Science.gov

Sample records for interleukin-1beta-induced beta-cell apoptosis

  1. N-methyl-d-aspartate receptor-mediated calcium overload and endoplasmic reticulum stress are involved in interleukin-1beta-induced neuronal apoptosis in rat hippocampus.

    PubMed

    Dong, Yilong; Kalueff, Allan V; Song, Cai

    2017-06-15

    Increased levels of interleukin (IL)-1β and its gene expression are implicated in the etiology of Alzheimer's disease (AD). IL-1β activates microglia and stimulates glutamatergic N-methyl-d-aspartate receptor NMDA receptor expression, thereby disturbing intracellular Ca(2+) homeostasis. Ca(2+) disequilibrium, in turn, may trigger endoplasmic reticulum (ER) stress, contributing to overall excitotoxicity and neuronal death that evoke AD. However, it is unclear whether IL-1β-induced neuronal apoptosis is mediated by the glutamatergic system, ER stress and/or Ca(2+) dysfunction. The present study investigated the role of NMDA receptor (NMDAR) in ER stress and IL-1β-evoked neuronal death by assessing NMDAR-induced Ca(2+) overload and NMDA-mediated ER stress. Male Long Evans rats were treated with IL-1β (with or without NMDAR antagonist MK801) injected intracerebroventricularly for 8days. Glutamate concentration was measured by HPLC, and mRNA and protein expression of microglial biomarkers and NMDAR, as well as markers of Ca(2+) overload (caplain2) and ER stress (glucose-regulated protein 78, GRP78, and C/EBP homologous protein-10, CHOP), were assessed by real-time PCR and western blot. Apoptosis was also evaluated in the hippocampal neurons using TUNEL. Overall, IL-1β induced robust neuronal apoptosis, accompanied by upregulated NMDAR, caplain2, GRP78 and CHOP. MK801 pretreatment significantly attenuated neuronal apoptosis and NMDA up-regulation, also reducing GRP78 and CHOP expression. In summary, these results suggest that IL-1β may disturb intracellular Ca(2+) homeostasis via NMDAR-mediated mechanism, thereby triggering neuronal apoptosis by enhancing ER stress. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Microglia-derived proinflammatory cytokines tumor necrosis factor-alpha and interleukin-1beta induce Purkinje neuronal apoptosis via their receptors in hypoxic neonatal rat brain.

    PubMed

    Kaur, Charanjit; Sivakumar, Viswanathan; Zou, Zhirong; Ling, Eng-Ang

    2014-01-01

    The developing cerebellum is extremely vulnerable to hypoxia which can damage the Purkinje neurons. We hypothesized that this might be mediated by tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) derived from activated microglia as in other brain areas. One-day-old rats were subjected to hypoxia following, which the expression changes of various proteins in the cerebellum including hypoxia inducible factor-1α, TNF-α, IL-1β, TNF-R1 and IL-1R1 were analyzed. Following hypoxic exposure, TNF-α and IL-1β immunoexpression in microglia was enhanced coupled by that of TNF-R1 and IL-1R1 in the Purkinje neurons. Along with this, hypoxic microglia in vitro showed enhanced release of TNF-α and IL-1β whose receptor expression was concomitantly increased in the Purkinje neurons. In addition, nitric oxide (NO) level was significantly increased in the cerebellum and cultured microglia subjected to hypoxic exposure. Moreover, cultured Purkinje neurons treated with conditioned medium derived from hypoxic microglia underwent apoptosis but the incidence was significantly reduced when the cells were treated with the same medium that was neutralized with TNF-α/IL-1β antibody. We conclude that hypoxic microglia in the neonatal cerebellum produce increased amounts of NO, TNF-α and IL-1β which when acting via their respective receptors could induce Purkinje neuron death.

  3. Apoptosis of beta cells in diabetes mellitus.

    PubMed

    Anuradha, Rachakatla; Saraswati, Mudigonda; Kumar, Kishore G; Rani, Surekha H

    2014-11-01

    Diabetes mellitus is a multifactorial metabolic disorder characterized by hyperglycemia. Apoptosis in beta cells has been observed in response to diverse stimuli, such as glucose, cytokines, free fatty acids, leptin, and sulfonylureas, leading to the activation of polyol, hexosamine, and diacylglycerol/protein kinase-C (DAG/PKC) pathways that mediate oxidative and nitrosative stress causing the release of different cytokines. Cytokines induce the expression of Fas and tumor necrosis factor-alpha (TNF-α) by activating the transcription factor, nuclear factor-κb, and signal transducer and activator of transcription 1 (STAT-1) in the β cells in the extrinsic pathway of apoptosis. Cytokines produced in beta cells also induce proapoptotic members of the intrinsic pathway of apoptosis. The genetic alterations in apoptosis signaling machinery and the pathogenesis of diabetes include Fas, FasL, Akt, caspases, calpain-10, and phosphatase and tensin homolog (Pten). The other gene products that are involved in diabetes are nitric oxide synthase-2 (NOS2), small ubiquitin-like modifier (SUMO), apolipoprotein CIII (ApoCIII), forkhead box protein O1 (FOXO1), and Kruppel-like zinc finger protein Gli-similar 3 (GLIS3). The gene products having antiapoptotic nature are Bcl-2 and Bcl-XL. Epigenetic mechanisms play an important role in type I and type II diabetes. Further studies on the apoptotic genes and gene products in diabetics may be helpful in pharmacogenomics and individualized treatment along with antioxidants targeting apoptosis in diabetes.

  4. Alpha1-antitrypsin protects beta-cells from apoptosis.

    PubMed

    Zhang, Bin; Lu, Yuanqing; Campbell-Thompson, Martha; Spencer, Terry; Wasserfall, Clive; Atkinson, Mark; Song, Sihong

    2007-05-01

    Beta-cell apoptosis appears to represent a key event in the pathogenesis of type 1 diabetes. Previous studies have demonstrated that administration of the serine proteinase inhibitor alpha1-antitrypsin (AAT) prevents type 1 diabetes development in NOD mice and prolongs islet allograft survival in rodents; yet the mechanisms underlying this therapeutic benefit remain largely unclear. Herein we describe novel findings indicating that AAT significantly reduces cytokine- and streptozotocin (STZ)-induced beta-cell apoptosis. Specifically, strong antiapoptotic activities for AAT (Prolastin, human) were observed when murine insulinoma cells (MIN6) were exposed to tumor necrosis factor-alpha. In a second model system involving STZ-induced beta-cell apoptosis, treatment of MIN6 cells with AAT similarly induced a significant increase in cellular viability and a reduction in apoptosis. Importantly, in both model systems, treatment with AAT completely abolished induced caspase-3 activity. In terms of its activities in vivo, treatment of C57BL/6 mice with AAT prevented STZ-induced diabetes and, in agreement with the in vitro analyses, supported the concept of a mechanism involving the disruption of beta-cell apoptosis. These results propose a novel biological function for this molecule and suggest it may represent an effective candidate for attempts seeking to prevent or reverse type 1 diabetes.

  5. Human interleukin-1 beta induced stimulation of insulin release from rat pancreatic islets is accompanied by an increase in mitochondrial oxidative events.

    PubMed

    Eizirik, D L; Sandler, S

    1989-11-01

    Acute exposure of pancreatic islets to interleukin-1 beta results in an increase in insulin release, while an extension of the exposure time induces a functional suppression and eventually, destruction of the B-cells. We have recently suggested that the interleukin-1 beta induced inhibition of islet function is mediated through an impairment in oxidative metabolism. The aim of the current study was to investigate if the acute, stimulatory effects of interleukin-1 beta on islet function could also be related to changes in the substrate metabolism. For this purpose, rat islets were exposed for 90-120 min to 30 pmol/l human recombinant interleukin-1 beta (biological activity of 2.5 U/ml) and their function and metabolism characterized during this period. The cytokine did not increase insulin release in the presence of 1.7 or 5.5 mmol/l glucose but in both the presence of 16.7 mmol/l glucose or 10 mmol/l leucine + 2 mmol/l glutamine there was a 50% increase in insulin release. Interleukin-1 beta exposure increased the oxidation of D-[U-14C]glucose at 5.5 mmol/l glucose by 25% and at 16.7 mmol/l glucose by 60%. Carbohydrate and amino acid metabolism were further examined in the presence of D-[5-3H]glucose, D-[6-14C]glucose, [1-14C]pyruvate, L-[U-14C]glutamine, L-[U-14C]leucine and L-[1-14C]leucine. There was no difference between control islets and interleukin-1 beta exposed islets in terms of D-[5-3H]glucose utilization or [1-14C]pyruvate decarboxylation, but the oxidation of D-[6-14C]glucose was increased by 64% in the interleukin-1 beta exposed islets.(ABSTRACT TRUNCATED AT 250 WORDS)

  6. MST1 is a novel regulator of apoptosis in pancreatic beta-cells

    PubMed Central

    Ardestani, Amin; Khobragade, Vrushali; Yuan, Ting; Frogne, Thomas; Tao, Wufan; Oberholzer, Jose; Pattou, Francois; Conte, Julie Kerr; Maedler, Kathrin

    2014-01-01

    Apoptotic cell death is a hallmark of the loss of insulin producing beta-cells in all forms of diabetes mellitus. Current treatment fails to halt the decline in functional beta-cell mass. Strategies to prevent beta-cell apoptosis and dysfunction are urgently needed. Here, we identified Mammalian Sterile 20-like kinase 1 (MST1) as a critical regulator of apoptotic beta-cell death and function. MST1 was strongly activated in beta-cells under diabetogenic conditions and correlated with beta-cell apoptosis. MST1 specifically induced the mitochondrial-dependent pathway of apoptosis in beta-cells through up-regulation of the BH3-only protein Bim. MST1 directly phosphorylated PDX1 at Thr11, resulting in its ubiquitination, degradation and impaired insulin secretion. Mst1 deficiency completely restored normoglycemia, beta-cell function and survival in vitro and in vivo. We show MST1 as novel pro-apoptotic kinase and key mediator of apoptotic signaling and beta-cell dysfunction, which may serve as target for the development of novel therapies for diabetes. PMID:24633305

  7. beta-cell apoptosis and defense mechanisms: lessons from type 1 diabetes.

    PubMed

    Eizirik, D L; Darville, M I

    2001-02-01

    Increased evidence suggests that apoptosis is the main mode of beta-cell death in early type 1 diabetes. Cytokines mediate beta-cell apoptosis, and in this article, we discuss some of the cytokine-modified genes that may contribute to beta-cell survival or death. The gene encoding for the inducible form of nitric oxide synthase is induced by interleukin (IL)-1beta or IL-1beta plus gamma-interferon in rodent and human islets, respectively. This leads to nitric oxide (NO) formation, which contributes to a major extent to beta-cell necrosis and to a minor extent to the process of beta-cell apoptosis. The main mode of cell death induced by cytokines in human beta-cells is apoptosis, whereas cytokines lead to both necrosis and apoptosis in rat and mouse beta-cells. It is suggested that the necrotic component in rodent islets is due to NO-induced mitochondrial impairment and consequent decreased ATP production. Human islets, possessing better antioxidant defenses, are able to preserve glucose oxidation and ATP production, and can thus complete the apoptotic program after the death signal delivered by cytokines. We propose that this death signal results from cytokine-induced parallel and/or sequential changes in the expression of multiple proapoptotic and prosurvival genes. The identity of these "gene modules" and of the transcription factors regulating them remains to be established.

  8. Grape seed procyanidin extract modulates proliferation and apoptosis of pancreatic beta-cells.

    PubMed

    Cedó, Lídia; Castell-Auví, Anna; Pallarès, Victor; Blay, Mayte; Ardévol, Anna; Arola, Lluís; Pinent, Montserrat

    2013-05-01

    Grape seed procyanidin extract (GSPE) modulates glucose homeostasis and insulinemia in several animal models. Under pathological conditions, insulin levels are dependent on pancreatic beta-cell functionality, as well as on the beta-cell mass expansion or apoptosis in the pancreas. In this study, we analysed the effects of GSPE on modulating apoptosis and proliferation in beta-cells. We tested the effects of GSPE in the INS-1E pancreatic beta-cell line, either under basal or altered conditions with high glucose, insulin or palmitate levels. GSPE enhanced the pro-apoptotic effect of high glucose and showed clear antiproliferative effects under high glucose, insulin and palmitate conditions. These antiproliferative effects are likely due to high molecular weight compounds contained in the extract. GSPE also modulated pro- and anti-apoptotic markers in the pancreas of rats fed a cafeteria diet, with the effect depending on the dose of GSPE and duration of treatment. Thus, GSPE is able to modulate apoptosis and proliferation of beta-cells under altered, but not basal, conditions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. Role of Ca2+ in apoptosis evoked by human amylin in pancreatic islet beta-cells.

    PubMed Central

    Bai, J Z; Saafi, E L; Zhang, S; Cooper, G J

    1999-01-01

    The objective of these studies was to clarify the role of Ca(2+) in the mechanism of death evoked by human amylin (hA) in islet beta-cells. hA forms fibrils in vitro and islet amyloid in vivo. Here we show that pure synthetic hA aggregated in solution, formed fibrils and evoked death in cultured RINm5F islet beta-cells in a time-dependent (0-24 h) and concentration-dependent (0-20 microM) manner. Dying cells underwent shrinkage of the nucleus, with clumping and segregation of chromatin into masses that lay against the nuclear envelope, and internucleosomal DNA fragmentation. These cells therefore show many features of apoptosis, although aspects of the morphology might be characteristic of this particular cell type rather than of a general apoptotic nature. Aurintricarboxylic acid, an inhibitor of both Ca(2+)-dependent and Ca(2+)-independent nucleases, suppressed this DNA fragmentation and inhibited apoptosis at concentrations between 25 and 200 microM. Direct measurements of the cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) in fura-2 acetoxymethyl ester (AM)-loaded beta-cells showed that neither hA nor its non-cytotoxic homologue, rat amylin were effective in raising [Ca(2+)](i). Modulators of Ca(2+) regulation were tested for their effects on hA-induced beta-cell apoptosis. Ca(2+) ionophore (A23187) and thapsigargin (an inhibitor of endoplasmic reticular Ca(2+)-ATPase activity) by themselves evoked apoptosis accompanied by increased [Ca(2+)](i). Neither the Ca(2+) channel blocker verapamil, the extracellular Ca(2+) chelator EGTA nor the cytosolic Ca(2+) buffer bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid ('BAPTA')/AM protected beta-cells from hA-evoked apoptosis. Prolonged incubation of beta-cells with a lethal dose of hA altered neither the basal [Ca(2+)](i) nor the thapsigargin-induced release of Ca(2+) from intracellular stores. Furthermore, (45)CaCl(2) uptake by RINm5F cells did not differ in the presence or absence of hA. These results

  10. Proteasome Dysfunction Mediates High Glucose-Induced Apoptosis in Rodent Beta Cells and Human Islets

    PubMed Central

    Broca, Christophe; Varin, Elodie; Armanet, Mathieu; Tourrel-Cuzin, Cécile; Bosco, Domenico; Dalle, Stéphane; Wojtusciszyn, Anne

    2014-01-01

    The ubiquitin/proteasome system (UPS), a major cellular protein degradation machinery, plays key roles in the regulation of many cell functions. Glucotoxicity mediated by chronic hyperglycaemia is detrimental to the function and survival of pancreatic beta cells. The aim of our study was to determine whether proteasome dysfunction could be involved in beta cell apoptosis in glucotoxic conditions, and to evaluate whether such a dysfunction might be pharmacologically corrected. Therefore, UPS activity was measured in GK rats islets, INS-1E beta cells or human islets after high glucose and/or UPS inhibitor exposure. Immunoblotting was used to quantify polyubiquitinated proteins, endoplasmic reticulum (ER) stress through CHOP expression, and apoptosis through the cleavage of PARP and caspase-3, whereas total cell death was detected through histone-associated DNA fragments measurement. In vitro, we found that chronic exposure of INS-1E cells to high glucose concentrations significantly decreases the three proteasome activities by 20% and leads to caspase-3-dependent apoptosis. We showed that pharmacological blockade of UPS activity by 20% leads to apoptosis in a same way. Indeed, ER stress was involved in both conditions. These results were confirmed in human islets, and proteasome activities were also decreased in hyperglycemic GK rats islets. Moreover, we observed that a high glucose treatment hypersensitized beta cells to the apoptotic effect of proteasome inhibitors. Noteworthily, the decreased proteasome activity can be corrected with Exendin-4, which also protected against glucotoxicity-induced apoptosis. Taken together, our findings reveal an important role of proteasome activity in high glucose-induced beta cell apoptosis, potentially linking ER stress and glucotoxicity. These proteasome dysfunctions can be reversed by a GLP-1 analog. Thus, UPS may be a potent target to treat deleterious metabolic conditions leading to type 2 diabetes. PMID:24642635

  11. GABA protects pancreatic beta cells against apoptosis by increasing SIRT1 expression and activity.

    PubMed

    Prud'homme, Gérald J; Glinka, Yelena; Udovyk, Oleksandr; Hasilo, Craig; Paraskevas, Steven; Wang, Qinghua

    2014-09-26

    We have previously shown that GABA protects pancreatic islet cells against apoptosis and exerts anti-inflammatory effects. Notably, GABA inhibited the activation of NF-κB in both islet cells and lymphocytes. NF-κB activation is detrimental to beta cells by promoting apoptosis. However, the mechanisms by which GABA mediates these effects are unknown. Because the above-mentioned effects mimic the activity of sirtuin 1 (SIRT1) in beta cells, we investigated whether it is involved. SIRT1 is an NAD(+)-dependent deacetylase that enhances insulin secretion, and counteracts inflammatory signals in beta cells. We found that the incubation of a clonal beta-cell line (rat INS-1) with GABA increased the expression of SIRT1, as did GABA receptor agonists acting on either type A or B receptors. NAD(+) (an essential cofactor of SIRT1) was also increased. GABA augmented SIRT1 enzymatic activity, which resulted in deacetylation of the p65 component of NF-κB, and this is known to interfere with the activation this pathway. GABA increased insulin production and reduced drug-induced apoptosis, and these actions were reversed by SIRT1 inhibitors. We examined whether SIRT1 is similarly induced in newly isolated human islet cells. Indeed, GABA increased both NAD(+) and SIRT1 (but not sirtuins 2, 3 and 6). It protected human islet cells against spontaneous apoptosis in culture, and this was negated by a SIRT1 inhibitor. Thus, our findings suggest that major beneficial effects of GABA on beta cells are due to increased SIRT1 and NAD(+), and point to a new pathway for diabetes therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  12. Baculovirus p35 increases pancreatic {beta}-cell resistance to apoptosis

    SciTech Connect

    Hollander, Kenneth; Bar-Chen, Michal; Efrat, Shimon . E-mail: sefrat@post.tau.ac.il

    2005-07-01

    {beta}-cells die by apoptosis in type 1 diabetes as a result of autoimmune attack mediated by cytokines, and in type 2 diabetes by various perpetrators including human islet amyloid polypeptide (hIAPP). The cascade of apoptotic events induced by cytokines and hIAPP is mediated through caspases and reactive oxygen species. The baculovirus p35 protein is a potent anti-apoptotic agent shown to be effective in a variety of species and able to inhibit a number of apoptotic pathways. Here, we aimed at determining the protective potential of p35 in {beta}-cells exposed to cytokines and hIAPP, as well as the effects of p35 on {beta}-cell function. The p35 gene was introduced into {beta}TC-tet cells, a differentiated murine {beta}-cell line capable of undergoing inducible growth-arrest. Both proliferating and growth-arrested cells expressing p35 manifested increased resistance to cytokines and hIAPP, compared with control cells, as judged by cell viability, DNA fragmentation, and caspase-3 activity assays. p35 was significantly more protective in growth-arrested, compared with proliferating, cells. No significant differences were observed in proliferation and insulin content between cells expressing p35 and control cells. In contrast, p35 manifested a perturbing effect on glucose-induced insulin secretion. These findings suggest that p35 could be incorporated as part of a multi-pronged approach of immunoprotective strategies to provide protection from recurring autoimmunity for transplanted {beta}-cells, as well as in preventive gene therapy in type 1 diabetes. p35 may also be protective from {beta}-cell damage caused by hIAPP in type 2 diabetes.

  13. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells

    SciTech Connect

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    2015-12-04

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes. - Highlights: • TLX overexpression in MIN6 cell causes significant expression changes of 225 genes. • TLX overexpression promotes MIN6 cell proliferation and decreases cell apoptosis. • TLX overexpression does not cause impairment of insulin secretion.

  14. Glucagon-like peptide-1 prevents methylglyoxal-induced apoptosis of beta cells through improving mitochondrial function and suppressing prolonged AMPK activation

    PubMed Central

    Chang, Tien-Jyun; Tseng, Hsing-Chi; Liu, Meng-Wei; Chang, Yi-Cheng; Hsieh, Meng-Lun; Chuang, Lee-Ming

    2016-01-01

    Accumulation of methylglyoxal (MG) contributes to glucotoxicity and mediates beta cell apoptosis. The molecular mechanism by which GLP-1 protects MG-induced beta cell apoptosis remains unclear. Metformin is a first-line drug for treating type 2 diabetes associated with AMPK activation. However, whether metformin prevents MG-induced beta cell apoptosis is controversial. Here, we explored the signaling pathway involved in the anti-apoptotic effect of GLP-1, and investigated whether metformin had an anti-apoptotic effect on beta cells. MG treatment induced apoptosis of beta cells, impaired mitochondrial function, and prolonged activation of AMP-dependent protein kinase (AMPK). The MG-induced pro-apoptotic effects were abolished by an AMPK inhibitor. Pretreatment of GLP-1 reversed MG-induced apoptosis, and mitochondrial dysfunction, and suppressed prolonged AMPK activation. Pretreatment of GLP-1 reversed AMPK activator 5-aminoimidazole-4-carboxamide riboside (AICAR)-induced apoptosis, and suppressed prolonged AMPK activation. However, metformin neither leads to beta cell apoptosis nor ameliorates MG-induced beta cell apoptosis. In parallel, GLP-1 also prevents MG-induced beta cell apoptosis through PKA and PI3K-dependent pathway. In conclusion, these data indicates GLP-1 but not metformin protects MG-induced beta cell apoptosis through improving mitochondrial function, and alleviating the prolonged AMPK activation. Whether adding GLP-1 to metformin provides better beta cell survival and delays disease progression remains to be validated. PMID:26997114

  15. Nuclear orphan receptor TLX affects gene expression, proliferation and cell apoptosis in beta cells.

    PubMed

    Shi, Xiaoli; Xiong, Xiaokan; Dai, Zhe; Deng, Haohua; Sun, Li; Hu, Xuemei; Zhou, Feng; Xu, Yancheng

    Nuclear orphan receptor TLX is an essential regulator of the growth of neural stem cells. However, its exact function in pancreatic islet cells is still unknown. In the present study, gene expression profiling analysis revealed that overexpression of TLX in beta cell line MIN6 causes suppression of 176 genes and upregulation of 49 genes, including a cadre of cell cycle, cell proliferation and cell death control genes, such as Btg2, Ddit3 and Gadd45a. We next examined the effects of TLX overexpression on proliferation, apoptosis and insulin secretion in MIN6 cells. Proliferation analysis using EdU assay showed that overexpression of TLX increased percentage of EdU-positive cells. Cell cycle and apoptosis analysis revealed that overexpression of TLX in MIN6 cells resulted in higher percentage of cells exiting G1 into S-phase, and a 58.8% decrease of cell apoptosis induced by 0.5 mM palmitate. Moreover, TLX overexpression did not cause impairment of insulin secretion. Together, we conclude that TLX is among factors capable of controlling beta cell proliferation and survival, which may serve as a target for the development of novel therapies for diabetes.

  16. Use of microarray analysis to unveil transcription factor and gene networks contributing to Beta cell dysfunction and apoptosis.

    PubMed

    Eizirik, Decio L; Kutlu, Burak; Rasschaert, Joanne; Darville, Martine; Cardozo, Alessandra K

    2003-11-01

    The beta cell fate following immune-mediated damage depends on an intricate pattern of dozens of genes up- or downregulated in parallel and/or sequentially. We are utilizing microarray analysis to clarify the pattern of gene expression in primary rat beta cells exposed to the proapoptotic cytokines, IL-1beta and/or IFN-gamma. The picture emerging from these experiments is that beta cells are not passive bystanders of their own destruction. On the contrary, beta cells respond to damage by activating diverse networks of transcription factors and genes that may either lead to apoptosis or preserve viability. Of note, cytokine-exposed beta cells produce and release chemokines that may contribute to the homing and activation of T cells and macrophages during insulitis. Several of the effects of cytokines depend on the activation of the transcription factor, NF-kappaB. NF-kappaB blocking prevents cytokine-induced beta cell death, and characterization of NF-kappaB-dependent genes by microarray analysis indicated that this transcription factor controls diverse networks of transcription factors and effector genes that are relevant for maintenance of beta cell differentiated status, cytosolic and ER calcium homeostasis, attraction of mononuclear cells, and apoptosis. Identification of this and additional "transcription factor networks" is being pursued by cluster analysis of gene expression in insulin-producing cells exposed to cytokines for different time periods. Identification of complex gene patterns poses a formidable challenge, but is now technically feasible. These accumulating evidences may finally unveil the molecular mechanisms regulating the beta cell "decision" to undergo or not apoptosis in early T1DM.

  17. Increased pancreatic beta-cell apoptosis following fetal and neonatal exposure to nicotine is mediated via the mitochondria.

    PubMed

    Bruin, Jennifer E; Gerstein, Hertzel C; Morrison, Katherine M; Holloway, Alison C

    2008-06-01

    In Canada, nicotine replacement therapy is recommended as a safe smoking cessation aid for pregnant women. However, we have shown in an animal model that fetal and neonatal nicotine exposure causes increased beta-cell apoptosis and loss of beta-cell mass, which leads to the development of postnatal dysglycemia and obesity. The goal of this study was to determine whether the observed beta-cell apoptosis is mediated via the mitochondrial and/or death receptor pathway. Female Wistar rats were given saline (control) or nicotine bitartrate (1 mg/kg/day) via sc injection for 2 weeks prior to mating until weaning (postnatal day 21). At weaning, pancreas tissue was collected for Western blotting, electron microscopy (EM), and immunohistochemistry. Key markers of each apoptotic pathway were examined in whole pancreas homogenates and mitochondrial/cytosolic pancreas fractions. In the death receptor pathway, Fas and soluble Fas ligand (FasL) protein were significantly increased in the nicotine-exposed offspring compared to control animals; there was no difference in the ratio of inactive/active caspase-8 or membrane-bound FasL expression. In the mitochondrial pathway, there was a significant increase in the ratio of Bcl2/Bax, Bax translocation to the mitochondria, cytochrome c release to the cytosol, and the ratio of active/inactive caspase-3 in nicotine-exposed offspring relative to control animals. Furthermore, increased mitochondrial swelling was observed by EM in the pancreatic beta cells of nicotine-exposed offspring. Taken together, these data suggest that beta-cell apoptosis following developmental nicotine exposure is mediated via the mitochondria.

  18. QUANTITATIVE ASSESSMENT OF BETA CELL APOPTOSIS AND CELL COMPOSITION OF ISOLATED, UNDISRUPTED HUMAN ISLETS BY LASER SCANNING CYTOMETRY

    PubMed Central

    Todorov, Ivan; Nair, Indu; Avakian-Mansoorian, Alina; Rawson, Jeffrey; Omori, Keiko; Ito, Taihei; Valiente, Luis; Iglesias-Meza, Itzia; Orr, Chris; Shiang, Keh D.; Ferreri, Kevin; Al-Abdullah, Ismail H.; Mullen, Yoko; Kandeel, Fouad

    2010-01-01

    Background Assays for assessing human islet cell quality which provide results prior to transplantation would be very beneficial to improving outcomes for islet transplantation therapy. Parameters such as percent beta cell apoptosis and cell composition are found to vary markedly between different islet preparations, and may serve as markers of islet quality. We have developed fluorescence-based assays using laser scanning cytometry (LSC) for assessing beta cell apoptosis and islet cell composition on serial sections of intact isolated islets. Methods Isolated human islets were fixed in formalin and embedded in paraffin. Serial sections were immunostained for the pancreatic hormones, acinar and ductal cell markers. DNA fragmentation was used to label apoptotic cells. Stained cells were quantified using an iCys laser scanning cytometer. Results Islet preparations from 102 human pancreatic islet isolations were analyzed. For the whole set of islet preparations we found a mean islet cell composition of 54.5±1.2% insulin positive; 33.9±1.2% glucagon; 12.1±0.7% somatostatin and 1.5±0.2% pancreatic polypeptide positive cells. The apoptotic beta cells were 2.85±0.4% with a range of 0.27% to 18.3%. The percentage of apoptotic beta cells correlated well (p<0.0001, n=59) with results obtained in vivo by transplantation of the corresponding islets in diabetic NODscid mice. Conclusions The analysis of whole, non-dissociated islets for cell composition and beta cell apoptosis using LSC is giving reliable and reproducible results and could be done both before islet transplantation, as well as on preserved cell blocks at any future time. Thus, they can be a powerful tool for islet quality assessment. PMID:20697327

  19. Pancreatic-derived factor (FAM3B), a novel islet cytokine, induces apoptosis of insulin-secreting beta-cells.

    PubMed

    Cao, Xiaopei; Gao, Zhiyong; Robert, Claudia E; Greene, Scott; Xu, Gang; Xu, Weizhen; Bell, Ewan; Campbell, Don; Zhu, Yuan; Young, Robert; Trucco, Matteo; Markmann, James F; Naji, Ali; Wolf, Bryan A

    2003-09-01

    PANDER (PANcreatic DERived factor, FAM3B), a newly discovered secreted cytokine, is specifically expressed at high levels in the islets of Langerhans of the endocrine pancreas. To evaluate the role of PANDER in beta-cell function, we investigated the effects of PANDER on rat, mouse, and human pancreatic islets; the beta-TC3 cell line; and the alpha-TC cell line. PANDER protein was present in alpha- and beta-cells of pancreatic islets, insulin-secreting beta-TC3 cells, and glucagon-secreting alpha-TC cells. PANDER induced islet cell death in rat and human islets. Culture of beta-TC3 cells with recombinant PANDER had a dose-dependent inhibitory effect on cell viability. This effect was also time-dependent. PANDER caused apoptosis of beta-cells as assessed by electron microscopy, annexin V fluorescent staining, and flow-cytometric terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. PANDER did not affect cytosolic Ca(2+) levels or nitric oxide levels. However, PANDER activated caspase-3. Hence, PANDER may have a role in the process of pancreatic beta-cell apoptosis.

  20. Effects of low intensity laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes

    NASA Astrophysics Data System (ADS)

    Xiong, Guoxin; Xiong, Leilei; Li, Xinzhong

    2016-09-01

    To investigate the effects of low intensity semiconductor laser acupoint irradiation on inhibiting islet beta-cell apoptosis in rats with type 2 diabetes, a method using a high-fat diet and low-dose intraperitoneal injections of streptozotocin established a type 2 diabetes mellitus rat model. Model rats were randomly divided into a laser acupoint irradiation group, rosiglitazone control group, and placebo group; each group had 10 rats. In addition, 10 normal male rats were selected for the normal control group. The Housanli, Neiting and Yishu acupoints of the rats in the laser acupoint irradiation group were irradiated with a 10 mW semiconductor laser; each point was irradiated for 15 min, once every 2 d over 28 d, for a total of 14 episodes of irradiation. The rosiglitazone group rats were given rosiglitazone (0.2 mg kg-1) intragastrically; the placebo group rats were given 0.9% brine (0.2 mg kg-1) intragastrically, once daily, for four consecutive weeks. The change of fasting blood glucose was determined before and after each treatment. The islet beta-cell apoptosis was determined. The islet beta-cell apoptosis rates of the laser acupoint irradiation group and the rosiglitazone group were significantly lower than the rate of the placebo group. Even though the rate was lower in the laser acupoint irradiation group than in the rosiglitazone group, there was no significant difference between them. It is shown that acupoint irradiation with a semiconductor laser can effectively inhibit islet beta-cell apoptosis in rats with type 2 diabetes.

  1. TRIB3 [corrected] is implicated in glucotoxicity- and endoplasmic reticulum-stress-induced [corrected] beta-cell apoptosis.

    PubMed

    Qian, Bo; Wang, Haiyan; Men, Xiuli; Zhang, Wenjian; Cai, Hanqing; Xu, Shiqing; Xu, Yaping; Ye, Liya; Wollheim, Claes B; Lou, Jinning

    2008-12-01

    We found that TRIB3, [corrected] an endogenous inhibitor of Akt (PKB), is expressed in pancreatic beta-cells. The TRIB3 [corrected] expression is significantly increased in islets isolated from hyperglycemic Goto-Kakizaki rats compared with normal glycemic controls. In vitro high glucose treatment also resulted in increased TRIB3 [corrected] expression in rat INS1 cells. To investigate the role of TRIB3 [corrected] in the regulation of beta-cell function, we established an INS1 stable cell line allowing inducible expression of TRIB3. [corrected] We demonstrated that overexpression of TRIB3 [corrected] mimicked the glucotoxic effects on insulin secretion and cell growth in INS1 cells. Moreover, induction of TRIB3 [corrected] also synergistically enhanced high-glucose-elicited apoptosis in INS1 cells, whereas siRNA knock-down of TRIB3 [corrected] showed the opposite effects. We also confirmed that the DeltaPsim of mitochondria was decreased, caspase-3 activity was up-regulated and reactive oxygen species content was increased in TRIB3 [corrected] overexpressing beta cells in high glucose condition. Most interestingly, the oestrogen receptor (ER) stress inducer, thapsigargin, mimicked the high glucose effects on up-regulation of TRIB3 [corrected] and generation of apoptosis in cultured INS1 cells. These effects were specifically prevented by siRNA knock down of TRIB3. [corrected] We therefore conclude that TRIB3 [corrected] is implicated in glucotoxicity- and ER stress-induced beta-cell failure.TRIB3 [corrected] could be a potential pharmacological target for prevention and treatment of type 2 diabetes.

  2. In Type 1 Diabetes a Subset of Anti-Coxsackievirus B4 Antibodies Recognize Autoantigens and Induce Apoptosis of Pancreatic Beta Cells

    PubMed Central

    Dolcino, Marzia; Giannattasio, Alessandro; d’Annunzio, Giuseppe; Rigo, Antonella; Pedemonte, Nicoletta; Corrocher, Roberto; Puccetti, Antonio

    2013-01-01

    Type 1 diabetes is characterized by autoimmune destruction of pancreatic beta cells. The role played by autoantibodies directed against beta cells antigens in the pathogenesis of the disease is still unclear. Coxsackievirus B infection has been linked to the onset of type 1 diabetes; however its precise role has not been elucidated yet. To clarify these issues, we screened a random peptide library with sera obtained from 58 patients with recent onset type 1 diabetes, before insulin therapy. We identified an immunodominant peptide recognized by the majority of individual patients’sera, that shares homology with Coxsackievirus B4 VP1 protein and with beta-cell specific autoantigens such as phogrin, phosphofructokinase and voltage-gated L-type calcium channels known to regulate beta cell apoptosis. Antibodies against the peptide affinity-purified from patients’ sera, recognized the viral protein and autoantigens; moreover, such antibodies induced apoptosis of the beta cells upon binding the L-type calcium channels expressed on the beta cell surface, suggesting a calcium dependent mechanism. Our results provide evidence that in autoimmune diabetes a subset of anti-Coxsackievirus antibodies are able to induce apoptosis of pancreatic beta cells which is considered the most critical and final step in the development of autoimmune diabetes without which clinical manifestations do not occur. PMID:23469060

  3. Valproic Acid Improves Glucose Homeostasis by Increasing Beta-Cell Proliferation, Function, and Reducing its Apoptosis through HDAC Inhibition in Juvenile Diabetic Rat.

    PubMed

    Khan, Sabbir; Jena, Gopabandhu

    2016-09-01

    Recent evidence highlighted that there is a link between type-1 diabetes mellitus and histone deacetylases (HDACs) due to their involvement in beta-cell differentiation, proliferation, and function. The present study aimed to investigate the protective role of valproic acid (VPA) on beta-cell proliferation, function, and apoptosis in juvenile diabetic rat. Diabetes was induced in juvenile Sprague-Dawley rats by streptozotocin (75 mg/kg, i.p.) and VPA was administered at the doses of 150 and 300 mg/kg/day for 3 weeks by oral route. Various biochemical parameters, cellular alterations, and protein expression as well as apoptosis were assessed using different assays. VPA treatment significantly decreased plasma glucose, beta-cell damage, and apoptosis as well as increased the beta-cell function, insulin level/expression. The present study demonstrated that VPA improves beta-cell proliferation and function as well as reduces beta-cell apoptosis through HDAC inhibition. Our findings provide evidence that VPA may be useful for the treatment of juvenile diabetes. © 2016 Wiley Periodicals, Inc.

  4. Compound 19e, a Novel Glucokinase Activator, Protects against Cytokine-Induced Beta-Cell Apoptosis in INS-1 Cells

    PubMed Central

    Oh, Yoon Sin; Seo, Eunhui; Park, Kaapjoo; Jun, Hee-Sook

    2017-01-01

    Previously, compound 19e, a novel heteroaryl-containing benzamide derivative, was identified as a potent glucokinase activator (GKA) and showed a glucose-lowering effect in diabetic mice. In this study, the anti-apoptotic actions of 19e were evaluated in INS-1 pancreatic beta-cells co-treated with TNF-α and IL-1β to induce cell death. Compound 19e protected INS-1 cells from cytokine-induced cell death, and the effect was similar to treatment with another GKA or exendin-4. Compound 19e reduced annexin-V stained cells and the expression of cleaved caspase-3 and poly (ADP-ribose) polymerase protein, as well as upregulated the expression of B-cell lymphoma-2 protein. Compound 19e inhibited apoptotic signaling via induction of the ATP content, and the effect was correlated with the downregulation of nuclear factor-κB p65 and inducible nitric oxide synthase. Further, 19e increased NAD-dependent protein deacetylase sirtuin-1 (SIRT1) deacetylase activity, and the anti-apoptotic effect of 19e was attenuated by SIRT1 inhibitor or SIRT1 siRNA treatment. Our results demonstrate that the novel GKA, 19e, prevents cytokine-induced beta-cell apoptosis via SIRT1 activation and has potential as a therapeutic drug for the preservation of pancreatic beta-cells. PMID:28405188

  5. Inhibition of islet amyloid polypeptide fibril formation by selenium-containing phycocyanin and prevention of beta cell apoptosis.

    PubMed

    Li, Xiaoling; Ma, Lijuan; Zheng, Wenjie; Chen, Tianfeng

    2014-10-01

    Human islet amyloid polypeptide (hIAPP) fibril is the major constituent of amyloid deposits in pancreatic islets of type 2 diabetes. Misfolding and hIAPP fibril formation are thought to be important in the pathogenesis of diabetes. Studies have showed that selenium-containing phycocyanin (Se-PC) inhibited the fibrillation of hIAPP to form nanoscale particles, which is mainly by interfering with the combination between hIAPP. Small nanoscale oligomers tended to grow into larger nanoparticles and the size of nanoparticles increased with the incubation time. By interfering with the fibrillation of hIAPP and altering the structure, Se-PC alleviated hIAPP-induced cell apoptosis. Meantime, generation of ROS produced during the fibrillation process was inhibited, which was proposed to be the main factor for the hIAPP-cytotoxicity in beta cells. Taken together, Se-PC inhibited hIAPP fibrillation, thus suppressed the formation of ROS to show protective effect on hIAPP mediated cell apoptosis. Our studies provide useful information for our understanding of the interaction mechanisms of Se-PC on hIAPP structure and protective mechanisms on hIAPP cytotoxicity, presenting useful candidate for anti-diabetes drug development.

  6. Elevated systemic glutamic acid level in the non-obese diabetic mouse is Idd linked and induces beta cell apoptosis.

    PubMed

    Banday, Viqar Showkat; Lejon, Kristina

    2017-02-01

    Although type 1 diabetes (T1D) is a T-cell-mediated disease in the effector stage, the mechanism behind the initial beta cell assault is less understood. Metabolomic differences, including elevated levels of glutamic acid, have been observed in patients with T1D before disease onset, as well as in pre-diabetic non-obese diabetic (NOD) mice. Increased levels of glutamic acid damage both neurons and beta cells, implying that this could contribute to the initial events of T1D pathogenesis. We investigated the underlying genetic factors and consequences of the increased levels of glutamic acid in NOD mice. Serum glutamic acid levels from a (NOD×B6)F2 cohort (n = 182) were measured. By genome-wide and Idd region targeted microsatellite mapping, genetic association was detected for six regions including Idd2, Idd4 and Idd22. In silico analysis of potential enzymes and transporters located in and around the mapped regions that are involved in glutamic acid metabolism consisted of alanine aminotransferase, glutamic-oxaloacetic transaminase, aldehyde dehydrogenase 18 family, alutamyl-prolyl-tRNA synthetase, glutamic acid transporters GLAST and EAAC1. Increased EAAC1 protein expression was observed in lysates from livers of NOD mice compared with B6 mice. Functional consequence of the elevated glutamic acid level in NOD mice was tested by culturing NOD. Rag2(-/-) Langerhans' islets with glutamic acid. Induction of apoptosis of the islets was detected upon glutamic acid challenge using TUNEL assay. Our results support the notion that a dysregulated metabolome could contribute to the initiation of T1D. We suggest that targeting of the increased glutamic acid in pre-diabetic patients could be used as a potential therapy. © 2016 John Wiley & Sons Ltd.

  7. Mono-unsaturated fatty acids protect against beta-cell apoptosis induced by saturated fatty acids, serum withdrawal or cytokine exposure.

    PubMed

    Welters, Hannah J; Tadayyon, Moh; Scarpello, John H B; Smith, Stephen A; Morgan, Noel G

    2004-02-27

    Long-chain saturated fatty acids are cytotoxic to pancreatic beta-cells while shorter-chain saturated and long-chain unsaturated molecules are better tolerated. Mono-unsaturated fatty acids are not, however, inert since they inhibit the pro-apoptotic effects of saturated molecules. In the present work we show that the mono-unsaturates palmitoleate (C16:1) or oleate (C18:1) also cause marked inhibition of apoptosis induced by exposure of clonal BRIN-BD11 beta-cells to serum withdrawal or a combination of interleukin-1beta plus interferon-gamma. This response was dose-dependent and not accompanied by changes in NO formation. Taken together, the results suggest that mono-unsaturated fatty acids regulate a distal step common to several apoptotic pathways in pancreatic beta-cells.

  8. Induction of a chronic disease state in patients with smoldering or indolent multiple myeloma by targeting interleukin 1{beta}-induced interleukin 6 production and the myeloma proliferative component.

    PubMed

    Lust, John A; Lacy, Martha Q; Zeldenrust, Steven R; Dispenzieri, Angela; Gertz, Morie A; Witzig, Thomas E; Kumar, Shaji; Hayman, Suzanne R; Russell, Stephen J; Buadi, Francis K; Geyer, Susan M; Campbell, Megan E; Kyle, Robert A; Rajkumar, S Vincent; Greipp, Philip R; Kline, Michael P; Xiong, Yuning; Moon-Tasson, Laurie L; Donovan, Kathleen A

    2009-02-01

    To conduct in vitro studies as well as a phase 2 clinical trial in patients with smoldering or indolent multiple myeloma to determine if interleukin 1 (IL-1) inhibitors can delay or prevent active myeloma. Stromal cells were cocultured with IL-1beta-expressing myeloma cells in the presence of dexamethasone, IL-1 receptor antagonist (IL-1Ra), or both. Levels of interleukin 6 (IL-6) and of apoptosis were also quantified. Between November 19, 2002, and May 24, 2007, 47 patients were enrolled in the study and subsequently treated with IL-1Ra. In 25 (53%) of the 47 study patients, low-dose dexamethasone (20 mg/wk) was added. The primary end point was progression-free survival (PFS). In vitro, IL-1Ra was superior to dexamethasone at inhibiting IL-6 production; maximal IL-6 inhibition and apoptosis induction were achieved by addition of both IL-1Ra and dexamethasone. In the clinical trial, 3 patients achieved a minor response to IL-1Ra alone; 5 patients achieved a partial response and 4 patients a minor response after addition of dexamethasone. Seven patients showed a decrease in the plasma cell labeling index that paralleled a decrease in high-sensitivity C-reactive protein (hs-CRP) levels. The median overall PFS was 37.5 months. The median PFS for patients without (n=12) or with (n=35) a greater than 15% decrease in 6-month vs baseline hs-CRP levels was 6 months and more than 3 years, respectively (P=.002). Disease stability was maintained in 8 patients who received therapy for more than 4 years. In patients with smoldering or indolent multiple myeloma who were at risk of progression to active myeloma, treatment with IL-1 inhibitors decreased the myeloma proliferative rate and hs-CRP levels in those who responded, leading to a chronic disease state and an improved PFS. clinicaltrials.gov identifier: NCT00635154.

  9. Cathepsin inhibition-induced lysosomal dysfunction enhances pancreatic beta-cell apoptosis in high glucose.

    PubMed

    Jung, Minjeong; Lee, Jaemeun; Seo, Hye-Young; Lim, Ji Sun; Kim, Eun-Kyoung

    2015-01-01

    Autophagy is a lysosomal degradative pathway that plays an important role in maintaining cellular homeostasis. We previously showed that the inhibition of autophagy causes pancreatic β-cell apoptosis, suggesting that autophagy is a protective mechanism for the survival of pancreatic β-cells. The current study demonstrates that treatment with inhibitors and knockdown of the lysosomal cysteine proteases such as cathepsins B and L impair autophagy, enhancing the caspase-dependent apoptosis of INS-1 cells and islets upon exposure to high concentration of glucose. Interestingly, treatment with cathepsin B and L inhibitors prevented the proteolytic processing of cathepsins B, D and L, as evidenced by gradual accumulation of the respective pro-forms. Of note, inhibition of aspartic cathepsins had no effect on autophagy and cell viability, suggesting the selective role of cathepsins B and L in the regulation of β-cell autophagy and apoptosis. Lysosomal localization of accumulated pro-cathepsins in the presence of cathepsin B and L inhibitors was verified via immunocytochemistry and lysosomal fractionation. Lysotracker staining indicated that cathepsin B and L inhibitors led to the formation of severely enlarged lysosomes in a time-dependent manner. The abnormal accumulation of pro-cathepsins following treatment with inhibitors of cathepsins B and L suppressed normal lysosomal degradation and the processing of lysosomal enzymes, leading to lysosomal dysfunction. Collectively, our findings suggest that cathepsin defects following the inhibition of cathepsin B and L result in lysosomal dysfunction and consequent cell death in pancreatic β-cells.

  10. Type 1 Diabetes Candidate Genes Linked to Pancreatic Islet Cell Inflammation and Beta-Cell Apoptosis

    PubMed Central

    Størling, Joachim; Pociot, Flemming

    2017-01-01

    Type 1 diabetes (T1D) is a chronic immune-mediated disease resulting from the selective destruction of the insulin-producing pancreatic islet β-cells. Susceptibility to the disease is the result of complex interactions between environmental and genetic risk factors. Genome-wide association studies (GWAS) have identified more than 50 genetic regions that affect the risk of developing T1D. Most of these susceptibility loci, however, harbor several genes, and the causal variant(s) and gene(s) for most of the loci remain to be established. A significant part of the genes located in the T1D susceptibility loci are expressed in human islets and β cells and mounting evidence suggests that some of these genes modulate the β-cell response to the immune system and viral infection and regulate apoptotic β-cell death. Here, we discuss the current status of T1D susceptibility loci and candidate genes with focus on pancreatic islet cell inflammation and β-cell apoptosis. PMID:28212332

  11. Neuropeptide Y inhibits interleukin-1 beta-induced microglia motility.

    PubMed

    Ferreira, Raquel; Santos, Tiago; Cortes, Luísa; Cochaud, Stéphanie; Agasse, Fabienne; Silva, Ana Paula; Xapelli, Sara; Malva, João O

    2012-01-01

    Increasing evidences suggest that neuropeptide Y (NPY) may act as a key modulator of the cross-talk between the brain and the immune system in health and disease. In the present study, we dissected the possible inhibitory role of NPY upon inflammation-associated microglial cell motility. NPY, through activation of Y(1) receptors, was found to inhibit lipopolysaccharide (LPS)-induced microglia (N9 cell line) motility. Moreover, stimulation of microglia with LPS was inhibited by IL-1 receptor antagonist (IL-1ra), suggesting the involvement of endogenous interleukin-1 beta (IL-1β) in this process. Direct stimulation with IL-1β promoted downstream p38 mitogen-activated protein kinase mobilization and increased microglia motility. Moreover, consistently, p38 mitogen-activated protein kinase inhibition decreased the extent of actin filament reorganization occurring during plasma membrane ruffling and p38 phosphorylation was inhibited by NPY, involving Y(1) receptors. Significantly, the key inhibitory role of NPY on LPS-induced motility of CD11b-positive cells was further confirmed in mouse brain cortex explants. In summary, we revealed a novel functional role for NPY in the regulation of microglial function that may have important implications in the modulation of CNS injuries/diseases where microglia migration/motility might play a role.

  12. Interleukin-1 beta-induced anorexia is reversed by ghrelin.

    PubMed

    Gonzalez, Patricia Verónica; Cragnolini, Andrea Beatriz; Schiöth, Helgi Birgir; Scimonelli, Teresa Nieves

    2006-12-01

    Interleukins, in particular interleukin-1beta (IL-1beta), reduce food intake after peripheral and central administration, which suggests that they contribute to anorexia during various infectious, neoplastic, and autoimmune diseases. On the other hand, ghrelin stimulates food intake by acting on the central nervous system (CNS) and is considered an important regulator of food intake in both rodents and humans. In the present study, we investigated if ghrelin could reverse IL-1beta-induced anorexia. Intracerebroventricular (i.c.v.) injection of 15, 30 or 45 ng/microl of IL-1beta caused significant suppression of food intake in 20 h fasting animals. This effect lasted for a 24h period. Ghrelin (0.15 nmol or 1.5 nmol/microl) produced a significant increase in cumulative food intake in normally fed animals. However, it did not alter food intake in 20 h fasting animals. Central administration of ghrelin reduced the anorexic effect of IL-1beta (15 ng/microl). The effect was observed 30 min after injection and lasted for the next 24h. This study provides evidence that ghrelin is an orexigenic peptide capable of antagonizing IL-1beta-induced anorexia.

  13. Activation of PPAR{delta} up-regulates fatty acid oxidation and energy uncoupling genes of mitochondria and reduces palmitate-induced apoptosis in pancreatic {beta}-cells

    SciTech Connect

    Wan, Jun; Jiang, Li; Lue, Qingguo; Ke, Linqiu; Li, Xiaoyu; Tong, Nanwei

    2010-01-15

    Recent evidence indicates that decreased oxidative capacity, lipotoxicity, and mitochondrial aberrations contribute to the development of insulin resistance and type 2 diabetes. The goal of this study was to investigate the effects of peroxisome proliferator-activated receptor {delta} (PPAR{delta}) activation on lipid oxidation, mitochondrial function, and insulin secretion in pancreatic {beta}-cells. After HIT-T15 cells (a {beta}-cell line) were exposed to high concentrations of palmitate and GW501516 (GW; a selective agonist of PPAR{delta}), we found that administration of GW increased the expression of PPAR{delta} mRNA. GW-induced activation of PPAR{delta} up-regulated carnitine palmitoyltransferase 1 (CPT1), long-chain acyl-CoA dehydrogenase (LCAD), pyruvate dehydrogenase kinase 4 (PDK4), and uncoupling protein 2 (UCP2); alleviated mitochondrial swelling; attenuated apoptosis; and reduced basal insulin secretion induced by increased palmitate in HIT cells. These results suggest that activation of PPAR{delta} plays an important role in protecting pancreatic {beta}-cells against aberrations caused by lipotoxicity in metabolic syndrome and diabetes.

  14. Double-stranded RNA cooperates with interferon-gamma and IL-1 beta to induce both chemokine expression and nuclear factor-kappa B-dependent apoptosis in pancreatic beta-cells: potential mechanisms for viral-induced insulitis and beta-cell death in type 1 diabetes mellitus.

    PubMed

    Liu, Dongbo; Cardozo, Alessandra K; Darville, Martine I; Eizirik, Décio L

    2002-04-01

    Viral infections may trigger the autoimmune assault leading to type 1 diabetes mellitus. Double-stranded RNA (dsRNA) is produced by many viruses during their replicative cycle. The dsRNA, tested as synthetic poly(IC) (PIC), in synergism with the proinflammatory cytokines interferon-gamma (IFN-gamma) and/or IL-1 beta, results in nitric oxide production, Fas expression, beta-cell dysfunction, and death. Activation of the transcription nuclear factor-kappa B (NF-kappa B) is required for PIC-induced inducible nitric oxide synthase expression in beta-cells, and we hypothesized that this transcription factor may also participate in PIC-induced Fas expression and beta-cell apoptosis. This hypothesis, and the possibility that PIC induces expression of additional chemokines and cytokines (previously reported as NF-kappa B dependent) in pancreatic beta-cells, was investigated in the present study. We observed that the PIC-responsive region in the Fas promoter is located between nucleotides -223 and -54. Site-directed mutations at the NF-kappa B and CCAAT/enhancer binding protein-binding sites prevented PIC-induced Fas promoter activity. Increased Fas promoter activity was paralleled by enhanced susceptibility of PIC + cytokine-treated beta-cells to apoptosis induced by Fas ligand. beta-Cell infection with the NF-kappa B inhibitor AdI kappa B((SA)2) prevented both necrosis and apoptosis induced by PIC + IL-1 beta or PIC + IFN-gamma. Messenger RNAs for several chemokines and one cytokine were induced by PIC, alone or in combination with IFN-gamma, in pancreatic beta-cells. These included IP-10, interferon-gamma-inducible protein-10, IL-15, macrophage chemoattractant protein-1, fractalkine, and macrophage inflammatory protein-3 alpha. There was not, however, induction of IL-1 beta expression. We propose that dsRNA, generated during a viral infection, may contribute for beta-cell demise by both inducing expression of chemokines and IL-15, putative contributors for the build

  15. PED/PEA-15 Inhibits Hydrogen Peroxide-Induced Apoptosis in Ins-1E Pancreatic Beta-Cells via PLD-1

    PubMed Central

    Raciti, Gregory Alexander; Zatterale, Federica; Nigro, Cecilia; Mirra, Paola; Falco, Roberta; Ulianich, Luca; Di Jeso, Bruno; Formisano, Pietro; Miele, Claudia; Beguinot, Francesco

    2014-01-01

    The small scaffold protein PED/PEA-15 is involved in several different physiologic and pathologic processes, such as cell proliferation and survival, diabetes and cancer. PED/PEA-15 exerts an anti-apoptotic function due to its ability to interfere with both extrinsic and intrinsic apoptotic pathways in different cell types. Recent evidence shows that mice overexpressing PED/PEA-15 present larger pancreatic islets and increased beta-cells mass. In the present work we investigated PED/PEA-15 role in hydrogen peroxide-induced apoptosis in Ins-1E beta-cells. In pancreatic islets isolated from TgPED/PEA-15 mice hydrogen peroxide-induced DNA fragmentation was lower compared to WT islets. TUNEL analysis showed that PED/PEA-15 overexpression increases the viability of Ins-1E beta-cells and enhances their resistance to apoptosis induced by hydrogen peroxide exposure. The activity of caspase-3 and the cleavage of PARP-1 were markedly reduced in Ins-1E cells overexpressing PED/PEA-15 (Ins-1EPED/PEA-15). In parallel, we observed a decrease of the mRNA levels of pro-apoptotic genes Bcl-xS and Bad. In contrast, the expression of the anti-apoptotic gene Bcl-xL was enhanced. Accordingly, DNA fragmentation was higher in control cells compared to Ins-1EPED/PEA-15 cells. Interestingly, the preincubation with propranolol, an inhibitor of the pathway of PLD-1, a known interactor of PED/PEA-15, responsible for its deleterious effects on glucose tolerance, abolishes the antiapoptotic effects of PED/PEA-15 overexpression in Ins-1E beta-cells. The same results have been obtained by inhibiting PED/PEA-15 interaction with PLD-1 in Ins-1EPED/PEA-15. These results show that PED/PEA-15 overexpression is sufficient to block hydrogen peroxide-induced apoptosis in Ins-1E cells through a PLD-1 mediated mechanism. PMID:25489735

  16. Ubiquitin fold modifier 1 (UFM1) and its target UFBP1 protect pancreatic beta cells from ER stress-induced apoptosis.

    PubMed

    Lemaire, Katleen; Moura, Rodrigo F; Granvik, Mikaela; Igoillo-Esteve, Mariana; Hohmeier, Hans E; Hendrickx, Nico; Newgard, Christopher B; Waelkens, Etienne; Cnop, Miriam; Schuit, Frans

    2011-04-06

    UFM1 is a member of the ubiquitin like protein family. While the enzymatic cascade of UFM1 conjugation has been elucidated in recent years, the biological function remains largely unknown. In this report we demonstrate that the recently identified C20orf116, which we name UFM1-binding protein 1 containing a PCI domain (UFBP1), and CDK5RAP3 interact with UFM1. Components of the UFM1 conjugation pathway (UFM1, UFBP1, UFL1 and CDK5RAP3) are highly expressed in pancreatic islets of Langerhans and some other secretory tissues. Co-localization of UFM1 with UFBP1 in the endoplasmic reticulum (ER) depends on UFBP1. We demonstrate that ER stress, which is common in secretory cells, induces expression of Ufm1, Ufbp1 and Ufl1 in the beta-cell line INS-1E. siRNA-mediated Ufm1 or Ufbp1 knockdown enhances apoptosis upon ER stress. Silencing the E3 enzyme UFL1, results in similar outcomes, suggesting that UFM1-UFBP1 conjugation is required to prevent ER stress-induced apoptosis. Together, our data suggest that UFM1-UFBP1 participate in preventing ER stress-induced apoptosis in protein secretory cells.

  17. Ubiquitin Fold Modifier 1 (UFM1) and Its Target UFBP1 Protect Pancreatic Beta Cells from ER Stress-Induced Apoptosis

    PubMed Central

    Granvik, Mikaela; Igoillo-Esteve, Mariana; Hohmeier, Hans E.; Hendrickx, Nico; Newgard, Christopher B.; Waelkens, Etienne; Cnop, Miriam; Schuit, Frans

    2011-01-01

    UFM1 is a member of the ubiquitin like protein family. While the enzymatic cascade of UFM1 conjugation has been elucidated in recent years, the biological function remains largely unknown. In this report we demonstrate that the recently identified C20orf116 [1], which we name UFM1-binding protein 1 containing a PCI domain (UFBP1), andCDK5RAP3 interact with UFM1. Components of the UFM1 conjugation pathway (UFM1, UFBP1, UFL1 and CDK5RAP3) are highly expressed in pancreatic islets of Langerhans and some other secretory tissues. Co-localization of UFM1 with UFBP1 in the endoplasmic reticulum (ER)depends on UFBP1. We demonstrate that ER stress, which is common in secretory cells, induces expression of Ufm1, Ufbp1 and Ufl1 in the beta-cell line INS-1E.siRNA-mediated Ufm1 or Ufbp1knockdown enhances apoptosis upon ER stress.Silencing the E3 enzyme UFL1, results in similar outcomes, suggesting that UFM1-UFBP1 conjugation is required to prevent ER stress-induced apoptosis. Together, our data suggest that UFM1-UFBP1participate in preventing ER stress-induced apoptosis in protein secretory cells. PMID:21494687

  18. A Presenilin/Notch1 pathway regulated by miR-375, miR-30a, and miR-34a mediates glucotoxicity induced-pancreatic beta cell apoptosis

    PubMed Central

    Li, Yating; Zhang, Tao; Zhou, Yuncai; Sun, Yi; Cao, Yue; Chang, Xiaoai; Zhu, Yunxia; Han, Xiao

    2016-01-01

    The presenilin-mediated Notch1 cleavage pathway plays a critical role in controlling pancreatic beta cell fate and survival. The aim of the present study was to investigate the role of Notch1 activation in glucotoxicity-induced beta cell impairment and the contributions of miR-375, miR-30a, and miR-34a to this pathway. We found that the protein levels of presenilins (PSEN1 and PSEN2), and NOTCH1 were decreased in INS-1 cells after treatment with increased concentrations of glucose, whereas no significant alteration of mRNA level of Notch1 was observed. Targeting of miR-375, miR-30a, and miR-34a to the 3′utr of Psen1, Psen2, and Notch1, respectively, reduced the amounts of relevant proteins, thereby reducing NICD1 amounts and causing beta cell apoptosis. Overexpression of NICD1 blocked the effects of glucotoxicity as well as miRNA overabundance. Downregulating the expression of miR-375, miR-30a, and miR-34a restored PSEN1, PSEN2, and NICD1 production and prevented glucotoxicity-induced impairment of the beta cells. These patterns of miRNA regulation of the Notch1 cleavage pathway were reproduced in GK rats as well as in aged rats. Our findings demonstrated that miRNA-mediated suppression of NICD1 links the presenilin/Notch1 pathway to glucotoxicity in mature pancreatic beta cells. PMID:27804997

  19. Hypoglycemia Reduces Vascular Endothelial Growth Factor A Production by Pancreatic Beta Cells as a Regulator of Beta Cell Mass*

    PubMed Central

    Xiao, Xiangwei; Guo, Ping; Chen, Zean; El-Gohary, Yousef; Wiersch, John; Gaffar, Iljana; Prasadan, Krishna; Shiota, Chiyo; Gittes, George K.

    2013-01-01

    VEGF-A expression in beta cells is critical for pancreatic development, formation of islet-specific vasculature, and Insulin secretion. However, two key questions remain. First, is VEGF-A release from beta cells coupled to VEGF-A production in beta cells? Second, how is the VEGF-A response by beta cells affected by metabolic signals? Here, we show that VEGF-A secretion, but not gene transcription, in either cultured islets or purified pancreatic beta cells, was significantly reduced early on during low glucose conditions. In vivo, a sustained hypoglycemia in mice was induced with Insulin pellets, resulting in a significant reduction in beta cell mass. This loss of beta cell mass could be significantly rescued with continuous delivery of exogenous VEGF-A, which had no effect on beta cell mass in normoglycemic mice. In addition, an increase in apoptotic endothelial cells during hypoglycemia preceded an increase in apoptotic beta cells. Both endothelial and beta cell apoptosis were prevented by exogenous VEGF-A, suggesting a possible causative relationship between reduced VEGF-A and the loss of islet vasculature and beta cells. Furthermore, in none of these experimental groups did beta cell proliferation and islet vessel density change, suggesting a tightly regulated balance between these two cellular compartments. The average islet size decreased in hypoglycemia, which was also prevented by exogenous VEGF-A. Taken together, our data suggest that VEGF-A release in beta cells is independent of VEGF-A synthesis. Beta cell mass can be regulated through modulated release of VEGF-A from beta cells based on physiological need. PMID:23378532

  20. The beta cell immunopeptidome.

    PubMed

    Dudek, Nadine L; Purcell, Anthony W

    2014-01-01

    Type 1 diabetes results from the autoimmune-mediated destruction of insulin-secreting beta cells, leading to beta cell loss and insulin deficiency. Presentation of peptides derived from beta cell proteins to autoreactive lymphocytes is critical for the development of disease, and the list of antigens recognized is increasing. A number of these proteins are found within the beta cell secretory granules, which are transiently exposed to the immune system during normal cellular function. How the interplay of environmental and genetic determinants culminates in destructive autoimmunity remains to be clearly defined. Nonconventional presentation of peptide ligands, posttranslational modification of peptides, and the role of the gut microbiome in the development of the immune system are all considered central topics in disease pathogenesis. Each of these may provide a mechanism by which presentation of antigenic peptides in the target tissue differs from presentation in the thymus, allowing autoreactive cells to escape tolerance induction. The high metabolic demand on pancreatic islets, the high concentration of granule proteins, and the susceptibility of islets to cellular stress may all contribute to the presentation of abnormal ligands in the pancreas. Moreover, the finding that small molecules can alter the repertoire of peptides presented by major histocompatibility complex molecules provides a tantalizing hypothesis for the presentation of autoantigenic peptides in the presence of microbial or endogenous metabolites. In this chapter, we provide an overview of the immunopeptidome of beta cells and the key factors that may influence presentation of beta cell antigens to the immune system.

  1. Beta cell dynamics: beta cell replenishment, beta cell compensation and diabetes.

    PubMed

    Cerf, Marlon E

    2013-10-01

    Type 2 diabetes, characterized by persistent hyperglycemia, arises mostly from beta cell dysfunction and insulin resistance and remains a highly complex metabolic disease due to various stages in its pathogenesis. Glucose homeostasis is primarily regulated by insulin secretion from the beta cells in response to prevailing glycemia. Beta cell populations are dynamic as they respond to fluctuating insulin demand. Beta cell replenishment and death primarily regulate beta cell populations. Beta cells, pancreatic cells, and extra-pancreatic cells represent the three tiers for replenishing beta cells. In rodents, beta cell self-replenishment appears to be the dominant source for new beta cells supported by pancreatic cells (non-beta islet cells, acinar cells, and duct cells) and extra-pancreatic cells (liver, neural, and stem/progenitor cells). In humans, beta cell neogenesis from non-beta cells appears to be the dominant source of beta cell replenishment as limited beta cell self-replenishment occurs particularly in adulthood. Metabolic states of increased insulin demand trigger increased insulin synthesis and secretion from beta cells. Beta cells, therefore, adapt to support their physiology. Maintaining physiological beta cell populations is a strategy for targeting metabolic states of persistently increased insulin demand as in diabetes.

  2. D-saccharic acid-1,4-lactone ameliorates alloxan-induced diabetes mellitus and oxidative stress in rats through inhibiting pancreatic beta-cells from apoptosis via mitochondrial dependent pathway

    SciTech Connect

    Bhattacharya, Semantee; Manna, Prasenjit; Sil, Parames C.

    2011-12-15

    Oxidative stress plays a vital role in diabetic complications. To suppress the oxidative stress mediated damage in diabetic pathophysiology, a special focus has been given on naturally occurring antioxidants present in normal diet. D-saccharic acid 1,4-lactone (DSL), a derivative of D-glucaric acid, is present in many dietary plants and is known for its detoxifying and antioxidant properties. The aim of the present study was to evaluate the beneficial role of DSL against alloxan (ALX) induced diabetes in the pancreas tissue of Swiss albino rats. A dose-dependent study for DSL (20-120 mg/kg body weight) was carried out to find the effective dose of the compound in ALX-induced diabetic rats. ALX exposure elevated the blood glucose, glycosylated Hb, decreased the plasma insulin and disturbed the intra-cellular antioxidant machineries whereas oral administration of DSL at a dose of 80 mg/kg body weight restored these alterations close to normal. Investigating the mechanism of the protective activity of DSL we observed that it prevented the pancreatic {beta}-cell apoptosis via mitochondria-dependent pathway. Results showed decreased mitochondrial membrane potential, enhanced cytochrome c release in the cytosol and reciprocal regulation of Bcl-2 family proteins in the diabetic rats. These events were also found to be associated with increased level of Apaf-1, caspase 9, and caspase 3 that ultimately led to pancreatic {beta}-cell apoptosis. DSL treatment, however, counteracted these changes. In conclusion, DSL possesses the capability of ameliorating the oxidative stress in ALX-induced diabetes and thus could be a promising approach in lessening diabetic complications. Highlights: Black-Right-Pointing-Pointer Oxidative stress is suggested as a key event in the pathogenesis of diabetes. Black-Right-Pointing-Pointer D-saccharic acid 1,4-lactone (DSL) reduces the alloxan-induced diabetes mellitus. Black-Right-Pointing-Pointer DSL normalizes cellular antioxidant machineries

  3. Lithospermic acid B protects beta-cells from cytokine-induced apoptosis by alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1

    SciTech Connect

    Lee, Byung-Wan; Chun, Sung Wan; Kim, Soo Hyun; Lee, Yongho; Kang, Eun Seok; Cha, Bong-Soo; Lee, Hyun Chul

    2011-04-01

    Lithospermic acid B (LAB) has been reported to protect OLETF rats, an established type 2 diabetic animal model, from the development of diabetes-related vascular complications. We investigated whether magnesium lithospermate B (LAB) has a protective role under cytokine-induced apoptosis in INS-1 cells in vitro and whether it slows the development of diabetes in OLETF rats in vivo. Pretreatment with 50 {mu}M LAB significantly reduced the 1000 U/mL INF-{gamma} and 100 U/mL IL-1{beta}-induced INS-1 cell death. LAB significantly alleviated cytokine-induced phosphorylations of p38 and JNK in accordance with a decrease in cleaved caspase-3 activity in beta-cells. LAB also protected against the cytokine-induced caspase-3 apoptotic pathway via significant activation of Nrf2-HO (heme-oxigenase)-1 and Sirt1 expression. OLETF rats treated with 40 mg/kg/day LAB showed a significant improvement in glucose tolerance compared to untreated OLETF control rats in vivo. Our results suggest that the cytoprotective effects of LAB on pancreatic {beta}-cells are related with both alleviating apoptotic pathways and activating anti-apoptotic pathways of Nrf2-HO-1 and Sirt1.

  4. Interleukin-1beta induces anorexia but not spatial learning and memory deficits in the rat.

    PubMed

    Thomson, Lisa M; Sutherland, Robert J

    2006-06-30

    Sickness behaviors are a set of adaptive responses to infection that include lethargy, anorexia, and, of direct relevance to this work, learning and memory impairments. The proinflammatory cytokine, interleukin-1 beta (IL-1beta) has been proposed as the primary peripheral mediator of these sickness behaviors, though few studies have investigated the effects of peripheral IL-1beta on learning and memory. We used three different versions of the Morris water task (Morris water task), a spatial learning and memory task, to separately assess the effects of peripheral IL-1beta on acquisition, consolidation, and retention of spatial location information. Using a dose that induced anorexia, assessed as a significant reduction in body weight, we observed no performance impairments in the IL-1beta-treated rats across the different versions of the task, suggesting that peripheral IL-1beta alone is insufficient to induce spatial learning and memory impairments in the rat. The observed dissociation of anorexia and cognitive dysfunction suggests that, either spatial learning and memory are not principal components of the sickness response, or cognitive dysfunction requires different or additional peripheral mediator(s).

  5. Regeneration of pancreatic beta cells.

    PubMed

    Jun, Hee-Sook

    2008-05-01

    Diabetes mellitus results from inadequate mass of insulin-producing pancreatic beta cells. Type 1 diabetes is characterized by absolute loss of beta cells due to autoimmune-mediated destruction. Type 2 diabetes is characterized by relative deficiency of beta cells due to lack of compensation for insulin resistance. Restoration of deficient beta cell mass by transplantation from exogenous sources or by endogenous regeneration of insulin-producing cells would be therapeutic options. Mature beta cells have an ability to proliferate; however, it has been shown to be difficult to expand adult beta cells in vitro. Alternatively, regeneration of beta cells from embryonic and adult stem cells and pancreatic progenitor cells is an attractive method to restore islet cell mass. With information obtained from the biology of pancreatic development, direct differentiation of stem and progenitor cells toward a pancreatic beta cell phenotype has been tried using various strategies, including forced expression of beta cell-specific transcription factors. Further research is required to understand how endogenous beta cells differentiate and to develop methods to regenerate beta cells for clinically applicable therapies for diabetes.

  6. Selenium-enriched Spirulina protects INS-1E pancreatic beta cells from human islet amyloid polypeptide-induced apoptosis through suppression of ROS-mediated mitochondrial dysfunction and PI3/AKT pathway.

    PubMed

    Li, Xiao-Ling; Wong, Yum-Shing; Xu, Gang; Chan, Juliana C N

    2015-06-01

    Human islet amyloid polypeptide (hIAPP) aggregation is linked to loss of pancreatic beta cells in type 2 diabetes, in part due to oxidative stress. Currently, little is known about the effects of selenium-enriched Spirulina on beta cells with the presence of hIAPP. In this study, INS-1E rat insulinoma cells were used as a model to evaluate in vitro protective effects of Se-enriched Spirulina extract (Se-SE) against hIAPP-induced cell death, as well as the underlying mechanisms. Flow cytometric analysis was used to evaluate cell apoptosis, mitochondrial membrane potential (ΔΨm) and ROS generation. Caspase activity was measured using a fluorometric method. Western blotting was applied to detect protein expression. Our results showed that exposure of INS-1E cells to hIAPP resulted in cell viability loss, LDH release and appearance of sub-G peak. However, cytotoxicity of hIAPP was significantly attenuated by co-treatment with Se-SE. Se-SE also inhibited hIAPP-induced activation of caspase-3, -8 and -9. Additionally, hIAPP-induced accumulation of ROS and superoxide was suppressed by co-treatment with Se-SE. Moreover, Se-SE was able to prevent hIAPP-induced depletion of ΔΨm and intracellular ATP, reduction in mitochondrial mass, changes in the expression of Bcl-2 family members, release of mitochondrial apoptogenic factors. Furthermore, hIAPP-mediated AKT inhibition was restored by co-treatment with Se-SE. Our results showed that Se-SE protects INS-1E cells from hIAPP-induced cell death through preventing ROS overproduction, mitochondrial dysfunction and modulating PI3K/AKT pathway.

  7. Combined Oral Administration of GABA and DPP-4 Inhibitor Prevents Beta Cell Damage and Promotes Beta Cell Regeneration in Mice

    PubMed Central

    Liu, Wenjuan; Son, Dong Ok; Lau, Harry K.; Zhou, Yinghui; Prud’homme, Gerald J.; Jin, Tianru; Wang, Qinghua

    2017-01-01

    γ-aminobutyric acid (GABA) or glucagon-like peptide-1 based drugs, such as sitagliptin (a dipeptidyl peptidase-4 inhibitor), were shown to induce beta cell regenerative effects in various diabetic mouse models. We propose that their combined administration can bring forth an additive therapeutic effect. We tested this hypothesis in a multiple low-dose streptozotocin (STZ)-induced beta cell injury mouse model (MDSD). Male C57BL/6J mice were assigned randomly into four groups: non-treatment diabetic control, GABA, sitagliptin, or GABA plus sitagliptin. Oral drug administration was initiated 1 week before STZ injection and maintained for 6 weeks. GABA or sitagliptin administration decreased ambient blood glucose levels and improved the glucose excursion rate. This was associated with elevated plasma insulin and reduced plasma glucagon levels. Importantly, combined use of GABA and sitagliptin significantly enhanced these effects as compared with each of the monotherapies. An additive effect on reducing water consumption was also observed. Immunohistochemical analyses revealed that combined GABA and sitagliptin therapy was superior in increasing beta cell mass, associated with increased small-size islet numbers, Ki67+ and PDX-1+ beta cell counts; and reduced Tunel+ beta cell counts. Thus, beta cell proliferation was increased, whereas apoptosis was reduced. We also noticed a suppressive effect of GABA or sitagliptin on alpha cell mass, which was not significantly altered by combining the two agents. Although either GABA or sitagliptin administration delays the onset of MDSD, our study indicates that combined use of them produces superior therapeutic outcomes. This is likely due to an amelioration of beta cell proliferation and a decrease of beta cell apoptosis. PMID:28676760

  8. Combined Oral Administration of GABA and DPP-4 Inhibitor Prevents Beta Cell Damage and Promotes Beta Cell Regeneration in Mice.

    PubMed

    Liu, Wenjuan; Son, Dong Ok; Lau, Harry K; Zhou, Yinghui; Prud'homme, Gerald J; Jin, Tianru; Wang, Qinghua

    2017-01-01

    γ-aminobutyric acid (GABA) or glucagon-like peptide-1 based drugs, such as sitagliptin (a dipeptidyl peptidase-4 inhibitor), were shown to induce beta cell regenerative effects in various diabetic mouse models. We propose that their combined administration can bring forth an additive therapeutic effect. We tested this hypothesis in a multiple low-dose streptozotocin (STZ)-induced beta cell injury mouse model (MDSD). Male C57BL/6J mice were assigned randomly into four groups: non-treatment diabetic control, GABA, sitagliptin, or GABA plus sitagliptin. Oral drug administration was initiated 1 week before STZ injection and maintained for 6 weeks. GABA or sitagliptin administration decreased ambient blood glucose levels and improved the glucose excursion rate. This was associated with elevated plasma insulin and reduced plasma glucagon levels. Importantly, combined use of GABA and sitagliptin significantly enhanced these effects as compared with each of the monotherapies. An additive effect on reducing water consumption was also observed. Immunohistochemical analyses revealed that combined GABA and sitagliptin therapy was superior in increasing beta cell mass, associated with increased small-size islet numbers, Ki67(+) and PDX-1(+) beta cell counts; and reduced Tunel(+) beta cell counts. Thus, beta cell proliferation was increased, whereas apoptosis was reduced. We also noticed a suppressive effect of GABA or sitagliptin on alpha cell mass, which was not significantly altered by combining the two agents. Although either GABA or sitagliptin administration delays the onset of MDSD, our study indicates that combined use of them produces superior therapeutic outcomes. This is likely due to an amelioration of beta cell proliferation and a decrease of beta cell apoptosis.

  9. beta-cell failure in diabetes and preservation by clinical treatment.

    PubMed

    Wajchenberg, Bernardo L

    2007-04-01

    There is a progressive deterioration in beta-cell function and mass in type 2 diabetics. It was found that islet function was about 50% of normal at the time of diagnosis, and a reduction in beta-cell mass of about 60% was shown at necropsy. The reduction of beta-cell mass is attributable to accelerated apoptosis. The major factors for progressive loss of beta-cell function and mass are glucotoxicity, lipotoxicity, proinflammatory cytokines, leptin, and islet cell amyloid. Impaired beta-cell function and possibly beta-cell mass appear to be reversible, particularly at early stages of the disease where the limiting threshold for reversibility of decreased beta-cell mass has probably not been passed. Among the interventions to preserve or "rejuvenate" beta-cells, short-term intensive insulin therapy of newly diagnosed type 2 diabetes will improve beta-cell function, usually leading to a temporary remission time. Another intervention is the induction of beta-cell "rest" by selective activation of ATP-sensitive K+ (K(ATP)) channels, using drugs such as diazoxide. A third type of intervention is the use of antiapoptotic drugs, such as the thiazolidinediones (TZDs), and incretin mimetics and enhancers, which have demonstrated significant clinical evidence of effects on human beta-cell function. The TZDs improve insulin secretory capacity, decrease beta-cell apoptosis, and reduce islet cell amyloid with maintenance of neogenesis. The TZDs have indirect effects on beta-cells by being insulin sensitizers. The direct effects are via peroxisome proliferator-activated receptor gamma activation in pancreatic islets, with TZDs consistently improving basal beta-cell function. These beneficial effects are sustained in some individuals with time. There are several trials on prevention of diabetes with TZDs. Incretin hormones, which are released from the gastrointestinal tract in response to nutrient ingestion to enhance glucose-dependent insulin secretion from the pancreas, aid the

  10. From Beta Cell Replacement to Beta Cell Regeneration

    PubMed Central

    Liu, Chengcheng

    2014-01-01

    Diabetes is affecting more than 25.8 million people in the United States, causing huge burden on the health care system and economy. Insulin injection, which is the predominant treatment for diabetes, is incapable of replenishing the lost insulin-producing beta cell in patients. Restoring beta cell mass through replacement therapy such as islet transplantation or beta cell regeneration through in vitro and in vivo strategies has attracted particular attentions in the field due to its potential to cure diabetes. In the aspect of islet transplantation, gene therapy, stem cell therapy, and more biocompatible immunosuppressive drugs have been tested in various preclinical animal models to improve the longevity and function of human islets against the posttransplantation challenges. In the islet regeneration aspect, insulin-producing cells have been generated through in vitro transdifferentiation of stem cells and other types of cells and demonstrated to be capable of glycemic control. Moreover, several biomarkers including cell-surface receptors, soluble factors, and transcriptional factors have been identified or rediscovered in mediating the process of beta cell proliferation in rodents. This review summarizes the current progress and hurdles in the preclinical efforts in resurrecting beta cells. It may provide some useful insights into the future drug discovery for antidiabetic purposes. PMID:25355714

  11. Conditional and specific NF-kappaB blockade protects pancreatic beta cells from diabetogenic agents.

    PubMed

    Eldor, R; Yeffet, A; Baum, K; Doviner, V; Amar, D; Ben-Neriah, Y; Christofori, G; Peled, A; Carel, J C; Boitard, C; Klein, T; Serup, P; Eizirik, D L; Melloul, D

    2006-03-28

    Type 1 diabetes is characterized by the infiltration of inflammatory cells into pancreatic islets of Langerhans, followed by the selective and progressive destruction of insulin-secreting beta cells. Islet-infiltrating leukocytes secrete cytokines such as IL-1beta and IFN-gamma, which contribute to beta cell death. In vitro evidence suggests that cytokine-induced activation of the transcription factor NF-kappaB is an important component of the signal triggering beta cell apoptosis. To study the in vivo role of NF-kappaB in beta cell death, we generated a transgenic mouse line expressing a degradation-resistant NF-kappaB protein inhibitor (DeltaNIkappaBalpha), acting specifically in beta cells, in an inducible and reversible manner, by using the tet-on regulation system. In vitro, islets expressing the DeltaNIkappaBalpha protein were resistant to the deleterious effects of IL-1beta and IFN-gamma, as assessed by reduced NO production and beta-cell apoptosis. This effect was even more striking in vivo, where nearly complete protection against multiple low-dose streptozocin-induced diabetes was observed, with reduced intraislet lymphocytic infiltration. Our results show in vivo that beta cell-specific activation of NF-kappaB is a key event in the progressive loss of beta cells in diabetes. Inhibition of this process could be a potential effective strategy for beta-cell protection.

  12. Distinct in vivo roles of caspase-8 in beta-cells in physiological and diabetes models.

    PubMed

    Liadis, Nicole; Salmena, Leonardo; Kwan, Edwin; Tajmir, Panteha; Schroer, Stephanie A; Radziszewska, Anna; Li, Xie; Sheu, Laura; Eweida, Mohamed; Xu, Shilong; Gaisano, Herbert Y; Hakem, Razqallah; Woo, Minna

    2007-09-01

    Inadequate pancreatic beta-cell mass resulting from excessive beta-cell apoptosis is a key defect in type 1 and type 2 diabetes. Caspases are the major molecules involved in apoptosis; however, in vivo roles of specific caspases in diabetes are unclear. The purpose of this study is to examine the role of Caspase (Casp)8 in beta-cells in vivo. Using the Cre-loxP system, mice lacking Casp8 in beta-cells (RIPcre(+)Casp8(fl/fl) mice) were generated to address the role of Casp8 in beta-cells in physiological and diabetes models. We show that islets isolated from RIPcre(+)Casp8(fl/fl) mice were protected from Fas ligand (FasL)-and ceramide-induced cell death. Furthermore, RIPcre(+)Casp8(fl/fl) mice were protected from in vivo models of type 1 and type 2 diabetes. In addition to being the central mediator of apoptosis in diabetes models, we show that Casp8 is critical for maintenance of beta-cell mass under physiological conditions. With aging, RIPcre(+)Casp8(fl/fl) mice gradually develop hyperglycemia and a concomitant decline in beta-cell mass. Their islets display decreased expression of molecules involved in insulin/IGF-I signaling and show decreased pancreatic duodenal homeobox-1 and cAMP response element binding protein expression. At the level of individual islets, we observed increased insulin secretory capacity associated with increased expression of exocytotic proteins. Our results show distinct context-specific roles of Casp8 in physiological and disease states; Casp8 is essential for beta-cell apoptosis in type 1 and type 2 diabetes models and in regulating beta-cell mass and insulin secretion under physiological conditions.

  13. Heterogeneity of the Pancreatic Beta Cell

    PubMed Central

    Gutierrez, Giselle Dominguez; Gromada, Jesper; Sussel, Lori

    2017-01-01

    The pancreatic beta cell functions as a key regulator of blood glucose levels by integrating a variety of signals in response to changing metabolic demands. Variations in beta cell identity that translate into functionally different subpopulations represent an interesting mechanism to allow beta cells to efficiently respond to diverse physiological and pathophysiological conditions. Recently, there is emerging evidence that morphological and functional differences between beta cells exist. Furthermore, the ability of novel single cell technologies to characterize the molecular identity of individual beta cells has created a new era in the beta cell field. These studies are providing important novel information about the origin of beta cell heterogeneity, the type and proportions of the different beta cell subpopulations, as well as their intrinsic properties. Furthermore, characterization of different beta cell subpopulations that could variably offer protection from or drive progression of diabetes has important clinical implications in diabetes prevention, beta cell regeneration and stem cell treatments. In this review, we will assess the evidence that supports the existence of heterogeneous populations of beta cells and the factors that could influence their formation. We will also address novel studies using islet single cell analysis that have provided important information toward understanding beta cell heterogeneity and discuss the caveats that may be associated with these new technologies. PMID:28321233

  14. The vicious cycle of apoptotic beta-cell death in type 1 diabetes.

    PubMed

    Kaminitz, Ayelet; Stein, Jerry; Yaniv, Isaac; Askenasy, Nadir

    2007-01-01

    Autoimmune insulitis, the cause of type 1 diabetes, evolves through several discrete stages that culminate in beta-cell death. In the first stage, antigenic epitopes of B-cell-specific peptides are processed by antigen presenting cells in local lymph nodes, and auto-reactive lymphocyte clones are propagated. Subsequently, cell-mediated and direct cytokine-mediated reactions are generated against the beta-cells, and the beta-cells are sensitized to apoptosis. Ironically, the beta-cells themselves contribute some of the cytokines and chemokines that provoke the immune reaction within the islets. Once this vicious cycle of autoimmunity is fully developed, the fate of the beta-cells in the islets is sealed, and clinical diabetes inevitably ensues. Differences in various aspects of these concurrent events appear to underlie the significant discrepancies in experimental data observed in experimental models that simulate autoimmune insulitis.

  15. Regulation of pancreatic islet beta-cell mass by growth factor and hormone signaling.

    PubMed

    Huang, Yao; Chang, Yongchang

    2014-01-01

    Dysfunction and destruction of pancreatic islet beta cells is a hallmark of diabetes. Better understanding of cellular signals in beta cells will allow development of therapeutic strategies for diabetes, such as preservation and expansion of beta-cell mass and improvement of beta-cell function. During the past several decades, the number of studies analyzing the molecular mechanisms, including growth factor/hormone signaling pathways that impact islet beta-cell mass and function, has increased exponentially. Notably, somatolactogenic hormones including growth hormone (GH), prolactin (PRL), and insulin-like growth factor-1 (IGF-1) and their receptors (GHR, PRLR, and IGF-1R) are critically involved in beta-cell growth, survival, differentiation, and insulin secretion. In this chapter, we focus more narrowly on GH, PRL, and IGF-1 signaling, and GH-IGF-1 cross talk. We also discuss how these signaling aspects contribute to the regulation of beta-cell proliferation and apoptosis. In particular, our novel findings of GH-induced formation of GHR-JAK2-IGF-1R protein complex and synergistic effects of GH and IGF-1 on beta-cell signaling, proliferation, and antiapoptosis lead to a new concept that IGF-1R may serve as a proximal component of GH/GHR signaling.

  16. Phenylpropenoic Acid Glucoside from Rooibos Protects Pancreatic Beta Cells against Cell Death Induced by Acute Injury

    PubMed Central

    Himpe, Eddy; Cunha, Daniel A.; Song, Imane; Bugliani, Marco; Marchetti, Piero; Cnop, Miriam; Bouwens, Luc

    2016-01-01

    Objective Previous studies demonstrated that a phenylpropenoic acid glucoside (PPAG) from rooibos (Aspalathus linearis) extract had anti-hyperglycemic activity and significant protective effects on the pancreatic beta cell mass in a chronic diet-induced diabetes model. The present study evaluated the cytoprotective effect of the phytochemical on beta cells exposed to acute cell stress. Methods Synthetically prepared PPAG was administered orally in mice treated with a single dose of streptozotocin to acutely induce beta cell death and hyperglycemia. Its effect was assessed on beta cell mass, proliferation and apoptotic cell death. Its cytoprotective effect was also studied in vitro on INS-1E beta cells and on human pancreatic islet cells. Results Treatment with the phytochemical PPAG protected beta cells during the first days after the insult against apoptotic cell death, as evidenced by TUNEL staining, and prevented loss of expression of anti-apoptotic protein BCL2 in vivo. In vitro, PPAG protected INS-1E beta cells from streptozotocin-induced apoptosis and necrosis in a BCL2-dependent and independent way, respectively, depending on glucose concentration. PPAG also protected human pancreatic islet cells against the cytotoxic action of the fatty acid palmitate. Conclusions These findings show the potential use of PPAG as phytomedicine which protects the beta cell mass exposed to acute diabetogenic stress. PMID:27299564

  17. Protective effect of niacinamide on interleukin-1beta-induced annulus fibrosus type II collagen degeneration in vitro.

    PubMed

    Duan, Deyu; Yang, Shuhua; Shao, Zengwu; Wang, Hong; Xiong, Xiaoqian

    2007-02-01

    The protective effect of niacinamide on interleukin-1beta (IL-1beta)-induced annulus fibrosus (AF) type II collagen degeneration in vitro and the mechanism were investigated. Chiba's intervertebral disc (IVD) culture models in rabbits were established and 48 IVDs from 12 adult Japanese white rabbits were randomly divided into 4 groups: normal control group, niacinamide-treated group, type II collagen degneration group (IL-1beta) and treatment group (niacinamide+IL-1beta). After culture for one week, AFs were collected for inducible nitric oxide synthase (iNOS), cysteine containing aspartate specific protease-3 (Caspase-3) and type II collagen immunohistochemical examination, and type II collagen reverse transcription polymerase chain reaction (RT-PCR). The results showed that rate of iNOS positive staining AF cells in the 4 groups was 17.6%, 10.9%, 73.9% and 19.3% respectively. The positive rate in treatment group was significantly lower than in the type II collagen degeneration group (P<0.01). Rate of Caspase-3 positive staining AF cells in the 4 groups was 3.4%, 4.2%, 17.6% and 10.3% respectively. The positive rate in treatment group was lower than in the type II collagen degeneration group (P<0.01). Type II collagen staining demonstrated that lamellar structure and continuity of collagen in treatment group was better reversed than in the degeneration group. RT-PCR revealed that the expression of type II collagen in treatment group was significantly stronger than that in type II collagen degeneration group (P<0.01). It was concluded that niacinamide could effectively inhibit IL-1beta stimulated increase of iNOS and Caspase-3 in AF, and alleviate IL-1beta-caused destruction and synthesis inhibition of type II collagen. Niacinamide is of potential for clinical treatment of IVD degeneration.

  18. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes

    PubMed Central

    Chen, Junqin; Hui, Simon T.; Couto, Francesca M.; Mungrue, Imran N.; Davis, Dawn B.; Attie, Alan D.; Lusis, Aldons J.; Davis, Roger A.; Shalev, Anath

    2008-01-01

    Pancreatic beta-cell loss through apoptosis represents a key factor in the pathogenesis of diabetes; however, no effective approaches to block this process and preserve endogenous beta-cell mass are currently available. To study the role of thioredoxin-interacting protein (TXNIP), a proapoptotic beta-cell factor we recently identified, we used HcB-19 (TXNIP nonsense mutation) and beta-cell-specific TXNIP knockout (bTKO) mice. Interestingly, HcB-19 mice demonstrate increased adiposity, but have lower blood glucose levels and increased pancreatic beta-cell mass (as assessed by morphometry). Moreover, HcB-19 mice are resistant to streptozotocin-induced diabetes. When intercrossed with obese, insulin-resistant, and diabetic mice, double-mutant BTBRlepob/obtxniphcb/hcb are even more obese, but are protected against diabetes and beta-cell apoptosis, resulting in a 3-fold increase in beta-cell mass. Beta-cell-specific TXNIP deletion also enhanced beta-cell mass (P<0.005) and protected against diabetes, and terminal deoxynucleotidyl transferase-mediated nick end labeling (TUNEL) revealed a ∼50-fold reduction in beta-cell apoptosis in streptozotocin-treated bTKO mice. We further discovered that TXNIP deficiency induces Akt/Bcl-xL signaling and inhibits mitochondrial beta-cell death, suggesting that these mechanisms may mediate the beta-cell protective effects of TXNIP deficiency. These results suggest that lowering beta-cell TXNIP expression could serve as a novel strategy for the treatment of type 1 and type 2 diabetes by promoting endogenous beta-cell survival.—Chen, J., Hui, S. T., Couto, F. M., Mungrue, I. N., Davis, D. B., Attie, A. D., Lusis, A. J., Davis, R. A., Shalev, A. Thioredoxin-interacting protein deficiency induces Akt/Bcl-xL signaling and pancreatic beta-cell mass and protects against diabetes. PMID:18552236

  19. Characterisation of Age-Dependent Beta Cell Dynamics in the Male db/db Mice

    PubMed Central

    Dalbøge, Louise S.; Almholt, Dorthe L. C.; Neerup, Trine S. R.; Vassiliadis, Efstathios; Vrang, Niels; Pedersen, Lars; Fosgerau, Keld; Jelsing, Jacob

    2013-01-01

    Aim To characterise changes in pancreatic beta cell mass during the development of diabetes in untreated male C57BLKS/J db/db mice. Methods Blood samples were collected from a total of 72 untreated male db/db mice aged 5, 6, 8, 10, 12, 14, 18, 24 and 34 weeks, for measurement of terminal blood glucose, HbA1c, plasma insulin, and C-peptide. Pancreata were removed for quantification of beta cell mass, islet numbers as well as proliferation and apoptosis by immunohistochemistry and stereology. Results Total pancreatic beta cell mass increased significantly from 2.1 ± 0.3 mg in mice aged 5 weeks to a peak value of 4.84 ± 0.26 mg (P < 0.05) in 12-week-old mice, then gradually decreased to 3.27 ± 0.44 mg in mice aged 34 weeks. Analysis of islets in the 5-, 10-, and 24-week age groups showed increased beta cell proliferation in the 10-week-old animals whereas a low proliferation is seen in older animals. The expansion in beta cell mass was driven by an increase in mean islet mass as the total number of islets was unchanged in the three groups. Conclusions/Interpretation The age-dependent beta cell dynamics in male db/db mice has been described from 5-34 weeks of age and at the same time alterations in insulin/glucose homeostasis were assessed. High beta cell proliferation and increased beta cell mass occur in young animals followed by a gradual decline characterised by a low beta cell proliferation in older animals. The expansion of beta cell mass was caused by an increase in mean islet mass and not islet number. PMID:24324833

  20. Glucose stimulates human beta cell replication in vivo in islets transplanted into NOD–severe combined immunodeficiency (SCID) mice

    PubMed Central

    Levitt, H. E.; Cyphert, T. J.; Pascoe, J. L.; Hollern, D. A.; Abraham, N.; Lundell, R. J.; Rosa, T.; Romano, L. C.; Zou, B.; O’Donnell, C. P.; Stewart, A. F.; Garcia-Ocaña, A.; Alonso, L. C.

    2011-01-01

    Aims/hypothesis We determined whether hyperglycaemia stimulates human beta cell replication in vivo in an islet transplant model Methods Human islets were transplanted into streptozotocin-induced diabetic NOD–severe combined immunodeficiency mice. Blood glucose was measured serially during a 2 week graft revascularisation period. Engrafted mice were then catheterised in the femoral artery and vein, and infused intravenously with BrdU for 4 days to label replicating beta cells. Mice with restored normoglycaemia were co-infused with either 0.9% (wt/vol.) saline or 50% (wt/vol.) glucose to generate glycaemic differences among grafts from the same donors. During infusions, blood glucose was measured daily. After infusion, human beta cell replication and apoptosis were measured in graft sections using immunofluorescence for insulin, and BrdU or TUNEL. Results Human islet grafts corrected diabetes in the majority of cases. Among grafts from the same donor, human beta cell proliferation doubled in those exposed to higher glucose relative to lower glucose. Across the entire cohort of grafts, higher blood glucose was strongly correlated with increased beta cell replication. Beta cell replication rates were unrelated to circulating human insulin levels or donor age, but tended to correlate with donor BMI. Beta cell TUNEL reactivity was not measurably increased in grafts exposed to elevated blood glucose. Conclusions/interpretation Glucose is a mitogenic stimulus for transplanted human beta cells in vivo. Investigating the underlying pathways may point to mechanisms capable of expanding human beta cell mass in vivo. PMID:20936253

  1. Osteocalcin protects pancreatic beta cell function and survival under high glucose conditions

    SciTech Connect

    Kover, Karen; Yan, Yun; Tong, Pei Ying; Watkins, Dara; Li, Xiaoyu; Tasch, James; Hager, Melissa; Clements, Mark; Moore, Wayne V.

    2015-06-19

    Diabetes is characterized by progressive beta cell dysfunction and loss due in part to oxidative stress that occurs from gluco/lipotoxicity. Treatments that directly protect beta cell function and survival in the diabetic milieu are of particular interest. A growing body of evidence suggests that osteocalcin, an abundant non-collagenous protein of bone, supports beta cell function and proliferation. Based on previous gene expression data by microarray, we hypothesized that osteocalcin protects beta cells from glucose-induced oxidative stress. To test our hypothesis we cultured isolated rat islets and INS-1E cells in the presence of normal, high, or high glucose ± osteocalcin for up to 72 h. Oxidative stress and viability/mitochondrial function were measured by H{sub 2}O{sub 2} assay and Alamar Blue assay, respectively. Caspase 3/7 activity was also measured as a marker of apoptosis. A functional test, glucose stimulated insulin release, was conducted and expression of genes/protein was measured by qRT-PCR/western blot/ELISA. Osteocalcin treatment significantly reduced high glucose-induced H{sub 2}O{sub 2} levels while maintaining viability/mitochondrial function. Osteocalcin also significantly improved glucose stimulated insulin secretion and insulin content in rat islets after 48 h of high glucose exposure compared to untreated islets. As expected sustained high glucose down-regulated gene/protein expression of INS1 and BCL2 while increasing TXNIP expression. Interestingly, osteocalcin treatment reversed the effects of high glucose on gene/protein expression. We conclude that osteocalcin can protect beta cells from the negative effects of glucose-induced oxidative stress, in part, by reducing TXNIP expression, thereby preserving beta cell function and survival. - Highlights: • Osteocalcin reduces glucose-induced oxidative stress in beta cells. • Osteocalcin preserves beta cell function and survival under stress conditions. • Osteocalcin reduces glucose

  2. Cellular pathways to beta-cell replacement.

    PubMed

    Fellous, Tariq G; Guppy, Naomi J; Brittan, Mairi; Alison, Malcolm R

    2007-02-01

    In the twenty-first century, diabetic patients are likely to be one of the major beneficiaries from the advancement of regenerative medicine through cellular therapies. Though the existence of a specific self-renewing stem cell within the pancreas is still far from clear, a surprising variety of cells within the pancreas can differentiate towards a beta-cell phenotype: ductular cells, periductular mesenchymal cells and beta-cells themselves can all give rise to new beta-cells. Extra-pancreatic adult somatic stem cells, in particular, those originating from bone marrow may also be capable of differentiating to beta-cells, though equally well the beneficial effects of bone marrow cells may reside in their contribution to the damaged islet vasculature. Forced expression of the beta-cell-specific transcription factor Pdx1 in hepatocytes also holds promise as a therapeutic strategy to increase insulin levels in diabetic individuals. Embryonic stem (ES) cells are clearly another possible source for generating beta-cells, but ES cells are beyond the scope of this review, which focuses on adult stem and progenitor cells capable of producing beta-cells. Despite considerable endeavour, we still have much to learn in the field of pancreatic regeneration prior to any clinically applicable therapy based upon adult stem cells.

  3. Autophagy regulates pancreatic beta cell death in response to Pdx1 deficiency and nutrient deprivation.

    PubMed

    Fujimoto, Kei; Hanson, Piia T; Tran, Hung; Ford, Eric L; Han, Zhiqiang; Johnson, James D; Schmidt, Robert E; Green, Karen G; Wice, Burton M; Polonsky, Kenneth S

    2009-10-02

    There are three types of cell death; apoptosis, necrosis, and autophagy. The possibility that activation of the macroautophagy (autophagy) pathway may increase beta cell death is addressed in this study. Increased autophagy was present in pancreatic islets from Pdx1(+/-) mice with reduced insulin secretion and beta cell mass. Pdx1 expression was reduced in mouse insulinoma 6 (MIN6) cells by delivering small hairpin RNAs using a lentiviral vector. The MIN6 cells died after 7 days of Pdx1 deficiency, and autophagy was evident prior to the onset of cell death. Inhibition of autophagy prolonged cell survival and delayed cell death. Nutrient deprivation increased autophagy in MIN6 cells and mouse and human islets after starvation. Autophagy inhibition partly prevented amino acid starvation-induced MIN6 cell death. The in vivo effects of reduced autophagy were studied by crossing Pdx1(+/-) mice to Becn1(+/-) mice. After 1 week on a high fat diet, 4-week-old Pdx1(+/-) Becn1(+/-) mice showed normal glucose tolerance, preserved beta cell function, and increased beta cell mass compared with Pdx1(+/-) mice. This protective effect of reduced autophagy had worn off after 7 weeks on a high fat diet. Increased autophagy contributes to pancreatic beta cell death in Pdx1 deficiency and following nutrient deprivation. The role of autophagy should be considered in studies of pancreatic beta cell death and diabetes and as a target for novel therapeutic intervention.

  4. NADPH oxidase mediates glucolipotoxicity-induced beta cell dysfunction--clinical implications.

    PubMed

    McCarty, Mark F; Barroso-Aranda, Jorge; Contreras, Francisco

    2010-03-01

    An impairment of glucose-stimulated insulin secretion--reflecting decreased glucokinase expression--and a moderate decrease in beta cell mass attributable to increased apoptosis, constitute the key features of beta cell failure in type 2 diabetes. Oxidative stress, provoked by prolonged exposure to excessive levels of glucose and/or fatty acids (glucolipotoxicity), appears to be a key mediator of these defects. Oxidant-provoked JNK activation induces nuclear export of the PDX-1 transcription factor, required for expression of glucokinase and other beta cell proteins. Conversely, increases in cAMP induced by incretin hormones promote the nuclear importation of PDX-1, counteracting the diabetogenic impact of oxidant stress; this may explain the utility of measures that slow dietary carbohydrate absorption for diabetes prevention. The ability of oxidative stress to boost apoptosis in beta cells is poorly understood, but may also entail JNK activation. Recent work establishes a phagocyte-type NADPH oxidase as the chief source of glucotoxicity-mediated oxidative stress in beta cells. Since bilirubin is now known to function physiologically as an inhibitor of NADPH oxidase, and phycocyanobilin (PCB) derived from spirulina likewise can inhibit this enzyme complex, supplemental PCB may have utility in the prevention and control of diabetes, and Gilbert syndrome, associated with chronically elevated free bilirubin, may be associated with decreased diabetes risk. Copyright (c) 2009 Elsevier Ltd. All rights reserved.

  5. Endogenous beta-cell CART regulates insulin secretion and transcription of beta-cell genes.

    PubMed

    Shcherbina, L; Edlund, A; Esguerra, J L S; Abels, M; Zhou, Y; Ottosson-Laakso, E; Wollheim, C B; Hansson, O; Eliasson, L; Wierup, N

    2017-05-15

    Impaired beta-cell function is key to the development of type 2 diabetes. Cocaine- and amphetamine-regulated transcript (CART) is an islet peptide with insulinotropic and glucagonostatic properties. Here we studied the role of endogenous CART in beta-cell function. CART silencing in INS-1 (832/13) beta-cells reduced insulin secretion and production, ATP levels and beta-cell exocytosis. This was substantiated by reduced expression of several exocytosis genes, as well as reduced expression of genes important for insulin secretion and processing. In addition, CART silencing reduced the expression of a network of transcription factors essential for beta-cell function. Moreover, in RNAseq data from human islet donors, CARTPT expression levels correlated with insulin, exocytosis genes and key beta-cell transcription factors. Thus, endogenous beta-cell CART regulates insulin expression and secretion in INS-1 (832/13) cells, via actions on the exocytotic machinery and a network of beta-cell transcription factors. We conclude that CART is important for maintaining the beta-cell phenotype. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Translation attenuation through eIF2α phosphorylation prevents oxidative stress and maintains the differentiated state in beta cells

    PubMed Central

    Back, Sung Hoon; Scheuner, Donalyn; Han, JaeSeok; Song, Benbo; Ribick, Mark; Wang, Junying; Gildersleeve, Robert D.; Pennathur, Subramaniam; Kaufman, Randal J.

    2009-01-01

    SUMMARY Accumulation of unfolded protein within the endoplasmic reticulum (ER) lumen attenuates mRNA translation through activation of the protein kinase PERK and subsequent phosphorylation of eukaryotic initiation factor 2 on Ser51 of the alpha subunit (eIF2α). Genetic disruption of the PERK/eIF2α pathway in humans and mice produces severe pancreatic beta cell deficiency and post-natal lethality. To elucidate the role of eIF2α phosphorylation in beta cells, we have rescued the lethality of homozygous eIF2α Ser51Ala mice by expression of a loxP-flanked wild-type eIF2α transgene. Beta cell-specific transgene deletion to prevent eIF2α phosphorylation caused a severe diabetic phenotype due to heightened, unregulated proinsulin translation, defective intracellular trafficking of secretory and plasma membrane proteins, increased oxidative damage, reduced expression of stress response and beta cell-specific genes, and apoptosis. However, glucose intolerance and beta cell death in these mice were attenuated by antioxidant treatment. We conclude that phosphorylation of eIF2α coordinately attenuates mRNA translation, prevents oxidative stress, and optimizes ER protein folding to support insulin production in the beta cell. These findings that show increased proinsulin synthesis causes oxidative stress leading to beta cell failure may reflect events in the beta cell loss associated with insulin resistance in type 2 diabetes. PMID:19583950

  7. Transcription factors involved in glucose-stimulated insulin secretion of pancreatic beta cells

    SciTech Connect

    Shao, Shiying; Fang, Zhong; Yu, Xuefeng; Zhang, Muxun

    2009-07-10

    GSIS, the most important function of pancreatic beta cell, is essential for maintaining the glucose homeostasis. Transcription factors are known to control different biological processes such as differentiation, proliferation and apoptosis. In pancreas, some transcription factors are involved in regulating the function of beta cells. In this review, the role of these transcription factors including Pdx-1, FoxO1, SREBP-1c, and MafA in GSIS is highlighted. The related molecular mechanisms are analyzed as well. Furthermore, the association between the role of transcription factors in GSIS and the development of T2DM is discussed.

  8. Dopamine modulates insulin release and is involved in the survival of rat pancreatic beta cells.

    PubMed

    Garcia Barrado, Maria Jose; Iglesias Osma, Maria Carmen; Blanco, Enrique J; Carretero Hernández, Marta; Sánchez Robledo, Virginia; Catalano Iniesta, Leonardo; Carrero, Sixto; Carretero, Jose

    2015-01-01

    The local synthesis of dopamine and its effects on insulin release have been described in isolated islets. Thus, it may be accepted that dopamine exerts an auto-paracrine regulation of insulin secretion from pancreatic beta cells. The aim of the present study is to analyze whether dopamine is a regulator of the proliferation and apoptosis of rat pancreatic beta cells after glucose-stimulated insulin secretion. Glucose stimulated pancreatic islets obtained from male Wistar rats were cultured with 1 or 10 μM dopamine from 1 to 12 h. Insulin secretion was analyzed by RIA. The cellular proliferation rate of pancreatic islets and beta cells was studied with immunocytochemical double labelling for both insulin and PCNA (proliferating cell nuclear antigen), and active caspase-3 was detected to evaluate apoptosis. The secretion of insulin from isolated islets was significantly inhibited (p<0.01), by treatment with 1 and 10 μM dopamine, with no differences between either dose as early as 1 h after treatment. The percentage of insulin-positive cells in the islets decreased significantly (p<0.01) after 1 h of treatment up to 12 h. The proliferation rate of insulin-positive cells in the islets decreased significantly (p<0.01) following treatment with dopamine. Apoptosis in pancreatic islets and beta cells was increased by treatment with 1 and 10 μM dopamine along 12 h. In conclusion, these results suggest that dopamine could modulate the proliferation and apoptosis of pancreatic beta cells and that dopamine may be involved in the maintenance of pancreatic islets.

  9. Dopamine Modulates Insulin Release and Is Involved in the Survival of Rat Pancreatic Beta Cells

    PubMed Central

    Iglesias Osma, Maria Carmen; Blanco, Enrique J.; Carretero Hernández, Marta; Sánchez Robledo, Virginia; Catalano Iniesta, Leonardo; Carrero, Sixto

    2015-01-01

    The local synthesis of dopamine and its effects on insulin release have been described in isolated islets. Thus, it may be accepted that dopamine exerts an auto-paracrine regulation of insulin secretion from pancreatic beta cells. The aim of the present study is to analyze whether dopamine is a regulator of the proliferation and apoptosis of rat pancreatic beta cells after glucose-stimulated insulin secretion. Glucose stimulated pancreatic islets obtained from male Wistar rats were cultured with 1 or 10 μM dopamine from 1 to 12 h. Insulin secretion was analyzed by RIA. The cellular proliferation rate of pancreatic islets and beta cells was studied with immunocytochemical double labelling for both insulin and PCNA (proliferating cell nuclear antigen), and active caspase-3 was detected to evaluate apoptosis. The secretion of insulin from isolated islets was significantly inhibited (p<0.01), by treatment with 1 and 10 μM dopamine, with no differences between either dose as early as 1 h after treatment. The percentage of insulin-positive cells in the islets decreased significantly (p<0.01) after 1 h of treatment up to 12 h. The proliferation rate of insulin-positive cells in the islets decreased significantly (p<0.01) following treatment with dopamine. Apoptosis in pancreatic islets and beta cells was increased by treatment with 1 and 10 μM dopamine along 12 h. In conclusion, these results suggest that dopamine could modulate the proliferation and apoptosis of pancreatic beta cells and that dopamine may be involved in the maintenance of pancreatic islets. PMID:25886074

  10. Plant-Derived Compounds Targeting Pancreatic Beta Cells for the Treatment of Diabetes

    PubMed Central

    Oh, Yoon Sin

    2015-01-01

    Diabetes is a global health problem and a national economic burden. Although several antidiabetic drugs are available, the need for novel therapeutic agents with improved efficacy and few side effects remains. Drugs derived from natural compounds are more attractive than synthetic drugs because of their diversity and minimal side effects. This review summarizes the most relevant effects of various plant-derived natural compounds on the functionality of pancreatic beta cells. Published data suggest that natural compounds directly enhance insulin secretion, prevent pancreatic beta cell apoptosis, and modulate pancreatic beta cell differentiation and proliferation. It is essential to continuously investigate natural compounds as sources of novel pharmaceuticals. Therefore, more studies into these compounds' mechanisms of action are warranted for their development as potential anti-diabetics. PMID:26587047

  11. Role of bioactive food components in diabetes prevention: effects on Beta-cell function and preservation.

    PubMed

    Oh, Yoon Sin; Jun, Hee-Sook

    2014-01-01

    Bioactive compounds found in fruits and vegetables can have anti-oxidant, anti-inflammatory, and anti-carcinogenic effects and can be protective against various diseases and metabolic disorders. These beneficial effects make them good candidates for the development of new functional foods with potential protective and preventive properties for type 1 and type 2 diabetes. This review summarizes the most relevant results concerning the effects of various bioactive compounds such as flavonoids, vitamins, and carotenoids on several aspects of beta-cell functionality. Studies using animal models with induced diabetes and diabetic patients support the hypothesis that bioactive compounds could ameliorate diabetic phenotypes. Published data suggest that there might be direct effects of bioactive compounds on enhancing insulin secretion and preventing beta-cell apoptosis, and some compounds might modulate beta-cell proliferation. Further research is needed to establish any clinical effects of these compounds.

  12. Involvement of iron depletion in palmitate-induced lipotoxicity of beta cells.

    PubMed

    Jung, Ik-Rak; Choi, Sung-E; Jung, Jong-Gab; Lee, Sang-A; Han, Seung Jin; Kim, Hae Jin; Kim, Dae Jung; Lee, Kwan-Woo; Kang, Yup

    2015-05-15

    High levels of plasma free fatty acid are thought to contribute to the loss of pancreatic beta-cells in type 2 diabetes. In particular, saturated fatty acid such as palmitate or stearate can induce apoptosis in cultured beta cells (lipotoxicity). Endoplasmic reticulum stress is a critical mediator of free fatty acid-induced lipotoxicity. Recently, disorders in mitochondrial respiratory metabolism have been linked to lipotoxicity. Since iron is a critical component of respiratory metabolism, this study is initiated to determine whether abnormal iron metabolism is involved in palmitate-induced beta cell death. Immunoblotting analysis showed that treatment of INS-1 beta cells with palmitate reduced the level of transferrin receptor 1 (TfR1), but increased the level of heavy chain ferritin (FTH). In addition, palmitate reduced intracellular labile iron pool. Whereas iron depletion through treatment with iron-chelators deferoxamine or deferasirox augmented palmitate-induced cell death, iron supplementation with ferric chloride, ferrous sulfate, or holo-transferrin significantly protected cells against palmitate-induced death. Furthermore, overexpression of TfR1 reduced palmitate-induced cell death, whereas knockdown of TfR1 augmented cell death. In particular, treatment with deferoxamine increased the level of endoplasmic reticulum (ER) stress markers phospho-PERK, phospho-eIF2α, CHOP and phospho-c-Jun N-terminal kinase. Treatment with chemical chaperone significantly protected cells against deferoxamine-induced apoptosis. Iron supplementation also protected cells against palmitate-induced primary islet death. These data suggest that iron depletion plays an important role in palmitate-induced beta cell death through inducing ER stress. Therefore, attempts to block iron depletion might be able to prevent beta cell loss in type 2 diabetes. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  13. Inflammatory stress of pancreatic beta cells drives release of extracellular heat shock protein 90α.

    PubMed

    Ocaña, Gail J; Pérez, Liliana; Guindon, Lynette; Deffit, Sarah N; Evans-Molina, Carmella; Thurmond, Debbie C; Blum, Janice S

    2017-02-11

    A major obstacle in predicting and preventing the development of autoimmune type 1 diabetes (T1D) in at-risk individuals is the lack of well-established early biomarkers indicative of ongoing beta cell stress during the pre-clinical phase of disease. Recently, serum levels of the alpha cytoplasmic isoform of heat shock protein (HSP) 90 were shown to be elevated in individuals with new-onset T1D. We therefore hypothesized HSP90α could be released from beta cells in response to cellular stress and inflammation associated with the earliest stages of T1D. Here, human beta cell lines and cadaveric islets released HSP90α in response to stress induced by treatment with a combination of pro-inflammatory cytokines including IL-1β, TNF-α, and IFN-γ. Mechanistically, HSP90α release was found to be driven by cytokine-induced endoplasmic reticulum (ER) stress mediated by c-Jun N-terminal kinase (JNK), a pathway that can eventually lead to beta cell apoptosis. Cytokine-induced beta cell HSP90α release and JNK activation were significantly reduced by pre-treating cells with the ER stress-mitigating chemical chaperone tauroursodeoxycholic acid (TUDCA). HSP90α release by cells may thus be a sensitive indicator of stress during inflammation and a useful tool in assessing therapeutic mitigation of cytokine-induced cell damage linked to autoimmunity. This article is protected by copyright. All rights reserved.

  14. Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic beta cell mass.

    PubMed

    Vivas, Yurena; Martínez-García, Cristina; Izquierdo, Adriana; Garcia-Garcia, Francisco; Callejas, Sergio; Velasco, Ismael; Campbell, Mark; Ros, Manuel; Dopazo, Ana; Dopazo, Joaquin; Vidal-Puig, Antonio; Medina-Gomez, Gema

    2011-12-30

    The progression towards type 2 diabetes depends on the allostatic response of pancreatic beta cells to synthesise and secrete enough insulin to compensate for insulin resistance. The endocrine pancreas is a plastic tissue able to expand or regress in response to the requirements imposed by physiological and pathophysiological states associated to insulin resistance such as pregnancy, obesity or ageing, but the mechanisms mediating beta cell mass expansion in these scenarios are not well defined. We have recently shown that ob/ob mice with genetic ablation of PPARγ2, a mouse model known as the POKO mouse failed to expand its beta cell mass. This phenotype contrasted with the appropriate expansion of the beta cell mass observed in their obese littermate ob/ob mice. Thus, comparison of these models islets particularly at early ages could provide some new insights on early PPARγ dependent transcriptional responses involved in the process of beta cell mass expansion Here we have investigated PPARγ dependent transcriptional responses occurring during the early stages of beta cell adaptation to insulin resistance in wild type, ob/ob, PPARγ2 KO and POKO mice. We have identified genes known to regulate both the rate of proliferation and the survival signals of beta cells. Moreover we have also identified new pathways induced in ob/ob islets that remained unchanged in POKO islets, suggesting an important role for PPARγ in maintenance/activation of mechanisms essential for the continued function of the beta cell. Our data suggest that the expansion of beta cell mass observed in ob/ob islets is associated with the activation of an immune response that fails to occur in POKO islets. We have also indentified other PPARγ dependent differentially regulated pathways including cholesterol biosynthesis, apoptosis through TGF-β signaling and decreased oxidative phosphorylation.

  15. Early peroxisome proliferator-activated receptor gamma regulated genes involved in expansion of pancreatic beta cell mass

    PubMed Central

    2011-01-01

    Background The progression towards type 2 diabetes depends on the allostatic response of pancreatic beta cells to synthesise and secrete enough insulin to compensate for insulin resistance. The endocrine pancreas is a plastic tissue able to expand or regress in response to the requirements imposed by physiological and pathophysiological states associated to insulin resistance such as pregnancy, obesity or ageing, but the mechanisms mediating beta cell mass expansion in these scenarios are not well defined. We have recently shown that ob/ob mice with genetic ablation of PPARγ2, a mouse model known as the POKO mouse failed to expand its beta cell mass. This phenotype contrasted with the appropriate expansion of the beta cell mass observed in their obese littermate ob/ob mice. Thus, comparison of these models islets particularly at early ages could provide some new insights on early PPARγ dependent transcriptional responses involved in the process of beta cell mass expansion Results Here we have investigated PPARγ dependent transcriptional responses occurring during the early stages of beta cell adaptation to insulin resistance in wild type, ob/ob, PPARγ2 KO and POKO mice. We have identified genes known to regulate both the rate of proliferation and the survival signals of beta cells. Moreover we have also identified new pathways induced in ob/ob islets that remained unchanged in POKO islets, suggesting an important role for PPARγ in maintenance/activation of mechanisms essential for the continued function of the beta cell. Conclusions Our data suggest that the expansion of beta cell mass observed in ob/ob islets is associated with the activation of an immune response that fails to occur in POKO islets. We have also indentified other PPARγ dependent differentially regulated pathways including cholesterol biosynthesis, apoptosis through TGF-β signaling and decreased oxidative phosphorylation. PMID:22208362

  16. Effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation depend on treatment dose, treatment duration and meal contents

    SciTech Connect

    Arakawa, Masayuki; Ebato, Chie; Mita, Tomoya; Hirose, Takahisa; Kawamori, Ryuzo; Fujitani, Yoshio; Watada, Hirotaka

    2009-12-18

    Beta-cell proliferation is regulated by various metabolic demands including peripheral insulin resistance, obesity, and hyperglycemia. In addition to enhancement of glucose-induced insulin secretion, agonists for glucagon-like peptide-1 receptor (GLP-1R) stimulate proliferation and inhibit apoptosis of beta-cells, thereby probably preserve beta-cell mass. To evaluate the beta-cell preserving actions of GLP-1R agonists, we assessed the acute and chronic effects of exendin-4 on beta-cell proliferation, mass and glucose tolerance in C57BL/6J mice under various conditions. Short-term administration of high-dose exendin-4 transiently stimulated beta-cell proliferation. Comparative transcriptomic analysis showed upregulation of IGF-1 receptor and its downstream effectors in islets. Treatment of mice with exendin-4 daily for 4 weeks (long-term administration) and feeding high-fat diet resulted in significant inhibition of weight gain and improvement of glucose tolerance with reduced insulin secretion and beta-cell mass. These findings suggest that long-term GLP-1 treatment results in insulin sensitization of peripheral organs, rather than enhancement of beta-cell proliferation and function, particularly when animals are fed high-fat diet. Thus, the effects of exendin-4 on glucose tolerance, insulin secretion, and beta-cell proliferation largely depend on treatment dose, duration of treatment and meal contents. While GLP-1 enhances proliferation of beta-cells in some diabetic mice models, our results suggest that GLP-1 stimulates beta-cell growth only when expansion of beta-cell mass is required to meet metabolic demands.

  17. DJ-1 Protects Pancreatic Beta Cells from Cytokine- and Streptozotocin-Mediated Cell Death.

    PubMed

    Jain, Deepak; Weber, Gesine; Eberhard, Daniel; Mehana, Amir E; Eglinger, Jan; Welters, Alena; Bartosinska, Barbara; Jeruschke, Kay; Weiss, Jürgen; Päth, Günter; Ariga, Hiroyoshi; Seufert, Jochen; Lammert, Eckhard

    2015-01-01

    A hallmark feature of type 1 and type 2 diabetes mellitus is the progressive dysfunction and loss of insulin-producing pancreatic beta cells, and inflammatory cytokines are known to trigger beta cell death. Here we asked whether the anti-oxidant protein DJ-1 encoded by the Parkinson's disease gene PARK7 protects islet cells from cytokine- and streptozotocin-mediated cell death. Wild type and DJ-1 knockout mice (KO) were treated with multiple low doses of streptozotocin (MLDS) to induce inflammatory beta cell stress and cell death. Subsequently, glucose tolerance tests were performed, and plasma insulin as well as fasting and random blood glucose concentrations were monitored. Mitochondrial morphology and number of insulin granules were quantified in beta cells. Moreover, islet cell damage was determined in vitro after streptozotocin and cytokine treatment of isolated wild type and DJ-1 KO islets using calcein AM/ethidium homodimer-1 staining and TUNEL staining. Compared to wild type mice, DJ-1 KO mice became diabetic following MLDS treatment. Insulin concentrations were substantially reduced, and fasting blood glucose concentrations were significantly higher in MLDS-treated DJ-1 KO mice compared to equally treated wild type mice. Rates of beta cell apoptosis upon MLDS treatment were twofold higher in DJ-1 KO mice compared to wild type mice, and in vitro inflammatory cytokines led to twice as much beta cell death in pancreatic islets from DJ-1 KO mice versus those of wild type mice. In conclusion, this study identified the anti-oxidant protein DJ-1 as being capable of protecting pancreatic islet cells from cell death induced by an inflammatory and cytotoxic setting.

  18. Environmental Contaminants and Pancreatic Beta-Cells

    PubMed Central

    Fabricio, Gabriel; Malta, Ananda; Chango, Abalo; De Freitas Mathias, Paulo Cezar

    2016-01-01

    Despite health policies as well as clinical and research efforts, diabetes prevalence is still rising around the world. A multitude of causes have been suggested for this increase, mostly related to familial background, the occidental diet which is rich in fat/carbohydrates, and sedentary life style. Type 2 diabetes involves malfunctions of the primary pancreatic beta-cells, usually attributed to local damage; however, it can be associated with other stressful environmental agents, such as chemical contaminants from food, plastic and air, among others. Indeed, exposure to these chemical agents during perinatal and adolescent life can increase the risk of developing cardiometabolic diseases later in life. This review explores data showing which environmental chemical agents may produce injury in beta-cells and further impair the insulinotropic process of type 2 diabetes. Additionally, it points the need to also consider unusual causes of metabolic diseases, such as environmental contaminants. PMID:27087124

  19. Characterization of a Commercial Silicon Beta Cell

    SciTech Connect

    Foxe, Michael P.; Hayes, James C.; Mayer, Michael F.; McIntyre, Justin I.; Sivels, Ciara B.; Suarez, Rey

    2016-03-31

    Silicon detectors are of interest for the verification of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) due to their enhanced energy resolution compared to plastic scintillators beta cells. Previous work developing a figure-of-merit (FOM) for comparison of beta cells suggests that the minimum detectable activity (MDA) could be reduced by a factor of two to three with the use of silicon detectors. Silicon beta cells have been developed by CEA (France) and Lares Ltd. (Russia), with the PIPSBox developed by CEA being commercially available from Canberra for approximately $35k, but there is still uncertainty about the reproducibility of the capabilities in the field. PNNL is developing a high-resolution beta-gamma detector system in the shallow underground laboratory, which will utilize and characterize the operation of the PIPSBox detector. Throughout this report, we examine the capabilities of the PIPSBox as developed by CEA. The lessons learned through the testing and use of the PIPSBox will allow PNNL to strategically develop a silicon detector optimized to better suit the communities needs in the future.

  20. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes.

    PubMed

    Song, Benbo; Scheuner, Donalyn; Ron, David; Pennathur, Subramaniam; Kaufman, Randal J

    2008-10-01

    The progression from insulin resistance to type 2 diabetes is caused by the failure of pancreatic beta cells to produce sufficient levels of insulin to meet the metabolic demand. Recent studies indicate that nutrient fluctuations and insulin resistance increase proinsulin synthesis in beta cells beyond the capacity for folding of nascent polypeptides within the endoplasmic reticulum (ER) lumen, thereby disrupting ER homeostasis and triggering the unfolded protein response (UPR). Chronic ER stress promotes apoptosis, at least in part through the UPR-induced transcription factor C/EBP homologous protein (CHOP). We assessed the effect of Chop deletion in multiple mouse models of type 2 diabetes and found that Chop-/- mice had improved glycemic control and expanded beta cell mass in all conditions analyzed. In both genetic and diet-induced models of insulin resistance, CHOP deficiency improved beta cell ultrastructure and promoted cell survival. In addition, we found that isolated islets from Chop-/- mice displayed increased expression of UPR and oxidative stress response genes and reduced levels of oxidative damage. These findings suggest that CHOP is a fundamental factor that links protein misfolding in the ER to oxidative stress and apoptosis in beta cells under conditions of increased insulin demand.

  1. Cocaine- and Amphetamine-regulated Transcript (CART) Protects Beta Cells against Glucotoxicity and Increases Cell Proliferation*

    PubMed Central

    Sathanoori, Ramasri; Olde, Björn; Erlinge, David; Göransson, Olga; Wierup, Nils

    2013-01-01

    Cocaine- and amphetamine-regulated transcript (CART) is an islet peptide that promotes glucose-stimulated insulin secretion in beta cells via cAMP/PKA-dependent pathways. In addition, CART is a regulator of neuronal survival. In this study, we examined the effect of exogenous CART 55–102 on beta cell viability and dissected its signaling mechanisms. Evaluation of DNA fragmentation and chromatin condensation revealed that CART 55–102 reduced glucotoxicity-induced apoptosis in both INS-1 (832/13) cells and isolated rat islets. Glucotoxicity in INS-1 (832/13) cells also caused a 50% reduction of endogenous CART protein. We show that CART increased proliferation in INS-1 (832/13) cells, an effect that was blocked by PKA, PKB, and MEK1 inhibitors. In addition, CART induced phosphorylation of CREB, IRS, PKB, FoxO1, p44/42 MAPK, and p90RSK in INS-1 (832/13) cells and isolated rat islets, all key mediators of cell survival and proliferation. Thus, we demonstrate that CART 55-102 protects beta cells against glucotoxicity and promotes proliferation. Taken together our data point to the potential use of CART in therapeutic interventions targeted at enhancing functional beta cell mass and long-term insulin secretion in T2D. PMID:23250745

  2. Metabolic Stress and Compromised Identity of Pancreatic Beta Cells

    PubMed Central

    Swisa, Avital; Glaser, Benjamin; Dor, Yuval

    2017-01-01

    Beta cell failure is a central feature of type 2 diabetes (T2D), but the molecular underpinnings of the process remain only partly understood. It has been suggested that beta cell failure in T2D involves massive cell death. Other studies ascribe beta cell failure to cell exhaustion, due to chronic oxidative or endoplasmic reticulum stress leading to cellular dysfunction. More recently it was proposed that beta cells in T2D may lose their differentiated identity, possibly even gaining features of other islet cell types. The loss of beta cell identity appears to be driven by glucotoxicity inhibiting the activity of key beta cell transcription factors including Pdx1, Nkx6.1, MafA and Pax6, thereby silencing beta cell genes and derepressing alternative islet cell genes. The loss of beta cell identity is at least partly reversible upon normalization of glycemia, with implications for the reversibility of T2D, although it is not known if beta cell failure reaches eventually a point of no return. In this review we discuss current evidence for metabolism-driven compromised beta cell identity, key knowledge gaps and opportunities for utility in the treatment of T2D. PMID:28270834

  3. Beta cell device using icosahedral boride compounds

    DOEpatents

    Aselage, Terrence L.; Emin, David

    2002-01-01

    A beta cell for converting beta-particle energies into electrical energy having a semiconductor junction that incorporates an icosahedral boride compound selected from B.sub.12 As.sub.2, B.sub.12 P.sub.2, elemental boron having an .alpha.-rhombohedral structure, elemental boron having a .beta.-rhombohedral structure, and boron carbides of the chemical formula B.sub.12-x C.sub.3-x, where 0.15

  4. Chlamydia pneumoniae promotes dysfunction of pancreatic beta cells.

    PubMed

    Rodriguez, Annette R; Plascencia-Villa, Germán; Witt, Colleen M; Yu, Jieh-Juen; José-Yacamán, Miguel; Chambers, James P; Perry, George; Guentzel, M Neal; Arulanandam, Bernard P

    2015-06-01

    The human pathogen Chlamydia pneumoniae has been implicated in chronic inflammatory diseases including type 2 diabetes. Therefore, we designed a study to evaluate pancreatic beta cells and mast cells during chlamydial infection. Our study revealed that C. pneumoniae infected mast cells significantly (p<0.005) decreased beta cell ATP and insulin production, in contrast to uninfected mast cells co-cultured with beta cells. Infected mast cells exhibited pyknotic nuclei and active caspase-3 and caspase-1 expression. Additionally, ex vivo analyses of tissues collected from C. pneumoniae infected mice showed increased interleukin-1β production in splenocytes and pancreatic tissues as was observed with in vitro mast cell-beta cell co-cultures during C. pneumoniae infection. Notably, infected mast cells promoted beta cell destruction. Our findings reveal the negative effect of C. pneumoniae on mast cells, and the consequential impact on pancreatic beta cell function and viability.

  5. Reprogramming of human exocrine pancreas cells to beta cells.

    PubMed

    Staels, Willem; Heremans, Yves; Heimberg, Harry

    2015-12-01

    One of the key promises of regenerative medicine is providing a cure for diabetes. Cell-based therapies are proving their safety and efficiency, but donor beta cell shortages and immunological issues remain major hurdles. Reprogramming of human pancreatic exocrine cells towards beta cells would offer a major advantage by providing an abundant and autologous source of beta cells. Over the past decade our understanding of transdifferentiation processes greatly increased allowing us to design reprogramming protocols that fairly aim for clinical trials.

  6. Hydrogen sulfide potentiates interleukin-1{beta}-induced nitric oxide production via enhancement of extracellular signal-regulated kinase activation in rat vascular smooth muscle cells

    SciTech Connect

    Jeong, Sun-Oh; Pae, Hyun-Ock; Oh, Gi-Su; Jeong, Gil-Saeng; Lee, Bok-Soo; Lee, Seoul; Kim, Du Yong; Rhew, Hyun Yul; Lee, Kang-Min; Chung, Hun-Taeg . E-mail: htchung@wonkwang.ac.kr

    2006-07-07

    Hydrogen sulfide (H{sub 2}S) and nitric oxide (NO) are endogenously synthesized from L-cysteine and L-arginine, respectively. They might constitute a cooperative network to regulate their effects. In this study, we investigated whether H{sub 2}S could affect NO production in rat vascular smooth muscle cells (VSMCs) stimulated with interleukin-1{beta} (IL-1{beta}). Although H{sub 2}S by itself showed no effect on NO production, it augmented IL-{beta}-induced NO production and this effect was associated with increased expression of inducible NO synthase (iNOS) and activation of nuclear factor (NF)-{kappa}B. IL-1{beta} activated the extracellular signal-regulated kinase 1/2 (ERK1/2), and this activation was also enhanced by H{sub 2}S. Inhibition of ERK1/2 activation by the selective inhibitor U0126 inhibited IL-1{beta}-induced NF-{kappa}B activation, iNOS expression, and NO production either in the absence or presence of H{sub 2}S. Our findings suggest that H{sub 2}S enhances NO production and iNOS expression by potentiating IL-1{beta}-induced NF-{kappa}B activation through a mechanism involving ERK1/2 signaling cascade in rat VSMCs.

  7. Interleukin-1beta induces sialyl Lewis X on hepatocellular carcinoma HuH-7 cells via enhanced expression of ST3Gal IV and FUT VI gene.

    PubMed

    Higai, Koji; Miyazaki, Noriko; Azuma, Yutaro; Matsumoto, Kojiro

    2006-11-13

    We previously demonstrated that human hepatocellular carcinoma-derived HuH-7 cells stimulated with interleukin-1beta (IL-1beta) produce alpha(1)-acid glycoprotein (AGP) with increased amounts of sialyl Lewis X (sLeX) antigen, although the mechanism remained obscure. Here, we report our investigation of the mechanism. sLeX expression on HuH-7 cells was induced 2.5 times more after 48 h stimulation with 100 U/mL IL-1 beta compared with control, as indicated by anti-sLeX antibody binding. Furthermore, expression of 2,3-sialylated N-acetyllactosamine increased gradually up to 48 h after IL-1 beta stimulation; this preceded the increase in sLeX expression. Increases in alpha 2,3-sialyltransferase activity also preceded increases in alpha1,3-fucosyltransferase activity. Furthermore, mRNA levels of ST3Gal IV, FUT IV and VI in HuH-7 cells stimulated with IL- 1beta were increased at 2-4 h, while increases in FUT VI mRNA level occurred gradually after 24 h. IL-1 beta-induced sLeX expression on HuH-7 cells was suppressed by transfection of gene-specific small interference RNAs against FUT VI and ST3Gal IV but not against FUT IV and ST3Gal III. These data results that IL-1 beta induces expression of sLeX on HuH-7 cells by enhanced expression of FUT VI and ST3Gal IV gene.

  8. A novel method for the assessment of cellular composition and beta-cell viability in human islet preparations.

    PubMed

    Ichii, Hirohito; Inverardi, Luca; Pileggi, Antonello; Molano, R Damaris; Cabrera, Over; Caicedo, Alejandro; Messinger, Shari; Kuroda, Yoshikazu; Berggren, Per-Olof; Ricordi, Camillo

    2005-07-01

    Current methodologies to evaluate islet cell viability are largely based on tests that assess the exclusion of DNA-binding dyes. While these tests identify cells that have lost selective membrane permeability, they do not allow us to recognize apoptotic cells, which do not yet stain with DNA-binding dyes. Furthermore, current methods of analysis do not discriminate between cell subsets in the preparation and, in particular, they do not allow for selectively defining beta-cell viability. For these reasons we have developed novel methods for the specific assessment of beta-cell content and viability in human islets based on cellular composition analysis through laser scanning cytometry (LSC) coupled with identification of beta-cell-specific apoptosis at the mitochondrial level. Our novel analytical methods hold promise to prospectively analyze clinical islet transplantation preparations and predict functional performance, as suggested by the observed correlation with in vivo analysis of islet potency in immunodeficient rodents.

  9. The Myokine Irisin Is Released in Response to Saturated Fatty Acids and Promotes Pancreatic Beta-Cell Survival and Insulin Secretion.

    PubMed

    Natalicchio, Annalisa; Marrano, Nicola; Biondi, Giuseppina; Spagnuolo, Rosaria; Labarbuta, Rossella; Porreca, Immacolata; Cignarelli, Angelo; Bugliani, Marco; Marchetti, Piero; Perrini, Sebastio; Laviola, Luigi; Giorgino, Francesco

    2017-07-19

    This study explored the role of irisin as a new pancreatic beta-cell secretagogue and survival factor and its potential role in the communication between skeletal muscle and pancreatic beta-cells under lipotoxic conditions. Recombinant irisin stimulated insulin biosynthesis and glucose-stimulated insulin secretion (GSIS) in a PKA-dependent manner, and prevented saturated fatty acid-induced apoptosis in human and rat pancreatic beta-cells, as well as in human and murine pancreatic islets, via AKT/BCL2 signaling. Treatment of myotubes with 0.5 mM palmitate for 4 h, but not with oleate, promoted an increase in irisin release in the culture medium. Moreover, increased serum levels of irisin were observed in mice fed with a high-fat diet. Mouse serum rich in irisin and the conditioned medium from myotubes exposed to palmitate for 4 h significantly reduced apoptosis of murine pancreatic islets and insulin-secreting INS-1E cells, respectively, and this was abrogated in the presence of an irisin neutralizing antibody. Finally, in vivo administration of irisin improved GSIS and increased beta-cell proliferation. In conclusion, irisin can promote beta-cell survival and enhance GSIS, and may thus participate in the communication between skeletal muscle and beta-cells under conditions of excess saturated fatty acids. © 2017 by the American Diabetes Association.

  10. Chronology of endocrine differentiation and beta-cell neogenesis.

    PubMed

    Miyatsuka, Takeshi

    2016-01-01

    Diabetes is a chronic and incurable disease, which results from absolute or relative insulin insufficiency. Therefore, pancreatic beta cells, which are the only type of cell that expresses insulin, is considered to be a potential target for the cure of diabetes. Although the findings regarding beta-cell neogenesis during pancreas development have been exploited to induce insulin-producing cells from non-beta cells, there are still many hurdles towards generating fully functional beta cells that can produce high levels of insulin and respond to physiological signals. To overcome these problems, a solid understanding of pancreas development and beta-cell formation is required, and several mouse models have been developed to reveal the unique features of each endocrine cell type at distinct developmental time points. Here I review our understanding of pancreas development and endocrine differentiation focusing on recent progresses in improving temporal cell labeling in vivo.

  11. Mitochondrial dynamics and morphology in beta-cells.

    PubMed

    Stiles, Linsey; Shirihai, Orian S

    2012-12-01

    Mitochondrial dynamics contribute to the regulation of mitochondrial shape as well as various mitochondrial functions and quality control. This is of particular interest in the beta-cell because of the key role mitochondria play in the regulation of beta-cell insulin secretion function. Moreover, mitochondrial dysfunction has been suggested to contribute to the development of Type 2 Diabetes. Genetic tools that shift the balance of mitochondrial fusion and fission result in alterations to beta-cell function and viability. Additionally, conditions that induce beta-cell dysfunction, such as exposure to a high nutrient environment, disrupt mitochondrial morphology and dynamics. While it has been shown that mitochondria display a fragmented morphology in islets of diabetic patients and animal models, the mechanism behind this is currently unknown. Here, we review the current literature on mitochondrial morphology and dynamics in the beta-cell as well as some of the unanswered question in this field.

  12. Imatinib prevents beta cell death in vitro but does not improve islet transplantation outcome.

    PubMed

    King, Aileen J F; Griffiths, Lisa A; Persaud, Shanta J; Jones, Peter M; Howell, Simon L; Welsh, Nils

    2016-05-01

    Introduction Improving islet transplantation outcome could not only bring benefits to individual patients but also widen the patient pool to which this life-changing treatment is available. Imatinib has previously been shown to protect beta cells from apoptosis in a variety of in vitro and in vivo models. The aim of this study was to investigate whether imatinib could be used to improve islet transplantation outcome. Methods Islets were isolated from C57Bl/6 mice and pre-cultured with imatinib prior to exposure to streptozotocin and cytokines in vitro. Cell viability and glucose-induced insulin secretion were measured. For transplantation experiments, islets were pre-cultured with imatinib for either 72 h or 24 h prior to transplantation into streptozotocin-diabetic C57Bl/6 mice. In one experimental series mice were also administered imatinib after islet transplantation. Results Imatinib partially protected islets from beta cell death in vitro. However, pre-culturing islets in imatinib or administering the drug to the mice in the days following islet transplantation did not improve blood glucose concentrations more than control-cultured islets. Conclusion Although imatinib protected against beta cell death from cytokines and streptozotocin in vitro, it did not significantly improve syngeneic islet transplantation outcome.

  13. Imatinib prevents beta cell death in vitro but does not improve islet transplantation outcome

    PubMed Central

    Griffiths, Lisa A.; Persaud, Shanta J.; Jones, Peter M.; Howell, Simon L.; Welsh, Nils

    2016-01-01

    Introduction Improving islet transplantation outcome could not only bring benefits to individual patients but also widen the patient pool to which this life-changing treatment is available. Imatinib has previously been shown to protect beta cells from apoptosis in a variety of in vitro and in vivo models. The aim of this study was to investigate whether imatinib could be used to improve islet transplantation outcome. Methods Islets were isolated from C57Bl/6 mice and pre-cultured with imatinib prior to exposure to streptozotocin and cytokines in vitro. Cell viability and glucose-induced insulin secretion were measured. For transplantation experiments, islets were pre-cultured with imatinib for either 72 h or 24 h prior to transplantation into streptozotocin-diabetic C57Bl/6 mice. In one experimental series mice were also administered imatinib after islet transplantation. Results Imatinib partially protected islets from beta cell death in vitro. However, pre-culturing islets in imatinib or administering the drug to the mice in the days following islet transplantation did not improve blood glucose concentrations more than control-cultured islets. Conclusion Although imatinib protected against beta cell death from cytokines and streptozotocin in vitro, it did not significantly improve syngeneic islet transplantation outcome. PMID:26953716

  14. Uncovering Factors Related to Pancreatic Beta-Cell Function

    PubMed Central

    Curran, Aoife M.; Ryan, Miriam F.; Drummond, Elaine; Gibney, Eileen R.; Gibney, Michael J.; Roche, Helen M.; Brennan, Lorraine

    2016-01-01

    Aim The incidence of type 2 diabetes has increased rapidly on a global scale. Beta-cell dysfunction contributes to the overall pathogenesis of type 2 diabetes. However, factors contributing to beta-cell function are not clear. The aims of this study were (i) to identify factors related to pancreatic beta-cell function and (ii) to perform mechanistic studies in vitro. Methods Three specific measures of beta-cell function were assessed for 110 participants who completed an oral glucose tolerance test as part of the Metabolic Challenge Study. Anthropometric and biochemical parameters were assessed as potential modulators of beta-cell function. Subsequent in vitro experiments were performed using the BRIN-BD11 pancreatic beta-cell line. Validation of findings were performed in a second human cohort. Results Waist-to-hip ratio was the strongest anthropometric modulator of beta-cell function, with beta-coefficients of -0.33 (p = 0.001) and -0.30 (p = 0.002) for beta-cell function/homeostatic model assessment of insulin resistance (HOMA-IR), and disposition index respectively. Additionally, the resistin-to-adiponectin ratio (RA index) emerged as being strongly associated with beta-cell function, with beta-coefficients of -0.24 (p = 0.038) and -0.25 (p = 0.028) for beta-cell function/HOMA-IR, and disposition index respectively. Similar results were obtained using a third measure for beta-cell function. In vitro experiments revealed that the RA index was a potent regulator of acute insulin secretion where a high RA index (20ng ml-1 resistin, 5nmol l-1 g-adiponectin) significantly decreased insulin secretion whereas a low RA index (10ng ml-1 resistin, 10nmol l-1 g-adiponectin) significantly increased insulin secretion. The RA index was successfully validated in a second human cohort with beta-coefficients of -0.40 (p = 0.006) and -0.38 (p = 0.008) for beta-cell function/ HOMA-IR, and disposition index respectively. Conclusions Waist-to-hip ratio and RA index were identified

  15. Potential role of oral thiazolidinedione therapy in preserving beta-cell function in type 2 diabetes mellitus.

    PubMed

    Walter, Helmut; Lübben, Georg

    2005-01-01

    Worsening glycaemic control in type 2 diabetes mellitus relates to a decline in beta-cell function, associated with impaired negative feedback regulation of insulin release. Insulin resistance, the 'traditional' cornerstone defect of type 2 diabetes, leads to an array of adverse effects on beta cells, including hypertrophy, apoptosis and those caused by lipotoxicity and glucotoxicity. In particular, increased levels of free fatty acids and their metabolites are thought to diminish both insulin synthesis and glucose-stimulated insulin secretion. Thiazolidinediones are synthetic peroxisome proliferator-activated receptor-gamma agonists that decrease insulin resistance but, as in vitro and in vivo studies suggest, may have direct beneficial effects on pancreatic beta cells. Troglitazone, for example, demonstrated improvements in insulin secretory capacity in isolated pancreatic islets from Wistar rats and a hamster beta-cell line. In vivo studies reveal thiazolidinediones promote beta-cell survival and regranulation as well as maintenance of beta-cell mass and reduction in amyloid deposition. Clinical evidence for thiazolidinediones is largely derived from comparative trials, mainly against sulfonylureas and metformin. Data at 2 years from a number of trials are now available and establish the positive effects of thiazolidinediones on glycaemic control. Empirical evidence showing decreases in fasting plasma insulin levels with pioglitazone and rosiglitazone indicate thiazolidinediones also improve insulin sensitivity. A possible effect of thiazolidinediones on normalising asynchronous insulin secretion, as assessed in a short-term placebo-controlled study, is less established. However, recent and ongoing clinical studies are focusing attention on verifying animal and other data, which support the notion that thiazolidinediones have beneficial effects on beta-cell function. These clinical studies have shown thiazolidinediones capable of preventing or delaying the

  16. Serotonin regulates pancreatic beta cell mass during pregnancy.

    PubMed

    Kim, Hail; Toyofuku, Yukiko; Lynn, Francis C; Chak, Eric; Uchida, Toyoyoshi; Mizukami, Hiroki; Fujitani, Yoshio; Kawamori, Ryuzo; Miyatsuka, Takeshi; Kosaka, Yasuhiro; Yang, Katherine; Honig, Gerard; van der Hart, Marieke; Kishimoto, Nina; Wang, Juehu; Yagihashi, Soroku; Tecott, Laurence H; Watada, Hirotaka; German, Michael S

    2010-07-01

    During pregnancy, the energy requirements of the fetus impose changes in maternal metabolism. Increasing insulin resistance in the mother maintains nutrient flow to the growing fetus, whereas prolactin and placental lactogen counterbalance this resistance and prevent maternal hyperglycemia by driving expansion of the maternal population of insulin-producing beta cells. However, the exact mechanisms by which the lactogenic hormones drive beta cell expansion remain uncertain. Here we show that serotonin acts downstream of lactogen signaling to stimulate beta cell proliferation. Expression of serotonin synthetic enzyme tryptophan hydroxylase-1 (Tph1) and serotonin production rose sharply in beta cells during pregnancy or after treatment with lactogens in vitro. Inhibition of serotonin synthesis by dietary tryptophan restriction or Tph inhibition blocked beta cell expansion and induced glucose intolerance in pregnant mice without affecting insulin sensitivity. Expression of the G alpha(q)-linked serotonin receptor 5-hydroxytryptamine receptor-2b (Htr2b) in maternal islets increased during pregnancy and normalized just before parturition, whereas expression of the G alpha(i)-linked receptor Htr1d increased at the end of pregnancy and postpartum. Blocking Htr2b signaling in pregnant mice also blocked beta cell expansion and caused glucose intolerance. These studies reveal an integrated signaling pathway linking beta cell mass to anticipated insulin need during pregnancy. Modulators of this pathway, including medications and diet, may affect the risk of gestational diabetes.

  17. Structure-function studies of PANDER, an islet specific cytokine inducing cell death of insulin-secreting beta cells.

    PubMed

    Yang, Jichun; Gao, Zhiyong; Robert, Claudia E; Burkhardt, Brant R; Gaweska, Helena; Wagner, Amary; Wu, Jianmei; Greene, Scott R; Young, Robert A; Wolf, Bryan A

    2005-08-30

    PANDER (pancreatic derived factor, FAM3B) is a novel cytokine, present in insulin secretory granules, that induces apoptosis of alpha and beta cells of mouse, rat, and human islets in a dose- and time-dependent manner, and may be implicated in diabetes. PANDER has the predicted secondary structure of 4 alpha-helical bundles with an up-up-down-down topology, and two disulfide bonds. Eleven mutated PANDERs were constructed and expressed in beta-TC3 cells to identify the essential region of PANDER involved in beta-cell death. Beta-cell function was assessed by assays of cell viability and insulin secretion. Based on quantitative real-time RT-PCR all mutant PANDERs had similar mRNA expression levels in beta-TC3 cells. Immunoblotting showed that ten of eleven mutant PANDER proteins were synthesized and detected in beta-TC3 cells. A mutant PANDER with no signal peptide, however, was not expressed. Truncation of helix D alone caused a 40-50% decrease in PANDER's activity, while truncation of both helices C and D resulted in a 75% loss of activity. In contrast, truncation of the N-terminus of PANDER (helix A, the loop between helices A and B, and the first two cysteines) had no effect on PANDER-induced beta-cell death. The third and fourth cysteines of PANDER, C91 and C229, were shown to form one disulfide bond and be functionally important. Finally, the region between Cys91 and Phe152 constitutes the active part of PANDER, based on the demonstration that mutants with truncation of helix B or C caused decreased beta-cell death and did not inhibit insulin secretion, as compared to wild-type PANDER. Hence, helices B and C and the second disulfide bond of PANDER are essential for PANDER-induced beta-cell death.

  18. Re-exposure to beta cell autoantigens in pancreatic allograft recipients with preexisting beta cell autoantibodies.

    PubMed

    Mujtaba, Muhammad Ahmad; Fridell, Jonathan; Book, Benita; Faiz, Sara; Sharfuddin, Asif; Wiebke, Eric; Rigby, Mark; Taber, Tim

    2015-11-01

    Re-exposure to beta cell autoantigens and its relevance in the presence of donor-specific antibodies (DSA) in pancreatic allograft recipients is not well known. Thirty-three patients requiring a pancreas transplant were enrolled in an IRB approved study. They underwent prospective monitoring for DSA and beta cell autoantibody (BCAA) levels to GAD65, insulinoma-associated antigen 2 (IA-2), insulin (micro-IAA [mIAA]), and islet-specific zinc transporter isoform-8 (ZnT8). Twenty-five (75.7%) had pre-transplant BCAA. Twenty had a single antibody (mIAA n = 15, GAD65 n = 5); five had two or more BCAA (GAD65 + mIAA n = 2, GAD65 + mIAA+IA-2 n = 2, GA65 + mIAA+IA-2 + ZnT8 = 1). No changes in GAD65 (p > 0.29), IA-2 (>0.16), and ZnT8 (p > 0.07) were observed between pre-transplant and post-transplant at 6 or 12 months. A decrease in mIAA from pre- to post-6 months (p < 0.0001), 12 months (p < 0.0001), and from post-6 to post-12 months (p = 0.0002) was seen. No new BCAA was observed at one yr. Seven (21.0%) developed de novo DSA. The incidence of DSA was 24% in patients with BCAA vs. 25% in patients without BCAA (p = 0.69). Pancreatic allograft function of patients with vs. without BCAA, and with and without BCAA + DSA was comparable until last follow-up (three yr). Re-exposure to beta cell autoantigens by pancreas transplant may not lead to increased levels or development of new BCAA or pancreatic allograft dysfunction.

  19. Impaired Pancreatic Beta Cell Function by Chronic Intermittent Hypoxia

    PubMed Central

    Wang, Ning; Khan, Shakil A.; Prabhakar, Nanduri R.; Nanduri, Jayasri

    2013-01-01

    Breathing disorders with recurrent apnea produce periodic decreases in arterial blood O2 or chronic intermittent hypoxia (CIH). Recurrent apnea patients and CIH-exposed rodents exhibit several co-morbidities including diabetes. However, the effects of CIH on pancreatic beta cell function are not known. In the present study, we investigated pancreatic beta cell function in C57BL6 mice exposed to 30 days of CIH. CIH-exposed mice exhibited elevated levels of fasting plasma insulin, but comparable glucose levels, and higher homeostasis model assessment (HOMA), indicating insulin resistance. Pancreatic beta cell morphology was unaltered in CIH- exposed mice. Insulin content was decreased in CIH-exposed beta cells, and this effect was associated with increased proinsulin levels. mRNA and protein levels of the enzyme pro-hormone convertase 1 (PC1) which converts proinsulin to insulin were down regulated in CIH-treated islets. More importantly, glucose-stimulated insulin secretion (GSIS) was impaired in CIH-exposed mice and in isolated islets. Mitochondrial reactive oxygen species (ROS) levels were elevated in CIH-exposed pancreatic islets. Treatment of mice with mito-tempol, a scavenger of mitochondrial ROS during CIH exposure, prevented the augmented insulin secretion and restored the proinsulin as well as HOMA values to control levels. These results demonstrate that CIH leads to pancreatic beta cell dysfunction manifested by augmented basal insulin secretion, insulin resistance, defective proinsulin processing, impaired GSIS and mitochondrial ROS mediates the effects of CIH on pancreatic beta cell function. PMID:23709585

  20. Proteomics analysis of rough endoplasmic reticulum in pancreatic beta cells.

    PubMed

    Lee, Jin-sook; Wu, Yanning; Schnepp, Patricia; Fang, Jingye; Zhang, Xuebao; Karnovsky, Alla; Woods, James; Stemmer, Paul M; Liu, Ming; Zhang, Kezhong; Chen, Xuequn

    2015-05-01

    Pancreatic beta cells have well-developed ER to accommodate for the massive production and secretion of insulin. ER homeostasis is vital for normal beta cell function. Perturbation of ER homeostasis contributes to beta cell dysfunction in both type 1 and type 2 diabetes. To systematically identify the molecular machinery responsible for proinsulin biogenesis and maintenance of beta cell ER homeostasis, a widely used mouse pancreatic beta cell line, MIN6 cell was used to purify rough ER. Two different purification schemes were utilized. In each experiment, the ER pellets were solubilized and analyzed by 1D SDS-PAGE coupled with HPLC-MS/MS. A total of 1467 proteins were identified in three experiments with ≥95% confidence, among which 1117 proteins were found in at least two separate experiments and 737 proteins found in all three experiments. GO analysis revealed a comprehensive profile of known and novel players responsible for proinsulin biogenesis and ER homeostasis. Further bioinformatics analysis also identified potential beta cell specific ER proteins as well as ER proteins present in the risk genetic loci of type 2 diabetes. This dataset defines a molecular environment in the ER for proinsulin synthesis, folding and export and laid a solid foundation for further characterizations of altered ER homeostasis under diabetes-causing conditions. All MS data have been deposited in the ProteomeXchange with identifier PXD001081 (http://proteomecentral.proteomexchange.org/dataset/PXD001081). © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. PROTEOMICS ANALYSIS OF ROUGH ENDOPLASMIC RETICULUM IN PANCREATIC BETA CELLS

    PubMed Central

    Lee, Jin-sook; Wu, Yanning; Skallos, Patracia; Fang, Jingye; Zhang, Xuebao; Karnovsky, Alla; Woods, James; Stemmer, Paul M.; Liu, Ming; Zhang, Kezhong; Chen, Xuequn

    2015-01-01

    Pancreatic beta cells have well-developed endoplasmic reticulum (ER) to accommodate for the massive production and secretion of insulin. ER homeostasis is vital for normal beta cell function. Perturbation of ER homeostasis contributes to beta cell dysfunction in both type 1 and type 2 diabetes. To systematically identify the molecular machinery responsible for proinsulin biogenesis and maintenance of beta cell ER homeostasis, a widely used mouse pancreatic beta cell line, MIN6 cell was used to purify rough ER. Two different purification schemes were utilized. In each experiment, the ER pellets were solubilized and analyzed by one dimensional SDS-PAGE coupled with HPLC-MS/MS. A total of 1467 proteins were identified in three experiments with ≥95% confidence, among which 1117 proteins were found in at least two separate experiments and 737 proteins found in all three experiments. Gene ontology analysis revealed a comprehensive profile of known and novel players responsible for proinsulin biogenesis and ER homeostasis. Further bioinformatics analysis also identified potential beta cell specific ER proteins as well as ER proteins present in the risk genetic loci of type 2 diabetes. This dataset defines a molecular environment in the ER for proinsulin synthesis, folding and export and laid a solid foundation for further characterizations of altered ER homeostasis under diabetes-causing conditions. PMID:25546123

  2. The toll-like receptor signaling molecule Myd88 contributes to pancreatic beta-cell homeostasis in response to injury.

    PubMed

    Bollyky, Paul L; Bice, Jeffrey B; Sweet, Ian R; Falk, Ben A; Gebe, John A; Clark, April E; Gersuk, Vivian H; Aderem, Alan; Hawn, Thomas R; Nepom, Gerald T

    2009-01-01

    Commensal flora and pathogenic microbes influence the incidence of diabetes in animal models yet little is known about the mechanistic basis of these interactions. We hypothesized that Myd88, an adaptor molecule in the Toll-like-receptor (TLR) pathway, regulates pancreatic beta-cell function and homeostasis. We first examined beta-cells histologically and found that Myd88-/- mice have smaller islets in comparison to C57Bl/6 controls. Myd88-/- mice were nonetheless normoglycemic both at rest and after an intra-peritoneal glucose tolerance test (IPGTT). In contrast, after low-dose streptozotocin (STZ) challenge, Myd88-/-mice had an abnormal IPGTT relative to WT controls. Furthermore, Myd88-/- mice suffer enhanced beta-cell apoptosis and have enhanced hepatic damage with delayed recovery upon low-dose STZ treatment. Finally, we treated WT mice with broad-spectrum oral antibiotics to deplete their commensal flora. In WT mice, low dose oral lipopolysaccharide, but not lipotichoic acid or antibiotics alone, strongly promoted enhanced glycemic control. These data suggest that Myd88 signaling and certain TLR ligands mediate a homeostatic effect on beta-cells primarily in the setting of injury.

  3. New insights into fatty acid modulation of pancreatic beta-cell function.

    PubMed

    Haber, Esther P; Procópio, Joaquim; Carvalho, Carla R O; Carpinelli, Angelo R; Newsholme, Philip; Curi, Rui

    2006-01-01

    Insulin resistance states as found in type 2 diabetes and obesity are frequently associated with hyperlipidemia. Both stimulatory and detrimental effects of free fatty acids (FFA) on pancreatic beta cells have long been recognized. Acute exposure of the pancreatic beta cell to both high glucose concentrations and saturated FFA results in a substantial increase of insulin release, whereas a chronic exposure results in desensitization and suppression of secretion. Reduction of plasma FFA levels in fasted rats or humans severely impairs glucose-induced insulin release but palmitate can augment insulin release in the presence of nonstimulatory concentrations of glucose. These results imply that changes in physiological plasma levels of FFA are important for regulation of beta-cell function. Although it is widely accepted that fatty acid (FA) metabolism (notably FA synthesis and/or formation of LC-acyl-CoA) is necessary for stimulation of insulin secretion, the key regulatory molecular mechanisms controlling the interplay between glucose and fatty acid metabolism and thus insulin secretion are not well understood but are now described in detail in this review. Indeed the correct control of switching between FA synthesis or oxidation may have critical implications for beta-cell function and integrity both in vivo and in vitro. LC-acyl-CoA (formed from either endogenously synthesized or exogenous FA) controls several aspects of beta-cell function including activation of certain types of PKC, modulation of ion channels, protein acylation, ceramide- and/or NO-mediated apoptosis, and binding to and activating nuclear transcriptional factors. The present review also describes the possible effects of FAs on insulin signaling. We have previously reported that acute exposure of islets to palmitate up-regulates some key components of the intracellular insulin signaling pathway in pancreatic islets. Another aspect considered in this review is the potential source of fatty acids

  4. MDA5 and PTPN2, two candidate genes for type 1 diabetes, modify pancreatic beta-cell responses to the viral by-product double-stranded RNA.

    PubMed

    Colli, Maikel L; Moore, Fabrice; Gurzov, Esteban N; Ortis, Fernanda; Eizirik, Decio L

    2010-01-01

    beta-Cell destruction in type 1 diabetes (T1D) is at least in part consequence of a 'dialog' between beta-cells and immune system. This dialog may be affected by the individual's genetic background. We presently evaluated whether modulation of MDA5 and PTPN2, two candidate genes for T1D, affects beta-cell responses to double-stranded RNA (dsRNA), a by-product of viral replication. These genes were selected following comparison between known candidate genes for T1D and genes expressed in pancreatic beta-cells, as identified in previous array analysis. INS-1E cells and primary fluorescence-activated cell sorting-purified rat beta-cells were transfected with small interference RNAs (siRNAs) targeting MDA5 or PTPN2 and subsequently exposed to intracellular synthetic dsRNA (polyinosinic-polycitidilic acid-PIC). Real-time RT-PCR, western blot and viability assays were performed to characterize gene/protein expression and viability. PIC increased MDA5 and PTPN2 mRNA expression, which was inhibited by the specific siRNAs. PIC triggered apoptosis in INS-1E and primary beta-cells and this was augmented by PTPN2 knockdown (KD), although inhibition of MDA5 did not modify PIC-induced apoptosis. In contrast, MDA5 silencing decreased PIC-induced cytokine and chemokine expression, although inhibition of PTPN2 induced minor or no changes in these inflammatory mediators. These findings indicate that changes in MDA5 and PTPN2 expression modify beta-cell responses to dsRNA. MDA5 regulates inflammatory signals, whereas PTPN2 may function as a defence mechanism against pro-apoptotic signals generated by dsRNA. These two candidate genes for T1D may thus modulate beta-cell apoptosis and/or local release of inflammatory mediators in the course of a viral infection by acting, at least in part, at the pancreatic beta-cell level.

  5. Detailed transcriptome atlas of the pancreatic beta cell.

    PubMed

    Kutlu, Burak; Burdick, David; Baxter, David; Rasschaert, Joanne; Flamez, Daisy; Eizirik, Decio L; Welsh, Nils; Goodman, Nathan; Hood, Leroy

    2009-01-15

    Gene expression patterns provide a detailed view of cellular functions. Comparison of profiles in disease vs normal conditions provides insights into the processes underlying disease progression. However, availability and integration of public gene expression datasets remains a major challenge. The aim of the present study was to explore the transcriptome of pancreatic islets and, based on this information, to prepare a comprehensive and open access inventory of insulin-producing beta cell gene expression, the Beta Cell Gene Atlas (BCGA). We performed Massively Parallel Signature Sequencing (MPSS) analysis of human pancreatic islet samples and microarray analyses of purified rat beta cells, alpha cells and INS-1 cells, and compared the information with available array data in the literature. MPSS analysis detected around 7600 mRNA transcripts, of which around a third were of low abundance. We identified 2000 and 1400 transcripts that are enriched/depleted in beta cells compared to alpha cells and INS-1 cells, respectively. Microarray analysis identified around 200 transcription factors that are differentially expressed in either beta or alpha cells. We reanalyzed publicly available gene expression data and integrated these results with the new data from this study to build the BCGA. The BCGA contains basal (untreated conditions) gene expression level estimates in beta cells as well as in different cell types in human, rat and mouse pancreas. Hierarchical clustering of expression profile estimates classify cell types based on species while beta cells were clustered together. Our gene atlas is a valuable source for detailed information on the gene expression distribution in beta cells and pancreatic islets along with insulin producing cell lines. The BCGA tool, as well as the data and code used to generate the Atlas are available at the T1Dbase website (T1DBase.org).

  6. Pancreatic beta-cells: from generation to regeneration

    PubMed Central

    Collombat, Patrick; Xu, Xiaobo; Heimberg, Harry; Mansouri, Ahmed

    2010-01-01

    Summary The pancreas is composed of two main compartments consisting of endocrine and exocrine tissues. The majority of the organ is exocrine and responsible for the synthesis of digestive enzymes and for their transport via an intricate ductal system into the duodenum. The endocrine tissue represents less than 2% of the organ and is organized into functional units called islets of Langerhans, comprising alpha-, beta-, delta-, epsilon- and PP–cells, producing the hormones glucagon, insulin, somatostatin, ghrelin and pancreatic polypeptide (PP), respectively. Insulin-producing beta-cells play a central role in the control of the glucose homeostasis. Accordingly, absolute or relative deficiency in beta-cells may ultimately lead to type 1 and/or type 2 diabetes, respectively. One major goal of diabetes research is therefore to understand the molecular mechanisms controlling the development of beta-cells during pancreas morphogenesis, but also those underlying the regeneration of adult injured pancreas, and assess their significance for future cell-based therapy. In this review, we will therefore present new insights into beta-cell development with focus on beta-cell regeneration. PMID:20688184

  7. Selective inhibition of 12-lipoxygenase protects islets and beta cells from inflammatory cytokine-mediated beta cell dysfunction.

    PubMed

    Taylor-Fishwick, David A; Weaver, Jessica; Glenn, Lindsey; Kuhn, Norine; Rai, Ganesha; Jadhav, Ajit; Simeonov, Anton; Dudda, Angela; Schmoll, Dieter; Holman, Theodore R; Maloney, David J; Nadler, Jerry L

    2015-03-01

    Islet inflammation leads to loss of functional pancreatic beta cell mass. Increasing evidence suggests that activation of 12-lipoxygenase leads to inflammatory beta cell loss. This study evaluates new specific small-molecule inhibitors of 12-lipoxygenase for protecting rodent and human beta cells from inflammatory damage. Mouse beta cell lines and mouse and human islets were treated with inflammatory cytokines IL-1β, TNFα and IFNγ in the absence or presence of novel selective 12-lipoxygenase inhibitors. Glucose-stimulated insulin secretion (GSIS), gene expression, cell survival and 12-S-hydroxyeicosatetraenoic acid (12-S-HETE) levels were evaluated using established methods. Pharmacokinetic analysis was performed with the lead inhibitor in CD1 mice. Inflammatory cytokines led to the loss of human beta cell function, elevated cell death, increased inflammatory gene expression and upregulation of 12-lipoxygenase expression and activity (measured by 12-S-HETE generation). Two 12-lipoxygenase inhibitors, Compounds 5 and 9, produced a concentration-dependent reduction of stimulated 12-S-HETE levels. GSIS was preserved in the presence of the 12-lipoxygenase inhibitors. 12-Lipoxygenase inhibition preserved survival of primary mouse and human islets. When administered orally, Compound 5 reduced plasma 12-S-HETE in CD1 mice. Compounds 5 and 9 preserved the function and survival of human donor islets exposed to inflammatory cytokines. Selective inhibition of 12-lipoxygenase activity confers protection to beta cells during exposure to inflammatory cytokines. These concept validation studies identify 12-lipoxygenase as a promising target in the prevention of loss of functional beta cells in diabetes.

  8. Insulin secretion from beta cells within intact islets: location matters.

    PubMed

    Hoang Do, Oanh; Thorn, Peter

    2015-04-01

    The control of hormone secretion is central to body homeostasis, and its dysfunction is important in many diseases. The key cellular steps that lead to hormone secretion have been identified, and the stimulus-secretion pathway is understood in outline for many endocrine cells. In the case of insulin secretion from pancreatic beta cells, this pathway involves the uptake of glucose, cell depolarization, calcium entry, and the triggering of the fusion of insulin-containing granules with the cell membrane. The wealth of information on the control of insulin secretion has largely been obtained from isolated single-cell studies. However, physiologically, beta cells exist within the islets of Langerhans, with structural and functional specializations that are not preserved in single-cell cultures. This review focuses on recent work that is revealing distinct aspects of insulin secretion from beta cells within the islet.

  9. Novel aspects on pancreatic beta-cell signal-transduction.

    PubMed

    Leibiger, Ingo B; Brismar, Kerstin; Berggren, Per-Olof

    2010-05-21

    Pancreatic beta-cells release insulin in appropriate amounts in order to keep blood glucose levels within physiological limits. Failure to do so leads to the most common metabolic disorder in man, diabetes mellitus. The glucose-stimulus/insulin-secretion coupling represents a sophisticated interplay between glucose and a variety of modulatory factors. These factors are provided by the blood supply (such as nutrients, vitamins, incretins etc.), the nerval innervations, cell-cell contacts as well as by paracrine and autocrine feedback loops within the pancreatic islet of Langerhans. However, the underlying mechanisms of their action remain poorly understood. In the present mini-review we discuss novel aspects of selective insulin signaling in the beta-cell and novel insights into the role of higher inositol phosphates in insulin secretion. Finally we present a newly developed experimental platform that allows non-invasive and longitudinal in vivo imaging of pancreatic islet/beta-cell biology at single-cell resolution.

  10. Rehabilitation of adaptive immunity and regeneration of beta cells.

    PubMed

    Pasquali, Lorenzo; Fan, Yong; Trucco, Massimo; Ringquist, Steven

    2006-11-01

    Type 1 Diabetes (T1D) is an autoimmune disease resulting from the destruction of pancreatic insulin-producing beta cells that most frequently occurs in genetically predisposed children. Recent observations illustrating the regenerative capability of the endocrine pancreas in addition to advances in stem cell and gene therapy technologies enable the exploration of alternatives to allogeneic islet transplantation. Living-cell-mediated approaches can abrogate autoimmunity and the consequent destruction of beta cells without the need for immunosuppressive drugs. Such approaches can be used as a foundation for new protocols that more easily translate to the clinical setting. The twin goals of controlling autoimmune disease and promoting stable regeneration of insulin-producing beta cells should be considered the cornerstones of the successful development of a cure for this chronic disease.

  11. Radionuclide probes for molecular imaging of pancreatic beta-cells.

    PubMed

    Wu, Zhanhong; Kandeel, Fouad

    2010-08-30

    Islet transplantation is a promising treatment option for patients with type 1 diabetes (T1D); however, the fate of the graft over time remains difficult to follow, due to the lack of available tools capable of monitoring graft rejection and inflammation prior to islet graft loss. Due to the challenges imposed by the location of the pancreas and the sparsely dispersed beta-cell population within the pancreas, currently, the clinical verification of beta-cell abnormalities can only be obtained indirectly via metabolic studies, which typically is not possible until after a significant deterioration in islet function has already occurred. The development of non-invasive imaging methods for the assessment of the pancreatic beta-cells, however, offers the potential for the early detection of beta-cell dysfunction prior to the clinical onset of T1D and type 2 diabetes (T2D). Ideal islet imaging agents would have an acceptable residence time in the human body, be capable of providing high-resolution images with minimal uptake in surrounding tissues (e.g., the liver), would not be toxic to islets, and would not require pre-treatment of islets prior to transplantation. A variety of currently available imaging techniques, including magnetic resonance imaging (MRI), bioluminescence imaging (BLI), and nuclear imaging have been tested for the study of beta-cell diseases. In this article, we summarize the recent advances made in nuclear imaging techniques for non-invasive imaging of pancreatic beta-cells. The use of radioactive probes for islet imaging is also discussed. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. On the coherent behavior of pancreatic beta cell clusters

    NASA Astrophysics Data System (ADS)

    Loppini, Alessandro; Capolupo, Antonio; Cherubini, Christian; Gizzi, Alessio; Bertolaso, Marta; Filippi, Simonetta; Vitiello, Giuseppe

    2014-09-01

    Beta cells in pancreas represent an example of coupled biological oscillators which via communication pathways, are able to synchronize their electrical activity, giving rise to pulsatile insulin release. In this work we numerically analyze scale free self-similarity features of membrane voltage signal power density spectrum, through a stochastic dynamical model for beta cells in the islets of Langerhans fine tuned on mouse experimental data. Adopting the algebraic approach of coherent state formalism, we show how coherent molecular domains can arise from proper functional conditions leading to a parallelism with “phase transition” phenomena of field theory.

  13. Postnatal development of numbers and mean sizes of pancreatic islets and beta-cells in healthy mice and GIPR(dn) transgenic diabetic mice.

    PubMed

    Herbach, Nadja; Bergmayr, Martina; Göke, Burkhard; Wolf, Eckhard; Wanke, Ruediger

    2011-01-01

    The aim of this study was to examine postnatal islet and beta-cell expansion in healthy female control mice and its disturbances in diabetic GIPR(dn) transgenic mice, which exhibit an early reduction of beta-cell mass. Pancreata of female control and GIPR(dn) transgenic mice, aged 10, 45, 90 and 180 days were examined, using state-of-the-art quantitative-stereological methods. Total islet and beta-cell volumes, as well as their absolute numbers increased significantly until 90 days in control mice, and remained stable thereafter. The mean islet volumes of controls also increased slightly but significantly between 10 and 45 days of age, and then remained stable until 180 days. The total volume of isolated beta-cells, an indicator of islet neogenesis, and the number of proliferating (BrdU-positive) islet cells were highest in 10-day-old controls and declined significantly between 10 and 45 days. In GIPR(dn) transgenic mice, the numbers of islets and beta-cells were significantly reduced from 10 days of age onwards vs. controls, and no postnatal expansion of total islet and beta-cell volumes occurred due to a reduction in islet neogenesis whereas early islet-cell proliferation and apoptosis were unchanged as compared to control mice. Insulin secretion in response to pharmacological doses of GIP was preserved in GIPR(dn) transgenic mice, and serum insulin to pancreatic insulin content in response to GLP-1 and arginine was significantly higher in GIPR(dn) transgenic mice vs. controls. We could show that the increase in islet number is mainly responsible for expansion of islet and beta-cell mass in healthy control mice. GIPR(dn) transgenic mice show a disturbed expansion of the endocrine pancreas, due to perturbed islet neogenesis.

  14. Estrogen and exercise may enhance beta-cell function and mass via insulin receptor substrate 2 induction in ovariectomized diabetic rats.

    PubMed

    Choi, Soo Bong; Jang, Jin Sun; Park, Sunmin

    2005-11-01

    The prevalence and progression of type 2 diabetes have increased remarkably in postmenopausal women. Although estrogen replacement and exercise have been studied for their effect in modulating insulin sensitivity in the case of insufficient estrogen states, their effects on beta-cell function and mass have not been studied. Ovariectomized (OVX) female rats with 90% pancreatectomy were given a 30% fat diet for 8 wk with a corresponding administration of 17beta-estradiol (30 microg/kg body weight) and/or regular exercise. Amelioration of insulin resistance by estrogen replacement or exercise was closely related to body weight reduction. Insulin secretion in first and second phases was lower in OVX during hyperglycemic clamp, which was improved by estrogen replacement and exercise but not by weight reduction induced by restricted diets. Both estrogen replacement and exercise overcame reduced pancreatic beta-cell mass in OVX rats via increased proliferation and decreased apoptosis of beta-cells, but they did not exhibit an additive effect. However, restricted diets did not stimulate beta-cell proliferation. Increased beta-cell proliferation was associated with the induction of insulin receptor substrate-2 and pancreatic homeodomain protein-1 via the activation of the cAMP response element binding protein. Estrogen replacement and exercise shared a common pathway, which led to the improvement of beta-cell function and mass, via cAMP response element binding protein activation, explaining the lack of an additive effect with combined treatments. In conclusion, decreased beta-cell mass leading to impaired insulin secretion triggers glucose dysregulation in estrogen insufficiency, regardless of body fat. Regular moderate exercise eliminates the risk factors of contracting diabetes in the postmenopausal state.

  15. Protective effects of St. John's wort extract and its component hyperforin against cytokine-induced cytotoxicity in a pancreatic beta-cell line.

    PubMed

    Menegazzi, Marta; Novelli, Michela; Beffy, Pascale; D'Aleo, Valentina; Tedeschi, Elisa; Lupi, Roberto; Zoratti, Elisa; Marchetti, Piero; Suzuki, Hisanori; Masiello, Pellegrino

    2008-01-01

    In both type 1 and type 2 diabetes, increased production of cytokines on autoimmune or metabolic basis is supposed to trigger an inflammatory process leading to dysfunction and death of pancreatic beta-cells. Therefore, anti-inflammatory pharmacological approaches aimed at blocking cytokine signalling pathways and consequent cytotoxicity in beta-cells are highly advisable. Based on previous evidence of cytokine antagonistic effects in other cell types, we explored the protective action of Hypericum perforatum (St-John's-wort) extract and its component hyperforin against cytokine-induced functional impairment and apoptosis in the INS-1E beta-cell line, searching for the underlying mechanisms. The results showed that either St-John's-wort extract or hyperforin (at 1-3 microM) prevented cytokine-induced impairment in glucose-stimulated insulin secretion and protected cells against apoptosis in a dose-dependent fashion. Inducible-NO-synthase expression was also potently hindered by the vegetal compounds. Interestingly, cytokine-induced activations of the signal-transducer-and-activator-of-transcription-1 (STAT-1) and the nuclear-factor-kappaB (NF-kappaB) were both down-regulated by SJW extract or HPF (range 0.5-5 microM) when evaluated by electrophoretic-mobility-shift-assay. Other transcription factors (CBF-1, SP-1) were unaffected. Components of SJW extract other than HPF were much less effective in down-regulating cytokine signalling. Significantly, inhibition of cytokine-elicited STAT-1 and NF-kappaB activation was confirmed in isolated rat and human islets incubated in the presence of these vegetal compounds. In conclusion, St-John's-wort extract and hyperforin are non-peptidyl compounds which, at low concentrations, target key mechanisms of cytokine-induced beta-cell injury, thereby improving beta-cell function and survival. Thus, they are potentially valuable for the prevention or limitation of beta-cell loss in diabetes.

  16. Perfluoroalkyl Substances and Beta Cell Deficient Diabetes

    PubMed Central

    Conway, Baqiyyah; Innes, Karen E; Long, Dustin

    2016-01-01

    Aims Perfluoroalkyl Substances (PFAS) are synthetic hydrocarbons shown to preserve pancreatic islet cell viability and reduce islet cell hypoxia and apoptosis. We investigated the relationship of serum PFAS with diabetes, and whether this varied by diabetes type. Methods 6,460 individuals with and 60,439 without diabetes from the C8 Health Project, were categorized into three groups: Type 1 (n=820), Type 2 (n=4,291), or Uncategorized diabetes (n=1,349, missing data on diabetes type or diabetes based on blood sugar at study entry). Four PFAS were investigated: perfluorohexane sulfonate (PFHxS), perfluoroctanoic acid (PFOA), perfluoroctane sulfonate (PFOS), and perfluorononaoic acid (PFNA). Results PFAS levels were significantly lower in those with diabetes, and lowest in those with Type 1 diabetes. In age and sex adjusted analyses, ORs (CI) for Type 1, Type 2, and Uncategorized diabetes compared to no diabetes were 0.59 (0.54–0.64), 0.74 (0.71–0.77), 0.84 (0.78–0.90) respectively for PFHxS; 0.69 (0.65–0.74), 0.87 (0.89–0.91), 0.92 (0.88–0.97) respectively for PFOA; 0.65 (0.61–0.70), 0.86 (0.82–0.90), 0.93 (0.86–1.03) respectively for PFOS; and 0.65 (0.57–0.74), 0.94 (0.88–1.00), 0.95 (0.85–1.06), respectively for PFNA. Further adjustment for eGFR and other covariates did not eliminate these inverse associations. Conclusions PFAS levels were negatively associated with diabetes. This inverse relationship was strongest for Type 1 diabetes, suggesting the relationship with serum PFAS may vary with the severity of islet cell deficiency. PMID:27311784

  17. Control of beta-cell differentiation by the pancreatic mesenchyme.

    PubMed

    Attali, Myriam; Stetsyuk, Volodymyr; Basmaciogullari, Annie; Aiello, Virginie; Zanta-Boussif, Maria A; Duvillie, Bertrand; Scharfmann, Raphael

    2007-05-01

    The importance of mesenchymal-epithelial interactions for normal development of the pancreas was recognized in the early 1960s, and mesenchymal signals have been shown to control the proliferation of early pancreatic progenitor cells. The mechanisms by which the mesenchyme coordinates cell proliferation and differentiation to produce the normal number of differentiated pancreatic cells are not fully understood. Here, we demonstrate that the mesenchyme positively controls the final number of beta-cells that develop from early pancreatic progenitor cells. In vitro, the number of beta-cells that developed from rat embryonic pancreatic epithelia was larger in cultures with mesenchyme than without mesenchyme. The effect of mesenchyme was not due to an increase in beta-cell proliferation but was due to increased proliferation of early pancreatic duodenal homeobox-1 (PDX1)-positive progenitor cells, as confirmed by bromodeoxyuridine incorporation. Consequently, the window during which early PDX1(+) pancreatic progenitor cells differentiated into endocrine progenitor cells expressing Ngn3 was extended. Fibroblast growth factor 10 mimicked mesenchyme effects on proliferation of early PDX1(+) progenitor cells and induction of Ngn3 expression. Taken together, our results indicate that expansion of early PDX1(+) pancreatic progenitor cells represents a way to increase the final number of beta-cells developing from early embryonic pancreas.

  18. Beta-cell Assembly for the Quad Gas Sampling Detector

    SciTech Connect

    Cooper, Matthew W.; Bowyer, Ted W.; McIntyre, Justin I.; Hayes, James C.; Heimbigner, Tom R.; Ripplinger, Michael D.; Thompson, Robert C.

    2008-05-05

    The beta-cells used in the beta-gamma detector have taken time to develop and to standardize the assembly of them. In making the assembly routine it is important to have step by step assembly instructions as well as a list of potential problems and their solutions. This document attempts to accomplish these goals.

  19. Beta-cell replacement for type I diabetes.

    PubMed

    Stock, Peter G; Bluestone, Jeffrey A

    2004-01-01

    The ability to achieve insulin independence with either solid-organ pancreas or islet transplantation has increased the number of patients seeking beta-cell replacement as an alternative to insulin therapy. Despite dramatic improvements in the ability to achieve insulin independence following solid-organ pancreas transplantation, the secondary complications of long-standing diabetes are frequently irreversible by the time surgical intervention is justified based on the risk of this procedure. Pancreatic islet transplantation provides a safer and less invasive alternative for beta-cell replacement that could be justified earlier in the course of diabetes to prevent the development of secondary complications. Recent advances in the technology of islet isolation, as well as the ability to prevent the alloimmune and recurrent autoimmune response following islet transplantation with immunosuppressive regimens that are not toxic to beta cells, have rekindled an interest in this field. Widespread application of islet transplantation will depend on further improvements in selective immunosuppression, development of immunologic tolerance, and finding new sources of beta cells.

  20. The Adipocytokine Nampt and Its Product NMN Have No Effect on Beta-Cell Survival but Potentiate Glucose Stimulated Insulin Secretion

    PubMed Central

    Schuster, Susanne; Garten, Antje; Beck-Sickinger, Annette G.; Engelse, Marten A.; de Koning, Eelco J. P.; Körner, Antje; Kiess, Wieland; Maedler, Kathrin

    2013-01-01

    Aims/Hypothesis Obesity is associated with a dysregulation of beta-cell and adipocyte function. The molecular interactions between adipose tissue and beta-cells are not yet fully elucidated. We investigated, whether or not the adipocytokine Nicotinamide phosphoribosyltransferase (Nampt) and its enzymatic product Nicotinamide mononucleotide (NMN), which has been associated with obesity and type 2 diabetes mellitus (T2DM) directly influence beta-cell survival and function. Methods The effect of Nampt and NMN on viability of INS-1E cells was assessed by WST-1 assay. Apoptosis was measured by Annexin V/PI and TUNEL assay. Activation of apoptosis signaling pathways was evaluated. Adenylate kinase release was determined to assess cytotoxicity. Chronic and acute effects of the adipocytokine Nampt and its enzymatic product NMN on insulin secretion were assessed by glucose stimulated insulin secretion in human islets. Results While stimulation of beta-cells with the cytokines IL-1β, TNFα and IFN-γ or palmitate significantly decreased viability, Nampt and NMN showed no direct effect on viability in INS-1E cells or in human islets, neither alone nor in the presence of pro-diabetic conditions (elevated glucose concentrations and palmitate or cytokines). At chronic conditions over 3 days of culture, Nampt and its product NMN had no effects on insulin secretion. In contrast, both Nampt and NMN potentiated glucose stimulated insulin secretion acutely during 1 h incubation of human islets. Conclusion/Interpretation Nampt and NMN neither influenced beta-cell viability nor apoptosis but acutely potentiated glucose stimulated insulin secretion. PMID:23342086

  1. Hispidin produced from Phellinus linteus protects pancreatic beta-cells from damage by hydrogen peroxide.

    PubMed

    Jang, Jae Soon; Lee, Jong Seok; Lee, Jung Hyun; Kwon, Duck Soo; Lee, Keun Eok; Lee, Shin Young; Hong, Eock Kee

    2010-06-01

    Phellinus linteus, which is a traditional medicinal mushroom used in Asian countries for the treatment of various diseases, has attracted a lot of attention due to its antioxidant, anti-inflammatory, anti-mutagenicity, and cell-mediated immunity properties in addition to its ability to inhibit tumor growth and metastasis. However, the antidiabetic efficacy of P. linteus has not yet been examined. In this study, hispidin from P. linteus exhibited quenching effects against DPPH radicals, superoxide radicals, and hydrogen peroxide in a dose-dependent manner. Intracellular reactive oxygen species scavenging activity of hispidin was approximately 55% at a concentration of 30 microM. In addition, hispidin was shown to inhibit hydrogen peroxide-induced apoptosis and increased insulin secretion in hydrogen peroxide-treated cells. These combined results indicate that hispidin may act as an antidiabetic and that this property occurs through preventing beta-cells from the toxic action of reactive oxygen species in diabetes.

  2. Effect of fluoroquinolones on mitochondrial function in pancreatic beta cells.

    PubMed

    Ghaly, Hany; Jörns, Anne; Rustenbeck, Ingo

    2014-02-14

    Hyper- and hypoglycaemias are known side effects of fluoroquinolone antibiotics, resulting in a number of fatalities. Fluoroquinolone-induced hypoglycaemias are due to stimulated insulin release by the inhibition of the KATP channel activity of the beta cell. Recently, it was found that fluoroquinolones were much less effective on metabolically intact beta cells than on open cell preparations. Thus the intracellular effects of gatifloxacin, moxifloxacin and ciprofloxacin were investigated by measuring NAD(P)H- and FAD-autofluorescence, the mitochondrial membrane potential, and the adenine nucleotide content of isolated pancreatic islets and beta cells. 100 μM of moxifloxacin abolished the NAD(P)H increase elicited by 20mM glucose, while gatifloxacin diminished it and ciprofloxacin had no significant effect. This pattern was also seen with islets from SUR1 Ko mice, which have no functional KATP channels. Moxifloxacin also diminished the glucose-induced decrease of FAD-fluorescence, which reflects the intramitochondrial production of reducing equivalents. Moxifloxacin, but not ciprofloxacin or gatifloxacin significantly reduced the effect of 20mM glucose on the ATP/ADP ratio. The mitochondrial hyperpolarization caused by 20mM glucose was partially antagonized by moxifloxacin, but not by ciprofloxacin or gatifloxacin. Ultrastructural analyses after 20 h tissue culture showed that all three compounds (at 10 and 100 μM) diminished the number of insulin secretory granules and that gatifloxacin and ciprofloxacin, but not moxifloxacin induced fission/fusion configurations of the beta cell mitochondria. In conclusion, fluoroquinolones affect the function of the mitochondria in pancreatic beta cells which may diminish the insulinotropic effect of KATP channel closure and contribute to the hyperglycaemic episodes. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. HDAC Inhibitor-Mediated Beta-Cell Protection Against Cytokine-Induced Toxicity Is STAT1 Tyr701 Phosphorylation Independent

    PubMed Central

    Dahllöf, Mattias S.; Christensen, Dan P.; Harving, Mette; Wagner, Bridget K.; Mandrup-Poulsen, Thomas

    2015-01-01

    Histone deacetylase (HDAC) inhibition protects pancreatic beta-cells against apoptosis induced by the combination of the proinflammatory cytokines interleukin (IL)-1β and interferon (IFN)-γ. Decreased expression of cell damage-related genes is observed on the transcriptional level upon HDAC inhibition using either IL-1β or IFN-γ alone. Whereas HDAC inhibition has been shown to regulate NFκB-activity, related primarily to IL-1β signaling, it is unknown whether the inhibition of HDACs affect IFN-γ signaling in beta-cells. Further, in non-beta-cells, there is a dispute whether HDAC inhibition regulates IFN-γ signaling at the level of STAT1 Tyr701 phosphorylation. Using different small molecule HDAC inhibitors with varying class selectivity, INS-1E wild type and stable HDAC1-3 knockdown pancreatic INS-1 cell lines, we show that IFN-γ-induced Cxcl9 and iNos expression as well as Cxcl9 and GAS reporter activity were decreased by HDAC inhibition in a STAT1 Tyr701 phosphorylation-independent fashion. In fact, knockdown of HDAC1 increased IFN-γ-induced STAT1 phosphorylation. PMID:25062500

  4. Induction of human pancreatic beta cell replication by inhibitors of dual specificity tyrosine regulated kinase

    PubMed Central

    Wang, Peng; Alvarez-Perez, Juan-Carlos; Felsenfeld, Dan P.; Liu, Hongtao; Sivendran, Sharmila; Bender, Aaron; Kumar, Anil; Sanchez, Roberto; Scott, Donald K.; Garcia-Ocaña, Adolfo; Stewart, Andrew F.

    2015-01-01

    Types 1 and 2 diabetes affect some 380 million people worldwide. Both result ultimately from a deficiency of functional pancreatic insulin-producing beta cells. Beta cells proliferate in humans during a brief temporal window beginning around the time of birth, with peak beta cell labeling indices achieving approximately 2% in first year of life1-4. In embryonic life and after early childhood, beta cell replication rates are very low. While beta cell expansion seems an obvious therapeutic approach to beta cell deficiency, adult human beta cells have proven recalcitrant to such efforts1-8. Hence, there remains an urgent need for diabetes therapeutic agents that can induce regeneration and expansion of adult human beta cells in vivo or ex vivo. Here, we report the results of a high-throughput small molecule screen (HTS) revealing a novel class of human beta cell mitogenic compounds, analogues of the small molecule, harmine. We also define dual specificity tyrosine-regulated kinase-1a (DYRK1A) as the likely target of harmine, and the Nuclear Factors of activated T-cells (NFAT) family of transcription factors as likely mediators of human beta cell proliferation as well as beta cell differentiation. These observations suggest that harmine analogues (“harmalogs”) may have unique therapeutic promise for human diabetes therapy. Enhancing potency and beta cell specificity are important future challenges. PMID:25751815

  5. A Figure-of-Merit for Beta Cell Detector Characterization

    SciTech Connect

    Foxe, Michael P.; Miller, Brian W.; Suarez, Rey; Hayes, James C.

    2015-09-02

    In order to decrease the minimum detectable activities (MDAs) of beta-gamma radioxenon detectors, it is important to increase the ability to resolve the individual isotopes. One proposed method for doing this is to increase the energy resolution of the beta cell through the use of silicon detectors. While silicon detectors can improve the energy resolution, it is accompanied with a decrease in detection efficiency compared to plastic scintillator beta cells. Due to the uncertainty on the impact of the competing variables, we have developed a figure-of-merit (FOM) capable of determining the impact of detector parameters on the MDAs. By utilizing the FOM to analyze different detectors, we are able to directly compare current and future detectors and estimate their impact on the radioxenon MDAs.

  6. Cyclin D2 is sufficient to drive beta cell self-renewal and regeneration.

    PubMed

    Tschen, Shuen-Ing; Zeng, Chun; Field, Loren; Dhawan, Sangeeta; Bhushan, Anil; Georgia, Senta

    2017-08-01

    Diabetes results from an inadequate mass of functional beta cells, due to either beta cell loss caused by autoimmune destruction (Type I diabetes) or beta cell failure in response to insulin resistance (Type II diabetes). Elucidating the mechanisms that regulate beta cell mass may be key to developing new techniques that foster beta cell regeneration as a cellular therapy to treat diabetes. While previous studies concluded that cyclin D2 is required for postnatal beta cell self-renewal in mice, it is not clear if cyclin D2 is sufficient to drive beta cell self-renewal. Using transgenic mice that overexpress cyclin D2 specifically in beta cells, we show that cyclin D2 overexpression increases beta cell self-renewal post-weaning and results in increased beta cell mass. Beta cells that overexpress cyclin D2 are responsive to glucose stimulation, suggesting they are functionally mature. Beta cells that overexpress cyclin D2 demonstrate an enhanced regenerative capacity after injury induced by streptozotocin toxicity. To understand if cyclin D2 overexpression is sufficient to drive beta cell self-renewal, we generated a novel mouse model where cyclin D2 is only expressed in beta cells of cyclin D2(-/-) mice. Transgenic overexpression of cyclin D2 in cyclin D2(-)(/)(-) beta cells was sufficient to restore beta cell mass, maintain normoglycaemia, and improve regenerative capacity when compared to cyclin D2(-/-) littermates. Taken together, our results indicate that cyclin D2 is sufficient to regulate beta cell self-renewal and that manipulation of its expression could be used to enhance beta cell regeneration.

  7. Adult pancreatic alpha-cells: a new source of cells for beta-cell regeneration.

    PubMed

    Chung, Cheng-Ho; Levine, Fred

    2010-01-01

    Beta-cell deficit is the major pathological feature in type 1 and type 2 diabetes patients, and plays a key role in disease progression. In principle, beta-cell regeneration can occur by replication of pre-existing beta-cells, or by beta-cell neogenesis from stem/progenitors. Unfortunately, beta-cell replication is limited by the almost complete absence of beta-cells in patients with type 1 diabetes, and the increasing recognition that the beta-cell replicative capacity declines severely with age. Therefore, beta-cell neogenesis has received increasing interest. Many different cell types within the pancreas have been suggested as potential beta-cell stem/progenitor cells, but the data have been conflicting. In some cases, this may be due to different regeneration models. On the other hand, different results have been obtained with similar regeneration models, leading to confusion about the nature and existence of beta-cell neogenesis in adult animals. Here, we review the major candidates for adult regeneration pathways, and focus on the recent discovery that alpha-cells can function as a novel beta-cell progenitor. Of note, this is a pathway that appears to be unique to beta-cell neogenesis in the adult, as the embryonic pathway of beta-cell neogenesis does not proceed through a glucagon-positive intermediate. We conclude that beta-cell neogenesis from alpha-cells is a new pathway of potential therapeutic significance, making it of high importance to elucidate the molecular events in alpha- to beta-cell conversion.

  8. Protective role of sodium butyrate, a HDAC inhibitor on beta-cell proliferation, function and glucose homeostasis through modulation of p38/ERK MAPK and apoptotic pathways: study in juvenile diabetic rat.

    PubMed

    Khan, S; Jena, G B

    2014-04-25

    Type 1 diabetes (T1D) also known as juvenile diabetes is a chronic autoimmune disorder that precipitates in genetically susceptible individuals by environmental factors particularly during early age. Both genetic and epigenetic factors are implicated in the beta-cell development, proliferation, differentiation and function. Recent evidences suggested that there is a link between diabetes and histone deacetylases (HDACs), because HDAC inhibitors promote beta-cell development, proliferation and function as well as improve glucose homeostasis. Sodium butyrate (NaB) is a short chain fatty acid having HDAC inhibition activity. The present study was aimed to investigate the protective role of NaB treatment on the beta-cell proliferation, function and glucose homeostasis as well as apoptosis in juvenile diabetic rat. Diabetes was induced by single injection of STZ (60 mg/kg, i.p.) in chilled citrate buffer, while NaB (500 mg/kg/day) was administrated by i.p. route for 21 days as pre- and post-treatment schedule. Plasma glucose and insulin levels, HbA1c, glucose tolerance, apoptosis, and expression of proliferating cell nuclear antigen (PCNA), p38, p53, caspase-3, extracellular signal-regulated kinase-1/2 (ERK-1/2), forkhead box protein O1 (FOXO1) and insulin receptor substrate-1 (IRS-1) as well as histone acetylation were evaluated. NaB treatment decreased plasma glucose, HbA1c, beta-cell apoptosis and improved plasma insulin level and glucose homeostasis through HDAC inhibition and histone acetylation in diabetic animal as compared to control. NaB treatment improved the beta-cell proliferation, function and glucose homeostasis as well as reduced beta-cell apoptosis in juvenile diabetic rat by the modulation of p38/ERK MAPK and apoptotic pathway.

  9. Reduction in placental growth factor impaired gestational beta-cell proliferation through crosstalk between beta-cells and islet endothelial cells.

    PubMed

    Xu, Xiaosheng; Shen, Jian

    2016-01-01

    Reduced placental growth factor (PLGF) during pregnancy is known to be a reason for developing preeclampsia (PE) and gestational diabetes mellitus (GDM), but the underlying mechanisms remain unclear. Recently, it has been shown that reduced PLGF may induce GDM through suppressing beta-cell mass growth in a PI3k/Akt signalling-dependent manner. Here, we dissected the interaction between beta-cells and islet endothelial cells in this model. We analysed proliferation of beta-cells and islet endothelial cells at different time points of gestation in mice. We cultured mouse islet endothelial cells (MS1), with or without PLGF. We cultured primary mouse beta-cells in conditioned media from PLGF-treated MS1. We cultured MS1 cells in conditioned media from proliferating beta-cells that were activated with conditioned media from PLGF-treated MS1 cells. We analysed cell proliferation by BrdU incorporation. We analysed cell growth by a MTT assay. We found that during mouse gestation, the increases in cell proliferation occurred earlier in beta-cells than in islet endothelial cells. In vitro, PLGF itself failed to induce proliferation of MS1 cells. However, conditioned media from the PLGF-treated MS1 cells induced beta-cell proliferation, resulting in increases in beta-cell number. Moreover, proliferation of MS1 cells significantly increased when MS1 cells were cultured in conditioned media from proliferating beta-cells activated with conditioned media from PLGF-treated MS1 cells. Thus, our data suggest that gestational PLGF may stimulate islet endothelial cells to release growth factors to promote beta-cell proliferation, and proliferating beta-cells in turn release endothelial cell growth factor to increase proliferation of endothelial cells. PE-associated reduction in PLGF impairs these processes to result in islet growth impairment, and subsequently the onset of GDM.

  10. The ToI-beta transgenic mouse: a model to study the specific role of NF-kappaB in beta-cells.

    PubMed

    Eldor, Roy; Baum, Ketty; Abel, Roy; Sever, Dror; Melloul, Danielle

    2009-12-01

    Type 1 diabetes is characterized by the infiltration of inflammatory cells into pancreatic islets of Langerhans, followed by the selective and progressive destruction of insulin-secreting beta-cells. Islet infiltrating leukocytes secrete cytokines including IL-1beta and IFN-gamma, which contribute to beta-cell death. In vitro evidence suggests that cytokine-induced activation of the transcription factor NF-kappaB is an important component of the signal triggering beta-cell apoptosis. To study the role of NF-kappaB in vivo we generated a transgenic mouse line expressing a degradation-resistant NF-kappaB protein inhibitor (DeltaNIkappaBalpha) and the luciferase gene, acting specifically in beta-cells, in an inducible and reversible manner, by using the tet-on regulation system. Using this new mouse model, termed the ToI-beta mouse (for Tet-Ondelta I kappaB in beta-cells) we have previously shown in vitro, that islets expressing the DeltaNIkappaBalpha protein were resistant to the deleterious effects of IL-1beta and IFN-gamma, as assessed by reduced NO production and beta-cell apoptosis. In vivo, a nearly complete protection against multiple low dose streptozocin-induced diabetes was observed, with reduced intra-islet lymphocytic infiltration. In the present study we demonstrate the tight regulated and reversible expression of the DeltaNIkappaBalpha transgene in the ToI-beta mouse model as well as the effect of its overexpression on glucose metabolism and insulin secretion. The results show a lack of effect of transgene induction on both in vivo glucose tolerance tests and in vitro islet insulin secretion and content. Furthermore, to prove the tight control of induction in the model, luciferase mediated light emission was only detected at constant levels in Dox-treated double transgenic mice or islets as well as in a model of islet transplantation. Upon removal of the inducing stimulus, complete reversal of both NF-kappaB inhibition and luciferase activity were

  11. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells.

    PubMed

    Cardozo, Alessandra K; Ortis, Fernanda; Storling, Joachim; Feng, Ying-Mei; Rasschaert, Joanne; Tonnesen, Morten; Van Eylen, Françoise; Mandrup-Poulsen, Thomas; Herchuelz, André; Eizirik, Décio L

    2005-02-01

    Cytokines and free radicals are mediators of beta-cell death in type 1 diabetes. Under in vitro conditions, interleukin-1beta (IL-1beta) + gamma-interferon (IFN-gamma) induce nitric oxide (NO) production and apoptosis in rodent and human pancreatic beta-cells. We have previously shown, by microarray analysis of primary beta-cells, that IL-1beta + IFN-gamma decrease expression of the mRNA encoding for the sarcoendoplasmic reticulum pump Ca(2+) ATPase 2b (SERCA2b) while inducing expression of the endoplasmic reticulum stress-related and proapoptotic gene CHOP (C/EBP [CCAAT/enhancer binding protein] homologous protein). In the present study we show that cytokine-induced apoptosis and necrosis in primary rat beta-cells and INS-1E cells largely depends on NO production. IL-1beta + IFN-gamma, via NO synthesis, markedly decreased SERCA2b protein expression and depleted ER Ca(2+) stores. Of note, beta-cells showed marked sensitivity to apoptosis induced by SERCA blockers, as compared with fibroblasts. Cytokine-induced ER Ca(2+) depletion was paralleled by an NO-dependent induction of CHOP protein and activation of diverse components of the ER stress response, including activation of inositol-requiring ER-to-nucleus signal kinase 1alpha (IRE1alpha) and PRK (RNA-dependent protein kinase)-like ER kinase (PERK)/activating transcription factor 4 (ATF4), but not ATF6. In contrast, the ER stress-inducing agent thapsigargin triggered these four pathways in parallel. In conclusion, our results suggest that the IL-1beta + IFN-gamma-induced decrease in SERCA2b expression, with subsequent depletion of ER Ca(2+) and activation of the ER stress pathway, is a potential contributory mechanism to beta-cell death.

  12. Regulating the beta cell mass as a strategy for type-2 diabetes treatment.

    PubMed

    Song, Imane; Muller, Christo; Louw, Johan; Bouwens, Luc

    2015-01-01

    The incidence of type 2 diabetes (T2D) increases dramatically worldwide and has created an enormous health care burden. Obesity, dyslipidemia and insulin resistance are major risk factors for the development of T2D, but the major factor leading to the disease is failure of the insulin-producing beta cell mass to compensate for increasing insulin demands of the body. Progression of the disease further diminishes the beta cell mass as a result of lipotoxicity and glucotoxicity for which beta cells are particularly sensitive. Hence, treatment aiming to prevent beta cell loss or increase the number of beta cells could inhibit diabetes progression or lead to restoration of normal metabolism. Whereas current and new antidiabetic drugs are mainly targeting insulin secretion and action or glucose uptake, newer interventions must be found that prevent beta cell loss or increase beta cell number. The targets for this are beta cell proliferation, neogenesis and survival. This review examines major evidence from animal experiments suggesting that it is feasible to regulate the beta cell mass by bioactive compounds like growth factors, cytokines, hormones, phytochemicals and small molecules. Often the mode of action remains unclear due to inadequate methods to assess the effects of the compounds on the beta cell dynamics. Furthermore, a major challenge is to identify compounds with sufficient specificity in order to avoid unwanted effects on other cell types. Provided such safety issues can be solved, this may provide a curative approach for diabetes treatment.

  13. NMR spectroscopy in beta cell engineering and islet transplantation.

    PubMed

    Papas, K K; Colton, C K; Gounarides, J S; Roos, E S; Jarema, M A; Shapiro, M J; Cheng, L L; Cline, G W; Shulman, G I; Wu, H; Bonner-Weir, S; Weir, G C

    2001-11-01

    Islet transplantation is a promising method for restoring normoglycemia and alleviating the long term complications of diabetes. Widespread application of islet transplantation is hindered by the limited supply of human islets and requires a large increase in the availability of suitable insulin secreting tissue as well as robust quality assessment methodologies that can ensure safety and in vivo efficacy. We explore the application of nuclear magnetic resonance (NMR) spectroscopy in two areas relevant to beta cell engineering and islet transplantation: (1) the effect of genetic alterations on glucose metabolism, and (2) quality assessment of islet preparations prior to transplantation. Results obtained utilizing a variety of NMR techniques demonstrate the following: (1) Transfection of Rat1 cells with the c-myc oncogene (which may be involved in cell proliferation and cell cycle regulation) and overexpression of Bcl-2 (which may protect cells from stresses such as hypoxia and exposure to cytokines) introduce a wide array of alterations in cellular biochemistry, including changes in anaerobic and oxidative glucose metabolism, as assessed by 13C and 31P NMR spectroscopy. (2) Overnight incubation of islets and beta cells in the bottom of centrifuge tubes filled with medium at room temperature, as is sometimes done in islet transportation, exposes them to severe oxygen limitations that may cause cell damage. Such exposure, leading to reversible or irreversible damage, can be observed with NMR-detectable markers using conventional 13C and 31P NMR spectroscopy of extracts. In addition, markers of irreversible damage (as well as markers of hypoxia) can be detected and quantified without cell extraction using high-resolution magic angle spinning 1H NMR spectroscopy. Finally, acute ischemia in a bed of perfused beta cells leads to completely reversible changes that can be followed in real time with 31P NMR spectroscopy.

  14. Beta Cell Mass Restoration in Alloxan-Diabetic Mice Treated with EGF and Gastrin.

    PubMed

    Song, Imane; Patel, Oelfah; Himpe, Eddy; Muller, Christo J F; Bouwens, Luc

    2015-01-01

    One week of treatment with EGF and gastrin (EGF/G) was shown to restore normoglycemia and to induce islet regeneration in mice treated with the diabetogenic agent alloxan. The mechanisms underlying this regeneration are not fully understood. We performed genetic lineage tracing experiments to evaluate the contribution of beta cell neogenesis in this model. One day after alloxan administration, mice received EGF/G treatment for one week. The treatment could not prevent the initial alloxan-induced beta cell mass destruction, however it did reverse glycemia to control levels within one day, suggesting improved peripheral glucose uptake. In vitro experiments with C2C12 cell line showed that EGF could stimulate glucose uptake with an efficacy comparable to that of insulin. Subsequently, EGF/G treatment stimulated a 3-fold increase in beta cell mass, which was partially driven by neogenesis and beta cell proliferation as assessed by beta cell lineage tracing and BrdU-labeling experiments, respectively. Acinar cell lineage tracing failed to show an important contribution of acinar cells to the newly formed beta cells. No appearance of transitional cells co-expressing insulin and glucagon, a hallmark for alpha-to-beta cell conversion, was found, suggesting that alpha cells did not significantly contribute to the regeneration. An important fraction of the beta cells significantly lost insulin positivity after alloxan administration, which was restored to normal after one week of EGF/G treatment. Alloxan-only mice showed more pronounced beta cell neogenesis and proliferation, even though beta cell mass remained significantly depleted, suggesting ongoing beta cell death in that group. After one week, macrophage infiltration was significantly reduced in EGF/G-treated group compared to the alloxan-only group. Our results suggest that EGF/G-induced beta cell regeneration in alloxan-diabetic mice is driven by beta cell neogenesis, proliferation and recovery of insulin. The

  15. Making progress: preserving beta cells in type 1 diabetes.

    PubMed

    Gallagher, Mary Pat; Goland, Robin S; Greenbaum, Carla J

    2011-12-01

    The clinical care of patients with type 1 diabetes (T1D) has greatly improved over the past few decades; however, it remains impossible to completely normalize blood sugar utilizing currently available tools. Research is underway with a goal to improve the care and, ultimately, to cure T1D by preserving beta cells. This review will outline the progress that has been made in trials aimed at preserving insulin secretion in T1D by modifying the immune assault on the pancreatic beta cell. Although not yet ready for clinical use, successful trials have been conducted in new-onset T1D that demonstrated utility of three experimental agents with disparate modes of action (anti-T cell, anti-B cell, and costimulation blockade) to preserve insulin secretion. In contrast, prevention studies have so far failed to produce positive results but have shown that such studies are feasible and have identified new promising agents for study. © 2011 New York Academy of Sciences.

  16. Nutrient overload, lipid peroxidation and pancreatic beta cell function.

    PubMed

    Sasson, Shlomo

    2017-10-01

    Since the landmark discovery of α,β-unsaturated 4-hydroxyalkenals by Esterbauer and colleagues most studies have addressed the consequences of the tendency of these lipid peroxidation products to form covalent adducts with macromolecules and modify cellular functions. Many studies describe detrimental and cytotoxic effects of 4-hydroxy-2E-nonenal (4-HNE) in myriad tissues and organs and many pathologies. Other studies similarly assigned unfavorable effects to 4-hydroxy-2E-hexenal (4-HHE) and 4-hydroxy-2E,6Z-dodecadienal (4-HDDE). Nutrient overload (e.g., hyperglycemia, hyperlipidemia) modifies lipid metabolism in cells and promotes lipid peroxidation and the generation of α,β-unsaturated 4-hydroxyalkenals. Advances glycation- and lipoxidation end products (AGEs and ALEs) have been associated with the development of insulin resistance and pancreatic beta cell dysfunction and the etiology of type 2 diabetes and its peripheral complications. Less acknowledged are genuine signaling properties of 4-hydroxyalkenals in hormetic processes that provide defense against the consequences of nutrient overload. This review addresses recent findings on such lipohormetic mechanisms that are associated with lipid peroxidation in pancreatic beta cells. This article is part of a Special Issue entitled SI: LIPID OXIDATION PRODUCTS, edited by Giuseppe Poli. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. EX4 stabilizes and activates Nrf2 via PKCδ, contributing to the prevention of oxidative stress-induced pancreatic beta cell damage.

    PubMed

    Kim, Mi-Hwi; Kim, Eung-Hwi; Jung, Hye Seung; Yang, Dongki; Park, Eun-Young; Jun, Hee-Sook

    2017-01-15

    Oxidative stress in pancreatic beta cells can inhibit insulin secretion and promote apoptotic cell death. Exendin-4 (EX4), a glucagon-like peptide-1 receptor agonist, can suppress beta cell apoptosis, improve beta cell function and protect against oxidative damage. In this study, we investigated the molecular mechanisms for antioxidative effects of EX4 in pancreatic beta cells. INS-1 cells, a rat insulinoma cell line, were pretreated with EX4 and exposed to palmitate or H2O2. Reactive oxygen species (ROS) production, and glutathione and insulin secretion were measured. The mRNA and protein expression levels of antioxidant genes were examined. The level of nuclear factor erythroid 2-related factor 2 (Nrf2), its binding to antioxidant response element (ARE), and its ubiquination in the presence of EX4 were determined. The Nrf2 signaling pathway was determined using rottlerin (protein kinase [PK]Cδ inhibitor), H89 (PKA inhibitor) and LY294002 (phosphatidylinositide 3-kinase [PI3K] inhibitor). EX4 treatment decreased ROS production, recovered cellular glutathione levels and insulin secretion in the presence of oxidative stress in INS-1 cells. The expression levels of glutamate-cysteine ligase catalytic subunit and heme oxygenase-1 were increased by EX4 treatment. EX4 promoted Nrf2 translocation, ARE binding activity and enhanced stabilization of Nrf2 by inhibition of ubiquitination. Knockdown of Nrf2 abolished the effect of EX4 on increased insulin secretion. Inhibition of PKCδ attenuated Nrf2 translocation and antioxidative gene expression by EX4 treatment. We suggest that EX4 activates and stabilizes Nrf2 through PKCδ activation, contributing to the increase of antioxidant gene expression and consequently improving beta cell function in the presence of oxidative stress.

  18. Disruption of CR6-interacting factor-1 (CRIF1) in mouse islet beta cells leads to mitochondrial diabetes with progressive beta cell failure.

    PubMed

    Kim, Yong Kyung; Joung, Kyong Hye; Ryu, Min Jeong; Kim, Soung Jung; Kim, Hyeongseok; Chung, Hyo Kyun; Lee, Min Hee; Lee, Seong Eun; Choi, Min Jeong; Chang, Joon Young; Hong, Hyun Jung; Kim, Koon Soon; Lee, Sang-Hee; Kweon, Gi Ryang; Kim, Hail; Lee, Chul-Ho; Kim, Hyun Jin; Shong, Minho

    2015-04-01

    Although mitochondrial oxidative phosphorylation (OxPhos) dysfunction is believed to be responsible for beta cell dysfunction in insulin resistance and mitochondrial diabetes, the mechanisms underlying progressive beta cell failure caused by defective mitochondrial OxPhos are largely unknown. We examined the in vivo phenotypes of beta cell dysfunction in beta cell-specific Crif1 (also known as Gadd45gip1)-deficient mice. CR6-interacting factor-1 (CRIF1) is a mitochondrial protein essential for the synthesis and formation of the OxPhos complex in the inner mitochondrial membrane. Crif1(beta-/-) mice exhibited impaired glucose tolerance with defective insulin secretion as early as 4 weeks of age without defects in islet structure. At 11 weeks of age, Crif1(beta-/-) mice displayed characteristic ultrastructural mitochondrial abnormalities as well as severe glucose intolerance. Furthermore, islet area and insulin content was decreased by approximately 50% compared with wild-type mice. Treatment with the glucoregulatory drug exenatide, a glucagon-like peptide-1 (GLP-1) agonist, was not sufficient to preserve beta cell function in Crif1(beta-/-) mice. Our results indicate that mitochondrial OxPhos dysfunction triggers progressive beta cell failure that is not halted by treatment with a GLP-1 agonist. The Crif1(beta-/-) mouse is a useful model for the study of beta cell failure caused by mitochondrial OxPhos dysfunction.

  19. Beta Cell Regeneration in Adult Mice: Controversy Over the Involvement of Stem Cells.

    PubMed

    Yu, Ke; Fischbach, Shane; Xiao, Xiangwei

    2016-01-01

    Islet transplantation is an effective therapy for severe diabetes. Nevertheless, the short supply of donor pancreases constitutes a formidable obstacle to its extensive clinical application. This shortage heightens the need for alternative sources of insulin-producing beta cells. Since mature beta cells have a very slow proliferation rate, which further declines with age, great efforts have been made to identify beta cell progenitors in the adult pancreas. However, the question whether facultative beta cell progenitors indeed exist in the adult pancreas remains largely unresolved. In the current review, we discuss the problems in past studies and review the milestone studies and recent publications.

  20. Very slow turnover of beta-cells in aged adult mice.

    PubMed

    Teta, Monica; Long, Simon Y; Wartschow, Lynn M; Rankin, Matthew M; Kushner, Jake A

    2005-09-01

    Although many signaling pathways have been shown to promote beta-cell growth, surprisingly little is known about the normal life cycle of preexisting beta-cells or the signaling pathways required for beta-cell survival. Adult beta-cells have been speculated to have a finite life span, with ongoing adult beta-cell replication throughout life to replace lost cells. However, little solid evidence supports this idea. To more accurately measure adult beta-cell turnover, we performed continuous long-term labeling of proliferating cells with the DNA precursor analog 5-bromo-2-deoxyuridine (BrdU) in 1-year-old mice. We show that beta-cells of aged adult mice have extremely low rates of replication, with minimal evidence of turnover. Although some pancreatic components acquired BrdU label in a linear fashion, only 1 in approximately 1,400 adult beta-cells were found to undergo replication per day. We conclude that adult beta-cells are very long lived.

  1. Maturation of Stem Cell-Derived Beta-cells Guided by the Expression of Urocortin 3

    PubMed Central

    van der Meulen, Talitha; Huising, Mark O.

    2014-01-01

    Type 1 diabetes (T1D) is a devastating disease precipitated by an autoimmune response directed at the insulin-producing beta-cells of the pancreas for which no cure exists. Stem cell-derived beta-cells show great promise for a cure as they have the potential to supply unlimited numbers of cells that could be derived from a patient's own cells, thus eliminating the need for immunosuppression. Current in vitro protocols for the differentiation of stem cell-derived beta-cells can successfully generate pancreatic endoderm cells. In diabetic rodents, such cells can differentiate further along the beta-cell lineage until they are eventually capable of restoring normoglycemia. While these observations demonstrate that stem cell-derived pancreatic endoderm has the potential to differentiate into mature, glucose-responsive beta-cells, the signals that direct differentiation and maturation from pancreatic endoderm onwards remain poorly understood. In this review, we analyze the sequence of events that culminates in the formation of beta-cells during embryonic development. and summarize how current protocols to generate beta-cells have sought to capitalize on this ontogenic template. We place particular emphasis on the current challenges and opportunities which occur in the later stages of beta-cell differentiation and maturation of transplantable stem cell-derived beta-cells. Another focus is on the question how the use of recently identified maturation markers such as urocortin 3 can be instrumental in guiding these efforts. PMID:25148370

  2. Treatment with CNX-011-67, a novel GPR40 agonist, delays onset and progression of diabetes and improves beta cell preservation and function in male ZDF rats

    PubMed Central

    2013-01-01

    Background The role of G protein-coupled receptor (GPR40), which is highly expressed in pancreatic beta cells, has been studied extensively in the amelioration of beta cell dysfunction in T2D using rat and mouse islets, beta cell lines and in animal models of diabetes. But its potential as a therapeutic target has not been fully explored. This aim of the study is to evaluate the therapeutic potential of CNX-011-67, a highly selective, potent and orally bioavailable GPR40 agonist, in controlling diabetes and other metabolic parameters. Methods Seven week old male ZDF rats were treated with either vehicle or CNX-011-67, 5 mg/kg twice daily, for seven weeks. The animals were subjected to oral glucose tolerance and insulin tolerance tests. Plasma glucose, insulin, triglyceride, HbA1c, fructosamine and free fatty acids were measured at selected time points. Pancreas from control and treated animals were subjected to insulin and pancreatic and duodenal homeobox 1 (PDX1) immunohistochemistry and were also evaluated by electron microscopy. Also the potential impact of CNX-011-67 on islet insulin secretion, content, ATP levels and markers of both glucose oxidation, beta cell health in rat islets under chronic glucolipotoxic conditions was evaluated. Results Treatment of male ZDF rats with CNX-011-67 for 7 weeks significantly enhanced insulin secretion in response to oral glucose load, delayed the onset of fasting hyperglycemia by 3 weeks, reduced nonfasting glucose excursions, fasting free fatty acids and triglyceride levels. A significant increase in PDX1 expression and insulin content and reduction in plasma fructosamine, HOMA-IR, and beta cell apoptosis were observed. CNX-011-67 improves glucose mediated insulin secretion, insulin gene transcription and islet insulin content in cultured rat islets under chronic glucolipotoxic condition. Also enhanced glucose oxidation in the form of increased islet ATP content and overall improvement in beta cell health in the form of

  3. Inorganic mercury causes pancreatic beta-cell death via the oxidative stress-induced apoptotic and necrotic pathways

    SciTech Connect

    Chen Yawen; Huang Chunfa; Yang Chingyao; Yen Chengchieh; Tsai Kehsung; Liu Shinghwa

    2010-03-15

    Mercury is a well-known highly toxic metal. In this study, we characterize and investigate the cytotoxicity and its possible mechanisms of inorganic mercury in pancreatic beta-cells. Mercury chloride (HgCl{sub 2}) dose-dependently decreased the function of insulin secretion and cell viability in pancreatic beta-cell-derived HIT-T15 cells and isolated mouse pancreatic islets. HgCl{sub 2} significantly increased ROS formation in HIT-T15 cells. Antioxidant N-acetylcysteine effectively reversed HgCl{sub 2}-induced insulin secretion dysfunction in HIT-T15 cells and isolated mouse pancreatic islets. Moreover, HgCl{sub 2} increased sub-G1 hypodiploids and annexin-V binding in HIT-T15 cells, indicating that HgCl{sub 2} possessed ability in apoptosis induction. HgCl{sub 2} also displayed several features of mitochondria-dependent apoptotic signals including disruption of the mitochondrial membrane potential, increase of mitochondrial cytochrome c release and activations of poly (ADP-ribose) polymerase (PARP) and caspase 3. Exposure of HIT-T15 cells to HgCl{sub 2} could significantly increase both apoptotic and necrotic cell populations by acridine orange/ethidium bromide dual staining. Meanwhile, HgCl{sub 2} could also trigger the depletion of intracellular ATP levels and increase the LDH release from HIT-T15 cells. These HgCl{sub 2}-induced cell death-related signals could be significantly reversed by N-acetylcysteine. The intracellular mercury levels were markedly elevated in HgCl{sub 2}-treated HIT-T15 cells. Taken together, these results suggest that HgCl{sub 2}-induced oxidative stress causes pancreatic beta-cell dysfunction and cytotoxicity involved the co-existence of apoptotic and necrotic cell death.

  4. Crystalline structures in human pancreatic beta cell adenoma.

    PubMed

    Mori, H; Kawai, T; Tanaka, T; Fujii, M; Takahashi, M; Miyashita, T

    1978-05-01

    An electron microscopic observation on a pancreatic tumor removed from a 34-year-old woman revealed the fine structural morphology of a functional beta cell adenoma. Characteristic PAS positive crystalline structures were frequently observed in the cytoplasm of the tumor cells. They were not bounded by a membrane and had a rectangular or irregular hexagonal shape. Highly regular patterns were seen as such as lattice or honeycomb and parallel ripple structures. They are similar to the Reinke's crystal or crystalline structures reported in human hepatocytes suffering from several different diseases and considered as a protein-carbohydrate complex. Occasionally, small paracrystalline structures appeared to indicate an immature type of these structures in the opaque fine fibrillar mass. Crystalline or paracrystalline structures were not detected in the normal pancreatic tissue removed with the tumor from the patient.

  5. Nanomaterial Solutions for the Protection of Insulin Producing Beta Cells

    NASA Astrophysics Data System (ADS)

    Atchison, Nicole Ann

    Islet transplantation is a promising treatment for type 1 diabetes. However, even with the many successes, islet transplantation has yet to reach its full potential. Limited islet sources, loss of cell viability during isolation and culture, and post-transplant graft loss are a few of the issues preventing extensive use of islet transplantation. The application of biomaterial systems to alleviate some of the stresses affecting islet viability has led to improvements in isolation and transplantation outcomes, but problems persist. In this work we approach two distinct issues affecting islet viability; ischemic conditions and immunological attack post-transplant. Ischemic conditions have been linked to a loss of islet graft function and occur during organ preservation, islet isolation and culture, and after islets are transplanted. We show that liposomal delivery of adenosine triphosphate (ATP) to beta cells can limit cell death and loss of function in ischemic conditions. We demonstrate that by functionalizing liposomes with the fibronectin-mimetic peptide PR_b, delivery of liposomes to porcine islets and rat beta cells is increased compared to nontargeted controls. Additionally, liposomes are shown to protect by providing both ATP and lipids to the ischemic cells. The delivery of ATP was investigated here but application of PR_b functionalized liposomes could be extended to other interesting cargos as well. The second area of investigation involves encapsulation of islets with silica nanoparticles to create a permselective barrier. Silica nanoparticles are an interesting material for encapsulation given their ability to be fine-tuned and further functionalized. We demonstrate that size-tunable, fluorescent silica nanoparticles can be assembled layer-by-layer on the surface of cells and that silica nanoparticle encapsulated islets are able to secrete insulin in response to a glucose challenge.

  6. Glucose activates prenyltransferases in pancreatic islet {beta}-cells

    SciTech Connect

    Goalstone, Marc; Kamath, Vasudeva; Kowluru, Anjaneyulu

    2010-01-01

    A growing body of evidence implicates small G-proteins [e.g., Cdc42 and Rac1] in glucose-stimulated insulin secretion [GSIS] in the islet {beta}-cell. These signaling proteins undergo post-translational modifications [e.g., prenylation] at their C-terminal cysteine residue and appear to be essential for the transport and fusion of insulin-containing secretory granules with the plasma membrane and the exocytotic secretion of insulin. However, potential regulation of the prenylating enzymes by physiological insulin secretogues [e.g., glucose] has not been investigated thus far. Herein, we report immunological localization, sub-cellular distribution and regulation of farnesyltransferases [FTases] and geranylgeranyltransferase [GGTase] by glucose in insulin-secreting INS 832/13 {beta}-cells and normal rat islets. Our findings suggest that an insulinotropic concentration of glucose [20 mM] markedly stimulated the expression of the {alpha}-subunits of FTase/GGTase-1, but not the {beta}-subunits of FTase or GGTase-1 without significantly affecting the predominantly cytosolic distribution of these holoenzymes in INS 832/13 cells and rodent islets. Under these conditions, glucose significantly stimulated [2.5- to 4.0-fold over basal] the activities of both FTase and GGTase-1 in both cell types. Together, these findings provide the first evidence to suggest that GSIS involves activation of the endogenous islet prenyltransferases by glucose, culminating in the activation of their respective G-protein substrates, which is necessary for cytoskeletal rearrangement, vesicular transport, fusion and secretion of insulin.

  7. Mature insulin production by engineered non-beta cells.

    PubMed

    Shen, Kuntang; Qin, Xinyu; Xiao, Huasheng; Zhang, Xin; Xu, Xiangru; Han, Zeguang

    2002-04-01

    To pursue insulin and islet-transplantation replacement therapy for type 1 diabetes based on engineered human non-beta cells which secrete mature insulin. Human proinsulin cDNA was cloned from its genomic gene and mutated by overlap extension PCR, introducing furin consensus cleavage sequences (Arg-Xaa-Lys/Arg-Arg). An expression vector encoding a genetically modified human proinsulin cDNA was generated and transduced to Hela, 293, and L02 cells by lipofectin-mediated DNA transfection. Following G418 screening, the surviving L02 cells were selected and enriched. Insulin levels in the supernatant and cells were evaluated using radioimmunoassay and immunofluorescence staining. Three sites in the insulin gene were mutated simultaneously. Insulin gene modified cells were able to express insulin at different levels: 8.45 - 188.00 microIU/24 h/2.0 x 10(6) Hela cells and 159.88 - 242.14 microIU/24 h/2.0 x 10(6) 293 cells for transient expression, and 2.56 - 61.95 microIU/24 h/2.0 x 10(6) from several L02 clones screened with G418. No insulin was released by control cells. Furthermore, immunofluorescence staining confirmed that proinsulin was stored as vacuoles in the cytoplasm of L02 cells. A correctly mutated human proinsulin cDNA was obtained successfully, transfected and expressed efficiently in non-beta cells, lending support to the study of somatic gene therapy in diabetes mellitus.

  8. Cell therapies for pancreatic beta-cell replenishment.

    PubMed

    Okere, Bernard; Lucaccioni, Laura; Dominici, Massimo; Iughetti, Lorenzo

    2016-07-11

    The current treatment approach for type 1 diabetes is based on daily insulin injections, combined with blood glucose monitoring. However, administration of exogenous insulin fails to mimic the physiological activity of the islet, therefore diabetes often progresses with the development of serious complications such as kidney failure, retinopathy and vascular disease. Whole pancreas transplantation is associated with risks of major invasive surgery along with side effects of immunosuppressive therapy to avoid organ rejection. Replacement of pancreatic beta-cells would represent an ideal treatment that could overcome the above mentioned therapeutic hurdles. In this context, transplantation of islets of Langerhans is considered a less invasive procedure although long-term outcomes showed that only 10 % of the patients remained insulin independent five years after the transplant. Moreover, due to shortage of organs and the inability of islet to be expanded ex vivo, this therapy can be offered to a very limited number of patients. Over the past decade, cellular therapies have emerged as the new frontier of treatment of several diseases. Furthermore the advent of stem cells as renewable source of cell-substitutes to replenish the beta cell population, has blurred the hype on islet transplantation. Breakthrough cellular approaches aim to generate stem-cell-derived insulin producing cells, which could make diabetes cellular therapy available to millions. However, to date, stem cell therapy for diabetes is still in its early experimental stages. This review describes the most reliable sources of stem cells that have been developed to produce insulin and their most relevant experimental applications for the cure of diabetes.

  9. Latent autoimmune diabetes in adults: definition, prevalence, beta-cell function, and treatment.

    PubMed

    Stenström, Gunnar; Gottsäter, Anders; Bakhtadze, Ekaterine; Berger, Bo; Sundkvist, Göran

    2005-12-01

    Latent autoimmune diabetes in adults (LADA) is a disorder in which, despite the presence of islet antibodies at diagnosis of diabetes, the progression of autoimmune beta-cell failure is slow. LADA patients are therefore not insulin requiring, at least during the first 6 months after diagnosis of diabetes. Among patients with phenotypic type 2 diabetes, LADA occurs in 10% of individuals older than 35 years and in 25% below that age. Prospective studies of beta-cell function show that LADA patients with multiple islet antibodies develop beta-cell failure within 5 years, whereas those with only GAD antibodies (GADAs) or only islet cell antibodies (ICAs) mostly develop beta-cell failure after 5 years. Even though it may take up to 12 years until beta-cell failure occurs in some patients, impairments in the beta-cell response to intravenous glucose and glucagon can be detected at diagnosis of diabetes. Consequently, LADA is not a latent disease; therefore, autoimmune diabetes in adults with slowly progressive beta-cell failure might be a more adequate concept. In agreement with proved impaired beta-cell function at diagnosis of diabetes, insulin is the treatment of choice.

  10. Beta Cell Replacement in Mice Using Human Type 1 Diabetes Nuclear Transfer Embryonic Stem Cells.

    PubMed

    Sui, Lina; Danzl, Nichole; Campbell, Sean R; Viola, Ryan; Williams, Damian; Xing, Yuan; Wang, Yong; Phillips, Neil; Poffenberger, Greg; Johannesson, Bjarki; Oberholzer, Jose; Powers, Alvin C; Leibel, Rudolph L; Chen, Xiaojuan; Sykes, Megan; Egli, Dieter

    2017-09-20

    Beta cells derived from stem cells hold great promise for cell replacement therapy for diabetes. Here we examine the ability of nuclear transfer embryonic stem cells (NT-ES) derived from a type 1 diabetes patient to differentiate into beta cells, and provide a source of autologous islets for cell replacement. NT-ES cells differentiate in vitro with an average efficiency of 55% into C-peptide-positive cells, expressing markers of mature beta cells, including MAFA and NKX6.1. Upon transplantation in immunodeficient mice, grafted cells form vascularized islet-like structures containing MAFA/C-peptide-positive cells. These beta cells adapt insulin secretion to ambient metabolite status and show normal insulin processing. Importantly, NT-ES-beta cells maintain normal blood glucose levels after ablation of the mouse's endogenous beta cells. Cystic structures, but no teratomas, were observed in NT-ES-beta cell grafts. Isogenic induced pluripotent stem cell lines showed greater variability in beta cell differentiation. Even though different methods of somatic cell reprogramming result in stem cell lines that are molecularly indistinguishable, full differentiation competence is more common in ES cell lines than in iPS cell lines. These results demonstrate the suitability of NT-ES-beta for cell replacement for type 1 diabetes, and provide proof of principle for therapeutic cloning combined with cell therapy. © 2017 by the American Diabetes Association.

  11. Marked over expression of uncoupling protein-2 in beta cells exerts minor effects on mitochondrial metabolism

    SciTech Connect

    Hals, Ingrid K.; Ogata, Hirotaka; Pettersen, Elin; Ma, Zuheng; Bjoerklund, Anneli; Skorpen, Frank; Egeberg, Kjartan Wollo; Grill, Valdemar

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer The impact of UCP-2 over expression on mitochondrial function is controversial. Black-Right-Pointing-Pointer We tested mitochondrial functions at defined levels of overexpression. Black-Right-Pointing-Pointer We find minor increases of fatty acid oxidation and uncoupling. Black-Right-Pointing-Pointer Effects were seen only at high level (fourfold) of over expression. Black-Right-Pointing-Pointer Hence it is doubtful whether these effects are of importance in diabetes. -- Abstract: Evidence is conflicting as to the impact of elevated levels of uncoupling protein-2 (UCP-2) on insulin-producing beta cells. Here we investigated effects of a fourfold induction of UCP-2 protein primarily on mitochondrial parameters and tested for replication of positive findings at a lower level of induction. We transfected INS-1 cells to obtain a tet-on inducible cell line. A 48 h exposure to 1 {mu}g/ml of doxycycline (dox) induced UCP-2 fourfold (424 {+-} 113%, mean {+-} SEM) and 0.1 {mu}g/ml twofold (178 {+-} 29%, n = 3). Fourfold induced cells displayed normal viability (MTT, apoptosis), normal cellular insulin contents and, glucose-induced insulin secretion (+27 {+-} 11%) as well as D-[U-{sup 14}C]-glucose oxidation (+5 {+-} 9% at 11 mM glucose). Oxidation of [1-{sup 14}C]-oleate was increased from 4088 to 5797 fmol/{mu}g prot/2 h at 3.3 mM glucose, p < 0.03. Oxidation of L-[{sup 14}C(U)]-glutamine was unaffected. Induction of UCP-2 did not significantly affect measures of mitochondrial membrane potential (Rhodamine 123) or mitochondrial mass (Mitotracker Green) and did not affect ATP levels. Oligomycin-inhibited oxygen consumption (a measure of mitochondrial uncoupling) was marginally increased, the effect being significant in comparison with dox-only treated cells, p < 0.05. Oxygen radicals, assessed by dichlorofluorescin diacetate, were decreased by 30%, p < 0.025. Testing for the lower level of UCP-2 induction did not reproduce any of the

  12. Differential expression of cell-cycle regulators in human beta-cells derived from insulinoma tissue.

    PubMed

    Ueberberg, Sandra; Tannapfel, Andrea; Schenker, Peter; Viebahn, Richard; Uhl, Waldemar; Schneider, Stephan; Meier, Juris J

    2016-05-01

    The low frequency of beta-cell replication in the adult human pancreas limits beta-cell regeneration. A better understanding of the regulation of human beta-cell proliferation is crucial to develop therapeutic strategies aiming to enhance beta-cell mass. To identify factors that control beta-cell proliferation, cell-cycle regulation was examined in human insulinomas as a model of increased beta-cell proliferation (n=11) and healthy pancreatic tissue from patients with benign pancreatic tumors (n=9). Tissue sections were co-stained for insulin and cell-cycle proteins. Transcript levels of selected cell-cycle factors in beta-cells were determined by qRT-PCR after performing laser-capture microdissection. The frequency of beta-cell replication was 3.74±0.92% in the insulinomas and 0.11±0.04% in controls (p=0.0016). p21 expression was higher in insulinomas (p=0.0058), and Rb expression was higher by trend (p=0.085), whereas p16 (p<0.0001), Cyclin C (p<0.0001), and p57 (p=0.018) expression levels were lower. The abundance of Cyclin D3 (p=0.62) and p27 (p=0.68) was not different between the groups. The reduced expression of p16 (p<0.0001) and p57 (p=0.012) in insulinomas and the unchanged expression of Cyclin D3 (p=0.77) and p27 (p=0.55) were confirmed using qRT-PCR. The expression of certain cell-cycle factors in beta-cells derived from insulinomas and healthy adults differs markedly. Targeting such differentially regulated cell-cycle proteins may evolve as a future strategy to enhance beta-cell regeneration. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. [Cinnamaldehyde decreases interleukin-1beta induced PGE2 production by down-regulation of mPGES-1 and COX-2 expression in mouse macrophage RAW264.7 cells].

    PubMed

    Zhang, Changbin; Li, Canghai; Sui, Feng; Lu, Yin; Li, Lanfang; Guo, Shuying; Yang, Na; Geng, Daitao; Jiang, Tingliang

    2012-05-01

    Cinnamaldehyde was shown to have significant anti-inflammatory and anti-pyretic actions in studies from both others' and our lab. Prostaglandin E2 (PGE2) plays a key role in generation of these pathological states, while PGE, synthase-1 (mPGES-1) is one of crucial biological elements in the process of PGE2 production. And as a downstream inducible terminal prostaglandin synthase of COX-2, mPGES-1 is now regarded as a more promising novel drug target than COX-2 and is attracting more and more attention from both academia and pharmaceutical industry. The purpose of present study was to further investigate the anti-inflammatory and antipyretic molecular mechanisms of cinnamaldehyde based on the mouse macrophage cell line RAW264. 7 in vitro. The PGE2 was identified by using the method of enzyme-linked immunosorbent assay (ELISA) and the expression of COX-2 and mPGES-1 at mRNA and protein levels was detected by the Real-time PCR and Western blotting methods respectively. The experimental results suggested that cinnamaldehyde could evidently reverse the increased production of PGE2induced by IL-1beta. Moreover, the up-regulated expression levels of mPGES-1 and COX-2 were significatly decreased. Together, these results provide compelling evidence that the down-regulated actions to both the production of PGE2 as well as the expression of mPGES-I might account for, at least in part, the anti-inflammatory and anti-pyretic effects of cinnamaldehyde.

  14. Interleukin-1beta-induced reduction of tissue water diffusion in the juvenile rat brain on ADC MRI is not associated with (31)P MRS-detectable energy failure.

    PubMed

    Saggu, Raman

    2016-01-01

    It has long been known that an intrastriatal microinjection of the archetypal pro-inflammatory cytokine, interleukin-1beta (IL-1β), in juvenile rats induces a chronic reduction in the apparent diffusion coefficient (ADC) of tissue water on magnetic resonance imaging (MRI). Reduced ADC during acute cerebral ischaemia is an established indicator of metabolic failure whereas the cause of the IL-1β-induced reduction remains to be deciphered. Previously, it has been shown that IL-1β does not perturb the phosphorus ((31)P) magnetic resonance spectroscopy (MRS)-detectable energy status of an ex vivo preparation of rat brain parenchyma that is devoid of a functional vasculature component. However, brain energy status following an IL-1β challenge in vivo remains to be examined. This study is the first longitudinal in vivo examination of the correlation of ADC MRI with localised (31)P MRS signals obtained specifically from within the injected and non-injected striatum following IL-1β (1 ng/ul or 100 ng/ul) challenge, in real-time. Despite observing a chronic reduction in ADC at either dose of IL-1β challenge, energy compromise was not detected at any time point. The IL-1β-induced effects pertaining to a functional vasculature such as leukocyte recruitment, blood-brain barrier (BBB) breakdown and blood flow changes are unlikely to impact on overall tissue energy status. Compared to classic ischaemia, there is dissociation between ADC and energy status within an IL-1β-induced lesion in vivo.

  15. Interleukin-1 beta induces the expression and production of stem cell factor by epithelial cells: crucial involvement of the PI-3K/mTOR pathway and HIF-1 transcription complex.

    PubMed

    Wyszynski, Rafal W; Gibbs, Bernhard F; Varani, Luca; Iannotta, Daniela; Sumbayev, Vadim V

    2016-01-01

    Potential crosslinks between inflammation and leukaemia have been discussed for some time, but experimental evidence to support this dogma is scarce. In particular, it is important to understand the mechanisms responsible for potential upregulation of proto-oncogenic growth factor expressions by inflammatory mediators. Here, we investigated the ability of the highly inflammatory cytokine interleukin-1 beta (IL-1β) to induce the production of stem cell factor (SCF), which is a major hematopoietic growth factor that controls the progression of acute myeloid leukaemia upon malignant transformation of haematopoietic myeloid cells. We found that human IL-1β induced the expression/secretion of SCF in MCF-7 human epithelial breast cancer cells and that this process depended on the hypoxia-inducible factor 1 (HIF-1) transcription complex. We also demonstrated a crucial role of the phosphatidylinositol-3 kinase (PI-3K)/mammalian target of rapamycin (mTOR) pathway in IL-1β-induced HIF-1α accumulation in MCF-7 cells. Importantly, mTOR was also found to play a role in IL-1β-induced SCF production. Furthermore, a tendency for a positive correlation of IL-1β and SCF levels in the plasma of healthy human donors was observed. Altogether, our results demonstrate that IL-1β, which normally bridges innate and adaptive immunity, induces the production of the major haematopoietic/proleukaemic growth factor SCF through the PI-3K/mTOR pathway and the HIF-1 transcription complex. These findings strongly support a cross-talk between inflammation and acute myeloid leukaemia.

  16. Endogenous hydrogen sulfide protects pancreatic beta-cells from a high-fat diet-induced glucotoxicity and prevents the development of type 2 diabetes.

    PubMed

    Okamoto, Mitsuhiro; Yamaoka, Mami; Takei, Masahiro; Ando, Tomomi; Taniguchi, Shigeki; Ishii, Isao; Tohya, Kazuo; Ishizaki, Toshimasa; Niki, Ichiro; Kimura, Toshihide

    2013-12-13

    Chronic exposure to high glucose induces the expression of cystathionine gamma-lyase (CSE), a hydrogen sulfide-producing enzyme, in pancreatic beta-cells, thereby suppressing apoptosis. The aim of this study was to examine the effects of hydrogen sulfide on the onset and development of type 2 diabetes. Middle-aged (6-month-old) wild-type (WT) and CSE knockout (CSE-KO) mice were fed a high-fat diet (HFD) for 8weeks. We determined the effects of CSE knockout on beta-cell function and mass in islets from these mice. We also analyzed changes in gene expression in the islets. After 8weeks of HFD, blood glucose levels were markedly increased in middle-aged CSE-KO mice, insulin responses were significantly reduced, and DNA fragmentation of the islet cells was increased. Moreover, expression of thioredoxin binding protein-2 (TBP-2, also known as Txnip) was increased. Administration of NaHS, a hydrogen sulfide donor, reduced TBP-2 gene levels in isolated islets from CSE-KO mice. Gene levels were elevated when islets were treated with the CSE inhibitor dl-propargylglycine (PPG). These results provide evidence that CSE-produced hydrogen sulfide protects beta-cells from glucotoxicity via regulation of TBP-2 expression levels and thus prevents the onset/development of type 2 diabetes. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. Bmal1 and Beta cell clock are required for adaptation to circadian disruption, and their loss of function leads to oxidative stress-induced Beta cell failure in mice

    USDA-ARS?s Scientific Manuscript database

    Circadian disruption has deleterious effects on metabolism. Global deletion of Bmal1, a core clock gene, results in Beta cell dysfunction and diabetes. However, it is unknown if this is due to loss of cell-autonomous function of Bmal1 in Beta cells. To address this, we generated mice with Beta cell ...

  18. Notch signaling: a mediator of beta-cell de-differentiation in diabetes?

    PubMed

    Darville, Martine I; Eizirik, Décio L

    2006-01-27

    Cytokines are mediators of pancreatic beta-cell dysfunction and death in type 1 diabetes mellitus. Microarray analyses of insulin-producing cells exposed to interleukin-1beta+interferon-gamma showed decreased expression of genes related to beta-cell-differentiated functions and increased expression of members of the Notch signaling pathway. Re-expression of this developmental pathway may contribute for loss-of-function of beta-cells exposed to an autoimmune attack. In this study, we show that rat primary beta-cells exposed to cytokines up-regulate several Notch receptors and ligands, and the target gene Hes1. Transfection of insulin-producing INS-1E cells and primary rat beta-cells with a constitutively active form of the Notch receptor down-regulated Pdx1 and insulin expression in INS-1E cells but not in primary beta-cells. Thus, activation of the Notch pathway inhibits differentiated functions in dividing but not in terminally differentiated beta-cells.

  19. p16(Ink4a)-induced senescence of pancreatic beta cells enhances insulin secretion.

    PubMed

    Helman, Aharon; Klochendler, Agnes; Azazmeh, Narmen; Gabai, Yael; Horwitz, Elad; Anzi, Shira; Swisa, Avital; Condiotti, Reba; Granit, Roy Z; Nevo, Yuval; Fixler, Yaakov; Shreibman, Dorin; Zamir, Amit; Tornovsky-Babeay, Sharona; Dai, Chunhua; Glaser, Benjamin; Powers, Alvin C; Shapiro, A M James; Magnuson, Mark A; Dor, Yuval; Ben-Porath, Ittai

    2016-04-01

    Cellular senescence is thought to contribute to age-associated deterioration of tissue physiology. The senescence effector p16(Ink4a) is expressed in pancreatic beta cells during aging and limits their proliferative potential; however, its effects on beta cell function are poorly characterized. We found that beta cell-specific activation of p16(Ink4a) in transgenic mice enhances glucose-stimulated insulin secretion (GSIS). In mice with diabetes, this leads to improved glucose homeostasis, providing an unexpected functional benefit. Expression of p16(Ink4a) in beta cells induces hallmarks of senescence--including cell enlargement, and greater glucose uptake and mitochondrial activity--which promote increased insulin secretion. GSIS increases during the normal aging of mice and is driven by elevated p16(Ink4a) activity. We found that islets from human adults contain p16(Ink4a)-expressing senescent beta cells and that senescence induced by p16(Ink4a) in a human beta cell line increases insulin secretion in a manner dependent, in part, on the activity of the mechanistic target of rapamycin (mTOR) and the peroxisome proliferator-activated receptor (PPAR)-γ proteins. Our findings reveal a novel role for p16(Ink4a) and cellular senescence in promoting insulin secretion by beta cells and in regulating normal functional tissue maturation with age.

  20. Secondary prevention of type 1 diabetes mellitus: stopping immune destruction and promoting beta-cell regeneration.

    PubMed

    Couri, C E B; Foss, M C; Voltarelli, J C

    2006-10-01

    Type 1 diabetes mellitus results from a cell-mediated autoimmune attack against pancreatic beta-cells. Traditional treatments involve numerous daily insulin dosages/injections and rigorous glucose control. Many efforts toward the identification of beta-cell precursors have been made not only with the aim of understanding the physiology of islet regeneration, but also as an alternative way to produce beta-cells to be used in protocols of islet transplantation. In this review, we summarize the most recent studies related to precursor cells implicated in the regeneration process. These include embryonic stem cells, pancreas-derived multipotent precursors, pancreatic ductal cells, hematopoietic stem cells, mesenchymal stem cells, hepatic oval cells, and mature beta-cells. There is controversial evidence of the potential of these cell sources to regenerate beta-cell mass in diabetic patients. However, clinical trials using embryonic stem cells, umbilical cord blood or adult bone marrow stem cells are under way. The results of various immunosuppressive regimens aiming at blocking autoimmunity against pancreatic beta-cells and promoting beta-cell preservation are also analyzed. Most of these regimens provide transient and partial effect on insulin requirements, but new regimens are beginning to be tested. Our own clinical trial combines a high dose immunosuppression with mobilized peripheral blood hematopoietic stem cell transplantation in early-onset type 1 diabetes mellitus.

  1. Regeneration therapy of pancreatic beta cells: towards a cure for diabetes?

    PubMed

    Yamaoka, Takashi

    2002-09-06

    Regeneration therapy is an approach which could potentially move us towards a cure for type 1 diabetes. It is classified into three categories: (1) In vitro regeneration therapy using transplanted cultured cells, including ES cells, pancreatic stem cells, and beta-cell lines, in conjunction with immunosuppressive therapy or immunoisolation. (2) In ex vivo regeneration therapy, patients' own cells, such as bone marrow stem cells, are transiently removed and induced to differentiate into beta cells in vitro. At present, however, insulin-producing cells cannot be generated from bone marrow stem cells. (3) In in vivo regeneration therapy, impaired tissues regenerate from patients' own cells in vivo. beta-Cell neogenesis from non-beta-cells and beta-cell proliferation in vivo have been considered, particularly as regeneration therapies for type 2 diabetes. Regeneration therapy of pancreatic beta cells can be combined with various other therapeutic strategies, including islet transplantation, cell-based therapy, gene therapy, and drug therapy to promote beta-cell proliferation and neogenesis, and it is hoped that these strategies will, in the future, provide a cure for diabetes.

  2. glucagon is essential for alpha cell transdifferentiation and beta cell neogenesis

    PubMed Central

    Ye, Lihua; Robertson, Morgan A.; Hesselson, Daniel; Stainier, Didier Y. R.; Anderson, Ryan M.

    2015-01-01

    The interconversion of cell lineages via transdifferentiation is an adaptive mode of tissue regeneration and an appealing therapeutic target. However, its clinical exploitation is contingent upon the discovery of contextual regulators of cell fate acquisition and maintenance. In murine models of diabetes, glucagon-secreting alpha cells transdifferentiate into insulin-secreting beta cells following targeted beta cell depletion, regenerating the form and function of the pancreatic islet. However, the molecular triggers of this mode of regeneration are unknown. Here, using lineage-tracing assays in a transgenic zebrafish model of beta cell ablation, we demonstrate conserved plasticity of alpha cells during islet regeneration. In addition, we show that glucagon expression is upregulated after injury. Through gene knockdown and rescue approaches, we also find that peptides derived from the glucagon gene are necessary for alpha-to-beta cell fate switching. Importantly, whereas beta cell neogenesis was stimulated by glucose, alpha-to-beta cell conversion was not, suggesting that transdifferentiation is not mediated by glucagon/GLP-1 control of hepatic glucose production. Overall, this study supports the hypothesis that alpha cells are an endogenous reservoir of potential new beta cells. It further reveals that glucagon plays an important role in maintaining endocrine cell homeostasis through feedback mechanisms that govern cell fate stability. PMID:25852199

  3. TRPM3 channels provide a regulated influx pathway for zinc in pancreatic beta cells.

    PubMed

    Wagner, Thomas F J; Drews, Anna; Loch, Sabine; Mohr, Florian; Philipp, Stephan E; Lambert, Sachar; Oberwinkler, Johannes

    2010-09-01

    Zinc is stored in insulin-containing dense core vesicles of pancreatic beta-cells where it forms crystals together with insulin and calcium ions. Zinc ions are therefore released together with insulin upon exocytosis of these vesicles. Consequently, pancreatic beta-cells need to take up large amounts of zinc from the extracellular space across their plasma membrane. The pathways for zinc uptake are only partially understood. TRPM3 channels are present in pancreatic beta-cells and can be activated by the endogenous steroid pregnenolone sulfate. We demonstrate here that recombinant TRPM3 channels are highly permeable for many divalent cations, in particular also for zinc ions. Importantly, TRPM3 channels endogenously expressed in pancreatic beta-cells are also highly permeable for zinc ions. Using FluoZin3 to image changes of the intracellular zinc concentration, we show that pancreatic beta-cells take up zinc through TRPM3 channels even when extracellular zinc concentrations are low and physiological levels of calcium and magnesium are present. Activation of TRPM3 channels also leads to depolarization of beta-cells and to additional zinc influx through voltage-gated calcium channels. Our data establish that TRPM3 channels constitute a regulated entry pathway for zinc ions in pancreatic beta-cells.

  4. Adhesion of Pancreatic Beta Cells to Biopolymer Films

    PubMed Central

    Williams, S. Janette; Wang, Qun; MacGregor, Ronal R.; Siahaan, Teruna J.; Stehno-Bittel, Lisa; Berkland, Cory

    2009-01-01

    Dramatic reversal of Type 1 diabetes in patients receiving pancreatic islet transplants continues to prompt vigorous research concerning the basic mechanisms underlying patient turnaround. At the most fundamental level, transplanted islets must maintain viability and function in vitro and in vivo and should be protected from host immune rejection. Our previous reports showed enhancement of islet viability and insulin secretion per tissue mass for small islets (<125 µm) as compared to large islets (>125 µm), thus, demonstrating the effect of enhancing the mass transport of islets (i.e. increasing tissue surface area to volume ratio). Here, we report the facile dispersion of rat islets into individual cells that are layered onto the surface of a biopolymer film towards the ultimate goal of improving mass transport in islet tissue. The tightly packed structure of intact islets was disrupted by incubating in calcium-free media resulting in fragmented islets, which were further dispersed into individual or small groups of cells by using a low concentration of papain. The dispersed cells were screened for adhesion to a range of biopolymers and the nature of cell adhesion was characterized for selected groups by quantifying adherent cells, measuring the surface area coverage of the cells, and immunolabeling cells for adhesion proteins interacting with selected biopolymers. Finally, beta cells in suspension were centrifuged to form controlled numbers of cell layers on films for future work determining the mass transport limitations in the adhered tissue constructs. PMID:19353639

  5. Cocoa phenolic extract protects pancreatic beta cells against oxidative stress.

    PubMed

    Martín, María Angeles; Ramos, Sonia; Cordero-Herrero, Isabel; Bravo, Laura; Goya, Luis

    2013-07-31

    Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE) containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH) on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5-20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult.

  6. Cocoa Phenolic Extract Protects Pancreatic Beta Cells against Oxidative Stress

    PubMed Central

    Martín, María Ángeles; Ramos, Sonia; Cordero-Herrero, Isabel; Bravo, Laura; Goya, Luis

    2013-01-01

    Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids constitute an important part of the human diet; they can be found in most plant foods, including green tea, grapes or cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of a cocoa phenolic extract (CPE) containing mainly flavonoids against oxidative stress induced by tert-butylhydroperoxide (t-BOOH) on Ins-1E pancreatic beta cells. Cell viability and oxidative status were evaluated. Ins-1E cells treatment with 5–20 μg/mL CPE for 20 h evoked no cell damage and did not alter ROS production. Addition of 50 μM t-BOOH for 2 h increased ROS and carbonyl groups content and decreased reduced glutathione level. Pre-treatment of cells with CPE significantly prevented the t-BOOH-induced ROS and carbonyl groups and returned antioxidant defences to adequate levels. Thus, Ins-1E cells treated with CPE showed a remarkable recovery of cell viability damaged by t-BOOH, indicating that integrity of surviving machineries in the CPE-treated cells was notably protected against the oxidative insult. PMID:23912326

  7. Overexpression of calmodulin in pancreatic beta cells induces diabetic nephropathy.

    PubMed

    Yuzawa, Yukio; Niki, Ichiro; Kosugi, Tomoki; Maruyama, Shoichi; Yoshida, Futoshi; Takeda, Motohiro; Tagawa, Yoshiaki; Kaneko, Yukiko; Kimura, Toshihide; Kato, Noritoshi; Yamamoto, Jyunichiro; Sato, Waichi; Nakagawa, Takahiko; Matsuo, Seiichi

    2008-09-01

    Recently, endothelial dysfunction induced by an uncoupling of vascular endothelial growth factor (VEGF) and nitric oxide has been implicated in the pathogenesis of diabetic nephropathy (DN). Investigating the pathogenesis of DN has been limited, however, because of the lack of animal models that mimic the human disease. In this report, pancreatic beta cell-specific calmodulin-overexpressing transgenic (CaMTg) mice, a potential new model of DN, are characterized with particular emphasis on VEGF and related molecules. CaMTg mice developed hyperglycemia at 3 wk and persistent proteinuria by 3 mo. Morphometric analysis showed considerable increases in the glomerular and mesangial areas with deposition of type IV collagen. Moreover, the pathologic hallmarks of human DN (mesangiolysis, Kimmelstiel-Wilson-like nodular lesions, exudative lesions, and hyalinosis of afferent and efferent arteries with neovascularization) were observed. In addition, increased VEGF expression was associated with an increased number of peritubular capillaries. Expression of endothelial nitric oxidase synthase was reduced and that of VEGF was markedly elevated in CaMTg mice kidney compared with nontransgenic mice. No differences in VEGF receptor-1 or VEGF receptor-2 expression were observed between CaMTg mice and nontransgenic kidneys. In summary, CaMTg mice develop most of the distinguishing lesions of human DN, and the elevated VEGF expression in the setting of diminished endothelial nitric oxide synthase expression may lead to endothelial proliferation and dysfunction. This model may prove useful in the study of the pathogenesis and treatment of DN.

  8. Present and future cell therapies for pancreatic beta cell replenishment.

    PubMed

    Domínguez-Bendala, Juan; Ricordi, Camillo

    2012-12-21

    If only at a small scale, islet transplantation has successfully addressed what ought to be the primary endpoint of any cell therapy: the functional replenishment of damaged tissue in patients. After years of less-than-optimal approaches to immunosuppression, recent advances consistently yield long-term graft survival rates comparable to those of whole pancreas transplantation. Limited organ availability is the main hurdle that stands in the way of the widespread clinical utilization of this pioneering intervention. Progress in stem cell research over the past decade, coupled with our decades-long experience with islet transplantation, is shaping the future of cell therapies for the treatment of diabetes. Here we review the most promising avenues of research aimed at generating an inexhaustible supply of insulin-producing cells for islet regeneration, including the differentiation of pluripotent and multipotent stem cells of embryonic and adult origin along the beta cell lineage and the direct reprogramming of non-endocrine tissues into insulin-producing cells.

  9. Reduced Expression of the Liver/Beta-Cell Glucose Transporter Isoform in Glucose-Insensitive Pancreatic Beta Cells of Diabetic Rats

    NASA Astrophysics Data System (ADS)

    Thorens, Bernard; Weir, Gordon C.; Leahy, John L.; Lodish, Harvey F.; Bonner-Weir, Susan

    1990-09-01

    Rats injected with a single dose of streptozocin at 2 days of age develop non-insulin-dependent diabetes 6 weeks later. The pancreatic beta islet cells of these diabetic rats display a loss of glucose-induced insulin secretion while maintaining sensitivity to other secretagogues such as arginine. We analyzed the level of expression of the liver/beta-cell glucose transporter isoform in diabetic islets by immunofluorescence staining of pancreas sections and by Western blotting of islet lysates. Islets from diabetic animals have a reduced expression of this beta-cell-specific glucose transporter isoform and the extent of reduction is correlated with the severity of hyperglycemia. In contrast, expression of this transporter isoform in liver is minimally modified by the diabetes. Thus a decreased expression of the liver/beta-cell glucose transporter isoform in beta cells is associated with the impaired glucose sensing characteristic of diabetic islets; our data suggest that this glucose transporter may be part of the beta-cell glucose sensor.

  10. Short Term Exposure of Beta Cells to Low Concentrations of Interleukin-1β Improves Insulin Secretion through Focal Adhesion and Actin Remodeling and Regulation of Gene Expression*

    PubMed Central

    Arous, Caroline; Ferreira, Pedro G.; Dermitzakis, Emmanouil T.; Halban, Philippe A.

    2015-01-01

    Type 2 diabetes involves defective insulin secretion with islet inflammation governed in part by IL-1β. Prolonged exposure of islets to high concentrations of IL-1β (>24 h, 20 ng/ml) impairs beta cell function and survival. Conversely, exposure to lower concentrations of IL-1β for >24 h improves these same parameters. The impact on insulin secretion of shorter exposure times to IL-1β and the underlying molecular mechanisms are poorly understood and were the focus of this study. Treatment of rat primary beta cells, as well as rat or human whole islets, with 0.1 ng/ml IL-1β for 2 h increased glucose-stimulated (but not basal) insulin secretion, whereas 20 ng/ml was without effect. Similar differential effects of IL-1β depending on concentration were observed after 15 min of KCl stimulation but were prevented by diazoxide. Studies on sorted rat beta cells indicated that the enhancement of stimulated secretion by 0.1 ng/ml IL-1β was mediated by the NF-κB pathway and c-JUN/JNK pathway acting in parallel to elicit focal adhesion remodeling and the phosphorylation of paxillin independently of upstream regulation by focal adhesion kinase. Because the beneficial effect of IL-1β was dependent in part upon transcription, gene expression was analyzed by RNAseq. There were 18 genes regulated uniquely by 0.1 but not 20 ng/ml IL-1β, which are mostly involved in transcription and apoptosis. These results indicate that 2 h of exposure of beta cells to a low but not a high concentration of IL-1β enhances glucose-stimulated insulin secretion through focal adhesion and actin remodeling, as well as modulation of gene expression. PMID:25586177

  11. {beta}-Cell secretory capacity and demand in recipients of islet, pancreas, and kidney transplants.

    PubMed

    Rickels, Michael R; Mueller, Rebecca; Teff, Karen L; Naji, Ali

    2010-03-01

    beta-Cell secretory capacity, a measure of functional beta-cell mass, is often impaired in islet transplant recipients, likely because of a low engrafted beta-cell mass, although calcineurin inhibitor toxicity is often cited as the explanation. We sought to determine whether use of the calcineurin inhibitor tacrolimus was associated with reduced beta-cell secretory capacity or with increased beta-cell secretory demand independent of engrafted islet mass. We compared metabolic measures in five intraportal islet recipients vs. 10 normal controls and in seven portally-drained pancreas-kidney and eight nondiabetic kidney recipients vs. nine kidney donor controls. All transplant groups received comparable exposure to tacrolimus, and each transplant group was matched for kidney function to its respective control group. All participants underwent glucose-potentiated arginine testing where acute insulin responses to arginine (5 g) were determined under fasting (AIR(arg)), 230 mg/dl (AIR(pot)), and 340 mg/dl (AIR(max)) clamp conditions, and AIR(max) gives the beta-cell secretory capacity. Insulin sensitivity (M/I) and proinsulin secretory ratios (PISRs) were assessed to determine whether tacrolimus increased beta-cell secretory demand. Insulin responses were significantly lower than normal in the islet group for AIR(arg) (P < 0.05), AIR(pot) (P < 0.01), and AIR(max) (P < 0.01), whereas responses in the pancreas-kidney and kidney transplant groups were not different than in the kidney donor group. M/I and PISRs were not different in any of the transplant vs. control groups. Impaired beta-cell secretory capacity in islet transplantation is best explained by a low engrafted beta-cell mass and not by a deleterious effect of tacrolimus.

  12. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation

    PubMed Central

    Plank, Jennifer L.; Mundell, Nathan A.; Frist, Audrey Y.; LeGrone, Alison W.; Kim, Thomas; Musser, Melissa A.; Walter, Teagan J.; Labosky, Patricia A.

    2010-01-01

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of Insulin-expressing cells and Insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of Insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of Insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic Insulin granules and the presence of abnormal granules in Insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  13. Autoimmunity and beta cell regeneration in mouse and human type 1 diabetes: the peace is not enough.

    PubMed

    Ablamunits, Vitaly; Sherry, Nicole A; Kushner, Jake A; Herold, Kevan C

    2007-04-01

    Accumulating data from animal models of type 1 diabetes and some findings from clinical studies suggest that autoimmune destruction of islet beta cells is associated with enhanced beta cell regeneration. Successful immune therapies, aimed at preservation of islet cell mass, result in a remarkable reduction of beta cell regeneration. Treated or not, as long as the task of treatment is limited by "making peace" with autoimmunity, the process of beta cell loss continues. Additional therapeutic modalities capable of stimulating beta cell regeneration in the absence of active autoimmune destruction are urgently needed.

  14. Adhesion of pancreatic beta cells to biopolymer films.

    PubMed

    Williams, S Janette; Wang, Qun; Macgregor, Ronal R; Siahaan, Teruna J; Stehno-Bittel, Lisa; Berkland, Cory

    2009-08-01

    Dramatic reversal of Type 1 diabetes in patients receiving pancreatic islet transplants continues to prompt vigorous research concerning the basic mechanisms underlying patient turnaround. At the most fundamental level, transplanted islets must maintain viability and function in vitro and in vivo and should be protected from host immune rejection. Our previous reports showed enhancement of islet viability and insulin secretion per tissue mass for small islets (<125 mum) as compared with large islets (>125 mum), thus, demonstrating the effect of enhancing the mass transport of islets (i.e. increasing tissue surface area to volume ratio). Here, we report the facile dispersion of rat islets into individual cells that are layered onto the surface of a biopolymer film towards the ultimate goal of improving mass transport in islet tissue. The tightly packed structure of intact islets was disrupted by incubating in calcium-free media resulting in fragmented islets, which were further dispersed into individual or small groups of cells by using a low concentration of papain. The dispersed cells were screened for adhesion to a range of biopolymers and the nature of cell adhesion was characterized for selected groups by quantifying adherent cells, measuring the surface area coverage of the cells, and immunolabeling cells for adhesion proteins interacting with selected biopolymers. Finally, beta cells in suspension were centrifuged to form controlled numbers of cell layers on films for future work determining the mass transport limitations in the adhered tissue constructs. (c) 2009 Wiley Periodicals, Inc. Biopolymers 91: 676-685, 2009.This article was originally published online as an accepted preprint. The "Published Online" date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com.

  15. Radioiodinated Naphthylalanine Derivatives Targeting Pancreatic Beta Cells in Normal and Nonobese Diabetic Mice

    PubMed Central

    Amartey, John K.; Shi, Yufei; Al-Jammaz, Ibrahim; Esguerra, Celestina; Al-Otaibi, Basem; Al-Mohanna, Futwan

    2008-01-01

    An imaging method capable of using a signal from pancreatic beta cells to determine their mass would be of immense value in monitoring the progression of diabetes as well as response to treatment. Somatostatin receptors (SSTRs) are expressed on beta cells and are a potential target for imaging. The main objective of this study was to investigate whether pancreatic beta cells are a target for radiolabeled naphthylalanine derivatives. The molecules were subjected to in vitro and ex vivo evaluations. Pancreatic uptake of radioactivity was lower in nonobese diabetic (NOD) mice than normal mice at all time points investigated (P < .05) and correlated with the number of islets in tissue sections of both control and NOD mice. Immunohistochemical and confocal fluorescent microscopic studies showed colocalization of insulin and the conjugate radioligand in the pancreas. The results demonstrated that pancreatic uptake is receptor-mediated, and that beta cells are the primary target. PMID:18483609

  16. Beta cells transfer vesicles containing insulin to phagocytes for presentation to T cells.

    PubMed

    Vomund, Anthony N; Zinselmeyer, Bernd H; Hughes, Jing; Calderon, Boris; Valderrama, Carolina; Ferris, Stephen T; Wan, Xiaoxiao; Kanekura, Kohsuke; Carrero, Javier A; Urano, Fumihiko; Unanue, Emil R

    2015-10-06

    Beta cells from nondiabetic mice transfer secretory vesicles to phagocytic cells. The passage was shown in culture studies where the transfer was probed with CD4 T cells reactive to insulin peptides. Two sets of vesicles were transferred, one containing insulin and another containing catabolites of insulin. The passage required live beta cells in a close cell contact interaction with the phagocytes. It was increased by high glucose concentration and required mobilization of intracellular Ca2+. Live images of beta cell-phagocyte interactions documented the intimacy of the membrane contact and the passage of the granules. The passage was found in beta cells isolated from islets of young nonobese diabetic (NOD) mice and nondiabetic mice as well as from nondiabetic humans. Ultrastructural analysis showed intraislet phagocytes containing vesicles having the distinct morphology of dense-core granules. These findings document a process whereby the contents of secretory granules become available to the immune system.

  17. Novel aspects on signal-transduction in the pancreatic beta-cell.

    PubMed

    Berggren, Per-Olof; Leibiger, Ingo B

    2006-03-01

    The glucose-stimulus/insulin-secretion-coupling by the pancreatic beta-cell, which guarantees the maintenance of glucose homeostasis in man, is regulated by a sophisticated interplay between glucose and a plethora of additional factors. Besides other nutrients, incretins, nerval innervation, systemic growth factors as well as autocrine and paracrine regulatory loops within the islet of Langerhans modulate the function of the insulin-producing beta-cell. Although the modulatory role of these factors is well appreciated, the underlying molecular mechanisms involved remain poorly understood. However, in most cases beta-cell membrane receptors coupled primarily to either G-proteins or tyrosine kinases, which subsequently activate respective second messenger cascades, are involved. In the present mini-review we will discuss the role of signaling through some of these receptor-operated effector systems in the light of pancreatic beta-cell signal-transduction.

  18. mTOR links incretin signaling to HIF induction in pancreatic beta cells.

    PubMed

    Van de Velde, Sam; Hogan, Meghan F; Montminy, Marc

    2011-10-11

    Under feeding conditions, the incretin hormone GLP-1 promotes pancreatic islet viability by triggering the cAMP pathway in beta cells. Increases in PKA activity stimulate the phosphorylation of CREB, which in turn enhances beta cell survival by upregulating IRS2 expression. Although sustained GLP-1 action appears important for its salutary effects on islet function, the transient nature of CREB activation has pointed to the involvement of additional nuclear factors in this process. Following the acute induction of CREB-regulated genes, cAMP triggers a second delayed phase of gene expression that proceeds via the HIF transcription factor. Increases in cAMP promote the accumulation of HIF1α in beta cells by activating the mTOR pathway. As exposure to rapamycin disrupts GLP-1 effects on beta cell viability, these results demonstrate how a pathway associated with tumor growth also mediates salutary effects of an incretin hormone on pancreatic islet function.

  19. Isolation, Characterization and Potential Role in Beta Cell-Endothelium Cross-Talk of Extracellular Vesicles Released from Human Pancreatic Islets

    PubMed Central

    De Lena, Michela; Beltramo, Silvia; Romagnoli, Renato; Salizzoni, Mauro; Melzi, Raffaella; Nano, Rita; Piemonti, Lorenzo; Tetta, Ciro; Biancone, Luigi; Camussi, Giovanni

    2014-01-01

    The cross-talk between beta cells and endothelium plays a key role in islet physiopathology and in the revascularization process after islet transplantation. However, the molecular mechanisms involved in this cross-talk are not fully elucidated. Extracellular vesicles (EVs) are secreted membrane nanoparticles involved in inter-cellular communication through the transfer of proteins and nucleic acids. The aims of this study were: 1) isolation and characterization of EVs from human islets; 2) evaluation of the pro-angiogenic effect of islet-derived EVs on human islet endothelial cells (IECs). EVs were isolated by ultracentrifugation from conditioned medium of human islets and characterized by nanotrack analysis (Nanosight), FACS, western blot, bioanalyzer, mRNA/microRNA RT-PCR array. On IECs, we evaluated EV-induced insulin mRNA transfer, proliferation, resistance to apoptosis, in vitro angiogenesis, migration, gene and protein profiling. EVs sized 236±54 nm, expressed different surface molecules and islet-specific proteins (insulin, C-peptide, GLP1R) and carried several mRNAs (VEGFa, eNOS) and microRNAs (miR-27b, miR-126, miR-130 and miR-296) involved in beta cell function, insulin secretion and angiogenesis. Purified EVs were internalized into IECs inducing insulin mRNA expression, protection from apoptosis and enhancement of angiogenesis. Human islets release biologically active EVs able to shuttle specific mRNAs and microRNAs (miRNAs) into target endothelial cells. These results suggest a putative role for islet-derived EVs in beta cell-endothelium cross-talk and in the neoangiogenesis process which is critical for engraftment of transplanted islets. PMID:25028931

  20. Isolation, characterization and potential role in beta cell-endothelium cross-talk of extracellular vesicles released from human pancreatic islets.

    PubMed

    Figliolini, Federico; Cantaluppi, Vincenzo; De Lena, Michela; Beltramo, Silvia; Romagnoli, Renato; Salizzoni, Mauro; Melzi, Raffaella; Nano, Rita; Piemonti, Lorenzo; Tetta, Ciro; Biancone, Luigi; Camussi, Giovanni

    2014-01-01

    The cross-talk between beta cells and endothelium plays a key role in islet physiopathology and in the revascularization process after islet transplantation. However, the molecular mechanisms involved in this cross-talk are not fully elucidated. Extracellular vesicles (EVs) are secreted membrane nanoparticles involved in inter-cellular communication through the transfer of proteins and nucleic acids. The aims of this study were: 1) isolation and characterization of EVs from human islets; 2) evaluation of the pro-angiogenic effect of islet-derived EVs on human islet endothelial cells (IECs). EVs were isolated by ultracentrifugation from conditioned medium of human islets and characterized by nanotrack analysis (Nanosight), FACS, western blot, bioanalyzer, mRNA/microRNA RT-PCR array. On IECs, we evaluated EV-induced insulin mRNA transfer, proliferation, resistance to apoptosis, in vitro angiogenesis, migration, gene and protein profiling. EVs sized 236±54 nm, expressed different surface molecules and islet-specific proteins (insulin, C-peptide, GLP1R) and carried several mRNAs (VEGFa, eNOS) and microRNAs (miR-27b, miR-126, miR-130 and miR-296) involved in beta cell function, insulin secretion and angiogenesis. Purified EVs were internalized into IECs inducing insulin mRNA expression, protection from apoptosis and enhancement of angiogenesis. Human islets release biologically active EVs able to shuttle specific mRNAs and microRNAs (miRNAs) into target endothelial cells. These results suggest a putative role for islet-derived EVs in beta cell-endothelium cross-talk and in the neoangiogenesis process which is critical for engraftment of transplanted islets.

  1. Virus-induced diabetes mellitus. VI. Genetically determined host differences in the replicating of encephalomyocarditis virus in pancreatic beta cells

    PubMed Central

    1976-01-01

    Beta cells were isolated from strains of mice that were susceptible and resistant to encephalomyocarditis (EMC) viral-induced diabetes mellitus. Beta cells from susceptible mice that were infected in vivo with EMC virus showed higher viral titers, more severe degranulation, and lower concentrations of immunoreactive insulin than beta cells from resistant mice. Immunofluorescence and infectious center assays revealed that pancreas from susceptible mice contained at least 10 times more infected cells than pancreas from resistant mice. Beta cell cultures prepared from susceptible mice and infected in vitro also showed higher viral titers and more severe cytopathologic changes than beta cell cultures from resistant mice. In contrast to beta cell cultures, virus replicated equally well in primary embryo and kidney cell cultures from susceptible and resistant strains of mice. It is concluded that the development of EMC virus-induced diabetes is related to genetically determined host differences in the capacity of the virus to infect beta cells. PMID:177713

  2. Adult-onset deletion of Pten increases islet mass and beta cell proliferation in mice

    PubMed Central

    Yang, Kai-Ting; Bayan, Jennifer-Ann; Zeng, Ni; Aggarwal, Richa; He, Lina; Peng, Zhechu; Kassa, Anketse; Kim, Melissa; Luo, Zhiou; Shi, Zhenrong; Medina, Vivian; Boddupally, Keerthi; Stiles, Bangyan L.

    2013-01-01

    Aims/hypothesis Adult beta cells have a diminished ability to proliferate. Phosphatase and tensin homologue (PTEN) is a lipid phosphatase that antagonises the function of the mitogenic phosphatidylinositol 3-kinase (PI3K) pathway. The objective of this study was to understand the role of PTEN and PI3K signalling in the maintenance of beta cells postnatally. Methods We developed a Ptenlox/lox; Rosa26lacZ; RIP-CreER+ model that permitted us to induce Pten deletion by treatment with tamoxifen in mature animals. We evaluated islet mass and function as well as beta cell proliferation in 3- and 12-month-old mice treated with tamoxifen (Pten deleted) vs mice treated with vehicle (Pten control). Results Deletion of Pten in juvenile (3-month-old) beta cells significantly induced their proliferation and increased islet mass. The expansion of islet mass occurred concomitantly with the enhanced ability of the Pten-deleted mice to maintain euglycaemia in response to streptozotocin treatment. In older mice (>12 months of age), deletion of Pten similarly increased islet mass and beta cell proliferation. This novel finding suggests that PTEN-regulated mechanisms may override the age-onset diminished ability of beta cells to respond to mitogenic stimulation. We also found that proteins regulating G1/S cell-cycle transition, such as cyclin D1, cyclin D2, p27 and p16, were altered when PTEN was lost, suggesting that they may play a role in PTEN/PI3K-regulated beta cell proliferation in adult tissue. Conclusions/interpretation The signals regulated by the PTEN/PI3K pathway are important for postnatal maintenance of beta cells and regulation of their proliferation in adult tissues. PMID:24162585

  3. Bmal1 is required for beta cell compensatory expansion, survival and metabolic adaptation to diet-induced obesity in mice.

    PubMed

    Rakshit, Kuntol; Hsu, Tu Wen; Matveyenko, Aleksey V

    2016-04-01

    Obesity and consequent insulin resistance are known risk factors for type 2 diabetes. A compensatory increase in beta cell function and mass in response to insulin resistance permits maintenance of normal glucose homeostasis, whereas failure to do so results in beta cell failure and type 2 diabetes. Recent evidence suggests that the circadian system is essential for proper metabolic control and regulation of beta cell function. We set out to address the hypothesis that the beta cell circadian clock is essential for the appropriate functional and morphological beta cell response to insulin resistance. We employed conditional deletion of the Bmal1 (also known as Arntl) gene (encoding a key circadian clock transcription factor) in beta cells using the tamoxifen-inducible CreER(T) recombination system. Upon adulthood, Bmal1 deletion in beta cells was achieved and mice were exposed to either chow or high fat diet (HFD). Changes in diurnal glycaemia, glucose tolerance and insulin secretion were longitudinally monitored in vivo and islet morphology and turnover assessed by immunofluorescence. Isolated islet experiments in vitro were performed to delineate changes in beta cell function and transcriptional regulation of cell proliferation. Adult Bmal1 deletion in beta cells resulted in failed metabolic adaptation to HFD characterised by fasting and diurnal hyperglycaemia, glucose intolerance and loss of glucose-stimulated insulin secretion. Importantly, HFD-induced beta cell expansion was absent following beta cell Bmal1 deletion indicating impaired beta cell proliferative and regenerative potential, which was confirmed by assessment of transcriptional profiles in isolated islets. Results of the study suggest that the beta cell circadian clock is a novel regulator of compensatory beta cell expansion and function in response to increased insulin demand associated with diet-induced obesity.

  4. Imaging Beta Cell Regeneration and Interactions with Islet Vasculature in Transparent Adult Zebrafish

    PubMed Central

    Moss, Larry G.; Caplan, Tanner V.

    2013-01-01

    Abstract Blood vessel networks provide nutrients and gaseous exchange that are essential for functions. Pancreatic islet capillaries deliver oxygen to endocrine cells while transporting hormones to organs and peripheral locations throughout the body. We have developed a zebrafish diabetes model in which adult islets can be followed in vivo during beta cell regeneration while calibrating changes in beta cell mass and fasting blood glucose levels. After genetic ablation, beta cells are initially dysfunctional or dying, and blood glucose levels increase fourfold. During a 2-week period, hyperglycemia eventually normalizes as beta cell mass regenerates. We show that mCherry-fluorescent, insulin-positive beta cells re-emerge in close contact with the vascular endothelium. Alterations in the dense vascular network of zebrafish islets were visualized by the expression of green fluorescent protein (GFP) in endothelial cells derived from the Fli transcription factor promoter. The rapid destruction and regeneration of beta cell mass was evaluated in the same animal over time, providing a functional model for investigating the interactions of islet cell types with vascular cells as well as the consequences of hyperglycemia on other tissues. Regenerating adult zebrafish can be utilized as vertebrate, metabolically active models for generating new insights into treatments for type 2 diabetes. PMID:23682836

  5. Glycemic control in diabetes is restored by therapeutic manipulation of cytokines that regulate beta cell stress.

    PubMed

    Hasnain, Sumaira Z; Borg, Danielle J; Harcourt, Brooke E; Tong, Hui; Sheng, Yonghua H; Ng, Choa Ping; Das, Indrajit; Wang, Ran; Chen, Alice C-H; Loudovaris, Thomas; Kay, Thomas W; Thomas, Helen E; Whitehead, Jonathan P; Forbes, Josephine M; Prins, Johannes B; McGuckin, Michael A

    2014-12-01

    In type 2 diabetes, hyperglycemia is present when an increased demand for insulin, typically due to insulin resistance, is not met as a result of progressive pancreatic beta cell dysfunction. This defect in beta cell activity is typically characterized by impaired insulin biosynthesis and secretion, usually accompanied by oxidative and endoplasmic reticulum (ER) stress. We demonstrate that multiple inflammatory cytokines elevated in diabetic pancreatic islets induce beta cell oxidative and ER stress, with interleukin-23 (IL-23), IL-24 and IL-33 being the most potent. Conversely, we show that islet-endogenous and exogenous IL-22, by regulating oxidative stress pathways, suppresses oxidative and ER stress caused by cytokines or glucolipotoxicity in mouse and human beta cells. In obese mice, antibody neutralization of IL-23 or IL-24 partially reduced beta cell ER stress and improved glucose tolerance, whereas IL-22 administration modulated oxidative stress regulatory genes in islets, suppressed ER stress and inflammation, promoted secretion of high-quality efficacious insulin and fully restored glucose homeostasis followed by restitution of insulin sensitivity. Thus, therapeutic manipulation of immune regulators of beta cell stress reverses the hyperglycemia central to diabetes pathology.

  6. Beta-cell hyperplasia in macrosomic infants and fetuses of nondiabetic mothers.

    PubMed

    Pinar, H; Pinar, T; Singer, D B

    2000-01-01

    The objective of this study was to test the hypothesis that macrosomic infants of nondiabetic mothers have beta-cell hyperplasia in their pancreases. Pancreatic tissues were examined from 10 macrosomic fetuses and liveborn infants and from 10 comparison cases matched for gestational age and gender. None of the mothers had a history of diabetes and all had normal glucose screening during pregnancy. Tissues were stained with hematoxylin and eosin and a monoclonal antibody against beta cells and were analyzed using an image analysis program to evaluate the size and surface area of beta-cell clusters. Brain/liver weight ratios were calculated and compared. The total surface area and cluster size of beta cells in the pancreases of macrosomic subjects were significantly larger than in the comparison pancreases. The study subjects lacked macroscopic and histopathologic findings expected in infants of diabetic mothers. We conclude that some macrosomic fetuses and infants of nondiabetic mothers manifest beta-cell hyperplasia. This corresponds to the higher insulin levels in macrosomic infants of nondiabetic mothers described in previous clinical studies. In macrosomic fetuses the stimulus for beta-cell hyperplasia may not involve aberrant maternal glucose levels.

  7. Effects of amino acids on membrane potential and 86Rb+ fluxes in pancreatic beta-cells

    SciTech Connect

    Henquin, J.C.; Meissner, H.P.

    1981-03-01

    The membrane potential of beta-cells was studied with microelectrodes in mouse islets and their potassium permeability was evaluated by measuring 86Rb+ fluxes in rat islets. In the absence of glucose, L-leucine, its metabolite ketoisocaproate, and its nonmetabolized analogue 2-aminonorbornane-2-carboxylic acid (BCH) depolarized beta-cells and triggered bursts of electrical activity like glucose. The effect of leucine was weak, but was potentiated by a low concentration of glucose or by theophylline; the effect of ketoisocaproate was stronger and faster than that of an equimolar concentration of glucose. Arginine alone produced only a fast depolarization of beta-cells, insufficient to trigger electrical activity. Leucine and arginine potentiated the activity induced by glucose. In a glucose-free medium, alanine only slightly depolarized beta cells, whereas isoleucine and phenylalanie had no effect. Leucine, ketoisocaproate, and BCH reversibly decreased 86Rb+ efflux from islets perifused in the absence of glucose and increased 86Rb+ uptake. By contrast, both in the absence or presence of glucose, arginine increased 86Rb+ efflux and decreased 86Rb+ uptake. It is proposed that leucine, ketoisocaproate, and BCH, as glucose, deplolarize beta-cells by decreasing their potassium permeability, whereas arginine acts differently. The appearance of bursts of electrical activity with secretagogues unrelated to glucose suggests that they reflect an intrinsic property of the beta-cell membrane.

  8. Role of metabolic programming in the pathogenesis of beta-cell failure in postnatal life.

    PubMed

    Simmons, Rebecca A

    2007-06-01

    Intrauterine growth retardation (IUGR) has been linked to later development of type 2 diabetes in adulthood. Human studies indicate that individuals who were growth retarded at birth have impaired insulin secretion and insulin resistance. Multiple animal models of IUGR demonstrate impaired beta-cell function and development. We have developed a model of IUGR in the rat that leads to diabetes in adulthood with the salient features of most forms of type 2 diabetes in the human: progressive defects in insulin secretion and insulin action prior to the onset of overt hyperglycemia. Decreased beta-cell proliferation leads to a progressive decline in beta-cell mass. Using this model, we have tested the hypothesis that uteroplacental insufficiency disrupts the function of the electron transport chain in the fetal beta-cell and leads to a debilitating cascade of events: increased production of reactive oxygen species, which in turn damage mitochondrial (mt) mtDNA and causes further production of reactive oxygen species (ROS). The net result is progressive loss of beta-cell function and eventual development of type 2 diabetes in the adult. Studies in the IUGR rat also demonstrate that an abnormal intrauterine environment induces epigenetic modifications of key genes regulating beta-cell development; experiments directly link chromatin remodeling with suppression of transcription. Future research will be directed at elucidating the mechanisms underlying epigenetic modifications in offspring.

  9. Does Disruption of Circadian Rhythms Contribute to Beta-Cell Failure in Type 2 Diabetes?

    PubMed Central

    Rakshit, Kuntol; Thomas, Anthony P.

    2014-01-01

    Type 2 diabetes mellitus (T2DM) is a complex metabolic disease characterized by the loss of beta-cell secretory function and mass. The pathophysiology of beta-cell failure in T2DM involves a complex interaction between genetic susceptibilities and environmental risk factors. One environmental condition that is gaining greater appreciation as a risk factor for T2DM is the disruption of circadian rhythms (eg, shift-work and sleep loss). In recent years, circadian disruption has become increasingly prevalent in modern societies and consistently shown to augment T2DM susceptibility (partly mediated through its effects on pancreatic beta-cells). Since beta-cell failure is essential for development of T2DM, we will review current work from epidemiologic, clinical, and animal studies designed to gain insights into the molecular and physiological mechanisms underlying the predisposition to beta-cell failure associated with circadian disruption. Elucidating the role of circadian clocks in regulating beta-cell health will add to our understanding of T2DM pathophysiology and may contribute to the development of novel therapeutic and preventative approaches. PMID:24532160

  10. Quercetin Stimulates Insulin Secretion and Reduces the Viability of Rat INS-1 Beta-Cells.

    PubMed

    Kittl, Michael; Beyreis, Marlena; Tumurkhuu, Munkhtuya; Fürst, Johannes; Helm, Katharina; Pitschmann, Anna; Gaisberger, Martin; Glasl, Sabine; Ritter, Markus; Jakab, Martin

    2016-01-01

    Previously we described insulinotropic effects of Leonurus sibiricus L. plant extracts used for diabetes mellitus treatment in Traditional Mongolian Medicine. The flavonoid quercetin and its glycoside rutin, which exert anti-diabetic properties in vivo by interfering with insulin signaling in peripheral target tissues, are constituents of these extracts. This study was performed to better understand short- and long-term effects of quercetin and rutin on beta-cells. Cell viability, apoptosis, phospho-protein abundance and insulin release were determined using resazurin, annexin-V binding assays, Western blot and ELISA, respectively. Membrane potentials (Vmem), whole-cell Ca2+ (ICa)- and ATP-sensitive K+ (IKATP) currents were measured by patch clamp. Intracellular Ca2+ (Cai) levels were measured by time-lapse imaging using the ratiometric Ca2+ indicator Fura-2. Rutin, quercetin and the phosphoinositide-3-kinase (PI3K) inhibitor LY294002 caused a dose-dependent reduction in cell viability with IC50 values of ∼75 µM, ∼25 µM and ∼3.5 µM, respectively. Quercetin (50 µM) significantly increased the percentage of Annexin-V+ cells within 48 hrs. The mean cell volume (MCV) of quercetin-treated cells was significantly lower. Within 2 hrs, quercetin significantly decreased basal- and insulin-stimulated Akt(T308) phosphorylation and increased Erk1/2 phosphorylation, without affecting P-Akt(S473) abundance. Basal- and glucose-stimulated insulin release were significantly stimulated by quercetin. Quercetin significantly depolarized Vmem by ∼25 mV which was prevented by the KATP-channel opener diazoxide, but not by the L-type ICa inhibitor nifedipine. Quercetin significantly stimulated ICa and caused a 50% inhibition of IKATP. The effects on Vmem, ICa and IKATP rapidly reached peak values and then gradually diminished to control values within ∼1 minute. With a similar time-response quercetin induced an elevation in Cai which was completely abolished in the absence of

  11. Mixed Lineage Kinase-3 Stabilizes and Functionally Cooperates with TRIBBLES-3 to Compromise Mitochondrial Integrity in Cytokine-induced Death of Pancreatic Beta Cells*

    PubMed Central

    Humphrey, Rohan K.; Newcomb, Christina J.; Yu, Shu-Mei A.; Hao, Ergeng; Yu, Doris; Krajewski, Stan; Du, Keyong; Jhala, Ulupi S.

    2010-01-01

    Mixed lineage kinases (MLKs) have been implicated in cytokine signaling as well as in cell death pathways. Our studies show that MLK3 is activated in leukocyte-infiltrated islets of non-obese diabetic mice and that MLK3 activation compromises mitochondrial integrity and induces apoptosis of beta cells. Using an ex vivo model of islet-splenocyte co-culture, we show that MLK3 mediates its effects via the pseudokinase TRB3, a mammalian homolog of Drosophila Tribbles. TRB3 expression strongly coincided with conformational change and mitochondrial translocation of BAX. Mechanistically, MLK3 directly interacted with and stabilized TRB3, resulting in inhibition of Akt, a strong suppressor of BAX translocation and mitochondrial membrane permeabilization. Accordingly, attenuation of MLK3 or TRB3 expression each prevented cytokine-induced BAX conformational change and attenuated the progression to apoptosis. We conclude that MLKs compromise mitochondrial integrity and suppress cellular survival mechanisms via TRB3-dependent inhibition of Akt. PMID:20421299

  12. Co-culture of clonal beta cells with GLP-1 and glucagon-secreting cell line impacts on beta cell insulin secretion, proliferation and susceptibility to cytotoxins.

    PubMed

    Green, Alastair D; Vasu, Srividya; Moffett, R Charlotte; Flatt, Peter R

    2016-06-01

    We investigated the direct effects on insulin releasing MIN6 cells of chronic exposure to GLP-1, glucagon or a combination of both peptides secreted from GLUTag L-cell and αTC1.9 alpha-cell lines in co-culture. MIN6, GLUTag and αTC1.9 cell lines exhibited high cellular hormone content and release of insulin, GLP-1 and glucagon, respectively. Co-culture of MIN6 cells with GLUTag cells significantly increased cellular insulin content, beta-cell proliferation, insulin secretory responses to a range of established secretogogues and afforded protection against exposure cytotoxic concentrations of glucose, lipid, streptozotocin or cytokines. Benefits of co-culture of MIN6 cells with αTC1.9 alphacells were limited to enhanced beta-cell proliferation with marginal positive actions on both insulin secretion and cellular protection. In contrast, co-culture of MIN6 with GLUTag cells plus αTC1.9 cells, markedly enhanced both insulin secretory responses and protection against beta-cell toxins compared with co-culture with GLUTag cells alone. These data indicate important long-term effects of conjoint GLP-1 and glucagon exposure on beta-cell function. This illustrates the possible functional significance of alpha-cell GLP-1 production as well as direct beneficial effects of dual agonism at beta-cell GLP-1 and glucagon receptors. Copyright © 2016 Elsevier B.V. and Société française de biochimie et biologie Moléculaire (SFBBM). All rights reserved.

  13. The effect of smoking cessation pharmacotherapies on pancreatic beta cell function

    SciTech Connect

    Woynillowicz, Amanda K.; Raha, Sandeep; Nicholson, Catherine J.; Holloway, Alison C.

    2012-11-15

    The goal of our study was to evaluate whether drugs currently used for smoking cessation (i.e., nicotine replacement therapy, varenicline [a partial agonist at nicotinic acetylcholine receptors (nAChR)] and bupropion [which acts in part as a nAChR antagonist]) can affect beta cell function and determine the mechanism(s) of this effect. INS-1E cells, a rat beta cell line, were treated with nicotine, varenicline and bupropion to determine their effects on beta cell function, mitochondrial electron transport chain enzyme activity and cellular/oxidative stress. Treatment of INS-1E cells with equimolar concentrations (1 μM) of three test compounds resulted in an ablation of normal glucose-stimulated insulin secretion by the cells. This disruption of normal beta cell function was associated with mitochondrial dysfunction since all three compounds tested significantly decreased the activity of mitochondrial electron transport chain enzyme activity. These results raise the possibility that the currently available smoking cessation pharmacotherapies may also have adverse effects on beta cell function and thus glycemic control in vivo. Therefore whether or not the use of nicotine replacement therapy, varenicline and bupropion can cause endocrine changes which are consistent with impaired pancreatic function warrants further investigation. -- Highlights: ► Smoking cessation drugs have the potential to disrupt beta cell function in vitro. ► The effects of nicotine, varenicline and bupropion are similar. ► The impaired beta cell function is mediated by mitochondrial dysfunction. ► If similar effects are seen in vivo, these drugs may increase the risk of diabetes.

  14. The Role of Oxidative Stress and Hypoxia in Pancreatic Beta-Cell Dysfunction in Diabetes Mellitus.

    PubMed

    Gerber, Philipp A; Rutter, Guy A

    2017-04-01

    Metabolic syndrome is a frequent precursor of type 2 diabetes mellitus (T2D), a disease that currently affects ∼8% of the adult population worldwide. Pancreatic beta-cell dysfunction and loss are central to the disease process, although understanding of the underlying molecular mechanisms is still fragmentary. Recent Advances: Oversupply of nutrients, including glucose and fatty acids, and the subsequent overstimulation of beta cells, are believed to be an important contributor to insulin secretory failure in T2D. Hypoxia has also recently been implicated in beta-cell damage. Accumulating evidence points to a role for oxidative stress in both processes. Although the production of reactive oxygen species (ROS) results from enhanced mitochondrial respiration during stimulation with glucose and other fuels, the expression of antioxidant defense genes is unusually low (or disallowed) in beta cells. Not all subjects with metabolic syndrome and hyperglycemia go on to develop full-blown diabetes, implying an important role in disease risk for gene-environment interactions. Possession of common risk alleles at the SLC30A8 locus, encoding the beta-cell granule zinc transporter ZnT8, may affect cytosolic Zn(2+) concentrations and thus susceptibility to hypoxia and oxidative stress. Loss of normal beta-cell function, rather than total mass, is increasingly considered to be the major driver for impaired insulin secretion in diabetes. Better understanding of the role of oxidative changes, its modulation by genes involved in disease risk, and effects on beta-cell identity may facilitate the development of new therapeutic strategies to this disease. Antioxid. Redox Signal. 26, 501-518.

  15. Activation of Erk1/2 phosphorylation but not of Akt/Pkb through an inducible CSF1R/IRR-receptor construct in INS-1E beta-cells.

    PubMed

    Vogel, Rico; Garten, Antje; Klammt, Jürgen; Barnikol-Oettler, Anja; Kiess, Wieland

    2010-07-01

    The insulin receptor-related receptor (IRR) is an orphan receptor belonging to the insulin receptor (IR) family. Despite its unknown function, the specific tissue expression and the high sequence homology with the IR and the insulin-like growth factor 1 receptor (IGF1R) suggest a biological role in beta-cells. In this study we investigated the influence of a stimulatable IRR-tyrosine kinase on major IR/IGF1R signaling pathways and on proliferation and apoptosis of INS-1E beta-cells. INS-1E cells were stably transfected with a colony stimulating factor 1 receptor (CSF1R)/IRR construct activated by a macrophage colony stimulating factor. After stimulation the construct showed time and dose dependent autophosphorylation and transient extracellular signal regulated kinase 1/2 activation. Protein kinase b was not phosphorylated and also an effect on proliferation and apoptosis of INS-1E could not be demonstrated. Thus, no obvious biologic function of the IRR is present in INS-1E beta-cells.

  16. Influence and timing of arrival of murine neural crest on pancreatic beta cell development and maturation.

    PubMed

    Plank, Jennifer L; Mundell, Nathan A; Frist, Audrey Y; LeGrone, Alison W; Kim, Thomas; Musser, Melissa A; Walter, Teagan J; Labosky, Patricia A

    2011-01-15

    Interactions between cells from the ectoderm and mesoderm influence development of the endodermally-derived pancreas. While much is known about how mesoderm regulates pancreatic development, relatively little is understood about how and when the ectodermally-derived neural crest regulates pancreatic development and specifically, beta cell maturation. A previous study demonstrated that signals from the neural crest regulate beta cell proliferation and ultimately, beta cell mass. Here, we expand on that work to describe timing of neural crest arrival at the developing pancreatic bud and extend our knowledge of the non-cell autonomous role for neural crest derivatives in the process of beta cell maturation. We demonstrated that murine neural crest entered the pancreatic mesenchyme between the 26 and 27 somite stages (approximately 10.0 dpc) and became intermingled with pancreatic progenitors as the epithelium branched into the surrounding mesenchyme. Using a neural crest-specific deletion of the Forkhead transcription factor Foxd3, we ablated neural crest cells that migrate to the pancreatic primordium. Consistent with previous data, in the absence of Foxd3, and therefore the absence of neural crest cells, proliferation of insulin-expressing cells and insulin-positive area are increased. Analysis of endocrine cell gene expression in the absence of neural crest demonstrated that, although the number of insulin-expressing cells was increased, beta cell maturation was significantly impaired. Decreased MafA and Pdx1 expression illustrated the defect in beta cell maturation; we discovered that without neural crest, there was a reduction in the percentage of insulin-positive cells that co-expressed Glut2 and Pdx1 compared to controls. In addition, transmission electron microscopy analyses revealed decreased numbers of characteristic insulin granules and the presence of abnormal granules in insulin-expressing cells from mutant embryos. Together, these data demonstrate that

  17. Heterogeneity in the Beta-Cell Population: a Guided Search Into Its Significance in Pancreas and in Implants.

    PubMed

    Pipeleers, Daniel; De Mesmaeker, Ines; Robert, Thomas; Van Hulle, Freya

    2017-08-15

    Intercellular differences in function have since long been noticed in the pancreatic beta-cell population. Heterogeneity in cellular glucose responsiveness is considered of physiological and pathological relevance. The present review updates evidence for the physiologic significance of beta-cell heterogeneity in the pancreas. It also briefly discusses what this role would imply for beta-cell implants in diabetes. Over the past 3 years, functionally different beta cells have been related to mechanisms that may underlie their heterogeneity in the pancreas, such as the stage in their life cycle and the degree of their clustering to islets with varying vascularization. Markers were identified for detecting these subpopulations in tissues. The existence of a functional heterogeneity in the pancreatic beta-cell population is further supported. Views on its origin and methods for its analysis in pancreas and implants will help guide the search into its significance in beta-cell biology, pathology, and therapy.

  18. Curative and beta cell regenerative effects of alpha1-antitrypsin treatment in autoimmune diabetic NOD mice.

    PubMed

    Koulmanda, Maria; Bhasin, Manoj; Hoffman, Lauren; Fan, Zhigang; Qipo, Andi; Shi, Hang; Bonner-Weir, Susan; Putheti, Prabhakar; Degauque, Nicolas; Libermann, Towia A; Auchincloss, Hugh; Flier, Jeffrey S; Strom, Terry B

    2008-10-21

    Invasive insulitis is a destructive T cell-dependent autoimmune process directed against insulin-producing beta cells that is central to the pathogenesis of type 1 diabetes mellitus (T1DM) in humans and the clinically relevant nonobese diabetic (NOD) mouse model. Few therapies have succeeded in restoring long-term, drug-free euglycemia and immune tolerance to beta cells in overtly diabetic NOD mice, and none have demonstrably enabled enlargement of the functional beta cell mass. Recent studies have emphasized the impact of inflammatory cytokines on the commitment of antigen-activated T cells to various effector or regulatory T cell phenotypes and insulin resistance and defective insulin signaling. Hence, we tested the hypothesis that inflammatory mechanisms trigger insulitis, insulin resistance, faulty insulin signaling, and the loss of immune tolerance to islets. We demonstrate that treatment with alpha1-antitrypsin (AAT), an agent that dampens inflammation, does not directly inhibit T cell activation, ablates invasive insulitis, and restores euglycemia, immune tolerance to beta cells, normal insulin signaling, and insulin responsiveness in NOD mice with recent-onset T1DM through favorable changes in the inflammation milieu. Indeed, the functional mass of beta cells expands in AAT-treated diabetic NOD mice.

  19. High fat programming of beta cell compensation, exhaustion, death and dysfunction.

    PubMed

    Cerf, Marlon E

    2015-03-01

    Programming refers to events during critical developmental windows that shape progeny health outcomes. Fetal programming refers to the effects of intrauterine (in utero) events. Lactational programming refers to the effects of events during suckling (weaning). Developmental programming refers to the effects of events during both fetal and lactational life. Postnatal programming refers to the effects of events either from birth (lactational life) to adolescence or from weaning (end of lactation) to adolescence. Islets are most plastic during the early life course; hence programming during fetal and lactational life is most potent. High fat (HF) programming is the maintenance on a HF diet (HFD) during critical developmental life stages that alters progeny metabolism and physiology. HF programming induces variable diabetogenic phenotypes dependent on the timing and duration of the dietary insult. Maternal obesity reinforces HF programming effects in progeny. HF programming, through acute hyperglycemia, initiates beta cell compensation. However, HF programming eventually leads to chronic hyperglycemia that triggers beta cell exhaustion, death and dysfunction. In HF programming, beta cell dysfunction often co-presents with insulin resistance. Balanced, healthy nutrition during developmental windows is critical for preserving beta cell structure and function. Thus early positive nutritional interventions that coincide with the development of beta cells may reduce the overwhelming burden of diabetes and metabolic disease. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Pathway to diabetes through attenuation of pancreatic beta cell glycosylation and glucose transport.

    PubMed

    Ohtsubo, Kazuaki; Chen, Mark Z; Olefsky, Jerrold M; Marth, Jamey D

    2011-08-14

    A connection between diet, obesity and diabetes exists in multiple species and is the basis of an escalating human health problem. The factors responsible provoke both insulin resistance and pancreatic beta cell dysfunction but remain to be fully identified. We report a combination of molecular events in human and mouse pancreatic beta cells, induced by elevated levels of free fatty acids or by administration of a high-fat diet with associated obesity, that comprise a pathogenic pathway to diabetes. Elevated concentrations of free fatty acids caused nuclear exclusion and reduced expression of the transcription factors FOXA2 and HNF1A in beta cells. This resulted in a deficit of GnT-4a glycosyltransferase expression in beta cells that produced signs of metabolic disease, including hyperglycemia, impaired glucose tolerance, hyperinsulinemia, hepatic steatosis and diminished insulin action in muscle and adipose tissues. Protection from disease was conferred by enforced beta cell-specific GnT-4a protein glycosylation and involved the maintenance of glucose transporter expression and the preservation of glucose transport. We observed that this pathogenic process was active in human islet cells obtained from donors with type 2 diabetes; thus, illuminating a pathway to disease implicated in the diet- and obesity-associated component of type 2 diabetes mellitus.

  1. Osteopontin Affects Insulin Vesicle Localization and Ca2+ Homeostasis in Pancreatic Beta Cells from Female Mice

    PubMed Central

    Mollet, Inês G.; Knutsson, Anki; Bolmgren, Victor S.; Hultgårdh-Nilsson, Anna; Gomez, Maria F.; Eliasson, Lena

    2017-01-01

    Type 2 diabetic patients suffer from insulin resistance and reduced insulin secretion. Osteopontin (OPN), a versatile protein expressed in several tissues throughout the body including the islets of Langerhans, has previously been implicated in the development of insulin resistance. Here we have investigated the role of OPN in insulin secretion using an OPN knock out mouse model (OPN-/-). Ultra-structural analyzes of islets from OPN-/- and WT mice indicated weaker cell-cell connections between the islet cells in the OPN-/- mouse compared to WT. Analysis of the insulin granule distribution in the beta cells showed that although OPN-/- and WT beta cells have the same number of insulin granules OPN-/- beta cells have significantly fewer docked granules. Both OPN-/- and WT islets displayed synchronized Ca2+ oscillations indicative of an intact beta cell communication. OPN-/- islets displayed higher intracellular Ca2+ concentrations when stimulated with 16.7 mM glucose than WT islets and the initial dip upon elevated glucose concentrations (which is associated with Ca2+ uptake into ER) was significantly lower in these islets. Glucose-induced insulin secretion was similar in OPN-/- and WT islets. Likewise, non-fasted blood glucose levels were the same in both groups. In summary, deletion of OPN results in several minor beta-cell defects that can be compensated for in a healthy system. PMID:28107503

  2. 4-Phenylbutyric Acid Attenuates Pancreatic Beta-Cell Injury in Rats with Experimental Severe Acute Pancreatitis

    PubMed Central

    Guo, Wen-yi; Zhao, Liang; Xiang, Ming-wei; Mei, Fang-chao; Abliz, Ablikim; Hu, Peng; Deng, Wen-hong; Yu, Jia

    2016-01-01

    Endoplasmic reticulum (ER) stress is a particular process with an imbalance of homeostasis, which plays an important role in pancreatitis, but little is known about how ER stress is implicated in severe acute pancreatitis (SAP) induced pancreatic beta-cell injury. To investigate the effect of 4-phenylbutyric acid (4-PBA) on the beta-cell injury following SAP and the underlying mechanism, twenty-four Sprague-Dawley rats were randomly divided into sham-operation (SO) group, SAP model group, and 4-PBA treatment group. SAP model was induced by infusion of 5% sodium taurocholate into the biliopancreatic duct. 4-PBA or normal saline was injected intraperitoneally for 3 days in respective group before successful modeling. Results showed that 4-PBA attenuated the following: (1) pancreas and islet pathological injuries, (2) serum TNF-α and IL-1β, (3) serum insulin and glucose, (4) beta-cell ultrastructural changes, (5) ER stress markers (BiP, ORP150, and CHOP), Caspase-3, and insulin expression in islet. These results suggested that 4-PBA mitigates pancreatic beta-cell injury and endocrine disorder in SAP, presumably because of its role in inhibiting excessive endoplasmic reticulum stress. This may serve as a new therapeutic target for reducing pancreatic beta-cell injury and endocrine disorder in SAP upon 4-PBA treatment. PMID:27656209

  3. Major histocompatibility complex gene product expression on pancreatic beta cells in acutely diabetic BB rats.

    PubMed Central

    Issa-Chergui, B.; Yale, J. F.; Vigeant, C.; Seemayer, T. A.

    1988-01-01

    Type I diabetes mellitus was induced in young, diabetes-prone BB rats by the passive transfer of concanavalin A-activated T lymphocytes from the spleens of acutely diabetic BB rats. The pancreas of the recipients was examined 1-2 days after the onset of glycosuria by immunocytochemistry by means of monoclonal antibodies for determining whether 1) Class I and/or II major histocompatibility gene complex (MHC) products were expressed on beta cells and 2) the mononuclear cell infiltrates were represented by T cells. Marked expression of Class I MHC gene products was evident on beta cells. In contrast, Class II MHC gene products were not identified on normal-appearing beta cells. Dendritic cells dispersed throughout the acinar and interstitial pancreas were markedly increased in number. The mononuclear cell infiltrate contained few cells (1-15%) recognized by a pan-T cell marker. Although it is possible that this passive transfer model might differ considerably from the spontaneously occurring diabetic state in the rat, this study suggests that 1) Class I, rather than Class II, MHC gene expression may be pivotal to beta-cell injury in diabetic rats, and 2) non-T cells may constitute an effector cell population central to beta-cell necrosis in Type I diabetes mellitus. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:3276208

  4. ROS signaling, oxidative stress and Nrf2 in pancreatic beta-cell function

    SciTech Connect

    Pi Jingbo; Zhang Qiang; Fu Jingqi; Woods, Courtney G.; Hou Yongyong; Corkey, Barbara E.; Collins, Sheila; Andersen, Melvin E.

    2010-04-01

    This review focuses on the emerging evidence that reactive oxygen species (ROS) derived from glucose metabolism, such as H{sub 2}O{sub 2}, act as metabolic signaling molecules for glucose-stimulated insulin secretion (GSIS) in pancreatic beta-cells. Particular emphasis is placed on the potential inhibitory role of endogenous antioxidants, which rise in response to oxidative stress, in glucose-triggered ROS and GSIS. We propose that cellular adaptive response to oxidative stress challenge, such as nuclear factor E2-related factor 2 (Nrf2)-mediated antioxidant induction, plays paradoxical roles in pancreatic beta-cell function. On the one hand, induction of antioxidant enzymes protects beta-cells from oxidative damage and possible cell death, thus minimizing oxidative damage-related impairment of insulin secretion. On the other hand, the induction of antioxidant enzymes by Nrf2 activation blunts glucose-triggered ROS signaling, thus resulting in reduced GSIS. These two premises are potentially relevant to impairment of beta-cells occurring in the late and early stage of Type 2 diabetes, respectively. In addition, we summarized our recent findings that persistent oxidative stress due to absence of uncoupling protein 2 activates cellular adaptive response which is associated with impaired pancreatic beta-cell function.

  5. Does physiological beta cell turnover initiate autoimmune diabetes in the regional lymph nodes?

    PubMed

    Pearl-Yafe, Michal; Iskovich, Svetlana; Kaminitz, Ayelet; Stein, Jerry; Yaniv, Isaac; Askenasy, Nadir

    2006-05-01

    The initial immune process that triggers autoimmune beta cell destruction in type 1 diabetes is not fully understood. In early infancy there is an increased beta cell turnover. Recurrent exposure of tissue-specific antigens could lead to primary sensitization of immune cells in the draining lymph nodes of the pancreas. An initial immune injury to the beta cells can be inflicted by several cell types, primarily macrophages and T cells. Subsequently, infiltrating macrophages transfer antigens exposed by apoptotic beta cells to the draining lymph nodes, where antigen presenting cells process and amplify a secondary immune reaction. Antigen presenting cells evolve as dual players in the activation and suppression of the autoimmune reaction in the draining lymph nodes. We propose a scenario where destructive insulitis is caused by recurrent exposure of specific antigens due to the physiological turnover of beta cells. This sensitization initiates the evolution of reactive clones that remain silent in the regional lymph nodes, where they succeed to evade regulatory clonal deletion.

  6. mTORC1 pathway mediates beta cell compensatory proliferation in 60 % partial-pancreatectomy mice.

    PubMed

    Li, Wenyi; Zhang, Hongli; Nie, Aifang; Ni, Qicheng; Li, Fengying; Ning, Guang; Li, Xiaoying; Gu, Yanyun; Wang, Qidi

    2016-07-01

    Beta cell replication is the major component for maintenance of beta cell mass in adult rodents; however, little is known about what is the earliest signals that initiate rodent beta cell proliferation. The mTORC1 pathway integrates signals from growth factors and nutrients and regulates cell growth and survival. Here, we used normoglycemic 60 % partial-pancreatectomy (60 % Px) mouse model to determine whether mTORC1 pathway was required for compensatory beta cell proliferation. C57BL/6 J male mice were subjected to 60 % Px or sham operation, and subsequently treated with either rapamycin or vehicle for 7 days. Metabolic profile, pancreatic beta cell mass, and proliferation were examined, and expression levels of cell cycle regulators were determined. Beta cell proliferation was increased by 2.5-fold, and mTORC1 signaling was activated in islets post-Px. Rapamycin treatment impaired glucose tolerance and glucose stimulating insulin secretion in 60 % Px mice, but did not affect their insulin sensitivity in peripheral tissue. Rapamycin inhibited mTORC1 activity in beta cells, suppressed compensatory beta cell proliferation and growth, and reduced beta cell mass and insulin content in 60 % Px mice. Px caused an increase of the cyclin D2 at protein level and promoted cyclin D2 nuclear localization in an mTOR-dependent manner. Disrupting mTORC1 signaling suppressed cell proliferation and simultaneously diminished cyclin D2 protein abundance in RINm5F cells. Our data demonstrated that mTORC1 plays an essential role in beta cell adaption to significant beta cell mass loss in 60 % Px model and in early compensatory beta cell proliferation via cyclin D2 pathway.

  7. Apoptosis, autophagy & endoplasmic reticulum stress in diabetes mellitus

    PubMed Central

    Demirtas, Levent; Guclu, Aydin; Erdur, Fatih Mehmet; Akbas, Emin Murat; Ozcicek, Adalet; Onk, Didem; Turkmen, Kultigin

    2016-01-01

    The prevalence of diabetes mellitus (DM) is increasing secondary to increased consumption of food and decreased physical activity worldwide. Hyperglycaemia, insulin resistance and hypertrophy of pancreatic beta cells occur in the early phase of diabetes. However, with the progression of diabetes, dysfunction and loss of beta cells occur in both types 1 and 2 DM. Programmed cell death also named apoptosis is found to be associated with diabetes, and apoptosis of beta cells might be the main mechanism of relative insulin deficiency in DM. Autophagic cell death and apoptosis are not entirely distinct programmed cell death mechanisms and share many of the regulator proteins. These processes can occur in both physiologic and pathologic conditions including DM. Besides these two important pathways, endoplasmic reticulum (ER) also acts as a cell sensor to monitor and maintain cellular homeostasis. ER stress has been found to be associated with autophagy and apoptosis. This review was aimed to describe the interactions between apoptosis, autophagy and ER stress pathways in DM. PMID:28256459

  8. Apoptosis, autophagy & endoplasmic reticulum stress in diabetes mellitus.

    PubMed

    Demirtas, Levent; Guclu, Aydin; Erdur, Fatih Mehmet; Akbas, Emin Murat; Ozcicek, Adalet; Onk, Didem; Turkmen, Kultigin

    2016-10-01

    The prevalence of diabetes mellitus (DM) is increasing secondary to increased consumption of food and decreased physical activity worldwide. Hyperglycaemia, insulin resistance and hypertrophy of pancreatic beta cells occur in the early phase of diabetes. However, with the progression of diabetes, dysfunction and loss of beta cells occur in both types 1 and 2 DM. Programmed cell death also named apoptosis is found to be associated with diabetes, and apoptosis of beta cells might be the main mechanism of relative insulin deficiency in DM. Autophagic cell death and apoptosis are not entirely distinct programmed cell death mechanisms and share many of the regulator proteins. These processes can occur in both physiologic and pathologic conditions including DM. Besides these two important pathways, endoplasmic reticulum (ER) also acts as a cell sensor to monitor and maintain cellular homeostasis. ER stress has been found to be associated with autophagy and apoptosis. This review was aimed to describe the interactions between apoptosis, autophagy and ER stress pathways in DM.

  9. 'Giving and taking': endothelial and beta-cells in the islets of Langerhans.

    PubMed

    Eberhard, Daniel; Kragl, Martin; Lammert, Eckhard

    2010-08-01

    The beta-cells of the islets of Langerhans are embedded in a dense capillary network. The blood vessels supply the islet cells with nutrients and oxygen, and in turn take up the secreted islet hormones to deliver them to target tissues. In addition, vessels provide a basement membrane, which optimizes islet function. In this review we focus on the dynamic interactions between blood vessels and beta-cells, which are pivotal for enhancing insulin expression and beta-cell proliferation in response to increased insulin demand during body growth, pregnancy, and virtually all conditions associated with insulin resistance. Importantly, a failure in this adaptive response might contribute to the onset of type 2 diabetes mellitus.

  10. Glucose enhances collectrin protein expression in insulin-producing MIN6 {beta} cells

    SciTech Connect

    Saisho, Kenji; Fukuhara, Atsunori; Yasuda, Tomoko; Sato, Yoshifumi; Fukui, Kenji; Iwahashi, Hiromi; Imagawa, Akihisa; Hatta, Mitsutoki; Shimomura, Iichiro; Yamagata, Kazuya

    2009-11-06

    Collectrin is a novel target gene of hepatocyte nuclear factor-1{alpha} in pancreatic {beta}-cells and controls insulin exocytosis. Although glucose is known to stimulate the expression of genes of the insulin secretory pathway, there is no information on how glucose regulates collectrin expression. We investigated the effects of glucose on the expression of collectrin in MIN6 {beta}-cell line. Glucose, in a dose-dependent manner, increased collectrin protein levels without changing collectrin mRNA levels and protein stability, indicating that glucose stimulation of collectrin protein expression is primarily mediated at a translational level. Although mannose and pyruvate also increased collectrin protein expression level, neither 2-deoxyglucose, mitochondrial fuels leucine and glutamate, sulphonylurea nor Ca{sup 2+} channel blockers, mimicked the effects of glucose. These data indicate the involvement of mitochondrial TCA cycle intermediates, distal to pyruvate, in the regulation of collectrin protein expression in {beta}-cells.

  11. Pairing-up SOX to kick-start beta cell genesis.

    PubMed

    Grapin-Botton, Anne; Seymour, Philip Allan; Gradwohl, Gérard

    2015-05-01

    The transcription factor SOX9 is regarded as a crucial player in pancreas development, both maintaining progenitors and later being required for beta cell differentiation. However, very little is known about the possible involvement of other SOX family members in such processes. In this issue, the work of Xu et al (DOI: 10.1007/s00125-015-3507-x ) shines a spotlight on SOX4, revealing this factor to be a major player in the beta cell program. Using conditional inactivation in mice, they show that SOX4 shares some functions in progenitors with SOX9, but also plays a distinct role at a later stage of development, during the maturation of endocrine cells. This information is timely as this final maturation process is currently the most challenging to reproduce in vitro when coaxing pluripotent stem cells to convert into beta cells.

  12. Glucagon-like peptide-1 counteracts the detrimental effects of Advanced Glycation End-Products in the pancreatic beta cell line HIT-T 15

    SciTech Connect

    Puddu, A.; Storace, D.; Durante, A.; Odetti, P.; Viviani, G.L.

    2010-07-30

    Research highlights: {yields} GLP-1 prevents AGEs-induced cell death. {yields} GLP-1 prevents AGEs-induced oxidative stress. {yields} GLP-1 ameliorated AGEs-induced cell dysfunction. {yields} GLP-1 attenuates AGEs-induced RAGE increment. {yields} GLP-1 counteracts AGEs-induced pancreatic cell death and dysfunction. -- Abstract: Advanced Glycation End-Products (AGEs), a group of compounds resulting from the non-enzymatic reaction of reducing sugars with the free amino group of proteins, are implicated in diabetic complications. We previously demonstrated that exposure of the pancreatic islet cell line HIT-T 15 to high concentrations of AGEs significantly decreases cell proliferation and insulin secretion, and affects transcription factors regulating insulin gene transcription. The glucagon-like peptide-1 (GLP-1) is an incretin hormone that increases proinsulin biosynthesis, stimulates insulin secretion, and improves pancreatic beta-cell viability. The aim of this work was to investigate the effects of GLP-1 on the function and viability of HIT-T 15 cells cultured with AGEs. HIT-T 15 cells were cultured for 5 days in presence of AGEs alone, or supplemented with 10 nmol/l GLP-1. Cell viability, insulin secretion, redox balance, and expression of the AGEs receptor (RAGE) were then determined. The results showed that GLP-1 protected beta cell against AGEs-induced cell death preventing both apoptosis and necrosis. Moreover, addition of GLP-1 to the AGEs culture medium restored the redox balance, improved the responsiveness to glucose, and attenuated AGEs-induced RAGE expression. These findings provide evidence that GLP-1 protects beta cells from the dangerous effects of AGEs.

  13. Destruction of rat pancreatic islet beta-cells by cytokines involves the production of cytotoxic aldehydes.

    PubMed

    Suarez-Pinzon, W L; Strynadka, K; Rabinovitch, A

    1996-12-01

    Cytokines produced by mononuclear leukocytes infiltrating pancreatic islets are candidate mediators of islet beta-cell destruction in autoimmune insulin-dependent diabetes mellitus. Cytokines may damage islet beta-cells by inducing oxygen free radical production in the beta-cells. Lipid peroxidation and aldehyde production are measures of oxygen free radical-mediated cell injury. In the current study, we used a HPLC technique to measure levels of different aldehydes produced in rat islets incubated with cytokines. The cytokine combination of interleukin-1beta (10 U/ml), tumor necrosis factor-alpha (10(3) U/ml), and interferon-gamma (10(3) U/ml), and the oxidant, t-butylhydroperoxide, induced significant increases in islet levels of the same aldehydes: butanal, pentanal, 4-hydroxynonenal (4-HNE), and hexanal. Cytokine-induced aldehyde production was associated with islet beta-cell destruction. Thus, cytokine-induced increases in malondialdehyde (MDA; at 4 h) and 4-HNE (at 8 h) preceded islet cell destruction (at 16 h), and the addition of 4-HNE, hexanal, MDA, and pentanal (1-200 microM) to th islets, but not other aldehydes at similar concentrations, produced dose-dependent destruction of islet beta-cells. Furthermore, an antioxidant (lazaroid U78518E) prevented cytokine-induced increases in 4-HNE, hexanal, and MDA and significantly inhibited cytokine-induced decreases in insulin and DNA in the islets. In contrast, N(G)-monomethyl-L-arginine, an inhibitor of nitric oxide synthase, prevented cytokine-induced nitrite production, but did not prevent cytokine-induced increases in 4-HNE, hexanal, and MDA or decreases in insulin and DNA in the islets. These results suggest that cytokines may damage islet beta-cells by inducing oxygen free radicals, lipid peroxidation, and, consequently, the formation of cytotoxic aldehydes in the islet cells.

  14. A human beta cell line with drug inducible excision of immortalizing transgenes

    PubMed Central

    Benazra, Marion; Lecomte, Marie-José; Colace, Claire; Müller, Andreas; Machado, Cécile; Pechberty, Severine; Bricout-Neveu, Emilie; Grenier-Godard, Maud; Solimena, Michele; Scharfmann, Raphaël; Czernichow, Paul; Ravassard, Philippe

    2015-01-01

    Objectives Access to immortalized human pancreatic beta cell lines that are phenotypically close to genuine adult beta cells, represent a major tool to better understand human beta cell physiology and develop new therapeutics for Diabetes. Here we derived a new conditionally immortalized human beta cell line, EndoC-βH3 in which immortalizing transgene can be efficiently removed by simple addition of tamoxifen. Methods We used lentiviral mediated gene transfer to stably integrate a tamoxifen inducible form of CRE (CRE-ERT2) into the recently developed conditionally immortalized EndoC βH2 line. The resulting EndoC-βH3 line was characterized before and after tamoxifen treatment for cell proliferation, insulin content and insulin secretion. Results We showed that EndoC-βH3 expressing CRE-ERT2 can be massively amplified in culture. We established an optimized tamoxifen treatment to efficiently excise the immortalizing transgenes resulting in proliferation arrest. In addition, insulin expression raised by 12 fold and insulin content increased by 23 fold reaching 2 μg of insulin per million cells. Such massive increase was accompanied by enhanced insulin secretion upon glucose stimulation. We further observed that tamoxifen treated cells maintained a stable function for 5 weeks in culture. Conclusions EndoC βH3 cell line represents a powerful tool that allows, using a simple and efficient procedure, the massive production of functional non-proliferative human beta cells. Such cells are close to genuine human beta cells and maintain a stable phenotype for 5 weeks in culture. PMID:26909308

  15. Ryanodine receptors are involved in nuclear calcium oscillation in primary pancreatic {beta}-cells

    SciTech Connect

    Zheng, Ji; Chen, Zheng; Yin, Wenxuan; Miao, Lin; Zhou, Zhansong; Ji, Guangju

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer We found that RyRs are expressed on the nuclear envelope in single primary pancreatic {beta}-cells and isolated nuclei. Black-Right-Pointing-Pointer We showed that the pattern of glucose-induced Ca{sup 2+} oscillation in the nucleus and cytosol was similar. Black-Right-Pointing-Pointer Our results demonstrate that ryanodine-sensitive Ca{sup 2+} stores exist and have function in the pancreatic {beta}-cell nucleus. -- Abstract: Ryanodine receptors (RyRs) are mainly located on the endoplasmic reticulum (ER) and play an important role in regulating glucose-induced cytosolic Ca{sup 2+} oscillation in pancreatic {beta}-cells. However, subcellular locations and functions of RyRs on other cell organelles such as nuclear envelope are not well understood. In order to investigate the role of RyRs in nuclear Ca{sup 2+} oscillation we designed and conducted experiments in intact primary pancreatic {beta}-cells. Immunocytochemistry was used to examine the expression of RYRs on the nuclear envelope. Confocal microscopy was used to evaluate the function of RYRs on the nuclear envelope. We found that RyRs are expressed on the nuclear envelope in single primary pancreatic {beta}-cells and isolated nuclei. Laser scanning confocal microscopy studies indicated that application of glucose to the cells co-incubated with Ca{sup 2+} indicator Fluo-4 AM and cell-permeable nuclear indicator Hoechst 33342 resulted in nuclear Ca{sup 2+} oscillation. The pattern of glucose-induced Ca{sup 2+} oscillation in the nucleus and cytosol was similar. The reduction of Ca{sup 2+} oscillation amplitude by ryanodine was much greater in the nucleus though both the cytosol and the nucleus Ca{sup 2+} amplitude decreased by ryanodine. Our results suggest that functional ryanodine receptors not only exist in endoplasmic reticulum but are also expressed in nuclear envelope of pancreatic {beta}-cells.

  16. Pancreatic Beta Cell Identity in Humans and the Role of Type 2 Diabetes

    PubMed Central

    Marchetti, Piero; Bugliani, Marco; De Tata, Vincenzo; Suleiman, Mara; Marselli, Lorella

    2017-01-01

    Pancreatic beta cells uniquely synthetize, store, and release insulin. Specific molecular, functional as well as ultrastructural traits characterize their insulin secretion properties and survival phentoype. In this review we focus on human islet/beta cells, and describe the changes that occur in type 2 diabetes and could play roles in the disease as well as represent possible targets for therapeutical interventions. These include transcription factors, molecules involved in glucose metabolism and insulin granule handling. Quantitative and qualitative insulin release patterns and their changes in type 2 diabetes are also associated with ultrastructural features involving the insulin granules, the mitochondria, and the endoplasmic reticulum. PMID:28589121

  17. Incretin hormone receptors are required for normal beta cell development and function in female mice.

    PubMed

    Omar, Bilal; Ahlkvist, Linda; Yamada, Yuchiro; Seino, Yutaka; Ahrén, Bo

    2016-05-01

    The incretin hormones, glucose dependent insulinotropic polypeptide (GIP) and glucagon-like peptide 1 (GLP-1), potentiate insulin secretion and are responsible for the majority of insulin secretion that occurs after a meal. They may also, however, have a fundamental role in pancreatic beta cell development and function, independently of their role in potentiating insulin secretion after a meal. This has led to observations that a loss of GIP or GLP-1 action affects normal beta cell function, however each one of the incretin hormones may compensate when the action of the other is lost and therefore the overall impact of the incretin hormones on beta cell function is not known. We therefore utilized a mouse line deficient in both the GLP-1 and GIP receptor genes, the double incretin receptor knockout (DIRKO), to determine the consequences of a lifelong, complete lack of incretin hormone action on beta cell function, in vivo, in intact animals. We found that DIRKO mice displayed impaired glucose tolerance and insulin secretion in response to both oral glucose and mixed meal tolerance tests compared to wild-type mice. Assessment of beta cell function using the hyperglycemic clamp technique revealed an 80% decrease in first phase insulin response in DIRKO mice, but a normal second phase insulin secretion. A similar decline was seen when wild-type mice were given acute intravenous injection of glucose together with the GLP-1 receptor antagonist Ex9-39. Ex vivo assessments of the pancreas revealed significantly fewer islets in the pancreata of DIRKO mice despite no differences in total pancreatic mass. Insulin secretion from isolated islets of DIRKO mice was impaired to a similar extent to that seen during the hyperglycemic clamp. Insulin secretion in wild-type islets was impaired by acute treatment with Ex9-39 to a similar extent as the in vivo intravenous glucose tolerance tests. In conclusion, a loss of the action of both incretin hormones results in direct impairment

  18. Effect of phensuccinal on pancreatic beta-cells in rats with neonatally induced streptozotocin diabetes mellitus.

    PubMed

    Gorbenko, N I; Poltorak, V V; Gladkikh, A I; Ivanova, O V

    2001-07-01

    The effect of phensuccinal, a low-toxic succinic acid derivative, on the function of pancreatic beta-cells in the evolution of absolute insulin insufficiency was studied in rats with neonatally induced streptozotocin diabetes mellitus. Phensuccinal (25 mg/kg body weight) prevented disorders in the secretory response of beta-cells to glucose load at all stages of the study (2, 5, and 14 days after diabetes induction). This effect was realized via stimulation of the regenerative processes in the insulin-producing system of the pancreas and activation of the antioxidant system in diabetic animals.

  19. Calcineurin signaling regulates human islet {beta}-cell survival.

    PubMed

    Soleimanpour, Scott A; Crutchlow, Michael F; Ferrari, Alana M; Raum, Jeffrey C; Groff, David N; Rankin, Matthew M; Liu, Chengyang; De León, Diva D; Naji, Ali; Kushner, Jake A; Stoffers, Doris A

    2010-12-17

    The calcium-regulated phosphatase calcineurin intersects with both calcium and cAMP-mediated signaling pathways in the pancreatic β-cell. Pharmacologic calcineurin inhibition, necessary to prevent rejection in the setting of organ transplantation, is associated with post-transplant β-cell failure. We sought to determine the effect of calcineurin inhibition on β-cell replication and survival in rodents and in isolated human islets. Further, we assessed whether the GLP-1 receptor agonist and cAMP stimulus, exendin-4 (Ex-4), could rescue β-cell replication and survival following calcineurin inhibition. Following treatment with the calcineurin inhibitor tacrolimus, human β-cell apoptosis was significantly increased. Although we detected no human β-cell replication, tacrolimus significantly decreased rodent β-cell replication. Ex-4 nearly normalized both human β-cell survival and rodent β-cell replication when co-administered with tacrolimus. We found that tacrolimus decreased Akt phosphorylation, suggesting that calcineurin could regulate replication and survival via the PI3K/Akt pathway. We identify insulin receptor substrate-2 (Irs2), a known cAMP-responsive element-binding protein target and upstream regulator of the PI3K/Akt pathway, as a novel calcineurin target in β-cells. Irs2 mRNA and protein are decreased by calcineurin inhibition in both rodent and human islets. The effect of calcineurin on Irs2 expression is mediated at least in part through the nuclear factor of activated T-cells (NFAT), as NFAT occupied the Irs2 promoter in a calcineurin-sensitive manner. Ex-4 restored Irs2 expression in tacrolimus-treated rodent and human islets nearly to baseline. These findings reveal calcineurin as a regulator of human β-cell survival in part through regulation of Irs2, with implications for the pathogenesis and treatment of diabetes following organ transplantation.

  20. Intermittent Fasting Preserves Beta-Cell Mass in Obesity-induced Diabetes via the Autophagy-Lysosome Pathway.

    PubMed

    Liu, Haiyan; Javaheri, Ali; Godar, Rebecca J; Murphy, John; Ma, Xiucui; Rohatgi, Nidhi; Mahadevan, Jana; Hyrc, Krzysztof; Saftig, Paul; Marshall, Connie; McDaniel, Michael L; Remedi, Maria S; Razani, Babak; Urano, Fumihiko; Diwan, Abhinav

    2017-08-30

    Obesity-induced diabetes is characterized by hyperglycemia, insulin resistance, and progressive beta cell failure. In islets of mice with obesity-induced diabetes, we observe increased beta cell death and impaired autophagic flux. We hypothesized that intermittent fasting, a clinically sustainable therapeutic strategy, stimulates autophagic flux to ameliorate obesity-induced diabetes. Our data show that despite continued high-fat intake, intermittent fasting restores autophagic flux in islets and improves glucose tolerance by enhancing glucose-stimulated insulin secretion, beta cell survival, and nuclear expression of NEUROG3, a marker of pancreatic regeneration. In contrast, intermittent fasting does not rescue beta-cell death or induce NEUROG3 expression in obese mice with lysosomal dysfunction secondary to deficiency of the lysosomal membrane protein, LAMP2 or haplo-insufficiency of BECN1/Beclin-1, a protein critical for autophagosome formation. Moreover, intermittent fasting is sufficient to provoke beta cell death in non-obese lamp2 null mice, attesting to a critical role for lysosome function in beta cell homeostasis under fasting conditions. Beta cells in intermittently-fasted LAMP2- or BECN1-deficient mice exhibit markers of autophagic failure with accumulation of damaged mitochondria and upregulation of oxidative stress. Thus, intermittent fasting preserves organelle quality via the autophagy-lysosome pathway to enhance beta cell survival and stimulates markers of regeneration in obesity-induced diabetes.

  1. Retinoic acid promotes the generation of pancreatic endocrine progenitor cells and their further differentiation into beta-cells.

    PubMed

    Oström, Maria; Loffler, Kelly A; Edfalk, Sara; Selander, Lars; Dahl, Ulf; Ricordi, Camillo; Jeon, Jongmin; Correa-Medina, Mayrin; Diez, Juan; Edlund, Helena

    2008-07-30

    The identification of secreted factors that can selectively stimulate the generation of insulin producing beta-cells from stem and/or progenitor cells represent a significant step in the development of stem cell-based beta-cell replacement therapy. By elucidating the molecular mechanisms that regulate the generation of beta-cells during normal pancreatic development such putative factors may be identified. In the mouse, beta-cells increase markedly in numbers from embryonic day (e) 14.5 and onwards, but the extra-cellular signal(s) that promotes the selective generation of beta-cells at these stages remains to be identified. Here we show that the retinoic acid (RA) synthesizing enzyme Raldh1 is expressed in developing mouse and human pancreas at stages when beta-cells are generated. We also provide evidence that RA induces the generation of Ngn3(+) endocrine progenitor cells and stimulates their further differentiation into beta-cells by activating a program of cell differentiation that recapitulates the normal temporal program of beta-cell differentiation.

  2. Coating nanofiber scaffolds with beta cell membrane to promote cell proliferation and function

    NASA Astrophysics Data System (ADS)

    Chen, Wansong; Zhang, Qiangzhe; Luk, Brian T.; Fang, Ronnie H.; Liu, Younian; Gao, Weiwei; Zhang, Liangfang

    2016-05-01

    The cell membrane cloaking technique has emerged as an intriguing strategy in nanomaterial functionalization. Coating synthetic nanostructures with natural cell membranes bestows the nanostructures with unique cell surface antigens and functions. Previous studies have focused primarily on development of cell membrane-coated spherical nanoparticles and the uses thereof. Herein, we attempt to extend the cell membrane cloaking technique to nanofibers, a class of functional nanomaterials that are drastically different from nanoparticles in terms of dimensional and mechanophysical characteristics. Using pancreatic beta cells as a model cell line, we demonstrate successful preparation of cell membrane-coated nanofibers and validate that the modified nanofibers possess an antigenic exterior closely resembling that of the source beta cells. When such nanofiber scaffolds are used to culture beta cells, both cell proliferation rate and function are significantly enhanced. Specifically, glucose-dependent insulin secretion from the cells is increased by near five-fold compared with the same beta cells cultured in regular, unmodified nanofiber scaffolds. Overall, coating cell membranes onto nanofibers could add another dimension of flexibility and controllability in harnessing cell membrane functions and offer new opportunities for innovative applications.

  3. Role for the TRPV1 channel in insulin secretion from pancreatic beta cells.

    PubMed

    Diaz-Garcia, Carlos Manlio; Morales-Lázaro, Sara L; Sánchez-Soto, Carmen; Velasco, Myrian; Rosenbaum, Tamara; Hiriart, Marcia

    2014-06-01

    Transient receptor potential channels have been put forward as regulators of insulin secretion. A role for the TRPV1 ion channel in insulin secretion has been suggested in pancreatic beta cell lines. We explored whether TRPV1 is functionally expressed in RINm5F and primary beta cells from neonate and adult rats. We examined if capsaicin could activate cationic non-selective currents. Our results show that TRPV1 channels are not functional in insulin-secreting cells, since capsaicin did not produce current activation, not even under culture conditions known to induce the expression of other ion channels in these cells. Although TRPV1 channels seem to be irrelevant for the physiology of isolated beta cells, they may play a role in glucose homeostasis acting through the nerve fibers that regulate islet function. At the physiological level, we observed that Trpv1 (-/-) mice presented lower fasting insulin levels than their wild-type littermates, however, we did not find differences between these experimental groups nor in the glucose tolerance test or in the insulin secretion. However, we did find that the Trpv1 (-/-) mice exhibited a higher insulin sensitivity compared to their wild-type counterparts. Our results demonstrate that TRPV1 does not contribute to glucose-induced insulin secretion in beta cells as was previously thought, but it is possible that it may control insulin sensitivity.

  4. Beta-cell metabolic alterations under chronic nutrient overload in rat and human islets

    USDA-ARS?s Scientific Manuscript database

    The aim of this study was to assess multifactorial Beta-cell responses to metabolic perturbations in primary rat and human islets. Treatment of dispersed rat islet cells with elevated glucose and free fatty acids (FFAs, oleate:palmitate = 1:1 v/v) resulted in increases in the size and the number of ...

  5. Nitric oxide stimulates insulin gene transcription in pancreatic {beta}-cells

    SciTech Connect

    Campbell, S.C. . E-mail: s.c.campbell@ncl.ac.uk; Richardson, H.; Ferris, W.F.; Butler, C.S.; Macfarlane, W.M.

    2007-02-23

    Recent studies have identified a positive role for nitric oxide (NO) in the regulation of pancreatic {beta}-cell function. The aim of this study was to determine the effects of short-term exposure to NO on {beta}-cell gene expression and the activity of the transcription factor PDX-1. NO stimulated the activity of the insulin gene promoter in Min6 {beta}-cells and endogenous insulin mRNA levels in both Min6 and isolated islets of Langerhans. Addition of wortmannin prior to NO stimulation blocked the observed increases in insulin gene promoter activity. Although NO addition stimulated the phosphorylation of p38, inhibition by SB203580 did not block the effect of NO on the insulin gene promoter. NO addition also stimulated both the nuclear accumulation and the DNA binding activity of PDX-1. This study has shown that over 24 h, NO stimulates insulin gene expression, PI-3-kinase activity and the activity of the critical {beta}-cell transcription factor PDX-1.

  6. Dual role of proapoptotic BAD in insulin secretion and beta cell survival.

    PubMed

    Danial, Nika N; Walensky, Loren D; Zhang, Chen-Yu; Choi, Cheol Soo; Fisher, Jill K; Molina, Anthony J A; Datta, Sandeep Robert; Pitter, Kenneth L; Bird, Gregory H; Wikstrom, Jakob D; Deeney, Jude T; Robertson, Kirsten; Morash, Joel; Kulkarni, Ameya; Neschen, Susanne; Kim, Sheene; Greenberg, Michael E; Corkey, Barbara E; Shirihai, Orian S; Shulman, Gerald I; Lowell, Bradford B; Korsmeyer, Stanley J

    2008-02-01

    The proapoptotic BCL-2 family member BAD resides in a glucokinase-containing complex that regulates glucose-driven mitochondrial respiration. Here, we present genetic evidence of a physiologic role for BAD in glucose-stimulated insulin secretion by beta cells. This novel function of BAD is specifically dependent upon the phosphorylation of its BH3 sequence, previously defined as an essential death domain. We highlight the pharmacologic relevance of phosphorylated BAD BH3 by using cell-permeable, hydrocarbon-stapled BAD BH3 helices that target glucokinase, restore glucose-driven mitochondrial respiration and correct the insulin secretory response in Bad-deficient islets. Our studies uncover an alternative target and function for the BAD BH3 domain and emphasize the therapeutic potential of phosphorylated BAD BH3 mimetics in selectively restoring beta cell function. Furthermore, we show that BAD regulates the physiologic adaptation of beta cell mass during high-fat feeding. Our findings provide genetic proof of the bifunctional activities of BAD in both beta cell survival and insulin secretion.

  7. Metabolomic profiling of amino acids and beta-cell function relative to insulin sensitivity in youth

    USDA-ARS?s Scientific Manuscript database

    In longitudinal studies of adults, elevated amino acid (AA) concentrations predicted future type 2 diabetes mellitus (T2DM). The aim of the present investigation was to examine whether increased plasma AA concentrations are associated with impaired beta-cell function relative to insulin sensitivity ...

  8. The Importance of REST for Development and Function of Beta Cells

    PubMed Central

    Martin, David; Grapin-Botton, Anne

    2017-01-01

    Beta cells are defined by the genes they express, many of which are specific to this cell type, and ensure a specific set of functions. Beta cells are also defined by a set of genes they should not express (in order to function properly), and these genes have been called forbidden genes. Among these, the transcriptional repressor RE-1 Silencing Transcription factor (REST) is expressed in most cells of the body, excluding most populations of neurons, as well as pancreatic beta and alpha cells. In the cell types where it is expressed, REST represses the expression of hundreds of genes that are crucial for both neuronal and pancreatic endocrine function, through the recruitment of multiple transcriptional and epigenetic co-regulators. REST targets include genes encoding transcription factors, proteins involved in exocytosis, synaptic transmission or ion channeling, and non-coding RNAs. REST is expressed in the progenitors of both neurons and beta cells during development, but it is down-regulated as the cells differentiate. Although REST mutations and deregulation have yet to be connected to diabetes in humans, REST activation during both development and in adult beta cells leads to diabetes in mice. PMID:28286748

  9. [New aspects of pancreatic beta cell functions and their possible therapeutic applications].

    PubMed

    Tiedge, M

    2006-12-01

    Using the metabolic stimulus-secretion coupling of pancreatic beta cells as an example, this review illustrates how new strategies in the treatment of type 2 diabetes mellitus can be developed from the results of basic research. Metabolic stimulus-secretion coupling presupposes the metabolizing of those stimuli of insulin secretion that have the properties of nutritional substances. Changes in the ATP/ADP ratio within the beta cells will then trigger the release of insulin granules from them. Glucokinase, a glucose phosphorylating enzyme, functions as a metabolic glucose sensor, which couples changes in physiological glucose concentration in the pancreatic beta cells and in the liver to the intermediary metabolism, i.e. glycolysis, the citrate cycle and respiratory-chain phosphorylation. In this way insulin secretion and hepatic metabolism are positively influenced. Several pharmaceutical companies (Roche, Merck, Astra-Zeneca, Lilly) have recently developed first examples of glucokinase-activating compounds and demonstrated in animal models their efficacy in the treatment of type 2 diabetes mellitus. These glucokinase activators prevent glucokinase from changing into a catalytically inactive structure. They also increase glucose affinity of the enzyme and stabilize a catalytically active form of glucokinase proteins. In this way glucokinase activators increase glucose-induced insulin secretion and inhibit hepatic glucogenesis. Glucokinase activators are an interesting innovation in the future treatment of type 2 diabetes, because their action on beta cells and the liver is caused by changes in blood glucose concentration.

  10. Nuclear SREBP-1a causes loss of pancreatic {beta}-cells and impaired insulin secretion

    SciTech Connect

    Iwasaki, Yuko; Iwasaki, Hitoshi; Yatoh, Shigeru; Ishikawa, Mayumi; Kato, Toyonori; Matsuzaka, Takashi; Nakagawa, Yoshimi; Yahagi, Naoya; Kobayashi, Kazuto; Takahashi, Akimitsu; Suzuki, Hiroaki; Yamada, Nobuhiro; Shimano, Hitoshi

    2009-01-16

    Transgenic mice expressing nuclear sterol regulatory element-binding protein-1a under the control of the insulin promoter were generated to determine the role of SREBP-1a in pancreatic {beta}-cells. Only low expressors could be established, which exhibited mild hyperglycemia, impaired glucose tolerance, and reduced plasma insulin levels compared to C57BL/6 controls. The islets isolated from the transgenic mice were fewer and smaller, and had decreased insulin content and unaltered glucagon staining. Both glucose- and potassium-stimulated insulin secretions were decreased. The transgenic islets consistently expressed genes for fatty acids and cholesterol synthesis, resulting in accumulation of triglycerides but not cholesterol. PDX-1, {beta}{epsilon}{tau}{alpha}2, MafA, and IRS-2 were suppressed, partially explaining the loss and dysfunction of {beta}-cell mass. The transgenic mice on a high fat/high sucrose diet still exhibited impaired insulin secretion and continuous {beta}-cell growth defect. Therefore, nuclear SREBP-1a, even at a low level, strongly disrupts {beta}-cell mass and function.

  11. [The effect of ionizing radiation on the resistance of rat pancreatic beta cells to streptozotocin].

    PubMed

    Gatsko, G G; Brilevskaia, S I

    1993-01-01

    The effect of subliminal streptozotocin doses of rat pancreas cells was studied 1 and 3 months after 1-Gy gamma irradiation. Streptozotocin injected to irradiated animals caused a drastic decrease in beta-cell function which was manifested by hyperglycemia and less intensive secretion and lesser content of insulin in isolated pancreatic islands, as compared to control.

  12. Cellular Origins of Beta Cell Regeneration: a Legacy view of Historical Controversies

    PubMed Central

    Granger, Anne; Kushner, Jake A.

    2013-01-01

    Beta cell regeneration represents a major goal of therapy for diabetes. Unraveling the origin of beta cells during pancreatic regeneration could help restore a functional beta cell mass in diabetes patients. This scientific question has represented a longstanding interest still intensively investigated today. This review focuses on pioneering observations and subsequent theories made hundred years ago and describes how technical innovation helped resolve some, but not all, of the controversies generated by these early investigators. At the end of the nineteenth century, complete pancreatectomy demonstrated the crucial physiological role of the pancreas and its link to diabetes. Pancreatic injury models, including pancreatectomy and ductal ligation, allowed investigators to describe islet function and to assess the regenerative capacity of the pancreas. Three main theories were proposed to explain the origins of newly formed islets: 1) transdifferentiation of acinar cells into islets, 2) islet neogenesis, a process reminiscent of islet formation during embryonic development, and 3) replication of preexisting islet cells. Despite considerable technical innovation in the last fifty years, the origin of new adult beta cells remains highly controversial and the same three theories are still debated today. PMID:19765178

  13. Neonatal Treatment With Beta-Cell Stimulatory Agents Reduces the Incidence of Diabetes in BB Rats

    PubMed Central

    Bock, Troels; Pedersen, Charlotte R.; Hansen, Susanne V.; Aaen, Kim; JØrgensen, Merete; Hansen, Michael WØllike; Kjaer, Troels W.; Hageman, Ida; Josefsen, Knud

    2000-01-01

    The aim of the study was to investigate whether various beta-cell stimulatory drugs, given neonatally, influence the incidence of diabetes in BB rats. Newborn BB rats were treated twice daily for 6 days and diabetes development was observed during the following 200-day study period. Compared to a diabetes incidence of 63.8% in 163 control BB rats which received saline or were untreated, the percentage of experimental BB rats that developed diabetes was as follows in the different subgroups: arginineglucose: 47% (n= 73, p < 0.02); glucagon: 37% (n = 93, p < 0.0001); tolbutamide-glucose: 36% (n = 58, p < 0.0005); and theophylline-glucose: 39% (n = 41, p < 0.005). A long-term arginine-glucose treatment was not superior to the shorter neonatal treatment. Histological examination revealed a higher degree of insulitis in diabetic than in non-diabetic animals but no difference according to the kind of treatment was observed. Finally, we found that the diabetes incidence in BB rats was higher in the first litter compared to subsequent litters (p = 0.04). Thus, neonatal treatment with various beta-cell stimulatory agents reduces diabetes incidence in BB rats. The theory behind the study, that the treatment accelerates beta-cell maturation leading to increased immunological tolerance towards beta cells, is discussed. PMID:11469386

  14. Beta cell function and BMI in ethnically diverse children with newly diagnosed autoimmune type 1 diabetes

    USDA-ARS?s Scientific Manuscript database

    The objective of our study was to examine the relationship between BMI and beta-cell function at diagnosis of autoimmune type 1 diabetes (T1D) in a large group of ethnically diverse children. Cross-sectional analysis of 524 children (60.8% White, 19.5% Hispanic, 14.5% African-American, 5.2% other n...

  15. Measuring beta-cell function relative to insulin sensitivity in youth: Does the hyperglycemic clamp suffice?

    USDA-ARS?s Scientific Manuscript database

    To compare beta-cell function relative to insulin sensitivity, disposition index (DI), calculated from two clamps (2cDI, insulin sensitivity from the hyperinsulinemic-euglycemic clamp and first-phase insulin from the hyperglycemic clamp) with the DI calculated from the hyperglycemic clamp alone (hcD...

  16. A red-shifted photochromic sulfonylurea for the remote control of pancreatic beta cell function.

    PubMed

    Broichhagen, J; Frank, J A; Johnston, N R; Mitchell, R K; Šmid, K; Marchetti, P; Bugliani, M; Rutter, G A; Trauner, D; Hodson, D J

    2015-04-07

    Azobenzene photoresponsive elements can be installed on sulfonylureas, yielding optical control over pancreatic beta cell function and insulin release. An obstacle to such photopharmacological approaches remains the use of ultraviolet-blue illumination. Herein, we synthesize and test a novel yellow light-activated sulfonylurea based on a heterocyclic azobenzene bearing a push-pull system.

  17. Autoantibodies to REG, a beta-cell regeneration factor, in diabetic patients.

    PubMed

    Shervani, N J; Takasawa, S; Uchigata, Y; Akiyama, T; Nakagawa, K; Noguchi, N; Takada, H; Takahashi, I; Yamauchi, A; Ikeda, T; Iwamoto, Y; Nata, K; Okamoto, H

    2004-11-01

    Regenerating gene (Reg) product, Reg, acts as an autocrine/paracrine growth factor for beta-cell regeneration. The presence of autoimmunity against REG may affect the operative of the regenerative mechanisms in beta cells of Type 1 and Type 2 diabetes patients. We screened sera from Type 1 and Type 2 diabetes subjects for anti-REG autoantibodies, searched for correlations in the general characteristics of the subjects with the presence of anti-REG autoimmunity, and tested the attenuation of REG-induced beta-cell proliferation by the autoanitibodies. We examined the occurrence of anti-REG autoantibodies in patients' sera (265 Type 1, 368 Type 2 diabetes patients, and 75 unrelated control subjects) by Western blot analysis, and evaluated inhibitory effects of the sera on REG-stimulated beta-cell proliferation by a 5'-Bromo-2'-deoxyuridine (BrdU) incorporation assay in vitro. Anti-REG autoantibodies were found in 24.9% of Type 1, 14.9% of Type 2 and 2.7% of control subjects (P = 0.0004). There were significant differences between the autoantibody positive and negative groups in the duration of disease in the Type 1 subjects (P = 0.0035), and the age of onset in the Type 2 subjects (P = 0.0274). The patient sera containing anti-REG autoantibodies significantly attenuated the BrdU incorporation by REG (35.6 +/- 4.06% of the control), whereas the nondiabetic sera without anti-REG autoantibodies scarcely reduced the incorporation (88.8 +/- 5.10%). Anti-REG autoantibodies, which retard beta-cell proliferation in vitro, are found in some diabetic patients. Thus, autoimmunity to REG may be associated with the development/acceleration of diabetes in at least some patients.

  18. Tolbutamide potentiates the volume-regulated anion channel current in rat pancreatic beta cells.

    PubMed

    Best, L; Davies, S; Brown, P D

    2004-11-01

    Hypoglycaemic sulphonylureas are thought to stimulate insulin release by binding to a sulphonylurea receptor, closing K(ATP) channels and inducing electrical activity. However, the fact that these drugs stimulate insulin release at high glucose concentrations where K(ATP) channels are closed suggests additional ionic actions. The aim of this study was to test the hypothesis that sulphonylureas influence the current of the glucose- and volume-regulated anion channel. Electrical and ion-channel activity were recorded in isolated rat beta cells using the patch-clamp technique. (86)Rb(+) efflux was measured using intact islets. Beta cell volume was measured using a video-imaging technique. In the absence of glucose, tolbutamide (100 micromol/l) transiently depolarised the cells. In the presence of glucose (5 mmol/l), tolbutamide evoked a sustained period of electrical activity, whilst at 10 mmol/l glucose, the drug evoked a pronounced 'silent' depolarisation. In the absence of glucose, tolbutamide inhibited (86)Rb(+) efflux. However, at 10 mmol/l glucose, tolbutamide induced a transient stimulation of efflux. Tolbutamide potentiated the whole-cell volume-regulated anion conductance in a glucose-dependent manner with an EC(50) of 85 micromol/l. In single channel recordings, tolbutamide increased the channel-open probability. Tolbutamide caused beta cell swelling in the presence of glucose, but not in its absence. Tolbutamide can induce beta cell electrical activity by potentiating the glucose- and volume-regulated anion channel current. This effect is probably not due to a direct effect of the drug on the channel, but could be secondary to a metabolic action in the beta cell.

  19. Immune Interventions to Preserve Beta Cell Function in Type 1 Diabetes

    PubMed Central

    Ehlers, Mario R.

    2015-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that leads to destruction of pancreatic beta cells, lifelong dependence on insulin, and increased morbidity and mortality from diabetes-related complications. Preservation of residual beta cells at diagnosis is a major goal because higher levels of endogenous insulin secretion are associated with better short- and long-term outcomes. Over the past 3 decades, a variety of immune interventions have been evaluated in the setting of new-onset T1D, including nonspecific immunosuppression, pathway-specific immune modulation, antigen-specific therapies, and cellular therapies. To date, no single intervention has produced durable remission off-therapy in the majority of treated patients, but the field has gained valuable insights into disease mechanisms and potential immunologic correlates of success. In particular, T cell-directed therapies, including therapies that lead to partial depletion or modulation of effector T (Teff) cells and preservation or augmentation of regulatory T (Treg) cells, have shown the most success and will likely form the backbone of future approaches. The next phase will see evaluation of rational combinations, comprising one or more of the following: a Teff-depleting or modulating drug, a cytokine-based tolerogenic (Treg-promoting) agent, and an antigen-specific component. The long-term goal is to reestablish immunologic tolerance to beta cells, thereby preserving residual beta cells early after diagnosis or enabling restoration of beta cell mass from autologous stem cells or induced neogenesis in patients with established T1D. PMID:26225763

  20. Impaired pancreatic beta cell function in the fetal GK rat. Impact of diabetic inheritance.

    PubMed Central

    Serradas, P; Gangnerau, M N; Giroix, M H; Saulnier, C; Portha, B

    1998-01-01

    The Goto-Kakisaki (GK) rat is a genetic model of non-insulin-dependent diabetes. At 21.5 d of age we found that GK fetuses had an increased plasma glucose concentration, a decreased plasma insulin level, and a reduced pancreatic beta cell mass. To investigate the beta cell function during fetal life we used a hyperglycemic clamp protocol applied to the mothers, which allowed us to obtain a steady-state hyperglycemia in the corresponding fetuses. At variance, with Wistar (W) fetuses, plasma insulin concentration in GK fetuses did not rise in response to hyperglycemia. In contrast, GK fetal pancreas released insulin in response to glucose in vitro to the same extent as W fetal pancreas. Such a discrepancy between the in vivo and in vitro results suggests that the lack of pancreatic reactivity to glucose as seen in vivo is extrinsic to the fetal GK beta cell. Finally, the importance of gestational hyperglycemia was investigated by performing crosses between GK and W rats. Fetuses issued from crosses between W mother and GK father or GK mother and W father had a beta cell mass close to normal values and were still able to increase their plasma insulin levels in response to hyperglycemia in vivo. Our data suggest that hyperglycemia in utero does not influence the severity of the decrease of the beta cell mass or the lack of the insulin secretory response to glucose in the fetal GK rat. Moreover they indicate that conjunction of GK genes originating from both parents is necessary in order for these defects to be fully expressed. PMID:9466985

  1. Hypoglycemic and beta cell protective effects of andrographolide analogue for diabetes treatment

    PubMed Central

    2009-01-01

    Background While all anti-diabetic agents can decrease blood glucose level directly or indirectly, few are able to protect and preserve both pancreatic beta cell mass and their insulin-secreting functions. Thus, there is an urgent need to find an agent or combination of agents that can lower blood glucose and preserve pancreatic beta cells at the same time. Herein, we report a dual-functional andrographolide-lipoic acid conjugate (AL-1). The anti-diabetic and beta cell protective activities of this novel andrographolide-lipoic acid conjugate were investigated. Methods In alloxan-treated mice (a model of type 1 diabetes), drugs were administered orally once daily for 6 days post-alloxan treatment. Fasting blood glucose and serum insulin were determined. Pathologic and immunohistochemical analysis of pancreatic islets were performed. Translocation of glucose transporter subtype 4 in soleus muscle was detected by western blot. In RIN-m cells in vitro, the effect of AL-1 on H2O2-induced damage and reactive oxidative species production stimulated by high glucose and glibenclamide were measured. Inhibition of nuclear factor kappa B (NF-κB) activation induced by IL-1β and IFN-γ was investigated. Results In alloxan-induced diabetic mouse model, AL-1 lowered blood glucose, increased insulin and prevented loss of beta cells and their dysfunction, stimulated glucose transport protein subtype 4 (GLUT4) membrane translocation in soleus muscles. Pretreatment of RIN-m cells with AL-1 prevented H2O2-induced cellular damage, quenched glucose and glibenclamide-stimulated reactive oxidative species production, and inhibited cytokine-stimulated NF-κB activation. Conclusion We have demonstrated that AL-1 had both hypoglycemic and beta cell protective effects which translated into antioxidant and NF-κB inhibitory activity. AL-1 is a potential new anti-diabetic agent. PMID:19607676

  2. An AP-3-dependent mechanism drives synaptic-like microvesicle biogenesis in pancreatic islet beta-cells.

    PubMed

    Suckow, Arthur T; Craige, Branch; Faundez, Victor; Cain, William J; Chessler, Steven D

    2010-07-01

    Pancreatic islet beta-cells contain synaptic-like microvesicles (SLMVs). The origin, trafficking, and role of these SLMVs are poorly understood. In neurons, synaptic vesicle (SV) biogenesis is mediated by two different cytosolic adaptor protein complexes, a ubiquitous AP-2 complex and the neuron-specific AP-3B complex. Mice lacking AP-3B subunits exhibit impaired GABAergic (inhibitory) neurotransmission and reduced neuronal vesicular GABA transporter (VGAT) content. Since beta-cell maturation and exocytotic function seem to parallel that of the inhibitory synapse, we predicted that AP-3B-associated vesicles would be present in beta-cells. Here, we test the hypothesis that AP-3B is expressed in islets and mediates beta-cell SLMV biogenesis. A secondary aim was to test whether the sedimentation properties of INS-1 beta-cell microvesicles are identical to those of bona fide SLMVs isolated from PC12 cells. Our results show that the two neuron-specific AP-3 subunits beta3B and mu3B are expressed in beta-cells, the first time these proteins have been found to be expressed outside the nervous system. We found that beta-cell SLMVs share the same sedimentation properties as PC12 SLMVs and contain SV proteins that sort specifically to AP-3B-associated vesicles in the brain. Brefeldin A, a drug that interferes with AP-3-mediated SV biogenesis, inhibits the delivery of AP-3 cargoes to beta-cell SLMVs. Consistent with a role for AP-3 in the biogenesis of GABAergic SLMV in beta-cells, INS-1 cell VGAT content decreases upon inhibition of AP-3 delta-subunit expression. Our findings suggest that beta-cells and neurons share molecules and mechanisms important for mediating the neuron-specific membrane trafficking pathways that underlie synaptic vesicle formation.

  3. Glucose Driven Changes in Beta Cell Identity Are Important for Function and Possibly Autoimmune Vulnerability during the Progression of Type 1 Diabetes

    PubMed Central

    Weir, Gordon C.; Bonner-Weir, Susan

    2017-01-01

    This commentary explores the hypothesis that when autoimmunity leads to a fall of beta cell mass during the progression of type 1 diabetes (T1D), rising glucose levels cause major changes in beta cell identity. This then leads to profound changes in secretory function and less well-understood changes in beta cell susceptibility to autoimmune destruction, which may influence of rate of progression of beta cell killing. PMID:28174593

  4. Minireview: beta-cell replacement therapy for diabetes in the 21st century: manipulation of cell fate by directed differentiation.

    PubMed

    Yechoor, Vijay; Chan, Lawrence

    2010-08-01

    Pancreatic beta-cell failure underlies type 1 diabetes; it also contributes in an essential way to type 2 diabetes. beta-Cell replacement is an important component of any cure for diabetes. The current options of islet and pancreas transplantation are not satisfactory as definitive forms of therapy. Here, we review strategies for induced de novo pancreatic beta-cell formation, which depend on the targeted differentiation of cells into pancreatic beta-cells. With this objective in mind, one can manipulate the fate of three different types of cells: 1) from terminally differentiated cells, e.g. exocrine pancreatic cells, into beta-cells; 2) from multipotent adult stem cells, e.g. hepatic oval cells, into pancreatic islets; and 3) from pluripotent stem cells, e.g. embryonic stem cells and induced pluripotent stem cells, into beta-cells. We will examine the pros and cons of each strategy as well as the hurdles that must be overcome before these approaches to generate new beta-cells will be ready for clinical application.

  5. Circulating Levels of MicroRNA from Children with Newly Diagnosed Type 1 Diabetes and Healthy Controls: Evidence That miR-25 Associates to Residual Beta-Cell Function and Glycaemic Control during Disease Progression

    PubMed Central

    Nielsen, Lotte B.; Wang, Cheng; Sørensen, Kaspar; Bang-Berthelsen, Claus H.; Hansen, Lars; Andersen, Marie-Louise M.; Hougaard, Philip; Juul, Anders; Zhang, Chen-Yu; Pociot, Flemming; Mortensen, Henrik B.

    2012-01-01

    This study aims to identify key miRNAs in circulation, which predict ongoing beta-cell destruction and regeneration in children with newly diagnosed Type 1 Diabetes (T1D). We compared expression level of sera miRNAs from new onset T1D children and age-matched healthy controls and related the miRNAs expression levels to beta-cell function and glycaemic control. Global miRNA sequencing analyses were performed on sera pools from two T1D cohorts (n = 275 and 129, resp.) and one control group (n = 151). We identified twelve upregulated human miRNAs in T1D patients (miR-152, miR-30a-5p, miR-181a, miR-24, miR-148a, miR-210, miR-27a, miR-29a, miR-26a, miR-27b, miR-25, miR-200a); several of these miRNAs were linked to apoptosis and beta-cell networks. Furthermore, we identified miR-25 as negatively associated with residual beta-cell function (est.: −0.12, P = 0.0037), and positively associated with glycaemic control (HbA1c) (est.: 0.11, P = 0.0035) 3 months after onset. In conclusion this study demonstrates that miR-25 might be a “tissue-specific” miRNA for glycaemic control 3 months after diagnosis in new onset T1D children and therefore supports the role of circulating miRNAs as predictive biomarkers for tissue physiopathology and potential intervention targets. PMID:22829805

  6. Hypothyroidism in utero stimulates pancreatic beta cell proliferation and hyperinsulinaemia in the ovine fetus during late gestation.

    PubMed

    Harris, Shelley E; De Blasio, Miles J; Davis, Melissa A; Kelly, Amy C; Davenport, Hailey M; Wooding, F B Peter; Blache, Dominique; Meredith, David; Anderson, Miranda; Fowden, Abigail L; Limesand, Sean W; Forhead, Alison J

    2017-01-31

    Development of pancreatic beta cell mass before birth is essential for normal growth of the fetus and for long-term control of carbohydrate metabolism in postnatal life. Thyroid hormones are also important regulators of fetal growth, and the present study tested the hypotheses that thyroid hormones promote beta cell proliferation in the fetal ovine pancreatic islets, and that growth retardation in hypothyroid fetal sheep is associated with reductions in pancreatic beta cell mass and circulating insulin concentration in utero. Organ growth and pancreatic islet cell proliferation and mass were examined in sheep fetuses following removal of the thyroid gland in utero. The effects of T3 , insulin and leptin on beta cell proliferation rates were determined in isolated fetal ovine pancreatic islets in vitro. Hypothyroidism in the sheep fetus resulted in an asymmetric pattern of organ growth, pancreatic beta cell hyperplasia, and elevated plasma insulin and leptin concentrations. In pancreatic islets isolated from intact fetal sheep, beta cell proliferation in vitro was reduced by T3 in a dose-dependent manner and increased by insulin at high concentrations only. Leptin induced a bimodal response whereby beta cell proliferation was suppressed at the lowest, and increased at the highest, concentrations. Therefore, proliferation of beta cells isolated from the ovine fetal pancreas is sensitive to physiological concentrations of T3 , insulin and leptin. Alterations in these hormones may be responsible for the increased beta cell proliferation and mass observed in the hypothyroid sheep fetus and may have consequences for pancreatic function in later life. This article is protected by copyright. All rights reserved.

  7. Comparison of pancreatic beta cells and alpha cells under hyperglycemia: Inverse coupling in pAkt-FoxO1.

    PubMed

    Kim, Mi-Kyung; Shin, Hyun Mi; Jung, HyeSook; Lee, EunJu; Kim, Tae Kyoon; Kim, Tae Nyun; Kwon, Min Jeong; Lee, Soon Hee; Rhee, Byoung Doo; Park, Jeong Hyun

    2017-09-01

    Type 2 diabetes manifests beta cell deficiencies and alpha cell expansion which is consistent with relative insulin deficiency and glucagon oversecretion. The effects of hyperglycemia on alpha cells are not as understood in comparison to beta cells. Hyperglycemia increases oxidative stress, which induces Akt activation or FoxO activation, depending on cell type. Several studies independently reported that FoxO1 translocations in alpha cells and beta cells were opposite. We compared the responses of pancreatic alpha cells and beta cells against hyperglycemia. Alpha TC-1 cells and Beta TC-6 cells were incubated with control (5mM Glucose) or high glucose (33mM Glucose) with or without PI3K inhibitor or FoxO1 inhibitor. We assessed PI3K, pAkt and phosphorylated FoxO1 (pFoxO1) in both cell lines. Immunostaining of BrdU and FoxO1 was detected by green fluorescence microscopy and confocal microscopy. Hyperglycemia and H2O2 decreased PI3K and pAKT in beta cells, but increased them in alpha cells. FoxO1 localizations and pFoxO1 expressions between alpha cells and beta cells were opposite. Proliferation of beta cells was decreased, but alpha cell proliferation was increased under hyperglycemia. Antioxidant enzymes including superoxide dismutase (SOD) and catalase were increased in beta cells and they were reversed with FoxO1 inhibitor treatment. Increased proliferation in alpha cells under hyperglycemia was attenuated with PI3K inhibitor. In conclusion, hyperglycemia increased alpha cell proliferation and glucagon contents which are opposite to beta cells. These differences may be related to contrasting PI3K/pAkt changes in both cells and subsequent FoxO1 modulation. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer.

    PubMed

    Amsterdam, Abraham; Raanan, Calanit; Schreiber, Letizia; Polin, Nava; Givol, David

    2013-04-05

    Pancreas cancer, is the fourth leading cause of cancer death but its cell of origin is controversial. We compared the localization of stem cells in normal and cancerous pancreas using antibodies to the stem cell markers Nanog and LGR5. Here we show, for the first time, that LGR5 is expressed in normal pancreas, exclusively in the islets of Langerhans and it is co-localized, surprisingly, with Nanog and insulin in clusters of beta cells. In cancerous pancreas Nanog and LGR5 are expressed in the remaining islets and in all ductal cancer cells. We observed insulin staining among the ductal cancer cells, but not in metastases. This indicates that the islet's beta cells, expressing LGR5 and Nanog markers are the initiating cells of pancreas cancer, which migrated from the islets to form the ductal cancerous tissue, probably after mutation and de-differentiation. This discovery may facilitate treatment of this devastating cancer.

  9. High-throughput Functional Genomics Identifies Regulators of Primary Human Beta Cell Proliferation.

    PubMed

    Robitaille, Karine; Rourke, Jillian L; McBane, Joanne E; Fu, Accalia; Baird, Stephen; Du, Qiujiang; Kin, Tatsuya; Shapiro, A M James; Screaton, Robert A

    2016-02-26

    The expansion of cells for regenerative therapy will require the genetic dissection of complex regulatory mechanisms governing the proliferation of non-transformed human cells. Here, we report the development of a high-throughput RNAi screening strategy specifically for use in primary cells and demonstrate that silencing the cell cycle-dependent kinase inhibitors CDKN2C/p18 or CDKN1A/p21 facilitates cell cycle entry of quiescent adult human pancreatic beta cells. This work identifies p18 and p21 as novel targets for promoting proliferation of human beta cells and demonstrates the promise of functional genetic screens for dissecting therapeutically relevant state changes in primary human cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  10. Immune responses to an encapsulated allogeneic islet {beta}-cell line in diabetic NOD mice

    SciTech Connect

    Black, Sasha P. . E-mail: Sasha.Black@ca.crl.com; Constantinidis, Ioannis; Cui, Hong; Tucker-Burden, Carol; Weber, Collin J.; Safley, Susan A.

    2006-02-03

    Our goal is to develop effective islet grafts for treating type 1 diabetes. Since human islets are scarce, we evaluated the efficacy of a microencapsulated insulin-secreting conditionally transformed allogeneic {beta}-cell line ({beta}TC-tet) in non-obese diabetic mice treated with tetracycline to inhibit cell growth. Relatively low serum levels of tetracycline controlled proliferation of {beta}TC-tet cells without inhibiting effective control of hyperglycemia in recipients. There was no significant host cellular reaction to the allografts or host cell adherence to microcapsules, and host cytokine levels were similar to those of sham-operated controls. We conclude that encapsulated allogeneic {beta}-cell lines may be clinically relevant, because they effectively restore euglycemia and do not elicit a strong cellular immune response following transplantation. To our knowledge, this is First extensive characterization of the kinetics of host cellular and cytokine responses to an encapsulated islet cell line in an animal model of type 1 diabetes.

  11. In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion.

    PubMed

    Maechler, Pierre; Carobbio, Stefania; Rubi, Blanca

    2006-01-01

    Pancreatic beta-cells are unique neuroendocrine cells displaying the peculiar feature of responding to nutrients, principally glucose, as primary stimulus. This requires translation of a metabolic substrate into intracellular messengers recognized by the exocytotic machinery. Central to this signal transduction mechanism, mitochondria integrate and generate metabolic signals, thereby coupling glucose recognition to insulin secretion. In response to a glucose rise, nucleotides and metabolites are generated by mitochondria and participate, together with cytosolic calcium, to the stimulation of insulin exocytosis. This review describes the mitochondrion-dependent pathways of regulated insulin secretion. In particular, importance of cataplerotic and anaplerotic processes is discussed, with special attention to the mitochondrial enzyme glutamate dehydrogenase. Mitochondrial defects, such as mutations and reactive oxygen species production, are presented in the context of beta-cell failure in the course of type 2 diabetes.

  12. Iron Regulation of Pancreatic Beta-Cell Functions and Oxidative Stress.

    PubMed

    Backe, Marie Balslev; Moen, Ingrid Wahl; Ellervik, Christina; Hansen, Jakob Bondo; Mandrup-Poulsen, Thomas

    2016-07-17

    Dietary advice is the cornerstone in first-line treatment of metabolic diseases. Nutritional interventions directed at these clinical conditions mainly aim to (a) improve insulin resistance by reducing energy-dense macronutrient intake to obtain weight loss and (b) reduce fluctuations in insulin secretion through avoidance of rapidly absorbable carbohydrates. However, even in the majority of motivated patients selected for clinical trials, massive efforts using this approach have failed to achieve lasting efficacy. Less attention has been given to the role of micronutrients in metabolic diseases. Here, we review the evidence that highlights (a) the importance of iron in pancreatic beta-cell function and dysfunction in diabetes and (b) the integrative pathophysiological effects of tissue iron levels in the interactions among the beta cell, gut microbiome, hypothalamus, innate and adaptive immune systems, and insulin-sensitive tissues. We propose that clinical trials are warranted to clarify the impact of dietary or pharmacological iron reduction on the development of metabolic disorders.

  13. VEGF-A: the inductive angiogenic factor for development, regeneration and function of pancreatic beta cells.

    PubMed

    Lui, Kathy O

    2014-01-01

    The heart is the first organ to form during development in vertebrates, and many organs start to develop adjacent to the cardiovascular system. Endothelial cells (ECs) form the inner cell lining of blood vessels and represent the major cell type that interacts with developing organs including the pancreas. ECs receive signals from the developing pancreas to grow and, at the same time, release signals to determine cell-fate specification, morphogenesis and function of the pancreas. In addition to promoting survival of pancreatic islets, in this review, we discuss the role of the vascular niche and angiogenic factors, particularly VEGFA, during pancreatic beta cell development, regeneration and pathophysiological progression of diabetes. Nevertheless, unraveling the molecular signals involved in pancreatic beta cell development and regeneration may shed light into novel drug development to treat diabetes.

  14. Molecular regulation of monocyte chemoattractant protein-1 expression in pancreatic beta-cells.

    PubMed

    Kutlu, Burak; Darville, Martine I; Cardozo, Alessandra K; Eizirik, Décio L

    2003-02-01

    Pancreatic beta-cells are selectively destroyed during the course of type 1 diabetes. In the early stages of the disease, inflammatory infiltrates of mononuclear cells, containing predominantly monocytes and T-cells, are present in the islets (insulitis). Chemokines, such as monocyte chemoattractant protein-1 (MCP-1), play a key role in the recruitment and activation of these immunocytes. We have previously described cytokine-induced MCP-1 gene expression in human and rat pancreatic islets. In the present study, the transcriptional regulation by cytokines of the rat MCP-1 gene in fluorescence-activated cell sorting-purified rat beta-cells, insulin-producing INS-1E cells, and RINm5F cells was investigated. Transient transfections with luciferase-reporter constructs identified an interleukin (IL)-1beta-responsive enhancer region between -2,180 bp and -2,478 bp. Mutation of either of the two nuclear factor (NF)-kappaB sites present in this region abrogated IL-1beta-induced MCP-1 promoter activity. Binding of NF-kappaB to the two sites was shown in vitro by gel shift assays, while supershift assays revealed the presence of p65/p50 heterodimers and p65 homodimers. In vivo binding of NF-kappaB was confirmed by chromatin immunoprecipitation assay. Blocking of NF-kappaB activation in cytokine-exposed primary beta-cells by an adenovirus overexpressing a nondegradable form of IkappaBalpha or by pyrrolidine dithiocarbamate decreased IL-1beta-induced MCP-1 mRNA expression. We conclude that NF-kappaB plays an important role for MCP-1 expression in beta-cells. This transcription factor may be an interesting target for ex vivo gene therapy before islet transplantation.

  15. TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells.

    PubMed

    da Silva Xavier, Gabriela; Loder, Merewyn K; McDonald, Angela; Tarasov, Andrei I; Carzaniga, Raffaella; Kronenberger, Katrin; Barg, Sebastian; Rutter, Guy A

    2009-04-01

    Polymorphisms in the human TCF7L2 gene are associated with reduced insulin secretion and an increased risk of type 2 diabetes. However, the mechanisms by which TCF7L2 affect insulin secretion are still unclear. We define the effects of TCF7L2 expression level on mature beta-cell function and suggest a potential mechanism for its actions. TCF7L2 expression in rodent islets and beta-cell lines was altered using RNAi or adenoviral transduction. Beta-cell gene profiles were measured by quantitative real-time PCR and the effects on intracellular signaling and exocytosis by live cell imaging, electron microscopy, and patch clamp electrophysiology. Reducing TCF7L2 expression levels by RNAi decreased glucose- but not KCl-induced insulin secretion. The glucose-induced increments in both ATP/ADP ratio and cytosolic free Ca2+ concentration ([Ca2+]i) were increased compared with controls. Overexpression of TCF7L2 exerted minor inhibitory effects on glucose-regulated changes in [Ca2+]i and insulin release. Gene expression profiling in TCF7L2-silenced cells revealed increased levels of mRNA encoding syntaxin 1A but decreased Munc18-1 and ZnT8 mRNA. Whereas the number of morphologically docked vesicles was unchanged by TCF7L2 suppression, secretory granule movement increased and capacitance changes decreased, indicative of defective vesicle fusion. TCF7L2 is involved in maintaining expression of beta-cell genes regulating secretory granule fusion. Defective insulin exocytosis may thus underlie increased diabetes incidence in carriers of the at-risk TCF7L2 alleles.

  16. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells

    PubMed Central

    Hasni Ebou, Moina; Singh-Estivalet, Amrit; Launay, Jean-Marie; Callebert, Jacques; Tronche, François; Ferré, Pascal; Gautier, Jean-François; Guillemain, Ghislaine; Bréant, Bernadette

    2016-01-01

    Diabetes is a major complication of chronic Glucocorticoids (GCs) treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1) and 2 (Tph2), leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells. PMID:26901633

  17. Role and regulation of acylethanolamides in energy balance: focus on adipocytes and beta-cells.

    PubMed

    Matias, I; Gonthier, M-P; Petrosino, S; Docimo, L; Capasso, R; Hoareau, L; Monteleone, P; Roche, R; Izzo, A A; Di Marzo, V

    2007-11-01

    The endocannabinoid, arachidonoylethanolamide (AEA), and the peroxisome proliferator-activated receptor (PPAR)-alpha ligand, oleylethanolamide (OEA) produce opposite effects on lipogenesis. The regulation of OEA and its anti-inflammatory congener, palmitoylethanolamide (PEA), in adipocytes and pancreatic beta-cells has not been investigated. We report here the results of studies on acylethanolamide regulation in these cells during obesity and hyperglycaemia, and provide an overview of acylethanolamide role in metabolic control. We analysed by liquid chromatography-mass spectrometry OEA and PEA levels in: 1) mouse 3T3F442A adipocytes during insulin-induced differentiation, 2) rat insulinoma RIN m5F beta-cells kept in 'low' or 'high' glucose, 3) adipose tissue and pancreas of mice with high fat diet-induced obesity (DIO), and 4) in visceral fat or blood of obese or type 2 diabetes (T2D) patients. In adipocytes, OEA levels remain unchanged during differentiation, whereas those of PEA decrease significantly, and are under the negative control of both leptin and PPAR-gamma. PEA is significantly downregulated in subcutaneous adipose tissue of DIO mice. In RIN m5F insulinoma beta-cells, OEA and PEA levels are inhibited by 'very high' glucose, this effect being enhanced by insulin, whereas in cells kept for 24 h in 'high' glucose, they are stimulated by both glucose and insulin. Elevated OEA and PEA levels are found in the blood of T2D patients. Reduced PEA levels in hypertrophic adipocytes might play a role in obesity-related pro-inflammatory states. In beta-cells and human blood, OEA and PEA are down- or up-regulated under conditions of transient or chronic hyperglycaemia, respectively.

  18. Sodium arsenite impairs insulin secretion and transcription in pancreatic {beta}-cells

    SciTech Connect

    Diaz-Villasenor, Andrea; Sanchez-Soto, M. Carmen; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia; Hiriart, Marcia . E-mail: mhiriart@ifc.unam.mx

    2006-07-01

    Human studies have shown that chronic inorganic arsenic (iAs) exposure is associated with a high prevalence and incidence of type 2 diabetes. However, the mechanism(s) underlying this effect are not well understood, and practically, there is no information available on the effects of arsenic on pancreatic {beta}-cells functions. Thus, since insulin secreted by the pancreas plays a crucial role in maintaining glucose homeostasis, our aim was to determine if sodium arsenite impairs insulin secretion and mRNA expression in single adult rat pancreatic {beta}-cells. Cells were treated with 0.5, 1, 2, 5 and 10 {mu}M sodium arsenite and incubated for 72 and 144 h. The highest dose tested (10 {mu}M) decreased {beta}-cell viability, by 33% and 83%, respectively. Insulin secretion and mRNA expression were evaluated in the presence of 1 and 5 {mu}M sodium arsenite. Basal insulin secretion, in 5.6 mM glucose, was not significantly affected by 1 or 5 {mu}M treatment for 72 h, but basal secretion was reduced when cells were exposed to 5 {mu}M sodium arsenite for 144 h. On the other hand, insulin secretion in response to 15.6 mM glucose decreased with sodium arsenite in a dose-dependent manner in such a way that cells were no longer able to distinguish between different glucose concentrations. We also showed a significant decrease in insulin mRNA expression of cells exposed to 5 {mu}M sodium arsenite during 72 h. Our data suggest that arsenic may contribute to the development of diabetes mellitus by impairing pancreatic {beta}-cell functions, particularly insulin synthesis and secretion.

  19. Regulation of inducible nitric oxide synthase expression in beta cells by environmental factors: heavy metals.

    PubMed Central

    Eckhardt, W; Bellmann, K; Kolb, H

    1999-01-01

    The expression of inducible NO synthase (iNOS) in pancreatic islet beta cells modulates endocrine cell functions and, at very high levels of NO production causes beta-cell death. We tested the hypothesis that environmental factors such as heavy-metal salts modulate iNOS expression in beta cells. A rat beta-cell line (insulinoma RINm5F) was cultured in the presence of low-dose interleukin (IL)-1beta for suboptimal induction of iNOS. PbCl2 (0. 1-10 microM) dose-dependently increased NO (measured as nitrite) formation (P<0.001). In contrast, HgCl2 suppressed nitrite production (0.1-10 microM, P<0.05). Measurements of iNOS activity by determining citrulline levels confirmed the potentiating effect of PbCl2 (P<0.05). There was a narrow time window of heavy-metal actions, ranging from -24 h (Hg2+) or -3 h (Pb2+) to +2 h, relative to the addition of IL-1beta. By semi-quantitative reverse transcriptase-PCR, enhanced levels of iNOS mRNA were found in the presence of Pb2+ (P<0.05) and decreased levels in the presence of Hg2+. The amount of iNOS protein as determined by Western blotting was increased in the presence of Pb2+. We conclude that Pb2+ upregulates and Hg2+ suppresses iNOS gene expression at the level of transcription, probably by acting on the signalling pathway. These observations may have important implications for understanding pathological effects of environmental factors on endocrine organ functions. PMID:10051441

  20. Interferon alpha impairs insulin production in human beta cells via endoplasmic reticulum stress.

    PubMed

    Lombardi, Angela; Tomer, Yaron

    2017-02-23

    Despite substantial advances in the research exploring the pathogenesis of Type 1 Diabetes (T1D), the pathophysiological mechanisms involved remain unknown. We hypothesized in this study that interferon alpha (IFNα) participates in the early stages of T1D development by triggering endoplasmic reticulum (ER) stress. To verify our hypothesis, human islets and human EndoC-βH1 cells were exposed to IFNα and tested for ER stress markers, glucose stimulated insulin secretion (GSIS) and insulin content. IFNα treatment induced upregulation of ER stress markers including Binding immunoglobulin Protein, phospho-eukaryotic translation initiation factor 2α, spliced- X-box binding protein-1, C/EBP homologous protein and activating transcription factor 4. Intriguingly, IFNα treatment did not impair GSIS but significantly decreased insulin production in both human islets and EndoC-βH1 cells. Furthermore, IFNα decreased the expression of both proinsulin convertase 1 and proinsulin convertase 2, suggesting an altered functional state of the beta cells characterized by a slower proinsulin-insulin conversion. Pretreatment of both human islets and EndoC-βH1 cells with chemical chaperones 4-phenylbutyric acid and tauroursodeoxycholic acid completely prevented IFNα effects, indicating an ER stress-mediated impairment of insulin production. We demonstrated for the first time that IFNα elicits ER stress in human beta cells providing a novel mechanistic role for this virus-induced cytokine in the development of T1D. Compounds targeting molecular processes altered in ER-stressed beta cells could represent a potential therapeutic strategy to prevent IFNα-induced beta cell dysfunction in the early onset of T1D.

  1. Glucocorticoids Inhibit Basal and Hormone-Induced Serotonin Synthesis in Pancreatic Beta Cells.

    PubMed

    Hasni Ebou, Moina; Singh-Estivalet, Amrit; Launay, Jean-Marie; Callebert, Jacques; Tronche, François; Ferré, Pascal; Gautier, Jean-François; Guillemain, Ghislaine; Bréant, Bernadette; Blondeau, Bertrand; Riveline, Jean-Pierre

    2016-01-01

    Diabetes is a major complication of chronic Glucocorticoids (GCs) treatment. GCs induce insulin resistance and also inhibit insulin secretion from pancreatic beta cells. Yet, a full understanding of this negative regulation remains to be deciphered. In the present study, we investigated whether GCs could inhibit serotonin synthesis in beta cell since this neurotransmitter has been shown to be involved in the regulation of insulin secretion. To this aim, serotonin synthesis was evaluated in vitro after treatment with GCs of either islets from CD1 mice or MIN6 cells, a beta-cell line. We also explored the effect of GCs on the stimulation of serotonin synthesis by several hormones such as prolactin and GLP 1. We finally studied this regulation in islet in two in vivo models: mice treated with GCs and with liraglutide, a GLP1 analog, and mice deleted for the glucocorticoid receptor in the pancreas. We showed in isolated islets and MIN6 cells that GCs decreased expression and activity of the two key enzymes of serotonin synthesis, Tryptophan Hydroxylase 1 (Tph1) and 2 (Tph2), leading to reduced serotonin contents. GCs also blocked the induction of serotonin synthesis by prolactin or by a previously unknown serotonin activator, the GLP-1 analog exendin-4. In vivo, activation of the Glucagon-like-Peptide-1 receptor with liraglutide during 4 weeks increased islet serotonin contents and GCs treatment prevented this increase. Finally, islets from mice deleted for the GR in the pancreas displayed an increased expression of Tph1 and Tph2 and a strong increased serotonin content per islet. In conclusion, our results demonstrate an original inhibition of serotonin synthesis by GCs, both in basal condition and after stimulation by prolactin or activators of the GLP-1 receptor. This regulation may contribute to the deleterious effects of GCs on beta cells.

  2. Lentivectors encoding immunosuppressive proteins genetically engineer pancreatic beta-cells to correct diabetes in allogeneic mice.

    PubMed

    Kojaoghlanian, T; Joseph, A; Follenzi, A; Zheng, J H; Leiser, M; Fleischer, N; Horwitz, M S; DiLorenzo, T P; Goldstein, H

    2009-03-01

    The effectiveness of genetic engineering with lentivectors to protect transplanted cells from allogeneic rejection was examined using, as a model, type 1 diabetes treatment with beta-cell transplantation, whose widespread use has been limited by the requirement for sustained immunosuppressive treatment to prevent graft rejection. We examined whether lentivectors expressing select immunosuppressive proteins encoded by the adenoviral genome early region 3 (AdE3) would protect transplanted beta-cells from an alloimmune attack. The insulin-producing beta-cell line beta TC-tet (C3HeB/FeJ-derived) was transduced with lentiviruses encoding the AdE3 proteins gp19K and RID alpha/beta. The efficiency of lentiviral transduction of beta TC-tet cells exceeded 85%. Lentivector expression of gp19K decreased surface class I major histocompatibility complex expression by over 90%, whereas RID alpha/beta expression inhibited cytokine-induced Fas upregulation by over 75%. beta TC-tet cells transduced with gp19K and RID alpha/beta lentivectors, but not with a control lentivector, provided prolonged correction of hyperglycemia after transplantation into diabetic BALB/c severe combined immunodeficient mice reconstituted with allogeneic immune effector cells or into diabetic allogeneic BALB/c mice. Thus, genetic engineering of beta-cells using gp19K- and RID alpha/beta-expressing lentiviral vectors may provide an alternative that has the potential to eliminate or reduce treatment with the potent immunosuppressive agents necessary at present for prolonged engraftment with transplanted islets.

  3. Stevioside Counteracts Beta-Cell Lipotoxicity without Affecting Acetyl CoA Carboxylase

    PubMed Central

    Chen, Jianguo; Jeppesen, Per Bendix; Nordentoft, Iver; Hermansen, Kjeld

    2006-01-01

    Chronic exposure to high levels of free fatty acids impairs beta-cell function (lipotoxicity). Then basal insulin secretion (BIS) is increased and glucose-stimulated insulin secretion (GSIS) is inhibited. Acetyl CoA carboxylase (ACC) acts as the sensor for insulin secretion in pancreatic beta-cells in response to glucose and other nutrients. Stevioside (SVS), a diterpene glycoside, has recently been shown to prevent glucotoxic effect by regulating ACC activity. The aim of this study was to investigate whether SVS can alleviate impaired beta-cell function by regulating ACC activity. We exposed isolated rat islets and the clonal beta-cell line, INS-1E, to palmitate concentrations of 1.0 or 0.6 mM, respectively, for a period of 24 h to 120 h. The results showed that lipotoxicity occurred in rat islets after 72 h exposure to 1.0 mM palmitate. The lipotoxicity was counteracted by 10-6 M SVS (n = 8, p < 0.001). Similar results were obtained in INS-1E cells. Neither SVS nor palmitate had any effect on the gene expression of ACC, insulin 2, and glucose transporter 2 in INS-1E cells. In contrast, palmitate significantly increased the gene expression of carnitine palmitoyl transporter 1 (n = 6, p = 0.003). However, the addition of SVS to palmitate did not counteract this effect (n = 6, p = 1.0). During lipotoxicity, SVS did not alter levels of ACC protein, phosphorylated-ACC, ACC activity or glucose uptake. Our results showed that SVS counteracts the impaired insulin secretion during lipotoxicity in rat islets as well as in INS-1E cells without affecting ACC activity. PMID:17487342

  4. Gluco-Incretins Regulate Beta-Cell Glucose Competence by Epigenetic Silencing of Fxyd3 Expression

    PubMed Central

    Vallois, David; Niederhäuser, Guy; Ibberson, Mark; Nagaray, Vini; Marselli, Lorella; Marchetti, Piero; Chatton, Jean-Yves; Thorens, Bernard

    2014-01-01

    Background/Aims Gluco-incretin hormones increase the glucose competence of pancreatic beta-cells by incompletely characterized mechanisms. Methods We searched for genes that were differentially expressed in islets from control and Glp1r−/−; Gipr−/− (dKO) mice, which show reduced glucose competence. Overexpression and knockdown studies; insulin secretion analysis; analysis of gene expression in islets from control and diabetic mice and humans as well as gene methylation and transcriptional analysis were performed. Results Fxyd3 was the most up-regulated gene in glucose incompetent islets from dKO mice. When overexpressed in beta-cells Fxyd3 reduced glucose-induced insulin secretion by acting downstream of plasma membrane depolarization and Ca++ influx. Fxyd3 expression was not acutely regulated by cAMP raising agents in either control or dKO adult islets. Instead, expression of Fxyd3 was controlled by methylation of CpGs present in its proximal promoter region. Increased promoter methylation reduced Fxyd3 transcription as assessed by lower abundance of H3K4me3 at the transcriptional start site and in transcription reporter assays. This epigenetic imprinting was initiated perinatally and fully established in adult islets. Glucose incompetent islets from diabetic mice and humans showed increased expression of Fxyd3 and reduced promoter methylation. Conclusions/Interpretation Because gluco-incretin secretion depends on feeding the epigenetic regulation of Fxyd3 expression may link nutrition in early life to establishment of adult beta-cell glucose competence; this epigenetic control is, however, lost in diabetes possibly as a result of gluco-incretin resistance and/or de-differentiation of beta-cells that are associated with the development of type 2 diabetes. PMID:25058609

  5. The islet endothelial cell: a novel contributor to beta cell secretory dysfunction in diabetes.

    PubMed

    Hogan, Meghan F; Hull, Rebecca L

    2017-06-01

    The pancreatic islet is highly vascularised, with an extensive capillary network. In addition to providing nutrients and oxygen to islet endocrine cells and transporting hormones to the peripheral circulation, islet capillaries (comprised primarily of islet endothelial cells) are an important source of signals that enhance survival and function of the islet beta cell. In type 2 diabetes, and animal models thereof, evidence exists of morphological and functional abnormalities in these islet endothelial cells. In diabetes, islet capillaries are thickened, dilated and fragmented, and islet endothelial cells express markers of inflammation and activation. In vitro data suggest that this dysfunctional islet endothelial phenotype may contribute to impaired insulin release from the beta cell. This review examines potential candidate molecules that may mediate the positive effects of islet endothelial cells on beta cell survival and function under normal conditions. Further, it explores possible mechanisms underlying the development of islet endothelial dysfunction in diabetes and reviews therapeutic options for ameliorating this aspect of the islet lesion in type 2 diabetes. Finally, considerations regarding differences between human and rodent islet vasculature and the potentially unforeseen negative consequences of strategies to expand the islet vasculature, particularly under diabetic conditions, are discussed.

  6. GHTD-amide: a naturally occurring beta cell-derived peptide with hypoglycemic activity.

    PubMed

    Paule, S G; Nikolovski, B; Gray, R E; Ludeman, J P; Freemantle, A; Spark, R A; Kerr, J B; Ng, F M; Zimmet, P Z; Myers, M A

    2009-05-01

    In the early 1970s, a peptide fraction with insulin potentiating activity was purified from human urine but the identity and origins of the active constituent remained unknown. Here we identify the active component and characterize its origins. The active peptide was identified as an alpha amidated tetrapeptide with the sequence GHTD-amide. The peptide was synthesized and tested for stimulation of glycogen synthesis and insulin potentiation by insulin tolerance testing in insulin-deficient rats, which confirmed GHTD-amide as the active peptide. Tissue localization using a peptide-specific anti-serum and epifluorescent and confocal microscopy showed decoration of pancreatic islets but not other tissues. Confocal microscopy revealed co-localization with insulin and immunogold and electron microscopy showed localization to dense core secretory granules. Consistent with these observations GHTD-amide was found in media conditioned by MIN6 islet beta cells. Sequence database searching found no annotated protein in the human proteome encoding a potential precursor for GHTD-amide. We conclude that the insulin potentiating activity originally described in human urine is attributable to the tetrapeptide GHTD-amide. GHTD-amide is a novel peptide produced by pancreatic beta cells and no precursor protein is present in the annotated human proteome. Stimulation of glycogen synthesis and co-localization with insulin in beta cells suggest that GHTD-amide may play a role in glucose homeostasis by enhancing insulin action and glucose storage in tissues.

  7. Calcium co-regulates oxidative metabolism and ATP synthase-dependent respiration in pancreatic beta cells.

    PubMed

    De Marchi, Umberto; Thevenet, Jonathan; Hermant, Aurelie; Dioum, Elhadji; Wiederkehr, Andreas

    2014-03-28

    Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)(+) ratio.

  8. Beta cell compensation for insulin resistance in Zucker fatty rats: increased lipolysis and fatty acid signalling.

    PubMed

    Nolan, C J; Leahy, J L; Delghingaro-Augusto, V; Moibi, J; Soni, K; Peyot, M-L; Fortier, M; Guay, C; Lamontagne, J; Barbeau, A; Przybytkowski, E; Joly, E; Masiello, P; Wang, S; Mitchell, G A; Prentki, M

    2006-09-01

    The aim of this study was to determine the role of fatty acid signalling in islet beta cell compensation for insulin resistance in the Zucker fatty fa/fa (ZF) rat, a genetic model of severe obesity, hyperlipidaemia and insulin resistance that does not develop diabetes. NEFA augmentation of insulin secretion and fatty acid metabolism were studied in isolated islets from ZF and Zucker lean (ZL) control rats. Exogenous palmitate markedly potentiated glucose-stimulated insulin secretion (GSIS) in ZF islets, allowing robust secretion at physiological glucose levels (5-8 mmol/l). Exogenous palmitate also synergised with glucagon-like peptide-1 and the cyclic AMP-raising agent forskolin to enhance GSIS in ZF islets only. In assessing islet fatty acid metabolism, we found increased glucose-responsive palmitate esterification and lipolysis processes in ZF islets, suggestive of enhanced triglyceride-fatty acid cycling. Interruption of glucose-stimulated lipolysis by the lipase inhibitor Orlistat (tetrahydrolipstatin) blunted palmitate-augmented GSIS in ZF islets. Fatty acid oxidation was also higher at intermediate glucose levels in ZF islets and steatotic triglyceride accumulation was absent. The results highlight the potential importance of NEFA and glucoincretin enhancement of insulin secretion in beta cell compensation for insulin resistance. We propose that coordinated glucose-responsive fatty acid esterification and lipolysis processes, suggestive of triglyceride-fatty acid cycling, play a role in the coupling mechanisms of glucose-induced insulin secretion as well as in beta cell compensation and the hypersecretion of insulin in obesity.

  9. Calcium Co-regulates Oxidative Metabolism and ATP Synthase-dependent Respiration in Pancreatic Beta Cells

    PubMed Central

    De Marchi, Umberto; Thevenet, Jonathan; Hermant, Aurelie; Dioum, Elhadji; Wiederkehr, Andreas

    2014-01-01

    Mitochondrial energy metabolism is essential for glucose-induced calcium signaling and, therefore, insulin granule exocytosis in pancreatic beta cells. Calcium signals are sensed by mitochondria acting in concert with mitochondrial substrates for the full activation of the organelle. Here we have studied glucose-induced calcium signaling and energy metabolism in INS-1E insulinoma cells and human islet beta cells. In insulin secreting cells a surprisingly large fraction of total respiration under resting conditions is ATP synthase-independent. We observe that ATP synthase-dependent respiration is markedly increased after glucose stimulation. Glucose also causes a very rapid elevation of oxidative metabolism as was followed by NAD(P)H autofluorescence. However, neither the rate of the glucose-induced increase nor the new steady-state NAD(P)H levels are significantly affected by calcium. Our findings challenge the current view, which has focused mainly on calcium-sensitive dehydrogenases as the target for the activation of mitochondrial energy metabolism. We propose a model of tight calcium-dependent regulation of oxidative metabolism and ATP synthase-dependent respiration in beta cell mitochondria. Coordinated activation of matrix dehydrogenases and respiratory chain activity by calcium allows the respiratory rate to change severalfold with only small or no alterations of the NAD(P)H/NAD(P)+ ratio. PMID:24554722

  10. Modulation of Ionic Channels and Insulin Secretion by Drugs and Hormones in Pancreatic Beta Cells.

    PubMed

    Velasco, Myrian; Díaz-García, Carlos Manlio; Larqué, Carlos; Hiriart, Marcia

    2016-09-01

    Pancreatic beta cells, unique cells that secrete insulin in response to an increase in glucose levels, play a significant role in glucose homeostasis. Glucose-stimulated insulin secretion (GSIS) in pancreatic beta cells has been extensively explored. In this mechanism, glucose enters the cells and subsequently the metabolic cycle. During this process, the ATP/ADP ratio increases, leading to ATP-sensitive potassium (KATP) channel closure, which initiates depolarization that is also dependent on the activity of TRP nonselective ion channels. Depolarization leads to the opening of voltage-gated Na(+) channels (Nav) and subsequently voltage-dependent Ca(2+) channels (Cav). The increase in intracellular Ca(2+) triggers the exocytosis of insulin-containing vesicles. Thus, electrical activity of pancreatic beta cells plays a central role in GSIS. Moreover, many growth factors, incretins, neurotransmitters, and hormones can modulate GSIS, and the channels that participate in GSIS are highly regulated. In this review, we focus on the principal ionic channels (KATP, Nav, and Cav channels) involved in GSIS and how classic and new proteins, hormones, and drugs regulate it. Moreover, we also discuss advances on how metabolic disorders such as metabolic syndrome and diabetes mellitus change channel activity leading to changes in insulin secretion.

  11. Hyperproinsulinemia is associated with increased beta cell demand after hemipancreatectomy in humans.

    PubMed Central

    Seaquist, E R; Kahn, S E; Clark, P M; Hales, C N; Porte, D; Robertson, R P

    1996-01-01

    The cause of disproportionate hyperproinsulinemia in patients with type II diabetes is controversial. To examine whether increased beta cell demand might contribute, we measured proinsulin and insulin concentrations in clinically healthy humans who had undergone hemipancreatectomy for the purpose of organ donation, a procedure previously demonstrated to increase beta cell demand and diminish insulin secretory reserve capacity. Subjects were studied at least 1 yr after hemipancreatectomy. Seven donors were followed prospectively and serves as their own controls. Nine additional donors were matched with normal controls (cross-sectional group). Fasting serum concentrations of intact proinsulin and conversion intermediates (total) were measured by a two-step radioimmunoassay; independent determinations of intact proinsulin and 32,33 split proinsulin were performed using an immunoradiometric assay. Serum total proinsulin values were significantly greater in hemipancreatectomized groups than controls (prospective group: predonation = 6.24 +/- 1.14 pM, postdonation = 34.63 +/- 17.47 pM, P < 0.005; cross-sectional group: controls = 5.78 +/- 1.12 pM, donors = 15.22 +/- 5.20 pM, P < 0.025). The ratio of total proinsulin to immunoreactive insulin was directly correlated with fasting plasma glucose and showed a significant inverse relationship to secretory reserve capacity. Both absolute and relative hyperproinsulinemia is found in hemipancreatectomized donors. These data demonstrate that partial pancreatectomy with its associated increase in beta cell demand raises measures of proinsulin in humans. PMID:8567967

  12. Regulation of pancreatic beta-cell glucokinase: from basics to therapeutics.

    PubMed

    Matschinsky, Franz M

    2002-12-01

    Glucokinase (GK) serves as glucose sensor in pancreatic beta-cells and in other glucose sensor cells in the body. Biochemical genetic studies have characterized many activating and inactivating GK mutants that have been discovered in patients with hyperinsulinemic hypoglycemia or diabetes, all inherited as autosomal dominant traits. Mathematical modeling of the kinetic data of recombinant human wild-type and mutant GK accurately predicts the effects of GK mutations on the threshold of glucose-stimulated insulin release and glucose homeostasis. Structure/function studies of the enzyme suggest the existence of a hitherto unknown allosteric activator site of the enzyme that has significant implications for the physiological chemistry of GK-containing cells, particularly the pancreatic beta-cells. Glucose is the preeminent positive regulator of beta-cell GK expression and involves molecular mechanisms that are still to be elucidated in detail, but seem to have a specific requirement for increased glucose metabolism. Pharmaceutical chemists, motivated by the clear tenets of the GK glucose-sensor paradigm, have searched for and have discovered a novel class of GK activator molecules. The therapeutic application of this basic discovery offers a new principle for drug therapy of diabetes.

  13. GLP-1 receptor antagonist as a potential probe for pancreatic {beta}-cell imaging

    SciTech Connect

    Mukai, Eri; Toyoda, Kentaro; Kimura, Hiroyuki; Kawashima, Hidekazu; Fujimoto, Hiroyuki; Ueda, Masashi; Temma, Takashi; Hirao, Konomu; Nagakawa, Kenji; Saji, Hideo; Inagaki, Nobuya

    2009-11-20

    We examined exendin(9-39), an antagonist of glucagon-like peptide-1 (GLP-1) receptor (GLP-1R), as a potential probe for imaging of pancreatic {beta}-cells. To evaluate in vitro receptor specificity, binding assay was performed using dispersed mouse islet cells. Binding assay showed competitive inhibition of [{sup 125}I]BH-exendin(9-39) binding by non-radioactive exendin(9-39). To assess in vivo selectivity, the biodistribution was evaluated by intravenous administration of [{sup 125}I]BH-exendin(9-39) to mice. Radioactivity of harvested pancreas reached highest levels at 60 and 120 min among organs examined except lung. Pre-administration of excess non-radioactive exendin(9-39) remarkably and specifically blocked the radioactivity of pancreas. After [{sup 125}I]BH-exendin(9-39) injection into transgenic mice with pancreatic {beta}-cells expressing GFP, fluorescent and radioactive signals of sections of pancreas were evaluated with an image analyzer. Imaging analysis showed that the fluorescent GFP signals and the radioactive signals were correspondingly located. Thus, the GLP-1R antagonist exendin(9-39) may serve as a useful probe for pancreatic {beta}-cell imaging.

  14. Early-life origins of type 2 diabetes: fetal programming of the beta-cell mass.

    PubMed

    Portha, Bernard; Chavey, Audrey; Movassat, Jamileh

    2011-01-01

    A substantial body of evidence suggests that an abnormal intrauterine milieu elicited by maternal metabolic disturbances as diverse as undernutrition, placental insufficiency, diabetes or obesity, may program susceptibility in the fetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. This paper examines the developmental programming of glucose intolerance/diabetes by disturbed intrauterine metabolic condition experimentally obtained in various rodent models of maternal protein restriction, caloric restriction, overnutrition or diabetes, with a focus on the alteration of the developing beta-cell mass. In most of the cases, whatever the type of initial maternal metabolic stress, the beta-cell adaptive growth which normally occurs during gestation, does not take place in the pregnant offspring and this results in the development of gestational diabetes. Therefore gestational diabetes turns to be the ultimate insult targeting the offspring beta-cell mass and propagates diabetes risk to the next generation again. The aetiology and the transmission of spontaneous diabetes as encountered in the GK/Par rat model of type 2 diabetes, are discussed in such a perspective. This review also discusses the non-genomic mechanisms involved in the installation of the programmed effect as well as in its intergenerational transmission.

  15. Early-Life Origins of Type 2 Diabetes: Fetal Programming of the Beta-Cell Mass

    PubMed Central

    Portha, Bernard; Chavey, Audrey; Movassat, Jamileh

    2011-01-01

    A substantial body of evidence suggests that an abnormal intrauterine milieu elicited by maternal metabolic disturbances as diverse as undernutrition, placental insufficiency, diabetes or obesity, may program susceptibility in the fetus to later develop chronic degenerative diseases, such as obesity, hypertension, cardiovascular diseases and diabetes. This paper examines the developmental programming of glucose intolerance/diabetes by disturbed intrauterine metabolic condition experimentally obtained in various rodent models of maternal protein restriction, caloric restriction, overnutrition or diabetes, with a focus on the alteration of the developing beta-cell mass. In most of the cases, whatever the type of initial maternal metabolic stress, the beta-cell adaptive growth which normally occurs during gestation, does not take place in the pregnant offspring and this results in the development of gestational diabetes. Therefore gestational diabetes turns to be the ultimate insult targeting the offspring beta-cell mass and propagates diabetes risk to the next generation again. The aetiology and the transmission of spontaneous diabetes as encountered in the GK/Par rat model of type 2 diabetes, are discussed in such a perspective. This review also discusses the non-genomic mechanisms involved in the installation of the programmed effect as well as in its intergenerational transmission. PMID:22110471

  16. Generation of beta cells from human pluripotent stem cells: Potential for regenerative medicine.

    PubMed

    Nostro, Maria Cristina; Keller, Gordon

    2012-08-01

    The loss of beta cells in Type I diabetes ultimately leads to insulin dependence and major complications that are difficult to manage by insulin injections. Given the complications associated with long-term administration of insulin, cell-replacement therapy is now under consideration as an alternative treatment that may someday provide a cure for this disease. Over the past 10 years, islet transplantation trials have demonstrated that it is possible to replenish beta cell function in Type I diabetes patients and, at least temporarily, eliminate their dependency on insulin. While not yet optimal, the success of these trials has provided proof-of-principle that cell replacement therapy is a viable option for treating diabetes. Limited access to donor islets has launched a search for alternative source of beta cells for cell therapy purposes and focused the efforts of many investigators on the challenge of deriving such cells from human embryonic (hESCs) and induced pluripotent stem cells (hiPSCs). Over the past five years, significant advances have been made in understanding the signaling pathways that control lineage development from human pluripotent stem cells (hPSCs) and as a consequence, it is now possible to routinely generate insulin producing cells from both hESCs and hiPSCs. While these achievements are impressive, significant challenges do still exist, as the majority of insulin producing cells generated under these conditions are polyhormonal and non functional, likely reflecting the emergence of the polyhormonal population that is known to arise in the early embryo during the phase of pancreatic development known as the 'first transition'. Functional beta cells, which arise during the second phase or transition of pancreatic development have been generated from hESCs, however they are detected only following transplantation of progenitor stage cells into immunocompromised mice. With this success, our challenge now is to define the pathways that control

  17. Reduced beta cell function in offspring of mothers with young-onset type 2 diabetes.

    PubMed

    Singh, R; Pearson, E; Avery, P J; McCarthy, M I; Levy, J C; Hitman, G A; Sampson, M; Walker, M; Hattersley, A T

    2006-08-01

    Animal models indicate that even exposure to mild maternal hyperglycaemia in utero is detrimental to the beta cell function of the offspring, but evidence of this in humans is limited. In Europids who are diagnosed with type 2 diabetes before the age of 50 years, the risk of diabetes in the offspring of the diabetic mothers is greatly increased compared with the risk in those born to diabetic fathers. We hypothesised that offspring born to mothers with young-onset type 2 diabetes would have been exposed to mild hyperglycaemia in utero, so we studied the impact of this on their beta cell function. We measured beta cell function using early insulin response (EIR) after oral glucose; insulin resistance using HOMA; and HbA(1c) in 568 non-diabetic adult offspring born to parents with type 2 diabetes (mean age 55.8 years), split according to which parent was affected (in 327 it was the mother) and parental age of diagnosis: <50 years (n=117) or > or =50 years. To reduce the impact of genetic susceptibility, the offspring of affected fathers were used as control subjects. Offspring of mothers with young-onset type 2 diabetes had lower EIR (log EIR 4.32, 95% CI [4.14-4.51] vs 4.63 [4.43-4.83] p=0.02) and higher HbA(1c) (4.89% [4.79-4.99] vs 4.68% [4.57-4.79] p=0.02) than the offspring of fathers with young-onset type 2 diabetes. Insulin sensitivity was similar in the two groups. There were no differences in EIR or HbA(1c) between the offspring born to mothers and fathers who were diagnosed after the age of 50 years. We conclude that the offspring of mothers with young-onset type 2 diabetes have a reduction in beta cell function. This is consistent with exposure to mild maternal hyperglycaemia programming beta cell function.

  18. Factors Associated with Beta-Cell Dysfunction in Type 2 Diabetes: The BETADECLINE Study

    PubMed Central

    Russo, Giuseppina T.; Giorda, Carlo Bruno; Cercone, Stefania; Nicolucci, Antonio; Cucinotta, Domenico

    2014-01-01

    Aims Beta-cell dysfunction is an early event in the natural history of type 2 diabetes. However, its progression is variable and potentially influenced by several clinical factors. We report the baseline data of the BetaDecline study, an Italian prospective multicenter study on clinical predictors of beta-cell dysfunction in type 2 diabetes. Materials and Methods Clinical, lifestyle, and laboratory data, including circulating levels of inflammatory markers and non-esterified fatty acids, were collected in 507 type 2 diabetic outpatients on stable treatment with oral hypoglycemic drugs or diet for more than 1 year. Beta-cell dysfunction was evaluated by calculating the proinsulin/insulin ratio (P/I). Results At baseline, the subjects in the upper PI/I ratio quartile were more likely to be men and receiving secretagogue drugs; they also showed a borderline longer diabetes duration (P = 0.06) and higher serum levels of glycated hemoglobin (HbA1c), fasting blood glucose, and triglycerides. An inverse trend across all PI/I quartiles was noted for BMI and serum levels of total cholesterol (T-C), LDL-C, HDL-C and C reactive protein (CRP), and with homeostatic model assessment (HOMA-B) and HOMA of insulin resistance (HOMA-IR) values (P<0.05 for all). At multivariate analysis, the risk of having a P/I ratio in the upper quartile was higher in the subjects on secretagogue drugs (odds ratio [OR] 4.2; 95% confidence interval [CI], 2.6–6.9) and in the males (OR 1.8; 95% CI, 1.1–2.9). Conclusions In the BetaDecline study population, baseline higher PI/I values, a marker of beta-cell dysfunction, were more frequent in men and in patients on secretagogues drugs. Follow-up of this cohort will allow the identification of clinical predictors of beta-cell failure in type 2 diabetic outpatients. PMID:25347846

  19. In vivo inhibition of glucagon secretion by paracrine beta cell activity in man.

    PubMed

    Asplin, C M; Paquette, T L; Palmer, J P

    1981-07-01

    The close anatomical relationships betaeen pancreatic alpha and beta cells makes possible their interaction at a local (paracrine) level. To demonstrate this in vivo, we have compared the acute glucagon response to intravenous arginine in the basal state and after beta cell suppression by infusions of insulin. The plasma glucose concentration was maintained by the glucose clamp technique. In six normal weight nondiabetics, infusion of insulin at 0.2 mU/kg per min (rate 1) raised the mean +/- SEM plasma insulin levels from 10 +/- 3 to 32 +/- 4 mU/liter and at 1 mU/kg per min (rate 2) raised plasma insulin to 84 +/- 8 mU/liter. This resulted in beta cell suppression, as shown by a diminution in the acute insulin response (incremental area under the insulin response curve, 0-10 min): basal = 283 +/- 61, 199 +/- 66 (rate 1) and 143 +/- 48 mU/liter per 10 min (rate 2) and a fall in prestimulus C-peptide from 1.05 +/- 0.17 to 0.66 +/- 0.15 and to 0.44 +/- 0.15 mM/liter (all P less than 0.01). This beta cell suppression was associated with increased glucagon responses to arginine: 573 +/- 75 (basal), 829 +/- 114 (rate 1), and 994 +/- 136 ng/liter per 10 min (rate 2) and increased peak glucagon responses 181 +/- 11 (basal), 214 +/- 16 (rate 1), and 259 +/- 29 ng/liter (rate 2) (all P less than 0.01). In all subjects, there was a proportional change between the rise in he acute glucagon response to arginine and the fall in the prearginine C-peptide level. To demonstrate that augmented glucagon response was due to betw cell suppression, and not to the metabolic effect of infused insulin, similar studies were performed in C-peptide-negative-diabetics. Their acute glucagon response to arginine was inhibited by the insulin infusion: 701 +/- 112 (basal), 427 +/- 33 (rate 1), and 293 +/- 67 ng/liter per 10 min (rate 2) as was their peak glucagon response: 268 +/- 69, 170 +/- 36, and 115 +/- 33 ng/liter (all P less than 0.01). Thus, hyperinsulinemia, within the physiological range

  20. A high-throughput chemical screen reveals that harmine-mediated inhibition of DYRK1A increases human pancreatic beta cell replication.

    PubMed

    Wang, Peng; Alvarez-Perez, Juan-Carlos; Felsenfeld, Dan P; Liu, Hongtao; Sivendran, Sharmila; Bender, Aaron; Kumar, Anil; Sanchez, Roberto; Scott, Donald K; Garcia-Ocaña, Adolfo; Stewart, Andrew F

    2015-04-01

    Types 1 and 2 diabetes affect some 380 million people worldwide. Both ultimately result from a deficiency of functional pancreatic insulin-producing beta cells. Beta cells proliferate in humans during a brief temporal window beginning around the time of birth, with a peak percentage (∼2%) engaged in the cell cycle in the first year of life. In embryonic life and after early childhood, beta cell replication is barely detectable. Whereas beta cell expansion seems an obvious therapeutic approach to beta cell deficiency, adult human beta cells have proven recalcitrant to such efforts. Hence, there remains an urgent need for antidiabetic therapeutic agents that can induce regeneration and expansion of adult human beta cells in vivo or ex vivo. Here, using a high-throughput small-molecule screen (HTS), we find that analogs of the small molecule harmine function as a new class of human beta cell mitogenic compounds. We also define dual-specificity tyrosine-regulated kinase-1a (DYRK1A) as the likely target of harmine and the nuclear factors of activated T cells (NFAT) family of transcription factors as likely mediators of human beta cell proliferation and differentiation. Using three different mouse and human islet in vivo-based models, we show that harmine is able to induce beta cell proliferation, increase islet mass and improve glycemic control. These observations suggest that harmine analogs may have unique therapeutic promise for human diabetes therapy. Enhancing the potency and beta cell specificity of these compounds are important future challenges.

  1. Effect of age on glucose-stimulated insulin release by the beta-cell of the rat.

    PubMed Central

    Reaven, E P; Gold, G; Reaven, G M

    1979-01-01

    To assess the effect of age on beta-cell insulin release, collagenase-isolated islets of Langerhans were obtained from rats aged 2--18 mo and incubated with increasing concentrations of glucose. Similar islets were analyzed for insulin content or subjected to morphometric measurements to identify both the number of beta-cells and the volume of beta-granules per islet. In parallel studies, the islet content of intact pancreata was also determined. The results showed that beta-cell number increased from 2,300 t0 5,000 cells as rats aged from 2 to 18 mo and islet insulin content doubled. However, glucose-stimulated insulin release decreased progressively with age, and this was especially striking when considered in terms of the increase in number of beta-cells/islet; e.g., mean (+/- SEM) insulin secretion (nanounits per minute per beta-cell) of islets incubated with 450 mg/dl of glucose was 1.3 (+/- 0.02), 1.0 (+/- 0.1), 0.4 (+/- 0.05), and 0.3 (+/- 0.01), respectively for 2-, 6-, 12-, and 18-mo-old rats. Thus, insulin secretion per beta-cell was decreased, despite increased stores of insulin per cell. These findings demonstrate that the aging process leads to a profound defect in glucose-stimulated insulin release from the beta-cell. Whether this is a global secretory defect, or solely a failure of the beta-cell to respond to glucose, remains to be defined. Images PMID:379046

  2. Pioglitazone acutely reduces insulin secretion and causes metabolic deceleration of the pancreatic beta-cell at submaximal glucose concentrations.

    PubMed

    Lamontagne, Julien; Pepin, Emilie; Peyot, Marie-Line; Joly, Erik; Ruderman, Neil B; Poitout, Vincent; Madiraju, S R Murthy; Nolan, Christopher J; Prentki, Marc

    2009-08-01

    Thiazolidinediones (TZDs) have beneficial effects on glucose homeostasis via enhancement of insulin sensitivity and preservation of beta-cell function. How TZDs preserve beta-cells is uncertain, but it might involve direct effects via both peroxisome proliferator-activated receptor-gamma-dependent and -independent pathways. To gain insight into the independent pathway(s), we assessed the effects of short-term (beta-cell metabolism in INS 832/13 beta-cells and rat islets. Pio caused a right shift in the dose-dependence of GIIS, such that insulin release was reduced at intermediate glucose but unaffected at either basal or maximal glucose concentrations. This was associated in INS 832/13 cells with alterations in energy metabolism, characterized by reduced glucose oxidation, mitochondrial membrane polarization, and ATP levels. Pio caused AMPK phosphorylation and its action on GIIS was reversed by the AMPK inhibitor compound C. Pio also reduced palmitate esterification into complex lipids and inhibited lipolysis. As for insulin secretion, the alterations in beta-cell metabolic processes were mostly alleviated at elevated glucose. Similarly, the antidiabetic agents and AMPK activators metformin and berberine caused a right shift in the dose dependence of GIIS. In conclusion, Pio acutely reduces glucose oxidation, energy metabolism, and glycerolipid/fatty acid cycling of the beta-cell at intermediate glucose concentrations. We suggest that AMPK activation and the metabolic deceleration of the beta-cell caused by Pio contribute to its known effects to reduce hyperinsulinemia and preserve beta-cell function and act as an antidiabetic agent.

  3. Long-term persistence and development of induced pancreatic beta cells generated by lineage conversion of acinar cells.

    PubMed

    Li, Weida; Cavelti-Weder, Claudia; Zhang, Yingying; Zhang, Yinying; Clement, Kendell; Donovan, Scott; Gonzalez, Gabriel; Zhu, Jiang; Stemann, Marianne; Xu, Ke; Hashimoto, Tatsu; Yamada, Takatsugu; Nakanishi, Mio; Zhang, Yuemei; Zeng, Samuel; Gifford, David; Meissner, Alexander; Weir, Gordon; Zhou, Qiao

    2014-12-01

    Direct lineage conversion is a promising approach to generate therapeutically important cell types for disease modeling and tissue repair. However, the survival and function of lineage-reprogrammed cells in vivo over the long term has not been examined. Here, using an improved method for in vivo conversion of adult mouse pancreatic acinar cells toward beta cells, we show that induced beta cells persist for up to 13 months (the length of the experiment), form pancreatic islet-like structures and support normoglycemia in diabetic mice. Detailed molecular analyses of induced beta cells over 7 months reveal that global DNA methylation changes occur within 10 d, whereas the transcriptional network evolves over 2 months to resemble that of endogenous beta cells and remains stable thereafter. Progressive gain of beta-cell function occurs over 7 months, as measured by glucose-regulated insulin release and suppression of hyperglycemia. These studies demonstrate that lineage-reprogrammed cells persist for >1 year and undergo epigenetic, transcriptional, anatomical and functional development toward a beta-cell phenotype.

  4. Acute insulin responses to glucose and arginine as predictors of beta-cell secretory capacity in human islet transplantation.

    PubMed

    Rickels, Michael R; Naji, Ali; Teff, Karen L

    2007-11-27

    Islet transplantation for type 1 diabetes can enable the achievement of near-normal glycemic control without severe hypoglycemic episodes. How much an islet (beta-cell) graft may be contributing to glycemic control can be quantified by stimulatory tests of insulin (or C-peptide) secretion. Glucose-potentiation of arginine-induced insulin secretion provides a measure of functional beta-cell mass, the beta-cell secretory capacity, as either AIR(pot) or AIR(max), but requires conduct of a hyperglycemic clamp. We sought to determine whether acute insulin responses to intravenous glucose (AIR(glu)) or arginine (AIR(arg)) could predict beta-cell secretory capacity in islet recipients. AIR(arg) was a better predictor of both AIR(pot) and AIR(max) (n=10, r2=0.98, P<0.0001 and n=7, r2=0.97, P<0.0001) than was AIR(glu) (n=9, r2=0.78, P=0.002 and n=6, r2=0.76, P=0.02). Also, the measures of beta-cell secretory capacity were highly correlated (n=7, r2=0.98, P<0.0001). These results support the use of AIR(arg) as a surrogate indicator of beta-cell secretory capacity in islet transplantation.

  5. Increased androgen levels in rats impair glucose-stimulated insulin secretion through disruption of pancreatic beta cell mitochondrial function.

    PubMed

    Wang, Hongdong; Wang, Xiaping; Zhu, Yunxia; Chen, Fang; Sun, Yujie; Han, Xiao

    2015-11-01

    Although insulin resistance is recognized to contribute to the reproductive and metabolic phenotypes of polycystic ovary syndrome (PCOS), pancreatic beta cell dysfunction plays an essential role in the progression from PCOS to the development of type 2 diabetes. However, the role of insulin secretory abnormalities in PCOS has received little attention. In addition, the precise changes in beta cells and the underlying mechanisms remain unclear. In this study, we therefore attempted to elucidate potential mechanisms involved in beta cell alterations in a rat model of PCOS. Glucose-induced insulin secretion was measured in islets isolated from DHT-treated and control rats. Oxygen consumption rate (OCR), ATP production, and mitochondrial copy number were assayed to evaluate mitochondrial function. Glucose-stimulated insulin secretion is significantly decreased in islets from DHT-treated rats. On the other hand, significant reductions are observed in the expression levels of several key genes involved in mitochondrial biogenesis and in mitochondrial OCR and ATP production in DHT-treated rat islets. Meanwhile, we found that androgens can directly impair beta cell function by inducing mitochondrial dysfunction in vitro in an androgen receptor dependent manner. For the first time, our study demonstrates that increased androgens in female rats can impair glucose-stimulated insulin secretion partly through disruption of pancreatic beta cell mitochondrial function. This work has significance for hyperandrogenic women with PCOS: excess activation of the androgen receptor by androgens may provoke beta cell dysfunction via mitochondrial dysfunction.

  6. Activation of the Nlrp3 inflammasome in infiltrating macrophages by endocannabinoids mediates beta cell loss in type 2 diabetes.

    PubMed

    Jourdan, Tony; Godlewski, Grzegorz; Cinar, Resat; Bertola, Adeline; Szanda, Gergő; Liu, Jie; Tam, Joseph; Han, Tiffany; Mukhopadhyay, Bani; Skarulis, Monica C; Ju, Cynthia; Aouadi, Myriam; Czech, Michael P; Kunos, George

    2013-09-01

    Type 2 diabetes mellitus (T2DM) progresses from compensated insulin resistance to beta cell failure resulting in uncompensated hyperglycemia, a process replicated in the Zucker diabetic fatty (ZDF) rat. The Nlrp3 inflammasome has been implicated in obesity-induced insulin resistance and beta cell failure. Endocannabinoids contribute to insulin resistance through activation of peripheral CB1 receptors (CB₁Rs) and also promote beta cell failure. Here we show that beta cell failure in adult ZDF rats is not associated with CB₁R signaling in beta cells, but rather in M1 macrophages infiltrating into pancreatic islets, and that this leads to activation of the Nlrp3-ASC inflammasome in the macrophages. These effects are replicated in vitro by incubating wild-type human or rodent macrophages, but not macrophages from CB₁R-deficient (Cnr1(-/-)) or Nlrp3(-/-) mice, with the endocannabinoid anandamide. Peripheral CB₁R blockade, in vivo depletion of macrophages or macrophage-specific knockdown of CB₁R reverses or prevents these changes and restores normoglycemia and glucose-induced insulin secretion. These findings implicate endocannabinoids and inflammasome activation in beta cell failure and identify macrophage-expressed CB₁R as a therapeutic target in T2DM.

  7. In vitro reprogramming of pancreatic alpha cells towards a beta cell phenotype following ectopic HNF4α expression.

    PubMed

    Sangan, Caroline B; Jover, Ramiro; Heimberg, Harry; Tosh, David

    2015-01-05

    There is currently a shortage of organ donors available for pancreatic beta cell transplantation into diabetic patients. An alternative source of beta cells is pre-existing pancreatic cells. While we know that beta cells can arise directly from alpha cells during pancreatic regeneration we do not understand the molecular basis for the switch in phenotype. The aim of the present study was to investigate if hepatocyte nuclear factor 4 alpha (HNF4α), a transcription factor essential for a normal beta cell phenotype, could induce the reprogramming of alpha cells towards potential beta cells. We utilised an in vitro model of pancreatic alpha cells, the murine αTC1-9 cell line. We initially characterised the αTC1-9 cell line before and following adenovirus-mediated ectopic expression of HNF4α. We analysed the phenotype at transcript and protein level and assessed its glucose-responsiveness. Ectopic HNF4α expression in the αTC1-9 cell line induced a change in morphology (1.7-fold increase in size), suppressed glucagon expression, induced key beta cell-specific markers (insulin, C-peptide, glucokinase, GLUT2 and Pax4) and pancreatic polypeptide (PP) and enabled the cells to secrete insulin in a glucose-regulated manner. In conclusion, HNF4α reprograms alpha cells to beta-like cells.

  8. Hyperglycemia induces apoptosis and p53 mobilization to mitochondria in RINm5F cells.

    PubMed

    Ortega-Camarillo, C; Guzmán-Grenfell, A M; García-Macedo, R; Rosales-Torres, A M; Avalos-Rodríguez, A; Durán-Reyes, G; Medina-Navarro, R; Cruz, M; Díaz-Flores, M; Kumate, J

    2006-01-01

    The mechanisms related to hyperglycemia-induced pancreatic beta-cell apoptosis are poorly defined. Rat insulin-producing cells (RINm5F) cultured in high glucose concentrations (30 mM) showed increased apoptosis and protein p53 translocation to mitochondria. In addition, hyperglycemia induced both the disruption of mitochondrial membrane potential (Delta psi (m)), and an increase in reactive oxygen species (ROS), as shown by fluorescence changes of JC-1 and dichlorodihydrofluorescein-diacetate (DCDHF-DA), respectively. The increased intracellular ROS by high glucose exposure was blunted by mitochondrial-function and NADPH-oxidase inhibitors. We postulate that the concomitant mobilization of p53 protein to the mitochondria and the subsequent changes on the Delta psi (m), lead to an important pancreatic beta-cell apoptosis mechanism induced by oxidative stress caused by hyperglycemia.

  9. Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice.

    PubMed

    Liu, Yun-Zi; Cheng, Xiaoyun; Zhang, Ting; Lee, Sojin; Yamauchi, Jun; Xiao, Xiangwei; Gittes, George; Qu, Shen; Jiang, Chun-Lei; Dong, H Henry

    2016-07-08

    Hypertriglyceridemia results from increased production and decreased clearance of triglyceride-rich very low-density lipoproteins, a pathological condition that accounts for heightened risk of ischemic vascular diseases in obesity and type 2 diabetes. Despite its intimate association with insulin resistance, whether hypertriglyceridemia constitutes an independent risk for beta cell dysfunction in diabetes is unknown. Answering this fundamental question is stymied by the fact that hypertriglyceridemia is intertwined with hyperglycemia and insulin resistance in obese and diabetic subjects. To circumvent this limitation, we took advantage of apolipoprotein C3 (ApoC3)-transgenic mice, a model with genetic predisposition to hypertriglyceridemia. We showed that ApoC3-transgenic mice, as opposed to age/sex-matched wild-type littermates, develop hypertriglyceridemia with concomitant elevations in plasma cholesterol and non-esterified fatty acid levels. Anti-insulin and anti-glucagon dual immunohistochemistry in combination with morphometric analysis revealed that ApoC3-transgenic and wild-type littermates had similar beta cell and alpha cell masses as well as islet size and architecture. These effects correlated with similar amplitudes of glucose-stimulated insulin secretion and similar degrees of postprandial glucose excursion in ApoC3-transgenic versus wild-type littermates. Oil Red O histology did not visualize lipid infiltration into islets, correlating with the lack of ectopic triglyceride and cholesterol depositions in the pancreata of ApoC3-transgenic versus wild-type littermates. ApoC3-transgenic mice, despite persistent hypertriglyceridemia, maintained euglycemia under both fed and fasting conditions without manifestation of insulin resistance and fasting hyperinsulinemia. Thus, hypertriglyceridemia per se is not an independent risk factor for beta cell dysfunction in ApoC3 transgenic mice. © 2016 by The American Society for Biochemistry and Molecular Biology

  10. Potassium permeability activated by intracellular calcium ion concentration in the pancreatic beta-cell.

    PubMed Central

    Atwater, I; Dawson, C M; Ribalet, B; Rojas, E

    1979-01-01

    1. Membrane potentials and input resistance were measured in beta-cells from mouse pancreatic islets of Langerhans in a study designed to assess the role of a K permeability specifically blocked by quinine or quinidine and activated by intracellular calcium ion concentration ([Ca2+])i-activated PK). 2. Addition of 100 microM-quinine to the perifusion medium resulted in a 10--30 mV depolarization of the membrane and an increase in the input resistance of ca. 4.10(7) omega. 3. In the absence of glucose, 100 microM-quinine induced electrical activity. 4. In the presence of glucose, 100 microM-quinine abolished the burst pattern of electrical activity and very much reduced the graded response of spike frequency normally seen with different concentrations of glucose. 5. Addition of mitochondrial inhibitors, KCN, NaN3, DNP, CCCP, FCCP, to the perifusion medium containing glucose rapidly hyperpolarized the beta-cell membrane, inducing a concomitant decrease in input resistance. 6. In the presence of glucose, these mitochondrial inhibitors reversibly blocked electrical activity; upon removal of the inhibitor, recovery of electrical activity followed a biphasic pattern. 7. The effects of mitochondrial inhibitors were partially reversed by 100 microM-quinine. 8. It is proposed that the membrane potential of the beta-cell in the absence of glucose is predominantly controlled by the [Ca2+]i-activated PK. It is further suggested that this permeability to K controls the level for glucose stimulation and leads to the generation of the burst pattern. PMID:381636

  11. RNA editing by ADAR2 is metabolically regulated in pancreatic islets and beta-cells.

    PubMed

    Gan, Zhenji; Zhao, Liyun; Yang, Liu; Huang, Ping; Zhao, Feng; Li, Wenjun; Liu, Yong

    2006-11-03

    RNA editing via the conversion of adenosine (A) to inosine (I) is catalyzed by two major families of adenosine deaminases acting on RNA (ADARs), ADAR1 and ADAR2. This genetic recoding process is known to play essential roles in the brain, due in part to changes in functional activities of edited neurotransmitter receptors and ion channels. Little is known, however, about the physiological regulation and function of A to I RNA editing in peripheral tissues and other biological processes. Here, we report that both ADAR1 and ADAR2 are expressed in the murine pancreatic islets, and ADAR2 is primarily localized in the islet endocrine cells. In contrast to ADAR1, ADAR2 transcripts in the pancreatic islets exhibit a nearly 2-fold increase in insulin-resistant mice chronically fed a high fat diet. Concurrent with this diet-induced metabolic stress, RNA editing in the islets is dramatically enhanced for the RNA transcripts encoding the ionotropic glutamate receptor subunit B. Moreover, ADAR2 protein expression is repressed in the islets under fuel deficiency condition during fasting, and this repression can be completely reversed by refeeding. We also show that, specifically in pancreatic beta-cell lines, not only the expression of ADAR2 but also the glutamate receptor subunit B editing and ADAR2 self-editing are markedly augmented in response to glucose at the physiological concentration for insulin secretion stimulation. Thus, RNA editing by ADAR2 in pancreatic islets and beta-cells is metabolically regulated by nutritional and energy status, suggesting that A to I RNA editing is most likely involved in the modulation of pancreatic islet and beta-cell function.

  12. Dose-dependent requirement of patched homologue 1 in mouse pancreatic beta cell mass.

    PubMed

    Nakayama, S; Arakawa, M; Uchida, T; Ogihara, T; Kanno, R; Ikeda, F; Azuma, K; Hirose, T; Kawamori, R; Fujitani, Y; Watada, H

    2008-10-01

    Ectopic activation of hedgehog (HH) signalling in pancreas induces various abnormal morphogenetic events in the pancreas. This study analysed the dose-dependent requirement of patched homologue 1 (PTCH1), a negative regulator of HH signalling on pancreatic development. We used a recessive spontaneous mutant mouse denoted as mes which carries a mutated Ptch1 resulting in deletion of the most carboxy-terminal cytoplasmic domain of the PTCH1 protein. In this study, we analysed pancreatic morphology in Ptch1 ( +/+ ), Ptch1 ( +/mes ), Ptch1 (+/-), Ptch1 ( mes/me ) (s) and Ptch1 (-/mes ) mouse embryos, as well as the islet mass in adult Ptch1 (+/+), Ptch1 (+/mes ) and Ptch1 (+/-) mice. Until embryonic day (E) 12.5, no obvious abnormality of pancreas was observed in any of the Ptch1 mutants. The levels of PDX1 and glucagon were also not evidently different among the mice genotypes studied. Thereafter, morphological abnormalities appeared in the Ptch1 mutant mice. The beta, alpha and exocrine cell masses decreased at E18.5 in parallel with increased HH signalling, with beta cell mass showing the highest sensitivity to HH signalling with a significant decrease even in Ptch1 (+/mes ) mice. Adult Ptch1 (+/-) mice also showed a significant decrease in beta cell mass compared with wild-type mice. Our findings indicate that the carboxy-terminal domain of Ptch1 is essential for pancreatic development. In addition, the loss of Ptch1 function decreases both the endocrine and exocrine cell mass in a dose-dependent manner, with beta cells particularly sensitive to changes in HH signalling.

  13. Effect of Hypertriglyceridemia on Beta Cell Mass and Function in ApoC3 Transgenic Mice*

    PubMed Central

    Liu, Yun-Zi; Cheng, Xiaoyun; Zhang, Ting; Lee, Sojin; Yamauchi, Jun; Xiao, Xiangwei; Gittes, George; Qu, Shen; Jiang, Chun-Lei; Dong, H. Henry

    2016-01-01

    Hypertriglyceridemia results from increased production and decreased clearance of triglyceride-rich very low-density lipoproteins, a pathological condition that accounts for heightened risk of ischemic vascular diseases in obesity and type 2 diabetes. Despite its intimate association with insulin resistance, whether hypertriglyceridemia constitutes an independent risk for beta cell dysfunction in diabetes is unknown. Answering this fundamental question is stymied by the fact that hypertriglyceridemia is intertwined with hyperglycemia and insulin resistance in obese and diabetic subjects. To circumvent this limitation, we took advantage of apolipoprotein C3 (ApoC3)-transgenic mice, a model with genetic predisposition to hypertriglyceridemia. We showed that ApoC3-transgenic mice, as opposed to age/sex-matched wild-type littermates, develop hypertriglyceridemia with concomitant elevations in plasma cholesterol and non-esterified fatty acid levels. Anti-insulin and anti-glucagon dual immunohistochemistry in combination with morphometric analysis revealed that ApoC3-transgenic and wild-type littermates had similar beta cell and alpha cell masses as well as islet size and architecture. These effects correlated with similar amplitudes of glucose-stimulated insulin secretion and similar degrees of postprandial glucose excursion in ApoC3-transgenic versus wild-type littermates. Oil Red O histology did not visualize lipid infiltration into islets, correlating with the lack of ectopic triglyceride and cholesterol depositions in the pancreata of ApoC3-transgenic versus wild-type littermates. ApoC3-transgenic mice, despite persistent hypertriglyceridemia, maintained euglycemia under both fed and fasting conditions without manifestation of insulin resistance and fasting hyperinsulinemia. Thus, hypertriglyceridemia per se is not an independent risk factor for beta cell dysfunction in ApoC3 transgenic mice. PMID:27226540

  14. Voltage-dependent metabolic regulation of Kv2.1 channels in pancreatic beta-cells.

    PubMed

    Yoshida, Masashi; Nakata, Masanori; Yamato, Shiho; Dezaki, Katsuya; Sugawara, Hitoshi; Ishikawa, San-e; Kawakami, Masanobu; Yada, Toshihiko; Kakei, Masafumi

    2010-05-28

    Voltage-gated potassium channels (Kv channels) play a crucial role in formation of action potentials in response to glucose stimulation in pancreatic beta-ells. We previously reported that the Kv channel is regulated by glucose metabolism, particularly by MgATP. We examined whether the regulation of Kv channels is voltage-dependent and mechanistically related with phosphorylation of the channels. In rat pancreatic beta-cells, suppression of glucose metabolism with low glucose concentrations of 2.8mM or less or by metabolic inhibitors decreased the Kv2.1-channel activity at positive membrane potentials, while increased it at potentials negative to -10 mV, suggesting that modulation of Kv channels by glucose metabolism is voltage-dependent. Similarly, in HEK293 cells expressing the recombinant Kv2.1 channels, 0mM but not 10mM MgATP modulated the channel activity in a manner similar to that in beta-cells. Both steady-state activation and inactivation kinetics of the channel were shifted toward the negative potential in association with the voltage-dependent modulation of the channels by cytosolic dialysis of alkaline phosphatase in beta-cells. The modulation of Kv-channel current-voltage relations were also observed during and after glucose-stimulated electrical excitation. These results suggest that the cellular metabolism including MgATP production and/or channel phosphorylation/dephosphorylation underlie the physiological modulation of Kv2.1 channels during glucose-induced insulin secretion.

  15. Bone marrow (BM) transplantation promotes beta-cell regeneration after acute injury through BM cell mobilization.

    PubMed

    Hasegawa, Yutaka; Ogihara, Takehide; Yamada, Tetsuya; Ishigaki, Yasushi; Imai, Junta; Uno, Kenji; Gao, Junhong; Kaneko, Keizo; Ishihara, Hisamitsu; Sasano, Hironobu; Nakauchi, Hiromitsu; Oka, Yoshitomo; Katagiri, Hideki

    2007-05-01

    There is controversy regarding the roles of bone marrow (BM)-derived cells in pancreatic beta-cell regeneration. To examine these roles in vivo, mice were treated with streptozotocin (STZ), followed by bone marrow transplantation (BMT; lethal irradiation and subsequent BM cell infusion) from green fluorescence protein transgenic mice. BMT improved STZ-induced hyperglycemia, nearly normalizing glucose levels, with partially restored pancreatic islet number and size, whereas simple BM cell infusion without preirradiation had no effects. In post-BMT mice, most islets were located near pancreatic ducts and substantial numbers of bromodeoxyuridine-positive cells were detected in islets and ducts. Importantly, green fluorescence protein-positive, i.e. BM-derived, cells were detected around islets and were CD45 positive but not insulin positive. Then to examine whether BM-derived cell mobilization contributes to this process, we used Nos3(-/-) mice as a model of impaired BM-derived cell mobilization. In streptozotocin-treated Nos3(-/-) mice, the effects of BMT on blood glucose, islet number, bromodeoxyuridine-positive cells in islets, and CD45-positive cells around islets were much smaller than those in streptozotocin-treated Nos3(+/+) controls. A series of BMT experiments using Nos3(+/+) and Nos3(-/-) mice showed hyperglycemia-improving effects of BMT to correlate inversely with the severity of myelosuppression and delay of peripheral white blood cell recovery. Thus, mobilization of BM-derived cells is critical for BMT-induced beta-cell regeneration after injury. The present results suggest that homing of donor BM-derived cells in BM and subsequent mobilization into the injured periphery are required for BMT-induced regeneration of recipient pancreatic beta-cells.

  16. The Herbal Medicine Cordyceps sinensis Protects Pancreatic Beta Cells from Streptozotocin-Induced Endoplasmic Reticulum Stress.

    PubMed

    Liu, Hong; Cao, Diyong; Liu, Hua; Liu, Xinghai; Mai, Wenli; Lan, Haitao; Huo, Wen; Zheng, Qian

    2016-08-01

    Our previous work found that Cordyceps sinensis (CS) improves the activity and secretory function of pancreatic islet beta cells. The objective was to observe a further possible role of CS in the protection of insulin-secreting cells. A rat model of type 2 diabetes mellitus was developed with streptozotocin (STZ) and a high-energy fat diet (HFD). CS was administered in the successful model of rats with type 2 diabetes. After 4 weeks, the biochemistry index of blood samples was measured, and pathologic observation was performed by immunohistochemistry. In the rats with type 2 diabetes induced by a HFD and STZ, the levels of fasting blood glucose and fasting insulin were elevated, and the insulin sensitivity index was decreased. Pathologic examination found an increased number of apoptotic cells, an elevated protein expression of pro-apoptotic C/EBP homologous protein (CHOP) and an increased c-Jun level by means of JNK phosphorylation, responsive to the endoplasmic reticulum stress of islet beta cells. With treatment by CS for 4 weeks, the elevated levels of both fasting blood glucose and fasting insulin in the rats with type 2 diabetes were significantly lower, and the decreased insulin sensitivity index was reversed. Compared to the control rats with type 2 diabetes, CS application significantly reduced the number of apoptotic cells and decreased protein expression of both CHOP and c-Jun. The herbal compound CS could protect pancreatic beta cells from the pro-apoptotic endoplasmic reticulum stress induced by HFD-STZ. This suggests an alternative approach to treating type 2 diabetes. Copyright © 2016 Canadian Diabetes Association. Published by Elsevier Inc. All rights reserved.

  17. Coefficient of failure: a methodology for examining longitudinal beta-cell function in Type 2 diabetes.

    PubMed

    Wallace, T M; Matthews, D R

    2002-06-01

    We describe a new method, the determination of the coefficient of failure, which allows the assessment of beta-cell failure from any index of glycaemia. Previous methods using glycaemic thresholds and calculating time-to-failure have systematic deficiencies relating to bias, reproducibility and statistical power. Analyses using threshold methodologies and conventional survival analysis have an intrinsic disadvantage in that they use categorical data and thus make no allowance for near-failure, or progression towards failure. In contrast, the coefficient of failure includes all data in the analysis and takes into account improvement of glycaemia as well as deterioration of glycaemia. We describe the use of a 'coefficient of failure' defined as the slope of the least-squares regression line of a glycaemic index vs. time calculated for each individual patient on constant monotherapy. We exemplify the method using HbA1c levels from data from patients on chlorpropamide (n = 64) or glibenclamide (n = 65) monotherapy in the Oxford cohort of the UKPDS. Chlorpropamide-treated patients showed a mean coefficient of failure of 0.34 HbA(1c)%/year (0.44%/year sd) and glibenclamide-treated patients 0.50 HbA(1c)%/year (0.50%/year sd) (P = 0.046; unpaired two-tailed t-test). Kolmogorov-Smirnov testing demonstrated that the coefficients did not differ significantly from a normal distribution (chlorpropamide P = 0.12; glibenclamide P = 0.13). The coefficient of failure gives an estimate of beta-cell failure using any index of glycaemia. The coefficient is not constrained by predetermined glycaemic thresholds for failure and it allows the rate of decline in beta-cell function to be determined on any therapy or combination of therapies.

  18. Genetic manipulation of insulin action and beta-cell function in mice.

    PubMed

    Lamothe, B; Duvillié, B; Cordonnier, N; Baudry, A; Saint-Just, S; Bucchini, D; Jami, J; Joshi, R L

    1998-05-01

    Transgenic and gene targeting approaches have now been applied to a number of genes in order to investigate the metabolic disorders that would result by manipulating insulin action or pancreatic beta-cell function in the mouse. The availability of such mutant mice will allow in the future to develop animal models in which the pathophysiologies resulting from polygenic defects might be reconstituted and studied in detail. Such animal models hopefully will lead to better understanding of complex polygenic diseases such as non-insulin-dependent diabetes mellitus (NIDDM).

  19. Age-Related Impairment of Pancreatic Beta-Cell Function: Pathophysiological and Cellular Mechanisms

    PubMed Central

    De Tata, Vincenzo

    2014-01-01

    The incidence of type 2 diabetes significantly increases with age. The relevance of this association is dramatically magnified by the concomitant global aging of the population, but the underlying mechanisms remain to be fully elucidated. Here, some recent advances in this field are reviewed at the level of both the pathophysiology of glucose homeostasis and the cellular senescence of pancreatic islets. Overall, recent results highlight the crucial role of beta-cell dysfunction in the age-related impairment of pancreatic endocrine function and delineate the possibility of new original therapeutic interventions. PMID:25232350

  20. Pancreatic beta-cell glucokinase: closing the gap between theoretical concepts and experimental realities.

    PubMed

    Matschinsky, F M; Glaser, B; Magnuson, M A

    1998-03-01

    There remains a wide gap between theoretical concepts and experimental realities in the enzyme kinetics and biochemical genetics of the pancreatic beta-cell glucokinase-glucose sensor. It is the goal of present efforts in many laboratories to bridge this gap. This perspective intends to provide a timely review of this crucial aspect of research in glucose homeostasis. It deals briefly with some fundamentals of glucokinase enzyme kinetics, offers some pertinent biochemical genetic considerations, takes stock of the current experimental database of the field by emphasizing human studies and referring to recent mouse studies, and ventures a few extrapolations into the future of this endeavor.

  1. Beta-cell hypertrophy in fa/fa rats is associated with basal glucose hypersensitivity and reduced SNARE protein expression.

    PubMed

    Chan, C B; MacPhail, R M; Sheu, L; Wheeler, M B; Gaisano, H Y

    1999-05-01

    In normal isolated beta-cells, the response to glucose is heterogeneous and characterized by an increasing number of secretory cells as glucose concentration rises (Pipeleers DG, Kiekens R, Ling Z, Wilikens A, Schuit F: Physiologic relevance of heterogeneity in the pancreatic beta-cell population. Diabetologia 37 (Suppl. 2):S57-S64, 1994). We hypothesized that fasting hyperinsulinemia in obesity might be explained by altered beta-cell heterogeneity of signal transduction mechanisms, possibly involving exocytotic proteins. Insulin secretion from individual beta-cells sorted according to the size of the islet donor (<125 microm, >250 microm, and intermediate diameter) was measured by reverse hemolytic plaque assay. Beta-cells from fa/fa rats were hypertrophied 25-40%, independent of donor islet size. This was accompanied by an increased proportion of secretory cells (recruitment) at 5.5-11.0 mmol/l glucose, increased secretion per cell at 2.8 mmol/l glucose, and decreased insulin content after acute glucose exposure without an increase in secretion per cell. Decreased expression of exocytotic (soluble N-ethylmaleimide-sensitive fusion protein receptor [SNARE]) proteins, vesicle-associated membrane protein isoform 2 (VAMP-2), synaptosomal protein of 25 kDa (SNAP-25), and syntaxin-1 and -2 in fa/fa beta-cells may contribute to the failure to sustain excessive plaque size at higher glucose concentrations. Fasting hyperinsulinemia may be maintained by increased recruitment and an exaggerated secretory response in all fa-derived islet populations. Glucose regulates beta-cell responsiveness in the short term, and these effects may involve altered expression of SNARE proteins.

  2. Dopamine D2-like receptors are expressed in pancreatic beta cells and mediate inhibition of insulin secretion.

    PubMed

    Rubí, Blanca; Ljubicic, Sanda; Pournourmohammadi, Shirin; Carobbio, Stefania; Armanet, Mathieu; Bartley, Clarissa; Maechler, Pierre

    2005-11-04

    Dopamine signaling is mediated by five cloned receptors, grouped into D1-like (D1 and D5) and D2-like (D2, D3 and D4) families. We identified by reverse transcription-PCR the presence of dopamine receptors from both families in INS-1E insulin-secreting cells as well as in rodent and human isolated islets. D2 receptor expression was confirmed by immunodetection revealing localization on insulin secretory granules of INS-1E and primary rodent and human beta cells. We then tested potential effects mediated by the identified receptors on beta cell function. Dopamine (10 microM) and the D2-like receptor agonist quinpirole (5 microM) inhibited glucose-stimulated insulin secretion tested in several models, i.e. INS-1E beta cells, fluorescence-activated cell-sorted primary rat beta cells, and pancreatic islets of rat, mouse, and human origin. Insulin exocytosis is controlled by metabolism coupled to cytosolic calcium changes. Measurements of glucose-induced mitochondrial hyperpolarization and ATP generation showed that dopamine and D2-like agonists did not inhibit glucose metabolism. On the other hand, dopamine decreased cell membrane depolarization as well as cytosolic calcium increases evoked by glucose stimulation in INS-1E beta cells. These results show for the first time that dopamine receptors are expressed in pancreatic beta cells. Dopamine inhibited glucose-stimulated insulin secretion, an effect that could be ascribed to D2-like receptors. Regarding the molecular mechanisms implicated in dopamine-mediated inhibition of insulin release, our results point to distal steps in metabolism-secretion coupling. Thus, the role played by dopamine in glucose homeostasis might involve dopamine receptors, expressed in pancreatic beta cells, modulating insulin release.

  3. Glucagon-like peptide-1 improves beta-cell antioxidant capacity via extracellular regulated kinases pathway and Nrf2 translocation.

    PubMed

    Fernández-Millán, E; Martín, M A; Goya, L; Lizárraga-Mollinedo, E; Escrivá, F; Ramos, S; Álvarez, C

    2016-06-01

    Oxidative stress plays an important role in the development of beta-cell dysfunction and insulin resistance, two major pathophysiological abnormalities of type 2 diabetes. Expression levels of antioxidant enzymes in beta cells are very low, rendering them more susceptible to damage caused by reactive oxygen species (ROS). Although the antioxidant effects of glucagon-like peptide-1 (GLP-1) and its analogs have been previously reported, the exact mechanisms involved are still unclear. In this study, we demonstrated that GLP-1 was able to effectively inhibit oxidative stress and cell death of INS-1E beta cells induced by the pro-oxidant tert-butyl hydroperoxide (tert-BOOH). Incubation with GLP-1 enhanced cellular levels of glutathione and the activity of its related enzymes, glutathione-peroxidase (GPx) and -reductase (GR) in beta cells. However, inhibition of ERK, but not of the PI3K/AKT pathway abolished, at least in part, the antioxidant effect of GLP-1. Moreover, ERK activation seems to be protein kinase A (PKA)-dependent because inhibition of PKA with H-89 was sufficient to block the GLP-1-derived protective effect on beta cells. GLP-1 likewise increased the synthesis of GR and favored the translocation of the nuclear transcription factor erythroid 2p45-related factor (Nrf2), a transcription factor implicated in the expression of several antioxidant/detoxificant enzymes. Glucose-stimulated insulin secretion was also preserved in beta-cells challenged with tert-BOOH but pre-treated with GLP-1, probably through the down-regulation of the mitochondrial uncoupling-protein2 (UCP2). Thus, our results provide additional mechanisms of action of GLP-1 to prevent oxidative damage in beta cells through the modulation of signaling pathways involved in antioxidant enzyme regulation. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Transcription factor Ets-1 links glucotoxicity to pancreatic beta cell dysfunction through inhibiting PDX-1 expression in rodent models.

    PubMed

    Chen, Fang; Sha, Min; Wang, Yanyang; Wu, Tijun; Shan, Wei; Liu, Jia; Zhou, Wenbo; Zhu, Yunxia; Sun, Yujie; Shi, Yuguang; Bleich, David; Han, Xiao

    2016-02-01

    'Glucotoxicity' is a term used to convey the negative effect of hyperglycaemia on beta cell function; however, the underlying molecular mechanisms that impair insulin secretion and gene expression are poorly defined. Our objective was to define the role of transcription factor v-ets avian erythroblastosis virus E26 oncogene homologue 1 (Ets-1) in beta cell glucotoxicity. Primary islets and Min6 cells were exposed to high glucose and Ets-1 expression was measured. Recombinant adenovirus and transgenic mice were used to upregulate Ets-1 expression in beta cells in vitro and in vivo, and insulin secretion was assessed. The binding activity of H3/H4 histone on the Ets-1 promoter, and that of forkhead box (FOX)A2, FOXO1 and Ets-1 on the Pdx-1 promoter was measured by chromatin immunoprecipitation and quantitative real-time PCR assay. High glucose induced upregulation of Ets-1 expression and hyperacetylation of histone H3 and H4 at the Ets-1 gene promoter in beta cells. Ets-1 overexpression dramatically suppressed insulin secretion and biosynthesis both in vivo and in vitro. Besides, Ets-1 overexpression increased the activity of FOXO1 but decreased that of FOXA2 binding to the pancreatic and duodenal homeobox 1 (PDX-1) homology region 2 (PH2), resulting in inhibition of Pdx-1 promoter activity and downregulation of PDX-1 expression and activity. In addition, high glucose promoted the interaction of Ets-1 and FOXO1, and the activity of Ets-1 binding to the Pdx-1 promoter. Importantly, PDX-1 overexpression reversed the defect in pancreatic beta cells induced by Ets-1 excess, while knockdown of Ets-1 prevented hyperglycaemia-induced dysfunction of pancreatic beta cells. Our observations suggest that Ets-1 links glucotoxicity to pancreatic beta cell dysfunction through inhibiting PDX-1 expression in type 2 diabetes.

  5. A transgene coding for a human insulin analog has a mitogenic effect on murine embryonic beta cells.

    PubMed Central

    Vincent, M T; Carroll, R J; Hammer, R E; Chan, S J; Guz, Y; Steiner, D F; Teitelman, G

    1995-01-01

    We have investigated the mitogenic effect of three mutant forms of human insulin on insulin-producing beta cells of the developing pancreas. We examined transgenic embryonic and adult mice expressing (i) human [AspB10]-proinsulin/insulin ([AspB10]ProIN/IN), produced by replacement of histidine by aspartic acid at position 10 of the B chain and characterized by an increased affinity for the insulin receptor; (ii) human [LeuA3]insulin, produced by the substitution of leucine for valine in position 3 of the A chain, which exhibits decreased receptor binding affinity; and (iii) human [LeuA3, AspB10]insulin "double" mutation. During development, beta cells of AspB10 embryos were twice as abundant and had a 3 times higher rate of proliferation compared with beta cells of littermate controls. The mitogenic effect of [AspB10]ProIN/IN was specific for embryonic beta cells because the rate of proliferation of beta cells of adults and of glucagon (alpha) cells and adrenal chromaffin cells of embryos was similar in AspB10 mice and controls. In contrast to AspB10 embryos, the number of beta cells in the LeuA3 and "double" mutant lines was similar to the number in controls. These findings indicate that the [AspB10]ProIN/IN analog increased the rate of fetal beta-cell proliferation. The mechanism or mechanisms that mediate this mitogenic effect remain to be determined. Images Fig. 1 Fig. 4 PMID:7603977

  6. [Impairment of pancreatic islet beta cell function induced by intermittent high glucose through oxidative and endoplasmic reticulum stress: experiment with rat pancreatic islet beta cells].

    PubMed

    Hou, Zhi-qiang; Li, Hong-liang; Zhao, Jia-jun; Li, Guang-wei

    2008-07-22

    To investigate the effect of intermittent high glucose (IHG) on the pancreatic islet beta-cell function and mechanism thereof. Rat pancreatic islet p-cells of the line INS-1 were cultured and randomly divided into 3 groups: IHG group exposed to fluctuating concentrations of glucose, stable high glucose (SHG) group exposed to 16. 7 mmol/L glucose, and control group exposed to normal concentration (5.5 mmol/L) glucose. 24, 48, and 72 hours later radioimmunoassay was used to detect the insulin secretion index (ISI). 72 h later, the concentration of insulin in the cells was detected with radioimmunoassay. The contents of oxidative stress markers, nitrotyrosine (NT) and 8-hydroxy-2-deoxyguanosine (8-OHdG) were detected. Real-time PCR was used to detect the mRNA expression of peroxiredoxin 1 (PDX-1), ATF-4, one of the transcription factors of the family bZIP, and insulin. Western blotting was used to detect the protein expression of ATF-4. The ISI of the IHG and SHG groups decreased time-dependently, The ISI of IHG and SHG groups were 0.64 +/- 0.11 and 1.31 +/- 0. 04 respectively, both significantly lower than that of the control group (1.67 +/- 0.23, both P < 0.05). The intracellular insulin contents of the IHG and SHG groups were (10.91 +/- 0.14) and (11.08 +/- 0.03) +/- U/microg respectively, both significantly lower than that of the control group [(12.37 +/- 0.37) microU/microg, both P < 0.05]. The intracellular concentrations of 8-OHdG and NT of the SHG and IHG groups, were significantly higher than those of the control group (all P < 0.01), and those of the IHG group were significantly higher than those of the SHG group (both P < 0.05). The mRNA and protein expression levels of ATF-4 of the IHG group were all significantly higher than those of the control group (all P < 0.05) and those of the IHG group were significantly higher than those of the SHG group (both P < 0.05). IHG and SHG induce severe impairment in pancreatic islet beta cell functions, especially IHG

  7. Differential gene expression in well-regulated and dysregulated pancreatic beta-cell (MIN6) sublines.

    PubMed

    Lilla, Valérie; Webb, Gene; Rickenbach, Katharina; Maturana, Andres; Steiner, Donald F; Halban, Philippe A; Irminger, Jean-Claude

    2003-04-01

    To identify genes involved in regulated insulin secretion, we have established and characterized two sublines derived from the mouse pancreatic beta-cell line MIN6, designated B1 and C3. They have a similar insulin content, but differ in their secretory properties. B1 responded to glucose in a concentration- and cell confluence-dependent manner, whereas C3 did not. B1 cells were stimulated by phorbol 12-myristate 13-acetate, leucine, arginine, glibenclamide, isobutylmethylxanthine, and KCl, whereas C3 did not respond (leucine, arginine, and glibenclamide) or responded to a lesser extent (isobutylmethylxanthine, phorbol 12-myristate 13-acetate, and KCl). Although intracellular Ca(2+) rose in response to glucose in B1 but not C3 cells, KCl increased intracellular Ca(2+) in a similar manner in both sublines. GLUT-1, GLUT-2, Kir6.2, and SUR1 expression was not significantly different between B1 and C3 cells, whereas E-cadherin was more abundantly expressed in B1 cells. A more complete list of differentially expressed genes was established by suppression subtractive hybridization and high density (Affymetrix) oligonucleotide microarrays. Genes were clustered according to known or putative function. Those involved in metabolism, intracellular signaling, cytoarchitecture, and cell adhesion are of potential interest. These two sublines should be useful for identification of the genes and mechanisms involved in regulated insulin secretion of the pancreatic beta-cell.

  8. Chemiluminescence Imaging of Superoxide Anion Detects Beta-Cell Function and Mass

    PubMed Central

    Bronsart, Laura L.; Stokes, Christian; Contag, Christopher H.

    2016-01-01

    Superoxide anion is produced during normal cellular respiration and plays key roles in cellular physiology with its dysregulation being associated with a variety of diseases. Superoxide anion is a short-lived molecule and, therefore, its homeostatic regulation and role in biology and disease requires dynamic quantification with fine temporal resolution. Here we validated coelenterazine as a reporter of intracellular superoxide anion concentration and used it as a dynamic measure both in vitro and in vivo. Chemiluminescence was dependent upon superoxide anion levels, including those produced during cellular respiration, and concentrations varied both kinetically and temporally in response to physiologically relevant fluctuations in glucose levels. In vivo imaging with coelenterazine revealed that beta cells of the pancreas have increased levels of superoxide anion, which acted as a measure of beta-cell function and mass and could predict the susceptibility of mice to diabetes mellitus. Glucose response and regulation are key elements of cellular physiology and organismal biology, and superoxide anion appears to play a fundamental and dynamic role in both of these processes. PMID:26752052

  9. Emergence of organized bursting in clusters of pancreatic beta-cells by channel sharing.

    PubMed Central

    Sherman, A; Rinzel, J; Keizer, J

    1988-01-01

    Pancreatic beta-cells in an intact Islet of Langerhans exhibit bursting electrical behavior. The Chay-Keizer model describes this using a calcium-activated potassium (K-Ca) channel, but cannot account for the irregular spiking of isolated beta-cells. Atwater I., L. Rosario, and E. Rojas, Cell Calcium. 4:451-461, proposed that the K-Ca channels, which are rarely open, are shared by several cells. This suggests that the chaotic behavior of isolated cells is stochastic. We have revised the Chay-Keizer model to incorporate voltage clamp data of Rorsman and Trube and extended it to include stochastic K-Ca channels. This model can describe the behavior of single cells, as well as that of clusters of cells tightly coupled by gap junctions. As the size of the clusters is increased, the electrical activity shows a transition from chaotic spiking to regular bursting. Although the model of coupling is over-simplified, the simulations lend support to the hypothesis that bursting is the result of channel sharing. PMID:2850029

  10. Beta cell antigens in type 1 diabetes: triggers in pathogenesis and therapeutic targets

    PubMed Central

    Mauvais, François-Xavier; Diana, Julien; van Endert, Peter

    2016-01-01

    Research focusing on type 1 diabetes (T1D) autoantigens aims to explore our understanding of these beta cell proteins in order to design assays for monitoring the pathogenic autoimmune response, as well as safe and efficient therapies preventing or stopping it. In this review, we will discuss progress made in the last 5 years with respect to mechanistic understanding, diagnostic monitoring, and therapeutic modulation of the autoantigen-specific cellular immune response in T1D. Some technical progress in monitoring tools has been made; however, the potential of recent technologies for highly multiplexed exploration of human cellular immune responses remains to be exploited in T1D research, as it may be the key to the identification of surrogate markers of disease progression that are still wanting. Detailed analysis of autoantigen recognition by T cells suggests an important role of non-conventional antigen presentation and processing in beta cell-directed autoimmunity, but the impact of this in human T1D has been little explored. Finally, therapeutic administration of autoantigens to T1D patients has produced disappointing results. The application of novel modes of autoantigen administration, careful translation of mechanistic understanding obtained in preclinical studies and in vitro with human cells, and combination therapies including CD3 antibodies may help to make autoantigen-based immunotherapy for T1D a success story in the future. PMID:27158463

  11. Recovery of the endogenous beta cell function in the NOD model of autoimmune diabetes.

    PubMed

    Zorina, Tatiana D; Subbotin, Vladimir M; Bertera, Suzanne; Alexander, Angela M; Haluszczak, Catherine; Gambrell, Beverley; Bottino, Rita; Styche, Alexis J; Trucco, Massimo

    2003-01-01

    In light of accumulating evidence that the endocrine pancreas has regenerative properties and that hematopoietic chimerism can abrogate destruction of beta cells in autoimmune diabetes, we addressed the question of whether recovery of physiologically adequate endogenous insulin regulation could be achieved in the nonobese diabetic (NOD) mice rendered allogeneic chimerae. Allogeneic bone marrow (BM) was transplanted into NOD mice at the preclinical and overtly clinical stages of the disease using lethal and nonlethal doses of radiation for recipient conditioning. Islets of Langerhans, syngeneic to the BM donors, were transplanted under kidney capsules of the overtly diabetic animals to sustain euglycemia for the time span required for recovery of the endogenous pancreas. Nephrectomies of the graft-bearing organs were performed 14 weeks later to confirm the restoration of endogenous insulin regulation. Reparative processes in the pancreata were assessed histologically and immunohistochemically. The level of chimerism in NOD recipients was evaluated by flow cytometric analysis. We have shown that as low as 1% of initial allogeneic chimerism can reverse the diabetogenic processes in islets of Langerhans in prediabetic NOD mice, and that restoration of endogenous beta cell function to physiologically sufficient levels is achievable even if the allogeneic BM transplantation is performed after the clinical onset of diabetes. If the same pattern of islet regeneration were shown in humans, induction of an autoimmunity-free status by establishment of a low level of chimerism, or other alternative means, might become a new therapy for type 1 diabetes.

  12. Beta Cell Regenerating Potential of Azadirachta indica (Neem) Extract in Diabetic Rats.

    PubMed

    McCalla, G; Parshad, O; Brown, P D; Gardner, M T

    2015-05-05

    This study evaluated the ability of 0.8% neem leaf extract (NLE) to treat diabetes mellitus by assessing its effects on blood glucose, insulin levels and islet morphology in streptozotocin (STZ)-induced diabetic Sprague-Dawley rats. Diabetes was induced in two to three-day old rat pups by STZ intraperitoneally (60 mg/kg), followed by a further 40 mg/kg dose 12-23 weeks later. The diabetic treated (DT) rats received 0.8% w/v NLE in tap water while diabetic control (DC) and normal control (NC) rats received water ad libitum. Body weight, water and chow consumption, and blood glucose were evaluated weekly. Blood and pancreas were collected at the end of the study to evaluate serum insulin and islet histology, respectively. Neem leaf extract (0.8%) improved weight gain and beta cell regeneration but did not reduce blood glucose. Serum insulin increased slightly in the treated group and three-fold in the DC group (p < 0.05). The results suggest that NLE has beta cell regenerating potential.

  13. Immune responses to an encapsulated allogeneic islet beta-cell line in diabetic NOD mice.

    PubMed

    Black, Sasha P; Constantinidis, Ioannis; Cui, Hong; Tucker-Burden, Carol; Weber, Collin J; Safley, Susan A

    2006-02-03

    Our goal is to develop effective islet grafts for treating type 1 diabetes. Since human islets are scarce, we evaluated the efficacy of a microencapsulated insulin-secreting conditionally transformed allogeneic beta-cell line (betaTC-tet) in non-obese diabetic mice treated with tetracycline to inhibit cell growth. Relatively low serum levels of tetracycline controlled proliferation of betaTC-tet cells without inhibiting effective control of hyperglycemia in recipients. There was no significant host cellular reaction to the allografts or host cell adherence to microcapsules, and host cytokine levels were similar to those of sham-operated controls. We conclude that encapsulated allogeneic beta-cell lines may be clinically relevant, because they effectively restore euglycemia and do not elicit a strong cellular immune response following transplantation. To our knowledge, this is the first extensive characterization of the kinetics of host cellular and cytokine responses to an encapsulated islet cell line in an animal model of type 1 diabetes.

  14. Cereulide food toxin, beta cell function and diabetes: Facts and hypotheses.

    PubMed

    Vangoitsenhoven, Roman; Maris, Michael; Overbergh, Lut; Van Loco, Joris; Mathieu, Chantal; Van der Schueren, Bart

    2015-07-01

    The incidence of both type 1 and type 2 diabetes is increasing and although environmental pollutants are believed to be potential culprits, the extent to which they can be held responsible remains uncertain. Some bacterial strains of the Bacillus cereus produce a toxin, cereulide, which is frequently found in starchy meals and which is difficult to eradicate from the food chain as it is highly resistant to heat, acidity and proteolysis. While cereulide is well known to cause acute emetic toxicity when ingested at high doses, several in vitro studies have shown that also extremely low doses of cereulide can be toxic, with beta cells being particularly sensitive. Mechanistically, such low doses impair the mitochondrial activity of the beta cells thereby leading to hampered insulin secretion and cell death, both key traits in the pathophysiology of diabetes. In vivo studies of chronic or repeated low dose exposure to cereulide are currently lacking, but should be performed to further clarify the true relevance of cereulide as a potential environmental contributor to the ongoing diabetes epidemic. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  15. BACE2 is stored in secretory granules of mouse and rat pancreatic beta cells.

    PubMed

    Finzi, Giovanna; Franzi, Francesca; Placidi, Claudia; Acquati, Francesco; Palumbo, Elisa; Russo, Antonella; Taramelli, Roberto; Sessa, Fausto; La Rosa, Stefano

    2008-01-01

    BACE2 is a protease homologous to BACE1 protein, an enzyme involved in the amyloid formation of Alzheimer disease (AD). However, despite the high homology between these two proteins, the biological role of BACE2 is still controversial, even though a few studies have suggested a pathogenetic role in sporadic inclusion-body myositis and hereditary inclusion-body myopathy, which are characterized by vacuolization of muscular fibers with intracellular deposits of proteins similar to those found in the brain of AD patients. Although BACE2 has also been identified in the pancreas, its function remains unknown and its specific localization in different pancreatic cell types has not been definitively ascertained. For these reasons, the authors have investigated the cellular and subcellular localization of BACE2 in normal rodent pancreases. BACE2 immunoreactivity was found in secretory granules of beta cells, co-stored with insulin and IAPP, while it was lacking in the other endocrine and exocrine cell types. The presence of BACE2 in secretory granules of beta cells suggests that it may play a role in diabetes-associated amyloidogenesis.

  16. Stimulation of the insulin secretory mechanism following barium accumulation in pancreatic beta-cells.

    PubMed

    Berggren, P O; Andersson, B; Hellman, B

    1982-06-08

    Electrothermal atomic absorption spectroscopy was employed for measuring barium in beta-cell-rich pancreatic islets microdissected from ob/ob-mice. Both the uptake and efflux of barium displayed two distinct phases. There was a 4-fold accumulation of barium into intracellular stores when its extracellular concentration was 0.26 mM. Unlike divalent cations with more extensive intracellular accumulation, the washout of Ba2+ was not inhibited by D-glucose. Ba2+ served as a substitute for Ca2+ both in maintaining the glucose metabolism after removal of extracellular Ca2+ and making it possible for glucose to stimulate insulin release. Furthermore, Ba2+ elicited insulin release in the absence of glucose and other secretagogues. The latter effect was reversible and was markedly potentiated under conditions known to increase the beta-cell content of cyclic AMP. It is likely that the observed actions of Ba2+ are mediated by Ca2+, since Ca2+ -dependent regulatory proteins, such as calmodulin, apparently cannot bind Ba2+ specifically.

  17. Maternal diabetes, programming of beta-cell disorders and intergenerational risk of type 2 diabetes.

    PubMed

    Chavey, A; Ah Kioon, M-D; Bailbé, D; Movassat, J; Portha, B

    2014-11-01

    A substantial body of evidence suggests that an abnormal intra-uterine milieu elicited by maternal metabolic disturbances as diverse as malnutrition, placental insufficiency, diabetes and obesity may be able to programme susceptibility of the foetus to later develop chronic degenerative diseases such as obesity, hypertension, cardiovascular diseases and type 2 diabetes (T2D). As insulin-producing cells have been placed centre stage in the development of T2D, this review examines developmental programming of the beta-cell mass (BCM) in various rodent models of maternal protein restriction, calorie restriction, overnutrition and diabetes. The main message is that whatever the initial maternal insult (F0 generation) and whether alone or in combination, it gives rise to the same programmed BCM outcome in the daughter generation (F1). The altered BCM phenotype in F1 females prohibits normal BCM adaptation during pregnancy and, thus, diabetes (gestational diabetes) ensues. This gestational diabetes is then passed from one generation (F1) to the next (F2, F3 and so on). This review highlights a number of studies that have identified epigenetic mechanisms that may contribute to altered BCM development and beta-cell failure, as observed in diabetes. In addition to their role in instilling the programmed defect, these non-genomic mechanisms may also be involved in its intergenerational transmission. Copyright © 2014. Published by Elsevier Masson SAS.

  18. Chemiluminescence Imaging of Superoxide Anion Detects Beta-Cell Function and Mass.

    PubMed

    Bronsart, Laura L; Stokes, Christian; Contag, Christopher H

    2016-01-01

    Superoxide anion is produced during normal cellular respiration and plays key roles in cellular physiology with its dysregulation being associated with a variety of diseases. Superoxide anion is a short-lived molecule and, therefore, its homeostatic regulation and role in biology and disease requires dynamic quantification with fine temporal resolution. Here we validated coelenterazine as a reporter of intracellular superoxide anion concentration and used it as a dynamic measure both in vitro and in vivo. Chemiluminescence was dependent upon superoxide anion levels, including those produced during cellular respiration, and concentrations varied both kinetically and temporally in response to physiologically relevant fluctuations in glucose levels. In vivo imaging with coelenterazine revealed that beta cells of the pancreas have increased levels of superoxide anion, which acted as a measure of beta-cell function and mass and could predict the susceptibility of mice to diabetes mellitus. Glucose response and regulation are key elements of cellular physiology and organismal biology, and superoxide anion appears to play a fundamental and dynamic role in both of these processes.

  19. PPARγ Activation Attenuates Glycated-Serum Induced Pancreatic Beta-Cell Dysfunction through Enhancing Pdx1 and Mafa Protein Stability

    PubMed Central

    Zhu, Yunxia; Ma, Ai; Zhang, Hongxiu; Li, Chaojun

    2013-01-01

    Pancreatic-duodenal homeobox-1 (Pdx1) and v-maf musculoaponeurotic fibrosarcoma oncogene homolog A (Mafa) play important roles in sustaining the pancreatic beta-cell differentiation phenotype. Peroxisome proliferator-activated receptor-γ (PPARγ) is also a regulator of cell differentiation. Our previous study revealed that glycated serum (GS) causes beta-cell dedifferentiation by down-regulating beta-cell specific genes, such as insulin and Pdx1. Here, we show that GS enhanced the cellular accumulation of ubiquitin-conjugated proteins, including Pdx1 and Mafa, in pancreatic beta-cells. Pharmacologic inhibition of proteolytic activity restored the protein levels of Pdx1 and Mafa, whereas inhibition of de novo protein synthesis accelerated their degradation. These findings suggest that both Pdx1 and Mafa are regulated at the post-transcriptional level. We further show that activation of PPARγ could restore GS-induced reduction of Pdx1 and Mafa protein levels, leading to improved insulin secretion and synthesis. Moreover, ectopic expression of Bcl-xl, a mitochondrial regulator, also restored Pdx1 and Mafa protein levels, linking mitochondrial function to Pdx1 and Mafa stability. Taken together, our results identify a key role of PPARγ in regulating pancreatic beta-cell function by improving the stability of Pdx1 and Mafa proteins. PMID:23424659

  20. The control of insulin secretion by adipokines: current evidence for adipocyte-beta cell endocrine signalling in metabolic homeostasis.

    PubMed

    Cantley, James

    2014-10-01

    Metabolic homeostasis is maintained by the coordinated action of multiple organ systems. Insulin secretion is often enhanced during obesity or insulin resistance to maintain glucose and lipid homeostasis, whereas a loss of insulin secretion is associated with type 2 diabetes. Adipocytes secrete hormones known as adipokines which act on multiple cell types to regulate metabolism. Many adipokines have been shown to influence beta cell function by enhancing or inhibiting insulin release or by influencing beta cell survival. Insulin, in turn, regulates lipolysis and promotes glucose uptake and lipid storage in adipocytes. As adipokine secretion and action is strongly influenced by obesity, this provides a potential route by which beta cell function is coordinated with adiposity, independently of alterations in blood glucose or lipid levels. In this review, I assess the evidence for the direct regulation of beta cell function by the adipokines leptin, adiponectin, extracellular nicotinamide phosphoribosyltransferase, apelin, resistin, retinol binding protein 4, fibroblast growth factor 21, nesfatin-1 and fatty acid binding protein 4. I summarise in vitro and in vivo data and discuss the influence of obesity and diabetes on circulating adipokine concentrations, along with the potential for influencing beta cell function in human physiology. Finally, I highlight future research questions that are likely to yield new insights into the exciting field of insulinotropic adipokines.

  1. Beta Cell Formation in vivo Through Cellular Networking, Integration and Processing (CNIP) in Wild Type Adult Mice.

    PubMed

    Doiron, Bruno; Hu, Wenchao; DeFronzo, Ralph A

    2016-01-01

    Insulin replacement therapy is essential in type 1 diabetic individuals and is required in ~40- 50% of type 2 diabetics during their lifetime. Prior attempts at beta cell regeneration have relied upon pancreatic injury to induce beta cell proliferation, dedifferentiation and activation of the embryonic pathway, or stem cell replacement. We report an alternative method to transform adult non-stem (somatic) cells into pancreatic beta cells. The Cellular Networking, Integration and Processing (CNIP) approach targets cellular mechanisms involved in pancreatic function in the organ's adult state and utilizes a synergistic mechanism that integrates three important levels of cellular regulation to induce beta cell formation: (i) glucose metabolism, (ii) membrane receptor function, and (iii) gene transcription. The aim of the present study was to induce pancreatic beta cell formation in vivo in adult animals without stem cells and without dedifferentiating cells to recapitulate the embryonic pathway as previously published (1-3). Our results employing CNIP demonstrate that: (i) insulin secreting cells can be generated in adult pancreatic tissue in vivo and circumvent the problem of generating endocrine (glucagon and somatostatin) cells that exert deleterious effects on glucose homeostasis, and (ii) longterm normalization of glucose tolerance and insulin secretion can be achieved in a wild type diabetic mouse model. The CNIP cocktail has the potential to be used as a preventative or therapeutic treatment or cure for both type 1 and type 2 diabetes.

  2. The protective activity of Urtica dioica leaves on blood glucose concentration and beta-cells in streptozotocin-diabetic rats.

    PubMed

    Golalipour, Mohammad Jafar; Khori, Vahid

    2007-04-15

    This study was done to determine the protective activity of the hydroalcholic extract of Urtica dioica leaves on Hyperglycemia and beta-cells in hyperglycemic rats. Thirty Wistar rats were allocated in groups of normal, Diabetic and treatment. Hyperglycemia in Rats induced by 80 mg kg(-1) streptozotocin. In treatment group, animals received hydroalcholic extract of Urtica dioica 100 mg kg(-1) day(-1) for five days, intraperitoneally and then hyperglycemia induced by streptozotocin. The blood glucose concentration was measured by using a Glucometer in 1st, 3rd and 5th weeks. In the end of 5th weeks the animals in each group were sacrificed by anesthesia and whole pancreas in three groups extracted and fixed in bouin's fluid and stained by chromealum hematoxiline-phloxine and beta cells were counted in three groups by Olympus microscope. Mean +/- SE of blood glucose concentrations in the end of fifth weeks were 99.4 +/-5.0, 454.7 +/- 34.5 and 303.6 +/- 100.6 in control, diabetic and treatment groups, respectively (p < 0.05). The percentages of beta-cells in control, diabetic and treatment groups were 73.6, 1.9 and 22.9%, respectively. The percentage of beta-cells in treatment group comparing with diabetic group was significant (p < 0.05). This study showed that the protective administration of hydroalcholic extract of Urtica dioica has hypoglycemic effect and protective activity of beta-cells of langerhans in hyperglycemic rats.

  3. Bioluminescence Imaging Reveals Dynamics of Beta Cell Loss in the Non-Obese Diabetic (NOD) Mouse Model

    PubMed Central

    Poffenberger, Greg; Dula, Adrienne N.; Moore, Daniel J.; Powers, Alvin C.

    2013-01-01

    We generated a mouse model (MIP-Luc-VU-NOD) that enables non-invasive bioluminescence imaging (BLI) of beta cell loss during the progression of autoimmune diabetes and determined the relationship between BLI and disease progression. MIP-Luc-VU-NOD mice displayed insulitis and a decline in bioluminescence with age which correlated with beta cell mass, plasma insulin, and pancreatic insulin content. Bioluminescence declined gradually in female MIP-Luc-VU-NOD mice, reaching less than 50% of the initial BLI at 10 weeks of age, whereas hyperglycemia did not ensue until mice were at least 16 weeks old. Mice that did not become diabetic maintained insulin secretion and had less of a decline in bioluminescence than mice that became diabetic. Bioluminescence measurements predicted a decline in beta cell mass prior to the onset of hyperglycemia and tracked beta cell loss. This model should be useful for investigating the fundamental processes underlying autoimmune diabetes and developing new therapies targeting beta cell protection and regeneration. PMID:23483929

  4. Glucokinase and IRS-2 are required for compensatory beta cell hyperplasia in response to high-fat diet-induced insulin resistance.

    PubMed

    Terauchi, Yasuo; Takamoto, Iseki; Kubota, Naoto; Matsui, Junji; Suzuki, Ryo; Komeda, Kajuro; Hara, Akemi; Toyoda, Yukiyasu; Miwa, Ichitomo; Aizawa, Shinichi; Tsutsumi, Shuichi; Tsubamoto, Yoshiharu; Hashimoto, Shinji; Eto, Kazuhiro; Nakamura, Akinobu; Noda, Mitsuhiko; Tobe, Kazuyuki; Aburatani, Hiroyuki; Nagai, Ryozo; Kadowaki, Takashi

    2007-01-01

    Glucokinase (Gck) functions as a glucose sensor for insulin secretion, and in mice fed standard chow, haploinsufficiency of beta cell-specific Gck (Gck(+/-)) causes impaired insulin secretion to glucose, although the animals have a normal beta cell mass. When fed a high-fat (HF) diet, wild-type mice showed marked beta cell hyperplasia, whereas Gck(+/-) mice demonstrated decreased beta cell replication and insufficient beta cell hyperplasia despite showing a similar degree of insulin resistance. DNA chip analysis revealed decreased insulin receptor substrate 2 (Irs2) expression in HF diet-fed Gck(+/-) mouse islets compared with wild-type islets. Western blot analyses confirmed upregulated Irs2 expression in the islets of HF diet-fed wild-type mice compared with those fed standard chow and reduced expression in HF diet-fed Gck(+/-) mice compared with those of HF diet-fed wild-type mice. HF diet-fed Irs2(+/-) mice failed to show a sufficient increase in beta cell mass, and overexpression of Irs2 in beta cells of HF diet-fed Gck(+/-) mice partially prevented diabetes by increasing beta cell mass. These results suggest that Gck and Irs2 are critical requirements for beta cell hyperplasia to occur in response to HF diet-induced insulin resistance.

  5. Symmetric Fold/Super-Hopf Bursting, Chaos and Mixed-Mode Oscillations in Pernarowski Model of Pancreatic Beta-Cells

    NASA Astrophysics Data System (ADS)

    Fallah, Haniyeh

    Pancreatic beta-cells produce insulin to regularize the blood glucose level. Bursting is important in beta cells due to its relation to the release of insulin. Pernarowski model is a simple polynomial model of beta-cell activities indicating bursting oscillations in these cells. This paper presents bursting behaviors of symmetric type in this model. In addition, it is shown that the current system exhibits the phenomenon of period doubling cascades of canards which is a route to chaos. Canards are also observed symmetrically near folds of slow manifold which results in a chaotic transition between n and n + 1 spikes symmetric bursting. Furthermore, mixed-mode oscillations (MMOs) and combination of symmetric bursting together with MMOs are illustrated during the transition between symmetric bursting and continuous spiking.

  6. [Proliferation of beta cells after syngeneic transplantation of isolated Langerhans cells into the spleens of diabetic rats].

    PubMed

    Wohlrab, F; Schmidt, S; Kloeting, I; Wilke, B; Cossel, L

    1990-01-01

    Syngeneic transplantation of cultured and functionally characterized neonatal islet into the spleen of streptozotocin diabetic Lewis rats resulted in long time survival up to 200 days and in plasma glucose levels lower than 9 mmol/l. The daily plasma glucose profile of transplanted rats had shown significantly above that of non diabetic control rats. 200 days after transplantation morphologically intact, insulin containing beta-cells were demonstrable in the spleen, thus demonstrating the long-term survival of functioning islet cells. Proliferation of beta-cells was shown in the transplanted islets. In addition, beta-cell clusters were found which derived from pancreatic ductules transplanted together with the isolated islets into the spleen. Mitose were visible within ductular epithelial cells. The proliferative response of islets after intrasplenic transplantation is probably the result of a long-term stimulation by slightly enhanced plasma glucose values of the transplanted acceptors compared to control animals.

  7. Phosphorylation events implicating p38 and PI3K mediate tungstate-effects in MIN6 beta cells.

    PubMed

    Piquer, Sandra; Barceló-Batllori, Sílvia; Julià, Marta; Marzo, Nuria; Nadal, Belen; Guinovart, Joan J; Gomis, Ramon

    2007-06-29

    Oral administration of sodium tungstate is an effective treatment for diabetes in animal models. Several lines of evidence indicate the pancreatic beta cell as one of the targets of tungstate action. Here, we examined the molecular mechanism by which this compound exerts its effects on the beta cell line MIN6. Tungstate treatment induced phosphorylation and subsequent activation of p38 and PI3K which in turn are implicated in tungstate PDX-1 nuclear localization and activation. Although no effect was observed in glucose-induced insulin secretion we found that tungstate activates basal insulin release, a process driven, at least in part, by activation of p38. These results show a direct involvement of p38 and PI3K phosphorylation in the mechanism of action of tungstate in the beta cell.

  8. Phosphorylation events implicating p38 and PI3K mediate tungstate-effects in MIN6 beta cells

    SciTech Connect

    Piquer, Sandra; Gomis, Ramon . E-mail: rgomis@clinic.ub.es

    2007-06-29

    Oral administration of sodium tungstate is an effective treatment for diabetes in animal models. Several lines of evidence indicate the pancreatic beta cell as one of the targets of tungstate action. Here, we examined the molecular mechanism by which this compound exerts its effects on the beta cell line MIN6. Tungstate treatment induced phosphorylation and subsequent activation of p38 and PI3K which in turn are implicated in tungstate PDX-1 nuclear localization and activation. Although no effect was observed in glucose-induced insulin secretion we found that tungstate activates basal insulin release, a process driven, at least in part, by activation of p38. These results show a direct involvement of p38 and PI3K phosphorylation in the mechanism of action of tungstate in the beta cell.

  9. Evidence for allograft rejection in an islet transplant recipient and effect on beta-cell secretory capacity.

    PubMed

    Rickels, Michael R; Kamoun, Malek; Kearns, Jane; Markmann, James F; Naji, Ali

    2007-07-01

    The majority of islet transplant recipients experience a gradual decline in islet graft function, but the identification of islet-specific immune responses remains uncommon. The aim was to present a case in which decline in islet graft function was accompanied by the appearance of islet donor-specific alloantibodies and demonstrate the effect on beta-cell secretory capacity, an estimate of functional beta-cell mass. The study was conducted at the Transplant Center and General Clinical Research Center of the University of Pennsylvania. A 42-yr-old woman with type 1 diabetes who had a living-related kidney transplant received two intraportal islet infusions of a total 17,525 islet equivalents per kg body weight under daclizumab, prednisone, tacrolimus, and rapamycin immunosuppression. She became insulin independent, but 4 months later, the rapamycin was discontinued for associated colitis. She remained normoglycemic for another 6 months before manifesting impaired fasting glucose and requiring 5-10 U insulin daily. The decline in clinical islet graft function coincided with the detection of islet donor-specific human leukocyte antigen class I antibodies. Beta-cell function and secretory capacity were assessed by the insulin secretory responses to iv glucose, arginine (AIR(arg)), and glucose-potentiated arginine (AIR(pot)) before and at alloantibody detection. The acute insulin response to glucose was almost entirely lost, whereas the AIR(arg) and AIR(pot) both decreased by approximately 50%. Because the AIR(pot), a measure of beta-cell secretory capacity, provides an estimate of functional beta-cell mass, this case documents that islet graft loss can coincide with donor human leukocyte antigen sensitization and that the effect on beta-cell mass may be best estimated from the AIR(arg) or AIR(pot).

  10. Serum CA19-9 Level Associated with Metabolic Control and Pancreatic Beta Cell Function in Diabetic Patients

    PubMed Central

    Yu, Haoyong; Li, Ruixia; Zhang, Lei; Chen, Haibing; Bao, Yuqian; Jia, Weiping

    2012-01-01

    CA19-9 is a tumor-associated antigen. It is also a marker of pancreatic tissue damage that might be caused by diabetes. Long-term poor glycemic control may lead to pancreatic beta cell dysfunction which is reflected by elevated serum CA19-9 level. Intracellular cholesterol accumulation leads to islet dysfunction and impaired insulin secretion which provide a new lipotoxic model. This study firstly found total cholesterol was one of the independent contributors to CA19-9. Elevated serum CA19-9 level in diabetic patients may indicate further investigations of glycemic control, pancreatic beta cell function, and total cholesterol level. PMID:22778715

  11. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic {beta} cells

    SciTech Connect

    Kumar, Divya P.; Rajagopal, Senthilkumar; Mahavadi, Sunila; Mirshahi, Faridoddin; Grider, John R.; Murthy, Karnam S.; Sanyal, Arun J.

    2012-10-26

    Highlights: Black-Right-Pointing-Pointer G protein coupled receptor TGR5 is expressed in mouse and human islets. Black-Right-Pointing-Pointer TGR5 is coupled to activation of Gs and Ca{sup 2+} release via cAMP/Epac/PLC-{epsilon} pathway. Black-Right-Pointing-Pointer Activation of TGR5 by bile salts and selective ligands causes insulin secretion. Black-Right-Pointing-Pointer TGR5 could be a potential therapeutic target to treat diabetes. -- Abstract: Bile acids act as signaling molecules and stimulate the G protein coupled receptor, TGR5, in addition to nuclear farnesoid X receptor to regulate lipid, glucose and energy metabolism. Bile acid induced activation of TGR5 in the enteroendocrine cells promotes glucagon like peptide-1 (GLP-1) release, which has insulinotropic effect in the pancreatic {beta} cells. In the present study, we have identified the expression of TGR5 in pancreatic {beta} cell line MIN6 and also in mouse and human pancreatic islets. TGR5 selective ligands, oleanolic acid (OA) and INT-777 selectively activated G{alpha}{sub s} and caused an increase in intracellular cAMP and Ca{sup 2+}. OA and INT-777 also increased phosphoinositide (PI) hydrolysis and the increase was blocked by NF449 (a selective G{alpha}{sub s} inhibitor) or (U73122) (PI hydrolysis inhibitor). OA, INT-777 and lithocholic acid increased insulin release in MIN6 and human islets and the increase was inhibited by treatment with NF449, (U73122) or BAPTA-AM (chelator of calcium), but not with myristoylated PKI (PKA inhibitor), suggesting that the release is dependent on G{sub s}/cAMP/Ca{sup 2+} pathway. 8-pCPT-2 Prime -O-Me-cAMP, a cAMP analog, which activates Epac, but not PKA also stimulated PI hydrolysis. In conclusion, our study demonstrates that the TGR5 expressed in the pancreatic {beta} cells regulates insulin secretion and highlights the importance of ongoing therapeutic strategies targeting TGR5 in the control of glucose homeostasis.

  12. Immunohistochemical evidence of Orexin-A in the pancreatic beta cells of domestic animals.

    PubMed

    Dall'Aglio, C; Pedini, V; Scocco, P; Boiti, C; Ceccarelli, P

    2010-10-01

    A large body of information proves that Orexin-A is present in the pancreatic endocrine cells of humans and laboratory animals; more detailed studies identify Orexin-A-immunopositive cells as beta cells. Because no data have been reported on the pancreas of domestic animals, we investigated the presence and the distribution of cells containing Orexin-A in the pancreas of cattle, sheep and pigs by means of immunohistochemical techniques. Using a polyclonal antibody against Orexin-A, the immunopositive reaction was identified in the cytoplasm of many insular cells in the three species studied. Double immunohistochemical staining, using a polyclonal anti-insulin antibody, showed that Orexin-A is co-expressed with insulin. Our results, besides showing the presence of Orexin-A in the endocrine pancreas of domestic animals, together with data present in the literature, could contribute to the understanding of complex mechanisms regulating the functionality of the endocrine pancreas in domestic animals.

  13. Is Transforming Stem Cells to Pancreatic Beta Cells Still the Holy Grail for Type 2 Diabetes?

    PubMed

    Kahraman, Sevim; Okawa, Erin R; Kulkarni, Rohit N

    2016-08-01

    Diabetes is a progressive disease affecting millions of people worldwide. There are several medications and treatment options to improve the life quality of people with diabetes. One of the strategies for the treatment of diabetes could be the use of human pluripotent stem cells or induced pluripotent stem cells. The recent advances in differentiation of stem cells into insulin-secreting beta-like cells in vitro make the transplantation of the stem cell-derived beta-like cells an attractive approach for treatment of type 1 and type 2 diabetes. While stem cell-derived beta-like cells provide an unlimited cell source for beta cell replacement therapies, these cells can also be used as a platform for drug screening or modeling diseases.

  14. Transient receptor potential M3 channels are ionotropic steroid receptors in pancreatic beta cells.

    PubMed

    Wagner, Thomas F J; Loch, Sabine; Lambert, Sachar; Straub, Isabelle; Mannebach, Stefanie; Mathar, Ilka; Düfer, Martina; Lis, Annette; Flockerzi, Veit; Philipp, Stephan E; Oberwinkler, Johannes

    2008-12-01

    Transient receptor potential (TRP) cation channels are renowned for their ability to sense diverse chemical stimuli. Still, for many members of this large and heterogeneous protein family it is unclear how their activity is regulated and whether they are influenced by endogenous substances. On the other hand, steroidal compounds are increasingly recognized to have rapid effects on membrane surface receptors that often have not been identified at the molecular level. We show here that TRPM3, a divalent-permeable cation channel, is rapidly and reversibly activated by extracellular pregnenolone sulphate, a neuroactive steroid. We show that pregnenolone sulphate activates endogenous TRPM3 channels in insulin-producing beta cells. Application of pregnenolone sulphate led to a rapid calcium influx and enhanced insulin secretion from pancreatic islets. Our results establish that TRPM3 is an essential component of an ionotropic steroid receptor enabling unanticipated crosstalk between steroidal and insulin-signalling endocrine systems.

  15. Sex effect on insulin secretion and mitochondrial function in pancreatic beta cells of elderly Wistar rats.

    PubMed

    Li, Tianyi; Jiao, Wenjun; Li, Weifang; Li, Hua

    2016-08-01

    Glucose tolerance progressively declines with age, and there is a high prevalence of type 2 diabetes in the elderly people. Previous studies have reported the sex differences in risk for type 2 diabetes, especially in the elderly people, whereas reasons for these sex differences remain poorly understood. This study aims to evaluate the effect of sex on glucose-stimulated insulin secretion and mitochondrial function in pancreatic beta cells of Wistar rats. 3-month-old and 18-month-old Wistar rats of both sexes were used. Insulin secretion of islets was analyzed by glucose-stimulated insulin secretion and islet perifusion assays; ATP content and oxygen consumption rate of islets were determined to evaluate the mitochondrial function. Insulin secretion of islets under high glucose conditions declined significantly with age in both sexes. Glucose-stimulated insulin secretion of elderly female groups was markedly higher than that of male groups under high glucose conditions. Importantly, islets from elderly female groups showed higher mitochondrial function compared with male counterparts, evidenced by higher ATP content and oxygen consumption rate under high glucose conditions. It was also noted that mitochondrial biogenesis of islets from elderly female rats was significant higher compared with male rats. There were notable increases in expression of genes involved in mitochondrial biogenesis in islets from elderly female rats compared with male rats. This study demonstrates a sex dimorphism in the age-associated impairment of pancreatic beta cell function in elderly rats, while the potential mechanism may be related to the sexual differences in mitochondrial biogenesis and function.

  16. UCP-2 and UCP-3 Proteins Are Differentially Regulated in Pancreatic Beta-Cells

    PubMed Central

    Li, Yunfeng; Maedler, Kathrin; Shu, Luan; Haataja, Leena

    2008-01-01

    Background Increased uncoupling protein-2 (UCP-2) expression has been associated with impaired insulin secretion, whereas UCP-3 protein levels are decreased in the skeleton muscle of type-2 diabetic subjects. In the present studies we hypothesize an opposing effect of glucose on the regulation of UCP-2 and UCP-3 in pancreatic islets. Methodology Dominant negative UCP-2 and wild type UCP-3 adenoviruses were generated, and insulin release by transduced human islets was measured. UCP-2 and UCP-3 mRNA levels were determined using quantitative PCR. UCP-2 and UCP-3 protein expression was investigated in human islets cultured in the presence of different glucose concentrations. Human pancreatic sections were analyzed for subcellular localization of UCP-3 using immunohistochemistry. Principal Findings Dominant negative UCP-2 expression in human islets increased insulin secretion compared to control islets (p<0.05). UCP-3 mRNA is expressed in human islets, but the relative abundance of UCP-2 mRNA was 8.1-fold higher (p<0.05). Immunohistochemical analysis confirmed co-localization of UCP-3 protein with mitochondria in human beta-cells. UCP-2 protein expression in human islets was increased ∼2-fold after high glucose exposure, whereas UCP-3 protein expression was decreased by ∼40% (p<0.05). UCP-3 overexpression improved glucose-stimulated insulin secretion. Conclusions UCP-2 and UCP-3 may have distinct roles in regulating beta-cell function. Increased expression of UCP-2 and decreased expression of UCP-3 in humans with chronic hyperglycemia may contribute to impaired glucose-stimulated insulin secretion. These data imply that mechanisms that suppress UCP-2 or mechanisms that increase UCP-3 expression and/or function are potential therapeutic targets to offset defects of insulin secretion in humans with type-2 diabetes. PMID:18167556

  17. Protein Synthesis in Pancreatic Beta Cells of the Normal and Diabetic Egyptian Sand Rat (Psammomys obesus)

    PubMed Central

    Molleson, Ann L.; Moses, Montrose J.; Hackel, Donald B.

    1973-01-01

    The pattern of protein synthesis was studied in the pancreatic beta cells of the Egyptian sand rat (Psammomys obesus). When fed a standard Purina Laboratory Chow diet instead of a leafy vegetable diet, these animals develop the characteristic signs of diabetes mellitus. Tritiated leucine was injected intravenously into pairs of sand rats (one on a vegetable diet and one on a Purina Laboratory Chow diet). Two pairs of animals were sacrificed at 5-, 20- and 60-minute intervals, and pancreatic tissue was studied by electron microscopic autoradiography. At 5 minutes, the relative grain density was greatest over the rough endoplasmic reticulum; at 20 minutes it was greatest over the Golgi complex and at 60 minutes, over the granules. There were no statistically significant differences in the relative grain densities over the rough endoplasmic reticulum, over the Golgi complex or over the secretion granules between the sand rats on the vegetable diet and Chow diet. These results show that in the early phase of the development of diabetes mellitus, the pattern of protein synthesis in the beta cells of the normal and diabetic sand rat compares with that of other endocrine glands. The tritiated leucine was apparently incorporated into the newly synthesized secretory product in the rough endoplasmic reticulum during the first 5 minutes. The formed product migrated to the Golgi complex at 20 minutes, and at 1 hour was seen mainly over the light granules. In addition, there was no obvious difference in this pattern of protein synthesis between the normal and diabetic sand rats. This suggests that the secretory product, considered to be mainly insulin, is produced in the usual or in increased amounts, but it is not fully utilized by the diabetic animal and remains in circulation, thus increasing the plasma insulin level. ImagesFig 1Fig 2Fig 3Fig 4Fig 5Fig 6 PMID:4586126

  18. Dynamin-mediated Nephrin Phosphorylation Regulates Glucose-stimulated Insulin Release in Pancreatic Beta Cells*

    PubMed Central

    Jeon, Jongmin; Leibiger, Ingo; Moede, Tilo; Walter, Britta; Faul, Christian; Maiguel, Dony; Villarreal, Rodrigo; Guzman, Johanna; Berggren, Per-Olof; Mundel, Peter; Ricordi, Camillo; Merscher-Gomez, Sandra; Fornoni, Alessia

    2012-01-01

    We have previously demonstrated a role for Nephrin in glucose stimulated insulin release (GSIR). We now hypothesize that Nephrin phosphorylation is required for GSIR and that Dynamin influences Nephrin phosphorylation and function. MIN6-C3 Nephrin-deficient pancreatic beta cells and human islets were transfected with WT-Nephrin or with a mutant Nephrin in which the tyrosine residues responsible for SH2 domain binding were substituted with phenylalanine (3YF-Nephrin). GSIR and live images of Nephrin and vesicle trafficking were studied. Immunoprecipitation experiments and overexpression of WT-Dynamin or dominant negative Dynamin mutant (K44A-Dynamin) in WT-Nephrin, 3YF-Nephrin, or Nephrin siRNA-transfected cells were utilized to study Nephrin-Dynamin interaction. In contrast to WT-Nephrin or to single tyrosine mutants, 3YF-Nephrin did not positively affect GSIR and led to impaired cell-cell contacts and vesicle trafficking. K44A-Dynamin prevented the effect of Nephrin on GSIR in the absence of protein-protein interaction between Nephrin and Dynamin. Nephrin gene silencing abolished the positive effects of WT-Dynamin on GSIR. The effects of protamine sulfate and vanadate on Nephrin phosphorylation and GSIR were studied in MIN6 cells and human islets. WT-Nephrin phosphorylation after glucose occurred at Tyr-1176/1193 and resulted in improved GSIR. On the contrary, protamine sulfate-induced phosphorylation at Tyr-1176/1193/1217 was associated with Nephrin degradation and impaired GSIR. Vanadate, which prevented Nephrin dephosphorylation after glucose stimulation, improved GSIR in human islets and MIN6 cells. In conclusion, Dynamin-dependent Nephrin phosphorylation occurs in response to glucose and is necessary for Nephrin-mediated augmentation of GSIR. Pharmacological modulation of Nephrin phosphorylation may thus facilitate pancreatic beta cell function. PMID:22718751

  19. Cloning and expression of rat pancreatic beta-cell malonyl-CoA decarboxylase.

    PubMed Central

    Voilley, N; Roduit, R; Vicaretti, R; Bonny, C; Waeber, G; Dyck, J R; Lopaschuk, G D; Prentki, M

    1999-01-01

    To gain insight into the function and regulation of malonyl-CoA decarboxylase (MCD) we have cloned rat MCD cDNA from a differentiated insulin-secreting pancreatic beta-cell-line cDNA library. The full-length cDNA sequence shows 69% identity with the cDNA cloned previously from the goose uropygial gland, and predicts a 492 amino acid protein of 54.7 kDa. The open reading frame contains an N-terminal mitochondrial targeting sequence and the C-terminal part of the enzyme ends with a peroxisomal (Ser-Lys-Leu) targeting motif. Since the sequence does not reveal hydrophobic domains, MCD is most likely expressed in the mitochondrial matrix and inside the peroxisomes. A second methionine residue, located 3' of the mitochondrial presequence, might be the first amino acid of a putative cytosolic MCD, since the nucleotide sequence around it fits fairly well with a consensus Kozak site for translation initiation. However, primer extension detects the presence of only one transcript initiating upstream of the first ATG, indicating that the major, if not exclusive, transcript expressed in the pancreatic beta-cell encodes MCD with its mitochondrial presequence. The sequence also shows multiple possible sites of phosphorylation by casein kinase II and protein kinase C. mRNA tissue-distribution analysis indicates a transcript of 2.2 kb, and that the MCD gene is expressed over a wide range of rat tissues. The distribution of the enzyme shows a broad range of activities from very low in the brain to elevated in the liver and heart. The results provide the foundations for further studies of the role of MCD in lipid metabolism and metabolic signalling in various tissues. PMID:10229677

  20. Effects of meal size and composition on incretin, alpha-cell, and beta-cell responses.

    PubMed

    Rijkelijkhuizen, Josina M; McQuarrie, Kelly; Girman, Cynthia J; Stein, Peter P; Mari, Andrea; Holst, Jens J; Nijpels, Giel; Dekker, Jacqueline M

    2010-04-01

    The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) regulate postprandial insulin release from the beta-cells. We investigated the effects of 3 standardized meals with different caloric and nutritional content in terms of postprandial glucose, insulin, glucagon, and incretin responses. In a randomized crossover study, 18 subjects with type 2 diabetes mellitus and 6 healthy volunteers underwent three 4-hour meal tolerance tests (small carbohydrate [CH]-rich meal, large CH-rich meal, and fat-rich meal). Non-model-based and model-based estimates of beta-cell function and incremental areas under the curve of glucose, insulin, C-peptide, glucagon, GLP-1, and GIP were calculated. Mixed models and Friedman tests were used to test for differences in meal responses. The large CH-rich meal and fat-rich meal resulted in a slightly larger insulin response as compared with the small CH-rich meal and led to a slightly shorter period of hyperglycemia, but only in healthy subjects. Model-based insulin secretion estimates did not show pronounced differences between meals. Both in healthy individuals and in those with diabetes, more CH resulted in higher GLP-1 release. In contrast with the other meals, GIP release was still rising 2 hours after the fat-rich meal. The initial glucagon response was stimulated by the large CH-rich meal, whereas the fat-rich meal induced a late glucagon response. Fat preferentially stimulates GIP secretion, whereas CH stimulates GLP-1 secretion. Differences in meal size and composition led to differences in insulin and incretin responses but not to differences in postprandial glucose levels of the well-controlled patients with diabetes.

  1. PIWI-interacting RNAs as novel regulators of pancreatic beta cell function.

    PubMed

    Henaoui, Imène Sarah; Jacovetti, Cécile; Guerra Mollet, Inês; Guay, Claudiane; Sobel, Jonathan; Eliasson, Lena; Regazzi, Romano

    2017-07-16

    P-element induced Wimpy testis (PIWI)-interacting RNAs (piRNAs) are small non-coding RNAs that interact with PIWI proteins and guide them to silence transposable elements. They are abundantly expressed in germline cells and play key roles in spermatogenesis. There is mounting evidence that piRNAs are also present in somatic cells, where they may accomplish additional regulatory tasks. The aim of this study was to identify the piRNAs expressed in pancreatic islets and to determine whether they are involved in the control of beta cell activities. piRNA profiling of rat pancreatic islets was performed by microarray analysis. The functions of piRNAs were investigated by silencing the two main Piwi genes or by modulating the level of selected piRNAs in islet cells. We detected about 18,000 piRNAs in rat pancreatic islets, many of which were differentially expressed throughout islet postnatal development. Moreover, we identified changes in the level of several piRNAs in the islets of Goto-Kakizaki rats, a well-established animal model of type 2 diabetes. Silencing of Piwil2 or Piwil4 genes in adult rat islets caused a reduction in the level of several piRNAs and resulted in defective insulin secretion and increased resistance of the cells to cytokine-induced cell death. Furthermore, overexpression in the islets of control animals of two piRNAs that are upregulated in diabetic rats led to a selective defect in glucose-induced insulin release. Our results provide evidence for a role of PIWI proteins and their associated piRNAs in the control of beta cell functions, and suggest a possible involvement in the development of type 2 diabetes. Data have been deposited in Gene Expression Omnibus repository under the accession number GSE93792. Data can be accessed via the following link: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token=ojklueugdzehpkv&acc=GSE93792.

  2. Species-specific vesicular monoamine transporter 2 (VMAT2) expression in mammalian pancreatic beta cells: implications for optimising radioligand-based human beta cell mass (BCM) imaging in animal models.

    PubMed

    Schäfer, M K-H; Hartwig, N R; Kalmbach, N; Klietz, M; Anlauf, M; Eiden, L E; Weihe, E

    2013-05-01

    Imaging of beta cell mass (BCM) is a major challenge in diabetes research. The vesicular monoamine transporter 2 (VMAT2) is abundantly expressed in human beta cells. Radiolabelled analogues of tetrabenazine (TBZ; a low-molecular-weight, cell-permeant VMAT2-selective ligand) have been employed for pancreatic islet imaging in humans. Since reports on TBZ-based VMAT2 imaging in rodent pancreas have been fraught with confusion, we compared VMAT2 gene expression patterns in the mouse, rat, pig and human pancreas, to identify appropriate animal models with which to further validate and optimise TBZ imaging in humans. We used a panel of highly sensitive VMAT2 antibodies developed against equivalently antigenic regions of the transporter from each species in combination with immunostaining for insulin and species-specific in situ hybridisation probes. Individual pancreatic islets were obtained by laser-capture microdissection and subjected to analysis of mRNA expression of VMAT2. The VMAT2 protein was not expressed in beta cells in the adult pancreas of common mouse or rat laboratory strains, in contrast to its expression in beta cells (but not other pancreatic endocrine cell types) in the pancreas of pigs and humans. VMAT2- and tyrosine hydroxylase co-positive (catecholaminergic) innervation was less abundant in humans than in rodents. VMAT2-positive mast cells were identified in the pancreas of all species. Primates and pigs are suitable models for TBZ imaging of beta cells. Rodents, because of a complete lack of VMAT2 expression in the endocrine pancreas, are a 'null' model for assessing interference with BCM measurements by VMAT2-positive mast cells and sympathetic innervation in the pancreas.

  3. Beta-cell function, incretin effect, and incretin hormones in obese youth along the span of glucose tolerance from normal to prediabetes to Type 2 diabetes

    USDA-ARS?s Scientific Manuscript database

    Using the hyperglycemic and euglycemic clamp, we demonstrated impaired Beta-cell function in obese youth with increasing dysglycemia. Herein we describe oral glucose tolerance test (OGTT)-modeled Beta-cell function and incretin effect in obese adolescents spanning the range of glucose tolerance. Bet...

  4. beta-Cell mitochondria exhibit membrane potential heterogeneity that can be altered by stimulatory or toxic fuel levels.

    PubMed

    Wikstrom, Jakob D; Katzman, Shana M; Mohamed, Hibo; Twig, Gilad; Graf, Solomon A; Heart, Emma; Molina, Anthony J A; Corkey, Barbara E; de Vargas, Lina Moitoso; Danial, Nika N; Collins, Sheila; Shirihai, Orian S

    2007-10-01

    beta-Cell response to glucose is characterized by mitochondrial membrane potential (Delta Psi) hyperpolarization and the production of metabolites that serve as insulin secretory signals. We have previously shown that glucose-induced mitochondrial hyperpolarization accompanies the concentration-dependent increase in insulin secretion within a wide range of glucose concentrations. This observation represents the integrated response of a large number of mitochondria within each individual cell. However, it is currently unclear whether all mitochondria within a single beta-cell represent a metabolically homogenous population and whether fuel or other stimuli can recruit or silence sizable subpopulations of mitochondria. This study offers insight into the different metabolic states of beta-cell mitochondria. We show that mitochondria display a wide heterogeneity in Delta Psi and a millivolt range that is considerably larger than the change in millivolts induced by fuel challenge. Increasing glucose concentration recruits mitochondria into higher levels of homogeneity, while an in vitro diabetes model results in increased Delta Psi heterogeneity. Exploration of the mechanism behind heterogeneity revealed that temporary changes in Delta Psi of individual mitochondria, ATP-hydrolyzing mitochondria, and uncoupling protein 2 are not significant contributors to Delta Psi heterogeneity. We identified BAD, a proapoptotic BCL-2 family member previously implicated in mitochondrial recruitment of glucokinase, as a significant factor influencing the level of heterogeneity. We suggest that mitochondrial Delta Psi heterogeneity in beta-cells reflects a metabolic reservoir recruited by an increased level of fuels and therefore may serve as a therapeutic target.

  5. Progressive glucose stimulation of islet beta cells reveals a transition from segregated to integrated modular functional connectivity patterns

    NASA Astrophysics Data System (ADS)

    Markovič, Rene; Stožer, Andraž; Gosak, Marko; Dolenšek, Jurij; Marhl, Marko; Rupnik, Marjan Slak

    2015-01-01

    Collective beta cell activity in islets of Langerhans is critical for the supply of insulin within an organism. Even though individual beta cells are intrinsically heterogeneous, the presence of intercellular coupling mechanisms ensures coordinated activity and a well-regulated exocytosis of insulin. In order to get a detailed insight into the functional organization of the syncytium, we applied advanced analytical tools from the realm of complex network theory to uncover the functional connectivity pattern among cells composing the intact islet. The procedure is based on the determination of correlations between long temporal traces obtained from confocal functional multicellular calcium imaging of beta cells stimulated in a stepwise manner with a range of physiological glucose concentrations. Our results revealed that the extracted connectivity networks are sparse for low glucose concentrations, whereas for higher stimulatory levels they become more densely connected. Most importantly, for all ranges of glucose concentration beta cells within the islets form locally clustered functional sub-compartments, thereby indicating that their collective activity profiles exhibit a modular nature. Moreover, we show that the observed non-linear functional relationship between different network metrics and glucose concentration represents a well-balanced setup that parallels physiological insulin release.

  6. Down-regulation of zinc transporter 8 (SLC30A8) in pancreatic beta-cells promotes cell survival

    USDA-ARS?s Scientific Manuscript database

    The pancreatic islet contains high levels of zinc in granular vesicles of beta-cells where insulin is matured, crystallized, and stored before secretion. Zinc is an essential co-factor for insulin crystallization forming dense core in secretory granules. In insulin-containing secretory granules, zin...

  7. A quantitative study of sodium tungstate protective effect on pancreatic beta cells in streptozotocin-induced diabetic rats.

    PubMed

    Heidari, Zahra; Mahmoudzadeh-Sagheb, Hamidreza; Moudi, Bita

    2008-12-01

    Diabetes is a major public health problem. Development of new therapies that are able to improve glycemia management, cure diabetes, and can even protect from it, are of great interest. This study investigated the protective effect of sodium tungstate against STZ-induced beta-cell damages by means of stereological methods. Sixty rats were divided into six groups: control (C), tungstate-treated control (TC), STZ-induced diabetic (D), STZ-induced diabetic rats were treated by sodium tungstate from 1 week before STZ injection (TDB), food-restricted diabetic (FRD), and diabetic rats treated with sodium tungstate 1 week after STZ administration (TDA). Stereological estimation of pancreas volume, islets volume density, volume-weighted mean islets volume and mass of beta cells, islets, and pancreas and total number of islets were done. Islets volume density, volume-weighted mean islets volume, and mass of beta cells, islets, and pancreas of TDB group was significantly higher than D, FRD and TDA groups (P<0.001) and was comparable to controls (C and TC groups). Total number of islets, pancreas wet weight and volume did not show any significant changes between these groups (P>0.05). Results suggested that sodium tungstate preserves pancreatic beta cells from STZ-induced damages and diabetes induction in rats.

  8. Endoplasmic Reticulum Stress Links Oxidative Stress to Impaired Pancreatic Beta-Cell Function Caused by Human Oxidized LDL

    PubMed Central

    Favre, Dimitri; Ezanno, Hélène; Bonnefond, Amélie; Bonner, Caroline; Gmyr, Valéry; Kerr-Conte, Julie; Gauthier, Benoit R.; Widmann, Christian; Waeber, Gérard; Pattou, François; Froguel, Philippe; Abderrahmani, Amar

    2016-01-01

    Elevated plasma concentration of the pro-atherogenic oxidized low density lipoprotein cholesterol (LDL) triggers adverse effects in pancreatic beta-cells and is associated with type 2 diabetes. Here, we investigated whether the endoplasmic reticulum (ER) stress is a key player coupling oxidative stress to beta-cell dysfunction and death elicited by human oxidized LDL. We found that human oxidized LDL activates ER stress as evidenced by the activation of the inositol requiring 1α, and the elevated expression of both DDIT3 (also called CHOP) and DNAJC3 (also called P58IPK) ER stress markers in isolated human islets and the mouse insulin secreting MIN6 cells. Silencing of Chop and inhibition of ER stress markers by the chemical chaperone phenyl butyric acid (PBA) prevented cell death caused by oxidized LDL. Finally, we found that oxidative stress accounts for activation of ER stress markers induced by oxidized LDL. Induction of Chop/CHOP and p58IPK/P58IPK by oxidized LDL was mimicked by hydrogen peroxide and was blocked by co-treatment with the N-acetylcystein antioxidant. As a conclusion, the harmful effects of oxidized LDL in beta-cells requires ER stress activation in a manner that involves oxidative stress. This mechanism may account for impaired beta-cell function in diabetes and can be reversed by antioxidant treatment. PMID:27636901

  9. Involvement of the autonomic nervous system in the in vivo memory to glucose of pancreatic beta cell in rats.

    PubMed Central

    N'Guyen, J M; Magnan, C; Laury, M C; Thibault, C; Leveteau, J; Gilbert, M; Pénicaud, L; Ktorza, A

    1994-01-01

    The fact that the potentiating effect of prolonged hyperglycemia on the subsequent insulin secretion is observed in vivo but not in vitro suggests the involvement of extrapancreatic factors in the in vivo memory of pancreatic beta cells to glucose. We have investigated the possible role of the autonomic nervous system. Rats were made hyperglycemic by a 48-h infusion with glucose (HG rats). At the end of glucose infusion as well as 6 h postinfusion, both parasympathetic and sympathetic nerve activities were profoundly altered: parasympathetic and sympathetic activities, assessed by the firing rate either of the thoracic vagus nerve or the superior cervical ganglion, were dramatically increased and decreased, respectively. Moreover, 6 h after the end of glucose infusion, insulin secretion in response to a glucose load was dramatically increased in HG rats compared to controls. To determine whether these changes could be responsible for the increased sensitivity of the beta cell to glucose, insulin release in response to glucose was measured in HG and control rats, either under subdiaphragmatic vagotomy or after administration of the alpha 2A-adrenergic agonist oxymetazoline. Both treatments partially abolished the hyperresponsiveness of the beta cell to glucose in HG rats. Therefore chronic hyperglycemia brings about changes in the activity of the autonomic nervous system, which in turn are responsible, at least in part, for the generation of enhanced beta cell responsiveness to glucose in vivo. PMID:7929821

  10. Interleukin-1 beta inhibits proinsulin conversion in rat beta-cells via a nitric oxide-dependent pathway.

    PubMed

    Zambre, Y; Van Schravendijk, C; Ling, Z

    2001-11-01

    Exposure of pancreatic beta-cells to interleukin-1 beta (IL-1 beta) alters their protein expression and phenotype. Previous work has shown that IL-1 beta inhibited proinsulin conversion in rat islets, but the mechanism of this inhibition remained unknown. To investigate this phenomenon further, we examined purified rat beta-cells for IL-1 beta-induced inhibition of proinsulin conversion and nitric oxide (NO)-dependency of this inhibitory process. Rat beta-cells were cultured for 24 h with or without IL-1 beta and the inducible-nitric-oxide-synthase (iNOS) inhibitor N(G)-methyl-L-arginine (NMA). Exposure to IL-1 beta suppressed proinsulin-1 and proinsulin-2 synthesis by more than 50 %. Conversion of both proinsulin isoforms was also delayed. The suppressive effects of IL-1 beta on proinsulin synthesis and conversion were prevented by addition of NMA. Exposure to IL-1 beta also decreased the expression of the proinsulin convertase (PC) PC2. This decrease in PC2 expression was NO-dependent. In conclusion, IL-1 beta inhibition of proinsulin conversion in rat beta-cells occurs via an NO-mediated pathway.

  11. Rebranding asymptomatic type 1 diabetes: the case for autoimmune beta cell disorder as a pathological and diagnostic entity

    PubMed Central

    Bonifacio, Ezio; Mathieu, Chantal; Nepom, Gerald T.; Ziegler, Anette-G.; Anhalt, Henry; Haller, Michael J.; Harrison, Leonard C.; Hebrok, Matthias; Kushner, Jake A.; Norris, Jill M.; Peakman, Mark; Powers, Alvin C.; Todd, John A.; Atkinson, Mark A.

    2017-01-01

    The asymptomatic phase of type 1 diabetes is recognised by the presence of beta cell autoantibodies in the absence of hyperglycaemia. We propose that an accurate description of this stage is provided by the name ‘Autoimmune Beta Cell Disorder’ (ABCD). Specifically, we suggest that this nomenclature and diagnosis will, in a proactive manner, shift the paradigm towards type 1 diabetes being first and foremost an immune-mediated disease and only later a metabolic disease, presaging more active therapeutic intervention in the asymptomatic stage of disease, before end-stage beta cell failure. Furthermore, we argue that accepting ABCD as a diagnosis will be critical in order to accelerate pharmaceutical, academic and public activities leading to clinical trials that could reverse beta cell autoimmunity and halt progression to symptomatic insulin-requiring type 1 diabetes. We recognize that there are both opportunities and challenges in the implementation of the ABCD concept but hope that the notion of ‘asymptomatic autoimmune disease’ as a disorder will be widely discussed and eventually accepted. PMID:27785529

  12. Rebranding asymptomatic type 1 diabetes: the case for autoimmune beta cell disorder as a pathological and diagnostic entity.

    PubMed

    Bonifacio, Ezio; Mathieu, Chantal; Nepom, Gerald T; Ziegler, Anette-G; Anhalt, Henry; Haller, Michael J; Harrison, Leonard C; Hebrok, Matthias; Kushner, Jake A; Norris, Jill M; Peakman, Mark; Powers, Alvin C; Todd, John A; Atkinson, Mark A

    2017-01-01

    The asymptomatic phase of type 1 diabetes is recognised by the presence of beta cell autoantibodies in the absence of hyperglycaemia. We propose that an accurate description of this stage is provided by the name 'Autoimmune Beta Cell Disorder' (ABCD). Specifically, we suggest that this nomenclature and diagnosis will, in a proactive manner, shift the paradigm towards type 1 diabetes being first and foremost an immune-mediated disease and only later a metabolic disease, presaging more active therapeutic intervention in the asymptomatic stage of disease, before end-stage beta cell failure. Furthermore, we argue that accepting ABCD as a diagnosis will be critical in order to accelerate pharmaceutical, academic and public activities leading to clinical trials that could reverse beta cell autoimmunity and halt progression to symptomatic insulin-requiring type 1 diabetes. We recognize that there are both opportunities and challenges in the implementation of the ABCD concept but hope that the notion of 'asymptomatic autoimmune disease' as a disorder will be widely discussed and eventually accepted.

  13. Proinsulin maturation disorder is a contributor to the defect of subsequent conversion to insulin in {beta}-cells

    SciTech Connect

    Wang, Jie; Osei, Kwame

    2011-07-22

    Highlights: {yields} Primary proinsulin maturation disorder is inherent in Ins2{sup +/Akita} islets/{beta}-cells. {yields} A consequence is the inefficient conversion of proinsulin to insulin. {yields} Post-translational defects occur as well in the involved PC1/3 and PC2 convertases. {yields} Proinsulin maturation chaos results in defects in the following conversion process. {yields} A link of the proinsulin maturation disorder and hyperproinsulinemia is suggested. -- Abstract: Disproportionate hyperproinsulinemia is an indicator of {beta}-cell dysfunction in diabetes and the basis underlying this abnormality remains obscure. Recently, we have found proinsulin is an aggregation-prone molecule inherent with a low relative folding rate and maintains a homeostatic balance of natively and plentiful non-natively folded states (i.e., proinsulin homeostasis, PIHO) in normal {beta}-cells as a result of the integration of maturation and disposal processes. PIHO is susceptible to environmental and genetic influences. Perturbation of PIHO produces a number of toxic consequences with known association to {beta}-cell failure in diabetes. To explore whether the perturbation of PIHO has a link to disproportionate hyperproinsulinemia, we investigated proinsulin conversion and the involved prohormone convertase 1/3 (PC1/3) and 2 (PC2) in mouse Ins2{sup +/Akita} islets/{beta}-cells that preserve a primary PIHO disorder due to a mutation (C96Y) in the insulin 2 (Ins2) gene. Our metabolic-labeling studies found an increased ratio of proinsulin to insulin in the cellular or released proteins of Ins2{sup +/Akita} islets. Histological, metabolic-labeling, and RT-PCR analyses revealed decreases of the PC1/3 and PC2 immunoreactivities in the {beta}-cells of Ins2{sup +/Akita} islets in spite of no declines of these two convertases at the transcriptional and translational levels. Immunoblot analyses in cloned Ins2{sup +/Akita} {beta}-cells further confirmed the increased ratio of proinsulin

  14. PED/PEA-15 regulates glucose-induced insulin secretion by restraining potassium channel expression in pancreatic beta-cells.

    PubMed

    Miele, Claudia; Raciti, Gregory Alexander; Cassese, Angela; Romano, Chiara; Giacco, Ferdinando; Oriente, Francesco; Paturzo, Flora; Andreozzi, Francesco; Zabatta, Assunta; Troncone, Giancarlo; Bosch, Fatima; Pujol, Anna; Chneiweiss, Hervé; Formisano, Pietro; Beguinot, Francesco

    2007-03-01

    The phosphoprotein enriched in diabetes/phosphoprotein enriched in astrocytes (ped/pea-15) gene is overexpressed in human diabetes and causes this abnormality in mice. Transgenic mice with beta-cell-specific overexpression of ped/pea-15 (beta-tg) exhibited decreased glucose tolerance but were not insulin resistant. However, they showed impaired insulin response to hyperglycemia. Islets from the beta-tg also exhibited little response to glucose. mRNAs encoding the Sur1 and Kir6.2 potassium channel subunits and their upstream regulator Foxa2 were specifically reduced in these islets. Overexpression of PED/PEA-15 inhibited the induction of the atypical protein kinase C (PKC)-zeta by glucose in mouse islets and in beta-cells of the MIN-6 and INS-1 lines. Rescue of PKC-zeta activity elicited recovery of the expression of the Sur1, Kir6.2, and Foxa2 genes and of glucose-induced insulin secretion in PED/PEA-15-overexpressing beta-cells. Islets from ped/pea-15-null mice exhibited a twofold increased activation of PKC-zeta by glucose; increased abundance of the Sur1, Kir6.2, and Foxa2 mRNAs; and enhanced glucose effect on insulin secretion. In conclusion, PED/PEA-15 is an endogenous regulator of glucose-induced insulin secretion, which restrains potassium channel expression in pancreatic beta-cells. Overexpression of PED/PEA-15 dysregulates beta-cell function and is sufficient to impair glucose tolerance in mice.

  15. Impairment of Rat Fetal Beta-Cell Development by Maternal Exposure to Dexamethasone during Different Time-Windows

    PubMed Central

    Dumortier, Olivier; Theys, Nicolas; Ahn, Marie-Thérèse; Remacle, Claude; Reusens, Brigitte

    2011-01-01

    Aim Glucocorticoids (GCs) take part in the direct control of cell lineage during the late phase of pancreas development when endocrine and exocrine cell differentiation occurs. However, other tissues such as the vasculature exert a critical role before that phase. This study aims to investigate the consequences of overexposure to exogenous glucocorticoids during different time-windows of gestation for the development of the fetal endocrine pancreas. Methods Pregnant Wistar rats received dexamethasone acetate in their drinking water (1 µg/ml) during the last week or throughout gestation. Fetuses and their pancreases were analyzed at day 15 and 21 of gestation. Morphometrical analysis was performed on pancreatic sections after immunohistochemistry techniques and insulin secretion was evaluated on fetal islets collected in vitro. Results Dexamethasone given the last week or throughout gestation reduced the beta-cell mass in 21-day-old fetuses by respectively 18% or 62%. This was accompanied by a defect in insulin secretion. The alpha-cell mass was reduced similarly. Neither islet vascularization nor beta-cell proliferation was affected when dexamethasone was administered during the last week, which was however the case when given throughout gestation. When given from the beginning of gestation, dexamethasone reduced the number of cells expressing the early marker of endocrine lineage neurogenin-3 when analyzed at 15 days of fetal age. Conclusions GCs reduce the beta- and alpha-cell mass by different mechanisms according to the stage of development during which the treatment was applied. In fetuses exposed to glucocorticoids the last week of gestation only, beta-cell mass is reduced due to impairment of beta-cell commitment, whereas in fetuses exposed throughout gestation, islet vascularization and lower beta-cell proliferation are involved as well, amplifying the reduction of the endocrine mass. PMID:21991320

  16. PARP-1 and YY1 are important novel regulators of CXCL12 gene transcription in rat pancreatic beta cells.

    PubMed

    Marković, Jelena; Grdović, Nevena; Dinić, Svetlana; Karan-Djurašević, Teodora; Uskoković, Aleksandra; Arambašić, Jelena; Mihailović, Mirjana; Pavlović, Sonja; Poznanović, Goran; Vidaković, Melita

    2013-01-01

    Despite significant progress, the molecular mechanisms responsible for pancreatic beta cell depletion and development of diabetes remain poorly defined. At present, there is no preventive measure against diabetes. The positive impact of CXCL12 expression on the pancreatic beta cell prosurvival phenotype initiated this study. Our aim was to provide novel insight into the regulation of rat CXCL12 gene (Cxcl12) transcription. The roles of poly(ADP-ribose) polymerase-1 (PARP-1) and transcription factor Yin Yang 1 (YY1) in Cxcl12 transcription were studied by examining their in vitro and in vivo binding affinities for the Cxcl12 promoter in a pancreatic beta cell line by the electrophoretic mobility shift assay and chromatin immunoprecipitation. The regulatory activities of PARP-1 and YY1 were assessed in transfection experiments using a reporter vector with a Cxcl12 promoter sequence driving luciferase gene expression. Experimental evidence for PARP-1 and YY1 revealed their trans-acting potential, wherein PARP-1 displayed an inhibitory, and YY1 a strong activating effect on Cxcl12 transcription. Streptozotocin (STZ)-induced general toxicity in pancreatic beta cells was followed by changes in Cxcl12 promoter regulation. PARP-1 binding to the Cxcl12 promoter during basal and in STZ-compromised conditions led us to conclude that PARP-1 regulates constitutive Cxcl12 expression. During the early stage of oxidative stress, YY1 exhibited less affinity toward the Cxcl12 promoter while PARP-1 displayed strong binding. These interactions were accompanied by Cxcl12 downregulation. In the later stages of oxidative stress and intensive pancreatic beta cell injury, YY1 was highly expressed and firmly bound to Cxcl12 promoter in contrast to PARP-1. These interactions resulted in higher Cxcl12 expression. The observed ability of PARP-1 to downregulate, and of YY1 to upregulate Cxcl12 promoter activity anticipates corresponding effects in the natural context where the functional

  17. Effect of prolonged exposure to sublethal concentrations of DDT and DDE on protein expression in human pancreatic beta cells.

    PubMed

    Pavlikova, Nela; Smetana, Pavel; Halada, Petr; Kovar, Jan

    2015-10-01

    Pollution of the environment represents one of less explored potential reasons for the worldwide epidemic of type 2 diabetes. One of the most prevalent organochlorine pollutants remains the pesticide DDT and its degradation product DDE. Despite some epidemiologic correlations between levels of DDT and DDE in human organism and the prevalence of diabetes, there is almost no information about the exact targets of these compounds inside pancreatic beta cells. To detect functional areas of pancreatic beta cells that could be affected by exposure to DDT and DDE, we analyzed changes in protein expression in the NES2Y human pancreatic beta cell line exposed to three sublethal concentrations (0.1 μM, 1 μM, 10 μM) of DDT and DDE for 1 month. Protein separation and identification was achieved using high-resolution 2D-electrophoresis, computer analysis and mass spectrometry. With these techniques, four proteins were found downregulated after exposure to 10 μM DDT: three cytoskeletal proteins (cytokeratin 8, cytokeratin 18 and actin) and one protein involved in glycolysis (alpha-enolase). Two proteins were downregulated after exposure to 10 μM DDE: cytokeratin 18 and heterogenous nuclear ribonucleoprotein H1 (HNRH1). These changes correlate with previously described effects of other stress conditions (e.g. exposure to palmitate, hyperglycemia, imidazoline derivative, and cytokines) on protein expression in pancreatic beta cells. We conclude that cytoskeletal proteins and their processing, glucose metabolism, and mRNA processing may represent targets affected by exposure to conditions hostile to pancreatic beta cells, including exposure to DDT and DDE.

  18. Selective beta-cell differentiation of dissociated embryonic pancreatic precursor cells cultured in synthetic polyethylene glycol hydrogels.

    PubMed

    Mason, Mariah N; Mahoney, Melissa J

    2009-06-01

    Continuing advances in islet cell transplantation have been promising; however, several limitations, including severe shortage of transplantable islets, hinder the widespread use of this therapy. Pancreatic precursor cells are one alternative to cadaveric donor islets. These cells found in the developing pancreatic buds are capable of self-renewal and also have the innate ability to become insulin-producing beta-cells. For this work, bioinert polyethylene glycol (PEG) hydrogels were chosen as the supportive three-dimensional matrix for encapsulation of dissociated pancreatic precursor cells obtained from the dorsal pancreatic bud of day-15 rat embryos. This culture system was selected in order to eliminate cell-extracellular matrix and cell-cell signal heterogeneity present when intact pancreatic buds are embedded in protein-based gels, the typical in vitro culture conditions used to study this cell population. In this study it was found that (1) dissociated precursor cells maintain a robust viability for 7 days in PEG hydrogel culture, (2) encapsulated cells selectively differentiate into insulin-expressing beta-cells, and (3) differentiated beta-cells have releasable insulin stores, but are not achieving a mature, glucose responsive phenotype. These findings suggest that encapsulating dissociated pancreatic precursor cells in an environment designed to minimize the heterogeneous signaling cues present during development or in standard culture conditions generates a population highly enriched in pancreatic beta-cells; however, future efforts must focus on achieving glucose responsiveness in this cell population. Further, these results indicate that differentiation down a beta-cell lineage may be the default pathway in pancreatic development.

  19. Use of RGD-Functionalized Sandwich Cultures to Promote Redifferentiation of Human Pancreatic Beta Cells After In Vitro Expansion.

    PubMed

    Aloy-Reverté, Caterina; Moreno-Amador, José L; Nacher, Montserrat; Montanya, Eduard; Semino, Carlos E

    2017-08-31

    Islet transplantation has provided proof of concept that cell therapy can restore normoglycemia in patients with diabetes. However, limited availability of islet tissue severely restricts the clinical use of the treatment. Thus, there is an urgent need to develop new strategies to generate an abundant source of insulin-producing cells that could be used to treat diabetes. A potential approach is the in vitro expansion of pancreatic beta cells obtained from cadaveric organ donors. However, when human beta cells are expanded in vitro, they dedifferentiate and lose the expression of insulin, probably as a consequence of pancreatic islet dissociation into single cells. We have studied whether reestablishment of cell-cell and cell-matrix relationships with a biomimetic synthetic scaffold could induce redifferentiation of expanded dedifferentiated beta cells. Cells isolated from human islet preparations were expanded in monolayer cultures and allowed to reaggregate into islet-like cell clusters (ICCs). Afterward, ICCs were embedded between two thin layers of the noninstructive self-assembling peptide (SAP), RAD16-I or RAD16-I functionalized with the integrin-binding motif RGD (RAD16-I/RGD) (R: arginine, G: glycine, D: aspartic acid), which was expected to promote cell-extracellular matrix interactions. ICCs cultured with RAD16-I were viable, maintained their cluster conformation, and increased in size by aggregation of ICCs, suggesting a self-organizing process. ICCs cultured in RAD16-I/RGD showed enhanced cell adhesion to RAD16-I matrix and reexpression of the beta cell-specific genes, Ins, Pdx1, Nkx6.1, and MafA. Redifferentiation was caused solely by bioactive cues introduced to the RAD16-I peptide since no differentiation factors were added to the culture medium. The results indicate that RGD-functionalized SAP in sandwich conformation is a promising three-dimensional platform to induce redifferentiation toward a beta cell phenotype and to generate insulin

  20. A beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion in mice.

    PubMed

    Attané, Camille; Peyot, Marie-Line; Lussier, Roxane; Poursharifi, Pegah; Zhao, Shangang; Zhang, Dongwei; Morin, Johane; Pineda, Marco; Wang, Shupei; Dumortier, Olivier; Ruderman, Neil B; Mitchell, Grant A; Simons, Brigitte; Madiraju, S R Murthy; Joly, Erik; Prentki, Marc

    2016-12-01

    To directly assess the role of beta cell lipolysis in insulin secretion and whole-body energy homeostasis, inducible beta cell-specific adipose triglyceride lipase (ATGL)-deficient (B-Atgl-KO) mice were studied under normal diet (ND) and high-fat diet (HFD) conditions. Atgl (flox/flox) mice were cross-bred with Mip-Cre-ERT mice to generate Mip-Cre-ERT(/+);Atgl (flox/flox) mice. At 8 weeks of age, these mice were injected with tamoxifen to induce deletion of beta cell-specific Atgl (also known as Pnpla2), and the mice were fed an ND or HFD. ND-fed male B-Atgl-KO mice showed decreased insulinaemia and glucose-induced insulin secretion (GSIS) in vivo. Changes in GSIS correlated with the islet content of long-chain saturated monoacylglycerol (MAG) species that have been proposed to be metabolic coupling factors for insulin secretion. Exogenous MAGs restored GSIS in B-Atgl-KO islets. B-Atgl-KO male mice fed an HFD showed reduced insulinaemia, glycaemia in the fasted and fed states and after glucose challenge, as well as enhanced insulin sensitivity. Moreover, decreased insulinaemia in B-Atgl-KO mice was associated with increased energy expenditure, and lipid metabolism in brown (BAT) and white (WAT) adipose tissues, leading to reduced fat mass and body weight. ATGL in beta cells regulates insulin secretion via the production of signalling MAGs. Decreased insulinaemia due to lowered GSIS protects B-Atgl-KO mice from diet-induced obesity, improves insulin sensitivity, increases lipid mobilisation from WAT and causes BAT activation. The results support the concept that fuel excess can drive obesity and diabetes via hyperinsulinaemia, and that an islet beta cell ATGL-lipolysis/adipose tissue axis controls energy homeostasis and body weight via insulin secretion.

  1. Protective effect of berberine on beta cells in streptozotocin- and high-carbohydrate/high-fat diet-induced diabetic rats.

    PubMed

    Zhou, Jiyin; Zhou, Shiwen; Tang, Jianlin; Zhang, Kebin; Guang, Lixia; Huang, Yongping; Xu, Ying; Ying, Yi; Zhang, Le; Li, Dandan

    2009-03-15

    Oxidative stress in diabetes coexists with a reduction in the antioxidant status, which can further increase the deleterious effects of free radicals. Berberine is one of the main alkaloids of Rhizoma coptidis which has been used to treat diabetes for more than 1400 years in China. The present study was designed to evaluate the protective effects of berberine against beta cell damage and antioxidant of pancreas in diabetic rats. Diabetic rats with hyperlipidemia were induced by intraperitoneally injection 35 mg/kg streptozotocin and a high-carbohydrate/high-fat diet. Rats were divided into 7 groups at the end of week 16: untreated control, untreated diabetic, 75, 150, 300 mg/kg berberine-treated diabetic, 100 mg/kg fenofibrate-treated, and 4 mg/kg rosiglitazone-treated. After 16 weeks treatment, serum insulin level, insulin expression in pancreas, and malonaldehyde content, superoxide dismutase activity in pancreatic homogenate were assayed. Pancreas was examined by hematoxylin/eosin staining and transmission electron microscope. Pancreas to body weight ratio, insulin level, insulin sensitivity index, malonaldehyde content and superoxide dismutase activity were altered in diabetic rats, and were near control levels treated with 150, 300 mg/kg berberine. Mitochondrial vacuolization and swelling, dilatation of the endoplasmic reticulum were observed in beta cells of diabetic rats. The pancreatic islet area atrophied and secretory granules of beta cells decreased in diabetic rats. Slight pathological changes existed in beta cells of 150, 300 mg/kg berberine-treated diabetic pancreas. These findings suggest that berberine has protective effect for diabetes through increasing insulin expression, beta cell regeneration, antioxidant enzyme activity and decreasing lipid peroxidation.

  2. Adult Human Pancreatic Islet Beta-Cells Display Limited Turnover and Long Lifespan as Determined by In-Vivo Thymidine Analog Incorporation and Radiocarbon Dating

    SciTech Connect

    Perl, S; Kushner, J A; Buchholz, B A; Meeker, A K; Stein, G M; Hsieh, M; Kirby, M; Pechhold, S; Liu, E H; Harlan, D M; Tisdale, J F

    2010-03-15

    Diabetes mellitus results from an absolute or relative deficiency of insulin producing pancreatic beta-cells. The adult human beta-cell's turnover rate remains unknown. We employed novel techniques to examine adult human islet beta-cell turnover and longevity in vivo. Subjects enrolled in NIH clinical trials received thymidine analogues [iododeoxyuridine (IdU) or bromodeoxyuridine (BrdU)] 8-days to 4-years prior to death. Archival autopsy samples from ten patients (aged 17-74 years) were employed to assess beta-cell turnover by scoring nuclear analog labeling within insulin staining cells. Human adult beta-cell longevity was determined by estimating the cells genomic DNA integration of atmospheric carbon-14 ({sup 14}C). DNA was purified from pancreatic islets isolated from cadaveric donors; whole islet prep DNA was obtained from a 15 year old donor, and purified beta-cell DNA was obtained from two donors (age 48 and 80 years). {sup 14}C levels were then determined using accelerator mass spectrometry (AMS). Cellular 'birth date' was determined by comparing the subject's DNA {sup 14}C content relative to a well-established {sup 14}C atmospheric prevalence curve. In the two subjects less than age 20 years, 1-2% of the beta-cell nuclei co-stained for BrdU/IdU. No beta-cell nuclei co-stained in the eight patients more than 30 years old. Consistent with the BrdU/IdU turnover data, beta-cell DNA {sup 14}C content indicated the cells 'birth date' occurred within the subject's first 30 years of life. Under typical circumstances, adult human beta-cells and their cellular precursors are established by young adulthood.

  3. Dietary intervention in infancy and later signs of beta-cell autoimmunity.

    PubMed

    Knip, Mikael; Virtanen, Suvi M; Seppä, Karri; Ilonen, Jorma; Savilahti, Erkki; Vaarala, Outi; Reunanen, Antti; Teramo, Kari; Hämäläinen, Anu-Maaria; Paronen, Johanna; Dosch, Hans-Michael; Hakulinen, Timo; Akerblom, Hans K

    2010-11-11

    Early exposure to complex dietary proteins may increase the risk of beta-cell autoimmunity and type 1 diabetes in children with genetic susceptibility. We tested the hypothesis that supplementing breast milk with highly hydrolyzed milk formula would decrease the cumulative incidence of diabetes-associated autoantibodies in such children. In this double-blind, randomized trial, we assigned 230 infants with HLA-conferred susceptibility to type 1 diabetes and at least one family member with type 1 diabetes to receive either a casein hydrolysate formula or a conventional, cow's-milk-based formula (control) whenever breast milk was not available during the first 6 to 8 months of life. Autoantibodies to insulin, glutamic acid decarboxylase (GAD), the insulinoma-associated 2 molecule (IA-2), and zinc transporter 8 were analyzed with the use of radiobinding assays, and islet-cell antibodies were analyzed with the use of immunofluorescence, during a median observation period of 10 years (mean, 7.5). The children were monitored for incident type 1 diabetes until they were 10 years of age. The unadjusted hazard ratio for positivity for one or more autoantibodies in the casein hydrolysate group, as compared with the control group, was 0.54 (95% confidence interval [CI], 0.29 to 0.95), and the hazard ratio adjusted for an observed difference in the duration of exposure to the study formula was 0.51 (95% CI, 0.28 to 0.91). The unadjusted hazard ratio for positivity for two or more autoantibodies was 0.52 (95% CI, 0.21 to 1.17), and the adjusted hazard ratio was 0.47 (95% CI, 0.19 to 1.07). The rate of reported adverse events was similar in the two groups. Dietary intervention during infancy appears to have a long-lasting effect on markers of beta-cell autoimmunity--markers that may reflect an autoimmune process leading to type 1 diabetes. (ClinicalTrials.gov number, NCT00570102.).

  4. MicroRNA-29a is up-regulated in beta-cells by glucose and decreases glucose-stimulated insulin secretion

    SciTech Connect

    Bagge, Annika; Clausen, Trine R.; Larsen, Sylvester; Ladefoged, Mette; Rosenstierne, Maiken W.; Larsen, Louise; Vang, Ole; Nielsen, Jens H.; Dalgaard, Louise T.

    2012-09-21

    Highlights: Black-Right-Pointing-Pointer MicroRNA-29a (miR-29a) levels are increased by glucose in human and rat islets and INS-1E cells. Black-Right-Pointing-Pointer miR-29a increases proliferation of INS-1E beta-cells. Black-Right-Pointing-Pointer Forced expression of miR-29a decreases glucose-stimulated insulin secretion (GSIS). Black-Right-Pointing-Pointer Depletion of beta-cell miR-29a improves GSIS. Black-Right-Pointing-Pointer miR-29a may be a mediator of glucose toxicity in beta-cells. -- Abstract: Chronically elevated levels of glucose impair pancreatic beta-cell function while inducing beta-cell proliferation. MicroRNA-29a (miR-29a) levels are increased in several tissues in diabetic animals and mediate decreased insulin-stimulated glucose-transport of adipocytes. The aim was to investigate the impact of glucose on miR-29a levels in INS-1E beta-cells and in human islets of Langerhans and furthermore to evaluate the impact of miR-29a on beta-cell function and proliferation. Increased glucose levels up-regulated miR-29a in beta-cells and human and rat islets of Langerhans. Glucose-stimulated insulin-secretion (GSIS) of INS-1E beta-cells was decreased by forced expression of miR-29a, while depletion of endogenous miR-29a improved GSIS. Over-expression of miR-29a increased INS-1E proliferation. Thus, miR-29a up-regulation is involved in glucose-induced proliferation of beta-cells. Furthermore, as depletion of miR-29a improves beta-cell function, miR-29a is a mediator of glucose-induced beta-cell dysfunction. Glucose-induced up-regulation of miR-29a in beta-cells could be implicated in progression from impaired glucose tolerance to type 2 diabetes.

  5. Development of a Quantitative Methylation-Specific Polymerase Chain Reaction Method for Monitoring Beta Cell Death in Type 1 Diabetes

    PubMed Central

    Husseiny, Mohamed I.; Kuroda, Akio; Kaye, Alexander N.; Nair, Indu; Kandeel, Fouad; Ferreri, Kevin

    2012-01-01

    DNA methylation is a mechanism by which cells control gene expression, and cell-specific genes often exhibit unique patterns of DNA methylation. We previously reported that the mouse insulin-2 gene (Ins2) promoter has three potential methylation (CpG) sites, all of which are unmethylated in insulin-producing cells but methylated in other tissues. In this study we examined Ins2 exon 2 and found a similar tissue-specific methylation pattern. These methylation patterns can differentiate between DNA from insulin-producing beta cells and other tissues. We hypothesized that damaged beta cells release their DNA into circulation at the onset of type 1 diabetes mellitus (T1DM) and sought to develop a quantitative methylation-specific polymerase chain reaction (qMSP) assay for circulating beta cell DNA to monitor the loss of beta cells. Methylation-specific primers were designed to interrogate two or more CpG in the same assay. The cloned mouse Ins2 gene was methylated in vitro and used for development of the qMSP assay. We found the qMSP method to be sensitive and specific to differentiate between insulin-producing cells and other tissues with a detection limit of 10 copies in the presence of non-specific genomic DNA background. We also compared different methods for data analysis and found that the Relative Expression Ratio method is the most robust method since it incorporates both a reference value to normalize day-to-day variability as well as PCR reaction efficiencies to normalize between the methylation-specific and bisulfite-specific components of the calculations. The assay was applied in the streptozotocin-treated diabetic mouse model and detected a significant increase in circulating beta cell DNA before the rise in blood glucose level. These results demonstrate that this qMSP assay can be used for monitoring circulating DNA from insulin-producing cells, which will provide the basis for development of assays to detect beta cell destruction in early T1DM. PMID

  6. New approach to beta cell function screening by nitric oxide assessment of obese individuals at the population level.

    PubMed

    Chaim, Elinton Adami; Gobato, Renata Cristina

    2012-01-01

    Approximately 27% of Americans today are obese, and this condition increases the prevalence of metabolic syndrome and diabetes. The UK Prospective Diabetes Study suggests that loss of beta cell function can begin at least 10 years before diagnosis, and mean beta cell function is already less than 50% at diagnosis. The aim of this research was to assess the possibility of detecting loss of beta cell function in obese patients by a novel approach involving nitric oxide assessment using a combination of technologies. One hundred and fifteen obese patients (93 women, 22 men) of mean age 39 (range 17-62) years, who were candidates for bariatric surgery were included in the study, and underwent laboratory tests, including fasting blood glucose, fasting insulin plasma, and examination with the Electro Sensor complex. The Electro Sensor complex offers a new way to assess nitric oxide production using five technologies managed by software, ie, the galvanic skin response, photoelectrical plethysmography, heart rate variability analysis, bioimpedance analysis, and blood pressure oscillometric measurements. The homeostasis model assessment 2% beta cell function (HOMA2% β) algorithm was calculated from fasting blood glucose and fasting insulin plasma using free software provided by The University of Oxford Diabetes Trial Unit. The Electro Sensor complex percent beta (ESC% β) algorithm was calculated from the Electro Sensor complex data and statistical neural network. Statistical analysis was performed to correlate ESC% β and HOMA2% β using the coefficient of correlation and Spearman's coefficient of rank correlation. Receiver-operating characteristic curves were also constructed to determine the specificity and sensitivity of ESC% β in detecting a HOMA2% β value < 100. The coefficient of correlation between ESC% β and HOMA2% β was 0.72 (using log values) and the Spearman's coefficient of rank correlation (rho) was 0.799 (P < 0.0001). ESC% β had a sensitivity of 77

  7. Derepression of Polycomb targets during pancreatic organogenesis allows insulin-producing beta-cells to adopt a neural gene activity program

    PubMed Central

    van Arensbergen, Joris; García-Hurtado, Javier; Moran, Ignasi; Maestro, Miguel Angel; Xu, Xiaobo; Van de Casteele, Mark; Skoudy, Anouchka L.; Palassini, Matteo; Heimberg, Harry; Ferrer, Jorge

    2010-01-01

    The epigenome changes that underlie cellular differentiation in developing organisms are poorly understood. To gain insights into how pancreatic beta-cells are programmed, we profiled key histone methylations and transcripts in embryonic stem cells, multipotent progenitors of the nascent embryonic pancreas, purified beta-cells, and 10 differentiated tissues. We report that despite their endodermal origin, beta-cells show a transcriptional and active chromatin signature that is most similar to ectoderm-derived neural tissues. In contrast, the beta-cell signature of trimethylated H3K27, a mark of Polycomb-mediated repression, clusters with pancreatic progenitors, acinar cells and liver, consistent with the epigenetic transmission of this mark from endoderm progenitors to their differentiated cellular progeny. We also identified two H3K27 methylation events that arise in the beta-cell lineage after the pancreatic progenitor stage. One is a wave of cell-selective de novo H3K27 trimethylation in non-CpG island genes. Another is the loss of bivalent and H3K27me3-repressed chromatin in a core program of neural developmental regulators that enables a convergence of the gene activity state of beta-cells with that of neural cells. These findings reveal a dynamic regulation of Polycomb repression programs that shape the identity of differentiated beta-cells. PMID:20395405

  8. Microbial phenolic metabolites improve glucose-stimulated insulin secretion and protect pancreatic beta cells against tert-butyl hydroperoxide-induced toxicity via ERKs and PKC pathways.

    PubMed

    Fernández-Millán, Elisa; Ramos, Sonia; Alvarez, Carmen; Bravo, Laura; Goya, Luis; Martín, María Ángeles

    2014-04-01

    Oxidative stress is accepted as one of the causes of beta cell failure in type 2 diabetes. Therefore, identification of natural antioxidant agents that preserve beta cell mass and function is considered an interesting strategy to prevent or treat diabetes. Recent evidences indicated that colonic metabolites derived from flavonoids could possess beneficial effects on various tissues. The aim of this work was to establish the potential anti-diabetic properties of the microbial-derived flavonoid metabolites 3,4-dihydroxyphenylacetic acid (DHPAA), 2,3-dihydroxybenzoic acid (DHBA) and 3-hydroxyphenylpropionic acid (HPPA). To this end, we tested their ability to influence beta cell function and to protect against tert-butyl hydroperoxide-induced beta cell toxicity. DHPAA and HPPA were able to potentiate glucose-stimulated insulin secretion (GSIS) in a beta cell line INS-1E and in rat pancreatic islets. Moreover, pre-treatment of cells with both compounds protected against beta cell dysfunction and death induced by the pro-oxidant. Finally, experiments with pharmacological inhibitors indicate that these effects were mediated by the activation of protein kinase C and the extracellular regulated kinases pathways. Altogether, these findings strongly suggest that the microbial-derived flavonoid metabolites DHPAA and HPPA may have anti-diabetic potential by promoting survival and function of pancreatic beta cells. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Leptin deficiency and beta-cell dysfunction underlie type 2 diabetes in compound Akt knockout mice.

    PubMed

    Chen, William S; Peng, Xiao-Ding; Wang, Yong; Xu, Pei-Zhang; Chen, Mei-Ling; Luo, Yongmei; Jeon, Sang-Min; Coleman, Kevin; Haschek, Wanda M; Bass, Joseph; Philipson, Louis H; Hay, Nissim

    2009-06-01

    Phenotypic analyses of mice null for the individual Akt isoforms suggested that they are functionally distinct and that only Akt2 plays a role in diabetes. We show here that Akt isoforms play compensatory and complementary roles in glucose homeostasis and diabetes. Insulin resistance in Akt2(-/-) mice was inhibited by haplodeficiency of Pten, suggesting that other Akt isoforms can compensate for Akt2 function. Haplodeficiency of Akt1 in Akt2(-/-) mice, however, converts prediabetes to overt type 2 diabetes, which is also reversed by haplodeficiency of Pten. Akt3 does not appear to contribute significantly to diabetes. Overt type 2 diabetes in Akt1(+/-) Akt2(-/-) mice is manifested by hyperglycemia due to beta-cell dysfunction combined with impaired glucose homeostasis due to markedly decreased leptin levels. Restoring leptin levels was sufficient to restore normal blood glucose and insulin levels in Akt1(+/-) Akt2(-/-) and Akt2(-/-) mice, suggesting that leptin-deficiency is the predominant cause of diabetes in these mice. These results uncover a new mechanism linking Akt to diabetes, provide a therapeutic strategy, and show that diabetes induced as a consequence of cancer therapy, via Akt inhibition, could be reversed by leptin therapy.

  10. GTP- and GDP-Dependent Rab27a Effectors in Pancreatic Beta-Cells.

    PubMed

    Yamaoka, Mami; Ishizaki, Toshimasa; Kimura, Toshihide

    2015-01-01

    Small guanosine triphosphatases (GTPases) participate in a wide variety of cellular functions including proliferation, differentiation, adhesion, and intracellular transport. Conventionally, only the guanosine 5'-triphosphate (GTP)-bound small GTPase interacts with effector proteins, and the resulting downstream signals control specific cellular functions. Therefore, the GTP-bound form is regarded as active, and the focus has been on searching for proteins that bind the GTP form to look for their effectors. The Rab family small GTPase Rab27a is highly expressed in some secretory cells and is involved in the control of membrane traffic. The present study reviews recent progress in our understanding of the roles of Rab27a and its effectors in pancreatic beta-cells. In the basal state, GTP-bound Rab27a controls insulin secretion at pre-exocytic stages via its GTP-dependent effectors. We previously identified novel guanosine 5'-diphosphate (GDP)-bound Rab27-interacting proteins. Interestingly, GDP-bound Rab27a controls endocytosis of the secretory membrane via its interaction with these proteins. We also demonstrated that the insulin secretagogue glucose converts Rab27a from its GTP- to GDP-bound forms. Thus, GTP- and GDP-bound Rab27a regulate pre-exocytic and endocytic stages in membrane traffic, respectively. Since the physiological importance of GDP-bound GTPases has been largely overlooked, we consider that the investigation of GDP-dependent effectors for other GTPases is necessary for further understanding of cellular function.

  11. Cocoa flavonoid epicatechin protects pancreatic beta cell viability and function against oxidative stress.

    PubMed

    Martín, María Ángeles; Fernández-Millán, Elisa; Ramos, Sonia; Bravo, Laura; Goya, Luis

    2014-03-01

    Diabetes mellitus is associated with reductions in glutathione, supporting the critical role of oxidative stress in its pathogenesis. Antioxidant food components such as flavonoids have a protective role against oxidative stress-induced degenerative and age-related diseases. Flavonoids such as epicatechin (EC) constitute an important part of the human diet; they can be found in green tea, grapes, and cocoa and possess multiple biological activities. This study investigates the chemo-protective effect of EC against oxidative stress induced by tert-butylhydroperoxide (t-BOOH) on Ins-1E pancreatic beta cells. Cell viability, oxidative status, phosphorylated Jun kinase (p-JNK) expression, and insulin secretion were evaluated. Ins-1E cells treatment with 5-20 μM EC for 20 h evoked no cell damage and enhanced antioxidant enzymes and insulin secretion. Addition of 50 μM t-BOOH for 2 h induced reactive oxygen species, p-JNK, and carbonyl groups and decreased GSH and insulin secretion. Pretreatment of cells with EC prevented the t-BOOH-induced reactive oxygen species, carbonyl groups, p-JNK expression and cell death, and recovered insulin secretion. Ins-1E cells treated with EC showed a remarkable recovery of cell viability and insulin secretion damaged by t-BOOH, indicating that integrity of secreting and surviving machineries in the EC-treated cells was notably protected against the oxidative insult. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. OSTEOCYTE APOPTOSIS

    PubMed Central

    Jilka, Robert L.; Noble, Brendon; Weinstein, Robert S.

    2012-01-01

    Apoptotic death of osteocytes was recognized over 15 years ago, but its significance for bone homeostasis has remained elusive. A new paradigm has emerged that invokes osteocyte apoptosis as a critical event in the recruitment of osteoclasts to a specific site in response to skeletal unloading, fatigue damage, estrogen deficiency and perhaps in other states where bone must be removed. This is accomplished by yet to be defined signals emanating from dying osteocytes, which stimulate neighboring viable osteocytes to produce osteoclastogenic cytokines. The osteocyte apoptosis caused by chronic glucocorticoid administration does not increase osteoclasts; however, it does negatively impact maintenance of bone hydration, vascularity, and strength. PMID:23238124

  13. Measuring phospholipase D activity in insulin-secreting pancreatic beta-cells and insulin-responsive muscle cells and adipocytes.

    PubMed

    Cazzolli, Rosanna; Huang, Ping; Teng, Shuzhi; Hughes, William E

    2009-01-01

    Phospholipase D (PLD) is an enzyme producing phosphatidic acid and choline through hydrolysis of phosphatidylcholine. The enzyme has been identified as a member of a variety of signal transduction cascades and as a key regulator of numerous intracellular vesicle trafficking processes. A role for PLD in regulating glucose homeostasis is emerging as the enzyme has recently been identified in events regulating exocytosis of insulin from pancreatic beta-cells and also in insulin-stimulated glucose uptake through controlling GLUT4 vesicle exocytosis in muscle and adipose tissue. We present methodologies for assessing cellular PLD activity in secretagogue-stimulated insulin-secreting pancreatic beta-cells and also insulin-stimulated adipocyte and muscle cells, two of the principal insulin-responsive cell types controlling blood glucose levels.

  14. Pancreatic beta-cell-specific targeted disruption of glucokinase gene. Diabetes mellitus due to defective insulin secretion to glucose.

    PubMed

    Terauchi, Y; Sakura, H; Yasuda, K; Iwamoto, K; Takahashi, N; Ito, K; Kasai, H; Suzuki, H; Ueda, O; Kamada, N

    1995-12-22

    Mice carrying a null mutation in the glucokinase (GK) gene in pancreatic beta-cells, but not in the liver, were generated by disrupting the beta-cell-specific exon. Heterozygous mutant mice showed early-onset mild diabetes due to impaired insulin-secretory response to glucose. Homozygotes showed severe diabetes shortly after birth and died within a week. GK-deficient islets isolated from homozygotes showed defective insulin secretion in response to glucose, while they responded to other secretagogues: almost normally to arginine and to some extent to sulfonylureas. These data provide the first direct proof that GK serves as a glucose sensor molecule for insulin secretion and plays a pivotal role in glucose homeostasis. GK-deficient mice serve as an animal model of the insulin-secretory defect in human non-insulin-dependent diabetes mellitus.

  15. Longitudinal changes in insulin sensitivity and beta cell function between women with and without a history of gestational diabetes mellitus.

    PubMed

    Xiang, Anny H; Takayanagi, Miwa; Black, Mary Helen; Trigo, Enrique; Lawrence, Jean M; Watanabe, Richard M; Buchanan, Thomas A

    2013-12-01

    The aim of the study was to compare longitudinal changes in insulin sensitivity (SI) and beta cell function between women with and without a history of gestational diabetes mellitus (GDM). The prospective follow-up cohort included 235 parous non-diabetic Mexican-American women, 93 with and 142 without a history of GDM. The participants underwent dual-energy x-ray absorptiometry, OGTTs and IVGTTs at baseline and at a median of 4.1 years follow-up. The baseline values and rates of change of metabolic measures were compared between groups. At baseline, women with prior GDM (mean age 36.3 years) had similar values of SI but higher percentages of body fat and trunk fat (p ≤ 0.02), a lower acute insulin response and poorer beta cell compensation (disposition index [DI]) (p < 0.0001) than women without GDM (mean age 37.9 years). During the follow-up, women with GDM had a faster decline in SI (p = 0.02) and DI (p = 0.02) than their counterparts without GDM, with no significant differences in changes of weight or fat (p > 0.50). Adjustment for baseline age, adiposity, calorie intake, physical activity, age at first pregnancy, additional pregnancies and changes in adiposity during follow-up increased the between-group differences in the rates of change of SI and DI (p ≤ 0.003). Mexican-American women with recent GDM had a faster deterioration in insulin sensitivity and beta cell compensation than their parous counterparts without GDM. The differences were not explained by differences in adiposity, suggesting more deleterious effects of existing fat and/or reduced beta cell robustness in women with GDM.

  16. Olanzapine, not resperidone, exacerbates beta-cell function and mass in ovariectomized diabetic rats and estrogen replacement reverses them.

    PubMed

    Park, Sunmin; Sang Mee Hong; Il Sung Ahn; Sung Hoon Kim

    2010-07-01

    The effect of risperidone and olanzapine on beta-cell function and mass was investigated in 90% pancreatectomized and ovariectomized female rats, of which some were treated with estrogen replacement and some were not. Ovariectomized diabetic rats were divided into two groups: one group received daily estrogen replacement (30 mug 17beta-estradiol/kg body weight) and the other group received a vehicle. Each group was further divided into three subgroups and orally given either a placebo, risperidone (0.5 mg/kg body weight), or olanzapine (2 mg/kg body weight) each day in conjunction with a high-fat diet for eight weeks. Ovariectomy reduced serum prolactin levels, while risperidone and estrogen replacement increased them. Olanzapine, not risperidone, increased body weight gain and epididymal fats, and impaired glucose tolerance in ovariectomized diabetic rats, while estrogen replacement improved them. This was related to changes in insulin secretion capacity. Ovariectomized rats had decreased beta-cell mass, due to decreasing beta-cell proliferation, compared with Sham rats, and olanzapine, but not risperidone, caused further reduction. Olanzapine reduced IRS2 protein levels in the islets of ovariectomized rats. Decreased IRS2 attenuated the phosphorylation of Akt and, subsequently, PDX-1 protein levels were lowered in olanzapine-treated rats. Estrogen replacement activated insulin/IGF-1 signaling regardless of treatment. In conclusion, olanzapine, but not risperidone, exacerbated glucose homeostasis partly by attenuating beta-cell function and mass in ovariectomized diabetic rats, while estrogen replacement reversed its negative impact. Further human studies are needed to support the claim that olanzapine should be avoided in the treatment of schizophrenic postmenopausal patients with diabetes.

  17. Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells

    SciTech Connect

    Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica; Baltrusch, Simone

    2016-06-10

    Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 was down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion. -- Highlights: •Down-regulation of Drp1 in INS1 cells reduces mitochondrial fusion protein expression. •Mitochondrial membrane potential in INS1 cells is diminished after Drp1 down-regulation. •Mitochondria become elongated after down-regulation of Drp1 in beta cells. •Down-regulation of

  18. An octamer motif is required for activation of the inducible nitric oxide synthase promoter in pancreatic beta-cells.

    PubMed

    Darville, Martine I; Terryn, Sara; Eizirik, Décio L

    2004-03-01

    Nitric oxide, generated by the inducible form of nitric oxide synthase (iNOS), is a potential mediator of cytokine-induced beta-cell dysfunction in type 1 diabetes mellitus. We have previously shown that cytokine-induced iNOS expression is cycloheximide (CHX) sensitive and requires nuclear factor-kappa B (NF-kappa B) activation. In the present study, we show that an octamer motif located 20 bp downstream of the proximal NF-kappa B binding site in the rat iNOS promoter is critical for IL-1 beta and interferon-gamma induction of promoter activity in rat primary beta-cells and insulin-producing RINm5F cells. In gel shift assays, the octamer motif bound constitutively the transcription factor Oct1. Neither Oct1 nor NF-kappa B binding activities were blocked by CHX, suggesting that other factor(s) synthesized in response to IL-1 beta contribute to iNOS promoter induction. The high mobility group (HMG)-I(Y) protein also bound the proximal iNOS promoter region. HMG-I(Y) binding was decreased in cells treated with CHX and HMG-I(Y) silencing by RNA interference reduced IL-1 beta-induced iNOS promoter activity. These results suggest that Oct1, NF-kappa B, and HMG-I(Y) cooperate for transactivation of the iNOS promoter in pancreatic beta-cells.

  19. GeneSpeed Beta Cell: An Online Genomics Data Repository and Analysis Resource Tailored for the Islet Cell Biologist

    PubMed Central

    Quayum, Nayeem; Kutchma, Alecksandr; Sarkar, Suparna A.; Juhl, Kirstine; Gradwohl, Gerard; Mellitzer, Georg; Hutton, John C.; Jensen, Jan

    2008-01-01

    Objective. We here describe the development of a freely available online database resource, GeneSpeed Beta Cell, which has been created for the pancreatic islet and pancreatic developmental biology investigator community. Research Design and Methods. We have developed GeneSpeed Beta Cell as a separate component of the GeneSpeed database, providing a genomics-type data repository of pancreas and islet-relevant datasets interlinked with the domain-oriented GeneSpeed database. Results. GeneSpeed Beta Cell allows the query of multiple published and unpublished select genomics datasets in a simultaneous fashion (multiexperiment viewing) and is capable of defining intersection results from precomputed analysis of such datasets (multidimensional querying). Combined with the protein-domain categorization/assembly toolbox provided by the GeneSpeed database, the user is able to define spatial expression constraints of select gene lists in a relatively rigid fashion within the pancreatic expression space. We provide several demonstration case studies of relevance to islet cell biology and development of the pancreas that provide novel insight into islet biology. Conclusions. The combination of an exhaustive domain-based compilation of the transcriptome with gene array data of interest to the islet biologist affords novel methods for multidimensional querying between individual datasets in a rapid fashion, presently not available elsewhere. PMID:18795106

  20. Intake of antioxidant vitamins and trace elements during pregnancy and risk of advanced beta cell autoimmunity in the child.

    PubMed

    Uusitalo, Liisa; Kenward, Mike G; Virtanen, Suvi M; Uusitalo, Ulla; Nevalainen, Jaakko; Niinistö, Sari; Kronberg-Kippilä, Carina; Ovaskainen, Marja-Leena; Marjamäki, Liisa; Simell, Olli; Ilonen, Jorma; Veijola, Riitta; Knip, Mikael

    2008-08-01

    Type 1 diabetes may have its origins in the fetal period of life. Free radicals were implicated in the cause of type 1 diabetes. It was hypothesized that antioxidant nutrients could protect against type 1 diabetes. We assessed whether high maternal intake of selected dietary antioxidants during pregnancy is associated with a reduced risk of advanced beta cell autoimmunity in the child, defined as repeated positivity for islet cell antibodies plus >/=1 other antibody, overt type 1 diabetes, or both. The study was carried out as part of the population-based birth cohort of the Type 1 Diabetes Prediction and Prevention Project. The data comprised 4297 children with increased genetic susceptibility to type 1 diabetes, born at the University Hospital of Oulu or Tampere, Finland, between October 1997 and December 2002. The children were monitored for diabetes-associated autoantibodies from samples obtained at 3-12-mo intervals. Maternal antioxidant intake during pregnancy was assessed postnatally with a self-administered food-frequency questionnaire, which contained a question about consumption of dietary supplements. Maternal intake of none of the studied antioxidant nutrients showed association with the risk of advanced beta cell autoimmunity in the child. The hazard ratios, indicating the change in risk per a 2-fold increase in the intake of each antioxidant, were nonsignificant and close to 1. High maternal intake of retinol, beta-carotene, vitamin C, vitamin E, selenium, zinc, or manganese does not protect the child from development of advanced beta cell autoimmunity in early childhood.

  1. Induced ICER I{gamma} down-regulates cyclin A expression and cell proliferation in insulin-producing {beta} cells

    SciTech Connect

    Inada, Akari; Weir, Gordon C.; Bonner-Weir, Susan . E-mail: susan.bonner-weir@joslin.harvard.edu

    2005-04-15

    We have previously found that cyclin A expression is markedly reduced in pancreatic {beta}-cells by cell-specific overexpression of repressor inducible cyclic AMP early repressor (ICER I{gamma}) in transgenic mice. Here we further examined regulatory effects of ICER I{gamma} on cyclin A gene expression using Min6 cells, an insulin-producing cell line. The cyclin A promoter luciferase assay showed that ICER I{gamma} directly repressed cyclin A gene transcription. In addition, upon ICER I{gamma} overexpression, cyclin A mRNA levels markedly decreased, thereby confirming an inhibitory effect of ICER I{gamma} on cyclin A expression. Suppression of cyclin A results in inhibition of BrdU incorporation. Under normal culture conditions endogenous cyclin A is abundant in these cells, whereas ICER is hardly detectable. However, serum starvation of Min6 cells induces ICER I{gamma} expression with a concomitant very low expression level of cyclin A. Cyclin A protein is not expressed unless the cells are in active DNA replication. These results indicate a potentially important anti-proliferative effect of ICER I{gamma} in pancreatic {beta} cells. Since ICER I{gamma} is greatly increased in diabetes as well as in FFA- or high glucose-treated islets, this effect may in part exacerbate diabetes by limiting {beta}-cell proliferation.

  2. Furosemide reduces insulin release by inhibition of Cl sup minus and Ca sup 2+ fluxes in. beta. -cells

    SciTech Connect

    Sandstroem, P.E.; Sehlin, J. )

    1988-11-01

    The effect of furosemide on insulin release, glucose oxidation, {sup 36}Cl{sup {minus}} fluxes, and {sup 45}Ca{sup 2+} uptake was studied in isolated, {beta}-cell-rich pancreatic islets from ob/ob mice. Low concentrations of furosemide (0.01-0.1 mM) reduced the glucose-induced insulin release, whereas high doses (1-10 mM) increased basal and glucose-induced release. Furosemide at concentrations that reduced glucose-induced insulin release did not affect the islet production of {sup 14}CO{sub 2} from D-(U-{sup 14}C)glucose. The influx rate and equilibrium content of {sup 36}Cl{sup {minus}} were reduced by furosemide, whereas the basal and glucose-stimulated {sup 36}Cl{sup {minus}} efflux rates were unaffected. The glucose-induced uptake of {sup 45}Ca{sup 2+} was inhibited by furosemide. It is suggested that the diabetogenic action of furosemide may be due, at least in part, to direct inhibition of insulin release from the pancreatic {beta}-cells. This may be caused primarily by inhibition of an inwardly directed Cl{sup {minus}} pump, leading to a reduced transmembrane electrochemical gradient for chloride in the {beta}-cells. This reduced gradient in combination with unaltered Cl{sup {minus}} permeability may lead to decreased total outward Cl{sup {minus}} transport, a factor associated with stimulated calcium uptake and insulin release.

  3. Mice deficient in GEM GTPase show abnormal glucose homeostasis due to defects in beta-cell calcium handling.

    PubMed

    Gunton, Jenny E; Sisavanh, Mary; Stokes, Rebecca A; Satin, Jon; Satin, Leslie S; Zhang, Min; Liu, Sue M; Cai, Weikang; Cheng, Kim; Cooney, Gregory J; Laybutt, D Ross; So, Trina; Molero, Juan-Carlos; Grey, Shane T; Andres, Douglas A; Rolph, Michael S; Mackay, Charles R

    2012-01-01

    Glucose-stimulated insulin secretion from beta-cells is a tightly regulated process that requires calcium flux to trigger exocytosis of insulin-containing vesicles. Regulation of calcium handling in beta-cells remains incompletely understood. Gem, a member of the RGK (Rad/Gem/Kir) family regulates calcium channel handling in other cell types, and Gem over-expression inhibits insulin release in insulin-secreting Min6 cells. The aim of this study was to explore the role of Gem in insulin secretion. We hypothesised that Gem may regulate insulin secretion and thus affect glucose tolerance in vivo. Gem-deficient mice were generated and their metabolic phenotype characterised by in vivo testing of glucose tolerance, insulin tolerance and insulin secretion. Calcium flux was measured in isolated islets. Gem-deficient mice were glucose intolerant and had impaired glucose stimulated insulin secretion. Furthermore, the islets of Gem-deficient mice exhibited decreased free calcium responses to glucose and the calcium oscillations seen upon glucose stimulation were smaller in amplitude and had a reduced frequency. These results suggest that Gem plays an important role in normal beta-cell function by regulation of calcium signalling.

  4. Nuclear import of glucokinase in pancreatic beta-cells is mediated by a nuclear localization signal and modulated by SUMOylation.

    PubMed

    Johansson, Bente Berg; Fjeld, Karianne; Solheim, Marie Holm; Shirakawa, Jun; Zhang, Enming; Keindl, Magdalena; Hu, Jiang; Lindqvist, Andreas; Døskeland, Anne; Mellgren, Gunnar; Flatmark, Torgeir; Njølstad, Pål Rasmus; Kulkarni, Rohit N; Wierup, Nils; Aukrust, Ingvild; Bjørkhaug, Lise

    2017-10-15

    The localization of glucokinase in pancreatic beta-cell nuclei is a controversial issue. Although previous reports suggest such a localization, the mechanism for its import has so far not been identified. Using immunofluorescence, subcellular fractionation and mass spectrometry, we present evidence in support of glucokinase localization in beta-cell nuclei of human and mouse pancreatic sections, as well as in human and mouse isolated islets, and murine MIN6 cells. We have identified a conserved, seven-residue nuclear localization signal ((30)LKKVMRR(36)) in the human enzyme. Substituting the residues KK(31,32) and RR(35,36) with AA led to a loss of its nuclear localization in transfected cells. Furthermore, our data indicates that SUMOylation of glucokinase modulates its nuclear import, while high glucose concentrations do not significantly alter the enzyme nuclear/cytosolic ratio. Thus, for the first time, we provide data in support of a nuclear import of glucokinase mediated by a redundant mechanism, involving a nuclear localization signal, and which is modulated by its SUMOylation. These findings add new knowledge to the functional role of glucokinase in the pancreatic beta-cell. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Allelic variation on chromosome 5 controls beta-cell mass expansion during hyperglycemia in leptin receptor-deficient diabetes mice.

    PubMed

    Luo, Na; Liu, Shun Mei; Liu, Hong; Li, Qiong; Xu, Qun; Sun, Xi; Davis, Brandi; Li, Jing; Chua, Streamson

    2006-05-01

    Leptin signaling is a critical component of normal insulin sensitivity. Overt hyperglycemia and type 2 diabetes mellitus can be manifested in states of leptin signaling deficiencies by the additional effects of other genetic factors. We have previously described the contrasting insulin sensitivities and glycemic states of two congenic diabetes (db/db) mouse strains. C57BL/6J db/db mice have mild insulin resistance and achieve euglycemia with mild hyperinsulinemia. FVB db/db mice have severe insulin resistance and are hyperglycemic despite escalating hyperinsulinemia with expanded pancreatic beta-cell mass. Analysis of obese progeny from the two reciprocal backcrosses suggests that genetic modifiers for insulin sensitivity are separable from loci that modulate beta-cell mass. A genome scan of the backcross to FVB suggests that one or more modifier genes are present on chromosome 5. This evidence is supported by the phenotypes of multiple incipient congenic strains wherein the hyperglycemia observed in obese FVB mice is reproduced. With similar degrees of hyperglycemia in obese mice of these strains, the haplotype at chromosome 5 is associated with beta-cell mass and circulating insulin concentrations. Finally, we offer arguments that production of multiple incipient congenic lines is an economical alternative to the production of speed congenic strains.

  6. Mice Deficient in GEM GTPase Show Abnormal Glucose Homeostasis Due to Defects in Beta-Cell Calcium Handling

    PubMed Central

    Gunton, Jenny E.; Sisavanh, Mary; Stokes, Rebecca A.; Satin, Jon; Satin, Leslie S.; Zhang, Min; Liu, Sue M.; Cai, Weikang; Cheng, Kim; Cooney, Gregory J.; Laybutt, D. Ross; So, Trina; Molero, Juan-Carlos; Grey, Shane T.; Andres, Douglas A.

    2012-01-01

    Aims and Hypothesis Glucose-stimulated insulin secretion from beta-cells is a tightly regulated process that requires calcium flux to trigger exocytosis of insulin-containing vesicles. Regulation of calcium handling in beta-cells remains incompletely understood. Gem, a member of the RGK (Rad/Gem/Kir) family regulates calcium channel handling in other cell types, and Gem over-expression inhibits insulin release in insulin-secreting Min6 cells. The aim of this study was to explore the role of Gem in insulin secretion. We hypothesised that Gem may regulate insulin secretion and thus affect glucose tolerance in vivo. Methods Gem-deficient mice were generated and their metabolic phenotype characterised by in vivo testing of glucose tolerance, insulin tolerance and insulin secretion. Calcium flux was measured in isolated islets. Results Gem-deficient mice were glucose intolerant and had impaired glucose stimulated insulin secretion. Furthermore, the islets of Gem-deficient mice exhibited decreased free calcium responses to glucose and the calcium oscillations seen upon glucose stimulation were smaller in amplitude and had a reduced frequency. Conclusions These results suggest that Gem plays an important role in normal beta-cell function by regulation of calcium signalling. PMID:22761801

  7. Coefficient of beta-cell failure in patients with type 2 diabetes treated with pioglitazone or acarbose.

    PubMed

    Göke, B; Lübben, G; Bates, P C

    2004-02-01

    A new method of assessing the coefficient of failure of pancreatic beta-cells from any index of glycaemia has been proposed. This method of analysis has been used to assess data on HbA1c and fasting glucose concentrations from a randomised study comparing pioglitazone with acarbose. Patients were treated for 26 weeks with either pioglitazone 45 mg once daily or acarbose 300 mg/day as 3 equal doses. Plasma HbA1c concentration was measured every two months and fasting glucose was measured monthly. The coefficient of failure was determined for each patient from the slope of the least squares regression line over time. The coefficient of failure from HbA1c was - 2.65 +/- 2.13 %/year with pioglitazone and - 1.25 +/- 3.11 %/year with acarbose, indicating improved beta-cell function in each case. The coefficient of failure was improved to a significantly greater extent with pioglitazone ( P < 0.001). Coefficient of failure from fasting blood glucose also showed a greater improvement with pioglitazone (- 53.1 +/- 95.0 mg/dl/year) than with acarbose (- 29.9 +/- 142.5 mg/dl/year; p = 0.049). The coefficient of failure showed a significantly greater improvement of beta-cell function with pioglitazone than with acarbose during 26 weeks of treatment.

  8. XIAP discriminates between type I and type II FAS-induced apoptosis.

    PubMed

    Jost, Philipp J; Grabow, Stephanie; Gray, Daniel; McKenzie, Mark D; Nachbur, Ueli; Huang, David C S; Bouillet, Philippe; Thomas, Helen E; Borner, Christoph; Silke, John; Strasser, Andreas; Kaufmann, Thomas

    2009-08-20

    FAS (also called APO-1 and CD95) and its physiological ligand, FASL, regulate apoptosis of unwanted or dangerous cells, functioning as a guardian against autoimmunity and cancer development. Distinct cell types differ in the mechanisms by which the 'death receptor' FAS triggers their apoptosis. In type I cells, such as lymphocytes, activation of 'effector caspases' by FAS-induced activation of caspase-8 suffices for cell killing, whereas in type II cells, including hepatocytes and pancreatic beta-cells, caspase cascade amplification through caspase-8-mediated activation of the pro-apoptotic BCL-2 family member BID (BH3 interacting domain death agonist) is essential. Here we show that loss of XIAP (X-chromosome linked inhibitor of apoptosis protein) function by gene targeting or treatment with a second mitochondria-derived activator of caspases (SMAC, also called DIABLO; direct IAP-binding protein with low pI) mimetic drug in mice rendered hepatocytes and beta-cells independent of BID for FAS-induced apoptosis. These results show that XIAP is the critical discriminator between type I and type II apoptosis signalling and suggest that IAP inhibitors should be used with caution in cancer patients with underlying liver conditions.

  9. Canine Fibroblast Growth Factor 21 Ameliorates Hyperglycemia Associated with Inhibiting Hepatic Gluconeogenesis and Improving Pancreatic Beta-Cell Survival in Diabetic Mice and Dogs.

    PubMed

    Xu, Pengfei; Zhang, Yingjie; Jiang, Xinghao; Li, Junyan; Song, Liying; Khoso, Mir Hasson; Liu, Yunye; Wu, Qiang; Ren, Guiping; Li, Deshan

    2016-01-01

    Diabetes mellitus is a common endocrinopathy in dog. Fibroblast growth factor 21 (FGF-21) is a secreted protein, which is involved in glucose homeostasis. We speculate that the recombinant canine FGF-21 (cFGF-21) has the potential to become a powerful therapeutics to treat canine diabetes. The cFGF-21 gene was cloned and expressed in E. coli Rosetta (DE3). After purification, a cFGF-21 protein with the purity exceeding 95% was obtained. Mouse 3T3-L1 adipocytes and type 1 diabetic mice/dogs induced by STZ were used to examine the biological activity of cFGF-21 in vitro and in vivo, respectively. Results showed that cFGF-21 stimulated glucose uptake in adipocytes significantly in a dose-dependent manner, and reduced plasma glucose significantly in diabetic mice/dogs. After treatment with cFGF-21, the serum insulin level, glycosylated hemoglobin (HbA1c) level and the expressions of the hepatic gluconeogenesis genes (glucose-6-phosphatase, G6Pase and phosphoenolpyruvate carboxykinase, PCK) of the diabetic mice/dogs were attenuated significantly. In the mouse experiment, we also found that the phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the expression of suppressor of cytokine signaling 3 (SOCS3) were up-regulated significantly in the livers after treatment. Histopathological and immunohistochemical results showed that treatment with cFGF-21 promoted recovery of pancreatic islets from STZ-induced apoptosis. Besides, we also found that treatment with cFGF-21 protected liver against STZ or hyperglycemia induced damage and the mechanism of this action associated with inhibiting oxidative stress. In conclusion, cFGF-21 represents a promising candidate for canine diabetes therapeutics. The mechanism of cFGF-21 ameliorates hyperglycemia associated with inhibiting hepatic gluconeogenesis by regulation of STAT3 signal pathway and improving pancreatic beta-cell survival.

  10. Voltage noise measurements across the pancreatic beta-cell membrane: calcium channel characteristics.

    PubMed Central

    Atwater, I; Dawson, C M; Eddlestone, G T; Rojas, E

    1981-01-01

    1. Membrane potential fluctuations were measured in cells from mouse Islets of Langerhans identified as beta-cells by the characteristic pattern of electrical activity induced by 11 mM-D-glucose. 2. The membrane potential was controlled by adjusting the external potassium concentration, [K+]o, keeping the sum [Na+]o plus [K+]o constant. In the absence of glucose, when [K+]o is raised, the resulting depolarization is accompanied by a significant increase in voltage noise. 3 The amplitude and time course of the voltage noise were measured under various experimental conditions. The variance of the fluctuating voltage decreased monotonically along the depolarization induced by sudden increase in [K+]o, suggesting a monotonic reduction in the number of elementary events. 4. The frequency characteristics of the excess noise could be analysed as the sum of 1/f and 1/f2 components. While the 1/f component remained unaffected by the external application of 20mM-tetraethylammonium (TEA) and either 2 mM-Mn2+ or 2 mM-Co2+, the 1/f2 component was suppressed by both Mn2+ and Co2+. 5. The corner frequency, fc, of the 1/f2 component depended on membrane potential, which was adjusted by adjusting the [K+]o jump. These results support the idea that fc in these experiments is a measure of the channel relaxation. 6. Measurements of the input resistance in the frequency range from 0 to 25 Hz were used to obtain a rough estimate of the size of the channel conductance as 5 x 10(-12) omega (-1). PMID:6273530

  11. Preservation of beta cell function after pancreatic islet autotransplantation: University of Chicago experience.

    PubMed

    Savari, Omid; Golab, Karolina; Wang, Ling-Jia; Schenck, Lindsay; Grose, Randall; Tibudan, Martin; Ramachandran, Sabarinathan; Chon, W James; Posner, Mitchell C; Millis, J Michael; Matthews, Jeffrey B; Gelrud, Andres; Witkowski, Piotr

    2015-04-01

    The aim of the study was to assess the rate of insulin independence in patients after total pancreatectomy (TP) and islet autotransplantation in our center. TP followed by islet autotransplantation was performed in 10 patients. Severe unrelenting pain associated with chronic pancreatitis was the major indication for surgery. Islets were isolated using the modified Ricordi method and infused through the portal vein. Exogenous insulin therapy was implemented for at least two months posttransplant to support islet engraftment and was subsequently weaned off, if possible. Median follow-up was 26 months (range, 2 to 60 months). Median islet yield was 158,860 islet equivalents (IEQ) (range, 40,203 to 330,472 IEQ) with an average islet yield of 2,478 IEQ/g (range, 685 to 6,002 IEQ/g) of processed pancreas. One patient developed transient partial portal vein thrombosis, which resolved without sequela. Five (50%) patients are currently off insulin with excellent glucose control and HbA1c below 6. Patients who achieved and maintained insulin independence were transplanted with significantly more islets (median, 202,291 IEQ; range, 145,000 to 330,474 IEQ) than patients who required insulin support (64,348 IEQ; range, 40,203 to 260,476 IEQ; P < 0.05). Patient body mass index and time of chronic pancreatitis prior transplant procedure did not correlate with the outcome. The remaining five patients, who require insulin support, had present C-peptide in blood and experience good glucose control without incidence of severe hypoglycemic episodes. Islet autotransplantation efficiently preserved beta cell function in selected patients with chronic pancreatitis and the outcome correlated with transplanted islet mass.

  12. Role of clathrin in the regulated secretory pathway of pancreatic beta-cells.

    PubMed

    Molinete, M; Dupuis, S; Brodsky, F M; Halban, P A

    2001-08-01

    The role of clathrin in the sorting of proinsulin to secretory granules, the formation of immature granules and their subsequent maturation is not known. To this end, primary rat pancreatic beta-cells were infected with a recombinant adenovirus co-expressing the Hub fragment, a dominant-negative peptide of the clathrin heavy chain and enhanced green fluorescent protein (EGFP as a marker of infected cells). A population of cells expressing the highest levels of EGFP (and thus Hub) was obtained using a fluorescence-activated cell sorter (FACS). Control cells were infected with an adenovirus expressing EGFP alone. By immunofluorescence, control cells showed intense staining for both clathrin light chain and proinsulin in a perinuclear region. In cells expressing high levels of Hub, the clathrin light-chain signal was faint and diffuse in keeping with its displacement from membranes. There was, however, no detectable effect of Hub expression on proinsulin staining or disposition within the cell. Proinsulin sorting and conversion, and the fate (release and/or degradation) of insulin and C-peptide, was studied by pulse-chase and quantitative reverse phase HPLC. In both Hub-expressing and control cells, >99% of all newly synthesized proinsulin was sorted to the regulated pathway and there was no effect of Hub on proinsulin conversion to insulin. In presence of Hub there was, however, a significant increase in the percentage of C-peptide truncated to des-(27-31)-C-peptide at early times of chase as well as more extensive degradation of C-peptide thereafter. It is concluded that clathrin is not implicated in the sorting or processing of proinsulin or in regulated exocytosis of secretory granules. These results confirm a role for clathrin in the removal of proteases from maturing granules, thus explaining the increased truncation and degradation of C-peptide in cells expressing Hub.

  13. Nicotinamide-functionalized multiwalled carbon nanotubes increase insulin production in pancreatic beta cells via MIF pathway.

    PubMed

    Ilie, Ioana; Ilie, Razvan; Mocan, Teodora; Tabaran, Flaviu; Iancu, Cornel; Mocan, Lucian

    2013-01-01

    Recent data in the literature support the role of nicotinamide (NA) as a pharmacologic agent that stimulates pancreatic beta-cells to produce insulin in vitro. There are data showing that carbon nanotubes may be useful in initiating and maintaining cellular metabolic responses. This study shows that administration of multiwalled carbon nanotubes (MWCNTs) functionalized with nicotinamide (NA-MWCNTs) leads to significant insulin production compared with individual administration of NA, MWCNTs, and a control solution. Treatment of 1.4E7 cells for 30 minutes with NA-MWCNTs at concentrations ranging from 1 mg/L to 20 mg/L resulted in significantly increased insulin release (0.18 ± 0.026 ng/mL for 1 mg/L, 0.21 ± 0.024 ng/mL for 5 mg/L, and 0.27 ± 0.028 ng/mL for 20 mg/L). Thus, compared with cells treated with NA only (0.1 ± 0.01 ng/mL for 1 mg/L, 0.12 ± 0.017 ng/mL for 5 mg/L, and 0.17 ± 0.01 ng/mL for 20 mg/L) we observed a significant positive effect on insulin release in cells treated with NA-MWCNTs. The results were confirmed using flow cytometry, epifluorescence microscopy combined with immunochemistry staining, and enzyme-linked immunosorbent assay techniques. In addition, using immunofluorescence microscopy techniques, we were able to demonstrate that MWCNTs enhance insulin production via the macrophage migration inhibitory factor pathway. The application and potential of NA combined with MWCNTs as an antidiabetic agent may represent the beginning of a new chapter in the nanomediated treatment of diabetes mellitus.

  14. **-Postprandial pancreatic [(11)C]methionine uptake after pancreaticoduodenectomy mirrors basal beta cell function and insulin release.

    PubMed

    Steiner, Emanuel; Kazianka, Lukas; Breuer, Robert; Hacker, Marcus; Wadsak, Wolfgang; Mitterhauser, Markus; Stimpfl, Thomas; Reiter, Birgit; Karanikas, Georgios; Miholic, Johannes

    2017-03-01

    [S-methyl-(11)C]-L-methionine ([(11)C]MET) uptake in the pancreas might be a central indicator of beta cell function. Since gastric emptying was recently shown to influence glycemic control in subjects after pancreaticoduodenectomy (PD, the surgical treatment of neoplasms of the pancreas head), we looked for imaginable relationships between gastric emptying, pre- and postprandial insulin concentrations, and [(11)C]MET uptake. Nineteen tumor-free survivors after PD (age mean ± SD: 61 ± 8.7 yrs.; 10 male, 9 female) and 10 healthy controls (age: 27 ± 8.7 yrs.; 7 male, 3 female) were given a mixed test meal. One gram of paracetamol was ingested with the meal to evaluate the speed of gastric emptying. Insulin, glucose, and paracetamol plasma concentrations were measured before and over 180 minutes after ingestion. Beta cell function was calculated from fasting glucose and insulin plasma concentrations. Simultaneously, 800 MBq of [(11)C]MET were administered and the activity (maximum tissue standardized uptake values [SUVmax]) over the pancreas was measured at 15, 30, and 60 minutes after injection. Total integrated SUVmax (area under the curve [AUC]) and incremental SUVmax were calculated. The uptake of [(11)C]MET in the pancreas was significantly higher (p < 0.0001) in controls compared to the PD group. Gastric emptying was significantly slower in controls compared to pancreatectomy subjects (p < 0.0001). Paracetamol AUC30 correlated with the SUVmax increment between 15 and 30 minutes (R(2) = 0.27, p = 0.0263), suggesting a relationship between gastric emptying and the uptake of [(11)C]MET. Total integrated SUVmax correlated with insulin AUC60 (R(2) = 0.66,p < 0.0001) in patients after PD. Multivariate regression analysis revealed insulin AUC60 and beta cell function, calculated from the fasting insulin to glucose ratio, as independent predictors of (11)C-methionine uptake, i.e. total integrated SUVmax, in patients after PD (R

  15. [Associations of insulin resistance and pancreatic beta-cell function with plasma glucose level in type 2 diabetes].

    PubMed

    Nian, Xiaoping; Sun, Gaisheng; Dou, Chunmei; Hou, Hongbo; Fan, Xiuping; Yu, Hongmei; Ma, Ling; He, Bingxian

    2002-06-10

    To investigate the influence of insulin resistance and pancreatic beta-cell function on plasma glucose level in type 2 diabetes so as to provide theoretical basis for reasonable selection of hypoglycemic agents. The plasma non-specific insulin (NSINS), true insulin (TI) and glucose in eight-one type 2 diabetics, 38 males and 43 females, with a mean age of 53 years, were examined 0, 30, 60 and 120 minutes after they had 75 grams of instant noodles. The patients were divided into two groups according to their fasting plasma glucose (FPG): group A (FPG < 8.89 mmol/L) and group B (FPG> = 8.89 mmol/L). The insulin resistance was evaluated by HOMA-IR, the beta-cell function was evaluated by HOMA-beta formula and the formula deltaI(30)/deltaG(30) = (deltaI(30)-deltaI(0))/(deltaG(30)-deltaG(0)). The insulin area under curve (INSAUC) was evaluated by the formula INSAUC=FINS/2+INS(30)+INS(60)+INS(120)/2. The mean FPG was 6.23 mmol/L in group A and 12.6 mmol/L in group B. PG2H was 11.7 mmol/L in group A and 19.2 mmol/L in group B. The TI levels in group B at 0, 30, 60, 120 min during standard meal test were significantly higher than those in group A: 6.15 +/- 1.06 vs 4.77 +/- 1.06, 9.76 +/- 1.1 vs 5.88 +/- 1.1,14.68 +/- 1.11 vs 6.87 +/- 1.1 and 17.13 +/- 1.12 vs 8.0 +/- 1.1 microU/dl (all P< 0.01). The NSINS showed the same trend. The insulin resistance in group B was 1.5 times that in group A. With the insulin resistance adjusted, the beta cell function in group A was 5 to 6 times that in group B. The INSAUC in group A was 1.66 times larger than that in group B, especially the INSAUC for true insulin (2 times larger). The contribution of insulin resistance and beta cell function to PG2H was half by half in group A and 1:8 in group B. beta cell function calculated by insulin (Homa-beta) explained 41% of the plasma glucose changes in group A and 54% of the plasma glucose changes in group B. The contribution of insulin deficiency to plasma glocose was 3.3.times that of insulin

  16. Increased secretion of insulin and proliferation of islet {beta}-cells in rats with mesenteric lymph duct ligation

    SciTech Connect

    Nagino, Ko; Yokozawa, Junji; Sasaki, Yu; Matsuda, Akiko; Takeda, Hiroaki; Kawata, Sumio

    2012-08-24

    Highlights: Black-Right-Pointing-Pointer Insulin secretion was increased during the OGTT or IVGTT in mesenteric lymph duct-ligated rats. Black-Right-Pointing-Pointer Proliferation of islet {beta}-cells was upregulated in lymph duct-ligated rats. Black-Right-Pointing-Pointer Mesenteric lymph duct flow has a role in glucose metabolism. -- Abstract: Background and aims: It has been suggested that intestinal lymph flow plays an important role in insulin secretion and glucose metabolism after meals. In this study, we investigated the influence of ligation of the mesenteric lymph duct on glucose metabolism and islet {beta}-cells in rats. Methods: Male Sprague-Dawley rats (10 weeks old) were divided into two groups: one underwent ligation of the mesenteric lymph duct above the cistern (ligation group), and the other underwent a sham operation (sham group). After 1 and 2 weeks, fasting plasma concentrations of glucose, insulin, triglyceride, glucose-dependent insulinotropic polypeptide (GIP), and the active form of glucagon-like peptide-1 (GLP-1) were measured. At 2 weeks after the operation, the oral glucose tolerance test (OGTT) and intravenous glucose tolerance test (IVGTT) were performed. After the rats had been sacrificed, the insulin content of the pancreas was measured and the proliferation of {beta}-cells was assessed immunohistochemically using antibodies against insulin and Ki-67. Results: During the OGTT, the ligation group showed a significant decrease in the plasma glucose concentration at 120 min (p < 0.05) and a significant increase in the plasma insulin concentration by more than 2-fold at 15 min (p < 0.01). On the other hand, the plasma GIP concentration was significantly decreased at 60 min (p < 0.01) in the ligated group, while the active form of GLP-1 showed a significantly higher level at 90 min (1.7-fold; p < 0.05) and 120 min (2.5-fold; p < 0.01). During the IVGTT, the plasma insulin concentration in the ligation group was significantly higher at 2

  17. Ablation of AMPKα1 and α2 from pancreatic beta cells and RIP.Cre neurons suppresses insulin release in vivo

    PubMed Central

    Sun, G.; Tarasov, A.I.; McGinty, J.; McDonald, A.; da Silva Xavier, G.; Gorman, T.; Marley, A.; French, P. M.; Parker, H.; Gribble, F.; Reimann, F.; Prendiville, O.; Carzaniga, R.; Viollet, B.; Leclerc, I.; Rutter, G.A.

    2015-01-01

    Aims/Hypothesis AMP-activated protein kinase (AMPK) is an evolutionarily-conserved enzyme and a target of antihyperglycemic agents including metformin. However, the precise role(s) of the enzyme in controlling insulin secretion remains uncertain. Methods The catalytic α1 and α2 subunits of AMPK were ablated selectively in pancreatic beta cells and hypothalamic neurons by breeding AMPKα1 null mice, bearing flox’d AMPKα2 alleles, with animals expressing Cre recombinase under the rat insulin promoter. The latter promoter was used to express constitutively-activated AMPK selectively in beta cells in transgenic mice. Food intake, body weight and urinary catecholamines were measured using metabolic cages. Glucose and insulin tolerance were determined after intraperitoneal injection. Beta cell mass and morphology were analysed by optical projection tomography and confocal immunofluorescence microscopy, respectively. Granule docking, insulin secretion, membrane potential, and intracellular free Ca2+ were measured with standard techniques. Results Trigenic βAMPKdKO mice, lacking both AMPK α subunits in the beta cell, displayed normal body weight and increased insulin sensitivity, but were profoundly insulin deficient. Secreted catecholamine levels were unchanged. Total beta cell mass was unaltered whilst mean islet and beta cell volume were reduced. AMPK-deficient beta cells displayed normal glucose-induced changes in membrane potential and intracellular free Ca2+ whilst granule docking and insulin secretion were enhanced. Conversely, βAMPK transgenic mice were glucose-intolerant and displayed defective insulin secretion. Conclusions/Interpretation Inhibition of AMPK activity within the beta cell is necessary, but not sufficient, for the stimulation of insulin secretion by glucose. AMPK activation in extrapancreatic RIP.Cre-expressing cells might also influence insulin secretion in vivo PMID:20221584

  18. Ablation of AMP-activated protein kinase alpha1 and alpha2 from mouse pancreatic beta cells and RIP2.Cre neurons suppresses insulin release in vivo.

    PubMed

    Sun, G; Tarasov, A I; McGinty, J; McDonald, A; da Silva Xavier, G; Gorman, T; Marley, A; French, P M; Parker, H; Gribble, F; Reimann, F; Prendiville, O; Carzaniga, R; Viollet, B; Leclerc, I; Rutter, G A

    2010-05-01

    AMP-activated protein kinase (AMPK) is an evolutionarily conserved enzyme and a target of glucose-lowering agents, including metformin. However, the precise role or roles of the enzyme in controlling insulin secretion remain uncertain. The catalytic alpha1 and alpha2 subunits of AMPK were ablated selectively in mouse pancreatic beta cells and hypothalamic neurons by breeding Ampkalpha1 [also known as Prkaa1]-knockout mice, bearing floxed Ampkalpha2 [also known as Prkaa2] alleles (Ampkalpha1 ( -/- ),alpha2( fl/fl ),), with mice expressing Cre recombinase under the rat insulin promoter (RIP2). RIP2 was used to express constitutively activated AMPK selectively in beta cells in transgenic mice. Food intake, body weight and urinary catecholamines were measured using metabolic cages. Glucose and insulin tolerance were determined after intraperitoneal injection. Beta cell mass and morphology were analysed by optical projection tomography and confocal immunofluorescence microscopy, respectively. Granule docking, insulin secretion, membrane potential and intracellular free Ca(2+) were measured with standard techniques. Trigenic Ampkalpha1 ( -/- ),alpha2( fl/fl ) expressing Cre recombinase and lacking both AMPKalpha subunits in the beta cell, displayed normal body weight and increased insulin sensitivity, but were profoundly insulin-deficient. Secreted catecholamine levels were unchanged. Total beta cell mass was unaltered, while mean islet and beta cell volume were reduced. AMPK-deficient beta cells displayed normal glucose-induced changes in membrane potential and intracellular free Ca(2+), while granule docking and insulin secretion were enhanced. Conversely, betaAMPK transgenic mice were glucose-intolerant and displayed defective insulin secretion. Inhibition of AMPK activity within the beta cell is necessary, but not sufficient for stimulation of insulin secretion by glucose to occur. AMPK activation in extrapancreatic RIP2.Cre-expressing cells might also influence

  19. Insulin receptor isoform A confers a higher proliferative capability to pancreatic beta cells enabling glucose availability and IGF-I signaling.

    PubMed

    Escribano, Oscar; Gómez-Hernández, Almudena; Díaz-Castroverde, Sabela; Nevado, Carmen; García, Gema; Otero, Yolanda F; Perdomo, Liliana; Beneit, Nuria; Benito, Manuel

    2015-07-05

    The main compensatory response to insulin resistance is the pancreatic beta cell hyperplasia to account for increased insulin secretion. In fact, in a previous work we proposed a liver-pancreas endocrine axis with IGF-I (insulin-like growth factor type I) secreted by the liver acting on IRA insulin receptor in beta cells from iLIRKO mice (inducible Liver Insulin Receptor KnockOut) that showed a high IRA/IRB ratio. However, the role of insulin receptor isoforms in the IGF-I-induced beta cell proliferation as well as the underlying molecular mechanisms remain poorly understood. For this purpose, we have used four immortalized mouse beta cell lines: bearing IR (IRLoxP), lacking IR (IRKO), expressing exclusively IRA (IRA), or alternatively expressing IRB (IRB). Pancreatic beta cell proliferation studies showed that IRA cells are more sensitive than those expressing IRB to the mitogenic response induced by IGF-I, acting through the pathway IRA/IRS-1/2/αp85/Akt/mTORC1/p70S6K. More importantly, IRA beta cells, but not IRB, showed an increased glucose uptake as compared with IRLoxP cells, this effect being likely owing to an enhanced association between Glut-1 and Glut-2 with IRA. Overall, our results strongly suggest a prevalent role of IRA in glucose availability and IGF-I-induced beta cell proliferation mainly through mTORC1. These results could explain, at least partially, the role played by the liver-secreted IGF-I in the compensatory beta cell hyperplasia observed in response to severe hepatic insulin resistance in iLIRKO mice.

  20. Exercise to preserve beta cell function in recent-onset type 1 diabetes mellitus (EXTOD)--a study protocol for a pilot randomized controlled trial.

    PubMed

    Lascar, Nadia; Kennedy, Amy; Jackson, Nikki; Daley, Amanda; Dowswell, George; Thompson, Dylan; Stokes, Keith; Greenfield, Sheila; Holder, Roger; Andrews, Rob; Narendran, Parth

    2013-06-18

    Exercise has a beta cell preserving effect in patients with type 2 diabetes. This benefit of exercise has not been examined in type 1 diabetes. Significant beta cell function is present at the time of diagnosis of type 1 diabetes and therefore studies of beta cell preservation are ideally conducted immediately after diagnosis.Many of the variables required to design and power such a study are currently unknown. The aim of EXTOD is to obtain the information required to design a formal study of exercise and beta cell preservation in newly diagnosed patients with type 1 diabetes. Barriers to exercise will initially be assessed in a qualitative study of newly diagnosed patients. Then, sixty newly diagnosed adult type 1 diabetes patients will be randomized to either conventional treatment or exercise, stratified on beta cell function and fitness. The exercise group will be encouraged to increase their level of activity to a minimum of 150 minutes of moderate to vigorous intensity exercise per week, aiming for 240 minutes per week of exercise for 12 months. Beta cell function will be measured by meal-stimulated C peptide. Primary outcomes are recruitment, adherence to exercise, loss to follow-up, and exercise levels in the non-intervention arm (contamination). The secondary outcome of the study is rate of loss of beta cell function. The outcomes of the EXTOD study will help define the barriers, uptake and benefits of exercise in adults newly diagnosed with type 1 diabetes. This information will enable design of a formal study to assess the effect of exercise on beta cell preservation in newly diagnosed patients with type 1 diabetes. Current controlled trials ISRCTN91388505.

  1. Des-(27-31)C-peptide. A novel secretory product of the rat pancreatic beta cell produced by truncation of proinsulin connecting peptide in secretory granules.

    PubMed

    Verchere, C B; Paoletta, M; Neerman-Arbez, M; Rose, K; Irminger, J C; Gingerich, R L; Kahn, S E; Halban, P A

    1996-11-01

    Insulin and connecting peptide (C-peptide) are produced in equimolar amounts during proinsulin conversion in the pancreatic beta cell secretory granule. To determine whether insulin and C-peptide are equally stable in beta cell granules (and thus secreted in equimolar amounts), neonatal and adult rat beta cells were pulse-chased, and radiolabeled insulin and C-peptide analyzed by high performance liquid chromatography. A novel truncated C-peptide was identified and shown by mass spectrometry to be des-(27-31)C-peptide (loss of 5 C-terminal amino acids). Des-(27-31)C-peptide is a major beta cell secretory product, accounting for 37.4 +/- 1.6% (neonatal) and 8.5 +/- 0.6% (adult) of total labeled C-peptide in secretory granules after 10 h of chase. Des-(27-31)C-peptide is also secreted in a glucose-sensitive manner from the perfused adult rat pancreas, accounting for approximately 10% of total C-peptide immunoreactivity secreted. Human C-peptide is also a substrate for truncation in granules. Thus, when human proinsulin was expressed (infection with recombinant adenovirus) in transformed (INS) rat beta cells, human des-(27-31)C-peptide was secreted along with the intact human peptide and both intact and truncated rat C-peptide. In addition to truncation, 33.1 +/- 1.2% of C-peptide in neonatal but not adult rat beta cell granules was further degraded. Such degradation was completely inhibited by ammonium chloride (known to neutralize intra-granular pH), whereas truncation was only partially inhibited by approximately 50%. In conclusion, a novel beta cell secretory product, des-(27-31)C-peptide, has been identified and should be considered as a potential bioactive peptide. Both truncation and degradation of C-peptide are responsible for non-equimolar secretion of insulin and C-peptide in rat beta cells.

  2. Evidence that down-regulation of. beta. -cell glucose transporters in non-insulin-dependent diabetes may be the cause of diabetic hyperglycemia

    SciTech Connect

    Orci, L.; Ravazzola, M.; Baetens, D.; Amherdt, M. ); Inman, L.; Johnson, J.H.; Unger, R.H. Dept. of Veterans Affairs Medical Center, Dallas, TX ); Peterson, R.G. ); Newgard, C.B. )

    1990-12-01

    Non-insulin-dependent diabetes mellitus (NIDDM) is attributed to a failure of pancreatic {beta} cells to maintain insulin secretion at a level sufficient to compensate for underlying insulin resistance. In the ZDF rat, a model of NIDDM that closely resembles the human syndrome, the authors have previously reported profound underexpression of GLUT-2, the high-K{sub m} facilitative glucose transporter expressed by {beta} cells of normal animals. Here they report that islets of diabetic rats exhibit a marked decrease in the volume density of GLUT-2-positive {beta} cells and a reduction at the electron-microscopic level in the number of GLUT-2-immunoreactive sites per unit of {beta}-cell plasma membrane. The deficiency of GLUT-2 cannot be induced in normal {beta} cells by in vivo or in vitro exposure to high levels of glucose nor can it be prevented in {beta} cells of prediabetic ZDF rats by elimination of hyperglycemia. They conclude that this dearth of immunodetectable GLUT-2 in NIDDM is not secondary to hyperglycemia and therefore that it may well play a causal role in the development of hyperglycemia.

  3. The small RNA miR-375 - a pancreatic islet abundant miRNA with multiple roles in endocrine beta cell function.

    PubMed

    Eliasson, Lena

    2017-11-15

    The pathophysiology of diabetes is complex and recent research put focus on the pancreatic islets of Langerhans and the insulin-secreting beta cells as central in the development of the disease. MicroRNAs (miRNAs), the small non-coding RNAs regulating post-transcriptional gene expression, are significant regulators of beta cell function. One of the most abundant miRNAs in the islets is miR-375. This review focus on the role of miR-375 in beta cell function, including effects in development and differentiation, proliferation and regulation of insulin secretion. It also discusses the regulation of miR-375 expression, miR-375 as a potential circulating biomarker in type 1 and type 2 diabetes, and the need for the beta cell to keep expression of miR-375 within optimal levels. The summed picture of miR-375 is a miRNA with multiple functions with importance in the formation of beta cell identity, control of beta cell mass and regulation of insulin secretion. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. GPR39 receptors and actions of trace metals on pancreatic beta cell function and glucose homoeostasis.

    PubMed

    Moran, Brian M; Abdel-Wahab, Yasser H A; Vasu, Srividya; Flatt, Peter R; McKillop, Aine M

    2016-04-01

    G-protein-coupled receptor 39 (GPR39) has been implicated in glucose homoeostasis, appetite control and gastrointestinal tract function. This study used clonal BRIN-BD11 cells and mouse pancreatic islets to assess the insulin-releasing actions of trace metals believed to act via GPR39, and the second messenger pathways involved in mediating their effects. Micromolar concentrations of Zn(2+), Cu(2+), Ni(2+) and Co(2+) were examined under normoglycaemic and hyperglycaemic conditions. Mechanistic studies investigated changes of intracellular Ca(2+), cAMP generation and assessment of cytotoxicity by LDH release. Cellular localisation of GPR39 was determined by double immunohistochemical staining. All trace metals (7.8-500 µmol/l) stimulated insulin release with Cu(2+) being the most potent in isolated islets, with an EC50 value of 87 μmol/l. Zn(2+) was the most selective with an EC50 value of 125 μmol/l. Enhancement of insulin secretion was also observed with Ni(2+) (179 μmol/l) and Co(2+) (190 μmol/l). These insulin-releasing effects were confirmed using clonal BRIN-BD11 cells which exhibited enhanced intracellular Ca(2+) (p < 0.05-p < 0.001) and cAMP generation (p < 0.05-p < 0.001) in response to trace metals. Oral administration of Zn(2+), Ni(2+) and Cu(2+) (50 µmol/kg together with 18 mmol/kg glucose) decreased the glycaemic excursion (p < 0.05-p < 0.01) and augmented insulin secretion (p < 0.05-p < 0.01) in NIH Swiss mice. This study has demonstrated the presence of GPR39 and the insulinotropic actions of trace metals on BRIN-BD11 cells and pancreatic beta cells, together with their antihyperglycaemic actions in vivo. These data suggest that development of agonists capable of specifically activating GPR39 may be a useful new therapeutic approach for diabetes management.

  5. A Novel GLP1 Receptor Interacting Protein ATP6ap2 Regulates Insulin Secretion in Pancreatic Beta Cells.

    PubMed

    Dai, Feihan F; Bhattacharjee, Alpana; Liu, Ying; Batchuluun, Battsetseg; Zhang, Ming; Wang, Xinye Serena; Huang, Xinyi; Luu, Lemieux; Zhu, Dan; Gaisano, Herbert; Wheeler, Michael B

    2015-10-09

    GLP1 activates its receptor, GLP1R, to enhance insulin secretion. The activation and transduction of GLP1R requires complex interactions with a host of accessory proteins, most of which remain largely unknown. In this study, we used membrane-based split ubiquitin yeast two-hybrid assays to identify novel GLP1R interactors in both mouse and human islets. Among these, ATP6ap2 (ATPase H(+)-transporting lysosomal accessory protein 2) was identified in both mouse and human islet screens. ATP6ap2 was shown to be abundant in islets including both alpha and beta cells. When GLP1R and ATP6ap2 were co-expressed in beta cells, GLP1R was shown to directly interact with ATP6ap2, as assessed by co-immunoprecipitation. In INS-1 cells, overexpression of ATP6ap2 did not affect insulin secretion; however, siRNA knockdown decreased both glucose-stimulated and GLP1-induced insulin secretion. Decreases in GLP1-induced insulin secretion were accompanied by attenuated GLP1 stimulated cAMP accumulation. Because ATP6ap2 is a subunit required for V-ATPase assembly of insulin granules, it has been reported to be involved in granule acidification. In accordance with this, we observed impaired insulin granule acidification upon ATP6ap2 knockdown but paradoxically increased proinsulin secretion. Importantly, as a GLP1R interactor, ATP6ap2 was required for GLP1-induced Ca(2+) influx, in part explaining decreased insulin secretion in ATP6ap2 knockdown cells. Taken together, our findings identify a group of proteins that interact with the GLP1R. We further show that one interactor, ATP6ap2, plays a novel dual role in beta cells, modulating both GLP1R signaling and insulin processing to affect insulin secretion.

  6. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process.

    PubMed

    Ghosal, Abhisek; Sekar, Thillai V; Said, Hamid M

    2014-08-01

    Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na(+)-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na(+)-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS. Copyright © 2014 the American Physiological Society.

  7. Safety constraints in an artificial pancreatic beta cell: an implementation of model predictive control with insulin on board.

    PubMed

    Ellingsen, Christian; Dassau, Eyal; Zisser, Howard; Grosman, Benyamin; Percival, Matthew W; Jovanovic, Lois; Doyle, Francis J

    2009-05-01

    Type 1 diabetes mellitus (T1DM) is characterized by the destruction of pancreatic beta cells, resulting in the inability to produce sufficient insulin to maintain normoglycemia. As a result, people with T1DM depend on exogenous insulin that is given either by multiple daily injections or by an insulin pump to control their blood glucose. A challenging task is to design the next step in T1DM therapy: a fully automated insulin delivery system consisting of an artificial pancreatic beta cell that shall provide both safe and effective therapy. The core of such a system is a control algorithm that calculates the insulin dose based on automated glucose measurements. A model predictive control (MPC) algorithm was designed to control glycemia by controlling exogenous insulin delivery. The MPC algorithm contained a dynamic safety constraint, insulin on board (IOB), which incorporated the clinical values of correction factor and insulin-to-carbohydrate ratio along with estimated insulin action decay curves as part of the optimal control solution. The results emphasized the ability of the IOB constraint to significantly improve the glucose/insulin control trajectories in the presence of aggressive control actions. The simulation results indicated that 50% of the simulations conducted without the IOB constraint resulted in hypoglycemic events, compared to 10% of the simulations that included the IOB constraint. Achieving both efficacy and safety in an artificial pancreatic beta cell calls for an IOB safety constraint that is able to override aggressive control moves (large insulin doses), thereby minimizing the risk of hypoglycemia. 2009 Diabetes Technology Society.

  8. Drp1 guarding of the mitochondrial network is important for glucose-stimulated insulin secretion in pancreatic beta cells.

    PubMed

    Reinhardt, Florian; Schultz, Julia; Waterstradt, Rica; Baltrusch, Simone

    2016-06-10

    Mitochondria form a tubular network in mammalian cells, and the mitochondrial life cycle is determined by fission, fusion and autophagy. Dynamin-related protein 1 (Drp1) has a pivotal role in these processes because it alone is able to constrict mitochondria. However, the regulation and function of Drp1 have been shown to vary between cell types. Mitochondrial morphology affects mitochondrial metabolism and function. In pancreatic beta cells mitochondrial metabolism is a key component of the glucose-induced cascade of insulin secretion. The goal of the present study was to investigate the action of Drp1 in pancreatic beta cells. For this purpose Drp1 was down-regulated by means of shDrp1 in insulin-secreting INS1 cells and mouse pancreatic islets. In INS1 cells reduced Drp1 expression resulted in diminished expression of proteins regulating mitochondrial fusion, namely mitofusin 1 and 2, and optic atrophy protein 1. Diminished mitochondrial dynamics can therefore be assumed. After down-regulation of Drp1 in INS1 cells and spread mouse islets the initially homogenous mitochondrial network characterised by a moderate level of interconnections shifted towards high heterogeneity with elongated, clustered and looped mitochondria. These morphological changes were found to correlate directly with functional alterations. Mitochondrial membrane potential and ATP generation were significantly reduced in INS1 cells after Drp1down-regulation. Finally, a significant loss of glucose-stimulated insulin secretion was demonstrated in INS1 cells and mouse pancreatic islets. In conclusion, Drp1 expression is important in pancreatic beta cells to maintain the regulation of insulin secretion.

  9. Membrane Potential and Calcium Dynamics in Beta Cells from Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis

    PubMed Central

    Dolenšek, Jurij; Špelič, Denis; Skelin Klemen, Maša; Žalik, Borut; Gosak, Marko; Slak Rupnik, Marjan; Stožer, Andraž

    2015-01-01

    Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential and calcium changes spread from one beta cell to the other in a wave-like manner. In order to assess the properties of the abovementioned responses to physiological and pathological stimuli, the main challenge remains how to effectively measure membrane potential and calcium changes at the same time with high spatial and temporal resolution, and also in as many cells as possible. To date, the most wide-spread approach has employed the electrophysiological patch-clamp method to monitor membrane potential changes. Inherently, this technique has many advantages, such as a direct contact with the cell and a high temporal resolution. However, it allows one to assess information from a single cell only. In some instances, this technique has been used in conjunction with CCD camera-based imaging, offering the opportunity to simultaneously monitor membrane potential and calcium changes, but not in the same cells and not with a reliable cellular or subcellular spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter dyes in combination with high temporal and spatial confocal calcium imaging allows for simultaneously detecting membrane potential and calcium changes in many cells at a time. Since the signals yielded from both types of reporter dyes are inherently noisy, we have developed complex methods of data denoising that permit for visualization and pixel-wise analysis of signals. Combining the experimental approach of high-resolution imaging with the advanced analysis of noisy data enables novel

  10. The reprogrammed pancreatic progenitor-like intermediate state of hepatic cells is more susceptible to pancreatic beta cell differentiation.

    PubMed

    Wang, Qiwei; Wang, Hai; Sun, Yu; Li, Shi-Wu; Donelan, William; Chang, Lung-Ji; Jin, Shouguang; Terada, Naohiro; Cheng, Henrique; Reeves, Westley H; Yang, Li-Jun

    2013-08-15

    Induced pluripotent stem cells (iPSCs) hold great promise for cell therapy. However, their low efficiency of lineage-specific differentiation and tumorigenesis severely hinder clinical translation. We hypothesized that reprogramming of somatic cells into lineage-specific progenitor cells might allow for large-scale expansion, avoiding the tumorigenesis inherent with iPSCs and simultaneously facilitating lineage-specific differentiation. Here we aimed at reprogramming rat hepatic WB cells, using four Yamanaka factors, into pancreatic progenitor cells (PPCs) or intermediate (IM) cells that have characteristics of PPCs. IM clones were selected based on their specific morphology and alkaline phosphatase activity and stably passaged under defined culture conditions. IM cells did not have iPSC properties, could be stably expanded in large quantity, and expressed all 14 genes that are used to define the PPC developmental stage. Directed differentiation of IM and WB cells by Pdx1-Ngn3-MafA (PNM) into pancreatic beta-like cells revealed that the IM cells are more susceptible to directed beta cell differentiation because of their open chromatin configuration, as demonstrated by expression of key pancreatic beta cell genes, secretion of insulin in response to glucose stimulation, and easy access to exogenous PNM proteins at the rat insulin 1 and Pdx1 promoters. This notion that IM cells are superior to their parental cells is further supported by the epigenetic demonstration of accessibility of Pdx1 and insulin 1 promoters. In conclusion, we have developed a strategy to derive and expand PPC cells from hepatic WB cells using conventional cell reprogramming. This proof-of-principal study may offer a novel, safe and effective way to generate autologous pancreatic beta cells for cell therapy of diabetes.

  11. Biotin uptake by mouse and human pancreatic beta cells/islets: a regulated, lipopolysaccharide-sensitive carrier-mediated process

    PubMed Central

    Ghosal, Abhisek; Sekar, Thillai V.

    2014-01-01

    Biotin is essential for the normal function of pancreatic beta cells. These cells obtain biotin from their surroundings via transport across their cell membrane. Little is known about the uptake mechanism involved, how it is regulated, and how it is affected by internal and external factors. We addressed these issues using the mouse-derived pancreatic beta-TC-6 cells and freshly isolated mouse and human primary pancreatic beta cells as models. The results showed biotin uptake by pancreatic beta-TC-6 cells occurs via a Na+-dependent, carrier-mediated process, that is sensitive to desthiobiotin, as well as to pantothenic acid and lipoate; the process is also saturable as a function of concentration (apparent Km = 22.24 ± 5.5 μM). These cells express the sodium-dependent multivitamin transporter (SMVT), whose knockdown (with doxycycline-inducible shRNA) led to a sever inhibition in biotin uptake. Similarly, uptake of biotin by mouse and human primary pancreatic islets is Na+-dependent and carrier-mediated, and both cell types express SMVT. Biotin uptake by pancreatic beta-TC-6 cells is also adaptively regulated (via transcriptional mechanism) by extracellular substrate level. Chronic treatment of pancreatic beta-TC-6 cells with bacterial lipopolysaccharides (LPS) leads to inhibition in biotin uptake. This inhibition is mediated via a Toll-Like receptor 4-mediated process and involves a decrease in membrane expression of SMVT. These findings show, for the first time, that pancreatic beta cells/islets take up biotin via a specific and regulated carrier-mediated process, and that the process is sensitive to the effect of LPS. PMID:24904078

  12. Membrane Potential and Calcium Dynamics in Beta Cells from Mouse Pancreas Tissue Slices: Theory, Experimentation, and Analysis.

    PubMed

    Dolenšek, Jurij; Špelič, Denis; Klemen, Maša Skelin; Žalik, Borut; Gosak, Marko; Rupnik, Marjan Slak; Stožer, Andraž

    2015-10-28

    Beta cells in the pancreatic islets of Langerhans are precise biological sensors for glucose and play a central role in balancing the organism between catabolic and anabolic needs. A hallmark of the beta cell response to glucose are oscillatory changes of membrane potential that are tightly coupled with oscillatory changes in intracellular calcium concentration which, in turn, elicit oscillations of insulin secretion. Both membrane potential and calcium changes spread from one beta cell to the other in a wave-like manner. In order to assess the properties of the abovementioned responses to physiological and pathological stimuli, the main challenge remains how to effectively measure membrane potential and calcium changes at the same time with high spatial and temporal resolution, and also in as many cells as possible. To date, the most wide-spread approach has employed the electrophysiological patch-clamp method to monitor membrane potential changes. Inherently, this technique has many advantages, such as a direct contact with the cell and a high temporal resolution. However, it allows one to assess information from a single cell only. In some instances, this technique has been used in conjunction with CCD camera-based imaging, offering the opportunity to simultaneously monitor membrane potential and calcium changes, but not in the same cells and not with a reliable cellular or subcellular spatial resolution. Recently, a novel family of highly-sensitive membrane potential reporter dyes in combination with high temporal and spatial confocal calcium imaging allows for simultaneously detecting membrane potential and calcium changes in many cells at a time. Since the signals yielded from both types of reporter dyes are inherently noisy, we have developed complex methods of data denoising that permit for visualization and pixel-wise analysis of signals. Combining the experimental approach of high-resolution imaging with the advanced analysis of noisy data enables novel

  13. Differential sensitivity to beta-cell secretagogues in cultured rat pancreatic islets exposed to human interleukin-1 beta.

    PubMed

    Eizirik, D L; Sandler, S; Hallberg, A; Bendtzen, K; Sener, A; Malaisse, W J

    1989-08-01

    The early stages of insulin-dependent diabetes mellitus are characterized by a selective inability to secrete insulin in response to glucose, coupled to a better response to nonnutrient secretagogues. The deficient glucose response may be a result of the autoimmune process directed toward the beta-cells. Interleukin-1 (IL-1) has been suggested to be one possible mediator of immunological damage of the beta-cells. In the present study we characterized the sensitivity of beta-cells to different secretagogues after human recombinant IL-1 beta (rIL-1 beta) exposure. Furthermore, experiments were performed to clarify the biochemical mechanisms behind the defective insulin response observed in these islets. Rat pancreatic islets were isolated and kept in tissue culture (medium RPMI-1640 plus 10% calf serum) for 5 days. The islets were subsequently exposed to 60 pM human recombinant IL-1 beta during 48 h in the same culture conditions as above and examined immediately after IL-1 exposure. The rIL-1 beta-treated islets showed a marked reduction of glucose-stimulated insulin release. Stimulation with arginine plus different glucose concentrations, and leucine plus glutamine partially counteracted the rIL-1 beta-induced reduction of insulin release. The activities of the glycolytic enzymes hexokinase, glucokinase, and glyceraldehyde 3-phosphate dehydrogenase, were similar in control and IL-1-exposed islets. Treatment with IL-1 also did not impair the activities of NADH+- and NADPH+-dependent glutamate dehydrogenase, glutamate-aspartate transaminase, glutamate-alanine transaminase, citrate synthase, and NAD+-linked isocitrate dehydrogenase. The oxidation of D-[6-14C]glucose and L-[U-14C]leucine were decreased by 50% in IL-1-treated islets. Furthermore, there was a significant decrease in the ratios of [2-14C]pyruvate oxidation/[1-14C]pyruvate decarboxylation and L-[U-14C]leucine oxidation/L-[1-14C]leucine decarboxylation, indicating that IL-1 decreases the proportion of

  14. Progenitor potential of nkx6.1-expressing cells throughout zebrafish life and during beta cell regeneration.

    PubMed

    Ghaye, Aurélie P; Bergemann, David; Tarifeño-Saldivia, Estefania; Flasse, Lydie C; Von Berg, Virginie; Peers, Bernard; Voz, Marianne L; Manfroid, Isabelle

    2015-09-02

    In contrast to mammals, the zebrafish has the remarkable capacity to regenerate its pancreatic beta cells very efficiently. Understanding the mechanisms of regeneration in the zebrafish and the differences with mammals will be fundamental to discovering molecules able to stimulate the regeneration process in mammals. To identify the pancreatic cells able to give rise to new beta cells in the zebrafish, we generated new transgenic lines allowing the tracing of multipotent pancreatic progenitors and endocrine precursors. Using novel bacterial artificial chromosome transgenic nkx6.1 and ascl1b reporter lines, we established that nkx6.1-positive cells give rise to all the pancreatic cell types and ascl1b-positive cells give rise to all the endocrine cell types in the zebrafish embryo. These two genes are initially co-expressed in the pancreatic primordium and their domains segregate, not as a result of mutual repression, but through the opposite effects of Notch signaling, maintaining nkx6.1 expression while repressing ascl1b in progenitors. In the adult zebrafish, nkx6.1 expression persists exclusively in the ductal tree at the tip of which its expression coincides with Notch active signaling in centroacinar/terminal end duct cells. Tracing these cells reveals that they are able to differentiate into other ductal cells and into insulin-expressing cells in normal (non-diabetic) animals. This capacity of ductal cells to generate endocrine cells is supported by the detection of ascl1b in the nkx6.1:GFP ductal cell transcriptome. This transcriptome also reveals, besides actors of the Notch and Wnt pathways, several novel markers such as id2a. Finally, we show that beta cell ablation in the adult zebrafish triggers proliferation of ductal cells and their differentiation into insulin-expressing cells. We have shown that, in the zebrafish embryo, nkx6.1+ cells are bona fide multipotent pancreatic progenitors, while ascl1b+ cells represent committed endocrine precursors. In

  15. Analysis of the noise-induced bursting-spiking transition in a pancreatic beta-cell model.

    PubMed

    Aguirre, Jacobo; Mosekilde, Erik; Sanjuán, Miguel A F

    2004-04-01

    A stochastic model of the electrophysiological behavior of the pancreatic beta cell is studied, as a paradigmatic example of a bursting biological cell embedded in a noisy environment. The analysis is focused on the distortion that a growing noise causes to the basic properties of the membrane potential signals, such as their periodic or chaotic nature, and their bursting or spiking behavior. We present effective computational tools to obtain as much information as possible from these signals, and we suggest that the methods could be applied to real time series. Finally, a universal dependence of the main characteristics of the membrane potential on the size of the considered cell cluster is presented.

  16. Would R.D. Lawrence have been interested in the regulation of insulin secretion from pancreatic beta-cells?

    PubMed

    Jones, P M

    1998-08-01

    Dr Peter Jones gave the 1997 R.D. Lawrence Lecture to the Medical and Scientific Section of the British Diabetic Association. This prestigious award, made to an outstanding young researcher, is named in honour of the man who, with H.G. Wells, founded the British Diabetic Association, and was given to Dr Jones in acknowledgment of his work in the field of islet cell physiology and pathophysiology. In this article, Dr Jones recalls his lecture and describes the principles of intracellular signalling in insulin secretion and the need for beta-cells to live together.

  17. Islet-selectivity of G-protein coupled receptor ligands evaluated for PET imaging of pancreatic {beta}-cell mass

    SciTech Connect

    Cline, Gary W.; Zhao, Xiaojian; Jakowski, Amy B.; Soeller, Walter C.; Treadway, Judith L.

    2011-09-02

    Highlights: {yields} We screened G-protein coupled receptors for imaging pancreatic. {yields} Database mining and immunohistochemistry identified GPCRs enriched in {beta}-cells. {yields} In vitro and in vivo assays were used to determine exocrine vs endocrine specificity. {yields} GPCR candidates for imaging of {beta}-cell mass are Prokineticin-1R, mGluR5, and GLP-1R. -- Abstract: A critical unmet need exists for methods to quantitatively measure endogenous pancreatic {beta}-cell mass (BCM) for the clinical evaluation of therapies to prevent or reverse loss of BCM and diabetes progression. Our objective was to identify G-protein coupled receptors (GPCRs) that are expressed with a high degree of specificity to islet {beta}-cells for receptor-targeted imaging of BCM. GPCRs enriched in pancreatic islets relative to pancreas acinar and hepatic tissue were identified using a database screen. Islet-specific expression was confirmed by human pancreas immunohistochemistry (IHC). In vitro selectivity assessment was determined from the binding and uptake of radiolabeled ligands to the rat insulinoma INS-1 832/13 cell line and isolated rat islets relative to the exocrine pancreas cell-type, PANC-1. Tail-vein injections of radioligands into rats were used to determine favorable image criteria of in vivo biodistribution to the pancreas relative to other internal organs (i.e., liver, spleen, stomach, and lungs). Database and IHC screening identified four candidate receptors for further in vitro and in vivo evaluation for PET imaging of BCM: prokineticin-1 receptor (PK-1R), metabotropic glutamate receptor type-5 (mGluR5), neuropeptide Y-2 receptor (NPY-2R), and glucagon-like peptide 1 receptor (GLP-1R). In vitro specificity ratios gave the following receptor rank order: PK-1R > GLP-1R > NPY-2R > mGluR5. The biodistribution rank order of selectivity to the pancreas was found to be PK-1R > VMAT2 {approx} GLP-1R > mGluR5. Favorable islet selectivity and biodistribution

  18. Characterization of Stimulus-Secretion Coupling in the Human Pancreatic EndoC-βH1 Beta Cell Line

    PubMed Central

    Andersson, Lotta E.; Valtat, Bérengère; Bagge, Annika; Sharoyko, Vladimir V.; Nicholls, David G.; Ravassard, Philippe; Scharfmann, Raphael; Spégel, Peter; Mulder, Hindrik

    2015-01-01

    Aims/Hypothesis Studies on beta cell metabolism are often conducted in rodent beta cell lines due to the lack of stable human beta cell lines. Recently, a human cell line, EndoC-βH1, was generated. Here we investigate stimulus-secretion coupling in this cell line, and compare it with that in the rat beta cell line, INS-1 832/13, and human islets. Methods Cells were exposed to glucose and pyruvate. Insulin secretion and content (radioimmunoassay), gene expression (Gene Chip array), metabolite levels (GC/MS), respiration (Seahorse XF24 Extracellular Flux Analyzer), glucose utilization (radiometric), lactate release (enzymatic colorimetric), ATP levels (enzymatic bioluminescence) and plasma membrane potential and cytoplasmic Ca2+ responses (microfluorometry) were measured. Metabolite levels, respiration and insulin secretion were examined in human islets. Results Glucose increased insulin release, glucose utilization, raised ATP production and respiratory rates in both lines, and pyruvate increased insulin secretion and respiration. EndoC-βH1 cells exhibited higher insulin secretion, while plasma membrane depolarization was attenuated, and neither glucose nor pyruvate induced oscillations in intracellular calcium concentration or plasma membrane potential. Metabolite profiling revealed that glycolytic and TCA-cycle intermediate levels increased in response to glucose in both cell lines, but responses were weaker in EndoC-βH1 cells, similar to those observed in human islets. Respiration in EndoC-βH1 cells was more similar to that in human islets than in INS-1 832/13 cells. Conclusions/Interpretation Functions associated with early stimulus-secretion coupling, with the exception of plasma membrane potential and Ca2+ oscillations, were similar in the two cell lines; insulin secretion, respiration and metabolite responses were similar in EndoC-βH1 cells and human islets. While both cell lines are suitable in vitro models, with the caveat of replicating key findings

  19. Voltage-gated ion channels in human pancreatic beta-cells: electrophysiological characterization and role in insulin secretion.

    PubMed

    Braun, Matthias; Ramracheya, Reshma; Bengtsson, Martin; Zhang, Quan; Karanauskaite, Jovita; Partridge, Chris; Johnson, Paul R; Rorsman, Patrik

    2008-06-01

    To characterize the voltage-gated ion channels in human beta-cells from nondiabetic donors and their role in glucose-stimulated insulin release. Insulin release was measured from intact islets. Whole-cell patch-clamp experiments and measurements of cell capacitance were performed on isolated beta-cells. The ion channel complement was determined by quantitative PCR. Human beta-cells express two types of voltage-gated K(+) currents that flow through delayed rectifying (K(V)2.1/2.2) and large-conductance Ca(2+)-activated K(+) (BK) channels. Blockade of BK channels (using iberiotoxin) increased action potential amplitude and enhanced insulin secretion by 70%, whereas inhibition of K(V)2.1/2.2 (with stromatoxin) was without stimulatory effect on electrical activity and secretion. Voltage-gated tetrodotoxin (TTX)-sensitive Na(+) currents (Na(V)1.6/1.7) contribute to the upstroke of action potentials. Inhibition of Na(+) currents with TTX reduced glucose-stimulated (6-20 mmol/l) insulin secretion by 55-70%. Human beta-cells are equipped with L- (Ca(V)1.3), P/Q- (Ca(V)2.1), and T- (Ca(V)3.2), but not N- or R-type Ca(2+) channels. Blockade of L-type channels abolished glucose-stimulated insulin release, while inhibition of T- and P/Q-type Ca(2+) channels reduced glucose-induced (6 mmol/l) secretion by 60-70%. Membrane potential recordings suggest that L- and T-type Ca(2+) channels participate in action potential generation. Blockade of P/Q-type Ca(2+) channels suppressed exocytosis (measured as an increase in cell capacitance) by >80%, whereas inhibition of L-type Ca(2+) channels only had a minor effect. Voltage-gated T-type and L-type Ca(2+) channels as well as Na(+) channels participate in glucose-stimulated electrical activity and insulin secretion. Ca(2+)-activated BK channels are required for rapid membrane repolarization. Exocytosis of insulin-containing granules is principally triggered by Ca(2+) influx through P/Q-type Ca(2+) channels.

  20. Apical structures of "mitochondria-rich" alpha and beta cells in euryhaline fish gill: their behaviour in various living conditions.

    PubMed

    Pisam, M; Le Moal, C; Auperin, B; Prunet, P; Rambourg, A

    1995-01-01

    One of the characteristic features of the two types (alpha and beta) of "mitochondria-rich" (chloride) cells in the gill epithelium of freshwater fishes is the presence in their apical region of tubulovesicular structures. A further analysis of the ultrastructural features of these apical elements as well as that of their modifications under various living conditions should help to understand better the respective rôle of both alpha and beta cells in these conditions. Atlantic salmon (Salmo salar) maintained in fresh water as well as tilapia (Oreochromis niloticus) maintained either in fresh water or in deionized water or in 20% saltwater were examined. Measurements of surface areas of apical structures in the various living conditions were also performed. In the alpha cells of freshwater fishes, the apical structures consisted of isolated vesicles containing a filamentous material resembling that coating the apical surface. They were closely related to the apical plasma membrane and did not penetrate the region containing the tubular system. When fishes were transferred to deionized water, the number of the apical membrane folds increased significantly, as did the number and size of apical structures which became elongated. In saltwater-adapted fishes, the apical structures showed a tendency to collapse and took the appearance of flattened and slightly curved elements. These observations tended to indicate that in alpha cells the apical structures were extensions of the apical plasma membrane and thereby might be implicated in sodium uptake when fishes are placed in fresh or deionized water and in chloride excretion when they are transferred to salt water. In beta cells, the apical structures were usually separated from the apical plasma membrane by a zone rich in cytoskeleton elements. They penetrated deeply into the supranuclear region, where they intermingled with the elements of the tubular system. They consisted mainly of tubular elements that contained a

  1. Arsenic Exposure and Calpain-10 Polymorphisms Impair the Function of Pancreatic Beta-Cells in Humans: A Pilot Study of Risk Factors for T2DM

    PubMed Central

    Díaz-Villaseñor, Andrea; Cruz, Laura; Cebrián, Arturo; Hernández-Ramírez, Raúl U.; Hiriart, Marcia; García-Vargas, Gonzálo; Bassol, Susana; Sordo, Monserrat; Gandolfi, A. Jay; Klimecki, Walter T.; López-Carillo, Lizbeth; Cebrián, Mariano E.; Ostrosky-Wegman, Patricia

    2013-01-01

    The incidence of type 2 diabetes mellitus (T2DM) is increasing worldwide and diverse environmental and genetic risk factors are well recognized. Single nucleotide polymorphisms (SNPs) in the calpain-10 gene (CAPN-10), which encodes a protein involved in the secretion and action of insulin, and chronic exposure to inorganic arsenic (iAs) through drinking water have been independently associated with an increase in the risk for T2DM. In the present work we evaluated if CAPN-10 SNPs and iAs exposure jointly contribute to the outcome of T2DM. Insulin secretion (beta-cell function) and insulin sensitivity were evaluated indirectly through validated indexes (HOMA2) in subjects with and without T2DM who have been exposed to a gradient of iAs in their drinking water in northern Mexico. The results were analyzed taking into account the presence of the risk factor SNPs SNP-43 and -44 in CAPN-10. Subjects with T2DM had significantly lower beta-cell function and insulin sensitivity. An inverse association was found between beta-cell function and iAs exposure, the association being more pronounced in subjects with T2DM. Subjects without T2DM who were carriers of the at-risk genotype SNP-43 or -44, also had significantly lower beta-cell function. The association of SNP-43 with beta-cell function was dependent on iAs exposure, age, gender and BMI, whereas the assoc