additional intragenic recombination played an important role in the evolution of the Toll-I and Toll-2 genes. To investigate the functional difference of Toll-I and Toll-2, over expression of Hcu_Toll-I or Hcu_Toll-2-2 in Drosophila S2 cells was performed. Results showed that Hcu_Toll-2-2 had stronger antimicrobial peptide (AMP) activity than Hcu_Toll-I. Therefore, enhanced AMP-induced activity resulted from tandem TIRs in Toll-2s of molluscs during evolution history. PMID:27429771

  16. No strong association between alleles of tumour necrosis factor alpha and interleukin-1 receptor antagonist and corneal melting associated with systemic vasculitis

    PubMed Central

    McKibbin, M; Clark, B; Lee, H; Isaacs, J; Gooi, H; Morrell, A

    2000-01-01

    AIMS—To investigate polymorphism within the tumour necrosis factor alpha (TNF-α) promoter region and within the interleukin-1 receptor antagonist (IL-1Ra) gene in a group of patients with vasculitis associated corneal melting.
METHODS—The polymorphic regions at position -308 on the TNF-α promoter region and in intron 2 of the IL-1Ra gene were amplified by the polymerase chain reaction (PCR). The resultant products were separated by electrophoresis on agarose gels and visualised by ethidium bromide staining. Genotype and allele frequencies for the 20 patients were compared with healthy controls from the same geographical area.
RESULTS—The allele frequencies in the patient and control groups respectively for the TNF-α and IL-1Ra sites studied were as follows: TNF1, 82.5% and 80.2%; TNF2, 17.5% and 19.8%; IL-1Ra*1, 82.5% and 78.3%; IL-1Ra*2, 15% and 20%; IL-1Ra*3 2.5% and 1.5%. Although there was a trend for the IL1Ra*2 allele to be more common in the control group, no allele was found to have a statistically significantly association with the patient group: TNF1 p = 0.89; TNF2 p = 0.89; IL-1Ra*1 p = 0.65; IL-1Ra*2 p = 0.68; IL-1Ra*3 p= 0.50.
CONCLUSIONS—The results suggest that the polymorphic alleles of TNF-α and IL-1Ra studied play little or no part in the susceptibility to corneal melting among these patients with systemic vasculitis.

 PMID:10729297

  17. Joint erosion in rheumatoid arthritis: interactions between tumour necrosis factor α, interleukin 1, and receptor activator of nuclear factor κB ligand (RANKL) regulate osteoclasts

    PubMed Central

    O', G; Ireland, D; Bord, S; Compston, J

    2004-01-01

    Background: Osteoclasts, specialised bone resorbing cells regulated by RANKL and M-CSF, are implicated in rheumatoid joint erosion. Lymphocyte-monocyte interactions activate bone resorption, this being attributed to tumour necrosis factor α (TNFα) and interleukin 1 ß (IL1ß) enhanced osteoblast expression of RANKL. In animal studies, TNF potently increases osteoclast formation in the presence of RANKL. RANKL-independent osteoclastogenesis also occurs, though IL1 is required for resorptive function in most studies. These inflammatory cytokines have a pivotal role in rheumatoid arthritis, Objective: To study the interactions of TNFα and IL1ß with RANKL, particularly the time course of the interactions and the role of lymphocytes. Method: Cultures of lymphocytes and monocytes (osteoclast precursors) or of purified CD14+ cells alone (osteoclast precursors) were exposed to various combinations of TNFα, RANKL, and IL1ß or the inhibitors osteoprotegerin, IL1 receptor antagonist, or neutralising antibodies to RANKL or to IL1. Osteoclastogenesis and resorptive activity were assessed on microscopy of dentine slices. Results: TNFα potently increased osteoclast proliferation/differentiation in the presence of RANKL. This effect was greatest when RANKL was present before but not after exposure of osteoclast precursor cells to TNFα. The resorptive activity of osteoclasts generated by TNFα in the absence of RANKL was critically dependent upon IL1, which was expressed by lymphocyte-monocyte interaction. Conclusion: TNFα potently enhances RANKL mediated osteoclast activity. Interactions between TNFα and IL1 also result in osteoclastic activity independently of RANKL. These findings will inform therapeutic approaches to the prevention of joint erosion in rheumatoid arthritis. PMID:15020327

  18. Interleukin-1 receptor antagonist decreases cerebrospinal fluid nitric oxide levels and increases vasopressin secretion in the late phase of sepsis in rats.

    PubMed

    Wahab, Fazal; Tazinafo, Lucas F; Cárnio, Evelin C; Aguila, Fábio A; Batalhão, Marcelo E; Rocha, Maria José A

    2015-05-01

    The aim of this study was to analyze the effect of IL-1ra (an Interleukin-1 receptor antagonist) on sepsis-induced alterations in vasopressin (AVP) and nitric oxide (NO) levels. In addition, IL-1ra effect on the hypothalamic nitric oxide synthase (NOS) activities and survival rate was also analyzed. After Wistar rats were intracerebroventricular injected with IL-1ra (9 pmol) or vehicle (PBS 0.01 M), sepsis was induced by cecal-ligation and puncture (CLP). Blood, CSF, and hypothalamic samples were collected from different groups of rats (n = 8/group) after 4, 6, and 24 h. AVP and NO levels were greatly increased in CLP. Both total NOS and inducible NOS (iNOS) activities were also greatly increased in CLP rats. These changes in AVP, NO, and NOS were not observed in sham-operated control rats. IL-1ra administration did not alter plasma AVP levels after 4 and 6 h as compared to vehicle in CLP animals but after 24 h were significantly (P < 0.01) higher in IL-1ra-treated animals. IL-1ra administration significantly (P < 0.01) decreased NO concentration in CSF but not in plasma. Both total NOS and iNOS activities were also significantly decreased by IL-1ra at 24 h in CLP animals. Moreover, the 24 h survival rate of IL-1ra-treated rats increased by 38 % in comparison to vehicle administered animals. The central administration of IL-1ra increased AVP secretion in the late phase of sepsis which was beneficial for survival. We believe that one of the mechanisms for this effect of IL-1ra is through reduction of NO concentration in CSF and hence lower hypothalamic iNOS activities in the septic rats.

  19. Ultrasound Biomicroscopic Imaging for Interleukin-1 Receptor Antagonist-Inhibiting Atherosclerosis and Markers of Inflammation in Atherosclerotic Development in Apolipoprotein-E Knockout Mice.

    PubMed

    Li, Rong-Juan; Sun, Yan; Wang, Qin; Yang, Jiao; Yang, Ya; Song, Li; Wang, Zheng; Luo, Xiang-Hong; Su, Rui-Juan

    2015-08-01

    We sought to validate the hypothesis that the development of atherosclerosis can be suppressed by the interleukin-1 receptor antagonist (IL-1Ra) in murine models of atherosclerosis in vivo, noninvasively seen by means of high-resolution ultrasound biomicroscopy, and we studied changes in inflammatory markers such as IL-1 and C-reactive protein (CRP) plasma levels in these models of atherosclerosis. We divided IL-1Ra(+/-)/apolipoprotein-E (apoE)(-/-) and IL-1Ra(+/+)/apoE(-/-) mice into 2 age groups, used as atherosclerotic models. The control groups were age-matched IL-1Ra(+/+)/apoE(+/+) mice. Plaque thickness was measured in the ascending aorta in short-axis images by means of ultrasound and histology. Plasma levels of IL-1 and CRP were quantified in the 3 murine groups. At 16 weeks, plaque thickness in the ascending aortas of the IL-1Ra(+/-)/apoE(-/-) mice was significantly greater than that in the IL-1Ra(+/+)/apoE(-/-) mice, on ultrasound and histology (P <0.01). In contrast, at 32 weeks, the differences between these 2 genotypes were not statistically significant. Serum IL-1 levels were lower in the IL-1Ra(+/-)/apoE(-/-) mice than in the IL-1Ra(+/+)/apoE(-/-) mice at 16 and 32 weeks (P <0.05). At 16 weeks, serum CRP levels in the IL-1Ra(+/-)/apoE(-/-) mice were higher than in the IL-1Ra(+/+)/apoE(-/-) mice (P <0.01). Our results suggest that ultrasound biomicroscopy enables evaluation of atherosclerotic lesions in vivo, noninvasively and in real-time, in apoE(-/-) mice. Partial IL-1Ra deficiencies might promote early plaque development in 16-week-old apoE(-/-) mice. The balance of IL-1 and IL-1Ra might influence atherosclerotic development. Finally, CRP might affect the initiation of atherosclerosis, rather than its progression.

  20. Analysis of polymorphisms in interleukin-10, interleukin-6, and interleukin-1 receptor antagonist in Mexican-Mestizo women with pre-eclampsia.

    PubMed

    Valencia Villalvazo, Elith Yazmin; Canto-Cetina, Thelma; Romero Arauz, Juan Fernando; Coral-Vázquez, Ramón Mauricio; Canizales-Quinteros, Samuel; Coronel, Agustín; Carlos Falcón, Juan; Hernández Rivera, Jaime; Ibarra, Roberto; Polanco Reyes, Lucila; Canto, Patricia

    2012-11-01

    Due to the fact that studies seeking associations of polymorphisms in regulatory regions of cytokine genes with pre-eclampsia (PE) have not always been consistent in different population analyses, the aim of this study was to investigate the possible association between rs1800896 of interleukin-10 (IL-10), rs1800795 of interleukin-6 (IL-6), and the variable number of tandem repeats (VNTR) in intron 2 of interleukin-1 receptor antagonist (IL-1Ra), as well as gene-gene interactions between these three polymorphisms with the presence of PE in Mexican-Mestizo women and one Amerindian population from México (Maya). A case-control study was performed where 411 pre-eclamptic cases and 613 controls were genotyped. For the rs1800896 of IL-10 and rs1800795 of IL-6, we used real-time polymerase chain reaction (PCR) allelic discrimination and for the VNTR of IL-1Ra, PCR. Allele frequency differences were assessed by Chi-squared test; logistic regression was used to test for associations; a gene-gene interaction was conducted. Genotypic and allelic distribution of the polymorphisms was similar in our population. The estimated of the gene-gene interaction between the polymorphisms did not differ significantly. However, we observed important differences in the distribution of the alleles and genotypes of the three polymorphisms analyzed between Mestiza-Mexicanas and Maya-Mestizo women. In conclusion, we did not find an association between polymorphisms in IL-10, IL-6, and IL-1Ra and PE in Mexican-Mestizo and Maya-Mestizo women. To our knowledge, this is the first time that these three polymorphisms were analyzed together with gene-gene interaction in women with PE.

  1. The Impact of Early Intra-Articular Administration of Interleukin-1 Receptor Antagonist on Lubricin Metabolism and Cartilage Degeneration in an Anterior Cruciate Ligament Transection Model

    PubMed Central

    Elsaid, KA; Zhang, L; Shaman, Z; Patel, C; Schmidt, TA; Jay, GD

    2014-01-01

    OBJECTIVE Study the impact of intra-articular interleukin-1 receptor antagonist (IL-1 ra) treatment on lubricin biosynthesis following anterior cruciate ligament transection (ACLT) in the rat and evaluate the effect of combined IL-1 ra and recombinant human lubricin (rhPRG4) treatments on chondrocyte apoptosis and MMP-13 expression. METHODS ACLT was performed in male Lewis rats. Animals were treated with PBS or IL-1 ra (n=36 in each group). IL-1 ra intra-articular dosing was performed on days 1, 3, 5 and 7 following ACLT using Anakinra (150 mg/ml; 40 µl). At 3 and 5 weeks, animals were sacrificed and RNA was isolated. Histological analyses included lubricin, Safranin O and H&E. Lubricin synovial fluid (SF) lavage concentrations were determined at 5 weeks. ACLT animals were treated with a single injection of PBS, IL-1 ra (75 mg/ml; 40 µl), rhPRG4 (200 µg/ml; 40µl), or IL-1 ra + rhPRG4 (75 mg/ml + 200 µg/ml; 40µl) (n=6 in each group) on day 7 following ACLT and cartilage was probed for cleaved caspase-3 and MMP-13 at 5 weeks. RESULTS IL-1 ra treatment improved lubricin expression (p<0.001) and lubricin SF lavage concentrations in the IL-1 ra treated group was higher (p=0.005) than the PBS treated group. IL-1 ra treatment reduced cartilage and synovial scores (p<0.001) compared to PBS. IL-1 ra and rhPRG4 acted synergistically to reduce caspase-3 positive chondrocytes (p<0.001) and MMP-13 staining compared to individual treatments. CONCLUSION IL-1 ra treatment preserved lubricin following ACLT and a combined treatment of IL-1 ra + rhPRG4 may act synergistically to reduce cartilage catabolism. PMID:25219670

  2. Intrahippocampal transplantation of transgenic neural precursor cells overexpressing interleukin-1 receptor antagonist blocks chronic isolation-induced impairment in memory and neurogenesis.

    PubMed

    Ben Menachem-Zidon, Ofra; Goshen, Inbal; Kreisel, Tirzah; Ben Menahem, Yair; Reinhartz, Etti; Ben Hur, Tamir; Yirmiya, Raz

    2008-08-01

    The proinflammatory cytokine interleukin-1 (IL-1) within the brain is critically involved in mediating the memory impairment induced by acute inflammatory challenges and psychological stress. However, the role of IL-1 in memory impairment and suppressed neurogenesis induced by chronic stress exposure has not been investigated before now. We report here that mice that were isolated for 4 weeks displayed a significant elevation in hippocampal IL-1beta levels concomitantly with body weight loss, specific impairment in hippocampal-dependent memory, and decreased hippocampal neurogenesis. To examine the causal role of IL-1 in these effects, we developed a novel approach for long-term delivery of IL-1 receptor antagonist (IL-1ra) into the brain, using transplantation of neural precursor cells (NPCs), obtained from neonatal mice with transgenic overexpression of IL-1ra (IL-1raTG) under the glial fibrillary acidic protein promoter. Four weeks following intrahippocampal transplantation of IL-1raTG NPCs labeled with PKH-26, the transplanted cells were incorporated within the dentate gyrus and expressed mainly astrocytic markers. IL-1ra levels were markedly elevated in the hippocampus, but not in other brain regions, by 10 days and for at least 4 weeks post-transplantation. Transplantation of IL-1raTG NPCs completely rescued the chronic isolation-induced body weight loss, memory impairment, and suppressed hippocampal neurogenesis, compared with isolated mice transplanted with WT cells or sham operated. The transplantation had no effect in group-housed mice. These findings elucidate the role of IL-1 in the pathophysiology of chronic isolation and suggest that transplantation of IL-1raTG NPCs may provide a useful therapeutic procedure for IL-1-mediated memory disturbances in chronic inflammatory and neurological conditions. PMID:17987063

  3. Ultrasound Biomicroscopic Imaging for Interleukin-1 Receptor Antagonist-Inhibiting Atherosclerosis and Markers of Inflammation in Atherosclerotic Development in Apolipoprotein-E Knockout Mice.

    PubMed

    Li, Rong-Juan; Sun, Yan; Wang, Qin; Yang, Jiao; Yang, Ya; Song, Li; Wang, Zheng; Luo, Xiang-Hong; Su, Rui-Juan

    2015-08-01

    We sought to validate the hypothesis that the development of atherosclerosis can be suppressed by the interleukin-1 receptor antagonist (IL-1Ra) in murine models of atherosclerosis in vivo, noninvasively seen by means of high-resolution ultrasound biomicroscopy, and we studied changes in inflammatory markers such as IL-1 and C-reactive protein (CRP) plasma levels in these models of atherosclerosis. We divided IL-1Ra(+/-)/apolipoprotein-E (apoE)(-/-) and IL-1Ra(+/+)/apoE(-/-) mice into 2 age groups, used as atherosclerotic models. The control groups were age-matched IL-1Ra(+/+)/apoE(+/+) mice. Plaque thickness was measured in the ascending aorta in short-axis images by means of ultrasound and histology. Plasma levels of IL-1 and CRP were quantified in the 3 murine groups. At 16 weeks, plaque thickness in the ascending aortas of the IL-1Ra(+/-)/apoE(-/-) mice was significantly greater than that in the IL-1Ra(+/+)/apoE(-/-) mice, on ultrasound and histology (P <0.01). In contrast, at 32 weeks, the differences between these 2 genotypes were not statistically significant. Serum IL-1 levels were lower in the IL-1Ra(+/-)/apoE(-/-) mice than in the IL-1Ra(+/+)/apoE(-/-) mice at 16 and 32 weeks (P <0.05). At 16 weeks, serum CRP levels in the IL-1Ra(+/-)/apoE(-/-) mice were higher than in the IL-1Ra(+/+)/apoE(-/-) mice (P <0.01). Our results suggest that ultrasound biomicroscopy enables evaluation of atherosclerotic lesions in vivo, noninvasively and in real-time, in apoE(-/-) mice. Partial IL-1Ra deficiencies might promote early plaque development in 16-week-old apoE(-/-) mice. The balance of IL-1 and IL-1Ra might influence atherosclerotic development. Finally, CRP might affect the initiation of atherosclerosis, rather than its progression. PMID:26413013

  4. Experimental transmission of AA amyloidosis by injecting the AA amyloid protein into interleukin-1 receptor antagonist knockout (IL-1raKO) mice.

    PubMed

    Watanabe, K; Uchida, K; Chambers, J K; Tei, M; Shoji, A; Ushio, N; Nakayama, H

    2015-05-01

    The incidence of AA amyloidosis is high in humans with rheumatoid arthritis and several animal species, including cats and cattle with prolonged inflammation. AA amyloidosis can be experimentally induced in mice using severe inflammatory stimuli and a coinjection of AA amyloid; however, difficulties have been associated with transmitting AA amyloidosis to a different animal species, and this has been attributed to the "species barrier." The interleukin-1 receptor antagonist knockout (IL-1raKO) mouse, a rodent model of human rheumatoid arthritis, has been used in the transmission of AA amyloid. When IL-1raKO and BALB/c mice were intraperitoneally injected with mouse AA amyloid together with a subcutaneous pretreatment of 2% AgNO3, all mice from both strains that were injected with crude or purified murine AA amyloid developed AA amyloidosis. However, the amyloid index, which was determined by the intensity of AA amyloid deposition, was significantly higher in IL-1raKO mice than in BALB/c mice. When IL-1raKO and BALB/c mice were injected with crude or purified bovine AA amyloid together with the pretreatment, 83% (5/6 cases) and 38% (3/8 cases) of IL-1raKO mice and 17% (1/6 cases) and 0% (0/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. Similarly, when IL-1raKO and BALB/c mice were injected with crude or purified feline AA amyloid, 33% (2/6 cases) and 88% (7/8 cases) of IL-1raKO mice and 0% (0/6 cases) and 29% (2/6 cases) of BALB/c mice, respectively, developed AA amyloidosis. These results indicated that IL-1raKO mice are a useful animal model for investigating AA amyloidogenesis.

  5. Analysis of Polymorphisms in Interleukin-10, Interleukin-6, and Interleukin-1 Receptor Antagonist in Mexican-Mestizo Women with Pre-eclampsia

    PubMed Central

    Valencia Villalvazo, Elith Yazmin; Canto-Cetina, Thelma; Romero Arauz, Juan Fernando; Coral-Vázquez, Ramón Mauricio; Canizales-Quinteros, Samuel; Coronel, Agustín; Carlos Falcón, Juan; Hernández Rivera, Jaime; Ibarra, Roberto; Polanco Reyes, Lucila

    2012-01-01

    Due to the fact that studies seeking associations of polymorphisms in regulatory regions of cytokine genes with pre-eclampsia (PE) have not always been consistent in different population analyses, the aim of this study was to investigate the possible association between rs1800896 of interleukin-10 (IL-10), rs1800795 of interleukin-6 (IL-6), and the variable number of tandem repeats (VNTR) in intron 2 of interleukin-1 receptor antagonist (IL-1Ra), as well as gene–gene interactions between these three polymorphisms with the presence of PE in Mexican-Mestizo women and one Amerindian population from México (Maya). A case–control study was performed where 411 pre-eclamptic cases and 613 controls were genotyped. For the rs1800896 of IL-10 and rs1800795 of IL-6, we used real-time polymerase chain reaction (PCR) allelic discrimination and for the VNTR of IL-1Ra, PCR. Allele frequency differences were assessed by Chi-squared test; logistic regression was used to test for associations; a gene–gene interaction was conducted. Genotypic and allelic distribution of the polymorphisms was similar in our population. The estimated of the gene–gene interaction between the polymorphisms did not differ significantly. However, we observed important differences in the distribution of the alleles and genotypes of the three polymorphisms analyzed between Mestiza-Mexicanas and Maya-Mestizo women. In conclusion, we did not find an association between polymorphisms in IL-10, IL-6, and IL-1Ra and PE in Mexican-Mestizo and Maya-Mestizo women. To our knowledge, this is the first time that these three polymorphisms were analyzed together with gene–gene interaction in women with PE. PMID:23013217

  6. High-pressure studies of aggregation of recombinant human interleukin-1 receptor antagonist: Thermodynamics, kinetics, and application to accelerated formulation studies

    PubMed Central

    Seefeldt, Matthew B.; Kim, Yong-Sung; Tolley, Kevin P.; Seely, Jim; Carpenter, John F.; Randolph, Theodore W.

    2005-01-01

    Recombinant human interleukin-1 receptor antagonist (IL-1ra) in aqueous solutions unfolds and aggregates when subjected to hydrostatic pressures greater than about 180 MPa. This study examined the mechanism and thermodynamics of pressure-induced unfolding and aggregation of IL-1ra. The activation free energy for growth of aggregates (ΔG∓aggregation) was found to be 37 ± 3 kJ/mol, whereas the activation volume (ΔV∓aggregation) was −120 ± 20 mL/mol. These values compare closely with equilibrium values for denaturation: The free energy for denaturation, ΔGdenaturation, was 20 ± 5 kJ/mol, whereas the partial specific volume change for denaturation, ΔVdenaturation, was −110 ± 30 mL/mol. When IL-1ra begins to denature at pressures near 140 MPa, cysteines that are normally buried in the native state become exposed. Under oxidizing conditions, this results in the formation of covalently cross-linked aggregates containing nonnative, intermolecular disulfide bonds. The apparent activation free energy for nucleation of aggregates, ΔG∓nuc, was 42 ± 4 kJ/mol, and the activation volume for nucleation, ΔV∓nuc,was −175 ± 37 mL/mol, suggesting that a highly solvent-exposed conformation is needed for nucleation. We hypothesize that the large specific volume of IL-1ra, 0.752 ± 0.004 mL/g, coupled with its relatively low conformational stability, leads to its susceptibility to denaturation at relatively low pressures. The positive partial specific adiabatic compressibility of IL-1ra, 4.5 ± 0.7 ± 10−12 cm2/dyn, suggests that a significant component of the ΔVdenaturation is attributable to the elimination of solvent-free cavities. Lastly, we propose that hydrostatic pressure is a useful variable to conduct accelerated formulation studies of therapeutic proteins. PMID:16081653

  7. Energy-sensing factors coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and AMP-activated protein kinase control expression of inflammatory mediators in liver: induction of interleukin 1 receptor antagonist.

    PubMed

    Buler, Marcin; Aatsinki, Sanna-Mari; Skoumal, Réka; Komka, Zsolt; Tóth, Miklós; Kerkelä, Risto; Georgiadi, Anastasia; Kersten, Sander; Hakkola, Jukka

    2012-01-13

    Obesity and insulin resistance are associated with chronic, low grade inflammation. Moreover, regulation of energy metabolism and immunity are highly integrated. We hypothesized that energy-sensitive coactivator peroxisome proliferator-activated receptor γ coactivator 1-α (PGC-1α) and AMP-activated protein kinase (AMPK) may modulate inflammatory gene expression in liver. Microarray analysis revealed that PGC-1α up-regulated expression of several cytokines and cytokine receptors, including interleukin 15 receptor α (IL15Rα) and, even more importantly, anti-inflammatory interleukin 1 receptor antagonist (IL1Rn). Overexpression of PGC-1α and induction of PGC-1α by fasting, physical exercise, glucagon, or cAMP was associated with increased IL1Rn mRNA and protein expression in hepatocytes. Knockdown of PGC-1α by siRNA down-regulated cAMP-induced expression of IL1Rn in mouse hepatocytes. Furthermore, knockdown of peroxisome proliferator-activated receptor α (PPARα) attenuated IL1Rn induction by PGC-1α. Overexpression of PGC-1α, at least partially through IL1Rn, suppressed interleukin 1β-induced expression of acute phase proteins, C-reactive protein, and haptoglobin. Fasting and exercise also induced IL15Rα expression, whereas glucagon and cAMP resulted in reduction in IL15Rα mRNA levels. Finally, AMPK activator metformin and adenoviral overexpression of AMPK up-regulated IL1Rn and down-regulated IL15Rα in primary hepatocytes. We conclude that PGC-1α and AMPK alter inflammatory gene expression in liver and thus integrate energy homeostasis and inflammation. Induction of IL1Rn by PGC-1α and AMPK may be involved in the beneficial effects of exercise and caloric restriction and putative anti-inflammatory effects of metformin.

  8. Even in pneumococcal sepsis CD62L shedding on granulocytes proves to be a reliable functional test for the diagnosis of interleukin-1 receptor-associated kinase-4 deficiency.

    PubMed

    Andres, Oliver; Strehl, Karoline; Kölsch, Uwe; Kunzmann, Steffen; Lebrun, Anne-Hélène; Stroh, Thorsten; Schwarz, Klaus; Morbach, Henner; von Bernuth, Horst; Liese, Johannes; Liefse, Johannes

    2013-09-01

    A 9-month-old infant presented with fatal pneumococcal sepsis and attenuated inflammation indices. Even in septic conditions, flow cytometry-based CD62L shedding test on granulocytes proved to be a fast and reliable diagnostic tool for the detection of a defect in the innate immunity. Confirmatory immunologic and genetic assays identified an autosomal-recessive interleukin-1 receptor-associated kinase-4 deficiency due to compound heterozygous mutations.

  9. Identification of Phosphorylation Sites Regulating sst3 Somatostatin Receptor Trafficking.

    PubMed

    Lehmann, Andreas; Kliewer, Andrea; Günther, Thomas; Nagel, Falko; Schulz, Stefan

    2016-06-01

    The human somatostatin receptor 3 (sst3) is expressed in about 50% of all neuroendocrine tumors and hence a promising target for multireceptor somatostatin analogs. The sst3 receptor is unique among ssts in that it exhibits a very long intracellular C-terminal tail containing a huge number of potential phosphate acceptor sites. Consequently, our knowledge about the functional role of the C-terminal tail in sst3 receptor regulation is very limited. Here, we have generated a series of phosphorylation-deficient mutants that enabled us to determine crucial sites for its agonist-induced β-arrestin mobilization, internalization, and down-regulation. Based on this information, we generated phosphosite-specific antibodies for C-terminal Ser(337)/Thr(341), Thr(348), and Ser(361) that enabled us to investigate the temporal patterns of sst3 phosphorylation and dephosphorylation. We found that the endogenous ligand somatostatin induced a rapid and robust phosphorylation that was completely blocked by the sst3 antagonist NVP-ACQ090. The stable somatostatin analogs pasireotide and octreotide promoted clearly less phosphorylation compared with somatostatin. We also show that sst3 phosphorylation occurred within seconds to minutes, whereas dephosphorylation of the sst3 receptor occurred at a considerable slower rate. In addition, we also identified G protein-coupled receptor kinases 2 and 3 and protein phosphatase 1α and 1β as key regulators of sst3 phosphorylation and dephosphorylation, respectively. Thus, we here define the C-terminal phosphorylation motif of the human sst3 receptor that regulates its agonist-promoted phosphorylation, β-arrestin recruitment, and internalization of this clinically relevant receptor.

  10. TARP phosphorylation regulates synaptic AMPA receptors through lipid bilayers

    PubMed Central

    Sumioka, Akio; Yan, Dan; Tomita, Susumu

    2010-01-01

    Summary Neurons use neurotransmitters to communicate across synapses, constructing neural circuits in the brain. AMPA-type glutamate receptors are the predominant excitatory neurotransmitter receptors mediating fast synaptic transmission. AMPA receptors localize at synapses by forming protein complexes with transmembrane AMPA receptor regulatory proteins (TARPs) and PSD-95-like MAGUKs. Among the three classes of ionotropic glutamate receptors (AMPA-, NMDA, kainate-type), AMPA receptor activity is most regulatable by neuronal activity to adjust synaptic strength. Here, we mutated the prototypical TARP, stargazin, and found that TARP phosphorylation regulates synaptic AMPA receptor activity in vivo. We also found that stargazin interacts with negatively-charged lipid bilayers in its phosphorylation dependent manner, and that the lipid interaction inhibited stargazin binding to PSD-95. Cationic lipids dissociated stargazin from lipid bilayers and enhanced synaptic AMPA receptor activity in a stargazin phosphorylation-dependent manner. Thus, TARP phosphorylation plays a critical role in regulating AMPA receptor-mediated synaptic transmission via a lipid bilayer interaction. PMID:20547132

  11. Progesterone receptor subunits are high-affinity substrates for phosphorylation by epidermal growth factor receptor.

    PubMed Central

    Ghosh-Dastidar, P; Coty, W A; Griest, R E; Woo, D D; Fox, C F

    1984-01-01

    Purified preparations of epidermal growth factor (EGF) receptor were used to test hen oviduct progesterone receptor subunits as substrates for phosphorylation catalyzed by EGF receptor. Both the 80-kilodalton (kDa) (A) and the 105-kDa (B) progesterone receptor subunits were phosphorylated in a reaction that required EGF and EGF receptor. No phosphorylation of progesterone receptor subunits was observed in the absence of EGF receptor, even when Ca2+ was substituted for Mg2+ and Mn2+. Phospho amino acid analysis revealed phosphorylation at tyrosine residues, with no phosphorylation detectable at serine or threonine residues. Two-dimensional maps of phosphopeptides generated from phosphorylated 80- or 105-kDa subunits by tryptic digestion revealed similar patterns, with resolution of two major, several minor, and a number of very minor phosphopeptides. The Km of progesterone receptor for phosphorylation by EGF-activated EGF receptor was 100 nM and the Vmax was 2.5 nmol/min per mg of EGF receptor protein at 0 degrees C. The stoichiometry of phosphorylation/hormone binding for progesterone receptor subunits was 0.31 at ice-bath temperature and approximately 1.0 at 22 degrees C. Images PMID:6200881

  12. Lipopolysaccharide Decreases Single Immunoglobulin Interleukin-1 Receptor-related Molecule (SIGIRR) Expression by Suppressing Specificity Protein 1 (Sp1) via the Toll-like Receptor 4 (TLR4)-p38 Pathway in Monocytes and Neutrophils*

    PubMed Central

    Ueno-Shuto, Keiko; Kato, Kosuke; Tasaki, Yukihiro; Sato, Miki; Sato, Keizo; Uchida, Yuji; Sakai, Hiromichi; Ono, Tomomi; Suico, Mary Ann; Mitsutake, Kazunori; Tokutomi, Naofumi; Kai, Hirofumi; Shuto, Tsuyoshi

    2014-01-01

    Single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR) is one of the immunoglobulin-like membrane proteins that is crucial for negative regulation of toll-like receptor 4 (TLR4) and interleukin-1 receptor. Despite the importance of understanding its expression and function, knowledge is limited on the regulatory mechanism in the epithelial tissues, such as the liver, lung, and gut, where its predominant expression is originally described. Here, we found expression of SIGIRR in non-epithelial innate immune cells, including primary peripheral blood monocytes, polymorphonuclear neutrophils, monocytic RAW264 cells, and neutrophilic-differentiated HL-60 cells. Consistent with previous findings in epithelial tissues, SIGIRR gene and protein expression were also down-regulated by LPS treatment in a time-dependent manner in primary blood monocytes and polymorphonuclear neutrophils. A reduction was also observed in RAW264 and differentiated HL-60 cells. Notably, exogenous introduction of the dominant negative form of TLR4 and siRNA of p38 resulted in inhibition of LPS-induced SIGIRR down-regulation, whereas treatment with p38 activator anisomycin showed a dose-dependent decrease in SIGIRR expression, suggesting TLR4-p38 signal as a critical pathway for LPS-induced SIGIRR down-regulation. Finally, reporter gene and chromatin immunoprecipitation assays demonstrated that Sp1 is a key factor that directly binds to the proximal promoter of SIGIRR gene and consequently regulates basal SIGIRR expression, which is negatively regulated by the LPS-dependent TLR4-p38 pathway. In summary, the data precisely demonstrate how LPS down-regulates SIGIRR expression and provide a role of LPS signal that counteracts Sp1-dependent basal promoter activation of SIGIRR gene via TLR4-p38 pathway in non-epithelial innate immune cells. PMID:24821721

  13. Plasma Levels of the Interleukin-1-Receptor Antagonist Are Lower in Women with Gestational Diabetes Mellitus and Are Particularly Associated with Postpartum Development of Type 2 Diabetes

    PubMed Central

    Katra, Pernilla; Dereke, Jonatan; Nilsson, Charlotta

    2016-01-01

    Diabetes mellitus is a group of diseases characterized by chronic hyperglycemia. Women who develops hyperglycemia for the first time during pregnancy receive the diagnosis gestational diabetes mellitus (GDM). Presently, there is no consensus about the diagnostic criteria for GDM. A majority of these women subsequently develop postpartum overt diabetes making it important to identify these patients as early as possible. In this study we investigated if plasma levels of the interleukin-1 receptor antagonist (IL-1Ra), an endogenous inhibitor of IL-1 signaling, can be used as a complementary biomarker for diagnosing GDM and predicting postpartum development of overt diabetes mellitus. Patients participating in this study (n = 227) were diagnosed with their first GDM 2004–2013 at Lund University Hospital, Lund, Sweden. Healthy pregnant volunteers (n = 156) were recruited from women’s welfare centers in the same region 2014–2015. Levels of IL-1Ra and C-peptide were analyzed in ethylenediaminetetraacetic acid (EDTA)-plasma or serum using enzyme linked immunosorbent assay (ELISA). GDM patients had significantly lower levels of IL-1Ra than the control group (p = 0.012). In addition, GDM patients that had developed impaired glucose tolerance (IGT) or type 2 diabetes mellitus postpartum had significantly lower levels of IL-1Ra, and significantly higher levels of C-peptide than GDM patients that had not developed diabetes mellitus postpartum (p = 0.023) and (p = 0.0011) respectively. An inverse correlation was found between IL-1Ra and serum C-peptide levels in the control group (rs = -0.31 p = 0.0001). Our results show that IL-1Ra might be included in a future panel of biomarkers, both for diagnosing GDM to complement blood glucose, and also identifying GDM patients that are at risk of developing type 2 diabetes mellitus postpartum. However, the ROC curve analysis provided a sensitivity of 52.2% and specificity of 67.1%, which nonetheless may not be sufficient enough to

  14. Anti-interleukin-1 alpha autoantibodies in humans: Characterization, isotype distribution, and receptor-binding inhibition--higher frequency in Schnitzler's syndrome (urticaria and macroglobulinemia)

    SciTech Connect

    Saurat, J.H.; Schifferli, J.; Steiger, G.; Dayer, J.M.; Didierjean, L. )

    1991-08-01

    Since autoantibodies (Abs) to cytokines may modify their biologic activities, high-affinity binding factors for interleukin-1 alpha (IL-1 alpha BF) were characterized in human sera. IL-1 alpha BF was identified as IgG (1) by sucrose density-gradient centrifugation followed by immunodiffusion autoradiography, (2) by ligand-blotting method, (3) by ligand binding to affinity-immobilized serum IgG, and (4) by IgG affinity purification followed by sucrose density-gradient centrifugation. IL-1 alpha binding activity resided in the F(ab)2 fragment. The apparent equilibrium constant was in the range of IgG found after immunization with conventional antigens (i.e., 10(-9) to 10(-10) mol/L). Anti-IL-1 alpha IgG auto-Abs represented only an extremely small fraction of total IgG (less than 1/10(-5)). Some sera with IL-1 alpha BF and purified IgG thereof were able to inhibit by 96% to 98% the binding of human recombinant IL-1 alpha to its receptor on murine thymoma EL4-6.1 cells, whereas other sera did not. When 125I-labeled anti-IL-1 alpha IgG complexes were injected into rats, they prolonged the plasma half-life of 125I-labeled IL-1 alpha several fold and altered its tissue distribution. The predominant class was IgG (12/19), mainly IgG4 (9/19), but in five of the sera, anti-IL-1 alpha IgA was also detected. In a screening of 271 sera, IL-1 alpha BF was detected in 17/98 normal subjects and was not more frequent in several control groups of patients, except in patients with Schnitzler's syndrome (fever, chronic urticaria, bone pain, and monoclonal IgM paraprotein) (6/9; p less than 0.005). The pathologic significance of these auto-Abs remains to be determined.

  15. Knockdown of interleukin-1 receptor type-1 on endothelial cells attenuated stress-induced neuroinflammation and prevented anxiety-like behavior.

    PubMed

    Wohleb, Eric S; Patterson, Jenna M; Sharma, Vikram; Quan, Ning; Godbout, Jonathan P; Sheridan, John F

    2014-02-12

    Interleukin-1β (IL-1β) is an inflammatory cytokine that plays a prominent role in stress-induced behavioral changes. In a model of repeated social defeat (RSD), elevated IL-1β expression in the brain was associated with recruitment of primed macrophages that were necessary for development of anxiety-like behavior. Moreover, microglia activation and anxiety-like behavior associated with RSD did not occur in IL-1 receptor type-1 knock-out (IL-1R1(KO)) mice. Therefore, the objective of this study was to examine the role of IL-1 signaling in RSD-induced macrophage trafficking to the brain and anxiety-like behavior. Initial studies revealed that RSD did not increase circulating myeloid cells in IL-1R1(KO) mice, resulting in limited macrophage trafficking to the brain. In addition, IL-1R1(KO) bone marrow-chimera mice showed that IL-1R1 expression was essential for macrophage trafficking into the brain. To differentiate cellular mediators of stress-induced IL-1 signaling, endothelial-specific IL-1R1 knock-down (eIL-1R1kd) mice were used. Both wild-type (WT) and eIL-1R1kd mice had increased circulating monocytes, recruitment of macrophages to the brain, and altered microglia activation after RSD. Nonetheless, RSD-induced expression of IL-1β, TNF-α, and IL-6 mRNA in brain CD11b(+) cells was attenuated in eIL-1R1kd mice compared with WT. Moreover, anxiety-like behavior did not develop in eIL-1R1kd mice. Collectively, these findings demonstrated that there was limited RSD-induced priming of myeloid cells in IL-1R1(KO) mice and disrupted propagation of neuroinflammatory signals in the brain of eIL-1R1kd mice. Furthermore, these data showed that transduction of IL-1 signaling by endothelial cells potentiates stress-induced neuroinflammation and promotes anxiety-like behavior.

  16. Type of Inflammation Differentially Affects Expression of Interleukin 1β and 6, Tumor Necrosis Factor-α and Toll-Like Receptors in Subclinical Endometritis in Mares.

    PubMed

    Siemieniuch, Marta J; Szóstek, Anna Z; Gajos, Katarzyna; Kozdrowski, Roland; Nowak, Marcin; Okuda, Kiyoshi

    2016-01-01

    Mares that fail to conceive or lose their embryos, without showing typical signs of clinical endometritis, should be suspected of subclinical endometritis (SE). In this study, the question was addressed: does SE fully activate selected mechanisms of innate immunity in mares? For this aim, expression of mRNAs for Toll-like Receptor 2 and 4 (TLR 2/4), interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor α (TNF) was examined in control mares versus either mares suffering from chronic endometritis (ChE) or subacute suppurative endometritis (SSE). The concentrations of IL-1β, IL-6 and TNF-α in supernatants from endometrial tissue cultures after 4 h incubation were measured using the enzyme immunoassay (EIA) method. Eighty-two warmblood mares, of known breeding history, were enrolled in this study. Based on histopathological assessment, mares were classified as suffering from ChE, SSE or as being healthy. In addition, immuno-localization of both TLR2 and TLR4 as well as TNF-α was investigated in the equine endometria. The mRNA expression of TLR2 (P < 0.01), IL-1β (P < 0.0001), IL-6 (P < 0.0001) and TLR4 and TNF (P < 0.05) was up-regulated in endometria of mares suffering from SSE compared with unaffected mares. Concentrations of IL-6 and TNF-α were increased only in mares exhibiting SSE, compared with unaffected (P < 0.01 for both) and ChE mares (P < 0.05 for both). Immuno-localization of TNF-α and TLRs was confirmed, both in unaffected and SE-affected endometria, and was present in the luminal and glandular epithelia and stromal cells. The severity of inflammation impacts the immune response and fosters activation of innate immunity mechanisms, as observed in the endometria of mares. The intracellular localization of TLRs and TNF-α in the endometria indicates a key role of endometrial epithelial and stromal cells in the immune response and inflammation. PMID:27152525

  17. Plasma Levels of the Interleukin-1-Receptor Antagonist Are Lower in Women with Gestational Diabetes Mellitus and Are Particularly Associated with Postpartum Development of Type 2 Diabetes.

    PubMed

    Katra, Pernilla; Dereke, Jonatan; Nilsson, Charlotta; Hillman, Magnus

    2016-01-01

    Diabetes mellitus is a group of diseases characterized by chronic hyperglycemia. Women who develops hyperglycemia for the first time during pregnancy receive the diagnosis gestational diabetes mellitus (GDM). Presently, there is no consensus about the diagnostic criteria for GDM. A majority of these women subsequently develop postpartum overt diabetes making it important to identify these patients as early as possible. In this study we investigated if plasma levels of the interleukin-1 receptor antagonist (IL-1Ra), an endogenous inhibitor of IL-1 signaling, can be used as a complementary biomarker for diagnosing GDM and predicting postpartum development of overt diabetes mellitus. Patients participating in this study (n = 227) were diagnosed with their first GDM 2004-2013 at Lund University Hospital, Lund, Sweden. Healthy pregnant volunteers (n = 156) were recruited from women's welfare centers in the same region 2014-2015. Levels of IL-1Ra and C-peptide were analyzed in ethylenediaminetetraacetic acid (EDTA)-plasma or serum using enzyme linked immunosorbent assay (ELISA). GDM patients had significantly lower levels of IL-1Ra than the control group (p = 0.012). In addition, GDM patients that had developed impaired glucose tolerance (IGT) or type 2 diabetes mellitus postpartum had significantly lower levels of IL-1Ra, and significantly higher levels of C-peptide than GDM patients that had not developed diabetes mellitus postpartum (p = 0.023) and (p = 0.0011) respectively. An inverse correlation was found between IL-1Ra and serum C-peptide levels in the control group (rs = -0.31 p = 0.0001). Our results show that IL-1Ra might be included in a future panel of biomarkers, both for diagnosing GDM to complement blood glucose, and also identifying GDM patients that are at risk of developing type 2 diabetes mellitus postpartum. However, the ROC curve analysis provided a sensitivity of 52.2% and specificity of 67.1%, which nonetheless may not be sufficient enough to use IL

  18. Variable number of tandem repeat polymorphisms of the interleukin-1 receptor antagonist gene IL-1RN: a novel association with the athlete status

    PubMed Central

    2010-01-01

    Background The interleukin-1 (IL-1) family of cytokines is involved in the inflammatory and repair reactions of skeletal muscle during and after exercise. Specifically, plasma levels of the IL-1 receptor antagonist (IL-1ra) increase dramatically after intense exercise, and accumulating evidence points to an effect of genetic polymorphisms on athletic phenotypes. Therefore, the IL-1 family cytokine genes are plausible candidate genes for athleticism. We explored whether IL-1 polymorphisms are associated with athlete status in European subjects. Methods Genomic DNA was obtained from 205 (53 professional and 152 competitive non-professional) Italian athletes and 458 non-athlete controls. Two diallelic polymorphisms in the IL-1β gene (IL-1B) at -511 and +3954 positions, and a variable number tandem repeats (VNTR) in intron 2 of the IL-1ra gene (IL-1RN) were assessed. Results We found a 2-fold higher frequency of the IL-1RN 1/2 genotype in athletes compared to non-athlete controls (OR = 1.93, 95% CI = 1.37-2.74, 41.0% vs. 26.4%), and a lower frequency of the 1/1 genotype (OR = 0.55, 95% CI = 0.40-0.77, 43.9% vs. 58.5%). Frequency of the IL-1RN 2/2 genotype did not differ between groups. No significant differences between athletes and controls were found for either -511 or +3954 IL-1B polymorphisms. However, the haplotype (-511)C-(+3954)T-(VNTR)2 was 3-fold more frequent in athletes than in non-athletes (OR = 3.02, 95% CI = 1.16-7.87). Interestingly, the IL-1RN 1/2 genotype was more frequent in professional than in non-professional athletes (OR = 1.92, 95% CI = 1.02-3.61, 52.8% vs. 36.8%). Conclusions Our study found that variants at the IL-1ra gene associate with athletic status. This confirms the crucial role that cytokine IL-1ra plays in human physical exercise. The VNTR IL-1RN polymorphism may have implications for muscle health, performance, and/or recovery capacities. Further studies are needed to assess these specific issues. As VNTR IL-1RN polymorphism is

  19. Expression of luteal estrogen receptor, interleukin-1, and apoptosis-associated genes after PGF2alpha administration in rabbits at different stages of pseudopregnancy.

    PubMed

    Maranesi, M; Zerani, M; Lilli, L; Dall'Aglio, C; Brecchia, G; Gobbetti, A; Boiti, C

    2010-08-01

    The dynamic expression for estrogen receptor subtype-1 (ESR1), interleukin-1beta (IL1B), and apoptosis-associated genes, as well as nitric oxide synthase activity, were examined in corpora lutea (CL) of rabbits after prostaglandin F(2alpha) (PGF(2alpha)) administration on either day 4 or day 9 of pseudopregnancy. By reverse transcriptase polymerase chain reaction, the steady-state level of ESR1 transcript was lower (P < 0.01) and that of anti-apoptotic B-cell CLL/lymphoma 2 (BCL2) -like 1 (BCL2L1) was greater in day 4 (P < 0.01) than in day 9 CL. Western blot analysis revealed that BCL2-associated X protein (BAX) abundance was greater in day 4 (P < 0.01) than in day 9 CL, whereas BCL2L1 protein was undetectable at both luteal stages. After PGF(2alpha), ESR1 transcript decreased (P < 0.01) in day 9 CL, whereas IL1B mRNA showed a transitory increase (P < 0.01) at both stages. The pro-apoptotic tumor protein p53 (TP53) gene had diminished (P < 0.01) on day 4 and on day 9 after a transitory increase (P < 0.01), whereas the BAX/BCL2L1 expression ratio increased (P < 0.01) in day 9 CL 24 h after treatment. Following PGF(2alpha), TP53 protein increased (P < 0.01) at both luteal stages, and BAX decreased (P < 0.01) in day 4 CL but increased (P < 0.01) 24 h later in day 9 CL; BCL2L1 became detectable 6 h later in day 4 CL. Nitric oxide synthase activity temporarily increased (P < 0.01) following PGF(2alpha). These findings suggest that PGF(2alpha) regulates luteolysis by ESR1 mRNA down-regulation and modulation of pro- and anti-apoptotic pathways in CL that have acquired a luteolytic capacity.

  20. Type of Inflammation Differentially Affects Expression of Interleukin 1β and 6, Tumor Necrosis Factor-α and Toll-Like Receptors in Subclinical Endometritis in Mares

    PubMed Central

    Szóstek, Anna Z.; Gajos, Katarzyna; Kozdrowski, Roland; Nowak, Marcin; Okuda, Kiyoshi

    2016-01-01

    Mares that fail to conceive or lose their embryos, without showing typical signs of clinical endometritis, should be suspected of subclinical endometritis (SE). In this study, the question was addressed: does SE fully activate selected mechanisms of innate immunity in mares? For this aim, expression of mRNAs for Toll-like Receptor 2 and 4 (TLR 2/4), interleukin 1β (IL-1β), interleukin 6 (IL-6) and tumor necrosis factor α (TNF) was examined in control mares versus either mares suffering from chronic endometritis (ChE) or subacute suppurative endometritis (SSE). The concentrations of IL-1β, IL-6 and TNF-α in supernatants from endometrial tissue cultures after 4 h incubation were measured using the enzyme immunoassay (EIA) method. Eighty-two warmblood mares, of known breeding history, were enrolled in this study. Based on histopathological assessment, mares were classified as suffering from ChE, SSE or as being healthy. In addition, immuno-localization of both TLR2 and TLR4 as well as TNF-α was investigated in the equine endometria. The mRNA expression of TLR2 (P < 0.01), IL-1β (P < 0.0001), IL-6 (P < 0.0001) and TLR4 and TNF (P < 0.05) was up-regulated in endometria of mares suffering from SSE compared with unaffected mares. Concentrations of IL-6 and TNF-α were increased only in mares exhibiting SSE, compared with unaffected (P < 0.01 for both) and ChE mares (P < 0.05 for both). Immuno-localization of TNF-α and TLRs was confirmed, both in unaffected and SE-affected endometria, and was present in the luminal and glandular epithelia and stromal cells. The severity of inflammation impacts the immune response and fosters activation of innate immunity mechanisms, as observed in the endometria of mares. The intracellular localization of TLRs and TNF-α in the endometria indicates a key role of endometrial epithelial and stromal cells in the immune response and inflammation. PMID:27152525

  1. Activation of toll like receptor 4 attenuates GABA synthesis and postsynaptic GABA receptor activities in the spinal dorsal horn via releasing interleukin-1 beta.

    PubMed

    Yan, Xisheng; Jiang, Enshe; Weng, Han-Rong

    2015-01-09

    Toll like receptor 4 (TLR4) is an innate immune pattern recognition receptor, expressed predominantly on microglia in the CNS. Activation of spinal TLR4 plays a critical role in the genesis of pathological pain induced by nerve injury, bone cancer, and tissue inflammation. Currently, it remains unknown how synaptic activities in the spinal dorsal horn are regulated by TLR4 receptors. Through recording GABAergic currents in neurons and glial glutamate transporter currents in astrocytes in rodent spinal slices, we determined whether and how TLR4 modulates GABAergic synaptic activities in the superficial spinal dorsal horn. We found that activation of TLR4 by lipopolysaccharide (LPS) reduces GABAergic synaptic activities through both presynaptic and postsynaptic mechanisms. Specifically, LPS causes the release of IL-1β from microglia. IL-1β in turn suppresses GABA receptor activities at the postsynaptic site through activating protein kinase C (PKC) in neurons. GABA synthesis at the presynaptic site is reduced upon activation of TLR4. Glial glutamate transporter activities are suppressed by IL-1β and PKC activation induced by LPS. The suppression of glial glutamate transporter activities leads to a deficiency of glutamine supply, which results in an attenuation of the glutamate-glutamine cycle-dependent GABA synthesis. These findings shed light on understanding synaptic plasticity induced by activation of TLR4 under neuroinflammation and identify GABA receptors, glial glutamate transporters, IL-1β and PKC as therapeutic targets to abrogate abnormal neuronal activities following activation of TLR4 in pathological pain conditions.

  2. Toll/Interleukin-1 Receptor Domain Dimers as the Platform for Activation and Enhanced Inhibition of Toll-like Receptor Signaling*

    PubMed Central

    Fekonja, Ota; Benčina, Mojca; Jerala, Roman

    2012-01-01

    TIR (Toll/IL-1 receptor) domains mediate interactions between TLR (Toll-like) or IL-1 family receptors and signaling adapters. While homotypic TIR domain interactions mediate receptor activation they are also usurped by microbial TIR domain containing proteins for immunosuppression. Here we show the role of a dimerized TIR domain platform for the suppression as well as for the activation of MyD88 signaling pathway. Coiled-coil dimerization domain, present in many bacterial TCPs, potently augments suppression of TLR/IL-1R signaling. The addition of a strong coiled-coil dimerization domain conferred the superior inhibition against the wide spectrum of TLRs and prevented the constitutive activation by a dimeric TIR platform. We propose a molecular model of MyD88-mediated signaling based on the dimerization of TIR domains as the limiting step. PMID:22829600

  3. Identification of interaction sites for dimerization and adapter recruitment in Toll/interleukin-1 receptor (TIR) domain of Toll-like receptor 4.

    PubMed

    Bovijn, Celia; Ulrichts, Peter; De Smet, Anne-Sophie; Catteeuw, Dominiek; Beyaert, Rudi; Tavernier, Jan; Peelman, Frank

    2012-02-01

    Toll-like receptor signaling requires interactions of the Toll/IL-1 receptor (TIR) domains of the receptor and adapter proteins. Using the mammalian protein-protein interaction trap strategy, homology modeling, and site-directed mutagenesis, we identify the interaction surfaces in the TLR4 TIR domain for the TLR4-TLR4, TLR4-MyD88 adapter-like (MAL), and TLR4-TRIF-related adapter molecule (TRAM) interaction. Two binding sites are equally important for TLR4 dimerization and adapter recruitment. In a model based on the crystal structure of the dimeric TLR10 TIR domain, the first binding site mediates TLR4-TLR4 TIR-TIR interaction. Upon dimerization, two identical second binding sites of the TLR4 TIR domain are juxtaposed and form an extended binding platform for both MAL and TRAM. In our mammalian protein-protein interaction trap assay, MAL and TRAM compete for binding to this platform. Our data suggest that adapter binding can stabilize the TLR4 TIR dimerization. PMID:22139835

  4. Identification of Interaction Sites for Dimerization and Adapter Recruitment in Toll/Interleukin-1 Receptor (TIR) Domain of Toll-like Receptor 4*

    PubMed Central

    Bovijn, Celia; Ulrichts, Peter; De Smet, Anne-Sophie; Catteeuw, Dominiek; Beyaert, Rudi; Tavernier, Jan; Peelman, Frank

    2012-01-01

    Toll-like receptor signaling requires interactions of the Toll/IL-1 receptor (TIR) domains of the receptor and adapter proteins. Using the mammalian protein-protein interaction trap strategy, homology modeling, and site-directed mutagenesis, we identify the interaction surfaces in the TLR4 TIR domain for the TLR4-TLR4, TLR4-MyD88 adapter-like (MAL), and TLR4-TRIF-related adapter molecule (TRAM) interaction. Two binding sites are equally important for TLR4 dimerization and adapter recruitment. In a model based on the crystal structure of the dimeric TLR10 TIR domain, the first binding site mediates TLR4-TLR4 TIR-TIR interaction. Upon dimerization, two identical second binding sites of the TLR4 TIR domain are juxtaposed and form an extended binding platform for both MAL and TRAM. In our mammalian protein-protein interaction trap assay, MAL and TRAM compete for binding to this platform. Our data suggest that adapter binding can stabilize the TLR4 TIR dimerization. PMID:22139835

  5. Brain Interleukin-1β and the Intrinsic Receptor Antagonist Control Peripheral Toll-Like Receptor 3-Mediated Suppression of Spontaneous Activity in Rats

    PubMed Central

    Yamato, Masanori; Tamura, Yasuhisa; Eguchi, Asami; Kume, Satoshi; Miyashige, Yukiharu; Nakano, Masayuki; Watanabe, Yasuyoshi; Kataoka, Yosky

    2014-01-01

    During acute viral infections such as influenza, humans often experience not only transient fever, but also prolonged fatigue or depressive feelings with a decrease in social activity for days or weeks. These feelings are thought to be due to neuroinflammation in the brain. Recent studies have suggested that chronic neuroinflammation is a precipitating event of various neurological disorders, but the mechanism determining the duration of neuroinflammation has not been elucidated. In this study, neuroinflammation was induced by intraperitoneal injection of polyriboinosinic:polyribocytidylic acid (poly I:C), a Toll-like receptor-3 agonist that mimics viral infection in male Sprague-Dawley rats, and then investigated how the neuroinflammation shift from acute to the chronic state. The rats showed transient fever and prolonged suppression of spontaneous activity for several days following poly I:C injection. NS-398, a cyclooxygenase-2 inhibitor, completely prevented fever, but did not improve spontaneous activity, indicating that suppression of spontaneous activity was not induced by the arachidonate cascade that generated the fever. The animals overexpressed interleukin (IL)-1β and IL-1 receptor antagonist (IL-1ra) in the brain including the cerebral cortex. Blocking the IL-1 receptor in the brain by intracerebroventricular (i.c.v.) infusion of recombinant IL-1ra completely blocked the poly I:C-induced suppression of spontaneous activity and attenuated amplification of brain interferon (IFN)-α expression, which has been reported to produce fatigue-like behavior by suppressing the serotonergic system. Furthermore, i.c.v. infusion of neutralizing antibody for IL-1ra prolonged recovery from suppression of spontaneous activity. Our findings indicated that IL-1β is the key trigger of neuroinflammation and that IL-1ra prevents the neuroinflammation entering the chronic state. PMID:24621600

  6. Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1.

    PubMed

    Baracchi, Francesca; Opp, Mark R

    2008-08-01

    Data indicate that interleukin (IL)-1 beta and tumor necrosis factor-alpha (TNFalpha) are involved in the regulation of non-rapid eye movement sleep (NREMS). Previous studies demonstrate that mice lacking the IL-1 beta type 1 receptor spend less time in NREMS during the light period, whereas mice lacking the p55 (type 1) receptor for TNFalpha spend less time in NREMS during the dark period. To further investigate roles for IL-1 beta and TNFalpha in sleep regulation we phenotyped sleep and responses to sleep deprivation of mice lacking both the IL-1 beta receptor 1 and TNFalpha receptor 1 (IL-1R1/TNFR1 KO). Male adult mice (IL-1R1/TNFR1 KO, n=14; B6129SF2/J, n=14) were surgically instrumented with EEG electrodes and with a thermistor to measure brain temperature. After recovery and adaptation to the recording apparatus, 48 h of undisturbed baseline recordings were obtained. Mice were then subjected to 6h sleep deprivation at light onset by gentle handling. IL-1R1/TNFR1 KO mice spent less time in NREMS during the last 6h of the dark period and less time in rapid eye movement sleep (REMS) during the light period. There were no differences between strains in the diurnal timing of delta power during NREMS. However, there were strain differences in the relative power spectra of the NREMS EEG during both the light period and the dark period. In addition, during the light period relative power in the theta frequency band of the REMS EEG differed between strains. After sleep deprivation, control mice exhibited prolonged increases in NREMS and REMS, whereas the duration of the NREMS increase was shorter and there was no increase in REMS of IL-1R1/TNFR1 KO mice. Delta power during NREMS increased in both strains after sleep deprivation, but the increase in delta power during NREMS of IL-1R1/TNFR1 KO mice was of greater magnitude and of longer duration than that observed in control mice. These results provide additional evidence that the IL-1 beta and TNFalpha cytokine systems

  7. Sleep-wake behavior and responses to sleep deprivation of mice lacking both interleukin-1 beta receptor 1 and tumor necrosis factor-alpha receptor 1.

    PubMed

    Baracchi, Francesca; Opp, Mark R

    2008-08-01

    Data indicate that interleukin (IL)-1 beta and tumor necrosis factor-alpha (TNFalpha) are involved in the regulation of non-rapid eye movement sleep (NREMS). Previous studies demonstrate that mice lacking the IL-1 beta type 1 receptor spend less time in NREMS during the light period, whereas mice lacking the p55 (type 1) receptor for TNFalpha spend less time in NREMS during the dark period. To further investigate roles for IL-1 beta and TNFalpha in sleep regulation we phenotyped sleep and responses to sleep deprivation of mice lacking both the IL-1 beta receptor 1 and TNFalpha receptor 1 (IL-1R1/TNFR1 KO). Male adult mice (IL-1R1/TNFR1 KO, n=14; B6129SF2/J, n=14) were surgically instrumented with EEG electrodes and with a thermistor to measure brain temperature. After recovery and adaptation to the recording apparatus, 48 h of undisturbed baseline recordings were obtained. Mice were then subjected to 6h sleep deprivation at light onset by gentle handling. IL-1R1/TNFR1 KO mice spent less time in NREMS during the last 6h of the dark period and less time in rapid eye movement sleep (REMS) during the light period. There were no differences between strains in the diurnal timing of delta power during NREMS. However, there were strain differences in the relative power spectra of the NREMS EEG during both the light period and the dark period. In addition, during the light period relative power in the theta frequency band of the REMS EEG differed between strains. After sleep deprivation, control mice exhibited prolonged increases in NREMS and REMS, whereas the duration of the NREMS increase was shorter and there was no increase in REMS of IL-1R1/TNFR1 KO mice. Delta power during NREMS increased in both strains after sleep deprivation, but the increase in delta power during NREMS of IL-1R1/TNFR1 KO mice was of greater magnitude and of longer duration than that observed in control mice. These results provide additional evidence that the IL-1 beta and TNFalpha cytokine systems

  8. Genomic Profiling of Tumor Necrosis Factor Alpha (TNF-α) Receptor and Interleukin-1 Receptor Knockout Mice Reveals a Link between TNF-α Signaling and Increased Severity of 1918 Pandemic Influenza Virus Infection▿ †

    PubMed Central

    Belisle, Sarah E.; Tisoncik, Jennifer R.; Korth, Marcus J.; Carter, Victoria S.; Proll, Sean C.; Swayne, David E.; Pantin-Jackwood, Mary; Tumpey, Terrence M.; Katze, Michael G.

    2010-01-01

    The influenza pandemic of 1918 to 1919 was one of the worst global pandemics in recent history. The highly pathogenic nature of the 1918 virus is thought to be mediated in part by a dysregulation of the host response, including an exacerbated proinflammatory cytokine response. In the present study, we compared the host transcriptional response to infection with the reconstructed 1918 virus in wild-type, tumor necrosis factor (TNF) receptor-1 knockout (TNFRKO), and interleukin-1 (IL-1) receptor-1 knockout (IL1RKO) mice as a means of further understanding the role of proinflammatory cytokine signaling during the acute response to infection. Despite reported redundancy in the functions of IL-1β and TNF-α, we observed that reducing the signaling capacity of each of these molecules by genetic disruption of their key receptor genes had very different effects on the host response to infection. In TNFRKO mice, we found delayed or decreased expression of genes associated with antiviral and innate immune signaling, complement, coagulation, and negative acute-phase response. In contrast, in IL1RKO mice numerous genes were differentially expressed at 1 day postinoculation, including an increase in the expression of genes that contribute to dendritic and natural killer cell processes and cellular movement, and gene expression profiles remained relatively constant at later time points. We also observed a compensatory increase in TNF-α expression in virus-infected IL1RKO mice. Our data suggest that signaling through the IL-1 receptor is protective, whereas signaling through the TNF-α receptor increases the severity of 1918 virus infection. These findings suggest that manipulation of these pathways may have therapeutic benefit. PMID:20926563

  9. Genomic profiling of tumor necrosis factor alpha (TNF-alpha) receptor and interleukin-1 receptor knockout mice reveals a link between TNF-alpha signaling and increased severity of 1918 pandemic influenza virus infection.

    PubMed

    Belisle, Sarah E; Tisoncik, Jennifer R; Korth, Marcus J; Carter, Victoria S; Proll, Sean C; Swayne, David E; Pantin-Jackwood, Mary; Tumpey, Terrence M; Katze, Michael G

    2010-12-01

    The influenza pandemic of 1918 to 1919 was one of the worst global pandemics in recent history. The highly pathogenic nature of the 1918 virus is thought to be mediated in part by a dysregulation of the host response, including an exacerbated proinflammatory cytokine response. In the present study, we compared the host transcriptional response to infection with the reconstructed 1918 virus in wild-type, tumor necrosis factor (TNF) receptor-1 knockout (TNFRKO), and interleukin-1 (IL-1) receptor-1 knockout (IL1RKO) mice as a means of further understanding the role of proinflammatory cytokine signaling during the acute response to infection. Despite reported redundancy in the functions of IL-1β and TNF-α, we observed that reducing the signaling capacity of each of these molecules by genetic disruption of their key receptor genes had very different effects on the host response to infection. In TNFRKO mice, we found delayed or decreased expression of genes associated with antiviral and innate immune signaling, complement, coagulation, and negative acute-phase response. In contrast, in IL1RKO mice numerous genes were differentially expressed at 1 day postinoculation, including an increase in the expression of genes that contribute to dendritic and natural killer cell processes and cellular movement, and gene expression profiles remained relatively constant at later time points. We also observed a compensatory increase in TNF-α expression in virus-infected IL1RKO mice. Our data suggest that signaling through the IL-1 receptor is protective, whereas signaling through the TNF-α receptor increases the severity of 1918 virus infection. These findings suggest that manipulation of these pathways may have therapeutic benefit.

  10. Tumor necrosis factor alpha and interleukin-1 alpha stimulate late shedding of p75 TNF receptors but not p55 TNF receptors from human monocytes.

    PubMed

    Joyce, D A; Steer, J H

    1995-11-01

    Soluble receptors for TNF (sTNF-R) are present at elevated concentrations in the synovial fluid of patients with rheumatoid arthritis. They are presumably released by cells of the synovial membrane, including the monocyte-derived synovial macrophages. Cytokines from the synovium, including IL-1 and TNF-alpha, may stimulate release. We therefore examined the release of sTNF-R from monocytes exposed to IL-1 and TNF-alpha. Elutriator-purified human blood monocytes spontaneously released both the p75 and the p55 sTNF-R (1011 +/- 199 and 177 +/- 20 pg/10(6) cells, respectively, mean +/- SEM) during 48 h of in vitro culture. TNF-alpha and IL-1 alpha induced time- and concentration-dependent increases in the release of sTNF-R75 from monocytes, but neither had a measurable effect on the release of sTNF-R55. The release of sTNF-R75 was inhibited by cycloheximide. Neither lymphocytes nor polymorphonuclear leukocytes (PMN) released measurable sTNF-R spontaneously or in response to stimulation with IL-1 alpha, but TNF-alpha stimulated the release of small amounts of sTNF-R75 by PMN. The timing, cycloheximide sensitivity, and selectivity of stimulated release of TNF-R75 by monocytes are consistent with previous observations on other cell types of late (8-20 h) increased synthesis and turnover of cell surface TNF-R75, but not TNF-R55, after stimulation with TNF-alpha or IL-1. These observations help to explain why elevated levels of sTNF-R in synovial fluid coexist with enhanced expression of cell surface TNF-R on synovial macrophages in rheumatoid arthritis. PMID:8590306

  11. Application of phosphorylation site-specific antibodies to measure nuclear receptor signaling: characterization of novel phosphoantibodies for estrogen receptor α

    PubMed Central

    Al-Dhaheri, Mariam H.; Rowan, Brian G.

    2006-01-01

    An understanding of posttranslational events in nuclear receptor signaling is crucial for drug design and clinical therapeutic strategies. Phosphorylation is a well-characterized posttranslational modification that regulates subcellular localization and function of nuclear receptors and coregulators. Although the role of single phosphorylation sites in nuclear receptor function has been described, the contribution of combinations of multiple phosphorylation sites to receptor function remains unclear. The development of phosphoantibodies to each phosphorylation site in a nuclear receptor is a powerful tool to address the role of phosphorylation in multiply phosphorylated receptors. However, phosphoantibodies must be rigorously validated prior to use. This review describes the general methodology for design, characterization and validation of phosphoantibodies using the example of eight phosphoantibodies raised against phosphorylation sites in estrogen receptor α (ERα). PMID:16741565

  12. Diffusion and action of intracerebroventricularly injected interleukin-1 in the CNS.

    PubMed

    Konsman, J P; Tridon, V; Dantzer, R

    2000-01-01

    Interleukin-1beta acts on the CNS to induce fever, neuroendocrine activation and behavioural depression. We have previously demonstrated that interleukin-1beta is synthesized in glial cells and macrophages of circumventricular organs and choroid plexus after intraperitoneal administration of bacterial lipopolysaccharide. Whether, and how, interleukin-1beta produced in glial cells affects neuronal functioning is unknown. Diffusion throughout the extracellular space is an important pathway by which factors produced by glial cells act on distant cells, a phenomenon coined "volume transmission". The present study assessed diffusion of recombinant rat interleukin-1beta, recombinant human interleukin-1 receptor antagonist and 10mol. wt dexran in the rat CNS after intracerebroventricular administration to model interleukin-1beta release from choroid plexus. Immunocytochemistry with specific antibodies directed against interleukin-1beta and interleukin-1 receptor antagonist revealed that these molecules rapidly penetrated into periventricular tissue and spread along white matter fibre bundles and blood vessels in the caudoputamen, hypothalamus and amygdala. The transcription factor nuclear factor kappa B and the immediate-early gene product Fos were detected immunocytochemically to reveal interleukin-1beta action. Intracerebroventricular infusion of interleukin-1beta induced nuclear factor kappa B translocation in choroid plexus, ependymal cells, basolateral amygdala, cerebral vasculature and meninges. Fos immunoreactivity was found in the supraoptic and paraventricular hypothalamus and central amygdala. We propose that intracerebroventricular injected interleukin-1beta can enter the brain parenchyma and act as a "volume transmission" signal in, for example, the basolateral amygdala where it might activate a neuronal projection to the central amygdala.

  13. Interleukin-1 of cholesteatomatous keratinocytes.

    PubMed

    Kakiuchi, H; Kinoshita, K; Katoh, Y; Tabata, T

    1992-10-01

    Interleukin-1 (IL-1) has been thought to be one of the essential cytokines mainly produced by macrophages. It has recently been reported that epidermal keratinocytes produce IL-1, and attention is being paid to local immune reactions mediated with this cytokine. Interleukin-1 not only activates lymphocytes, but also acts as an osteoclast-activating factor. In this study, we used immunohistochemistry and immunoblotting on cholesteatomatous epithelium with anti-IL-1 alpha antibody and anti-IL-1 beta antibody. Next, the relationship of cholesteatomatous debris to the production of IL-1 by keratinocytes was evaluated. Highly concentrated IL-1 alpha was found in the cholesteatomatous epithelium, especially in the basal cell layer. The intensity of IL-1 beta staining was weaker than that of IL-1 alpha staining. In the immunoblotting study, the 31 kd band, an intracellular immature precursor molecule, was identified. The production of IL-1 alpha from keratinocytes was augmented to a greater degree by cholesteatomatous debris than by lipopolysaccharide or keratin. The keratinocytes did not produce IL-1 beta. These findings suggest that IL-1 alpha is derived from cholesteatomatous keratinocytes. Interleukin-1, mainly IL-1 alpha, from the stimulated cholesteatomatous keratinocytes may be an important factor in the markedly increased bone resorption observed in cholesteatoma.

  14. Direct adenovirus-mediated gene transfer of interleukin 1 and tumor necrosis factor α soluble receptors to rabbit knees with experimental arthritis has local and distal anti-arthritic effects

    PubMed Central

    Ghivizzani, Steven C.; Lechman, Eric R.; Kang, Richard; Tio, Caroline; Kolls, Jay; Evans, Christopher H.; Robbins, Paul D.

    1998-01-01

    Adenoviral vectors were used to deliver genes encoding a soluble interleukin 1 (IL-1)-type I receptor-IgG fusion protein and/or a soluble type I tumor necrosis factor α (TNFα) receptor-IgG fusion protein directly to the knees of rabbits with antigen-induced arthritis. When tested individually, knees receiving the soluble IL-1 receptor had significantly reduced cartilage matrix degradation and white blood cell infiltration into the joint space. Delivery of the soluble TNFα receptor was less effective, having only a moderate effect on white blood cell infiltration and no effect on cartilage breakdown. When both soluble receptors were used together, there was a greater inhibition of white blood cell infiltration and cartilage breakdown with a considerable reduction of synovitis. Interestingly, anti-arthritic effects were also seen in contralateral control knees receiving only a marker gene, suggesting that sustained local inhibition of disease activity in one joint may confer an anti-arthritic effect on other joints. These results suggest that local intra-articular gene transfer could be used to treat systemic polyarticular arthritides. PMID:9539786

  15. Phosphorylation Site Dynamics of Early T-cell Receptor Signaling

    PubMed Central

    Rigbolt, Kristoffer T. G.; Hu, Bin; Hlavacek, William S.; Blagoev, Blagoy

    2014-01-01

    In adaptive immune responses, T-cell receptor (TCR) signaling impacts multiple cellular processes and results in T-cell differentiation, proliferation, and cytokine production. Although individual protein–protein interactions and phosphorylation events have been studied extensively, we lack a systems-level understanding of how these components cooperate to control signaling dynamics, especially during the crucial first seconds of stimulation. Here, we used quantitative proteomics to characterize reshaping of the T-cell phosphoproteome in response to TCR/CD28 co-stimulation, and found that diverse dynamic patterns emerge within seconds. We detected phosphorylation dynamics as early as 5 s and observed widespread regulation of key TCR signaling proteins by 30 s. Development of a computational model pointed to the presence of novel regulatory mechanisms controlling phosphorylation of sites with central roles in TCR signaling. The model was used to generate predictions suggesting unexpected roles for the phosphatase PTPN6 (SHP-1) and shortcut recruitment of the actin regulator WAS. Predictions were validated experimentally. This integration of proteomics and modeling illustrates a novel, generalizable framework for solidifying quantitative understanding of a signaling network and for elucidating missing links. PMID:25147952

  16. Role of phosphorylation in progesterone receptor signaling and specificity.

    PubMed

    Hagan, Christy R; Daniel, Andrea R; Dressing, Gwen E; Lange, Carol A

    2012-06-24

    Progesterone receptors (PR), in concert with peptide growth factor-initiated signaling pathways, initiate massive expansion of the epithelial cell compartment associated with the process of alveologenesis in the developing mammary gland. PR-dependent signaling events also contribute to inappropriate proliferation observed in breast cancer. Notably, PR-B isoform-specific cross talk with growth factor-driven pathways is required for the proliferative actions of progesterone. Indeed, PRs act as heavily phosphorylated transcription factor "sensors" for mitogenic protein kinases that are often elevated and/or constitutively activated in invasive breast cancers. In addition, phospho-PR-target genes frequently include the components of mitogenic signaling pathways, revealing a mechanism for feed-forward signaling that confers increased responsiveness of, PR +mammary epithelial cells to these same mitogenic stimuli. Understanding the mechanisms and isoform selectivity of PR/kinase interactions may yield further insight into targeting altered signaling networks in breast and other hormonally responsive cancers (i.e. lung, uterine and ovarian) in the clinic. This review focuses on PR phosphorylation by mitogenic protein kinases and mechanisms of PR-target gene selection that lead to increased cell proliferation.

  17. Circular Permutation Probes for Illuminating Phosphorylation of Estrogen Receptor.

    PubMed

    Kim, Sung-Bae; Tao, Hiroaki

    2016-01-01

    The present protocol demonstrates a new strategy for imaging ligand-triggered protein phosphorylation using circularly permutated luciferases (cpLuc): (1) a luciferase is first fragmented into two segments for creating new N- and C-terminal ends in the hydrophilic region, (2) the original N- and C-terminal ends are circularly permutated and linked via a GS linker, whereas the new ends made by fragmentation are correspondingly linked with two proteins of interest. When the new ends of the cpLuc are linked with the ligand-binding domain of estrogen receptor (ER LBD) and Src homology two domain of Src (SH2), the estrogen can trigger phosphorylation of the ER LBD and consequent intramolecular ER LBD-SH2 binding. This interaction triggers an approximation of the adjacent fragments of split-cpLuc recovering the enzyme activity. This probe design greatly improves signal-to-noise (S/N) ratios upon tracing weak protein-protein interactions (PPIs) in mammalian cells. PMID:27424903

  18. Neurosteroids promote phosphorylation and membrane insertion of extrasynaptic GABAA receptors

    PubMed Central

    Abramian, Armen M.; Comenencia-Ortiz, Eydith; Modgil, Amit; Vien, Thuy N.; Nakamura, Yasuko; Moore, Yvonne E.; Maguire, Jamie L.; Terunuma, Miho; Davies, Paul A.; Moss, Stephen J.

    2014-01-01

    Neurosteroids are synthesized within the brain and act as endogenous anxiolytic, anticonvulsant, hypnotic, and sedative agents, actions that are principally mediated via their ability to potentiate phasic and tonic inhibitory neurotransmission mediated by γ-aminobutyric acid type A receptors (GABAARs). Although neurosteroids are accepted allosteric modulators of GABAARs, here we reveal they exert sustained effects on GABAergic inhibition by selectively enhancing the trafficking of GABAARs that mediate tonic inhibition. We demonstrate that neurosteroids potentiate the protein kinase C-dependent phosphorylation of S443 within α4 subunits, a component of GABAAR subtypes that mediate tonic inhibition in many brain regions. This process enhances insertion of α4 subunit-containing GABAAR subtypes into the membrane, resulting in a selective and sustained elevation in the efficacy of tonic inhibition. Therefore, the ability of neurosteroids to modulate the phosphorylation and membrane insertion of α4 subunit-containing GABAARs may underlie the profound effects these endogenous signaling molecules have on neuronal excitability and behavior. PMID:24778259

  19. Neurosteroids promote phosphorylation and membrane insertion of extrasynaptic GABAA receptors.

    PubMed

    Abramian, Armen M; Comenencia-Ortiz, Eydith; Modgil, Amit; Vien, Thuy N; Nakamura, Yasuko; Moore, Yvonne E; Maguire, Jamie L; Terunuma, Miho; Davies, Paul A; Moss, Stephen J

    2014-05-13

    Neurosteroids are synthesized within the brain and act as endogenous anxiolytic, anticonvulsant, hypnotic, and sedative agents, actions that are principally mediated via their ability to potentiate phasic and tonic inhibitory neurotransmission mediated by γ-aminobutyric acid type A receptors (GABAARs). Although neurosteroids are accepted allosteric modulators of GABAARs, here we reveal they exert sustained effects on GABAergic inhibition by selectively enhancing the trafficking of GABAARs that mediate tonic inhibition. We demonstrate that neurosteroids potentiate the protein kinase C-dependent phosphorylation of S443 within α4 subunits, a component of GABAAR subtypes that mediate tonic inhibition in many brain regions. This process enhances insertion of α4 subunit-containing GABAAR subtypes into the membrane, resulting in a selective and sustained elevation in the efficacy of tonic inhibition. Therefore, the ability of neurosteroids to modulate the phosphorylation and membrane insertion of α4 subunit-containing GABAARs may underlie the profound effects these endogenous signaling molecules have on neuronal excitability and behavior. PMID:24778259

  20. 5-HT7 receptor activation promotes an increase in TrkB receptor expression and phosphorylation

    PubMed Central

    Samarajeewa, Anshula; Goldemann, Lolita; Vasefi, Maryam S.; Ahmed, Nawaz; Gondora, Nyasha; Khanderia, Chandni; Mielke, John G.; Beazely, Michael A.

    2014-01-01

    The serotonin (5-HT) type 7 receptor is expressed throughout the CNS including the cortex and hippocampus. We have previously demonstrated that the application of 5-HT7 receptor agonists to primary hippocampal neurons and SH-SY5Y cells increases platelet-derived growth factor (PDGF) receptor expression and promotes neuroprotection against N-methyl-D-aspartate-(NMDA)-induced toxicity. The tropomyosin-related kinase B (TrkB) receptor is one of the receptors for brain-derived neurotrophic factor (BDNF) and is associated with neurodevelopmental and neuroprotective effects. Application of LP 12 to primary cerebral cortical cultures, SH-SY5Y cells, as well as the retinal ganglion cell line, RGC-5, increased both the expression of full length TrkB as well as its basal phosphorylation state at tyrosine 816. The increase in TrkB expression and phosphorylation was observed as early as 30 min after 5-HT7 receptor activation. In addition to full-length TrkB, kinase domain-deficient forms may be expressed and act as dominant-negative proteins toward the full length receptor. We have identified distinct patterns of TrkB isoform expression across our cell lines and cortical cultures. Although TrkB receptor expression is regulated by cyclic AMP and Gαs-coupled GPCRs in several systems, we demonstrate that, depending on the model system, pathways downstream of both Gαs and Gα12 are involved in the regulation of TrkB expression by 5-HT7 receptors. Given the number of psychiatric and degenerative diseases associated with TrkB/BDNF deficiency and the current interest in developing 5-HT7 receptor ligands as pharmaceuticals, identifying signaling relationships between these two receptors will aid in our understanding of the potential therapeutic effects of 5-HT7 receptor ligands. PMID:25426041

  1. Phosphorylation of threonine 333 regulates trafficking of the human sst5 somatostatin receptor.

    PubMed

    Petrich, Aline; Mann, Anika; Kliewer, Andrea; Nagel, Falko; Strigli, Anne; Märtens, Jan Carlo; Pöll, Florian; Schulz, Stefan

    2013-04-01

    The frequent overexpression of the somatostatin receptors sst2 and sst5 in neuroendocrine tumors provides the molecular basis for therapeutic application of novel multireceptor somatostatin analogs. Although the phosphorylation of the carboxyl-terminal region of the sst2 receptor has been studied in detail, little is known about the agonist-induced regulation of the human sst5 receptor. Here, we have generated phosphosite-specific antibodies for the carboxyl-terminal threonines 333 (T333) and 347 (T347), which enabled us to selectively detect either the T333-phosphorylated or the T347-phosphorylated form of sst5. We show that agonist-mediated phosphorylation occurs at T333, whereas T347 is constitutively phosphorylated in the absence of agonist. We further demonstrate that the multireceptor somatostatin analog pasireotide and the sst5-selective ligand L-817,818 but not octreotide or KE108 were able to promote a detectable T333 phosphorylation. Interestingly, BIM-23268 was the only sst5 agonist that was able to stimulate T333 phosphorylation to the same extent as natural somatostatin. Agonist-induced T333 phosphorylation was dose-dependent and selectively mediated by G protein-coupled receptor kinase 2. Similar to that observed for the sst2 receptor, phosphorylation of sst5 occurred within seconds. However, unlike that seen for the sst2 receptor, dephosphorylation and recycling of sst5 were rapidly completed within minutes. We also identify protein phosphatase 1γ as G protein-coupled receptor phosphatase for the sst5 receptor. Together, we provide direct evidence for agonist-selective phosphorylation of carboxyl-terminal T333. In addition, we identify G protein-coupled receptor kinase 2-mediated phosphorylation and protein phosphatase 1γ-mediated dephosphorylation of T333 as key regulators of rapid internalization and recycling of the human sst5 receptor.

  2. Angiotensin type 1 receptor blockage reduces l-dopa-induced dyskinesia in the 6-OHDA model of Parkinson's disease. Involvement of vascular endothelial growth factor and interleukin-1β.

    PubMed

    Muñoz, Ana; Garrido-Gil, Pablo; Dominguez-Meijide, Antonio; Labandeira-Garcia, Jose L

    2014-11-01

    Non-neuronal factors such as angiogenesis and neuroinflammation may play a role in l-dopa induced dyskinesias (LID). Vascular endothelial growth factor (VEGF) and proinflammatory cytokines such as interleukin-1β (IL-1β) have been found to be involved in LID. The renin-angiotensin system (RAS) is involved in the inflammatory response and VEGF synthesis via type 1 (AT1) receptors. However, it is not known whether the RAS plays a role in LID and whether AT1 antagonists could constitute a useful therapy against LID. In this study, we investigated whether manipulation of brain RAS is effective in preventing LID. Blocking AT1 receptors with candesartan significantly reduces LID in the 6-OHDA rat model. Chronic dopaminergic denervation induces an increase in striatal levels of VEGF and IL-1β. Dyskinetic animals showed significantly higher levels of VEGF and IL-1β in the lateral striatum and the substantia nigra, as revealed by western blot and real time-PCR analyses. Interestingly, animals treated with both candesartan and l-dopa displayed significantly lower levels of VEGF, IL-1β and dyskinesia than those treated with l-dopa alone. The stimulatory effect of angiotensin II (AII) on VEGF expression was confirmed by the addition of AII to primary mesencephalic cultures and intraventricular administration of AII in rats. The results of the present study reveal for the first time that blockage of AT-1 receptors reduces LID. A candesartan-induced decrease in VEGF and IL-1β may be responsible for the beneficial effects, suggesting the brain RAS as a new target for LID treatment in PD patients. PMID:25160895

  3. IL-1 Receptor Blockade Alleviates Graft-versus-Host Disease through Downregulation of an Interleukin-1β-Dependent Glycolytic Pathway in Th17 Cells

    PubMed Central

    Park, Min-Jung; Lee, Seung Hoon; Lee, Sung-Hee; Lee, Eun-Jung; Kim, Eun-Kyung; Choi, Jong Young; Cho, Mi-La

    2015-01-01

    T helper (Th) 17 cells are a subset of Th cells expressing interleukin- (IL-) 17 and initiating an inflammatory response in autoimmune diseases. Graft-versus-host disease (GVHD) is an immune inflammatory disease caused by interactions between the adaptive immunity of donor and recipient. The Th17 lineage exhibits proinflammatory activity and is believed to be a central player in GVHD. IL-1 performs a key function in immune responses and induces development of Th17 cells. Here, we show that blockade of IL-1 signaling suppresses Th17 cell differentiation and alleviates GVHD severity. We hypothesized that the IL-1 receptor antagonist (IL-1Ra) would suppress Th17 cell differentiation in vitro via inhibition of glycolysis-related genes. Blockade of IL-1 using IL-1Ra downregulated Th17 cell differentiation, an alloreactive T cell response, and expression of genes of the glycolysis pathway. Severity of GVHD was reduced in mice with a transplant of IL-Ra-treated cells, in comparison with control mice. To clarify the mechanisms via which IL-1Ra exerts the therapeutic effect, we demonstrated in vivo that IL-1Ra decreased the proportion of Th17 cells, increased the proportion of FoxP3-expressing T regulatory (Treg) cells, and inhibited expression of glycolysis-related genes and suppressed Th17 cell development and B-cell activation. These results suggest that blockade of IL-1 signaling ameliorates GVHD via suppression of excessive T cell-related inflammation. PMID:26798206

  4. Interleukin-1 receptor antagonist delivered directly and by gene therapy inhibits matrix degradation in the intact degenerate human intervertebral disc: an in situ zymographic and gene therapy study

    PubMed Central

    Le Maitre, Christine L; Hoyland, Judith A; Freemont, Anthony J

    2007-01-01

    Data implicate IL-1 in the altered matrix biology that characterizes human intervertebral disc (IVD) degeneration. In the current study we investigated the enzymic mechanism by which IL-1 induces matrix degradation in degeneration of the human IVD, and whether the IL-1 inhibitor IL-1 receptor antagonist (IL-1Ra) will inhibit degradation. A combination of in situ zymography (ISZ) and immunohistochemistry was used to examine the effects of IL-1 and IL-1Ra on matrix degradation and metal-dependent protease (MDP) expression in explants of non-degenerate and degenerate human IVDs. ISZ employed three substrates (gelatin, collagen, casein) and different challenges (IL-1β, IL-1Ra and enzyme inhibitors). Immunohistochemistry was undertaken for MDPs. In addition, IL-1Ra was introduced into degenerate IVD explants using genetically engineered constructs. The novel findings from this study are: IL-1Ra delivered directly onto explants of degenerate IVDs eliminates matrix degradation as assessed by multi-substrate ISZ; there is a direct relationship between matrix degradation assessed by ISZ and MDP expression defined by immunohistochemistry; single injections of IVD cells engineered to over-express IL-1Ra significantly inhibit MDP expression for two weeks. Our findings show that IL-1 is a key cytokine driving matrix degradation in the degenerate IVD. Furthermore, IL-1Ra delivered directly or by gene therapy inhibits IVD matrix degradation. IL-1Ra could be used therapeutically to inhibit degeneration of the IVD. PMID:17760968

  5. Phorbol esters stimulate the phosphorylation of receptors for insulin and somatomedin C.

    PubMed Central

    Jacobs, S; Sahyoun, N E; Saltiel, A R; Cuatrecasas, P

    1983-01-01

    The effect of phorbol esters on the extent of phosphorylation of receptors for insulin and somatomedin C (insulin-like growth factor I) was studied in intact IM-9 cells that were labeled by incubation with H332PO4. The tumor-promoting phorbol esters phorbol tetradecanoate acetate (TPA) and phorbol dibutyrate, but not the inactive 4 alpha-phorbol, enhanced phosphorylation of the beta subunit of both receptors approximately 4-fold; 70 nM TPA maximally stimulated phosphorylation of both receptors, whereas concentrations less than or equal to 0.7 nM had no observable effect. Insulin also enhanced the phosphorylation of the beta subunit of the insulin receptor, and its effects appeared to be additive to those of TPA. Peptide maps indicated that at least some of the residues phosphorylated by these two agents are distinct. These results suggest a possible role of protein kinase C in regulating insulin and somatomedin C receptors. Images PMID:6312447

  6. Xiang-qi-tang increases avian pathogenic Escherichia coli-induced survival rate and regulates serum levels of tumor necrosis factor alpha, interleukin-1 and soluble endothelial protein C receptor in chicken.

    PubMed

    He, Chang-Liang; Fu, Ben-Dong; Shen, Hai-Qing; Jiang, Xiao-Lin; Zhang, Chang-Shuai; Wu, Shuai-Cheng; Zhu, Wei; Wei, Xu-Bin

    2011-01-01

    Xiang-qi-tang (XQT) is a Chinese herbal formula containing rhizoma Cyperi, Andrographis paniculata and Astragalus membranaceus. The present study investigated the effects of XQT on the mortality and inflammatory mediators in a chicken model challenged with avian pathogenic Escherichia coli (APEC). To detect the effect of XQT, the chickens were pretreated with the formula 12 h before being challenged with 10(8) colony forming unit (CFU) of APEC. The results showed that 0.6 g/kg XQT significantly elevated the survival rate of infected chickens. To further investigate the mechanism of decreasing mortality of XQT, we examined plasma inflammatory mediator levels. The levels of tumor necrosis factor alpha (TNF-α), interleukin-1 (IL-1) and soluble endothelial protein C receptor (sEPCR) were significantly increased in chickens challenged with APEC alone, whereas chickens pretreated with 0.6 g/kg XQT showed marked decrease of these inflammatory mediator levels during the death peak. Taken together, this study demonstrates that XQT has protective effects in APEC-treated chickens. The action mechanisms of XQT involve anti-inflammation and antithrombotic activity. These findings may contribute to future research on the action mechanisms of this formula, as well as prevention of or therapy for avian colibacillosis.

  7. Generation of a Novel T Cell Specific Interleukin-1 Receptor Type 1 Conditional Knock Out Mouse Reveals Intrinsic Defects in Survival, Expansion and Cytokine Production of CD4 T Cells

    PubMed Central

    Mufazalov, Ilgiz A.; Regen, Tommy; Schelmbauer, Carsten; Kuschmann, Janina; Muratova, Alisa M.; Nikolaev, Alexei; Müller, Werner; Pinteaux, Emmanuel; Waisman, Ari

    2016-01-01

    Interleukin-1 (IL-1) plays a crucial role in numerous inflammatory diseases via action on its only known signaling IL-1 receptor type 1 (IL-1R1). To investigate the role of IL-1 signaling in selected cell types, we generated a new mouse strain in which exon 5 of the Il1r1 gene is flanked by loxP sites. Crossing of these mice with CD4-Cre transgenic mice resulted in IL-1R1 loss of function specifically in T cells. These mice, termed IL-1R1ΔT, displayed normal development under steady state conditions. Importantly, isolated CD4 positive T cells retained their capacity to differentiate toward Th1 or Th17 cell lineages in vitro, and strongly proliferated in cultures supplemented with either anti-CD3/CD28 or Concanavalin A, but, as predicted, were completely unresponsive to IL-1β administration. Furthermore, IL-1R1ΔT mice were protected from gut inflammation in the anti-CD3 treatment model, due to dramatically reduced frequencies and absolute numbers of IL-17A and interferon (IFN)-γ producing cells. Taken together, our data shows the necessity of intact IL-1 signaling for survival and expansion of CD4 T cells that were developed in an otherwise IL-1 sufficient environment. PMID:27551932

  8. Association between periodontal disease and Interleukin-1β +3953 and vitamin D receptor Taq1 genetic polymorphisms in an Italian caucasian population

    PubMed Central

    Baldini, Alberto; Nota, Alessandro; Fanti, Elena; Martelli, Francesco Saverio; Ottomano, Cosimo; Lippi, Giuseppe

    2013-01-01

    Summary Aim Periodontal diseases entail a variety of conditions affecting the periodontium. The pathogenesis results from a complex interaction of genetic and environmental factors. Although there are evidences to confirm a role of genetic determinants, the outcome of the available studies is controversial and the largest part of the research has been carried out in Asian populations. Methods We investigated two polymorphisms in the genes encoding Interelukin-1β (IL-1β +3953 C>T; rs1143634) and vitamin D receptor (VDR Taq1; rs731236) in 42 Caucasian patients with chronic periodontal disease and 39 Caucasian subjects, matched for age and gender. Results The IL-1β C allele was present in 100% of cases and 92% of controls (p=0.07), the T allele was present in 19% of cases and in 44% controls (p=0.017). The prevalence of the VDR Taq1 tt genotype was lower in patients as compared with controls (i.e., 10 versus 59%; p<0.01), whereas the tT and TT genotypes were disproportionally higher in patients than in cases (i.e., 62 versus 33% for tT and 29% versus 8% for TT; p<0.01). The t allele was present in 71% of cases and 92% of controls (p=0.016), whereas the T allele was present in 90% of patients with periodontal disease and in 41% controls (p<0.01). Conclusion The results of this case control study at-test that the T allele of VDR Taq1 is strongly associated with periodontal disease, whereas the t allele of the IL-1β +3953 confers a slightly protection against the risk of periodontitis. PMID:23991270

  9. Interleukin 1 (IL-1) and IL-1-receptor antagonist (IL-1-RA) in middle ear cholesteatoma: an analysis of protein production and biological activity.

    PubMed

    Bujía, J; Kim, C; Ostos, P; Sudhoff, H; Kastenbauer, E; Hültner, L

    1996-01-01

    Cytokine networks are now presumed to play an essential role in the pathogenesis of middle ear cholesteatoma. Of the factors identified in cholesteatoma, interleukin-I (IL-1)-alpha appears to be especially important because of its stimulation of keratinocyte proliferation as well induction of bone resorption. To further characterize the possible role of IL-1 in the pathogenesis of cholesteatoma, we quantified the levels of IL-1 and IL-1-receptor antagonist (IL-1-RA) present using the bicinchonic acid protein assay and enzyme-linked immunosorbent assay (ELISA) on tissue extracts from 20 cholesteatoma specimens. The presence of biologically active IL-1 was also analyzed, using the cell line LBRM-33 and an ELISA for the detection of interleukin-2 (IL-2). Human skin obtained from the external ear canal was used as control. The amounts of IL-1-alpha in cholesteatoma (34.9 +/- 19.5) were higher than in human skin (6.7 +/- 2.8). The observed differences were statistically significant by Student's t-test (P < 0.01). Skin samples showed elevated concentrations of IL-1-RA (248.3 +/- 30.2) in comparison to that in the cholesteatoma (80.8 +/- 13.5). This was also statistically significant (P < 0.01). Whereas IL-1 activity was not detected in skin samples, all cholesteatoma specimens studied showed a stimulation effect on the production of IL-2 when incubated with the cell line LBRM-33. The results point to an over-expression of IL-1 concurrent with a decreased secretion of IL-1-RA in middle ear cholesteatoma. Furthermore IL-1-RA production is deficient relative to total IL-1 production, resulting in the presence of active IL-1.

  10. Development of a cell-based qualitative assay for detection of neutralizing anti-human interleukin-1 receptor antagonist (hIL-1Ra) antibodies in rats.

    PubMed

    Gao, Jin; Li, Jingjing; Yang, Minmin; Wu, Mingyuan; Tu, Ping; Yu, Yan; Han, Wei

    2015-01-01

    To determine the incidence of the positive neutralizing anti-human interleukin receptor antagonist (anti-IL-1Ra), a novel assay based on the proliferation of human melanoma A375.S2 cells was developed and validated. In the presence of a growth-limiting concentration of IL-1β, A375.S2 cells were able to regain proliferation following the addition of IL-1Ra in a concentration-dependent manner. This dose-response effect enabled the validation of a standard curve for calculation of the concentration of IL-1Ra or, inversely, the concentration of neutralizing anti-IL-1Ra antibodies in cell culture medium or sera. The assay used CCK-8 as an indicator of proliferation. The dose-response relationship between rhIL-1Ra (dose range of 5-75 ng/ml rhIL-1Ra) and A375.S2 cell proliferation was sigmoidal and fitted a four-parameter logistic model. The percent coefficients of variation (%CVs) of quality control samples were 12.5 and 11.9% for intra-assay repeatability and 14.5 and 19.5% for inter-assay repeatability, while the total accuracy was in the range of 97.2-103.6%. For the neutralization assay, the optimal sample dilution factor was found to be 40-fold and the reasonable standard for positive and negative decision was calculated to be 59.4% neutralization rate. The %CVs of quality control samples were 12.7 and 24.0% for intra-assay repeatability and 11.6 and 30.0% for inter-assay repeatability. Analysis using the assay showed that rats could produce neutralizing anti-IL-1Ra antibodies after repeated intramuscular injection with rhIL-1Ra, and this response was not significantly dependent on the dose injected.

  11. Identification and Functional Characterization of the Phosphorylation Sites of the Neuropeptide FF2 Receptor*

    PubMed Central

    Bray, Lauriane; Froment, Carine; Pardo, Pierre; Candotto, Cédric; Burlet-Schiltz, Odile; Zajac, Jean-Marie; Mollereau, Catherine; Moulédous, Lionel

    2014-01-01

    The neuropeptide FF2 (NPFF2) receptor belongs to the rhodopsin family of G protein-coupled receptors and mediates the effects of several related RFamide neuropeptides. One of the main pharmacological interests of this system resides in its ability to regulate endogenous opioid systems, making it a potential target to reduce the negative effects of chronic opioid use. Phosphorylation of intracellular residues is the most extensively studied post-translational modification regulating G protein-coupled receptor activity. However, until now, no information concerning NPFF2 receptor phosphorylation is available. In this study, we combined mass spectrometric analysis and site-directed mutagenesis to analyze for the first time the phosphorylation pattern of the NPFF2 receptor and the role of the various phosphorylation sites in receptor signaling, desensitization, and trafficking in a SH-SY5Y model cell line. We identified the major, likely GRK-dependent, phosphorylation cluster responsible for acute desensitization, 412TNST415 at the end of the C terminus of the receptor, and additional sites involved in desensitization (372TS373) and internalization (Ser395). We thus demonstrate the key role played by phosphorylation in the regulation of NPFF2 receptor activity and trafficking. Our data also provide additional evidence supporting the concept that desensitization and internalization are partially independent processes relying on distinct phosphorylation patterns. PMID:25326382

  12. Phorbol esters promote alpha 1-adrenergic receptor phosphorylation and receptor uncoupling from inositol phospholipid metabolism.

    PubMed Central

    Leeb-Lundberg, L M; Cotecchia, S; Lomasney, J W; DeBernardis, J F; Lefkowitz, R J; Caron, M G

    1985-01-01

    DDT1 MF-2 cells, which are derived from hamster vas deferens smooth muscle, contain alpha 1-adrenergic receptors (54,800 +/- 2700 sites per cell) that are coupled to stimulation of inositol phospholipid metabolism. Incubation of these cells with tumor-promoting phorbol esters, which stimulate calcium- and phospholipid-dependent protein kinase, leads to a marked attenuation of the ability of alpha 1-receptor agonists such as norepinephrine to stimulate the turnover of inositol phospholipids. This turnover was measured by determining the 32P content of phosphatidylinositol and phosphatidic acid after prelabeling of the cellular ATP pool with 32Pi. These phorbol ester-treated cells also displayed a decrease in binding affinity of cellular alpha 1 receptors for agonists with no change in antagonist affinity. By using affinity chromatography on the affinity resin Affi-Gel-A55414, the alpha 1 receptors were purified approximately equal to 300-fold from control and phorbol ester-treated 32Pi-prelabeled cells. As assessed by NaDodSO4/polyacrylamide gel electrophoresis, the Mr 80,000 alpha 1-receptor ligand-binding subunit is a phosphopeptide containing 1.2 mol of phosphate per mol of alpha 1 receptor. After phorbol ester treatment this increased to 3.6 mol of phosphate per mol of alpha 1 receptor. The effect of phorbol esters on norepinephrine-stimulated inositol phospholipid turnover and alpha 1-receptor phosphorylation showed the same rapid time course with a t1/2 less than 2 min. These results indicate that calcium- and phospholipid-dependent protein kinase may play an important role in regulating the function of receptors that are coupled to the inositol phospholipid cycle by phosphorylating and deactivating them. Images PMID:2994039

  13. Phosphatidylinositol 4-phosphate 5-kinase α facilitates Toll-like receptor 4-mediated microglial inflammation through regulation of the Toll/interleukin-1 receptor domain-containing adaptor protein (TIRAP) location.

    PubMed

    Nguyen, Tu Thi Ngoc; Kim, Yong Min; Kim, T Doohun; Le, Oanh Thi Tu; Kim, Jae Jin; Kang, Ho Chul; Hasegawa, Hiroshi; Kanaho, Yasunori; Jou, Ilo; Lee, Sang Yoon

    2013-02-22

    Phosphatidylinositol (PI) 4,5-bisphosphate (PIP(2)), generated by PI 4-phosphate 5-kinase (PIP5K), regulates many critical cellular events. PIP(2) is also known to mediate plasma membrane localization of the Toll/IL-1 receptor domain-containing adaptor protein (TIRAP), required for the MyD88-dependent Toll-like receptor (TLR) 4 signaling pathway. Microglia are the primary immune competent cells in brain tissue, and TLR4 is important for microglial activation. However, a functional role for PIP5K and PIP(2) in TLR4-dependent microglial activation remains unclear. Here, we knocked down PIP5Kα, a PIP5K isoform, in a BV2 microglial cell line using stable expression of lentiviral shRNA constructs or siRNA transfection. PIP5Kα knockdown significantly suppressed induction of inflammatory mediators, including IL-6, IL-1β, and nitric oxide, by lipopolysaccharide. PIP5Kα knockdown also attenuated signaling events downstream of TLR4 activation, including p38 MAPK and JNK phosphorylation, NF-κB p65 nuclear translocation, and IκB-α degradation. Complementation of the PIP5Kα knockdown cells with wild type but not kinase-dead PIP5Kα effectively restored the LPS-mediated inflammatory response. We found that PIP5Kα and TIRAP colocalized at the cell surface and interacted with each other, whereas kinase-dead PIP5Kα rendered TIRAP soluble. Furthermore, in LPS-stimulated control cells, plasma membrane PIP(2) increased and subsequently declined, and TIRAP underwent bi-directional translocation between the membrane and cytosol, which temporally correlated with the changes in PIP(2). In contrast, PIP5Kα knockdown that reduced PIP(2) levels disrupted TIRAP membrane targeting by LPS. Together, our results suggest that PIP5Kα promotes TLR4-associated microglial inflammation by mediating PIP(2)-dependent recruitment of TIRAP to the plasma membrane.

  14. Identification of four novel phosphorylation sites in estrogen receptor α: impact on receptor-dependent gene expression and phosphorylation by protein kinase CK2

    PubMed Central

    2009-01-01

    Background Estrogen receptor α (ERα) phosphorylation is important for estrogen-dependent transcription of ER-dependent genes, ligand-independent receptor activation and endocrine therapy response in breast cancer. However ERα phosphorylation at the previously identified sites does not fully account for these receptor functions. To determine if additional ERα phosphorylation sites exist, COS-1 cells expressing human ERα were labeled with [32P]H3PO4 in vivo and ERα tryptic phosphopeptides were isolated to identify phosphorylation sites. Results Previously uncharacterized phosphorylation sites at serines 46/47, 282, 294, and 559 were identified by manual Edman degradation and phosphoamino acid analysis and confirmed by mutagenesis and phospho-specific antibodies. Antibodies detected phosphorylation of endogenous ERα in MCF-7, MCF-7-LCC2, and Ishikawa cancer cell lines by immunoblot. Mutation of Ser-282 and Ser-559 to alanine (S282A, S559A) resulted in ligand independent activation of ERα as determined by both ERE-driven reporter gene assays and endogenous pS2 gene expression in transiently transfected HeLa cells. Mutation of Ser-46/47 or Ser-294 to alanine markedly reduced estradiol dependent reporter activation. Additionally protein kinase CK2 was identified as a kinase that phosphorylated ERα at S282 and S559 using motif analysis, in vitro kinase assays, and incubation of cells with CK2 kinase inhibitor. Conclusion These novel ERα phosphorylation sites represent new means for modulation of ERα activity. S559 represents the first phosphorylation site identified in the extreme C-terminus (F domain) of a steroid receptor. PMID:20043841

  15. Selectivity of phospholipase C phosphorylation by the epidermal growth factor receptor, the insulin receptor, and their cytoplasmic domains.

    PubMed Central

    Nishibe, S; Wahl, M I; Wedegaertner, P B; Kim, J W; Rhee, S G; Carpenter, G; Kim, J J

    1990-01-01

    Phosphatidylinositol-specific phospholipase C isozyme gamma (PLC-gamma, Mr 145,000) is an excellent substrate for the epidermal growth factor (EGF) receptor both in vivo and in vitro. PLC-beta-1, another PLC isozyme, is a poor substrate for the EGF receptor. We examined the relative phosphorylation of PLC-gamma and PLC-beta-1 by the 170-kDa native EGF receptor molecule, the 66-kDa cytoplasmic kinase domain of the EGF receptor (Arg647-Ala1186), the alpha 2 beta 2 native insulin receptor, and the 48-kDa cytoplasmic kinase domain of the insulin receptor beta subunit (Gly947-Ser1343). Similar to the intact EGF receptor, the cytoplasmic kinase domain of the EGF receptor preferentially phosphorylated PLC-gamma. High-performance liquid chromatographic comparison of tryptic phosphopeptides from PLC-gamma phosphorylated by both forms of the EGF receptor kinase indicated similar patterns of multiple tyrosine phosphorylations. These results imply that substrate selectivity, at least in terms of PLC isozymes, is independent of the extracellular ligand-binding and membrane anchor domains of the EGF receptor. In comparison, neither the intact insulin receptor nor the beta-chain kinase domain was able to phosphorylate PLC-gamma to a significant extent. Also, insulin failed to stimulate the phosphorylation of PLC-gamma in NIH 3T3/HIR cells, which overexpress the human insulin receptor. Thus PLC-gamma is not a phosphorylation substrate for the insulin receptor in vitro or in the intact cell. Images PMID:2153302

  16. Lipopolysaccharide stimulates expression of osteoprotegerin and receptor activator of NF-kappa B ligand in periodontal ligament fibroblasts through the induction of interleukin-1 beta and tumor necrosis factor-alpha.

    PubMed

    Wada, Naohisa; Maeda, Hidefumi; Yoshimine, Yoshito; Akamine, Akifumi

    2004-09-01

    Our recent work showed that human periodontal ligament fibroblasts (HPLF) secrete bioactive osteoprotegerin (OPG), which inhibits osteoclastic differentiation and activity. However, it is unknown how HPLF regulate bone metabolism in the presence of lipopolysaccharide (LPS), which is a cell component of gram-negative bacteria and a pathogen in inflammatory bone diseases such as periodontitis. The present study examined the effects of Escherichia coli LPS on the gene expression of interleukin-1 beta (IL-1 beta), tumor necrosis factor-alpha (TNF-alpha), OPG, and receptor activator of NF-kappa B ligand (RANKL) in HPLF using semiquantitative reverse transcription-polymerase chain reaction (RT-PCR) analysis. In HPLF cultured with LPS for 48 h, expression of both OPG and RANKL mRNA was up-regulated, whereas for up to 24 h of stimulation, such up-regulation was not observed. However, LPS increased expression of IL-1 beta and TNF-alpha mRNA within 6 h of treatment. Moreover, in HPLF cultured with IL-1 beta or TNF-alpha, OPG and RANKL expression was induced within 12 h of culture. The administration of neutralizing antibodies against human IL-1 beta or TNF-alpha to LPS-treated cultures of HPLF inhibited the induction of OPG and RANKL expression. These suggest that LPS stimulates both OPG and RANKL expression in HPLF by up-regulating IL-1 beta and TNF-alpha. In addition, administration of conditioned medium (CM) from HPLF (HPLF-CM) stimulated with LPS for 48 h to mouse bone marrow culture failed to induce osteoclast-like cell (OCL) formation. When mouse spleen cells were cocultured with HPLF in the presence of LPS, OCL formation was completely blocked. Taken together, our results indicate that human periodontal ligament cells stimulated with LPS inhibit osteoclastogenesis by producing more effective OPG than RANKL via the induction of IL-1 beta and TNF-alpha.

  17. Comparison of humoral insulin-like growth factor-1, platelet-derived growth factor-BB, transforming growth factor-β1, and interleukin-1 receptor antagonist concentrations among equine autologous blood-derived preparations.

    PubMed

    Ionita, Christiane R; Troillet, Antonia R; Vahlenkamp, Thomas W; Winter, Karsten; Brehm, Walter; Ionita, Jean-Claude

    2016-08-01

    OBJECTIVE To compare humoral insulin-like growth factor (IGF)-1, platelet-derived growth factor (PDGF)-BB, transforming growth factor (TGF)-β1, and interleukin-1 receptor antagonist (IL-1Ra) concentrations in plasma and 3 types of equine autologous blood-derived preparations (ABPs). SAMPLE Blood and ABP samples from 12 horses. PROCEDURES Blood samples from each horse were processed by use of commercial systems to obtain plasma, platelet concentrate, conditioned serum, and aqueous platelet lysate. Half of the platelet concentrate samples were additionally treated with a detergent to release intracellular mediators. Humoral IGF-1, PDGF-BB, TGF-β1, and IL-1Ra concentrations were measured with ELISAs and compared statistically. RESULTS Median IGF-1 concentration was highest in conditioned serum and detergent-treated platelet concentrate, followed by platelet concentrate and plasma; IGF-1 was not detected in platelet lysate. Mean PDGF-BB concentration was highest in platelet lysate, followed by detergent-treated platelet concentrate and conditioned serum; PDGF-BB was not detected in plasma and platelet concentrate. Median TGF-β1 concentration was highest in detergent-treated platelet concentrate, followed by conditioned serum, platelet lysate, and platelet concentrate; TGF-β1 was not detected in most plasma samples. Median IL-1Ra concentration was highest in platelet lysate, followed by conditioned serum; IL-1Ra was not detected in almost all plasma, detergent-treated platelet concentrate, and platelet concentrate samples. CONCLUSIONS AND CLINICAL RELEVANCE Each ABP had its own cytokine profile, which was determined by the specific processing method. Coagulation and cellular lysis strongly increased humoral concentrations of cell-derived cytokines. No ABP had the highest concentrations for all cytokines. Further studies are needed to assess clinical relevance of these findings. PMID:27463555

  18. Estrogen receptor alpha phosphorylation and its functional impact in human breast cancer.

    PubMed

    Anbalagan, Muralidharan; Rowan, Brian G

    2015-12-15

    Estrogen receptor α (ERα) is a member of the nuclear receptor superfamily of transcription factors that regulates cell proliferation, differentiation and homeostasis in various tissues. Sustained exposure to estrogen/estradiol (E2) increases the risk of breast, endometrial and ovarian cancers. ERα function is also regulated by phosphorylation through various kinase signaling pathways that will impact various ERα functions including chromatin interaction, coregulator recruitment and gene expression, as well impact breast tumor growth/morphology and breast cancer patient response to endocrine therapy. However, many of the previously characterized ERα phosphorylation sites do not fully explain the impact of receptor phosphorylation on ERα function. This review discusses work from our laboratory toward understanding a role of ERα site-specific phosphorylation in ERα function and breast cancer. The key findings discussed in this review are: (1) the effect of site specific ERα phosphorylation on temporal recruitment of ERα and unique coactivator complexes to specific genes; (2) the impact of stable disruption of ERα S118 and S167 phosphorylation in breast cancer cells on eliciting unique gene expression profiles that culminate in significant effects on breast cancer growth/morphology/migration/invasion; (3) the Src kinase signaling pathway that impacts ERα phosphorylation to alter ERα function; and (4) circadian disruption by light exposure at night leading to elevated ERK1/2 and Src kinase and phosphorylation of ERα, concomitant with tamoxifen resistance in breast tumor models. Results from these studies demonstrate that even changes to single ERα phosphorylation sites can have a profound impact on ERα function in breast cancer. Future work will extend beyond single site phosphorylation analysis toward identification of specific patterns/profiles of ERα phosphorylation under different physiological/pharmacological conditions to understand how common

  19. Tumor-produced, active Interleukin-1 {beta} regulates gene expression in carcinoma-associated fibroblasts

    SciTech Connect

    Dudas, Jozsef; Fullar, Alexandra; Bitsche, Mario; Schartinger, Volker; Kovalszky, Ilona; Sprinzl, Georg Mathias; Riechelmann, Herbert

    2011-09-10

    Recently we described a co-culture model of periodontal ligament (PDL) fibroblasts and SCC-25 lingual squamous carcinoma cells, which resulted in conversion of normal fibroblasts into carcinoma-associated fibroblasts (CAFs), and in epithelial-mesenchymal transition (EMT) of SCC-25 cells. We have found a constitutive high interleukin-1{beta} (IL1-{beta}) expression in SCC-25 cells in normal and in co-cultured conditions. In our hypothesis a constitutive IL1-{beta} expression in SCC-25 regulates gene expression in fibroblasts during co-culture. Co-cultures were performed between PDL fibroblasts and SCC-25 cells with and without dexamethasone (DEX) treatment; IL1-{beta} processing was investigated in SCC-25 cells, tumor cells and PDL fibroblasts were treated with IL1-{beta}. IL1-{beta} signaling was investigated by western blot and immunocytochemistry. IL1-{beta}-regulated genes were analyzed by real-time qPCR. SCC-25 cells produced 16 kD active IL1-{beta}, its receptor was upregulated in PDL fibroblasts during co-culture, which induced phosphorylation of interleukin-1 receptor-associated kinase-1 (IRAK-1), and nuclear translocalization of NF{kappa}B{alpha}. Several genes, including interferon regulatory factor 1 (IRF1) interleukin-6 (IL-6) and prostaglandin-endoperoxide synthase 2 (COX-2) were induced in CAFs during co-culture. The most enhanced induction was found for IL-6 and COX-2. Treatment of PDL fibroblasts with IL1-{beta} reproduced a time- and dose-dependent upregulation of IL1-receptor, IL-6 and COX-2. A further proof was achieved by DEX inhibition for IL1-{beta}-stimulated IL-6 and COX-2 gene expression. Constitutive expression of IL1-{beta} in the tumor cells leads to IL1-{beta}-stimulated gene expression changes in tumor-associated fibroblasts, which are involved in tumor progression. -- Graphical abstract: SCC-25 cells produce active, processed IL1-{beta}. PDL fibroblasts possess receptor for IL1-{beta}, and its expression is increased 4.56-times in the

  20. Distinct Phosphorylation Clusters Determine the Signaling Outcome of Free Fatty Acid Receptor 4/G Protein-Coupled Receptor 120.

    PubMed

    Prihandoko, Rudi; Alvarez-Curto, Elisa; Hudson, Brian D; Butcher, Adrian J; Ulven, Trond; Miller, Ashley M; Tobin, Andrew B; Milligan, Graeme

    2016-05-01

    It is established that long-chain free fatty acids includingω-3 fatty acids mediate an array of biologic responses through members of the free fatty acid (FFA) receptor family, which includes FFA4. However, the signaling mechanisms and modes of regulation of this receptor class remain unclear. Here, we employed mass spectrometry to determine that phosphorylation of mouse (m)FFAR4 occurs at five serine and threonine residues clustered in two separable regions of the C-terminal tail, designated cluster 1 (Thr(347), Thr(349), and Ser(350)) and cluster 2 (Ser(357)and Ser(361)). Mutation of these phosphoacceptor sites to alanine completely prevented phosphorylation of mFFA4 but did not limit receptor coupling to extracellular signal regulated protein kinase 1 and 2 (ERK1/2) activation. Rather, an inhibitor of Gq/11proteins completely prevented receptor signaling to ERK1/2. By contrast, the recruitment of arrestin 3, receptor internalization, and activation of Akt were regulated by mFFA4 phosphorylation. The analysis of mFFA4 phosphorylation-dependent signaling was extended further by selective mutations of the phosphoacceptor sites. Mutations within cluster 2 did not affect agonist activation of Akt but instead significantly compromised receptor internalization and arrestin 3 recruitment. Distinctly, mutation of the phosphoacceptor sites within cluster 1 had no effect on receptor internalization and had a less extensive effect on arrestin 3 recruitment but significantly uncoupled the receptor from Akt activation. These unique observations define differential effects on signaling mediated by phosphorylation at distinct locations. This hallmark feature supports the possibility that the signaling outcome of mFFA4 activation can be determined by the pattern of phosphorylation (phosphorylation barcode) at the C terminus of the receptor.

  1. Dissociation of insulin receptor phosphorylation and stimulation of glucose transport in BC3H-1 myocytes

    SciTech Connect

    Mojsilovic, L.P.; Standaert, M.L.; Rosic, N.K.; Pollet, R.J.

    1986-05-01

    The authors have investigated insulin receptor phosphorylation in differentiated cultured BC3H-1 myocytes. As for other insulin-responsive cell systems in partially purified wheat germ agglutinin receptor preparations, insulin stimulates the phosphorylation of its own receptor (95K ..beta..-subunits) in a dose dependent manner (0-400 nM), as identified by immunoprecipitation with antiinsulin receptor antibodies and SDS-PAGE. In the same preparations they show that 12-0-tetradecanyl phorbol acetate (TPA), which in many respect ..beta..-subunits in the same dose dependent manner (0-5 ..mu..M). In addition, antiinsulin receptor antibodies (B-10) also induced phosphorylation of mimics insulin action, also induced phosphorylation of the insulin receptor and HPLC tryptic maps of the /sup 32/P-labeled ..beta..-subunit were identical to those for insulin-induced receptor phosphorylation. However, while insulin and TPA are potent stimulators of glucose transport in these muscle cells, the antireceptor antibodies alone failed to provoke glucose transport at any concentration. The specificity and activity of these antibodies were confirmed in their system by their ability to inhibit insulin binding and insulin-stimulated glucose transport in a concentration-dependent manner. Their results indicate that phosphorylation of insulin receptor is not a crucial event in mediating insulin action, at least with respect to glucose transport. While the effects of the B-10 antibody in the BC3H-1 myocyte differ from those in the adipocyte, their results provide independent confirmation of their essential conclusion that phosphorylation of the insulin receptor may not be necessary nor sufficient for its acute action in promoting glucose transport.

  2. Differential phosphorylation of the progesterone receptor by insulin, epidermal growth factor, and platelet-derived growth factor receptor tyrosine protein kinases.

    PubMed

    Woo, D D; Fay, S P; Griest, R; Coty, W; Goldfine, I; Fox, C F

    1986-01-01

    Purified preparations of insulin, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF) receptors were compared for their abilities to phosphorylate purified hen oviduct progesterone receptors. The specific activities of all three peptide hormone-induced receptor kinases were first defined using a synthetic tridecapeptide tyrosine protein kinase substrate. Next, equivalent ligand-activated activities of the three receptor kinases were tested for their abilities to phosphorylate hen oviduct progesterone receptor. Both the insulin and EGF receptors phosphorylated progesterone receptor at high affinity, exclusively at tyrosine residues and with maximal stoichiometries that were near unity. In contrast, the PDGF receptor did not recognize progesterone receptor as a substrate. Insulin decreased the Km of the insulin receptor for progesterone receptor subunits as substrates, but had no significant effect on Vmax values. On the other hand, EGF increased the Vmax of the EGF receptor for progesterone receptor subunits as substrates. Phosphorylation of progesterone receptor by the insulin and EGF receptor kinases differed in two additional ways. 1) EGF-activated receptor phosphorylated the 80- and 105-kDa progesterone receptor subunits to an equal extent, whereas insulin-activated receptor preferentially phosphorylated the 80-kDa subunit. 2) Phosphopeptide fingerprinting analyses revealed that while insulin and EGF receptors phosphorylated one identical major site on both progesterone receptor subunits, they differed in their specificities for other sites. PMID:3001059

  3. Protein kinase C does not phosphorylate the externalized form of the transferrin receptor.

    PubMed Central

    Adam, M A; Johnstone, R M

    1987-01-01

    We have investigated the phosphorylation of transferrin receptors both in intact sheep reticulocytes and in isolated plasma membranes. Phosphorylation of the receptor in intact cells or isolated plasma membranes is stimulated by phorbol diesters, suggesting that protein kinase C may be involved. Identical [32P] phosphopeptide tryptic maps are formed in the presence and absence of phorbol diesters. Using heat-treated membranes (which are devoid of endogenous kinase activity) exogenous protein kinase C phosphorylates the same peptides as the endogenous kinase(s). During maturation of reticulocytes to erythrocytes, the transferrin receptor is released to the medium in vesicular form. In cells labelled with [32P]Pi, the released receptor is not labelled with 32P and the exocytosed vesicles do not phosphorylate receptor with [gamma-32P]ATP. The absence of 32P in the released receptor appears to be due to a change in the receptor, since, even in the presence of exogenous protein kinase C, the exocytosed receptor is phosphorylated to approximately 8% of the level obtained with receptors from the plasma membrane. These data suggest that during maturation and externalization the receptor is altered so that it loses its capacity to act as a substrate for exogenous protein kinase C as well as the endogenous kinase(s). This change may be a signal which segregates the receptor for externalization from the receptor pool remaining for transferrin recycling during the final stages of red cell maturation. Images Fig. 1. Fig. 2. Fig. 4. Fig. 5. Fig. 6. Fig. 7. PMID:3593234

  4. ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES SRC-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)

    EPA Science Inventory

    ZINC-INDUCED EGF RECEPTOR SIGNALING REQUIRES Src-MEDIATED PHOSPHORYLATION OF THE EGF RECEPTOR ON TYROSINE 845 (Y845)
    Weidong Wu1, Lee M. Graves2, Gordon N. Gill3 and James M. Samet4 1Center for Environmental Medicine and Lung Biology; 2Department of Pharmacology, University o...

  5. Phosphorylation of insulin receptor substrate 1 by glycogen synthase kinase 3 impairs insulin action

    PubMed Central

    Eldar-Finkelman, Hagit; Krebs, Edwin G.

    1997-01-01

    The phosphorylation of insulin receptor substrate 1 (IRS-1) on tyrosine residues by the insulin receptor (IR) tyrosine kinase is involved in most of the biological responses of insulin. IRS-1 mediates insulin signaling by recruiting SH2 proteins through its multiple tyrosine phosphorylation sites. The phosphorylation of IRS-1 on serine/threonine residues also occurs in cells; however, the particular protein kinase(s) promoting this type of phosphorylation are unknown. Here we report that glycogen synthase kinase 3 (GSK-3) is capable of phosphorylating IRS-1 and that this modification converts IRS-1 into an inhibitor of IR tyrosine kinase activity in vitro. Expression of wild-type GSK-3 or an “unregulated” mutant of the kinase (S9A) in CHO cells overexpressing IRS-1 and IR, resulted in increased serine phosphorylation levels of IRS-1, suggesting that IRS-1 is a cellular target of GSK-3. Furthermore, insulin-induced tyrosine phosphorylation of IRS-1 and IR was markedly suppressed in cells expressing wild-type or the S9A mutant, indicating that expression of GSK-3 impairs IR tyrosine kinase activity. Taken together, our studies suggest a new role for GSK-3 in attenuating insulin signaling via its phosphorylation of IRS-1 and may provide new insight into mechanisms important in insulin resistance. PMID:9275179

  6. Phosphorylation of chemoattractant receptors regulates chemotaxis, actin reorganization and signal relay.

    PubMed

    Brzostowski, Joseph A; Sawai, Satoshi; Rozov, Orr; Liao, Xin-Hua; Imoto, Daisuke; Parent, Carole A; Kimmel, Alan R

    2013-10-15

    Migratory cells, including mammalian leukocytes and Dictyostelium, use G-protein-coupled receptor (GPCR) signaling to regulate MAPK/ERK, PI3K, TORC2/AKT, adenylyl cyclase and actin polymerization, which collectively direct chemotaxis. Upon ligand binding, mammalian GPCRs are phosphorylated at cytoplasmic residues, uncoupling G-protein pathways, but activating other pathways. However, connections between GPCR phosphorylation and chemotaxis are unclear. In developing Dictyostelium, secreted cAMP serves as a chemoattractant, with extracellular cAMP propagated as oscillating waves to ensure directional migratory signals. cAMP oscillations derive from transient excitatory responses of adenylyl cyclase, which then rapidly adapts. We have studied chemotactic signaling in Dictyostelium that express non-phosphorylatable cAMP receptors and show through chemotaxis modeling, single-cell FRET imaging, pure and chimeric population wavelet quantification, biochemical analyses and TIRF microscopy, that receptor phosphorylation is required to regulate adenylyl cyclase adaptation, long-range oscillatory cAMP wave production and cytoskeletal actin response. Phosphorylation defects thus promote hyperactive actin polymerization at the cell periphery, misdirected pseudopodia and the loss of directional chemotaxis. Our data indicate that chemoattractant receptor phosphorylation is required to co-regulate essential pathways for migratory cell polarization and chemotaxis. Our results significantly extend the understanding of the function of GPCR phosphorylation, providing strong evidence that this evolutionarily conserved mechanism is required in a signal attenuation pathway that is necessary to maintain persistent directional movement of Dictyostelium, neutrophils and other migratory cells.

  7. ERK phosphorylation in intact, adult brain by alpha(2)-adrenergic transactivation of EGF receptors.

    PubMed

    Du, Ting; Li, Baoman; Liu, Shufang; Zang, Peizhuo; Prevot, Vincent; Hertz, Leif; Peng, Liang

    2009-12-01

    Our previous work demonstrated dexmedetomidine-activated phosphorylation of extracellular regulated kinases 1 and 2 (ERK(1/2)) in primary cultures of mouse astrocytes and showed that it is evoked by alpha(2)-adrenoceptor-mediated transactivation of epidermal growth factor (EGF) receptors, a known response to activation of G(i/o)- or G(q)-coupled receptors [Li, B., Du, T., Li, H., Gu, L., Zhang, H., Huang, J., Hertz, L., Peng, L., 2008a. Signaling pathways for transactivation by dexmedetomidine of epidermal growth factor receptors in astrocytes and its paracrine effect on neurons. Br. J. Pharmacol. 154, 191-203]. Like most studies of transactivation, that study used cultured cells, raising the question whether a similar effect can be demonstrated in intact brain tissue and the brain in vivo. In the present study we have shown that (i) dexmedetomidine-mediated ERK(1/2) phosphorylation occurs in mouse brain slices with a similar concentration dependence as in cultured astrocytes (near-maximum effect at 50nM); (ii) intraperitoneal injection of dexmedetomidine (3microg/kg) in adult mice causes rapid phosphorylation of the EGF receptor (at Y845 and Y992) and of ERK(1/2) in the brain; (iii) both EGF receptor and ERK(1/2) phosphorylation are inhibited by intraventricular administration of (a) AG 1478, a specific inhibitor of the receptor-tyrosine kinase of the EGF receptor; (b) GM 6001, an inhibitor of metalloproteinase(s) required for release of EGF receptor agonists from membrane-bound precursors; or (c) heparin, neutralizing heparin-binding EGF (HB-EGF). Thus, in intact brain HB-EGF, known to be expressed in brain, may be the major EGF agonist released in response to stimulation of alpha(2)-adrenoceptors, the released agonist(s) activate(s) EGF receptors, and ERK(1/2) is phosphorylated as a conventional response to EGF receptor activation. Our previous paper (see above) showed that dexmedetomidine evokes no ERK(1/2) phosphorylation in cultured neurons, but neurons

  8. Phosphorylation and palmitoylation of the human D2L dopamine receptor in Sf9 cells.

    PubMed

    Ng, G Y; O'Dowd, B F; Caron, M; Dennis, M; Brann, M R; George, S R

    1994-11-01

    We have expressed and biochemically characterized the human D2long (D2L) dopamine receptor isoform using the baculovirus/Sf9 cell system. The expressed receptor bound ligands with a pharmacological profile similar to that reported for neuronal and cloned D2L receptors expressed in mammalian cell lines. Dopamine binding to D2L receptor was sensitive to guanine nucleotides, indicating receptor coupling to endogenous G proteins. A D2L receptor-specific antibody identified two major protein species at approximately 44 kDa and at approximately 93 kDa in immunoblots, suggesting the presence of D2L receptor monomers and dimers. Both species were purified by immunoprecipitation from digitonin-solubilized preparation of cells expressing D2L receptor prelabeled with 32P(i) or [3H]-palmitate. These results constitute the first direct evidence for D2L receptor phosphorylation and palmitoylation.

  9. A neuromodulatory role of interleukin-1β in the hippocampus

    PubMed Central

    Schneider, H.; Pitossi, F.; Balschun, D.; Wagner, A.; del Rey, A.; Besedovsky, H. O.

    1998-01-01

    It is widely accepted that interleukin-1β (IL-1β), a cytokine produced not only by immune cells but also by glial cells and certain neurons influences brain functions during infectious and inflammatory processes. It is still unclear, however, whether IL-1 production is triggered under nonpathological conditions during activation of a discrete neuronal population and whether this production has functional implications. Here, we show in vivo and in vitro that IL-1β gene expression is substantially increased during long-term potentiation of synaptic transmission, a process considered to underlie certain forms of learning and memory. The increase in gene expression was long lasting, specific to potentiation, and could be prevented by blockade of potentiation with the N-methyl-d-aspartate (NMDA) receptor antagonist, (±)-2-amino-5-phosphonopentanoic acid (AP-5). Furthermore, blockade of IL-1 receptors by the specific interleukin-1 receptor antagonist (IL-1ra) resulted in a reversible impairment of long-term potentiation maintenance without affecting its induction. These results show for the first time that the production of biologically significant amounts of IL-1β in the brain can be induced by a sustained increase in the activity of a discrete population of neurons and suggest a physiological involvement of this cytokine in synaptic plasticity. PMID:9636227

  10. G Protein independent phosphorylation and internalization of the δ-opioid receptor

    PubMed Central

    Bradbury, Faye A.; Zelnik, Jennifer C.; Traynor, John R.

    2015-01-01

    Agonist activation of the δ-opioid receptor leads to internalization via Gβγ recruitment of G protein coupled receptor kinase-2, which phosphorylates the receptor at several sites, including Ser363, allowing β-arrestin binding and localization to clathrin coated pits. Using HEK cells expressing a δ-opioid receptor we tested the hypothesis that prevention of receptor coupling to G protein by treatment with pertussis toxin (PTX) will block these processes. PTX treatment did not reduce phosphorylation of δ-opioid receptor Ser363 in response to the agonist DPDPE, or recruitment of β-arrestin 2-GFP to the membrane and only slowed, but did not prevent, DPDPE-induced internalization. Similarly PTX treatment only partially prevented the ability of the δ-opioid peptide agonists deltorphin II and [Met5]enkephalin and the non-peptide agonist BW373U86 to induce receptor internalization. No internalization was seen with morphine, oxymorphindole or the putative δ1-opioid agonist TAN-67 in the presence or absence of PTX, even though TAN-67 showed a strong activation of G protein, as measured by [35S]GTPγS binding. The ability of an agonist to stimulate phosphorylation at Ser363 was predictive of its capacity to induce internalization. The results suggest a role for G protein in δ-opioid receptor internalization, but show that alternative G protein independent pathways exist. PMID:19344370

  11. Pairwise detection of site-specific receptor phosphorylations using single-molecule blotting

    PubMed Central

    Kim, Kyung Lock; Kim, Daehyung; Lee, Seongsil; Kim, Su-Jeong; Noh, Jung Eun; Kim, Joung-Hun; Chae, Young Chan; Lee, Jong-Bong; Ryu, Sung Ho

    2016-01-01

    Post-translational modifications (PTMs) of receptor tyrosine kinases (RTKs) at the plasma membrane (PM) determine the signal transduction efficacy alone and in combination. However, current approaches to identify PTMs provide ensemble results, inherently overlooking combinatorial PTMs in a single polypeptide molecule. Here, we describe a single-molecule blotting (SiMBlot) assay that combines biotinylation of cell surface receptors with single-molecule fluorescence microscopy. This method enables quantitative measurement of the phosphorylation status of individual membrane receptor molecules and colocalization analysis of multiple immunofluorescence signals to directly visualize pairwise site-specific phosphorylation patterns at the single-molecule level. Strikingly, application of SiMBlot to study ligand-dependent epidermal growth factor receptor (EGFR) phosphorylation, which is widely thought to be multi-phosphorylated, reveals that EGFR on cell membranes is hardly multi-phosphorylated, unlike in vitro autophosphorylated EGFR. Therefore, we expect SiMBlot to aid understanding of vast combinatorial PTM patterns, which are concealed in ensemble methods, and to broaden knowledge of RTK signaling. PMID:27009355

  12. Connection between inflammatory processes and transmittor function-Modulatory effects of interleukin-1.

    PubMed

    Spulber, Stefan; Schultzberg, Marianne

    2010-02-01

    Cells in the nervous system can respond to different kinds of stress, e.g. injury, with production and release of inflammatory molecules, including cytokines. One of the most important proinflammatory cytokines is interleukin-1, affecting most organs of the body. The high constitutive expression of interleukin-1 in the adrenal gland provides a source for local and systemic actions, in addition to activated monocytes. In the brain, the constitutive expression is low, but activated microglia produce and release interleukin-1 during pathological conditions such as neurodegenerative disorders (e.g. stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease). Interleukin-1 has an important role in mediating 'sickness symptoms' such as fever, in response to infections. Its role in neurodegeneration is not fully elucidated, but there is evidence for involvement in both amyloidosis and tau pathology, major neuropathological hallmarks of Alzheimer's disease. The interleukin-1 family at present consists of 11 members, one of which is the endogenous receptor antagonist. Overexpression of this antagonist in the CNS in a transgenic mouse strain, Tg hsIL-1ra, has allowed studies on morphological and functional effects of blocking interleukin-1 receptor-mediated activity in the brain. Marked alterations of brain morphology such as reduced hippocampal and cortical volume correlate with behavioural deficits. Decreased anxiety and impaired long-term memory are among the consequences. Intact interleukin-1 signalling is important for the brain's ability to adapt to acute and chronic neuroinflammation. Increased amplitude and prolongation of proinflammatory cytokine production underly the behavioural alterations characteristic for ageing. Moreover, deregulated expression of interleukin-1 is associated with ageing-related chronic neurodegenerative disorders. PMID:19853010

  13. Desensitization, phosphorylation and palmitoylation of the human dopamine D1 receptor.

    PubMed

    Ng, G Y; Mouillac, B; George, S R; Caron, M; Dennis, M; Bouvier, M; O'Dowd, B F

    1994-03-15

    The regulation and post-translational modifications of the human dopamine D1 receptor were studied in the baculovirus-eukaryotic cell expression system. Baculovirus constructs containing either the DNA encoding the dopamine D1 receptor or a DNA encoding a c-myc epitope tagged dopamine D1 receptor (c-myc-dopamine D1 receptor) were used to infect Spodoptera frugiperda (Sf9) insect cells. Expressed dopamine D1 and c-myc-dopamine D1 receptors bound agonists and antagonists with affinities and a rank order of potency characteristic of a classical dopamine D1 receptor pharmacological profile. In membrane preparations from cells expressing c-myc-dopamine D1 receptor, the photoaffinity label [125I](3-methyl-2-[4'-azidophenyl]-2,3,5-tetrahydro-2H-3-benzazepine) ([125I]MAB) bound specifically upon photolysis. A major broad band of approximately 48 kDa was detected. This species was identified in immunoblots by the monoclonal antibody raised against the c-myc epitope of c-myc-dopamine D1 receptor was isolated by immunoprecipitation from whole cells and was shown to be post-translationally modified by phosphorylation and palmitoylation. Exposure of cells expressing c-myc-dopamine D1 receptor to dopamine for 15 min resulted in a reduction in the maximal dopamine stimulated adenylyl cyclase activity, which was accompanied by an increased phosphorylation of the receptor and a rapid redistribution of surface c-myc-dopamine D1 receptor as detected by in situ immunofluorescence. Dopamine exposure also resulted in an increased level of incorporation of [3H]palmitic acid into the receptor. Thus, we provide the first evidence that the human dopamine D1 receptor undergoes agonist-dependent desensitization, phosphorylation and palmitoylation.

  14. Manipulating the Lateral Diffusion of Surface-Anchored EGF Demonstrates that Receptor Clustering Modulates Phosphorylation Levels

    PubMed Central

    Stabley, D.; Retterer, S.; Marshall, S.; Salaita, K.

    2013-01-01

    Upon activation, the epidermal growth factor (EGF) receptor becomes phosphorylated and triggers a vast signaling network that has profound effects on cell growth. The EGF receptor is observed to assemble into clusters after ligand binding and tyrosine kinase autophosphorylation, but the role of these assemblies in the receptor signaling pathway remains unclear. To address this question, we measured the phosphorylation of EGFR when the EGF ligand was anchored onto laterally mobile and immobile surfaces. We found that cells generated clusters of ligand-receptor complex on mobile EGF surfaces, and displayed a lower ratio of phosphorylated EGFR to EGF when compared to immobilized EGF that is unable to cluster. This result was verified by tuning the lateral assembly of ligand-receptor complexes on the surface of living cells using patterned supported lipid bilayers. Nanoscale metal lines fabricated into the supported membrane constrained lipid diffusion and EGF receptor assembly into micron and sub-micron scale corrals. Single cell analysis indicated that clustering impacts EGF receptor activation, and larger clusters (> 1 µm2) of ligand-receptor complex generated lower EGF receptor phosphorylation per ligand than smaller assemblies (< 1 µm2) in HCC1143 cells that were engaged to ligand-functionalized surfaces. We investigated the mechanism of EGFR clustering by treating cells with compounds that disrupt the cytoskeleton (Latrunculin-B), clathrin-mediated endocytosis (Pitstop2), and inhibit EGFR activation (Gefitinib). These results help elucidate the nature of large-scale EGFR clustering, thus underscoring the general significance of receptor spatial organization in tuning function. PMID:23416883

  15. Characterization of phorbol ester-stimulated serine phosphorylation of the human insulin receptor.

    PubMed Central

    Feener, E P; Shiba, T; Hu, K Q; Wilden, P A; White, M F; King, G L

    1994-01-01

    Phorbol 12-myristate 13-acetate (PMA)-stimulated phosphorylation of the human insulin receptor (IR) was characterized and compared in two cell types of different lineage: normal rat kidney epithelial (NRK) cells and Chinese hamster ovary (CHO) fibroblasts. PMA stimulation increased IR beta-subunit phosphorylation to 252 +/- 43 and 25- +/- 47% (+/- S.D.) of the unstimulated control in NRK and CHO cells respectively. Tryptic phosphopeptide analysis by Tricine/SDS/PAGE revealed significant differences in the PMA-stimulated phosphorylation of the IR in these two cell types. This phosphorylation of the IR was predominantly located in two tryptic phosphopeptides, and these phosphopeptides were absent in an IR mutant truncated by 43 C-terminal amino acids. The major PMA-stimulated tryptic phosphopeptide from in vivo-labelled CHO/IR was immunoprecipitated with an antibody against residues Ser1315 to Lys1329, and this precipitation was blocked with excess unlabelled peptide containing this sequence. Radiosequencing by manual Edman degradation revealed that this tryptic phosphopeptide was phosphorylated at Ser1315. This PMA-stimulated phosphorylation did not inhibit autophosphorylation of the IR in vivo. These results demonstrate that PMA-stimulated phosphorylation of the IR can exhibit significant differences when expressed in different cell types, and that Ser1315 is a major PMA-stimulated phosphorylation site on the human IR. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 Figure 7 PMID:7945263

  16. Phosphorylation of the androgen receptor by PIM1 in hormone refractory prostate cancer.

    PubMed

    Ha, S; Iqbal, N J; Mita, P; Ruoff, R; Gerald, W L; Lepor, H; Taneja, S S; Lee, P; Melamed, J; Garabedian, M J; Logan, S K

    2013-08-22

    Integration of cellular signaling pathways with androgen receptor (AR) signaling can be achieved through phosphorylation of AR by cellular kinases. However, the kinases responsible for phosphorylating the AR at numerous sites and the functional consequences of AR phosphorylation are only partially understood. Bioinformatic analysis revealed AR serine 213 (S213) as a putative substrate for PIM1, a kinase overexpressed in prostate cancer. Therefore, phosphorylation of AR serine 213 by PIM1 was examined using a phosphorylation site-specific antibody. Wild-type PIM1, but not catalytically inactive PIM1, specifically phosphorylated AR but not an AR serine-to-alanine mutant (S213A). In vitro kinase assays confirmed that PIM1 can phosphorylate AR S213 in a ligand-independent manner and cell type-specific phosphorylation was observed in prostate cancer cell lines. Upon PIM1 overexpression, AR phosphorylation was observed in the absence of hormone and was further increased in the presence of hormone in LNCaP, LNCaP-abl and VCaP cells. Moreover, phosphorylation of AR was reduced in the presence of PIM kinase inhibitors. An examination of AR-mediated transcription showed that reporter gene activity was reduced in the presence of PIM1 and wild-type AR, but not S213A mutant AR. Androgen-mediated transcription of endogenous PSA, Nkx3.1 and IGFBP5 was also decreased in the presence of PIM1, whereas IL6, cyclin A1 and caveolin 2 were increased. Immunohistochemical analysis of prostate cancer tissue microarrays showed significant P-AR S213 expression that was associated with hormone refractory prostate cancers, likely identifying cells with catalytically active PIM1. In addition, prostate cancers expressing a high level of P-AR S213 were twice as likely to be from biochemically recurrent cancers. Thus, AR phosphorylation by PIM1 at S213 impacts gene transcription and is highly prevalent in aggressive prostate cancer.

  17. Type 1 receptor tyrosine kinases are differentially phosphorylated in mammary carcinoma and differentially associated with steroid receptors.

    PubMed Central

    Bacus, S. S.; Chin, D.; Yarden, Y.; Zelnick, C. R.; Stern, D. F.

    1996-01-01

    The neu/erbB-2/HER-2 proto-oncogene is amplified and/or overexpressed in up to 30% of mammary carcinomas and has been variably correlated with poor prognosis. The signaling activity of the encoded receptor tyrosine kinase is regulated by interactions with other type 1 receptors and their ligands. We have used a novel approach, phosphorylation-sensitive anti-Neu antibodies, to quantify signaling by Neu and epidermal growth factor receptor in a panel of frozen sections of mammary carcinoma specimens. We also determined the relationship of Neu, phosphorylated Neu (and epidermal growth factor receptor), and phosphotyrosine to the expression of Neu-related receptors (epidermal growth factor receptor, HER-3, and HER-4) and to prognostic factors (estrogen and progesterone receptor). We found that tyrosine phosphorylation of Neu (and hence signaling activity) is highly variable among mammary carcinomas. Neu and HER-4 were associated with divergent correlates, suggesting that they have profoundly different biological activities. These results have implications for etiology of mammary carcinoma for clinical evaluation of mammary carcinoma patients, and for development of Neu-targeted therapeutic strategies. Images Figure 1 Figure 2 PMID:8579117

  18. Cholecystokinin receptors regulate sperm protein tyrosine phosphorylation via uptake of HCO3-.

    PubMed

    Zhou, Yuchuan; Ru, Yanfei; Shi, Huijuan; Wang, Yanjiao; Wu, Bin; Upur, Halmurat; Zhang, Yonglian

    2015-10-01

    Cholecystokinin (CCK), a peptide hormone and a neurotransmitter, was detected in mature sperm two decades ago. However, the exact role of CCK and the types of CCK receptors (now termed CCK1 and CCK2) in sperm have not been identified. Here, we find that CCK1 and CCK2 receptors are immunolocalized to the acrosomal region of mature sperm. The antagonist of CCK1 or CCK2 receptor strongly activated the soluble adenylyl cyclase/cAMP/protein kinase A signaling pathway that drives sperm capacitation-associated protein tyrosine phosphorylation in dose- and time-dependent manners. But these actions of stimulation were abolished when sperm were incubated in the medium in the absence of HCO3-. Further investigation demonstrated that the inhibitor of CCK1 or CCK2 receptor could accelerate the uptake of HCO3- and significantly elevate the intracellular pH of sperm. Interestingly, the synthetic octapeptide of CCK (CCK8) showed the same action and mechanism as antagonists of CCK receptors. Moreover, CCK8 and the antagonist of CCK1 or CCK2 receptor were also able to accelerate human sperm capacitation-associated protein tyrosine phosphorylation by stimulating the influx of HCO3-. Thus, the present results suggest that CCK and its receptors may regulate sperm capacitation-associated protein tyrosine phosphorylation by modulating the uptake of HCO3-.

  19. Fine-tuning somatostatin receptor signalling by agonist-selective phosphorylation and dephosphorylation: IUPHAR Review 5.

    PubMed

    Schulz, Stefan; Lehmann, Andreas; Kliewer, Andrea; Nagel, Falko

    2014-04-01

    The biological actions of somatostatin are mediated by a family of five GPCRs, named sst1 to sst5 . Somatostatin receptors exhibit equally high-binding affinities to their natural ligand somatostatin-14 and largely overlapping distributions. The overexpression of somatostatin receptors in human tumours is the molecular basis for diagnostic and therapeutic application of the stable somatostatin analogues octreotide, lanreotide and pasireotide. The efficiency of somatostatin receptor signalling is tightly regulated and ultimately limited by the coordinated phosphorylation and dephosphorylation of intracellular carboxyl-terminal serine and threonine residues. Here, we review and discuss recent progress in the generation and application of phosphosite-specific antibodies for human sst2 and sst5 receptors. These phosphosite-specific antibodies are unique tools to monitor the spatial and temporal dynamics of receptors phosphorylation and dephosphorylation. Using a combined approach of phosphosite-specific antibodies and siRNA knock-down screening, relevant kinases and phosphatases were identified. Emerging evidence suggests distinct mechanisms of agonist-selective fine-tuning for individual somatostatin receptors. The recently uncovered differences in phosphorylation and dephosphorylation of these receptors may hence be of physiological significance in mediating responses to acute, persistent or repeated stimuli in a variety of target tissues.

  20. Androgen receptor serine 81 phosphorylation mediates chromatin binding and transcriptional activation.

    PubMed

    Chen, Shaoyong; Gulla, Sarah; Cai, Changmeng; Balk, Steven P

    2012-03-01

    Our previous findings indicated that androgen receptor (AR) phosphorylation at serine 81 is stimulated by the mitotic cyclin-dependent kinase 1 (CDK1). In this report, we extended our previous study and confirmed that Ser-81 phosphorylation increases during mitosis, coincident with CDK1 activation. We further showed blocking cell cycle at G(1) or S phase did not disrupt androgen-induced Ser-81 phosphorylation and AR-dependent transcription, consistent with a recent report that AR was phosphorylated at Ser-81 and activated by the transcriptional CDK9. To assess the function of Ser-81 phosphorylation in prostate cancer (PCa) cells expressing endogenous AR, we developed a ligand switch strategy using a ligand-binding domain mutation (W741C) that renders AR responsive to the antagonist bicalutamide. An S81A/W741C double mutant AR stably expressed in PCa cells failed to transactivate the endogenous AR-regulated PSA or TMPRSS2 genes. ChIP showed that the S81A mutation prevented ligand-induced AR recruitment to these genes, and cellular fractionation revealed that the S81A mutation globally abrogated chromatin binding. Conversely, the AR fraction rapidly recruited to chromatin after androgen stimulation was highly enriched for Ser-81 phosphorylation. Finally, inhibition of CDK1 and CDK9 decreased AR Ser-81 phosphorylation, chromatin binding, and transcriptional activity. These findings indicate that Ser-81 phosphorylation by CDK9 stabilizes AR chromatin binding for transcription and suggest that CDK1-mediated Ser-81 phosphorylation during mitosis provides a pool of Ser-81 phosphorylation AR that can be readily recruited to chromatin for gene reactivation and may enhance AR activity in PCa.

  1. Phosphorylation of farnesoid X receptor by protein kinase C promotes its transcriptional activity.

    PubMed

    Gineste, Romain; Sirvent, Audrey; Paumelle, Réjane; Helleboid, Stéphane; Aquilina, Alexis; Darteil, Raphaël; Hum, Dean W; Fruchart, Jean-Charles; Staels, Bart

    2008-11-01

    The farnesoid X receptor (FXR, NR1H4) belongs to the nuclear receptor superfamily and is activated by bile acids such as chenodeoxycholic acid, or synthetic ligands such as GW4064. FXR is implicated in the regulation of bile acid, lipid, and carbohydrate metabolism. Posttranslational modifications regulating its activity have not been investigated yet. Here, we demonstrate that calcium-dependent protein kinase C (PKC) inhibition impairs ligand-mediated regulation of FXR target genes. Moreover, in a transactivation assay, we show that FXR transcriptional activity is modulated by PKC. Furthermore, phorbol 12-myristate 13-acetate , a PKC activator, induces the phosphorylation of endogenous FXR in HepG2 cells and PKCalpha phosphorylates in vitro FXR in its DNA-binding domain on S135 and S154. Mutation of S135 and S154 to alanine residues reduces in cell FXR phosphorylation. In contrast to wild-type FXR, mutant FXRS135AS154A displays an impaired PKCalpha-induced transactivation and a decreased ligand-dependent FXR transactivation. Finally, phosphorylation of FXR by PKC promotes the recruitment of peroxisomal proliferator-activated receptor gamma coactivator 1alpha. In conclusion, these findings show that the phosphorylation of FXR induced by PKCalpha directly modulates the ability of agonists to activate FXR.

  2. Cardiac β2-Adrenergic Receptor Phosphorylation at Ser355/356 Regulates Receptor Internalization and Functional Resensitization

    PubMed Central

    Zhao, Ru; Zheng, Qingqing; Li, Lan; Yang, Wenbing; Ding, Lu; Xue, Feng; Fan, Junming; Gong, Yongsheng

    2016-01-01

    Previous studies have demonstrated that β2-adrenergic receptors (β2ARs) can be phosphorylated by G protein-coupled receptor kinases (GRKs) and protein kinase A (PKA), affecting β2AR internalization and desensitization. However, the exact physiological function of β2ARs in cardiomyocytes is unknown. In this study, we showed that neonatal mouse cardiomyocytes had different contraction and internalization responses to sustained or repeated, transient agonist stimulation. Specifically, short-time stimulation (10 min) with epinephrine or norepinephrine increased the cardiomyocyte contraction rate, reaching a maximum at 5 min, followed by a slow decline. When the agonist was re-added after a 60-min wash-out period, the increase in the cardiomyocyte contraction rate was similar to the initial response. In contrast, when cardiomyocytes were exposed continuously to epinephrine or norepinephrine for 60 min, the second agonist stimulation did not increase the contraction response. These results indicated that continuous β2AR stimulation caused functional desensitization. Phosphorylation of β2ARs at serine (Ser)355/356 GRK phosphorylation sites, but not at Ser345/346 PKA phosphorylation sites increased with continuous epinephrine stimulation for 60 min. Accordingly, β2AR internalization increased. Interestingly, β2AR internalization was blocked by mutations at the GRK phosphorylation sites, but not by mutations at the PKA phosphorylation sites. Furthermore, inhibition of β2AR dephosphorylation by okadaic acid, a phosphatase 2A inhibitor, impaired the recovery of internalized β2ARs and reduced the cardiomyocyte contraction rate in response to epinephrine. Finally, epinephrine treatment induced the physical interaction of β-arrestin with internalized β2ARs in cardiomyocytes. Together, these data revealed the essential role of the Ser355/356 phosphorylation status of β2ARs in regulating receptor internalization and physiological resensitization in neonatal

  3. Cardiac β2-Adrenergic Receptor Phosphorylation at Ser355/356 Regulates Receptor Internalization and Functional Resensitization.

    PubMed

    Fan, Xiaofang; Gu, Xuejiang; Zhao, Ru; Zheng, Qingqing; Li, Lan; Yang, Wenbing; Ding, Lu; Xue, Feng; Fan, Junming; Gong, Yongsheng; Wang, Yongyu

    2016-01-01

    Previous studies have demonstrated that β2-adrenergic receptors (β2ARs) can be phosphorylated by G protein-coupled receptor kinases (GRKs) and protein kinase A (PKA), affecting β2AR internalization and desensitization. However, the exact physiological function of β2ARs in cardiomyocytes is unknown. In this study, we showed that neonatal mouse cardiomyocytes had different contraction and internalization responses to sustained or repeated, transient agonist stimulation. Specifically, short-time stimulation (10 min) with epinephrine or norepinephrine increased the cardiomyocyte contraction rate, reaching a maximum at 5 min, followed by a slow decline. When the agonist was re-added after a 60-min wash-out period, the increase in the cardiomyocyte contraction rate was similar to the initial response. In contrast, when cardiomyocytes were exposed continuously to epinephrine or norepinephrine for 60 min, the second agonist stimulation did not increase the contraction response. These results indicated that continuous β2AR stimulation caused functional desensitization. Phosphorylation of β2ARs at serine (Ser)355/356 GRK phosphorylation sites, but not at Ser345/346 PKA phosphorylation sites increased with continuous epinephrine stimulation for 60 min. Accordingly, β2AR internalization increased. Interestingly, β2AR internalization was blocked by mutations at the GRK phosphorylation sites, but not by mutations at the PKA phosphorylation sites. Furthermore, inhibition of β2AR dephosphorylation by okadaic acid, a phosphatase 2A inhibitor, impaired the recovery of internalized β2ARs and reduced the cardiomyocyte contraction rate in response to epinephrine. Finally, epinephrine treatment induced the physical interaction of β-arrestin with internalized β2ARs in cardiomyocytes. Together, these data revealed the essential role of the Ser355/356 phosphorylation status of β2ARs in regulating receptor internalization and physiological resensitization in neonatal

  4. Phosphorylation and Internalization of Lysophosphatidic Acid Receptors LPA1, LPA2, and LPA3

    PubMed Central

    Alcántara-Hernández, Rocío; Hernández-Méndez, Aurelio; Campos-Martínez, Gisselle A.; Meizoso-Huesca, Aldo; García-Sáinz, J. Adolfo

    2015-01-01

    Results The lysophosphatidic acid receptors LPA1, LPA2, and LPA3 were individually expressed in C9 cells and their signaling and regulation were studied. Agonist-activation increases intracellular calcium concentration in a concentration-dependent fashion. Phorbol myristate acetate markedly inhibited LPA1- and LPA3-mediated effect, whereas that mediated by LPA2 was only partially diminished; the actions of the phorbol ester were inhibited by bisindolylmaleimide I and by overnight incubation with the protein kinase C activator, which leads to down regulation of this protein kinase. Homologous desensitization was also observed for the three LPA receptors studied, with that of LPA2 receptors being consistently of lesser magnitude; neither inhibition nor down-regulation of protein kinase C exerted any effect on homologous desensitization. Activation of LPA1–3 receptors induced ERK 1/2 phosphorylation; this effect was markedly attenuated by inhibition of epidermal growth factor receptor tyrosine kinase activity, suggesting growth factor receptor transactivation in this effect. Lysophosphatidic acid and phorbol myristate acetate were able to induce LPA1–3 phosphorylation, in time- and concentration-dependent fashions. It was also clearly observed that agonists and protein kinase C activation induced internalization of these receptors. Phosphorylation of the LPA2 subtype required larger concentrations of these agents and its internalization was less intense than that of the other subtypes. Conclusion Our data show that these three LPA receptors are phosphoproteins whose phosphorylation state is modulated by agonist-stimulation and protein kinase C-activation and that differences in regulation and cellular localization exist, among the subtypes. PMID:26473723

  5. Disease Mutations in the Ryanodine Receptor Central Region: Crystal Structures of a Phosphorylation Hot Spot Domain

    SciTech Connect

    Yuchi, Zhiguang; Lau, Kelvin; Van Petegem, Filip

    2015-02-09

    Ryanodine Receptors (RyRs) are huge Ca{sup 2+} release channels in the endoplasmic reticulum membrane and form targets for phosphorylation and disease mutations. We present crystal structures of a domain in three RyR isoforms, containing the Ser2843 (RyR1) and Ser2808/Ser2814 (RyR2) phosphorylation sites. The RyR1 domain is the target for 11 disease mutations. Several of these are clustered near the phosphorylation sites, suggesting that phosphorylation and disease mutations may affect the same interface. The L2867G mutation causes a drastic thermal destabilization and aggregation at room temperature. Crystal structures for other disease mutants show that they affect surface properties and intradomain salt bridges. In vitro phosphorylation experiments show that up to five residues in one long loop of RyR2 can be phosphorylated by PKA or CaMKII. Docking into cryo-electron microscopy maps suggests a putative location in the clamp region, implying that mutations and phosphorylation may affect the allosteric motions within this area.

  6. G Protein-coupled Receptor Kinase-mediated Phosphorylation Regulates Post-endocytic Trafficking of the D2 Dopamine Receptor*S⃞

    PubMed Central

    Namkung, Yoon; Dipace, Concetta; Javitch, Jonathan A.; Sibley, David R.

    2009-01-01

    We investigated the role of G protein-coupled receptor kinase (GRK)-mediated phosphorylation in agonist-induced desensitization, arrestin association, endocytosis, and intracellular trafficking of the D2 dopamine receptor (DAR). Agonist activation of D2 DARs results in rapid and sustained receptor phosphorylation that is solely mediated by GRKs. A survey of GRKs revealed that only GRK2 or GRK3 promotes D2 DAR phosphorylation. Mutational analyses resulted in the identification of eight serine/threonine residues within the third cytoplasmic loop of the receptor that are phosphorylated by GRK2/3. Simultaneous mutation of these eight residues results in a receptor construct, GRK(-), that is completely devoid of agonist-promoted GRK-mediated receptor phosphorylation. We found that both wild-type (WT) and GRK(-) receptors underwent a similar degree of agonist-induced desensitization as assessed using [35S]GTPγS binding assays. Similarly, both receptor constructs internalized to the same extent in response to agonist treatment. Furthermore, using bioluminescence resonance energy transfer assays to directly assess receptor association with arrestin3, we found no differences between the WT and GRK(-) receptors. Thus, phosphorylation is not required for arrestin-receptor association or agonist-induced desensitization or internalization. In contrast, when we examined recycling of the D2 DARs to the cell surface, subsequent to agonist-induced endocytosis, the GRK(-) construct exhibited less recycling in comparison with the WT receptor. This impairment appears to be due to a greater propensity of the GRK(-) receptors to down-regulate once internalized. In contrast, if the receptor is highly phosphorylated, then receptor recycling is promoted. These results reveal a novel role for GRK-mediated phosphorylation in regulating the post-endocytic trafficking of a G protein-coupled receptor. PMID:19332542

  7. Altered phosphorylation and desensitization patterns of a human beta 2-adrenergic receptor lacking the palmitoylated Cys341.

    PubMed Central

    Moffett, S; Mouillac, B; Bonin, H; Bouvier, M

    1993-01-01

    Exposure of beta 2-adrenergic receptors to agonists causes a rapid desensitization of the receptor-stimulated adenylyl cyclase, associated with an increased phosphorylation of the receptor. Agonist-promoted phosphorylation of the beta 2-adrenergic receptor (beta 2AR) by protein kinase A and the beta-adrenergic receptor kinase (beta ARK) is believed to promote a functional uncoupling of the receptor from the guanyl nucleotide regulatory protein Gs. More recently, palmitoylation of Cys341 of the receptor has also been proposed to play an important role in the coupling of the beta 2-adrenergic receptor to Gs. Here we report that substitution of the palmitoylated cysteine by a glycine (Gly341 beta 2 AR) using site directed mutagenesis leads to a receptor being highly phosphorylated and largely uncoupled from Gs. In Chinese hamster fibroblasts (CHW), stably transfected with the human receptor cDNAs, the basal phosphorylation level of Gly341 beta 2AR was found to be approximately 4 times that of the wild type receptor. This elevated phosphorylation level was accompanied by a depressed ability of the receptor to stimulate the adenylyl cyclase and to form a guanyl nucleotide-sensitive high affinity state for agonists. Moreover, exposure of this unpalmitoylated receptor to an agonist did not promote any further phosphorylation or uncoupling. A modest desensitization of the receptor-stimulated adenylyl cyclase response was observed but resulted from the agonist-induced sequestration of the unpalmitoylated receptor and could be blocked by concanavalin A. This contrasts with the agonist-promoted phosphorylation and uncoupling of the wild type receptor.(ABSTRACT TRUNCATED AT 250 WORDS) Images PMID:8381352

  8. The human fibroblast receptor for gp86 of human cytomegalovirus is a phosphorylated glycoprotein.

    PubMed Central

    Keay, S; Baldwin, B

    1992-01-01

    A human embryonic lung (HEL) cell receptor for gp86 of human cytomegalovirus that functions in virus-cell fusion was further characterized. Anti-idiotype antibodies that mimic gp86 were used to immunoprecipitate the 92.5-kDa fibroblast membrane receptor for gp86, which was preincubated with various endoglycosidases. The receptor, which has a pI ranging from 5.3 to 5.6, appears to be a glycoprotein with primarily N-linked sugar residues, some of which have high concentrations of mannose and some of which are complex oligosaccharides. Western blots (immunoblots) of electrophoretically transferred receptor incubated with various biotinylated lectins confirmed the presence of sugar moieties, including N-acetylglucosamine, glucose or mannose, and galactose, but not fucose or N-acetylgalactosamine. This gp86 receptor from uninfected HEL cells also incorporated radiolabeled phosphate from orthophosphoric acid, indicating that it is a constitutively phosphorylated receptor. Images PMID:1321272

  9. Analysis of Phosphorylation of the Receptor-Like Protein Kinase HAESA during Arabidopsis Floral Abscission

    PubMed Central

    Taylor, Isaiah; Wang, Ying; Seitz, Kati; Baer, John; Bennewitz, Stefan; Mooney, Brian P.; Walker, John C.

    2016-01-01

    Receptor-like protein kinases (RLKs) are the largest family of plant transmembrane signaling proteins. Here we present functional analysis of HAESA, an RLK that regulates floral organ abscission in Arabidopsis. Through in vitro and in vivo analysis of HAE phosphorylation, we provide evidence that a conserved phosphorylation site on a region of the HAE protein kinase domain known as the activation segment positively regulates HAE activity. Additional analysis has identified another putative activation segment phosphorylation site common to multiple RLKs that potentially modulates HAE activity. Comparative analysis suggests that phosphorylation of this second activation segment residue is an RLK specific adaptation that may regulate protein kinase activity and substrate specificity. A growing number of RLKs have been shown to exhibit biologically relevant dual specificity toward serine/threonine and tyrosine residues, but the mechanisms underlying dual specificity of RLKs are not well understood. We show that a phospho-mimetic mutant of both HAE activation segment residues exhibits enhanced tyrosine auto-phosphorylation in vitro, indicating phosphorylation of this residue may contribute to dual specificity of HAE. These results add to an emerging framework for understanding the mechanisms and evolution of regulation of RLK activity and substrate specificity. PMID:26784444

  10. Phosphorylation inhibits DNA-binding of alternatively spliced aryl hydrocarbon receptor nuclear translocator

    SciTech Connect

    Kewley, Robyn J. . E-mail: rkewley@csu.edu.au; Whitelaw, Murray L.

    2005-12-09

    The basic helix-loop-helix/PER-ARNT-SIM homology (bHLH/PAS) transcription factor ARNT (aryl hydrocarbon receptor nuclear translocator) is a key component of various pathways which induce the transcription of cytochrome P450 and hypoxia response genes. ARNT can be alternatively spliced to express Alt ARNT, containing an additional 15 amino acids immediately N-terminal to the DNA-binding basic region. Here, we show that ARNT and Alt ARNT proteins are differentially phosphorylated by protein kinase CKII in vitro. Phosphorylation had an inhibitory effect on DNA-binding to an E-box probe by Alt ARNT, but not ARNT, homodimers. This inhibitory phosphorylation occurs through Ser77. Moreover, a point mutant, Alt ARNT S77A, shows increased activity on an E-box reporter gene, consistent with Ser77 being a regulatory site in vivo. In contrast, DNA binding by an Alt ARNT/dioxin receptor heterodimer to the xenobiotic response element is not inhibited by phosphorylation with CKII, nor does Alt ARNT S77A behave differently from wild type Alt ARNT in the context of a dioxin receptor heterodimer.

  11. The history of fever, leukocytic pyrogen and interleukin-1

    PubMed Central

    Dinarello, Charles A

    2015-01-01

    There has been great progress in the 30 y since the reporting in 1984 of the cDNA for interleukin1 (IL1) β in the human and IL1α in the mouse. However, the history of IL1 begins in the early 1940s with investigations into the nature of an endogenous fever-producing protein released rabbit peritoneal neutrophils. Most researchers in immunology today are unaware that the field of cytokines, particularly the field of inflammatory cytokines. Toll-like receptors and innate immunity traces back to studies on fever. Researchers in infectious diseases wanted to know about an endogenous protein that caused fever, independent of infection. The endogenous fever-producing protein was called by various names: granulocyte, endogenous or leukocytic pyrogen. It is a fascinating and sometimes controversial story for biology and medicine and for the treatment of inflammatory diseases. Few imagined that this fever-producing protein would play such a major role in nearly every cell and in most diseases. This paper reviews the true background and milestones of interleukin1 from the purification of leukocytic pyrogen to the first cDNA of IL1β and the validation of cytokine biology from ill-defined factors to its present day importance. PMID:27226996

  12. Phosphorylation of insulin receptor substrate-1 serine 307 correlates with JNK activity in atrophic skeletal muscle

    NASA Technical Reports Server (NTRS)

    Hilder, Thomas L.; Tou, Janet C L.; Grindeland, Richard E.; Wade, Charles E.; Graves, Lee M.

    2003-01-01

    c-Jun NH(2)-terminal kinase (JNK) has been shown to negatively regulate insulin signaling through serine phosphorylation of residue 307 within the insulin receptor substrate-1 (IRS-1) in adipose and liver tissue. Using a rat hindlimb suspension model for muscle disuse atrophy, we found that JNK activity was significantly elevated in atrophic soleus muscle and that IRS-1 was phosphorylated on Ser(307) prior to the degradation of the IRS-1 protein. Moreover, we observed a corresponding reduction in Akt activity, providing biochemical evidence for the development of insulin resistance in atrophic skeletal muscle.

  13. Ehrlichia chaffeensis induces monocyte inflammatory responses through MyD88, ERK, and NF-κB but not through TRIF, interleukin-1 receptor 1 (IL-1R1)/IL-18R1, or toll-like receptors.

    PubMed

    Miura, Koshiro; Matsuo, Junji; Rahman, M Akhlakur; Kumagai, Yumi; Li, Xin; Rikihisa, Yasuko

    2011-12-01

    Human monocytic ehrlichiosis, an influenza-like illness accompanied by signs of hepatitis, is caused by infection of monocytes/macrophages with a lipopolysaccharide-deficient bacterium, Ehrlichia chaffeensis. The E. chaffeensis strain Wakulla induces diffuse hepatitis with neutrophil infiltration in mice with severe combined immunodeficiency, which is accompanied by strong CXCL2 (mouse functional homolog of interleukin-8 [IL-8]) and tumor necrosis factor alpha (TNF-α) expression in the liver. In this study, we found that expression of IL-1β, CXCL2, and TNF-α was induced by strain Wakulla in mouse bone marrow-derived macrophages; this expression was dependent on MyD88, but not on TRIF, TLR2/4, IL-1R1/IL-18R1, or endosome acidification. When the human leukemia cell line THP-1 was exposed to E. chaffeensis, significant upregulation of IL-8, IL-1β, and TNF-α mRNA and extracellular regulated kinase 2 (ERK2) activation were detected. U0126 (inhibitor of mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1/2 [MEK1/2] upstream of ERK), manumycin A (Ras inhibitor), BAY43-9006 (Raf-1 inhibitor), and NS-50 (inhibitor of NF-κB nuclear translocation) inhibited the cytokine gene expression. A luciferase reporter assay using HEK293 cells, which lack Toll-like receptors (TLRs), showed activation of both the IL-8 promoter and NF-κB by E. chaffeensis. Activation of the IL-8 promoter in transfected HEK293 cells was inhibited by manumycin A, BAY43-9006, U0126, and transfection with a dominant-negative Ras mutant. These results indicate that the E. chaffeensis Wakulla strain can induce inflammatory responses through MyD88-dependent NF-κB and ERK pathways, without the involvement of TRIF and TLRs.

  14. Role of interleukin 1 in the activation of T lymphocytes.

    PubMed Central

    Lichtman, A H; Chin, J; Schmidt, J A; Abbas, A K

    1988-01-01

    The activation of T lymphocytes requires their stimulation via clonotypic antigen receptors as well as nonantigen-specific costimulators, the best defined of which is the cytokine interleukin 1 (IL-1). Recent studies have shown that murine CD4+ helper T lymphocytes consist of two nonoverlapping subsets that selectively utilize interleukin 2 (IL-2) or interleukin 4 as their autocrine growth factors and are called Th1 and Th2 cells, respectively. We now show that IL-1 functions as a costimulator for the proliferation of Th2 but not of Th1 clones and only Th2 cells express high-affinity receptors for IL-1. Secretion of autocrine growth-promoting lymphokines by Th1 and Th2 cells occurs after stimulation via the antigen receptor-CD3 complex and is neither dependent on nor affected by IL-1. These findings suggest that the activation of T lymphocytes can be divided into two stages, lymphokine secretion and proliferation, and only proliferation requires costimulators such as IL-1. Moreover, the prevailing view that IL-1 functions as a costimulator by inducing secretion of IL-2 or expression of IL-2 receptors may not be generally applicable, because IL-2-producing Th1 clones do not express receptors for IL-1 and are insensitive to this cytokine. Images PMID:3264404

  15. Localization of interleukin-1 in human cholesteatoma.

    PubMed

    Ahn, J M; Huang, C C; Abramson, M

    1990-01-01

    Recent studies by other investigators have shown that interleukin-1 (IL-1) promotes bone resorption by stimulating various cells. Interleukin-1 not only stimulates collagenase production by fibroblasts and macrophages, but also acts as an osteoclast-activating factor. In this study, IL-1 was localized in human cholesteatoma tissues using both immunoperoxidase and immunofluorescent-staining methods with specific monoclonal antibodies. Highly concentrated IL-1 was found in the epithelial layer and granulation tissue. More specifically, intense staining was seen in basal and spinous cells of the epithelial layer, and in fibroblasts and macrophages of the granulation layer. We also located IL-1 in the normal external ear canal skin; however, the intensity of the staining in the cholesteatoma epithelium was found to be stronger. The presence of IL-1 in the epithelial layer and granulation tissue of the cholesteatoma suggests that IL-1 from the stimulated keratinocytes of the cholesteatoma could be one factor responsible for the markedly increased bone resorption observed in cholesteatoma patients.

  16. Modulation of Macrophage Gene Expression via Liver X Receptor α Serine 198 Phosphorylation

    PubMed Central

    Wu, Chaowei; Hussein, Maryem A.; Shrestha, Elina; Leone, Sarah; Aiyegbo, Mohammed S.; Lambert, W. Marcus; Pourcet, Benoit; Cardozo, Timothy; Gustafson, Jan-Ake; Fisher, Edward A.

    2015-01-01

    In mouse models of atherosclerosis, normalization of hyperlipidemia promotes macrophage emigration and regression of atherosclerotic plaques in part by liver X receptor (LXR)-mediated induction of the chemokine receptor CCR7. Here we report that LXRα serine 198 (S198) phosphorylation modulates CCR7 expression. Low levels of S198 phosphorylation are observed in plaque macrophages in the regression environment where high levels of CCR7 expression are observed. Consistent with these findings, CCR7 gene expression in human and mouse macrophages cell lines is induced when LXRα at S198 is nonphosphorylated. In bone marrow-derived macrophages (BMDMs), we also observed induction of CCR7 by ligands that promote nonphosphorylated LXRα S198, and this was lost in LXR-deficient BMDMs. LXRα occupancy at the CCR7 promoter is enhanced and histone modifications associated with gene repression are reduced in RAW264.7 cells expressing nonphosphorylated LXRα (RAW-LXRα S198A) compared to RAW264.7 cells expressing wild-type (WT) phosphorylated LXRα (RAW-LXRα WT). Expression profiling of ligand-treated RAW-LXRα S198A cells compared to RAW-LXRα WT cells revealed induction of cell migratory and anti-inflammatory genes and repression of proinflammatory genes. Modeling of LXRα S198 in the nonphosphorylated and phosphorylated states identified phosphorylation-dependent conformational changes in the hinge region commensurate with the presence of sites for protein interaction. Therefore, gene transcription is regulated by LXRα S198 phosphorylation, including that of antiatherogenic genes such as CCR7. PMID:25825525

  17. Phosphorylation of the ryanodine receptor mediates the cardiac fight or flight response in mice.

    PubMed

    Shan, Jian; Kushnir, Alexander; Betzenhauser, Matthew J; Reiken, Steven; Li, Jingdong; Lehnart, Stephan E; Lindegger, Nicolas; Mongillo, Marco; Mohler, Peter J; Marks, Andrew R

    2010-12-01

    During the classic "fight-or-flight" stress response, sympathetic nervous system activation leads to catecholamine release, which increases heart rate and contractility, resulting in enhanced cardiac output. Catecholamines bind to β-adrenergic receptors, causing cAMP generation and activation of PKA, which phosphorylates multiple targets in cardiac muscle, including the cardiac ryanodine receptor/calcium release channel (RyR2) required for muscle contraction. PKA phosphorylation of RyR2 enhances channel activity by sensitizing the channel to cytosolic calcium (Ca²+). Here, we found that mice harboring RyR2 channels that cannot be PKA phosphorylated (referred to herein as RyR2-S2808A+/+ mice) exhibited blunted heart rate and cardiac contractile responses to catecholamines (isoproterenol). The isoproterenol-induced enhancement of ventricular myocyte Ca²+ transients and fractional shortening (contraction) and the spontaneous beating rate of sinoatrial nodal cells were all blunted in RyR2-S2808A+/+ mice. The blunted cardiac response to catecholamines in RyR2-S2808A+/+ mice resulted in impaired exercise capacity. RyR2-S2808A+/+ mice were protected against chronic catecholaminergic-induced cardiac dysfunction. These studies identify what we believe to be new roles for PKA phosphorylation of RyR2 in both the heart rate and contractile responses to acute catecholaminergic stimulation.

  18. Addition of interleukin 1 (IL1) and IL17 soluble receptors to a tumour necrosis factor α soluble receptor more effectively reduces the production of IL6 and macrophage inhibitory protein-3α and increases that of collagen in an in vitro model of rheumatoid synoviocyte activation

    PubMed Central

    Chevrel, G; Garnero, P; Miossec, P

    2002-01-01

    Methods: A simplified model was set up to evaluate the effect of tumour necrosis factor α (TNFα) soluble receptors (sTNFR) used alone and in combination with soluble interleukin 1 receptor (sIL1R) and sIL17R on the production of markers of inflammation (IL6), of migration of dendritic cells (macrophage inhibitory protein-3α (MIP-3α)), and of matrix synthesis (C-propeptide of type 1 collagen (P1CP)). Synoviocytes were stimulated with supernatants of activated peripheral blood mononuclear cells (PBMC) from patients with rheumatoid arthritis (RA). Soluble receptors (sR) were preincubated at 1 γg/ml alone or in combination with the supernatants before addition to RA synoviocytes. IL6, MIP-3α, and P1CP production was measured by enzyme linked immunosorbent assay (ELISA) in 48 hour synoviocyte supernatants. Results: IL6 production decreased by 16% with sTNFR alone compared with no sTNFR (p<0.001) and by 41% with the combination of the three sR (p<0.001). MIP-3α production decreased by 77% with sTNFR alone compared with no sTNFR (p<0.001) and by 98% with the combination of the three sR (p<0.001). In the presence of sTNFR alone, P1CP production increased by 25% compared with no sR (p<0.01). The combination of the three sR increased P1CP production by 48% (p<0.01). Conclusion: The effect of sTNFR on IL6, MIP-3α, and P1CP production by RA synoviocytes stimulated by activated PBMC supernatants was further enhanced when combined with sIL1R and sIL17R. PMID:12117682

  19. Arabidopsis Receptor of Activated C Kinase1 Phosphorylation by WITH NO LYSINE8 KINASE

    DOE PAGESBeta

    Urano, Daisuke; Czarnecki, Olaf; Wang, Xiaoping; Jones, Alan M.; Chen, Jin-Gui

    2014-12-08

    Receptor of activated C kinase1 (RACK1) is a versatile scaffold protein that binds to numerous proteins to regulate diverse cellular pathways in mammals. In Arabidopsis (Arabidopsis thaliana), RACK1 has been shown to regulate plant hormone signaling, stress responses, and multiple processes of growth and development. However, little is known about the molecular mechanism underlying these regulations. In this paper, we show that an atypical serine (Ser)/threonine (Thr) protein kinase, WITH NO LYSINE8 (WNK8), phosphorylates RACK1. WNK8 physically interacted with and phosphorylated RACK1 proteins at two residues: Ser-122 and Thr-162. Genetic epistasis analysis of rack1 wnk8 double mutants indicated that RACK1more » acts downstream of WNK8 in the glucose responsiveness and flowering pathways. The phosphorylation-dead form, RACK1AS122A/T162A, but not the phosphomimetic form, RACK1AS122D/T162E, rescued the rack1a null mutant, implying that phosphorylation at Ser-122 and Thr-162 negatively regulates RACK1A function. The transcript of RACK1AS122D/T162E accumulated at similar levels as those of RACK1S122A/T162A. However, although the steady-state level of the RACK1AS122A/T162A protein was similar to wild-type RACK1A protein, the RACK1AS122D/T162E protein was nearly undetectable, suggesting that phosphorylation affects the stability of RACK1A proteins. In conclusion, these results suggest that RACK1 is phosphorylated by WNK8 and that phosphorylation negatively regulates RACK1 function by influencing its protein stability.« less

  20. Arabidopsis Receptor of Activated C Kinase1 Phosphorylation by WITH NO LYSINE8 KINASE

    SciTech Connect

    Urano, Daisuke; Czarnecki, Olaf; Wang, Xiaoping; Jones, Alan M.; Chen, Jin-Gui

    2014-12-08

    Receptor of activated C kinase1 (RACK1) is a versatile scaffold protein that binds to numerous proteins to regulate diverse cellular pathways in mammals. In Arabidopsis (Arabidopsis thaliana), RACK1 has been shown to regulate plant hormone signaling, stress responses, and multiple processes of growth and development. However, little is known about the molecular mechanism underlying these regulations. In this paper, we show that an atypical serine (Ser)/threonine (Thr) protein kinase, WITH NO LYSINE8 (WNK8), phosphorylates RACK1. WNK8 physically interacted with and phosphorylated RACK1 proteins at two residues: Ser-122 and Thr-162. Genetic epistasis analysis of rack1 wnk8 double mutants indicated that RACK1 acts downstream of WNK8 in the glucose responsiveness and flowering pathways. The phosphorylation-dead form, RACK1AS122A/T162A, but not the phosphomimetic form, RACK1AS122D/T162E, rescued the rack1a null mutant, implying that phosphorylation at Ser-122 and Thr-162 negatively regulates RACK1A function. The transcript of RACK1AS122D/T162E accumulated at similar levels as those of RACK1S122A/T162A. However, although the steady-state level of the RACK1AS122A/T162A protein was similar to wild-type RACK1A protein, the RACK1AS122D/T162E protein was nearly undetectable, suggesting that phosphorylation affects the stability of RACK1A proteins. In conclusion, these results suggest that RACK1 is phosphorylated by WNK8 and that phosphorylation negatively regulates RACK1 function by influencing its protein stability.

  1. Mapping physiological G protein-coupled receptor signaling pathways reveals a role for receptor phosphorylation in airway contraction

    PubMed Central

    Bradley, Sophie J.; Iglesias, Max Maza; Kong, Kok Choi; Butcher, Adrian J.; Plouffe, Bianca; Goupil, Eugénie; Bourgognon, Julie-Myrtille; Macedo-Hatch, Timothy; LeGouill, Christian; Russell, Kirsty; Laporte, Stéphane A.; König, Gabriele M.; Kostenis, Evi; Bouvier, Michel; Chung, Kian Fan; Amrani, Yassine; Tobin, Andrew B.

    2016-01-01

    G protein-coupled receptors (GPCRs) are known to initiate a plethora of signaling pathways in vitro. However, it is unclear which of these pathways are engaged to mediate physiological responses. Here, we examine the distinct roles of Gq/11-dependent signaling and receptor phosphorylation-dependent signaling in bronchial airway contraction and lung function regulated through the M3-muscarinic acetylcholine receptor (M3-mAChR). By using a genetically engineered mouse expressing a G protein-biased M3-mAChR mutant, we reveal the first evidence, to our knowledge, of a role for M3-mAChR phosphorylation in bronchial smooth muscle contraction in health and in a disease state with relevance to human asthma. Furthermore, this mouse model can be used to distinguish the physiological responses that are regulated by M3-mAChR phosphorylation (which include control of lung function) from those responses that are downstream of G protein signaling. In this way, we present an approach by which to predict the physiological/therapeutic outcome of M3-mAChR–biased ligands with important implications for drug discovery. PMID:27071102

  2. Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1

    PubMed Central

    Neubauer, Hans; Clare, Susan E; Wozny, Wojciech; Schwall, Gerhard P; Poznanović, Slobodan; Stegmann, Werner; Vogel, Ulrich; Sotlar, Karl; Wallwiener, Diethelm; Kurek, Raffael; Fehm, Tanja; Cahill, Michael A

    2008-01-01

    Introduction Breast tumors lacking the estrogen receptor-α (ER-α) have increased incidence of resistance to therapy and poorer clinical prognosis. Methods Whole tissue sections from 16 cryopreserved breast cancer tumors that were either positive or negative for the ER (eight ER positive and eight ER negative) were differentially analyzed by multiplex imaging of two-dimensional PAGE gels using 54 cm isoelectric focusing. Differentially detected spots of Progesterone Receptor Membrane Component 1 (PGRMC1) were shown to differ in phosphorylation status by differential two dimensional polyacrylamide gel electrophoresis of phosphatase-treated tumor proteins. Site directed mutagenesis was used to create putative phosphorylation site point mutants in PGRMC1. Stable transfectants of these mutants in MCF7 cells were assayed for their survival after oxidative stress, and for AKT kinase phosphorylation. Immune fluorescence using anti-PGRMC1 monoclonal antibody 5G7 was performed on breast cancer tissue microarrays. Results Proteins significantly differentially abundant between estrogen receptor negative and estrogen receptor positive tumors at the 0.1% level were consistent with published profiles, suggesting an altered keratin pool, and increased inflammation and wound responses in estrogen receptor negative tumors. Two of three spots of PGRMC1 were more abundant in estrogen receptor negative tumors. Phosphatase treatment of breast tumor proteins indicated that the PGRMC1 isoforms differed in their phosphorylation status. Simultaneous mutation of PGRMC1 serine-56 and serine-181 fully abrogated the sensitivity of stably transfected MCF7 breast cancer cells to peroxide-induced cell death. Immune fluorescence revealed that PGRMC1 was primarily expressed in ER-negative basal epithelial cells of mammary ductules. Even in advanced tumors, high levels of ER or PGRMC1 were almost mutually exclusive in individual cells. In five out of five examined ductal in situ breast cancers of

  3. A-kinase Anchoring Protein 79/150 Recruits Protein Kinase C to Phosphorylate Roundabout Receptors.

    PubMed

    Samelson, Bret K; Gore, Bryan B; Whiting, Jennifer L; Nygren, Patrick J; Purkey, Alicia M; Colledge, Marcie; Langeberg, Lorene K; Dell'Acqua, Mark L; Zweifel, Larry S; Scott, John D

    2015-05-29

    Anchoring proteins direct protein kinases and phosphoprotein phosphatases toward selected substrates to control the efficacy, context, and duration of neuronal phosphorylation events. The A-kinase anchoring protein AKAP79/150 interacts with protein kinase A (PKA), protein kinase C (PKC), and protein phosphatase 2B (calcineurin) to modulate second messenger signaling events. In a mass spectrometry-based screen for additional AKAP79/150 binding partners, we have identified the Roundabout axonal guidance receptor Robo2 and its ligands Slit2 and Slit3. Biochemical and cellular approaches confirm that a linear sequence located in the cytoplasmic tail of Robo2 (residues 991-1070) interfaces directly with sites on the anchoring protein. Parallel studies show that AKAP79/150 interacts with the Robo3 receptor in a similar manner. Immunofluorescent staining detects overlapping expression patterns for murine AKAP150, Robo2, and Robo3 in a variety of brain regions, including hippocampal region CA1 and the islands of Calleja. In vitro kinase assays, peptide spot array mapping, and proximity ligation assay staining approaches establish that human AKAP79-anchored PKC selectively phosphorylates the Robo3.1 receptor subtype on serine 1330. These findings imply that anchored PKC locally modulates the phosphorylation status of Robo3.1 in brain regions governing learning and memory and reward.

  4. Phosphorylation of the dimeric cytoplasmic domain of the phytosulfokine receptor, PSKR1.

    PubMed

    Muleya, Victor; Marondedze, Claudius; Wheeler, Janet I; Thomas, Ludivine; Mok, Yee-Fong; Griffin, Michael D W; Manallack, David T; Kwezi, Lusisizwe; Lilley, Kathryn S; Gehring, Christoph; Irving, Helen R

    2016-10-01

    Phytosulfokines (PSKs) are plant peptide hormones that co-regulate plant growth, differentiation and defense responses. PSKs signal through a plasma membrane localized leucine-rich repeat receptor-like kinase (phytosulfokine receptor 1, PSKR1) that also contains a functional cytosolic guanylate cyclase with its cyclase catalytic center embedded within the kinase domain. To functionally characterize this novel type of overlapping dual catalytic function, we investigated the phosphorylation of PSKR1 in vitro Tandem mass spectrometry of the cytoplasmic domain of PSKR1 (PSKR1cd) revealed at least 11 phosphorylation sites (8 serines, 2 threonines and 1 tyrosine) within the PSKR1cd. Phosphomimetic mutations of three serine residues (Ser686, Ser696 and Ser698) in tandem at the juxta-membrane position resulted in enhanced kinase activity in the on-mutant that was suppressed in the off-mutant, but both mutations reduced guanylate cyclase activity. Both the on and off phosphomimetic mutations of the phosphotyrosine (Tyr888) residue in the activation loop suppressed kinase activity, while neither mutation affected guanylate cyclase activity. Size exclusion and analytical ultracentrifugation analysis of the PSKR1cd suggest that it is reversibly dimeric in solution, which was further confirmed by biflourescence complementation. Taken together, these data suggest that in this novel type of receptor domain architecture, specific phosphorylation and dimerization are possibly essential mechanisms for ligand-mediated catalysis and signaling. PMID:27487840

  5. Treating inflammation by blocking interleukin-1 in humans

    PubMed Central

    Dinarello, Charles A.; van der Meer, Jos W.M.

    2014-01-01

    IL-1 is a master cytokine of local and systemic inflammation. With the availability of specific IL-1 targeting therapies, a broadening list of diseases has revealed the pathologic role of IL-1-mediated inflammation. Although IL-1, either IL-1α or IL-1β, was administered to patients in order to improve bone marrow function or increase host immune responses to cancer, these patients experienced unacceptable toxicity with fever, anorexia, myalgias, arthralgias, fatigue, gastrointestinal upset and sleep disturbances; frank hypotension occurred. Thus it was not unexpected that specific pharmacological blockade of IL-1 activity in inflammatory diseases would be beneficial. Monotherapy blocking IL-1 activity in a broad spectrum of inflammatory syndromes results in a rapid and sustained reduction in disease severity. In common conditions such as heart failure and gout arthritis, IL-1 blockade can be effective therapy. Three IL-1blockers have been approved: the IL-1 receptor antagonist, anakinra, blocks the IL-1 receptor and therefore reduces the activity of IL-1α and IL-1β. A soluble decoy receptor, rilonacept, and a neutralizing monoclonal anti-interleukin-1β antibody, canakinumab, are also approved. A monoclonal antibody directed against the IL-1 receptor and a neutralizing anti-IL-1α are in clinical trials. By specifically blocking IL-1, we have learned a great deal about the role of this cytokine in inflammation but equally important, reducing IL-1 activity has lifted the burden of disease for many patients. PMID:24275598

  6. Quantitative phosphoproteomics unravels biased phosphorylation of serotonin 2A receptor at Ser280 by hallucinogenic versus nonhallucinogenic agonists.

    PubMed

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-05-01

    The serotonin 5-HT(2A) receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT(2A) receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT(2A) receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT(2A) agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser(280)) located in the third intracellular loop of the 5-HT(2A) receptor, a region important for its desensitization. The specific phosphorylation of Ser(280) by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT(2A) receptors at Ser(280) in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser(280) to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased

  7. Quantitative Phosphoproteomics Unravels Biased Phosphorylation of Serotonin 2A Receptor at Ser280 by Hallucinogenic versus Nonhallucinogenic Agonists*

    PubMed Central

    Karaki, Samah; Becamel, Carine; Murat, Samy; Mannoury la Cour, Clotilde; Millan, Mark J.; Prézeau, Laurent; Bockaert, Joël; Marin, Philippe; Vandermoere, Franck

    2014-01-01

    The serotonin 5-HT2A receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT2A receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT2A receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT2A agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser280) located in the third intracellular loop of the 5-HT2A receptor, a region important for its desensitization. The specific phosphorylation of Ser280 by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT2A receptors at Ser280 in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser280 to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased phosphorylation of

  8. PKC-dependent Phosphorylation of the H1 Histamine Receptor Modulates TRPC6 Activity.

    PubMed

    Chen, Xingjuan; Egly, Christian; Riley, Ashley M; Li, Wennan; Tewson, Paul; Hughes, Thomas E; Quinn, Anne Marie; Obukhov, Alexander G

    2014-01-01

    Transient receptor potential canonical 6 (TRPC6) is a cation selective, DAG-regulated, Ca2+-permeable channel activated by the agonists of Gq-protein-coupled heptahelical receptors. Dysfunctions of TRPC6 are implicated in the pathogenesis of various cardiovascular and kidney conditions such as vasospasm and glomerulosclerosis. When stimulated by agonists of the histamine H1 receptor (H1R), TRPC6 activity decays to the baseline despite the continuous presence of the agonist. In this study, we examined whether H1R desensitization contributes to regulating the decay rate of TRPC6 activity upon receptor stimulation. We employed the HEK expression system and a biosensor allowing us to simultaneously detect the changes in intracellular diacylglycerol (DAG) and Ca2+ concentrations. We found that the histamine-induced DAG response was biphasic, in which a transient peak was followed by maintained elevated plateau, suggesting that desensitization of H1R takes place in the presence of histamine. The application of PKC inhibitor Gö6983 slowed the decay rate of intracellular DAG concentration. Activation of the mouse H1R mutant lacking a putative PKC phosphorylation site, Ser399, responsible for the receptor desensitization, resulted in a prolonged intracellular DAG increase and greater Mn2+ influx through the TRPC6 channel. Thus, our data support the hypothesis that PKC-dependent H1R phosphorylation leads to a reduced production of intracellular DAG that contributes to TRPC6 activity regulation.

  9. Leptin receptor activation increases Sam68 tyrosine phosphorylation and expression in human trophoblastic cells.

    PubMed

    Sánchez-Jiménez, Flora; Pérez-Pérez, Antonio; González-Yanes, Carmen; Najib, Souad; Varone, Cecilia L; Sánchez-Margalet, Víctor

    2011-01-30

    Leptin is produced in placenta where it has been found to be an important autocrine signal for trophoblastic growth during pregnancy, promoting antiapoptotic and trophic effects. Leptin receptor is present in trophoblastic cells and leptin may fully activate signaling. We have previously implicated the RNA-binding protein Sam68 in leptin signal transduction in immune cells. In the present work, we have studied the possible role of Sam68 in leptin receptor signaling in trophoblastic cells (JEG-3 cells). Leptin dose-dependently stimulated Sam68 phosphorylation in JEG-3 cells, as assessed by immunoprecipitation and immunoblot with anti-phosphotyrosine antibodies. As previously observed in other systems, tyrosine phosphorylation of Sam68 in response to leptin inhibits its RNA binding capacity. Besides, leptin stimulation dose-dependently increases Sam68 expression in JEG-3 cells, as assessed by quantitative PCR. Consistently, the amount of Sam68 protein is increased after 24h of leptin stimulation of trophoblastic cells. In order to study the possible role of Sam68 on leptin receptor synthesis, we employed antisense strategy to knockdown the expression of Sam68. We have found that a decrease in Sam68 expression leads to a decrease in leptin receptor amount in JEG-3 cells, as assessed both by quantitative PCR and immunoblot. These results strongly suggest the participation of Sam68 in leptin receptor signaling in human trophoblastic cells, and therefore, Sam68 may mediate some of the leptin effects in placenta. PMID:21035519

  10. Modulation of Receptor Phosphorylation Contributes to Activation of Peroxisome Proliferator Activated Receptor α by Dehydroepiandrosterone and Other Peroxisome Proliferators

    PubMed Central

    Tamasi, Viola; Miller, Kristy K. Michael; Ripp, Sharon L.; Vila, Ermin; Geoghagen, Thomas E.; Prough, Russell A.

    2008-01-01

    Dehydroepiandrosterone (DHEA), a C19 human adrenal steroid, activates peroxisome proliferator-activated receptor α (PPARα) in vivo but does not ligand-activate PPARα in transient transfection experiments. We demonstrate that DHEA regulates PPARα action by altering both the levels and phosphorylation status of the receptor. Human hepatoma cells (HepG2) were transiently transfected with the expression plasmid encoding PPARα and a plasmid containing two copies of fatty acyl coenzyme oxidase (FACO) peroxisome-proliferator activated receptor responsive element consensus oligonucleotide in a luciferase reporter gene. Nafenopin treatment increased reporter gene activity in this system, whereas DHEA treatment did not. Okadaic acid significantly decreased nafenopin-induced reporter activity in a concentration-dependent manner. Okadaic acid treatment of primary rat hepatocytes decreased both DHEA- and nafenopin-induced FACO activity in primary rat hepatocytes. DHEA induced both PPARα mRNA and protein levels, as well as PP2A message in primary rat hepatocytes. Western blot analysis showed that the serines at positions 12 and 21 were rapidly dephosphorylated upon treatment with DHEA and nafenopin. Results using specific protein phosphatase inhibitors suggested that protein phosphatase 2A (PP2A) is responsible for DHEA action, and protein phosphatase 1 might be involved in nafenopin induction. Mutation of serines at position 6, 12, and 21 to an uncharged alanine residue significantly increased transcriptional activity, whereas mutation to negative charged aspartate residues (mimicking receptor phosphorylation) decreased transcriptional activity. DHEA action involves induction of PPARα mRNA and protein levels as well as increased PPARα transcriptional activity through decreasing receptor phosphorylation at serines in the AF1 region. PMID:18079279

  11. Tyrosine kinase BMX phosphorylates phosphotyrosine-primed motif mediating the activation of multiple receptor tyrosine kinases.

    PubMed

    Chen, Sen; Jiang, Xinnong; Gewinner, Christina A; Asara, John M; Simon, Nicholas I; Cai, Changmeng; Cantley, Lewis C; Balk, Steven P

    2013-05-28

    The nonreceptor tyrosine kinase BMX (bone marrow tyrosine kinase gene on chromosome X) is abundant in various cell types and activated downstream of phosphatidylinositol-3 kinase (PI3K) and the kinase Src, but its substrates are unknown. Positional scanning peptide library screening revealed a marked preference for a priming phosphorylated tyrosine (pY) in the -1 position, indicating that BMX substrates may include multiple tyrosine kinases that are fully activated by pYpY sites in the kinase domain. BMX phosphorylated focal adhesion kinase (FAK) at Tyr⁵⁷⁷ subsequent to its Src-mediated phosphorylation at Tyr⁵⁷⁶. Loss of BMX by RNA interference or by genetic deletion in mouse embryonic fibroblasts (MEFs) markedly impaired FAK activity. Phosphorylation of the insulin receptor in the kinase domain at Tyr¹¹⁸⁹ and Tyr¹¹⁹⁰, as well as Tyr¹¹⁸⁵, and downstream phosphorylation of the kinase AKT at Thr³⁰⁸ were similarly impaired by BMX deficiency. However, insulin-induced phosphorylation of AKT at Ser⁴⁷³ was not impaired in Bmx knockout MEFs or liver tissue from Bmx knockout mice, which also showed increased insulin-stimulated glucose uptake, possibly because of decreased abundance of the phosphatase PHLPP (PH domain leucine-rich repeat protein phosphatase). Thus, by identifying the pYpY motif as a substrate for BMX, our findings suggest that BMX functions as a central regulator among multiple signaling pathways mediated by tyrosine kinases. PMID:23716717

  12. Interleukin-1β inhibits insulin signaling and prevents insulin-stimulated system A amino acid transport in primary human trophoblasts.

    PubMed

    Aye, Irving L M H; Jansson, Thomas; Powell, Theresa L

    2013-12-01

    Interleukin-1β (IL-1β) promotes insulin resistance in tissues such as liver and skeletal muscle; however the influence of IL-1β on placental insulin signaling is unknown. We recently reported increased IL-1β protein expression in placentas of obese mothers, which could contribute to insulin resistance. In this study, we tested the hypothesis that IL-1β inhibits insulin signaling and prevents insulin-stimulated amino acid transport in cultured primary human trophoblast (PHT) cells. Cultured trophoblasts isolated from term placentas were treated with physiological concentrations of IL-1β (10pg/ml) for 24h. IL-1β increased the phosphorylation of insulin receptor substrate-1 (IRS-1) at Ser307 (inhibitory) and decreased total IRS-1 protein abundance but did not affect insulin receptor β expression. Furthermore, IL-1β inhibited insulin-stimulated phosphorylation of IRS-1 (Tyr612, activation site) and Akt (Thr308) and prevented insulin-stimulated increase in PI3K/p85 and Grb2 protein expression. IL-1β alone stimulated cRaf (Ser338), MEK (Ser221) and Erk1/2 (Thr202/Tyr204) phosphorylation. The inflammatory pathways nuclear factor kappa B and c-Jun N-terminal kinase, which are involved in insulin resistance, were also activated by IL-1β treatment. Moreover, IL-1β inhibited insulin-stimulated System A, but not System L amino acid uptake, indicating functional impairment of insulin signaling. In conclusion, IL-1β inhibited the insulin signaling pathway by inhibiting IRS-1 signaling and prevented insulin-stimulated System A transport, thereby promoting insulin resistance in cultured PHT cells. These findings indicate that conditions which lead to increased systemic maternal or placental IL-1β levels may attenuate the effects of maternal insulin on placental function and consequently fetal growth.

  13. In vivo and in vitro specificity of protein tyrosine kinases for immunoglobulin G receptor (FcgammaRII) phosphorylation.

    PubMed Central

    Bewarder, N; Weinrich, V; Budde, P; Hartmann, D; Flaswinkel, H; Reth, M; Frey, J

    1996-01-01

    Human B cells express four immunoglobulin G receptors, FcgammaRIIa, FcgammaRIIb1, FcgammaRIIb2, and FcgammaRIIc. Coligation of either FcgammaRII isoform with the B-cell antigen receptor (BCR) results in the abrogation of B-cell activation, but only the FcgammaRIIa/c and FcgammaIIb1 isoforms become phosphorylated. To identify the FcgammaRII-phosphorylating protein tyrosine kinase (PTK), we used the combination of an in vitro and an in vivo approach. In an in vitro assay using recombinant cytoplasmic tails of the different FcgammaRII isoforms as well as tyrosine exchange mutants, we show that each of the BCR-associated PTKs (Lyn, Blk, Fyn, and Syk) shows different phosphorylation patterns with regard to the different FcgammaR isoforms and point mutants. While each PTK phosphorylated FcgammaRIIa/c, FcgammaRIIb1 was phosphorylated by Lyn and Blk whereas FcgammaRIIb2 became phosphorylated only by Blk. Mutants lacking both tyrosine residues of the immune receptor tyrosine-based activation motif (ITAM) of FcgammaRIIa/c were not phosphorylated by Blk and Fyn, while Lyn-mediated phosphorylation was dependent on the presence of the C-terminal tyrosine of the ITAM. Results obtained in assays using an FcgammaR- B-cell line transfected with wild-type or mutated FcgammaRIIa demonstrated that exchange of the C-terminal tyrosine of the ITAM of FcgammaRIIa/c was sufficient to abolish FcgammaRIIa/c phosphorylation in B cells. Additionally, we could show that Lyn and Fyn bind to FcgammaRIIa/c, with the ITAM being necessary for association. Comparison of the phosphorylation pattern of each PTK observed in vitro with the phosphorylation pattern observed in vivo suggests that Lyn is the most likely candidate for FcgammaRIIa/c and FcgammaRIIb1 phosphorylation in vivo. PMID:8756631

  14. Phosphorylation of the human leukemia inhibitory factor (LIF) receptor by mitogen-activated protein kinase and the regulation of LIF receptor function by heterologous receptor activation.

    PubMed Central

    Schiemann, W P; Graves, L M; Baumann, H; Morella, K K; Gearing, D P; Nielsen, M D; Krebs, E G; Nathanson, N M

    1995-01-01

    We used a bacterially expressed fusion protein containing the entire cytoplasmic domain of the human leukemia inhibitory factor (LIF) receptor to study its phosphorylation in response to LIF stimulation. The dose- and time-dependent relationships for phosphorylation of this construct in extracts of LIF-stimulated 3T3-L1 cells were superimposable with those for the stimulation of mitogen-activated protein kinase (MAPK). Indeed, phosphorylation of the cytoplasmic domain of the low-affinity LIF receptor alpha-subunit (LIFR) in Mono Q-fractionated, LIF-stimulated 3T3-L1 extracts occurred only in those fractions containing activated MAPK; Ser-1044 served as the major phosphorylation site in the human LIFR for MAPK both in agonist-stimulated 3T3-L1 lysates and by recombinant extracellular signal-regulated kinase 2 in vitro. Expression in rat H-35 hepatoma cells of LIFR or chimeric granulocyte-colony-stimulating factor receptor (G-CSFR)-LIFR mutants lacking Ser-1044 failed to affect cytokine-stimulated expression of a reporter gene under the control of the beta-fibrinogen gene promoter but eliminated the insulin-induced attenuation of cytokine-stimulated gene expression. Thus, our results identify the human LIFR as a substrate for MAPK and suggest a mechanism of heterologous receptor regulation of LIFR signaling occurring at Ser-1044. Images Fig. 2 Fig. 4 PMID:7777512

  15. Tightly bound nuclear progesterone receptor is not phosphorylated in primary chick oviduct cultures.

    PubMed Central

    Garcia, T; Jung-Testas, I; Baulieu, E E

    1986-01-01

    Oviduct cells from estradiol-treated chicks were grown in primary culture. After 3-5 days of culture in medium containing estradiol, 90% of the cellular progesterone binding sites were detected in the cytosol. After exposure to [3H]progesterone at 37 degrees C, 80% of the progesterone binding sites were found in nuclear fractions. Progesterone receptor phosphorylation was assessed after incubating the cells with [32P]orthophosphate. Receptor components were immunoprecipitated with a specific polyclonal antibody (IgG-G3) and analyzed by NaDodSO4/PAGE and autoradiography. In the cytosol, constant amounts of 32P-labeled 110-kDa subunit (the B subunit, one of the progesterone-binding components of the receptor) and of the non-steroid-binding heat shock protein hsp90 were found, whether cells had been exposed to progesterone or not. No 32P-labeled 79-kDa subunit (the A subunit, another progesterone-binding subunit) was detected. Various procedures were used to solubilize nuclear progesterone receptor (0.5 M KCl, micrococcal nuclease, NaDodSO4), and in no case was 32P-labeled B subunit detected in the extracts. However, nonradioactive B subunit was detected by immunoblot in a nuclear KCl extract of progesterone-treated cells. These results suggest that the fraction of the B subunit that becomes strongly attached to nuclear structures is not phosphorylated upon exposure of cells to progesterone. Images PMID:3463987

  16. Manipulating the Lateral Diffusion of Surface-Anchored EGF Demonstrates that Receptor Clustering Modulates its Phosphorylation Levels

    SciTech Connect

    Stabley, Daniel; Retterer, Scott T; Marshal, Stephen; Salaita, Khalid

    2013-01-01

    Upon activation, the epidermal growth factor (EGF) receptor becomes phosphorylated and triggers a vast signaling network that has profound effects on cell growth. The EGF receptor is observed to assemble into clusters after ligand binding and tyrosine kinase autophosphorylation, but the role of these assemblies in the receptor signaling pathway remains unclear. To address this question, we measured the phosphorylation of EGFR when the EGF ligand was anchored onto laterally mobile and immobile surfaces. We found that cells generated clusters of ligand-receptor complex on mobile EGF surfaces, and generated a lower ratio of phosphorylated EGFR to EGF than when compared to immobilized EGF that is unable to cluster. This result was verified by tuning the lateral assembly of ligand-receptor complexes on the surface of living cells using patterned supported lipid bilayers. Nanoscale metal lines fabricated into the supported membrane constrained lipid diffusion and EGF receptor assembly into micron and sub-micron scale corrals. Single cell analysis indicated that clustering impacts EGF receptor activation, and larger clusters (> 1 m2) of ligand-receptor complex generated lower EGF receptor phosphorylation per ligand than smaller assemblies (< 1 m2) in HCC1143 cells that were engaged to ligand-functionalized surfaces. We investigated EGFR clustering by treating cells with compounds that disrupt the cytoskeleton (Latrunculin-B), clathrin-mediated endocytosis (Pitstop2), and inhibit EGFR activation (Gefitinib). These results help elucidate the nature of large-scale EGFR clustering, thus underscoring the general significance of receptor spatial organization in tuning function.

  17. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity.

    PubMed

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-12-15

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser(696) and Ser(698) in the JM (juxtamembrane) region and probably Ser(886) and/or Ser(893) in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser(717) in the JM, and at Ser(733), Thr(752), Ser(783), Ser(864), Ser(911), Ser(958) and Thr(998) in the kinase domain. The LC-ESI-MS/MS spectra provided support that up to three sites (Thr(890), Ser(893) and Thr(894)) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr(890), Ser(893), Thr(894) and Thr(899), differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response.

  18. Conserved phosphorylation sites in the activation loop of the Arabidopsis phytosulfokine receptor PSKR1 differentially affect kinase and receptor activity

    PubMed Central

    Hartmann, Jens; Linke, Dennis; Bönniger, Christine; Tholey, Andreas; Sauter, Margret

    2015-01-01

    PSK (phytosulfokine) is a plant peptide hormone perceived by a leucine-rich repeat receptor kinase. Phosphosite mapping of epitope-tagged PSKR1 (phytosulfokine receptor 1) from Arabidopsis thaliana plants identified Ser696 and Ser698 in the JM (juxtamembrane) region and probably Ser886 and/or Ser893 in the AL (activation loop) as in planta phosphorylation sites. In vitro-expressed kinase was autophosphorylated at Ser717 in the JM, and at Ser733, Thr752, Ser783, Ser864, Ser911, Ser958 and Thr998 in the kinase domain. The LC–ESI–MS/MS spectra provided support that up to three sites (Thr890, Ser893 and Thr894) in the AL were likely to be phosphorylated in vitro. These sites are evolutionarily highly conserved in PSK receptors, indicative of a conserved function. Site-directed mutagenesis of the four conserved residues in the activation segment, Thr890, Ser893, Thr894 and Thr899, differentially altered kinase activity in vitro and growth-promoting activity in planta. The T899A and the quadruple-mutated TSTT-A (T890A/S893A/T894A/T899A) mutants were both kinase-inactive, but PSKR1(T899A) retained growth-promoting activity. The T890A and S893A/T894A substitutions diminished kinase activity and growth promotion. We hypothesize that phosphorylation within the AL activates kinase activity and receptor function in a gradual and distinctive manner that may be a means to modulate the PSK response. PMID:26472115

  19. Structural mimicry of a-loop tyrosine phosphorylation by a pathogenic FGF receptor 3 mutation.

    PubMed

    Huang, Zhifeng; Chen, Huaibin; Blais, Steven; Neubert, Thomas A; Li, Xiaokun; Mohammadi, Moosa

    2013-10-01

    The K650E gain-of-function mutation in the tyrosine kinase domain of FGF receptor 3 (FGFR3) causes Thanatophoric Dysplasia type II, a neonatal lethal congenital dwarfism syndrome, and when acquired somatically, it contributes to carcinogenesis. In this report, we determine the crystal structure of the FGFR3 kinase domain harboring this pathogenic mutation and show that the mutation introduces a network of intramolecular hydrogen bonds to stabilize the active-state conformation. In the crystal, the mutant FGFR3 kinases are caught in the act of trans-phosphorylation on a kinase insert autophosphorylation site, emphasizing the fact that the K650E mutation circumvents the requirement for A-loop tyrosine phosphorylation in kinase activation. Analysis of this trans-phosphorylation complex sheds light onto the determinants of tyrosine trans-phosphorylation specificity. We propose that the targeted inhibition of this pathogenic FGFR3 kinase may be achievable by small molecule kinase inhibitors that selectively bind the active-state conformation of FGFR3 kinase.

  20. Effects of sphingosine-1-phosphate receptor 1 phosphorylation in response to FTY720 during neuroinflammation

    PubMed Central

    Huang, Yingxiang; Garris, Christopher S.; Moreno, Monica A.; Griffin, Christina W.; Han, May H.

    2016-01-01

    Fingolimod (FTY720, Gilenya), a sphingosine-1-phosphate receptor (S1PR) modulator, is one of the first-line immunomodulatory therapies for treatment of relapsing-remitting multiple sclerosis (MS). Human S1PR1 variants have been reported to have functional heterogeneity in vitro, suggesting that S1PR1 function may influence FTY720 efficacy. In this study, we examined the influence of S1PR1 phosphorylation on response to FTY720 in neuroinflammation. We found that mice carrying a phosphorylation-defective S1pr1 gene [S1PR1(S5A) mice] were refractory to FTY720 treatment in MOG35-55-immunized and Th17-mediated experimental autoimmune encephalomyelitis (EAE) models. Long-term treatment with FTY720 induced significant lymphopenia and suppressed Th17 response in the peripheral immune system via downregulating STAT3 phosphorylation in both WT and S1PR1(S5A) mice. However, FTY720 did not effectively prevent neuroinflammation in the S1PR1(S5A) EAE mice as a result of encephalitogenic cells expressing C-C chemokine receptor 6 (CCR6). Combined treatment with FTY720 and anti-CCR6 delayed disease progression in S1PR1(S5A) EAE mice, suggesting that CCR6-mediated cell trafficking can overcome the effects of FTY720. This work may have translational relevance regarding FTY720 efficacy in MS patients and suggests that cell type–specific therapies may enhance therapeutic efficacy in MS.

  1. Phosphorylation of the transcription factor Sp4 is reduced by NMDA receptor signaling.

    PubMed

    Saia, Gregory; Lalonde, Jasmin; Sun, Xinxin; Ramos, Belén; Gill, Grace

    2014-05-01

    The regulation of transcription factor function in response to neuronal activity is important for development and function of the nervous system. The transcription factor Sp4 regulates the developmental patterning of dendrites, contributes to complex processes including learning and memory, and has been linked to psychiatric disorders such as schizophrenia and bipolar disorder. Despite its many roles in the nervous system, the molecular mechanisms regulating Sp4 activity are poorly understood. Here, we report a site of phosphorylation on Sp4 at serine 770 that is decreased in response to membrane depolarization. Inhibition of the voltage-dependent NMDA receptor increased Sp4 phosphorylation. Conversely, stimulation with NMDA reduced the levels of Sp4 phosphorylation, and this was dependent on the protein phosphatase 1/2A. A phosphomimetic substitution at S770 impaired the Sp4-dependent maturation of cerebellar granule neuron primary dendrites, whereas a non-phosphorylatable Sp4 mutant behaved like wild type. These data reveal that transcription factor Sp4 is regulated by NMDA receptor-dependent activation of a protein phosphatase 1/2A signaling pathway. Our findings also suggest that the regulated control of Sp4 activity is an important mechanism governing the developmental patterning of dendrites.

  2. Glucocorticoid regulation of insulin receptor and substrate IRS-1 tyrosine phosphorylation in rat skeletal muscle in vivo.

    PubMed Central

    Giorgino, F; Almahfouz, A; Goodyear, L J; Smith, R J

    1993-01-01

    To test the hypothesis that glucocorticoid-induced insulin resistance might originate from abnormalities in insulin receptor signaling, we investigated the effects of glucocorticoids on in vivo tyrosine phosphorylation of the insulin receptor and the insulin receptor substrate IRS-1 in rat skeletal muscle. Male Sprague-Dawley rats were treated with cortisone (100 mg/kg for 5 d) and compared to pair-fed controls. Cortisone treatment of rats resulted in both hyperglycemia and hyperinsulinemia. Anesthetized animals were injected with 10 U/kg insulin via cardiac puncture and, after 2 min, hindlimb muscles were removed, snap-frozen, and homogenized in SDS. Protein tyrosine phosphorylation was studied by immunoblotting with phosphotyrosine antibody. Insulin receptors and substrate IRS-1 were identified and quantified with specific antibodies. Cortisone treatment increased the amount of insulin receptor protein by 36%, but decreased the total level of receptor tyrosine phosphorylation (69 +/- 4% of control, P < 0.05). The decreased level of receptor phosphorylation was explained by a reduced number of receptors containing phosphorylated tyrosine residues (64.6 +/- 5% of control, P < 0.05). Glucocorticoid excess decreased skeletal muscle IRS-1 content by 50%, but did not significantly alter the total level of IRS-1 tyrosine phosphorylation. The apparent M(r) of IRS-1 was reduced by approximately 10 kD. Treatment with protein phosphatase-2A reduced IRS-1 M(r) in control but not in glucocorticoid-treated muscle indicating that the lower M(r) likely results from lower phosphoserine and/or phosphothreonine content. To investigate the role of hyperinsulinemia in the glucocorticoid response, rats were made insulin-deficient with streptozotocin (100 mg/kg, i.p.). Subsequent treatment with cortisone for 5 d had no effects on insulin levels, tyrosine phosphorylation of insulin receptors or IRS-1, or the M(r) of IRS-1. In conclusion, glucocorticoid-treated skeletal muscle is

  3. Blockade of adenosine A2A receptors prevents protein phosphorylation in the striatum induced by cortical stimulation.

    PubMed

    Quiroz, César; Gomes, Catarina; Pak, Arlene C; Ribeiro, Joaquim A; Goldberg, Steven R; Hope, Bruce T; Ferré, Sergi

    2006-10-18

    Previous studies have shown that cortical stimulation selectively activates extracellular signal-regulated kinase 1/2 (ERK1/2) phosphorylation and immediate early gene expression in striatal GABAergic enkephalinergic neurons. In the present study, we demonstrate that blockade of adenosine A2A receptors with caffeine or a selective A2A receptor antagonist counteracts the striatal activation of cAMP-protein kinase A cascade (phosphorylation of the Ser845 residue of the glutamate receptor 1 subunit of the AMPA receptor) and mitogen-activated protein kinase (ERK1/2 phosphorylation) induced by the in vivo stimulation of corticostriatal afferents. The results indicate that A2A receptors strongly modulate the efficacy of glutamatergic synapses on striatal enkephalinergic neurons.

  4. Human serotonin1B receptor expression in Sf9 cells: phosphorylation, palmitoylation, and adenylyl cyclase inhibition.

    PubMed

    Ng, G Y; George, S R; Zastawny, R L; Caron, M; Bouvier, M; Dennis, M; O'Dowd, B F

    1993-11-01

    Analysis of the primary protein structure of the human serotonin1B (5-HT1B) receptor reveals consensus sites for phosphorylation and a putative site for palmitoylation. To investigate these posttranslational modifications, we have expressed a c-myc epitope-tagged 5-HT1B (m5-HT1B) receptor in Sf9 cells. This strategy enabled receptors to be detected by immunoblot analysis and purified by immunoprecipitation using a monoclonal antibody, 9E10, specific for the c-myc epitope. Agonist radioligand [3H]5-HT binding studies showed that the expressed 5-HT1B and m5-HT1B receptors displayed the characteristic pharmacological profile of the neuronal 5-HT1B receptor. The expressed receptors displayed both high- and low-affinity states for [3H]5-HT, suggesting that the receptors were coupled to endogenous G-proteins. Indeed, agonist binding to the high-affinity receptor state was regulated in the presence of GTP gamma S, Gpp(NH)p, and pertussis toxin. [32P]ADP-ribosylation experiments identified a major approximately 41-kDa ADP-ribosylated protein present in Sf9 membranes that comigrated with partially purified bovine brain Gi alpha/G(o) alpha subunits. Measurements of adenylyl cyclase activity in membranes from cells expressing m5-HT1B receptors showed that serotonergic agonists mediated the inhibition of adenylyl cyclase activity with a rank order of potency comparable to their affinity constants. Immunoblot analysis of membranes prepared from cells expressing m5-HT1B receptors and photoaffinity labeling of the immunoprecipitated material revealed photolabeled species at approximately 95 and at approximately 42 kDa.(ABSTRACT TRUNCATED AT 250 WORDS)

  5. Inhibition of spontaneous receptor phosphorylation by residues in a putative alpha-helix in the KIT intracellular juxtamembrane region.

    PubMed

    Ma, Y; Cunningham, M E; Wang, X; Ghosh, I; Regan, L; Longley, B J

    1999-05-01

    KIT receptor kinase activity is repressed, prior to stem cell factor binding, by unknown structural constraints. Using site-directed mutagenesis, we examined the role of KIT intracellular juxtamembrane residues Met-552 through Ile-563 in controlling receptor autophosphorylation. Alanine substitution for Tyr-553, Trp-557, Val-559, or Val-560, all sitting along the hydrophobic side of an amphipathic alpha-helix (Tyr-553-Ile-563) predicted by the Chou-Fasman algorithm, resulted in substantially increased spontaneous receptor phosphorylation, revealing inhibitory roles for these residues. Alanine substitution for other residues, most of which are on the hydrophilic side of the helix, caused no or slightly increased basal receptor phosphorylation. Converting Tyr-553 or Trp-557 to phenylalanine generated slight or no elevation, respectively, in basal KIT phosphorylation, indicating that the phenyl ring of Tyr-553 and the hydrophobicity of Trp-557 are critical for the inhibition. Although alanine substitution for Lys-558 had no effect on receptor phosphorylation, its substitution with proline produced high spontaneous receptor phosphorylation, suggesting that the predicted alpha-helical conformation is involved in the inhibition. A synthetic peptide comprising Tyr-553 through Ile-563 showed circular dichroism spectra characteristic of alpha-helix, supporting the structural prediction. Thus, the KIT intracellular juxtamembrane region contains important residues which, in a putative alpha-helical conformation, exert inhibitory control on the kinase activity of ligand-unoccupied receptor. PMID:10224103

  6. Phosphorylation of tumor necrosis factor receptor 1 (p55) protects macrophages from silica-induced apoptosis.

    PubMed

    Gambelli, Federica; Di, Peter; Niu, Xiaomei; Friedman, Mitchell; Hammond, Timothy; Riches, David W H; Ortiz, Luis A

    2004-01-16

    Macrophages play a fundamental role in silicosis in part by removing silica particles and producing inflammatory mediators in response to silica. Tumor necrosis factor alpha (TNFalpha) is a prominent mediator in silicosis. Silica induction of apoptosis in macrophages might be mediated by TNFalpha. However, TNFalpha also activates signal transduction pathways (NF-kappaB and AP-1) that rescue cells from apoptosis. Therefore, we studied the TNFalpha-mediated mechanisms that confer macrophage protection against the pro-apoptotic effects of silica. We will show that exposure to silica induced TNFalpha production by RAW 264.7 cells, but not by IC-21. Silica-induced activation of NF-kappaB and AP-1 was only observed in RAW 264.7 macrophages. ERK activation in response to silica exposure was only observed in RAW 264.7 macrophages, whereas activation of p38 phosphorylation was predominantly observed in IC-21 macrophages. No changes in JNK activity were observed in either cell line in response to silica exposure. Silica induced apoptosis in both macrophage cell lines, but the induction of apoptosis was significantly larger in IC-21 cells. Protection against apoptosis in RAW 264.7 cells in response to silica was mediated by enhanced NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNFalpha receptor. Inhibition of these two protective mechanisms by specific pharmacological inhibitors or transfection of dominant negative mutants that inhibit IkappaBalpha or ERK phosphorylation significantly increased silica-induced apoptosis in RAW 264.7 macrophages. These data suggest that NF-kappaB activation and ERK-mediated phosphorylation of the p55 TNF receptor are important cell survival mechanisms in the macrophage response to silica exposure. PMID:14570868

  7. Delphinidin inhibits cell proliferation and invasion via modulation of Met receptor phosphorylation

    SciTech Connect

    Syed, Deeba N.; Afaq, Farrukh; Sarfaraz, Sami; Khan, Naghma; Kedlaya, Rajendra; Setaluri, Vijayasaradhi; Mukhtar, Hasan

    2008-08-15

    The HGF/Met signaling pathway is deregulated in majority of cancers and is associated with poor prognosis in breast cancer. Delphinidin, present in pigmented fruits and vegetables possesses potent anti-oxidant, anti-inflammatory and anti-angiogenic properties. Here, we assessed the anti-proliferative and anti-invasive effects of delphinidin on HGF-mediated responses in the immortalized MCF-10A breast cell line. Treatment of cells with delphinidin prior to exposure to exogenous HGF resulted in the inhibition of HGF-mediated (i) tyrosyl-phosphorylation and increased expression of Met receptor, (ii) phosphorylation of downstream regulators such as FAK and Src and (iii) induction of adaptor proteins including paxillin, Gab-1 and GRB-2. In addition, delphinidin treatment resulted in significant inhibition of HGF-activated (i) Ras-ERK MAPKs and (ii) PI3K/AKT/mTOR/p70S6K pathways. Delphinidin was found to repress HGF-activated NF{kappa}B transcription with a decrease in (i) phosphorylation of IKK{alpha}/{beta} and I{kappa}B{alpha}, and (ii) activation and nuclear translocation of NF{kappa}B/p65. Inhibition of HGF-mediated membrane translocation of PKC{alpha} as well as decreased phosphorylation of STAT3 was further observed in delphinidin treated cells. Finally, decreased cell viability of Met receptor expressing breast cancer cells treated with delphinidin argues for a potential role of the agent in the prevention of HGF-mediated activation of various signaling pathways implicated in breast cancer.

  8. Kinin B1 and B2 receptor expression in osteoblasts and fibroblasts is enhanced by interleukin-1 and tumour necrosis factor-alpha. Effects dependent on activation of NF-kappaB and MAP kinases.

    PubMed

    Brechter, Anna Bernhold; Persson, Emma; Lundgren, Inger; Lerner, Ulf H

    2008-07-01

    Pro-inflammatory mediators formed by the kallikrein-kinin system can stimulate bone resorption and synergistically potentiate bone resorption induced by IL-1 and TNF-alpha. We have shown that the effect is associated with synergistically enhanced RANKL expression and enhanced prostaglandin biosynthesis, due to increased cyclooxygenase-2 expression. In the present study, the effects of osteotropic cytokines and different kinins on the expression of receptor subtypes for bradykinin (BK), des-Arg10-Lys-BK (DALBK), IL-1beta and TNF-alpha have been investigated. IL-1beta and TNF-alpha enhanced kinin B1 and B2 receptor binding in the human osteoblastic cell line MG-63 and the mRNA expression of B1 and B2 receptors in MG-63 cells, human gingival fibroblasts and intact mouse calvarial bones. Kinins did not affect mRNA expression of IL-1 or TNF receptors. EMSA showed that IL-1beta and TNF-alpha activated NF-kappaB and AP-1 in MG-63 cells. IL-1beta stimulated NF-kappaB via a non-canonical pathway (p52/p65) and TNF-alpha via the canonical pathway (p50/p65). Activation of AP-1 involved c-Jun in both IL-1beta and TNF-alpha stimulated cells, but c-Fos only in TNF-alpha stimulated cells. Phospho-ELISA and Western blots showed that IL-1beta activated JNK and p38, but not ERK 1/2 MAP kinase. Pharmacological inhibitors showed that NF-kappaB, p38 and JNK were important for IL-1beta induced stimulation of B1 receptors, and NF-kappaB and p38 for B2 receptors. p38 and JNK were important for TNF-alpha induced stimulation of B1 receptors, whereas NF-kappaB, p38 and JNK were involved in TNF-alpha induced expression of B2 receptors. These data show that IL-1beta and TNF-alpha upregulate B1 and B2 receptor expression by mechanisms involving activation of both NF-kappaB and MAP kinase pathways, but that signal transduction pathways are different for IL-1beta and TNF-alpha. The enhanced kinin receptor expression induced by the pro-inflammatory cytokines IL-1beta and TNF-alpha might be one

  9. Crystallization of recombinant human interleukin 1β

    NASA Astrophysics Data System (ADS)

    Einspahr, Howard; Clancy, L. L.; Muchmore, S. W.; Watenpaugh, K. D.; Harris, P. K. W.; Carter, D. B.; Curry, K. A.; Tomich, C.-S. C.; Yem, A. W.; Deibel, M. R.; Tracey, D. E.; Paslay, J. W.; Staite, N. D.; Carter, J. B.; Theriault, N. Y.; Reardon, I. M.; Zurcher-Neely, H. A.; Heinrikson, R. L.

    1988-07-01

    The gene for the fully processed form of human interleukin 1β was cloned from SK-hep-1 hepatoma cellular RNA and expressed at high levels in E. coli. The protein produced in E. coli. was purified to homogeneity by standard chromatographic methods, including adsorption and desorption from Procion Red Sepharose, sizing on a Superose 12 FPLC column, and anion exchange chromatography on QAE Sepharose. The result is a biologically active protein, rIL-1β, that migrates on two-dimensional gels as a single spot with a pI of 6.5 ± 0.2 and a molecular mass of 17, 500 daltons. Crystals of rIL-1β have been produced from concentrated solutions of the protein by ammonium sulfate precipitation. The crystals are tetragonal, have space group P41 or its enantiomer, have lattice constants of a = 58.46(1) Å and c = 77.02(3) Å, and scatter to at least 2 Å resolution. A structure determination ba these crystals is underway.

  10. Small-Molecule Inhibition and Activation-Loop Trans-Phosphorylation of the IGF1 Receptor

    SciTech Connect

    Wu,J.; Li, W.; Craddock, B.; Foreman, K.; Mulvihill, M.; Ji, Q.; Miller, W.; Hubbard, S.

    2008-01-01

    The insulin-like growth factor-1 receptor (IGF1R) is a receptor tyrosine kinase (RTK) that has a critical role in mitogenic signalling during embryogenesis and an antiapoptotic role in the survival and progression of many human tumours. Here, we present the crystal structure of the tyrosine kinase domain of IGF1R (IGF1RK), in its unphosphorylated state, in complex with a novel compound, cis-3-[3-(4-methyl-piperazin-l-yl)-cyclobutyl]-1-(2-phenyl-quinolin-7-yl)-imidazo[1, 5-a]pyrazin-8-ylamine (PQIP), which we show is a potent inhibitor of both the unphosphorylated (basal) and phosphorylated (activated) states of the kinase. PQIP interacts with residues in the ATP-binding pocket and in the activation loop, which confers specificity for IGF1RK and the highly related insulin receptor (IR) kinase. In this crystal structure, the IGF1RK active site is occupied by Tyr1135 from the activation loop of an symmetry (two-fold)-related molecule. This dimeric arrangement affords, for the first time, a visualization of the initial trans-phosphorylation event in the activation loop of an RTK, and provides a molecular rationale for a naturally occurring mutation in the activation loop of the IR that causes type II diabetes mellitus.

  11. Overexpression of α-synuclein simultaneously increases glutamate NMDA receptor phosphorylation and reduces glucocerebrosidase activity.

    PubMed

    Yang, Junfeng; Hertz, Ellen; Zhang, Xiaoqun; Leinartaité, Lina; Lundius, Ebba Gregorsson; Li, Jie; Svenningsson, Per

    2016-01-12

    Progressive accumulation of α-synuclein (α-syn)-containing protein aggregates throughout the nervous system is a pathological hallmark of Parkinson's disease (PD). The mechanisms whereby α-syn exerts neurodegeneration remain to be fully understood. Here we show that overexpression of α-syn in transgenic mice leads to increased phosphorylation of glutamate NMDA receptor (NMDAR) subunits NR1 and NR2B in substantia nigra and striatum as well as reduced glucocerebrosidase (GCase) levels. Similarly, molecular studies performed in mouse N2A cells stably overexpressing human α-syn ((α-syn)N2A) showed that phosphorylation states of the same NMDAR subunits were increased, whereas GCase levels and lysosomal GCase activity were reduced. (α-syn)N2A cells showed an increased sensitivity to neurotoxicity towards 6-hydroxydopamine and NMDA. However, wildtype N2A, but not (α-syn)N2A cells, showed a further reduction in viability when co-incubated with 6-hydroxydopamine and the lysosomal inhibitors NH4Cl and leupeptin, suggesting that α-syn per se perturbs lysosomal functions. NMDA treatment reduced lysosomal GCase activity to the same extent in (α-syn)N2A cells as in wildtype N2A cells, indicating that the α-syn-dependent difference in NMDA neurotoxicity is unrelated to an altered GCase activity. Nevertheless, these data provide molecular evidence that overexpression of α-syn simultaneously induces two potential neurotoxic hits by increasing glutamate NMDA receptor phosphorylation, consistent with increased NMDA receptors functionality, and reducing GCase activity. PMID:26610904

  12. Anti-interleukin-1 therapy in the management of gout.

    PubMed

    Schlesinger, Naomi

    2014-02-01

    Gout is the most common inflammatory arthritis in humans. Current treatment options to control the pain and inflammation of acute and chronic gout include nonsteroidal anti-inflammatory drugs, colchicine, and corticosteroids. However, patients are commonly unresponsive to, intolerant of, or have contraindications to current treatments. Interleukin-1 (IL-1), a proinflammatory cytokine, plays a major role in mediating gouty inflammation. This role of IL-1 has led investigators to explore a new class of anti-inflammatory drugs that inhibit IL-1 signal transduction. IL-1 inhibitors currently in trials for gout include anakinra, rilonacept, and canakinumab. Anakinra is an IL‑1 receptor antagonist that inhibits the activity of both IL‑1α and IL‑1β, rilonacept is a soluble decoy receptor and canakinumab is an anti‑IL‑1β monoclonal antibody. In case cohorts, anakinra was found to be efficacious in combating acute gout pain and inflammation, whereas rilonacept has been found to be efficacious for reducing the risk of recurrent attacks. Canakinumab has been shown to be efficacious in both reducing pain and inflammation in acute attacks, and for reducing the risk of recurrent attacks. All three IL-1 inhibitors are generally well tolerated. This article reviews the current IL-1 inhibitors and the results of trials in which they have been tested for the management of acute and chronic gouty inflammation.

  13. Immunoprecipitation of Plasma Membrane Receptor-Like Kinases for Identification of Phosphorylation Sites and Associated Proteins.

    PubMed

    Kadota, Yasuhiro; Macho, Alberto P; Zipfel, Cyril

    2016-01-01

    Membrane proteins are difficult to study for numerous reasons. The surface of membrane proteins is relatively hydrophobic and sometimes very unstable, additionally requiring detergents for their extraction from the membrane. This leads to challenges at all levels, including expression, solubilization, purification, identification of associated proteins, and the identification of post-translational modifications. However, recent advances in immunoprecipitation technology allow to isolate membrane proteins efficiently, facilitating the study of protein-protein interactions, the identification of novel associated proteins, and to identify post-translational modifications, such as phosphorylation. Here, we describe an optimized immunoprecipitation protocol for plant plasma membrane receptor-like kinases. PMID:26577786

  14. Brain-derived neurotrophic factor acutely enhances tyrosine phosphorylation of the AMPA receptor subunit GluR1 via NMDA receptor-dependent mechanisms.

    PubMed

    Wu, Kuo; Len, Guo-Wei; McAuliffe, Geoff; Ma, Chia; Tai, Jessica P; Xu, Fei; Black, Ira B

    2004-11-01

    Brain-derived growth factor (BDNF) acutely regulates synaptic transmission and modulates hippocampal long-term potentiation (LTP) and long-term depression (LTD), cellular models of plasticity associated with learning and memory. Our previous studies revealed that BDNF rapidly increases phosphorylation of NMDA receptor subunits NR1 and NR2B in the postsynaptic density (PSD), potentially linking receptor phosphorylation to synaptic plasticity. To further define molecular mechanisms governing BDNF actions, we examined tyrosine phosphorylation of GluR1, the most well-characterized subunit of AMPA receptors. Initially, we investigated synaptoneurosomes that contain intact pre- and postsynaptic elements. Incubation of synaptoneurosomes with BDNF for 5 min increased tyrosine phosphorylation of GluR1 in a dose-dependent manner, with a maximal, 4-fold enhancement at 10 ng/ml BDNF. NGF had no effects, suggesting the specificity of BDNF actions. Subsequently, we found that BDNF elicited a maximal, 2.5-fold increase in GluR1 phosphorylation in the PSD at 250 ng/ml BDNF within 5 min, suggesting that BDNF enhances the phosphorylation through postsynaptic mechanisms. Activation of trkB receptors was critical as k252-a, an inhibitor of trk receptor tyrosine kinase, blocked the BDNF-activated GluR1 phosphorylation. In addition, AP-5 and MK 801, NMDA receptor antagonists, blocked BDNF enhancement of phosphorylation in synaptoneurosomes or PSDs. Conversely, NMDA, the specific receptor agonist, evoked respective 3.8- and 2-fold increases in phosphorylation in synaptoneurosomes and PSDs within 5 min, mimicking the effects of BDNF. These findings raise the possibility that BDNF modulates GluR1 activity via changes in NMDA receptor function. Moreover, incubation of synaptoneurosomes or PSDs with BDNF and ifenprodil, a specific NR2B antagonist, reproduced the results of AP-5 and MK-801. Finally, coexposure of synaptoneurosomes or PSDs to BDNF and NMDA was not additive, suggesting that

  15. Phosphorylation of two regulatory tyrosine residues in the activation of Bruton’s tyrosine kinase via alternative receptors

    PubMed Central

    Wahl, Matthew I.; Fluckiger, Anne-Catherine; Kato, Roberta M.; Park, Hyunsun; Witte, Owen N.; Rawlings, David J.

    1997-01-01

    Mutation of Bruton’s tyrosine kinase (Btk) impairs B cell maturation and function and results in a clinical phenotype of X-linked agammaglobulinemia. Activation of Btk correlates with an increase in the phosphorylation of two regulatory Btk tyrosine residues. Y551 (site 1) within the Src homology type 1 (SH1) domain is transphosphorylated by the Src family tyrosine kinases. Y223 (site 2) is an autophosphorylation site within the Btk SH3 domain. Polyclonal, phosphopeptide-specific antibodies were developed to evaluate the phosphorylation of Btk sites 1 and 2. Crosslinking of the B cell antigen receptor (BCR) or the mast cell Fcɛ receptor, or interleukin 5 receptor stimulation each induced rapid phosphorylation at Btk sites 1 and 2 in a tightly coupled manner. Btk molecules were singly and doubly tyrosine-phosphorylated. Phosphorylated Btk comprised only a small fraction (≤5%) of the total pool of Btk molecules in the BCR-activated B cells. Increased dosage of Lyn in B cells augmented BCR-induced phosphorylation at both sites. Kinetic analysis supports a sequential activation mechanism in which individual Btk molecules undergo serial transphosphorylation (site 1) then autophosphorylation (site 2), followed by successive dephosphorylation of site 1 then site 2. The phosphorylation of conserved tyrosine residues within structurally related Tec family kinases is likely to regulate their activation. PMID:9326643

  16. Coarse-grained molecular simulation of epidermal growth factor receptor protein tyrosine kinase multi-site self-phosphorylation.

    PubMed

    Koland, John G

    2014-01-01

    Upon the ligand-dependent dimerization of the epidermal growth factor receptor (EGFR), the intrinsic protein tyrosine kinase (PTK) activity of one receptor monomer is activated, and the dimeric receptor undergoes self-phosphorylation at any of eight candidate phosphorylation sites (P-sites) in either of the two C-terminal (CT) domains. While the structures of the extracellular ligand binding and intracellular PTK domains are known, that of the ∼225-amino acid CT domain is not, presumably because it is disordered. Receptor phosphorylation on CT domain P-sites is critical in signaling because of the binding of specific signaling effector molecules to individual phosphorylated P-sites. To investigate how the combination of conventional substrate recognition and the unique topological factors involved in the CT domain self-phosphorylation reaction lead to selectivity in P-site phosphorylation, we performed coarse-grained molecular simulations of the P-site/catalytic site binding reactions that precede EGFR self-phosphorylation events. Our results indicate that self-phosphorylation of the dimeric EGFR, although generally believed to occur in trans, may well occur with a similar efficiency in cis, with the P-sites of both receptor monomers being phosphorylated to a similar extent. An exception was the case of the most kinase-proximal P-site-992, the catalytic site binding of which occurred exclusively in cis via an intramolecular reaction. We discovered that the in cis interaction of P-site-992 with the catalytic site was facilitated by a cleft between the N-terminal and C-terminal lobes of the PTK domain that allows the short CT domain sequence tethering P-site-992 to the PTK core to reach the catalytic site. Our work provides several new mechanistic insights into the EGFR self-phosphorylation reaction, and demonstrates the potential of coarse-grained molecular simulation approaches for investigating the complexities of self-phosphorylation in molecules such as EGFR

  17. Protein kinase C directly phosphorylates the insulin receptor in vitro and reduces its protein-tyrosine kinase activity.

    PubMed Central

    Bollag, G E; Roth, R A; Beaudoin, J; Mochly-Rosen, D; Koshland, D E

    1986-01-01

    The beta subunit of purified insulin receptor is phosphorylated on a serine residue by purified preparations of protein kinase C (ATP: protein phosphotransferase, EC 2.7.1.37). This phosphorylation is inhibited by antibodies to protein kinase C and stimulated by phospholipids, diacylglycerol, and Ca2+. The phosphorylation of the receptor by protein kinase C does not affect its insulin-binding activity but does inhibit by 65% the receptor's intrinsic tyrosine-specific protein kinase activity (ATP: protein-tyrosine O-phosphotransferase, EC 2.7.1.112). These results indicate that activators of protein kinase C, such as phorbol esters, desensitize cells to insulin by direct protein kinase C action on the insulin receptor. Images PMID:3526339

  18. Mutation of tyrosine-141 inhibits insulin-promoted tyrosine phosphorylation and increased responsiveness of the human beta 2-adrenergic receptor.

    PubMed Central

    Valiquette, M; Parent, S; Loisel, T P; Bouvier, M

    1995-01-01

    The ability of insulin to promote phosphorylation of the human beta 2-adrenergic receptor (beta 2AR) was assessed in Chinese hamster fibroblasts transfected with beta 2AR cDNA. Phosphotyrosine residues were detected in purified beta 2AR using a polyclonal anti-phosphotyrosine antibody and by phosphoamino acid analysis following metabolic labelling with inorganic 32P. Treatment of the cells with insulin induced a 2.4-fold increase in the phosphotyrosine content of the receptor. The insulin-promoted phosphorylation of the beta 2AR was accompanied by an increase in the beta-adrenergic-stimulated adenyl cyclase activity. Substitution of a phenylalanine residue for tyrosine-141 completely prevented both the increased tyrosine phosphorylation and the enhanced responsiveness of the beta 2AR promoted by insulin treatment. Mutation of three other tyrosines located in the cytoplasmic domain of the receptor, tyrosine-366, tyrosine-350 and tyrosine-354, did not abolish the insulin-promoted tyrosine phosphorylation. Taken together, these results suggest that insulin promotes phosphorylation of the beta 2AR on tyrosine-141 and that such phosphorylation leads to a supersensitization of the receptor. Images PMID:8521811

  19. Regulation of AMPA receptor extrasynaptic insertion by 4.1N, phosphorylation and palmitoylation

    PubMed Central

    Lin, Da–Ting; Makino, Yuichi; Sharma, Kamal; Hayashi, Takashi; Neve, Rachael; Takamiya, Kogo; Huganir, Richard L.

    2009-01-01

    The insertion of alpha–amino–3–hydroxy–5–methyl–4–isoxazolepropionic acid receptors (AMPARs) into the plasma membrane is a key step in synaptic delivery of AMPARs during the expression of synaptic plasticity. However, the molecular mechanisms regulating AMPAR insertion remain elusive. By directly visualizing individual insertion events of the AMPAR subunit GluR1, we demonstrate that Protein 4.1N is required for activity dependent GluR1 insertion. PKC phosphorylation of GluR1 S816 and S818 residues enhances 4.1N binding to GluR1, and facilitates GluR1 insertion. In addition, palmitoylation of GluR1 C811 residue modulates PKC phosphorylation and GluR1 insertion. Finally, disrupting 4.1N dependent GluR1 insertion decreases surface expression of GluR1 and the expression of long–term potentiation (LTP). Our study uncovers a novel mechanism that governs activity dependent GluR1 trafficking, reveals an interesting interplay between AMPAR palmitoylation and phosphorylation, and underscores the functional significance of the 4.1N protein in AMPAR trafficking and synaptic plasticity. PMID:19503082

  20. Oak ellagitannins suppress the phosphorylation of the epidermal growth factor receptor in human colon carcinoma cells.

    PubMed

    Fridrich, Diana; Glabasnia, Arne; Fritz, Jessica; Esselen, Melanie; Pahlke, Gudrun; Hofmann, Thomas; Marko, Doris

    2008-05-14

    The ellagitannins castalagin and vescalagin, and the C-glycosides grandinin and roburin E as well as ellagic acid were found to potently inhibit the growth of human colon carcinoma cells (HT29) in vitro. In a cell-free system these compounds were identified as potent inhibitors of the protein tyrosine kinase activity of the epidermal growth factor receptor (EGFR) with IC 50 values in the low nanomolar range. To address the question of whether the interference with the activity of the isolated EGFR also plays a role within intact cells, effects on the phosphorylation status of the EGFR, as a measure for its activity, were determined in HT29 cells. As exemplified for castalagin and grandinin, both the nonglycosylated and the glycosylated ellagitannins effectively suppressed EGFR phosphorylation, but only at concentrations > or =10 microM, thus, in a concentration range where growth inhibition was observed. These results indicate that the suppression of EGFR-mediated signaling might contribute to the growth inhibitory effects of these compounds present in oak-matured wines and spirits such as whiskey. In contrast, despite substantial growth inhibitory properties, ellagic acid did not significantly affect EGFR phosphorylation in HT29 cells up to 100 microM. PMID:18419129

  1. Spinal D1-like dopamine receptors modulate NMDA receptor-induced hyperexcitability and NR1 subunit phosphorylation at serine 889.

    PubMed

    Aira, Zigor; Barrenetxea, Teresa; Buesa, Itsaso; Martínez, Endika; Azkue, Jon Jatsu

    2016-04-01

    Activation of the N-methyl-d-aspartate receptor (NMDAR) in dorsal horn neurons is recognized as a fundamental mechanism of central sensitization and pathologic pain. This study assessed the influence of dopaminergic, D1-like receptor-mediated input to the spinal dorsal horn on NMDAR function. Spinal superfusion with selective NMDAR agonist cis-ACPD significantly increased C-fiber-evoked field potentials in rats subjected to spinal nerve ligation (SNL), but not in sham-operated rats. Simultaneous application of D1LR antagonist SCH 23390 dramatically reduced hyperexcitability induced by cis-ACPD. Furthermore, cis-ACPD-induced hyperexcitability seen in nerve-ligated rats could be mimicked in unin-jured rats during stimulation of D1LRs by agonist SKF 38393 at subthreshold concentration. Phosphorylation of NMDAR subunit NR1 at serine 889 at postsynaptic sites was found to be increased in dorsal horn neurons 90 min after SNL, as assessed by increased co-localization with postsynaptic marker PSD-95. Increased NR1 phosphorylation was attenuated in the presence of SCH 23390 in the spinal superfusate. The present results support that D1LRs regulate most basic determinants of NMDAR function in dorsal horn neurons, suggesting a potential mechanism whereby dopaminergic input to the dorsal horn can modulate central sensitization and pathologic pain.

  2. Hrr25 triggers selective autophagy–related pathways by phosphorylating receptor proteins

    PubMed Central

    Tanaka, Chikara; Tan, Li-Jing; Mochida, Keisuke; Kirisako, Hiromi; Koizumi, Michiko; Asai, Eri; Sakoh-Nakatogawa, Machiko; Ohsumi, Yoshinori

    2014-01-01

    In selective autophagy, degradation targets are specifically recognized, sequestered by the autophagosome, and transported into the lysosome or vacuole. Previous studies delineated the molecular basis by which the autophagy machinery recognizes those targets, but the regulation of this process is still poorly understood. In this paper, we find that the highly conserved multifunctional kinase Hrr25 regulates two distinct selective autophagy–related pathways in Saccharomyces cerevisiae. Hrr25 is responsible for the phosphorylation of two receptor proteins: Atg19, which recognizes the assembly of vacuolar enzymes in the cytoplasm-to-vacuole targeting pathway, and Atg36, which recognizes superfluous peroxisomes in pexophagy. Hrr25-mediated phosphorylation enhances the interactions of these receptors with the common adaptor Atg11, which recruits the core autophagy-related proteins that mediate the formation of the autophagosomal membrane. Thus, this study introduces regulation of selective autophagy as a new role of Hrr25 and, together with other recent studies, reveals that different selective autophagy–related pathways are regulated by a uniform mechanism: phosphoregulation of the receptor–adaptor interaction. PMID:25287303

  3. Soybean nodule autoregulation receptor kinase phosphorylates two kinase-associated protein phosphatases in vitro.

    PubMed

    Miyahara, Akira; Hirani, Tripty A; Oakes, Marie; Kereszt, Attila; Kobe, Bostjan; Djordjevic, Michael A; Gresshoff, Peter M

    2008-09-12

    The NARK (nodule autoregulation receptor kinase) gene, a negative regulator of cell proliferation in nodule primordia in several legumes, encodes a receptor kinase that consists of an extracellular leucine-rich repeat and an intracellular serine/threonine protein kinase domain. The putative catalytic domain of NARK was expressed and purified as a maltose-binding or a glutathione S-transferase fusion protein in Escherichia coli. The recombinant NARK proteins showed autophosphorylation activity in vitro. Several regions of the NARK kinase domain were shown by mass spectrometry to possess phosphoresidues. The kinase-inactive protein K724E failed to autophosphorylate, as did three other proteins corresponding to phenotypically detected mutants defective in whole plant autoregulation of nodulation. A wild-type NARK fusion protein transphosphorylated a kinase-inactive mutant NARK fusion protein, suggesting that it is capable of intermolecular autophosphorylation in vitro. In addition, Ser-861 and Thr-963 in the NARK kinase catalytic domain were identified as phosphorylation sites through site-directed mutagenesis. The genes coding for the kinase-associated protein phosphatases KAPP1 and KAPP2, two putative interacting components of NARK, were isolated. NARK kinase domain phosphorylated recombinant KAPP proteins in vitro. Autophosphorylated NARK kinase domain was, in turn, dephosphorylated by both KAPP1 and KAPP2. Our results suggest a model for signal transduction involving NARK in the control of nodule development.

  4. Effects of sphingosine-1-phosphate receptor 1 phosphorylation in response to FTY720 during neuroinflammation

    PubMed Central

    Huang, Yingxiang; Garris, Christopher S.; Moreno, Monica A.; Griffin, Christina W.; Han, May H.

    2016-01-01

    Fingolimod (FTY720, Gilenya), a sphingosine-1-phosphate receptor (S1PR) modulator, is one of the first-line immunomodulatory therapies for treatment of relapsing-remitting multiple sclerosis (MS). Human S1PR1 variants have been reported to have functional heterogeneity in vitro, suggesting that S1PR1 function may influence FTY720 efficacy. In this study, we examined the influence of S1PR1 phosphorylation on response to FTY720 in neuroinflammation. We found that mice carrying a phosphorylation-defective S1pr1 gene [S1PR1(S5A) mice] were refractory to FTY720 treatment in MOG35-55-immunized and Th17-mediated experimental autoimmune encephalomyelitis (EAE) models. Long-term treatment with FTY720 induced significant lymphopenia and suppressed Th17 response in the peripheral immune system via downregulating STAT3 phosphorylation in both WT and S1PR1(S5A) mice. However, FTY720 did not effectively prevent neuroinflammation in the S1PR1(S5A) EAE mice as a result of encephalitogenic cells expressing C-C chemokine receptor 6 (CCR6). Combined treatment with FTY720 and anti-CCR6 delayed disease progression in S1PR1(S5A) EAE mice, suggesting that CCR6-mediated cell trafficking can overcome the effects of FTY720. This work may have translational relevance regarding FTY720 efficacy in MS patients and suggests that cell type–specific therapies may enhance therapeutic efficacy in MS. PMID:27699272

  5. Phosphorylation state–dependent modulation of spinal glycine receptors alleviates inflammatory pain

    PubMed Central

    Yévenes, Gonzalo E.; Ralvenius, William T.; Benke, Dietmar; Di Lio, Alessandra; Lara, Cesar O.; Muñoz, Braulio; Burgos, Carlos F.; Moraga-Cid, Gustavo; Corringer, Pierre-Jean

    2016-01-01

    Diminished inhibitory neurotransmission in the superficial dorsal horn of the spinal cord is thought to contribute to chronic pain. In inflammatory pain, reductions in synaptic inhibition occur partially through prostaglandin E2- (PGE2-) and PKA-dependent phosphorylation of a specific subtype of glycine receptors (GlyRs) that contain α3 subunits. Here, we demonstrated that 2,6-di-tert-butylphenol (2,6-DTBP), a nonanesthetic propofol derivative, reverses inflammation-mediated disinhibition through a specific interaction with heteromeric αβGlyRs containing phosphorylated α3 subunits. We expressed mutant GlyRs in HEK293T cells, and electrophysiological analyses of these receptors showed that 2,6-DTBP interacted with a conserved phenylalanine residue in the membrane-associated stretch between transmembrane regions 3 and 4 of the GlyR α3 subunit. In native murine spinal cord tissue, 2,6-DTBP modulated synaptic, presumably αβ heteromeric, GlyRs only after priming with PGE2. This observation is consistent with results obtained from molecular modeling of the α-β subunit interface and suggests that in α3βGlyRs, the binding site is accessible to 2,6-DTBP only after PKA-dependent phosphorylation. In murine models of inflammatory pain, 2,6-DTBP reduced inflammatory hyperalgesia in an α3GlyR-dependent manner. Together, our data thus establish that selective potentiation of GlyR function is a promising strategy against chronic inflammatory pain and that, to our knowledge, 2,6-DTBP has a unique pharmacological profile that favors an interaction with GlyRs that have been primed by peripheral inflammation. PMID:27270175

  6. Homologous desensitization of HEL cell thrombin receptors. Distinguishable roles for proteolysis and phosphorylation.

    PubMed

    Brass, L F

    1992-03-25

    , but not TRP42/55, involves proteolysis and requires protein synthesis for recovery. The second, which occurs with TRP42/55 and TPA, as well as with thrombin, involves phosphorylation, possibly of the receptor itself. Although protien kinase C is activated by thrombin and is presumably responsible for the desensitization caused by TPA, it does not appear to play a major role in receptor desensitization caused by thrombin and TRP42/55. This suggests that other kinases, such as those which inactivate adrenergic receptors and rhodopsin, are involved in the down-regulation of thrombin receptor function.

  7. Dopamine D2 receptors are involved in the regulation of Fyn and metabotropic glutamate receptor 5 phosphorylation in the rat striatum in vivo.

    PubMed

    Mao, Li-Min; Wang, John Q

    2016-04-01

    Fyn, a major Src family kinase (SFK) member that is densely expressed in striatal neurons, is actively involved in the regulation of cellular and synaptic activities in local neurons. This SFK member is likely regulated by dopamine signaling through a receptor mechanism involving dopamine D2 receptors (D2Rs). This study characterizes the D2R-dependent regulation of Fyn in the rat striatum in vivo. Moreover, we explore whether D2Rs regulate metabotropic glutamate receptor 5 (mGluR5) in its tyrosine phosphorylation and whether the D2R-SFK pathway modulates trafficking of mGluR5. We found that blockade of D2Rs by systemic administration of a D2R antagonist, eticlopride, substantially increased SFK phosphorylation in the striatum. This increase was a transient and reversible event. The eticlopride-induced SFK phosphorylation occurred predominantly in immunopurified Fyn but not in another SFK member, Src. Eticlopride also elevated tyrosine phosphorylation of mGluR5. In parallel, eticlopride enhanced synaptic delivery of active Fyn and mGluR5. Pretreatment with an SFK inhibitor blocked the eticlopride-induced tyrosine phosphorylation and synaptic trafficking of mGluR5. These results indicate that D2Rs inhibit SFK (mainly Fyn) phosphorylation in the striatum. D2Rs also inhibit tyrosine phosphorylation and synaptic recruitment of mGluR5 through a signaling mechanism likely involving Fyn.

  8. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells

    PubMed Central

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru

    2016-01-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca2+-dependent using the Ca2+ chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  9. Featured Article: Differential regulation of endothelial nitric oxide synthase phosphorylation by protease-activated receptors in adult human endothelial cells.

    PubMed

    Tillery, Lakeisha C; Epperson, Tenille A; Eguchi, Satoru; Motley, Evangeline D

    2016-03-01

    Protease-activated receptors have been shown to regulate endothelial nitric oxide synthase through the phosphorylation of specific sites on the enzyme. It has been established that PAR-2 activation phosphorylates eNOS-Ser-1177 and leads to the production of the potent vasodilator nitric oxide, while PAR-1 activation phosphorylates eNOS-Thr-495 and decreases nitric oxide production in human umbilical vein endothelial cells. In this study, we hypothesize a differential coupling of protease-activated receptors to the signaling pathways that regulates endothelial nitric oxide synthase and nitric oxide production in primary adult human coronary artery endothelial cells. Using Western Blot analysis, we showed that thrombin and the PAR-1 activating peptide, TFLLR, lead to the phosphorylation of eNOS-Ser-1177 in human coronary artery endothelial cells, which was blocked by SCH-79797 (SCH), a PAR-1 inhibitor. Using the nitrate/nitrite assay, we also demonstrated that the thrombin- and TFLLR-induced production of nitric oxide was inhibited by SCH and L-NAME, a NOS inhibitor. In addition, we observed that TFLLR, unlike thrombin, significantly phosphorylated eNOS-Thr-495, which may explain the observed delay in nitric oxide production in comparison to that of thrombin. Activation of PAR-2 by SLIGRL, a PAR-2 specific ligand, leads to dual phosphorylation of both catalytic sites but primarily regulated eNOS-Thr-495 phosphorylation with no change in nitric oxide production in human coronary artery endothelial cells. PAR-3, known as the non-signaling receptor, was activated by TFRGAP, a PAR-3 mimicking peptide, and significantly induced the phosphorylation of eNOS-Thr-495 with minimal phosphorylation of eNOS-Ser-1177 with no change in nitric oxide production. In addition, we confirmed that PAR-mediated eNOS-Ser-1177 phosphorylation was Ca(2+)-dependent using the Ca(2+) chelator, BAPTA, while eNOS-Thr-495 phosphorylation was mediated via Rho kinase using the ROCK inhibitor, Y-27632

  10. Involvement of AMPA receptor phosphorylation in antidepressant actions with special reference to tianeptine.

    PubMed

    Svenningsson, Per; Bateup, Helen; Qi, Hongshi; Takamiya, Kogo; Huganir, Richard L; Spedding, Michael; Roth, Bryan L; McEwen, Bruce S; Greengard, Paul

    2007-12-01

    Depression is associated with abnormal neuronal plasticity. AMPA receptors mediate transmission and plasticity at excitatory synapses in a manner which is positively regulated by phosphorylation at Ser831-GluR1, a CaMKII/PKC site, and Ser845-GluR1, a PKA site. Treatment with the selective serotonin (5-hydroxytryptamine; 5-HT) reuptake inhibitor fluoxetine increases P-Ser845-GluR1 but not P-Ser831-GluR1. Here, it was found that treatment with another antidepressant, tianeptine, increased P-Ser831-GluR1 in the frontal cortex and the CA3 region of hippocampus and P-Ser845-GluR1 in the CA3 region of hippocampus. A receptorome profile detected no affinity for tianeptine at any monaminergic receptors or transporters, confirming an atypical profile for this compound. Behavioural analyses showed that mice bearing point mutations at both Ser831- and Ser845-GluR1, treated with saline, exhibited increased latency to enter the centre of an open field and increased immobility in the tail-suspension test compared to their wild-type counterparts. Chronic tianeptine treatment increased open-field locomotion and reduced immobility in wild-type mice but not in phosphomutant GluR1 mice. P-Ser133-CREB was reduced in the CA3 region of hippocampus in phosphomutant mice, and tianeptine decreased P-Ser133-CREB in this region in wild-type, but not in phosphomutant, mice. Tianeptine increased P-Ser133-CREB in the CA1 region in wild-type mice but not in phosphomutant GluR1 mice. There were higher basal P-Ser133-CREB and c-fos levels in frontal and cingulate cortex in phosphomutant GluR1 mice; these changes in level were counteracted by tianeptine in a GluR1-independent manner. Using phosphorylation assays and phosphomutant GluR1 mice, this study provides evidence that AMPA receptor phosphorylation mediates certain explorative and antidepressant-like actions under basal conditions and following tianeptine treatment.

  11. Interleukin-1β causes fluoxetine resistance in an animal model of epilepsy-associated depression.

    PubMed

    Pineda, Eduardo A; Hensler, Julie G; Sankar, Raman; Shin, Don; Burke, Teresa F; Mazarati, Andréy M

    2012-04-01

    Depression represents a common comorbidity of epilepsy and is frequently resistant to selective serotonin reuptake inhibitors (SSRI). We tested the hypothesis that the SSRI resistance in epilepsy associated depression may be a result of a pathologically enhanced interleukin-1β (IL1-β) signaling, and consequently that the blockade of IL1-β may restore the effectiveness of SSRI. Epilepsy and concurrent depression-like impairments were induced in Wistar rats by pilocarpine status epilepticus (SE). The effects of the 2-week long treatment with fluoxetine, interleukin-1 receptor antagonist (IL-1ra), and their combination were examined using behavioral, biochemical, neuroendocrine, and autoradiographic assays. In post-SE rats, depression-like impairments included behavioral deficits indicative of hopelessness and anhedonia; the hyperactivity of the hypothalamo-pituitary-adrenocortical axis; the diminished serotonin output from raphe nucleus; and the upregulation of presynaptic serotonin 1-A (5-HT1A) receptors. Fluoxetine monotherapy exerted no antidepressant effects, whereas the treatment with IL-1ra led to the complete reversal of anhedonia and to a partial improvement of all other depressive impairments. Combined administration of fluoxetine and IL-1ra completely abolished all hallmarks of epilepsy-associated depressive abnormalities, with the exception of the hyperactivity of the hypothalamo-pituitary-adrenocortical axis, the latter remaining only partially improved. We propose that in certain forms of depression, including but not limited to depression associated with epilepsy, the resistance to SSRI may be driven by the pathologically enhanced interleukin-1β signaling and by the subsequent upregulation of presynaptic 5-HT1A receptors. In such forms of depression, the use of interleukin-1β blockers in conjunction with SSRI may represent an effective therapeutic approach.

  12. Molecular analysis of a novel Toll/interleukin-1 receptor (TIR)-domain containing virulence protein of Y. pseudotuberculosis among Far East scarlet-like fever serotype I strains.

    PubMed

    Nörenberg, Dominik; Wieser, Andreas; Magistro, Giuseppe; Hoffmann, Christiane; Meyer, Christian; Messerer, Maxim; Schubert, Sören

    2013-12-01

    Pathogenicity of Yersinia pseudotuberculosis is determined by an arsenal of virulence factors. Particularly, the Yersinia outer proteins (Yops) and the Type III secretion system (T3SS) encoded on the pYV virulence plasmid are required for Yersinia pathogenicity. A specific group of Y. pseudotuberculosis, responsible for the clinical syndrome described as Far East scarlet-like fever (FESLF), is known to have an altered virulence gene cluster. Far East strains cause unique clinical symptoms for which the pYV virulence plasmid plays apparently a rather secondary role. Here, we characterize a previously unknown protein of Y. pseudotuberculosis serotype I strains (TcpYI) which can be found particularly among the FESLF strain group. The TcpYI protein shares considerable sequence homology to members of the Toll/IL-1 receptor family. Bacterial TIR domain containing proteins (Tcps) interact with the innate immune system by TIR-TIR interactions and subvert host defenses via individual, multifaceted mechanisms. In terms of virulence, it appears that the TcpYI protein of Y. pseudotuberculosis displays its own virulence phenotype compared to the previously characterized bacterial Tcps. Our results clearly demonstrate that TcpYI increases the intracellular survival of the respective strains in vitro. Furthermore, we show here that the intracellular survival benefit of the wild-type strain correlates with an increase in tcpYI gene expression inside murine macrophages. In support of this, we found that TcpYI enhances the survival inside the spleens of mice in a mouse model of peritonitis. Our results may point toward involvement of the TcpYI protein in inhibition of phagocytosis, particularly in distinct Y. pseudotuberculosis strains of the FESLF strain group where the pYV virulence plasmid is absent.

  13. Protease activated receptor 1 (PAR1) enhances Src-mediated tyrosine phosphorylation of NMDA receptor in intracerebral hemorrhage (ICH)

    PubMed Central

    Duan, Zhen-Zhen; Zhang, Feng; Li, Feng-Ying; Luan, Yi-Fei; Guo, Peng; Li, Yi-Hang; Liu, Yong; Qi, Su-Hua

    2016-01-01

    It has been demonstrated that Src could modulate NMDA receptor, and PAR1 could also affect NMDAR signaling. However, whether PAR1 could regulate NMDAR through Src under ICH has not yet been investigated. In this study, we demonstrated the role of Src-PSD95-GluN2A signaling cascades in rat ICH model and in vitro thrombin challenged model. Using the PAR1 agonist SFLLR, antagonist RLLFS and Src inhibitor PP2, electrophysiological analysis showed that PAR1 regulated NMDA-induced whole-cell currents (INMDA) though Src in primary cultured neurons. Both in vivo and in vitro results showed the elevated phosphorylation of tyrosine in Src and GluN2A and enhanced interaction of the Src-PSD95-GluN2A under model conditions. Treatment with the PAR1 antagonist RLLFS, AS-PSD95 (Antisense oligonucleotide against PSD95) and Src inhibitor PP2 inhibited the interaction among Src-PSD95-GluN2A, and p-Src, p-GluN2A. Co-application of SFLLR and AS-PSD95, PP2, or MK801 (NMDAR inhibitor) abolished the effect of SF. In conclusion, our results demonstrated that activated thrombin receptor PAR1 induced Src activation, enhanced the interaction among Src-PSD95-GluN2A signaling modules, and up-regulated GluN2A phosphorylation after ICH injury. Elucidation of such signaling cascades would possibly provide novel targets for ICH treatment. PMID:27385592

  14. AMPK Regulates Metabolic Actions of Glucocorticoids by Phosphorylating the Glucocorticoid Receptor through p38 MAPK

    PubMed Central

    Nader, Nancy; Ng, Sinnie Sin Man; Lambrou, George I.; Pervanidou, Panagiota; Wang, Yonghong; Chrousos, George P.; Kino, Tomoshige

    2010-01-01

    Glucocorticoids play central roles in the regulation of energy metabolism by shifting it toward catabolism, whereas AMP-activated protein kinase (AMPK) is the master regulator of energy homeostasis, sensing energy depletion and stimulating pathways of increasing fuel uptake and saving on peripheral supplies. We showed here that AMPK regulates glucocorticoid actions on carbohydrate metabolism by targeting the glucocorticoid receptor (GR) and modifying transcription of glucocorticoid-responsive genes in a tissue- and promoter-specific fashion. Activation of AMPK in rats reversed glucocorticoid-induced hepatic steatosis and suppressed glucocorticoid-mediated stimulation of glucose metabolism. Transcriptomic analysis in the liver suggested marked overlaps between the AMPK and glucocorticoid signaling pathways directed mostly from AMPK to glucocorticoid actions. AMPK accomplishes this by phosphorylating serine 211 of the human GR indirectly through phosphorylation and consequent activation of p38 MAPK and by altering attraction of transcriptional coregulators to DNA-bound GR. In human peripheral mononuclear cells, AMPK mRNA expression positively correlated with that of glucocorticoid-responsive glucocorticoid-inducible leucine zipper protein, which correlated also positively with the body mass index of subjects. These results indicate that the AMPK-mediated energy control system modulates glucocorticoid action at target tissues. Because increased action of glucocorticoids is associated with the development of metabolic disorders, activation of AMPK could be a promising target for developing pharmacological interventions to these pathologies. PMID:20660302

  15. KCC2 Gates Activity-Driven AMPA Receptor Traffic through Cofilin Phosphorylation.

    PubMed

    Chevy, Quentin; Heubl, Martin; Goutierre, Marie; Backer, Stéphanie; Moutkine, Imane; Eugène, Emmanuel; Bloch-Gallego, Evelyne; Lévi, Sabine; Poncer, Jean Christophe

    2015-12-01

    Expression of the neuronal K/Cl transporter KCC2 is tightly regulated throughout development and by both normal and pathological neuronal activity. Changes in KCC2 expression have often been associated with altered chloride homeostasis and GABA signaling. However, recent evidence supports a role of KCC2 in the development and function of glutamatergic synapses through mechanisms that remain poorly understood. Here we show that suppressing KCC2 expression in rat hippocampal neurons precludes long-term potentiation of glutamatergic synapses specifically by preventing activity-driven membrane delivery of AMPA receptors. This effect is independent of KCC2 transporter function and can be accounted for by increased Rac1/PAK- and LIMK-dependent cofilin phosphorylation and actin polymerization in dendritic spines. Our results demonstrate that KCC2 plays a critical role in the regulation of spine actin cytoskeleton and gates long-term plasticity at excitatory synapses in cortical neurons. PMID:26631461

  16. Is ryanodine receptor phosphorylation key to the fight or flight response and heart failure?

    PubMed

    Eschenhagen, Thomas

    2010-12-01

    In situations of stress the heart beats faster and stronger. According to Marks and colleagues, this response is, to a large extent, the consequence of facilitated Ca²+ release from intracellular Ca²+ stores via ryanodine receptor 2 (RyR2), thought to be due to catecholamine-induced increases in RyR2 phosphorylation at serine 2808 (S2808). If catecholamine stimulation is sustained (for example, as occurs in heart failure), RyR2 becomes hyperphosphorylated and "leaky," leading to arrhythmias and other pathology. This "leaky RyR2 hypothesis" is highly controversial. In this issue of the JCI, Marks and colleagues report on two new mouse lines with mutations in S2808 that provide strong evidence supporting their theory. Moreover, the experiments revealed an influence of redox modifications of RyR2 that may account for some discrepancies in the field.

  17. Phosphorylated and sumoylation-deficient progesterone receptors drive proliferative gene signatures during breast cancer progression

    PubMed Central

    2012-01-01

    Introduction Progesterone receptors (PR) are emerging as important breast cancer drivers. Phosphorylation events common to breast cancer cells impact PR transcriptional activity, in part by direct phosphorylation. PR-B but not PR-A isoforms are phosphorylated on Ser294 by mitogen activated protein kinase (MAPK) and cyclin dependent kinase 2 (CDK2). Phospho-Ser294 PRs are resistant to ligand-dependent Lys388 SUMOylation (that is, a repressive modification). Antagonism of PR small ubiquitin-like modifier (SUMO)ylation by mitogenic protein kinases suggests a mechanism for derepression (that is, transcriptional activation) of target genes. As a broad range of PR protein expression is observed clinically, a PR gene signature would provide a valuable marker of PR contribution to early breast cancer progression. Methods Global gene expression patterns were measured in T47D and MCF-7 breast cancer cells expressing either wild-type (SUMOylation-capable) or K388R (SUMOylation-deficient) PRs and subjected to pathway analysis. Gene sets were validated by RT-qPCR. Recruitment of coregulators and histone methylation levels were determined by chromatin immunoprecipitation. Changes in cell proliferation and survival were determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays and western blotting. Finally, human breast tumor cohort datasets were probed to identify PR-associated gene signatures; metagene analysis was employed to define survival rates in patients whose tumors express a PR gene signature. Results 'SUMO-sensitive' PR target genes primarily include genes required for proliferative and pro-survival signaling. DeSUMOylated K388R receptors are preferentially recruited to enhancer regions of derepressed genes (that is, MSX2, RGS2, MAP1A, and PDK4) with the steroid receptor coactivator, CREB-(cAMP-response element-binding protein)-binding protein (CBP), and mixed lineage leukemia 2 (MLL2), a histone methyltransferase mediator of nucleosome

  18. Phosphorylation of inositol 1,4,5-triphosphate receptor 1 during in vitro maturation of porcine oocytes.

    PubMed

    Ito, Junya; Yoshida, Tomoko; Kasai, Yasushi; Wakai, Takuya; Parys, Jan B; Fissore, Rafael A; Kashiwazaki, Naomi

    2010-02-01

    During fertilization in mammalian species, a sperm-induced intracellular Ca(2+) signal ([Ca(2+)](i)) mediates both exit of meiosis and oocyte activation. Recently, we demonstrated in mouse oocytes that the phosphorylation levels of inositol 1,4,5 trisphosphate receptor type1 (IP(3)R1), the channel responsible for Ca(2+) release and oscillations during fertilization, changed during maturation and fertilization. Therefore, we examined the expression and phosphorylation of IP(3)R1 during in vitro maturation of pig oocytes. Here, our present study shows that expression of IP(3)R1 protein did not change during maturation, although the phosphorylation status of the receptor, specifically at an MPM-2 epitope, did. We found that while at the beginning of maturation IP(3)R1 lacked MPM-2 immunoreactivity, it became MPM-2 reactive by 24 h and reached maximal reactivity by 36 h. Interestingly, the acquisition of MPM-2 reactivity coincided with the activation of p34(cdc2) kinase and mitogen-activated protein kinase (MAPK), which are involved in meiotic progression. Following completion of maturation, inactivation of MAPK by U0126 did not affect IP(3)R1 phosphorylation, although inactivation of p34(cdc2) kinase by roscovitine dramatically reduced IP(3)R1 phosphorylation. Neither inhibitor affected total expression of IP(3)R1. Altogether, our results show that IP(3)R1 undergoes dynamic phosphorylation during maturation and this might underlie the generation of oscillations at fertilization.

  19. Enhancement of potency and efficacy of NADA by PKC-mediated phosphorylation of vanilloid receptor.

    PubMed

    Premkumar, Louis S; Qi, Zhan-Heng; Van Buren, Jeremy; Raisinghani, Manish

    2004-03-01

    The search for an endogenous ligand for the vanilloid receptor (VR or TRPV1) has led to the identification of N-arachidonyl dopamine (NADA). This study investigates the role of protein kinase C (PKC)-mediated phosphorylation on NADA-induced membrane currents in Xenopus oocytes heterologously expressing TRPV1 and in dorsal root ganglion (DRG) neurons. In basal state, current induced by 10 microM NADA is 5-10% of the current induced by 1 microM capsaicin or protons at pH 5. However, PKC activator, phorbol 12,13-dibutyrate (PDBu) strongly potentiated ( approximately 15-fold) the NADA-induced current. Repeated application of NADA at short intervals potentiated its own response approximately fivefold in a PKC-dependent manner. PKC inhibitor, bisindolylmaleimide (BIM, 500 nM), a mutant TRPV1 (S800A/S502A), and maximal activation of PKC abolished the potentiation induced by repeated application of NADA. As a further confirmation that NADA could stimulate PKC, pretreatment with NADA potentiated the response of protons at pH 5 (approximately 20 fold), which was dramatically reduced in the mutant TRPV1. In DRG neurons, capsaicin (100 nM) induced a approximately 15 mV depolarization and initiated a train of action potentials compared with 1 microM NADA that produced a approximately 5 mV response. Pretreatment with PDBu induced significantly larger depolarization and potentiated NADA-induced current. Furthermore, exposure of NADA to the intracellular surface of the membrane-induced larger currents suggesting inaccessibility to the intracellular binding site might contribute to its weaker action. These results indicate that NADA is a potent agonist of VR when the receptor is in the PKC-mediated phosphorylation state.

  20. Estrous cycle variations in GABAA receptor phosphorylation enable rapid modulation by anabolic androgenic steroids in the medial preoptic area

    PubMed Central

    Oberlander, JG; Porter, DM; Onakomaiya, MM; Penatti, CAA; Vithlani, M; Moss, SJ; Clark, AS; Henderson, LP

    2012-01-01

    Anabolic androgenic steroids (AAS), synthetic testosterone derivatives that are used for ergogenic purposes, alter neurotransmission and behaviors mediated by GABAA receptors. Some of these effects may reflect direct and rapid action of these synthetic steroids at the receptor. The ability of other natural allosteric steroid modulators to alter GABAA receptor-mediated currents is dependent upon the phosphorylation state of the receptor complex. Here we show that phosphorylation of the GABAA receptor complex immunoprecipitated by β2/β3 subunit-specific antibodies from the medial preoptic area (mPOA) of the mouse varies across the estrous cycle; with levels being significantly lower in estrus. Acute exposure to the AAS, 17α-testosterone (17α-MeT), had no effect on the amplitude or kinetics of inhibitory postsynaptic currents in the mPOA of estrous mice when phosphorylation was low, but increased the amplitude of these currents from mice in diestrus, when it was high. Inclusion of the protein kinase C (PKC) inhibitor, calphostin, in the recording pipette eliminated the ability of 17α-MeT to enhance currents from diestrous animals, suggesting that PKC-receptor phosphorylation is critical for the allosteric modulation elicited by AAS during this phase. In addition, a single injection of 17α-MeT was found to impair an mPOA-mediated behavior (nest-building) in diestrus, but not in estrus. PKC is known to target specific serine residues in the β3 subunit of the GABAA receptor. Although phosphorylation of these β3 serine residues showed a similar profile across the cycle, as did phosphoserine in mPOA lysates immunoprecipitated with β2/β3 antibody (lower in estrus than in diestrus or proestrus), the differences were not significant. These data suggest that the phosphorylation state of the receptor complex regulates both the ability of AAS to modulate receptor function in the mPOA and the expression of a simple mPOA-dependent behavior through PKC-dependent mechanism

  1. Phosphorylation of vanilloid receptor 1 by Ca2+/calmodulin-dependent kinase II regulates its vanilloid binding.

    PubMed

    Jung, Jooyoung; Shin, Jae Soo; Lee, Soon-Youl; Hwang, Sun Wook; Koo, Jaeyeon; Cho, Hawon; Oh, Uhtaek

    2004-02-20

    Vanilloid receptor 1 (VR1), a capsaicin receptor, is known to play a major role in mediating inflammatory thermal nociception. Although the physiological role and biophysical properties of VR1 are known, the mechanism of its activation by ligands is poorly understood. Here we show that VR1 must be phosphorylated by Ca2+-calmodulin dependent kinase II (CaMKII) before its activation by capsaicin. In contrast, the dephosphorylation of VR1 by calcineurin leads to a desensitization of the receptor. Moreover, point mutations in VR1 at two putative consensus sites for CaMKII failed to elicit capsaicin-sensitive currents and caused a concomitant reduction in VR1 phosphorylation in vivo. Such mutants also lost their high affinity binding with [3H]resiniferatoxin, a potent capsaicin receptor agonist. We conclude that the dynamic balance between the phosphorylation and dephosphorylation of the VR1 channel by CaMKII and calcineurin, respectively, controls the activation/desensitization states by regulating VR1 binding. Furthermore, because sensitization by protein kinase A and C converge at these sites, phosphorylation stress in the cell appears to control a wide range of excitabilities in response to various adverse stimuli.

  2. PROLACTIN-INDUCED TYROSINE PHOSPHORYLATION, ACTIVATION AND RECEPTOR ASSOCIATION OF FOCAL ADHESION KINASE (FAK) IN MAMMARY EPITHELIAL CELLS

    EPA Science Inventory

    Prolactin-Induced Tyrosine Phosphorylation, Activation and Receptor
    Association of Focal Adhesion Kinase (FAK) in Mammary Epithelial Cells.
    Suzanne E. Fenton1 and Lewis G. Sheffield2. 1U.S. Environmental Protection
    Agency, MD-72, Research Triangle Park, NC 27711, and

  3. Free fatty acids and protein kinase C activation induce GPR120 (free fatty acid receptor 4) phosphorylation.

    PubMed

    Sánchez-Reyes, Omar B; Romero-Ávila, M Teresa; Castillo-Badillo, Jean A; Takei, Yoshinori; Hirasawa, Akira; Tsujimoto, Gozoh; Villalobos-Molina, Rafael; García-Sáinz, J Adolfo

    2014-01-15

    GPR120, free fatty acid receptor 4, is a recently deorphanized G protein-coupled receptor that seems to play cardinal roles in the regulation of metabolism and in the pathophysiology of inflammatory and metabolic disorders. In the present work a GPR120-Venus fusion protein was expressed in HEK293 Flp-In T-REx cells and its function (increase in intracellular calcium) and phosphorylation were studied. It was observed that the fusion protein migrated in sodium dodecyl sulfate-polyacrylamide gels as a band with a mass of ≈70-75kDa, although other bands of higher apparent weight (>130kDa) were also detected. Cell stimulation with docosahexaenoic acid or α-linolenic acid induced concentration-dependent increases in intracellular calcium and GPR120 phosphorylation. Activation of protein kinase C with phorbol esters also induced a marked receptor phosphorylation but did not alter the ability of 1µM docosahexaenoic acid to increase the intracellular calcium concentration. Phorbol ester-induced GPR120 phosphorylation, but not that induced with docosahexaenoic acid, was blocked by protein kinase C inhibitors (bis-indolyl-maleimide I and Gö 6976) suggesting that conventional kinase isoforms mediate this action. The absence of effect of protein kinase C inhibitors on agonist-induced GPR120 phosphorylation indicates that this kinase does not play a major role in agonist-induced receptor phosphorylation. Docosahexaenoic acid action was associated with marked GPR120 internalization whereas that induced with phorbol esters was smaller at early times. PMID:24239485

  4. Excessive insulin receptor serine phosphorylation in cultured fibroblasts and in skeletal muscle. A potential mechanism for insulin resistance in the polycystic ovary syndrome.

    PubMed Central

    Dunaif, A; Xia, J; Book, C B; Schenker, E; Tang, Z

    1995-01-01

    We investigated the cellular mechanisms of the unique disorder of insulin action found in the polycystic ovary syndrome (PCOS). Approximately 50% of PCOS women (PCOS-Ser) had a significant increase in insulin-independent beta-subunit [32P]phosphate incorporation (3.7-fold, P < 0.05 vs other groups) in skin fibroblast insulin receptors that was present in serine residues while insulin-induced tyrosine phosphorylation was decreased (both P < 0.05 vs other groups). PCOS skeletal muscle insulin receptors had the same abnormal phosphorylation pattern. The remaining PCOS women (PCOS-n1) had basal and insulin-stimulated receptor autophosphorylation similar to control. Phosphorylation of the artificial substrate poly GLU4:TYR1 by the PCOS-Ser insulin receptors was significantly decreased (P < 0.05) compared to control and PCOS-n1 receptors. The factor responsible for excessive serine phosphorylation appeared to be extrinsic to the receptor since no insulin receptor gene mutations were identified, immunoprecipitation before autophosphorylation corrected the phosphorylation defect and control insulin receptors mixed with lectin eluates from affected PCOS fibroblasts displayed increased serine phosphorylation. Our findings suggest that increased insulin receptor serine phosphorylation decreases its protein tyrosine kinase activity and is one mechanism for the post-binding defect in insulin action characteristic of PCOS. Images PMID:7635975

  5. A Computational Model for the AMPA Receptor Phosphorylation Master Switch Regulating Cerebellar Long-Term Depression.

    PubMed

    Gallimore, Andrew R; Aricescu, A Radu; Yuzaki, Michisuke; Calinescu, Radu

    2016-01-01

    The expression of long-term depression (LTD) in cerebellar Purkinje cells results from the internalisation of α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors (AMPARs) from the postsynaptic membrane. This process is regulated by a complex signalling pathway involving sustained protein kinase C (PKC) activation, inhibition of serine/threonine phosphatase, and an active protein tyrosine phosphatase, PTPMEG. In addition, two AMPAR-interacting proteins-glutamate receptor-interacting protein (GRIP) and protein interacting with C kinase 1 (PICK1)-regulate the availability of AMPARs for trafficking between the postsynaptic membrane and the endosome. Here we present a new computational model of these overlapping signalling pathways. The model reveals how PTPMEG cooperates with PKC to drive LTD expression by facilitating the effect of PKC on the dissociation of AMPARs from GRIP and thus their availability for trafficking. Model simulations show that LTD expression is increased by serine/threonine phosphatase inhibition, and negatively regulated by Src-family tyrosine kinase activity, which restricts the dissociation of AMPARs from GRIP under basal conditions. We use the model to expose the dynamic balance between AMPAR internalisation and reinsertion, and the phosphorylation switch responsible for the perturbation of this balance and for the rapid plasticity initiation and regulation. Our model advances the understanding of PF-PC LTD regulation and induction, and provides a validated extensible platform for more detailed studies of this fundamental synaptic process. PMID:26807999

  6. In situ detection of phosphorylated platelet-derived growth factor receptor beta using a generalized proximity ligation method.

    PubMed

    Jarvius, Malin; Paulsson, Janna; Weibrecht, Irene; Leuchowius, Karl-Johan; Andersson, Ann-Catrin; Wählby, Carolina; Gullberg, Mats; Botling, Johan; Sjöblom, Tobias; Markova, Boyka; Ostman, Arne; Landegren, Ulf; Söderberg, Ola

    2007-09-01

    Improved methods are needed for in situ characterization of post-translational modifications in cell lines and tissues. For example, it is desirable to monitor the phosphorylation status of individual receptor tyrosine kinases in samples from human tumors treated with inhibitors to evaluate therapeutic responses. Unfortunately the leading methods for observing the dynamics of tissue post-translational modifications in situ, immunohistochemistry and immunofluorescence, exhibit limited sensitivity and selectivity. Proximity ligation assay is a novel method that offers improved selectivity through the requirement of dual recognition and increased sensitivity by including DNA amplification as a component of detection of the target molecule. Here we therefore established a generalized in situ proximity ligation assay to investigate phosphorylation of platelet-derived growth factor receptor beta (PDGFRbeta) in cells stimulated with platelet-derived growth factor BB. Antibodies specific for immunoglobulins from different species, modified by attachment of DNA strands, were used as secondary proximity probes together with a pair of primary antibodies from the corresponding species. Dual recognition of receptors and phosphorylated sites by the primary antibodies in combination with the secondary proximity probes was used to generate circular DNA strands; this was followed by signal amplification by replicating the DNA circles via rolling circle amplification. We detected tyrosine phosphorylated PDGFRbeta in human embryonic kidney cells stably overexpressing human influenza hemagglutinin-tagged human PDGFRbeta in porcine aortic endothelial cells transfected with the beta-receptor, but not in cells transfected with the alpha-receptor, and also in immortalized human foreskin fibroblasts, BJ hTert, endogenously expressing the PDGFRbeta. We furthermore visualized tyrosine phosphorylated PDGFRbeta in tissue sections from fresh frozen human scar tissue undergoing wound healing

  7. Interleukin-1 alpha, interleukin-1 beta and interleukin-8 gene expression in human aural cholesteatomas.

    PubMed

    Kim, C S; Lee, C H; Chung, J W; Kim, C D

    1996-03-01

    Bone destruction is a common characteristic feature of chronic otitis media, especially aural cholesteatoma. A number of immunohistochemical studies have suggested that interleukin-1 (IL-1) may be responsible for cholesteatomatous bone destruction. We designed this study to present the mRNA expression patterns of IL-1 alpha, IL-1 beta, and IL-8, which can induce and activate the leukocyte, the major reservoir of potent proteolytic enzymes. Total RNAs were extracted from aural cholesteatomas, external auditory canal skin (EACS), postauricular skin (PAS), and granulation tissues and transcribed into cDNAs. cDNAs were amplified by using PCR technique with primers for IL-1 alpha, IL-1 beta, IL-8, and beta-actin. Amplified products were hybridized with each internal probe and the relative density was measured. In granulation tissues, the relative density of IL-1 alpha was greater than that of other tissues. The ratio of IL-1 beta and IL-8 of aural cholesteatoma was significantly higher than that of EACS and PAS. We suggest that both of IL-1 alpha and IL-1 beta may play a role in the pathological changes, and that IL-8, which is mainly produced from cholesteatomatous epithelium, may have an important role in the pathological changes of cholesteatomas.

  8. Pleiotrophin stimulates tyrosine phosphorylation of beta-adducin through inactivation of the transmembrane receptor protein tyrosine phosphatase beta/zeta.

    PubMed

    Pariser, Harold; Perez-Pinera, Pablo; Ezquerra, Laura; Herradon, Gonzalo; Deuel, Thomas F

    2005-09-16

    Pleiotrophin (PTN the protein, Ptn the gene) signals through a unique mechanism; it inactivates the tyrosine phosphatase activity of its receptor, the transmembrane receptor protein tyrosine phosphatase (RPTP)beta/zeta, and increases tyrosine phosphorylation of the substrates of RPTPbeta/zeta through the continued activity of a yet to be described protein tyrosine kinase(s) in PTN-stimulated cells. We have now found that the cytoskeletal protein beta-adducin interacts with the intracellular domain of RPTPbeta/zeta in a yeast two-hybrid system, that beta-adducin is a substrate of RPTPbeta/zeta, that beta-adducin is phosphorylated in tyrosine in cells not stimulated by PTN, and that tyrosine phosphorylation of beta-adducin is sharply increased in PTN-stimulated cells, suggesting that beta-adducin is a downstream target of and regulated by the PTN/RPTPbeta/zeta signaling pathway. beta-Catenin was the first downstream target of the PTN/RPTPbeta/zeta signaling pathway to be identified; these data thus also suggest that PTN coordinately regulates steady state levels of tyrosine phosphorylation of the important cytoskeletal proteins beta-adducin and beta-catenin and, through PTN-stimulated tyrosine phosphorylation, beta-adducin may contribute to the disruption of cytoskeletal structure, increased plasticity, and loss of homophilic cell-cell adhesion that are the consequences of PTN stimulation of cells and a characteristic feature of different malignant cells with mutations that activate constitutive expression of the endogenous Ptn gene.

  9. In vivo phosphorylation of progesterone receptors in the T47D sub co human breast cancer cell line

    SciTech Connect

    Sheridan, P.L.

    1989-01-01

    We have had evidence indicating that human progesterone receptors (PR) are phosphoproteins, and used metabolic labeling with ({sup 35}S)methionine and ({sup 32}P)orthophosphate to study the synthesis, structure, and phosphorylation of PR in T47D{sub co} human breast cancer cells, a cell line extremely rich for PR. Human PR exist as two independent hormone-binding proteins; B-receptors which are triplets in SDS-gels (M{sub r} 114, 117, and 120 kDa), and A-receptors that are a single band (94 kDa). The work presented here documents that human A- and B-receptors are phosphorylated on serine residues in the untransformed state, with phosphate being incorporated into all three bands of the B-proteins. However, a brief ({sup 35}S)methionine pulse shows that both A and B are synthesized as singlets of 94 and 114 kDa, respectively. The B-triplet is formed post-translationally by slow phosphorylation. B-triplet formation, or maturation, can be reversed by treatment with calf alkaline phosphatase or stabilized by the presence of phosphatase inhibitors. Additional ({sup 35}S)labeling studies in the presence of progestins demonstrate that receptors that are 15 min old are able to bind hormone and transform to the tight nuclear binding state.

  10. Src inhibits midline axon crossing independent of Frazzled/Deleted in Colorectal Carcinoma (DCC) receptor tyrosine phosphorylation.

    PubMed

    O'Donnell, Michael P; Bashaw, Greg J

    2013-01-01

    The phylogenetically conserved Netrin family of chemoattractants signal outgrowth and attractive turning of commissural axons through the Deleted in Colorectal Carcinoma (DCC) family of receptors. Src family kinases are thought to be major signaling effectors of Netrin/DCC. In vertebrates, Src and the closely related Fyn kinases phosphorylate DCC and form a receptor-bound signaling complex leading to activation of downstream effectors. Here we show that, in the Drosophila embryonic CNS, Src kinases are dispensable for midline attraction of commissural axons. Consistent with this observation, tyrosine phosphorylation of the Netrin receptor DCC or its Drosophila ortholog, Frazzled, is not necessary for attraction to Netrin. Moreover, we uncover an unexpected function of Src kinases: inhibition of midline axon crossing through a novel mechanism. We propose that distinct signaling outputs must exist for midline axon crossing independent of Src kinases in commissural neurons.

  11. Phospholipase C-{delta}{sub 1} regulates interleukin-1{beta} and tumor necrosis factor-{alpha} mRNA expression

    SciTech Connect

    Chung, Eric; Jakinovich, Paul; Bae, Aekyung; Rebecchi, Mario

    2012-10-01

    Phospholipase C-{delta}{sub 1} (PLC{delta}{sub 1}) is a widely expressed highly active PLC isoform, modulated by Ca{sup 2+} that appears to operate downstream from receptor signaling and has been linked to regulation of cytokine production. Here we investigated whether PLC{delta}{sub 1} modulated expression of the pro-inflammatory cytokines interleukin-1{beta} (IL-1{beta}), tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) in rat C6 glioma cells. Expression of PLC{delta}{sub 1} was specifically suppressed by small interfering RNA (siRNA) and the effects on cytokine mRNA expression, stimulated by the Toll-like receptor (TLR) agonist, lipopolysaccharide (LPS), were examined. Real-time polymerase chain reaction (RT-PCR) results showed that PLC{delta}{sub 1} knockdown enhanced expression IL-1{beta} and tumor necrosis factor-{alpha} (TNF-{alpha}) mRNA by at least 100 fold after 4 h of LPS stimulation compared to control siRNA treatment. PLC{delta}{sub 1} knock down caused persistently high Nf{kappa}b levels at 4 h of LPS stimulation compared to control siRNA-treated cells. PLC{delta}{sub 1} knockdown was also associated with elevated nuclear levels of c-Jun after 30 min of LPS stimulation, but did not affect LPS-stimulated p38 or p42/44 MAPK phosphorylation, normally associated with TLR activation of cytokine gene expression; rather, enhanced protein kinase C (PKC) phosphorylation of cellular proteins was observed in the absence of LPS stimulation. An inhibitor of PKC, bisindolylmaleimide II (BIM), reversed phosphorylation, prevented elevation of nuclear c-Jun levels, and inhibited LPS-induced increases of IL-1{beta} and TNF-{alpha} mRNA's induced by PLC{delta}{sub 1} knockdown. Our results show that loss of PLC{delta}{sub 1} enhances PKC/c-Jun signaling and up-modulates pro-inflammatory cytokine gene transcription in concert with the TLR-stimulated p38MAPK/Nf{kappa}b pathway. Our findings are consistent with the idea that PLC{delta}{sub 1} is a

  12. Calcium release by ryanodine receptors mediates hydrogen peroxide-induced activation of ERK and CREB phosphorylation in N2a cells and hippocampal neurons.

    PubMed

    Kemmerling, Ulrike; Muñoz, Pablo; Müller, Marioly; Sánchez, Gina; Aylwin, María L; Klann, Eric; Carrasco, M Angélica; Hidalgo, Cecilia

    2007-05-01

    Hydrogen peroxide, which stimulates ERK phosphorylation and synaptic plasticity in hippocampal neurons, has also been shown to stimulate calcium release in muscle cells by promoting ryanodine receptor redox modification (S-glutathionylation). We report here that exposure of N2a cells or rat hippocampal neurons in culture to 200 microM H2O2 elicited calcium signals, increased ryanodine receptor S-glutathionylation, and enhanced both ERK and CREB phosphorylation. In mouse hippocampal slices, H2O2 (1 microM) also stimulated ERK and CREB phosphorylation. Preincubation with ryanodine (50 microM) largely prevented the effects of H2O2 on calcium signals and ERK/CREB phosphorylation. In N2a cells, the ERK kinase inhibitor U0126 suppressed ERK phosphorylation and abolished the stimulation of CREB phosphorylation produced by H2O2, suggesting that H2O2 enhanced CREB phosphorylation via ERK activation. In N2a cells in calcium-free media, 200 microM H2O2 stimulated ERK and CREB phosphorylation, while preincubation with thapsigargin prevented these enhancements. These combined results strongly suggest that H2O2 promotes ryanodine receptors redox modification; the resulting calcium release signals, by enhancing ERK activity, would increase CREB phosphorylation. We propose that ryanodine receptor stimulation by activity-generated redox species produces calcium release signals that may contribute significantly to hippocampal synaptic plasticity, including plasticity that requires long-lasting ERK-dependent CREB phosphorylation. PMID:17074386

  13. Agonist-promoted desensitization and phosphorylation of. cap alpha. /sub 1/-adrenergic receptors coupled to stimulation of phosphatidylinositol metabolism

    SciTech Connect

    Leeb-Lundberg, L.M.F.; Cotecchia, S.; Caron, M.G.; Lefkowitz, R.J.

    1986-03-05

    In the DDT/sub 1/ MF-2 hamster vas deferens smooth muscle cell line the ..cap alpha../sub 1/-adrenergic receptor (..cap alpha../sub 1/-AR) agonist norepinephrine (NE) promotes rapid attenuation of ..cap alpha../sub 1/-AR-mediated phosphatidylinositol (PI) metabolism which is paralleled by rapid phosphorylation of the ..cap alpha../sub 1/-AR. Cells were labeled by incubation with /sup 32/P/sub i/. Coincubation with NE (100 ..mu..M) significantly increases the rate of /sup 32/P-labeling of both PI and phosphatidic acid. Pretreatment of cells with 100 ..mu..M NE (in the presence of 1 ..mu..M propranolol to prevent ..beta..-AR interactions) results in a drastic attenuation of the NE response on PI metabolism. ..cap alpha../sub 1/-AR from labeled cells can be solubilized and purified by affinity chromatography on Affigel-A55414 and wheat germ agglutinin agarose chromatography. SDS-PAGE of purified ..cap alpha../sub 1/-AR shows a NE-promoted increase in phosphorylation of the M/sub r/ 80K ligand binding peptide. Stoichiometry of phosphorylation increases from approx. 1 mol phosphate/mol ..cap alpha../sub 1/-AR in the basal condition to approx. 2.5 after NE treatment. Both desensitization and phosphorylation are rapid being maximal within 10-20 min of agonist exposure. These results together with previous findings that phorbol esters promote rapid ..cap alpha../sub 1/-AR uncoupling and phosphorylation suggest that receptor phosphorylation is an important mechanism of regulation of ..cap alpha../sub 1/-AR receptor responsiveness.

  14. Constitutive Phosphorylation of Interferon Receptor A-Associated Signaling Proteins in Systemic Lupus Erythematosus

    PubMed Central

    Ramírez-Vélez, Gabriela; Medina, Francisco; Ramírez-Montaño, Luis; Zarazúa-Lozada, Abraham; Hernández, Ramiro; Llorente, Luis; Moreno, José

    2012-01-01

    Background Overexpression of type I interferon (IFN-I)-induced genes is a common feature of systemic lupus erythematosus (SLE) and its experimental models, but the participation of endogenous overproduction of IFN-I on it is not clear. To explore the possibility that abnormally increased IFN-I receptor (IFNAR) signaling could participate in IFN-I-induced gene overexpression of SLE, we examined the phosphorylation status of the IFNAR-associated signaling partners Jak1 and STAT2, and its relation with expression of its physiologic inhibitor SOCS1 and with plasma levels of IFNα and IFN-like activity. Methodology/Principal Findings Peripheral blood mononuclear cells (PBMC) from SLE patients with or without disease activity and healthy controls cultured in the presence or in the absence of IFNβ were examined by immunoprecipitation and/or western blotting for expression of the two IFNAR chains, Jak1, Tyk2, and STAT2 and their phosphorylated forms. In SLE but not in healthy control PBMC, Jak1 and STAT2 were constitutively phosphorylated, even in the absence of disease activity (basal pJak1: controls vs. active SLE p<0.0001 and controls vs. inactive SLE p = 0.0006; basal pSTAT2: controls vs. active and inactive SLE p<0.0001). Although SOCS1 protein was slightly but significantly decreased in SLE in the absence or in the presence of IFNβ (p = 0.0096 to p<0.0001), in SOCS1 mRNA levels were markedly decreased (p = 0.036 to p<0.0001). IFNβ induced higher levels of the IFN-I-dependent MxA protein mRNA in SLE than in healthy controls, whereas the opposite was observed for SOCS1. Although there was no relation to increased serum IFNα, active SLE plasma could induce expression of IFN-dependent genes by normal PBMC. Conclusions/Significance These findings suggest that in some SLE patients IFN-I dependent gene expression could be the result of a low IFNAR signaling threshold. PMID:22859983

  15. Systematic Mapping of Posttranslational Modifications in Human Estrogen Receptor-α with Emphasis on Novel Phosphorylation Sites*S⃞

    PubMed Central

    Atsriku, Christian; Britton, David J.; Held, Jason M.; Schilling, Birgit; Scott, Gary K.; Gibson, Bradford W.; Benz, Christopher C.; Baldwin, Michael A.

    2009-01-01

    A systematic study of posttranslational modifications of the estrogen receptor isolated from the MCF-7 human breast cancer cell line is reported. Proteolysis with multiple enzymes, mass spectrometry, and tandem mass spectrometry achieved very high sequence coverage for the full-length 66-kDa endogenous protein from estradiol-treated cell cultures. Nine phosphorylated serine residues were identified, three of which were previously unreported and none of which were previously observed by mass spectrometry by any other laboratory. Two additional modified serine residues were identified in recombinant protein, one previously reported but not observed here in endogenous protein and the other previously unknown. Although major emphasis was placed on identifying new phosphorylation sites, N-terminal loss of methionine accompanied by amino acetylation and a lysine side chain acetylation (or possibly trimethylation) were also detected. The use of both HPLC-ESI and MALDI interfaced to different mass analyzers gave higher sequence coverage and identified more sites than could be achieved by either method alone. The estrogen receptor is critical in the development and progression of breast cancer. One previously unreported phosphorylation site identified here was shown to be strongly dependent on estradiol, confirming its potential significance to breast cancer. Greater knowledge of this array of posttranslational modifications of estrogen receptor, particularly phosphorylation, will increase our understanding of the processes that lead to estradiol-induced activation of this protein and may aid the development of therapeutic strategies for management of hormone-dependent breast cancer. PMID:18984578

  16. Do interleukin-1 polymorphisms predict the development of periodontitis or the success of dental implants?

    PubMed

    Rogers, Marina A; Figliomeni, Lisa; Baluchova, Katarina; Tan, Albert E S; Davies, Gareth; Henry, Patrick J; Price, Patricia

    2002-02-01

    Factors which increase the risk of severe adult periodontitis (AP) may also contribute to the success of dental implants. To determine which cytokines may be relevant, levels of interleukin-1alpha (IL-1alpha), interleukin-1beta (IL-1beta), interleukin-1 receptor antagonist (IL-1ra), interleukin-6 (IL-6) and interferon-gamma (IFN-gamma) mRNA were quantitated in gingival tissue from periodontitis patients and healthy controls. Periodontitis significantly increased levels of IL-1alpha, IL-1beta, IL-6 and IFN-gamma mRNA relative to healthy tissues. IL-1 was selected for further study, as it has inflammatory and bone resorbing properties. We examined IL-1A(-889) and IL-1B(+3953) alleles in Caucasian patients with AP and early-onset periodontitis (EOP), patients with dental implants and healthy individuals. The IL-1B(+3953) polymorphism was associated with AP. This was evident from an increased homozygosity for allele 2 in patients with AP and a decreased heterozygosity in advanced AP patients. IL-1A(-889) and a composite genotype [IL-1A(-889)2 plus IL-1B(+3953)2] showed no association with the incidence of periodontitis, disease onset or disease severity. IL-1A(-889), IL-1B(+3953) and the composite genotype also showed no association with failure of dental implants. PMID:11858158

  17. Do interleukin-1 polymorphisms predict the development of periodontitis or the success of dental implants?

    PubMed

    Rogers, Marina A; Figliomeni, Lisa; Baluchova, Katarina; Tan, Albert E S; Davies, Gareth; Henry, Patrick J; Price, Patricia

    2002-02-01

    Factors which increase the risk of severe adult periodontitis (AP) may also contribute to the success of dental implants. To determine which cytokines may be relevant, levels of interleukin-1alpha (IL-1alpha), interleukin-1beta (IL-1beta), interleukin-1 receptor antagonist (IL-1ra), interleukin-6 (IL-6) and interferon-gamma (IFN-gamma) mRNA were quantitated in gingival tissue from periodontitis patients and healthy controls. Periodontitis significantly increased levels of IL-1alpha, IL-1beta, IL-6 and IFN-gamma mRNA relative to healthy tissues. IL-1 was selected for further study, as it has inflammatory and bone resorbing properties. We examined IL-1A(-889) and IL-1B(+3953) alleles in Caucasian patients with AP and early-onset periodontitis (EOP), patients with dental implants and healthy individuals. The IL-1B(+3953) polymorphism was associated with AP. This was evident from an increased homozygosity for allele 2 in patients with AP and a decreased heterozygosity in advanced AP patients. IL-1A(-889) and a composite genotype [IL-1A(-889)2 plus IL-1B(+3953)2] showed no association with the incidence of periodontitis, disease onset or disease severity. IL-1A(-889), IL-1B(+3953) and the composite genotype also showed no association with failure of dental implants.

  18. Interleukin-1 Family Cytokines in Liver Diseases

    PubMed Central

    Tsutsui, Hiroko; Cai, Xianbin; Hayashi, Shuhei

    2015-01-01

    The gene encoding IL-1 was sequenced more than 30 years ago, and many related cytokines, such as IL-18, IL-33, IL-36, IL-37, IL-38, IL-1 receptor antagonist (IL-1Ra), and IL-36Ra, have since been identified. IL-1 is a potent proinflammatory cytokine and is involved in various inflammatory diseases. Other IL-1 family ligands are critical for the development of diverse diseases, including inflammatory and allergic diseases. Only IL-1Ra possesses the leader peptide required for secretion from cells, and many ligands require posttranslational processing for activation. Some require inflammasome-mediated processing for activation and release, whereas others serve as alarmins and are released following cell membrane rupture, for example, by pyroptosis or necroptosis. Thus, each ligand has the proper molecular process to exert its own biological functions. In this review, we will give a brief introduction to the IL-1 family cytokines and discuss their pivotal roles in the development of various liver diseases in association with immune responses. For example, an excess of IL-33 causes liver fibrosis in mice via activation and expansion of group 2 innate lymphoid cells to produce type 2 cytokines, resulting in cell conversion into pro-fibrotic M2 macrophages. Finally, we will discuss the importance of IL-1 family cytokine-mediated molecular and cellular networks in the development of acute and chronic liver diseases. PMID:26549942

  19. GTP synthases. Proton pumping and phosphorylation in ligand-receptor-G alpha-protein complexes.

    PubMed

    Nederkoorn, P H; Timmerman, H; Donné-Op Den Kelder, G M; Timms, D; Wilkinson, A J; Kelly, D R; Broadley, K J; Davies, R H

    1996-01-01

    A structural model for a ligand-receptor-Gs alpha-protein complex to function as a GTP synthase is presented. The mechanism which is dependent on the movement and rotation of the G alpha-protein alpha 2-helix is seen to involve the delivery of, at least, one proton to the phosphorylation site in the rotation of this helix. The cycle is driven by a ligand-mediated proton pump through the alpha-helices of the receptor, attachment of the conserved Tyr-Arg-Tyr receptor proton shuttle being made to an aspartate group on the Gs alpha-protein terminal sidechain, which is itself linked to the Asn-Gln interaction known to control movement and rotation of the alpha 2-helix between .GDP and .GTP structures. The energetics of proton transfer through the shuttle mechanism and delivery of a proton to the aspartate group are shown to be sufficient to rupture this controlling interaction and its associated backbone bond. The complex leads to full spatial and energetic definition of the receptor proton shuttle mechanism, while there is a striking association of further Tyrosine and Arginine residues in the vicinity of the Gs alpha-protein Asn-Gln interaction. Calculations at the HF 6-31G** level confirm that a critical balance between ion pair and neutral forms of Tyr-Arg interactions under multiply hydrogen bonded conditions in a hydrophobic environment controls proton transfer and recovery mechanisms. The intrinsic preference of the neutral Tyr-Arg form over the ion-pair is 14.0 kcal/mol. Activation of the Tyrosine oxygen atom in the neutral form by single-NH or -OH groups reduces this difference by some 6.4-8.6 kcal/mol but the dominance of the neutral form is maintained. The expected slight overestimates are consistent with the maximum activation enthalpy of 11.0-12.0 kcal/ mol required to initiate proton transfer through the shuttle. The extended form of the shuttle with the Arginine acting competitively between the two Tyrosine residues allows interpretation of observed

  20. Casein kinase 2-dependent serine phosphorylation of MuSK regulates acetylcholine receptor aggregation at the neuromuscular junction

    PubMed Central

    Cheusova, Tatiana; Khan, Muhammad Amir; Schubert, Steffen Wolfgang; Gavin, Anne-Claude; Buchou, Thierry; Jacob, Germaine; Sticht, Heinrich; Allende, Jorge; Boldyreff, Brigitte; Brenner, Hans Rudolf; Hashemolhosseini, Said

    2006-01-01

    The release of Agrin by motoneurons activates the muscle-specific receptor tyrosine kinase (MuSK) as the main organizer of subsynaptic specializations at the neuromuscular junction. MuSK downstream signaling is largely undefined. Here we show that protein kinase CK2 interacts and colocalizes with MuSK at post-synaptic specializations. We observed CK2-mediated phosphorylation of serine residues within the kinase insert (KI) of MuSK. Inhibition or knockdown of CK2, or exchange of phosphorylatable serines by alanines within the KI of MuSK, impaired acetylcholine receptor (AChR) clustering, whereas their substitution by residues that imitate constitutive phosphorylation led to aggregation of AChRs even in the presence of CK2 inhibitors. Impairment of AChR cluster formation after replacement of MuSK KI with KIs of other receptor tyrosine kinases correlates with potential CK2-dependent serine phosphorylation within KIs. MuSK activity was unchanged but AChR stability decreased in the presence of CK2 inhibitors. Muscle-specific CK2β knockout mice develop a myasthenic phenotype due to impaired muscle endplate structure and function. This is the first description of a regulatory cross-talk between MuSK and CK2 and of a role for the KI of the receptor tyrosine kinase MuSK for the development of subsynaptic specializations. PMID:16818610

  1. Epidermal growth factor–stimulated Akt phosphorylation requires clathrin or ErbB2 but not receptor endocytosis

    PubMed Central

    Garay, Camilo; Judge, Gurjeet; Lucarelli, Stefanie; Bautista, Stephen; Pandey, Rohan; Singh, Tanveer; Antonescu, Costin N.

    2015-01-01

    Epidermal growth factor (EGF) binding to its receptor (EGFR) activates several signaling intermediates, including Akt, leading to control of cell survival and metabolism. Concomitantly, ligand-bound EGFR is incorporated into clathrin-coated pits—membrane structures containing clathrin and other proteins—eventually leading to receptor internalization. Whether clathrin might regulate EGFR signaling at the plasma membrane before vesicle scission is poorly understood. We compared the effect of clathrin perturbation (preventing formation of, or receptor recruitment to, clathrin structures) to that of dynamin2 (allowing formation of clathrin structures but preventing EGFR internalization) under conditions in which EGFR endocytosis is clathrin dependent. Clathrin perturbation by siRNA gene silencing, with the clathrin inhibitor pitstop2, or knocksideways silencing inhibited EGF-simulated Gab1 and Akt phosphorylation in ARPE-19 cells. In contrast, perturbation of dynamin2 with inhibitors or by siRNA gene silencing did not affect EGF-stimulated Gab1 or Akt phosphorylation. EGF stimulation enriched Gab1 and phospho-Gab1 within clathrin structures. ARPE-19 cells have low ErbB2 expression, and overexpression and knockdown experiments revealed that robust ErbB2 expression bypassed the requirement for clathrin for EGF-stimulated Akt phosphorylation. Thus clathrin scaffolds may represent unique plasma membrane signaling microdomains required for signaling by certain receptors, a function that can be separated from vesicle formation. PMID:26246598

  2. Bisphenol-A rapidly enhanced passive avoidance memory and phosphorylation of NMDA receptor subunits in hippocampus of young rats

    SciTech Connect

    Xu Xiaohong Li Tao; Luo Qingqing; Hong Xing; Xie Lingdan; Tian Dong

    2011-09-01

    Bisphenol-A (BPA), an endocrine disruptor, is found to influence development of brain and behaviors in rodents. The previous study indicated that perinatal exposure to BPA impaired learning-memory and inhibited N-methyl-D-aspartate receptor (NMDAR) subunits expressions in hippocampus during the postnatal development in rats; and in cultured hippocampal neurons, BPA rapidly promotes dynamic changes in dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDAR subunit NR2B. In the present study, we examined the rapid effect of BPA on passive avoidance memory and NMDAR in the developing hippocampus of Sprague-Dawley rats at the age of postnatal day 18. The results showed that BPA or estradiol benzoate (EB) rapidly extended the latency to step down from the platform 1 h after footshock and increased the phosphorylation levels of NR1, NR2B, and mitogen-activated extracellular signal-regulated kinase (ERK) in hippocampus within 1 h. While 24 h after BPA or EB treatment, the improved memory and the increased phosphorylation levels of NR1, NR2B, ERK disappeared. Furthermore, pre-treatment with an estrogen receptors (ERs) antagonist, ICI182,780, or an ERK-activating kinase inhibitor, U0126, significantly attenuated EB- or BPA-induced phosphorylations of NR1, NR2B, and ERK within 1 h. These data suggest that BPA rapidly enhanced short-term passive avoidance memory in the developing rats. A non-genomic effect via ERs may mediate the modulation of the phosphorylation of NMDAR subunits NR1 and NR2B through ERK signaling pathway. - Highlights: > BPA rapidly extended the latency to step down from platform 1 h after footshock. > BPA rapidly increased pNR1, pNR2B, and pERK in hippocampus within 1 h. > ERs antagonist or MEK inhibitor attenuated BPA-induced pNR1, pNR2B, and pERK.

  3. T Cell Receptor (TCR)-induced Tyrosine Phosphorylation Dynamics Identifies THEMIS as a New TCR Signalosome Component*

    PubMed Central

    Brockmeyer, Claudia; Paster, Wolfgang; Pepper, David; Tan, Choon P.; Trudgian, David C.; McGowan, Simon; Fu, Guo; Gascoigne, Nicholas R. J.; Acuto, Oreste; Salek, Mogjiborahman

    2011-01-01

    Stimulation of the T cell antigen receptor (TCR) induces formation of a phosphorylation-dependent signaling network via multiprotein complexes, whose compositions and dynamics are incompletely understood. Using stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomics, we investigated the kinetics of signal propagation after TCR-induced protein tyrosine phosphorylation. We confidently assigned 77 proteins (of 758 identified) as a direct or indirect consequence of tyrosine phosphorylation that proceeds in successive “signaling waves” revealing the temporal pace at which tyrosine kinases activate cellular functions. The first wave includes thymocyte-expressed molecule involved in selection (THEMIS), a protein recently implicated in thymocyte development but whose signaling role is unclear. We found that tyrosine phosphorylation of THEMIS depends on the presence of the scaffold proteins Linker for activation of T cells (LAT) and SH2 domain-containing lymphocyte protein of 76 kDa (SLP-76). THEMIS associates with LAT, presumably via the adapter growth factor receptor-bound protein 2 (Grb2) and with phospholipase Cγ1 (PLC-γ1). RNAi-mediated THEMIS knock-down inhibited TCR-induced IL-2 gene expression due to reduced ERK and nuclear factor of activated T cells (NFAT)/activator protein 1 (AP-1) signaling, whereas JNK, p38, or nuclear factor κB (NF-κB) activation were unaffected. Our study reveals the dynamics of TCR-dependent signaling networks and suggests a specific role for THEMIS in early TCR signalosome function. PMID:21189249

  4. Role of endotoxin and interleukin-1 in modulating ACTH, LH and sex steroid secretion.

    PubMed

    Rivier, C

    1990-01-01

    We have shown that the endotoxin LPS acted both at the level of the brain and the gonads to stimulate the hypothalamic-pituitary-adrenal, and inhibit the hypothalamic-pituitary-gonadal, axis. Exogenously administered IL-1 mimics most of the effects of LPS on pituitary activity. In addition, antibodies against IL-1 receptors can interfere with LPS-induced ACTH secretion. These results suggest that at least part of the ability of LPS to alter endocrine functions appears to depend upon endogenous interleukin-1.

  5. Protein kinase A increases type-2 inositol 1,4,5-trisphosphate receptor activity by phosphorylation of serine 937.

    PubMed

    Betzenhauser, Matthew J; Fike, Jenna L; Wagner, Larry E; Yule, David I

    2009-09-11

    Protein kinase A (PKA) phosphorylation of inositol 1,4,5-trisphosphate receptors (InsP(3)Rs) represents a mechanism for shaping intracellular Ca(2+) signals following a concomitant elevation in cAMP. Activation of PKA results in enhanced Ca(2+) release in cells that express predominantly InsP(3)R2. PKA is known to phosphorylate InsP(3)R2, but the molecular determinants of this effect are not known. We have expressed mouse InsP(3)R2 in DT40-3KO cells that are devoid of endogenous InsP(3)R and examined the effects of PKA phosphorylation on this isoform in unambiguous isolation. Activation of PKA increased Ca(2+) signals and augmented the single channel open probability of InsP(3)R2. A PKA phosphorylation site unique to the InsP(3)R2 was identified at Ser(937). The enhancing effects of PKA activation on this isoform required the phosphorylation of Ser(937), since replacing this residue with alanine eliminated the positive effects of PKA activation. These results provide a mechanism responsible for the enhanced Ca(2+) signaling following PKA activation in cells that express predominantly InsP(3)R2.

  6. 20-kDa protein associated with the murine T-cell antigen receptor is phosphorylated in response to activation by antigen or concanavalin A

    SciTech Connect

    Samelson, L.E.; Harford, J.; Schwartz, R.H.; Klausner, R.D.

    1985-04-01

    Antigen or concanavalin A activation of a murine T-cell hybrid specific for pigeon cytochrome resulted in phosphorylation of a 20-kDa protein that was specifically coprecipitated by a monoclonal antibody binding the T-cell antigen receptor. There was no evidence for phosphorylation of the antigen receptor itself. The phosphorylation of the 20-kDa polypeptide was dependent on the concentration of antigen or lectin used to activate the T-cell hybrid and reached a maximum 40 min after the addition of antigen. The 20-kDa protein was also radioiodinated with a hydrophobic photoactivatable labeling reagent. The amount of iodinated 20-kDa protein immunoprecipitable with the anti-receptor antibody did not increase with T-cell activation, indicating that the phosphorylation occurred on a molecule that was constitutively associated with the antigen receptor. Concanavalin A also induced phosphorylation of a 20-kDa polypeptide in a second antigen-specific major histocompatibility complex-restricted T-cell hybrid. Again, the phosphorylated polypeptide was precipitated only by a monoclonal antibody specific for the antigen receptor on this hybrid. Thus, the antigen or concanavalin A-induced activation of T-cell hybrids results in the rapid phosphorylation of a 20-kDa protein that is associated with the T-cell receptor.

  7. Phosphorylation of the Drosophila Transient Receptor Potential Ion Channel Is Regulated by the Phototransduction Cascade and Involves Several Protein Kinases and Phosphatases

    PubMed Central

    Voolstra, Olaf; Bartels, Jonas-Peter; Oberegelsbacher, Claudia; Pfannstiel, Jens; Huber, Armin

    2013-01-01

    Protein phosphorylation plays a cardinal role in regulating cellular processes in eukaryotes. Phosphorylation of proteins is controlled by protein kinases and phosphatases. We previously reported the light-dependent phosphorylation of the Drosophila transient receptor potential (TRP) ion channel at multiple sites. TRP generates the receptor potential upon stimulation of the photoreceptor cell by light. An eye-enriched protein kinase C (eye-PKC) has been implicated in the phosphorylation of TRP by in vitro studies. Other kinases and phosphatases of TRP are elusive. Using phosphospecific antibodies and mass spectrometry, we here show that phosphorylation of most TRP sites depends on the phototransduction cascade and the activity of the TRP ion channel. A candidate screen to identify kinases and phosphatases provided in vivo evidence for an involvement of eye-PKC as well as other kinases and phosphatases in TRP phosphorylation. PMID:24040070

  8. Interleukin 1 and Tumor Necrosis Factor Inhibit Cardiac Myocyte β -adrenergic Responsiveness

    NASA Astrophysics Data System (ADS)

    Gulick, Tod; Chung, Mina K.; Pieper, Stephen J.; Lange, Louis G.; Schreiner, George F.

    1989-09-01

    Reversible congestive heart failure can accompany cardiac allograft rejection and inflammatory myocarditis, conditions associated with an immune cell infiltrate of the myocardium. To determine whether immune cell secretory products alter cardiac muscle metabolism without cytotoxicity, we cultured cardiac myocytes in the presence of culture supernatants from activated immune cells. We observed that these culture supernatants inhibit β -adrenergic agonist-mediated increases in cultured cardiac myocyte contractility and intracellular cAMP accumulation. The myocyte contractile response to increased extracellular Ca2+ concentration is unaltered by prior exposure to these culture supernatants, as is the increase in myocyte intracellular cAMP concentration in response to stimulation with forskolin, a direct adenyl cyclase activator. Inhibition occurs in the absence of alteration in β -adrenergic receptor density or ligand binding affinity. Suppressive activity is attributable to the macrophage-derived cytokines interleukin 1 and tumor necrosis factor. Thus, these observations describe a role for defined cytokines in regulating the hormonal responsiveness and function of contractile cells. The effects of interleukin 1 and tumor necrosis factor on intracellular cAMP accumulation may be a model for immune modulation of other cellular functions dependent upon cyclic nucleotide metabolism. The uncoupling of agonist-occupied receptors from adenyl cyclase suggests that β -receptor or guanine nucleotide binding protein function is altered by the direct or indirect action of cytokines on cardiac muscle cells.

  9. Cyclin-Dependent Kinase 5 Is Involved in the Phosphorylation of Gephyrin and Clustering of GABAA Receptors at Inhibitory Synapses of Hippocampal Neurons

    PubMed Central

    Kalbouneh, Heba; Schlicksupp, Andrea; Kirsch, Joachim; Kuhse, Jochen

    2014-01-01

    CDK5 has been implicated in neural functions including growth, neuronal migration, synaptic transmission and plasticity of excitatory chemical synapses. Here we report robust effects of CDK5 on phosphorylation of the postsynaptic scaffold protein gephyrin and clustering of inhibitory GABAA receptors in hippocampal neurons. shRNA-mediated knockdown of CDK5 and pharmacological inhibition of cyclin-dependent kinases reduced phosphorylated gephyrin clusters and postsynaptic γ2-containing GABAA receptors. Phosphorylation of S270 is antagonized by PP1/PP2a phosphatase and site-directed mutagenesis and in vitro phosphorylation experiments indicate that S270 is a putative CDK5 phosphorylation site of gephyrin. Our data suggest that CDK5 plays an essential role for the stability of gephyrin-dependent GABAA receptor clusters in hippocampal neurons. PMID:25093719

  10. Epidermal growth factor (EGF) promotes phosphorylation at threonine-654 of the EGF receptor: possible role of protein kinase C in homologous regulation of the EGF receptor

    SciTech Connect

    Whiteley, B.; Glaser, L.

    1986-10-01

    Treatment of cells with tumor-promoting phorbol diesters, which causes activation of protein kinase C, leads to phosphorylation of the epidermal growth factor (EGF) receptor at threonine-654. Addition of phorbol diesters to intact cells causes inhibition of the EGF-induced tyrosine-protein kinase activity of the EGF receptor and it has been suggested that this effect of phorbol diesters is mediated by the phosphorylation of the receptor by protein kinase C. The authors measured the activity of protein kinase C in A431 cells by determining the incorporation of (/sup 32/P)phosphate into peptides containing threonine-654 obtained by trypsin digestion of EGF receptors. After 3 h of exposure to serum-free medium, A431 cells had no detectable protein kinase C activity. Addition of EGF to these cells resulted in (/sup 32/P) incorporation into threonine-654 as well as into tyrosine residues. This indicates that EGF promotes the activation of protein kinase C in A431 cells. The phophorylation of threonine-654 induced by EGF was maximal after only 5 min of EGF addition and the (/sup 32/P) incorporation into threonine-654 reached 50% of the (/sup 32/P) in a tyrosine-containing peptide. This indicates that a significant percentage of the total EGF receptors are phosphorylated by protein kinase C. A variety of external stimuli activate Na/sup +//H/sup +/ exchange, including EGF, phorbol diesters, and hypertonicity. To ascertain whether activation of protein kinase C is an intracellular common effector of all of these systems, the authors measured the activity of protein kinase C after exposure of A431 cells to hyperosmotic conditions and observed no effect on phosphorylation of threonine-654, therefore, activation of Na/sup +//H/sup +/ exchange by hypertonic medium is independent of protein kinase C activity.

  11. Identification of distinct c-terminal domains of the Bombyx adipokinetic hormone receptor that are essential for receptor export, phosphorylation and internalization.

    PubMed

    Huang, Haishan; Deng, Xiaoyan; He, Xiaobai; Yang, Wen; Li, Guo; Shi, Ying; Shi, Liangen; Mei, Lijuan; Gao, Jimin; Zhou, Naiming

    2011-09-01

    Neuropeptides of the adipokinetic hormone (AKH) family play important roles in insect hemolymph sugar homeostasis, larval lipolysis and storage-fat mobilization. Our previous studies have shown that the adipokinetic hormone receptor (AKHR), a Gs-coupled receptor, induces intracellular cAMP accumulation, calcium mobilization and ERK1/2 phosphorylation upon agonist stimulation. However, the underlying molecular mechanisms that regulate the internalization and desensitization of AKHR remain largely unknown. In the current study we made a construct to express AKHR fused with enhanced green fluorescent protein (EGFP) at its C-terminal end to further characterize AKHR internalization. In stable AKHR-EGFP-expressing HEK-293 cells, AKHR-EGFP was mainly localized at the plasma membrane and was rapidly internalized in a dose- and time-dependent manner via the clathrin-coated pit pathway upon agonist stimulation, and internalized receptors were slowly recovered to the cell surface after the removal of AKH peptides. The results derived from RNA interference and arrestin translocation demonstrated that G protein-coupled receptor kinase 2 and 5 (GRK2/5) and β-arrestin2 were involved in receptor phosphorylation and internalization. Furthermore, experiments using deletion and site-directed mutagenesis strategies identified the three residues (Thr356, Ser359 and Thr362) responsible for GRK-mediated phosphorylation and internalization and the C-terminal domain from residue-322 to residue-342 responsible for receptor export from ER. This is the first detailed investigation of the internalization and trafficking of insect G protein-coupled receptors.

  12. Andrographolide attenuates interleukin-1β-stimulated upregulation of chemokine CCL5 and glial fibrillary acidic protein in astrocytes.

    PubMed

    Wong, Siew-Ying; Chan, Su-Jing; Wong, W S Fred; Wong, Peter T-H; Lai, Mitchell K P

    2014-08-20

    Andrographolide is a bioactive molecule isolated from Andrographis paniculata with anticancer and anti-inflammatory activities. In this study, we tested the effects of andrographolide on astrocyte-mediated neuroinflammatory responses. Cultured rat primary astrocytes were treated with proinflammatory cytokine interleukin 1β with or without pretreatment with andrographolide, and then processed for measurements of chemokine C-C motif ligand 5 (CCL5) and glial fibrillary acidic protein. The activation status of nuclear factor-κB activation that may underlie CCL5 upregulation was also measured. Andrographolide pretreatment was found to attenuate the upregulation of CCL5 and glial fibrillary basic protein as well as reduce the phosphorylation of nuclear factor-κB p65 and IκBα after interleukin 1β stimulation. These data suggest that andrographolide should be evaluated further as a therapeutic for central nervous system diseases characterized by astrocyte-mediated neuroinflammatory processes.

  13. Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases

    PubMed Central

    Dinarello, Charles A.; Simon, Anna; van der Meer, Jos W. M.

    2013-01-01

    Interleukin-1 (IL-1) is a highly active pro-inflammatory cytokine that lowers pain thresholds and damages tissues. Monotherapy blocking IL-1 activity in autoinflammatory syndromes results in a rapid and sustained reduction in disease severity, including reversal of inflammation-mediated loss of sight, hearing and organ function. This approach can therefore be effective in treating common conditions such as post-infarction heart failure, and trials targeting a broad spectrum of new indications are underway. So far, three IL-1-targeted agents have been approved: the IL-1 receptor antagonist anakinra, the soluble decoy receptor rilonacept and the neutralizing monoclonal anti-IL-1β antibody canakinumab. In addition, a monoclonal antibody directed against the IL-1 receptor and a neutralizing anti-IL-1α antibody are in clinical trials. PMID:22850787

  14. Modulation of Interleukin-1 Transcriptional Response by the Interaction between VRK2 and the JIP1 Scaffold Protein

    PubMed Central

    Blanco, Sandra; Sanz-García, Marta; Santos, Claudio R.; Lazo, Pedro A.

    2008-01-01

    Background Cellular biological responses to specific stimulation are determined by a balance among signaling pathways. Protein interactions are likely to modulate these pathways. Vaccinia-related kinase-2 (VRK2) is a novel human kinase that can modulate different signaling pathways. Principal Findings We report that in vivo, the activity of JIP1-JNK complexes is downregulated by VRK2 in response to interleukin-1β. Also the reduction of endogenous VRK2 with shRNA increases the transcriptional response to IL-1β. The JIP1 scaffold protein assembles three consecutive members of a given MAPK pathway forming signaling complexes and their signal can be modulated by interactions with regulatory proteins that remain to be identified. Knocking-down JIP1 with siRNA resulted in elimination of the AP1 transcriptional response to IL-1β. VRK2, a member of novel Ser-Thr kinase family, is able to stably interact with JIP1, TAK1 and MKK7, but not JNK, and can be isolated forming oligomeric complexes with different proportions of TAK1, MKK7β1 and JNK. JIP1 assembles all these proteins in an oligomeric signalosome. VRK2 binding to the JIP1 signalosome prevents the association of JNK and results in a reduction in its phosphorylation and downregulation of AP1-dependent transcription. Conclusions/Significance This work suggests that the intracellular level of VRK2 protein can modulate the flow through a signaling pathway and alter the response from a receptor that can be distributed by more than one pathway, and thus contribute to the cellular specificity of the response by forming alternative signaling complexes. Furthermore, the effect might be more general and affect other signaling routes assembled on the JIP1 scaffold protein for which a model is proposed. PMID:18286207

  15. Interleukin-1 blockade in refractory giant cell arteritis.

    PubMed

    Ly, Kim-Heang; Stirnemann, Jérôme; Liozon, Eric; Michel, Marc; Fain, Olivier; Fauchais, Anne-Laure

    2014-01-01

    Giant cell arteritis is a primary large-vessel vasculitis characterized by an arterial wall inflammation associated with intimal hyperplasia leading to arterial occlusion. Glucocorticoids remain the mainstay of giant cell arteritis treatment. However, relapses and glucocorticoid-related complications are frequent and therapeutic options for refractory giant cell arteritis are quite limited. Like tumor necrosis factor-α and interleukin-6, interleukin-1β is also highly expressed in inflamed arterial walls of patients with giant cell arteritis and may contribute in the pathogenesis of this disease. We report treatment of three cases of refractory giant cell arteritis successfully treated with anakinra, an interleukin-1 blockade therapy. Anakinra was effective for all patients, yielding improvement in their inflammation biomarkers and/or in their symptoms, as well as a disappearance of arterial inflammation in PET/CT for two of them.

  16. Disruption of dopamine D1 receptor phosphorylation at serine 421 attenuates cocaine-induced behaviors in mice.

    PubMed

    Zhang, Ying; Wang, Ning; Su, Ping; Lu, Jie; Wang, Yun

    2014-12-01

    Dopamine D1 receptors (D1Rs) play a key role in cocaine addiction, and multiple protein kinases such as GRKs, PKA, and PKC are involved in their phosphorylation. Recently, we reported that protein kinase D1 phosphorylates the D1R at S421 and promotes its membrane localization. Moreover, this phosphorylation of S421 is required for cocaineinduced behaviors in rats. In the present study, we generated transgenic mice over-expressing S421A-D1R in the forebrain. These transgenic mice showed reduced phospho-D1R (S421) and its membrane localization, and reduced downstream ERK1/2 activation in the striatum. Importantly, acute and chronic cocaine-induced locomotor hyperactivity and conditioned place preference were significantly attenuated in these mice. These findings provide in vivo evidence for the critical role of S421 phosphorylation of the D1R in its membrane localization and in cocaine-induced behaviors. Thus, S421 on the D1R represents a potential pharmacotherapeutic target for cocaine addiction and other drug-abuse disorders. PMID:25304015

  17. Cyclin-dependent kinase 5 modulates nociceptive signaling through direct phosphorylation of transient receptor potential vanilloid 1

    PubMed Central

    Pareek, Tej K.; Keller, Jason; Kesavapany, Sashi; Agarwal, Nitin; Kuner, Rohini; Pant, Harish C.; Iadarola, Michael J.; Brady, Roscoe O.; Kulkarni, Ashok B.

    2007-01-01

    Transient receptor potential vanilloid 1 (TRPV1), a ligand-gated cation channel highly expressed in small-diameter sensory neurons, is activated by heat, protons, and capsaicin. The phosphorylation of TRPV1 provides a versatile regulation of intracellular calcium levels and is critical for TRPV1 function in responding to a pain stimulus. We have previously reported that cyclin-dependent kinase 5 (Cdk5) activity regulates nociceptive signaling. In this article we report that the Cdk5-mediated phosphorylation of TRPV1 at threonine-407 can modulate agonist-induced calcium influx. Inhibition of Cdk5 activity in cultured dorsal root ganglia neurons resulted in a significant reduction of TRPV1-mediated calcium influx, and this effect could be reversed by restoring Cdk5 activity. Primary nociceptor-specific Cdk5 conditional-knockout mice showed reduced TRPV1 phosphorylation, resulting in significant hypoalgesia. Thus, the present study indicates that Cdk5-mediated TRPV1 phosphorylation is important in the regulation of pain signaling. PMID:17194758

  18. SLP-65: A New Signaling Component in B Lymphocytes which Requires Expression of the Antigen Receptor for Phosphorylation

    PubMed Central

    Wienands, Jürgen; Schweikert, Jutta; Wollscheid, Bernd; Jumaa, Hassan; Nielsen, Peter J.; Reth, Michael

    1998-01-01

    The B cell antigen receptor (BCR) consists of the membrane-bound immunoglobulin (Ig) molecule as antigen-binding subunit and the Ig-α/Ig-β heterodimer as signaling subunit. BCR signal transduction involves activation of protein tyrosine kinases (PTKs) and phosphorylation of several proteins, only some of which have been identified. The phosphorylation of these proteins can be induced by exposure of B cells either to antigen or to the tyrosine phosphatase inhibitor pervanadate/H2O2. One of the earliest substrates in B cells is a 65-kD protein, which we identify here as a B cell adaptor protein. This protein, named SLP-65, is part of a signaling complex involving Grb-2 and Vav and shows homology to SLP-76, a signaling element of the T cell receptor. In pervanadate/H2O2-stimulated cells, SLP-65 becomes phosphorylated only upon expression of the BCR. These data suggest that SLP-65 is part of a BCR transducer complex. PMID:9705962

  19. Tyrosine phosphorylation regulates the endocytosis and surface expression of GluN3A-containing NMDA receptors.

    PubMed

    Chowdhury, Dhrubajyoti; Marco, Sonia; Brooks, Ian M; Zandueta, Aitor; Rao, Yijian; Haucke, Volker; Wesseling, John F; Tavalin, Steven J; Pérez-Otaño, Isabel

    2013-02-27

    Selective control of receptor trafficking provides a mechanism for remodeling the receptor composition of excitatory synapses, and thus supports synaptic transmission, plasticity, and development. GluN3A (formerly NR3A) is a nonconventional member of the NMDA receptor (NMDAR) subunit family, which endows NMDAR channels with low calcium permeability and reduced magnesium sensitivity compared with NMDARs comprising only GluN1 and GluN2 subunits. Because of these special properties, GluN3A subunits act as a molecular brake to limit the plasticity and maturation of excitatory synapses, pointing toward GluN3A removal as a critical step in the development of neuronal circuitry. However, the molecular signals mediating GluN3A endocytic removal remain unclear. Here we define a novel endocytic motif (YWL), which is located within the cytoplasmic C-terminal tail of GluN3A and mediates its binding to the clathrin adaptor AP2. Alanine mutations within the GluN3A endocytic motif inhibited clathrin-dependent internalization and led to accumulation of GluN3A-containing NMDARs at the cell surface, whereas mimicking phosphorylation of the tyrosine residue promoted internalization and reduced cell-surface expression as shown by immunocytochemical and electrophysiological approaches in recombinant systems and rat neurons in primary culture. We further demonstrate that the tyrosine residue is phosphorylated by Src family kinases, and that Src-activation limits surface GluN3A expression in neurons. Together, our results identify a new molecular signal for GluN3A internalization that couples the functional surface expression of GluN3A-containing receptors to the phosphorylation state of GluN3A subunits, and provides a molecular framework for the regulation of NMDAR subunit composition with implications for synaptic plasticity and neurodevelopment. PMID:23447623

  20. Isolation and characterization of phosphorylated oligosaccharides from alpha-N-acetylglucosaminidase that are recognized by cell-surface receptors.

    PubMed

    von Figura, K; Klein, U

    1979-03-01

    Adsorptive endocytosis of lysosomal enzymes by fibroblasts and hepatocytes involves binding to cell surface receptors that recognize on lysosomal enzymes a phosphorylated carbohydrate, most likely a mannose 6-phosphate residue [Kaplan et al. (1977) Proc. Natl Acad. Sci. U.S.A. 74, 2026-2030; Ullrich et al. (1978) Hoppe-Seyler's Z. Physiol. Chem. 359, 1591-1598]. Loss of alpha-N-acetylglucosaminidase endocytosis after treatment with endoglucosaminidase H indicated that the recognition site of alpha-N-acetylglucosaminidase is located on N-glycosidically linked oligosaccharides of the high mannose type. Acidic oligosaccharides with an average molecular weight of 2200 were liberated from alpha-N-acetylglucosaminidase by endoglucosaminidase H. These oligosaccharides were susceptible to degradation by alkaline phosphatase, alpha-mannosidase and beta-N-acetylglucosaminidase. At the non-reducing terminal these oligosaccharides bear phosphorylated mannose and/or N-acetylglucosamine residues. PMID:428391

  1. Phosphorylation in vitro of the 85 kDa subunit of phosphatidylinositol 3-kinase and its possible activation by insulin receptor tyrosine kinase.

    PubMed Central

    Hayashi, H; Miyake, N; Kanai, F; Shibasaki, F; Takenawa, T; Ebina, Y

    1991-01-01

    Insulin causes a dramatic and rapid increase in phosphatidylinositol 3-kinase activity in the anti-phosphotyrosine immunoprecipitates of cells overexpressing the human insulin receptor. This enzyme may therefore be a mediator of insulin signal transduction [Endemann, Yonezawa & Roth (1990) J. Biol. Chem. 265, 396-400; Ruderman, Kapeller, White & Cantley (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 1411-1415]. At least two questions remain to be elucidated. Firstly, does the insulin receptor tyrosine kinase phosphorylate phosphatidylinositol 3-kinase directly, or does it phosphorylate a protein associated with the 3-kinase? Second, if the enzyme is a direct substrate for the insulin receptor tyrosine kinase, does tyrosine phosphorylation of phosphatidylinositol 3-kinase by the kinase alter the specific enzyme activity, or does the amount of the tyrosine-phosphorylated form of the phosphatidylinositol 3-kinase increase, with no change in the specific activity? We report here evidence that the 85 kDa subunit of highly purified phosphatidylinositol 3-kinase is phosphorylated on the tyrosine residue by the activated normal insulin receptor in vitro, but not by a mutant insulin receptor which lacks tyrosine kinase activity. We found that an increase in enzyme activity was detected in response to insulin not only in the anti-phosphotyrosine immunoprecipitates of the cytosol, but also in the cytosolic fraction before immunoprecipitation. In addition, we partially separated the tyrosine-phosphorylated form from the unphosphorylated form of the enzyme, by using a f.p.l.c. Mono Q column. The insulin-stimulated phosphatidylinositol 3-kinase activity was mainly detected in the fraction containing almost all of the tyrosine-phosphorylated form. This result suggests that tyrosine phosphorylation of phosphatidylinositol 3-kinase by the insulin receptor kinase may increase the specific activity of the former enzyme in vivo. Images Fig. 1. Fig. 2. Fig. 4. PMID:1722393

  2. A kinetic model identifies phosphorylated estrogen receptor-α (ERα) as a critical regulator of ERα dynamics in breast cancer.

    PubMed

    Tian, Dan; Solodin, Natalia M; Rajbhandari, Prashant; Bjorklund, Kelsi; Alarid, Elaine T; Kreeger, Pamela K

    2015-05-01

    Receptor levels are a key mechanism by which cells regulate their response to stimuli. The levels of estrogen receptor-α (ERα) impact breast cancer cell proliferation and are used to predict prognosis and sensitivity to endocrine therapy. Despite the clinical application of this information, it remains unclear how different cellular processes interact as a system to control ERα levels. To address this question, experimental results from the ERα-positive human breast cancer cell line (MCF-7) treated with 17-β-estradiol or vehicle control were used to develop a mass-action kinetic model of ERα regulation. Model analysis determined that RNA dynamics could be captured through phosphorylated ERα (pERα)-dependent feedback on transcription. Experimental analysis confirmed that pERα-S118 binds to the estrogen receptor-1 (ESR1) promoter, suggesting that pERα can feedback on ESR1 transcription. Protein dynamics required a separate mechanism in which the degradation rate for pERα was 8.3-fold higher than nonphosphorylated ERα. Using a model with both mechanisms, the root mean square error was 0.078. Sensitivity analysis of this combined model determined that while multiple mechanisms regulate ERα levels, pERα-dependent feedback elicited the strongest effect. Combined, our computational and experimental results identify phosphorylation of ERα as a critical decision point that coordinates the cellular circuitry to regulate ERα levels.

  3. Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors.

    PubMed

    Li, Baoman; Zhang, Shiquen; Li, Min; Hertz, Leif; Peng, Liang

    2010-11-01

    We have previously shown that fluoxetine causes ERK(1/2) phosphorylation in cultured mouse astrocytes mediated exclusively by stimulation of 5-HT(2B) receptors (Li et al., 2008b). This raises the question whether this is also the case for serotonin (5-HT) itself. In the present study serotonin was found to induce ERK(1/2) phosphorylation by stimulation of 5-HT(2B) receptors with high affinity (EC(50): 20-30 pM), and by stimulation of 5-HT(2C) receptor with low affinity (EC(50): 1 microM or higher). ERK(1/2) phosphorylation induced by stimulation of either 5-HT(2B) or 5-HT(2C) receptors was mediated by epidermal growth factor (EGF) receptor transactivation (Peng et al., this issue), shown by the inhibitory effect of AG1478, an inhibitor of the EGF receptor tyrosine kinase, and GM6001, an inhibitor of Zn-dependent metalloproteinases, and thus of 5-HT(2B) receptor-mediated EGF receptor agonist release. It is discussed that the high potency of the 5-HT(2B)-mediated effect is consistent with literature data for binding affinity of serotonin to cloned human 5-HT(2B) receptors and with observations of low extracellular concentrations of serotonin in brain, which would allow a demonstrated moderate and modality-dependent increase in specific brain areas to activate 5-HT(2B) receptors. In contrast the relevance of the observed 5-HT(2C) receptors on astrocytes is questioned.

  4. Phosphorylation of the rat Ins(1,4,5)P₃ receptor at T930 within the coupling domain decreases its affinity to Ins(1,4,5)P₃.

    PubMed

    Haun, Shirley; Sun, Lu; Hubrack, Satanay; Yule, David; Machaca, Khaled

    2012-01-01

    The Ins(1,4,5)P 3 receptor acts as a central hub for Ca ( 2+) signaling by integrating multiple signaling modalities into Ca ( 2+) release from intracellular stores downstream of G-protein and tyrosine kinase-coupled receptor stimulation. As such, the Ins(1,4,5)P 3 receptor plays fundamental roles in cellular physiology. The regulation of the Ins(1,4,5)P 3 receptor is complex and involves protein-protein interactions, post-translational modifications, allosteric modulation, and regulation of its sub-cellular distribution. Phosphorylation has been implicated in the sensitization of Ins(1,4,5)P 3-dependent Ca ( 2+) release observed during oocyte maturation. Here we investigate the role of phosphorylation at T-930, a residue phosphorylated specifically during meiosis. We show that a phosphomimetic mutation at T-930 of the rat Ins(1,4,5)P 3 receptor results in decreased Ins(1,4,5)P 3-dependent Ca ( 2+) release and lowers the Ins(1,4,5)P 3 binding affinity of the receptor. These data, coupled to the sensitization of Ins(1,4,5)P 3-dependent Ca ( 2+) release during meiosis, argue that phosphorylation within the coupling domain of the Ins(1,4,5)P 3 receptor acts in a combinatorial fashion to regulate Ins(1,4,5)P 3 receptor function.

  5. Intracytoplasmic phosphorylation sites of Tac antigen (p55) are not essential for the conformation, function, and regulation of the human interleukin 2 receptor.

    PubMed Central

    Hatakeyama, M; Minamoto, S; Taniguchi, T

    1986-01-01

    Tac antigen, the receptor for human interleukin 2 (IL-2), contains in its intracytoplasmic region a serine residue (Ser-247) that is seemingly the predominant site of protein kinase C-mediated phosphorylation. A number of studies on growth factor receptors have suggested the importance of phosphorylation in receptor structure, function, and regulation. In this study, we generated site-directed mutations in the Tac antigen cDNA to generate mutant receptors in which Ser-247 or Thr-250, a probable site of minor phosphorylation, was replaced with another amino acid that is not accessible to phosphorylation. Study of the expression of these mutant genes in a T-lymphoid cell line has provided no evidence as to the essential role of the above-mentioned residues in determining the degree of receptor affinity, its ability for signal transduction, and phorbol ester-mediated regulation of the receptor. Our results strongly suggest the existence of an IL-2 receptor "complex" in which the Tac antigen is associated with another molecule(s) that is involved in receptor structure, function, and regulation. PMID:3099287

  6. Pellino Proteins Contain a Cryptic FHA Domain that Mediates Interaction with Phosphorylated IRAK1

    SciTech Connect

    Lin, Chun-Chi; Huoh, Yu-San; Schmitz, Karl R.; Jensen, Liselotte E.; Ferguson, Kathryn M.

    2009-03-23

    Pellino proteins are RING E3 ubiquitin ligases involved in signaling events downstream of the Toll and interleukin-1 (IL-1) receptors, key initiators of innate immune and inflammatory responses. Pellino proteins associate with and ubiquitinate proteins in these pathways, including the interleukin-1 receptor associated kinase-1 (IRAK1). We determined the X-ray crystal structure of a Pellino2 fragment lacking only the RING domain. This structure reveals that the IRAK1-binding region of Pellino proteins consists largely of a previously unidentified forkhead-associated (FHA) domain. FHA domains are well-characterized phosphothreonine-binding modules, and this cryptic example in Pellino2 can drive interaction of this protein with phosphorylated IRAK1. The Pellino FHA domain is decorated with an unusual appendage or wing composed of two long inserts that lie within the FHA homology region. Delineating how this E3 ligase associates with substrates, and how these interactions are regulated by phosphorylation, is crucial for a complete understanding of Toll/IL-1 receptor signaling.

  7. Shutoff and agonist-triggered internalization of protease-activated receptor 1 can be separated by mutation of putative phosphorylation sites in the cytoplasmic tail.

    PubMed

    Hammes, S R; Shapiro, M J; Coughlin, S R

    1999-07-20

    The thrombin receptor PAR1 becomes rapidly phosphorylated upon activation by either thrombin or exogenous SFLLRN agonist peptide. Substitution of alanine for all serine and threonine residues in the receptor's cytoplasmic carboxyl-terminal tail ablated phosphorylation and yielded a receptor defective in both shutoff and agonist-triggered internalization. These observations suggested that activation-dependent phosphorylation of PAR1's cytoplasmic tail is required for both shutoff and agonist-triggered internalization. To identify the phosphorylation site(s) that are necessary for these functions, we generated three mutant receptors in which alanine was substituted for serine and threonine residues in the amino-terminal, middle, and carboxyl-terminal thirds of PAR1's cytoplasmic tail. When stably expressed in fibroblasts, all three mutated receptors were rapidly phosphorylated in response to agonist, while a mutant in which all serines and threonines in the cytoplasmic tail were converted to alanines was not. This result suggests that phosphorylation can occur at multiple sites in PAR1's cytoplasmic tail. Alanine substitutions in the N-terminal and C-terminal portions of the tail had no effect on either receptor shutoff or agonist-triggered internalization. By contrast, alanine substitutions in the "middle" serine cluster between Ser(391) and Ser(406) yielded a receptor with considerably slower shutoff of signaling after thrombin activation than the wild type. Surprisingly, this same mutant was indistinguishable from the wild type in agonist-triggered internalization and degradation. Overexpression of G protein-coupled receptor kinase 2 (GRK2) and GRK3 "suppressed" the shutoff defect of the S --> A (391-406) mutant, consistent with this defect being due to altered receptor phosphorylation. These results suggest that specific phosphorylation sites are required for rapid receptor shutoff, but phosphorylation at multiple alternative sites is sufficient for agonist

  8. Effect of ebosin on modulating interleukin-1β-induced inflammatory responses in rat fibroblast-like synoviocytes

    PubMed Central

    Zhang, Yang; Wang, Lifei; Bai, Liping; Jiang, Rong; Guo, Lianhong; Wu, Jianbo; Cheng, Guifang; Zhang, Ren; Li, Yuan

    2016-01-01

    The interleukin-1β-mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways are involved in the pathogenesis of rheumatoid arthritis. Ebosin, a novel exopolysaccharide (EPS), exhibits anti-inflammatory activity in rat collagen-induced arthritis by suppressing the production of tumor necrosis factor-α, interleukin-6 and interleukin-1β. The aim of the present study was to assess the effects of ebosin on NF-κB and MAPK signaling pathways mediated through interleukin-1β in rat fibroblast-like synoviocytes (FLSs). Western blotting showed decreased production of phosphorylated p38, JNK1, JNK2, IKKα, IKKβ and IκB in the cytoplasm and NF-κB in the nucleus upon ebosin treatment. The DNA-binding activity of NF-κB in the cell nucleus was also inhibited by ebosin treatment, as demonstrated using an electrophoresis mobility gel shift assay. Analysis of the results of the immunofluorescence assay also showed a reduced amount of NF-κB in the nucleus of cells affected by ebosin. These results provided evidence for the effects of ebosin on both interleukin-1β-mediated MAPK and NF-κB signaling pathways in rat FLSs. In addition, enzyme-linked immunosorbent assay demonstrated that ebosin reduces the levels of matrix metalloproteinases MMP-1 and MMP-3 and the chemokines, interleukin-8 and RANTES. Thus, the results of the present study provide further evidence for understanding the medicinal activity of ebosin at a molecular level, therefore nominating this EPS as a potential therapeutic candidate for the treatment of rheumatic arthritis.

  9. Green tea compounds inhibit tyrosine phosphorylation of PDGF beta-receptor and transformation of A172 human glioblastoma.

    PubMed

    Sachinidis, A; Seul, C; Seewald, S; Ahn, H; Ko, Y; Vetter, H

    2000-04-01

    The effect of the green tea compounds 2-(3,4-dihydroxyphenyl)-3, 4-dihydro-2H-1-benzopyran-3,5,7-triol (catechin), epicathechin (EC), epigallocathechin-3 gallate (EGCG), epicathechin-3 gallate (ECG) and catechin-3 gallate (CG) on the tyrosine phosphorylation of PDGF beta-receptor (PDGF-Rbeta) and on the anchorage-independent growth of A172 glioblastoma cells in semisolid agar has been investigated. Treatment of A172 glioblastoma with 50 microM CG, ECG, EGCG and 25 microM Tyrphostin 1296 resulted in an 82+/-17%, 77+/-21%, 75+/-8% and 55+/-11%, respectively (mean+/-S.D., n=3) inhibition of the PDGF-BB-induced tyrosine phosphorylation of PDGF-Rbeta. The PDGF-Rbeta downstream intracellular transduction pathway including tyrosine phosphorylation of phospholipase C-gamma1 (PLC-gamma1) and phosphatidylinositol 3'-kinase (PI 3'-K) was also inhibited. Spheroid formation was completely inhibited by 50 microM ECG, CG, EGCG and by 25 microM Tyrphostin 1296. We conclude that catechins of the green tea possessing the gallate group in their chemical structure act as anticancer agents probably partly via their ability to suppress the tyrosine kinase activity of the PDGF-Rbeta. PMID:10760511

  10. Protein Kinase D1-Dependent Phosphorylation of Dopamine D1 Receptor Regulates Cocaine-Induced Behavioral Responses

    PubMed Central

    Wang, Ning; Su, Ping; Zhang, Ying; Lu, Jie; Xing, Baoming; Kang, Kai; Li, Wenqi; Wang, Yun

    2014-01-01

    The dopamine (DA) D1 receptor (D1R) is critically involved in reward and drug addiction. Phosphorylation-mediated desensitization or internalization of D1R has been extensively investigated. However, the potential for upregulation of D1R function through phosphorylation remains to be determined. Here we report that acute cocaine exposure induces protein kinase D1 (PKD1) activation in the rat striatum, and knockdown of PKD1 in the rat dorsal striatum attenuates cocaine-induced locomotor hyperactivity. Moreover, PKD1-mediated phosphorylation of serine 421 (S421) of D1R promotes surface localization of D1R and enhances downstream extracellular signal-regulated kinase signaling in D1R-transfected HEK 293 cells. Importantly, injection of the peptide Tat-S421, an engineered Tat fusion-peptide targeting S421 (Tat-S421), into the rat dorsal striatum inhibits cocaine-induced locomotor hyperactivity and injection of Tat-S421 into the rat hippocampus or the shell of the nucleus accumbens (NAc) also inhibits cocaine-induced conditioned place preference (CPP). However, injection of Tat-S421 into the rat NAc shell does not establish CPP by itself and injection of Tat-S421 into the hippocampus does not influence spatial learning and memory. Thus, targeting S421 of D1R represents a promising strategy for the development of pharmacotherapeutic treatments for drug addiction and other disorders that result from DA imbalances. PMID:24362306

  11. Opposite effects of two estrogen receptors on tau phosphorylation through disparate effects on the miR-218/PTPA pathway

    PubMed Central

    Xiong, Yan-Si; Liu, Fang-Fang; Liu, Dan; Huang, He-Zhou; Wei, Na; Tan, Lu; Chen, Jian-Guo; Man, Heng-Ye; Gong, Cheng-Xin; Lu, Youming; Wang, Jian-Zhi; Zhu, Ling-Qiang

    2015-01-01

    The two estrogen receptors (ERs), ERα and ERβ, mediate the diverse biological functions of estradiol. Opposite effects of ERα and ERβ have been found in estrogen-induced cancer cell proliferation and differentiation as well as in memory-related tasks. However, whether these opposite effects are implicated in the pathogenesis of Alzheimer’s disease (AD) remains unclear. Here, we find that ERα and ERβ play contrasting roles in regulating tau phosphorylation, which is a pathological hallmark of AD. ERα increases the expression of miR-218 to suppress the protein levels of its specific target, protein tyrosine phosphatase α (PTPα). The downregulation of PTPα results in the abnormal tyrosine hyperphosphorylation of glycogen synthase kinase-3β (resulting in activation) and protein phosphatase 2A (resulting in inactivation), the major tau kinase and phosphatase. Suppressing the increased expression of miR-218 inhibits the ERα-induced tau hyperphosphorylation as well as the PTPα decline. In contrast, ERβ inhibits tau phosphorylation by limiting miR-218 levels and restoring the miR-218 levels antagonized the attenuation of tau phosphorylation by ERβ. These data reveal for the first time opposing roles for ERα and ERβ in AD pathogenesis and suggest potential therapeutic targets for AD. PMID:26111662

  12. Reduced phosphorylation of brain insulin receptor substrate and Akt proteins in apolipoprotein-E4 targeted replacement mice.

    PubMed

    Ong, Qi-Rui; Chan, Elizabeth S; Lim, Mei-Li; Cole, Gregory M; Wong, Boon-Seng

    2014-01-17

    Human ApoE4 accelerates memory decline in ageing and in Alzheimer's disease. Although intranasal insulin can improve cognition, this has little effect in ApoE4 subjects. To understand this ApoE genotype-dependent effect, we examined brain insulin signaling in huApoE3 and huApoE4 targeted replacement (TR) mice. At 32 weeks, lower insulin receptor substrate 1 (IRS1) at S636/639 and Akt phosphorylation at T308 were detected in fasting huApoE4 TR mice as compared to fasting huApoE3 TR mice. These changes in fasting huApoE4 TR mice were linked to lower brain glucose content and have no effect on plasma glucose level. However, at 72 weeks of age, these early changes were accompanied by reduction in IRS2 expression, IRS1 phosphorylation at Y608, Akt phosphorylation at S473, and MAPK (p38 and p44/42) activation in the fasting huApoE4 TR mice. The lower brain glucose was significantly associated with higher brain insulin in the aged huApoE4 TR mice. These results show that ApoE4 reduces brain insulin signaling and glucose level leading to higher insulin content.

  13. Proteasome inhibition blocks ligand-induced dynamic processing and internalization of epidermal growth factor receptor via altered receptor ubiquitination and phosphorylation.

    PubMed

    Kesarwala, Aparna H; Samrakandi, Mustapha M; Piwnica-Worms, David

    2009-02-01

    Epidermal growth factor (EGF) receptor (EGFR), a member of the EGF superfamily of receptor tyrosine kinases, is a critical regulator of cell growth and an important target for single agent and combination anticancer therapeutics. To further investigate the dynamics of ligand-induced EGFR processing and regulation noninvasively, we developed a chimeric EGFR-firefly luciferase (FLuc) fusion reporter to directly monitor processing of EGFR in real-time. In a stable HeLa cell line expressing the reporter at physiologically relevant levels, bioluminescence imaging continuously monitored reporter dynamics, correlating with the ligand-induced response of endogenous EGFR as determined by Western blot, subcellular localization of an EGFR-green fluorescent protein (GFP) fusion protein, and validated pharmacologic responses. The signaling competency of the reporter was confirmed by gene rescue experiments in EGFR-null cells. Bioluminescence analysis further showed that proteasome inhibition with bortezomib or MG132 attenuated overall ligand-induced degradation of EGFR. In cells expressing EGFR-GFP, pretreatment with proteasome inhibitors trapped essentially all of the receptor at the cell membrane both before and after ligand-induced activation with EGF. Furthermore, proteasome inhibition enhanced receptor ubiquitination in both the basal and ligand-activated states as well as delayed the processing of ligand-activated phosphorylation of the receptor, kinetically correlating with attenuated receptor degradation. These observations point to a potential mechanism for the synergistic therapeutic effects of combination EGFR- and proteasome-targeted therapies.

  14. Mutation of androgen receptor N-terminal phosphorylation site Tyr-267 leads to inhibition of nuclear translocation and DNA binding.

    PubMed

    Karaca, Mehmet; Liu, Yuanbo; Zhang, Zhentao; De Silva, Dinuka; Parker, Joel S; Earp, H Shelton; Whang, Young E

    2015-01-01

    Reactivation of androgen receptor (AR) may drive recurrent prostate cancer in castrate patients. Ack1 tyrosine kinase is overexpressed in prostate cancer and promotes castrate resistant xenograft tumor growth and enhances androgen target gene expression and AR recruitment to enhancers. Ack1 phosphorylates AR at Tyr-267 and possibly Tyr-363, both in the N-terminal transactivation domain. In this study, the role of these phosphorylation sites was investigated by characterizing the phosphorylation site mutants in the context of full length and truncated AR lacking the ligand-binding domain. Y267F and Y363F mutants showed decreased transactivation of reporters. Expression of wild type full length and truncated AR in LNCaP cells increased cell proliferation in androgen-depleted conditions and increased colony formation. However, the Y267F mutant of full length and truncated AR was defective in stimulating cell proliferation. The Y363F mutant was less severely affected than the Y267F mutant. The full length AR Y267F mutant was defective in nuclear translocation induced by androgen or Ack1 kinase. The truncated AR was constitutively localized to the nucleus. Chromatin immunoprecipitation analysis showed that it was recruited to the target enhancers without androgen. The truncated Y267F AR mutant did not exhibit constitutive nuclear localization and androgen enhancer binding activity. These results support the concept that phosphorylation of Tyr-267, and to a lesser extent Tyr-363, is required for AR nuclear translocation and recruitment and DNA binding and provide a rationale for development of novel approaches to inhibit AR activity.

  15. Deficiency of Lipoprotein Lipase in Neurons Decreases AMPA Receptor Phosphorylation and Leads to Neurobehavioral Abnormalities in Mice

    PubMed Central

    Yu, Tian; Taussig, Matthew D.; DiPatrizio, Nicholas V.; Astarita, Giuseppe; Piomelli, Daniele; Bergman, Bryan C.; Dell’Acqua, Mark L.; Eckel, Robert H.; Wang, Hong

    2015-01-01

    Alterations in lipid metabolism have been found in several neurodegenerative disorders, including Alzheimer’s disease. Lipoprotein lipase (LPL) hydrolyzes triacylglycerides in lipoproteins and regulates lipid metabolism in multiple organs and tissues, including the central nervous system (CNS). Though many brain regions express LPL, the functions of this lipase in the CNS remain largely unknown. We developed mice with neuron-specific LPL deficiency that became obese on chow by 16 wks in homozygous mutant mice (NEXLPL-/-) and 10 mo in heterozygous mice (NEXLPL+/-). In the present study, we show that 21 mo NEXLPL+/- mice display substantial cognitive function decline including poorer learning and memory, and increased anxiety with no difference in general motor activities and exploratory behavior. These neurobehavioral abnormalities are associated with a reduction in the 2-amino-3-(3-hydroxy-5-methyl-isoxazol-4-yl) propanoic acid (AMPA) receptor subunit GluA1 and its phosphorylation, without any alterations in amyloid β accumulation. Importantly, a marked deficit in omega-3 and omega-6 polyunsaturated fatty acids (PUFA) in the hippocampus precedes the development of the neurobehavioral phenotype of NEXLPL+/- mice. And, a diet supplemented with n-3 PUFA can improve the learning and memory of NEXLPL+/- mice at both 10 mo and 21 mo of age. We interpret these findings to indicate that LPL regulates the availability of PUFA in the CNS and, this in turn, impacts the strength of synaptic plasticity in the brain of aging mice through the modification of AMPA receptor and its phosphorylation. PMID:26263173

  16. 1,2-Naphthoquinone activates vanilloid receptor 1 through increased protein tyrosine phosphorylation, leading to contraction of guinea pig trachea

    SciTech Connect

    Kikuno, Shota; Taguchi, Keiko; Iwamoto, Noriko; Yamano, Shigeru; Cho, Arthur K.; Froines, John R.; Kumagai, Yoshito . E-mail: yk-em-tu@md.tsukuba.ac.jp

    2006-01-15

    1,2-Naphthoquinone (1,2-NQ) has recently been identified as an environmental quinone in diesel exhaust particles (DEP) and atmospheric PM{sub 2.5}. We have found that this quinone is capable of causing a concentration-dependent contraction of tracheal smooth muscle in guinea pigs with EC{sub 5} value of 18.7 {mu}M. The contraction required extracellular calcium and was suppressed by L-type calcium channel blockers nifedipine and diltiazem. It was found that 1,2-NQ activated phospholipase A2 (PLA2)/lipoxygenase (LO)/vanilloid receptor (VR1) signaling. Additionally, 1,2-NQ was capable of transactivating protein tyrosine kinases (PTKs) such as epidermal growth factor receptor (EGFR) in guinea pig trachea, suggesting that phosphorylation of PTKs contributes to 1,2-NQ-induced tracheal contraction. Consistent with this notion, this action was blocked by the PTKs inhibitor genistein and the EGFR antagonist PD153035, indicating that contraction was, at least in part, attributable to PTKs phosphorylation that activates VR1, resulting in increased intracellular calcium content in the smooth muscle cells.

  17. Modulation of c-Jun N-Terminal Kinase Signaling and Specific Glucocorticoid Receptor Phosphorylation in the Treatment of Major Depression

    PubMed Central

    Jovicic, Milica J.; Lukic, Iva; Radojcic, Marija; Adzic, Miroslav; Maric, Nadja P.

    2015-01-01

    Glucocorticoid resistance is a common finding in major depressive disorder. Increased glucocorticoid receptor (GR) phosphorylation at serine 226 is associated with increased glucocorticoid resistance. Previously we have demonstrated that depressed patients exhibit higher levels of GR phosphorylated at serine 226 compared to healthy controls. The enzyme that is involved in this specific GR phosphorylation is c-Jun N-Terminal Kinase (JNK). We propose that modulation of glucocorticoid phosphorylation at serine 226, by targeting JNK signaling pathway, could be a potential strategy for antidepressant treatment. We base this assumption on the results of previous research that examined GR phosphorylation and JNK signaling in animal models and human studies. We also discuss the potential challenges in targeting JNK signaling pathway in depression. PMID:26052031

  18. Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in response to peripheral administration of bacterial lipopolysaccharide.

    PubMed

    Konsman, J P; Veeneman, J; Combe, C; Poole, S; Luheshi, G N; Dantzer, R

    2008-12-01

    Although receptors for the pro-inflammatory cytokine interleukin-1 have long been known to be expressed in the brain, their role in fever and behavioural depression observed during the acute phase response (APR) to tissue infection remains unclear. This may in part be due to the fact that interleukin-1 in the brain is bioactive only several hours after peripheral administration of bacterial lipopolysaccharide (LPS). To study the role of cerebral interleukin-1 action in temperature and behavioural changes, and activation of brain structures during the APR, interleukin-1 receptor antagonist (IL-1ra; 100 microg) was infused into the lateral brain ventricle 4 h after intraperitoneal (i.p.) LPS injection (250 microg/kg) in rats. I.p. LPS administration induced interleukin-1beta (IL-1beta) production in systemic circulation as well as in brain circumventricular organs and the choroid plexus. Intracerebroventricular (i.c.v.) infusion of IL-1ra 4 h after i.p. LPS injection attenuated the reduction in social interaction, a cardinal sign of behavioural depression during sickness, and c-Fos expression in the amygdala and bed nucleus of the stria terminalis. However, LPS-induced fever, rises in plasma corticosterone, body weight loss and c-Fos expression in the hypothalamus and caudal brainstem were not altered by i.c.v. infusion of IL-1ra. These findings, together with our previous observations showing that i.c.v. infused IL-1ra diffuses throughout perivascular spaces, where macrophages express interleukin-1 receptors, can be interpreted to suggest that circulating or locally produced brain IL-1beta acts on these cells to bring about behavioural depression and activation of limbic structures during the APR after peripheral LPS administration.

  19. Central nervous action of interleukin-1 mediates activation of limbic structures and behavioural depression in response to peripheral administration of bacterial lipopolysaccharide.

    PubMed

    Konsman, J P; Veeneman, J; Combe, C; Poole, S; Luheshi, G N; Dantzer, R

    2008-12-01

    Although receptors for the pro-inflammatory cytokine interleukin-1 have long been known to be expressed in the brain, their role in fever and behavioural depression observed during the acute phase response (APR) to tissue infection remains unclear. This may in part be due to the fact that interleukin-1 in the brain is bioactive only several hours after peripheral administration of bacterial lipopolysaccharide (LPS). To study the role of cerebral interleukin-1 action in temperature and behavioural changes, and activation of brain structures during the APR, interleukin-1 receptor antagonist (IL-1ra; 100 microg) was infused into the lateral brain ventricle 4 h after intraperitoneal (i.p.) LPS injection (250 microg/kg) in rats. I.p. LPS administration induced interleukin-1beta (IL-1beta) production in systemic circulation as well as in brain circumventricular organs and the choroid plexus. Intracerebroventricular (i.c.v.) infusion of IL-1ra 4 h after i.p. LPS injection attenuated the reduction in social interaction, a cardinal sign of behavioural depression during sickness, and c-Fos expression in the amygdala and bed nucleus of the stria terminalis. However, LPS-induced fever, rises in plasma corticosterone, body weight loss and c-Fos expression in the hypothalamus and caudal brainstem were not altered by i.c.v. infusion of IL-1ra. These findings, together with our previous observations showing that i.c.v. infused IL-1ra diffuses throughout perivascular spaces, where macrophages express interleukin-1 receptors, can be interpreted to suggest that circulating or locally produced brain IL-1beta acts on these cells to bring about behavioural depression and activation of limbic structures during the APR after peripheral LPS administration. PMID:19087175

  20. Phosphorylated STAT3 and PD-1 regulate IL-17 production and IL-23 receptor expression in Mycobacterium tuberculosis infection.

    PubMed

    Bandaru, Anuradha; Devalraju, Kamakshi P; Paidipally, Padmaja; Dhiman, Rohan; Venkatasubramanian, Sambasivan; Barnes, Peter F; Vankayalapati, Ramakrishna; Valluri, Vijayalakshmi

    2014-07-01

    We studied the factors that regulate IL-23 receptor expression and IL-17 production in human tuberculosis infection. Mycobacterium tuberculosis (M. tb)-stimulated CD4(+) T cells from tuberculosis patients secreted less IL-17 than did CD4(+) T cells from healthy tuberculin reactors (PPD(+) ). M. tb-cultured monocytes from tuberculosis patients and PPD(+) donors expressed equal amounts of IL-23p19 mRNA and protein, suggesting that reduced IL-23 production is not responsible for decreased IL-17 production by tuberculosis patients. Freshly isolated and M. tb-stimulated CD4(+) T cells from tuberculosis patients had reduced IL-23 receptor and phosphorylated STAT3 (pSTAT3) expression, compared with cells from PPD(+) donors. STAT3 siRNA reduced IL-23 receptor expression and IL-17 production by CD4(+) T cells from PPD(+) donors. Tuberculosis patients had increased numbers of PD-1(+) T cells compared with healthy PPD(+) individuals. Anti-PD-1 antibody enhanced pSTAT3 and IL-23R expression and IL-17 production by M. tb-cultured CD4(+) T cells of tuberculosis patients. Anti-tuberculosis therapy decreased PD-1 expression, increased IL-17 and IFN-γ production and pSTAT3 and IL-23R expression. These findings demonstrate that increased PD-1 expression and decreased pSTAT3 expression reduce IL-23 receptor expression and IL-17 production by CD4(+) T cells of tuberculosis patients. PMID:24643836

  1. Epidermal growth factor (EGF)-receptor is phosphorylated at threonine-654 in A431 cells following EGF addition

    SciTech Connect

    Whiteley, B.; Glaser, L.

    1986-05-01

    It has been shown that activation of protein kinase C by tumor-promoting phorbol diesters causes phorphorylation of the EGF-receptor at threonine-654 and is believed to thereby regulate the EGF receptor tyrosine kinase and EGF binding activity. In their present studies, /sup 32/P-labeled A431 cells were treated with and without 10 nM phorbol 12-myristate 13-acetate (PMA), or with 200 ng/ml EGF. Analysis of /sup 32/P-labeled EGF receptor tryptic phosphopeptides by reverse-phase HPLC confirmed the known effects of PMA and revealed that EGF caused phosphorylation at threonine-654 as well as various tyrosine residues. This effect occurred as early as 1 minute after EGF addition and was maximal after 5 minutes. The magnitude of the response appears to be 50% of a 15 minute treatment with 10 nM PMA. Direct measurement of diacylglycerol using an E. coli diacylglycerol kinase confirmed that EGF-stimulated phosphoinositide turnover could cause very rapid activation of protein kinase C. These results imply that protein kinase C is playing a role in negative modulation of EGF-receptor activity following EGF addition to A431 cells.

  2. Syk interacts with tyrosine-phosphorylated proteins in human platelets activated by collagen and cross-linking of the Fc gamma-IIA receptor.

    PubMed Central

    Yanaga, F; Poole, A; Asselin, J; Blake, R; Schieven, G L; Clark, E A; Law, C L; Watson, S P

    1995-01-01

    Activation of human platelets by cross-linking of the platelet low-affinity IgG receptor, the Fc gamma receptor IIA (Fc gamma-RIIA), or by collagen is associated with rapid phosphorylation on tyrosine of the non-receptor tyrosine kinase syk. Phosphorylation is still observed, albeit sometimes reduced, in the presence of a combination of a protein kinase C inhibitor, Ro 31-8220, and the intracellular calcium chelator, BAPTA-AM, demonstrating independence from phosphoinositide-specific phospholipase C (PLC) activity. In contrast, the combination of Ro 31-8220 and BAPTA-AM completely inhibits phosphorylation of syk in thrombin-stimulated platelets. Phosphorylation of syk increases its autophosphorylation activity measured in a kinase assay performed on syk immunoprecipitates. Fc gamma-RIIA also undergoes phosphorylation in syk immunoprecipitates from platelets activated by cross-linking of Fc gamma-RIIA but not by collagen, suggesting that it associates with the kinase. Consistent with this, tyrosine-phosphorylated Fc gamma-RIIA is precipitated by a glutathione S-transferase (GST) fusion protein containing the tandem src homology (SH2) domains of syk from Fc gamma-RIIA- but not collagen-activated cells. Two uncharacterized tyrosine-phosphorylated proteins of 40 and 65 kDa are uniquely precipitated by a GST fusion protein containing the tandem syk-SH2 domains in collagen-stimulated platelets. A peptide based on the antigen recognition activation motif (ARAM) of Fc gamma-RIIA, and phosphorylated on the two tyrosine residues found within this region, selectively binds syk from lysates of resting platelets; this interaction is not seen with a non-phosphorylated peptide. Kinase assays on Fc gamma-RIIA immunoprecipitates reveal the constitutive association of an unidentified kinase activity in resting cells which phosphorylates a 67 kDa protein. Syk is not detected in Fc gamma-RIIA immunoprecipitates from resting cells but associates with the receptor following activation

  3. "Silent" Priming of Translation-Dependent LTP by [Beta]-Adrenergic Receptors Involves Phosphorylation and Recruitment of AMPA Receptors

    ERIC Educational Resources Information Center

    Tenorio, Gustavo; Connor, Steven A.; Guevremont, Diane; Abraham, Wickliffe C.; Williams, Joanna; O'Dell, Thomas J.; Nguyen, Peter V.

    2010-01-01

    The capacity for long-term changes in synaptic efficacy can be altered by prior synaptic activity, a process known as "metaplasticity." Activation of receptors for modulatory neurotransmitters can trigger downstream signaling cascades that persist beyond initial receptor activation and may thus have metaplastic effects. Because activation of…

  4. Studies on the autophosphorylation of the insulin receptor from human placenta. Analysis of the sites phosphorylated by two-dimensional peptide mapping.

    PubMed Central

    Tavaré, J M; Denton, R M

    1988-01-01

    1. A partially purified preparation of human placental insulin receptors was incubated with [gamma-32P]ATP in the presence or absence of insulin. The 32P-labelled insulin-receptor beta-subunits were then isolated, cleaved with trypsin followed by protease V8 and the [32P]phosphopeptides generated were analysed by thin layer electrophoresis and chromatography. This approach revealed that insulin stimulates autophosphorylation of the insulin-receptor beta-subunit in vitro on at least seven tyrosine residues distributed among three distinct domains. 2. One domain (domain 2), containing tyrosine residues 1146, 1150 and 1151 was the most rapidly phosphorylated and could be recovered as mono-, di- and triphosphorylated peptides cleaved by trypsin at Arg-1143 and either Lys-1153 or Lys-1156. Multiple phosphorylation of this domain appears to partially inhibit the cleavage at Lys-1153 by trypsin. 3. In a second domain (domain 3) containing two phosphorylated tyrosine residues at positions 1316 and 1322 the tyrosines were phosphorylated more slowly than those in domain 2. This domain is close to the C-terminus of the beta-subunit polypeptide chain. 4. At least two further tyrosine residues appeared to be phosphorylated after those in domains 2 and 3. These residues probably residue within a domain lying in close proximity to the inner face of the plasma membrane containing tyrosines 953, 960 and 972, but conclusive evidence is still required. 5. The two-dimensional thin-layer analysis employed in this study to investigate insulin-receptor phosphorylation has several advantages over previous methods based on reverse-phase chromatography. It allows greater resolution of 32P-labelled tryptic peptides and, when coupled to radioautography, is considerably more sensitive. The approach can be readily adapted to study phosphorylation of the insulin receptor within intact cells. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. PMID:3166375

  5. Tyrosine-599 of the c-Mpl receptor is required for Shc phosphorylation and the induction of cellular differentiation.

    PubMed Central

    Alexander, W S; Maurer, A B; Novak, U; Harrison-Smith, M

    1996-01-01

    Interaction of thrombopoietin (TPO) with its receptor, c-Mpl, triggers cell growth and differentiation responses controlling primitive haemopoietic cell production and megakaryocytopoiesis. To examine the important receptor domains and signal transduction pathways involved in these cellular responses, c-Mpl cytoplasmic domain truncation and tyrosine substitution mutants were generated. In the myelomonocytic leukaemia cell lines WEHI3B-D+ and M1, ectopic expression of the wild-type c-Mpl receptor induced TPO-dependent cellular differentiation characterized by increased cell migration through agar and acquisition of the morphology and molecular markers of macrophages. Consistent with the concept that proliferative and differentiation signals emanate from distinct receptor domains, the C-terminal 33 amino acids of c-Mpl were dispensable for a proliferative response in Ba/F3 cells but proved critical for WEHI3B-D+ and M1 differentiation. Finer mapping revealed that substitution of Tyr599 by phenylalanine within this c-Mpl domain was sufficient to abolish the normal differentiation response. Moreover, in contrast to the normal c-Mpl receptor, this same mplY599F mutant was also incapable of stimulating TPO-dependent Shc phosphorylation, the association of Shc with Grb2 or c-Mpl and of inducing c-fos expression. Thus activation of components of the Ras signalling cascade, initiated by interaction of Shc with c-Mpl Tyr599, may play a decisive role in specific differentiation signals emanating from the c-Mpl receptor. Images PMID:8978680

  6. GPR40 receptor activation leads to CREB phosphorylation and improves cognitive performance in an Alzheimer's disease mouse model.

    PubMed

    Khan, Muhammad Zahid; Zhuang, Xuxu; He, Ling

    2016-05-01

    Alzheimer's disease (AD) is a very complex neurodegenerative disorder as neuronal loss is a prominent and initial feature of AD. This loss correlates with cognitive deficits more closely than amyloid load. GPR40 receptor belongs to the class of G-protein coupled receptors, is expressed in wide parts of the brain including the hippocampus which is involved in spatial learning and memory. Till now, there are few studies investigating the functional role of GPR40 in brain. In this study, we evaluated the functional role of GPR40 receptor in the A-beta AD mice model. Administration of Aβ1-42 (410pmol) intracerebroventricularly (i.c.v.) once at the beginning of experiment significantly impaired cognitive performance (in step-through passive test), the ability of spatial learning and memory in (Morris water maze test), working memory, attention, anxiety in (Novel object recognition test), and spatial working and reference-memory in (Hole board discrimination test) compared with the control group. The results revealed that GPR40 receptor treatment groups significantly ameliorated model mice cognitive performance. All GPR40 receptor agonist GW9508, treatment groups enhanced the learning and memory ability in Step-through passive test, Morris water maze test, Hole board discrimination test, Novel object recognition test. Furthermore, we have observed that activation of GPR40 receptor provoked the phosphorylation of the cAMP response element binding protein (CREB) and significant increase in neurotropic factors including brain derived neurotrophic factor (BDNF), nerve growth factor (NGF), neurotrophin-3 (NT-3), neurotrohin-4 (NT-4) in mouse hippocampal neurons and contribute to neurogenesis. These results suggest that GPR40 is a suitable therapeutic candidate for neurogenesis and neuroprotection in the treatment and prevention of AD.

  7. Tumor Necrosis Factor-α -and Interleukin-1-Induced Cellular Responses: Coupling Proteomic and Genomic Information

    PubMed Central

    Ott, Lee W.; Resing, Katheryn A.; Sizemore, Alecia W.; Heyen, Joshua W.; Cocklin, Ross R.; Pedrick, Nathan M.; Woods, H. Cary; Chen, Jake Y.; Goebl, Mark G.; Witzmann, Frank A.; Harrington, Maureen A.

    2010-01-01

    The pro-inflammatory cytokines, Tumor Necrosis Factor-alpha (TNFα) and Interleukin-1 (IL-1) mediate the innate immune response. Dysregulation of the innate immune response contributes to the pathogenesis of cancer, arthritis, and congestive heart failure. TNFα- and IL-1-induced changes in gene expression are mediated by similar transcription factors; however, TNFα and IL-1 receptor knock-out mice differ in their sensitivities to a known initiator (lipopolysaccharide, LPS) of the innate immune response. The contrasting responses to LPS indicate that TNFα and IL-1 regulate different processes. A large-scale proteomic analysis of TNFα- and IL-1-induced responses was undertaken to identify processes uniquely regulated by TNFα and IL-1. When combined with genomic studies, our results indicate that TNFα, but not IL-1, mediates cell cycle arrest. PMID:17503796

  8. ADAMTS1 inhibits lymphangiogenesis by attenuating phosphorylation of the lymphatic endothelial cell-specific VEGF receptor

    SciTech Connect

    Inagaki, Junko; Takahashi, Katsuyuki; Ogawa, Hiroko; Asano, Keiichi; Faruk Hatipoglu, Omer; Zeynel Cilek, Mehmet; Obika, Masanari; Ohtsuki, Takashi; Hofmann, Matthias; Kusachi, Shozo; Ninomiya, Yoshifumi; Hirohata, Satoshi

    2014-05-01

    Angiogenesis and lymphangiogenesis play roles in malignant tumor progression, dissemination, and metastasis. ADAMTS1, a member of the matrix metalloproteinase family, is known to inhibit angiogenesis. Recombinant ADAMTS1 was shown to strongly inhibit angiogenesis. We investigated whether ADAMTS1 inhibited lymphangiogenesis in the present study. We examined cell proliferation and cell migration in normal human dermal lymphatic microvascular endothelial cells (HMVEC-dLy) transduced with or without adenoviral human ADAMTS1 gene therapy. We then examined the VEGFC/VEGFR3 signal transduction pathway in ADAMTS1-transduced HMVEC-dLy. Cell proliferation and tube formation in Matrigel were significantly lower with transduced ADAMTS1 than with control (non-transduced HMVEC-dLy). The phosphorylation of VEGFR3 was also attenuated by ADAMTS1 gene therapy in HMVEC-dLy. Immunoprecipitation assays revealed that ADAMTS1 formed a complex with VEGFC. Our results demonstrated that ADAMTS1 inhibited lymphangiogenesis in vitro. The data highlight the new function of ADAMTS1 in the regulation of lymphangiogenesis and the therapeutic potential of ADAMTS1 in cancer therapy. - Highlights: • ADAMTS1 significantly inhibited tube formation and cell proliferation in HMVEC-dLy. • Reduced lymph endothelial cell migration in ADAMTS1 transduced co-culture systems. • VEGFC-stimulated phosphorylation of VEGFR3 is attenuated by ADAMTS1. • Reduced phosphorylation of Akt and ERK1/2 in ADAMTS1 treated HMVEC-dLy. • ADAMTS1 binds directly to VEGFC.

  9. Identification and functional analysis of tomato BRI1 and BAK1 receptor kinase phosphorylation sites

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Brassinosteroids (BRs) are essential plant hormones that are perceived at the cell surface by a membrane bound receptor kinase, BRASSINOSTEROID INSENSITIVE 1 (BRI1). BRI1 interacts with BRI1-ASSOCIATED RECEPTOR KINASE 1 (BAK1) to initiate a signal transduction pathway in which autophosphorylation an...

  10. Genetic and Pharmacologic Disruption of Interleukin-1β Signaling Inhibits Experimental Aortic Aneurysm Formation

    PubMed Central

    Johnston, William F.; Salmon, Morgan; Su, Gang; Lu, Guanyi; Stone, Matthew L.; Zhao, Yunge; Owens, Gary K.; Upchurch, Gilbert R.; Ailawadi, Gorav

    2013-01-01

    Objective Abdominal aortic aneurysms (AAAs) are common, but their exact pathogenesis remains unknown and no specific medical therapies are available. We sought to evaluate interleukin-1β (IL-1β) and interleukin-1 receptor (IL-1R) in an experimental AAA model to identify novel therapeutic targets for AAA treatment. Methods and Results IL-1β mRNA and protein levels were significantly elevated in abdominal aortas of 8-12 week old male C57Bl/6 mice following elastase aortic perfusion (WT) compared to saline perfusion. Mice with genetic deletion of IL-1β (IL-1β KO) or IL-1R (IL-1R KO) that underwent elastase perfusion demonstrated significant protection against AAA formation, with maximal aortic dilations of 38.0±5.5% for IL-1β KO and 52.5±4.6% for IL-1R KO compared to 89.4±4.0% for WT mice (p<0.005). Correspondingly, IL-1β KO and IL-1R KO aortas had reduced macrophage and neutrophil staining with greater elastin preservation compared to WT. In WT mice pretreated with escalating doses of the IL-1R antagonist anakinra, there was a dose-dependent decrease in maximal aortic dilation (R=−0.676, p <0.0005). Increasing anakinra doses correlated with decreasing macrophage staining and elastin fragmentation. Lastly, WT mice treated with anakinra 3 or 7 days following AAA initiation with elastase demonstrated significant protection against AAA progression and had decreased aortic dilation compared to control mice. Conclusions IL-1β is critical for AAA initiation and progression, and IL-1β neutralization through genetic deletion or receptor antagonism attenuates experimental AAA formation. Disrupting IL-1β signaling offers a novel pathway for AAA treatment. PMID:23288154

  11. Aluminum fluoride induces phosphatidylinositol turnover, elevation of cytoplasmic free calcium, and phosphorylation of the T cell antigen receptor in murine T cells

    SciTech Connect

    O'Shea, J.J.; Urdahl, K.B.; Luong, H.T.; Chused, T.M.; Samelson, L.E.; Klausner, R.D.

    1987-11-15

    Antigen activation of murine T lymphocytes leads to phosphorylation of three subunits of the murine T cell antigen receptor. Two kinases are activated in this process: protein kinase C which leads to phosphorylation of the ..gamma.. and, to a lesser extent, the epsilon subunits on serine residues and a tyrosine kinase which phosphorylates the p21 subunit. The authors sought to determine whether treatment of these cells with NaF could simulate any of these antigen-induced events. Indeed NaF treatment resulted in breakdown of polyphosphoinositides and production of phosphoinositols. This treatment also resulted in a rise in cytosolic free Ca/sup 2 +/. EGTA failed to block this rise suggesting that NaF liberated intracellular stores of Ca/sup 2 +/. Finally NaF treatment resulted in phosphorylation of the ..gamma.. and epsilon chains of the T cell receptor indistinguishable from the effects of phorbol esters. The NaF effect was potentiated by addition of AlCl/sub 3/ consistent with the view that the active moiety is AlF/sub 4//sup -/. The AlF/sub 4//sup -/-induced phosphorylations were abolished in cells in which protein kinase C was depleted by prior treatment with phorbol myristate acetate. All of these observations are compatible with the interpretation that the AlF/sub 4//sup -/ phosphorylation is mediated by protein kinase C. Antigen and anti-receptor antibody-induced receptor serine phosphorylation and phophatidylinositol turnover are blocked by raising intracellular levels of cyclic adenosin monophosphate. In contrast, AlF/sub 4//sup -/-induced effects were in sensitive to cyclic adenosine monmonophosphate

  12. Induction of interleukin 1 secretion by adjuvant-active peptidoglycans.

    PubMed Central

    Vacheron, F; Guenounou, M; Nauciel, C

    1983-01-01

    The ability of differently structured, purified peptidoglycans (PG) to induce interleukin 1 (IL1) secretion was compared. PG from Bacillus megaterium and Staphylococcus aureus stimulated the production of IL1 by mouse peritoneal macrophages and human adherent mononuclear cells, whereas PG from Micrococcus lysodeikticus and Corynebacterium poinsettiae were inactive. There was a correlation between the ability of PG to induce IL1 secretion and previously demonstrated immunoenhancing activities (adjuvant effect, increase of resistance to tumor growth) of PG. PG solubilization by lysozyme decreased but did not abolish the PG effect on IL1 secretion. Active PG induced IL1 production in nude mice and in the C3H/HeJ strain (which is unresponsive to lipopolysaccharides). PMID:6605929

  13. Interleukin-1 gene complex in schizophrenia: an association study.

    PubMed

    Saiz, Pilar A; Garcia-Portilla, Maria P; Arango, Celso; Morales, Blanca; Martinez-Barrondo, Sara; Alvarez, Victoria; Coto, Eliecer; Fernandez, Juan; Bousono, Manuel; Bobes, Julio

    2006-09-01

    The aim of this study is to investigate the association between three polymorphisms of the interleukin-1 (IL-1) gene complex and schizophrenia. We genotyped 228 outpatients with schizophrenia (DSM-IV criteria) and 419 unrelated healthy controls. The following polymorphisms were analyzed: IL-1alpha -889 C/T, IL-1beta +3953 C/T, and IL-1RA (86 bp)n. No significant differences in genotype or in allelic distribution of the Il-1alpha, IL-1beta, and IL-1RA polymorphisms were found. Estimated haplotype frequencies were similar in both groups. Our data do not suggest that genetically determined changes in the IL-1 gene complex confer increased susceptibility for schizophrenia.

  14. The influences of reproductive status and acute stress on the levels of phosphorylated delta opioid receptor immunoreactivity in rat hippocampus☆

    PubMed Central

    Burstein, Suzanne R.; Williams, Tanya J.; Lane, Diane A.; Knudsen, Margarete G.; Pickel, Virginia M.; McEwen, Bruce S.; Waters, Elizabeth M.; Milner, Teresa A.

    2013-01-01

    In the hippocampus, ovarian hormones and sex can alter the trafficking of delta opioid receptors (DORs) and the proportion of DORs that colocalize with the stress hormone, corticotropin releasing factor. Here, we assessed the effects of acute immobilization stress (AIS) and sex on the phosphorylation of DORs in the rat hippocampus. We first localized an antibody to phosphorylated DOR (pDOR) at the SER363 carboxy-terminal residue, and demonstrated its response to an opioid agonist. By light microscopy, pDOR-immunoreactivity (ir) was located predominantly in CA2/CA3a pyramidal cell apical dendrites and in interneurons in CA1-3 stratum oriens and the dentate hilus. By electron microscopy, pDOR-ir primarily was located in somata and dendrites, associated with endomembranes, or in dendritic spines. pDOR-ir was less frequently found in mossy fibers terminals. Quantitative light microscopy revealed a significant increase in pDOR-ir in the CA2/CA3a region of male rats 1 h following an injection of the opioid agonist morphine (20 mg/kg, I.P). To look at the effects of stress on pDOR, we compared pDOR-ir in males and cycling females after AIS. The level of pDOR-ir in stratum radiatum of CA2/CA3a was increased in control estrus (elevated estrogen and progesterone) females compared to proestrus and diestrus females and males. However, immediately following 30 min of AIS, no significant differences in pDOR levels were seen across estrous cycle phase or sex. These findings suggest that hippocampal levels of phosphorylated DORs vary with estrous cycle phase and that acute stress may dampen the differential effects of hormones on DOR activation in females. PMID:23583481

  15. The influences of reproductive status and acute stress on the levels of phosphorylated delta opioid receptor immunoreactivity in rat hippocampus.

    PubMed

    Burstein, Suzanne R; Williams, Tanya J; Lane, Diane A; Knudsen, Margarete G; Pickel, Virginia M; McEwen, Bruce S; Waters, Elizabeth M; Milner, Teresa A

    2013-06-26

    In the hippocampus, ovarian hormones and sex can alter the trafficking of delta opioid receptors (DORs) and the proportion of DORs that colocalize with the stress hormone, corticotropin releasing factor. Here, we assessed the effects of acute immobilization stress (AIS) and sex on the phosphorylation of DORs in the rat hippocampus. We first localized an antibody to phosphorylated DOR (pDOR) at the SER363 carboxy-terminal residue, and demonstrated its response to an opioid agonist. By light microscopy, pDOR-immunoreactivity (ir) was located predominantly in CA2/CA3a pyramidal cell apical dendrites and in interneurons in CA1-3 stratum oriens and the dentate hilus. By electron microscopy, pDOR-ir primarily was located in somata and dendrites, associated with endomembranes, or in dendritic spines. pDOR-ir was less frequently found in mossy fibers terminals. Quantitative light microscopy revealed a significant increase in pDOR-ir in the CA2/CA3a region of male rats 1h following an injection of the opioid agonist morphine (20mg/kg, I.P). To look at the effects of stress on pDOR, we compared pDOR-ir in males and cycling females after AIS. The level of pDOR-ir in stratum radiatum of CA2/CA3a was increased in control estrus (elevated estrogen and progesterone) females compared to proestrus and diestrus females and males. However, immediately following 30min of AIS, no significant differences in pDOR levels were seen across estrous cycle phase or sex. These findings suggest that hippocampal levels of phosphorylated DORs vary with estrous cycle phase and that acute stress may dampen the differential effects of hormones on DOR activation in females. PMID:23583481

  16. Bisphenol-A rapidly promotes dynamic changes in hippocampal dendritic morphology through estrogen receptor-mediated pathway by concomitant phosphorylation of NMDA receptor subunit NR2B

    SciTech Connect

    Xu Xiaohong Ye Yinping; Li Tao; Chen Lei; Tian Dong; Luo Qingqing; Lu Mei

    2010-12-01

    Bisphenol-A (BPA) is known to be a potent endocrine disrupter. Evidence is emerging that estrogen exerts a rapid influence on hippocampal synaptic plasticity and the dendritic spine density, which requires activation of NMDA receptors. In the present study, we investigated the effects of BPA (ranging from 1 to 1000 nM), focusing on the rapid dynamic changes in dendritic filopodia and the expressions of estrogen receptor (ER) {beta} and NMDA receptor, as well as the phosphorylation of NMDA receptor subunit NR2B in the cultured hippocampal neurons. A specific ER antagonist ICI 182,780 was used to examine the potential involvement of ERs. The results demonstrated that exposure to BPA (ranging from 10 to 1000 nM) for 30 min rapidly enhanced the motility and the density of dendritic filopodia in the cultured hippocampal neurons, as well as the phosphorylation of NR2B (pNR2B), though the expressions of NMDA receptor subunits NR1, NR2B, and ER{beta} were not changed. The antagonist of ERs completely inhibited the BPA-induced increases in the filopodial motility and the number of filopodia extending from dendrites. The increased pNR2B induced by BPA (100 nM) was also completely eliminated. Furthermore, BPA attenuated the effects of 17{beta}-estradiol (17{beta}-E{sub 2}) on the dendritic filopodia outgrowth and the expression of pNR2B when BPA was co-treated with 17{beta}-E{sub 2}. The present results suggest that BPA, like 17{beta}-E{sub 2}, rapidly results in the enhanced motility and density of dendritic filopodia in the cultured hippocampal neurons with the concomitant activation of NMDA receptor subunit NR2B via an ER-mediated signaling pathway. Meanwhile, BPA suppressed the enhancement effects of 17{beta}-E{sub 2} when it coexists with 17{beta}-E{sub 2}. These results provided important evidence suggesting the neurotoxicity of the low levels of BPA during the early postnatal development of the brain.

  17. Thrombin Receptor-Activating Protein (TRAP)-Activated Akt Is Involved in the Release of Phosphorylated-HSP27 (HSPB1) from Platelets in DM Patients

    PubMed Central

    Tokuda, Haruhiko; Kuroyanagi, Gen; Tsujimoto, Masanori; Matsushima-Nishiwaki, Rie; Akamatsu, Shigeru; Enomoto, Yukiko; Iida, Hiroki; Otsuka, Takanobu; Ogura, Shinji; Iwama, Toru; Kojima, Kumi; Kozawa, Osamu

    2016-01-01

    It is generally known that heat shock protein 27 (HSP27) is phosphorylated through p38 mitogen-activated protein (MAP) kinase. We have previously reported that HSP27 is released from human platelets associated with collagen-induced phosphorylation. In the present study, we conducted an investigation into the effect of thrombin receptor-activating protein (TRAP) on the release of HSP27 in platelets in type 2 diabetes mellitus (DM) patients. The phosphorylated-HSP27 levels induced by TRAP were directly proportional to the aggregation of platelets. The levels of phosphorylated-HSP27 (Ser-78) were correlated with the levels of phosphorylated-p38 MAP kinase and phosphorylated-Akt in the platelets stimulated by 10 µM TRAP but not with those of phosphorylated-p44/p42 MAP kinase. The levels of HSP27 released from the TRAP (10 µM)-stimulated platelets were correlated with the levels of phosphorylated-HSP27 in the platelets. The released platelet-derived growth factor-AB (PDGF-AB) levels were in parallel with the HSP27 levels released from the platelets stimulated by 10 µM TRAP. Although the area under the curve (AUC) of small aggregates (9–25 µm) induced by 10 µM TRAP showed no significant correlation with the released HSP27 levels, AUC of medium aggregates (25–50 µm), large aggregates (50–70 µm) and light transmittance were significantly correlated with the released HSP27 levels. TRAP-induced phosphorylation of HSP27 was truly suppressed by deguelin, an inhibitor of Akt, in the platelets from a healthy subject. These results strongly suggest that TRAP-induced activation of Akt in addition to p38 MAP kinase positively regulates the release of phosphorylated-HSP27 from human platelets, which is closely related to the platelet hyper-aggregation in type 2 DM patients. PMID:27187380

  18. Constitutive tyrosine phosphorylation of the T-cell receptor (TCR) zeta subunit: regulation of TCR-associated protein tyrosine kinase activity by TCR zeta.

    PubMed Central

    van Oers, N S; Tao, W; Watts, J D; Johnson, P; Aebersold, R; Teh, H S

    1993-01-01

    The T-cell receptor (TCR) zeta subunit is an important component of the TCR complex, involved in signal transduction events following TCR engagement. In this study, we showed that the TCR zeta chain is constitutively tyrosine phosphorylated to similar extents in thymocytes and lymph node T cells. Approximately 35% of the tyrosine-phosphorylated TCR zeta (phospho zeta) precipitated from total cell lysates appeared to be surface associated. Furthermore, constitutive phosphorylation of TCR zeta in T cells occurred independently of antigen stimulation and did not require CD4 or CD8 coreceptor expression. In lymph node T cells that constitutively express tyrosine-phosphorylated TCR zeta, there was a direct correlation between surface TCR-associated protein tyrosine kinase (PTK) activity and expression of phospho zeta. TCR stimulation of these cells resulted in an increase in PTK activity that coprecipitated with the surface TCR complex and a corresponding increase in the levels of phospho zeta. TCR ligations also contributed to the detection of several additional phosphoproteins that coprecipitated with surface TCR complexes, including a 72-kDa tyrosine-phosphorylated protein. The presence of TCR-associated PTK activity also correlated with the binding of a 72-kDa protein, which became tyrosine phosphorylated in vitro kinase assays, to tyrosine phosphorylated TCR zeta. The cytoplasmic region of the TCR zeta chain was synthesized, tyrosine phosphorylated, and conjugated to Sepharose beads. Only tyrosine-phosphorylated, not nonphosphorylated, TCR zeta beads were capable of immunoprecipitating the 72-kDa protein from total cell lysates. This 72-kDa protein is likely the murine equivalent of human PTK ZAP-70, which has been shown to associate specifically with phospho zeta. These results suggest that TCR-associated PTK activity is regulated, at least in part, by the tyrosine phosphorylation status of TCR zeta. Images PMID:7689151

  19. Calcium-sensing receptor-dependent activation of CREB phosphorylation in HEK293 cells and human parathyroid cells.

    PubMed

    Avlani, Vimesh A; Ma, Wenting; Mun, Hee-Chang; Leach, Katie; Delbridge, Leigh; Christopoulos, Arthur; Conigrave, Arthur D

    2013-05-15

    In addition to its acute effects on hormone secretion, epithelial transport, and shape change, the calcium-sensing receptor (CaSR) modulates the expression of genes that control cell survival, proliferation, and differentiation as well as the synthesis of peptide hormones and enzymes. In the present study, we investigated the impacts of a CaSR agonist and several CaSR modulators on phosphorylation of transcription factor CREB residue Ser(133) in CaSR-expressing HEK293 (HEK-CaSR) cells and human adenomatous parathyroid cells. Elevated Ca(2+)o concentration had no effect on CREB phosphorylation (p-CREB) in control HEK293 cells but stimulated p-CREB in both HEK-CaSR cells and human parathyroid cells. In addition, p-CREB was stimulated by the positive modulator cinacalcet and inhibited by the negative modulator NPS 2143 in both CaSR-expressing cell types. Two positive modulators that bind in the receptor's Venus Fly Trap domain, l-phenylalanine and S-methylglutathione, had no effect on p-CREB in HEK-CaSR cells, demonstrating the existence of pronounced signaling bias. Analysis of the signaling pathways using specific inhibitors demonstrated that phosphoinositide-specific phospholipase C and conventional protein kinase C isoforms make major contributions to Ca(2+)o-induced p-CREB in both cell-types, suggesting key roles for Gq/11. In addition, in parathyroid cells but not HEK-CaSR cells, activation of p-CREB was dependent on Gi/o, demonstrating the existence of cell type-specific signaling.

  20. Serotonin increases ERK1/2 phosphorylation in astrocytes by stimulation of 5-HT2B and 5-HT2C receptors.

    PubMed

    Li, Baoman; Zhang, Shiquen; Li, Min; Hertz, Leif; Peng, Liang

    2010-11-01

    We have previously shown that fluoxetine causes ERK(1/2) phosphorylation in cultured mouse astrocytes mediated exclusively by stimulation of 5-HT(2B) receptors (Li et al., 2008b). This raises the question whether this is also the case for serotonin (5-HT) itself. In the present study serotonin was found to induce ERK(1/2) phosphorylation by stimulation of 5-HT(2B) receptors with high affinity (EC(50): 20-30 pM), and by stimulation of 5-HT(2C) receptor with low affinity (EC(50): 1 microM or higher). ERK(1/2) phosphorylation induced by stimulation of either 5-HT(2B) or 5-HT(2C) receptors was mediated by epidermal growth factor (EGF) receptor transactivation (Peng et al., this issue), shown by the inhibitory effect of AG1478, an inhibitor of the EGF receptor tyrosine kinase, and GM6001, an inhibitor of Zn-dependent metalloproteinases, and thus of 5-HT(2B) receptor-mediated EGF receptor agonist release. It is discussed that the high potency of the 5-HT(2B)-mediated effect is consistent with literature data for binding affinity of serotonin to cloned human 5-HT(2B) receptors and with observations of low extracellular concentrations of serotonin in brain, which would allow a demonstrated moderate and modality-dependent increase in specific brain areas to activate 5-HT(2B) receptors. In contrast the relevance of the observed 5-HT(2C) receptors on astrocytes is questioned. PMID:20450948

  1. Estrous cycle variations in GABA(A) receptor phosphorylation enable rapid modulation by anabolic androgenic steroids in the medial preoptic area.

    PubMed

    Oberlander, J G; Porter, D M; Onakomaiya, M M; Penatti, C A A; Vithlani, M; Moss, S J; Clark, A S; Henderson, L P

    2012-12-13

    Anabolic androgenic steroids (AAS), synthetic testosterone derivatives that are used for ergogenic purposes, alter neurotransmission and behaviors mediated by GABA(A) receptors. Some of these effects may reflect direct and rapid action of these synthetic steroids at the receptor. The ability of other natural allosteric steroid modulators to alter GABA(A) receptor-mediated currents is dependent upon the phosphorylation state of the receptor complex. Here we show that phosphorylation of the GABA(A) receptor complex immunoprecipitated by β(2)/β(3) subunit-specific antibodies from the medial preoptic area (mPOA) of the mouse varies across the estrous cycle; with levels being significantly lower in estrus. Acute exposure to the AAS, 17α-methyltestosterone (17α-MeT), had no effect on the amplitude or kinetics of inhibitory postsynaptic currents in the mPOA of estrous mice when phosphorylation was low, but increased the amplitude of these currents from mice in diestrus, when it was high. Inclusion of the protein kinase C (PKC) inhibitor, calphostin, in the recording pipette eliminated the ability of 17α-MeT to enhance currents from diestrous animals, suggesting that PKC-receptor phosphorylation is critical for the allosteric modulation elicited by AAS during this phase. In addition, a single injection of 17α-MeT was found to impair an mPOA-mediated behavior (nest building) in diestrus, but not in estrus. PKC is known to target specific serine residues in the β(3) subunit of the GABA(A) receptor. Although phosphorylation of these β(3) serine residues showed a similar profile across the cycle, as did phosphoserine in mPOA lysates immunoprecipitated with β2/β3 antibody (lower in estrus than in diestrus or proestrus), the differences were not significant. These data suggest that the phosphorylation state of the receptor complex regulates both the ability of AAS to modulate receptor function in the mPOA and the expression of a simple mPOA-dependent behavior through a

  2. A PKC-SHP1 signaling axis desensitizes Fcγ receptor signaling by reducing the tyrosine phosphorylation of CBL and regulates FcγR mediated phagocytosis

    PubMed Central

    2014-01-01

    Background Fcγ receptors mediate important biological signals in myeloid cells including the ingestion of microorganisms through a process of phagocytosis. It is well-known that Fcγ receptor (FcγR) crosslinking induces the tyrosine phosphorylation of CBL which is associated with FcγR mediated phagocytosis, however how signaling molecules coordinate to desensitize these receptors is unclear. An investigation of the mechanisms involved in receptor desensitization will provide new insight into potential mechanisms by which signaling molecules may downregulate tyrosine phosphorylation dependent signaling events to terminate important signaling processes. Results Using the U937IF cell line, we observed that FcγR1 crosslinking induces the tyrosine phosphorylation of CBL, which is maximal at 5 min. followed by a kinetic pattern of dephosphorylation. An investigation of the mechanisms involved in receptor desensitization revealed that pretreatment of U937IF or J774 cells with PMA followed by Fcγ receptor crosslinking results in the reduced tyrosine phosphorylation of CBL and the abrogation of downstream signals, such as CBL-CRKL binding, Rac-GTP activation and the phagocytic response. Pretreatment of J774 cells with GF109203X, a PKC inhibitor was observed to block dephosphorylation of CBL and rescued the phagocytic response. We demonstrate that the PKC induced desensitization of FcγR/ phagocytosis is associated with the inactivation of Rac-GTP, which is deactivated in a hematopoietic specific phosphatase SHP1 dependent manner following ITAM stimulation. The effect of PKC on FcγR signaling is augmented by the transfection of catalytically active SHP1 and not by the transfection of catalytic dead SHP1 (C124S). Conclusions Our results suggest a functional model by which PKC interacts with SHP1 to affect the phosphorylation state of CBL, the activation state of Rac and the negative regulation of ITAM signaling i.e. Fcγ receptor mediated phagocytosis. These findings

  3. Human neutrophil formyl peptide receptor phosphorylation and the mucosal inflammatory response

    PubMed Central

    Leoni, Giovanna; Gripentrog, Jeannie; Lord, Connie; Riesselman, Marcia; Sumagin, Ronen; Parkos, Charles A.; Nusrat, Asma; Jesaitis, Algirdas J.

    2015-01-01

    Bacterial/mitochondrial fMLF analogs bind FPR1, driving accumulation/activation of PMN at sites of infection/injury, while promoting wound healing in epithelia. We quantified levels of UFPR1 and TFPR1 in isolated PMN by use of phosphosensitive NFPRb and phosphorylation-independent NFPRa antibodies. UFPR1 and total TFPR were assessed inflamed mucosa, observed in human IBD. In isolated PMN after fMLF stimulation, UFPR1 declined 70% (fMLFEC50 = 11 ± 1 nM; t1/2 = 15 s) and was stable for up to 4 h, whereas TFPR1 changed only slightly. Antagonists (tBoc-FLFLF, CsH) and metabolic inhibitor NaF prevented the fMLF-dependent UFPR1 decrease. Annexin A1 fragment Ac2-26 also induced decreases in UFPR1 (Ac2-26EC50 ∼ 3 µM). Proinflammatory agents (TNF-α, LPS), phosphatase inhibitor (okadaic acid), and G-protein activator (MST) modestly increased fMLFEC50, 2- to 4-fold, whereas PTX, Ca2+ chelators (EGTA/BAPTA), H2O2, GM-CSF, ENA-78, IL-1RA, and LXA4 had no effect. Aggregation-inducing PAF, however, strongly inhibited fMLF-stimulated UFPR1 decreases. fMLF-driven PMN also demonstrated decreased UFPR1 after traversing monolayers of cultured intestinal epithelial cells, as did PMN in intestinal mucosal samples, demonstrating active inflammation from UC patients. Total TFPR remained high in PMN within inflamed crypts, migrating through crypt epithelium, and in the lamina propria-adjoining crypts, but UFPR1 was only observed at some peripheral sites on crypt aggregates. Loss of UFPR1 in PMN results from C-terminal S/T phosphorylation. Our results suggest G protein–insensitive, fMLF-dependent FPR1 phosphorylation in isolated suspension PMN, which may manifest in fMLF-driven transmigration and potentially, in actively inflamed tissues, except at minor discrete surface locations of PMN-containing crypt aggregates. PMID:25395303

  4. Specific interleukin-1 gene polymorphisms in Turkish patients with Behçet's disease.

    PubMed

    Coskun, Mesut; Bacanli, Ali; Sallakci, Nilgun; Alpsoy, Erkan; Yavuzer, Ugur; Yegin, Olcay

    2005-02-01

    Genetic factors that predispose individuals to Behçet's disease (BD) are considered to play important roles in the development of the disease. The pro-inflammatory cytokine interleukin-1 (IL-1) has been implicated in the pathogenesis of BD. Our aim was to determine a possible association of specific polymorphisms of IL-1alpha, IL-1beta, and IL-1 receptor antagonist genes with susceptibility for BD. We genotyped 72 patients with BD and 163 healthy controls for IL-1alpha-889, IL-1beta-511, and +3953 (nt5887) single-nucleotide polymorphisms besides IL-1 receptor antagonist variable number of tandem repeat polymorphism (for five different alleles). Comparison of the IL-1beta+3953 T allele and TT genotype frequencies showed a significant difference between patients with BD and controls (54.2 vs. 40.5%, OR = 1.74, P = 0.024, and 40.3 vs. 19.6%, OR = 2.76, P = 0.009, respectively). However, no difference was observed in the genotype or allele frequencies of IL-1alpha-889, IL-1beta-511, and IL-1 receptor antagonist between the patients with BD and the controls. Our results indicate that susceptibility to BD is increased in individuals carrying the IL-1beta+3953 T allele and TT genotype.

  5. BAG2 expression dictates a functional intracellular switch between the p38-dependent effects of nicotine on tau phosphorylation levels via the α7 nicotinic receptor.

    PubMed

    de Oliveira, Adriele Silva Alves; Santiago, Fernando Enrique; Balioni, Laiz Furlan; Ferrari, Merari de Fatima Ramires; Almeida, Maria Camila; Carrettiero, Daniel Carneiro

    2016-01-01

    The histopathological hallmarks present in Alzheimer's disease (AD) brain are plaques of Aβ peptide, neurofibrillary tangles of hyperphosphorylated tau protein, and a reduction in nicotinic acetylcholine receptor (nAChR) levels. The role of nAChRs in AD is particularly controversial. Tau protein function is regulated by phosphorylation, and its hyperphosphorylated forms are significantly more abundant in AD brain. Little is known about the relationship between nAChR and phospho-tau degradation machinery. Activation of nAChRs has been reported to increase and decrease tau phosphorylation levels, and the mechanisms responsible for this discrepancy are not presently understood. The co-chaperone BAG2 is capable of regulating phospho-tau levels via protein degradation. In SH-SY5Y cell line and rat primary hippocampal cell culture low endogenous BAG2 levels constitute an intracellular environment conducive to nicotine-induced accumulation of phosphorylated tau protein. Further, nicotine treatment inhibited endogenous expression of BAG2, resulting in increased levels of phosphorylated tau indistinguishable from those induced by BAG2 knockdown. Conversely, overexpression of BAG2 is conducive to a nicotine-induced reduction in cellular levels of phosphorylated tau protein. In both cases the effect of nicotine was p38MAPK-dependent, while the α7 antagonist MLA was synthetic to nicotine treatment, either increasing levels of phospho-Tau in the absence of BAG2, or further decreasing the levels of phospho-Tau in the presence of BAG2. Taken together, these findings reconcile the apparently contradictory effects of nicotine on tau phosphorylation by suggesting a role for BAG2 as an important regulator of p38-dependent tau kinase activity and phospho-tau degradation in response to nicotinic receptor stimulation. Thus, we report that BAG2 expression dictates a functional intracellular switch between the p38-dependent functions of nicotine on tau phosphorylation levels via the α7

  6. A novel cytokine-inducible gene CIS encodes an SH2-containing protein that binds to tyrosine-phosphorylated interleukin 3 and erythropoietin receptors.

    PubMed Central

    Yoshimura, A; Ohkubo, T; Kiguchi, T; Jenkins, N A; Gilbert, D J; Copeland, N G; Hara, T; Miyajima, A

    1995-01-01

    Cytokines manifest their function through alteration of gene expression. However, target genes for signals from cytokine receptors are largely unknown. We therefore searched for immediate-early cytokine-responsive genes and isolated a novel gene, CIS (cytokine inducible SH2-containing protein) which is induced in hematopoietic cells by a subset of cytokines including interleukin 2 (IL2), IL3, granulocyte-macrophage colony-stimulating factor (GM-CSF) and erythropoietin (EPO), but not by stem cell factor, granulocyte colony-stimulating factor and IL6. The CIS message encodes a polypeptide of 257 amino acids that contains an SH2 domain of 96 amino acids in the middle. To clarify the function of CIS in cytokine signal transduction, we expressed CIS in IL3-dependent hematopoietic cell lines under the control of a steroid-inducible promoter. The CIS product stably associated with the tyrosine-phosphorylated beta chain of the IL3 receptor as well as the tyrosine-phosphorylated EPO receptor. Forced expression of CIS by steroid reduced the growth rate of these transformants, suggesting a negative role of CIS in signal transduction. CIS induction requires the membrane-proximal region of the cytoplasmic domain of the EPO receptor as well as that of the common beta chain of the IL3, IL5 and GM-CSF receptor, whereas CIS binds to the receptor that is tyrosine phosphorylated by cytokine stimulation. Thus CIS appears to be a unique regulatory molecule for cytokine signal transduction. Images PMID:7796808

  7. HEPARIN-BINDING EGF CLEAVAGE MEDIATES ZINC-INDUCED EGF RECEPTOR PHOSPHORYLATION

    EPA Science Inventory

    We have previously shown that exposure to zinc ions can activate epidermal growth factor (EGF) receptor (EGFR) signaling in murine fibroblasts and A431 cells through a mechanism involving Src kinase. While studying the effects of zinc ions in normal human bronchial epithelial cel...

  8. MATRIX METALLOPROTEINS (MMP)-MEDIATED PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR) IN HUMAN AIRWAY EPITHELIAL CELLS (HAEC) EXPOSED TO ZINC (ZN)

    EPA Science Inventory

    Matrix Metalloproteinase (MMP)-Mediated Phosphorylation of The Epidermal Growth Factor Receptor (EGFR) in Human Airway Epithelial Cells (HAEC) Exposed to Zinc (Zn)
    Weidong Wu, James M. Samet, Robert Silbajoris, Lisa A. Dailey, Lee M. Graves, and Philip A. Bromberg
    Center fo...

  9. SRC-DEPENDENT PHOSPHORYLATION OF THE EPIDERMAL GROWTH FACTOR RECEPTOR ON TYROSINE 845 IS REQUIRED FOR ZINC-INDUCED RAS ACTIVATION

    EPA Science Inventory

    Src-dependent Phosphorylation of the Epidermal Growth Factor Receptor on Tyrosine 845 Is Required for Zinc-induced Ras Activation
    Weidong Wu 1 , Lee M. Graves 2 , Gordon N. Gill 3 , Sarah J. Parsons 4 , and James M. Samet 5
    1 Center for Environmental Medicine and Lung Biolo...

  10. One target-two different binding modes: structural insights into gevokizumab and canakinumab interactions to interleukin-1β.

    PubMed

    Blech, Michaela; Peter, Daniel; Fischer, Peter; Bauer, Margit M T; Hafner, Mathias; Zeeb, Markus; Nar, Herbert

    2013-01-01

    Interleukin-1β (IL-1β) is a key orchestrator in inflammatory and several immune responses. IL-1β exerts its effects through interleukin-1 receptor type I (IL-1RI) and interleukin-1 receptor accessory protein (IL-1RAcP), which together form a heterotrimeric signaling-competent complex. Canakinumab and gevokizumab are highly specific IL-1β monoclonal antibodies. Canakinumab is known to neutralize IL-1β by competing for binding to IL-1R and therefore blocking signaling by the antigen:antibody complex. Gevokizumab is claimed to be a regulatory therapeutic antibody that modulates IL-1β bioactivity by reducing the affinity for its IL-1RI:IL-1RAcP signaling complex. How IL-1β signaling is affected by both canakinumab and gevokizumab was not yet experimentally determined. We have analyzed the crystal structures of canakinumab and gevokizumab antibody binding fragment (Fab) as well as of their binary complexes with IL-1β. Furthermore, we characterized the epitopes on IL-1β employed by the antibodies by NMR epitope mapping studies. The direct comparison of NMR and X-ray data shows that the epitope defined by the crystal structure encompasses predominantly those residues whose NMR resonances are severely perturbed upon complex formation. The antigen:Fab co-structures confirm the previously identified key contact residues on IL-1β and provide insight into the mechanisms leading to their distinct modulation of IL-1β signaling. A significant steric overlap of the binding interfaces of IL-1R and canakinumab on IL-1β causes competitive inhibition of the association of IL-1β and its receptor. In contrast, gevokizumab occupies an allosteric site on IL-1β and complex formation results in a minor reduction of binding affinity to IL-1RI. This suggests two different mechanisms of IL-1β pathway attenuation. PMID:23041424

  11. Protein kinase C-α downregulates estrogen receptor-α by suppressing c-Jun phosphorylation in estrogen receptor-positive breast cancer cells.

    PubMed

    Kim, Sangmin; Lee, Jeongmin; Lee, Se Kyung; Bae, Soo Youn; Kim, Jiyoung; Kim, Minkuk; Kil, Won Ho; Kim, Seok Won; Lee, Jeong Eon; Nam, Seok Jin

    2014-03-01

    Protein kinase C (PKC) activity is elevated in malignant compared with that in normal human breast tissue. In the present study, we investigated the regulatory mechanism and the co-relationship between PKC-α and estrogen receptor-α (ER-α) in ER-α-positive and tamoxifen-resistant (TAMR) breast cancer cells. Our results showed that the level of ER-α expression was significantly decreased in TAMR when compared with that in tamoxifen-sensitive (TAMS) breast cancer cells. However, PKC-α phosphorylation was increased in TAMR breast cancer cells when compared to that in TAMS breast cancer cells. Additionally, ER-α expression was significantly decreased due to the overexpression of constitutively active PKC-α (CA-PKC-α). Next, we investigated the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA), a reversible activator of PKC, on ER-α expression in ER-α-positive breast cancer cells. TPA decreased the levels of ER-α expression in a time- and dose-dependent manner. In contrast, the TPA-induced downregulation of ER-α was prevented by Go6983, a specific PKC inhibitor. Notably, we found that CA-PKC-α suppressed c-JUN phosphorylation, which is a major activating protein-1 factor, and TPA-induced downregulation of ER-α was prevented by SR11302, a specific activator protein-1 inhibitor. Taken together, we demonstrated that PKC-α activity suppressed the level of ER-α expression by inhibiting c-JUN phosphorylation in ER-α-positive breast cancer cells. Therefore, we suggest that PKC-α may be a potential therapeutic target for treating ER-positive and TAMR breast cancer.

  12. Calcium mobilization via type III inositol 1,4,5-trisphosphate receptors is not altered by PKA-mediated phosphorylation of serines 916, 934 and 1832

    PubMed Central

    Soulsby, M. D.; Wojcikiewicz, R. J. H.

    2007-01-01

    Several studies have shown that PKA-mediated phosphorylation of IP3R1 at serines S1588 and S1755 enhances the receptor's ability to mobilize Ca2+. In contrast, much less is known about whether Ca2+ mobilization via IP3R2 and IP3R3 is regulated by PKA. We report here that IP3R2 is only very weakly phosphorylated in response to PKA activation and is probably not a physiological substrate for this kinase. IP3R3, however, is known to be phosphorylated by PKA at three sites (S916, S934 and S1832) and, thus, we examined how phosphorylation of these sites affects Ca2+ mobilization in DT40-3KO cells stably expressing either exogenous wild-type or mutant IP3R3s; an antibody raised against phospho-serine 934 of IP3R3 was used to demonstrate that the exogenous IP3R3s are strongly phosphorylated in response to PKA activation. Surprisingly, our data show that IP3R3-mediated Ca2+ mobilization is unaffected by phosphorylation of S916, S934 and S1832. In contrast, phosphorylation of exogenous IP3R1 (monitored with an antibody against phospho-serine 1755) enhances Ca2+ mobilization, indicating that DT40-3KO cells have the capacity to respond to phosphorylation of IP3Rs. Overall, these data suggest that modification of Ca2+ flux may not be the primary effect of IP3R3 phosphorylation by PKA. PMID:17257671

  13. [Interleukin-1-containing cells in cholesteatoma of the middle ear].

    PubMed

    Schilling, V; Bujia, J; Negri, B; Kastenbauer, E

    1992-05-01

    Cholesteatoma of the middle ear and the adjacent temporal bone consists of hyperproliferative keratinizing squamous epithelium in the middle ear cavity, and is capable of destroying the bone. Interleukin-1 (IL-1), an autocrine growth factor for epithelial keratinocytes, is characterized by its capacity to initiate bone absorption. Using immunohistochemical methods, the distribution of two different species of interleukin, IL-1 alpha and IL-1 beta, in cholesteatoma tissue (Fig. 2), the skin of the external ear canal, and the retroauricular region was investigated (Fig. 1). Comparable amounts of both IL-1-species were found in all squamous epithelia examined, but interleukin in cholesteatoma epithelium was increased in comparison with normal epidermis. All cellular layers stained uniformly and equally strongly for IL-1 alpha and IL-1 beta, whereas the dead cells of the keratin layer were negative for both. Some intensely stained cells were found scattered in the connective tissue underlying the basal layer of the cholesteatoma (Fig 4). Using double staining techniques these cells were shown to be mainly macrophages (Fig 6). Our results suggest that IL-1 could be liberated from disintegrating keratinocytes and cells of the monocyte-/macrophage lineage, and stimulate the proliferation of the cholesteatoma epithelium in an autocrine manner, thus contributing to the increased bone destruction seen in cholesteatoma.

  14. Multiple biological activities of human recombinant interleukin 1.

    PubMed Central

    Dinarello, C A; Cannon, J G; Mier, J W; Bernheim, H A; LoPreste, G; Lynn, D L; Love, R N; Webb, A C; Auron, P E; Reuben, R C

    1986-01-01

    Complementary DNA coding for human monocyte interleukin 1 (IL-1), pI 7 form, was expressed in Escherichia coli. During purification, IL-1 activity on murine T cells was associated with the recombinant protein. Homogeneous human recombinant IL-1 (hrIL-1) was tested in several assays to demonstrate the immunological and inflammatory properties attributed to this molecule. hrIL-1 induced proliferative responses in a cloned murine T cell in the presence of suboptimal concentrations of mitogen, whereas no effect was observed with hrIL-1 alone. At concentrations of 0.05 ng/ml, hrIL-1 doubled the response to mitogen (5 X 10(6) half maximal units/mg). Human peripheral blood T cells depleted of adherent cells underwent a blastogenic response and released interleukin 2 in the presence of hrIL-1 and mitogen. hrIL-1 was a potent inflammatory agent by its ability to induce human dermal fibroblast prostaglandin E2 production in vitro and to produce monophasic (endogenous pyrogen) fever when injected into rabbits or endotoxin-resistant mice. These studies establish that the dominant pI 7 form of recombinant human IL-1 possesses immunological and inflammatory properties and acts on the central nervous system to produce fever. Images PMID:3519678

  15. Quantum-Dots Based Electrochemical Immunoassay of Interleukin-1α

    SciTech Connect

    Wu, Hong; Liu, Guodong; Wang, Jun; Lin, Yuehe

    2007-07-01

    We describe a quantum-dot (QD, CdSe@ZnS)-based electrochemical immunoassay to detect a protein biomarker, interleukin-1α (IL-1α). QD conjugated with anti-IL-1α antibody was used as a label in an immunorecognition event. After a complete sandwich immunoreaction among the primary IL-1α antibody (immobilized on the avidin-modified magnetic beads), IL-1α, and the QD-labeled secondary antibody, QD labels were attached to the magnetic-bead surface through the antibody-antigen immunocomplex. Electrochemical stripping analysis of the captured QDs was used to quantify the concentration of IL-1α after an acid-dissolution step. The streptavidin-modified magnetic beads and the magnetic separation platform were used to integrate a facile antibody immobilization (through a biotin/streptavidin interaction) with immunoreactions and the isolation of immunocomplexes from reaction solutions in the assay. The voltammetric response is highly linear over the range of 0.5 to 50 ng mL-1 IL 1α, and the limit of detection is estimated to be 0.3 ng mL-1 (18 pM). This QD-based electrochemical immunoassay shows great promise for rapid, simple, and cost-effective analysis of protein biomarkers.

  16. SYSTEMIC INTERLEUKIN 1β INHIBITION IN PROLIFERATIVE DIABETIC RETINOPATHY

    PubMed Central

    Stahel, Marc; Becker, Matthias; Graf, Nicole

    2016-01-01

    Purpose: To evaluate the effect of systemic interleukin 1β inhibition using canakinumab (Ilaris) on retinal neovascularizations in proliferative diabetic retinopathy. Methods: Patients with proliferative diabetic retinopathy were enrolled in a prospective uncontrolled pilot study. Canakinumab (150 mg) was given 3 times subcutaneously. The primary end point was the change in the area of neovascularization from baseline to Week 24. Secondary end points were the change in retinal edema measured and best-corrected visual acuity (BCVA), as well as systemic safety evaluation, HbA1c, and systemic inflammatory parameters. Results: Systemic canakinumab treatment was well tolerated. None of the 8 eyes showed progression of neovascularizations within 24 weeks. Their mean size remained unchanged comparing 0.60 mm2 at baseline with 0.62 mm2 at Week 24 (P = 0.944). Median BCVA remained stable with 80 ETDRS letters at baseline and 82 ETDRS letters at Week 24. A not statistically significant reduction in retinal edema was detectable for the foveal central subfield thickness (mean, 313–295 μm). Mean HbA1c improved significantly from 7.92% to 7.30% within the 24 weeks (P = 0.046). Systemic inflammatory parameters remained overall unchanged. Conclusion: Systemic canakinumab showed no change in neovascularizations in diabetic retinopathy. Promising effects were seen on diabetic macular edema. PMID:26218500

  17. Molecular mechanisms involved in interleukin 1-beta (IL-1β)-induced memory impairment. Modulation by alpha-melanocyte-stimulating hormone (α-MSH).

    PubMed

    Gonzalez, P; Machado, I; Vilcaes, A; Caruso, C; Roth, G A; Schiöth, H; Lasaga, M; Scimonelli, T

    2013-11-01

    Pro-inflammatory cytokines can affect cognitive processes such as learning and memory. Particularly, interleukin-1β (IL-1β) influences the consolidation of hippocampus-dependent memories. We previously reported that administration of IL-1β in dorsal hippocampus impaired contextual fear memory consolidation. Different mechanisms have been implicated in the action of IL-1β on long-term potentiation (LTP), but the processes by which this inhibition occurs in vivo remain to be elucidated. We herein report that intrahippocampal injection of IL-1β induced a significant increase in p38 phosphorylation after contextual fear conditioning. Also, treatment with SB203580, an inhibitor of p38, reversed impairment induced by IL-1β on conditioned fear behavior, indicating that this MAPK would be involved in the effect of the cytokine. We also showed that IL-1β administration produced a decrease in glutamate release from dorsal hippocampus synaptosomes and that treatment with SB203580 partially reversed this effect. Our results indicated that IL-1β-induced impairment in memory consolidation could be mediated by a decrease in glutamate release. This hypothesis is sustained by the fact that treatment with d-cycloserine (DCS), a partial agonist of the NMDA receptor, reversed the effect of IL-1β on contextual fear memory. Furthermore, we demonstrated that IL-1β produced a temporal delay in ERK phosphorylation and that DCS administration reversed this effect. We also observed that intrahippocampal injection of IL-1β decreased BDNF expression after contextual fear conditioning. We previously demonstrated that α-MSH reversed the detrimental effect of IL-1β on memory consolidation. The present results demonstrate that α-MSH administration did not modify the decrease in glutamate release induced by IL-1β. However, intrahippocampal injection of α-MSH prevented the effect on ERK phosphorylation and BDNF expression induced by IL-1β after contextual fear conditioning

  18. NDRG2 phosphorylation provides negative feedback for SGK1-dependent regulation of a kainate receptor in astrocytes

    PubMed Central

    Matschke, Veronika; Theiss, Carsten; Hollmann, Michael; Schulze-Bahr, Eric; Lang, Florian; Seebohm, Guiscard; Strutz-Seebohm, Nathalie

    2015-01-01

    Glutamate receptors play an important role in the function of astrocytes. Among their tasks is the regulation of gliotransmission, gene expression and exocytosis of the tissue-type plasminogen activator (tPA), which has an enhancing effect on N-methyl-D-aspartate (NMDA) receptors and thus prevent over-excitation of neighboring neurons. The kainate receptor GluK2, which is expressed in neurons and astrocytes, is under tight regulation of the PI3-kinase SGK pathway as shown in neurons. SGK1 targets include N-myc downstream-regulated genes (NDRGs) 1 and 2 (NDRG1, NDRG2), proteins with elusive function. In the present study, we analyzed the effects of SGK1, NDRG1, and NDRG2 on GluK2 current amplitude and plasma membrane localization in astrocytes and heterologous expression. We demonstrate that NDRG1 and NDRG2 themselves have no effect on GluK2 current amplitudes in heterologous expressed ion channels. However, when NDRG2 is coexpressed with GluK2 and SGK1, the stimulating effect of SGK1 on GluK2 is suppressed both in heterologous expression and in astrocytes. Here, we reveal a new negative feedback mechanism, whereby GluK2 stimulation by SGK1 is regulated by parallel phosphorylation of NDRG2. This regulation of GluK2 by SGK1 and NDRG2 in astrocytes may play an important role in gliotransmission, modulation of gene expression and regulation of exocytosis of tPA. PMID:26500492

  19. Immunoreceptor tyrosine-based activation motif phosphorylation during engulfment of Neisseria gonorrhoeae by the neutrophil-restricted CEACAM3 (CD66d) receptor.

    PubMed

    McCaw, Shannon E; Schneider, Jutta; Liao, Edward H; Zimmermann, Wolfgang; Gray-Owen, Scott D

    2003-08-01

    Gonorrhea is characterized by a purulent urethral or cervical discharge consisting primarily of neutrophils associated with Neisseria gonorrhoeae. These interactions are facilitated by gonococcal colony opacity-associated (Opa) protein binding to host cellular CEACAM receptors. Of these, CEACAM3 is restricted to neutrophils and contains an immunoreceptor tyrosine-based activation motif (ITAM) reminiscent of that found within certain phagocytic Fc receptors. CEACAM3 was tyrosine phosphorylated by a Src family kinase-dependent process upon infection by gonococci expressing CEACAM-specific Opa proteins. This phosphorylation was necessary for efficient bacterial uptake; however, a less efficient uptake process became evident when kinase inhibitors or mutagenesis of the ITAM were used to prevent phosphorylation. Ligated CEACAM3 was recruited to a cytoskeleton-containing fraction, intense foci of polymerized actin were evident where bacteria attached to HeLa-CEACAM3, and disruption of polymerized actin by cytochalasin D blocked all bacterial uptake by these cells. These data support a model whereby CEACAM3 can mediate the Opa-dependent uptake of N. gonorrhoeae via either an efficient, ITAM phosphorylation-dependent process that resembles phagocytosis or a less efficient, tyrosine phosphorylation-independent mechanism. PMID:12864848

  20. Strikingly higher interleukin (IL)-1α, IL-1β and soluble interleukin-1 receptor antagonist (sIL-1RA) but similar IL-2, sIL-2R, IL-3, IL-4, IL-6, sIL-6R, IL-10, tumour necrosis factor (TNF)-α, transforming growth factor (TGF)-β2 and interferon IFN-γ urine levels in healthy females compared to healthy males: protection against urinary tract injury?

    PubMed Central

    Sadeghi, M; Daniel, V; Naujokat, C; Weimer, R; Opelz, G

    2005-01-01

    The aim of this prospective study was to examine gender-related differences of cytokines in the plasma and urine of healthy individuals that might provide a clue concerning the lower rate of chronic renal diseases in females. Soluble interleukin-1 receptor antagonist (sIL-1RA), interleukin (IL)-1α, IL-1β, IL-2, sIL-2R, IL-3, IL-4, IL-6, sIL-6R, IL-10, tumor necrosis factor (TNF)-α, transforming growth factor (TGF)-β2 and interferon (IFN)-γ were determined using standard enzyme-linked immunosorbent assay (ELISA). Cytokine levels were determined in simultaneously obtained plasma and urine samples of 18 male and 28 female healthy members of our laboratory staff. Urine cytokine levels were studied three times at 1-month intervals. All individuals had a negative urine nitrite test and showed no symptoms of urinary tract infection (UTI). Plasma levels of all studied cytokines were similar in males and females (P = n.s.). However, females had significantly higher urine IL-1α (P < 0·0001; P < 0·0001; P < 0·0001) and sIL-1RA (P = 0·0001; P = 0·0003; P = 0·0002) than males at three and higher IL-1β at one of the three investigations (P = 0·098; P = 0·003; P = 0·073). Urine levels of the other cytokines were similar in males and females. Higher urine levels of IL-1α, IL-1β and sIL-1RA in females may result from stimulation of cells in the urinary tract. Increased sIL-1RA might block T lymphocyte activation. The elevated cytokines may play a role in the protection of the female urinary tract from certain renal diseases, such as pyelonephritis and other inflammatory and sclerotic kidney diseases. PMID:16232218

  1. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury

    PubMed Central

    Stuck, Ellen D.; Irvine, Karen-Amanda; Bresnahan, Jacqueline C.

    2015-01-01

    Abstract Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity. PMID:26668821

  2. AMPA Receptor Phosphorylation and Synaptic Colocalization on Motor Neurons Drive Maladaptive Plasticity below Complete Spinal Cord Injury.

    PubMed

    Huie, J Russell; Stuck, Ellen D; Lee, Kuan H; Irvine, Karen-Amanda; Beattie, Michael S; Bresnahan, Jacqueline C; Grau, James W; Ferguson, Adam R

    2015-01-01

    Clinical spinal cord injury (SCI) is accompanied by comorbid peripheral injury in 47% of patients. Human and animal modeling data have shown that painful peripheral injuries undermine long-term recovery of locomotion through unknown mechanisms. Peripheral nociceptive stimuli induce maladaptive synaptic plasticity in dorsal horn sensory systems through AMPA receptor (AMPAR) phosphorylation and trafficking to synapses. Here we test whether ventral horn motor neurons in rats demonstrate similar experience-dependent maladaptive plasticity below a complete SCI in vivo. Quantitative biochemistry demonstrated that intermittent nociceptive stimulation (INS) rapidly and selectively increases AMPAR subunit GluA1 serine 831 phosphorylation and localization to synapses in the injured spinal cord, while reducing synaptic GluA2. These changes predict motor dysfunction in the absence of cell death signaling, suggesting an opportunity for therapeutic reversal. Automated confocal time-course analysis of lumbar ventral horn motor neurons confirmed a time-dependent increase in synaptic GluA1 with concurrent decrease in synaptic GluA2. Optical fractionation of neuronal plasma membranes revealed GluA2 removal from extrasynaptic sites on motor neurons early after INS followed by removal from synapses 2 h later. As GluA2-lacking AMPARs are canonical calcium-permeable AMPARs (CP-AMPARs), their stimulus- and time-dependent insertion provides a therapeutic target for limiting calcium-dependent dynamic maladaptive plasticity after SCI. Confirming this, a selective CP-AMPAR antagonist protected against INS-induced maladaptive spinal plasticity, restoring adaptive motor responses on a sensorimotor spinal training task. These findings highlight the critical involvement of AMPARs in experience-dependent spinal cord plasticity after injury and provide a pharmacologically targetable synaptic mechanism by which early postinjury experience shapes motor plasticity.

  3. Amphetamine elevates phosphorylation of eukaryotic initiation factor 2α (eIF2α) in the rat forebrain via activating dopamine D1 and D2 receptors.

    PubMed

    Xue, Bing; Fitzgerald, Cole A; Jin, Dao-Zhong; Mao, Li-Min; Wang, John Q

    2016-09-01

    Psychostimulants have an impact on protein synthesis, although underlying molecular mechanisms are unclear. Eukaryotic initiation factor 2α-subunit (eIF2α) is a key player in initiation of protein translation and is regulated by phosphorylation. While this factor is sensitive to changing synaptic input and is critical for synaptic plasticity, its sensitivity to stimulants is poorly understood. Here we systematically characterized responses of eIF2α to a systemic administration of the stimulant amphetamine (AMPH) in dopamine responsive regions of adult rat brains. Intraperitoneal injection of AMPH at 5mg/kg increased eIF2α phosphorylation at serine 51 in the striatum. This increase was transient. In the medial prefrontal cortex (mPFC), AMPH induced a relatively delayed phosphorylation of the factor. Pretreatment with a dopamine D1 receptor antagonist SCH23390 blocked the AMPH-stimulated eIF2α phosphorylation in both the striatum and mPFC. Similarly, a dopamine D2 receptor antagonist eticlopride reduced the effect of AMPH in the two regions. Two antagonists alone did not alter basal eIF2α phosphorylation. AMPH and two antagonists did not change the amount of total eIF2α proteins in both regions. These results demonstrate the sensitivity of eIF2α to stimulant exposure. AMPH possesses the ability to stimulate eIF2α phosphorylation in striatal and mPFC neurons in vivo in a D1 and D2 receptor-dependent manner. PMID:27338925

  4. Phosphorylation of the Nuclear Receptor Co-repressor 1 by Protein Kinase B (PKB/Akt) Switches its Co-repressor Targets in the Liver

    PubMed Central

    Jo, Young Suk; Ryu, Dongryeol; Maida, Adriano; Wang, Xu; Evans, Ronald M.; Schoonjans, Kristina; Auwerx, Johan

    2015-01-01

    The nuclear receptor corepressor 1 (NCoR1) is a transcriptional co-regulator that has wide-ranging effects on gene expression patterns. In the liver, NCoR1 represses lipid synthesis in the fasting state, whereas it inhibits the activation of PPARα upon feeding, thereby blunting ketogenesis. Here, we show that insulin via the activation of PKB/Akt induces the phosphorylation of NCoR1 on serine 1460, which selectively favors its interaction with PPARα and ERRα over LXRα. Phosphorylation of NCoR1 on S1460 selectively derepresses LXRα target genes, resulting in increased lipogenesis, while at the same time it inhibits PPARα and ERRα targets, thereby attenuating oxidative metabolism in the liver. The phosphorylation-gated differential recruitment of NCoR1 to different nuclear receptors explains the apparent paradox that liver-specific deletion of NCoR1 concurrently induces both lipogenesis and oxidative metabolism, due to a global derepression of LXRα, PPARα and ERRα activity. This phosphorylation-mediated recruitment switch of NCoR1 between nuclear receptor subsets hence provides a mechanism by which corepressors can selectively modulate liver energy metabolism during the fasting-feeding transition. PMID:25998209

  5. Pharmacological inhibition of interleukin-1 activity on T cells by hydrocortisone, cyclosporine, prostaglandins, and cyclic nucleotides.

    PubMed

    Tracey, D E; Hardee, M M; Richard, K A; Paslay, J W

    1988-01-01

    The effects of a panel of hormones and pharmacological agents on the activation of T cells by a combination of interleukin-1 and phytohemagglutinin (IL-1/PHA) was studied. Pharmacological effects on various stages of IL-1/PHA-induced interleukin-2 (IL-2) production by the cloned murine thymoma cell line LBRM-33-1A5.7 were dissected using a multi-step assay procedure. A 4-h lag phase in the kinetics of IL-2 production allowed the operational definition of an early, IL-1-dependent programming stage, followed by an IL-2-production stage of the assay. A cell-washing procedure between these stages was introduced in order to distinguish IL-1 receptor antagonists from functional IL-1/PHA antagonists. Hydrocortisone and cyclosporine were potent inhibitors (active in the nM range) of both stages of IL-2 production, suggesting that neither is an IL-1 receptor antagonist. The cyclic adenosine monophosphate (cAMP)-elevating agents prostaglandin E2, dibutyryl cAMP, and theophylline inhibited IL-2 production during the early, IL-1-dependent programming stage. By contrast, prostaglandin F2 alpha and dibutyryl cyclic guanosine monophosphate did not appreciably inhibit IL-1/PHA activity. These results are discussed in relationship to the effects of these test agents in thymocyte IL-1 assays or mitogenesis assays and the implications toward understanding the mechanisms underlying IL-1/PHA activation of T cells.

  6. Human interleukin-1-induced murine osteoclastogenesis is dependent on RANKL, but independent of TNF-alpha.

    PubMed

    Ma, Ting; Miyanishi, Keita; Suen, Andrew; Epstein, Noah J; Tomita, Tetsuya; Smith, R Lane; Goodman, Stuart B

    2004-05-01

    Although interleukin-1 (IL-1) has been implicated in the pathogenesis of inflammatory osteolysis, the means by which it recruits osteoclasts and promotes bone destruction are largely unknown. Recently, a cytokine-driven, stromal cell-free mouse osteoclastogenesis model was established. A combination of macrophage colony stimulating factor (M-CSF) and receptor activator of NFkappaB ligand (RANKL) was proven to be sufficient in inducing differentiation of bone marrow hematopoietic precursor cells to bone-resorbing osteoclasts in the absence of stromal cells or osteoblasts. This study utilizes this model to examine the impact of human IL-1beta on in vitro osteoclastogenesis of bone marrow progenitor cells. We found that osteoclast precursor cells failed to undergo osteoclastogenesis when treated with IL-1 alone. In contrast, IL-1 dramatically up-regulated osteoclastogenesis by 2.5- to 4-folds in the presence of RANKL and M-CSF. The effect can be significantly blocked by IL-1 receptor antagonist (p < 0.01). Tumor necrosis factor-alpha (TNF-alpha) was undetectable in the culture medium of differentiating osteoclasts induced by IL-1. Adding exogenous TNF-alpha neutralizing antibody had no influence on the IL-1-induced effect as well. These results show that in the absence of stromal cells, IL-1 exacerbates osteoclastogenesis by cooperating with RANKL and M-CSF, while TNF-alpha is not involved in this IL-1-stimulated osteoclast differentiation pathway.

  7. Synapse loss induced by interleukin-1β requires pre- and post-synaptic mechanisms.

    PubMed

    Mishra, Anjuli; Kim, Hee Jung; Shin, Angela H; Thayer, Stanley A

    2012-09-01

    Interleukin-1β (IL-1β) is an inflammatory cytokine that exerts marked effects on neuronal function and survival. Here we examined the effects of IL-1β on synapses between rat hippocampal neurons in culture using an imaging-based assay to quantify clusters of the scaffolding protein postsynaptic density 95 fused to green fluorescent protein. Treatment with IL-1β for 24 h induced a 23 ± 3% loss in the number of synaptic sites. Pharmacological studies indicated that synapse loss was mediated by the IL-1 receptor with subsequent activation of two pathways. COX2-mediated prostaglandin production and postsynaptic activation of a Src family tyrosine kinase were required. Presynaptic release of glutamate with subsequent activation of NMDA receptors was necessary for IL-1β-induced synapse loss. Neither Src activation nor prostaglandin E2 (PGE2) application alone was sufficient to reduce the number of synapses. However, in cells expressing constitutively active or pharmacologically activated Src, PGE2 induced synapse loss. Thus, IL-1β reduces the number of synaptic connections by simultaneously activating multiple pathways that require both pre- and post-synaptic activity. These results highlight targets that may prove important for pharmacotherapy of neuroinflammatory disease.

  8. Synapse Loss Induced by Interleukin-1β Requires Pre- and Post-Synaptic Mechanisms

    PubMed Central

    Mishra, Anjuli; Kim, Hee Jung; Shin, Angela H.

    2012-01-01

    Interleukin-1β (IL-1β) is an inflammatory cytokine that exerts marked effects on neuronal function and survival. Here we examined the effects of IL-1β on synapses between rat hippocampal neurons in culture using an imaging-based assay to quantify clusters of the scaffolding protein postsynaptic density 95 fused to green fluorescent protein. Treatment with IL-1β for 24 h induced a 23±3 % loss in the number of synaptic sites. Pharmacological studies indicated that synapse loss was mediated by the IL-1 receptor with subsequent activation of two pathways. COX2-mediated prostaglandin production and postsynaptic activation of a Src family tyrosine kinase were required. Presynaptic release of glutamate with subsequent activation of NMDA receptors was necessary for IL-1β-induced synapse loss. Neither Src activation nor prostaglandin E2 (PGE2) application alone was sufficient to reduce the number of synapses. However, in cells expressing constitutively active or pharmacologically activated Src, PGE2 induced synapse loss. Thus, IL-1β reduces the number of synaptic connections by simultaneously activating multiple pathways that require both pre- and post-synaptic activity. These results highlight targets that may prove important for pharmacotherapy of neuroinflammatory disease. PMID:22311599

  9. Augmentation of host resistance to microbial infections by recombinant human interleukin-1 alpha.

    PubMed Central

    Minami, A; Fujimoto, K; Ozaki, Y; Nakamura, S

    1988-01-01

    Recombinant human interleukin-1 alpha augmented resistance of mice to microbial infections caused by Pseudomonas aeruginosa, Klebsiella pneumoniae, Staphylococcus aureus, Streptococcus pneumoniae, Salmonella typhimurium, and Candida albicans. The effective doses of interleukin-1 alpha ranged from 0.01 to 10 micrograms per mouse, depending on the infecting organism, route of administration, and challenge dose. Intravenous interleukin-1 alpha was, dose for dose, more effective than intravenous muramyl dipeptide and lentinan against the P. aeruginosa and K. pneumoniae infections. Augmentation by interleukin-1 alpha of resistance to infection was also observed in P. aeruginosa-infected mice in a state of cyclophosphamide-induced leucopenia. Interleukin-1 alpha may be useful for controlling obstinate infections not curable by antimicrobial agents alone. PMID:3263325

  10. Possible role of interleukin 1 alpha and interleukin 1 beta in the pathogenesis of cholesteatoma of the middle ear.

    PubMed

    Schilling, V; Negri, B; Bujía, J; Schulz, P; Kastenbauer, E

    1992-07-01

    Cholesteatoma of the middle ear is characterized by the presence of hyperproliferative keratinizing squamous epithelium in the middle ear cavity and destruction of adjacent bone. Interleukin 1 (IL-1) is an autocrine growth factor for normal keratinocytes and is capable of inducing bone degradation. The distribution of two molecular species of IL-1, IL-1 alpha and IL-1 beta, was investigated immunohistochemically in the hyperproliferative epithelium of cholesteatoma, in normal epidermis of the auditory canal and of the retroauricular region, and in nonkeratinizing tonsillar epithelium. In all squamous epithelia examined, IL-1 alpha and IL-1 beta were present in comparable amounts. The IL-1 content of cholesteatoma epithelium was clearly increased in relation to normal skin keratinocytes. All cellular layers of cholesteatoma epithelium stained strongly and uniformly for Il-1 alpha and IL-1 beta, whereas the keratin layer was negative for IL-1. No particularly strong reaction with basal cells was detected. In the connective tissue under the squamous epithelium of cholesteatoma, intensely positive cells were scattered between negative stromal cells. Our results suggest that IL-1 could be liberated from disintegrating keratinocytes and cells of the monocyte-macrophage lineage, stimulate the proliferation of the cholesteatoma epithelium in an autocrine manner, and contribute to the enhancement of bone destruction in the presence of cholesteatoma.

  11. Metabolic responses to interleukin-1: centrally and peripherally mediated.

    PubMed Central

    Hill, A G; Siegel, J; Rounds, J; Wilmore, D W

    1997-01-01

    OBJECTIVE: The purpose of this study was to differentiate between the catabolic effects of interleukin-1 (IL-1) when infused into the central nervous system or into the periphery. SUMMARY BACKGROUND DATA: After injury and infection, IL-1 has been found in the central nervous system. Chronic intracerebrovascular infusion of IL-1 produces protein catabolism, anorexia, and fever. However, IL-1 may act directly on liver and bone marrow to elicit metabolic responses. Although IL-1 is thought to be involved in a number of metabolic responses associated with injury-inflammation, the sites of action are unclear. METHODS: Rats were implanted with chronic infusion pumps and received diluent or three doses of IL-1 infused subcutaneously for 6 days, and a variety of response variables were measured. In a second study, doses were adjusted so that similar systemic catabolic responses were obtained from peripheral and intracerebroventricular infusion of IL-1. The acute-phase responses then were compared in the two groups of animals receiving IL-1 by different routes. RESULT: Subcutaneously infused IL-1 elicited catabolic responses in a dose-response manner. Similar catabolic responses were achieved by infusing one tenth of the dose of IL-1 given subcutaneously into the central nervous system. Although similar systemic responses (protein catabolism, anorexia, fever, and weight loss) were observed with both routes of infusion, the subcutaneous infusion produced a much greater lymphocytosis, elevation in acute-phase reactants, and fall in serum iron and albumin. CONCLUSIONS: The IL-1 appears to have different effects depending on the site of production and site of action. Regionalization of signal proteins such as IL-1 should be taken into consideration when devising specific anticytokine treatment strategies. PMID:9060579

  12. Impaired interleukin 1 production by rat leukocytes during iron deficiency

    SciTech Connect

    Helyar, L.; Sherman, A.R.

    1986-03-05

    Because specific leukocyte functions and protein synthesis in general are impaired in iron deficiency, the production of interleukin 1 (IL-1) by peritoneal exudate cells (PEC) was examined in iron-deficient and control rats. Three groups of weanling male SD rats (n=19-22) were fed a semi-purified diet containing 6, 12, or 35 ppm iron in order to produce severe iron deficiency (SID), moderate iron deficiency (MID), or adequate iron status (AIS). Animals were killed at 42-47 d of age and acute PEC harvested. Crude IL-1 samples were prepared from these PEC, and assayed for activity by in vitro and in vivo methods. IL-1 preparations from SID and MID rats enhanced mouse thymocyte proliferation in vitro less than half as much as IL-1 preparations from AIS rats (p = 0.01). In a rabbit bioassay, injection of IL-1 prepared with 1 x 10/sup 7/ PEC from either SID or MID rats resulted in virtually no change in maximum body temperature. In contrast, IL-1 from AIS source PEC produced a marked change in maximum body temperature of approximately 0.5 F, which was significantly different from the other two groups (p < 0.01). IL-1 preparations from SID or MID source PEC decreased rabbit plasma iron and zinc only one-third to one-eight as much as IL-1 from AIS source PEC (p less than or equal to 0.01). Severe or moderate iron deficiency clearly impairs IL-1 production by rat PEC. This may be another mechanism by which this nutritional deficiency alters the immune inflammatory response.

  13. Redox-control of the alarmin, Interleukin-1α.

    PubMed

    McCarthy, Donald A; Ranganathan, Aparna; Subbaram, Sita; Flaherty, Nicole L; Patel, Nilay; Trebak, Mohamed; Hempel, Nadine; Melendez, J Andrés

    2013-01-01

    The pro-inflammatory cytokine Interleukin-1α (IL-1α) has recently emerged as a susceptibility marker for a wide array of inflammatory diseases associated with oxidative stress including Alzheimer's, arthritis, atherosclerosis, diabetes and cancer. In the present study, we establish that expression and nuclear localization of IL-1α are redox-dependent. Shifts in steady-state H2O2 concentrations (SS-[H2O2]) resulting from enforced expression of manganese superoxide dismutase (SOD2) drive IL-1α mRNA and protein expression. The redox-dependent expression of IL-1α is accompanied by its increased nuclear localization. Both IL-1α expression and its nuclear residency are abrogated by catalase co-expression. Sub-lethal doses of H2O2 also cause IL-1α nuclear localization. Mutagenesis revealed IL-1α nuclear localization does not involve oxidation of cysteines within its N terminal domain. Inhibition of the processing enzyme calpain prevents IL-1α nuclear localization even in the presence of H2O2. H2O2 treatment caused extracellular Ca(2+) influx suggesting oxidants may influence calpain activity indirectly through extracellular Ca(2+) mobilization. Functionally, as a result of its nuclear activity, IL-1α overexpression promotes NF-kB activity, but also interacts with the histone acetyl transferase (HAT) p300. Together, these findings demonstrate a mechanism by which oxidants impact inflammation through IL-1α and suggest that antioxidant-based therapies may prove useful in limiting inflammatory disease progression. PMID:24024155

  14. Phosphorylation of the human 1,25-dihydroxyvitamin D3 receptor by cAMP-dependent protein kinase, in vitro, and in transfected COS-7 cells.

    PubMed

    Jurutka, P W; Hsieh, J C; Haussler, M R

    1993-03-31

    We report that the human 1,25-dihydroxyvitamin D3 receptor is an efficient substrate for cAMP-dependent protein kinase, in vitro. This phosphorylation reaction is rapid and neither dependent upon nor significantly affected by the presence of the 1,25-dihydroxyvitamin D3 ligand. Preliminary mapping experiments utilizing C-terminal truncation mutants reveal that the primary site(s) of phosphorylation, in vitro, is localized between amino acids 133 and 201. Cotransfection of the catalytic subunit of murine cAMP-dependent protein kinase and the human 1,25-dihydroxyvitamin D3 receptor into monkey kidney (COS-7) cells not only results in a dramatic kinase-dependent increase in receptor phosphorylation but also elicits an attenuation in 1,25-dihydroxyvitamin D3-dependent transcriptional activation of a reporter gene. These observations suggest a potential role for cAMP-dependent protein kinase in the modulation of 1,25-dihydroxyvitamin D3 receptor-mediated gene regulation. PMID:8385450

  15. The protein product of the c-cbl protooncogene is phosphorylated after B cell receptor stimulation and binds the SH3 domain of Bruton's tyrosine kinase

    PubMed Central

    1995-01-01

    X-linked agammaglobulinemia, a B cell immunodeficiency, is caused by mutations in the Bruton's tyrosine kinase (Btk) gene. The absence of a functional Btk protein leads to a failure of B cell differentiation and antibody production. B cell receptor stimulation leads to the phosphorylation of the Btk protein and it is, therefore, likely that Btk is involved in B cell receptor signaling. As a nonreceptor tyrosine kinase, Btk is likely to interact with several proteins within the context of a signal transduction pathway. To understand such interactions, we have generated glutathione S-transferase fusion proteins corresponding to different domains of the human Btk protein. We have identified a 120-kD protein present in human B cells as being bound by the SH3 domain of Btk and which, after B cell receptor stimulation, is one of the major substrates of tyrosine phosphorylation. We have shown that this 120-kD protein is the protein product of c-cbl, a protooncogene, which is known to be phosphorylated in response to T cell receptor stimulation and to interact with several other tyrosine kinases. Association of the SH3 domain of Btk with p120cbl provides evidence for an analogous role for p120cbl in B cell signaling pathways. The p120cbl protein is the first identified ligand of the Btk SH3 domain. PMID:7629518

  16. Specificity of g protein-coupled receptor kinase 6-mediated phosphorylation and regulation of single-cell m3 muscarinic acetylcholine receptor signaling.

    PubMed

    Willets, Jonathon M; Mistry, Rajendra; Nahorski, Stefan R; Challiss, R A John

    2003-11-01

    Previously we have shown that G protein-coupled receptor kinase (GRK) 6 plays a major role in the regulation of the human M3 muscarinic acetylcholine receptor (M3 mAChR) in the human neuroblastoma SH-SY5Y. However, 30-fold overexpression of the catalytically inactive, dominant-negative K215RGRK6 produced only a 50% suppression of M3 mAChR phosphorylation and desensitization. Here, we have attempted to determine whether other endogenous kinases play a role in the regulation of M3 mAChR signaling. In contrast to the clear attenuating effect of K215RGRK6 expression on M3 mAChR regulation, dominant-negative forms of GRKs (K220RGRK2, K220RGRK3, K215RGRK5) and casein kinase 1alpha (K46RCK1alpha) were without effect. In addition, inhibition of a variety of second-messenger-regulated kinases and the tyrosine kinase Src also had no effect upon agonist-stimulated M3 mAChR regulation. To investigate further the desensitization process we have followed changes in inositol 1,4,5-trisphosphate in single SHSY5Y cells using the pleckstrin homology domain of PLCdelta1 tagged with green fluorescent protein (eGFP-PHPLCdelta1). Stimulation of cells with approximate EC50 concentrations of agonist before and after a desensitizing period of agonist exposure resulted in a marked attenuation of the latter response. Altered GRK6 activity, through overexpression of wild-type GRK6 or K215RGRK6, enhanced or reduced the degree of M3 mAChR desensitization, respectively. Taken together, our data indicate that M3 mAChR desensitization is mediated by GRK6 in human SH-SY5Y cells, and we show that receptor desensitization of phospholipase C signaling can be monitored in 'real-time' in single, living cells. PMID:14573754

  17. Another mechanism for creating diversity in gamma-aminobutyrate type A receptors: RNA splicing directs expression of two forms of gamma 2 phosphorylation site.

    PubMed Central

    Whiting, P; McKernan, R M; Iversen, L L

    1990-01-01

    Diversity of gamma-aminobutyrate type A (GABAA) receptors has recently been proposed to be achieved by assembly of receptor subtypes from a multitude of subunits (alpha 1-6, beta 1-3, gamma 1-2, and delta) encoded by different genes. Here we report a further mechanism for creating GABAA receptor diversity: alternative RNA splicing. Two forms of bovine gamma 2 subunit cDNA were isolated (gamma 2S and gamma 2L) that differed by the presence or absence of a 24-base-pair (8-amino acid) insertion in the cytoplasmic domain between the third and fourth putative membrane-spanning regions. Polymerase chain reaction from RNA demonstrated that the two forms of gamma 2 subunit are expressed in bovine, human, and rat brain. Sequencing of genomic DNA clones encoding the gamma 2 subunit demonstrated that the 24-base-pair insert is organized as a separate exon. Analysis of the sequence of the 8-amino acid insert revealed that it contains a protein kinase C consensus phosphorylation site. Expression of the large cytoplasmic loop domains of gamma 2S and gamma 2L in Escherichia coli, followed by phosphorylation of the recombinant proteins by protein kinase C, demonstrated that gamma 2L, but not gamma 2S, could be phosphorylated. Thus the two forms of gamma 2 subunit differ by the presence or absence of a protein kinase C phosphorylation site. This mechanism for creating GABAA receptor diversity may allow differential regulation of the function of receptor subtypes. Images PMID:1702226

  18. Transient increase of interleukin-1β after prolonged febrile seizures promotes adult epileptogenesis through long-lasting upregulating endocannabinoid signaling

    PubMed Central

    Feng, Bo; Tang, Yangshun; Chen, Bin; Xu, Cenglin; Wang, Yi; Dai, Yunjian; Wu, Dengchang; Zhu, Junmin; Wang, Shuang; Zhou, Yudong; Shi, Liyun; Hu, Weiwei; Zhang, Xia; Chen, Zhong

    2016-01-01

    It remains unclear how infantile febrile seizures (FS) enhance adult seizure susceptibility. Here we showed that the transient increase of interleukin-1β (IL-1β) after prolonged FS promoted adult seizure susceptibility, which was blocked by interleukin-1 receptor antagonist (IL-1Ra) within a critical time window. Postnatal administered IL-1β alone mimicked the effect of FS on adult seizure susceptibility. IL-1R1 knockout mice were not susceptible to adult seizure after prolonged FS or IL-1β treatment. Prolonged FS or early-life IL-1β treatment increased the expression of cannabinoid type 1 receptor (CB1R) for over 50 days, which was blocked by IL-1Ra or was absent in IL-1R1 knockout mice. CB1R antagonist, knockdown and endocannabinoid synthesis inhibitor abolished FS or IL-1β-enhanced seizure susceptibility. Thus, this work identifies a pathogenic role of postnatal IL-1β/IL-1R1 pathway and subsequent prolonged prominent increase of endocannabinoid signaling in adult seizure susceptibility following prolonged FS, and highlights IL-1R1 as a potential therapeutic target for preventing the development of epilepsy after infantile FS. PMID:26902320

  19. The Phosphorylation of Vascular Endothelial Growth Factor Receptor-2 (VEGFR-2) by Engineered Surfaces with Electrostatically or Covalently Immobilized VEGF

    PubMed Central

    Anderson, Sean M.; Chen, Tom T.; Iruela-Arispe, M. Luisa; Segura, Tatiana

    2010-01-01

    Growth factors are a class of signaling proteins that direct cell fate through interaction with cell surface receptors. Although a myriad of possible cell fates stem from a growth factor binding to its receptor, the signaling cascades that result in one fate over another are still being elucidated. One possible mechanism by which nature modulates growth factor signaling is through the method of presentation of the growth factor – soluble or immobilized (matrix bound). Here we present the methodology to study signaling of soluble versus immobilized VEGF through VEGFR-2. We have designed a strategy to covalently immobilize VEGF using its heparin-binding domain to orient the molecule (bind) and a secondary functional group to mediate covalent binding (lock). This bind-and-lock approach aims to allow VEGF to assume a bioactive orientation before covalent immobilization. Surface plasmon resonance (SPR) demonstrated heparin and VEGF binding with surface densities of 60 ng/cm2 and 100 pg/cm2, respectively. ELISA experiments confirmed VEGF surface density and showed that electrostatically bound VEGF releases in cell medium and heparin solutions while covalently bound VEGF remains immobilized. Electrostatically bound VEGF and covalently bound VEGF phosphorylate VEGFR-2 in both VEGFR-2 transfected cells and VEGFR-2 endogenously producing cells. HUVECs plated on VEGF functionalized surfaces showed different morphologies between surface-bound VEGF and soluble VEGF. The surfaces synthesized in these studies allow for the study of VEGF/VEGFR-2 signaling induced by covalently bound, electrostatically bound, and soluble VEGF and may provide further insight into the design of materials for the generation of a mature and stable vasculature. PMID:19540581

  20. Androgen receptor promotes gastric cancer cell migration and invasion via AKT-phosphorylation dependent upregulation of matrix metalloproteinase 9

    PubMed Central

    Zang, Ming-de; Chang, Qing; Fan, Zhi-yuan; Li, Jian-fang; Yu, Bei-qin; Su, Li-ping; Li, Chen; Yan, Chao; Gu, Qin-long; Zhu, Zheng-gang; Yan, Min; Liu, Bingya

    2014-01-01

    Androgen receptor (AR) plays an important role in many kinds of cancers. However, the molecular mechanisms of AR in gastric cancer (GC) are poorly characterized. Here, we investigated the role of AR in GC cell migration, invasion and metastatic potential. Our data showed that AR expression was positively correlated with lymph node metastasis and late TNM stages. These findings were accompanied by activation of AKT and upregulation of matrix metalloproteinase 9 (MMP9). AR overexpression induced increases in GC cell migration, invasion and proliferation in vitro and in vivo. These effects were attenuated by inhibition of AKT, AR and MMP9. AR overexpression upregulated MMP9 protein levels, whereas this effect was counteracted by AR siRNA. Inhibition of AKT by siRNA or an inhibitor (MK-2206 2HC) decreased AR protein expression in both stably transfected and parental SGC-7901 cells. Luciferase reporter and chromatin immunoprecipitation assays demonstrated that AR bound to the AR-binding sites of the MMP9 promoter. In summary, AR overexpression induced by AKT phosphorylation upregulated MMP9 by binding to its promoter region to promote gastric carcinogenesis. The AKT/AR/MMP9 pathway plays an important role in GC metastasis and may be a novel therapeutic target for GC treatment. PMID:25301736

  1. Platelet-derived growth factor (PDGF)-induced tyrosine phosphorylation of the low density lipoprotein receptor-related protein (LRP). Evidence for integrated co-receptor function betwenn LRP and the PDGF.

    PubMed

    Loukinova, Elena; Ranganathan, Sripriya; Kuznetsov, Sergey; Gorlatova, Natalia; Migliorini, Mary M; Loukinov, Dmitri; Ulery, Paula G; Mikhailenko, Irina; Lawrence, Daniel A; Strickland, Dudley K

    2002-05-01

    The low density lipoprotein receptor-related protein (LRP) functions in the catabolism of numerous ligands including proteinases, proteinase inhibitor complexes, and lipoproteins. In the current study we provide evidence indicating an expanded role for LRP in modulating cellular signaling events. Our results show that platelet-derived growth factor (PDGF) BB induces a transient tyrosine phosphorylation of the LRP cytoplasmic domain in a process dependent on PDGF receptor activation and c-Src family kinase activity. Other growth factors, including basic fibroblast growth factor, epidermal growth factor, insulin-like growth factor-1, were unable to mediate tyrosine phosphorylation of LRP. The basis for this selectivity may result from the ability of LRP to bind PDGFBB, because surface plasmon resonance experiments demonstrated that only PDGF, and not basic fibroblast growth factor, epidermal growth factor, or insulin-like growth factor-1, bound to purified LRP immobilized on a sensor chip. The use of LRP mini-receptor mutants as well as in vitro phosphorylation studies demonstrated that the tyrosine located within the second NPXY motif found in the LRP cytoplasmic domain is the primary site of tyrosine phosphorylation by Src and Src family kinases. Co-immunoprecipitation experiments revealed that PDGF-mediated tyrosine phosphorylation of LRPs cytoplasmic domain results in increased association of the adaptor protein Shc with LRP and that Shc recognizes the second NPXY motif within LRPs cytoplasmic domain. In the accompanying paper, Boucher et al. (Boucher, P., Liu, P. V., Gotthardt, M., Hiesberger, T., Anderson, R. G. W., and Herz, J. (2002) J. Biol. Chem. 275, 15507-15513) reveal that LRP is found in caveolae along with the PDGF receptor. Together, these studies suggest that LRP functions as a co-receptor that modulates signal transduction pathways initiated by the PDGF receptor. PMID:11854294

  2. Phosphorylation of Ser1166 on GluN2B by PKA Is Critical to Synaptic NMDA Receptor Function and Ca2+ Signaling in Spines

    PubMed Central

    Murphy, Jessica A.; Stein, Ivar S.; Lau, C. Geoffrey; Peixoto, Rui T.; Aman, Teresa K.; Kaneko, Naoki; Aromolaran, Kelly; Saulnier, Jessica L.; Popescu, Gabriela K.

    2014-01-01

    The NMDA-type glutamate receptor (NMDAR) is essential for synaptogenesis, synaptic plasticity, and higher cognitive function. Emerging evidence indicates that NMDAR Ca2+ permeability is under the control of cAMP/protein kinase A (PKA) signaling. Whereas the functional impact of PKA on NMDAR-dependent Ca2+ signaling is well established, the molecular target remains unknown. Here we identify serine residue 1166 (Ser1166) in the carboxy-terminal tail of the NMDAR subunit GluN2B to be a direct molecular and functional target of PKA phosphorylation critical to NMDAR-dependent Ca2+ permeation and Ca2+ signaling in spines. Activation of β-adrenergic and D1/D5-dopamine receptors induces Ser1166 phosphorylation. Loss of this single phosphorylation site abolishes PKA-dependent potentiation of NMDAR Ca2+ permeation, synaptic currents, and Ca2+ rises in dendritic spines. We further show that adverse experience in the form of forced swim, but not exposure to fox urine, elicits striking phosphorylation of Ser1166 in vivo, indicating differential impact of different forms of stress. Our data identify a novel molecular and functional target of PKA essential to NMDAR-mediated Ca2+ signaling at synapses and regulated by the emotional response to stress. PMID:24431445

  3. The neurotrophin-3 receptor TrkC directly phosphorylates and activates the nucleotide exchange factor Dbs to enhance Schwann cell migration

    PubMed Central

    Yamauchi, Junji; Chan, Jonah R.; Miyamoto, Yuki; Tsujimoto, Gozoh; Shooter, Eric M.

    2005-01-01

    During the development of the peripheral nervous system, Schwann cells, the myelin-forming glia, migrate along axons before initiating myelination. We previously demonstrated that endogenous neurotrophin-3 (NT3) acting through the TrkC tyrosine kinase receptor enhances migration of premyelinating Schwann cells. This signaling pathway is mediated by the c-Jun N-terminal kinase (JNK) cascade regulated by the Rho GTPases Rac1 and Cdc42. However, missing is the link between TrkC and the GTPases. Here, we show that a guanine-nucleotide exchange factor (GEF), Dbl's big sister (Dbs), couples with TrkC to activate Cdc42 in Schwann cells. Furthermore, TrkC directly phosphorylates Dbs, thereby inducing the Cdc42-GEF activity. Taken together, activation of TrkC triggers Schwann cell migration by regulating Dbs upon direct tyrosine phosphorylation, providing a mechanism whereby a membrane receptor tyrosine kinase can induce the activation of Rho GTPase-GEFs. PMID:15758069

  4. Mechanisms of HIV-tat-Induced Phosphorylation of N-Methyl-d-Aspartate Receptor Subunit 2A in Human Primary Neurons

    PubMed Central

    King, Jessie E.; Eugenin, Eliseo A.; Hazleton, Joy E.; Morgello, Susan; Berman, Joan W.

    2010-01-01

    HIV infection of the central nervous system results in neurological dysfunction in a large number of individuals. NeuroAIDS is characterized by neuronal injury and loss, yet there is no evidence of HIV-infected neurons. Neuronal damage and dropout must therefore be due to indirect effects of HIV infection of other central nervous system cells through elaboration of inflammatory factors and neurotoxic viral proteins, including the viral transactivator, tat. We previously demonstrated that HIV-tat-induced apoptosis in human primary neurons is dependent on N-methyl-d-aspartate receptor (NMDAR) activity. NMDAR activity is regulated by various mechanisms including NMDAR phosphorylation, which may lead to neuronal dysfunction and apoptosis in pathological conditions. We now demonstrate that tat treatment of human neurons results in tyrosine (Y) phosphorylation of the NMDAR subunit 2A (NR2A) in a src kinase–dependent manner. In vitro kinase assays and in vivo data indicated that NR2A Y1184, Y1325, and Y1425 are phosphorylated. Tat treatment of neuronal cultures enhanced phosphorylation of NR2A Y1325, indicating that this site is tat sensitive. Human brain tissue sections from HIV-infected individuals with encephalitis showed an increased phosphorylation of NR2A Y1325 in neurons as compared with uninfected and HIV-infected individuals without encephalitis. These findings suggest new avenues of treatment for HIV-associated cognitive impairment. PMID:20448061

  5. Mutation of light-dependent phosphorylation sites of the Drosophila transient receptor potential-like (TRPL) ion channel affects its subcellular localization and stability.

    PubMed

    Cerny, Alexander C; Oberacker, Tina; Pfannstiel, Jens; Weigold, Sebastian; Will, Carina; Huber, Armin

    2013-05-31

    The Drosophila phototransduction cascade terminates in the opening of the ion channel transient receptor potential (TRP) and TRP-like (TRPL). Contrary to TRP, TRPL undergoes light-dependent subcellular trafficking between rhabdomeric photoreceptor membranes and an intracellular storage compartment, resulting in long term light adaptation. Here, we identified in vivo phosphorylation sites of TRPL that affect TRPL stability and localization. Quantitative mass spectrometry revealed a light-dependent change in the TRPL phosphorylation pattern. Mutation of eight C-terminal phosphorylation sites neither affected multimerization of the channels nor the electrophysiological response of flies expressing the mutated channels. However, these mutations resulted in mislocalization and enhanced degradation of TRPL after prolonged dark-adaptation. Mutation of subsets of the eight C-terminal phosphorylation sites also led to a reduction of TRPL content and partial mislocalization in the dark. This suggests that a light-dependent switch in the phosphorylation pattern of the TRPL channel mediates stable expression of TRPL in the rhabdomeres upon prolonged dark-adaptation.

  6. Phosphorylation of the N-methyl-d-aspartate receptor is increased in the nucleus accumbens during both acute and extended morphine withdrawal.

    PubMed

    Anderson, Ethan M; Reeves, Turi; Kapernaros, Katherine; Neubert, John K; Caudle, Robert M

    2015-12-01

    Opioid withdrawal causes a dysphoric state that can lead to complications in pain patients and can propagate use in drug abusers and addicts. Opioid withdrawal changes the activity of neurons in the nucleus accumbens, an area rich in both opioid-binding mu opioid receptors and glutamate-binding NMDA receptors. Because the accumbens is an area important for reward and aversion, plastic changes in this area during withdrawal could alter future behaviors in animals. We discovered an increase in phosphorylation of serine 897 in the NR1 subunit of the NMDA receptor (pNR1) during acute morphine withdrawal. This serine can be phosphorylated by protein kinase A (PKA) and dephosphorylated by calcineurin. We next demonstrated that this increased pNR1 change is associated with an increase in NR1 surface expression. NR1 surface expression and pNR1 levels during acute withdrawal were both reduced by the NMDA receptor antagonist MK-801 (dizocilpine hydrogen maleate) and the PKA inhibitor H-89(N-[2-[[3-(4-bromophenyl)-2-propenyl]amino]ethyl]-5-isoquinolinesulfonamide dihydrochloride hydrate). We also found that pNR1 levels remained high after an extended morphine withdrawal period of 2 months, correlated with reward-seeking behavior for palatable food, and were associated with a decrease in accumbal calcineurin levels. These data suggest that NR1 phosphorylation changes during the acute withdrawal phase can be long lasting and may reflect a permanent change in NMDA receptors in the accumbens. These altered NMDA receptors in the accumbens could play a role in long-lasting behaviors associated with reward and opioid use.

  7. Mutation of putative GRK phosphorylation sites in the cannabinoid receptor 1 (CB1R) confers resistance to cannabinoid tolerance and hypersensitivity to cannabinoids in mice.

    PubMed

    Morgan, Daniel J; Davis, Brian J; Kearn, Chris S; Marcus, David; Cook, Alex J; Wager-Miller, Jim; Straiker, Alex; Myoga, Michael H; Karduck, Jeffrey; Leishman, Emma; Sim-Selley, Laura J; Czyzyk, Traci A; Bradshaw, Heather B; Selley, Dana E; Mackie, Ken

    2014-04-01

    For many G-protein-coupled receptors (GPCRs), including cannabinoid receptor 1 (CB1R), desensitization has been proposed as a principal mechanism driving initial tolerance to agonists. GPCR desensitization typically requires phosphorylation by a G-protein-coupled receptor kinase (GRK) and interaction of the phosphorylated receptor with an arrestin. In simple model systems, CB1R is desensitized by GRK phosphorylation at two serine residues (S426 and S430). However, the role of these serine residues in tolerance and dependence for cannabinoids in vivo was unclear. Therefore, we generated mice where S426 and S430 were mutated to nonphosphorylatable alanines (S426A/S430A). S426A/S430A mutant mice were more sensitive to acutely administered delta-9-tetrahydrocannabinol (Δ(9)-THC), have delayed tolerance to Δ(9)-THC, and showed increased dependence for Δ(9)-THC. S426A/S430A mutants also showed increased responses to elevated levels of endogenous cannabinoids. CB1R desensitization in the periaqueductal gray and spinal cord following 7 d of treatment with Δ(9)-THC was absent in S426A/S430A mutants. Δ(9)-THC-induced downregulation of CB1R in the spinal cord was also absent in S426A/S430A mutants. Cultured autaptic hippocampal neurons from S426A/S430A mice showed enhanced endocannabinoid-mediated depolarization-induced suppression of excitation (DSE) and reduced agonist-mediated desensitization of DSE. These results indicate that S426 and S430 play major roles in the acute response to, tolerance to, and dependence on cannabinoids. Additionally, S426A/S430A mice are a novel model for studying pathophysiological processes thought to involve excessive endocannabinoid signaling such as drug addiction and metabolic disease. These mice also validate the approach of mutating GRK phosphorylation sites involved in desensitization as a general means to confer exaggerated signaling to GPCRs in vivo.

  8. Interleukin-1 alpha blockade prevents hyperkeratosis in an in vitro model of lamellar ichthyosis.

    PubMed

    O'Shaughnessy, Ryan F L; Choudhary, Ishaan; Harper, John I

    2010-07-01

    The autosomal recessive congenital ichthyoses are a family of related diseases, causing a severe defect in the barrier function of the epidermis. Neonates are usually born as collodion babies, but later form scales characteristic of the disease, due to a combination of thickening of the cornified layer and an increase in the production of non-polar lipids. Current treatments of choice are exfoliative creams and moisturizing agents and the use of oral retinoids. The skin condition and treatment impact significantly on quality of life and, with oral retinoids, there are potential complications associated with long-term use. A greater understanding of the mechanisms that result in scaling should lead to better directed therapies, not only for the inherited ichthyoses, but also other hyperkeratotic disorders. Using siRNA knockdown of the principle gene mutated in lamellar ichthyosis (LI), transglutaminase-1, in rat keratinocytes, we created an in vitro organotypic culture model that closely mimics the disease. Interleukin-1 alpha (IL1A) expression was increased and there was a lack of loricrin cross-linking. All LI patients tested had an increased IL1A and treatment of wild-type organotypic cultures with IL1A was sufficient to induce hyperkeratosis. Treatment of disease mimic organotypic cultures with IL-1 receptor antagonist led to a dose-dependent decrease in hyperkeratosis without a reduction in non-polar lipids in the cornified layer, which has the potential to reduce scaling without the requirement to constantly apply emollients.

  9. Oncogenic role of leptin and Notch interleukin-1 leptin crosstalk outcome in cancer

    PubMed Central

    Lipsey, Crystal C; Harbuzariu, Adriana; Daley-Brown, Danielle; Gonzalez-Perez, Ruben R

    2016-01-01

    Obesity is a global pandemic characterized by high levels of body fat (adiposity) and derived-cytokines (i.e., leptin). Research shows that adiposity and leptin provide insight on the link between obesity and cancer progression. Leptin’s main function is to regulate energy balance. However, obese individuals routinely develop leptin resistance, which is the consequence of the breakdown in the signaling mechanism controlling satiety resulting in the accumulation of leptin. Therefore, leptin levels are often chronically elevated in human obesity. Elevated leptin levels are related to higher incidence, increased progression and poor prognosis of several human cancers. In addition to adipose tissue, cancer cells can also secrete leptin and overexpress leptin receptors. Leptin is known to act as a mitogen, inflammatory and pro-angiogenic factor that induces cancer cell proliferation and tumor angiogenesis. Moreover, leptin signaling induces cancer stem cells, which are involved in cancer recurrence and drug resistance. A novel and complex signaling crosstalk between leptin, Notch and interleukin-1 (IL-1) [Notch, IL-1 and leptin crosstalk outcome (NILCO)] seems to be an important driver of leptin-induced oncogenic actions. Leptin and NILCO signaling mediate the activation of cancer stem cells that can affect drug resistance. Thus, leptin and NILCO signaling are key links between obesity and cancer progression. This review presents updated data suggesting that adiposity affects cancer incidence, progression, and response to treatment. Here we show data supporting the oncogenic role of leptin in breast, endometrial, and pancreatic cancers. PMID:27019796

  10. The Role of Brain Interleukin-1 in Stress-Enhanced Fear Learning

    PubMed Central

    Jones, Meghan E; Lebonville, Christina L; Barrus, Daniel; Lysle, Donald T

    2015-01-01

    Posttraumatic stress disorder (PTSD) has been shown to be associated with pro-inflammatory markers, including elevated plasma levels of interleukin-1β (IL-1β). However, the precise role of neuroinflammation and central immune signaling on the development of this debilitating psychological disorder is not known. Here, we used stress-enhanced fear learning (SEFL), an animal model of the disorder, to examine the role of central IL-1β in PTSD. The results show that the severe stressor in SEFL induces a time-dependent increase in IL-1β immunoreactivity and mRNA expression within the dentate gyrus of the dorsal hippocampus (DH). There was no increase in IL-1β in the basolateral amygdala or the perirhinal cortex. Moreover, blocking the action of IL-1β following the severe stressor with IL-1 receptor antagonist (10 μg, intracerebroventricular (i.c.v.), 24 and 48 h after the stressor) prevented the development of SEFL. To provide further support for the role of IL-1β in the development of SEFL, we show that systemic morphine, a treatment which is known to reduce both PTSD and SEFL, also reduces IL-1β expression in the DH induced by the severe stressor. These studies provide the first evidence that IL-1 is involved SEFL and suggest that IL-1 signaling in the brain may have a critical role in the development of PTSD. PMID:25430780

  11. The role of brain interleukin-1 in stress-enhanced fear learning.

    PubMed

    Jones, Meghan E; Lebonville, Christina L; Barrus, Daniel; Lysle, Donald T

    2015-03-13

    Posttraumatic stress disorder (PTSD) has been shown to be associated with pro-inflammatory markers, including elevated plasma levels of interleukin-1β (IL-1β). However, the precise role of neuroinflammation and central immune signaling on the development of this debilitating psychological disorder is not known. Here, we used stress-enhanced fear learning (SEFL), an animal model of the disorder, to examine the role of central IL-1β in PTSD. The results show that the severe stressor in SEFL induces a time-dependent increase in IL-1β immunoreactivity and mRNA expression within the dentate gyrus of the dorsal hippocampus (DH). There was no increase in IL-1β in the basolateral amygdala or the perirhinal cortex. Moreover, blocking the action of IL-1β following the severe stressor with IL-1 receptor antagonist (10 μg, intracerebroventricular (i.c.v.), 24 and 48 h after the stressor) prevented the development of SEFL. To provide further support for the role of IL-1β in the development of SEFL, we show that systemic morphine, a treatment which is known to reduce both PTSD and SEFL, also reduces IL-1β expression in the DH induced by the severe stressor. These studies provide the first evidence that IL-1 is involved SEFL and suggest that IL-1 signaling in the brain may have a critical role in the development of PTSD.

  12. Glucocorticoids inhibit the autoregulatory induction of interleukin-1 in monocytes after endotoxin stimulation.

    PubMed

    Páez Pereda, M; Perez Castro, C; Costas, M; Nahmod, V E; Stalla, G K; Holsboer, F; Arzt, E

    1996-01-01

    Interleukin-1 (IL-1) is an important mediator in the mechanisms underlying the immune and inflammatory responses. It has pleiotropic effects in host defense and, when present in high concentrations, participates in the development of pathological processes. IL-1 is the most potent cytokine in the activation of the hypothalamic-pituitary-adrenal axis during infection and therefore leads to a glucocorticoid increase. Glucocorticoids in a feedback loop inhibit the production of IL-1 induced by endotoxin. IL-1 also induces its own synthesis. In this report, we examine the role of glucocorticoids in the regulation of IL-1 autoregulatory induction in human monocytes at the level of IL-1 protein production and mRNA accumulation. Using recombinant IL-1 receptor antagonist we established that endogenously produced IL-1 affects induction of IL-1beta protein by lipopolysaccharide (LPS) at the level of mRNA expression. The inhibition of LPS-stimulated IL-1beta production and mRNA expression by glucocorticoids (dexamethasone and cortisol) reaches the same level with glucocorticoids alone or in combination with rIL-1ra. IL-1beta mRNA induced by exogenously added IL-1beta was also inhibited by glucocorticoids. These results indicate that glucocorticoids inhibit the autoregulatory loop of IL-1 in LPS-stimulated monocytes and constitute a mechanism for controlling IL-1 feedback stimulation.

  13. Interaction of the conceptus and endometrium to establish pregnancy in mammals: role of interleukin 1β

    PubMed Central

    Fazleabas, Asgerally; Lucy, Mathew; Mathew, Daniel

    2016-01-01

    Implantation and the establishment of pregnancy in mammals involves an intricate interplay of hormones, cytokines, growth factors, proteins, lipids, ions and the extracellular matrix between the uterine epithelium, stroma, immune cells and the conceptus trophectoderm. The divergent nature of implantation in the mouse, human and pig provides not only an interesting contrast in the establishment of pregnancy and early embryonic development but also intriguing similarities with regard to early endometrial-conceptus signaling. An interesting pro-inflammatory cytokine expressed in a number of mammalian species during the period of implantation is interleukin-1β (IL1B). The presence of IL1B might be involved with immunotolerance at the maternal-placental interface and has been proposed as one of the mediators in placental viviparity. The production of IL1B and other proinflammatory cytokines might play a role in establishing pregnancy through modulation of the nuclear factor kappa-B (NFKB) system in a number of species. A model for the regulation of cellular progesterone receptor expression and NFKB activation for endometrial receptivity and conceptus attachment is continuing to evolve and is discussed in the present review. PMID:24286196

  14. Interaction of the conceptus and endometrium to establish pregnancy in mammals: role of interleukin 1β

    PubMed Central

    Fazleabas, Asgerally; Lucy, Mathew; Mathew, Daniel

    2016-01-01

    Implantation and the establishment of pregnancy in mammals involves an intricate interplay of hormones, cytokines, growth factors, proteins, lipids, ions and the extracellular matrix between the uterine epithelium, stroma, immune cells and the conceptus trophectoderm. The divergent nature of implantation in the mouse, human and pig provides not only an interesting contrast in the establishment of pregnancy and early embryonic development but also intriguing similarities with regard to early endometrial-conceptus signaling. An interesting pro-inflammatory cytokine expressed in a number of mammalian species during the period of implantation is interleukin-1β (IL1B). The presence of IL1B might be involved with immunotolerance at the maternal-placental interface and has been proposed as one of the mediators in placental viviparity. The production of IL1B and other proinflammatory cytokines might play a role in establishing pregnancy through modulation of the nuclear factor kappa-B (NFKB) system in a number of species. A model for the regulation of cellular progesterone receptor expression and NFKB activation for endometrial receptivity and conceptus attachment is continuing to evolve and is discussed in the present review. PMID:22382391

  15. IKK beta and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-kappa B activation in both primary and intestinal epithelial cell lines.

    PubMed

    Haller, Dirk; Russo, Maria P; Sartor, R Balfour; Jobin, Christian

    2002-10-11

    Pathogenic and enteroinvasive bacteria have been shown to trigger the I kappa B/NF-kappa B transcriptional system and proinflammatory gene expression in epithelial cells. In this study, we investigated the molecular mechanism of the commensal Gram-negative Bacteroides vulgatus-induced NF-kappa B signal transduction in intestinal epithelial cells (IEC). We report that B. vulgatus induced interleukin-1 receptor-associated kinase-1 degradation, I kappa B alpha phosphorylation/degradation, RelA and Akt phosphorylation, as well as NF-kappa B DNA binding and NF-kappa B transcriptional activity in rat non-transformed IEC-6 cells. B. vulgatus- but not interleukin-1 beta-mediated NF-kappa B transcriptional activity was inhibited by dominant negative (dn) toll-like receptor 4. Of importance, B. vulgatus induced I kappa B alpha phosphorylation/degradation and IKK alpha/beta and RelA phosphorylation in primary IEC derived from germ-free or mono-associated HLA-B27 transgenic and wild type rats, demonstrating the physiological relevance of non-pathogenic bacterial signaling in IEC. Adenoviral delivery of dn IKK beta or treatment with wortmannin inhibited B. vulgatus-induced endogenous RelA Ser-536 and GST-p65TAD (Ser-529/Ser-536) phosphorylation as well as NF-kappa B transcriptional activity in IEC-6 cells, suggesting a critical role of IKK beta and phosphatidylinositol 3-kinase/Akt in bacteria-induced RelA phosphorylation and NF-kappa B activation. Interestingly, B. vulgatus-induced I kappa B alpha degradation and NF-kappa B transcriptional activity in IEC transwell cultures were inhibited in the presence of lymphocytes. We propose that non-pathogenic B. vulgatus activates the NF-kappa B signaling pathway through both I kappa B degradation and RelA phosphorylation but that immune cells mediate tolerance of IEC to this commensal bacteria.

  16. NK cell cytotoxicity mediated by 2B4 and NTB-A is dependent on SAP acting downstream of receptor phosphorylation.

    PubMed

    Meinke, Stephan; Watzl, Carsten

    2013-01-01

    2B4 (CD244) and NK-T-B-antigen (NTB-A, CD352) are activating receptors on human natural killer (NK) cells and belong to the family of signaling lymphocyte activation molecule (SLAM)-related receptors (SRR). Engagement of these receptors leads to phosphorylation of their cytoplasmic tails and recruitment of the adapter proteins SLAM-associated protein (SAP) and Ewing's sarcoma-activated transcript-2 (EAT-2). X-linked lymphoproliferative syndrome (XLP) is a severe immunodeficiency that results from mutations in the SAP gene. 2B4 and NTB-A-mediated cytotoxicity are abrogated in XLP NK cells. To elucidate the molecular basis for this defect we analyzed early signaling events in SAP knockdown cells. Similar to XLP NK cells, knockdown of SAP in primary human NK cells leads to a reduction of 2B4 and NTB-A-mediated cytotoxicity. We found that early signaling events such as raft recruitment and receptor phosphorylation are not affected by the absence of SAP, indicating the defect in the absence of SAP is downstream of these events. In addition, knockdown of EAT-2 does not impair 2B4 or NTB-A-mediated cytotoxicity. Surprisingly, EAT-2 recruitment to both receptors is abrogated in the absence of SAP, revealing a novel cooperativity between these adapters.

  17. Reduction of α1GABAA receptor mediated by tyrosine kinase C (PKC) phosphorylation in a mouse model of fragile X syndrome

    PubMed Central

    Zhao, Weidong; Wang, Jiaqin; Song, Shunyi; Li, Fang; Yuan, Fangfang

    2015-01-01

    Fragile X syndrome (FXS) caused by lack of fragile X mental retardation protein (Fmr1) is the most common cause of inherited intellectual disability and characterized by many cognitive disturbances like attention deficit, autistic behavior, and audiogenic seizure and have region-specific altered expression of some gamma-aminobutyric acid (GABAA) receptor subunits. Quantitative real-time polymerase chain reaction and western blot experiments were performed in the cultured cortical neurons and forebrain obtained from wild-type (WT) and Fmr1 KO mice demonstrate the reduction in the expression of α1 gamma-aminobutyric acid (α1GABAA) receptor, phospho-α1GABAA receptor, PKC and phosphor-PKC in Fmr1 KO mice comparing with WT mice, both in vivo and in vitro. Furthermore, we found that the phosphorylation of the α1GABAA receptor was mediated by PKC. Our results elucidate that the lower phosphorylation of the α1GABAA receptor mediated by PKC neutralizes the seizure-promoting effects in Fmr1 KO mice and point to the potential therapeutic targets of α1GABAA agonists for the treatment of fragile X syndrome. PMID:26550246

  18. Signal-transducing mechanisms of ketamine-caused inhibition of interleukin-1{beta} gene expression in lipopolysaccharide-stimulated murine macrophage-like Raw 264.7 cells

    SciTech Connect

    Chen, T.-L.; Chang, C.-C.; Lin, Y.-L.; Ueng, Y.-F.; Chen, R.-M.

    2009-10-01

    Ketamine may affect the host immunity. Interleukin-1{beta} (IL-1{beta}), IL-6, and tumor necrosis factor-{alpha} (TNF-{alpha}) are pivotal cytokines produced by macrophages. This study aimed to evaluate the effects of ketamine on the regulation of inflammatory cytokine gene expression, especially IL-1{beta}, in lipopolysaccharide (LPS)-activated murine macrophage-like Raw 264.7 cells and its possible signal-transducing mechanisms. Administration of Raw 264.7 cells with a therapeutic concentration of ketamine (100 {mu}M), LPS, or a combination of ketamine and LPS for 1, 6, and 24 h was not cytotoxic to macrophages. Exposure to 100 {mu}M ketamine decreased the binding affinity of LPS and LPS-binding protein but did not affect LPS-induced RNA and protein synthesis of TLR4. Treatment with LPS significantly increased IL-1{beta}, IL-6, and TNF-{alpha} gene expressions in Raw 264.7 cells. Ketamine at a clinically relevant concentration did not affect the synthesis of these inflammatory cytokines, but significantly decreased LPS-caused increases in these cytokines. Immunoblot analyses, an electrophoretic mobility shift assay, and a reporter luciferase activity assay revealed that ketamine significantly decreased LPS-induced translocation and DNA binding activity of nuclear factor-kappa B (NF{kappa}B). Administration of LPS sequentially increased the phosphorylations of Ras, Raf, MEK1/2, ERK1/2, and IKK. However, a therapeutic concentration of ketamine alleviated such augmentations. Application of toll-like receptor 4 (TLR4) small interfering (si)RNA reduced cellular TLR4 amounts and ameliorated LPS-induced RAS activation and IL-1{beta} synthesis. Co-treatment with ketamine and TLR4 siRNA synergistically ameliorated LPS-caused enhancement of IL-1{beta} production. Results of this study show that a therapeutic concentration of ketamine can inhibit gene expression of IL-1{beta} possibly through suppressing TLR4-mediated signal-transducing phosphorylations of Ras, Raf, MEK1

  19. Upregulation of tumor necrosis factor alpha and interleukin-1 beta in Q fever endocarditis.

    PubMed Central

    Capo, C; Zugun, F; Stein, A; Tardei, G; Lepidi, H; Raoult, D; Mege, J L

    1996-01-01

    The occurrence of Q fever endocarditis likely involves some alterations in the responses of monocytes, the in vivo targets of Coxiella burnetii. To test this hypothesis, the production of the inflammatory cytokines tumor necrosis factor alpha, interleukin-1 beta, and interleukin-6 was assessed in monocytes from patients with Q fever endocarditis. Spontaneous transcription and secretion of tumor necrosis factor and interleukin-1 were significantly higher in patient monocytes than in healthy controls. The interleukin-6 transcripts were also upregulated in patient cells. Moreover, in patients with recent endocarditis exhibiting high titers of immunoglobulin G directed to C. burnetii in phase I, monocytes released significantly higher levels of tumor necrosis factor and interleukin-1 than in patients with stabilized endocarditis. Immunoglobulin G titers and the overproduction of tumor necrosis factor and interleukin-1 were significantly correlated. Hence, the overproduction of inflammatory cytokines might be a marker of disease activity. PMID:8613372

  20. The influences of reproductive status and acute stress on the levels of phosphorylated mu opioid receptor immunoreactivity in rat hippocampus.

    PubMed

    Gonzales, Keith L; Chapleau, Jeanette D; Pierce, Joseph P; Kelter, David T; Williams, Tanya J; Torres-Reveron, Annelyn; McEwen, Bruce S; Waters, Elizabeth M; Milner, Teresa A

    2011-08-19

    Opioids play a critical role in hippocampally dependent behavior and plasticity. In the hippocampal formation, mu opioid receptors (MOR) are prominent in parvalbumin (PARV) containing interneurons. Previously we found that gonadal hormones modulate the trafficking of MORs in PARV interneurons. Although sex differences in response to stress are well documented, the point at which opioids, sex and stress interact to influence hippocampal function remains elusive. Thus, we used quantitative immunocytochemistry in combination with light and electron microscopy for the phosphorylated MOR at the SER375 carboxy-terminal residue (pMOR) in male and female rats to assess these interactions. In both sexes, pMOR-immunoreactivity (ir) was prominent in axons and terminals and in a few neuronal somata and dendrites, some of which contained PARV in the mossy fiber pathway region of the dentate gyrus (DG) hilus and CA3 stratum lucidum. In unstressed rats, the levels of pMOR-ir in the DG or CA3 were not affected by sex or estrous cycle stage. However, immediately following 30 minutes of acute immobilization stress (AIS), males had higher levels of pMOR-ir whereas females at proestrus and estrus (high estrogen stages) had lower levels of pMOR-ir within the DG. In contrast, the number and types of neuronal profiles with pMOR-ir were not altered by AIS in either males or proestrus females. These data demonstrate that although gonadal steroids do not affect pMOR levels at resting conditions, they are differentially activated both pre- and post-synaptic MORs following stress. These interactions may contribute to the reported sex differences in hippocampally dependent behaviors in stressed animals. PMID:22468144

  1. Hormone-induced progesterone receptor phosphorylation consists of sequential DNA-independent and DNA-dependent stages: analysis with zinc finger mutants and the progesterone antagonist ZK98299.

    PubMed Central

    Takimoto, G S; Tasset, D M; Eppert, A C; Horwitz, K B

    1992-01-01

    Human progesterone receptors (hPRs) are phosphorylated at multiple serine residues, first in a basal step and then in a hormone-induced step. To determine whether hormone-induced phosphorylation precedes or follows the interaction of hPRs with DNA two strategies were used. (i) DNA binding was prevented or altered with site-specific mutants of the A form of hPR; (ii) DNA binding of wild-type hPR forms A and B was prevented with the progesterone antagonist ZK98299. Two hPRA mutants were constructed: DBDCys, which lacks a critical cysteine residue in the first zinc finger, and DBDsp, which is mutated at three discriminatory amino acids to change its DNA binding specificity from a progesterone response element to an estrogen response element. Receptors were transiently expressed in PR-negative cells and were intranuclear. DBDCys did not bind DNA in vitro and DBDsp bound only the estrogen response element. Transiently expressed hPRA and DBDsp showed the upward shift in electrophoretic mobility characteristic of hormone-induced phosphorylation; it was absent with DBDCys. Hormone-induced [32P] orthophosphate incorporation into transiently expressed DBDCys was reduced 60% compared to hPRA and DBDsp but was not eliminated. ZK98299 binds hPRs but prevents their interaction with DNA. Compared to R5020, the antagonist reduced phosphorylation of hPRB and hPRA in T47D breast cancer cells by 60% and totally prevented the mobility shift. We conclude that the hormone-induced phosphorylation of hPR includes DNA-independent and DNA-dependent stages and that only DNA-dependent sites contribute to the mobility shift. Images PMID:1557412

  2. Phosphorylation of arylsulphatase A occurs through multiple interactions with the UDP-N-acetylglucosamine-1-phosphotransferase proximal and distal to its retrieval site by the KDEL receptor.

    PubMed Central

    Dittmer, F; von Figura, K

    1999-01-01

    Phosphorylation of oligosaccharides of the lysosomal enzyme arylsulphatase A (ASA), which accumulate in the secretions of cells that mis-sort most of the newly synthesized lysosomal enzymes due to a deficiency of mannose 6-phosphate receptors, was found to be site specific. ASA residing within the secretory route of these cells contains about one third of the incorporated [2-3H]mannose in phosphorylated oligosaccharides. Oligosaccharides carrying two phosphate groups are almost 2-fold less frequent than those with one phosphate group and only a few of the phosphate groups are uncovered. Addition of a KDEL (Lys-Asp-Glu-Leu) retention signal prolongs the residence time of ASA within the secretory route 6-fold, but does not result in more efficient phosphorylation. In contrast, more than 90% of the [2-3H]mannose incorporated into secreted ASA (with or without a KDEL retention signal) is present in phosphorylated oligosaccharides. Those with two phosphate groups are almost twice as frequent as those with one phosphate group and most of the phosphate groups are uncovered. Thus, ASA receives N-acetylglucosamine 1-phosphate groups in a sequential manner at two or more sites located within the secretory route proximal and distal to the site where ASA is retrieved by the KDEL receptor, i.e. proximal to the trans-Golgi. At each of these sites up to two N-acetylglucosamine 1-phosphate groups can be added to a single oligosaccharide. Of several drugs known to inhibit transit of ASA through the secretory route only the ionophore monensin had a major inhibitory effect on phosphorylation, uncovering and sialylation. PMID:10359658

  3. Tyrosine phosphorylation of transcriptional coactivator WW-domain binding protein 2 regulates estrogen receptor α function in breast cancer via the Wnt pathway.

    PubMed

    Lim, Shen Kiat; Orhant-Prioux, Magali; Toy, Weiyi; Tan, Kah Yap; Lim, Yoon Pin

    2011-09-01

    WW-binding protein 2 (WBP2) has been demonstrated in different studies to be a tyrosine kinase substrate, to activate estrogen receptor α (ERα)/progesterone receptor (PR) transcription, and to play a role in breast cancer. However, the role of WBP2 tyrosine phosphorylation in regulating ERα function and breast cancer biology is unknown. Here, we established WBP2 as a tyrosine phosphorylation target of estrogen signaling via EGFR crosstalk. Using dominant-negative, constitutively active mutants, RNAi, and pharmacological studies, we demonstrated that phosphorylation of WBP2 at Tyr192 and Tyr231 could be regulated by c-Src and c-Yes kinases. We further showed that abrogating WBP2 phosphorylation impaired >60% of ERα reporter activity, putatively by blocking nuclear entry of WBP2 and its interaction with ERα. Compared to vector control, overexpression of WBP2 and its phospho-mimic mutant in MCF7 cells resulted in larger tumors in mice, induced loss of cell-cell adhesion, and enhanced cell proliferation, anchorage-independent growth, migration, and invasion in both estrogen-dependent and -independent manners, events of which could be substantially abolished by overexpression of the phosphorylation-defective mutant. Hormone independence of cells expressing WBP2 phospho-mimic mutant was associated with heightened ERα and Wnt reporter activities. Wnt/β-catenin inhibitor FH535 blocked phospho-WBP2-mediated cancer cell growth more pronouncedly than tamoxifen and fulvestrant, in part by reducing the expression of ERα. Wnt pathway is likely to be a critical component in WBP2-mediated breast cancer biology.

  4. Disruption of parathyroid hormone and parathyroid hormone-related peptide receptor phosphorylation prolongs ERK1/2 MAPK activation and enhances c-fos expression

    PubMed Central

    Abou-Samra, Abdul B.

    2012-01-01

    Previous studies have demonstrated that parathyroid hormone (PTH) binding to the PTH/PTH-related peptide receptor (PPR) stimulates G protein coupling, receptor phosphorylation, β-arrestin translocation, and internalization of the ligand/receptor complex. The extracellular signal-regulated mitogen-activated protein kinases 1/2 (ERK1/2 MAPK) are downstream effectors of PPR. In the current study, we investigated the role of PPR phosphorylation in the PTH regulation of the ERK1/2 MAPK pathway. Short treatment with PTH (0–40 min) of LLCP-K1 cells stably expressing a wild-type (WT) or a phosphorylation-deficient (PD) PPR (WT-PPR or PD-PPR cells, respectively) results in similar activation of ERK1/2. Interestingly, PTH stimulation of ERK1/2 in the WT-PPR cells then decreases as a result of longer PTH (60 min) treatment, and inhibition of ERK1/2 by PTH is observed at 90 min. Strikingly, the PD-PPR cells exhibit prolonged ERK1/2 activation up to 90 min of PTH treatment. An ERK1/2-dependent increase in c-fos expression is observed in the PD-PPR cells. Subsequently, c-fos expression in the WT-PPR and PD-PPR cells was markedly attenuated by a specific ERK1/2 pathway inhibitor. Further investigations revealed that PTH treatment causes a robust recruitment of a green fluorescent protein-tagged β-arrestin2 (β-arrestin2-GFP) in the WT-PPR cells. In contrast, β-arrestin2 recruitment was reduced in the PD-PPR cells. Importantly, expression of a receptor phosphorylation-independent β-arrestin2 (R169E) in the PD-PPR cells restored the biphasic effect of PTH on ERK1/2 as in the WT-PPR cells. The study reports a novel role for receptor phosphorylation and β-arrestin2 in the subsequent inhibition of the ERK1/2 pathway and in control of gene expression. PMID:22414806